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SIGNATURES OF HERMITIAN FORMS
VINCENT ASTIER AND THOMAS UNGER

AsstrAcT. Signatures of quadratic forms have been generalized toitian forms
over algebras with involution. In the literature this is doria Morita theory, which
causes sign ambiguities in certain cases. The main restiisopaper consists of a
method for resolving this problem, using properties of thearlying algebra with
involution.

1. INTRODUCTION

Signatures of quadratic forms over formally real fields hbeen generalized in
[BP2] to hermitian forms over central simple algebras witvoiution over such fields.
This was achieved by means of an application of Morita th@miy a reduction to the
guadratic form case. A priori, signatures of hermitian fercan only be defined up
to sign, i.e., a canonical definition of signature is not gaesn this way. In[BP2]
a choice of sign is made in such a way as to make the signatutedbrm which
mediates the Morita equivalence positive. A problem anglken that form actually
has signature zero or, equivalently, when the rank one hi@mform represented by
the unit element over the algebra with involution has sigretero, for it is not then
possible to make a sign choice.

In this paper, after introducing the necessary prelimesa(Section 2), we review
the definition of signature of hermitian forms and study sarhis properties, before
proposing a method to address the problem mentioned abeed®s 3 and 4). Our
main result (Theorein 4.6) shows that there exists a finitebaumwf rank one hermitian
forms over the algebra with involution, having the propéhist at any ordering of the
base field at least one of them has nonzero signature. Thels@ma forms are used
in an algorithm for making a sign choice, resolving the peobformulated above.

In Section 5 we show that the resulting total signature mapa@ated to any hermit-
ian form is continuous. Finally, in Section 6 we show, usiiggatures, that in general
there is no obvious connection between torsion in the Watigrof an algebra with
involution and sums of hermitian squares in this algebra.
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2. PRELIMINARIES

2.1. Central Simple Algebras with Involution. The general reference for this sec-
tion is [KMRT, 2.A, 2.C]. LetF be a field of characteristic not two and l&tbe a
central simple F-algebra.e.,Z(A) = F andA has no nontrivial two-sided ideals. We
always assume that diA) is finite. It can be shown that dinfA) is a square. We
call deg@) := vdimg(A) thedegreeof A. Letm = deg@).

An involutiono on A is an anti-automorphism @& of period two. Throughout the
paper we assume thatis F-linear, i.e., the restriction af to F is the identity onF.
Such involutions are also said to bethe first kind Let

Sym@A, o) ={ac A|o(a) = a} and Skewh, o) = {ae A| o(a) = —a}.

Then o is eitherorthogonal(or, of type+1) if dimg Sym@A, o) = m(m + 1)/2, or
symplectiqor, of type—1) if dimg Sym(A, o) = m(m - 1)/2. By the Skolem-Noether
theorem, twd--linear involutionss- andr on A differ by an inner automorphism:

7 =Int(u) o o

for someu € A* such thato(u) = +u. Here Int()(x) := uxu? for x € A. The
involutionst ando are of the same type if and onlydf(u) = u.

We denote by Syn#, o) and Skewd, o-)* the sets of invertible elements in SyM ()
and Skewd, o), respectively.

Examples 2.1.

(1) (F,idg): the fieldF is trivially a central simpld=-algebra. The identity map ¢ds
an orthogonal involution.

(2) (My(F),t): the algebra ofh x n-matrices with entries fronfr is a central simple
F-algebra. The transposition majs an orthogonal involution.

(3) ((& b)g, —): the quaternion algebra determineddp € F* with F-basis{1, 1, |, k}
satisfyingi? = a, j> = bandij = —ji = kis a central simplé=-algebra. It
is a division algebra if and only if the (quadratic) norm fofth —a, —b, ab) is
anisotropic oveF. Quaternion conjugation, determined by = —i, | = —j, and
thusk = —k is the unique symplectic involution og, (). Quaternion conjugation
is often denoted by instead of-.

(4) ((& b)g,): the involution? defined on the quaternion algebealf)r by ¥(i) = —i,
?(])) = j, 3(K) = kis orthogonal.

2.2. e-Hermitian Spaces and Forms.The general reference for this sectionlis [K,
Chap. I]. Treatments of the general and division cases &anba found in[[G-B] and
[L2], respectively.

Let A be a central simpl&-algebra, equipped with af-linear involutiono. Let
e € {-1,1}. An e-hermitian spacever (A, o) is a pair (M, h), whereM is a finitely
generated righA-module andh : M x M — A is a sesquilinear form such that
h(y, X) = eo(h(x,y)) for all x,y € M. We call (M, h) ahermitian spacevhene = 1 and
a skew-hermitian spacehene = —1. Consider the lefA-moduleM* = Homy(M, A)
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as a rightA-module via the involutiorr. The formh induces arA-linear maph* :
M — M* X +— h(x,-). We call (M, h) nonsingularif h* is an isomorphism. All
spaces occurring in this paper are assumed to be nonsingfutas clear whatM is,
we simply writeh instead of M, h) and speak of éorminstead of a space.

Witt cancellation and Witt decomposition hold ferhermitian spacesM, h) over
(A, o). Furthermore, ifA = D is a division algebra (so thél = D" for some integer
n) such thatD, o, &) # (F,idg, —1), thenh can be diagonalized: there exist elements
a,...,a, € SymD, o)* such that

n
hocy) = > o(x)ay, ¥xye D",
i=1
In this case we use the shorthand notation

h=<(a,...,an),

which resembles the notation used for diagonalized quadi@ims. If A is central
simple we can certainly consider diagonal hermitian forefinéd on freéA-modules
of finite rank, but some hermitian forms ove, ¢-) may not be diagonalizable.

Let S,.(A, o) denote the commutative monoid of isometry classes-bérmitian
spaces overA, o) under orthogonal sum. In this paper we consigdlermitian spaces
(M, h) up to isometry, and so identify them with their classS{{A, o). Let W, (A, o)
denote the Witt group (or, more precisely, §F)-module) of Witt classes of-
hermitian spaces oveA(o). Whene = 1 we drop the subscript and simply write
S(A, o) andW(A, o).

2.3. Adjoint Involutions. The general reference for this sectioriis [KMRT, 4.A]. Let
A be a central simpl&-algebra, equipped with &#-linear involutiono. Let (M, h) be
ane-hermitian space oveA( o). The algebra Eng(M) is again central simple ovér
sinceM is finitely generated [KMRT, 1.10]. The involution @dn Endy(M), defined
by

h(x, £(y)) = h(adh(f)(x).y), Yx,y € M,¥f € End\(M)
is called theadjoint involutionof h. The involution ad is F-linear and

type(ad) = & type().
Furthermore, every-linear involution on Eng(M) is of the form ag for somee-
hermitian formh over (A, o) and the correspondence betweep aaldh is unique up
to a multiplicative factor i in the sense that @& ad;, for everya € F*.

By a theorem of Wedderburn there exists Radivision algebraD (unique up to
isomorphism) and a finite-dimensional rightvector spac& such thatA = Endy(V).
ThusA = M(D) for some positive integem. Furthermore, if there is aR-linear
involutiono- on A, then there is af-linear involution— on D and arneg-hermitian form
woover O, —) with &g € {-1, 1} such thatf, o) and (Eng(V), ad,,) are isomorphic as
algebras with involution. In matrix form gglis described as follows:

ad, (X) = DX 05, VX € Mn(D),
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where®q € GL,(D) is the Gram matrix ofo. ThusQTot = g9Dy.

