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by M. F. A T I Y A H  and I. M. S I N G E R  (1) 

w I .  Introduct ion.  

Let H be a separable infinite-dimensional complex Hilbert  space and let ~,~(H) 
denote the space of  all Fredholm operators on H, i.e. bounded linear operators with 
finite-dimensional kernel and cokernel. Then any Aeo~(H)  has an index defined by 

index A = dim Ker A - -  dim Coker A 

If  we give o~'(H) the uniform (or norm) topology then the mapping ~ ' (H)  -+Z given 
by A~+index A is constant on components and maps the components bijectively onto Z. 
More generally for any compact space X and any continuous map 

A : X ~ ~-(H)  

we can define a homotopy invariant 

index A e K ( X )  

where K(X)  is the Grothendieck group of vector bundles over X ([I, Appendix] or [2]). 
We first deform A so that dim Ker A, is a locally constant function of x, then we put  

index A = [Ker A]- -  [Coker A] ~K(X).  

Here Ker A is the vector bundle over X whose fibre at x~X is Ker A~ and similarly 
for Coker A~. It is then a theorem ([ i] ,  [2]) that this index invariant defines a bijection 

[X, o~-(H)] -+ K(X) 

where [ , ] denotes the homotopy classes of mappings. This theorem completely iden- 
tifies the homotopy type of the space ~ ' ( H )  : it is a classifying space for the functor K. 

Quite similarly if H B is a real Hilbert  space we have a bijection 

index : IX, ~-(HB) ] -+ KR(X)  

where KR(X)  is the Grothendieck group of real vector bundles over X. 

The main purpose of this paper is to develop an analogous theory for skew-adjoint 
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Fredholm operators. In particular we want to show that, for a real skew-adjoint 
Fredholm operator A, the dimension modulo 2 of Ker A is the appropriate " index " 

Let ~-(H~) denote the space of real skew-adjoint Fredholm operators. Then our 
first theorem determines the homotopy type of this space: 

Theorem A.  - -  Define a map 

: ~ ( H ~ )  --> D ~ ( H ~ )  

by assigning to each A e ~  the path from + I  to - - I  on ~ given by 

cos ~t + A sin nt, o~< t~< I. 

Then ~ is a homotopy equivalence, and so o~'(HR) is a classifying space for  the functor KR -~. 
In the complex case there is a similar but slightly different result. 

Theorem B. - -  The space ~ ' (H)  has three components ~-+(H),  ~-_(H) and o~',(H) 

characterized by 

A e ~ ' + ( H )  <:~ i - l A  is essentially positive 

Aeo~_(H) ~ i - lA  is essentially negative 

A e ~ , ( H )  ~ - A r 1 7 7  (H) 

The components ~-+(H) and o~'_(H) are contractible. The map 

: ~ . ( H )  -+ ~2~-(H) 

defined as in Theorem A,  is a homotopy equivalence, so that o&,(H) is a classifying space for the 
functor K -1. 

Note. - -  To say that iA is essentially positive means that iA is positive on some 

invariant subspace of H of finite codimension. 
A slight generalization of these theorems produces inductively classifying spaces 

for the functors K R  -k and K -k, from which the Bott periodicity theorems follow. For 

this, let C k be the (real) Clifford algebra, generated by el, . . . ,  e k subject to e~ = - - I ,  
, 

eie~=--ejei for i4:j ,  and e i = - - e i .  Assume that H R is a , -module for Ck_l, i.e. we 
have a * representation p : C k_ 1 -+ bounded operators on H R with Ji = p(ei) and 

J~ = - i, i =  i, . . . ,  k - -  i, J ~ J j - - - J j J i  i~ej, and J2 = - - J k .  

When Ck_ t is simple, this representation is unique up to equivalence. When Ck_ 1 is 
not simple, it is the direct sum of two simple algebras. We assume that p restricted 
to each simple subalgebra has infinite multiplicity, which again determines p up to 
equivalence. In any case, our p can be extended to a �9 representation of Ck+~D Ck_ 1, 
thus assuring the existence of Jk and Jk+~ satisfying the relations above. We use them 

to show that certain spaces we now define are not empty. Henceforth for simplicity 
we shall usually omit the symbol p and assume our Hilbert spaces are Ck_l-modules 

of the above type. 
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we now define ~k(HR) to be the subset o f ~ ( H a )  consisting of  all A such 

A J , =  --J~A i = I ,  . . . ,  k - - I .  

Since we can take A = J k  the space ~'k(Ha) is non-empty. We now distinguish two 
cases, according to whether the algebra C k is simple or not. I f  k S -  I mod 4 (so 

that C k is simple) put  ~'k,(Ha) -= ~-k(HR). I f  k_= --  i rood 4 consider the operator 

w(A) = J ,  J2 �9 �9 �9 J k _ l A .  

This commutes with J , , . . . , J k - ,  and A. Also 

w (A)* = w (A). 

As in Theorem B we now decompose ~'k(HR) into three parts ~'~_, ~-k ,  ~-k according 
as w(A) is essentially positive, essentially negative or neither. I f  we take A = J k  we 
see that 

W(Jk)Jk+l = --Jk + 1 w(J~) 

so that Jke~,~,k(HR). On the other hand if we take A =Jkw(Jk) we see that w ( A ) =  I 
so jkw(j~) e ~ ~  (HR) and then - j k w ( j ~ )  e ~ k  (HR). Thus all three of these subspaces 
ofo~'k(Ha) are non-empty. It is also easily shown that each of  them is open and therefore 

a union of  components. 

For k = I the space ~-I(HR) coincides with the whole space ~ ' (Ha)  ofskew-adjoint 

operators. Moreover o~-~(HR)=,,~(HR). For k = o  we adopt the convention that 
o ~ ~  and that J0 is the identity operator. Generalizing Theorem A we 
shall then prove 

Theorem A(k). - -  The spaces o~'~ (HR) - -  defined for k - -  I mod 4 - -  are contractible. 
For all k>~ i, define a map 

:~k,(H~) -+ a(~-k-I(HR) ) 

by assigning to each Ae~-,k(Ha) the path from Jk - ,  to - -Jk-1  given by 

Ju_l  cos ~t A- A sin ~t, o~t~<I. 

Then ~ is a homotopy equivalence so that ~'k,(HR) is a classifying space for the functor KR.-< 
For k = I ,  with the conventions already explained, Theorem A(k) coincides with 

Theorem A. For k = 7, Ck-1 is the algebra of  all 8 x 8 real matrices and w ( ~  -7) consists 
of all self-adjoint Fredholm operators commuting with p(Ck_l). Then H a = I~S| 
and p = p0| where P0 is the standard representation of C16 on R s. We can therefore 

identify w(o~'7) with the space of  all self-adjoint Fredholm operators. Thus as a corollary 
of Theorem A(k) we obtain 

Corollary. - -  The space of real self-adjoint Fredholm operators on Hilbert space has two 
contractible components consisting of essentially positive and essentially negative operators respectively. 
Their complement is a classifying space for the functor KR-7 .  

