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The index of elliptic operators: II
By M. F. ATivAH and G. B. SEGAL

Introduction

The purpose of this paper is to show how the index theorem of [5] can be
reformulated as a general “Lefschetz fixed-point theorem” on the lines of [2].
In this way we shall obtain the main theorem of [2], generalized to deal with
arbitrary fixed-point sets, but only for transformations belonging to a compact
group.

The content of this paper is essentially topological, and it should be
viewed as a paper on the equivariant K-theory of manifolds. The analysis
has all been done in [5], and what we do here is simply to express the topolog-
ical index in terms of fixed-point sets. This is quite independent of the main
theorem of [5] asserting the equality of the topological and analytical indices.

As in [5], we avoid cohomology and use only K-theory. In paper III of
this series, we shall pass over to cohomology obtaining explicit formulas in
terms of characteristic classes.

The basic result in K,-theory which leads to the fixed-point formula is
what we call the Localization Theorem. We review this in § 1. In § 2, this
is then applied to the topological index. Some cases of special interest are
then discussed in § 3.

1. The localization theorem

In [5], we reviewed some of the basic facts about the functor K;(X),
defined for G a compact Lie group, and X a locally compact G-space. We did
not however introduce the group K}(X) and the exact sequence for K, -theory
which we shall need to use here. Let us recall then [1] that one defines

K;"(X) = KcR™ x X)

(where G acts trivially on R"), and that the periodicity theory gives natural
isomorphisms

Ki~= Kz " .
Considering » as an integer mod 2, we then introduce
¢ = KD K; (K = Kq) .«

For a compact pair (X, Y), one then has an exact triangle
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Kz (X)
7.\
where ¢ interchanges K¢ and K;. More generally, for locally compact spaces
with Y closed in X, we have an exact triangle

K (X)
/N
Kig(X—-Y)«—KXY).
This follows at once from the compact case on replacing X, ¥ by their one
point compactifications X+, Y+, and observing that

Ki (X5 Y) =K X" - Y)=K}X-7).
We recall next that the tensor product induces a pairing
Kiy(X)Q Ksy(Y) — Ko(X x Y)

for any two locally compact G-spaces X, Y. In particular, taking Y = point,
we see that K(X) is a module over K (point) = R(G), the character ring of
G. Replacing X by R'x X, the same is true for K}(X), and hence for K3(X).
It is therefore possible to study K (X) from the point of view of commutative
algebra by analyzing it with respect to the prime ideals of R(G). It is the
purpose of this section to review the main results in this direction.

Let v be a conjugacy class in G. Then it defines a prime ideal in R(G),
namely all characters which vanish on 7. For any R(G)-module M, we denote
by M, the module obtained from M by localizing at this prime ideal. Thus
M; is a module over the local ring R(G),. An element of R(G), is a “fraction”
u/s with u, s € R(G) and s(v) # 0, but two fractions u/s and w'/s’ represent
the same element of R(G), if 3t € R(G) with ¢(7)=£0 and tus’ =tu’s. Elements
of M, are “fractions” m/s (m e M, s € R(G), s(7) #0) with a similar equivalence
relation.

On the other hand if X is a G-space, we can consider the subspace

X7 = Ugeng

where X denotes the fixed point set of g acting on X. Then X7 is a closed!
G-subspace of X. The main result is then the following.

LOCALIZATION THEOREM (1.1). Let ¥ be a conjugacy class in G, X'—X
the inclusion. Then

1% Ko(X) — Ki(X7)

! y is compact and X7 is the image in X of a closed subspace of 7y X X under the
projection y X X — X,
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becomes an isomorphism
":;k: Ky (X), — Ky (X7),

when localized at the prime ideal of R(G) defined by .

The proof of this theorem is given in [7]. However, as it plays a key role
in this paper, we shall review the proof. The first step is the following
lemma about characters.

LEMMA (1.2). Let H be a closed subgroup of a compact Lie group G, and
let ¥ be a conjugacy class of G not meeting H. Then there exists y € R(G)
such that

(1) x(m #0,

(ii) x(h) = 0 for all he H.

