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The index of elliptic operators: IV 
By M. F. ATIYAH and I. M. SINGER* 

Introduction 

In this paper we develop an index-theory for families of elliptic oper- 
ators. For a single elliptic operator P on a compact manifold the index is an 
integer defined by 

index P = dim Ker P - dim Coker P 

and, in the earlier papers of this series [5], [6], we obtained an explicit 
formula for index P in purely topological terms. This formula involved the 
symbol of P and was expressed in terms of K-theory [5] or in terms of coho- 
mology [6]. For a family P of elliptic operators Py, parametrized by the 
points y of a compact space Y, we can define a more general index which 
is not an integer but is an element of K (Y). Roughly speaking this is defined 
as the difference 

index P = Ker P - Coker P . 

Here Ker P stands for the family of vector spaces Ker P, and similarly for 
Coker P. If dim Ker P, is constant (independent of y e Y) Ker P is a vector 
bundle. The same holds for Coker P, and index P is then well-defined as an 
element of K( Y), the Grothendieck group generated by vector bundles over Y. 
In general, when dim Ker PY varies, this definition has to be modified slightly 
(see [1; Appendix] or [2] and also ? 2). 

The problem which we pose and solve in this paper is that of giving a 
topological description of this index of a family of elliptic operators. Both 
the formulation and the proof follow closely the lines of [5]. In fact, as ex- 
plained in [5], the proof presented there was of such a type that it lent itself 
naturally to the sort of generalization we are considering now. To explain 
the situation in more detail we shall begin therefore by recalling briefly the 
main results of [5]. 

For an elliptic pseudo-differential operator P on the compact manifold X 
the highest order terms or "symbol" a (P) of P define a symbol class 
[a(P)] e K(TX), where TX is the tangent bundle of X and K denotes 
K-theory with compact supports. The index of P is first shown to depend only 
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on this symbol class and hence to define a homomorphism 

K(TX) - Z 

called the analytical index. On the other hand we gave a purely K-theoretical 
construction of another homomorphism K(TX) -. Z which was called the 
topological index. The main theorem of [5] asserted that these two indices 
were in fact equal. The construction of the topological index goes as follows. 
We choose a smooth embedding i: X V where V is some euclidean space 
and we let N be an open tubular neighborhood of X in V. Then N is a real 
vector bundle over X and TN can be identified with w*(N0R C)-the complexi- 
fication of N lifted up to TX by the projection w: TX X. We define a homo- 
morphism 

it :K(TX) -K(TV) 

to be the composition of the Thom homomorphism 

9: K(TX) - K(TN) 

together with the natural homomorphism 

K(TN) - K (TV) 

induced by the open inclusion TN ci TV. Finally letting j: A > V be the 
inclusion of the origin A in V we have also 

i!: K(TA) - K(TV) . 

But TA =A is a point, so K (TA) = Z, and j! is the periodicity isomorphismr. 
Thus we can define the topological index 

K(TX)- Z 

as (j! )' o . It is independent of the choice of the embedding X-+ V. 
The generalization of all this to families over Y is fairly clear. What we 

have to do is to make all the preceding constructions " fibrewise" over Y. An 
elliptic family P of operators on X parametrized by points of Y will have a 
symbol class [a(P)] e K(Yx TX). The index of P in K(Y) will depend only 
on the symbol class and hence we will obtain a homomorphism 

K(Y x TX) -> K(Y) 

which is the analytical index (for families over Y). On the topological side 
given an embedding X - N - V we simply take the Cartesian product with 
Y throughout and obtain a homomorphism 

i: K(Yx TX) --K(Yx TV) 

and the periodicity isomorphism 
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j! K(Y) -K(Yx TV). 

Combining these we define the topological index as (j! )-' i and our main 
theorem will again assert that the topological and analytical indices coincide. 

So far we have had in mind a family of operators P, on a fixed manifold 
X. In fact it is more natural to allow the manifold X to vary with y also, so 
that P, is an operator on a manifold X,. Of course we must assume suitable 
regularity of the family of manifolds X,: they should form a fibre bundle Z 
over the parameter space Y and the structure group should be the group of 
diffeomorphisms of X. Moreover the vector bundles over X where P, acts will 
now also vary with y. Thus PY should be a linear operator, Co (Xy; Ey) 
C-(Xy; Fy) where Ey, Fy are smooth vector bundles over X, which vary con- 
tinuously with y. The precise definitions will be given in ? 1. 

Having a fibre bundle Z instead of the product Y x X does not essentially 
alter the preceding discussion concerning the analytical and topological in- 
dices. Since Z is locally a product over Y the analysis is just the same ex- 
cept that we must make sure that various function spaces which we use are 
left invariant by diffeomorphisms of X. For the symbol v(P) we have to in- 
troduce the tangent bundle along the fibres of Z: we denote it by TZ (since 
Z is only differentiable in the fibre direction no confusion should arise). The 
symbol class [a(P)] will then be an element of K(TZ) and the analytical index 
is now a homomorphism 

K(TZ) -K(Y) . 

The details will be given in ? 2. On the topological side the only difference is 
that we have to embed Z in Y x V compatibly with the projections onto Y. 
It is easy to prove that such embeddings exist, and from this we obtain the 
topological index. Details are given in ? 3. 

