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ELLIPTIC OPERATORS, DISCRETE GROUPS AND

VON NEUMANN ALGEBRAS ¥
by

M.F. ATIYAH

§ 1< Introduction.

The global theory of elliptic equations on compact manifolds is
very well established. In particular one has finite-dimensionality for
the spaces of solutions and an explicit topological formula for the
index [1]. For non-compact manifolds, on the other hand, the situation
is much more difficult and there are few general results. The essential
difficulties are

(i) one has to decide which growth conditions to impose at
infinity,

(ii) the spaces of solutions are usually infinite-dimensional.

In practice the most useful condition to impose under (i) is square
integrability with respect to some natural inner product : the spaces
of solutions are then Hilbert spaces. In view of (ii) one would not

expect a meaningful index formula. Nevertheless, and this constitutes

The results in this paper are essentially part of a larger investi-
gation carried out in collaboration with I.M. Singer (see §(6.1)).
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our main result, for a large class of problems it is possible to derive When T is finite of order |I|, so that i is al
Ly so compact, we
. . . . ! .
an index formula based on the dimension theory of von Neumann algebras have dlmr = TFT dim, so that (1.1) reduces to
- in which Hilbert spaces have a real-valued dimension. -
) ) . (1.2 index D = |T| index D,
The class of problems to which our theory applies are those 1n
which there is a discrete group T acting freely on our non-compact which is a well-known consequence of the index formula of [1] In f
~ ~ . n fact
manifold X, having a compact quotient X = X/T, and commuting with . (1.2) can be proved quite easily, independently of the final f 1
- - na ormula
our elliptic differential operator D. In other words our operator D of [1], and our proof of (1.1) will be a straightforward 13
generaliza-

is the lift to the covering space X of an elliptic differential ope- tion of this direct proof.

rator D on the compact manifold X. To form our Hilbert spaces on Before proceeding further it is perhaps desirable to d ‘b h
escribe the

X we use any T-invariant smooth positive measure dfi, i.e. the lift I-dimensions, used in (1.1), more explicitly. If {¢.} i h
. n 1s an ortho-

of a smooth positive measure du on X. The bounded operators onT normal base for the Hilbert space h(B) we put
L2(X) which commute with the action of T form a von Neumann algebra ~ o )

f(x) = ¢ |¢’n(")|
4 and this has a natural trace function denoted by tracep . In parti- .

g
IhlS serles converges and the function £ is c and r lllVaI‘lant,
cular if ); [ a 1s an or th:g:l E 3 hence is the ll‘ft of a funct .LO“ f on X. Then

that H is a I'-module, one defines

dimr H = trace; P (1.3) dimr H(D) = SX f(x) du

which is a real number d with 0 ¢ d € =. Applying this to the and similarly for D*. Clearly if T is finite then

spaces H(D) and ¥ (D¥) of Lz-solutions of D¢ =0 , D¥w =0 we - -
dim ¥(D) =S~ £(X)dfi = |T S £ - : -
get a finite real-valued index X " Tl X () du Tl dlmr ¥(D)

indexr D as stated above. This shows that (1.3) gives a natural "normalized

. TN s H T
dlmru(D) dimg (D)

dimension".

Ou main result l’S then Fo
rmula (1-1) embodies an existe y i
I. - . nce theorem, namel if one knows
(1 1) inde> tl\at index D>20 (a topological Cr‘iterion in View of 1;) then |

In other words, for the TI-pericdic operator D, the T-index of index 5 > 0 and hence H(B) L0 5 in other words th )
H ere exist non-zero

Lz-solutions is the same as the ordinary index of TI-periocdic solutions. Lz-sol . . ~
utions of the equation D¢ = 0. Notice that, at this stage, von

Combined with the explicit formula of [1] for index D, (1.1) gives Neumann algebras and normalized dimensions have disappeared from the

a corresponding formula for indexr D. . sce .
ne they appear only in the proof. This existence theorem is quite

easy to apply. For example, if X 1is the upper half plane and 5 is

T For brevity we omit here any reference to vector bundles. These

. . . the 3-
omissions will be rectified in the detailed text. he 3-operator on (0,1)-forms, we can choose X to be any compact
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Riemann surface of genus g > 2. Then index D = g-1 > 0 and so we

deduce the existence of non-zero holomorphic L2 forms on X. Of course
this fact is well-known and of great interest since this gives a Hilbert

belonging to the discrete series.

space representation of G = SL(2,R},
Note however that our proof applies directly to the universal covering
of the Riemann surface X (of genus > 2) without using its identifi-

cation to the upper-half plane, i.e. without using the Riemann mapping

theorem.

The essence of the above example is that the operator D not only

commutes with the discrete group T (the fundamental group of X) Dbut

with the transitive Lie group G. The space H(D) is then a G-module

and not only a I-module. Much more generally one can consider G-inva-

X = G/K. When G

~

riant elliptic operators D on a homogeneous space

is semi-simple and K is a maximal compact subgroup, so that X is
the symmetric space, there are suitable operators B to which (1.1)
applies and shows that H(B) £ 0. Thus our theory can be used as an
analytical starting peint for the investigation of the discrete series
representations of G. This will be taken up in a subsequent paper
where it will be shown in particular that our l-dimensions are closely
related to the "formal degrees" of the discrete series. An interesting
feature in all these cases 1s that, because I is highly non-commuta-
tive, the von Neumann algebra @ is actually a factor (of type II )

so that the dimension function is unique up to a scalar.

We proceed now to explain the method of proof of (1.1) and, as &

preliminary, we shall show how to compute index D (on the compact

manifold X) in terms of any parametrix Q. By definition of a parame-

trix we have

(1.4) QD = 1 - Sy DQ = 1 - 5y
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whe i
re 80,81 are operators with €% kernel. A special case is that

of the Green's operator G which satisfies

(1.5) GD = 1 - H

wh 3 i
ere HO’Hl are the projections onto H(D) and H(D*) respectivel
ctively.

