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The index of elliptic operators: III

By M. F. ATivAH and I. M. SINGER

Introduction

In [7], paper I of this series, the index of an elliptic operator was com-
puted in terms of K-theory. In this paper, we carry out what is essentially
a routine exercise by passing from K-theory to cohomology. In this way, we
end up with (2.12) the explicit cohomological formula for the index announced
in [6].

In [7] we also considered elliptic operators (or complexes) compatible with
a compact group G of transformations. The index in this case is a character
of G, and the main theorem of [7] gave a construction for this in K,-theory.
In [5], paper II of this series, the value of this index-character at an element
g € G was expressed as the index of a new “virtual operator” on the fixed-
point set of g. This was referred to as a Lefschetz fixed-point formula. By
combining this formula with the cohomological formula for the index, we
obtain finally an explicit cohomological formula (3.9) for the index-character.
We shall describe this formula in detail for a number of important operators.
In particular we draw attention to the “integrality theorems” obtained in this
way for actions of finite groups on manifolds. Most of these do not depend
on the analysis in [7], but are a consequence of combining the purely topolog-
ical results of [5] and the present paper.

We begin in § 1 with a brief review of the theory of characteristic classes
and of the relation between cohomology and K-theory. The index formula
(2.12) is then derived in § 2, and the more general index-character or Lefschetz
formula (3.9) is given in §3. The proofs are simple formal consequences of
the results of papers I and II. We also give in (2.17) a rather more explicit
form of the index theorem for the kind of operator which arises naturally
from differential-geometric structures.

The bulk of the paper is actually devoted to examples and applications of
the main theorem. The explicit formula (3.9) is of a rather formidable kind,
and it seemed worthwhile to show what it reduces to in various important
special cases. Thus in §4 we discuss the Riemann-Roch theorem (4.3) for
compact complex manifolds, and also the corresponding Lefschetz formula
(4.6) for finite groups of automorphisms. In § 5 we examine briefly the Dirac
operator of a Spin manifold. In some ways the most interesting elliptic oper-
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ator is the one, discussed in § 6, the index of which is the Hirzebruch signa-
ture of a manifold. Because of its significance for differential topology, we
examine this case in considerable detail. Besides obtaining the original theo-
rem (6.6) of Hirzebruch, we also derive the corresponding Lefschetz formula
(6.12). One noteworthy feature here is that this formula is of interest for all
even-dimensional (oriented) manifolds, not just those with dimension divisible
by 4, as is the case with (6.6).

In § 7 we show how the Lefschetz formula of the preceding sections can
be used to define invariants for free G-actions (on odd-dimensional manifolds).
Some of these are cobordism-type invariants, but the operator of §6 gives
rise to a more refined invariant, and we devote most of § 7 to this case.

In § 8 we consider the infinitesimal case of our general Lefschetz formula,
and we derive results similar to those of Bott [9] [10] connecting characteristic
numbers with zeros of vector fields.

Finally in §9 we make some simple deductions from the general index
and Lefschetz formulas. Under various special assumptions, these formulas
simplify considerably, and, in many situations, one gets a zero index. Most
of these special cases are already mentioned in [6].

As far as the ordinary index theorem goes, the particular cases of §§4,
5, 6, are quite adequately described in [19]. Our reason for reproducing this
material again here is partly for the sake of completeness, and partly because
we want to go on to discuss Lefschetz numbers. Our treatment however is
somewhat briefer than that in [19], and the reader can refer to it for more
detail.

1. Cohomology and characteristic classes

In this section we shall, for the benefit of the reader, give a brief sum-
mary of the theory of characteristic classes. For further details we refer to
[8].

For the category of compact spaces, the most natural cohomology theory is
Cech cohomology. This is also the one that fits in with vector bundles, K-theory,
and general fibre bundle theory. For locally compact spaces, it is then con-
venient to take cohomology with compact supports, which amounts to taking
the reduced cohomology of the one-point compactification. For differentiable
manifolds, where our interest lies, the Cech cohomology groups (with real
coefficients) can, by sheaf theory, be identified with the de Rham groups; i.e.,
the cohomology of the complex of exterior differential forms.

Let G be a compact Lie group. A characteristic class of G can be defined
as a functor which assigns to every (compact) principal G-bundle P a coho-
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mology class' of X = P/G (with coefficients Z, Q, R or C as the case may be).
The set of all characteristic classes forms a ring which we denote by* H,, or
H;(A) when we want to specify the coefficient ring A. The following facts
about Hj are known.

(1.1) If G =T a torus, H;(Z) is naturally isomorphic to the character
group (or Pontrjagin dual) T of T and H}(A) is the (completed) symmetric
algebra of T' over A; thus, if z,, - - - , €, are a basis for 7T,

H;(A) = A[[xly MY xn]]
is the ring of formal power series in «,, «- -, x,.

(1.2) If G has maximal torus T and Weyl group W, the natural homo-
morphism
H;(A) — Hj;(A) for A=Q,R,orC
identifies H; (A) with the invariants of W acting on H, (A).
(1.3) If G = U(n) is the unitary group, then the conclusion of (1.2) also
holds for A = Z. Thus, for any A, if x,, ---, 2, denote the standard charac-

ters of the maximal torus T of U(n) (so that W is the permutation group S,)
we have

Hyo(A) = Al[a,, ---, 2,]]
= Alle, -+, ¢al]
where ¢; is the ¢ elementary symmetric function of «,, - - -, ,.
The characteristic classes ¢; of U(n) are called Chern classes. Since a
principal U(n)-bundle defines and (up to isomorphism) is defined by a complex
vector bundle of dimension », we can regard the Chern classes as functors from

vector bundles to cohomology. Thus if E is a complex vector bundle over X,
we have

c,(EYe HYX; Z) t=1,--.,n=dmkE.
Introducing an indeterminate ¢, we define the Chern polynomial
c(E) = 3 cE)t (c,=1).

Then one has
1.4) C(EPF) =c(E)-e(F).

For a trivial bundle E, one has ¢(E) = 1. Together with (1.4), this shows that
the Chern classes can be defined on K(X).

! We allow a cohomology class to be inhomogeneous, i.e., to be an element of the in-
finite product [],H(X).

%z The usual notation is H**(Bg) where Bg is the classifying space. For brevity we
shall avoid introducing Bg.
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The power series

2
do et =n 4w+ DL

2!

can be expressed uniquely in terms of the elementary symmetric functions ¢;.
This defines a characteristic class (over Q) called the Chern character and
denoted by ch. It has the formal properties

ch(E@F)=chE+chF

ch(FEXR F) = (ch E)ch F) .
It extends to a ring homomorphism

ch: K(X)— H*(X; Q) .

Suppose now that G has maximal torus S, and that p: G— U(n) is a
representation of G with o(S) C T the standard maximal torus of U(n). Then
© induces a homomorphism

p: T— 8§
and the elements y; = p(x;) € S are called the weights of o. The naturality
of the isomorphism (1.2) implies
(1.5) If p*: Hy,,,— H; is the homomorphism, induced by p, then
p*c = H (1 + yit)
p*ch =) e,
where ¢ = Y ¢;t!, and ¢ is an indeterminate. If M is the G-module defined by

o (i.e., M = C" with action g(x) = p(g)x), we shall also write ch M for the
characteristic class

p*ch =3 e¥,
Then M — ch M defines a ring homomorphism
ch: R(G) — H; Q) ,
the “universal” Chern character. If T is the maximal torus of G, we have a

commutative diagram

RG) -2, H Q)
R(T) -2 HY(Q).

For the torus T, we have R(T) = Z[T] (the integral group ring of 7'), and
the Chern character is the ring homomorphism defined by

x; —> 6%
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where ,, - - -, x, are a basis for 7.
If E is a real vector bundle over X, the Pontrjagin classes
pi(E) e H*(X; Z)
are defined by

Pi(E) = (—1)’c,i(E Qg C) .
Using (1.3) and (1.5), one finds

Hy(A) = Allpy, -+, pal] m = [%] A=QR,orC.

If ), ---, ®, are the basic characters of the standard maximal torus of O(n),
the p; are given by

2o (=ipt = TIT (1 + wit)(1 — ait)
so that the p, are the elementary symmetric functions of &2, - .-, 2%. For the

special orthogonal group SO(2m) there is, in addition, a further invariant of
the Weyl group, namely

(1.6) e=JI .
Like the p,, this is in fact the image of an integral characteristic class called
the FEuler class. This may be defined as follows.

Let E be an oriented real vector bundle of dimension #» over X. Then we
have a Thom isomorphism
(1.7) v: H(X;Z) — H*(E; Z) ,
given by ¥ (u) = u-y(1). Thus H*(E;Z) is a free H*(X; Z)-module on the
one generator v(1). If n = 2m, then the Euler class ¢(E) is defined by
(1.8) e(E) = i*yr(1) e H"(X; Z) ,
where i*: H*(E; Z) — H*(X; Z) is induced by the zero-section i: X — E.

If V is a complex vector bundle of dimension m over X, and E is the
underlying real oriented vector bundle, then one has
1.9) c.(V) = e(E).

In rational cohomology, this follows at once from (1.3), (1.6), and the fact
that U(m) and SO(2m) have the same maximal torus. The result for integer
cohomology then follows from the fact (1.3) that

Hyw(Z) — Hj ) (Q)
is injective.
We conclude this survey of characteristic classes with a quick look at
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the role of curvature. We suppose now that we are in the differentiable
framework, i.e., all spaces are differentiable manifolds and all bundles are
differentiable. Let G be a compact Lie group, g its Lie algebra, T' a maximal
torus of G, t its Lie algebra. Then the inclusion t — g induces an isomorphism

(1.10) S(g*)? — S(t*)”
from the polynomials on g invariant under the adjoint action of G, onto the

polynomials on t invariant under the Weyl group W. S(t*) is just the poly-
nomial algebra over R generated by 7T, and so by (1.2)
(1.11) S(t*)” = H;R) .
Thus (1.10) and (1.11) imply that the real characteristic ring of G may be
identified with the invarian* polynomials on its Lie algebra.

Suppose now that P is a principal G-bundle over a compact manifold X.
Let « be a connection on P. Then one can define the curvature 6(a) of «.
This is an exterior differential 2-form on X with coefficients in the Lie algebra

bundle. More precisely, let 3 = P x ,; g be the vector bundle associated with P
by the adjoint action of G on g. Then, for any z,

(). e Q; QP ,
where * is the bundle of 2-forms on X,

If feS(g*)? is an invariant polynomial of degree k, then f(f(a)) is a
well-defined exterior differential form on X of degree 2k. It is closed, and its
(de Rham) cohomology class is independent of the choice of the connection «.
Thus we have a differentiable characteristic class

[f(6(a))] e H*(X; R)
for each fe S(g*)¢. Except for a numerical factor (involving r), this is precise-
ly the characteristic class corresponding to f by the isomorphism
S(g*)* = H; (R) .
Thus, in the differentiable situation, characteristic classes can be represented
by explicit differential forms constructed out of curvature.

For manifolds, the Thom isomorphism can be re-interpreted in a some-
what simpler manner. Assume that X is an oriented manifold of dimension
N, and let E be an oriented real vector bundle over X of dimension n. Then
we have the Poincaré duality isomorphisms

H(X;Z) = Hy_(X; Z)

H*E;Z) = Hy.,,_(E; Z) ,
where the homology is singular homology. The Thom isomorphism then trans-
forms into the homology isomorphism
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H, (X;Z)— Hy_(E;Z)
induced by the zero-section inclusion X — E (which is, of course, a homotopy
equivalence).
Note that the singular homology of X is homology with compact support,
but there is also homology with arbitrary support, and the fundamental class
[X] belongs to this latter group. If we H¥(X; Z), we can evaluate u on [X 1.

For real coefficients if u is represented by a closed N-form with compact sup-
port, this value is simply the integral

ul X] = qu :

If Du e H(X; Z) is the dual homology class, then one has
ulX] = e(Du) ,

where the augmentation ¢: H(X;Z)—Z is induced by the projection
X — point. The interpretation of the Thom isomorphism via Poincaré duality
then implies

(1.12) v(w)[E] = u[X] we HNX; Z) .
2. Cohomological form of the index theorem?®
We begin by comparing the Thom isomorphisms
pvi K(X)  — K(V)
¥y: HX(X; Q) — H*(V; Q)
of K-theory and cohomology, where V denotes a complex vector bundle over

X. We suppose first that X is compact so that K(X) has anidentity element 1.
We can then consider the cohomology class

(V) = 93 ch py(1) e H*(X; Q) .
Because ¢ and 4 are both natural,
Vi—s (V)

is a functor from complex vector bundles to rational cohomology. It is there-
fore given by an element r of the characteristic ring (cf. (1.3))

H.l;k(n)(Q) = Q[[cly Tty C,,]] = Q[[xu Tty x’n]]S" .

Now if ¢*: H*(E; Q) — H*(X; Q) is the restriction homomorphism, then
for any w e H*(X; Q), we have by (1.8)

rp(u) = 5w yi(1)) = ui* (¥ (1) = u-e(V) .

3 The calculations in this section are essentially the same as those in [4] and are, by
now, fairly routine.
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Taking w = p(V), and recalling that the fundamental class
Ny = @(1) € K(E)
restricts to

A(V) =20 (1) A(V) e K(X),
we get

w(V)-e(V) = t*- 97" ch (1)
= i*ch\,
=chx_ (V).
Since this holds for all V, we have an identity
(2.1) p-e = chx_, € Hyu(Q) -
By (1.9) we have ¢ = ¢,, and by (1.5) we have
cha, =JI@ —e),

Since ¢, = [] ; is not a zero divisor in Hy\,,(Q), we deduce

2.2) p=T (=),

X;

If we expand (2.2) in terms of the elementary symmetric functions ¢; of
%, -+, %, we find p¢ =Y s, where the p, are explicit polynomials in
the ¢,. For any V, we then have p(V) = 3 pu(e(V), - -+, c(V)). Note that
(V) = (=1)"; and so if V is trivial, (V) = (=1)".

Since @, v, and ch are all module homomorphisms, it follows that, for
any u € K(X),

2.3) Jrtechp,u = chu- (V).