To prove the main theorem (equality of topological and analytical index) 
we consider, as in [5], the diagram 

K(TN) 

K(TZ) K(TS) K(Yx TV) 

K(Y) 

where N is now a bundle (over Y) of tubular neighborhoods along the fibre, 
S is the double of N, and a, 8, Y are given by the analytical index. To prove 
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the theorem we must prove that the two triangles commute and that Y is the 
inverse of the periodicity isomorphism. This last part follows at once from 

(i) the case when Y is a point, proved in [5], and 
(ii) the fact that the analytical index is a homomorphism of K(Y)- 

modules (see the definition in ? 2). 
The commutativity 8a = -/ is the excision property of the index and the 
commutativity a = 8ap is the multiplicative property. Both of these are 
established exactly as in [5]. We shall discuss them briefly in ? 3 and ? 4. 

From this introduction it should now be apparent that there is very little 
to be done to extend the proof of [5] to the case of families. For this reason 
we shall be brief and restrict ourselves to commenting on the new points that 
arise. These are mainly technical and of a fairly routine kind. A couple of 
lengthy technical arguments are relegated to an appendix. 

In the final section of the paper we give a cohomological form for the in- 
dex of elliptic families and we also discuss the relation of the equivariant in- 
dex theorem of [5] with the index theorem of this paper. 

In paper V of this series we shall extend the index theorem to real oper- 
ators and the index of real families will then have an interesting application 
to the mod 2 index of skew adjoint real elliptic operators (see [7]). 

In conclusion we should point out that a somewhat weaker version of the 
index theorem for families was announced by W. Shih in [11]. The proof 
sketched there was a generalization of the original proof of the index theorem 
as given in [10]. The new proof in [5] generalizes in a much more straight- 
forward manner. 

1. Continuous families of elliptic operators 

It is clear what a continuous family of differential operators on R4 
parametrized by y e Y should be: namely Elt l:k a, (x, y) a/axa where aaj/axg 
are continuous functions on RI x Y. In this section we extend this notion. 
First, we replace RI by a manifold X. Then we replace X x Y by a fibre 
bundle over Y. We replace differential operators by pseudo-differential oper- 
ators (and their closure in a suitable topology which we need for tensor prod- 
ucts). 

Let X be a Co compact manifold and let Diff(X) denote the group of 
diffeomorphisms of X endowed with the topology of uniform convergence for 
each derivative. It is well known [9] that Diff(X) is a topological group, and 
(Diff X) x X -- X is continuous. 



INDEX OF ELLIPTIC OPERATORS: IV 123 

Definition (1.1). Let Y be a Hausdorff space. Then Z is a manifold over 
Y if Z is a fibre bundle over Y with fibre X and structure group Diff(X). In 
particular, if T Zo Z Y is the projection, there exists a covering ft of Y and 
97u: w-'(U) ---U x X, Ue- '1 so that 9 o q': Un VxUx u nvx xis 
given by (y, x) H (y, fu, v(y) (x)) with y 8- fu, v (y) a continuous map from 
u n V- Diff (X). 

Next, we want to explain what we mean by a vector bundle over Z 
which is Co along the fibres. Let E be a Co vector bundle over X and let 
Diff (X, E) denote the group of diffeomorphisms of E which map fibres to 
fibres linearly. Note the homomorphism h: Diff(X, E) > Diff(X) with kernel 
Aut(E). If $ C Diff(X, E), then $ = ac h(D), uniquely, where ac: h($D)*E -'>E. 
We say PD is a lift of h ($) to E by a,,,. Using this decomposition, it is 
easy to make Diff(X, E) a topological group. Specifically, choose a connection 
c on E so that Ex1 can be identified with Ex2 if x2 is close to xI by parallel 
translation of Ex1 to EX2 along the unique geodesic from xI to x2. Let C denote 
this isomorphism. Then a neighborhood of I e Diff(X, E) is given by those 0 
where h (P) is in a small neighborhood of I e Diff(X) and a,, o C is in a neigh- 
borhood of I e Aut(E) (in the Co- topology). 

Definition (1.2). Let Z be a manifold over Y, and let E be a vector bundle 
over Z with projection p. Then E is a smooth vector bundle over Z if E ) y 
is a fibre bundle over Y with fibre E (a Ca vector bundle over X) and with 
group Diff(X, E). 

Remarks. 1. The bundle Z over Y is associated to the bundle E over 
Y by the homomorphism h: Diff(X, E) Diff(X). 

2. There are other (equivalent) ways of defining smooth vector bundles 
over Z. In particular a map f: Z - G (a grassmannian) defines a smooth 
vector bundle over Z provided all fibre derivatives of f are continuous. 

Associated to the above fibre bundles are bundles of pseudo-differential 
operators which we now discuss. Let 9m(X; E, F) denote the space of 
mth-order pseudo-differential operators on X from C (X; E) to C (X; F) 
introduced in [5, ? 5]. This space is a Frechet space given by the following 
of pseudo-norms. (We do the case for E = F= 1 and leave the slight generali- 
zation to the reader.) For each coordinate neighborhood U with coordinates 
xl, , xa and each Co function f with support in U, let 

I1 P lU,f,c.,,8 supxeu I aEr f(X1 ) 

where pf(x, d) - ei<x1 t> P(ei(x- 11 f). 
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As in [5, ? 5] let Pm(X; E, F) denote the completion of Cm (X; E, F) rel- 
ative to the family of pseudo-norms II P II, (the norms of the bounded oper- 
ators P8: HJ(X, E) H8_m(X, F) induced by P on the Sobolev spaces). The 
usual estimate showing that P. is bounded implies that the injection 9m )m 
is continuous. 

