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The index of elliptic operators: V 

By M. F. ATIYAH and I. M. SINGER1 

Introduction 

The preceding papers of this series dealt with the index of elliptic pseudo- 
differential operators and families of such operators. In all this, our operators 
(and vector bundles) were over the complex numbers. In this paper we want 
to refine the preceding theory to deal with real operators, for example differ- 
ential operators with real coefficients. For a single real elliptic operator on a 
compact manifold the index can of course be computed by passing to the com- 
plexification. For a family, parametrized by a space Y, the situation is differ- 
ent. For a complex family we defined, in paper IV, an index in K(Y). 
Similarly for a real family we will get an index in KR(Y), the Grothendieck 
group of real vector bundles on Y. Complexifying the family leads to com- 
plexification of the index, namely the homomorphism 

KR(Y) , K(Y) 
induced by E - E ?RC. If Y is a point this homomorphism is injective, but 
for general spaces Y it is not injective. Thus knowing the index of complex 
families is not enough to determine the index of real families. This is the 
justification for the present paper. 

In ? 1 we show how the main theorem of paper IV has to be modified to 
take account of reality conditions. The only point that needs special mention 
here is that the symbol class of a real operator has to be interpreted in the 
appropriate K-theory, and this is not the K-theory of real vector bundles in 
the usual sense. Instead we have to use the K-theory developed in [2] for 
spaces with involution. This was in fact the motivation for [2], as explained 
in [2, ? 5]. Once we have the right K-theory the proof of the main theorem 
proceeds as before, one just has to watch that the reality conditions are 
observed throughout. 

Perhaps the simplest and most interesting example of a real elliptic 
family arises from a real skew-adjoint elliptic operator P. As explained in 
[8] such an operator gives rise to a family P parametrized by the circle SI 
and the index of P in KR(S') lies in the reduced group KR(S') = Z2 and 
coincides with the "mod 2 index" of P: 

1 Research supported in part by National Science Foundation grant GD-13876. 
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index P = dim Ker P mod 2. 

Thus the index theorem for real elliptic families leads in particular to a 
result on mod 2 indices of real skew-adjoint elliptic operators. This is ex- 
plained in ? 2. 

In ? 3 we study some particular examples of skew-adjoint operators 
defined on manifolds. In particular we show that, for a compact oriented 
(4k + l)-manifold X the Kervaire semi-characteristic 

k(X) -= dim H2 (X; R) mod 2 

is such a mod 2 index. This has some interesting geometrical applications 
concerned with vector fields [4]. 

1. Real operators 

If E, F are real vector bundles over a compact manifold X then we can 
consider differential operators 

P: C(X; E) -, C(X; F) 

with real coefficients. This simply means that, in any local coordinate system, 
P has real coefficients. Since E, F are real vector bundles this statement 
has invariant meaning. 

By complexification P defines an operator 
pC: CO(X; EC) > C2(X; FC) 

where EC = E OR C, FC = F OR C. This complexified operator satisfies the 
reality condition 

(1.1) Pc(m) = pC(9) 

where complex conjugation in the space of sections of Ec, Fc is induced by 
complex conjugation in the fibres. Conversely any differential operator PC which 
satisfies (1.1) is the complexification of a real differential operator. Because 
the definition of pseudo-differential operators involves the Fourier transform, 
it is therefore more convenient to work always in the complexification and to 
impose there the reality condition (1.1). Note however that we continue to 
work with vector bundles which are complexifications of real bundles. 

A real elliptic pseudo-differential operator Q is therefore defined to be an 
elliptic pseudo-differential operator 

Q:C(X;EC) ,C"(X;Fc) 
such that Q(u) = Q(i!). In euclidean space, if Q - q(x, D) is defined from the 
function q(x, i) by the usual formula 
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Qu = (2r)-l 5 q(x, $)u"(e)ei' e>d , 

we have (since D = -i(alx)) 

Qu= q(x, D)u = q(x, -D)iu. 
Thus the reality condition becomes 

(1.2) 4(x, - d) = q(x, d) 

This implies that the symbol a(x, d) of a real pseudo-differential operator 
satisfies 

(1.3) 5(x,9-) = (x,q). 

It is clear that a symbol satisfying (1.3) always represents a real 
operator: if Q is any operator with symbol a, then u F-* (1/2)(Q(u) + Q(i!)) is 
real and also has symbol a. 

