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1. Introduction

We shall present here a new proof of the index lheorgm for.elliptic
operators hased on the asymptotics of the heat equation. Since this proofl
has evolved. through various contribulions, over a period of years, it
seems appropriate to begin with a brief historical account.

The index theorem was first proved in Atiyah-Singer [ S] by plobal
topological methods  notably using K-theory and cobordivn In then
subsequent improved proof [ 1] the cobordism wis chimmated bot the
methods remamed topological. An alternative analytic approach wirs
proposed in Atiyah-Bott [6] based on the Zeta Tunction (g N g0
(7 denoting cigenvalues of an operator). The rdea was that the index
could be expressed as the difference of two such Zeta functions, while on
the other hand J(0) could be evaluated as an expheit integral. Zeta
functions of this type had been intreduced and studied for the Laplace-
Beltrami operator by Minakshisundaram and Pleijel [19] many years
carlier and their results were extended by Seeley [23] to the general
case. The trouble with this method was that the explicit integral answer
obtained for the index was extremely complicated. Notably it involved
many derivatives of the coefficients of the original operator. whereas the
formula obtained by topological methods could be written using two
derivatives. The algebraic problems involved in this approach therefore
seemed formidable.

Singer and McKean in [[8] looked at this problem for the Euler-
characteristic case. namely for the operator d+d*: even forms — odd
forms on a Riemannian manifold. Actually they used the heat equation
tut as is well-known (and explained in Section 4) this is quite equivalent
to the Zeta-function approach. They observed that their integrand
would have to be expressed in terms of the Riemannian curvature and
its covariant derivatives. and in low dimensions they showed how one
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could use orthogonal symmetry ta cut down the number of possible
expressions. They raised the question whether. by some remarkable
cancellations, the integrand » (given by the heat equation method)
might not after all turn out to coincide with the (normalized) Gauss
curvature K. All one knew topologically was that 2 and K had the same
total integral and it would be a remarkable and unexpected piece of good
fortune to find =K locally.

It was Patodiin [21] who showed that Singer and McKean's optimism
was justified and that remarkable canccllations, climinating higher
derivatives. did indeed take place. Now the Euler-characteristic is rather
elementary from the topological standpoint and it was therefore highly
significant when Patodi showed in [22] that his methods also extended
to give the Riemann-Roch theorem for Kihler manifolds.

The one drawback to Patodi’s methods was the complicated algebraic
nature of the cancellation process. An alternative indirect approach was
shortly afterwards discovered by Gilkey [[5] who showed that the
tiresome higher derivatives could be eliminated on a priori grounds.
Roughly speaking. he showed that any integrand having -the general
qualitative properties of » could not involve higher derivatives—and
after that it was easily identified with K. Gitkey also extended his argu-
ment to the operator on an oriented 4 k-dimensional manifold whose
index gives the Hirzebruch signature. In fact, the argument turned out
to be easier in this case and it leads to an elegant characterization of the
Pontrjagin forms (see Section 2).

Unfortunately, despite the simpiicity of Gilkey's resull, the proofs
were long and difficult. Part of the explanation for these difficuities was
that Gilkey approached the problem from the point of view of general
differential operators, rather than through Riemannian geometry, and
that consequently he made no use of the tensor calculus.

The main technical contribution in our paper is to present a simple
proof of Gilkey's theorem. Essentially we shall show that it follows
directly from the central theorem of invariant theory for the orthogonal
group and the Bianchi identities for the Riemannian curvature. This is
very much in the spirit of the Singer-McKean approach. In fact. with
hindsight, it seems that Singer and McKean would inevitably have been
led to the Gilkey theorem had they been dealing with the signature
rather than the Euler-characteristic.

After establishing the Gilkey theorem in Section 2 we proceed to
generalize it in Section 3 by introducing an auxiliary vector bundle. With
this geheralization we can then treat the index theorem for a large class of
“classical operators ", including the Riemann-Roch Theorem [or Kiihler
manifolds. This is done in Section 6 after the basic case of the Hirzebruch
signature theorem has been explained in Section §.

Having treated the classical operators by direct analvsis we can now
switch back to topological methods to deduce the general index theorem.
The point is that the classicai operators are sufficiently numerous to
generate. in a certain topological sense. all elliptic operators. This 1s
briefly explained in the {inal section.

In essence therefore our new proof of the index theorem follows the
lines of the first proof in [5]. except that cobordism has been replaced by
Jocal differential geometry. Instead of characterizing Pontrjagin numbers
as global cobordism invariants we characterize Pontriagin forms as local
Riemannian invariants (of a certain type). Just as in [5] this proof has the
inhetent defect of not generalizing to the cases given in [3] and [4]
(where. for instance. the index may be an integer mod 2 rather than a real
number). Nor is it really any shorter than the proof in [1] since it uses
more analysis. more differential geometry and.no less topology. On the
other hand. for the classical operators associated with Riemannian
structures it is more direct and more explicit: in particular. the local
version of the signature theorem and its generalizations is of considerabie
intrinsic interest and is likely to lead to further developments.

We have written the paper in a somewhat expository style so that
all the ingredients in the proofl are clearly displayed. Thus in Section 4
we try to explain the Seeley formulae for {(0) without assuming too much
expertise on the part of the reader. Also in two Appendices we prove the
hasic facts about Riemannian invariants —including a novel account of
the First Main Theorem for orthogonal invariants: as mentioned earlier
these are the essential tools in our proof of the Gilkey theorem.

Finally we should acknowledge that our whole thinking on these
questions was greatly stimulated and influenced by the recent work of
GelTand (see [14]) on Lie algebra cohomology. There are close and
suggestive links between his results and ours.

For an expanded treatment of the Singer-McKean paper. following
slightly different lines from our presentation. the reader may consult the
book by Berger [10].

2. On Characteristic Classes of Geometric Structures

Our aim in this section will be Gilkey's characterization of the
Pontrjagin classes as the only form-valued invariants of Riemannian
structures satisfying a rationality and homogeneity condition. As we
have found this subject to be confusing to ourselves—and. in fact. to
most people — we will formulate it here in possibly greater circumspection
than is our wont.

Technically. a “g-form valued invariant of Riemannian structures”
is a function
(2.1 o: R-- 49
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which assigns to each manifold" M and Riemann structure g on M.
a g-form wm(g)=m(M,g) on M which is “natural™ or “local™ in the
following sense: given

(2.2) i MM

where f is a diffeomorphism of M’ onto an open submanifold of M. and a
Riemannian structure g on M. then o must satisfy the equation

(2.3) olf*g)=1*w(g).

According to this definition o is then clearly locally defined and further
invariant under diffeomorphisms. Technically, (2.2) and (2.3) precisely

express the fact that m be a natural transformation from the contravariant
functor

R: M -» Riemann structures on M

to the contravariant functor
A% M —sg-forms on M

over the category .# whose objects are manifolds M, and whose mor-
phisms are maps f: M'—»> M as in (2.2). An “invariant™ o of this type is
called homogencous of weight k if for every JeR*, A1>0.

(2.4) w (A2 g)=*w(g),

and it 1s called regular (rational) provided the following conditions hold:

The components of m(g) — relative to any local coordinate system x —
are given by polynomials in:

a) the components g;; of g relative to x:
_ o a
b) a finite number of derivatives e gi; of the g;;, and

c) the inverse of det g =det(g;)).

) By components relative to x we, of course, mean the classical
concept of these components. Thus gi;=gl(C/Cx;. ¢/éx;) and if o had
values in, say, the one-forms, then the components of w relative to x
would be functions {; such that m(g)=3 &;dx/. and the rationality of w
would mean that

¢
¢i=F (gu§ o B [det(g,-j)]“)

where the F.are certain polynomials with real coefficients in the variables
indicated.

' All geometric objects will be assumed to be smooth. that is, C~.

2) To explain why the inverse of det(g;;) appears in this definition,
note that the Riemann structures on a given vector space }"are naturally
identified with the homogeneous space

(2.5 GL(n.RVOM n=dimV

which. in turn. can be identified with the orbit Q of a fixed positive
definite quadratic form geS, (V™).

Now GL(n, R) and O{n) are algebraic groups so that it is natural
to define the regular rational functions on GL(n. R)/O{n) as the subring
of reguLar rational functions on GL(n, R)— which is clearly

R [a,;: (det a;)71].

a;; being the usual coordinates in GL(n. R)—invariant under the action
of O(n). .

On the other hand @ carries a natural algebraic structure as one
component of the non-singular symmetric matrices g;;. SO that. 'its
coordinate ring is naturally R [g;;.(det g‘-j)"]. Now it is a non-trivial
but true f{act that under the isomorphism

GL(n.RYO(n)=Q

these coordinate rings correspond (see Appendix I).

In short. there is a natural notion of regularity for v at every point,
and our definition simply demands that w be 1) smooth in its dependence
on M and ii) regular at every point of M.

3) An intrinsic formulation of regularity takes the foliowing form.
Let M — T,(M) be the functor M — Tensors on M of a given type p.
We then write J,, T, for the functor M — m-jets of Tensors of type p.
and denote by ju: T J T,

the natural transformation which assigns to an element in T (M) its

m-jetin J, T, M) With this anderitood o sepalar of semphtbfand oniy
~ ” " ) ' X ;

if it is induced from a linear point transformaton

k .
(2.6) ®J, T2 A7@det?’, det=A"(M). n=dimM

by the formula: .

V= et g1

where ¢ denotes the composition:

ko k
(2.8) R T -8m ®@J(T) 2> A7® det®",

2 That means linear over the ring .# (M) of smooth [unctions on M.
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Here T denotes the tensors of type (2,0) and i the inclusion of the positive
definite forms into all the forms.

With these preliminaries out of the way our version of Gilkey's
theorem takes the following form:

Theorem I (Gilkey ). The only regular natural transformations
o R A9

of weight 20, have values in the ring Pont(g) generated by the Pontrjagin
Sorms of g, and these have weight Q.

This beautiful characterization of the ring Pont(g). generated by the
Pontrjagin classes of a Riemannian structure actually follows quite
simply from two classical results, which immediately reduce the possible
@'s to certain elementary functions of the curvature R of G. The full
symmetries of R then yield the rest. Indeed arguments of this type are
given in [18]. but somehow just fall short of the Gilkey result. For
completeness sake we will. however, start from scratch and sketch in
those points of the classical reduction which are not readily found in the
literature.

Consider then the value of an “invariant ™ of our type m, at a point
peM. We may compute m(g: p) in any coordinate system and therefore.
in particular. in a geodesic coordinate system centered at p. Let us denote
these coordinates by x(p,g) and note that they are wnique up to an
orthogonal transformation. We next study the Taylor expansion of the
components g,; of g relative to x(p, g) about the origin.

The first classical result which we need is the following one:
Proposition (2.11). The Taylor expansion of g about p
g:go-{-g”)+g‘2’+

is given by certain universal but not unique polyvnomials g™ (x. R) in the
x;(p.g) and the components relative to x(p, g) of the currature tensor Ry
and its covariant derivatives. Explicitly this expansion starts as follows:

(2.12) ij=05+2/3) X" X" Ry, i+
uv

so that

(2.13) det {g;;(p)} = 1.

For a proof see Appendix II.

It now fellows from the regularity of « that m(p. g) is in fact given by

a certain universal polynomial @, in the values of the curvature and its
covariant derivatives at p:

(2.14) w(p.g)=d, (R, R,,...RW).

B UHIT P LU Ui aiil Ll ey e v

Next consider the behavior of this polynomial under .the action of
O(n). the orthogonal group of dim n=dim M. which mediates between
the different geodesic coordinates of g centered at p. The components of

4

R transform like the 4-th power ® V of the standard O(n) module V. and

A4k
those of the k-th covariant derivative of R® as those of ® V. We may,
therefore. interpret ¢, as a polynomial function:

k
A _ q1 . W= ( j+4 V)
(2.15) . O W--» A%V, with jE:BO ®
for some k. . |
At this stage one might be tempted to argue that ¢, has to be an
equivariant polynomial map relative to the action of 0.(n). because ofthel
invariance of m. However, it is more correct to average the polynomia

map ., over O(n) thereby obtaining an equivariant map
(2.16) 0, W—o ATV

which. however, has to agree with ¢, on the vector R,(g). R (g).... etc.
That is. one also has the identity:

(2.17) W (p.8)= @, (R, Ry R,

()~
We argue similarly for each homogeneous component ¢, of ¢, so th‘at
finally w(p.g) becomes expressed as a sum of homogeneous alnd'eqtlm-
¢ : als i : low lete polarization
ariant polynomials in the R,. RF:... etc. Now by comp p a auon
these polynomials in turn are induced from certain equivariant ¢

multilinear maps .
(2.18) @, @V ATV,

At this point we invoke the “Fundamental Theorern of Invarianc.e
Theory for the Orthogonal Group™ as started in Hermann Weyl's
beautiful book on this subject [24]. For an alternative proof see Appen-

dix L. ] ] k i
Conceptually this theorem asserts that all invariants of ® V. as a

O (n)-module. are built up out of the inner product ( . yon ¥
More precisely. let us call a linear map

2k
¢ ®V—-R
an elementary invariant if it is of the form
(2.19) Pty ® - ® ) =0y 1) (3. U)o (U2x—1s L2n)

or obtained from such a ¢ by first performing a permutation on the v;.
Then the fundamental basis theorem for the invanants of O(n) states that
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Theorem. The linear space

k
Hom(,,,(® V-IR)
k
of O(n)-linear maps from @ V to R is spanned by the elementary invariants.
Thus. in particular. this space is non-trivial only for k even.