Suppose now E and F are two smooth vector bundles over Z. We wish 
to construct new fibre bundles 9m (Z; E, F) over Y with fibre Cm (X; E, F) 
(and 9m(Z; E, F) over Y with fibre Cm (X; E, F)). First, let H be the closed 
subgroup of Diff(X, F) x Diff(X, E) consisting of [(T, 0J), h (T) = h (J)]. 
Note that H operates on 9m(X; E, F) by P - T-PP J (the operator T-PP 0 
still lies in 9m(X; E, F) because the class of pseudo-differential operators is 
invariant under diffeomorphisms). Since JD (and T) induce bounded operators 
on all HJ(E) (and HJ(F)), the action of H on gm extends to 9m. To construct 
the desired bundles we now need the following result whose proof we give in 
the appendix. 

PROPOSITION (1.3). The maps H x 9m 9m and H x 9m 9m are con- 
tinuous. 

Let B-, B-, and B denote the principal bundles over Y associated to E, 
F, and Z. Since h: Diff(X, E) Diff (X) induces a map BE-* B and similarly 
BF B, we can, over the diagonal of Y x Y, reduce the group Diff (X, F) x 
Diff (X, E) of BF x BE to H and get a new principal bundle B(H) over Y with 
group H. Now 9m(Z; E, F) and 9m(Z; E, F) are the fibre bundles associated 
to B(H) via Proposition (1.3). 

We also have the Hilbert space bundles HS (Z, E) over Y with fibre 
HS(X, E) and group Diff(X, E), for the map Diff (X, E) x HS(X, E)) HS(X, E) 
is continuous. Similarly, we have the fibre bundle C-(Z, E) with fibre 
C-(X, E) and group Diff(X, E). The bundle C- (Z, E) is naturally injected 
into HS(Z, E). 

Definition (1.4). A family of pseudo-differential operators parametrized by 
Y is a continuous section P of 9m (Z; E, F). When P, is elliptic for each y e Y, 
then the family P is an elliptic family. 

Note that a continuous section of 9m (Z; E, F) gives a family, because 
the map pm fm is continuous. Note also that when Z = Xx Y, E = Ex Y, 
and F = F x Y, then a family is simply a continuous map of Y into 
9'm(X; E, F). In this case, we shall call the family a product family. In a 
sufficiently small neighborhood of each point, a family restricts to a product 
family. 
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We now pass to the symbol of a family. In [5, ? 5] we had the surjective 
map a: 9m (X; E, F) - Symbm (X; E, F) which extended to a continuous 
map v: RM > Symbm with dense range. Since both a and a are equivariant 
under the action of H and since H x Symbm > Symbm is continuous, we can 
construct a fibre bundle Symbm (Z; E, F) over Y with fibre Symbm(X; E, F) 
and group H. Clearly the map ay: 9m (Z; E, F) - Symbm(Z; E, F) defined 
fibre-wise is continuous. 

Definition (1.5). The symbol a, of a continuous family P is the continuous 
cross section of Symbm (Z; F, F) given by jy o P. 

Since a is not surjective, not every continuous section of Symbm(Z; E, F) 
is the symbol of a continuous family. However, using the Stone-Weierstrass 
theorem, one can prove (see the appendix) 

PROPOSITION (1.6). Suppose Y is compact. The symbols of continuous 
families are dense (for the compact-open topology) in the space of continuous 
sections of Symbm(Z; F, F). 

2. The index of elliptic families 
In this section we shall define the index of an elliptic family as an ele- 

ment of K(Y), where the parameter space Y is assumed compact. We shall 
also establish its elementary properties and, in particular, we will show that 
the index P depends only on the symbol class [a(P)] e K(TZ). 

In [5, (6.6)] we proved that, for an elliptic operator P e Qm, any distribu- 
tional solution of Pu = 0 is necessarily C-. Essentially the same argument 
leads to the following slight extension which we shall require. 

LEMMA (2.1). Let P e 9m be elliptic and let Pu = v with v e C-(X, F), 
u e HS(X, E). Then u e C'-(X, E). 

To define the index of a family we shall now prove 

PROPOSITION (2.2). Let P e m (Z; E, F) be elliptic. Then there exists a 
finite number of sections (si, 5q) of C-(Z, F) such that the map 
QY: C-(Z, F) E Cq C-(Z, F)v given by 

QY (u; Xi . * , Xq) = Py (U) + 1 Xi Si (y) 

is surjective. The vector spaces Ker Qy then form a vector bundle Ker Q over 
Y and the element [Ker Q] -[Yx Cq e K(Y) depends only on P and not on 
the choice of sections si. 
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PROOF. Locally, in a neighborhood of y0 e Y, our family P is a product 
family and so is given by a continuous map Y- > Pm(X; E, F). Passing to 
the Sobolev space this induces (locally) a continuous map P8: Y - 

,i(Hj(X, E), H8-m(X, F)) where Y denotes the space of bounded Fredholm 
operators with the norm topology. Let V = Ker P*, then 

T8 (y): H8(X , E) ED V- > H.-m(X F) 
defined by T8(y)(u & v) = P8(y) u + v is surjective for y = y0 and hence (by a 
standard argument see [1, Appendix]) also surjective for y near to y,. Now 
Vc C- (X, F) (since the adjoint of P is also elliptic and in 9C) and (2.1) then 
shows that, for y near y0 

T(y): Coo(XE)ED V- > Co(X, F) 
is surjective. This proves the first part of the proposition locally. The global 
version now follows easily by extending the local sections of C-(Z, F) and 
then using a partition of unity argument. Since Ker T(y) = Ker T?7(y) the 
local triviality of the kernels in Co follows from the corresponding fact for 
the Hilbert space which is standard (see [1, Appendix]). Thus Ker Q is a 
vector bundle over Y. For the last part it is enough to show that adding one 
further section sq+, does not alter the element in K( Y). This is clear if Sq,+ = 0 
and the general case can be reduced to this by using the homotopy invariance 
of K(Y) and multiplying Sq,+ by a parameter t going from 0 to 1. 