For general G, the proof of (1.2) is surprisingly difficult. However for
the purposes of this paper, it is sufficient to consider abelian groups. In this
case, (1.2) is a trivial consequence of the fact that characters separate points
in the quotient group G/H.

When we localize at the prime ideal of R(G) defined by v, the element ¥
of (1.2) becomes (by (i)) a unit of R(G),. By (ii), this unit annihilates R(H),;
this being viewed as an R(G),-module in the obvious way. Thus we obtain

COROLLARY (1.3). In the notation of (1.2), we have R(H), = 0.

Observe now that, for any conjugacy class v of G, R(H), is itself a ring
of fractions of R(H). Also if M is an R(H)-module, and so an R(G)-module,
M, is an R(H),-module. Since our modules are always “unitary” (i.e. the
identity of the ring acts as the identity on the module), it follows that M,=0
whenever R(H), = 0. This situation arises if v satisfies the hypothesis of
(1.2), and we take M = KX(X) where X is a compact G-space admitting a
G-map onto G/H. The factorization X — G/H — point gives rise to a factori-
zation

K&(X) «—— Ki(G/H) «— K¢(point)

! I
RH) «— R(@G),

so that K(X) is in fact an R(H)-module. Thus we deduce

COROLLARY (1.4). Let v, G, H be as in (1, 2), and let X be a compact G-
space admitting a G-map onto G/H. Then

t;k(X)T =0.

Remark. 1f Y is any closed G-subspace of X, then it also admits a G-map
Y - G/H, and so K#(Y), = 0. The exact triangle of (X, Y), together with
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the exactness of localization, then shows that K*(X, Y), = 0.

Suppose now that X is any locally compact G-space, and let Y — X be an
orbit with isotropy group H. Then we can always find a closed G-neighbor-
hood V of Y in X with a G-retraction onto Y. This follows from the existence
of a “slice” (cf. [7]); but for our present purposes, we only need to apply this
when X is a differentiable G-manifold. In this case Y is a G-submanifold,
and we can take V to be a closed tubular neighbourhood defined by a
G-invariant riemannian metric. In any case, given that such neighbourhoods
V of orbits exist, we can cover any compact G-subspace L of X by a finite
number of sets L, = V, N L. Let H; be the isotropy group connected with
V., then we have G-maps L,—G/H;. Assume now that v is a conjugacy class
of elements of G having no fized points in X, then vy N H, = ¢ for all 4, and
so K#(L;); = 0 by (1.4). A simple induction on the number of L, using exact
sequences, and the remark following (1.5), then shows that K#(L), = 0.
Replacing L by any compact G-subspace L’, and then using the exact triangle
for (L, L'), we deduce that K¢(L,L’), = 0. In particular, if U is an open
relatively compact G-subspace of X, we have

Kx(U), = KX(U, 00), = 0.
Since K¢ (X) is the direct limit of these K#(U), and since localization com-
mutes with taking direct limits, we deduce

PROPOSITION (1.5). Let X be a locally compact G-space, ¥ a conjugacy
class of G having no fixed points in X. Then KX(X ), = 0.
Proposition (1.5) is the special case of (1.2) in which X7 = @. To prove
the localization theorem in general, we consider the exact triangle
K (X)
/ i
/ N\
K (X — X7') e— K¥(X7") .
We now localize this at the prime ideal defined by v, and recall again that
localization preserves exactness. Applying (1.5) to the space X — X7 (where
7 has no fixed points), we obtain the exact triangle
Kz (X),
VAN
/ N\
0 — Kx(X )
which establishes (1.1).

Remark. The proof of (1.1) which we have just given is complete for G
abelian and X a differentiable G-manifold (note that we were careful to
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avoid taking the one-point compactification of X). Only this case will be
used in the rest of the paper.