2.4. Hermitian Morita Theory. We refer to [BP1,§1], [EM], [G-B| Chap. 2-3],
[K] Chap. I,§9], or [L1] for more details. LetN, h) be ane-hermitian space over
(A,o). One can show that the algebras with involution (KM, ad,) and @A, o)
are Morita equivalent: for every € {-1,1} there is an equivalence between the
categories’Z,(Enda(M), ad,) and 7, (A, o) of non-singula-hermitian forms over
(Endy(M), ad,) and non-singulagu-hermitian forms overA, o), respectively (where
the morphisms are given by isometry), ¢f.| [K, Thm. 9.3.5]isTéquivalence respects
isometries, orthogonal sums and hyperbolic forms. It imdusomorphisms

S.(Enda(M), adh) = S, (A, ) andW,(Enca(M), ach) = W, (A, o)

of commutative monoids and/(F)-modules, respectively. The Morita equivalence
and the isomorphisms are not canonical. One of the reastinatiagy = ad,, for any
A € F*, as observed above.

The algebras with involution, o) and O, —) are also Morita equivalent. For fu-
ture use, it will be convenient to decompose this Morita egjence into three non-
canonical equivalences of categories, the last two of whiehwill call scalingand
collapsing For computational purposes later on, we describe them trixxiarm. We
follow the approach of [LU2]:

scaling collapsing

%S(A’ O-) — %S(Mm(D), adpo) _— jfsos(Mm(D)’ _t) — %808(D’ _)'
Scaling: Let (M, h) be ans-hermitian space oveM(D), ad,,). Scaling is given by
(M, h) — (M, ®5h). (2)

Note that®,* is only determined up to a scalar factorfiri since agd, = ad,, for any
e Fx.

Collapsing: Recall thatM(D) = Endy(D™) and that we always hawd = (DM =
My m(D) for some integek. Leth: M x M — My (D) be ansoe-hermitian form with
respect to-'. Then

h(x,y) = XBY, ¥X,y € My m(D),

whereB € My(D) satisfiesB = £0eB, so thatB determines amye-hermitian formb
over D, -). Collapsing is then given by

(M, h) — (DX, b).

3. SGNATURES OF HERMITIAN FORMS

In order to introduce signatures of hermitian forms, we da#l a special case first.
Let F be a real closed field and [&t = (-1, —1)r denote Hamilton’s quaternion divi-
sion algebra oveF. Let — be quaternion conjugation df and leth ~ (ay,...,an)_
be a hermitian form ovei, —). Now, a,, ..., a, € Sym{H, —-) = F and so we can con-
sider the quadratic form = (ay, .. ., a,). We define theignature of hdenoted sigh,
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to be the signature of the quadratic fognNote that this definition is independent of
the choice of elements, . . ., a, by a theorem of Jacobsan [J].

For the general case we follow the approach of [Bf®3§3.4]: letF be a formally
real field and let 4, o) be a central simplé&-algebra withF-linear involution. Leth
be a hermitian form overX, o). Consider an ordering € Xg, the space of orderings
of F. In order to define the signature lofat P we do the following: Extend scalars to
the real closur&p of F atP. The extended algebra with involutioA®r Fp, o ®idg,)
is then Morita equivalent to alRp-division algebra with-p-linear involution Op, ¥p),
whereo ®idg, is adjoint to arep-hermitian formpp over Op, 9p) andep € {-1, 1}. By
a famous theorem of Frobenius the only division algebrak wenter the real closed
field Fp areFp itself andHp, Hamilton’s quaternions ovd¥p. Furthermore, we may
choosedr = idg, (often simply denoted id) in the first case afgl= — in the second
case by Morita theory (scaling). Thus we may take

(Dp, 9p) = (Fp,idg,) or (Dp, ¥p) = (Hp, -). (2)

The Morita equivalence induces an isomorphism

Mp  S(A®F Fp,0 ®idg,) = S;-(Dp, ) 3

which is not canonical (for instance, the fogm is only determined up to a nonzero
scalar factor). Since Morita equivalence preserves isoesedf hermitian forms, we
may define the signature bfat P to be equal to the signature o#p(h ® Fp).

Whenep = 1, the form.#p(h ® Fp) is either quadratic ovefp, in which case its
signature is obtained in the usual way, or hermitian oWy, £), in which case the
signature is computed as in the special case above.

Whenep = -1, the formspp and.#p(h ® Fp) are both skew-hermitian oveff, )
or alternating oveFp. Since skew-hermitian forms ovefi§, —) are always torsion
[S2, Thm. 10.3.7] and alternating forms ov¥er are always hyperbolic, it makes sense
to define sigp .Zp(h®Fp) = sign, ¢p = 0 inthose cases. We call the orderifiys X
for whichep = -1 the @, o)-nil orderingsof F, or simply thenil orderingsof F if the
context is clear. We denote the set Af ¢)-nil orderings ofF by Nil(A, o).

A different choice of Morita equivalence betwed(z Fp, o ® idg,) and O, J}),
say, may at most result in a sign change for the signatures foiiows from the
computations in[[G-B, pp. 54-55]. (Note that such a sign geamay occur, cf.
Remark 3.B below.) We fix a Morita equivalence for each oragfi € Xg.

In light of these remarks we now make the following

Definition 3.1. We define thesignature of h at Pdenoted sighh, as follows:

s e S|gr\3 %p(h@ Fp) if cp=1
h = ’
SIarh {o if op = —1

where the superscript indicates the dependence on the choice of Morita equivalenc
discussed earlier.
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Remark 3.2. An attempt to make this definition canonical is more problecrthan
suggested in [BRZ3.3,§3.4], see Section 4.

The following table summarizes all the possibilities:

(Dp. 99) 7 orthogonal symplectic
Ep = -1 Ep = 1
op, Ap(h® Fp): skew-hermitian | ¢p, #p(h® Fp): hermitian
(HP’ _)
signph:=0 sigrg h := signs #p(h ® Fp)
Ep = 1 Ep = -1
vp, Ap(h® Fp): quadratic vp, Ap(h® Fp): alternating
(Fp,idr;)
signg h := signe #p(h® Fp) signsh:=0

By the properties of Morita equivalence, the signature ofjgenbolic form will be
zero and

sigrp(hy L hy) = sigrp hy + sigrg hy

for all hermitian formsh;, h, over (A, o). Thus sigi induces a homomorphism of
additive groupW(A, o) — Z for eachP € X.

Remark 3.3. Let h be a hermitian form overX, o), letP € Xr and let1p € F5. If we
replacepp by Appp in the computation of sighh above, the final result is multiplied by
the sign of1p. This follows from considering the scaling part of Moritauagalence,

cf. ().

Let h be a hermitian form over/; o) and letP € Xg \ Nil(A, o) (so thatep = 1).
Let % be anF-basis ofA. The isomorphism#5 in (3) can be decomposed into three
isomorphisms as follows:

scaling collapsing

. &
S(A®k Fp,0 ®idg,) —= S(Mn(Dp), ad,.) —= S(Mu(Dp), 9p!) ——= S(Dp, Ip)

h®Fp! §p(h® Fp) ——— 0p'¢5(h® Fp) —— .#p(h ® Fp)
(4)

Hereéy, is the commutative monoid isomorphism induced by the isqinism

ép (A®e Fp,o®idg,) = (Mm(Dp), ad,,)

discussed in the context of Wedderburn’s theorerfidr8. The scaling matri®p is
the matrix of the formpp with respect to the basis (%) of My (Dp).
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Example 3.4.We describe how to compute the signature of a diagonal hiamftrm
h over (A, o) at an ordering® € Xg. Assume thah = (ay,...,a,), with respect to
someF-basis# of A. Note thata,...,a, € SymA, o)*. By the properties of the
signature we have

Signs(ay, . . ., @Yo = Z SIgrE(a;)o,
i=1

so it sufices to do the computation for a forfa),. of rank 1 (witha € Sym(A, o)*).