Definition (2.3). The element of K( Y) given in the preceding proposition 
is called the index of the elliptic family P. We denote it by ind P. 

Remark. If the family P happens to have the property that Ker P, has 
constant dimension independent of y, then we have two vector bundles (over 
Y) Ker P and Coker P. It is then not difficult to prove that (with the defini- 
tion of index P given in (2.3)) 

index P = [Ker P -[Coker P] 

To do this we find a trivial bundle Y x W and a surjective bundle homomor- 
phism Y x W 9 Coker P. We use the sections of Coker P = Ker P* 
Co (Z, F) given by a basis of W to compute index P as in Proposition 2.2. We 
have 

index P= [Ker P ED Ker p]-[ Y x W] 
- [Ker P] + [Ker p] - {[Ker q] + [Coker P]} 
- [Ker PI - [Coker PI . 

The first basic property of the index is its homotopy invariance. This 
follows at once from the homotopy invariance of K(Y). We simply observe 
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that a path in the space of families over Y is just a family over Y x I (I the 
unit interval) and use the isomorphism K(Y x I) _ K(Y). 

From the homotopy invariance of the index it follows that ind P depends 
only on the symbol a (P). From the density result (1.6) we can even define 
ind a for any elliptic u e Symbm (Z; E, F): we put ind a = ind v (P) for a (P) 
sufficiently close to a. This is independent of the choice of P because of the 
homotopy invariance of the index. Moreover ind P will depend only on the 
homotopy class of v(P). 

Next we need to show that the index is essentially independent of the 
degree of homogeneity of the symbol as in [5, (6.3)], but first we must intro- 
duce metrics. By a metric on E we will mean a (positive definite hermitian) 
metric on E which is smooth along the fibres. More technically if we form 
the smooth vector bundle Herm(R), whose fibre at any point z C Z is the space 
of hermitian forms on ER, then a metric on E is a continuous positive definite 
section of C- (Y, Herm E). By the usual partition of unity argument such 
metrics exist and any two are homotopic. A metric' on TZ is simply called 
a metric on Z. As in [5] we shall now fix a metric on Z and using this we 
will identify TZ with its dual T*Z (the cotangent bundle along the fibres). 
The unit sphere bundle of TZ will be denoted by S(Z). 

We shall now prove the analogue of [5, (6.3)]. 

PROPOSITION (2.4). Let ,c e Symbm (Z; E, F) and r e Symbk (Z; E, F) be 
elliptic and assunme they coincide on S(Z). Then ind ,- ind T. 

PROOF. The proof of [5, (6.3)] requires a little modification here because 
in [5] we used the fact that a self-adjoint operator has index zero, a result 
which does not hold for families2. However, a family of positive-definite 
operators clearly has zero index (the kernels being zero) and so we use 
this fact instead. Now although a self-adjoint symbol always represents 
some self-adjoint operator (using I (A + A*)) the same is not so clear for 
positivity and, for this reason, a little care is necessary in our proof. Suppose 
now that k > m , and let a c Symbl (Z; E, E) be equal to the identity on S(Z), 
so that z- o ak-m. We propose to construct a positive-definite family 
P c 9'(Z; E, E): note that its symbol a(P) is then self-adjoint and so is line- 
arly homotopic to a. Once we have done this we pick elliptic families 
Q 9"m(Z; F, F), R c 9k(Z; F, F) with symbols close to e, z respectively 

' For real vector bundles we use, of course, euclidean metrics. 
2 For a complex self-adjoint family A, the homotopy tA+i(l-t)I shows that A has index 

zero, but this does not work for real families. 
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and we form the composition Q o pk-m. Since P is positive-definite we see 
at once that ind Q o pk-rn = ind Q. On the other hand a(Q o pk'r) = o(Q)o 
(p)k`m is homotopic to , o ak-m = z. Hence ind r= ind Q =ind ji as required. 

It remains therefore to construct P. In fact it is enough to require that P be 
positive semi-definite because adding the identity will then make it positive- 
definite and this does not alter the symbol (since P has order 1 and the iden- 
tity is of order 0). 

To find the desired family P, we use the fact that the sum of positive 
semi-definite operators is positive semi-definite. A partition of unity argu- 
ment on Y localizes the problem to this: Find a product elliptic family P: N 
->' (X; E, E) such that P(y), y e N, is positive semi-definite relative to 
the metric p(y) on X and r(y) on E. Now use a partition of unity on X (P 
positive semi-definite implies pPp is positive semi-definite for q a real Cal 
function on X) to further reduce the problem to a coordinate neighborhood 
U on which El u - Rq, and the metric r(y) = (rij(x, y)), i, j = 1, . .*, q, y E N, 
x C U. We must find P(y) = Ptj(y) elliptic C 91(U; Rq, Rq) such that if U - 
(U', * Uq, -n)andueCc(U), then 

<P2 > 9 i, k 
|U (P6j(y)uj) (x) rik (x, t) Uk(x) dvp(y) > 0 

Here, dvp(y) is the volume element relative to the p(y) metric on X. 