Remarks. 1) This theorem is by no means true if O(n) is replaced by
SO{n). the “determinant™ then:appears as a new invariant of a quite
different type. and makes it impossible directly to extend the Gilkey
theorem for the category of oriented Riemann manifolds.

2) In terms of “components™ this theorem asserts that every incariant
of O(n)is given by a complete contraction, That is, if {¢;} is an orthonormal
k

basis for V. and ¢, ., denotes the components of a point in ® V relative
to the basis {¢, ®e,, ® - ®e,}. then our elementary ¢ of (2.19) is
simply given by: '

(k=2r).

: -
P Sy me éalztzzzz...a,ar

Here. as in the sequel. we adopt the classical convention that repeated
indices are to be summed.

An easy variant of this theorem. which we leave to the reader. is now
given by the following:

k
Corollary. The space Homg,,, (® V. A* V), of equivariant maps from
k
® V to AT V. is non-trivial only if k—gq is even. Further, when k—q=2r,

k
then Homy,, (® V. AT V) is spanned by “elementary maps™ ¢ which
contract 2r indices and alternate the remaining q indices. Thus up to a
permutation such a ¢ takes the form:

(220) (D 5_11...@ - 5.1. [TEPY PHAR. . W ¢ SYRPETNE )
with the bracket denoting alternation of the indices enclosed in it.

We now return to the proof of the theorem. For this purpose let us
write R,, a=(.....2,) for the components of the (t—4)-th covariant
derivative of the curvature R;;,; and define an elementary monomial of
degree r in R to be an expression of the form

(2.21) ) m(R)=Y* R, Rpa... R,

where the sum goes over alternation of precisely q indices, and contraction
of the remaining ones. Note that this is a regular invariant of the metric
since. in general coordinates, it can be expressed in terms of the R, and
the g;;, while the R, themselves are regular (tensorial) invariants of the
metric.
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Thus m(R) describes the components of a g-form. and il we combine
the corollary above with the decomposition of w(g) into a sum of homo-
geneous equivariant polynomials ¢%, in R, R, etc. we obtain the following
essentially classical lemma:

Lemma 1. Erery invariant « of the type wunder consideration is given
by a linear combination of elementary monomials m(R):

‘ (@)=Y a,mR)  a,eR.

At this stage then, the Gilkey theorem amounts to an identification

of the monomials of non-negative weight.

We start with the following quite elementary. )

Lemma 2. The weight of any R, is 2 while the weight of an elementary
monomial

m(R)=3F R, R,:..R,
is 2r4q—Y t;. where t; is the number of indices in .

Proof, Recall that g;; has weight 2 and g” therefore weight —2. The
classical expression for R}, s, 4, is then easily seen to be of weight zero,
whence Rijir . p =8 Riip..p is of weight 2. A profounder reason
for the weightlessness of R}, g, is that this tensor field is dependent
only on the covariant derivative I, defined by g. and F, is. of course.
independent of constant scalar changes in F: V= F,2,. In any case then,
this yields the first assertion. To obtain the second one observe that
before contraction the expression R, R,....R, has weight 2r. Hence,
after (3 1;—¢)/2 contractions. each of which invoives a raising of an
index — that is. one g'/ —m(R) ends up with a weight of

2r—({Tti—q}/2)x2=2r+q—y,t;, QED.

In the sequel it will be best to rewrite this weight in the folloxying
form.Sett;=4 +¢.so that ¢ =Z ¢; denotes the total number of “covariant
derivatives " in m(R). Thus one obtains the formula:

(222) UUm(R)=3 ¥R, R,:...R,.then g=2r+¢+weight m(R).

In short. for fixed r the larger the weight. the more indices have to be
alternated in m(R). When combined with the classical symmetries for R
this bound will be seen to imply the desired resuit.

Recall first of all that the symmetries of the Riemannian curvature R

are given by:

(2.23) Rijil:()' Rijkirzo

and

(2.24) Rijwi=—Rjini- Rijklz_Rij'k'
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Here R;;;, denotes the usual components of R in any coordinate system
(see [13]. § 20. 23, for instance) and the bow denotes the cyclic sum over
the indices indicated. For future reference we gather together the follow-
ing direct consequences of these identities which we leave to the reader:

Lemma. As a consequence of (2.23)-(2.24). the Ry;y, also satisfy the
identities

(2.25) Rijii= Ry,
(2.26) Riini=1 Riiju-
(2.27)  Alternation of Ry, or Ry, over any 3 indices yields zero.

Because the covariant derivative on tensors commutes with the na-
tural action of the permutation group on these tensors, these identities

persist also after an arbitrary number of covariant derivatives, so that
(2.27) implies:

{2.28)  Alternation of R, over any 3 amongst the first 4 or 5 indices gives 0.

Now then consider the implications of (2.28) on an elementary
monomial m(R) of weight >0. For m(R) not to vanish we can alternate
at most 2 of the 4 first indices in any of the r factors occurring in m(R).
The total number of indices which can be alternated is therefore only
2r+e. If the weight m(R)>0. Eq.(2.22) shows that this condition will
have to be violated at least once, whence m(R}=0. Thus there are no
non-trivial monomials of weight >0, yielding the easier part of Gilkey’s
theorem.

Next consider the case of weight zero. Then. of course. g=2r+=. s0
that in the above argument we have precisely “enough room ™ to alternate
g indices. But to avoid zero — via the first part of (2.28) — we now have to
alternate over all indices except 2 amongst the first 4 in every factor of
m(R). It follows that if £>0—i.e.. some covariant derivative occurs
amongst the indices —then m(R) will have to vanish by the second part
of (2.28).

At this stage then, we have the crucial fact that

(2.29) weight m(R)=0. m(R)#0 = m(R) contains no covariant deriv-
atives of R.

[t remains to show that all of these weightiess monomials in R,
lie in Pont(g)."

Recall then that generators for this ring can be taken to be the forms
{2.30) trace R¥=% R, ,, R ..R R

igiv..* [P E LA I PO

where alternation is taken over all the lower indices denoted by dots.
Now our surviving m(R)'s certainly have the property that in each factor
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Rijxi precisely pwo indices are involved in contraction and the remaining
two in alternation. Hence it only remains to be seen that the contracting
indices can always be chosen to be the first two. Let us. therefore. cali
m(R) proper if in all of its factors the contracting indices are the first two.
Proper monomials are, up to sign. clearly products of the forms trace
R™ and hence in Pont(g). Suppose now that m{R) is not proper. so that
sav in the first factor. the contracting indices are not the first two. If
th;:y are the Yast two we can use (2.25) to interchange the last two with the
first two. making the first factor proper. Neglecting signs and using
(2.24) it remains to discuss the case when R;;,, has contracting indices i
and I. Then. of course, jk have to be alternated. On the other hand. by
(2.26) we have the identity:

i
R.'Uku:2 Ril{jk]

which again allows us to replace the contracting indices with the first
two. Straightening out each factor at a time in this manner, we see that
m(R) can be put in proper form. and this then completes the proof of the
Gilkey theorem.

3. A Generalization

In this section we will extend Theorem 1 to joint invariants . of a
Riemann structure g on M and Hermitian bundle ¢ over M.

Here the term “Hermitian bundle™ and joint invariant will be used
in the following technical sense:

Definition. By a Hermitian bundle over M. we mean a triple &=
(Ek..hé. D,) consisting of a complex vector bundle E over M. togcther
with a Hermitian structure s, on E. and a connection D, on E which

preserves . ‘ . _

With this understood a joint invariant will be a function ® which
assigns to every Riemann structure g in M. and every Hermitian bundle
& over M, a g-form w(g. Se A4 (M) such that if

M — M

is any map in the category . /. then
(3.0 fro(@d=w(f"tg 1.

These joint invariants are now called homogeneous of mixed weight
(k.hif
(3.2) oAtg it H= o &) Ap>0
where 1 & denotes the bundle E, with connection D,. but with Hermitian
form p? hy

(3.3 hyoe=pu?hy.
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Nole that D, preserves the Hermitian structure j® h;. so that p* & is
indeed a Hermitian bundle in our sense. (

' Finally a joint invariant is called regular if its local components are
given by universal polynomials in the variables:
(3.4) g;;. (det g) ™", by, (dethy) ™', IG5,
and their derivatives.

Here gijdx‘®dx-i describes the metric relative to local coordinates
x near pe M, while hi;;=h,(s;, 5)) describes the Hermitian structure relative
to a frame s={s;} for E near p and j"k describes the connection matrix
of D, relative to the frame s:

(3.5) D, 5= ﬂdx"@sr
kj

Now then. the generalization of Theorem I which we need is given by the
following

Theorem I1. A regular joint invariant w(g. &) of mixed weight (k, 1)
z'artz.she:s idemi'cally if k>0. or [£0, while if k=1=0 then (g, &) has
values in the ring generated by the Chern-forms of & and the I’ont-rjagin
forms of g: o )
(36) ol 5)2{0 ilk>0orl+0

e Pont(z)® Chern(&)  k=I1=0.

The proof of this theorem proceeds in strict analogy to the proof of
Theorem 1. We start with a classical analogue of (2.11). For this purpose
fet us call a framing s of E near p, synchronous to the coordinates x,
centereq at p.if s is obtained from an orthonormal frame at p. by paraliel
translation along the radial lines (relative to x. of course) eﬁmnating
from p. Thus given x centered at p, two synchronous frames s and s for
x are then related by unitary transformations. Note also that because
Dy preserves hy, a synchronous frame is orthonormal.

In this terminology the analogue of (2.11) takes the form:
Proposition (3.7). Let I. K denote the components of the connection D,
. ) o*
and the curvature of Dy, relative to (x.s) with s a synchronous frame to x
at p. »
! - . L
Then the Taylor series for I at p is given by certain universal (but not

unique!) polynomials in K and its derivatives at p. This expansion starts
with:

(38) jik—"—'le K;k1+
so that in particular T (p)=0
For a proof see Appendix 1.
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Now i M is also equipped with a Riemannian metric g, and we choose
the coordinates x in Proposition (3.7) to be geodesic. then (3.8) and (2.11)
combine to vield the following result:

Proposition (3.9). Suppose that in Proposition (3.7) the coordinates are
chosen geodesic relative to g. Then I” and its derivatives at p are expressible
by universal polynomials in the components of K. the Riemann tensor R
of g. and their covariant derivatives at p.

Here the “covariant derivatives of K are. of course. taken relative L0

v
the connection induced on the vector bundles ® T*® E® E* by the
Levi-Civita connection F, on T and the given connection D, on E.

The proposition is now clear. as these covariant derivatives are
related to the ordinary derivatives by polynomial expressions in the gi;.
and these — by (2.11)—are in turn expressible in terms of the curvature
R of g and its covariant derivatives.

With the aid of Proposition (3.9). one now argues just as before that
every joint invariant of our type w(g. &) must be a linear combination of
elementary monomial invariants m(R: K).whose valueat pe M isgivenby:

(3.10) m(R. K, =35 Ry, - Ry Kl Kil,

where as before, the Ry and K{ denote the components of the appropriate
covariant derivative of R and K relative to a pair (x.s) of geodesic cOOT-
dinates x at p and a synchronous frame s for E. Furthermore, the sum
extends over g-alternations of the Greek indices. contraction of the
remaining Greek indices and contraction of all the upper Latin indices
with all the lower ones.

In extending our earlier argument leading from a general @ to a
linear combination of such elementary ones just one point has to be
clarified. Our coordinates are now fixed up to the action of U(m)x o(m-
U(m) acting on the orthonormal frame at p. O(n) on the geodesic coOr-
dinates x at p. Hence to get started one needs the analogue of the in-
variance theorem for this group. Now the G x H invariants of A®B
for finite dimensional G and H modules. 4 and B are given by the tensor
products of the G invariants of 4 and the H invariants of B:

(311) {A®B}GXH=AG®B”-

Hence we only need to understand the basic invariants for U{m) acting
on C-modules.

The fundamental theorem for this case is given by:

Theorem (3.12). Let W he the standard representation of Utmi on .
and denote by W* its dual module Hgm(“': Q). Then the C-module.

Hompm (@ WO W*: T)
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vdaniste f( = ‘P
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S alr "
with  a permutation of (1. ... r).

Equipped with this fact and (3.11) our earlier argument now extends

im i : i
mediately: Indeed. the components relative to (x, ) of the r-th covariant
r+2

derlvatlvue of K behgve as the components of ® V® (W® W*) which we

;10;{@ Igl,.,,. Hence, in constructing the elementary invariants the w. r and
. f indices have to be contracted separately, and all the w-indi

contracted with all the r-indices. ) =

The next step is to "
(3.10). P compute the weights of the elementary monomials

First of all notice that m(R, K)_ is i
. . K), is independent i
and hence is of weight zero in h,. ’ " of the metrie I

Under the change g+ 42 g. th i i
bcfore. by the change 1< g, the weight of m(R, K) is computed, as

(3.13) wiml=2s—2c¢c m=m(R K)

where ¢ denotes the number of Greek contractions.

o Now let ¢ denote ghe_totalpumber of covariant derivatives in m.
hen a count of Greek indices yields the equation g+2c=45+2t+¢ or

(3.14) q=2s+21+c+w(m).

To complete the argument we now need the identities on R together

with the following well-know
! the | - n consequence of the torsi
Levi-Civita connection. roionfreeness of the

Bianchi Identities. The components of K satisfy the identity
(3.15) Ky p..=0 J

vaf, i

fO“OT‘L]:s:l:] rel?tlon? ag?}irkpersist under covariant differentiation, and it
erefore that if KJ!; involves a covari ivati .
: ! P s a covariant derivative then -
tion over all Greek indices yields zero. " alterna

We will use this fact together with the first identity of (2.23): R}, =
;(1) sl:ogv that the number &4 of covariant derivatives among the Kﬁerms
de\:]sOt ehze;o.{ Indeed assume that #; >0, and that m=0. Also let ¢
e it € numt')e.r of covariant derivatives in the R-terms, so tha’tz
I;;r;,;)ergxf, énd }c(hynjg g correspondingly into qp+qx. with gx the total

of Greek indices involved in alternation ¢ :
reek amo

(3.15), m=%0 implies that ne the K- Nowty

(3.16) Gr<21+ey.
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On the other hand. using the first identity of {2.23) gives
(317 qr<2s+ig.