If ep = —1, the orderingP is (A, o)-nil and sigr§(a),, = O for that ordering. Thus
we assume thatp = 1.

We pusha), through the sequendel (4). The first step gives us:

(@® 1)ogid > Ep((@® 1)ogia) = (§p(A® 1))aq,,,

where

ép(@® 1) € SymMm(Dp), ad,,).

For the second step, l&t, be the matrix of the fornpe with respect ta&p(A). Itis
easy to see that

DpHEp(® 1))ag, = (Pp'Ep(a® 1))y,

For the third step, note thai;'ép(@a® 1) € SymMm(Dp), 9p'). Since Dp, Jp) is
either Fp, idg,) or (Hp, —), the matrixd;'ép(a®1) is either symmetric or hermitian and
thus corresponds to a quadratic or a hermitian fgenof dimensionm over Dp, 9p).
We then have

signg(a), = signs ye.

We give a simple illustration of this method (more elaboeatamples will be given
later in Propositions 614 and 6.5):

Example 3.5. Let F be the Laurent series fieRl(x). ThenXgr = {Py, P,}, where

X >p, 0 andx <p, 0. Consider the quaternion algedba= (-1,-X)e. Thisis a
division algebra oveF since its norm form, 1, x, X) is anisotropic oveF. LetA =
M,(D) be equipped with the conjugate transpose involutioa —!, where— denotes
guaternion conjugation. Thean is a symplectic involution. Consider the hermitian
formh = ((}9)), over (A, o). Now A®r Fp, = My(Hp,) sincexis a square iFp, and
A®g Fp, = My(Fp,) since—xis a square ifFp,. We see that the orderirfg, is (D, —)-
nil, so that sigf, h = 0. Following the steps in Example 8.4 we get gign = +2
sinceo becomes adjoint to the hermitian fogps, = (1, 1)_ over (Hp,, —) after scalar
extension to the real closure Bfat P;. (As observed in Remafk 3.3, only knowing
@p, Up to sign only gives us the signature up to sign. In Sectiore 4wl explain how

a choice of sign can be made.)

Lemma 3.6. Let Pe Xr and letyp be as above. Thesigrg(1), = signs ¢p.
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Proof. This is trivially true for the A, o)-nil orderings ofF. Thus assume th&t € X
is not nil. We extend scalars to the real closure~oét P, (1), +— (1), ® Fp =
(1®1),siq and pusH1® 1),4q through the sequende (4), as illustrated in Example 3.4:

(18 Dyyaia — £p((1® Dogia) = (€p(1® Dag,, = (Imdad, — P Imdag, = (P oy
(Note thatép(1® 1) = I, them x mridentity matrix inMp,(Dp) sinceép is an algebra
homomorphism.) The matriso;* now corresponds to a quadratic form owgror a
hermitian form overllp, —). In either casd);,l is congruent tabp. Thus sigi(1), =
Signs ¢p. [

In [LT], Lewis and Tignol defined thsignature of the involutiolr at P € Xg as

follows:
sSigns o = 4/signs T,

whereT,, is theinvolution trace formof (A, o) which is a quadratic form oveét defined
by T, (X) := Trda(c(X)x), for all x e A. Here Trg\ denotes the reduced trace/f

Examples 3.7.

(1) Let (A, o) = (My(F),t). ThenT, ~ n? x (1). Hence sigpo = nfor all P € Xg.

(2) Let (A,0) = ((a,b)g, —). ThenT, ~ (2) ® (1, —a, —b, ab). Hence sigpo = 2 for
all P € Xg such that <p 0,b <p 0 and sigp = O for all otherP € Xg. Note that
N = (1, —a, —b, ab) is the norm form ofA.

Remark 3.8. Let (A, o) and B, 7) be two central simpld--algebras withF-linear
involution.
(1) Consider the tensor produé&t®g B, c ®7). ThenT,s, = T, ® T, and so sigp(c®
7) = (signs o)(signs 7) for all P € X¢.
(2) If (A o) = (B, 1), thenT, ~ T, so that sigpo = sign. 7 for all P € X¢.
Remark 3.9. Pfister’s local-global principle holds for algebras withafution (A, o)
and also for hermitian formis over such algebras, [LU1]:
signno =0, YP € Xg & (A, o) is weakly hyperbolic
(i.e.,o is the adjoint involution of a torsion form) and
signsh =0, VP € X & the class ohin W(A, o) is torsion

Remark 3.10. The map sigmrr is continuous fromXg (equipped with the Harrison
topology, seel[Lam, Chapter VIII 6] for a definition) #(equipped with the discrete
topology). Indeed: define the mag onZ by setting vk = -1 if k is not a square in
Z. Sincez is equipped with the discrete topology, this map is contursudincerl,, is

a quadratic form, the map sidp is continuous fromXg to Z (by [Lam, Proposition

6.6]). Thus, by composition, sign= +/signT, is continuous fronXg to Z.

Lemma 3.11.Let Pe Xg. Then
signs o = Ap [Sigs e,
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Where/lp =1if (Dp,ﬂp) = (Fp, ide) and Ap = 2 if (Dp, 0p) = (Hp, —). (If we
want to indicate the dependencemfon (A, o) we will write Apa.) In particular, if
P e Nil(A, o), thensign, o = sign. ¢p = 0.

Proof. This is a reformulation of [KMRT, 11.11] or of [LT, Theorem &hd part of its
proof. [

Lemma 3.12. Let (M, h) be a hermitian space ov€A, o). Let Pe Xg. Then
sign. ad, = Ap|sigry hl,
with Ap as defined in Lemma 3/11. In particular,
signbh=0 & sign.ad, = 0.

Proof. Assume first thaP € Nil(A, o). Then sigi h = 0. Consider the adjoint invo-
lution ad, on Enc\(M). After extension of scalars 6, we have Morita equivalences

JAENA\(M) ¢ Fp,ad, ® idr,) — FAA®F Fp,0 ®idr,) — _1(Dp, 9p)

and ag ® idg, is adjoint to a skew-hermitian form oveD§, Jp). Note that agando
are of the same type sintes hermitian. Thus aganddp are of opposite type since
P € Nil(A, o). ThereforeP € Nil(Enda(M), ad,). By Lemma 3.1l we conclude that
sign, ad, = 0.

Next, assume th& € Xg \ Nil(A, o). Without loss of generality we may replaEe
by its real closure a®. Consider the Morita equivalence

JAA, o) — D, )
with (D, 9) = (H, -) or (D, ) = (F,id). Let (N, b) be the hermitian space oved ()
corresponding toN, h) under this Morita equivalence. Then sfgm = signb. By
[BP1, Remark 1.4.2] we have (Ex@),ad,) = (Endy(N),ad,) so that signag =
signad. By [LT| Theorem 1] or [KMRT, 11.11] we have sign@é& A |signb| with
A=1if(D,9) = (F,id) anda = 2 if (D,®) = (H,-). We conclude that sign ad=
Alsign’ h|. n

Remark 3.13. Since by Remark 3.10 the total signature of an involutioras con-
tinuous, it follows from Lemma&_3.12 that Iifis any hermitian form overA, o), then
the set{P € X¢ | sign. h = O} is clopen.