2. The Lefschetz formula

Let G be a compact Lie group, X a compact differentiable G-manifold.
The tangent bundle TX is then a differentiable G-manifold and we can con-
sider the group K,(TX). In [5] we defined two R(G)-homomorphisms

a-ind: Ky(TX) — R(G)

t-ind: K (TX)— R(G) .
The main theorem of [5] asserts that these two homomorphisms coincide. In
this section we shall show how the topological index t-ind can be computed
in terms of fixed-point sets. Combined with the main theorem of [5], this
will then give a “Lefschetz fixed-point formula” for elliptic operators. For
simplicity of notation (and since in any case a-ind = t-ind), we shall omit the
prefix and write ind for t-ind. When it is necessary to prevent confusion, we
shall write ind,* to indicate the space and group involved.

We recall first that in [5] we defined a functorial homomorphism

1: K(TX) — Ki«(TY)
for any G-embedding i: X — Y. In terms of this the topological index was
defined as follows. Let ¢: X— E be a G-embedding of X in a real representa-
tion space of G, and let j: P — E be the inclusion of the origin. Then,

Ji: Ko(TP) — K(TE)
is an isomorphism and the topological index

ind: K(TX) — K,(TP) = R(G)
is defined by
ind = (j,)7' o1, .

It follows at once from this definition (and the functoriality of 4,) that,
if i: Z— X is a G-embedding of the closed submanifold Z, the following
diagram commutes

K(TZ) - K,(TX)

ind\Z\ li“d"
R(G) .

(2.1)

In addition to the covariant map

1: K(TZ) — Ki(TX) ,



536 ATIYAH AND SEGAL

there is of course the usual contravariant restriction homomorphism
1*: K(TX)— Ky (TZ) .
The relation between these is given by the following lemma [5; (3.1)].

LEMMA (2.2). Ifi: Z—X is a G-embedding with normal bundle N, then

1*1: K(TZ) — K (T2Z)
is multiplication by
AN Qg C) = 25 (—1)N(N Qg C) € Ki(Z)
where the \' are the exterior powers, and K (TZ) is regarded as a K (Z)-
module in the usual way.

Suppose now that G is a topologically eyclic group, i.e., that it possesses
an element g whose powers are dense in G. Then the fixed point set of ¢ in
X is fixed by the whole group, i.e.,

X = X°.
Hence we have® (cf. [5; § 2]):
(2.3) Ki(X*) = K(X°) @ R(G)
and hence, localizing at the prime ideal of R(G) defined by the conjugacy
class {g},
(2.4) Ky(X*), = K(X') @ R(G), .
The following lemma (valid for any group G) characterizes the units in this
ring.

LEMMA (2.5). Let Y be a compact space on which G acts trivially, p any
prime ideal of R(G). Then an element w e Ky(Y), is a unit if and only if
its restriction to each point Pc Y is a unit in K,(P), = R(G),.

Proor. Let* H'(Y;Z) denote the group of continuous maps Y — Z.
Then by assigning to each vector bundle on Y its dimension (or rank), we
obtain a homomorphism

rk: K(Y)— HYY; Z) .
This splits so, if K,(Y) = Ker (rk), we have a decomposition
K(Y)=K(Y)D H(Y;Z) .

In [1, (38.1.6)] it is shown that every element of K,(Y) is nilpotent. Hence an
element of

2 Tensor products are taken over the integers Z unless othewise indicated.
3 For our purposes Y = X7, Y: will be a finite sum of connected spaces Y; so that
HY(Y;Z) is a free abelian group with one generator for each component Y;.
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K(Y), = K(Y)® RG), = (K(Y) @ R(G),) B (H(Y; Z) ® R(G),)
is a unit if and only if its image in H*Y;Z)® R(G), is a unit. But
H(Y;Z) ® R(G), can be identified with the ring of continuous functions

Y — R(G),, and an element of this ring is a unit if and only if its value at
every point Pe Y is a unit.

Before proceeding further, we must make some remarks about the fixed
point set X7 of an element g € G. Since G is compact we can, by averaging
over 7, assume ¢ is an isometry for some riemannian metric. Suppose P e X?,
and let T, denote the tangent space to X at P. Then g induces a linear trans-
formation g | T» on T,. If £e T, is fixed by g | T», then so is the geodesic in
the direction &. It follows easily from this that, in a neighbourhood of P, X*
is just the image under the exponential map* of the (- 1)-eigenspace of g | T'».
Thus X* is a submanifold of X, and the linear transformation g | N, induced
by ¢ on the normal N, to X¢ at P, has no eigenvalue +-1. In other words

(2.6) s det(1—g|N;)#0.