307 



M. F. A T I Y A H  A N D  I. M. S I N G E R  

In the complex case we proceed quite similarly, the only difference being that  the 
complexified Clifford algebras Ck|  are now simple only for even values of k. For 
any odd value of k the operator ~(A) defined by 

~(A) = w(A) if k = --  I mod 4 

= i - l w ( A )  if k -  I mod 4 

is then self-adjoint. We define the subspaces ff~.(H), ~k(H)  of o~-k(t-I) according 
as ~(A) is essentially positive, negative or neither. Then  the complex analogue of 
Theorem A(k) is: 

Theorem B(k). - -  The spaces yk .  (H) - -  defined for odd values of k - -  are contractible. 
For all k>~ I the map 

: ~-,k(H) -+ ~~(~ .~k- l (H))  

defined as in Theorem A(k) is a homotopy equivalence. Thus o~-.k(H) is a classifying space for 

the functor K -k.  
For k = I ,  Theorem B(k) reduces to Theorem B. 
Because the real Clifford algebra C k is periodic in k with period 8 [4] we have 

homeomorphisms o~'k~o~'k+s and so Theorem A(k) implies: 

Real Periodicity Theorem K R  ~ KR. -s.  
Similarly, since Ck| has period 2 [4], Theorem B(k) implies : 

Complex Periodicity Theorem K ~ K -  2. 
The proofs of the periodicity theorems obtained in this way are quite different 

from any earlier proofs. Whereas [6] uses Morse Theory, [3] uses elliptic operators 
and [I], [I5] use polynomial  approximation to make the proof  amenable to algebraic 
techniques. In  this paper, the theorem is stated in the original form as in [6], but  the 
proofs use only standard spectral theory for normal  operators on Hilbert space together 
with Kuiper 's  result [Io] on the contractibility of the unitary group of Hilbert space. 

In this presentation the periodicity theorems appear as corollaries of Theorems A(k) 
and B(k). In  fact it is possible to reverse the situation and to deduce Theorems A(k) 
and B(k) from the periodicity theorems or rather from their Banach algebra versions 
given by Wood in [I5]. This programme has been carried out by G. Segal [i3] and, 
independent ly  (in the framework of Banach Categories) by Karoubi [9]. 

In  the Morse theory t reatment  given in [i i] Milnor introduces a certain subspace ~k 
of the orthogonal group of Hilbert  space. This may be defined as follows. Let M be a 
simple . -module  for the Clifford algebra C k + 1, let H R be a countable direct sum of copies 
of M and let HR(n ) be the sum of the first n copies. Then  ~k(n), for k>~ I, is defined 
to be the space of all orthogonal transformations A on H R such that :  

(i) A 2 = - - I ,  A J , = - J i A  ( i - - I ,  . . . ,  k - - I ) .  

(ii) A preserves the subspace Hg(n) and coincides with Jk on the orthogonal 
complement  Hn(n) • 
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Clearly we have inclusions f2k(n ) r + I), and the union (or limit) is f~k: 

f2k =,!ifn~o ~)k (n). 

For k = o  we put f~0 = O(oo) = ! i m  O(n), where O(n) denotes the orthogonal group o f R  *'. 

The periodicity theorem proved in [I I] is a consequence of a homotopy equivalence 

~k ~ f~(f~k- 1). 

The spaces g2k, or rather their uniform closures f2k, enter naturally in our treatment. 
In fact Theorems A(k) and B(k) are consequences of two intermediate equivalences 

(i) f ~ - ~ ~  a k (k~> o). 
(ii) o~k~~k_l  (k~>I). 

The first of these is established by exhibiting a fibration with contractible total 

space having base (equivalent to) o~k and fibre ~k. For the second we produce a suitable 

map from (a deformation retract of) o ~k onto ~k - i  with contractible fibres. In both 
cases the contractibility of the spaces involved follow from Kuiper's theorem. 

In several places we will perform deformations on self-adjoint (or skew-adjoint) 
operators whose continuity depends upon the following 

Lemma. - -  Let f :  R • I ~ R be continuous, let f t  = f ( . ,  t), and let S denote the space of 
self-adjoint operators. Then the map S •  given by (A, t) ~ f t ( A )  is continuous. 

Proof. - -  Since, on a compact set of  R, the map t~ f t  is continuous in the supnorm 
topology, it suffices to show A~JI (A ) is continuous for a fixed t. Let X be a closed 
neighbourhood of the spectrum of A. Given ~:>o, choose a polynomial p such that 
Ip--f~l<s/3 on X. Choose a neighbourhood N of A s o t h a t  BeN implies sp(B) c X  

and l l p ( B ) - - p ( A ) l t < ~ / 3 .  Then llf~(g)--f,(A)lt<~ by the usual 3.~/3 argument.  

w 2. S o m e  e l e m e n t a r y  d e f o r m a t i o n s .  

Most of the spaces we shall encounter will, in the first place, be open sets in a 
Banach space. Such spaces will be denoted by script letters e.g. ~ .  It is usually 
convenient to replace these spaces by suitable deformation retracts which are closed 
in the Banach space. Such retracts will be denoted by the corresponding roman letter 
e.g. B will be a deformation retract of  ~ .  In fact we shall be mainly concerned with 
the group of units ~ in a Banach algebra (1) d and various related subspaces. In 
particular if d is a C*-algebra (i.e. a complex Banach ,-algebra in which I x*x ! = Ix I z) 
the group A of unitary elements (i.e. satisfying x ' x =  I) is a deformation retract of d .  
The standard retraction is given by 

( 2 . I )  x t = x ( ( I - - t ) ( ~ e / x ~ x ) - l + t I ) ,  o<~t~<I 

(1) With identity. 
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where ~r is the unique positive square root of x*x. I f  a subspace ~9 ~ of ~ is stable 
under this retraction the intersection S = . Y n  B will be a deformation retract of 9 ~ 

For instance if d is the complexification of a real Banach ,-algebra d R (so that d R 
is the subalgebra fixed under conjugation x ~ x )  then 

x = Y ~ x  t = u  for all t 

and so B R = B n d R is a deformation retract of d R = ~ n d R. This is called the ortho- 
gonal group of the algebra d R. 

Our  starting point is the C*-algebra d of bounded linear operators on the complex 
Hilbert space H. Its groups of units will be denoted by ~o (for linear group), its unitary 

subgroup by L. Let J(" denote the closed 2-sided ideal of d consisting of compact 
operators. Then the quotient d/~r  is again a C*-algebra [8]. Its group of units will 
be denoted by fr its unitary retract by G. The Fredholm operators on H can be charac- 
terized as those which are invertible modulo 5C. Thus the space ,~- of all Fredholm 
operators is the inverse image of N under the mapping 

p : d - + d / X "  

The restriction of p defines group homomorphisms 

5q---> N, L-->G 

whose kernels are denoted by 5 ,  C respectively. Thus c~ consists ofinvertible operators 
of the form I + T  with T compact, and C consists of unitary operators of this form. 
Using the spectral theorem for compact operators it is easy to see that for x~C~ the 
unitary retraction x, lies in c~ for o~< t~< I and so C is indeed a deformation retract of 5 ,  
as our notation implies. 