More generally the same proof shows that (2.3) also holds for u € K(X, Y)
where Y is a closed subspace of X. Suppose now that X, Y are differentiable
manifolds with X compact, and let i: X — Y be an embedding with normal
bundle N. Then, as in [7; § 3] we can identify TN with the complex vector
bundle 7*(N Qg C) over TX, where 7: TX — X is the projection. The homo-
morphism ¢ K(TX) — K(TY) of [7; §3] is defined as the composition

K(TX) - K(TN) =% K(TY) ,

where ¢ is the Thom homomorphism, and %, is the natural map induced by
the open inclusion k: TN — TY (N being identified with a tubular neibour-
hood of X in Y). Applying the relative form of (2.3) to an element

u e K(B(X), S(X)) = K(TX)
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(B(X) and S(X) denoting the unit ball and unit sphere bundles of TX ), and
with V = 7*(N Qg C), we get
(2.4) ch @, (w) = Y,(ch u- (N Qg C)) .

Here we regard H*(TX) as a module over H*(X) in the usual way. For any
manifold X we can regard TX as an almost complex manifold, on the same
lines as in [7; §3]. Locally we have

X =R~ TX = TR"=C"

the last isomorphism being given by (x, &) — 2 + £ where x ¢ R” and &e T,.
In particular this gives TX a definite orientation and so defines a fundamental
class. Note that, if X C Y, the orientation of the normal bundle of TXin TY
induced by our orientation of TX and T'Y coincides with the orientation of the
complex vector bundle 7*(N Qg C). If we now evaluate (the top-dimensional
component of) (2.4) on the fundamental class of TN and use (1.12), we obtain

(2.5) ch @y (w)[TN] = chu- (N Qr O)[TX] .
By naturality, on the other hand, we have
ch ¢V(u’)[TN] = chk, @V(u)[TY]

(2.6) =ch#w)[TY].
Combining (2.5) and (2.6) therefore we obtain
2.7 chi,(w)[TY] = chu-pu(NQr O)[TX] .

We now consider the two inclusions ¢: X — E, j: P— E where E is a
euclidean space. Let dim X = n,dim £ = n + ¢, then the trivial case of (2.7)
with ¢ replaced by j gives

chj(v)[TE] = (—1D"*?chv[TP]

= (=1)~*tw forve K(P)=17Z.
In other words, the inverse of the isomorphism j, is given by
(2.8) Jii(w) = (=1)***ch w[TE] we K(TE) .

Recalling that the topological index

t-ind: K(TX) — Z
was defined [7; § 3] by t-ind = j; ' 4, (2.7) and (2.8) yield the formula
(2.9) tindw = (—1)**chu- (N Qg O[TX] .

It is convenient to express (2.9) in terms of the tangent bundle T rather than
the normal bundle N of X. For this, we observe that, as a consequence of
(2.2), we have

MEDF) = pE)E)
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for any two complex vector bundles. Moreover
M(E) = =1 + higher terms e H¥(X; Q) ,

and so is invertible. Moreover for a trivial bundle W, we have p(W) =
(—1D¥=¥_ Thus

N Qe C) = (T @rC)" = (T Qr C)

where g+~ is the characteristic class of U(n) given by

po = T —

1 — e%

Let us now write
£3 n,,—1 n —xi

1 — e
2.,
gT=1] ——.
I—

—2;

The class 5 is called the Todd class, and T* may be called the dual Todd
class. In fact, if V* is the dual of V, then we have

THV) =T (V*).
In particular, when V = E ®g C is the complexification of a real bundle, then
V =V*andso (V) = T*(V).
The functor E > J(E Qg C) defines a characteristic class of O(n), the
image of J in the homomorphism
Hj.,(Q) — Hw)(Q) «

We shall call this class the Index class and write it as 4. Thus

JE)=T(ERRC).

If y, -+ -, Y, are the usual basic characters for the maximal torus of O(n)
(where m = [n/2]) then (1.5) shows that

2.10 9= i ¥i _

@10 Hl—e”inl—e"’i

Expressing this in terms of the elementary symmetric functions p; of 43, - - -,
9%, we obtain an expansion

g = Egk,m(ply Yy pk)

where the J,,, are explicit polynomials of weight k. Moreover J,,, is inde-
pendent of m provided k < m. If we write J, for this common value, then
we always have
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§=T8upyyp) =1 2o

provided we agree to put p, = 0 for & > m. This is standard in this sort of
formalism.

Finally, we follow the usual convention, and write
pi(X) = p(TX) ,

calling these the Pontrjagin classes of X. Correspondingly we define the
Index class of X by

IX) =9TX) =3, dup(X), -+, pu(X)) .

With this notation, (2.9) gives the following cohomological formula for the
topological index.

PROPOSITION (2.11). Let X be a compact differentiable manifold of dimen-

ston n and let the Index class
IX) = 33, IuplX), « -+, pu(X)) e H*(X; Q)
be defined as the Todd class of the complexification of the tangent bundle.
Let
t-ind: K(TX) — Z
be the topological index as defined in [7; §3]. Then for any uc K(TX), we
have
t-indu = (—1)*{ch u-J(X)}[TX]

where, on the right, we evaluate the top-dimentional component of ch u-J(X)
on the fundamental homology class of TX, and TX is oriented as an almost
complex manifold with “horizontal part real and vertical part imaginary”.

Now the main theorem (6.7) of [7], for the special case when the group
G is reduced to one element, asserts that

a-ind = t-ind .

Combined with (2.11), this then gives the cohomological form of the index
theorem.

INDEX THEOREM (2.12). Let P be an elliptic operator over a compact
manifold X, and let u € K(TX) be the symbol class of P. Then the index of
P is given by

index P = (—1)"{ch u-9(X)}[TX]
where 9(X) is the Index class of X, TX is oriented as in (2.11) and n = dim X,
Remarks. 1. The factor (—1)" could have been eliminated by giving TX
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the dual almost complex structure, as in [19]. There are reasons however to
prefer the convention we have adopted here.

2. As explained in [7; § 7], we can in (2.12) replace the single operator P
by a complex E and the index of P by the Euler characteristic of E. We shall
do this in future.

If X is an oriented manifold, then the evaluation on TX in (2.12) can be
replaced by an evaluation on X by using (1.12). We have to watch sign con-
ventions however because the orientation of TX induced from that of X
differs from our orientation. In fact, to pass from one fundamental class to
the other, we need a sign (—1)~*2  Thus if ¢: H*(X) — H*(TX) is the
Thom isomorphism* (2.12) can be replaced by
(2.13) index P = (—1)**+V2{(y~' ch u)-J(X)}[ X] .

This is now the form of the index theorem announced in [6], except for nota-
tion and for conventions which were not made explicit in [6].

If X is not orientable, then a formula like (2.13) can also be written
down, but we must use twisted coefficients, both for the fundamental class
of X and for v'chu.

In the remaining sections we shall apply (2.13) to a number of particularly
interesting elliptic complexes associated with some geometrical structure on
X. All these are in fact examples of operators associated to an H-structure
and, for these, (2.13) can be made even more explicit. We proceed to describe
this class of operators.

Let H be a compact Lie group, V a fixed real oriented H-module. Then

an H-structure on X will mean a principal H-bundle P over X together with an
isomorphism (of oriented bundles)

Px,V=TX)
where P x , V denotes, as usual, the vector bundle over X associated to P by
the H-module V. We then have a natural homomorphism
ap: Ky(V)— Ky(P x V) = K(TX) .
If ve K,(V), the image
u = ap(v) e K(TX)

may be called an elliptic symbol class associated to the H-structure. The
element v, which may be called a “universal” elliptic symbol class for H-
structures, usually arises in the following way. Let M°, -.., M" be a sequence
of complex H-modules, and let

+ For » odd, it is important to specify whether the Thom isomorphism is %+ uy(1)
or ut— ¥(1)u; we have chosen the first alternative, hence the sign (—1)»(»—1/2,
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@;: V—— Hom (M, M+')
be an H-map® so that for e V, & # 0,

02y 2D g

is exact. This sequence may be viewed as a complex of H-vector bundles on
V with compact support [7; § 2], and so represents an element v € K (V).

We shall now show how to compute chu when u is associated to an
H-structure. To do this we consider any principal H-bundle P and put
T =P x,V. Then we observe that

(2.14) Pr— Y7t chay(v)
is a functor from principal H-bundles to rational cohomology, and so is given
by an element of H;;(Q). Now let dimV = 21, and let p*(e) € H;;(Q) be the
image of the Euler class ¢ under the homomorphism

o*: HS*O(ZI)(Q) B H}?(Q)
induced by po: H— SO(2l). Using (1.8), we then deduce
(2.15) [¥7' ch a,(v)]- p*(e)(P) = ch ap(i*v)

where i*: K (V) — K, (point) = R(H) is restriction to the origin, and «; is
also used for the homomorphism

ap: R(H) — K(X)
induced by M +— P x , M (for H-modules M). If o*(e) # 0 in H;(Q), then
(2.15) can be used to express the characteristic class (2.14) in terms of +*(v).

If v is defined by a sequence of H-modules M and homomorphisms as
described above, then

*(v) = > (—1)'M'e R(H) .
By (1.5) the functor P+ ch a,M gives the characteristic class
ch M =Y e'iec H3(Q)
where the y; are the weights of M. Hence
chayi*(v) =3 (—1)'ch M¢ .
Using (2.15) and assuming p*(e¢) == 0, we then get
(2.16) i ch ay(v) = 2o (ZD M p)
p*(e)
To examine the condition p*(¢) +# 0, we choose a maximal torus S of H map-

5 p; is not necessarily linear although, as we shall see, the most interesting examples
occur with ¢; linear.



INDEX OF ELLIPTIC OPERATORS: III 559

ping into the standard maximal torus T of SO@l). If =, ---, 2, € T are the
basic characters, we have e = ]! «;, and so p*(e) = J]!y; where y; ¢ S is the
character of S induced by z;. Thus p*(e) = 0 is equivalent to the vanishing
of one of the y; or, in other words, to the existence of a fixed non-zero vector
for S in R*.

Inserting (2.16) into the index formula (2.13), we then deduce

PropoOSITION (2.17). Let p: H— SO(2l) be a homomorphism such that
the maximal torus of H has no fixed non-zero vector in R*. Then o*(e) + 0,
where e € Hyy,,(Q) is the Euler class, and

0*: Hipon(Q) — H1(Q)

18 induced by p. Now let X be a compact oriented manifold of dimension 21
with an H-structure, i.e., we have a principal H-bundle P over X, and TX
18 associated to P via p. Let M°, ---, M* be complex H-modules, E°, -+, EY
the associated vector bundles over X, and suppose

00— NE)—> oo — DEY) — 0

s an elliptic complex whose symbol class in K(TX) 1is associated to the H-
structure. Then the index of this complex 1s given by

(_1)z{2 (—i)” ch M’
0*(e)
Remarks. 1. This formula shows that, for H-structures (under the as-

sumptions of (2.17)), the index depends only on the bundles E‘, or rather on

the H-modules M'. In other words, two complexes where the M’ are the same,
but the operators are different, have the same index, provided always that the
symbol class is associated to the H-structure.

2. The group H in (2.17) should not be confused with the group G in

[7; 6.7)]. In (2.17) we are concerned with the ordinary integer-index not the

more general character-index. Of course one could envisage an H-structure as

in (2.17) invariant under a further group G. In particular, suppose G acts trivi-
ally on X, then it follows that the action of G on the principal H-bundle P is
given by some homomorphism p: G — Centre (H). Let x’ be the character of

G induced by p from the character of the H-module M?. Then the Lefschetz

number L(g, E) is given by the formula in (2.17) with ch M’ replaced by

x'(g)-ch M¢. The proof is essentially the same as that of (2.17).

(PYSX) K] .

3. Lefschetz fixed-point formula

In Theorem (2.12) of [5] we gave a “Lefschetz fixed-point formula” which
computed Lefschetz numbers of automorphisms of elliptic complexes in terms
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of the index of associated elliptic symbol classes on fixed-point sets. Simply
by inserting the cohomological formula for the index given in the preceding
section into Theorem (2.12) of [5], we shall then obtain a cohomological form
of the Lefschetz fixed-point formula for elliptic complexes.

It will be convenient to adopt the following convention. Let X be a trivial
G-space so that

K (X) = K(X) Q R(G) ,
and let g € G.
The homomorphism

K (X)— H*(X; C)
given by

U =,0;Q i+ 2 A:(g)-cha;

will be denoted by ch u(g). With this notation, Theorem (2.12) of [5] and (2.11)
of this paper, give the formula

— (1) ch t*u(g) v } 0
(3.1 Lo, B) = (- DS XX
Here E is an elliptic complex acted on by a topologically cyclic group G, with
symbol class u € K;(TX), X*is the fixed point set of a generator g of G,i* is the
restriction to K, (TX?), N° is the normal bundle of X? in X, and » = dim X,
The denominator in (3.1) can be made more explicit as we shall now see.
We first examine the action of G on the normal bundle N°. For each x ¢ X?,
the fibre N? of N? at z is a real G-module. Since G is cyclic, its irreducible
real representations are of two types
(i) one-dimensional with g +— +1,
(ii) two-dimensional with

(cos 6 —sin 0)
g

sinfd coséd

In (ii) the representations given by 6 and —¢ are equivalent, and we may
therefore restrict to the case 0 < § < w. Such a two-dimensional real G-
module has then a canonical complex structure in which g acts as the complex
scalar ¢, The real G-module N? can therefore be written canonically as a
direct sum

(3.2) N: = N(-=1) D 3. NUO) -

The eigenvalue +1 does not occur, because N? is normal to the fixed-point
set X7, and of course only a finite number of values of ¢ can occur (with non-
zero space). Each space N%(6) has a natural complex structure in which g acts
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as ¢, Since the decomposition can be defined by projection operators, (3.2)
defines a direct sum decomposition of the vector bundle Nv (cf. [1; (1.6.2)] for
the analogous proof in the complex case)

(3.3) No = N(~1) @ Tpeper N°CO) .