Hence we get the strict inequality:
g<2s+2t+e.

which is clearly incompatible with (3.14) when w2 0. 1t follows that
re=0and th4t o (m)=0. However, now one can eliminate the e; by our
previous argument using the second Bianchi identity R;H., =0. The same
argument also shows that one must have gx=21. 50 {hat contraction
can be taken to occur only among the first two R-indices. and such
expressions are then clearly In Pont(g)® Chern(S).

This then concludes the proof of Theorem 11. Note that it has the
following immediate and really quite plausible consequence:

Corollary to Theorem I1. Any regular incariant from Hermitian
bundles & over M to AT(M) is given by an element of Chern(<).

Proof. Any such an o, when composed with the forgetful functor
(concerning the Riemann structure) induces a joint regular invariant
of weight 0 in g. Hence m(de Pont(g)® Chern (). but is clearly inde-

pendent of the Riemannian structure and hence is in Chern{&).

Remark. In all the preceding discussion the Hermitian metric g
plays a very minor role. In fact the same results still hold (with essentially
the same proofs) if we consider simply bundles E with a linear connec-
tion. The Corollary above then takes a somewhat simpler and more
natural form. asserting that the Chern forms are the only regular invariants
of a “connected vector bundie™

4. On the Asymptotic Measures of the Heat Equation

In the previous sections we characterized certain form-valued
invariants of geometric objects on a manifold. On the other hand.
in the theory of a non-negative elliptic differential operator A on M
one encounters a countable sequence 1,(4) of such invariants. but
taking values in the smooth measures on M. and the purpose of this
section is to recall first of all. how these (s fit into the index question
and sccond. to explain the general algorithm which describes them in
terms of the coefficients of 4. This rather subtle recipe is due to Seeley [23]
and generalizes an earlier formula of Minakshisundaram-Pleijel (9]
treating the Laplacian of a Riemann structure on M. Of course. they
dealt with these matters before the advent of the powerful Pseudo-

differential operator calculus.

0 Imventiones math Vol 19
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We start by sketching in the basic facts concerning ellipticity, in a
form suitable for our later purposes, and also. hopefully, intelligible to
non experts. Suppose then that E and F are bundles over M, with

A: T(E)—T'(F)

adifferential operator of order < mbetween them. Givenalocal coordinate
system x=(x,...,x,), over U, we write x-¢ for the linear function
Y.x;&. and consider the operator obtained from A4 by conjugating it
with multiplication by the function ¢'***, £>0. From the product rule
it then follows easily that this operator has an expansion of the form:

(41) AE(U)EeNix{aoAOeixé’s:Ao+{:-—l /1I+"'+F"m'4m

where the A; are differential operators from E to F defined over U,
depending polynomially of degree i on the &'s. and whose highest term
involves no differentiation at all. Thus for all pe U,

4.2 Apn(&),eHom(E . F,).

Now A is called elliptic if 4,,(£} is invertible, for all real nonzero ¢,
and all coordinate charts U on M.

This notion can, of course. be expressed independently of coordinate
charts, so that it is sufficient to check it at every pe M for only one system
of coordinates. In fact A,, is seen to define a section

(4.4) a(A)el {S, T®Hom(E. F)},

where T is the tangent bundle and S,, denotes the m-th symetric power.
If we interpret I'(S,, T) as the polynomial functions on T* — the cotangent
bundle of M —then o(A4) may be interpreted as a polynomial section of
Hom(E, F)-lifted to T*, and ellipticity means that on the complement
of the zerosection of T*(M), o(A4) has values in the isomorphisms from E
to F. So interpreted g(A) is the highest order symbol of A.

In the theory of elliptic operators this nonsingularity of a(4) is
exploited first of all in the construction of a parametrix for 4. that is,
an operator

(4.5) _P: I(F)—T(E)

such that PA and AP both differ from the identity by smoothing operators
S, and S} respectively®:

PA=1-S;
AP=1-5,.

(4.6)

* A smoothing operator S is. of course, one given by a smooth kernel K in the form

SU)=[Kglx. v) U1 ldyi.

o g e 5

e

s s TS
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Indeed. the first step in the construction of such a P is to seek a F;.
which will have the desired property for sections c'ompactly supported
on the coordinate patch U. and for the construction of B one starts,
just as a good physicist would. by “formally nverting the operator
A (U) near £=0. That is. one inductively determines a formal power

£
series in &:
B.(U.x.&)= Y & By (lU.x. <)

kzm

4.7 ¥
with the B in I'{Hom(F. E) U} _ for each nonzero &—such that

1.

il

— A,,,) (&" B+ By )

4 14+-~+
an (A b

Thus the equations for B, ~ {A,} " (near £=0). start ofl with:
(4.9) A (x. &) Bulx. =1,
whence B, (x.&)=An(x.O7" Thereafter:
(4.10) A, 1o Bm+ Am By =0.

determines B,, . ; (x. & etc. Note. however. that this is a highly c'omplicated
procedure because the lower A's are di/_‘fbrgnrid operators. honethgless.
these equations determine the By U) explicitly in terms of the coeflicients
of A and their derivatives. Furthermore. the By are clearly homogeneous
of degree —k in the {'s. ‘ _ '
In terms of the B, (x.&)=B,(U.x.{). a local parametrix F- is easily

constructed: . . -
Given sel(E|U)*. let () be its Fourier transform relative to a

fixed trivialization of E{U:

(4.1 S = _(e““s(x)dx.
LY
and in terms of § define F--s by:

(4.12) Bos(x)= 3. [ @x(&) e Bylx. §3Dde.

k édm ‘('2—7{)7

Here ¢, (<) are suitable functions of ¢ which vanish near £=0.
and are | near . These functions serve to regularize the B (x. &) near
¢ =0 and also to stagger the entries of the B,’s into the S-integral.

4 I'(E) denotes sections with compact support.

hid
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The B,’s can now be combined by a partition {¢,} of unity via the
equation

(4.13) P=Y oy Ry

(where ;=1 on supp ¢y) to yield a global “ Parametrix ™ P for 4.

Once such a P has been constructed, the theory of elliptic operators
is essentially reduced to that of smoothing operators. and from that
theory one deduces the following basic propositions:

Theorem (E 1) (Finiteness). Suppose that A: I(Ey—I'(F) is an elliptic
operator over the compact manifold M, then both the kernel and cokernel
of A are finite dimensional. In particular the index of A is well-defined by

(4.14) index (4)=dim ker 4 —dim coker 4.

We next turn to the “Hodge theorem™ in this context. Suppose
then that E and F are given fixed Hermitian structures and that a volume
form is chosen on M. These data define a “global” Hermitian inner
product (s, s')g on I'(E) by:

(4.15) (s.5)g= | hg(s.s) volume.
M

Similarly, (s. s')r is defined on I'(F) and relative to these, 4 now has
a formal adjoint 4*, which is again a differential operator of order =m.
By the “Laplacian [J of A” one now means the operators on I'(E) and
I'(F) respectively given by:

(4.16) Oep=A* 4, p=AAx

Clearly, each of these operators is self-adjoint elliptic and =0.
From now on we exclude the trivial case m=0, so -4 will also be
elliptic.

Now for each ZeR we let I;(E) be the eigenspace of [Jg on I'(E)
associated to A:

I(Ey={sel(E)|OQgs=45s}.

and define I;(F) similarly. With this understood one has the

Thebrem (E 1) (Hodge Theorem). For all 2eR. I(E) is finite dimen-
sional. Further I,(E)=0 except for a discrete set of nonnegative A's and
this countable sequence of subspaces gives an orthogonal direct sum
decomposition of the Hilbert space L, (E) obtained from I'(E) by completion
relative to ( , )g. Thus:

(4.17) L,(E)=@® [;(E).
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Finally. relative to this decomposition we have the Hodge formulae:
(4.18) I (EY=Ker 4. I (Fy=Coker 4
while for every A>0
4.19) A T(E)Y—~T,(F) isan isomorphism.

Note‘,that (4.18) gives a new formula for the index of A:
(4.20) index (4)=dim I (E)—dim I (F).

and combined with (4.19) this n turn leads to many formulas for the
index of 4. Indeed. let ¢ (x) be any function on R. with @{0)=1. Then we
have

(4.21) index A=) ¢(4)dim LE)=Y @(A)dim [ (F).
A A

Provided only that these infinite sums converge.
Now in this context one has

Theorem (E I1I). (The asymptotic heat expansion.) [In the situation
described above. consider the operator ()= Tg: then the series

(4.22) h(D)=Y e 't dim [L(E)
A

converges for every t>0. Furthermore. near t =0. h(3) has an asvmptotic
expansion of the form:

(4.23) h()~ 3 AU keZ,

k

n

where m is the order of A. and n=dim M.

Finally, each U () is given as the integral rver M of a certain measure
1 () on M. canonically fashioned out of the coefficients of 5. Thus:

(4.24) U= [ (D).

M
Remarks. 1) First of all. this theorem. of course. also holds for. 0= :_],.
and. in fact. more generally. for any nonnegative self-adjoint differential
operator.
Next. observe that by (4.21). and (4.22):
index 4= h, (0 —h (O  forany t>0.

Hence. in conjunction with (4.23):

index 4= Up(Og)— Lo (T
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and so finally by (4.24):
(4.25) index A= _f to (O) — 1o (Tf)-
M

This is the expression for the index we have been heading for, and
which we will use later on. In one sense (4.25) solves the index probiem—
namely it gives a formula for the index in terms of an integral explicitly
made out of the coefficients of A and A*. On the other hand, the formula
for uo([Jg) will be seen in a moment to be so formidable that there is
little hope of interpreting these integrals directly in terms of the charac-
teristic classes of E. M, etc. To the two older authors, the beautiful
formula (4.25). therefore, seemed to be useless in this context until the
recent work of our younger collaborator appeared.

2) Before describing the recipe for the g, a few remarks on the con-
nection of h,((J) with the heat equation is in order. Relative to the

decomposition
Ly (EY=@ I;(E)

the operator []= [ is, of course, in diagonal form:
OInL(E)=4,

so that H,=e~ 2" is a well-defined family of bounded operators acting
on L,(E) and satisfying the heat equation

d
—‘—ITH,+DE~H,=0

with initial value H,=1. Furthermore, at least formally:
h,(00)=Trace e 2"

Hence (4.22) should be interpreted as proving that H, is indeed of trace
class for t> 0. Actually this turns out to be a consequence of the much
stronger result that for 1> 0 the abstract operator H, is represented by a
smoothing operator with kernel H,(x, ¥):

H,s(x)=[ H/(x,y) s(y)idyl.

Now this being granted, the trace of H, must exist —and is given by the
usual formula for smoothing operators:

r Trace H,= [ Trace H,(x. x)|dx],

M

that is —as an integral of the measure

i, (x)="Trace H.(x, x) Idx|
over M.
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The y,(x) should. therefore. be thought of as the local trace of H, at x.
In terms of an orthonormal base of eigenfunctions {¢n(x)} of {J we have

(4.26) u,(x):Ze"‘"'lw,‘(x)lzldx].

Thus g, (x) is a function of [J only in a very abstract sense. However the
asymptotic expansion (4.23) and (4.24) is a consequence of a local
asymptotic expansion

(4.27) ¢ i~y 527 g ()
kz—n

the i, being purely local invariants of [J. In fact, as will be seen later. in
our cases the j will depend rationally on the coefficients of A and their
derivatives. )

3) Our next remark is that a completely parallel development of this
subject is possible. in which one replaces the series

h(O)=Y e *dimL E
by the “zeta function of (O™:
(=), A7 dim T E,

where we assume for the moment that [J>0 so that A=0. Indeed these
two are related by the formula
1 7
—— [ h(D)dt/t
4]

O)= a6

as follows directly from the definition of the I-function:
res)= e dit
0

by setting t=At and then summing.

Now in this context the asymptotic expansion for A (7J) yields that
{, () —which at first converges only for large Re(s)— actually extequ to
a meromorphic function in the s-plane. Moreover ['(s) ;s(;) has simple
poles at the points s, = — k/2m. k= —n.andits residue there is given by:

Res I'(s) {,(0) = U (D)-

In particular {o((0)= Uo (D)

Conversely, this property of { (D) implies the asymptotic formula
for h,(0J) and. in fact. it is this property of { () which Minakshisun@aram
and Pleijel proved originally and which Seeley extended in [23]. This was
also the point of view taken in [6]. relating the zeta function and the
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index theorem. although to deal with the zero eigenvalue one has to
replace [J by J+u {with u>0).