We shall now apply Lemma (2.5) to deduce:

LeEMmA (2.7). Let G be topologically cyclic generated by g, and let X be a
compact G-manifold. Let N° denote the normal bundle® of X° in X. Then

M(N? Qg C) € Ko(X?)
becomes a unit in K (X°),.

Proor. By Lemma (2.5), it is sufficient to restrict to each point Pe Xv,
Now an element y of R(G), i.e. a character, becomes a unit in R(G), if and
only if ¥(g) # 0. Taking x to be the restriction of \_,(N* ®g C) to a point
Pe X° we find®

x(9) = 35 (—1)' Trace A'(g | N Qg C)
=detc(1 — 9| Np» Qg C)
=detg (1 — g | N;)
#0 by (2.6).
This completes the proof.
We are now ready to prove our key result.

PROPOSITION (2.8). Let G be topologically cyclic generated by g and let
X be a compact G-manifold. Then

4 defined by the riemannian metriec.
5 X9 may have components of different dimensions so that N¢ will be a vector bundle
with different dimensions over the different components of Xv.

8 We write detg and detc when necessary to distinguish between determinants of real
and complex linear transformations.
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1,: Ko(TX?) — Ko(TX) ,
when localized at the prime ideal of R(G) defined by g, becomes an tsomor-
phism
(4),: Ke(TX")y — Ko(TX), .
Its imverse is
iy
AN Qg €)
where i} is obtained by localizing the restriction homomorphism
1*: K(TX) — K(TX") .
Proor. By the Localization Theorem (2.1), ¢f is an isomorphism. We
need only observe that by (2.6)
TX* = (TX)" .
In other words, the tangent vectors of X fixed by g are precisely the tangent
vectors of X?. By (2.2) the composition +*%, is multiplication by A_,(N? @ C).
Since G acts trivially on TX?, it follows that
K (TX*) = K(TX*) ® R(G)
and so (if 1 denotes the group with one element),
ind}° = ind¥’ QId .
Thus the dependence of indZ’ on G is rather trivial. On the other hand the

dependence of ind# on G is not so trivial. However, by localizing (2.1), we
get the commutative diagram

KATX?), 2% K (TX),

AN .
(2-9) (nag’y, 009
: R(G),
and we know, by (2.8), that (4,), is an isomorphism. This means that indZ,

when localized at g, can be computed in terms of ind#’. In fact from (2.8)
and (2.9), we get the following precise formula.

ProposITION (2.10). Let G, g, X be as in (2.8), and let u € K(TX). Then
we have’

(ind¥ u), — (indé‘_”),[x—(]f:%-a] .
—1 R

7 The expression in square brackets is of course to be understood as an element in
the localized ring K¢(TX0),.
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This formula computes the image of ind% w in the localized ring R(G),.
It is more usual to compute an element of R(G) by regarding it as a function
on G and evaluating it at all elements of G. To evaluate it on the generator
g we observe that the evaluation map
R(G) —C
given by y — x(g) factors through the local ring R(G),: the evaluation map
R(G)g —C ]
given by y/v — X(g)/4(g9) being well-defined since v (g) # 0. Thus (2.10) will
yield a formula for (indZ #)(g). To write this in a convenient form, we shall,
for any trivial G-space Y, introduce the evaluation maps
Ki(Y) 2 K(Y)QRG) —KY)KQC
Ky(Y), 2= K(Y)Q R(G), — K(Y)®C
given respectively by

u®@yx F—uQx9)

U Q Y/ — u Q x(9)/¥(9)
for u e K(Y). Taking Y = TX* we can evaluate (2.10) on the element g, and
we obtain the formula:

@.11) (indZ w)(g) = (ind¥’ ® Id){ iulg) } ,
AN Qr C)(9)
where
ind?* QIL: K(TX)RXC—ZRC=C
is the natural extension of ind*’ obtained by tensoring with C.