Corollary 3.14. Let(M, h) be a hermitian space ovéA, o) and let aec SymA, o)*.
Consider the hermitian spa¢#, ah) over (A, Int(a) o o). Let Pe Xg. Then

sigrs(ah) = +sigrg h.

Proof. An easy computation shows that the involutionsaad ad;, coincide on Eng(M).
Hence they have the same sighaturd’at Xg. The conclusion now follows from
Lemmd3.1P. n

In other words, scaling by an invertible element at most gearthe sign of the
signature. Scaling by1 gives an instance where a sign change of the signaturesoccur
This is contrary to what is claimed in [BP2, p. 662].
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Lemma 3.15.Let ac Sym(A, 0)*. For any Pe X we have

Sigr @), =+ signu(int(a ) o o),
P
with Ap as defined in Lemma3J11.

Proof. The involution (Inté™) o o) ® idg, oN A®f Fp is adjoint to some fornpp. We
have

. . 1 . _
SIgME(Linta 1o = SIGNb 9p = 0 signs(Int(@™) o o),
by Lemmag$ 36 and 3.]11. By Corolldry 3.14, we have

SigrE(@)e = = SiIgNs( L ina-1yo0-
The result now follows. n
Lemma 3.16. Let (A, o) and (B, 7) be central simple F-algebras, equipped with F-

linear involutions. Let ac Sym(A,o)* and b e Sym@,r)*. For any P € X we
have

Sign(@® b)yer = *up Signs(a), Signs(b)-,
whereup = 4 if A ®: Fp and B®r Fp are both non-split, angp = 1 otherwise.

Proof. By Lemma(3.1b and the fact that the signature of involutiensultiplicative
we have

sign(a® bYyer = iﬂ; sigrb(lnt((a@a b)™) o (c® T))

P,A®B,0c®t

= i; sigrb((lnt(a‘l) o) ®(Int(b™) o T))

AP AgB.oer

Il
+

_ signs(Int@™) o o) signs(Int(b™) o 7)

Ap AsB.oor
ApacdpPBr

Il
+

signs(a). signs(b)-.

AP A9B.oor
Letting up = Apacdrer/Apassoser IS Value can be determined by a case analysis.

4. AN ALGORITHM FOR CHOOSING THE SIGN OF THE SIGNATURE

In quadratic form theory the signature of the foth) is always 1 at any ordering of
the ground field. In contrast, the signature of the hermifiim (1), over (A, o) may
not even always be positive and could very well be zero, chine[3.6.

In order to pursue the analogy with the quadratic forms c&assems natural to
require of the signature map Bt from W(A, o) to Z that the signature ofl), be
positive. This is precisely the approach taker in [B§2 3, §3.4], where the form in
{¢p, —pp} is chosen, whose signatureRits nonnegative, cf. Remark (3.3). Thiext
of this choice is to make the signature(&j, positive by Lemma 3]6.
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However, it is possible that the signaturgdf, atP (i.e. sign, ¢p) is zero, in which
case the approach taken in [BP2] no longer works and the tsignenap atP from
W(A, o) to Z remains defined only up to sign.

In order to fill this gap, our approach consists of replachmgform(1), by a finite
number of rank one hermitian formib, )., .. ., (b;), over (A, o), having the property
that at any ordering® € Xg at least one of them has nonzero signature. We start by
proving the existence of the elemetts. .., b,. As our proof makes use of Merkur-
jev’s theorem/[Me] we will deal with the case of multi-quatiEm algebras with de-
composable involution first.

Remark 4.1.

(1) Let (A, o), (B,7) and C,v) be central simplé&-algebras with--linear involution
such thatf, o) = (B, 1) ® (C,v), then

type() = type() - type@), (5)

cf. [KMRT] 2.23].

(2) Assume thaA is a biquaternion algebra with decomposable involutiorif o is
orthogonal, then it is not éicult to see that there exist quaternion algebras with
orthogonal involution @, 01), (Q», o) and quaternion algebras with symplectic
involution (Q}, ¥1), (Q5, v2) such that

(A, 0) = (Q1,01) ® (Q2, 02) = (Q, ¥1) ®F (Q5,72),

cf. [ST, §2]. On the other hand, i~ is decomposable symplectic, then it fol-
lows from (B) that one of the quaternion components has taxdewed with the
canonical (symplectic) involution, and the other with athogonal involution.

Lemma 4.2. Let (A, o) = (Q1,01) ®F - - Q¢ (Qn, o) be a multi-quaternion algebra
with decomposable F-linear involution. LetdeXg \ Nil(A, o). Then the number of
indices i€ {1,...,n} such that Pe Nil(Q;, o) is even.

Proof. Recall thatP € Nil(Q;, o) if and only if Q; ® Fp = Hp (resp. M,(Fp)) in
caser; is orthogonal (resp. symplectic). The statement now fadlinom an easy, but
tedious, case analysis depending on the type afd the parity oh. n

Proposition 4.3. Let(A, ) = (Q1, 01)®¢ - - -®¢ (Qn, o) be a multi-quaternion algebra
with decomposable F-linear involution. There exists adisiibset S= {a, ..., a,} of
Sym(A, o)* such that for every B Xg \ Nil(A, o) there is an index e {1,. .., £} such
that

signs(Int(a;) o o) # 0.

Proof. We will carry out the proof in three steps.
(1) Assume thah = 1, so thatA = (&, b)r for certain elementa,b € F*. For a
positive integet anday, .. ., a € F*, recall the Harrison set notation

H(al,...,at) = {PEXFla]_ >p0,..., & >p0}.
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Observe that

Xrg = H(a,b) UH(a,-b) UH(-a, —b) U H(-a, b).

If o is symplectic, theXg \ Nil(A, o) = H(-a, —b) and thus sigpo = 2 for all

P € H(—a, —b) sinceT,, is the norm form ofA (up to a factork2)). Thus we may take
> Ng(i.assume that is orthogonal. In this case

Xe \ Nil(A, o) = H(a, b) UH(a, -b) U H(-a, b).
Consider the orthogonal involutiah defined by

9(1) =1, 9() = —i, 9(j) = |, ¥K) =k

where{1,1i, j, k} denotes the usu@-basis ofA. Since any two involutions ffier by an
inner automorphism, there existgj& Sym(A, o)* such that? = Int(q) o o-. Consider
also the involutions = Int(j) o ¥ andw = Int(k) o ¢. After computing the involution
trace forms of}, r andw we see that
sign, ¥ = 2 for all P € H(-a, b),
signo7 = 2forallP € H(a, b),
sign.w = 2 for all P € H(a, —b).
Thus we may tak& = {q, jg, kg}. This settles the case= 1.
(2) Next assume that = 2, so thatA = (a,b)r ® (c,d)r for certain elements
a,b,c,de F*ando = 01 ® 0.
o orthogonal (n = 2). We may assume that; is orthogonal orQ; = (a, b)r and

thato, is orthogonal orQ, = (c, d)g, cf. RemarK4.11(2). We have € X \ Nil(A, o)
if and only if A®e Fp = My(Fp). Hence,P € Xg \ Nil(A, o) if and only if

Qi1 ®F Fp= My(Fp) and Q,®r Fp = My(Fp)

or
Qi® Fp=Hp and Q,®r Fp = Hp.
Thus

Xe \ Nil(A, ) = | (H(a. b) UH(a, —b) UH(-a, b)) n (H(c. d) U H(c. -d) U H(-c. d))|
U|H(-a -b) N H(-c,-d)|
= | (X \Nil(Qu o)) N (Xe \ Nil(Qz, ) |
U (Nil(Q, or1) N Nil(Qz, 072)).