Choose P~j(y) as follows. Let 

.K., (x, e, 'y) p (e) Ie (r (x, y)-')ji (dv,'8 y) - 

with (e) > 0 and Co, (e) = 0 for [ < 1/2, 9(e) 1 for 1 ?1 where 

I e 12 = , j pij(x, y) ej ej. Then (Pij(y)u) (x) -=5 e> Kij (x, e, y) u' (e) de. With 
this choice 

<Plad 0> =Ej | |R ei< amp>9 ($) [$: U[j ($)ij (x) dedx 

<PRil,(e) I > j=(e)I de > l . 
Clearly (Pij) (y) is elliptic for its symbol on the unit sphere at x is 

r (xy) dvp 
dx 

Also (Pij) (y) is a family because K(x, e, y) and derivatives in x and e vary 
continuously with y. This completes the proof of the proposition. 

Remark. An alternative way of constructing P is to take the positive 
square root of a laplacian for E. However we then need to know that our 
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spaces of operators 9P are closed under extraction of roots and our explicit 
construction for P was designed to by-pass this question. 

If PC 9)m (Z; E, F) then the triple {E, F, a(P)} defines an element of 
K(B(Z), S(Z)) = K(TZ) where B(Z) is the unit ball bundle of Z. Just as 
in [5] every element of K(TZ) arises from some symbol (for this we need to 
know that every vector bundle over Z has a smooth structure: proved by the 
usual approximation arguments). We have now established all the basic prop- 
erties of the index which, just as in [5], show that 

PROPOSITION (2.5). a - ind a induces a homomorphism 

a-ind: K(TZ) -K(Y). 

3. The topological index 

We shall now proceed to define the topological index as a homomorphism 
K(TZ)-)K(Y). For this we must first embed Z in Yx V for some euclidean 
space V. 

Fix first a number of smooth functions ft, . *, on X which define a 
smooth embedding f: X-? Rk. Next let {Uj} be an open covering of Y so 
that Z is a product over each Up, and shrink this covering to get a slightly 
smaller open covering UM} with UC, c Uj. Using the product structure of Z 
over Uj we can extend ft, ..., fk to give functions fj6, . * *, fj over Z I U. 
Now multiply by a continuous function on Uj which is equal to 1 on U;. and 
has compact support. The resulting functions then extend to give smooth 
functions g1j, ..., gkj on all of Z. The set gij of all these functions (varying 
i and j) gives a map g: Z V = Rm (where m = k l, 1 being the number of 
of open sets Uj). The restriction of g to any fibre Xv is a smooth embedding. 
Hence Z-+ Y x V given by z ~-> (w(z), g(z)) is our required embedding. 

The normal bundles N, of X, in V clearly form a vector bundle over Z 
which is smooth in the sense of Remark 2 of ? 1 and hence in the sense of 
Definition (1.2). A euclidean metric on V induces a metric on N and it is 
not difficult to show that the structure group of the bundle N ). Y can be 
reduced to the subgroup of Diff (X, NJ) which preserves the metric on No 
(o denotes a point of Y). This shows that the unit sphere bundle S(N) and 
its suspension S (N 0 1) are both manifolds over Y in the sense of Definition 
(1.1). 

The topological index is now constructed from the embedding i: Z-+ Y x V 
as explained in the Introduction. It is given by t-ind = o i! where 
i,: K(TZ) K(Y x TV) is the composition 
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K(TZ) -P - K(TN) - K(Y x TV) 

and j!: K( Y) K( Y x TV) is the periodicity isomorphism. The fact that 
t-ind is independent of the choice of embedding i is proved just as in [5]: it 
depends on the multiplicative property of the Thom homomorphism q. Our 
aim now is to establish 

THEOREM (3.1). The analytical and topological indices coincide as homo- 
morphism K(TZ) K (Y). 

As explained in the Introduction the proof of the theorem depends on 
establishing excision and multiplicativity for the analytical index. The ex- 
cision property can be stated quite generally as follows. Let Z - Y. 
Z- Y be 2 manifolds over Y (with compact fibres X, X' respectively) and 
let UcZ, U'cZ' be two open sets with a smooth equivalence U - > U' 
(compatible with the maps to Y). Identifying U' with U we then have two 
homomorphisms K(TU) - K(Y), defined by 

K(TZ) 

K(TU) K(Y) . 

K(TZ') 

The excision property asserts that this diagram is commutative. The proof 
goes much as in [5, ? 8]. We first represent an element of K(TU) by a 
symbol a of order zero equal to the identity outside a compact set L of 
U. We then find a family of operators having symbol a and equal to the 
identity outside L. We extend this by the identity to the whole of Z or Z'. 
To compute the indices of these two families (P, P' say) we must first choose 
sections s1, sq as in (2.2). Since our operators are the identity outside 
L ci U we can assume that our sections si have their supports inside U (see 
the construction of the si in the proof of (2.2)). It is then clear that the bun- 
dles Ker Q, Ker Q' (notation of (2.2) with Q' for the case Z') coincide and simi- 
larly for the cokernels. Thus ind P = ind P'. 

To complete the proof of Theorem (3.2) we need to investigate the multi- 
plicative properties of the index of families. This will be done in the next 
section. 

4. Multiplicativity of the index 

In [5, ? 4] we gave a rather general multiplicative property for the index 
(Axioms (B3),(B3'),(B3")). For the proof of Theorem (3.1) we need the analogue 



INDEX OF ELLIPTIC OPERATORS: IV 131 

of Axiom (B 3') for families, with G = 1, F = SI, H 0 0(n) and b the fun- 
damental symbol as in Axiom (B 2). The proof is essentially the same as that 
given in [5, ? 9]. We proceed to explain the details. We begin with a smooth 
vector bundle N over Z as in ? 1. For (3.1) this is the normal bundle of an 
embedding as explained in ? 3. We then form the manifold S = S (N 1) 
over Y whose fibre at y is the sphere bundle of Ny D 1 (obtained by com- 
pactifying Ny with a section at oA). To complete the proof of Theorem (3.1) 
we have to show that the following diagram commutes 

a-ind\ /a-ind 

K(Y) 

where i! is constructed from i: Z S as in ? 3 (i! is the composition of the 
Thom homomorphism K( TZ) K( TN) and the natural extension K( TN) 

K(TS)). Now let 

b e Ko(,)(TS7) 

be the equivariant symbol class given by b = j! (1) where j : Pu SI is the 
embedding of the origin in Sn. As proved in [5] we have 

a-ind (b) = 1 e R(O (n)) . 