The bundle N?(—1) is real, and each N?@#) is complex. Thus N9 —1) has
Pontrjagin classes, and each N?(0) has Chern classes.

We propose now to express the denominator of formula (3.1) in terms of
these characteristic classes. From (3.3), we get

N* Qg C = (N(—1) ®& C) B X, (N°(6) B N*(6)*)
AN Qg C) = A_(N?(—1) ®gr C)-TLs »-i(N?(6))- T4 Mo N(O))* .
For the real bundle N?(—1), we have
(8.4) ch A (N°(—1) @z C)(9) = {IT;_, 1 + e*)(1 + e)}N°(-1),

where r = [s(—1)/2], s(—1) = dim N°(—1),e =1 or 2 according as s(—1) is
even or odd, and

H,- (1 + €)1 + e%) € Hyy1y(C)
For the complex vector bundle N?(9), we have
(3.5) ch A_(N°(0))(g) = {TI}% (1 — e*s*9)}N(6)
where s(f) = dim¢ N°(f) and
I1;9 (1 — e'5*%) € Hywin(O) .
Finally, for the dual N*(6)*, we have
(3.6) ch A_(N°(8))*(9) = {TI') @ — e **)}N*(6) .

Ji=

In order to express these formulas in terms of Pontrjagin and Chern
classes, we shall introduce the sequences of polynomials

ﬁr(ply ] pr) Sg(cu Yy C,.)
defined by the formal identities

(I, (A2 ) () = St -,

2 2

{Hi <1 — g¥iti0 )(1 _—f;vj;io >}_1 St e )

1 —e* 1

8.7

where the p; are the elementary symmetric functions of the «%, the c; are
the elementary symmetric functions of the y;, and to define the r* term of
the sum, we take II,- to be a product of » terms. More precisely, we put

jt,:] = Eg{'r,N ’
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and observe that R, is independent of N for » < N and similarly for ) &’.
We put
R=3I_RK,, =38,
By (1.3) we can regard these as characteristic classes (over C) of O(n) and U(n)
respectively, for any n. For a real vector bundle E over a space Y, we have

R(E) = R(pE), + -+, pu(E)) e H*(Y;C),
and for a complex vector bundle F" over Y,
SUF) = &(eu(F), «++, ca(F)) e H*(Y;C) .

Note that R and $° depend only on the stable classes of E, F', and not on
the augmentation. Thus
REDL) = RE) SFODL) = F)

where 1; and 1 denote trivial line-bundles (real and complex respectively).
If we compare the formulas (3.7), we see that they differ from those in
(3.4), (3.5), and (3.6) by a total factor

22T, @ — e9)A — 7).
For any « € X7, this is just the value of
det(1—g|Ny).
It is constant on each component of X?, and can be regarded as an element of

H°(X7; C), we shall write this element as det (1 — g | N¥).
Combining (3.4), (3.5), and (3.6), we therefore get

R(N*(—1)) IT, SU(N°(9)) .

3.8) {ch A (N @r O)@)} ™ = detd— g |9

Substituting this in (3.1), we finally obtain

LEFSCHETZ THEOREM (3.9). Let g be a generator of the (topologically
cyclic) compact Lie group G, X a compact G-manifold, E an elliptic complex
on X on which G acts. Let X?¢ denote the fixed-point set of g, N’ the normal
bundle of X? in X, and

N =N(-1) EO<0<7r N¥(0)
the decomposition of N° determined by the action of G. Let uwe K (TX)
be the symbol class of E, i*ue Ky (TX?) its restriction to X° Let
9(X) e H*(X; Q) denote the Index class of X where J is defined by (2.10), and

let R, S be the characteristic classes of the orthogonal and umitary groups
defined by (3.7). Then the Lefschetz number L(g, E) is given by
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ch *u(@)R(N*(— 1)) TLoep < SUN?(0))-9 (X?)
det (1 — g |N?)

where det (1 — g | N?) € H(X?; C) assigns to the component of X° containing

x the value det (1 — g | NY), and n assigns to each component its dimension.

Remark. Theorem (3.9) gives a complete cohomological formula for the
index character

Lig, B) = (-1 frxl

a-ind: K,(TX) — R(G)

for any compact Lie group G. To evaluate y = ind  on an element g € G, we
simply apply (3.9) to the closed cyclic group H generated by g.

The formula for L(g, E) given in (3.9) involves the symbol « of E and the
following cohomological invariants of (X, G):

(i) Pontrjagin classes of X?,

(ii) Pontrjagin classes of N?(—1),

(iii) Chern classes of all the N?(f).
If Xv is oriented then, as in (2.13), we can replace the evalution on [ TX?], by
an evalution on [ X]. We simply replace (—1)" ch i*(u)(g) in (3.9) by

(3.10) (—D’-’“—’”—j—%*(ch *w)@)) ,

where n = dim X?, and
s H*(X?; C) — H*(TX?; C)

is the Thom isomorphism. If moreover i*(u) is associated to an H-structure
on X’ as in (2.17), we can compute (3.10) in terms of characteristic classes of
this H-structure. This situation will be illustrated by some of the examples
we consider in subsequent sections.

We should perhaps point out that in practice, for the “classical’’ operators,
it is usually simpler to go back to the K-theory formulas of [5] rather than
apply the formidable cohomological expression in (3.9).

4. The Riemann-Roch theorem

One of the most important examples of an elliptic complex arises in con-
nection with complex manifolds. The index theorem (2.12) becomes in this
case the Hirzebruch form of the celebrated Riemann-Roch theorem [13]. In
fact this will be a case of an H-structure, and so we will be able directly to
apply Proposition (2.17). We proceed to describe the details.

Let X be a compact complex manifold of dimension %, V a holomorphic
vector bundle over X, O(V') the sheaf of germs of holomorphic sections of V.
Moreover let A(V') denote the Dolbeault complex of V
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0 — A(V) =2 A(V) 2 oo 2 a7y — 0

where A"?(V') denotes the differential forms of type (0, p) with coefficients in
V. The Dolbeault isomorphism [13; § 15] asserts that the cohomology groups
of A(V) are isomorphic to the sheaf cohomology groups HY(X, O(V)), and so
2o (=1)7dim HY(A(V)) = Y- (—1)*dim H(X, O(V)) is the Euler characteristic
2(X, V) which one wants to compute in the Riemann-Roch theorem.

The complex A(V) is easily seen to be elliptic. In fact, let 7X denote
now the complex tangent bundle of X and choose a hermitian metric
on X, so that we can identify T with the bundle of forms of type (1,0) and so T
with the bundle of forms of type (0, 1). Then we see that the symbol sequence
of A(V) is just the complex over TX defined by V ® A*(T), and hence is
exact outside the zero section of TX. Moreover this shows that the symbol
class a(V) of A(V) is given by

(4.1) a(V) =[VIreKTX),

where )\, € K(TX) is the fundamental element, given by A*(T), and K(TX)
is regarded as a K(X)-module. Now ), is a symbol associated to the U(n)-
structure of X (given by the hermitian metric). For the case V =1 there-
fore, we are precisely in a position to apply (2.17), the M’ being the U(n)-
modules A(C"). For the general case we either observe from (4.1) that ch (V)
simply enters (2.12) as a multiplier or we formally give X a U(n) x U(m)
structure where m = dim V, and U(m) acts trivially on X. This makes V-,

an associated symbol-class, and we can then apply (2.17) directly. Either way
we obtain the formula

J— n II (1 - eZi)
(4.2) 1%, V) = (~1e{eh VAU D) 500 }x)
where
% € Hj.(Q)

is applied to the complex tangent bundle T, and
IX)=T(TRrC)=T(TD T
@, — .
= i . : T).
H<1—e—“6 1—e"i)( )

Thus cancelling the factor J] «.(1 — e¢~*)~*, we end up finally with

RIEMANN-ROCH THEOREM (4.3). Let X be a compact complex manifold, V
a holomorphic vector bundle over X. Let
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7X) =11 le

— e‘—“i

be the Todd class of X. Then the Euler characteristic y(X, V) of the sheaf
of germs of holomorphic sections of V is given by

X, V) ={ch V.-J(X)}[X].

Remarks. 1. This theorem was previously known only for projective
algebraic manifolds [13]. The proof we have given, using general elliptic
operators, is the only one known at present for the general case.

2. For a complex manifold X, we know, by the Thom isomorphism in K-
theory, that K(TX) is a free K(X)-module generated by \,. In other words,
there is a single elliptic symbol which, in a sense, generates everything. It is
thus natural to replace the index homomorphism

K(TX)— Z
of the general theory by the homomorphism

KX) —1Z
given by v+ ind (vA;). This is in effect what is usually done in algebraic
geometry.

If now G is a finite® group of automorphisms of the pair (X, V), we can
apply our general Lefschetz theorem (3.9). Alternatively we can return to

Theorem (3.3) of [5] and combine that with the Riemann-Roch theorem (4.3).
This gives

_1)y » _ [eh (V] X)(@)T(X)\; xo
(44 (-1 Trace (g | H/(X, 0(V)) = { A T }[X ].
Now the complex vector bundle N* has a decomposion
N =37 N°(9) ,

where N?(0) is the sub-bundle on which g acts as ¢*°. Note that this notation
differs slightly from that adopted in §3 where N’ was a real bundle. Each
N*(#) is a complex vector bundle and has Chern classes. Moreover we have

chx_(N°(0)* =TT, (X — e**)(N*(9))

where
Hj (1 - e——mj—iO) € H;(m)(c) ’ m = dim Na(ﬁ) .
Let us therefore introduce for 0 < 6 < 2x the stable characteristic class
o _ o _ 1 — e—zj—io }—1
(4.5) Qe = Y au {II,. (-—————1 e ) :

8 This is perhaps more natural in the holomorphic case.
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Each a4 is thus a polynomial with complex coefficients in the Chern classes.
With this notation we have
B 611"(N‘?’(t9))
hx_(N(@@))*}\ -t = —— 77 |
{C ( ( )) } (1 _ 6—;0)m

Thus, taking the product over all 4,
- U’(N*(0))
ch K_I(Ng)* 1 — II ,
{ } detc (1 — g(IN¥)*)

where detc (1 — g | (N?)*) e H(X?; C) assigns to the component of e X’ the
value detc (1 — ¢ | (N?9)*). Substituting this in (4.4), we finally obtain.

HOLOMORPHIC LEFSCHETZ THEOREM (4.6). Let X be a compact complex
mamnifold, V a holomorphic vector bundle over X, and let G be a finite group
of automorphisms of the pair (X, V). Forany g€ G, let X° denote the fixed
point set of g, and let

N?v =37 N°(9)
denote the (complex) normal bundle of X° decomposed according to the eigen-

values €% of g. Let QU° denote the characteristic class defined by (4.5). Then
we have

Y- (—1)? Trace (g | H*(X, O(V)))
_ {ch (V] X°)(g)- T, W(N “(0))'7(X”)}[ x].
det (1 — g |(N*)*)
Using this and Theorem (3.5) of [5], we are then led to

RIEMANN-ROCH THEOREM FOR ORBIT SPACES (4.7). Let G be a finite group
of automorphisms of a compact complex manifold X, and let W be a holomor-
phic vector bundle over the complex space Y = X/G. Then we have

1
Y, W)= ——— eG
2 ) G 2 pec 14(9)

where

g) = { ch (f* Wdl X°)9) 11, "U"(l\i"(@))ff(X”) }[ X0
etc (1 — g[(N)*)
and N?(9), AU° are as in (4.6).

In [14] Hirzebruch used the Riemann-Roch theorem to compute the dimen-
sions of certain spaces of automorphic forms. The extension (4.7) of the
Riemann-Roch theorem to certain singular spaces can be used in the same way
and leads to formulas extending those of [14] (cf. Langlands [16]). This will
be explained elsewhere (see also [15]).
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Theorem (4.6) implies certain “integrality conditions” for the fixed-point
sets of G. In fact, the Lefschetz number is an algebraic integer, while the
expression on the right-hand side of the formula in (4.6) is a prior? only an
algebraic number. The special case of isolated fixed-points is discussed in [2],
and already this shows that these integrality theorems are non-trivial. Of
course not every function from G to algebraic integers is a character. Thus
the integrality theorems arising from (4.6) for a general finite group G are not
just consequences of those for cyclic groups.

As a simple example of (4.6), let us work out the case when dim X = 2,
i.e., when X is a complex surface. Assuming that g acts non-trivially, and
that X is connected, the fixed point set X* consists of a finite set of points P;
and curves D,. We shall, for simplicity, only work out the case when V = 1.
Thus the Lefschetz number L(g) will be given by

Lig) = X, a(P)) + X, b(Dy)

where the numbers a(P) and b(D) are given as follows:

_ 1
AP = a—gTn

o) = {2 M)

where c is the first Chern class of D, d is the first Chern class of the normal
bundle of D, and ¢ is the eigenvalue of g on the normal bundle. Evaluating

b(D) we get
b(D) = {—L e }[D]

6—10(1 —
a2
C e {c[D] lf - [D]}

But ¢[D] = 2(1 — «,), where 7, is the genus of D, and d[D] = D* is the
self-intersection number of D. Thus
1—7 e~
b(D) = b —_D*
(D) 1 — g—if (1 — ey
In particular, if g>=1, then ¢’ = —1, a(P)=1/4,b(D) = (17 )/2 + (1/4)D".
Thus, as a very simple special case of (4.6), we get

PROPOSITION (4.8). Let g be a non-trivial involution of a connected com-
plex surface. Let the fixed-point set of g consist of N isolated points and M
irreducible curves {D,}. Then the holomorphic Lefschetz number L(g) is
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given by

_ 2
=Y o, (55 ).
where 7, is the genus of D, and D} is its self-intersection number.

Remark. If X is algebraic, then the holomorphic differentials are bira-
tional invariants. Thus if we blow up an isolated fixed-point, g will induce §
on X, and L(g) = L(§). This checks with the formula in (4.8) because we lose
one point and gain a rational curve with self-intersection —1. Another simple
check is to take the involution (x,, «,, ,) — (—,, ,, %,) of the projective plane.
There is one isolated fixed point, and one fixed line (so 7 = 0) with self-inter-
section +1. Thus L(g) = 1/4 + 1/2 + 1/4 = 1 which is correct, since there
are no holomorphic differentials in positive dimension.