From (1.4) we deduce

Usi
ing these formulae we now compute traces using the fact that §.,S
0°"1

and
DSO have C kernel, hence are of trace class, and that G DG
3

and GD are bounded

trace DS G = trace GD = =
0 S0 trace SOGD = trace S0 - trace HO
trace S = =
1DG trace DGS1 = trace S1 - trace H1 .
Since DSOG = SiDG we deduce
(1.6) index D =
=t - =
race HO trace H1 = trace S0 - trace S1

The advantage of (1.6) is that the parametrix Qs and hence th
e

S. o] ] out of the o erato ) whe e
Y can be constructed local y p r Py h reas th

Hi depend globally on D. In particular we can always construct Q
so that it is almost local, i.e. so that its Schwartz kernel has sup-
port close to the diagonal. The same will then be true of the S.

Suppose now that X » X is a finite covering, then the alm:st local
property of Q,SO,S1 means that they have natural liftings to almost

local operators on X and equation (1.4) implies

~
~

(1.7) QD = DQ
Q =1 - s, DQ =1 -5,

Hence, applying (1.6) to D we have

-~ ~

(1.8) index D = trace SO - trace S1
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But Si(i,i) is by construction the 1ift to X of Si(x,x), hence

(1.9) trace g. = S~ S.(%,%) dp = kg S.(x,x) du = k trace S,
i X x 1 i

where k is the degree of the covering X - X. TFrom (1.6) and (1.8)

we deduce

index D = k index D

which proves (1.2).
For an infinite covering with group I we proceed in exactly the

same way as far as (1.7). The main difference is that (1.8) has to be

replaced by

N - -~

(1.10) 1ndexr D = trace; SO - trace, S1

and (1.9) by

(1.11) tracep Si = SX Si(x,x) du = trace S

The proof of (1.10) is formally similar to that of (1.6) with trace,
replacing trace throughout. A technical difficulty however is that the

Green's operator G need not be bounded (e.g. X = R, D = g;, r =2,

so that more care is needed in the use of the commutation formula

tracer AB = tracer BA.

The detailed contents of the paper are as follows. In § 2 we review
the basic properties of the kernel function associated to a general
elliptic operator. This generalizes the classical theory of the Bergman
kernel. In § 3 we introduce the discrete group [ into the picture and
we prove that, for an elliptic operator B commuting with T, the mini-
mal and maximal domains coincide : this means there is no ambiguity
about its adjoint B*. We then give thg precise formulation of our

main theorem. In § 4 we introduce the von Neumann algebra @ of T-

invariant operators and the trace function tracer. We establish the
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basic properties of t
race, and then use these in §5 to prove (1.1)

on the 1i i i *
ines 1indicated above.' Note that our treatment in 8 4 and § 5

is eleﬂle]ltal} and self contained ]:“c“ledge of von “Eu]’nallll algebIaS

is not assu . i i
med. We conclude in § 6 with some further observations and

open problems.

d ted to L. HOIlIlandeI and J. Dulstelmaa lp
I am indeb t for he with a

number of the analytical questions.

§ 2 - The kernel function.

In this i Y no 1
section we shall review some eSSeIltiall well-k Wil ma
erilia

wh t ical re s of S. Ber man on the ker e unc-
ich extends he class a sult g nel f
C

. Th proois ly h y L. Schwar‘t .
tion e (o] re eavil on the kel'llel theOIe]'ﬂS of z

Let X
be a smooth paracompact manifold with a smooth measure g
Ty

and let
E,F be two complex vector bundles on X with hermitian i
inner

rod .
D ucts (all structures bel]lg Sﬂ'looth) We can then fOIHl the Hllbel't

2 2 : .
aces L
Sp e (X,E) and L (X,F) of Square_llltegr‘able sections the innel'
?

product on sections being given by

Cu,v) = g (u,v) du
X

WIlere (U,V) is the functlon obtal“ed by taklllg the inner product in

each fibre.

Suppose ¢ ¢ w i
p now that D : C (X,E) » C (X,F) is a C° elliptic diffe-

renti We deno te by H(D the P e
lal operator of order m. ) spac of 11
a

2
L2 . .
solutions of the equation Du = 0. Since D is elliptic e
very

weak solution is actually ¢ so that

(D) < ®(X,E) N L2(X,E)-

If .1 i
uJ 1s a sequence in H(D) converging to u in L2(X,E) then
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Duj » Du weakly (i.e. as distributions) hence Du = 0 and so

u e H(D) thus H(D) is a closed subspace of LZ(X,E).

Let P denote the orthogonal projection onto H(D). Since P 1is

a continuous operator on L2 it is certainly continuous as an operar
tor £ * B! and so has a distributional kernel p{x,y) in the sense

of Schwartz. Since P acts on sections of E, pix,y) ¢€ Hom(Ey,Ex) =

E E e E§ so that p 1is a distributional section of the bundle
Hom(El,Ez) on X x X, where Ei = ni*E, " being the projection
X x X - X onto the appropriate factor. In fact p 1is a ¢® section

because it satisfies an elliptic differential equation. To see this

we note first that DP = 0 (by definition) and so Dxp(x,y) = 0.

Taking adjoints and using the fact that P*-= P we get another

equation

ﬁxp(x,y) =0,

where D = hph™! and h : CT(X,E) = ¢¥(X,E') is the antilinear iso-

morphism defined by the metric on E. Combining the two equations we

see that p(x,y) satisfies +the differential equation

* ~—¥= _
(2.1 (Dx DX + Dy Dy) p(x,y) = 0

which is clearly elliptic.