From these groups we now turn to their Lie algebras. In particular we consider 

the space ~a~ of  bounded skew-adjoint operators (the Lie algebra of the unitary group). 

We adopt in general the notation S for the skew-adjoint elements in S, where S is any 

subspace of a C*-algebra. Thus o~ denotes the space of skew-adjoint Fredhotm operators, 

as in w I, and fq is the space of skew-adjoint invertible elements in d/~)ff. The map 

o ~ - + ~  induces a map ~ - + ~  which is also surjective: if p( f )=g=- -g*  then 

p = g .  The essential spectrum of faor @ coincides with the spectrum of p ( f ) ~ .  

From this it follows that the subsets o~• o&, defined in Theorem B are inverse images 

of corresponding subsets ~ •  ~ , .  Moreover these subsets of ~ are clearly both open 

and closed, and the same is therefore true of the subsets of Y .  Finally, for f eo~+  

f t=ti- t-(I-- t) f ,  o<<,t<~ I 

provides a contraction of 3 +  to the point i. Similarly ~,~_ contracts to the point - - i .  
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I N D E X  T H E O R Y  F O R  S K E W - A D J O I N T  FREDHOL1V[ O P E R A T O R S  

We consider now the commutative diagram 

o~ ~) f2o~ 

+ ., 

where e is defined, as in Theorem B, by 

~ ( f )  : t ~ cos nt + f s i n  nt o<<. t <  I 

and ~ is given by a similar formula. Here ~ denotes the space of paths from -k I to --  I. 

To see that ~ (and hence ~) is well-defined we have only to observe that the spectrum 
of a skew-adjoint invertible element g has no real points, so that for any t 

cos nt + g sin ~t 

is invertible, i.e. belongs to N. 

The map o~-+ fr has as fibres the cosets o f ~ .  Moreover, according to a general 
theorem of Bartle and Graves [5], the map p : d - + ~ / / ~  admits a continuous section (1) 

s : d / J d ' - + d .  The restriction of s to (g is then a homotopy inverse of o~-+N:  we 
retract o~ back onto s(N) linearly by 

f t  = t f  + ( I - - t ) s o p ( f ) ,  o<~t<<. I .  

Thus o~-+N is a homotopy equivalence and so therefore is f~Y---~f~f#. Similarly, 

o~ ~ f ~  is a homotopy equivalence using the section sl:g-+S(g)--s(g)* Thus we 
* * 2 

have established 

Lemma ( 2 . 3 ) .  - -  The maps 

-+ ~ and ~ ~ ~)~ 

in diagram (2.2) are homotopy equivalences. Hence o~ is a homotopy equivalence i f  and only 

i f  ~ is. 
Our next step is to retract ~ and 9 ,  onto their unitary parts G and Q .  For this 

we must simply observe that, with x t given by (2. I), 

X * 7 - - - -  X ~ X t ~ - - -  X t 

so that # is stable under this retraction. The space G consists of elements x~G such 

that 
x*=--x ,  x*x=I  hence x Z = - - i .  

The subspaces G+, G consist of the single points { + i } ,  {-- i}  respectively. The 

subspace G consists therefore of elements x such that 

X * - -  - - - - x  and Specx--{-ki} .  

(1) Note tha t  s is no t  required to be linear: in fact it is known tha t  no cont inuous  linear section exists. 
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Since x2=--  I it follows that the restriction of ~ to G, coincides with the exponential map 

~t (x) --~ cos r:t + x sin rot = exp(~tx) eG. 

Thus we have 

Lemrna (2.4). - -  The map ~ : ~ , ~ 2 f g  is equivalent to the map r : G,-+f2G given by 

Ct (x) = exp (r=tx) o~< t~< i. 

Returning now to the diagram (2.2) we consider the map on the o~--spaces which 

lies over ~; this will be defined on/~-1(~,) ,  the part ofo~, lying over G,, i.e. on the space 
of skew-adjoint operators whose essential spectrum consists of {• For any such ope- 
rator x, the path 

t~exp(r~tx), o<~t<~ I 

lies in the orthogonal group L: it starts at the identity and ends at the point 

exp :~x ~-- C. 

We recall that C is the kernel of L-+G and consists of orthogonal operators of the from 
I + T  with T compact: - -C  denotes those of the form -- I + T  with T compact. Thus 
our path defines a point of the relative loop space Y~(L, --C) - -  of loops in L which 
begin at the identity and end in - -C.  Covering the map ~ of (2.4) we have therefore 
a map 

( 2 . 5 )  ~ - 1 ( ~ , )  ~ f 2 ( L , - - C )  

given by the same formula. Finally we shall replace/~-1 (~,) by its subspace F, consisting 

of elements of norm I. Thus F consists of operators x such that 

(i) x*=--  x 
(ii) ess. spec x={•  

(iii) I l x l l=~ .  

As the notation suggests, F is a deformation retract of ~ which we now show. 
A 

Note that infless, specAl,  A~f f , ,  is IIp(a)-lll, a continuous function of A. First 

retract o&, onto the subspace M with inf Iess. spec ] = i  by A ~  A ( l - - t + t [ [ p ( A ) - l ] ] )  -1. 
Then choose a symmetric deformation retraction Xt of the imaginary axis onto the closed 

interval [ - - i ,  + i ] .  Then x~Xt(x), o<~t~<i, deforms M onto F,.  By the same 

argument as in (2.3) we deduce 

Lernma (2.6).  - -  The map P , ~  G, is a homotopy equivalence. 

Replacing } - I ( Q )  by F, in (2.5) we then obtain the crucial commutative diagram 

, > f ~ ( L , - - C )  

(2.7) 
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where the vertical arrows are induced by p : ~/-+~cr162 r and ~, 8 are both given by the 
same formula 

x ~ e x p ( n t x ) ,  o<.t<. I. 

In view of (2.3) (2.4) and (2.6) Theorem B will be a consequence of the following two 
Propositions : 

Proposition ( 2 . 8 ) . -  The map 

8 : F -+ a (L ,  - -C)  

defined by 8 ( x ) : t ~  exp0ztx), o<~t<<. I, is a homotopy equivalence. 
Proposition (2 .9) .  - -  The map 

~2(L, - -C)  -+D=G 

induced by the projection d - ~ d  / X is a homotopy equivalence. 
These two propositions will be proved in the next section. Both depend on 

Kuiper 's Theorem about the contractibility of the unitary group of Hilbert  space. 

w 3" Proof  of  (2.8) and (2.9). 