Since the Lefschetz number of an involution is always an integer, (4.8)
implies that the number of curves D, with odd self-intersection number has
the same parity as N. This is a simple example of an “integrality theorem”
involving higher-dimensional fixed-point sets.

5. The Dirac operator

An interesting elliptic operator called the Dirac’ operator exists on spin-
manifolds. We proceed to discuss this in detail and to examine the general
theorems of §§ 2, 3 in this special case.

We recall that SO(n) has a double covering Spin (%) which is its universal
covering for n > 2. A spin-structure on an oriented compact manifold X of
dimension # will mean a Spin (n)-structure in the sense of §2. Thus we as-
sume given a principal Spin (r)-bundle P over X and an isomorphism of orient-
ed bundles

P XSpln(n)R” = TX .

Equivalently P is a double covering of the princical SO(n)-bundle Q of X (for
some riemannian metric) such that P, is the Spin double covering of Q,.

The group Spin (n) has a complex representation space A of dimen-
sion 2" called the spin-representation®, Moreover A is a module for the Clif-
ford algebra of R™ for the negative definite form —3_"«% In fact Spin (n)
is defined as a subgroup of the group of units of the Clifford algebra, and the
action of Spin (n) is induced by the Clifford multiplication. If g € Spin (n),

7 Of course the original Dirac operator is defined for the indefinite relativistic metric
and is not elliptie.

8 For results about Spin groups and Clifford algebras, the reader may refer to [3]
and [8].
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xeR", u € A, we have therefore
g(xu) = grg~"-g(w) = p(g)x-g(u) ,
where p: Spin(n) — SO(n) is the covering map. Thus the Clifford multiplication
R"QA— A
is a homomorphism of Spin (n)-modules. If n = 2[ the representation A is the

direct sum of two irreducible representations A* of dimension 2", The

decomposition A = A+ @ A~ is interchanged by Clifford multiplication. Thus
we have homomorphisms

R"®@ AT — A~
RPQA—— AT,
If %, - -+, , are the basic characters of the maximal torus T, of SO(2l),

they can also be considered as characters of the maximal torus T of Spin (20).
Since T double covers T,, the character group 7', is of index 2 in 7; an element

in the other coset is %(921 + ««. + x,). The weights of A* are the characters

%(ixliwzi oo )

with an even number of minus signs. The weights of A~ are those with an
odd number of minus signs. Thus we have

chA =TI, (e*® + e~
(5.1) ;"( )
ch A* —ch A= =TJ,_ (¢** — e .

These characteristic classes may be viewed as characteristic classes of either

Spin (21) or of SO(2l), since over Q the characteristic rings of these two groups
coincide.

If X is a Spin (2])-manifold with principal bundle P we can form the
associated complex vector bundles

E* = P XgmenA*, E=E-@QE-.
The Dirac operator is a first order differential operator
D: Y(E) — D(E)
defined as follows. Recall first that the riemannian metric defines a natural

SO(2l)-connection, and this lifts to give a connection for P. We may there-
fore consider the covariant derivative

0:DE)— DER T .
On the other hand 7' = T*, and we have the bundle homomorphism
DERQT)— DE)
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induced by Clifford multiplication. We define D to be the composition of these
two maps. Thus in terms of an orthonormal base ¢; of T, we have
Ds =3} e,(d;s)
where 0;s is the covariant derivative of s in the direction e; and e;( ) denotes
Clifford multiplication. The symbol of D is (up to a factor 4) just Clifford
multiplication, i.e., its value at £ € T, is the homomorphism
Aa: — A:c
given by Clifford multiplication by &. Since &(&(u)) = —|[&|P-u it follows
that D is elliptic. Moreover because of the properties of Clifford multiplica-
tion D induces two operators
D+: YE+) —> DE7) , D~ YE") — DET)

each of which is elliptic. If we introduce the natural inner product on 9(E)
defined by taking the inner product in each fibre, and then integrating over
X with respect to the riemannian measure, we find that D is formally self-
adjoint, and so D~ is the formal adjoint of D-.

A solution of Ds = 0 will be called a harmonic spinor, and the space of
harmonic spinors will be denoted by H. It decomposes:

H=H" @ H,
where H* = Ker D*, H- = Ker D~ = Coker D*. Let us put h* = dim H*, so
that
index D* = h* — h— .

We shall refer to this as the spinor index of X, and write it as Spin (X).

Finally following Hirzebruch [14], let us define the stable characteristic
class @ by

(5.2) Q=1L (o) e Hyu(Q) .

For any real vector bundle E,

A(E) = 3 Q(p(E), -+ -, pB))
is an explicit polynomial in the Pontrjagin classes of E.
For a manifold X, we put

AX) = }(T(X)) .
Since the operator D+ has a symbol-class associated to the Spin-structure,

we are in a position to apply the index theorem in the form given by Propo-
sition (2.17). We get
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index ' = (~{{IL(F5) T (725 TL (=)o i)
= (~D)'\AX)[X]) .
Since @ involves only Pontrjagin classes we have

index D* =0 if dim X % 0 (4)
= AX)[X] if dim X = 0 (4) .
Thus we have established

THEOREM (5.3). Let X be a Spin manifold of dimension 4k, then the
spinor index is equal to G‘(X NX] where Q@ is the characteristic class given
by (5.2).

Remarks. 1. The number

AX) = &X)[X]
is called the A-genus of X.

2. It is easy to extend (5.3) to spinors with coefficients in a vector bundle
V. One has a natural Dirac-type operator whenever V is associated to the
tangent bundle. For other V, one has to choose first a specific connection.

3. Lichnerowicz [17] has shown that there are no harmonic spinors if the
riemannian metric has strictly positive scalar curvature. In such circum-
stances (5.3) implies that the A-genus is zero. The complex projective space
P,,(C) is an example of a manifold with positive curvature and A-genus non-
zero; however P,,(C) has no Spin structure.

4. One also has a Dirac operator and a theorem analogous to (5.3) for
Spin°-manifolds where Spin° is the complex spinor group of [3]. This case
provides a natural unification between Spin and almost complex structures.
It is in this context also that one has a fundamental element in K(7X) which
generates this freely as a K(X)-module. In particular for Spin manifolds the
symbol class of D+ is such a generator. This follows from the Thom isomor-
phism in K-theory for Spin (or Spin°) bundles [3; 12.3].

Suppose now that X is a Spin (2])-manifold and that the group G acts on
the Spin-structure of X. This means not only that G acts on the manifold X
and hence on the principal orthogonal bundle Q but also that we are given an
action of G on P (the principal Spin-bundle) compatible with its action on Q.
In these circumstances we can define the Spinor index of X as a character
of G:

Spin (G, X) € R(G) .

The value of this character at g (i.e., the Lefschetz number L(g, D+)) will be
denoted by Spin (g, X). Our general Lefschetz theorem (3.9) will of course
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give an explicit formula for this in terms of the fixed point set X*. We shall
compute it in the simple case when g is an involution on X. Note that g is
not necessarily an involution on the Spin-structure: its action there can have
order 4.

For simplicity, let us assume that X" is orientable, and fix an orientation.
Then over X* we have a diagram of bundles

P,cP

| |

QCQ
where Q, is the principal SO(2k) x SO(2l — 2k) bundle given by the tangent

and normal bundles of X* (as usual 2k = dim X* depends on the component),
and P, is a principal bundle with structure group

H, = Spin (2k) X ,, Spin (21 — 2k) .

The element g¢g acts on P, through the element (1,a)e H, where
a € Spin (21 — 2k) is one of the two elements lying over —1 € SO@l — 2k). If
% € K4,(TX) is the symbol class of the Dirac operator D+ (and G is the group
generated by g), then i*u e K (TX*) is a symbol class associated to the H,-
structure P, of X and invariant under G. Using remark 2 after (2.17), and
the character formula (5.1), we then find that the general Lefschetz formula
(3.9) reduces to

(5.4) Spin (g, X) = ¥, sjik‘f)c—lff%[)ffl .
where the summation is over the connected components X¢ of X? and ¢; = +1
depends in a rather subtle global manner on the particular component.

For a further more detailed discussion of this sign question, see [2; § 8]
where the case of isolated fixed point (k = 0) is dealt with, each fixed point
then contributes +1*/2! in (5.4).

6. The signature

For any compact oriented manifold X of dimension 4k, the cup-product
defines a non-degenerate quadratic form on H*(X; R). Let p*(p~) denote the
maximal dimension of a subspace on which this form is positive (negative)
definite. The difference p* — p~ is usually called the index of X and has been
extensively studied by Thom and Hirzebruch. An alternative terminology is
to call this invariant the signature and, to avoid a possible confusion with the

index of elliptic operators, we shall adopt this alternative. For brevity we
shall write it as Sign (X).
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We propose to show that, in fact, Sign (X) 7s the index of a certain ellip-
tic operator on X associated to the SO(4k)-structure (i.e., to the orientation
and a riemannian metric). The index theorem in the form (2.17) will then
give an explicit formula for Sign (X) in terms of Pontrjagin classes. This
formula was originally obtained by Hirzebruch using Thom’s results on
cobordism. Our derivation of it is more direct and is independent of cobordism®.

We shall also apply the general Lefschetz theorem (3.9) to the elliptic
operator referred to above. This will then give a formula for the G-signature
of a G-manifold X. This G-signature is a character of G defined by the action
of G on H*(X; R) and our formula will express this in terms of Pontrjagin
classes and fixed-point sets. The particular interest of this case is that the
result can be formulated purely in terms of differential topology. Our proof
however involves analysis in an essential way. Although the original Hirze-
bruch signature formula was proved by purely topological means, it is not
possible to reduce the problem of calculating the G-signature to the special
case of the Hirzebruch signature. The reasons for this will become apparent
later. Because of this, our formula for the G-signature seems to provide
one of the best topological applications of the theory of elliptic operators.
In fact a very special case, discussed in detail in [2] because it involves only
isolated fixed-points, has already proved its worth in establishing a conjecture
of Milnor about lens spaces. It is to be hoped that the more general case
developed here will have further interesting applications.

For any compact manifold X of dimension n, we have the de Rham com-
plex Q of (complex-valued) exterior differential forms

0— Q° d o ¢, ... 2 Q" 0.

The symbol of this is just the complex defined by the exterior algebra of the
cotangent bundle T*, and so it is certainly elliptic. Its cohomology groups,
by the theorems of de Rham, are naturally isomorphic to the ordinary complex
cohomology groups H*X; C). Its Euler characteristic is therefore the usual
Euler characteristic

E(X) = ¥ (—1)dim H/(X; C) .

If X is oriented and of even dimension the index theorem in this case merely
asserts the well known fact that

E(X) = e(X)[X]

is obtained by evaluating the Euler class of X on [X]. This is not very excit-

9 This was not true of the first method of proof of the index theorem as given in [19].
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ing. Similarly, if a compact group G acts on X, it acts on the de Rham com-
plex, and our Lefschetz theorem reduces to the classical Lefschetz fixed point
formula, at least when the fixed-points are isolated. The general case is
slightly more interesting, every component of the fixed-point set now contrib-
utes its Euler characteristic to the Lefschetz formula. We leave the details
to the reader.

To get a really interesting index problem out of the de Rham complex we
have to proceed differently. We assume from now on that dim X = 2I, that
X is oriented and that we have chosen a riemannian metric on X. This in-
duces metrics on the bundles of i-forms and hence, by integration over X,
inner products in the space Q. The formal adjoint of d with respect to these
inner products is denoted by d*. The operator

A = dd* + d*d
is the Laplace operator of the Hodge theory. It is an elliptic operator and
preserves the degree of the differential forms, i.e., it maps each Q into itself.

The solutions of Au = 0 are the harmonic forms, and the space H‘ of har-
monic ¢-forms is isomorphic to

H(Q) = H(X; C) .

We consider now the first order operator D = d + d*. It is formally self-
adjoint, and we have (since d* = (d*)* = 0)

A=D*D = D?,
From this, it follows that the solutions of Du = 0 coincide with the solutions
of Au = 0, i.e., with the harmonic forms. In fact, if Au = 0, we have

0 = (Au, u) = (Du, Du) ,
and so Du = 0.
Now the riemannian metric induces a bundle isomorphism
*: N(T*) —— N24(T™)
If «, B are real i-forms, their inner product is then given by

(a,B) = Sa/\*B .

If we extend x linearly to the complexified forms, we then find that, for
a, B e O, their hermitian inner product is given by

(a, B) = Sa/\*_ﬁ .

Since * arises from the pairing a ® 8 a A B, it follows that
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(6.1) x(xa) = (—1)'a when e e OF .
From this and the integral formula for the inner product, one then finds
(6.2) d*a = —xdxa .
We now introduce a map 7 on differential forms defined by

(@) = P77 Ve ae’.
Note that 7 is real if [ is even, and imaginary if [ is odd. Then z%«a) = i*x*«
where

e=pp—1+1+@ —p)2l —p—1)+1
=41 —4lp + 2p* = 2p mod 4 .

Since #*a = (—1)*a, it follows that 7°a = «, and so 7 is an involution. We

can therefore decompose the space Q = >, Q' into the +1-eigenspaces Q* of
7. Since 7 is a bundle homomorphism, we have a bundle decomposition

A (T* QrC) = A DA,

and Q* are the spaces of smooth sections of the bundle A,. Using (6.1) and
(6.2), one then verifies that '

Dt = —1D,
and so D maps Q* into Q~ and Q- into Q*. We denote by D* the restriction
of D to the appropriate subspaces of Q. Thus
D Q"—Q-, D:Q — 0.
Each is elliptic, and they are formal adjoints of each other. Moreover the

solutions of D% = 0 are just the harmonic forms in O+, and similarly for Q.
We shall denote by H* and H- these subspaces of harmonic forms, and we put

h*t = dim H* , h~ =dim H .
Thus we have
index Dt = ht — h™ .