4) Finally we should point out that, to define the local measures
1 (P), we do not need P to non-negative scif-adjoint. All that is needed
is that the highest order symbol of P should have these properties [23].
We no longer have an eigenfunction expansion but { (P)=trace P~*
can still be defined and {4, (P) will still give the residue of I'(s) { (P) at
s=—k/2m. :

We now turn to Seeley’s formula for the y, and to motivate his
algorithm we will start with the following purely heuristic considerations.
Let T=R"/2nZ" be the n-torus defined by the lattice whose coordinates
are divisible by 2n in R" and consider a constant coefficient elliptic,
self-adjoint. non-negative operator® 4 of order 2m acting on the C*
functions of T. For each integral point £eZ", the function ¢*¢ is then
an eigenfunction for 4 with eigenvalue A(&):

A (’ix"’ZA(é)-(?“{

where A=A +A4,(E)+ - +A4,,(£) is the zero order term of the
differential operator A, at ¢=1. and therefore is a polynomial of order
2m in the &'s. Further. by Fourier’s theorem. the ¢'** are a complete
system of eigenfunctions for 4. Hence

hdy= 3y e "M
N A
Thus h,(A) is the sum of the values of the function ¢ "4 at the
integer points of £ R", and a little estimation shows that in its asymptotic
behavior near t =0 this sum behaves like the corresponding integral:

h(A)~ e~ 49 dE.

Now write 4(&)= A, (EY+ E(&) with E the terms of order <2m and
consider the integral obtained by expanding ¢ 'F:

[em @y (— 1) E(&y /oty dE.

The term by term integration of this expression yields the desired
asymptotic formula for h,(A4):

ho~ 3 27 UA).
k2 —n
The integrhtion here is, of course. carried out in polar coordinates in
¢-space and first relative to r and it is this step which introduces the
fractional and negative powers of ¢, as will be scen below. We still have

* Throughout this section 4 denotes an operator of the * Laplacian™ type ~ that is, take
A=0.
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to come from the global U, to the locai measures g on 1. However, as
these clearly should be constant in this example they must be given by:

;1T\

To summarize then:

(4.28) . St A~ (:_;;) fem e dEldx].

In the general case the Seeley formula is given by a similar but more
delicate formula: namely. if 4: I'(E) —~T(E) is an operator of ordey 2m,
of the type we are discussing. and if x=(x,.....x,) is a local coordinate
for M over U. then properly interpreted. the Seeley formula can be
written:

(4.29) Y i (A~ (Eii) ltnli \ e A, —se " dAdE d X,

here. as before, 4, is the operator

o 1 i
q =¢ "‘;r.Aii"“:’:"1+""‘A1(§)+"'+’;§;."42m(~.)-
& X

and the agreement is that the term in the brackets is first in'verted formallly
near ¢ =0. then integrated over 4 along a countour enclosing the positive
reals and then over & In the result « is finally set equai to 1.

Thus. the inversion. i-integration and letting ¢ tend to 1 replace the
expression ¢~ 49 in the constant coefficient case (4.2.8). -

We will carry this program out under the assumption that A, (&) 18
a multiple of the identity:

A& =a-1

. . . . m
by a function a=a(x. &). The precise expression for 4,(A)=4,—4¢ is

therefore: 1 1

{4.30) A=A +—;—A“+ +Tz~,;(a—}.) 1

where « is a positive function of degree 2m in {'s. Inverting .{,(2) formally
near £=0 yields a power series:

(4.31) B.(A)=62" By (A)+E2" ! By (A4

with B, (i) =(a—=2)"" and By, (A= —la—/) 4~ (u—2)"". etc. Now,

and this is where the fact that 4, is a multiple of simpi_iﬁes matters a
little. the effect of 4, on («—4)""' will be uniquely expressibie as a linite
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. . . . 2m
partial fraction in (a— A). That is, B, ., ((A)= Z B, -(a—i)""*" and

s—=1

inductively, each B,(4) will have a finite expansion of the form:

(4.32) Bl(/l)zz Bi(a— )"+ 0,

At this stage the inte i
s stag gral over A can be carried out explici
over the contour in question we have: phettly fndeed.

s

(4.33) je"‘(a—i)’“*”di:-,('—— e i

so that: " ;

,l (

{4.34) je“"Bs(i)dlzzi’tS Bie ' [22m |
s, S o .

We turn next to the integration over & For this purpose note that

L
as a function of (£ 42™), B, is homogeneous of degree —! while a is

homogeneous of degree 2 I i
AN g m. Hence Bj is a polynomial of degree

(4.35) deg: Bj=2m(s+1)—1. |

. fl;lqte also that as a ‘functi.on of A, the B are polynomials in the
chgler?ts of A'and their dgrlvatives relative to the local coordinates
e tntegration over £, is now carried out by changing to polar

coordinates (r, &), with |[&y]= ; : -5
We have ~0) |€ol=1 and first integrating over r=}/) &%

(4.36) de= o A {“"}

where m=> (—1) & dE, .. .dE .. .d¢E,. so that (,,S:(_': restricts to the
r

volume form on the unit sph i i
M, phere and is homogeneous of degree zero in 1

Hence
1
5 —a(& s — 2m
(4.37) [ Bj(&)e ”déz’—iéj; ws Bi(Eo) [ r2mskem e d log r
. k=I1—-(2m-n).

The change of variable p = a(&y)tr?™, yi
. : =a(E)tr?™, yields r={p/at}’'?™ and 2 _
dlog p. The inner integral therefore changes to ! and 2md Jogr =

(4.38)

I
2m (at)—‘-H(/ZmJ‘px—k’lme‘nd ‘Og p= ] (at) sk 2ml< V———li——
2m T 2m

On the Heat Equation and the Index Theorem 303

substituting in {4.34) this leads to:

(e B, dAdE
{4.39) i r(s—k/2m)

1.k:2m - S E —s+k2m
=Y &t e Bi(&yally) u)
2mn L s! w]:l i(&o)atco >

now passing to =1, one obtains the formula®:

Theogem (Seeley). Relative to the coordinates x. on U, the asymptotic
measure of A is given by 1, (A) =t (A)dx] with

L Sl el
2mn 4z 2a s!
(440) S—'ZEnTg"i’lnT
‘. B;+2m+n(io)a—s+kZm(ig)(})s.

[ol=1

Our concern with this formula is actually only qualitative. That is,
we need to know the following corollary.

Corollary. The function p(A) defined above is homogeneous of weight

k
" in the coefficients of A. That is
2m

L
(4.41) (A A =22 (A seR™.

Furthermore, in the quadratic case. m=1. 1, (A) is a polynomial in the
coefficient of A relative to X. their derivatives relative to X and the function
det~! (q), where det a is the determinant of the leading term quadratic form:

(4.42) a(x.&)=Y ay(x1&.
Proof. The weight property follows directly from (4.26) and {4.27).
| S . )
Sending A to 1A, and t to Tt in (4.26) leaves p,(x) invariant. hence

the coefficients g, in (4.27) have the desired weights.

The polynomial dependence of j1,(A) on the coefficients s a more
delicate matter. Certainly (4.40) shows that each term contributing to
a p, is of the form:

(4.43) P(A)=
|

L
[ WA D a0 ™ ws
g=1
where ¥(A.¢) is a homogenous polynomial of degree [—nin & and
depends polynomially on the coefficients of 4 and their derivatives. On the

¢ Actually in [23] Seeley deals with the zeta-function rather than the heat equation but.
as explained belore. these are equivalent.
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otth'er hand. in its depgndence on the coefficients of a,, (&), Y(A) is a priori
a rdnsc_endental function. However, in the quadratic case we can rational-
ize the integral by the following procedure.

First. let us reformulate our problem slightly. For this purpose let

p(&) by any polynomi: . s . .
the n—1 fgrrr;q: ynomial of degree k. in the £'s. and in terms of it define

_kon
(4.44) pla, &=pE)al&) 2 w(d)
where {;)(f):Z(—!)iéi(ISI .dE ...d&, as before. and a(Z) is the
quadrrgtlc form (4.42) which is assumed to be strictly positiv:e. Hence
pla. ¢} is regular on all of R"—0. so that the integral over the unit sphere

(4.45) flar= | pla. &)
Sn*‘

:;; w&}elll—deﬁned function of ¢, and clearly our corollary will be proved
i ti show that for every {1) the function f{a) is expressed as a polynomial
e a; and {det(a;;)} ~'. Put differently we want to show that f'is in

the affine coordinate rin iti
! ' g of the space Q of positive definite ati
forms. For this purpose recall the map auadratic

n: GL(n, R)—Q

of the full linear group onto Q given by

n(g)=g' g

which we already discussed in Section 2. By the remark made there it

will be sufficient to prove a corres i f
. sponding result =f
of the function f{a) to GL(n, R): g resultforthe pull back /= /-

(4.46) flgr= | pl& e e " 2w,

sn -

with (&, &) the usual inner product on R".

At this stage observe that the form p(a. &) is closed as a form in R"—0:

) _kon

n fact., h{é):pﬁ(;)a(f) 2 is homogeneous of degree —n. hence
dpla. & =( 2 q ’

:(a &) 2:5, Az +n h) A& n--Adé =0 by Euler’s theorem. Thus
the integral f{«) depends only on the h ¢ "
(he integral /la) def y e homology class of the cycle §"~'.

figy= | p&gegdd " 2w,

&gl =1
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Now under the change of variables f=g '&. w(f) goes over into
(det &) (& s0 that we obtain the formula:

(4.47) fgi=(det™" | ple”"Hold)

s

which shows that f is in the coordinate ring GL(n. R) as required.

] 5. The Hirzebruch Signature Theorem

In this section we shall combine the heat equation formula for the
index explained in §4 with the Gilkey theorem of §2 and derive the
Hirzebruch formula expressing the signature of a 4k-manifold as a
polynomial in the Pontrjagin classes. As is now well-known, this Hirze-
bruch formula is a special case of the general index formula and in the
next sections we shall show how to treat the general case.

We begin by recalling the signature operator — this is the elliptic
operator whose index is the Hirzebruch signature. So let M be a compact
oriented Riemannian manifold of dimension 21 and letd: @ —Q*".
d*: Qi >~ denote exterior differentiation of forms and its adjoint.
Then d+ d*. acting on the space of all forms. is an elliptic first-order
self-adjoint operator whose square is the Laplace operator 4 of the Hodge
theory. We now define an involution t on the space of all forms by
() =" ey for € Q" where *: Q" — Q=7 is the duality operator
defined by the metric (the complicated power of i is arranged so that
12=1: see [2. p. 575] for details). Denoting by @ the + 1-eigenspaces
of 7. one verifies that d +d* interchanges Q. and Q_. Finally we define
the signature operator A to be the restriction of d+d* as an operator
from Q, to @_. so that

A Q,—Q_

is an elliptic operator (its adjoint is then d+d* as an operator {rom
Q_toQ,).

Ker 4 coincides with Ker A* A =(Ker )N Q, . that is with the space
H, of harmonic forms @ such that tw= . Similarly Ker 4* coincides
with the space H_ of harmonic forms @ such that T = —w. Thus

index A=dim H, —dim H_.
Suppose now that |=2k so that dim M =4k, then oniy Q%% gives a
non-zero contribution to index A4 (€ and Q*%-4 give contributions which
cancel if ¢ = 2k) so that

index A4 =dim H2*—dim H2*
where Hi¥ are the + l-eigenspaces of + on H** (the harmonic 2k-forms).

Since r
A | AARYL
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is positive definite for « a real 2k-form it follows that
o [oana

is positi.ve definite on H2* and negative definite on H2*. Identifying
h;:rmomc forms with cohomology by the Hodge theory we see therefore
that

index A =sign (M)
where sign (M) denotes the signature of the quadratic form on H2*(M; R)
given by the cup-product:

X xux[M].

It_ is important to note that the operator A depends on the Riemannian
metric and the choice of orientation: taking the opposite orientation
changes 1 to —t. hence interchanges 2, and ©_ and so replaces 4 by A*.

Now let us apply formula (4.25) for the index of A4:
index A= [ po(A* A) = o (AA4*)
M

where
Uy= j;tO(A* A)
M

is the constant term in the asymptotic expansion of trace e~ '*"4, The

measure uo(A4* A)—pu,(AA*) depends on the orientation in a skew-

symmetric fashion and hence defines a 4 k-form independent of the orienta-

tion: in local coordinates we associate to the measure f(x)|dx, dx, ... dx,|

%‘_r;ld the orientation (x, x,, ..., x,) the n-form f(x)dx, Andx; A--- Adx,.
us

(5.1) index A= j(/)
M

where o is a 4 k-form canonically associated to the Riemannian metric.

As explained in §4 there is a purely local formula for i, and hence
for w. Since A*A and AA* are just the Hodge-Laplace operator A
(restriced to Q) their highest-order symbols are scalar matrices of the
form g¥(x) & &;- 1. We are therefore in a position to apply the Seeley
theorem and Corollary of § 4. Thus w is a regular invariant of the metric
in the sense of § 2.

Let us now consider the effect of a change of scale in the metric:
g+ A2 § with 1 a positive constant. The new involution 7 is related to the
old involution © by #(@)=1""2" t(¢p) for peQ2”. Il we define an auto-
morphism ¢ on the space of forms by &(¢p)=A"¢ for Q" then ¢ is an
isometry 2 — Q of the old metric to the new metric and st=7%¢ Thus ¢
induces isometries @, —, and ©_-(_. Moreover, since d=d,
d*=2"2d* we have

eld+d®)=2(d+d*) ¢
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and so ed=sde or A=i"'(eAe™"). The same formula holds for the
adjoints and so

A*Ad=,"2(eA*Ade”" ). Ad*=i"TedA*e™").

Since the measure fi, is unchanged by the bundle isometry ¢ and is of
weight zero in the operator it follows that

C (A A)=po(A* AL oA AT =po(AAY)

and hence &= . showing that  is a regular invariant of the metric of
weight zero. Applying the main Gilkey Theorem of §2 we therefore
deduce the following key result

Proposition. The differential form «w appearing in (5.1) is given by a
universal polvnomial in the Pontrjagin forms. say

(5.2) w=fiPy P2+ Pi)
where f; is of total degree 4k(deg p;=41i).