In (2.11) we have assumed that G is topologically cyclic and generated
by g. Now for any group G, and for any g € G, let H be the closed subgroup
generated by g. If u € K,(TX), let u, be the element of K,(TX) induced by
#. By naturality of the topological index, we have

indZ u(g) = ind ux(9) .
Applying (2.11) with H intead of G, we then obtain an explicit formula for
the topological character-index ind? in terms of ordinary topological (integer)
indices on various fixed point sets. In other words, the group G has been
eliminated from the problem.

If we now combine this formula for the topological index with the main
theorem of [5] we will obtain a general “Lefschetz formula”. Thus let E be
an elliptic complex on X invariant under G, and let o(E) be its symbol
sequence. Then this defines an element
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u = [o(E)] e K(TX) ,
and the analytical index of % evaluated at ¢ is just the Lefschetz number
L(g, E) = 37 (—1)" Trace (¢ | H(E))

where H*(E) are the homology groups of the elliptic complex.
Formula (2.11) then leads to the following general Lefschetz fixed-point
theorem for G-invariant elliptic complexes.

THEOREM (2.12). Let G be topologically cyclic generated by g, X a compact
G-manifold, E an elliptic complex on X on which G acts. Let X° denote
the fixed-point set of g, N’ the normal bundle of X° wn X. Finally let
u = [0(F)] e K;(TX) denote the class of the symbol of E, i*uc K(TX’) its
restriction to X°. Applying the evaluation map

K(TX’) = K(TX) ® R(G) — K(TX*)Q C,

given by a @ x— a @ x(9), we can then form i*u(g9) and \_(N Qg C)(g) in
K(TX*) ®Q C. The latter is invertible, and so

1*u(g) K(TX* C
(N @R Og) - ST @

18 well-defined. Then the Lefschetz number L(g, E) is given by

L(g, E) = index{ i u(g) } ,
AN Qg C)(9)
where index: K(TX?) QC—C denotes the natural extension of the topological
index K(TX?) — Z.

Remarks. 1. Theorem (2.12) reduces the problem of calculating an index
in R(G), or a Lefschetz number, to that of ordinary indices in Z. In principle
we could have used this to deduce the equality a-ind = t-ind for groups G
from the corresponding equality without groups. However this would have
been rather artificial, because the main step in either case is the commutative
diagram (2.1) (for both a-ind and t-ind).

2. Applying the explicit cohomological formula for the index given in
[4] to (2.12) we will of course obtain a corresponding expression for L(g, E).
This will be done in detail in paper III.

3. When the fixed point set X” is finite, the topological index K(TX*) —
Z is rather trivial, and (2.12) leads immediately to the explicit Lefschetz
formula of [2]. This will be developed in the next section, but we should
emphasize at this stage the exact relation of our Theorem (2.12) to the main
result of [2]. In [2] general maps with simple fixed points are considered.
These maps need not be invertible and, even if they are, they may not lie in
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any compact group of automorphisms of the elliptic complex. The deforma-
tion methods which are available for compact groups (because of the discrete-
ness of the characters) do not therefore apply, and the proof of [2] is by direct
analysis. The case of higher dimensional fixed-point sets, however, requires
more subtle analysis for direct treatment, and our present deformation method
is therefore very advantageous, when applicable, i.e., where we have a
compact group.

4. The right hand side of the formula in (2.12) is @ prior: only a complex
number. The Lefschetz number L(g, E), on the other hand, is the value on
g of a character of G. For example, if G is finite these values must be
algebraic integers. In this way (2.12) leads to “integrality theorems” for
actions of groups on manifolds. These will be illustrated in the next section.
It is perhaps worth pointing out that, for cyclic groups, these “integrality
theorems” do not depend on the analysis in [5], since we can define the
Lefschetz number topologically.