Before we embark on the details of the proof  we shall make a few general observa- 
tions on homotopy equivalence. Following Milnor [12] we say that a map f :  X - + Y  

is a singular equivalence if, for every point x0EX, 

f ,  : r:,(X, Xo) --+ r%(Y,J'(xo) ) n>>.o 

is bijective (here % denotes the set of  path-components). For spaces in the class 
~#/-having the homotopy type of a CW-complex - -  a singular equivalence is actually 
a homotopy equivalence [i2]. In [I2] Milnor shows that a suitable local convexity 
property ensures that a space belongs to $4z. In particular this applies to open subsets 

of a Banach space. 
The spaces we are concerned with are, in the first instance, either 

(i) open sets of a Banach space or 
(ii) deformation retracts of such open sets 

and hence belong to ~ ' .  The same applies to pairs of spaces. It  then follows 
from [I2] that the loop spaces occurring in (2.8) and (2.9) also belong to Yr 

We start now on the proof of (2.9)- First we establish: 
Lemma (3.2).  - -  The map L - + G  has a continuous local section (i.e. a right inverse defined 

in a neighbourhood of  I EG). 

Proof. - -  Recall that there is a continuous section s : ~ / / ~  for the projection 

p : . . ~ / - + d / g f ' .  Clearly we may assume s ( I ) = I  (for if s ( ~ ) = I + k ,  t ( u ) = s ( u ) - - k  is a 

new section with t ( I ) = I ) .  Restricting to open sets this gives a local section s : N-+~q~ 
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for the groups of units of these Banach algebras. Let r : ~o ~ L be the unitary retraction, 
and define locally 

t : G-+L 

by t(g)=rs(g). Denoting also by r the unitary retraction N-+G and observing that  
we then have rp =pr, it follows that  

pt(g) =prs(g) = rps(g) =-- r(g) = g for geG.  

Hence t is a local section as required. 
Lemma (3-r) implies that  the image of L is an open subgroup of G, and therefore 

also closed. Since L is contractible [io] and in particular connected (1) it follows that  
its image in G is just the identity component  G. of G. The  existence of a local section 
for L-+G.  then implies, by [I4] , 

Proposition (3.2).  - -  L-+G,  is a principal fibre bundle with group C. 
Since Y~G=~2G., Proposition (2.9) follows from (3.2) by standard homotopy 

theory [I4]. Moreover, since L is contractible [I4], we also have 
Corollary (3-3). - -  The map f~(L, - -C)  -+ - -C  which assigns to each path in f~(L, - -C)  

its end-point, is a (singular) homotopy equivalence. 
Thus, instead of (2.8), it will be equivalent to prove 
Proposition (3- 3). - -  The map 

e x p r : : F  --+--C, 

given by A ~ e x p  ~A, is a homotopy equivalence. 
We recall that  - -C  consists of all unitary operators A of the form - - I  @T with 

T ( = I + A )  compact.  Now define --C(n) to be the subspace o f - - C  consisting of 

those operators A for which rank(I  @A) ~ r/, and let F.(n) = (exp r~) - 1{_ C(n) } be the 

corresponding subspace of F. .  Since the union of the spaces --C(n),  for n-+oo, is 
dense in - -C  it is reasonable to expect this sequence to approximate - -C  for homotopy,  

and similarly for the sequence F.(n). More precisely we shall now prove 

Proposition (3.4)- - -  For any m and any choice of base points a~- - e (m) ,  b~F.(m), the 
inclusion maps induce bijections : 

li+rn r:k(--C(n), a) -+ r~/~(--C , a) k>~o 

limr%(P,(n),  b) -+ =k(F., b) k~>o. 

Proof. - -  Consider first the case of f7.. It  will be enough to exhibit a deformation 

such that  

(i) for any compact  subset X of F. ,  there exists an integer n, so that  hl(X ) cF,(n)  ; 
(ii) ht(b ) = b  for all t. 

(1) All our subspaces are locally path-connected so that path-components are the same as components. 
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Now we recall that the spectrum of an operator A e F ,  lies in the interval [--  i, -}- i] 
and that the essential spectrum consists just of the two points {• i}. We shall construct h t 
by a spectral deformation. Thus let o < e < i  and let 

h t : I-- i ,  + i ]  ~ [-- i ,  -I-i] 

be a deformation which shrinks [-- i, --  is] to -- i and [is, i] to +i ,  and is the identity 

on [--i(c~--r i(0~--r Then h t induces a deformation F , -+F ,  given by A ~ h t ( A  ). 

For any given A~T,  choose i~q~SpecA with e < ~ < I ,  and define 

n0(A) = rank{ 2~/ j  i xl 

This gives the total multiplicity of Spec A in the interval [--  i~, i~]. For all BeT,  suffi- 

ciently close to A we then have i~r B and n0(B ) =n0(A),  and so hi(B)ET,(n0(A)). 

Hence for any compact set X in T, we can find a fixed n so that hl(X ) cF,(n) .  To 
ensure condition (ii) above we have only to choose ~ sufficiently close to I so that all 
the m eigenvalues + •  of the base operator b lie in the interval [ - - / ( s - - z ) , / ( s - - z ) ] .  

This completes the case ofT, .  For - -C  the proof is the same. In fact the spectral defor- 

mation h t : F,--+T, clearly induces a corresponding spectral deformation ge : - -C  -+ - -C  
with similar properties. 

In view of this proposition it is now enough to prove 

Proposition (3.5).  - -  For any integer n>~o, the map expr~ : F , ( n ) ~ - - C ( n )  is a 

homotopy equivalence. 

We shall prove (3-5) by induction on n. Let D(n) be the complement of - - C ( n - -  i) 
in --C(n),  so that operators A~D(n) have the property that r a n k ( ~ + A ) = n ,  then 
the inductive step of the proof will depend on the following lemma: 

Lemma (3-6). - -  Over the space D (n), the map exp r: is a f ibre bundle with a contractible 

fibre. 
Proof. - -  For AeD(n) we have rank(i  + A ) = n ,  a constant. From this it follows 

easily that {Ker(I+A)}AeD(,, ) is a Hilbert space sub-bundle W of D(n) •  and so 

its orthogonal complement ~ •  an n-dimensional vector bundle. An operator TeF,(n)  
with exp 7~TcD(n) defines a unitary automorphism of square - - I  o n  ~g'~, while its action 
on J r •  is determined by exp ~T. Thus, over D(n), exp rc is a fibre bundle with fibre 
the space of all unitary operators on Hilbert space of square - - I  - -  and having both :~ i 
as eigenvalues of infinite multiplicity. Thus the fibre is homeomorphic to the homo- 
geneous space 

L(H)/(L(H1) • H = Ht| dim H i =  dim H~ =oo. 

The map 

L(H) -~ L(H)/(L(H~) X L(H2) ) 
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has a local section and so is a fibre bundle [i4]. By [IO] both the total space L(H) 
and the fibre L(H1)• are contractible. Hence the base has trivial homotopy 
groups and so is contractible also. This completes the proof of the lemma. 