Note incidentally that the measure j;(A* Al being of weight j/2 in
the operator A* A (see (4.41)). s of weight —j in the metric g (with respect

to the scale change g+ A% g).
We have now arrived. by differential-geometric methods. at the same

point which Hirzebruch reached by the use of cobordism theory. From
here on we simply repeat the easier part of Hirzebruch's proof which is
essentially the computation of enough special cases to determine the
coefficients of the universal polynomials f,. For the sake of completeness.
and because we shall need to generalize the argument in the next section,
we shall review briefly Hirzebruch's argument. For more details we
refer the reader to [16; Chapter 11. § 6].

As basic examples we take the complex projective spaces Py, and
then form all products

M(kl.....k,)sz,”xchx---xPz,‘r, Zki:k.

In each dimension 4k this gives us m(k) different manifolds (where n(k)
is the number of partitions of k). Since n(k) is also the number of coefli-
cients of our unknown polynomial f; the Egs. (5.1) and (5.2) applied to
the manifolds M(k,. .... k,) will yield a square system of linear equations.
Provided this system is non-degenerate we can then solve uniquely for
the coefficients of f,. To check the non-degeneracy of the system it is
convenient to replace the Pontrjagin classes p; by another set S; of multi-
plicative generators related to them by Newton's formuiae. For a

2j
Riemannian manifold S; is represented by the form (.2}7) . Trace R%
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where R is the curvature matrix. The advantage of the S; is that for a
product we clearly have

S;(M x N)=S;(M)+S,(N)

(where we.idemify cohomology of M and N with their pull-backs to
M x N). With an appropriate ordering of the (k) monomials

S,=8, xS, x5, (L =K

and t'he n(k) produc;ts /\r[,,:M(k,. ... k) it then follows easily that the
matrix a,, = §,(Mp) is triangular and its diagonal entries are given by

Ay =8, (B ) x - xS, (F;,).

Thus .det.(a,/,H:() provided all the numbers S;(F;)+0. But the total
P.ontrjagm class of the complex projective space sz is well-known to be
given by

Y pi=(1+x%)2*" (v generating H*(B,. 7))
0
and so §;(P)=(2j+ DXPP]=2j+1+0.

Now sign (P, ;)= | gmd the Kunneth formula for the cohomology of a
product shows that sign (M x N)=sign M - sign N. Thus all the mani-
folds M({(,. ... k,) have signature 1. Hence, we can characterize our
polynomials f,(p,. ..., p,) uniquely by the property that they give the
value | when evaluated on the Pontrjagin classes of all the manifolds
Mk, .... k). On the other hand the polynomials L, (p,. ..., p,) defined by
the generating function

(5.3 . PR T .
) > Li=]] Ganh < where ) po=[](1+x})
also have this property. In fact for B, we have to compute the coelficient
2k +1
2K : : : :
of x** in (Yﬂﬁﬁ;) and a simple residue calculation shows that

this is I. The multiplicative character of the generating function (5.3)
thep shows that we get the value 1 on all the products M(k,, ..., k,).
This completes the identification of f, and L, and hence the proof of the

Hirzebruch Signature Theorem. For a compact oriented 4 k-manifold
M the,signature of the quadratic form on H**(M: R) is given by
sign(M)=L,(p,..... p) [M].

As we have seen, this theorem appears. by our present methods.
as the global integrated version of a local theorem which may be formu-
lated here as follows
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Local Signature Theorem. let M be a compact oriented Riemannian
manifold of dimension 4k and let {¢,(x)} be a complete orthonormal base
of eigenforms of degree 2k of the Laplace operator: A¢,=4, ¢,. Then
w=Y e o, A0, converges for t>0 and. as t — 0, w,— L,(p,. ceea D)
where the p; are the Pontrjagin forms.

Proof. Letting A denote the signature operator we form the local
traces }it (x) of the heat operators e™'4"4 and e~ '44". The contributions
to uf (x) arising from Q4@ Q**~9 (with g+ 2k) are easily seen to cancel
(since the corresponding parts of the heat operators are isomorphic).
Since Q, N Q** are just the + 1-eigenspaces of * it follows that

)ux+ (X)— /‘r_ (X) =W

Hence we have an asymptotic expansion
w,~ ) a;
jz -4k
As before the coeflicients a; are regular invariants of the Riemannian
metric and a; is homogeneous of weight —j with respect to the scale
change g+ A*g. Hence by the Gilkey theorem a;=0 for j<0 so that the
constant term is the first non-vanishing term in the asymptotic expansion.
Finally, for the constant term a,, we have already shown that it coincides

with L, (p,, .-, D)

6. Other Classical Operators

Using § 3 we shall now extend the results of the previous section to
the signature operator “with coefficients in an auxiliary bundle™. So let
M be a compact oriented Riemannian manifold of dimension 2/ and let £
be a Hermitian bundle over M as defined in § 3. Let @, denote the space
of differential forms with values in ¢, that is smooth sections of the
vector bundle A*(T*(M))® E,. Using the connection D, we then
define an operator d; on Q, by

d:(u@v)=du@uv+(—1¥unD,v
where ueQ”, v is a section of E, and u A D,v denotes the element given

by the pairing Q ® Q, — £,. Since the connection D, is unitary it follows
as usual that the adjoint d¥ is given by

df=—xd »
where *(u® v)=+u®v. This shows that, if we define an involution
t on Q, as before by t(x)=i"""""*'x(x) for 2 Qf, then d +d?} anti-

commutes with t. Hence we obtain an operator A,: Q; — Q; where
QF denote the + l-eigenspaces of 7. We shall refer to A, as the generalized

21 Inventioncs math, Vol 19
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signature operator of the bundle <. Note that A, is independent of the
metric h,.

Proceeding as in § 5 we obtain a formula

index A, = [ m(g, &)
M
where m(g. &) is a regular joint invariant of mixed weight (0.0). The
weight zero in g is proved just as in § 5 while the weight zero in the
Hermitian metric h, is obvious because h, does not enter explicitly into
the definition of the operator Ag. Now apply Theorem IT of §3 and we

deduce that w(g, &) is given by a universal polynomial in the Chern-
forms of & and the Pontrjagin forms of g

(6.1) (8. &)= f(c;(&). p;(2)).

As a first step in identifying this polynomial we observe that we have
the following additivity formula

(6.2) 0(g. DN =w(g. &) +un(g ).

Here & @y denotes the direct sum of the two Hermitian bundles &, 5 the
connection and Hermitian metric on the direct sum being defined in the
obvious way. To prove (6.2) we simply note that Argq=A:® A4, and
Trace ¢™"'"®@ =Trace ¢~ '"+ Trace ¢~ '?. We shall now show that (6.2)
implies that (6.1) must be of the special form

(6.3) (g, &)=3 ch (&) E(p,(2). py(2). ...)
where 2k +45=2] deg F,=4s and

ch&=3 ch,(¢)
k
is the Chern character of ¢. We recall that if the total Chern class y ¢;(¢)

is factorized formally as [](1 + x;) then ch&=3 e™ Thus in terms of the
curvature matrix K of £ we have’

1 \* TraceK*
Chk&:(?f?i‘) kT

e

Clearly the Chern character is additive: ch (D n)=ché+chy.
Moreover, any polynomial in the Chern classes can be universally
expressed as a polynomial in the components of the Chern character.
Hence we may rewrite (6.1) universally in the form

w(g. &)=/1 (ch(&). p(g))+ f2(ch (). plg)) + - + fy(ch (&), p(g)

7 Except for the factor k! and the fact that we are now dealing with complex rather than
real bundles the elements ch, are essentially the same as the S, of §5.
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v

where /, is homogeneous of degree r in the variab}es ch,((gv). Replacing ¢
by N E;E DED - @ (N times) and using ch(N &)= N ch we deduce

(6.4) (,,(g.N:)—_-Nfl+[\»'2f2+...+1\'1‘/;.

But. by (6.2). w(g. NO)=Nwl(g. &). Since (6.4) holds for all positive
integcr; N we may equate coefficients and so
' w(g. &)= [, (ch(&) p(2)

is linear in the components of ch(&) as asserted in (6.3). '

We are now reduced to identifving the polynomigls .F, in (6.3) by
computing sufficiently many special examples.‘ Note mcxdentallly th?t
F. depends on the dimension n=2/ of our manifoid so we should write

it as F!. In fact we shall prove

(6.5) F=2""L,

where the L, are the Hirzebruch polynomials as in § 5. Fpr [=2s (so that
dim ,\’=4s).((w.5) reduces to F'=L, and this follows directly Vfr.om .the
Hirzebruch signature theorem by taking & in (6.3) to be the trivial line-

bundle. . -
As a basic example we shall take M to be a one-dimensional complex

torus (elliptic curve) and ¢ to be a holomorphic line-bundle.
In this case we shall prove

Lemma (6.6). index A,=2{ ¢, (¢).
M

Proof. Taking the standard metric on M arising {rom that on the
universal covering € we have xdx=d ). *dy= —dxand so
tdz=i*dz=i(dy—idx)=dz
tdz=i*xdz=i({dy+idx)= —dZ

tdzAadz =—2.

From these it follows that we have isomorphisms

6,:Q®Q"-Q,
o Q@ Q.

iven b
given by o (fR)= b+ T +eds

o_ (A pW=(1-0pdz-+4
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and a commutative diagram

QO ® QO _l:@fq_) QO.I@ 520.1
f |

T+ T

|
J
{lz d+d‘_’ Q

+ -

Thus the operator A is isomorphic to two copies of 4. For any Hermitian
structure on the holomorphic line-bundle £ it then follows that 4, and
d; @ 0, have (up to isomorphism) the same first-order term and hence
the same index®. Here J, denotes the natural J-operator acting on
sections of . Now we already know, from our general discussion, that
we must have a formula of the type

index A, =a | ¢, (&)
M

for some universal constant « (x=F} in the notation of (6.3)). To prove
a=2 it is then sufficient to choose a particular ¢ with [ ¢,(£)=+0. Taking ¢
M

to be the holomorphic line-bundle determined by a single-point P of M
we have [ ¢ (£)=1. Ker g, consists of the holomorphic sections of & and
M

these can be identified with the meromorphic functions ¢ on M having
a single pole at P: the Cauchy residue formula applied to ¢(z)dz shows
that Res, ¢(z)dz=0, so ¢ has no poles and hence is constant. Thus
dim Ker ci.:l. Similarly, Ker (—?g can be identified with the holomorphic
functions having a zero at P (and no poles), hence Ker 3} =0 and so
index d,=1. Thus index A, =2 as required.

Remark. We have computed above a special case of the Riemann-
Roch theorem for Riemann surfaces. Equally well we could have taken
any other genus (e.g. zero) but the elliptic curve has the advantage that its
tangent bundle is trivial which leads to somewhat simpler calculations.

To prove (6.5) we shall take products of the exampie just computed
in (6.6) together with the examples of § 5. Generalizing the multiplicative
property of the signature we shall need

Lemma (6.7). Let M. N be compact oriented even-dimensional Riemann-
ianmanifolds and let £, n be Hermitian vector bundles over M, N respectively.
Denote by { =& ® n the Hermitian vector bundle over M x N given by the
tensor product with the natural induced metric and connection. Then

index 4, =index A, - index A4,.

® Using the stability of the index under deformation. Alternatively, a more careful calcu-
lation shows that for a suitable metric A, is actually isomorphic to ¢, @ ¢,, i.e. the zero-
order terms also coincide.
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Proof. Direct computation shows that
(do+d¥? =(d;+d}P @ 1,+ 1, @ (d,+d})
which implies easily that

Ker (d;+d})=Ker (d;+d}) ® Ker {d,+dr).

Togsther with the fact that 1;=1,® 1, this leads atonce to the required
formula
index A,=index 4,-index 4,.

Now consider ¥=M*x X where M is an elliptic curve and X is of
dimension 4s. Take the line-bundle n="® 1 (*=(® --- ® & k times)
over Y and apply (6.7). We deduce

index A,={(index 4,)*-sign X
(6.8) =(2[c,(&)-signX by (6.6).
M

=2* | ch,&*-sign X

M*

since ch & =(ch &) =(1+¢,(&))*. Comparing with (6.3). and canceliing
the non-zero term | ch, &, we obtain
Mk

[ E Py pav - ops)=2"sign X

X
where k=/—2s. The argument in § S, using products of complex pro-
jective spaces for X. shows that 27*F/=L, or F/=2'"%*L,, as asserted
in (6.5). Thus we have established the

Generalized Hirzebruch Signature Theorem. [.et M he u compact

oriented 2i-dimensional Riemannian manifold, & a Hermitiun hundle m'v.r
M and A, the generalized singature operator of &. Then the index of Ay is
given by the formula

index 4,=2"-ch {- £(M) [M]

x;/2
tanh x;/2
x2 are replaced by the Pontrjagin classes of M.

Remarks. 1. There is a local version of this theorem generalizing the
case treated in § 5. Note that this local version continues to hold when ¢

is just a connected bundle (with no metric) in view of the remark made at
the end of § 3 and Remark 4 following Theorem (E I11). Instead of AF 4,

where £(M)=]] and the elementary symmetric functions of the
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and A; A¥ we now use the restriction of (d, + d¥)* to Q. These operators
do not involve the metric h, and their leading symbols are positive self-
adjoint (with respect to any metric in &) because o(A,)=0a(4)® I,
where I, is the identity on &

2. In §5 the results were restricted to manifolds with dimensions
divisible by 4. Here all even-dimensional manifolds are included. This
is because we have used a complex vector bundle & and this has Chern
classes in all even dimensions.