We first conside(XF \ Nil(Qq, 0'1)) N (XF \ Nil(Qq, 0'2)). By then = 1 case there exist
involutionsr; 1, 7 2, i3 ON Q; for i = 1,2 such that

mix = Int(ak) o o for somea; x € Sym@Q, o)™
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for k = 1,2,3 and for everyP € Xg \ Nil(Q;, o), one of sigR 7 1, Signs 7i 2, SIgNs 71 3
is equal to 2. We consider all possible products

Oke = M1k @ o = Int(agx ® azy) o (01 ® 072)
for k,¢ € {1,2,3}. Note thata;y ® a,, € Sym(A, o)*. Then for eachP € (XF \
Nil(Qu, 1)) N (Xe \ Nil(Qz, 072)), one of

Signs oke = (SigNs m1k)(SIgNs 72.¢)
is equal to 4.

Secondly, we consider Ny, o1) N Nil(Q,, 0,). Fori = 1,2, lety; denote the
unique symplectic involution o;. Then there exisg; € Skew@Q;, o)* such that
vi = Int(g) o 0. Let

Y =7107y2 = Int(ay ® &) o (01 ® 072).
Thena; ® a, € Sym(A, o)*. Furthermore,

Signey = (Sigre y1)(Signp y2) = 4

for all P € Nil(Qq,01) N Nil(Qz,03,). Thus we may tak& = {a;x Q@ &, | k¢ =
1,2,3}U{a ® ap}.

o symplectic (h = 2). We may assume that; is orthogonal oQ; = (a, b)r and
thato, = vy, is the unique symplectic involution a@, = (c, d)g, cf. Remark4.1(2).
We haveP € Xg \Nil(A, o) if and only if A®e Fp = M,(Hp). Hence P € Xg \Nil(A, o)
if and only if

Qi ®r Fp = My(Fp) and Q. ®r Fp = Hp
or

Qi®r Fp=Hp and Q.®r Fp = My(Fp).
Thus

Xe \ Nil(A, o) = |(H(a,b) UH(a, ~b) UH(-a, b)) N H(-c, -d)|
U [H(-a.—b) N (H(c. d) UH(c, -d) UH(-c. d))|
= [(XF \ N”(Ql,o'l)) N (XF \ N”(Qz,?’z))]
U (Nil(Qu, 1) N Nil(Qz, 7)),
We first conside(XF \ NiI(Ql,o-l)) N (XF \ NiI(Qz,yz)). By then = 1 case there exist
involutionsry, 7o, 13 0N Qq such that
nx = Int(ay) o o for somea, € Sym(@Qq, o1)*

for k = 1,2,3 and for everyP € Xg \ Nil(Qq, 01), one of sigR m1, Sign, 72, Signs: 713
is equal to 2. Also, sighy, = 2 for everyP € Xg \ Nil(Qz,v2). Fork = 1,2,3 we
consider, as before, all possible products

e ®y2 = Int(a ® 1) o (071 ® 7).
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Note thata, ® 1 € Sym(A, o’)*. We have that for each € (XF \ NiI(Ql,o-l)) N (XF \

Nil(Q2.72)), one of
Signs (7« ® y2) = (signs m)(Sigrs 72)
is equal to 4.

Secondly, we consider N{ll;, o1)NNil( Q., y2). Lety; denote the unique symplectic
involution onQ;. Then there exista; € Skew@Qy, o1)* such thaty; = Int(ay) o o;.
Hence sigpy; = 2 for all P € Nil(Q1, 071) = Xg \ Nil(Q1, y1).

Let r, be an orthogonal involution 0@,. Note that NilQ-, v2) = Xg \ Nil(Q., 75).
There exists an element € Skew@Q:, y,)* such thatr, = Int(a,) o y,. By the case
n = 1, there ardy;, by, bs € Sym(@Q, 72)* such that for everyP € Nil(Q,,y») one of
signs Int(by) o 72 is equal to 2. Fok = 1,2, 3, let

nx .= Int(by) o 72 = Int(by) o Int(ay) o v, = Int(bkay) o v»
and note thabya, € Skew@Q:, v,)*. We consider all possible products
v1 @ = Int(ay @ beay) o (01 ® v2).

Observe tha, ® bya, € Sym(A, o). We have that for eacP € Nil(Qq,01) N
Nil(Qz, y2), one of

signe(y1 ® ) = (Signs y1)(Signe i)
isequalto4. Thuswe may tal&®={ax® 1| k=1,23lU{a;®b@a | k=12 3}.

(3) Assume finally thah > 3.

o orthogonal (n > 3). We may assume that is orthogonal orQ; fori =1,...,n,
cf. RemarK4.11(2). We havkg \ Nil(A, o) = {P € Xg | A®: Fp = Mx(Fp)}. For
P e Xg, let

op=[{ie{l,....,n}| Q& Fp = Hp|-

ThenXg \ Nil(A,0) = {P € X | dpiseven. SinceXg \ Nil(A, o) is a finite union
of sets of the formlP € Xg | 6p = 2mj} for certainm € N, it suffices to prove the
theorem for a fixedn € N and for the set of orderind® € Xg | 6p = 2m}. The general
statement will then follow by taking the union of thefdrent setsS obtained in this
way. Therefore we only consider orderings¥n= {P € Xg | 6p = 2m} for a fixed
m € N. After relabeling indices we may assume tkator Fp = Hp if and only if
1 <i < 2m. After regrouping we can thus write

(A,0) =(Q1® Q2,010 072) ®F - O (Qam-1 ® Qom, OT2m-1 ® O 2m)
®F (Qami1, 02me1) ®F -+ - ®F (Qn, o).

Observe now thaP € Y implies thatP € Xg \ Nil(Qais1 ® Qais2, 02141 ® 02i,2) for
i=0,...,m=1andP e Xg \ Nil(Q,, o) for £ =2m+1,...,n. We now use the cases
n =1 andn = 2 and products of involutions to settle this case.

o symplectic (0 > 3). We may assume that is orthogonal org); fori = 1,...,n-1
and thato, = vy, is symplectic orQ,, cf. Remark’4.11(2). We hav&: \ Nil(A, o) =
{(PeXe | A®r Fp = Mzn—l(Hp)}. ForP e X, let

op=|{ie{l,....,n} | Q& Fp = Hp.
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ThenXg \ Nil(A, o) = {P € Xg | 6p is odd. By an argument similar to the one in the
previous case, it stices to successively consider the following two sets of andsr
Case a{P € Xg \ Nil(A, o) | Qn ®F Fp = Hp}.
Case b{P € X \ Nil(A, o) | Qn ®r Fp = My(Fp)}.
In Case a, after relabeling, we may assume Bakr Fp = Hp if and only if
i €{l1,...,2m} U {n}. After regrouping we may write

(A, 0) = (A1, 71) O (Qomr1, Tomi1) ®F - - O (Qn, on),

where @q,71) = (Q1 ® Q2,01 ® 02) ® - ®F (Qom-1 ®F Qom, Tom-1 ® T2m). We
conclude by using the orthogonal= 2 case for A, o;) and the casa = 1 for the
other components together with products of involutions.

In Case b, after relabeling, we may assume Qa®s Fp = Hp if and only if
i €{1,...,2m+ 1}. After regrouping we may write

(A, o) = (A1, 71) O (Qomr1, Tomi1) ®F - - O (Qn, on),

where @q,71) = (Q1 ® Q2,01 ® 02) ® -+ ®F (Qom-1 ® Qom, Tom-1 ® T2m). We
conclude by using the orthogonal= 2 case for A, o1), the symplectio = 2 case
for (Qami1 ®F Qn, 0om1 ® o) and the orthogonal = 1 case for the other components
together with products of involutions. [

Proposition 4.4. Let (A, o) be a central simple F-algebra equipped with an invo-
lution of the first kind. There exists an integer k and a finitbset{b,...,b,} of
Sym(M(A), o ® t)* such that for every B Xg \ Nil(Mk(A), o ® t) there is an index
ref{l, ..., ¢} suchthat

signs(Int(by) o (c®t)) # 0.