Lemma (3.6) implies that, over D(n), the map exp ~z is a homotopy equivalence. 
By inductive assumption we may assume exp 7~ is an equivalence over - -C(n - - I ) .  
We want now to put  these parts together and deduce that exp r~ is an equivalence over 
the whole of --C(n).  For this we need two things: first a general abstract lemma giving 

conditions under which such patching together of homotopy equivalences will work and 
secondly the verification that these conditions are satisfied in our case. We proceed to 
deal with these two questions in turn. 

It is convenient to introduce the following definition. We say that an open set U 
in a space X is respectable if 

(i) X - - U  and ~ U = U n  ( X - - U )  both have the homotopy type ofa  CW-complex; 

(ii) (U, ~U) and ( X - - U ,  ~U) both have the H E P  (Homotopy Extension 
Property). 

We recall that, a sufficient condition for a closed subspace A of a normal space B 
to have the H E P  is that it possess a neighbourhood of which it is a deformation retract. 
We are now ready for our abstract lemma 

Lemma (3-7)- - -  Let f :  X ' - ~ X  be a map, A c X ,  A ' = f - I ( A ) .  Assume that 

(i) f :  A ' -+A is a homotopy equivalence; 

(ii) f :  X ' - - A ' - +  X - - A  is a fibre bundle with contractible fibre; 

(iii) A has a respectable open neighbourhood U so that U ' = f - ~ ( U )  is respectable and so 

that A---~IJ, A'--~U'  are homotopy equivalences. 

Then f is a homotopy equivalence. 

Proof. - -  Since X ' - - U ' ~ X - - U  and OU'-+OU are both fibre bundles with 
contractible fibre it follows that both maps are singular equivalences and hence homo- 
topy equivalences (since all spaces are assumed to have the homotopy type of a 

CW-complex). Also hypotheses (i) and (iii) imply that U ' ~ U  is a homotopy equi- 

valence. Because of hypothesis (iii) the triads ( X - - U ,  U, OU), ( X ' - - U ' ,  U',  OU) are 

Mayer-Vietoris triads in the terminology of [7, P. 24o] �9 Hence by [7, (7 .4 - i ) ]  f is 
a homotopy equivalence. 

We want to apply this abstract situation to our particular case where 

X ' =  F,(n), X = - - C ( n ) ,  f =  exp r~ 

a ' =  F , (n- -  i), a = - - C ( n - - i ) .  

Property (i) of (3.7) is our inductive assumption, (ii) is just (3.6). It remains therefore 

to exhibit a respectable neighbourhood U satisfying (iii). To do this we introduce 

the function 
: - -C(n)-~-  [ - - I ,  I] 
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defined by 
(~(A) ~----- I if A ~ - - C ( n - - I )  
(~(A) = Min Re(X) for --  I :t: Xe Spec A, otherwise. 

Then ~ is continuous and we define the open set U by U =  (~-1[--i, o), so that 

o], ou= -l(o) 
The sets 

ol, v =o > , ; )  

are neighbourhoods of OU in 0 and X - - U  respectively and simple spectral deformation 

shows that OU is a deformation retract of each V i. Thus (U, OU) and (X- -U,  0U) 
have the HEP. Moreover, it is easy to show that OU, X - - U e $ / /  by constructing open 
sets in the space of  operators which deform onto them. Thus U is a respectable open 
set. Moreover, if h t is a deformation of the unit circle shrinking the semi-circle 
r~/2 ~< 0~< 3n/2 to the point - - I ,  it induces a deformation of U into A, showing that A - + U  
is a homotopy equivalence. We now have to check the corresponding properties for U'. 
The arguments are essentially the same except that the interval [-- i ,  i] replaces the 
unit circle. This completes the proof of Proposition (3.5) which is all that was left 
in the proof of Theorem B. 

The proof of Theorem A is quite similar. The only differences are the following : 

I) The space o4"(HR) retracts as before onto the subspace ofo~(HR) consisting of 
operators with essential spectrum contained in {~:i}, but now because we are dealing 

with real operators both 4-i must occur. Thus the analogues of the components o~ 4_ do 

not arise. 
2) In the various spectral deformations we must now be careful to use only defor- 

mations (of [-- i ,  q-i] or the unit circle) which are symmetrical under complex 

conjugation. 
3) In the proof of (3.6) the space of orthogonal operators on H R of square - - I  

is now homeomorphic with L(HR)/L(H~; J) where J ~ = -  I and L(HR; J) is the subgroup 
of the orthogonal group L(HR) which commutes with J. Thus L(HR; J) is the unitary 
group of a complex Hilbert space and hence by Kuiper [Io] both groups (and so also 
the homogeneous space) are contractible. 

In the next section we shall give the appropriate modifications in the proofs of 

Theorems A, B to yield A(k), B(k). 

w 4. P r o o f  o f  T h e o r e m s  A(k) and  B(k). 

Except for the trivial parts of A(k) and B(k) dealing with the contractible compo- 

nents (1) the two theorems are formally similar and we shall prove them together. H will 

(1) We leave these parts to the reader. 
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therefore stand for either a real or complex Hilbert  space as the case may be, and k will 

be an integer >~2. 

We recall first that H is assumed to be a Clifford module, i.e. we are given ortho- 

gonal transformations J1,J2, ...,Jk+~ of square - - i  and anti-commuting. We shall 
denote by Pk the finite group of order 2 k generated by J1, . - . ,  Jk-~.  Note that we have 
a homomorphism 

: Fk-->=t I 

for all i. Thus, in the group algebra of Fk, we have the skew- given by ~ . ( J i ) = - i  
averaging operator 

I 
= 

In particular, making P k act on the Banach algebra d of operators on H by conjugation, 
we have a skew-averaging operation on d .  Thus if Ae~J ,  y e F  k then 

y~(A) = ~ (V) ~ (A). 

Hence, if d k, ~k, ~ k  denote the subsets of d ,  4Y = d / S C ,  ~;C' which are skew-adjoint 

and anti-commute with Jl ,  . . . ,  Jk-1, the projection p : ~ - - > ~  induces a projection 

pk : d,__>2k 

with fibre ~fk. Restricting to 

we obtain a map 

As in w 2 this admits a continuous section, has vector space fibres, and therefore is a 
homotopy equivalence. Moreover the map 0~ of  Theorems A(k), B(k) yields a commuta- 
tive diagram 

Nk ~s> f~Nk_l 

and ~ is therefore equivalent, for homotopy, to ~ (just as in (2.3)).  

Next we consider the unitary (or orthogonal) retractions. We observe that, 

since F k acts by orthogonal transformations 
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y(x*x)=x*x. Thus  the un i ta ry  retract ion deforms ff~ into G ~ = G o  ff~. Let  

and so 

and  so 

G k = G n f r  k ,  .. Then ,  since elements A e G .  k satisfy A 2 = - - I ,  AJk_ l = - J k _ l A  

( A J k _ ~ ) z = - i ,  the restriction of ~ to G k can be writ ten exponential ly:  

}t(A) = J k _ l  cos = t §  sin rot 
= J k - ,  exp (=tAJ,,_ ~) e G k -* 

Thus  we have the analogue of  (2.4).  
Next we define the subspace F k of  o ~k to consist of those operators A such that  

(i) pk(A) e G k 

(ii) [IAII = I  

and  consider the pa th  

a~(A) = J k _  1 exp(r:tAJ~_l) , o~<t~< I, A ~ F  ~. 

