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INTRODUCTION 

For any finite group G one can consider the integral cohomology ring H*(G, Z) 
and the ring R(G) of unitary characters (cf. w 6). For i-dimensional characters there 
is a well-known isomorphism 

H~(G,Z)__~Hom (G, U(I)) .  

The purpose of this paper is to establish a connection between the rings H*(G, Z) 
and R(G) which, in a certain sense, provides a generalization of the above isomorphism. 
We shall prove that there is a spectral sequence {E~} with 

E~---- HP(G, Z) 
= g p ( G ) / R , + I ( G ) ,  

where R(G) ---- R0(G ) ~ . . .  z Rp(G) z Rp + I(G) ~ . . .  is a certain filtration of R(G). This 
spectral sequence has the following additional properties. 

a) A homomorphism G-~G'  induces a homomorphism of spectral sequences 
E'r-~E r. 

b) A monomorphism G--~G' induces a homomorphism of spectral sequences 
E,-+E', (compatible with the transfer and induced representations). 

c) There is a product structure compatible with the products in H*(G, Z) and R(G). 
d) All the even operators d2r are zero. 
e) The filtration of R(G) is even, i.e. R2~_t(G ) =R2k(G ). 

It follows from d) and c) that, if Hq(G, Z) = o for all odd q, H*(G, Z) is isomorphic 
to the graded ring of R(G). This applies notably to the Artin-Tate groups (with 
periodic cohomology). 

The filtration on R(G) has one further property, which we proceed to describe. 
Let g: R(G)--*Z be the homomorphism obtained by assigning to each character its 
value at the identity of G, and let I(G) be the kernel of ~. Then we have: 

f )  The filtration topology of R(G) coincides with its I(G)-adic topology. 

In view o f f )  the I(G)-adic completion R(G) of R(G) plays an important role 
throughout. 

The filtration on R(G) and the spectral sequence are defined topologically, and 
the whole paper rests heavily on the fundamental results of Bott [3, 4] on the homotopy 
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of the unitary group. The basic idea may be described as follows. Associated with 
the group G there is its classifying space BQ, i.e. a space with fundamental  group G 
and contractible universal covering space. The homotopy type of B o is uniquely 
determined by G, so that homotopy invariants of B o give rise to algebraic invariants (1) 
of G. The most obvious example is provided by the cohomology ring. Now in [I] a 
homotopy invariant ring K*(X) was introduced for a finite CW-complex X. This 
was constructed from complex vector bundles over X, the addition and multiplication 
in K*(X) being induced by the direct sum and tensor product of vector bundles. 
Although B~ is not a finite complex, it is a limit of finite complexes and so (8) yg*(Bo) 
can be defined as an inverse limit. Because a representation of G induces a vector 
bundle over BQ we have a natural ring homomorphism 

o~ :R(G)-+Js 

The essential content of this paper is the study of the homomorphism e. The 
main result is that e induces an isomorphism 

a :R(G)-§162 

where R(G) is the I(G)-adic completion of R(G) as above. This identifies the algebraic 

invariant R(G) with the hornotopy invariant ~*(Bo). 

The spectral sequence relating H*(G, Z) and R(G) now follows from a spectral 
sequence H*(X, Z ) ~ K * ( X )  for any finite CW-complex X [I]. Actually this step 
involves an inverse limit process and has to be treated with care. 

The spectral sequence which we have been discussing for the group G is a special 
case of a more general "Hochschild-Serre" spectral sequence for a normal subgroup V 

of a group G. This has E~=HP(S,  R(V)),  
E~ -- Rp(G)s/R p + t(G)s, 

where S = G/V operates on R(V) by conjugation, and 

R(G)-----R0(G)sD...zRp(G)sD... 
is a filtration on R(G) defined relative to S. This reduces to the previous spectral 

sequence on taking V to be the identity. 
The layout of the paper is as follows. In w I we discuss vector bundles and 

representations. In w 2 we summarize the theory of the ring K*(X). In w 3 we collect 
together a number  of results on inverse limits and completions which will be needed 
later. Then in w 4 we extend the theory of w 2, with suitable restrictions, to infinite 
dimensional complexes. The results of w 4 are applied in w 5 to the classifying space 
of a finite group. The main result (5. I) asserts the existence of a strongly convergent 

spectral sequence 
H*(S, ,~rf*(Bv) ) ~Ar'*(Bv) s 

(1) These are necessarily invariant under  conjugation, since this just corresponds to a change of base point in B o. 
(2) As in [I] we use Jr" for the inverse limit K. 