This is the normalization axiom (B2). Moreover, as explained in [5], for any 
Sn-bundle I over X (with group 0(n)), the homorphism K(TX) '! , K(TZ) 
is given (locally over X) by multiplication with b. The same constructior 
works for families so that K(TZ) t K(TS) can be constructed (locally) by 
multiplication with b. In [5, ? 9] we carefully chose representative operators 
for this symbolic construction and were then able to verify that the analy- 
tical index was compatible with it. The only additional complication in car- 
rying out the same argument for families over Y is that, in order to define 
the index of a family of operators we must add some sections as in (2.2). To 
minimize these complications it is convenient first to prove the following 
simple lemma. 

LEMMA (4.1). The element b E KO(n)(TS") can be represented by an oper- 
ator B commuting with 0(n) and such that 

KerB* = O, KerB= 1 

(where 1 denotes the trivial 1-dimensional representation of 0(n)). 
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PROOF. Since ind b = 1 C R(O(n)) there exists an operator C with 

[Ker CI - [Ker C*] 1 e R(O(n)) . 

This means there exists a surjection 

P: Ker C KerC* 

compatible with 0(n)-action and having 1 as kernel. Extend P to be zero 
on (Ker C)' and then put B = C + P. Clearly P is of order - co. 

Remark. If B: Co (S,, GI) - C-(Sl, G') then a generator u of Ker B will 
assign to any Sn-bundle 2 over X (with group 0(n)) a section U of Go (the 
vector bundle over 2 induced by GI). 

If we use this operator B in' [5, ? 9] then Ker B* = 0 and so Ker D = 
Ker P., Ker D* = Ker P,. Suppose now we modify the operator A: C-(X, El) 

> Co (X, El) by adding a finite-dimensional map T: V - Co (X, El) to 
kill the cokernel. Simultaneously we modify the operator 

DA -B* 
D B A* 

by adding to the top-left entry a finite-dimensional map T derived from T as 
follows. For any v e V, Tv is a section of El over X. Lifting this to the 
total space (the Y of [5, ? 9]) we get a section (Tv)- of E1. We put 

Tv = (Tv)- & it 

where i is the section of GO described in the remark after (4.1). It is then 
easy to check that the modified D (written simply as D + T) has zero coker- 
nel. Moreover, Lemma (2.1) implies that D + T has the necessary regularity 
properties. Since BT = 0 we find, as in [5, ? 9], that (D + T) * (D + T) is 
diagonal and hence the method of calculating index D given there can also 
be used for D + T, and yields 

(1) Ker(D + T) = Ker(A + T) . 

Since the cokernels have been killed and, since adding T or T does not affect 
the index, (1) implies 

(2) index D = index A . 

In this form the argument extends immediately to families, (1) is now an 
isomorphism of vector bundles over the parameter space and (2) is an equa- 
tion in K of the parameter space. This completes the proof of Theorem 
(3.1). 

3The notation of [5, ? 9] is too lengthy to be reproduced here. We recommend the reader 
to have [51 at hand in reading what follows. 
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5. Further comments 

In [6] we expressed the topological index of an elliptic operator in co- 
homological terms. This was obtained by applying the Chern character to 
the K-theory construction of the index. In precisely the same way we can 
treat the index of a family. The only differences are 

(i) we use "integration along the fibre" 

r* : H * (TZ) > H* (Y) 

to generalize evaluation on the fundamental cycle of TZ (H* denotes co- 
homology with compact supports), 

(ii) we compute ch o ind e H* (Y; Q) and not the index itself: thus we 
lose torsion. The result is the following 

THEOREM (5.1). Let P be a family of elliptic operators parametrized by 
Y and let u C K(TZ) be the symbol class of P. Then we have 

ch (index P) = (- 1)" * {ch u * A(Z)} 

where 5(Z) is the Todd class of the complexification of TZ (the tangent bun- 
ble along the fibres of Z-o Y), n = dim X is the dimension of the fibre and 
7*: H*(TZ) H* (Y) is integration along the fibre. 

Note. Integration along the fibre in a fibre bundle is an operation which 
decreases dimension of cohomology by the dimension of the fibre. It can be 
defined in many ways, one of which is just the cohomological counterpart of 
our construction of the topological index: this is the convenient definition 
to use in proving (5.1). The terminology refers to another definition applica- 
ble when all spaces are smooth manifolds: we represent a cohomology class 
by a differential form and then integrate over the fibres to obtain a differential 
form on the base. An orientation on the fibre is necessary for this inter- 
pretation and in our case we orient the fibres TX as in [6, (2.11)]. 