Condition (1.3) forces us to introduce an appropriate K-theory as in t2]. 
We shall recall briefly the definitions given there. We consider in general a 
compact space X with an involution x F x and we consider complex vector 
bundles E -f X with an involution e H- e- which covers the involution on X 
and is anti-linear on the fibres. The Grothendieck group of such bundles 
with involution we denote by KR(X). Note that if the involution on X is 
trivial (x = x for all x e X), then the bundle E has a conjugation in each fibre 
Ex and so is, in a natural way, the complexification of a real bundle ER (the 
fixed-points of the involution). Thus KR(X) in this case can be identified 
with the K-theory of real vector bundles on X (also written KO(X)). A 
suggestive terminology is to call a space X with involution a Real space and 
vector bundles E as above Real vector bundles. For a locally compact space 
X we can then define KR(X) by triples (E, F, a) where E, F are Real vector 
bundles on X and a is a Real isomorphism outside a compact set (that is, a is 
compatible with the involutions). 

Return now to a real symbol a. The bundles E, F on which a acts are 
complexifications, and so are Real vector bundles over our manifold X (with 
trivial involution). Now lift to the tangent bundle TX, giving TX the anti- 
podal involution - $. We get Real vector bundles wr*E, wr*F over TX and 
condition (1.3) just asserts that 

a: wr*E > +c*F 

is a Real homomorphism 

a(x, t)e = j(x, $)U 
= a(x, -_0. 
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Hence an elliptic real symbol a has a symbol class [a] e KR(TX). 
As explained in the Introduction there is no new index theory for a single 

operator in the real case so we proceed at once to the case of families. A real 
elliptic family parametrized by a compact space Y is defined just as in [7]. 
We have a fibre bundle now Z o Y with fibre the compact smooth manifold X, 
and for each y e Y we have a real elliptic operator P, on the fibre X, varying 
continuously with Y. In [7, ? 2] we saw how to define the index of a complex 
family as an element of K(Y). If Ker P, is of constant dimension we can take 

(1.4) index P = [Ker P] - [Coker P] 

where Ker P is the vector bundle over Y whose fibre at y is Ker P, and 
similarly for Coker P. In the general case we have first to modify P by 
adding some sections s1, ... Yq as in [7, (2.2)]. In the real case we can also 
define index P e KR(Y) by (1.4) when Ker P, has constant dimension. In 
general we proceed as in [7, (2.2)] but using only real sections sE: we just 
observe that the construction of the si given in [7, (2.2)] also works in the 
real domain (if all bundles and operators are real). 

Of course if we ignore the reality conditions on P then we get a complex 
family whose index in K(X) is just the image of index P e KR(X) under the 
natural homomorphism KR(X) - K(X). Since this map is not always injective 
the real index is a more refined object than the complex index, and we propose 
to refine the index theorem of [71 accordingly. 

Just as in [7] the mapping P e index P defines an analytical index 

a-ind: KR(TZ) - KR(Y). 

To define the topological index we proceed as in [5], [7]. The first 
important point is that, if N is a tubular neighborhood of X in a euclidean 
space V, then the identification TN=z w*(N OR C) used in [6, ? 3] is compatible 
with the involutions. This is because we regarded a vector y + i) es NX OR C 

as representing the tangent vector C at the point y e NX, so that the antipodal 
involution on TN corresponds to complex conjugation on NOR C. The second 
point to mention is that the Thom isomorphism holds in KR for Real vector 
bundles. This is proved in [2] and [3]. With these observations made, it is 
then clear that the real topological index is defined and gives a homomorphism 

t-ind: KR(TZ) - KR(Y) . 

Our theorem will of course be 

THEOREM (1.5). The analytical and topological indices of a real elliptic 
family coincide. 
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The proof proceeds just as in the case of complex families. The only 
point that calls for special mention is that the fundamental equivariant 
symbol class b = i!(1) e KRsO(,)(TR?) (where i: A- RA is the inclusion of the 
origin) must be shown to have analytical index 1 in KRso(n) (point) = RO(SO(n)) 
(the real representation ring of SO(n)). But for any group G, complexification 
of representations 

RO(G) - R(G) 

is injective. Thus we are reduced to proving a-ind (b) = 1 e R(SO(n)) and this 
was done in [5]. 