Proof. Sinceo is of the first kind, the exponent & in the Brauer group oF is at
most 2. Thus, by Merkurjev’s theorem [Me], there eXdisin € N such thatM(A) =
Mn(Q) = Q ® My(F), whereQ = Q; ®¢ --- ® Q, is a multi-quaternion algebra.
Extendo to the involutiono ® t on My(A), wheret denotes transposition. Then®

t = Int(u) o (r ® t) for an involutiont of the same type as on Q and an invertible
elementu € Sym@Q ®r M (F), 7 ®t). Without loss of generality we may assume that
T=01®: - ®0nh, Whereg; is an involution orQ, fori =1,...,n.

Consider the elements, . . ., a, € Qwhose existence is asserted by Propositioh 4.3.
Fori = 1,...,¢leth; be the element i (A) which is mapped tog®,,)u! under the
isomorphismM(A) = Q ® My (F), wherel, denotes the identity matrix i q(F).
Then eactb, € SymMy(A), o @ t)*.

Let P € Xg \ Nil(M(A), o ® t). Observe that Nilf(A), o ® t) = Nil(Q, 1) since
Mk(A) = M (Q) ando ® t andt are of the same type. By Proposition]4.3 there exists
anindexr € {1,..., ¢} such that

signs(Int(a;) o 7) # 0.
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Thus by Remark 318(2) we have

sigrp(Int(by) o (o @ 1)) = signp(Int((a ® Im)u™) o (Int(u) o (r & 1))
= signs(Int(a, ® Iy) o Int(u™) o Int(u) o (r ® 1))
= signs(Int(a; @ Iy) o (1 ®1))
= sigrp((Int(ay) o 7) ® 1)
= signs(Int(ay) o 7) - signs(t)
= msigns(Int(ar) o 7)
£ 0,

which concludes the proof. n
Corollary 4.5. The set ofA, o)-nil orderings of F is clopen.

Proof. We have Nil@, o) = Nil( M(A), o ®t) for anyk € N sincec ando ® t are of
the same type. By Proposition 4.4

4
Nil(M(A), o ®1) = [ |{P € X | signs(Int(br) o (o @ 1)) = O},
r=1

which is clopen by Remaik 3.110. .

Theorem 4.6.Let (A, o) be a central simple F-algebra equipped with an involution of
the first kind. There exists a finite subfayt . . ., b,} of Sym(A, o) such that for every
P € Xg \ Nil(A, o) there is an index E {1, ..., ¢} such that

signs(Int(by) o o) # 0.

Proof. Assume first thaf is split, i.e.A = M,(F). If o is symplectic then Nil§, o) =
Xr and there is nothing to prove. df is orthogonal, then there exisiss Sym(A, o)~
such thatr = Int(a) o t, wheret is the transpose involution. It follows that

signs(Int(@) o o) = signit=n#0

forall P € Xg.

Secondly assume thatis not split, so thaA = M,(D) for somen € N and some
division algebraD. Sinceo is anF-linear involution onA, there exists aifr-linear
involution ¢ on D. We first show that for ever{? € Xg \ Nil(A, o) there exists a
bp € Sym(A, o) such that sigg(Int(bp) o o) # 0.

Let P € Xg \ Nil(A, o). Assume for the sake of contradiction that sign= 0 for
everyF-linear involutionw on A. Since such involutions are adjointtedimensional
hermitian forms over[, ) and this correspondence is one-to-one (up to a nonzero
scalar factor), all hermitian forms of dimensiarover D, ©) have signature zero at
P by Lemmal3.IP. Letd € Sym(D,d)* be arbitrary, then th@-dimensional her-
mitian form n x (d)y has signature zero @& This implies sigp(d); = O for all
d € SymD,¥)*. Hence all hermitian forms oveD() have sighature zero &.
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However, by Proposition 4.4 (witD in the role ofA) there existk € N and an invo-
lution 7 on M(D) such that sigat # 0. Butt is adjoint to some hermitian form over
(D, ) which should have zero signatureRta contradiction with Lemmia_ 3.12. We
conclude that there existda € Sym(A, o)* such that sigg(Int(bp) o o) # 0.

Fora e Sym(A, o)* define

U(a) := {P € Xg | signs(Int(a) o o) # 0}.
By Remark3.1D the sdil(a) is clopen inXg. By the previous part of the proof we

have
Xe \Nil(A o) = |_] U(be).
PEXF
SinceXg \ Nil(A, o) is compact by Corollarly 415, there exigts N andby,...,b, €
Sym(A, o)* such that

4
Xe \Nil(A, o) = |_Jub).
i=1

Corollary 4.7. An ordering Pe Xg is (A, o)-nil if and only if sigrg h = 0 for every
hermitian form h ove(A, o) if and only ifsigri(a), = O for every ac Sym(A, o)~ .

Proof. By Theoreni 4.B,
¢
Nil(A, &) = ()P € X | signs(Int(by) o ) = O,
i=1
The result then follows from the definition of nil-orderingchLemma3.15 (since
signs(Int(by) o o) = | sigrc ) |). =

The Algorithm. Fix some tuple of element$q, ..., b,) with properties as described
in Theoreni 4.6. Observe that for edele X we have

. 1.
ISigrg(hi)| = - signs(Int(by) o o) (6)

by Lemmal3.1b sinceb '), =~ (b),. By Theoren 4k this implies that for each
P e Xg \ Nil(A, o) at least one of sigi(b;),, . . ., sigrs(b,),- is nonzero.
Therefore, for eact® € Xg \ Nil(A, o) we decide if the signature computation is
performed withpp or —pp as follows:
(i) Leti be the least element {4, ... ., £} such that siggb;), # 0.
(i) If signj(bi), >p O, we keep usingp for the signature computation at this order-
ing. If signg¢bi), <p 0, we replacep by —pp in the computation of signatures at
P (which then makes sigib; ), >p 0).
Note that we may assunte = 1, in which case our algorithm extends the algorithm
in [BP2, §3.3,§3.4].
This algorithm depends on the choice of the tupke (. ., by) in Theoreni 4.6. Once
such a choice is made for the algebra with involutidns£) we can consider properties
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such as the continuity of the total signature function diyn(Xr — Z associated to
a hermitian formh over (A, o).

Notation. In the remainder of the paper when writing signstead of sigh we mean
that we use the above algorithm for some fixed choice of a fimle. ., b;).
5. CoNTINUITY OF THE TOTAL SIGNATURE M AP OF HERMITIAN FORMS

Lemma 5.1. There is a finite partition of Xinto clopens
s
Xe = Nil(A, o) U U Z,
i=1

and there arey, ..., as € Sym(A, o)* such thatsign(«;),, is constant non-zero on.Z
Proof. Letby,...,b, be asin Theorem 4.6 and, foe 1,...,¢, let

Y, :={PeXg|signb),=0,i=1,...,r}h
Observe that each is clopen since

Y, = ﬂ{P € Xe | signu(Int(by) o o) = 0.

i=1
We haveYy .= Xr 2 Y1 2---2Y,1 2 Y, = Nil(A, o) and therefore,
Xe = (Yo\ Yo) U(Y1 \ Y2) U---U(Ye1 \ Yr) UNII(A, o).
Letr € {0,...,¢— 1} and considel, \ Y;,1. By (68) the map sigtb,,1), is never 0 on

Y: \ Y;;1 and only takes a finite number of values. . ., k.
Claim: There exists a € {1, 2} such that

sign(bry1), = 1 sign(Int(by,1) o o)

on Yr \Yr+1-

Proof of claim: If o is orthogonal and® ¢ Nil(A, o), then Op, ¥p) = (Fp, idg,).
By Lemmal3.1l together with the definition of signature of anigan form (since
Pe€Y;\ Y1) we have

signs(br.1), = Signs(Int(br.1) o o).