Since At = A, it follows that 7 induces an involution on the harmonic
forms; the 41 eigenspaces are precisely H* and H-. Now the space

Vie=H'*@ H** 0=sk<l

is stable under 7; in fact z switches the two factors in this decomposition.
Thus the dimensions of the +1 and —1 eigenspaces of 7 in V, are equal, and
so V, contributes zero to index D+, Hence

index D* = bl — hL

where
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hl. = dim HY
and H! is the +1-eigenspace of 7 in H'. We now distinguish two cases accord-
ing to the parity of I. First suppose ! is odd, then 7 = 7o with ¢ real, and
0* = —1. Then the +1i-eigenspaces of ¢ are conjugate, and so have the same
dimension. But these are the F1-eigenspaces of 7, and so index D* = 0 in

this case. Supose now I = 2k is even, then for a € H* we have ta = xa.
Thus for « € H2 real and non-zero we have

Sa/\a = Sa/\*a =(a,a) >0,
while if & € H?* is real and non-zero
Sa/\a = —Sa/\*a = —(ax,a) < 0.
Since a — Sa/\a is precisely the quadratic form given by the cup-product
on H*(X; R), it follows that
WE=pt RE =,

and so index D+ = Sign (X) is the Hirzebruch signature of X.

Now it is clear that the symbol of D+ is associated to the SO(2l)-structure

of X so that its index can be computed by applying the index theorem in the
form of (2.17). It remains only to calculate the characteristic class

T+——chA.(T) —chA(T).

Now A_.(R¥) are SO(2l)-modules, defined as above as F1-eigenspaces of 7. Also
< is multiplicative, i.e.,

T(uAv) = t(U) AT(V)
for uw e A*(C?), ve A*(C*™), u Ave A*(C***), This implies that the image of
A (RPFH) — A_(RPY) e R (SOl + 2k))
in R(SO(2l)) x R(SO(2k)) is
(AR — AL(RHHALR™) — A(R™) .

Hence passing from SO(2l) to its maximal torus S, we see that A, (R") —

A_(R™) restricts to J]'_, f(=;) where w,, - -, x, are the basic characters of S
and

flx) = A (RY) — A_(RY) € R(SO(Z)) .
If e, ¢, is the usual basis of R?, then
*€; = €, , *€, = — €, 1 = e Ne, , x(e,Ne) = 1.

Thus a basis for A, (R? is 1 + i(e;Ae,) and e, + 1e,, while a basis for A_(R?) is
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1 — i(e,\e,) and e, — 1¢,. Hence we have
AR =1+ 2
A(R)Y=1+=,
where 2 is the basic character of SO(2). Hence we have
AR — AR =TT, (7" — @)
and so, applying the universal Chern character,
(6.3) ch (AL(R*) — A_(R*) = TTL, (e — e%) .
Putting this formula into (2.17), we obtain

indexD+=(—1)’{{ ;:l(e_zi_e”)n L. :t"_,i}(X)}[X]

X; 1 —e% 1
_ 1 (e” + 1)
(6.4) - { oy X )}[X]
- {Hi‘ tanhx/2( )}[X]

Since {x/tanh (x/2)} is an even function of x, this expression involves only
Pontrjagin classes of X, and is zero if [ is odd. This checks with the analysis.
The interesting case is when [ is even.

Since {x/tanh (z/2)} = 2 when z = 0, the characteristic class occurring in
(6.4) is not stable. If we want to express our answer in terms of a stable
class, we must introduce

6.5) e=y e =11 tanx—h/i/_z :

Formula (6.4) is then equivalent to
index D* = 2!&(X)[X] .

The expression on the right will be denoted by L(X) and called the L-genus
of X. This agrees with the definition of Hirzebruch [13] because

2T ——= T2 and [ —Z

tanh x;/2 tanh «;

have the same term in degree I.
We have now established, as a special case of our general index theorem:
HIRZEBRUCH SIGNATURE THEOREM (6.6). Let X be a compact oriented
manifold of dimension 4k. Let Sign (X) denote the signature of the quad-

ratic form in H*(X; R) and let L(X) = 2*Q(X)[X] where L is the stable
characteristic class of the orthogonal group given by (6.5). Then

Sign (X) = L(X) .
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We proceed now to consider the Lefschetz theorem corresponding to (6.6).
We suppose therefore that X is oriented of dimension 2[, and that a compact
Lie group G acts differentiably on X preserving the orientation. Choosing a
G-invariant riemannian metric on X, the operator D+ will be G-invariant,
since it is functorially defined by the metric and orientation.

On the topological side, the bilinear form B on H(X; R) given by B(z, ) =
(xy)[X] is G-invariant. Note that this form is symmetric for ! even, but
skew-symmetric for I odd. In both cases, by Poincaré duality, it is non-
degenerate.

Suppose now we choose a positive definite inner product < , > on H', invar-
iant under G, and define the operator A by

Bz, y) = <z, Ay) .

Then A commutes with the action of G and A* = (—1)'A. Consider first the
case when [ is even, so that A is self-adjoint. Then the positive and negative
eigenspaces of A give a decomposition H' = H! P H! invariant under G.
Thus we have two real representations o* and p~ of G, and, up to isomor-
phism, they are independent of the choice of inner product. This follows
from the following three facts':

(a) the characters of o* and p~ are continuous functions of the inner
product,

(b) the space of all (G-invariant) inner products is connected,

(c) the characters of the compact group G are discrete.
As an obvious generalization of the signature, we now define the G-signature
of the G-manifold X to be

(6.7) Sign (G, X) = p* — o~ € ROG)  R(G);

it is an element of the real representation ring RO(G).

By evaluating the character of Sign(G, X) on an element g € G, we obtain
a real number which we denote by Sign (¢, X). Note that Sign (g, X) is
determined entirely by the action of g on the real cohomology of X. Thus
Sign (g, X) depends only on the connected component of G containing g. On
the other hand it can be computed by the use of harmonic forms. In fact G
acts on the space HZ of real harmonic forms in dimension 2k, preserving both
the indefinite bilinear form Sa Aa and the inner product Sa A*a. Hence

Sign (g, X) = Traceg (¢ | (Hg")*) — Traceg (¢ | (Hg")") ,

10 An alternative more direct argument is to observe that the H+ space of one inner
product is always complementary to the H— space of any other inner product. However
we want a general argument which will apply equally to the case when [ is odd.
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where (Hg)* are the eigenspaces of * on Hg'. As we saw before

(H*)* = (Hi')* ®r C = (Ker D*) N H*

(H¥)~ = (Hi")” ®r C = (Ker D7) N H*
so that Sign (g, X) is the contribution of H?%* to the Lefschetz number
L(g, D*). On the ther hand, if we put

Vi= H p H* 0=¢<2k,
and recall that the involution r switches the two factors in this decomposition,
we see that we have G-module isomorphisms
(Voyr = Hr= (V9 ,

and so V' contributes nothing to L(g, D+*). Thus we have
(6.8) Sign (9, X) = L(g, D*)
when L(g, D*) is the Lefschetz number of g for the operator D+.

We return now and consider the case when ! is odd. In this case the
operator A is skew-adjoint, and if (4A*)"* denotes the positive square root
of AA*, the operator J = A/(AA*)'* satisfies J2 = —1, and so defines a com-
plex structure on H'. Since J commutes with the action of G, we obtain in
this way a complex representation p of G. For the same reasons as in the
We case of even [, we see that o is independent of the choice of inner product.
now define the G-signature of the G-manifold X by
(6.9) Sign (G, X) = o — p* e R(G) .

By evaluating the character of Sign (G, X) on an element g € G, we obtain a
purely imaginary number which we denote by Sign (g, X). Thus

Sign (g, X) = 0(g) — p*(9) = 2 Im p(g) .
Note that Sign (g, X) depends only on the action of g on the real cohomology

of X. As in the even case, we can compute it by harmonic forms. We identify
H'(X; R) with the space Hj of real harmonic I-forms. G preserves both the

skew form Sa AL and the inner product (a, 8) = Sa/\ x. The skew-adjoint
operator A is given by.

(a, AB) = Sa AB = (—1)’Sa A %% since #* = (—1)!
= —(a,*8) since [ is odd ,
and so A = —x. Since
AA* = — A= —w2 =1,

it follows that the complex structure J is given by J = —x*. Now in the com-
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plexification
H' =H;QC,
we defined the involution = by
T =% = ix ,
Hence on the (+1)-eigenspace H: of 7, we have —x = 7, and so we have an
isomorphism of complex vector spaces
H: = Hg,
where H}, is endowed with the complex structure of J above. Similarly
H! = H}
and both isomorphisms are compatible with the action of G. Hence
(6.10) Sign (g, X) = Trace (g |H.) — Trace (g | HL) .

Now exactly as in the case of even [, we see that the spaces H? for q =
contribute nothing to the Lefschetz number of D+, and so we obtain

Sign (9, X) = L(g, D*) .

Remarks. 1. Like the Hirzebruch signature our G-signature is multi-
plicative, i.e.,

Sign (@, X)-Sign (G, Y) = Sign(G, X x Y) .

This is valid for all dimensions provided we put Sign (G, X) = 0 if dim X is
odd.

2. The G-signature defined on H' is a purely algebraic notion, and it has
the following important property. If M is any real G-module and M* is its
dual, then M & M* has two natural bilinear forms; a symmetric one B*, and
a skew-symmetric one B~, and both of these have zero G-signature. To see
this, observe that multiplication by —1 on M* defines an involution « of
M @ M* which commutes with G, but anti-commutes with B*. In other words
« takes B* into — B* and so

Sign (G, B*) = Sign (G, — B%)

= —Sign (G, B%) (from the definitions) ,

showing that Sign (G, B*) = 0.
Having identified L(g, D*) as a homology-invariant (for both ! even and
l odd) we proceed to apply the Lefschetz theorem (3.9) to calculate L(g, D)
in terms of the fixed point set X* of X. Observe first that each component of
X’ is even-dimensional. This follows from the fact that g preserves orienta-
tion, so that the number of +1 (or —1) eigenvalues in the action of g on the
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tangent space of X at any point « € X? is necessarily even. If u denotes the
symbol of D+ then, using the multiplicative formula (6.3), we find that
ch t*(w)(g) is the product of the following terms

4 = y{Il (=) rx)

B =TI (—e + e%)(N*(—1))

Ct = H (e_zj—w _ ezj+i0)(Nu(0)) .
Here v: H*(X’; Q)— H*(TX?% Q) is the Thom isomorphism, where Q denotes
the local coefficient system isomorphic to Q defined by the local orientations of
Xe, If X¢ isorientable, then once we choose an orientation, we get an isomor-
phism Q= Q. If X" is not orientable, then we have to work with these “twisted”
coefficients. Note that, since X and the N?(6) are all oriented, the bundles
TX? and N?(—1) have isomorphic twisted coefficients. Thus if Q is as above,
the Euler class ¢(N°(—1)) e H*(X*; Q).

The evalution on the fundamental class [TX?] in (3.9) can, as usual, be
replaced by an evalution on the “twisted” fundamental class [ X*]. We simply
replace A by ¥4, and multiply by (—1)* (where dim X* = 2k) to allow for
the difference between the two orientations of T7X?. If we cancel the common
factors occurring in +'A, B,C’ on the one hand, and 4,%,8% and
det (1 — g | N?) on the other, we find

L(g, D*) = {AB. T[, CH X] ,

where

A =T —% (TX) = 2:9(X"), 2t = dim X*
Htanhxj/z( ) £ m

B, = I] tanh %(N’(— 1)) = 27" Q(N*(— 1)) ¢(N*(—1)), 2r = dim N*(—1)

1

——(N%(9)) .
Ci}zntanh xj-{—'iﬁ( @)
2

In order to express C? by a stable characteristic class of the unitary group, we
define

M = T ONer, -+, ¢,) = [ —2020/2_

(6.11) canh i J; i0

so that
C? = (i tan 6/2)~* P (N°(6)) , s(0) = dim¢ (N°(6)) .

Putting all this together we obtain:
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G-SIGNATURE THOREM (6.12). Let X be a compact oriented manifold of
dimension 21, and let the compact Lie group G act on X preserving the orien-
tation. Then G acts on HYX;R) preserving the bilinear form. Let
Sign (G, X) be the character of G defined from this action by (6.7) for | even,
and by (6.9) for l odd. Let Sign (g, X) be the value of Sign (G, X) on an element
g€ @G. Let X* be the fixed-point set of g, N* the normal bundle of X? in X, and

N = N(-1) b Eo<o<n N*(9)
the decomposition of N determined by the eigenvalues of g. Then N*(—1)
18 @ real vector bundle of even dimension and N°() is a complex vector bundle.
Let" 2t = dim X?, 2r = dim N?(—1), s(§) = dimc N?(0). Finally let £ be the
stable characteristic class of the orthogonal group given by (6.5), and 9N’ the
stable characteristic class of the unitary group given by (6.11). Then we have
Sign (g, X) = {27 [L,<,-. (itan 6/2)~® £(X7)&(N*(—1))~¢(N*(—1))
ITococ. OU(N(O)HX?]
Here e(N°(—1)) denotes the “twisted” Euler class of N*(—1), and [X*] is the
“twisted” fundamental class of X, both twistings being defined by the local
coefficient system of orientations of X°.

This theorem, like the special case of it discussed in [2] when X? is zero-
dimensional, provides the most interesting application of our general Lefschetz
theorem to differential topology. We shall therefore spend a little time discus-
sing various special cases and corollaries. For brevity the expression on the
right-hand side of the formula in (6.12) will be denoted by L(g, X). Thus
L@, X) = L(X) is the Hirzebruch L-genus.

First let us observe that the Euler class ¢(N?(—1)) is in dimension 2r and
dim X? = 2¢t. Thus if » > t, the formula in (6.12) shows that Sign (g, X) = 0.
Thus we have

COROLLARY (6.13). Assume, in the situation of (6.12) that (for all com-
ponents of X?) we have r > t. Then Sign (g, X) = 0.