Remark. So far, although we introduced an involution in TX, we have 
only considered the trivial involution on X and Y. We can, however, consider 
involutions on X and Y and Theorem (1.5) continues to hold with essentially 
the same proof. A particularly interesting case arises when X is a complex 
algebraic manifold defined over R. The Dolbeault complex of X is then a 
Real elliptic complex (with respect to the involution x F x on X) and, using 
a metric, it defines a Real elliptic operator P. If we have a family X, for 
which the sheaf cohomology groups Hq(Xz,, Q,) have constant dimension (0y 
denotes the sheaf of holomorphic functions on Xl), then the index of the Real 
family P, is just the alternating sum 

E (_-l)qHq e KR(Y) 
where Hq stands for the real vector bundle over Y whose fibre at y is 
Hq(Xy, (a,). This case was briefly alluded to in [2, ? 5]. 

2. Skew-adjoint operators 

Let P be a real elliptic operator on the compact manifold X and assume 
that (with respect to given metrics in X and the bundles) P is skew-adjoint: 
P* = - P. Then Ker P = Ker P* so that the usual index of P is zero. How- 
ever, the dimension of Ker P modulo 2 is a new interesting invariant of P. 
As shown in [8, Prop. (5.1)] this is invariant under continuous deformation of 
P. As in [8] we denote it by ind1 P and refer to it as the mod 2 index of P: 
the notation is chosen because of generalizations, denoted by indk P, which 
are described in [8, ? 5]. 

Since ind, P is a deformation invariant it should depend only on an 
appropriate symbol class and it is reasonable to expect to compute ind1 P 
topologically from the symbol. We shall show how to do this by associating 
to P a family P of real elliptic operators parametrized by the circle and then 
using Theorem (1.5) to compute ind P C KR(S'). As explained in the Intro- 
duction the family P will have the property that Md P coincides essentially 
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(as an element of Z2) with ind1 P. 
The construction of P will be a minor modification of the construction 

used in [8]: there we dealt with abstract Fredholm operators in Hilbert space, 
whereas here we are dealing with pseudo-differential elliptic operators. 

It is sufficient to consider the case where P is of order zero, P e Q0(X; E, E): 
the general case where P is of order m follows by putting R = QPQ* where 
Q is of order - m/2, v(Q) = 1 on the unit sphere bundle of X and Ker Q = 
Ker Q* = 0. Let I denote the unit interval 0 < y < 1 and define 

(2.1) P =1Coswy+PSinry 

where 1 is the identity operator on C-(X; E). Since P* =-P it follows that, 
for all y, P is elliptic and, for y # 1/2, we have 

Ker P, = Ker P, = O . 

The operators P, are a family of elliptic operators parametrized by the unit 
interval L We want now to construct a family parametrized by the unit 
circle S'. To do this we need to identify the points 0, 1 e I. Now we have 

Po = 1, P, =-1. 

Hence to construct our family of operators over the circle we must twist one 
copy of the bundle E with the Hopf bundle2 H on S'. The operators P, define 
operators3 

Py: C-(X, E) 0 Hy ,6 C(Xq E),9 
where y is now regarded as a point on S'. 

We shall now compute ind Pe KR(S'). According to the prescription 
given in [7, (2.2)] (applied to the real case) we must first choose sections 
1 ..*.*, Sq of the (trivial) bundle C-(X, E) x SI so that, for all y e S' the map 

QY: C-(X, E) 0Hy )Rq ,C-(X, E) 
given by 

Qy(U; A11 ..., Xq) = P1(U) + q=1 xisi(y) 

is surjective. In our case, since P. is already surjective for all y # 1/2, it is 
enough to take si, * * *, sq to be the constant sections given by a basis of Ker P. 
The kernel of QV is then naturally isomorphic to the kernel of the map 

C-(X, E)0Hy - (KerP)' 

given by composing4 P. with orthogonal projection on (Ker P)'. But this 

2 H is the line bundle over S' obtained from IxR' by the identification (0, u) < (1, -u). 
3 From now on we think of E as a real vector bundle, not the complexification of one. 
4Note that, from the definition (2.1), Pv commutes with projection on (Ker Py)I. 
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kernel is clearly Ker P 0 H1, and so 
ind P = [Ker P 0 H] - [Ker P1 E KR(Sl) 

= dim Ker P([H] - [11). 

Now KR(Sl) Z2 with generator [H] - [1]. Hence, identifying KR(Sl) with 
Z2, we see that 

(2.2) ind P=ind1 P. 