If o is symplectic and® ¢ Nil(A, o), then Op,9p) = (Hp,—). By Lemmal 3.1l
together with the definition of signature of a hermitian fofgmceP € Y, \ Y;,1) we
have

. 1.
Signibr.1)e = 3 signint(br.) o o).

So we simply takel = 2 if o is symplectic andl = 1 if o is orthogonal.
The claim gives us:

(i) () N (% \ Yeu) = (Sign(int(bras) o ) (1K) N (¥ \ Vo),
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which is clopen by Remaik 3.1L0. It follows th¥t\ Y,., is covered by finitely many
disjoint clopen sets on which the map sign;), has constant non-zero value. The
result follows since the setg \ Y;,; forr = 0,...,¢ — 1 form a partition ofXg \
Nil(A, o). n

Proposition 5.2. Let h be a hermitian form ovdA, o). The total signature of h,
signh: Xg — Z, P+ signp h
is continuous.

Proof. We use the notation and the conclusion of Lenimé 5.1. Sind@&N#) and the
setsZ; are clopen, it sfiices to show that (sign|, is continuous for every=1,...,s.

Leti € {1,...,s} and letk; € Z \ {0} be such that sigw;), = ki onZ. Letk € Z.
Then

((signh)|z)™(k) = (P € Z | sign h = k}
{P e Z |k sign h = kk}
{P e Z | ksignh = ksign{().}
={P e Z | sign(k x h L kx(-aj),) = 0}.
It follows from Lemmd3.IR that
((signh)lz,) (K) = {P € Z | signp adqxnioc-ay), = O},
which is clopen by Remaik 3.110. .

6. TorsioNn N WitT Groups AND SuMs OF HERMITIAN SQUARES

Let F be a formally real field. It is well-known that the Witt ring Bfis torsion-free
if and only if F is pythagorean (i.e., every sum of square& irs a square irF), see
[Lam, VIII, Theorem 4.1].

Now let (A, o) be a central simpl€&-algebra equipped with aa-linear involution.
A hermitian squaren (A, o) is an element oA of the formo-(x)x for somex € A. We
denote the set of hermitian squaresAnd) by (A, o) and the set of sums of hermitian
squares inA, o) by (A, )2 Itis clear that

(A, 0)? C Z(A, 0)? C SymA, o).

We say that A, o) is pythagorearnif (A, 0)? = (A, 0)?, i.e., if every sum of hermitian
squares in4, o) is a hermitian square i o).

We denote the torsion subgroupW{(A, o) by Wi(A, o). A fundamental result of
Pfister is that\(F) is 2-primary. The torsion subgroMw(A, o) is 2-primary as well,
see([SL, Cor. 6.1] of [Ma, Thm. 4.1].

In this section we will show that there is in general no obsgicelation between the
property ‘torsion-free Witt group’\;(A, o) = 0) and the property ‘pythagorean’.

An unsurprising exception is the following:

Proposition 6.1. Let D be a quaternion division algebra over a formally realdi€,
equipped with quaternion conjugatien Let N be the norm form of D.
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() If F is pythagorean, the(D, ) is pythagorean.

(2) (D, -) is pythagorean and N is strongly anisotropic if and only iesvweakly
isotropic hermitian form ovefD, -) is isotropic and is of dimension at least two.

(3) (D, -) is pythagorean and N is strongly anisotropic if and only {f/-) = 0.

(Note that N is strongly anisotropic if and onlyfifx N is anisotropic for allf € N if

and only if every sum of nonzero hermitian squares is nonzero

Proof. (1) Follows from a computation with the norm forshof D.

(2) Leth = (a,...,a,)- be a hermitian form over, —). Note thata,,...,a, €
Sym(D, -) = F. Assume thaf x his isotropic for some positive integér Then there
exist{ vectors €1, . .., Xin), - - -» (Xe1, - . ., Xen) in D7, not all zero, such that

a(XiaXay + -+ + XeaXer) + -+ - + @a(XinXan + - -+ + XenXen) = 0.
Thus, by the hypotheses oD,(-) there exisy;, ..., Yy, € D, not all zero, such that

YY1+ + aynyn = 0,
i.e.,his isotropic. Note thah > 2 sinceD is a division algebra.

Conversely, letr = Xx+ yywith X,y € D* and note thatr € F. Then the hermitian
form (1,1, —a, —a)_ = 2x (1, —a)_ is isotropic. By the assumption the forfh, —a)_
is isotropic, so that there existz& D* such thatr = zz Note thatw # 0 sinceD is a
division algebra. Furthermore, the strong anisotropi déllows at once.

(3) Assume thatD, -) is pythagorean and thét is strongly anisotropic. Lét be
a torsion hermitian form ovei, —). Since the torsion iW(D, —) is 2-primary there
exists a minimal positive integéisuch that 2<h is hyperbolic. Letf be an anisotropic
hermitian form which is in the Witt class &fin W(D, -). Then 2 x f is hyperbolic,
and thus in particular isotropic, which implies tHas isotropic by (2), a contradiction.

Conversely, assume thag(D, -) = 0. LetX,, ..., X, € D* and assume for the sake
of contradiction thatN(x,) + --- + N(X,) = 0. Letk be an integer such that 2 n.
Then X x (1)_ is isotropic, and so the quadratic fomh® (2¢ x (1)) is isotropic and
thus hyperbolic since it is a Pfister form. By a theorem of Baoa [J] the hermitian
form 2 x (1)_ is hyperbolic. SincéV,(D,-) = 0 we obtain tha{1)_ is hyperbolic,
which is impossible.

Now leta = Xx + yywith x,y € D* and note thatr € F*. Then the hermitian form
(1,1, —a,—a)_ is isotropic. Hence the quadratic foth® (1, 1, —a, —a) is isotropic,
and thus hyperbolic since it is a Pfister form. But this implibat 2x (1, —a)_ =
(1,1, —a,—a)_ is hyperbolic by Jacobson’s theorem. TRas—a)_ is hyperbolic by
our assumption. Thereforeis a norm. n

Remark 6.2. The converse of Propositiéon 6.1(1) is not true. For example, Q is
not pythagorean, but{(, —1),, —) is pythagorean since every sum of four squares in
Q is again a square iQ.

Proposition 6.3. Let F be a formally real field. Consider Hamilton’s quatemial-
gebraH = (-1, -1)r equipped with the orthogonal involutighfrom Examplé& ZX®).
Then:
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(1) W(H, ¢) = Wi(H, 9) # 0.
(2) If F is real closed, thelsym(H, ) = (H, #)? and(H, 9) is pythagorean.

Proof. (1) Leth € W(H, ). Since Nil{H, ) = Xg we have that signh = 0 for all
P € Xg. Thushis a torsion form by Pfister’s local-global principle (cf. iRark[3.9).
HenceW,(H, ) = W(H, ) # O.