In [5] we gave an equivariant index theorem involving a compact group 
G. This is related to the index theorem for families in the following way. 
Let P be an elliptic operator on the compact G-manifold X which commutes 
with the action of G, so that index P G R(G) as in [5]. Then, for any fibration 
$ over a space Y with fibre X and group G, P defines a family d(P) of elliptic 
operators parametrized by Y. The family d (P) has kernel and cokernel 
of constant dimension and these are in fact the vector bundles over Y as- 
sociated to d by the representations of G on Ker P, Coker P. Hence 

index e (P) = i* (index P) 
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where i*: R (G) K(Y) is the homomorphism induced by d. The index 
theorem (3.1), for families coming in this way from compact groups, is then 
a consequence of the index theorem of [5]. Of course, there are families of 
operators not arising in this way and for these we need (3.1). Particularly 
interesting cases of (3.1) are obtained by taking the various operators stud- 
ied in [6]. For example if dim X = 4 k and is oriented then, choosing a 
metric along the fibres of Z - Y we obtain the family of "signature opera- 
tors", generalizing the signature operator of [6, ? 6]. The index Sign(Z) of 
this family is the element [H+] - [H-] C K(Y) where H+ are the subspaces 
of H2k (Xv; R) defined as in [6, ? 6] by the metric and the cup-product. This 
element can be expressed in terms of the fundamental group r1( Y) as follows. 
The representation of r1(Y) on H2k (X; R) gives a homomorphism 

a : w1(Y) -G 

where G is the orthogonal group of the quadratic form on H2k(X; R) (given 
by (a, fi) F-* a/4[X]). In general G is non-compact and its maximal compact 
subgroup L is a product O(p) x O(q). The homomorphism a induces a map 
f: Y - B0 - BL (- denotes homotopy equivalence). The two vector bundles 
on BL associated to the representations of 0(p), O(q) on Cp, Cq can therefore 
be pulled back to give bundles on Y. These are just He and so [H+] - [H-1 
is the pull-back of a universal class in K(BL) = K(BG) which we will simply 
denote by Sign. Thus Sign Z = f *(Sign). 

If Y is simply-connected then the above argument shows that Sign (Z) 
is trivial (that is Sign(Z) = (Sign(X) * 1 e K(Y)). For examples with r, (Y) 
and Sign(Z) non-trivial, together with a fuller discussion of the signature of 
fibre-bundles see [3]. 

As we have remarked, Theorem (3.1) can be deduced, in certain cases, 
from the index theorem of [5]. The converse is also true. Given a G-invariant 
operator P on the G-manifold X we constructed families i (P) for each fib- 
ration d: Z - Y with fibre X and group G and observed that index e (P) = 
d* index P. Letting Y run over all compact subsets of the classifying space BG 
we see that a knowledge of all d (P) determines a (index P) where 

a: R(G) , K(BG) 

assigns to each representation of G the associated vector bundle over BG. 
Now it is proved in [4] that, for any compact Lie group G, K(BG) - R(G)9 
the completion of R(G) for the I(G)-adic topology (where I(G) is the aug- 
mentation ideal). Thus Theorem (3.1) determines the image of index P under 
the completion R(G) -. R(G). For many groups, including connected groups 
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and finite p-groups, completion is infective (that is, nl, I(G)" = 0) and the 
equivariant index theorem then follows from (3.1). However, for a general 
finite group this is not true, so that (3.1) does not include the equivariant 
case. 

It would of course be possible to combine the equivariant case and that 
of families and to introduce equivariant families. We leave this to the 
reader. 

APPENDIX 

We give here the proofs of Propositions (1.3) and (1.6). We begin by re- 
calling the statement of (1.3). 

PROPOSITION (1.3). The maps A: H x 9Im(X; E, F) CPm (X; E, F) and 
B: H x 9m ..(X; E, F) -)m(X; E, F) are continuous. 

PROOF. We shall treat the case of P in detail. The case of 9P is quite 
similar (see the comments at the end of the proof). It suffices to show that 

(a) the map P -H to-' P Do is continuous for each (T0, (O) C H; 
(b) the map (P, $D) F P-' Po P is continuous at the identity (I, I) in Id 

for each fixed PO Ce m; 
(c) the map A is continuous at ((I, I), 0). 

For, granted (a), (b), (c) then first A is continuous if it is continuous at 
(I, I) x CPm: The map ((P, $), P) H- T-1 P $ equals 

At A" 
((e, A), P) I-k ((Nt-l' P, so lD), to- P so) I (to- P< (to-l Pso) ($' (O) 

and A' is continuous because of (a) and the fact that H is a topological group 
(only continuity of left multiplication is used). 

Next P-' P $ - Po = (P-1(P - PO)$) + (P-' P0 - Po). The first term 
on the right is small because of (c) and the second term because of (b). Hence 
A is continuous. 

Now both (a) and (c) are true for the following reason. Each $ e 
Diff (X, E) induces a bounded operator on HS(X, E) and its norm I D II,, can be 
estimated by a finite number of derivatives of $, i.e., there exists a neigh- 
borhood N of I in Diff (X, E) such that sup.,,N , I I D I$ = K < o. Hence 

(a) : jj 'I-'(P-P0) (OD 18_r <-' I 1P' I I s(o Is 1H0 H P-P0 I 18 and 
(c): Choose N1 x N2H in H such that sup.,,,, II $ = K < oo and 

supwON2 H -1 II H-i = L < 00. 

Then 11H-1 PP(D$ , < KLHPH . 
We now prove (b). We must show that for each s, and s > 0, there exists 
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a neighborhood N, x N2 n H in H such that I I -' P0 D-P0 I Hs < s for D C N, 
T e N2. We reduce the problem to the case where E and F are trivial line 
bundles. Let { fi } be a finite partition of unity subordinate to a covering by 
coordinate neighborhoods Uj over which E and F are trivialized. We need 
only prove (b) for each fjPjfj. Choose a neighborhood of (I, I) in H so that 
(P, 5) in the neighborhood implies h(T-')(supp fi)) Cl C (a fixed compact set of 
Uj) and h($)(suppfj)cC2 (a fixed compact set of Uj). Thus the computation 
of IT-1(fiPofj) D -fi Po fjI| involves only sections of E over Uj and sec- 
tions of F over Uj. Hence we can assume E and F are trivial bundles. 