3. Special cases and applications

First, as indicated in Remark (3) above, we shall consider the case when
the fixed point set X* consists of a finite set of points. In this case, we have

K(TX) =11, K®P),
where P runs over the fixed points of g. The topological index coincides on
each factor K(P) with the natural isomorphism K(P)=Z. The normal bundle
N7 at P is just the tangent space T, to X at P, and
AMa(Tp XRr O)(9) = det(1—g|Ts) .
Finally if E; are the bundles of the elliptic complex E, then the component
(t*u)p is just 37 (—1)°E;, and evaluated on g, this gives
> (—1)' Trace (9 | E)) .
Thus, as a special case of (2.12), we obtain
THEOREM (3.1). Let G be a compact Lie group, X a compact G-manifold,
E an elliptic complex on X on which G acts. Let g€ G have a finite set of
fized points. Then the Lefschetz number L(g, E) is given by
L(g, E) = 3, v(P)
where the summation is taken over the fixed points of g, and

y(P) = 2z (1) Trace (¢ | Eip)
det(1—g|Tp)

We shall now show that this formula is essentially identical with the one
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given in [2]. For this, we take f: X — X to be given by f(x) = g—'z, and the
maps

Piyze Eiyf(x) I Ei,x
to be given by the action of g. The map T, on sections of E; induced by
(f, ®:) then coincides with the natural action of g: if s € I'(E;), we have

(95)(gx) = g(s(x))
or
(98)(W) = 9(s(97'Y)) = P:,.5(F W) = (T:s)(¥) .

Thus L(g; E) = L(T) is the same Lefschetz number as in [2]. As for the
terms v(P) in [2], they are defined as

> (—1) Trace @,,»
|det (1 — df,)|

Now @;,, = g | E;,» and df, = g~'| Tp. Since g| T, is orthogonal, it follows
that

det(1— g |Tp)=det(1 —g|Tp) >0.
Thus we have
det (1 — g7' | Tp) = |det (1 — dfy) |,

so that the terms v(P) occurring in (3.1) are the same as those given in [2].

Theorem (3.1) has a number of interesting applications but, as these are
dealt with fully in [3], we shall not pursue them here.

Another case of special interest is to take X a compact complex manifold,
and G a finite group of complex analytic automorphisms of X. Suppose
moreover that V is a holomorphic G-vector bundle over X. Then the
Dolbeault complex A(V)

s (V) =2 (V)

(where A”?(V') denotes the differential forms on X of type (0, p) with coeffi-
cients in V) is an elliptic complex acted on by G. The homology groups
of this complex may be identified with the sheaf cohomology groups
H?*(X, O(V)) where O(V) denotes the sheaf of germs of holomorphic sections
of V. The Lefschetz number is thus

L(g, A(V)) = 3, (=1)? Trace (g | H*(X, O(V))) .

Consider now the fixed-point set X of g. It is a complex submanifold of X.
If a(X, V) € K;(TX) denotes the symbol class of the Dolbeault complex A(V),
then its restriction to K,(TX?) (H the subgroup generated by g,) is given by
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i*a(X7 V) = a(Xg’ V| XQ)X—I(N*) ’

where N is the (complex) normal bundle of X?in X. This follows from the
usual decomposition of the exterior algebra of a direct sum. Now we have
isomorphisms

NQrC=NE®N N=N*

and so
MN*) _ A(N) _ 1
MiN®gC) M (N)AL(N*)  A(N¥)
Thus we get
*a(X, V) _ a(X*, V|X9
AN Qg C) A_i(NF)
3.2 _ a(X9) V| X7]
ALNF

where a(X?) is the symbol class of the Dolbeault complex of X,
If U is a holomorphic vector bundle over a compact complex manifold Y,
one usually denotes by y(Y, U) the Euler characteristic

Yo (=1 dim HY(Y, O(U)) ,

i.e., the index of the Dolbeault complex A(Y, U). We extend this notation
toany u e K(Y) ® C. Thus

x(Y, u) = index (a(Y)-u) e C .
In this notation (3.2) yields

o (X VNG e LV X))
index {MN ®x C>(g)} (¥, x_l<N*><g)> '

Putting this into Theorem (2.12), we have therefore established

THEOREM (3.3). Let X be a compact complex manifold, V a holomorphic
vector bundle over X, G a finite group of automorphisms of the pair (X,V).
For any g € G, let X? denote the fixed-point set in X of g, and let N*¢ denote
the (complex) normal bundle of X in X. Then we have

o p (e VX0
Y- (—1)* Trace (g | H*(X, O(V))) X(X , X_l((Na)*)(g)> :

Remark. In the case of a general elliptic complex E with symbol class
%, we can restrict 4 to K;(TX?) but not the actual complex. In the holomor-
phic case however there is, in some sense, a natural restriction, and so
Theorem (3.3) can be expressed without reference to symbols.