If {¢n(X)} is an orthonormal base of ¥ (D) we consider the

series
(2.2) £ ¢, (x) . (y)

where $n = h ¢n gives the corresponding orthonormal base of

¥(D) € C®(X,E'). If we put

(x,y) = ¢, (x) 5n(y)

n

P

n ™M=
Y

N

then Py is a C” kernel and it defines a corresponding projection
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2

operator P of fllllte rank o] L The seguence P COIlVer‘gES to

. N

P in the ztrong operator topology, that is PN(¢) +~ P(¢) in L2 for

any ¢ € L°. 1In particular PN(¢) + P(¢) in B#' for any ¢ ¢ B

which means that i

(and hence for conizr;e:t ::akly . £(ﬁy,ﬁx'). [ ot e
quences) the weak and strong topologies on

£(ﬁy,ﬁx’) coincide (ef. [2 ; (4.3)]), so that P, -+ P strongly in

f(ﬁy,ﬁx'). But the Schwartz kernel theorem [8 ; Piop.25] assert: that

we have a topological iscomorphism

£(H ry =
Y"BX ) ‘Bx:y

he for e 1avin 1e stron to olog . Thus P d das dlstllbutlo“
N s
Now it 1s clear that

Py @also satisfies the elliptic equation

(2.1) and we have the following general lemma

LEMMA (2.3) 1f q
. a sequence f. i ipti
j of solutions of an elliptic equation
converges to f in &' then f., » f in C
———— J —

@

Proof : iv y l
O In any relativel compact set we have 7 3 Theorem 23

H)
£, = DI . f = [ i hd o y v
continuous functi i

ons, hence f. » £ in the local Sobolev space H
6 (2.6 l. i e
’ ) But the space of solutions of the given elliptic quat'
P ion

1s a closed subspace of the Frechet space Hloc
s

N for every s. It is
eref
ore a Frechet space and, by the closed-graph theorem, the ind d
. e s uce
pology 1is independent of s. Thus fj » £ in all Hi°C and h
ence
by the Sobolev lemma, in " ) ’

Summarizing these results we have

PROPOSIT
ION (2.4) The kernel p(x,y) of the projection P onto the

space H(D 2 i
p ) of L solutions of the elliptic equation Du = 0 is ¢

Moreo f i
ver, if ¢n(x) is an orthonormal base of H®(D) and ¢é_ = h¢
—_— - — n - n
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the corresponding base of ¥(D), we have *e @ fundanental donai
in. Note that the characteristi i
ristic function y of

] ] U satisfies L =
N ¢n(x) ¢n(y) yor Y(x) = 1 almost everywhere. When dealing with diffe-
R renti it i
ntial operators it is preferable to have a smooth partition of i
the sequence converginr uniformly on compact sets of X x X, together relative to I , namely a non-negati c” X o
- ive function ¢ on X wi
th

compact support and such that I y(o) =1 note that at X X
any X €

with all its derivatives.

: : L el

If we put x = y, then p{x,x) ¢ Hom(ExaEx) and we can therefore only finitely many of the funct}ons vy(o) are non-z h

' - 8 ' . -zero, so that th

take its trace to obtain a function. Proposition (2.4) implies that summation is essentially fini , e
i y finite. To construct such a o we take a C
1 _ partition of unit i
| (2.5) tr plx,x) = I lcbn<x>|2 . N y e} on X with supp ¢;C V,, 1lift ¢. toa
| n=1 | : . ~ ‘ :

unction ¢i on X using the section s and put ¢ = 25
;-

The fact that the operator D commutes with r

has strong impli-

§ 3 - The index theorem. cati i : c s
: ions for its domain of definition as an operator on L2 For an
. y

dlffeI ential o a 3 con P
per tor A defl“ed in the flISt instance on C s We
. > tuation of § 2 bu can consider 1ts clos p
18 ”]-th the s1 ure A das an operator on L The domaln of A
. 3 ac g X by X e PT consists of u f nvergent sequence
; £ 1 notation rep € L or which there ex1sts a co g C

ms of the whole structure, that is

[ ~ uj + u and Auj + Au  in L2

T acts smoothly on X,E,F preserving the measure dii on X, the

is a discrete group of automorphis
this domain is usually called the

minimal domain of A. The maximal domain of A
2

inner products on E,F and commuting with D. We assume further that > is the space of all
u ‘ u e L such that A i i i
ot e B e eain & amooth o rora uelL (as a distribution). If B denotes the
for .. . .
y mal adjoint of A, i.e. the differential operator with domain

and E/T = E, F/T = F are vector bundles on X, -
such that A =
(ii) X 1is compact. comp (Au,v) {u,Bv), we see that the maximal domain of
B is 4 ) )
1s Just the domain of the Hilbert space adjoint a* - a* The mini
= . mini-

We denote by D the operator c®(X,E) - c¥(X,F) induced by D.
mal domain is of i : .

Conversely if D is an elliptic operator on a compact manifold X - ©of course contained in the maximal domain. For the ope-
rator D we have the converse

and if X » X is a Galois covering with group T we can 1ift every-

| thing to X and we shall recover the above situation. PROPOSITION (3.1) The minimal and maximal domains of th D
; ‘ ' ' € operator D
; It will sometimes be convenient to introduce a fundamental domain coincide.

U of T. We recall that this means an open set of X, disjoint from

Proof : Gi 2,3 £y . = 2,0 =
has measure zero. froof : Given wu e L°(X,E) with Du e L°(X,F) we must produce a

all its translates by T and such that X - Uy (U)
yeT sequence u. c”® Y . 2 =
€ (X,E) such that uj > u in L°(X,E) and

U is a simple matter. Let V., be a finite open J 2C9m9

To construct such a D =
Du. i .
3~ Du in L%(X,F). We shall carry this out in two stages, first

f X by small balls, so that we have a continuous section Sy

covering o i i
by regularization and then by cutting down the support. TFor the first

of X+ X over V,, and put W, = Vg o- U ov. N Vi. Then U = U si(wi) ot . .
j<i age we shall use a parametrix Q for D obtained by lifting an
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almost local pseudo-differential parametrix Q for D as explained

in §1. Then

(3.2) QD = 1 - S; > DQ = 1 - Sy

with Si having a ¢® kernel and Q, S0 and 51 all bounded opera-

2 oo ~ oz . .
tors on L°. Now choose a sequence vj € CComp (X,F) converglng 1in
2 _ g o~ ) -z