This  pa th  lies in 

gk-1 = L n s~'k-1 

because J~8 t (A) = - - Jk -  1Ji exp (~tAJk_ t) i = i, . . . ,  k --  2 

= --Jk-1 exp (r:tAJk-,)Jr 

= 8 t ( A ) J ~  

8, ( a ) *  = e x p  ( = t A J k _  y J ;  - 1  

= exp( - -  :~tAJk_ 1). ( --Jk-1)  

= --Jk-1 exp (ntaJk_ 1) 
= - 8 , (A) .  

and 

t = o  we have 80(A)=Jk_ 1. For  t = I ,  8 , (A)=Jk_  1 e x p ( r : A J k _ l ) = T  say satisfies 

(i) T is or thogonal ;  

(ii) T ant i -commutes  with J1, �9 �9  Ja-2  ; 
(iii) T 2 = --  I ; 

(iv) T - - Jk_  1 mod compact  operators. 

The  space of  such T we will denote (1) by ~2k-1- It  is clearly contained in a fibre 

For 

of  the map  L k-~-+G k-*. Let  k-1 k-1 L .  , G,, denote the components  of  L k- t ,  Gk- i  contai- 

n ing Jk-1 and  its image in G k-1 respectively. Then,  proceeding as in w 2, we see that  
Theorems A(k), B(k) will follows from: 

Proposition (4. I ). __ LaT k--l_+~,,,',k--1 is a fibre bundle with contractible total space and 
fibre ~k-1. 

Proposition (4 .2) .  - -  The map F~-+--~k_ l given by a ~ J k _ t e x p ( = A J k _ l )  is a 
homotopy equivalence. 

Proof of (4- I). - -  Let  Lk_ 1 be the subgroup of L which commutes  with J1, . . . ,  Jk 2. 

Then  Lk_ t acts by conjugat ion on L k-1 and  the isotropy group of Jk-1 is precisely L k. 

(1) T he  reasons for this nota t ion are al luded to in w x. 
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Moreover it is easy to see that the map Lk_I--*L k-~ given by Ae-,AJk_~A -~ has a 
continuous local section [I5]. Thus the orbit of J~_l is homeomorphie to the homo- 
geneous space Lk_I/L k. It is therefore open and similarly all other orbits are open. 
Each orbit is therefore also closed. Now by our assumptions on H the group Lk_ 1 
is a Kuiper group (a sum of orthogonal groups of infinite dimensional Hilbert spaces 
over R, (3 or I-I) and so contractible [i o] and in particular connected. Thus 

Lk_ 1/Lk = L�9 . 

Moreover, the existence of a local section shows this is a fibre bundle. Consider now 
the map I. k- 1 . r,k-1 By a similar argument to that in (3. i) this has a continuous local 
section, hence so does the composite map k-~ Lk_~-+G �9 . Since Lk_ ~ also acts transitively 
on G~ -1 this implies that G~ -~ is (homeomorphic to) a coset space of Lk_l and [I4] that 
L k - 1  ~ k - - 1  

�9 -> ~ � 9  is a fibre bundle. By our hypothesis on the Clifford algebra structure of H 
each of the groups L k_ 1, Lk is a Kuiper  group and so contractible. The base L~- ~ of the 
fibre bundle Lk_I-~L~ -1 is therefore also contractible. Finally the fibre of L mTk-1--->~.m'-~k-i 

through the point Jk-1 is contained in the space ~k-1- To show that it is equal to it, and 
hence complete the proof of (4. I), we need the following lemma: 

Lemma (4-3). - -  I f  Jeglk_l ,  i.e. / f  J is orthogonal, J 2 = - - i ,  J anticommutes 
with J1, . . . ,  Jk-2,  and J - J k - 1  mod compact operators, then J is conjugate to Jk-1 by an 
element of  L k-1 and hence (since L k-1 is connected) J can be joined to Jk-a by a path in Jk_lC (k-- i). 

Proof. - -  The result is obvious if the Clifford algebra Ck_ 1 is simple, so suppose it 
is a sum of two simple algebras. By hypothesis the representation of Ck_ 1 on H defined 
by J 1 , . . . , J k - 1  contains both simple Ck_l-modules with infinite multiplicity. I f  the 
same is true of the representation given by J~, . . . ,  Jk-2, J, then they are clearly conjugate 
by an orthogonal transformation T: thus J = T J k _ ~ T  -1 and TJ~----JiT for i - - I ,  . . . ,  k--2  
that is T s L  ~-1. We will assume therefore that one of the simple Ck_l-modules occurs 
with only finite multiplicity in the representation defined by J1, �9 �9 -, Jk-z, J. Thus if w 
is the central projection in Ck_~ corresponding to this simple module its image 
w(J~, . . . ,  Jk-2, J) in this representation has finite rank and so is compact. But j_--jk_l 
modulo compact operators, hence 

w ( j ,  . . . ,  Jk-1) - w ( L ,  . . . ,  J~-2,  J)  

is also compact. But this is a contradiction because w(J1, . . . , J k - 1 )  is a projection 
operator on H of infinite rank. This completes the proof of the lemma and hence 

of  (4. i).  
I t  remains now to examine (4.2). For this it is convenient to translate both the 

spaces involved, i.e. Fk, and ~k-1,  by multiplying with the fixed operator Jk-1. Let 
B-=AJk_I,  then A e F  k if and only if B satisfies: 

(i) B is Fredholm and skew-adjoint; 

(ii) B commutes with J1, . . . , J k - 2 ;  
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(iii) B anti-commutes with Jk-1 or equivalently (in view of (i)) J k _ , B J [ l l = B * ;  
(iv) [ [B[ [=I  and B B * = I + C  with C compact ;  
(v) I f  k - - - I  mod 4, J1J2-..J~-2 B is neither essentially positive nor essentially 
negative. I f  k ~  I mod 4 (and H is complex), iJ1. . .Jk_2B is neither essentially 
positive nor essentially negative. 

I f  T = - J k _ l s  then T e ~ k _  1 if and only if S satisfies: 

a) S is orthogonal;  
b) S commutes with J D . . . , J k - 2 ;  
C) 2 * (Jk_~S) = - I  or equivalently (in view of a)) Jk_,sJV21=s ; 
d )  S ~ - -  I modulo compact  operators. 

With these alterations Proposition (4.2) is equivalent to 

Proposition (4.3)- - -  The map B ~ e x p  r:B is a homotopy equivalence from the space of 
operators B satisfying (i)-(v) above to the space of operators S satisfying a)-d) above. 