We shall now examine the particular case of an involution. If dim X =
4k + 2, then Sign (G, X) is twice the imaginary part of a character, but for
G of order 2 the characters are all real, and so Sign(G, X) = 0. Thus only
the case dim X = 4k is of interest, and we apply (6.12) for this case. Since
the only normal eigenvalue is now —1, we obtain

(6.14) Sign (g9, X) = {2“'$(X”)£(N’)‘le(N”)}[X’] .
To simplify this expression let us observe that, if ¥ X is any closed

11 These numbers depend of course on the component of X¢. In order to keep the
formula within bounds, we have not made this explicit.
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submanifold, we can define its “self-intersection manifold”. To do this, we take
the inclusion map ¢: Y — X and replace it, in the manner of Thom, by a homo-
topic map f: Y — X transverse regular along Y c X. The inverse image Z =
f7(Y) is then the required self-intersection. Clearly the normal bundle of
Z in Y is isomorphic to N | Z, where N is the normal bundle of Y in X. Hence
the normal bundle of Z in X is isomorphic to (N @ N)| Z, and so has a natural
orientation. Thus if X is oriented, so is Z. The oriented bordism class of Y
represented by j: Z— Y is independent of the choice of themap f. In particular
the oriented cobordism class of Z is independent of f. We call this the self-
intersection of Y, and denote it by Y2, Also the homology class of Y defined
by Z is independent of f. In fact it is dual of the twisted Euler class e(N).
Hence for any £ ¢ H*(Y), we have

{Ee(NI Y] = 5*(5)]Z] .
We now return to our involution g, and apply this formula with ¥ = X?,
& = 272X (N, Since £ is multiplicative, and since j*(N?) is the normal
bundle of Z in X*, we have
{2 (X)) L(N?)e(N)|[ Y] = 27 8(Z)[ Z]
= I(Z) (since dim Z = 2(¢ — 7)) .
Combined with (6.14), this gives the following rather simple result.
PROPOSITION (6.15). Let X be a compact oriented manifold of dimension
4k, and let g be an orientation preserving involution with fixed point set X°.
Let (X°)? denote the oriented cobordism class of the sel f~intersection of X° in

X. Then
Sign (g, X) = Sign ((X)?) .

This rather attractive formulation of (6.12) for involutions was pointed out
to us by F. Hirzebruch on the basis of the 8-dimensional case which we had
explicitly computed.

Since ¢* = 1, we have

Sign (g, X) = dim H*(X, R) mod 2
= E(x) mod2,
where E(X) is the Euler characteristic of X. Thus from (6.15) or (6.13), we
deduce the following result proved differently by Conner and Floyd [12; (27.4)].

COROLLARY (6.16). Let X be a compact oriented manifold of dim 4k with

odd Euler characteristic. Let g be an involution of X preserving the orien-

tation. Then dim X° > % dim X (i.e., at least one component of X° has such

a dimension).



584 ATIYAH AND SINGER

Although Sign (G, X) =0 when dim X =2mod 4, and G has order 1 or 2,
this is certainly not so for other groups. The simplest example of a non-trivial
G-signature in these dimensions is obtained as follows. Let w be a primitive
cube root of unity, X = C/{1, w} the elliptic curve with periods 1, w. Then
2+ wz gives an automorphism ¢ (“complex multiplication”) of X of period 3.
H'(X; C) is generated by the differentials dz, dz, and we have

xdz = —idz *dZ = 1dZ .
Hence calculating Sign (g, X) by harmonic forms, we see that
Sign(¢g, X)=w — @ =13 #0.

For illustrative purposes, we shall now consider a few special cases of
Theorem (6.12) in low dimensions.

As a simple check on (6.15) we can take X = P,(C) with either of the in-
volutions

(@ @y, gy Xgy By) —— (— Xy, Xy, Ty, Tgy T,)

(o, X1y &gy XTyy Tp) —> (— &y, — Xy, Tyy Tyy Ty) &
In both cases Sign (g, X) = 1 because g acts trivially on the cohomology. In the
first case, we have X? = P(C) U P(C) so that (X*)* = P,(C) and Sign ((X*)*) =1;
in the second case, X* = P,C) U P,(C) and (X*)* = point, has signature 1.

Returning now to Theorem (6.12), let us suppose that g is of odd order.
Then N?(—1) = 0, and so the formula for Sign (g, X) simplifies to
(6.17) Sign (g9, X) = (2* I1,<,<. (¢ tan 6/2)7 LX) T1,<, <. DV(N*(0))}[X7] .
Note that in this case X* has a natural orientation induced from that of X
and the complex orientation of the bundles N?(¢). One must be careful how-
ever not to confuse this orientation of X¢ with other “natural” orientations.
For example, if dim X? = 0 so that X” consists of points, the orientation to be
used in (6.17) may not coincide with the usual orientation of a point. Suppose
now that X is 4-dimensional, (and connected), and that g is non-trivial. The
fixed-point set X? then consists of points {P;} and 2-manifolds {Y,}. The con-
tribution of P; to Sign (g, X) is then

—& cotﬁ cot& ,
2 2

where exp (+ia;), exp (+i83;) are the eigenvalues of ¢|T,,0 < a; <,
0 < B; <, and ¢ = %1 is the difference between the two “natural” orienta-
tions of Tp. In other words if, in a basis of T, (oriented relative to the
orientation of X), g| T, is represented by the matrix

(cos a; —sin aj> o (cos B; —sin ,Bj>

sin a; cosa; sinB; cosp;
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then the contribution of P, to Sign (g, X) is
—cot %icot Bi .
2 2
Since

My = 1 + —
sin 0
the contribution of the component Y, to Sign (g, X) is
{e-—ieoto, 2oy, - _Yi
sin 6, sin® @,/2
where Ny is the complex normal bundle of Y, and Y} is the self-intersection
number of Y,. Thus we have established

.
’

PROPOSITION (6.18). Let X be a connected compact oriented 4-manifold,
g an automorphism of X of odd order (necessarily preserving orientation).
Let the fixed-point set X° consist of isolated points {P;} and connected 2-

manifolds {Y,}. For each j, let the action of g on the tangent space at P; be
given by the matrix

(cos a; —sina; @ cos B; —sin B;
sina; cosa; sin 8; cosfB;
relative to an oriented basis. For each k, let exp (x10,) denote the normal

eigenvalues of g along Y,, and let Y} denote the sel f-intersection number of
Y.. Then

Sign (g9, X) = EJ. — cot%-cot% +3, cosec2%’°-Y,3 .

As a check on (6.18), consider the transformation (,, z,, %,) — (%o, W, , WEL,)
where w = exp (i) is a primitive ¢** root of unity (¢ odd). Then we have one

fixed point which contributes — (cot ¢/2)?, and one fixed line which contributes
(cosec «¢/2)*. Thus

Sign (g9, X) = (cot —) (cosec —> =1

which is correct, because g acts trivially on the cohomology of X.

We conclude this section by pointing out that one can also consider the
operator D+ extended (using a connection) to act on differential forms with
coefficients in any vector bundle V. This no longer has any connection with
ordinary cohomology, and so it is not as interesting as the case we have been
considering. However one gets formulas generalizing (6.6) and (6.12). If we
denote the Lefschetz number of the extension of D+ to V by Sign (g, X, V),
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then we have
(6.19) Sign (g9, X, V) = {ch (V| X*)(9)A} X"],

where {4} is the expression occurring in the formula of (6.12). The right hand
side of (6.19) will for brevity be denoted by L(g, X, V). For g = 1, we put
L1, X, V) = L(X, V), and Sign (1, X, V) = Sign (X, V).

Formula (6.19) is of interest because, as we vary V, it provides a whole
set of “integrality theorems” for Pontrjagin numbers.

Finally we should perhaps point out that if X is a spin-manifold, then
the operators of this section are closely related to the Dirac operator of §5.
This connection arises from the isomorphism of Spin (21)-modules

(—DHAT — A7) = A (RY) — A(RY) .

7. Invariants for free actions

It is well-known that the characteristic numbers of a manifold are in-
variants of the appropriate cobordism group. Thus the Pontrjagin numbers
are invariants of oriented cobordism (SO-cobordism), and the Chern numbers
are invariants of almost complex cobordism (U-cobordism). For a G-manifold,
one can similarly define G-characteristic numbers using the various fixed-point
sets of elements of G, and these will be G-cobordism invariants. For example
the formulas for the index-character of the various operators of § 4, 5, 6 are
all expressed in terms of such G-characteristic numbers. Moreover the fact
that these particular combinations of characteristic numbers are characters
of G provides “integrality theorems” analogous to the well-known integrality
theorems of [4] and [8] for the usual characteristic numbers.

These remarks apply to even-dimensional manifolds, but by a change of
view-point, they can be exploited for odd-dimensional manifolds on which G
acts freely. Suppose for example that X is a compact oriented free G-manifold
of dimension 2n — 1, and suppose we can find an oriented G-manifold Y (not
necessarily G-free) of dimension 2n, with boundary X. Let v € K. (R*) be
any ‘“universal symbol class”, and let v € K,(TY) be the element defined by
v. If Y were without boundary, then we could for any g € G apply the index
theorem in the form (2.17) and obtain an explicit expression, say v(g, Y), in-
volving the evaluation of certain characteristic classes on the fixed-point set
Y? of g. Since in our case Y has a boundary, this does not apply, but since X
is G-free, we have

Y'NoY =@ forg #1

and so the expression v(g, Y) still makes sense. We obtain in this way a
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function

g—v(g,Y)

from the non-identical elements of G to C. We denote this function by v(Y).
Note that it is just a complex-valued function, and not necessarily given by a
character of G. Suppose now that Y’ is another oriented G-manifold with
boundary X, and that we put

Z=YU;(-Y)
(where — Y’ is Y’ with the opposite orientation), so that Z is a closed oriented

manifold without boundary. Because v(g, Y) is computed from Y?, and
because

=Y+ (=Y (disjoint)
we have

g, Z) =v(g, Y) —v(g, Y').

Now (g, Z) is given by a character because we can apply (2.17) to the closed
G-manifold Z. Hence the residue class of v(Y) modulo characters depends
only on X, and we denote it by »(X). It is clearly an invariant of free G-
cobordism. Formally the reader will notice the close analogy with the invari-
ant originally used by Milnor to distinguish exotic 7-spheres.

The invariants »(X) we have just defined are definitely non-trivial as
simple examples show. They can be used to derive many of the results of
Conner-Floyd [12] on G-cobordism (cf. [2]). In fact we reverse the procedure
of [12] in which G-cobordism is developed first, and then applied to fixed-point
theory.

The detailed application of the invariants v(X) to G-cobordism will not be
developed here. Instead we shall concentrate on one particular case where
much stronger results can be obtained. If we take v to be the universal
symbol (say L) giving rise to the operator D+ of § 6, then for a closed mani-
fold Y of dimension 2n we have

L(gy Y) = Sign (g’ Y) ’

and this can be computed from the action of G on H*(Y; R). Because of its
connection with cohomology, we can use L to define a more refined invariant
than before.

First of all however we need to discuss an additivity property of the
signature due to S. P. Novikov.”? Suppose Y is an oriented G-manifold of
of dimension 2n with boundary X, and let A"(Y) denote the image of the

12 We are indebted to Hirzebruch for drawing our attention to Novikov’s result.
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natural homomorphism
p: H(Y, X) — H*(Y).
By Poincaré duality H"(Y) is dual to H*(Y, X), and hence the bilinear form
B on H"(Y) defined by
B(p(a), p(b)) = ab[Y]
is non-degenerate. B is symmetric for n even, skew-symmetric for » odd,
and, as for closed manifolds, we can now define Sign (G, Y). Suppose now Y’

is another oriented G-manifold with boundary — X and that Z=Y U,Y".
The additivity property is then

ProrosiTION (7.1). Sign (G, Z) = Sign (G, Y) + Sign (G, Y).
Proor. Consider the cohomology sequences of (Z, Y) and (Z, Y”)

HNY', X) -~ B 2 HY(Y)

HY) £ H*2) = B (Y, X)
where we replace H(Z, Y) by H*(Y’, X), and similarly with Y, Y’ inter-
changed. By Poincaré duality, these two sequences are duals of each other.
Thus A=Imaand A’ =Im «’ are mutual annihilators for the bilinear form B(Z)

on H*(Z). Hence AN A’ isthe annihilatorof A + A’,andso H*(Z)/A + A’ =
(AN A)*. On the other hand

A+AYYANA ZAANAPAANA =Z=ImBa® Im B'a’
= A (Y)D H"(Y") .
Thus, splitting the filtration AN A’ c A + A’ < H*Z) (G-invariantly), we
get a decomposition of G-modules

HZ)= (AN A H(Y)D H(Y)D (AN A)*,

and with respect to this decomposition the bilinear form B(Z) is represented
by a matrix of the form

0 0 0 1
0 B(Y) 0 *
0 0 B(Y') =
(=1~ * * *

By a transformation T )T, i.e., by a change of splitting, all the terms =*
can be eliminated. Then

B(Z)=B(Y)®B(Y)&® C,
where C is the natural bilinear form on (4 + A4’) P (A + A')*. As remarked
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in § 5, the G-signature of such a C is always zero. Hence
Sign (G, Z) = Sign (G, Y) + Sign (G, Y’)
as required.
Suppose now that X is a closed oriented G-manifold of dimension 2n — 1,

and assume that we can find an oriented G-manifold ¥ with boundary X.
Then, for any element g € G having no fixed-points on X, we can define

o(g, X) = L(g,Y) — Sign(g, Y) .

We shall now show that this is independent of the choice of Y. Suppose then
that Y’ is another choice, and that Z = Y U y(— Y”) is the closed oriented G-
manifold obtained by attaching Y and — Y’ along their common boundary X.
By (7.1) we have

(7.2) Sign (g, Z) = Sign (g, Y) — Sign (g, Y)
and, since Z? is the disjoint sum of Y? and (— Y")?, we have
(7.3) L(g,Z) = L(g,Y) — L(g, Y") .