As we shall show in the next section, the Generalized Signature
Theorem implies, via topological arguments, the general index theorem
and hence in particular we obtain other classical special cases such as the
Riemann-Roch theorem. However, there is some interest in deriving
these special cases directly by methods similar to those used for the signa-
ture theorem. Where applicable this will of course lead to appropriate
local versions of the theorems concerned and these would not be obtain-
able by global topological arguments. We shall therefore treat briefly the
Dirac and ¢-operators by the heat equation method. and we begin with
the former.

Let us recall” that M is said to be a spin-manifold if the structure
group of its tangent bundle can be lifted from SO(n) to Spin(n). The
necessary and sufficient condition for this is the vanishing of the second
Stiefel-Whitney class o, (M): for example P(C) is a spin-manifold if and
only if nis odd. A choice of lifting to Spin(n) defines a definite spin-
structure and, up to isomorphism, the different spin-structures are in
one-one correspondence with the elements of H' (M ; Z,). Thus the spin-
structure is essentially unique if M is simply-connected. Now Spin (1)
has a basic representation space S (the spin space): if n=21 this is the
direct sum of two irreducible representations S * and S~ each of dimension
2'=1, Associated to the spin-structure of M there are then two correspond-
ing vector bundles E* and £~ whose cross-sections are the spinor-fields
on M — analogous to tensor-fields. The Dirac operator is then a first order
self-adjoint elliptic differential operator acting on the sections of
E=E* @ E~ and defined as the composition

[E) 2> (E® T*) > I(E)

where D 1s induced by the Riemannian connection of M and C is Clifford
mﬁltiplication (induced by a linear map of Spin (n)-modules: S ® R"— S).
Note the analogy with exterior differentiation of forms which may be
defined similarly but using exterior multiplication of forms in lieu of
Clifford multiplication. The Dirac operator switches E* and E~ (because

® For further details on spin-manifolds and the Dirac operator see [2. §5].
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B + — . . .
C does) and so is of the form (g* 0) where B: I'(E*) - T'(E™) s elliptic.

The index of B is called the spinor-index of M. .

The operator B. like the signature operator A of § 5. has the following
basic properties

(1) Biscanonically defined by the Riemannian metric, the orientation
and the spin-structure

{2) reversing the orientation takes B into B*

(3) the metric scale change g+— ;% g takes B into 47! B.

Properties (1) and (2) are clear from what has been said;_To verify (3)
we define an isometry T* — T* by & 4¢& \\'here T* and 7T *.denote the
cotangent bundle of M with the old and new metrics respectively. Then
we get an induced isomorphism «: E—~E which preserves cclmnect_l(l)ns.
Since Clifford multiplication is bilinear it follows that B=4""aBx™" s0
that. modulo the isometry x. B coincides with A7'B. .

The only significant difference between the operators B and 4 1s
that B depends on the spin-structure. However. locally the spm-§tructure
is unique and so the measures ;(B* B) and ;g(BB*? depend only on the
metric and orientation. Proceeding now exactly as in § 5 we deduce thqt
the spinor-index is given by some universal polypomtal in .the Pontrjagin
classes. Thus the spinor-index is zero if dim M 1s not divisible by 4 and
if dim A =4s then

spinor-index (M)=/,(py. ... py) [M].

It remains to identify the polynomials /i, and to show in fact that ‘thcy
coincide with the /i-polynomials defined by Hirzebruch (see [2..,&5]).
This could be done by computing explicitly the spinor-index ofsumcu.:ml'_v
many examples. For instance we could take products of quarternionic
projective spaces‘o P(IH) (n=2) and (in dimension.4) a qugrlxc surface
in R(T): these are all spin-manifolds and have linearly independent
Ponirjagin numbers [9. § 2.3]. Instead we shall show how to deduce thc
equality h.= A, by using the generalized signature theqre;m. To do _thls.
we first extend B to an operator B, where ¢ is an auxiliary Hermitian
bundle (just as A was extended to Ag). As before we deduce a formula of
the type

(6.9) index B;=. chy (&) Hytpye ... p) [M]

where 2k+4s=2I=dim M and deg H;=4s. Moreover the formai
properties of Clifford multiplication yield a multip‘hcatilve formula’for {3
analogous to (6.7) and the torus example of (6.6) gives index B, = \.\’ c (&)

10 Recall that the complex projective spaces Py Q). which we used earlier. are not spin-
manifolds.
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Arguing as before we then deduce
(6.10) H'=h

3 5

To use the generalized signature theorem we now appeal to the follow-
ing
Lemma (6.11). index B.=index A where & is the total spin bundle E

of M with the metric and connection induced by the Riemannian structure
of M.

Proof. There is a natural bundle isomorphism E® Ex=A*(T*)
induced by the isomorphism § ® S A*(R™ of Spin(n)-modules, and
this takes I'(E* ® E) into Q, . It is a simple matter of linear algebra to
check that the symbols of A and B, coincide " via the above isomorphisms
and hence index 4 =index B,.

Comparing (6.9) and (6.10) with the generalized signature theorem
we therefore deduce

22 [MI=chEY h, (M)
(6.12) tanhx,/2 © ‘
=[](e"+e =1 h [M]

(using the formula for the character of the Spin representation). Now
assume as inductive hypothesis that h,= 4, for s <k where

-~ X.
ZAan-

Taking M to have dimension 2/=4k and comparing (6.12) with the
obvious expansion
! x,/2

t k
! - xi2 - xi/2 1
2 ﬂl anh a2 M] .-U, (e 2+4e )J;)A, [M]

we then deduce
/ik(pl’ o P [IM]=hy(py, <o P [M].

Since this holds for all spin-manifolds of dimension 4k it follows that
A,=h, establishing the induction and completing the identification of
the Spinor-index.

All this can be extended from spin-manifolds to spin‘-manifolds,
namely those manifolds M for which w4 (M) is the reduction modulo 2
of an i,r1t¢gral cohomology class ¢, H*(M; Z). The structure group of
T(M) can now be lifted to the complex Spinor group Spin‘(n) — defined as
the quotient of Spin (n)x U(1) by the group of order 2 generated by
(e, —1) where ¢ generates the kernel of Spin(n) — SO (n) (see [8] for more

"' In fact a more careful computation shows that 4 = B,.
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details). Note that the map (u v)—v? (ueSpin(k), ve U(1)) induces a
homomorphism Spin‘(n)— U(1) and hence we get a complex-line-
bundle L (with metric) associated to the spin‘-structure. In fact, the class
¢, is the first Chern class of L.If we give L a Hermitian structure ¢ as
defined in §3 (i.e. we choose a unitary connection for L) then we can
define a Dirac operator on M acting on the Spin-bundle E (associated
to the spin representation of Spin‘(n)). If n=21 this is again of the form
((B??' 1(;)c> where B*: I'(E*)— I'(E™)is a self-adjoint elliptic operator.

If M is a spin-manifold (so w,(A)=0) then it has an oovious spin‘-
structure with £ trivial but it also has others. Thus if # is any Hermitian
line-bundle we have a spin‘-structure on M with =72, and so ¢,(&)=2¢,(n)
as differential forms. In this case the operator B° coincides with B,.
Since M is always locally a spin-manifold, it follows that B is always
locally of the form B,. Now the heat equation method gives as before a
local formula for index B and. since B=B, locally (with n?=¢), the
previous formula for the spinor index with auxiliary bundle leads at once
to the formula

(6.13) index B =¢"© 2%y 4 [M].

A complex manifold with Hermitian metric has a natural spin‘-
structure arising from the diagram
_~Spin‘(2n)

4
U(n)—— SO2n)x U(1)

where the horizontal arrow is given by the inclusion into SO(2n) and the
determinant map to U(1)[8, §5]. Here c, is the usual first Chern class
of the complex tangent bundle and so the right side of (6.13) is just the
Todd genus

7:,(('1, e C,,,) [1\[]

where the Todd polynomials are defined by

2=

and c; is the j-th elementary symmetric function in the x;. The operator B°
of the spin‘-structure is closely related to the d-operator of the complex
structure. More precisely, if we consider the ¢-complex

Xi

—Xx;

1—e

(6.14) 0->Q00_8,001_ 2, 2,00 .
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and form the corresponding elliptic operator
(6.15) O+0*: ZQO'ZP"’ZQO'ZPH

as in [2], this always has the same symbol as B°. If, moreover the metric
on M is a Kahler metric, then the operator (6.15) coincides'? with B
(for details see [17]). On the other hand. as explained in [2]. the index of
the operator (6.15) is equal to the Euler-characteristic of the global
sections of the é-compl.ex (6.14) and this in turn is equal to the Euler-
characteristic of the sheaf O of germs of holomorphic functions (the
arithmetic genus). Thus (6.13) yields the Todd formula

i (=1ydim H"(M, 0)=T,(c,. ..., c,) [M]
-0

=

for any compact complex manifold and the stronger local version for a
Kéhler manifold. '

More generally, the full Hirzebruch Riemann-Roch Theorem for a
holomorphic vector bundle V follows in the same way by taking the
Dirac operator with an auxiliary Hermitian structure & on V. Again for
a Kéhler manifold we get the local version provided (see [17]) we take
the unique unitary connection on V which is compatible with the complex
structure — that is D,v=) w,;®t; where the t; are a local holomorphic
basis of V and the m; are forms of type (1, 0). This local version of the
Riemann-Roch Theorem was treated directly, by the heat equation
method, in [22]. In our present treatment, it followed as a by-product of
the Riemannian case.

At this stage we should perhaps say a few words about the most
classical case of all, namely the Gauss-Bonnet theorem which is concerned
with the ordinary Euler characteristic. This appears as the index of the
operator

(6.16) d+d*: ZQZPM,ZQZ;;-H

and a direct treatment by the heat equation was given in [21]. Unlike
the signature operator the operator (6.16) does not depend on the orienta-
tion of M and this means that the local contribution for its index given by
the heat equation is naturally a measure and not an n-form. To identify
it directly by invariance theory methods is therefore more difficult
than before: we need more information than simply its behaviour under
change of scale. Gilkey has shown how to do this. and in fact he treated
this case first. Here we shall show how to deduce the Gauss-Bonnet
theorem from our previous results, in the same spirit as we derived the
Riemann-Roch Theorem.

'? Up to a constant factor /2.
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The heat equation gives us an integral expression for the Euler-

characteristic )
z(M)= | u
M

where t is some measure depending on the metric. Our&rotzlf:rr}. vsihlch lli
a purely local one. is to identify y with the Euler form {{2m) .1\. where f
dim M =2/ and K is the Gauss curvature). }iow as observed in th}e pr??
of #.11) we have 4 =B, where A is the §1gnatur? opera.tor..B is (ha D1
the Dirac operator and ¢ is the total spm.bundne E‘ with its natura
Hermitian structure. In fact this equation is f:(?mpqtlble with the ciie-
composition E=E* @ E~ and the decomposition nlto ec\\'en anﬁ odd
forms. Thus we have A" =B, . A~ =B{,. where A%: QT —-0QY¢ and
A7 %95 Q%. Since A*A and AA* are j\?St the Laplace operator on
Q, and ©_ it follows that our measure j¢1s given by

= o (4°) = 1o (47%)
= [t (A5 — 110 (A% ] = [t (A7) = 410 (ATY]
=[;10(A+*A+)—;10(A+ A+*)]—[110(A‘*A_)—110(A— AT*]
=q% —a~  say.

Now the local version of the generalized Spin(_)r-index formula (6.9)
using &* and ¢~ as auxiliary Hermitian bundles gives

x* =Y ch E* A,

x” =Y chy E7 A,

(k+2s=I).

Now using the character formulae for the half-spin representations S*
and S~ we have 1 x
chS*—chS = [J(e"?—e™™ 2)=[T] x;+ higher terms

i=1 i=1

3 i
x are coordinates mod 2r for the maximal torus of SO(21.

where ;. ..., 2 : of
Appliedl to the curvature matrix the term [ ] x; gives (by definition) the

Euler form e. Thus
chEt—chE™ =e

and so A
a=at—x =e-Ay=¢
as required.

In conclusion we should point out that there are a ngmber of oth.er
routes to the results of this section, that is to calculatmg'the prec::
polynomials which arise for the classical operators. For instance

'* y and y are trivially zero if dim M is odd.
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could have started with Spin° and the complex structure cases, bypassing
the signature. We would then have had to prove that the arithmetic genus
of complex projective space is equal to 1, and use Hirzebruch's original
characterization of the Todd polynomials. An alternative and enlightening
approach to all cases would be to combine the results of {6] and [11].
The point is that we have sufficiently many examples arising amongst
homogeneous spaces of compact lie groups and these admit large groups
of isometries —in particular one-parameter groups with isolated fixed-
points. The Lefschetz formula of [6] (which can be proved essentially
by a simpler use of the heat equation than employed here) gives a formula
in terms of fixed-points for the index-character (as a function on the
group). Evaluating this at the identity and using the differential-geo-
metric residue-type result of [11] this formula gets converted into one
involving Pontrjagin numbers'®. One advantage of this approach is
that the various polynomials (L, T, 4 etc.) appear very naturally and do
not have to be known in advance. Moreover, no explicit calculations of
an index would need to be made.

7. The General Index Theorem

In the original proof of the index theorem [ 5] and [20] the generalized
signature theorem was established by the use of cobordism and the
general index theorem was then deduced by the use of K-theory. Now
that we have established the generalized signature theorem by differential-
geometric methods we can proceed as before to the general index theo-
rem. We shall recall briefly how this is done.