The symbol a of P defines a symbol class [a] E KR(S' x TX) which is 
trivial on KR (point x TX) and so can be regarded as an element of KR-'(TX). 
In analogy with the notation ind1 P, we shall denote this element of KR-'(TX) 
by [a(P)]1, and call it the skew-symbol class. 

The topological index (for families over S') 

t-ind: KR(S' x TX) - KR(S') 

induces (by restriction) a homomorphism 

t-ind,: KR-'(TX) > KR-'(point) . 

This is just the natural suspension of the topological index KR( TX) 
KR (point). Thus from Theorem (1.5) we deduce 

THEOREM (2.3). Let P be a real skew-adjoint elliptic operator on a com- 
pact manifold X. Let [u(P)]1 2 KR-'(TX) be the skew-symbol class of P, 
and let 

t-ind1: KR-'(TX) - KR-'(point) = Z, 
be the topological index. Then 

dim Ker P = t-ind1 [u(P)]1 mod 2. 

When X is a spin-manifold we can simplify things somewhat by using the 
Thom isomorphism [3, Th. (6.2)] 

KR - 1 TX) _=KRA - 1(X) 

The homomorphism t-ind, now becomes the direct image (or Gysin) homomor- 
phism for spin-manifolds [9]: 
(2.4) KR -1(X) - KR-'(point) . 

Even in this form it must be admitted that this topological index is very hard 
to compute in practice. One might ask whether it is possible to compute this 
using cohomology as is done with the usual index of elliptic operators in [6]. 
Unfortunately this does not seem to be possible, for rather fundamental 
reasons. The point is that the mod 2 index comes ultimately from the Z2 
homotopy group 1;8k+1(O) of the stable orthogonal group, and it is known that 
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this cannot be detected directly by mod 2 cohomology. The usual integer 
index on the other hand comes from w2_1(U) and this is detectable by rational 
cohomology. In the next section we shall show, by an example, that the 
mod 2 index behaves in a considerably more suitable way than the usual 
index. 

3. Examples 

Let X be a compact manifold of dimension 4q + 1 and define the real 
Kervaire semi-characteristic k(X) by 

k(X) = J, dimR H2p(X; R) mod 2. 

We shall show that this is the mod 2 index of a certain skew-adjoint elliptic 
operator. 

Choose a riemannian metric and let * be the usual duality operator on 
forms. Since dim X is odd we have *2 = 1 and d*cp = (-1)P*d*9 for T e QP. 

Hence, on even forms, d* is self-adjoint and *d is skew-adjoint. Moreover, 
since dim X _ 1 mod 4, *d (on even forms) preserves the degree mod 4 while 
d* reverses it. Thus the operator D on even forms defined by' 

Dcp = (-1)Pdc*9 + *d? Q2p 

is skew-adjoint. Since d2 = 0, we have 

D*D = -D2= dd* + d? d = A 

and so D is elliptic and Ker p = E H2p where H2p is the space of harmonic 
forms of degree 2p (solutions of Au = 0, u G Q2P). By the Hodge theory 
H 2 p H2p(X; R) and so 

dim Ker D = k(X) mod 2 

as required. 
Remark. When dim X -1 mod 4 we get a self-adjoint operator (if we 

choose the sign as in [4]) and k(X) does not appear as a mod 2 index. This 
difference between the two cases dim X -+ 1 mod 4 reflects significant 
topological differences: for example the existence of two linearly independent 
vector fields on X implies that k(X) = 0 when dim X -1 mod 4 (as shown 
by taking X to be the 3-sphere). 

Theorem (2.3) gives therefore a K-theoretical evaluation of the Kervaire 
semi-characteristic k(X) for dim X -1 mod 4. This has an interesting con- 
nection with vector fields (see [4; Th. (5.1)]) which will be treated in detail 
elsewhere. 

5 From the point of view of Clifford algebras it is more natural to define D by Dp= 
(-l)Pd*9p + (-l)P+l*dcp as in [4]. This would do just as well for our purposes. 
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As a second example we shall study the Dirac operator on a spin-manifold 
X of dimension 8q + 1. 