Subtracting (7.3) from (7.2), we obtain

{L(g, Y) — Sign (g, Y)} — {L(g, Y) — Sign (g, Y")}
= L(g, Z) — Sign (g, Z)
=0 by (6.12) .
Thus our invariant o(g, X) is well-defined. It is a G-diffeomorphism invariant.
In fact, a minor modification in the proof we have just given shows it is an
invariant in a rather stronger sense. Thus suppose X’ is another G-manifold

(on which ¢ has no fixed point), and suppose that X and X’ are equivalent in
the following sense:

(A) there exists an oriented G-manifold W of dimension 2n with
oW =X — X', W = @, and H*(W; R) = 0.
Then if 0Y = X,0Y’ = X’ we put

Z= YUXWUX'(_Y’) .
Computing as before we find that W contributes nothing either to L or to
Sign, so that we have
o(9, X) — o(9, X') = L(g, Z) — Sign (g, Z)
=0.
We state this in a theorem.

THEOREM (7.4). Let G be a compact Lie group, and let X be a closed
oriented G-manifold of dimension (2n — 1) which bounds an oriented G-
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manifold Y. For any g € G having no fized point on X, we define the com-
plex number a(g, X) by

o(9, X) = L(g, Y) — Sign(g, ),
where L(g, Y) is the number occurring on the right side of the formula in
(6.12) (with X replaced by Y), and Sign (g, Y) is defined by the action of G
on H(Y; R) (the image of H*(Y, X; R) — H*(Y; R))—endowed with its bilin-
ear form—as in (6.7) and (6.9). Then o(g, X) depends only on X and not on
Y. Moreover if X' is another G-manifold, and if there exists an oriented G-
manifold W with dW = X — X', W* = @ and H*(W:R) = 0, then
o(g, X) = o(g, X") .

Theorem (7.4) is particularly interesting when G is finite, X is simply-
connected and G acts freely on X, so that X is the universal covering space
of M=X/G. If M' = X'/G is h-cobordant to M (i.e., if there exists an
oriented V with oV = M — M’ and with M — V, M’ — V homotopy equiva-
lences), then the universal covering space W of V provides an equivalence as
in (7.4) so that o(g, X) = o(g, X’) for g # 1. Hence we have

COROLLARY (7.5). Let M be an oriented (2n — l)-manifold with finite
Sfundamental group G. Assume its universal covering space X bounds some
oriented G-manifold. Then a(g, X), for g + 1, is an h-cobordism invariant
of M.

Remarks. 1. It has been pointed out to us by F. Hirzebruch and C. T. C.
Wall that, for free actions of finite groups, the invariant ¢ can be defined
without the hypothesis in (7.5). To do this, one has to appeal to the free
cobordism theory of Conner-Floyd [12] according to which (when dim X =

2n — 1) some multiple NX always bounds an oriented free G-manifold Y. We
can then define

a(g, X) = ‘Wl Sign (g, Y) . (@+1).

Although this is a simple and more general definition, the fixed-point version
is still very useful for computing o, as is shown by the case of lens spaces
(see below).

2. When X is a homotopy (4k — 1)-sphere, and g is a fixed-point-free
involution, F. Hirzebruch has shown that our invariant ¢(g, X) coincides with
the invariant of Browder-Livesay [11].

A specially simple application of (7.5) is to the case of lens spaces, when
X is a sphere and G acts orthogonally. This is the case studied in detail in
[2] where it is shown that our invariant ¢ distinguishes the different lens
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spaces. Of course for lens spaces we can take Y to be a ball, there is a
unique fixed point and so we do not need the general fixed-point theory
developed in this paper.

Since a connected group acts trivially on cohomology, the main interest
in Sign (g, X) is with finite groups. For connected groups however one
obtains some interesting identities which will be discussed in the next section.
In the meantime we shall prove

PROPOSITION (7.6). The function ¢ in (1.5) is an analytic function on
the open set U C G comsisting of elements having no fized point on X. If G
15 connected, so that R(G) is an integral domain, then o is defined by a unique
element of the field of fractions of R(G).

ProoF. For elements g e G with the same fixed-point set in Y (where
0Y = X as in (7.5)), the explicit nature of the formula

o(g, X) = L(g, Y) — Sign (g, Y)

shows at once that o is analytic in g. To deal with the general case where
the fixed-point set changes, we must go back to the properties of the index
given in [7]. The excision property implies that we have a well-defined
homomorphism

ind”: K(TY) — R(G)
where Y is the open manifold ¥ — X. Now let v be a conjugacy class in G
having no fixed points in X, and consider the inclusions

(TYY - Ty TY .
By the general localization theorem® of [20], j induces an isomorphism (j,), in
the following diagram

° y )
KATY), 2% k(TY),

. /
ind? / ind?
/

/
v
R(G),

and hence ind] can be defined to make the diagram commute. If, however,
we restrict from G to the closed subgroup generated by g e+, the homomor-

s Here we need the localization theorem for general groups G, whereas in [5] we
only gave the proof for abelian groups.
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phism ind!° can be calculated in terms of the fixed point manifold Y?. This
was how we obtained our general Lefschetz formula. In particular, if we let

a, € K,(TY), be the element defined by the symbol class a € K,(TY) of the
operator D+ of § 6, we have

(7.7) ind} a,(9) = L(g, Y) ,

where the left side is obtained by the map R(G), — C (evaluation at g or 7).
This alternative expression for L(g, Y) is better for investigating the de-
pendence on g. In fact our proposition now follows rather formally as we

shall see. For brevity, we put
R =R(@), M=KL(TY), N=KL(TY)

so that M, N are R-modules. We now consider the continuous map
G -2 Spec R(G), where Spec R(G) is the affine scheme of R(G) and ¢(g) is
the prime ideal defined by g. We let R be the sheaf on G induced by @ from
the structure sheaf on R(G). Thus the stalk E, is just the local ring R(G),
(where 7 is the conjugacy class of g), and R may be identified with a subsheaf
of the sheaf of germs of analytic functions on G. The R-modules M, N define
R-sheaves I, N on G, and the R-homomorphisms

ML N

lind
R
induce R-homomorphisms

The localization theorem implies that 7, is an isomorphism over the open set
U c G, so that restricting to U we get a diagram
liDNdU

RUo

The element a € N defines a section of N, and hence a section a, of M,. Let
L, be the section of B, given by

Ly, = ind, (a,) .
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Then L, is an analytic function on U. On the other hand, by (7.7) it is clear that
the value of L, at g € Uis just L(g, Y). Thus L(g, Y)is an analytic function of
g in U. Since the other term Sign (g, Y) in the definition of ¢(g, X) is a charac-
ter of G, it follows that ¢ is analytic in U. To prove the last part of the proposi-
tion when G is connected, we take an element g € U which generates a maximal
torus T (i.e., the powers of g are dense in T'). Since R(G) — R(T) is injective,
it follows that only the zero of R(G) vanishes at g. Hence, if v denotes the
conjugacy class of g, the local ring B, = R(G), is just the full field F(G) of
fractions of R(G). In the neighborhood of g, the analytic function L( , Y) is
therefore given by an element of F(G). If U were connected, we could appeal
to analytic continuation to get the uniqueness of this element. In fact U need
not be connected.”* But we can argue as follows. Let Vc UNT be the set
of all elements having the same fixed points as g (i.e., as T'). Then V is open
(because it consists of elements having no fixed points in ¥ — Y*) and dense
(because it contains all generators of T'). For any element % € V, the explicit
fixed-point expression for L(k, Y) shows at once that this is given by a unique
element f of the field F(T). Since V is open and dense the analytic func-
tion L is entirely determined by f€ F(T'). Since, in a neighborhood of ¢, L is
given by an element in F(G), it follows that f € F(G), and the proof is complete.

As the simplest illustration of (7.6), let us consider circle actions. Thus

we assume the circle G acts on Y and has no fixed points (for the whole group)
on the boundary X. Then we have

R(G) = Z[t, t7']
F(G) = Q) ,
and we can interpret ¢ as the coordinate ¢ of a “general point” of G. Let
Z Y be the points fixed under the whole group G. The normal bundle N of
Z in Y can be written as a (finite) direct sum N = ) _,. N,, where N, is the
complex vector bundle on which ¢ acts as t*. The manifold Z inherits then a
natural orientation from those of N and Y. Since the connected group G

acts trivially on the cohomology of Y, the Lefschetz formula (6.12), applied
to the general element ¢ of G, gives

kgz; . .
an ot X) = {2 IL{IL St e@)|12] - Sign(Y) ,
where, as usual, the elementary symmetric functions of the x,(IN,) are the
Chern classes of N,, and 2m = dim Z. Formula (7.7) shows clearly that o(¢, X)

14 If we had introduced the complexification G¢ of G, which is an affine algebraic
group, all our sheaves could have been defined over a Zariski open set W containing U,
and Ly would have been the restriction of a rational function G¢ having no poles in W.
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is a rational function of ¢ (with coefficients in Q), and that its denominator is
a product of factors 1 — ¢*. Thus a(f, X) can only have a pole at a point ¢t =
a € @G which has a larger fixed point set than Z. Proposition (7.6) however
gives a stronger result, namely that a cannot be a pole if Y* N X = ¢ . More-
over the value o(a, X) at such a point « is given by applying the formula
(6.12) to the fixed point set Y=.

The function (¢, X) appears to be quite an interesting invariant of the
circle action. A simple deduction from (7.7), pointed out by F. Hirzebruch,
is that o(t, X) is finite as ¢ — oo, and that its value there is

0(e, X) = 2"&(Z)[Z] — Sign (Y)
= Sign (Z) — Sign(Y) .
If the circle acts freely on X, we can take Y to be the associated disc bundle

with Z as zero-section. If x € H*Z) denotes the first Chern class of the circle
bundle X — Z, the formula (7.7) for o(¢, X) reduces to

(1.9) o(t, X) = {2%-1(%{%)&(2)}[2] — Sign (Y).

(7.8)

Moreover, since H(Y, X) — H™(Y) can be identified with the homomorphism
H"**Z)— H"(Z) given by multiplication with x, we see that Sign (Y) is just
the signature of the degenerate form on H**Z) given by (u, v) — suv[Z]. It
is zero for odd %, and for even m, it can be interpreted as the signature of
the quadratic form on H"*(Z?) restricted to the image of H"*Z). Here Z*
denotes a self-intersection manifold of Z in Y.

The only possible pole of a(¢t, X) in (7.9) is at ¢ = 1. The value for
t = —11is, as we have seen in (6.15), given by

o(—1, X) = Sign (Z?) — Sign(Y).

For general circle actions on X without fixed points (but not necessarily
free), it is not clear that we can find a G-manifold Y with Y = X. Howevel
as we have remarked before, the restriction g, of o to all finite subgroups of
G can be defined without assuming the existence of Y. Since the points of
finite order are dense on the circle, it follows that there is at most one ana
lytic function ¢ (defined for ¢ # 1) equal to o, at all points of finite order
However it is conceivable that o, may not extend to an analytic (or even con
tinuous) function. This would prove that X cannot bound a G-manifold. I
would be interesting to know if such a situation can actually occur. The sam¢
questions arise of course for any compact Lie group, the elements of finit:
order being always dense.
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8. Vector fields

Our general Lefchetz theorem, when applied to one-parameter groups,
leads to interesting identities on characteristic classes which we shall now
describe. There are two cases of special interest, namely the riemannian and
hermitian.

Let X be a compact oriented riemannian manifold of dimension 2. We
recall [18] that the group of isometries of X is a compact Lie group G. Suppose
now that A is a vector field on X which is an infinitesimal isometry. This
means that the corresponding one-parameter group exp (tA) is a subgroup of
G. The zero set X* of A is fixed under the whole group exp (tA). Moreover
for 0 < | t| < ¢ the fixed-point set of exp (tA4) is precisely X*.

The operator D+ of § 6 is invariant under the group G of isometries of X
and in particular therefore it is invariant under the one-parameter group
exp(tA). Applying the G-signature theorem (6.12) to the element g, = exp(tA4),
we get
(8.1) Sign (9., X) = L(g., X) .

More generally if V is any vector bundle associated to the riemannian
structure, we apply (6.19) and obtain

(8.2) Sign (g,, X, V) = L(g,, X, V).

We now consider both sides of this formula as functions of ¢ for 0 < ¢ < e.
Since Sign (g, X, V) is given by a character of G, it is an analytic function
of t,andas¢t— 0
(8.3) Sign (g,, X, V)— Sign (1, X, V) = Sign(X, V).

On the other hand, L(g,, X, V) is given by evaluating a cohomology class
over X“ and, if we examine the explicit formula for L(g,, X, V'), we see that
it is analytic in ¢ but has a pole as t — 0. More precisely, each component of
X* of dimension 2m has a pole of order (at most) n — m. Thus we have a
Laurent series

(8.4) L(g, X, V) =3 _ at",

where the coefficients a; are given by evaluating certain explicit expressions
in characteristic classes over X%. From (8.2), (8.3), and (8.4), we deduce

a;, =0 -n=st1< -1
8.5) { . =t=

a, = Sign (X, V).

On the other hand, putting ¢t = 0 in (8.1), we have Sign (X, V) = L(X, V)
and so

(8.6) a,=LX, V).
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Since both sides of (8.6) are linear in V, it follows that (8.6) still holds if we
replace V by an element of K (X) (associated to the riemmannian structure).
The most convenient elements to take are those given by the following lemma.

LEMMA (8.7). Let f(t,, - -+, t,) be any symmetric polynomial in ! variables
with integer coefficrents. Then there exists u, € R (SO(21)) so that in H,.,(Q)

chu, = f@?, -+, ) + higher terms .