If P: I'(E)— I'(F) is an elliptic differential operator of order k on M its
highest order symbol gives a vector bundle isomorphism g (P): n* E — n* F
where n: S(M)— M is the projection of the unit cotangent bundle of M.
Now let B(M) denote the unit ball bundle in T* M, so that B(M)is a
2n-manifold with boundary S(M). Taking two copies B(M)* and

B(M)~ we glue them along their common boundary to form a closed
2 n-manifold

Z(M)=B(M)* U, B(M)~.
Denoting by n*: B(M)* — M the projections we form the vector bundle
' Vie)=n"*(E)U,p 1~ *(F)
in which ¢ (P) is used to identify E and F along S(M). This vector bundle

V(o) contains the topological information that is needed to compute
index P. In fact, index P is given by

!4 The results of [11] would also need to be extended to include auxiliary bundles.
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Index Theorem. Index P = {ch V{g)n* 3 (M)} [Z(M)] where 3(M) de-
notes the total Todd class of T(M)®g €, n =y is the projection Z{M)— M
and Z(M) has its natural orientation'®. ‘

Routine calculations show that this formula, when .apphed to the
classical operators of § 5 and 6 reduces precisely to the index formulae
obtained there. To prove the general index theorem we therefore want
to show that any operator is equivalent in some sense to a classical
OPCIT:?:::-by using pseudo-differential operators, we can allow our 'symbols
o to be arbitrary smooth bundle isomorphisms over S(M). This shows
that the index depends only on the vector bundle V{a) over’E(M), and
this bundle can be arbitrary. Moreover if V=rn* Wfor some ¥ on M then
the index is zero (this corresponds to the case of an operator not involving
differentiation i.e. multiplication by an inve}'tible matrix functlon)..Thgs
V(o (P))+— index P induces a homomorphism K(Z(M))— Z which is
zero on the image of K(M): here K (M) denotes as usual the GFothen-
dieck group generated by complex vector bundle§ on .M. .Usmg the
basic results of K-theory it can now be proved that. if M is oriented ;md
of even-dimension, then the elements of K(Z (M) deﬁned by generalized
signature operators generate this group mod‘ulo the image of K(M) and
2-torsion. This is then enough to prove the index theorem for the even
orientable case. The odd-dimensional case can be‘reduced to the even
case by multiplying by a circle. To treat a noq-orlentable' manifoid M
we pass'to the oriented double cover M. The.ex1st§nce of a local fgr_mula
(from the heat equation) proves that index P =2 index P where P is the
lift to M of the elliptic operator P. Since the cohomology formula also
gets multiplied by 2 the index theorem for M follows from that for M.

We shall now add a few words of explanation on why the symb_ols of
the generalized signature operators generate the group K(Z(M)) in t‘he
sense stated above. Suppose first we consider the local problcm in which
M is replaced by a small neighborhood of a point. Then K(Z (M) gets
replaced by K (52", the Grothendieck group of yector bundles *on’ the
2n-sphere and K(M) gets replaced by K (point) so that =« I\(M%
is given by the trivial bundies on s, The_ fundamentgl theo'rem o
K-theory asserts that K($?" modulo_ trivial bundlgs is an infinite
cyclic group. This is just a reformulation of the periodicity t}:eorem
which states that the homotopy groups m,,_, (GL.,(N.V C)) (for N large)
are periodic in n with period 2 and hence (by consndermg the case ;1"= 1')
are infinite cyclic. The passage from nz,,._l'(GL(N, ) to K(§") 1s
given by our construction g V(o). Now it 1s a remarkable fact that

% Ifx,,.... x, are local coordinates on M, {;=dx, corresponding coordinates lor thg fibre
of B(M)*. the orientation of B(M)* (and so of Z(M)) is given by the (ordered) coordinates
X &pox &,
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the symbol of the operator ¢+ 3*: 00 20 _, ZQU2rH iy €7 gives precisely
a generator of ny,  (GL(N, C)) (here N =2"""). This makes it plausible
that. on a complex manifold, the extension of this operator to auxiliary
vector bundles should provide generators for K(X(M)) mod the image of
K(M). In fact, these can be deduced from the local statement by standard
techniques of algebraic topology. Alternatively one can give proofs of
the local theorem which extend automatically to the global case. For a
Spin“-manifold the same results hold using the Dirac operator, but for a
general oriented manifold we have to use the signature operator and
locally its symbol gives 2" times the generator of n,, ,(GL(N, Q)
(see, for example, the explicit calculation for n= [ in the proof of Lemma
(6.6)). For a fuller account of the periodicity theorem and its ramifications
the reader may consult [12] and the bibliography given there.

Appendix |

Incariant Theory for the Orthogonal Group

Let k denote any field of characteristic zero, k its algebraic closure.
We shall begin by recalling a few elementary facts about the orthogonal
group over k and k. In the first place the special orthogonal group

SO(n. k) is connected (in the Zariski topology). This may be proved as
follows:

(i) SO(n. k) acts transitively on the quadric Qin B_, (k) (representing
null vectors) and the map SO(n, k) - Q given by choosing a base-point
in Q is open.

(i1) Over k we may choose coordinates so that our quadratic form is

X X, + 4;;x; x; and our base-point is (1,0,0 ... 0). Let A4 denote
n>i, j=2
the matrix {a;;). the isotropy group then consists of matrices of the form
a b ¢
0O T d
0 0 o

where aek is non-zero, TAT'=A. 2ac+hAb' =0, h 4 T'+ad'=0 and
hence is parametrized by (T a, d) with a+0 and TeSOn—-2k)

(i) Assuming inductively the connectedness of SO(r. k) for r<n
we see that the isotropy group in (ii) is connected. Combined with (i)
this yields the connectedness of SO(n, k). Finally the induction starts
trivially with n=0, |.

Next we recall the Cayley map

S C(S)=(1+8)(1-8)!
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which transforms the skew-symmetric matrix into the (special) orthogonal
matrix C(S). Its image is the open set where det(i+ Cj=0. Since SO(n)
is connected it follows that SO(n) is birationally equivalent (over k) to
affine space and hence has sufficiently many points with coordinates
in k: that is. for any extension K of k. a rational function on SO(n, K)
which vanishes on SO(n. k) vanishes identically. Multipiying C(S) by the
matrix

{1 I

extends this result to the whole of O(n).

With these preliminaries out of the way we turn to the invariant
theory. Let .# (n. k). % # (n k) denote the nx n matrices and the sym-
metric nxn matrices over k. Then we shall prove the following key
lemma:

Lemma. Let f: . #/(n.k)—k be a polynomial such that f(BA)= f(4)

Jor all BeO(n. k). Then there is a polynomial F: < f(n.ky—k such that

f(4)=F(4 A).

Proof. Observe first that f will retain its orthogonal invariance
under aﬁy field extension K of k. In fact (A, B) f(BA)— f(A4)is a poly-
nomial function on .# (n. K)x O(n. K) vanishing on ./ (n. k) x O(n. k).
By the remarks made earlier this implies its vanishing identically:. Now
let K be the field k(p;;) where Pi;=pj are indeterminates representing the
generic symmetric matrix P. Let L be the splitting field over K of the
equation det(P— 4?)=0. Thus in L we can construct all the elgen_val'ues
Ayv.... A, of P and their square roots 1/).,-. Note thg( the /; are distinct
and so we can explicitly construct a symmetric matrix

N
i=1

jEi T

P—J,

which is a square root of P: Q?=P. If 7 is any element of the Galojs
group of L over K we also have (6 Q)2 = P. Since Q and 0 Q are symmetric
it follows that B=¢Q Q! is orthogonal and so

o f(Q)=fleQ)= f(BQ)= [(Q).

This holds for all o and hence f(Q)e K =k (P). that is :f(Q)fgo(P) with @
a rational function. If we specialize P to have coefficients in k then this
equation will continue to make sense provided we assume
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i) P has distinct eigenvajues,
ii) denominator of @{P)+0.

If, in addition, we take P non-singular then every 4 with A'A=P
lies in the O(n, k)-orbit of Q and hence the equation

S(A)=p(A'A)

holds for a Zariski open set of Ae#(n, k). It therefore holds for all
AeA (n, k). Moreover @ must be a polynomial F because il o=F/H
in irreducible form, then choosing 4 such that H(A'A)=0, F(A'4)*0
gives F(A4"A)=H(A'A) f(A)=0 a contradiction.

Corollary. Let f: GL(n,k)—k be a regular function invariant under
O(n, k), then f(A)=F(A'A) for some regular function F on the space of
non-degenerate symmetric matrices.

Proof. f(A)=h(A) (det A)~ " for some N with h(A) an invariant poly-
nomial. Hence by the lemma

S(A)=H(A'A) (det(A4"'A))~"
for some polynomial H.

Remarks. 1. For k= the holomorphic counterpart of this corollary
follows at once from the existence of a local section of the map A A'A.
Such a local section is given by the implicit function theorem or more
explicitly by choosing the symmetric matrices near A=1 (comple-
mentary to the Lie algebra of O(n, C)) and then translating by GL(n, C).
In the algebraic situation a Zariski-local section does not exist and
instead we have to pass to a finite covering before a section can be con-
structed — hence the Galois theory.

2. Our lemma is just the special case of the main theorem for ortho-
gonal invariants of n vectors in n-space. In fact, if we denote the columns
of A by a,, ..., a, then the (i, j)-th entry in A" A is just the scalar product
a;-a;.

VJVe propose now to show how our lemma together with the main
theorem for invariants of GL(n) leads to the main theorem for O(n). The
point of this reduction is that the main theorem for GL(n) has a variety
of proofs, some quite simple and direct. whereas for O(n) the only proof
given in [24] involves the use of the mysterious Capelli identity.

et us begin by recalling the theorem for the linear group's. It
asserts that all linear maps

RYVRV*->C

6 The following proof is extracted from [24, Chapter 111].
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invariant under GL(1")are spanned by the complete contractions in which
we pair off the Fand 1'* factors (this implies r =5). Since ' ® 1'* = End{1)

r

an equivalent formuiation is that the only endomerphisms of @V which
commute with the action of GL(1') are linear combinations of per-
mutations. More formally, if we denote by .o/, # respectively the images

in End(é 1) of the group algebras of GL(}) and of the symmetric group.
the theorem asserts that 4 is equal to the commutator algebra .o of .o/,
Now the basic results on representations of finite groups assert that .4
is a direct sum of full matrix aigebras and is equal to its double commu-
tator: #=24". Hence ./"=:# is equivalent to .o/ = 4" But 4 is just the

r .

r-th symmetric power S"(End})c®End1” and .« is the subspace
spanned by the diagonal elements AQA® - ®.4(.4§End I’). ' The
equality .o/ =# expresses the familiar fact that a symmetric multilinear
function is uniquely determined by the associated polyvnomial. We see,
therefore, that the main theorem for GL{n) is an easy consequence of the
double commutator theorem.

We return now to the main theorem for O(n). Let 1'=k" and put

W—_—(;@ 17 We want to identify all the O(n.k)-invariant linear maps
¢p: W k. Given o define f/: (End V) x W—k by fild. w)=@(4w) (where
A denotes the action of End V" on V). Since ¢ is O(n)-invariant we

have )
f(BA, oy=f(BAo)=@(Am=[(A. »)  for BeO(n k).

Now we may regard fas a polynomial map
End V— 1W*,
Applying the lemma to each component of this map it follows that
flA.0)=F{4'"A. w)

for some polynomial F (linear in the variable w). But from its definition
we see that
AR, Rw)=f{4.m) for ReGL(V)
and so
F(R™"Y PR ' Rm)=F(P.m).

where P here denotes a symmetric matrix. In other words F is a poly-
nomial map

ST(V*)x Wk
invariant under GL(V) and linear on ¥, We are now in a position to

apply the main theorem for GL(}). We deduce that r=2s1is even. [ is
of degree s on §?(V*) and is a linear combination of complete contrac-

22 inventiones math . Vol 19
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tions. Explicitly F is a combination of the functions
(P, ) (it} Dij 1‘{)(“5 P th) ..

where « is the tensor product of w1\ u. v, ... u. v, in some order
(and u| denotes the components of u,e V). Evaluating F on the unit
matrix p;=¢;; we deduce that ¢(w)=f(l,m)=F(l.m) is a linear com-
bination of complete contractions. This completes the proof of the main
theorem for O (n).

Appendix 11
The Proof of Propositions 2.11 and 3.7

‘ For the sake of completeness we append here a proof of the above
diflerential geometric propositions. We start with 3.7 because it is the
simpler of the two,

Our task is therefore to compute, up to arbitrary high order. the
components I” of a connection D on E at a point pe M in terms of the
corresponding information for the curvature K of D at p. provided these
components are computed relative to a synchronous frame s for E at p.
Now the formulas expressing the synchronism of s with the coordinates x
centered at p are as follows:

Let ()J"- be the connection form, for D relative to s, that is, near p:
Ds;=0;s;."”

Also let # denote the radial vector field in the x coordinates:

(’3

~ Q"

‘X

R=x'

Then the synchronism of s with x is simply expressed by the condition
that the inner product of @; with # vanish:

(al) 1) 0;=0.

Now the x-components of I” are given by
(a2) C Oi=Tjdxk
and those of the curvature K by

(a3) dOi— 0, A0 =Ky dx* A dx!

with K}, skew in k and .

4 . . o
'7 We continue to use the convention that repeated indices are summed.
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To relate them. recail that the Lie derivative along #.—again to be
denoted by # —acts on the algebra of forms via the reiation

(ad) R=1(R)d+di1(H).
Hence, by {(a 1) and (a 4) we have

" 5‘) RO =1(R) d0;=1(A) (dO;— O A OF)
’ =2x*Kj,, dx'.

Next, applying the derivation # to (a 2) one f{inds the relation:
RO = (AL dx + T d
so that equating coefficients we obtain:
(a 6) AL+ =25 K.