Let M= e M M1 be an irreducible graded module for the Clifford 
algebra Cq,, and let E = E? E) E' be the associated graded vector bundle 
over X associated to the representation E of Spin (8q + 1) c C8q+1. As in 
[6, ? 5] the Dirac operator D acts on the sections of E (interchanging El and 
El) and is given in terms of an orthonormal base e, of T. by 

Ds = E ei(ais) 

where ais is the covariant derivative of s in the direction ei and ei( ) denotes 
Clifford multiplication. D is self-adjoint and elliptic. Now M0 and Ml are 
isomorphic representations of the even part of Cq+, and so of Spin (8q + 1): 
the isomorphism is given by Clifford multiplication by the usual element 
( = e1e2 ... e8q+1. Hence on the manifold X Clifford multiplication by the 
volume form o maps El isomorphically onto El and commutes with D. Since 
()2= 1 and is orthogonal we have co* = so and therefore P = AD is skew- 
adjoint. P preserves E0 and El and so we have a skew-adjoint operator P0 
acting on El. We shall call P0 the skew-Dirac operator of the spin-manifold 
X. Note that Ker P0 = Ker D I E0 is the space of "harmonic spinors." 

Since X is a spin-manifold of dimension 8q + 1 we have the Thom 
isomorphism 

q': KR(X) - KR-1(TX) 

and it is a routine matter to check that the symbol class [u(P0)]1 E KR-'(TX) 
is just q'(1): both elements are constructed explicitly from Clifford multipli- 
cation and we just have to check the involutions. Thus as a special case of 
Theorem (2.3) (and using (2.4)) we have 

THEOREM (3.1). Let X be a spin-manifold of dimension 8q + 1, and let 
H denote the space of harmonic spinors on X. Then dim H mod 2 is equal to 
f!(1) where 

f: KR(X) > KR-'(point) = Z, 

is the direct image homomorphism for spin-manifolds. 
Remark. fl(l) is an example of what is called a KO-characteristic 

number. Such invariants of spin-manifolds have proved important in spin- 
cobordism (see [1]). 

For a spin (8q + 1)-manifold the operator giving the Kervaire semi- 
characteristic is closely related to the skew-Dirac operator Po. On the 
symbolic level it is the product of P0 and the spin bundle of X - we omit the 
details. Hence we obtain 
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THEOREM (3.2). Let X be a spin-manifold of dimension 8q + 1, then the 
Kervaire semi-characteristic k(X) is equal to fi(A(X)) where fh: KR(X) - 
KR-'(point) = Z2 is the direct image homomorphism and A(X) is the spin 
bundle of X. 

Thus k(X) is also a KO-characteristic number. 
For spin-manifolds of dimension 8q + 2, the spin bundle A(X) is complex, 

the complex structure being given by the element o. The Dirac operator 
now anti-commutes with w and so the space H of harmonic spinors is 
naturally a complex vector space. On the same lines as (3.1) we have 

THEOREM (3.3). Let X be a spin-manifold of dimension 8q + 2, and let 
H denote the (complex vector space) of harmonic spinors on X. Then dimc H 
mod 2 is equal to f!(1) where 

f,: KR(X) - KR2(point) = Z2. 

Theorem (3.3) can be turned into a theorem for families over S2 using 
the ideas in [81, and we then apply Theorem (2.3). The details are quite 
similar to the proof of (3.1) and we shall omit them. 

Returning to the Kervaire semi-characteristic we want now to point out 
a rather interesting result which shows that mod 2 indices differ significantly 
from the usual integer index. 

PROPOSITION (3.4). Let X be a compact oriented (4q + 1)-manifold and let 
X be a double covering given by an element a E H'(X; Z2). Then the Kervaire 
semi-characteristic of X is given by the formula 

k(X) = a(o)4q(X)[XJX 

There is an interesting proof of this using symbols which will be given 
elsewhere and a direct geometrical argument due to G. Lusztig. We shall 
not give the proof here but we will discuss the implications of this proposi- 
tion. Note first that there are examples with k(X) # 0: we take X= P4q~l(R) 
and X = S4q+l. Now the usual index of an elliptic operator always behaves 
multiplicatively for finite coverings, and this is connected with the fact that 
there are integral expressions for index P involving only local data. The example 
just mentioned shows that k(X) is not multiplicative for double coverings 
(otherwise we would have k(X) = 2k(X) = 0). It is thus not possible to find 
a canonical expression for k(X) as an integral involving only local data. Of 
course k(X) is an integer mod 2 and to hope for an integral expression is 
perhaps unnatural in any case, but the argument with double coverings is 
more conclusive. 
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