L to v = Du, then wj = ij € Ccomp

differential and almost local. Applying (3.2) we find

(X,E) since Q is pseudo-

wj + QDu = u - Sou
Dw. = v. = S,v. = v = 5
o TS T A v
the convergence being in L2. Thus u - Sou is in the minimal domain

of D, and so we are reduced to showing that w = Sou is in this

minimal domain. But Sj, has a ¢® kernel supported near the diagonal,

hence w € < n Lz. This completes the first stage in the proof and

o -
we come now to the second stage. Here we shall use a C function @

on X with 5 vy(g) =1 as explained above. Since X 1s paracom-
vel
pact, T is countable so let FN c T be the first N elements and
- o . 2 .
put oy = I y(o). Then Oy € CComp and Opw > w in L°. We will
YEFN
2

show that ¢N = D(on) converges to Duw in L%, which will

show that « is in the minimal domain of D and will complete the

proof. Since Doo is an operator of order m with compact support

and since D is elliptic of order m, We have an inequality for L

norms

A

bl < ¢ {lixgll + lIxpell }

where C is a constant depending on D and o, the section g 1is in
oo

N\ comp
Taking & = ¥ (w), and using the fact that every y € T commutes

c”(X,E) and x € C is equal to one in a neighbourhood of supp 0.

with D and is unitary, we get
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Iy (@@ % = Doy Lew)) || 2

n

-1 2 ~ o
Ul xy™ @ 1? + | xdy w2}

N

) -
el yOOwll“+ ]l ¥ Dwll? 3.

Hence -
Ipw - o112 < c £ (] v¢ 2 ~
< ) 2
N vir, I yOwl|“+ || v(x) Dw||®}

. 2 -
< CM Si (Jul© + Ilez) ap
N

where M = sup =

2 . . i
yeF!Y(X)l (which is finite) and X, =

N = U supp v(x).
Y IN

But given any Compact Kc X there are O“ly a fllllte number of Y € T

such th
at K N y(supp x) #8, so that for sufficiently large N
3

K n i = i D
N . Since w and Dw belong to L2 this implies that

§ dal? + 12al <

for N
N ] NO
and hence HBw -9 ',2 <C D
Me for 1 i

. ‘ N arge N. Thus ¢N > Dw in L2 as
equired.
Rem X = RD

ark If X=R", D=1+4A where 4 1is the Laplacian - Zaz >

ax.2

1

PPOpOSlthn ( ) a
. mounts t
3 t o the fact that C 18 de“se in 'the

comp

Sobol 2 i i
olev space H Thus if we introduce generalized Sobolev spaces

on X th i i
ey will have the usual properties.with respect to I'-invariant

elliptic operators.

Wi . s
1th these technicalities out of the way we return to the kernel
ne

functi i i D
lon studied in 82. Thus we consider the space H(D) of Lz—

soluti i D
ons of the equation Du = 0, the orthogonal projection P onto

thi i Y y ve
S Subspace Of L (X,E) and its Sch artz kernel p(X, ) As pro d
W .

-~

in 52 ~ . o« . .
P 1s C . Since T commutes with D and preserves inner

r i D
products it acts on M(D) and commutes with P. Hence

PYX, ¥Y¥) = P(X,§) for all vy e T.
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~

In particular, putting % = ¥, we see that p(x,%) 1is a r-invariant

section of Hom(E,E) and so is the 1ift of a section p(x) of

Hom(E,E) on X.

Taking its trace pointwise we get a ¢® function and we shall define

the T'-dimension of H(D) by

(3.3) dim H(B) = S tr p(x) du.
X

Note that, by (2.4), tr p(x) can be computed in terms of an ortho-
normal base {¢n(i)} of H(D) by
NN
(3.4) tr p(x) = L |¢n(x)|
n

where X € X is any point lying over X € X. Thus (3.3) can be refor-

mulated as

(3.5) dim; ¥(D) =S $ e (0)]° di
Un n
where U is a fundamental domain for T. Alternatively, using a c”
function o with £ y(og) =1 as before, we have
yeT
(3.8) dim, (D) = S~ G (R)P(%,%) af .

X

For the moment (3.3), and its equivalent forms (3.5) or (3.6), should
be regarded as an ad hoc definition. In §4 we shall reinterpret this

in terms of von Neumann algebras as explained briefly in 51.

* . . .
If D)'E is the adjoint of D, D its 1ift to X, we now define

. . s TN o as g3
(3.7) 1ndexr D = dlmr H(D) dlmr ¥(D ).

Our main result can now be formulated

THEOREM (3.8) indexp D = index D, or more explicitly

T a2 o~ T a2 4~ .
U oz le (®)]° ai -\ & |y (X)]" di = index D
U n SU n n
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{wn} are orthonormal bases for the L2 solutions

of Du = D¥y = pectively

of 0, D" = 0 respectively, and U is a fundamental domain
for the action of I on i.

§ 4 - The von Neumann algebra.

We continue with the situation of §3 in which T

is a discrete

group acting freely on the manifold i with X = X/T compact. Th
. en

I' acts unitarily on

bounded operators on

L2(x i
) and we consider the algebra @ of all

L2(X)  whi i
which commute with T. It is weakly clo-

s e s . .
ed and self-adjoint which makes it a von Neumann algebra. Its stru
. c-

+ .
ure becomes clear if we use a fundamental domain U to make the

identification

4.1) L2

=

The action of T on

representation of

commutant of the left regular representation on L2(F)

2
L2r) e L2 = L2 8 L20X).

1200
corresponds by (4.1) to the left regular

2
I on L°(I') extended by the identity on LZ(X) The

is well-known

t
0 be (the von Neumann algebra generated by) the right regular repre-

sentation [5; p. 282].

Hence (cf.[5 ; p. 24]) the commutant & of T

acting on LZ(X) is given by

(4.2) a =

where R is th i
e algebra generated by right translations Ry on L2(P)

and & denotes all bounded operators on L2,

For the algebra
generators by

trace

R there is a well-known trace defined on the

®

Y

=0 Yy £ 1
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For the algebra & we have the usual trace of Hilbert space theory

(defined on operators of trace class). These two traces then define

a trace on the tensor product algebra a.