With E trivial, then D E Diff(X, E) implies D = h(SD)ac, where a,, E Aut E. 
Choose a neighborhood of (I, I) such that a,, and a, are close to the identity. 
Then 

T-1 P0 D - a,--' h (SD)-' Po h (S) a,, 
- (xl'- I ) (h(SD)-l Po h(SD)) a. + h(S)-l P0 h(S)(a. - I) + h(S)-'P0h(S). 

Since 
a,,, a, 

close to the identity implies a - I-I I, a - II _ are small, 
a, l, ,b. are uniformly bounded and since we know that h(SD) | are uniformly 

bounded for a neighborhood of Ic Diff(X), we conclude: it suffices to prove 
(b'): The map Diff(X) )9Pm(X, 1,1) given by H--' P0 is continuous 

at the identity. 
It suffices to prove (b') for PO e CJ'm because 

1P-' Po P09-Po 8? ' 11 9-'(Po-Pi)9 11 + 11 P-' P-pi 11s + 11 Pi-P 
< C 11 Pi-PO II. + l19-' Pi 9-Pi 11s6 

Thus if Pi e gm)r and P3 - PO and (b') holds for Pi : 9g', it holds for PO E C1m. 

Choose first a neighborhood 9A of Ic Diff (X) which is homeomorphic to a 
convex neighborhood 'DR of 0 in C-(X, T(X)) via the local homeomorphism 
&: C""(X, T(X)) > Diff(X) given by a riemannian metric (see [9]). If P E 9A 
and 9 = T,, let 9t = &,,, t E [0, 1]. 

Let gt denote the geodesic flow, a 1-parameter group, acting on T(X), 
hence acting on C-(X, T(X)). Let f E C-(X) and let ht = (9-'Popt) f. 

LEMMA 1. dht/dt exists aped equals 9-' [Po, Vt] cptf where Vt(x) = 
9t( V(Pzt (x))- 

PROOF. 

ht-hto = 9po 9top9'-I 
(P'0t 

f + 9t1 
Po 

t P-, 9t f 
t-to 

1 
t-t t-t 

Let *t = pt+t, P-', a 1-parameter family of diffeomorphisms. We need only 
show that the tangent vector to the curve t - tx at x is Vto (x). But 
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t pt+to0(y) = expy(t + to) V(y) has tangent vector gtoV(y) at 'to0(y). Put 

Y = wto, (X)@ 

LEMMA 2. The map C-(X, T(X)) > Cm given by Via- [PO, V] is continu- 
ous. 

PROOF. This is a linear map between Frechet spaces, so it suffices to 
show the graph is closed, i. e., V, -> 0 and [P0, Vj] converges in fYm implies 
[P0, Vj]- 0. But if f G C? -(X), then Vz, f >0 in Co -(X) so that P0o V, f -O 
and VzPo f - 0. Hence [P0, Vj] f -0 in C-(X) and in all H8. Hence 
[P0, Vj] > 0 in am*. 

From Lemma 1, 

II (Pt-, Po P t0 -Po IP0 < t suptl<t I i t-,' [P0, Vt] (Pt II, , < tC suptl<t I [P0, Vt1] Ii. K 

Now (b') follows from Lemma 2 and the continuity of the maps Diff X x 
C""(X, T(X)) -C"-(X, T(X)) and (t, V) v gt Vat (I, 0) and (0, 0) respectively. 
This completes the proof of (1.3) for the spaces U'm. For U' the proof follows 
the same lines except for (c) which amounts to the uniformity in the asymp- 
totic expansion for pseudo-differential operators (see [8]). 

We recall next the statement of (1.6). 

PROPOSITION (1.6). Suppose Y is compact. The symbols of continuous 
families are dense (for the compact-open topology) in the space of continuous 
sections of Symbm (Z; E, F). 

PROOF. Using a partition of unity on Y we reduce to the case of a prod- 
uct family. A partition of unity argument on X then reduces us to studying 
families Py given by the continuous map P: y U'm(U) where U is a domain 
in Rn (and all bundles are trivial of dimension 1). Given a v : y F aU, (x, d), 
where uY(x, i) is continuous on U x (RI-{0}), positively homogeneous of order 
m, and compactly supported in U, we must exhibit a family Py such that 
a (Pu) approximates au uniformly in y where j I UY ((x, i) j j = sup, C ,.=l I i oY (x, i) 1. 
By Stone-Weierstrass a (restricted to U x Sn-') can be approximated by a 
continuous map It : Y - Co- (U x Sn-'). Let f, denote the extension of 1a to 
U x (Rn - {0}) which is positively homogeneous of order m. It is sufficient 
to show that there exists a family P with v(P) = ft. 

This amounts to the standard construction of a pseudo-differential oper- 
ator with a given symbol, but carrying along the parameter space Y. The 
crucial point is this: the constructed family Py is continuous because 

a fly(X i) 
ax (I 

. 
I 

v IX 
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is continuous in y. In fact Pa, is the transformation 

U 1--- 
I X ei<Xl e> K,, (x, d) u' (d) dd 

where K,(x, d) = #(p) Pj(x, d) and qi is Co- on RI, equal to 0 when I I ? < 1/2, 
and equal to 1 when I d I > 1. 
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