We shall now show that Theorem (3.3) implies in effect a Riemann-Roch
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theorem for the complex space X/G. For this we need the following lemma.

LEMMA (3.4). Let X, V,G be as in (3.3), and let f: X— X/G be the
projection of X onto the analytic space X/G. Then we have natural isomor-

phisms
(H(X, (V)¢ = HYX/G, (£.O(V)))
where ()¢ denotes the invariant part under the action of G.

Proor. We recall that the structure sheaf of X/G is by definition
f+(©5)¢. Now the higher direct images Rf,(O(V)) (¢ = 1) are all zero because
any y € X/G has a base of neighbourhoods U with f~(U) a disjoint finite
union of complex balls. The Leray spectral sequence

H"(X/G, R'f,(O(V))) = H** (X, (V))

therefore collapses and gives rise to isomorphisms

H"(X/G, f«(0(V))) = H*(X,0(V)) .
Taking invariant parts on both sides, and observing that, (since ( ) is an
exact functor for vector spaces over C),
H*(X/G, (f(0(V)))) = HX/G, f(6(V)))*,
the required result follows.

If W is a holomorphic vector bundle on Y = X/G, then V = f*W is a
holomorphiec G-vector bundle on X, and (f.(O(V)))¢ = O(W). The Euler
characteristic

(Y, W) =3 (—1)rdim HY(Y, O(W))
can then be computed by the following theorem.
THEOREM (3.5). Let G be a finite group of automorphisms of a compact

complex manifold X, and let W be a holomorphic vector bundle over the
complex space Y = X/G. Then we have

Y, W) = L
x( ) T 2 eq t(9)

where

_ Lf* W1 X°)g)
— o x0, LW 1A°Hg)
o) = (V) 0) )

N7 1s the normal bundle to X? in X, and | G| denotes the order of G.
Proor. By (3.4) we have

1Y, W) = 3 (— 1y dim H?(X, O(F* W))° .
The theorem follows by combining this with Theorem (3.3) and, recalling that
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for any G-module M, we have
dim M¢ = T(l;—]EgEGTrace (9| M).

Remarks. 1. (3.5) reduces the Riemann-Roch theorem for the singular
space X/G to the Riemann-Roch theorem for the manifolds X°¢. Thus, if the
terms p(g) are expressed in explicit cohomological form, we shall obtain an
explicit formula for ¥(Y, W). This is of particular interest in the case of
automorphic forms (cf. [6]).

2. It is probable that (3.3) and (3.5) continue to hold in abstract algebraic
geometry provided | G | is prime to the characteristic of the ground field.

Another interesting case of Theorem (2.12) is given by the Dirac operator
of a spin-manifold, but we shall defer this example until paper III, (for isolated
fixed points see [3; § 8]).

Theorem (2.12) becomes especially simple if the normal bundle N¢ of X*
is G-trivial (i.e., isomorphic to X? x M for some G-module M), or at least if
it is G-trivial over each connected component. In this case, over each com-
ponent, A _,(N ®gC) is just an element of R(G) and evaluated at g it gives

A (N Q®gC)g) =det (1 —g|Np),
where P is any point of the component. Thus (2.12) becomes
L(g,E)=3_,0;,
where the summation is over the connected components X? of X,
1
7T Getd - g )
1*u; e Ko(TX?), and N; is the fibre of N at some point of X?. Theorem (3.1),

dealing with finite X7, is of course a special case in which the normal bundle
is G-trivial over each component.

index i}u(g) ,
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