Instead of proceeding as above we shall give a direct self-contai-

ned treatment which does not appeal to the general theory of von Neumann

algebras. This will have the added advantage of clarifying the "trace-

class" operators of the algebra d, and will be better adapted to the

¢® framework. We assume as known the usual theory of Hilbert-Schmidt

and trace-class operators in Hilbert space.

Any bounded operator A on LQ(X) has a Schwartz kernel A(X,¥)
which is a distribution on the product X x X. Clearly A € ad if and
only if its kernel is r-invariant, i.e.

AYR, v§) = A(X,§) for all vy € T.

When this is satisfied we may view this kernel as a distribution on

the quotient X ; £,

We recall that, in the algebra of all bounded operators, an opera-

Lz-kernel. For the

tor is said to be Hilbert-Schmidt if it has an

algebra @ we therefore make the following definition

Definition (4.3) A ea@ is TI-Hilbert Schmidt if its kernel is in
L2(X x X). The T-HS norm of A 1is then taken to be the Lz—norm of

T

its kernel.

An alternative definition, easily seen to be equivalent to (4.3),
is

Definition (4.3)' Aed is I-Hilbert-Schmidt if ¢A 1is Hilbert-

Schmidt for all bounded measurable functions ¢ on X with compact

support.

The symmetry of (4.3) in the two factors of X shows that
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( . .
4 ‘4) A 1ls I Hilber t"SCll]Xlldt < A is T Hllbert Sch
midt

On the other }la]ld, Uslllg (L;.3) and the faCt that the usual Hilber t
SCllnll(it OpeIatOI s form an 1ideal in the al ebra of all bOUIlded Y
g operators Y

4, i i
(4.5) A is T-Hilbert- Schmidt and

Bed = AB is I'-Hilbert-

Schmidt.

g S g ( . ) s 1 ( ) 1
Takin adjoi and usin L.4 1t fOllOWS that n 4.5 we aiso }laVe

is TI'-Hi b - dt, so that the T Hllbel t-SChlIlldt operators fOIHl
BA 1 ert-Schmi P

2 2-sided *-ideal of «.

In i
analogy with the usual theory we now make the followi
ng

definition

Definiti .
efinition (4.6) A ed is of I'-trace class if A = T.T

1T, with

Ti € d being T'-Hilbert-Schmidt.

From t i
he pr‘OpeI‘tleS of T Hllber‘t SCh]llldt Opelator‘s it follow th
S at

the OPEIatOPS of F-trace class also fOIm a 2-Slded ~-ideal of & .

Mor i i
eover if A 1is of I'-trace class then, for any pair b,y
b

-~

measurable functions on X

of bounded

with ConlpaCt SuPPOI t’ we ha“e

N .
he product of two Hilbert-Schmidt operators. Thus

(4.7) A
of T'-trace class and $,¥ Dbounded measurable functions

with compact support = ¢Ay 1is of trace class

For iti
positive operators we also have the converse

LEMMA (4. i
(4.8) Let A e 4 be a positive self-adjoint operator, then

the following are equivalent

i) A 1is of T-trace class

ii) ¢Ay 1is of trace class for all ¢,¢ € C (i)

comp

59




M.F. ATIYAH
ELLIPTIC OPERATORS

111) AY/? is r-Hilbert-Schmidt.
| Proof : 1) = ii) is just (4.7). The implication iii) = 1) is = trace st Yf1(¢w)¢'AW'
i trivial since A = Al/2 Al/z. The only point to note is that
Aed = a2 ¢ g (i.e. al/?  commutes with all y e ' ), and this = trace YEF Y-1(¢¢)¢'Aw' = trace ¢'AY!’
follows for example from the Cauchy integral representation for Al/z. In view of thi
; It premains to prove ii) =» i1ii). Take ¢ = ¢, then 1s lemma we can now make the following definition
bAD = (¢A1/2)(¢A1/2)* being of trace class implies that ¢A1/2 is ; Definition (4.10) If A e g is of P-trace class we put

A1/2

. . . |
Hilbert-Schmidt and so, by (4.3)"', is T-Hilbert-Schmidt. |

tr‘acer A = trace ¢A\P

We shall now use (4.7) to introduce the T-trace in d. This depends

for any pair ¢,y
s of bounded measurabl i s
on the following lemma : e functions with compact support
such that I y(oy)
YeTl

=1

LEMMA (4.9) If A is of I-trace class and d,0",¥,y"  are bounded

dmisssi .
Admissible pairs ¢,y can be obtained either by

measurable functions with compact support on X such that

i) = = c s .
Toy(eu) = I y(e'w) = 1 ¢ ] characteristic function of a fundamental domain U
yeT yel for T acting on i
then trace ¢AY = trace ¢'AY' or ii) ¢,y Cc~ f . >
_ s unctions on X with com
pact support such that
L E
Proof : Since ¢,¢' have compact support there is a finite subset S Yerl v(¢) 1, and ¢ =1 on supp ¢
of T such that i : .
c . Using (i) we shall derive a formula for trace, involvi
- ng an -
Supp v(¢') N Supp ¢ # 9 = vy and v e S . normal base {e.} for LZ(U) . r g ortho
i . Since the elements {ye.} form an
orthonormal b 2,5 . 1
Hence Ioy(stIe = I (86 = 0 ase of L7(X), and since
YES vyel
VY @l) = 0 for Y £ 1
and T oy(ePdet = T y(ew)e' = o' .
YeS yeT voe; =e;
Therefore ( ¥ being the characteristic function of U), we have
| trace ¢AY = trace L Y(¢'U'IPAY = I trace y(o'y')oAY _
ves ves trace A = trace YAy = Z<wA¢yei, Yei>
(4.11)
= § trace y(¢')¢uAy(y') (using trace ST = trace TS for =z <Aei,ef
YeS S of trace class and T bounded) 1