(2) Letup = ag + yo] + dok € Sym(H, ). Foru = a + Bi + yj + 6k € H we have

Hu)u = (@? + B — 72 = 6%) + 2(ay + BS) ] + 2(-By + ad)k.

We will show that the equatiofi((u)u = up has a solutiond, 3,7y, 6) # (0,0,0,0). Let
v = 0. An easy computation shows thfu)u = ug if and only if 206 = 69, 285 = yo
and

1
6% + @gd® — Z(ag +v3) = 0.

The last equation is quadraticdf with discriminantA = a3 + 63 + y3. SinceF is real
closed (and thus pythagorean)s a square. Let be the positive square root af
Then

—Qp &

2
SinceA > @3, we haves > ap and so €ap + €)/2 > 0. Thus V(-ag + €)/2 exists,
sinceF is real closed.

Finally, (H, 9) is pythagorean sincg(H, 1) € Sym(, ). o

This proposition shows that already for algebras with iatioh over a real closed
base field, ‘pythagorean’ does not imply ‘torsion-free Witbup’. The following two
propositions describe examples which show that ‘torsree-\Witt group’ does not
imply ‘pythagorean’ either.

Proposition 6.4. Let F = R(X)(Y)(2)(w) be the iterated Laurent series field in the
unknowns xy, z, w over the field of real numbels Consider the quaternion algebras
D; = (X, ¥)r and D, = (z W) and the biquaternion algebra B D; ® D,. For ¢ =
1,2, let{l,i,, j., k:} be the usual F-basis for Land leto, be the orthogonal involution
on D, that sends,ito —i, and that fixes the other basis elements. ket o1, ® o, be
the resulting orthogonal involution on D. Then:

(1) D is a division algebra.

(2) W(D, o) = 0.

(3) (D, o) is not pythagorean.

6% =

Proof. (1) Letv be the standardx(y, z, w)-adic valuation orF (see for instance [W,
§3]). Note thatF is Henselian with respect to An application of Springer’s theorem
shows that the Albert fornix, y, —xy, —z, —w, zw) of D is anisotropic (we obtain six
residue forms of dimension 1 ov&; that are necessarily isotropic). Henbeis a
division algebra, cf.[[Lam, Chap. Ill, Thm. 4.8].

(2) SinceF is Henselian, the valuationextends uniquely to a valuation @ (see
[Mo]} Thm. 2]), which we also denote by We now claim that the residue division
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algebraD is isomorphic tR. The proof of this claim goes as follows: Since cirgré&

0, the division algebra®; and D, are tame (in the sense of [JW6]). By [JW,
Corollary 6.7] we havd'p € I'p, + I'p, (this sum takes place in the divisible closure
of ['r). We first computdp,. Sincei? = x andv(x) = (1,0,0,0) we havev(i;) =
(1/2,0,0,0). Similarlyv(j1) = (0,1/2,0,0) andv(k;) = (1/2,1/2,0,0). Lety, be the
guaternion conjugation oD;. Sincev extends uniquely fronf to D; andvo y; is a
valuation onD; we havev(a) = v o y,(a) for everya € D;. In particularv(y,(a)a) =
2v(a). If we writea = ag + aui1 + a2j1 + agky We obtainyi(a)a = a3 — xaf — ya + Xyas.
Since the four terms in this sum havdtdrent valuation we get

1 .
v(a) = > min{eg0, £1V(X), £2V(Y), £3V(XY)}

_ % minize0, £1(L, 0,0, 0), £5(0, 1, 0, 0), &5(L, 1, 0, 0)},

whereg; = 0 if & = 0, and 1 otherwise (for = 0,..., 3; this is to account for the
presense or absencedy.

This yieldsI'p, = $Zx3ZxZxZ. A similar argument shows thllb, = ZXZx 3Zx
3Z. Sincel'p C I'p, + I'p, we getl’p = 3(Z x Z X Z x Z). In particular [ : T'e] = 16
and by DraxI’s “Ostrowski Theorem” (see [JW, Equation 1.2J¢ obtain D : F] = 1,
i.e. D = F = R. This proves the claim.

Using now thatW;(R) = 0 and alsoW_;(R) = 0O, [Lar, Theorem 3.7] implies that
W(D, o) = 0.

(3) Consider the sum of two hermitian squares

a:a(j1®j2+1®1)(j1®j2+1®1)+o-(i1®j2)(i1®j2)
=(1® 2+ 101 - (i1 ® j2)?

in (D,o). We will show thata is not a hermitian square irD(o) by means of a
signature computation. L& € Xg be the ordering for whicl,y, z w >p 0 and letFp
be the real closure df atP. Then

D ®r Fp = My(Fp).

If awere a hermitian square, then the hermitian fota}s and(1),. over ©, ") would
be isometric. We will shortly see, however, that Si¢a),, = +4, while sigr§(1),, = 0.
Thus the forms are not isometric andais not a hermitian square.

In order to compute sigi{a),, we follow the method of Example_3.4. The algebra
D is generated by the basictensarg 1, j; ® 1, 1® i, and 1® j,. We extend scalars
to the real closure df atP, D — D ® Fp, and then apply the splitting isomorphism

ép  (D®r Fp,o®idr,) — (Ma(Fop), ad,,)
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induced by the algebra isomorphisms

ne : Dy ® Fp — My(Fp)
1 ol

|[®1b—)[0 1

for £ = 1, 2. A straightforward computation shows that
100

012

ép(@a®1l) = 0 2 1

2 00 1

Sinceo ® idg, is an orthogonal involutionpp is a quadratic form oveFp. Let ®p
denote the Gram matrix @fp. Sinceép is an isomorphism of algebras with involution
we have that

épo (0 ®idr,) = ad,, o &p,
from which it follows (by easy, but tedious computationsjtttve may take

0 0 01
oeaf0 0 2
1 00
Since®p = ®;! we have
2 0 0 1
dlép(a®l) = + 8 i % ,
1 00 2

from which it follows thatyp ~ +(1,1, 1, 1). We conclude that sigra), = +4.
On the other hand, sinas is clearly hyperbolic, it follows from Lemmia 3.6 that

Signg(1), = signs gp = 0. n

Proposition 6.5. We use the same notation as in the previous propositionpéexaat
we leto = 01 ® y,, wherey, denotes quaternion conjugation on,[x0 thato is a
symplectic involution on D. Then:

(1) D is a division algebra.
(2) W(D, o) =0.
(3) (D, o) is not pythagorean.
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Proof. (1) & (2): identical to the proof of Propositidn 6.4(1) & (2).
(3) The proof is similar to the proof of Proposition 6.4(3).eWXxplain the main
differences. Consider the sum of three hermitian squares

a=0(j191+1®1)(j1®1+1®1)+ 20(i1®i)(I1 ®2)
=(j1®1+1® 1)+ 2(i1 ®iy)*
in (D, o). Let P € Xg be the ordering for whicl,y >p 0 andz, w <p 0. Then
D ® Fp = (D1 ®F D) ® Fp = My(Fp) ®¢, Hp = My(Hp).

Letn, be as before and leb be the isomorphis®, ®¢ Fp = Hp defined by letting
n2(i®1) =1andny(j.® 1) = j. Letép be the induced isomorphism

(D & Fp, o ®idr,) — (Mo(Hp), ad,,).
This time the formpp is hermitian overlflp, —) and a computation shows that we may

take®p = + [2 é] . Another computation shows thgi(a® 1) = [g (2)] Hence
_ 20
(DPlfP(a® 1) == [O 2
from which it follows that sigp(a),, = +2. Since again sigi{1),. = 0 it follows thata
cannot be hermitian square. [
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