This relation now immediately vields Proposition (3.7). Explicitly
let us write [~ and K etc., for the formal Taylor series relative to x about p
of the function indicated. and I [n]. K [n] etc. for the term of homogeneity
n in this expansion. Then by Euler’s formula # preserves these compo-
nents and multiplies "'[n] by n. Hence (a 6) gives rise to the explicit

formula: . .
(n+ D [ [n]=2x' K, [n=1].

for the Taylor series of I" in terms of the Taylor series for K. Q. E.D.

A similar argument yields the more familiar Proposition (2.11). Here
the bundle in question is the tangent bundle of M. and the connection
the unique torsion free connection which preserves the given Riemann
structure g.

Now our problem is to express the Taylor-components at p of g.
in terms of those of the curvature — which we now denote by R — provided
a canonical coordinate system centered at p is used.

Let then x be such a coordinate system. and let s; be the orthonormal

frame obtained from by parallel transport along the radial

'1\.1 i
geodesics through p. The dualpframe to {s;} is therefore a frame of 1-forms
{0} well defined on M near p.

-As before the connection form of g relative to {s;} will be denoted
by 0i and the radial field by .

The geometric assumptionsnow translate into the following formuiae:
(a7 MO =X (A 0=0 g,;dxX'@dV=0"® 0"

e
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The first two follow from the fact that the radial lines are geodesics and
that the frame s is parallel along these. The last expresses the orthonor-

mality of the frame s. We now introduce the functions qj relating the
frames {7} and dx':
0'=ajdx'.

In terms of these we clearly have
gi=auf

so that 1t is sufficient to determine the d's in terms of the R’s.

. To this end we again apply the derivation 2 but this time twice. We
will also need the radial function r, defined by

rr=x'x"

Finally observe that then the expressions x'/r, or dx'/r are homogeneous
of degree zero in r, and hence annihilated by #.

Applying 2 to (F, yields
RO =1(R)dO +d1(R) O

(a8) . .
=1{(P)d0+dx".

On the other hand, the torsion-freeness of the connection is expressed by:
(a9) dOF=0iA 0,
Hence (a 8) goes over into
RO =1(R)0i A 0V 4 dXF
=M +dx.

We next apply the operator r- # - 1/r. to obtain

1 . -
r-:’?-'7 RO = —1(.%’)(10}){’
= —ZRJ':kaj.\‘kdxl.
On the other hand the left-hand side can be computed in terms of the a’s

yielding
RO =(Ra;+a)dx!

14

o S
PR — RO =R+ Ra)dx
r

Hence equating coefficients one obtains the relation

{a 10) (:2?2+;'}?)af= —ZR;HX]X“.
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Finally. applying the Taylor series construction. this translates into:
(all) (n*+mai[n]= =25 x* R, [n—2].

which explicitly yieids a/[n] in terms of R for all n>0. For &[0] we of
course have the identity §; by construction. so this relation explicitly
gives the dependence of @ on R—and hence also implicitly that of g
on R. Q.E.D.

i
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A Flatness Criterion in Grothendieck Categories

Friedrich Ulmer (Ziirich)

|

Let 2 be an abelian category in which filtered direct limits are exact,
i.e.a Grothendieck AB 5)category [4]. Let Ue U be an object, A=[U, U]
its endomorphism ring and denote with Mod, the category of right
A-modules. For each X' e the ring A acts on the group [U. X] of all
morphisms U — X by means of composition, and the lifted hom-functor
(U. =7 A—Mod,; has a left adjoint ® , U: Miod; — A Let n=1 and
U=Ufori=1,2,....n. Theaim of this note is to show that ® , U: 9tod , - A

is an exact functor iff the kernel of every morphism @ U,— U is an
i=]

epimorphic image of a suitable direct sum of copies of U. This generalizes

the theorem of Gabriel-Popescu [3] asserting the exactness of ® , U

provided U is a generator in 2L (In this case, the evaluation morphism
(U.X]®X =X

is an isomorphism for each Xe® and thus the canonical functor
A —=->Miod /ker ® , U is an equivalence.) The flatness criterion given
here — an outgrowth of [ 11] which took its final form in a seminar heid at
the ETH in the summer semester 1971 —cannot be obtained by adapting
the localization techniques of Gabriel-Popescu [3] or the method of
Takeuchi [10]. For if Ue? is flat over its endomorphism ring but not
a generator, then the full subcategory of all X €2l with the property

[UXI®, X —=—X

plays the role of 2, and this subcategory need not be a Grothendieck
AB 5) category. A counter example is given by any torsion f{ree abelian
group U which is complete in the Z-adic topology (cf. example b)j.
If 2 is a category of modules over a ring R, then the above criterion coin-
cides with that of Cartan-Eilenberg [2]. p. 123 (resp. Bourbaki [1].
Chapt. 1. §2, No. 11, Cor. 1, Prop. 13) and it also implies directly that of
Lazard [5].i.e. UeQ is flat over A ifl it is a filtered direct limit of finitely
generated free A-modules. By a slight modification one can obtain
Lazard’s and Cartan-Eilenberg’s characterization also for. U as an
R-module. Some examples and counter examples which illustrate the
criterion can be found at the end.
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Errata to the Paper:
On the Heat Equation and the Index Theorem

M. Ativah (Oxford). R. Bott (Cambridge. Mass.).
and V. K. Patodi (Bombay)

The joint paper of the above title which appeared e Inventiones math. 19.
279330 {1973, though correct in principle. contatned some technical errors which
we shall here explain and rectify. Our thanks are due o D. Epstein. Y. Cohin de
vVerdiere and A. Vasquez whose computations and queries alerted us to our errors.

1. The Notien of Regularity

The main error occurs on page 306 where it is implicitly assumed that the
coclficients of the two operators 1*.4 and -.4* (associated to the signature
operator 1) are polynomial functions i the g, their dertvatives and (detg) '
As we shall show later this is not quite true - the coefficients also involve | detg
and the inverses of the principal minors of the matnix g,;. Thus the form o) i (5.1
is nor a regular invariant of the metric in the sense of $ 2. and so the Gilkey Theorem
as formulated on p. 284 does not apply.

To correct this we shall widen the notion of regularity (so as to inciude. in
particular. the form ¢ above) and then check that our proof of Gilkey's Theorem
stifl holds in this wider context.

in §2 regularity was only defined for invarianis of a Riemann structure g
(i.e. satisfving the naturality or invariance property 2.3 1t will perhaps make
for greater clarity if we introduce our new notion of regularity for anyv function
of g. independently of the invariance property. We shall sav that f1g)is a reguiar
function of g if. in any coordinate system. we have

Fle) =Y a,(x.gix))m,  (finite sum)
P

where a,(x. 1) are €7 functions and m, denotes a monomial in the partial deriva-
tives of g{x). Here g(x stands of course for the classical components g, (v reiative
to the basis dx' given by the coordinates (x,..... v,). Clearly regularity s a locai
property and it has only to be checked in one coordinate svstem. The essential
difference between this definition and that of p. 282-284 is that we now allow
dependence on ¢ and do not insist on polvnomial dependence on g and g "
Another less significant difference is that we now allow the coeificients a, to
depend also on x. If  is both regular and invariant then this dependencee s
ilusory —in fact translation invariance alone shows the «, must be independent
of v. For a differential form reguiarity s deflined i terms of reguariny of s
components relative to the usual basisdy™ A-a dxt.
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2. Proof of the Gilkey Theorem

The proof of the Gilkey Theorem given in §2 is a “point-wise” proof using
geodesic coordinates. For this reason the € dependence on g introduced in our
new definition of regularity is quite innocuous. In more detail let m(g) be a regular
form-valued invariant of g in our new sense. Then in R" each component m,(g) 18
given by an expression:

ope[x]=Y af(x. g(x))m,

which we call the universal polynomial of m. To evaluate m(g) at a point p of a
given Riemannian manifold M we choose a geodesic coordinate system centered
at p and intcrpret it as a map of an e-ball about 0 in R”

[ RI>M

sending 0 to p. The invariance property of o implies that /*(m(g),)=m(f*go-
Applying our universal polynomial to the right-hand side now yields

o ergle)) =Y a0, 1% glo) m,(f* g,

and as the coordinates are geodesic for f*g at 0 we see that f*gl, is the unit
matrix. Furthermore we may now apply Proposition (2.1) to f*{g) so that the
monomials m,( f*g), are given by polynomials in the curvature of f*g and its
covariant derivatives (at 0). In this way we arrive at formula (2.17) and the proof
now proceeds as before.

3. The Signature Operator

The operators A¥4 and AA* of p. 306 are just the restrictions of the Hodge
Laplacian .1 to the subspaces €, of Q (the space of all forms). Certainly 4. relative
to the usual hasis of the dx*'A - A dx*. has coefficients which are polynomial
in g, its derivatives and (det #)~'. However this basis is not compatible with the
decomposition Q=Q D©Q_ (determined by the eigenspaces of %). This difficulty
is a consequence of the fact that AK(T*) is associated to the principal tangent
bundle via a representation of GL(n. R). whereas €, are associated only to the
principal SO1)-bundle (determined by g) via a representation of SO(n) which is
not the restriction of a GL{n, R) representation.

The upshot is that we have to resort to an adhoc framing of Q. which can be
constructed as follows. Let ¢'. ... ¢" be an orthonormal frame of T* obtained
from the dx'.....dx" by applving the Gramm-Schmidt procedure. In terms of
these ¢'s the « operatar and the corresponding t operator defined by

rq=i?r ey for el
is especially simple. Indeed if HK =% A - A P" is an exterior monomial then
t¢* =a(K)- "

where [. denotes the complementary monomial and a(K) is + 1. when ni2=11s
even. and + i when [is odd. [t follows that if @, denotes the subspace of  generated
by ¢'. .47 P then 1P, = " A b, so that in particular

Errata to the Paper: On the Heat Equation and the Index Theorem 279

We may thercfore frame Q. with the forms (PN + "] 2 =¢K where of
does not involve ¢" and similarly frame Q_ by ¢* =" —rd)"),f’lﬁ. Furthermore
the pX . ¥ together give rise to an orthonormal framing of €.

Now the ¢'s are related o the dx’s by a triangular matrix

$p=Tdx

whose coefficients are €7 functions of the g;; but are not just polynomials in the
g;; and det g ' Indeed here square roots of det g and inverses of principal minors
of g will Appear.

In any case relative to the frame &% . ¢ the operators d and d* will have
regular coefficients {in our ncw sense) and therefore (d+d*)?* also. But in this
frame the operators A*A and A% just correspond to the “diagonal™ parts of
this matrix operator and hence still ‘have regular coefficients. Moreover their
leading terms are {(in any base) the scalar operator

(‘:2

R S S
~7 XX
Since regular functions of g are closed under muitiplication and under differ-
entiation by C7 vector fields the Seeley formula (4.40) applied to AA* and A* A
shows that their heat expansion coelficients are reguiar functions of g. The lorm
w appearing in (5.1) is therefore a regular invariant of g and so we can apply the
Gilkey Theorem and proceed as before.

4. Other Operators

For the generalized signature operators A, of $6 the argument is quite analo-
gous. The definition of regularity in §3 s widened in a similar manner by ailowing
polynomials in the variables in (3.4) to have coefficients depending on g and (for
functions not necessarily invariant) on x. The generalized Gilkey Theorem
(Theorem 11 on p. 290) is still true and can be applied to the form w(g, &) in (6.1)
as before.

The Dirac operator B on p. 314-315 presents essentially the same features as
the signature operator. To write its coefficients out explicitly we must first choose
an orthonormal base of the two Spin bundles £ and E-. Since the Spin re-
presentations are not representations of GL(n.R) a local coordinate system on
M does not automatically give rise to such a base, so we must again use the
Gramm-Schmidt process to orthogonalize the dx'. The coefficients of B are then
regular functions of g as before while the leading terms in BB* and B*B are scalar

2

_ Lo d
and given by — g’ ==
8x; OX;

5. Corollary on Page 303

A second error occurs in the last part of the Corollary on p. 303. The statement
that in the quadratic case j(A) is a polynomial is incorrect and should be modi-
fied by replacing (A4 with (det @)}y, (A). The error crept in through a wrong
sign on p. 305 where. after the change of variable &= g~ 1&. we wrote down

Piov=idet g)" ' | pig PO i)
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instead of the correct expression:

fgr=ldet ) ' § plg 'O ()
s 1
It follg\\:x that it is |det g] ftg) which is in the coordinale ring of GL(n. R) rather
than f(g).

This alteration does not now alfect the rest of the paper in view of our widened
definition of regularity. Incidentally the necessity for the faclor (det o)t is at once
seen by considering the case A=d+d*: Qe Q04 which leads to the Gauss-
Bonnet formula. For the signature operator the square root is eventually can-
celled out by anather factor (det «)* occurring in the coefficients of A {as observed
in (3) above). which explains why the Hirzebruch formula for the signature is
rational in the g,

6. Appendix 11

There is an unfortunate confusion of notation on p. 328 which affects the
precise recurrence formula (a11) but does not vitiate the main conclusion. Pre-
cisely the lower line of the formula

1 . o
re B A= — (A X
r

= 2R xix*dx!

is wrong if R',, 1s to have its standard meaning. that is. if the curvature matrix of g
relative to the frame 7/7x' is to be given by

SR dx! dx'.
The correct expression is obtained by replacing the — 2R, of our paper with
al IR,

where b is the inverse matrix to a. Indeed the a's and b's correct for the switch of

; . . . . . . (“
frames: (' —dx'. while the minus sign corrects for the switch dx'— - and the
2 is cancelled bv 1/2 above. ox

Correcting (a 10) and (a 1 1) correspondingly we obtain the recursion {a 1)
(n? ) di ] =T XHRGal Py = 2]
which still serves to determine the a's in terms of the R’s.
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