Applying this in particular to A = T¥T, where T is I-Hilb
- ert-

= I trace Y_1(¢w)¢'Aw' R since y(A) = A
YeS Schmidt, we get
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x1 = 3 (T*Te.,e.) = I ||ve;]l?
HTHI,HS = Tracer ™T = : i85 : N
2 2
= b [(Tei,ye.) <= = |(ei,T*yej> |
i,3,v J i3,y

z |<Y-1eiaT*ej>12 (since YT = T and yy* = 1
i,3,Y

2

* _ i
(4.12) £ ||T*ejl| = Trace, TT* = || T lpyg

From this it is now a standard elementary argument to deduce

PROPOSITION (4.13) If A ea@ and S ed is of TP-trace class then

trace, AS = tracep SA

r
For completeness we recall the details. First let S be positilve
. T = AS1/2
self-adjoint of I -trace class and A € ¢ unitary. Then =
ijs T-Hilbert-Schmidt and so (4.12) gives
- 1/2 1/2 % 1/2
(4.18) trace, ASA ' = trace (a5 ?)(as?/?) ¥ = trace (s’ I*(ASTIT)

= tracer S

Now the positive elements span (over €) the whole ideal of T-trace
class. To see this let A = A* be of I'-trace class. Then P, the

spectral projection corresponding to A > 0 is in @ (use the Cauchy

integral formula), hence A_ = AP is of T'-trace class and is positive.

+ +

Hence A = A - A_, with A_ = A(1 - P+), is in the span over R of

the positive elements of T'-trace class. The result over C follows by
using the decomposition : B = 1/2(B + B¥) + % SE_%_Efl - Hence (4.14)
holds for all S of T-trace class. Replacing S by SA then gives
(4.13) for unitary A. It remains to note that the unitary elements
span @. To check this it is enough to consider a self-adjoint element
A in @ with ||All< 1. Then U = A + i(1 - aH)Y? is  unitary

in @ and A = 1/2(U + U™.
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Formula (4.11) also leads to the following important continuity

property of tracer

PROPOSITION (4.15) Let

S € @ be of I'-trace class and let Aj € d be

a_sequence of operators converging strongly to A e @

(i.e. A.f - Af
- - J
for every f ¢ L2(X)) . Then

tracer SAj - tracer SA .

Proof : Since S is of T-trace class we have § = T1T2 where T. 1is
—_ i

I' -Hilbert-Schmidt. Hence, by (4.11),
Trace, SA. = I{SA.e.,e.) = . T ¥
rSAy =1 SA]el,el> §<T2Ajel,T1 e; ).
For a fixed i and j » » each term in this series converges to
<T2Aei,Tfeai) = <SAei’ei>’ so it remains to show uniformity in 7.
Now the fact that Aj converges strongly to A implies in particular

that we have a uniform bound HAj]|< C, and so (using (4.12))

- *m ¥
7oA lbgs = 1A T lhyg € CITF lhys

Hence
*
{§,<T2Ajei:T1 ei>!} S {§ ”TzAjeiII }{§ ”Tf'eill }

*
¢ ClT) lpyg ey

where ey~ 0 as N » « (independently of Jj), giving the desired

uniform convergence.

We come now to operators in & with C° kernel. For these we

have

PROPOSITION (4.16) Let A & d have a C kernel A(%X,¥) and
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i) A 1is positive self-adjoint

. X X
or ii) A has a kernel with compact support on ; .

Then A 1is of TI'-trace class_and

tracep A = S A(x) du
X

where A(x) 1is the ¢® function on X defined by the r-invariant

function A(X,X) on X.

Proof (i) TFor any ¢,¥ € C:omp (X) the operator ¢Ay has a kernel

:omp (X x X), hence is of trace class, and so by (4.9), A is of

I-trace class. Taking ¢,y such Iy(¢) = 1 and ¢ = 1 on supp ¢ Wwe

in C

have
trace A =S SCOAK,X) Al = S A(X) du.
X X
ii)Let Bbe a I- invariantelliptic differential operator of order k > =
(e.g. a suitable power of a Laplace-type operator). As in §1 we then

construct a pseudo-differential parametrix Q which is almost local

(hence has a kernel which is compactly supported on X ; X) and of
order -k . Thus

B =1-T
with T having a ¢® kernel compactly supported on X ; X . Multi-

plying by A we get
A = TA + QBA-
Now A,T,BA are certainly r-Hilbert-Schmidt so that AT 1is of T-

trace class. Also, since Q is of order -k and k > % the kernel

f Q 4is locally in L2. Since this kernel has compact support on

=< 10

; X it is in L2 of this space, so that Q 1s also T-Hilbert-

Schmidt. Hence Q(BA) 1is of T'-trace class and hence A 1is of T-

trace class. Tracep A is then computed as in case (i).
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s . . .
o far in this section we have only considered the space L2(i)

of sca - i ¢
lar-valued functions on X. For our applications this needs to

. 2,52
be generalized to L“(X,E) the Lz—sections of a vector bundle E

over X, 1induced from a bundle E over X = i/F Again T t
. acts on

Lz(i E) and th i
, € commuting algebra @ (E) 1is a von Neumann algebra. In

£ .
act, from the measure theory point of view every bundle on X is

.. 2,0 54 ~ 12,2
trivial so that L°(X,E) T L°(X) @ End CN, the action of T bein
g

trivi N SN
rivial on End C'. Hence @g(E) % ¢ @ End CN and all the results of

this section extend immediately to the algebra (7(%) with only min
or

modifications. Thus in (4.16) the function A(x) must now be repl d
ace

by the function on X induced by the T'-invariant function

tr A(X,X)

on X, where tr is the usual matrix trace taken in End E
%

§ 5 - Proof of the index theorem.