PROOF. Since the Chern character is a ring homomorphism R(SO(2l)) —
HE 0(Q), it is sufficient to show that u exists when f is an elementary sym-
metric function o, of degree k. We now define u, to be the coefficient of t* in

§l=0 )\Jiti(l _ t)zz—i ,

where \i = Mi(C%) = M(R%) ®g C is regarded as an element of R(SO(2l)). Then
we have

5 ogtt = (L — 8y 3N <_—1 L t>1

and so

=TI (1 + te — D)L + te™™ — 1)) .
Hence equating coefficients

ch (E u,,t") S 1 (1 + - t tex;><1 + - t te—xi)

Uy = 0',,(6” — 1, cee, 6 — ]_’ e% — 1, cee, el — 1)
= g,(®,, +++, Xy, — Xy, + -+, —&;) + higher terms.
Thus (—1)*uy, = o,4(a?, +++, x}) + -+, and so this is the required element of

R(SO(21)).
Now assume [ = 2k so that dim X = 4k, and let f, u, be as above with
deg f = k. We consider the element

u (TX) e Ko(X)

associated to the tangent bundle of X. To calculate L(g,, X, u(TX)) we
shall need to calculate
ch (i*-u (TX))g,) ,

(where g, = exptA). The normal eigenvalues e** of g, are now of the form e***
where +ia are the eigenvalues of the skew adjoint transformation of the
normal plane induced by the vector field A. Note in particular that (for small
t) the eigenvalue —1 does not occur, so that N*(—1) = 0. Now to calculate
ch (i*u(TX))(g) on a component of X* of dimension 2m, we have only to adopt
the following prescription. We take ch u,, replace the last I — m of the vari-
ables x; by y; + ita;, and then make the symmetric functions of (a3, ---, 2%)
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act on TX*, while the symmetric functions of the y, corresponding to a given
a act on N, (X*), the part of the normal bundle defined by «.
Thus we obtain the formula

L(g., X, u(TX))

ZmCh uf(xly ey Uyt Y + ’itaiy °° ')Q(XA)
Y; + it [X*]
11 tanh-——z-——

(8.8)

— (et et Bt Uy 0 0 20 ) Y (i + L) Qo127

where Q(t) is a power series in ¢ with constant term 1. Now the term in { }
of the right degree in (x, ) (namely of degee m) is easily seen to be holomor-
phic in ¢, Moreover the value for ¢ = 0 involves only the constant term of
Q(t) and the first term, namely f, in ch u,. Thus putting ¢ = 0, we deduce

(8.9) L(X,uTX)) = {2 (al, -+, &%, « -+ (; + ia;), +++)

11 Ga; + y) 7} X4 .
On the other hand computing L(X, u,(TX)) directly, we find
(8.10) L(X, u/(TX)) = 2'f(a3, - -+, @) X] .

Suppose now that we take f to be a polynomial of degree ¢ < k. Then we
can proceed as above to calculate

L(g., X, p-u/TX))

where p € R(T) is any character of the torus T, generated by exp (¢4), such
that p(g,) is divisible by precisely ¢**~. We then obtain a formula just like
(8.9), except that the left-hand side is now zero. Formally this fits in with
(8.10) because, when deg f < k, we have

f(xfy "'yxfn)[X] =0.

Thus we have established the following theorem.

THEOREM (8.11). Let X be a compact oriented manifold of dimension 4k,
and let A be an infinitesimal isometry. Let X* denote the zero-set of A, and
let +1ia; be the eigenvalues of the skew-adjoint transformation N, induced
by A in the normal bundle of X* (the a; will be constant on each component).
We orient the normal bundle so that, for an oriented basis, N, is given by

the matric @; <& o %’) where a; > 0. We then take the induced orienta-

tion on X, Now Tet f(t, -+, t;) be a symmetric polynomial homogeneous of
degree ¢ < k. Then we have
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{fGeeyal, oo, (yy + i), - o) TT Gy + y) 7 H XA
= flal, -+ -, 23)[ X] forq=1k
=0 Sforq<k.
Here the symmetric functions in the x2 act on TX* (and give its Pontrjagin
classes), while the symmetric functions in the y; (for a fixed ) give the
Chern classes of N (X4).
This theorem gives an expression for the various Pontrjagin numbers of
X in terms of Pontrjagin numbers and normal eigenvalues of X“. The simplest
case occurs when X“ consists of a finite set of points {P} so that (8.11) becomes

Ad(P), - - -, a35(P))

2 Ee(P)(—1) TP
(8.12) = flal, -+, 23 X] fordeg f =k
=0 fordeg f < k

where ¢(P) = 1 if our convention for orientation of T, agrees with that of X
and —1 otherwise.

Formula (8.12) has been proved by direct differential-geometric methods
by Bott [9], and similar methods [10] also yield (8.11). Naturally Bott uses
the curvature-description of characteristic classes (cf. §1). Our proof is
algebro-topological, because, despite appearances, we have in fact used no
analysis. Essentially (8.11) is a simple consequence of the localisation
theorem of [5], and computations with characteristic classes.

We pass now to the case of complex structures. If we have a vector
field A preserving a complex structure on X, the one-parameter group exp (t4)
lies in the group of all holomorphic automorphisms of X. Unfortunately the
connected component of this group is a Lie group but not in general compact,
We cannot therefore apply our methods without making a further restriction,
whereas the differential-geometric methods of Bott [9] still work. On the
other hand, our methods use only the almost complex structure: integrability
igirrelevant for our topological considerations. Using the formula of (4.6) and
calculations entirely analogous to those above, we obtain

PROPOSITION (8.13). Let X be an almost complex hermitian manifold of
dimension 1, and let A be a vector field preserving the metric and the almost
complex structure. Let X* denote the zero-set of A. Then the tangent and
normal bundles of X4 have matural complex structures, and the skew-
hermitian tramsformation N, induced by A on the normal bundle of X* has
eigenvalues ic;. Let f(t,,--+,t;) be a symmetric polynomial homogeneous of
degree ¢ < 1. Then we have
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{f(xly ceey Y+ iajy "')H(iai + yj)_‘l}[XA]
= flwy, -+, 2)[X] forqg=1
=0 forqg<1l.

Here the symmetric functions in the x; act on TX* (and give its Chern
classes), while the symmetric functions in the y; (for fized @) give the Chern
classes of N (X*).

In addition to results like (8.12) and (8.13), there are more precise results
which use the analysis of [7]. Thus if we return to (8.1) and recall that
Sign (g, X) depends only on the action of g, on the cohomology of X, we see
that

Sign (g., X) = Sign (1, X) = Sign (X)

is actually independent of t. Hence, in addition to the identities of (8.5), we
have in this case an infinite sequence of identities obtained by equating to
zero all positive powers of ¢ in the expansion (8.4) for V = 1.

Similar remarks apply to Kdhler manifolds. Thus if G is a compact con-
nected group of automorphisms of a Kahler manifold, then G acts trivially on
the sheaf cohomology group H% X, O)—because these are canonically isomor-
phic to subspaces of the complex cohomology groups HY(X; C).

9. Miscellaneous special cases

The special cases of the index and Lefschetz theorems we have discussed
in the preceding sections were all ones arising from the geometry of some
structure. In this section we discuss a number of special cases not of this

type.
Consider first the case of differential operators on odd-dimensional

manifolds. The symbol o of a differential operator of order » satisfies the
symmetry condition

(9.1) o(a(®) = (—=1)ya(é),

where £ is a cotangent vector, and «(§) = —¢& is the antipodal map on TX.
For the class [¢] in K(TX), the factor (—1)" can be ignored; we have

a*[o] = [o] e K(TX)
and so
ch a*[o] = ch|o] e HXNTX; Q).

Hence by the Index Theorem (2.12), we have
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indexo = (—1)"ch[0]-9(X)[TX]
= (=Dra* ch[o]-I(X)[a(TX)]
= (=1)*ch[o]- 9(X)-(-1)"[TX]
= —index ¢ ,

and so index ¢ = 0. The crucial point in this is of course that the map a on
TX changes the orientation if » is odd. Thus we have established

PROPOSITION (9.2). The index of an elliptic differential operator on an
odd dimensional compact manifold is zero.

Remark. The full index theorem is not needed to prove (9.2). It is not
difficult to prove in fact that, for a differential operator d on an odd-dimen-
sional manifold, the symbol gives an element of finite order in K(TX). As
soon as one knows that the index is a homomorphism K(X)— Z, this implies
that index d = 0.

For Lefschetz numbers, the analogue of (9.2) does not necessarily hold.
In fact the map 6+~ —6 of the circle has a non-trivial Lefschetz number
(equal to 2) for the de Rham complex, i.e., for the ordinary derivative f+— df.
However if we consider only orientation preserving actions, the situation is
different. In fact if X is oriented, and g: X — X preserves the orientation,
then the bundle N?(—1) (i.e., the part of the normal bundle to X* with eigen-
value —1) has even dimension. Since all the bundles N*(f) corresponding to
other eigenvalues always have even dimension, it follows that

dim X’ =dim X mod2.

If now w is the symbol of a G-invariant differential operator d, then the re-
striction 7*u to TX* will still satisfy the symmetry condition (9.1). Hence, if
dim X is odd, (9.2), together with the Lefschetz theorem (3.9), implies that
the Lefschetz number L(g, ) = 0. Thus we have

PROPOSITION (9.3). Let X be a compact oriented manifold of odd dimen-
sion, G a compact Lie group of orientation preserving actions of X, and d

an elliptic G-invariant differential operator on X. Then the G-index of d
18 zero.

In the remainder of this section we shall consider examples in which the
vector bundles are trivial. In other words, we consider elliptic operators act-

ing on systems of functions. The symbol of such an operator is then a con-
tinuous map

0: S(X)—— GL(N, C) ,
where S(X) is the unit sphere bundle of X, and N is the rank of the system.



INDEX OF ELLIPTIC OPERATORS: III 601

We can therefore consider the induced homomorphism in cohomology*
o*: H¥(GL(N, C)) — H*(S(X)) .

We recall now a few facts about the cohomology of GL(N, C) and the relation
of o* with characteristic classes.

First we recall that U(N) is deformation retract of of GL(N, C) so that

H*(GL(N, C)) = H*U(N)) .
Then H*(U(N)) is an exterior algebra generated by elements
kY e H*-(U(N)) 1=1,.--,N.

These elements have the following additional properties:

(i) the restriction homomorphism takes ¥ to h¥-* (for 7 < N),

(ii) h¥ = m*(uy) where 7: U(N)— U(N)/U(N — 1) = S**~! is the natural
map and uy € H*¥-}(S*¥-!) is the natural generator®,
In view of (i) we write h; instead of A7,

Since the harmonic forms on U(N) are just the bi-invariant forms, one
can easily write explicit differential forms w; representing A,.

Suppose now that B is a closed subspace of a compact space A and that

f: B— GL(N, C)
is a continuous map. Then (extending f to a map of A into End (C”)), we get
a complex on A exact on B, and so an element
[f1e K(4, B) .

The characteristic classes of [f] are related to the classes f*h; by ¢;[f] =
0f*h; where 0: H*(B) — H*(A, B) is the coboundary homomorphism. This
then implies that

eh[f] = o{my, (ISR

=@ =)
Returning now to our symbol o we see that
_ y (=1)"a*h, } *
ch o] = B{Efﬂ"ﬁ“:'f)!_ e H*(TX)
where

0: H¥(SX) — H*(BX, SX) = HXTX)

is the coboundary, and BX is the unit ball bundle of 7X. Substituting this
formula for ch [¢] in the index theorem (2.12), and using the formula

15 Although GL(N, C) is not compact, we take cohomology here with arbitrary (not '
compact) supports.
16 S2v—1 ig oriented as the boundary of the ball in C¥.
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ou[TX] = u[SX]
for any u € H*(SX), we deduce

PROPOSITION (9.4). Let 0: SX — GL(N, C) be the symbol of an elliptic
N x N-system d. Then

i1 0%
indexd = (— 1)%{(}:;1 1 (—Til)__i‘)!ﬁy(){)}[sm
where h; e H*(GL(N, C)) are the generators mormalized as in (i) above,
9(X) denotes the Index class of X and dim X = n.
As a simple example, suppose X is a hypersurface in R**'. Then all
Pontrjagin classes of Y are zero, and so 9(X) = 1. Hence as a Corollary of
(9.4), we have

COROLLARY (9.5). Let X be a hypersurface in R"*', o the symbol of an
elliptic N x N-system d on X. Then

index d = (— 1)”+”"‘@‘l*_h—’i)T[SX] ifNzn

=0 ifN<n.

Remarks. 1. If N = n then, by property (ii) of k., we see that 6*h,[SX]
can be interpreted as the degree of the composite map

oo, SX — S*™!

so that (9.5) takes the simple form

9.6) index g — —degree(T-0)
n — 1)}

2. Since the first Pontrjagin class occurs in dimension 4, it follows that
4(X) =1 if dim X < 3. Hence (9.5) and (9.6) also hold for any X of dimen-
sion < 3.

In (9.4) the evaluation on [SX] can be reduced as usual to an evaluation
on the twisted fundamental class [ X]. For this we introduce the homomorphism

. HXSX; Q) — H*(X; Q)

usually called “integration over the fibre”. Here Q denotes twisted coefficients,
and 7, lowers dimension by n — 1. One way of defining r, is as the composition

H*(SX; Q) —— HXTX; Q 25 H*(X; Q)

where & is the coboundary of the pair (BX, SX), and + is the Thom isomor-
phism. The formula of (9.4) can now be rewritten
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9.7) index d = (— 1)%{(2 L’z)i"i)g(X)}[X]

Since

dimz,0%h; = 201 — n
the summation in (9.7) need only be taken over n/2 < 7 < N. In particular, if
N £ (n — 1)/2, the summation is empty and so index d = 0. If n = 2N, we
have just one term namely 7,0*h, in dimension 0. Since J(X) involves only

dimensions divisible by 4, it follows that index d = 0 unless = is divisible by
4. If » is divisible by 4, we consider the exact cohomology sequence

H"(SX; Q) —— H™TX; Q) —> H"(BX; Q)

I |

H'(X; Q) HYX; Q).
Assuming that X is connected, we have
H(X;Q) =Q if X is orientable
=0 if X is non-orientable .
Moreover if X is oriented, and 1 denotes the generator of H°(X; Q), we have
ayp(l) = e(X) ,

where e¢(X) is as usual, the Euler class of X. Hence if ¢(X) # 0, we have
Imdé =Kera=0,
and so 66*hy = 0. Thus
T 0% hy = ¥'00*h, =0,
and so index d = 0. We therefore have the following Corollary of (9.4) giving

conditions under which index d = 0.

COROLLARY (9.8). Let d be an elliptic N x N system on a compact n-
mantfold where N <n/2. Then indexd = 0 unless n = 2N = 4k, X s orient-
able, and has Euler number zero.

Corollary (9.8) applies in particular when N = 1 and n > 1. Thus when

dim X > 1, the index of an elliptic operator acting on functions is always
zero,
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