I f  we omit  conditions (ii), (iii), b), c) (and put  k = I  in (v)) Proposition (4-3) 
reduces to Proposition (3.3). The  proof  of (4.3) is essentially the same as that  of (3.3)- 
All we have to do is to observe that  the various steps in the proof  are compatible with the 
symmetry conditions (ii), b) (commuting with J1, - - . ,  Jk-z) and the skew conditions (iii), 
c) (conjugation by Jk-1 giving the adjoint). Condit ion (v) is just the appropriate condi- 
tion to guarantee that  the fibres occurring in the analogue of (3.6) are quotients of 
two Kuiper  groups and so contractible. This completes the proof  of Theorems A(k), B(k). 

w 5. Per iodic i ty  T h e o r e m s .  

In  this section we deduce the Bott periodicity theorems from Theorems A(k) 
and B(k). Then  we shall define the index map indk:o~',k-+Ak, where A k is the 
Grothendieck group of graded Ck-modules modulo those extendable to Ck+t-modules. 
We discuss the meaning of the index for various k and the properties of ind k under  
multiplication. We shall also interpret  ind k as the index of an appropriate family of 
Fredholm operators. In  a subsequent paper  this will allow us to reduce the index 
theorem for elliptic operators in ~-k to the index theorem for families. 

For tensor product  purposes, it is neater to describe o~,k(Hk) in terms of Z2-graded 
real Hilbert spaces. We adopt  the notation of [4] for graded tensor products of 
Ck-modules- [4] also contains the relevant background material.  Let H = H ~ 1 7 4  t 
be a Z~-graded Ck-module. Consider the set 

{Beo~(H);  B i so fdeg ree I ( i . e . ,  B : H ~  * and H1-+H ~ and B J i = - - J i B ,  i = I , . . . , k } .  

Now H ~ is a C O e C k_l-module generated by J,Jk, . . . ,  Jk- lJk .  I t  is easy to verify that  
the map  B~JkB Im gives an isomorphism of the above set with o~'k(H~ In the graded 
situation, we can replace o~(H~ by the above set which we will also denote by o~'k(H). 
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Theorem (5 .  I). - -  o~k+s=o~k sO that f~s(~-k,) ~ ~ k  in the real case. o~k + ~ ~- ~ 

so that f 2 2 ( ~ ) ~ - o ~  ~ in the complex case. 

Proof. - -  We leave the complex case to the reader. In the real case, let M =  M~174 M 1 
be the basic Z2-graded finite dimensional Cs-module which represents the element 

I ~ A s = Z .  Since Cl~+s---Ck@C s and H is a Ck-module , then H@M is a Z2-graded 
Ck+s-module. Since C s = R ( I 6 ) ,  it is easy to verify that the map A ~ A |  gives 
an isomorphism of o~,k(H) with o~-,k+S(H(~M). Also o~-,k+S(H@M) is isomorphic 

with ~ + S ( H ) ,  for H and H Q M  are isomorphic Ck+S-modules. Any two isomorphisms 
are homotopic by Kuiper's Theorem. Hence the induced isomorphisms on o~k+s are 
homotopic. 

Definition. - -  Let ind k : o~,k-+A k be the map A ~ { K e r ( A ) }  with Ker  A a Ck-module 
representing the element {Ker A} of A k. 

Proposition (5- x). - -  The map ind k is continuous. Hence ind k is constant on components 

o f  Y , ,  and induces a map, ind k: r:0(~ ~ Ak- The map indk is a bo'ection. 

Proof. - -  Since elements of ~-k are skew-adjoint Fredholm, they have o as an 
isolated point in their spectrum. Using scalar multiplication, it suffices to prove 
continuity at Br with B2<- - I  on (Ker B) • Choose a neighborhood Jf" of B 

with the property that Cr implies C 2 has no spectrum in [--  I -]- z, -- s] and 
Let Q be the spectral projection of C 2 on [ - -~ ,o] ,  and let E 

be its range. We claim that the orthogonal projection P of E on Ker B = K e r ( B  2) 

is an isomorphism. For suppose H-----KerB| and v e E n V  with l l v l l = I .  Then 
< (C2--B2)v, v>=<C2v, v>--<B2v, v>__>--z-}-I contradicting [I c~--g~ll<~. Hence P is 
injective. It is surjective for otherwise there exists a ueKer  B n E • with I Iu[[= i. 
Again <(B 2 - C  2) u , u > = - < C  z u , u > > I - z  gives a contradiction. Since B 2 and C 2 

commute with Ck, the orthogonal projection P gives a Ck-module isomorphism of E 
with KerB.  Write E as K e r C |  1- so that i ndkB- - indkC={(KerC) •  
But C is nonsingular and skew-adjoint on (Ker C) • so that (Ker C) • is a Ck+~-module 
using J k + t = C ( - C 2 )  1/2. Hence indkB=indkC. 

To show ind k is surjective, let M = M ~ 1 7 4  M t represent an element o fA k. Replace H 

by H |  and let B=Jk+~|174 ). Then indkB={M}.  

To show ind k is injective, we must show that indkB=ind~C implies B and C lie 
in the same component. Write H = K e r  B| Since Blv is nonsingular, the polar 
decomposition retraction connects BIv with a skew-adjoint unitary R, so that B and 
B ' = o |  lie in the same component of o ~  Similarly w i t h  H = K e r  C| C is ,. 
connected to C ' = o |  with S a skew-adjoint unitary. Since ind~B=ind~C, there 
exists finite dimensional C,-modules V ' c V  and W ' c W  invariant under R and S 
respectively so that Ker B|  and Ker C |  are isomorphic C~-modutes. Write 
H = K e r B | 1 7 4 1 7 4 1 7 4  Then B' is connected to B" which is o on 

Ker B|  and R on V"  while C' is connected to C" which is o on Ker C |  and S 
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on W" .  But V "  using R is a Ck+l-module as is W "  using S. Hence there is an isomor- 

phism T : V " ~ W "  such tha t  T J e T - I = J i ,  i -~ I ,  . . . , k  and  T R T - I = S .  Since 
K e r B |  and K e r C |  are isomorphic Ck-modules , we can extend T : H - + H  so 

that  T is a C~-module isomorphism and T B "  T -  1 = C" .  But the Ck-module isomorphisms 

of H form a connected group (in fact it is a Kuiper  group and  so contractible) so tha t  B" 

and C" lie in the same component .  

Let  us now interpret  the index map  for values k = o ,  i,  2, 4, i.e., Ak4=o and  k < 8 .  

For k 4= o, we revert to the ungraded in terpre ta t ion of  o~-k 

k = o. - -  Beo~~ is completely de termined by B 0 and  Ker  B = Ker  BoOKer B;. 