With the technical apparatus of §4% we are now in a position to
pProve our main result, Theorem (3.8), on the lines indicated in §1

We recall that we have to deal with an elliptic differential

operator

D : C*(X,E) » C™(X,F)

which is I'-invariant. In §2 we saw that the projection cperator H

0

onto the space H(D) of L?-solutions of Bu = 0 had a C%-kernel

si . . . .
nce HO 1s clearly I'-invariant and positive we can apply lemma Q.16 X9

to deduce that it is of T'-trace class, and that its I-trace is gi
i-

ven by the appropriate integral formula over X. This identifies

trace H

r 0 with dimrB(D) as originally defined in §3. Similar re-

marks a joi D ¥
pply to the adjoint operator D™ Thus Theorem (3.8) asserts

tr‘acer HO - tracer H1 = index D
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where H1 is projection onto ¥ (D*), and D is the operator on

X = X/T.
We now introduce an almost local parametrix Q for D, by lifting

up a corresponding parametrix Q for D. Thus we have the equations
Qb =1 -S4
(5.1 .

Q =1- 5, DQ = 1 - 8,

DQ:l_Sl

where the Si are almost local and with c® kernels, and the Si
their 1ift to X. As explained in §1 we then have the index formula

on X

index D = trace 3, - trace S1
Now the operators Si have C° kernels which are compactly supported

X x X (because they are almost local) and so, by Lemma (4.16) (ii),

T
they are of T-trace class and

on

trace,, S; = trace Si

(both being given by the same integral over X). Hence to prove

Theorem (3.8) it will suffice to show that

(5.2) tracep HO - tracep H1 = tracep SO - tracep S1

From (5.1) we deduce HO = SOHO and H1 = H1$1 . Putting

(5.3) Ti = (1 - Hi) Si(l - Hi)

and using (4.13), together with Hi2 = Hi’ we see that (5.2) can be
rewritten as

(5.4) trace; T, = trace; T1

On the other hand composing (5.1) with D gives
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DSO = SlD

which, using (5.1) again, implies

(5.5) - T.D
DT, = T,D

If D were a bounded invertible operator we could apply 5_1 to

(5.5) and then the basic property

(4,13) of tracer would yield (5.4).

Since neither D nor its inverse (on H(D*Yﬂ is bounded we proceed

as follows.

The self-adjoint operator D*D has a unique positive square root A

and we can then decompose D (as an

2
L"-operator with domain as in

§3) in the form D = UA, where U 1is a partial isometry with

*
(5.6) Ut = 1 - Hy uu* = 1 - H,

Because this decomposition of D is unique the operators U and A

must commute with T, and so therefore will the spectral projections

of A.

Putting
(5.7) T, = U, U = U¥(1-H,)S s
; = UTT U = UR(1-H IS (1-H)U = (1—H1)U*31U<1—H1)
and using (4.13) we get
(5.8) tracer T2 = tracer Tl’
while (5.5) gives

(5.9) AT, = T A .

Now let Pn be the spectral projection of A corresponding to the

closed interval [%,ﬁ] and put

TOn N PnTOPn ’ T = PnT Phoo
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. -P)
A = P AP+ (1 n

i i 1i that
Composing (5.9) on both sides with P.s and recalling

tes with A, we get

(5.10) AL Ton = Top Ap

Now An

can be written

-1 _
(5.11) A TonAn" = Top

- . s . an t
Since all operators in this equation are T invariant we ¢

tracep and use (4.13) to deduce

(5.12) tracep TOn = tracep T2n
Since (for i = 0,2)
= T.p % =
trace, Tin = tracep Pn(TiPn) = trace T P
> oo

and since Pn converges strongly to (1 - HO) as n ,

i btain
apply the continuity property (4.15) of trace, to obta

lim trace, Tin = trace; Ti(1 - HO).

n—»o

(5.13)

Because of the formulae (5.3) and (5.7) for TO,T2 we

. o
Ti(l - HO) =T, (for i = 0,2). Hence (5.3) together wil

trace, T, = tracep T,

r 0

which combined with (5.8), leads to the desired equallty
3
tracer TO = tracer T1

and completes the proof of Theorem (3.8).
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is, by construction, bounded and invertible, hence (5.10)

T ————————=..

P commu-
n

ake

tracep Tipn

we can

have

(5.12) gives
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§ 6 - Further remarks.

We shall now discuss a number of generalizations, applications and

open questions.

(6.1) von Neumann bundles.
In our covering situation X ¥ X we can view L2(X) as L2(X,V),
where V 1is the vector bundle over X whose fibre at x is the

1

Hilbert space Lz(ﬂ—l(x)). Since m “(x)

is a copy of T and is acted

on by T, we see that V is a bundle of G-modules where g 1is the

von Neumann algebra generated in L2(F) by the action of T. Similar

remarks hold for LZ(X,E), V now being Lz(n—i(x),Ex). Moreover our

elliptic operator D can be viewed as acting on the sections of V

(with values in sections of a similar bundle W). In fact V,W are
flat bundles and B is the natural extension of D.

We see therefore that the situation we have been studying is a spe-
cial case of an elliptic operator acting on the sections of a bundle

of 5-modules, where & is a von Neumann algebra with a finite trace.

One can formulate a general index theorem in this context using the
K-theory of von Neumann algebras developed by Breuer [u]. Moreover
it seems clear that a K-theory proof can be given by reducing to the
usual index theorem. This much has been known *to the author and

I.M. Singer for some time, but the absence of any natural examples

deterred us from working out a detailed proof. The case of infinite

coverings now provides a very interesting class of examples and so a
presentation of the general case might justify the effort. However,
before embarking on it in full generality, it seemed worthwhile to

give a self-contained account for the case of coverings. The present

treatment should be viewed therefore in this larger context.
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(6.2) Heat equation methods.

With a little more work it is possible to apply the heat equation
methods of [3] to the infinite covering situation. The main point is
to show that the kernel e(t,%,y) of the fundamental solution of
337 4—5*5 on i decays sufficiently fast as the distance p(X,
gze can then construct the corresponding kernel e(t,x,y) for 3—7 + D*D

on X by summing over T. FTor the asymptotic expansion as t
terms in this sum arising from elements vy # 1 are exponentially small.
Thus e and & have the same asymptotic expansions and this leads to
Theorem (3.8). This approach is very close to the Selberg trace formula
when i is a homogeneous space. Finally one can hope to apply the heat

equation method to the more general von Neumann bundle situation des-

cribed in (6.1).

(6.3) Non-Galois coverings.