Then  ind0 B ~ [Ker B}eA 0 Z Z is given by d im Ker  B0- -d im Ker  B0, the usual index 

of  B0, for Ker  B0| B; is a graded Cl-module i f  and only i f  K e r B  0 has the same 

dimension as Ker  B 0. 
k = I. - -  A e ~  -1 means A is a skew-adjoint operator  on  real H.  {Ker A } e A  I ~ Z 2 

is o, i.e., K e r A  is a C l = C - m o d u l e  if  and only if  d i m K e r A - o m o d 2 .  Hence 

ind 1A -- d im Ker  A mod 2. 
k = 2. - -  A e o  q~~ means A is a skew-adjoint operator  on real H which ant i -commutes 

with J1. Using Ja, H becomes a complex Hilbert  space. Then  Ker  A is a complex 

space and { K e r A } e A ~ Z ~  is o if  and  only i f  K e r A  is a C2-module, i.e., K e r A  is a 

quaternionic space. Hence ind2A--- d i me Ke r  A mod  2. Thus  ind2 can be interpreted 

as the complex dimension mod 2 of  a skew-adjoint antilinear Fredholm operator  on a 

complex Hilbert  space. 
k =  4. - -  Since (i) C 3 = H @ H  , we can write H = H + |  two quaternionic  

Hilbert  spaces. A e o ~  implies A : H i ~ H :  r is a quaternionic  operator.  Let  D = A  [H+ 
SO tha t  Ker  A = K e r  D |  D* is a C3-module, i.e. a quaternion space. This is a 

C4-module if  and  only if  d imHKer  D = d i m H K e r  D*. Hence ind 4 can be interpreted 

as the quaternionic  index of  a Fredholm operator  over the quaternions.  

F rom Proposition (5- i )  and Theorem A(k) we have isomorphisms 

= = o ( y , ' )  = 

On the other hand  w e  have the isomorphism 

~k(o ~~ T K R ( S  k) = KR.-  k(point) 

given by the index of  a Fredholm family. Combining  these we end up with an 

isomorphism 
u : Ak ---> K R - k ( p ~  �9 

Now in [4] there is a basic simple construction on Clifford modules giving rise to a 

homomorphism 
~k : Ak ~ K R - k ( p ~  �9 

(1) H stands for the quaternions. 
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If  M0| 1 is a Z2-graded Ck-module we assign to it the element of KR(S k) which is 
M~ 1, u, M ~ where the second vector bundle is M 1 in the upper hemisphere, 
M ~ in the lower hemisphere and the two are glued along the equator S k- 1 by Clifford 
multiplication. We shall prove 

Proposition (5.2).  - -  The homomorphisms 

Yk, ~k : Ak-+ KR-~(P ~ 
coincide. 

Corollary. - -  ~k is an isormorphism. 

Proof. - -  In the graded situation the map o~k--->o~-k-1 assigns to A the path 
t~Jkcos r:t-k-A sin r:t. By iteration we get a map q0 A : Dk-+o ~ given by 

k l - - 1  k 

% (t) = ~lJ,(cos= nt,. 5 =Hisin ~ztj) -t- Aj=~H sin ~tj, t =  (tl, . . . ,  tk) 

as a map from H ~ to H 1. Since A anti-commutes with the J~ we have ?A(t)M~ t, 
when Ker A = M~174 M 1. 

Observe now: 

I) K e r % ( t ) = o  except when t = ( I / 2 , . . . ,  I/2) in which case K e r % ( t ) = M ~  
this follows, inductively, from the fact that ~I-4-~S (with S skew-adjoint) is invertible 
except when ~ = o .  ~ k 

2) Since ODk={t : _[It j(I--t j)=o} we see that, for t eOD k, %,(t)=zY, ~ J  ~ with 
l - - 1  = 

2 a~=I (e 1 = cos nt,. __II 1 sin ~tj). 
l j =  

I f  A=Jk+~  then % ( t ) 2 = - - I  for all teD k, and so in particular r is inver- 
tible. As we see from 2) the maps % all coincide on 0D k and so we can define a map 

by putting +A-----% on D~_ (the upper hemisphere) and + a =  q%k+~ on D~ (the lower 
hemisphere). The map +A represents the element of rc~(o~') which corresponds to the 
component o f ~ ' .  k containing A in the bijection r%(~k.) ~ r:k(o~ ). We must now calculate 

as in [I] the index of the family d& as an element of KR.(Sk). To do this we must first 

choose a closed-subspace H c H  ~ of finite codimension which is transversal to all Ker +A(t), 

t~S k. We then replace the family +A(t) by the family +A(t)=+A(t)oP, where P is ortho- 

gonal projection on H, and take K e r ~ a - - K e r ~ ; .  Now from (i) above we see that 

we can take H = ( M ~  • so Ker ~A is the trivial bundle M ~ Since +A(t)M~ 1 for 

teD,_ we see that, over D~, we have a natural isomorphism Ker + " ~ M  ~. On the 
other hand, for teD'_, +A is an isomorphism, and so we get a natural isomorphism 

(over D~_) Ker +"~ ~ M ~ The glueing over the equator 0D ~ is just the restriction of q~a- 
To conclude the proof we have now only to observe that the map 0D~-~ ISO(M ~ M ~) 
given by % is homotopic to that given by Clifford multiplication. This follows from 
the explicit formula for % in (~) above using a linear homotopy. 
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We now verify the multiplicative properties of the index. Suppose S~o~k and 
Tao~"  with S, T acting on Hs, H T respectively. Let S ~ T  be the operator defined 

on Hs@HT, by 
(S ~* T) ( x| y) = Sx| y -Jr- (-- I )a"g* x| Ty. 

Then  S** T is skew-adjoint and (S ~ T)2=  S 2 | 1 7 4  ~ so that  

Ker S ** T = Ker S | Ker T 

and S ~ T  is Fredholm. We claim that  S**Te~- .  k+m. To show that S ~ T e o  ~k+m, 
we must  show that S ~ T  anti-commutes with JseCk and JTeC,. Now 

(S ** T)Js(x|  ) = S J s x | 1 7 4  Tu 

while Js(S ~* T)(x|  = J s S x |  -t- ( -  I)de~Jsx| T~ = - - ( S  ** T)Js(x|  ). Also, 

(S ** T)JT (xNy) = (--i)a~ ** T)(X| ) = (-I)a"g*{SX| § (-i)aegXx| TJTy}, 

while 

JT(S ~ T)(x|  =JT{SxNy + (-- I)a"g*x@ Ty} 
------ (-- i ) a~Sx |  + x| = - (S ~ T)JT(X| ) . 

It is easy to check that  S ** T e o ~ k + "  Since tensor product  gives the multiplication 
Ak| , we have proved 

Proposition (5 .3) .  - -  indk + ,S ~ T = (indk S) (ind, T). 
The  map  o~.kX~-~.-+o~', k+' used above induces a multiplication in KR*(X). Tha t  

this multiplication coincides with that  defined via suspensions comes from the homotopy 
commutat ivi ty  of the diagram 

r r 

a " ( 5 ) x  ff( ) :, 

We omit the proof. 
Finally, we remark that  the map  giving the periodicity theorem is the usual one 

obtained by multiplication by the generator of As=~KR-S(point).  For the map of 
~-.k(H) ---> o~-k+S(H@M), is given by S~S~T0-----S |  where T o is the zero map  on M. 
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