If X » X is a non-Galois covering, i.e. corresponding to & non-
normal subgroup of nl(X), Theorem (3.8) no longer applies. However

we may ask whether the weaker assertion
index D > 0 = H(D) £ 0
still holds. Probably this is false in general but counterexamples are

not easy to construct.

(6.4) Betti numbers of coverings.

On a compact Riemannian manifold X the Euler characteristic E(X)

ev QOdd ,

is equal to the index of the operator D=d+d¥ :Q > where

d is the exterior derivative on forms, d* its adjoint and

v = @ QZQ, QOdd = @ qu+1 are the spaces of even and odd degree

forms. Applying Theorem (3.8) tells us that

indexr D = index D = E(X).
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Now, using (3.1), the null spaces H(D) and H(B*) can also be iden-

tified with the spaces of Lz-harmonic forms of even and odd degree

respectively. Moreover, using (3.1) again one can show that the space

Hq s 2_ . .
(X) of L°-harmonic gq-forms on X is naturally isomorphic to the

9 ~
L°-cohomology group #%(X), where this is defined as Z(y—q
B

q _ 2
Z% = {L® q-forms u with du = 0}
q _ 2
8% = {L® gq-forms u such that u = dv, for some
2
L® (gq-1)-form v}

2
Although the L° norms depend on the choice of metric the topology of

the Hilbert spaces dces not, and so ¥3(X) is essentially independent

of the metric. Hence
dim, HI(X) = dim

r ¥y = B;l(X)

is independent of the choice of metric.

number of X (relative to T) and

It is a real-valued Betti

£ -9 83X = Ex)
q

is an integer.

Note that Poincaré duality holds (for oriented i)
B%(X) = B?—q(x) where n =

signature formula

i.e.

dim X and, if n=0 mod 4, we also have the

Signr (X) = Sign (X)
wher . ¥y = @2N,Yy _ p2n,3
e Signp (X) = (X)) -B-"(X), and B  denote the I-dimensions
~ +

of the eigenspaces of * . If X has no compact component then

0,vy _ph,o .
EF(X) = BF(X) = 0 since a constant function cannot

be in it i
L unless it is zero. For example if X is a compact Rie mann

surface of genus > 2 = X
O g g and T = ﬂl(X), X the upper half-plane, then
only BF(X) # 0 and so we must have

L -
Bp(X) = 2g - 2
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i pyve further study. Some el .
These real Betti numbers appear to deserve y Société Mathématique de France
Astérisque 32-33 (1976)

natural questions are

(i) Triangulate X and compute the simplicial L2 cohomology

O
COHOMOLOGIE DE SOUS-GROUPES DISCRETS ET REPRESENTATIONS
DE GROUPES SEMI-SIMPLES

of X for the lifted triangulation (using cocycles/closu

» 1

re of coboun-

daries). Are these groups T-isomorphic to our #300

Armand Borel

(ii) If the answer to (i) is yes, are the B%(X) homotopy

invariants of X *
exp sé est cons ré a elgu r ol

(iii) A priori the numbers Bd(X) are real. Give examples la cohomologi . .
r gie de certains sous-groupes discrets de groupes semi-simples,
where they are not integral and even perhaps irrational. 3 coefficien
ts dan ;
S un espace vectoriel complexe. On y insiste principalement
sur le cas de sous-groupes cocompacts et les liens existant entre la
cohomologie d'Eilenberg-MacL R
REFERENCES g-MaclLane du sous-groupe discret I, la cohomologie
d'Ei :
Eilenberg-MacLane continue du groupe ambiant G et la décomposition de
1. M.F. ATIYAH and I.M. SINGER, The index of elliptic operators 111, . LZ(G/F) ]
Ann. of Math. 87 (1968), 546-604. en G-modules irréductibles. On considre successivement trois
2. M.F. ATIYAH and R. BOTT, A Lefschetz fixed-point formula for cas, dont le dernier englobe les deux premi . ..
elliptic complexes I, Ann. of Math. 86 (1867), 374-407. premiers: G semi-simple reel (§51, 2),
G semi-simple p-adi .
5.  M.F. ATIYAH, R. BOTT and V.K. PATODI, On the heat equation and p-adique (3.1, 3.2), et G produit de groupes d'un de ces
the index theorem, Inventiones Math. 19 (1973), 279-330. deux t
ypes (3.3 2 3.9). L'exemple le plus important de la situation du §3
4. M. BREUER, Fredholm theories in von Neumann algebras I, Math. et en fai ’
Ann. 178 (1968), 243-245. n fait presque le cas général vu [29], est celui de sous-groupes S-
5. J. DIXMIER, Les algdbres d'opérateurs dans 1'espace Hilbertien, arithmetiques d'un groupe semi-simple défini
Gauthier-villars Paris, 1969. ple défini sur un corps de nombres k
“ et anisotrope sur k; i i 3 .
6. L. HORMANDER, Linear partial differential operators, P ; il fait l'objet du §4. En ce qui concerne les groupes
Springer 1963. arith . . )
1thmétiques ou S-arithmétiques en général, on s'est borné a quelques re-
7. L. SCHWARTZ, Théorie des distributions I, Hermann Paris 1950. margq a )
ues dans le §5, surtout pour signaler
P . . . N . ’ quelques probi2
8. L. SCHWARTZ, Théorie des distributions & valeurs vectorielles I, 9 P mes naturellement
Ann. Inst. Fourier, Grenoble, 7 (1957) 1-1h1. Suggerés par les résultats du §4, Cet article est ainsi en large parti
rtie com-
plémentaire de [4]. E 1 di .
Michael F.ATIYAH [4]. n cela, il differe assez sensiblement de 1'exposé oral,
Mathematical Institute de titre "Coh . . .
2420 St Giles ohomologie réelle des groupes arithmétiques'’, dans lequel on
OXFORD, England, U.K. ' :
» Eng ’ S'€tait borné aux groupes réels et on avait aussi passé en revue des résultats
+ (Added in proof) J.Dodzink has shown that the answer is yes.
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