248 



C H A R A C T E R S  AND C O I t O M O L O G Y  OF F I N I T E  G R O U P S  25 

where V is normal in G and S = G/V. At this point the topological side of the problem 
is essentially completed, and we turn in w 6 to a study of the ring R(G) with its I(G)-adic 
topology. The main result of this section (6.I)  asserts that the I(H)-adic topology 
of R(H) is the same as its I(G)-adic topology (tor H c G ) .  This is a most important 

property of this topology and it leads to a number of basic results for the completion R(G). 

We also identify the kernel of the homomorphism R(G)--->R(G), showing that it is not 
in general zero, i.e. that the topology of R(G) is not Hausdorff, but that it is zero i fG  
is a p-group. 

In w 7 we enunciate the main theorems in a precise form. The next four sections 

are devoted to the proof of the isomorphism of ~: R(G)-->~*(BG). The case of a 
cyclic group G is dealt with explicitly in w 8, and the fact that ~ has zero kernel for 
general G is shown to follow. In w 9 we digress to establish a few simple lemmas on 
representations. In w IO we show that ~ is an isomorphism for solvable groups by 
using an induction argument based on the spectral sequence of (5. I). The results 
of w 9 are needed at this stage of the proof. Finally in w 11 the main theorem is extended 
from solvable groups to general groups by using the "completion" of Brauer's theorem [5] 
on the characters of finite groups. 

An important problem which is left outstanding is that of giving an algebraic 
description of the filtration on R(G). For cyclic groups this is solved by (8. I), and 
the case of a general group can be reduced to that of p-groups by (4.9)- In w I2 we 
consider a certain algebraic filtration which has been introduced by Grothendieck. 
One may conjecture that this coincides with our filtration on R(G). In w 13 we compute 

some illustrative examples. 
This paper seems the appropriate place to point out that a representation of a 

finite group has certain cohomological invariants called Chern classes (1). In an 
appendix we summarize their formal properties and discuss their relation with our 

spectral sequence. 
This paper is based on the joint work of F. Hirzebruch and the author, and much 

of its content was in fact worked out jointly. The corresponding theory for compact 
connected Lie groups will be found in [I]. It seems likely that the results of this paper 
and those of [I] are extreme cases of a theorem valid for arbitrary compact Lie groups (2). 

On the algebraic side I am greatly indebted to J. Tate and J.-P. Serre for their 
generous help, without which this paper would not have materialized. This applies 

in particular to the important  w 6. 

w x. Vector bundles  and representat ions .  

For general definitions and properties of fibre bundles we refer to [2], [9] and [I2]. 
We recall that if ~ is a principal bundle over a space X with group G, and if p: G - + H  

(1) 'This  is of course well-known to topologists. 
(z) (Added in proof).  This is in fact the case. I t  will be dealt  with in a separate publication. 
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26 M . F .  A T I Y A H  

is a homomorphism, then we have an induced principal bundle over X with group H, 
which is denoted by p(~) [2, w 6]. We shall be concerned with the case when ~ is the 

universal covering space of X, so that G----nl(X) is the fundamental group of" X. 
Moreover we shall suppose that G is finite. For H we take the general linear 
group GL(n, s and we shall consider this a) with the discrete topology, and b) with 
its ordinary topology. The corresponding principal bundles will be called discrete 
GL(n, C)-bundles or ordinary GL(n, C)-bundles according as we use topology a) or 
topology b). For the discrete case we have (1) [12, w 13.9]: 

Proposition (x.x).  - -  The mapping p--~p(~) sets up a ( x - - I )  correspondence between 
the equivalence classes of unitary representations of G of degree n and the isomorphism classes of 
discrete GL(n, C)-bundles over X.  

The purpose of (I .  i) is simply to translate representations into a geometrical form. 
From any GL(n, C)-bundle (discrete or ordinary) one can form the associated 

n-dimensional complex vector bundle over X, and conversely given the vector bundle 
the principal bundle may be recovered as the bundle of n-frames. We proceed to 

translate (I .  x) into terms of vector bundles. Let E be a complex representation space 
of G (or G-module). Then we may form the vector bundle E(~) over X associated 
to -~. E(~) may be considered either as an ordinary vector bundle or as a discrete vector 
bundle according as E is taken with the ordinary or the discrete topology. Then 

from (I.  I) we have. 

Proposition (x.2).  - -  The mapping E ~ E ( ~ )  sets up a ( I -  I) correspondence between 
the isomorphism classes of complex G-modules and the isomorphism classes of discrete complex vector 
bundles over X.  

For G-modules, discrete vector bundles and ordinary vector bundles one has the 

following operations and maps. 
I) Direct sum E • F ;  
2) Tensor product E |  

3) Exterior powers Xi(E) ; 

4) Inverse image f*  E; 
5) Direct image f ,  E. 

i), 2) and 3) need no explanation (for vector bundles see [9, w 3.6]) �9 4) is to 
be understood as follows. If  f :  H ~ G  is homomorphism of groups, and E is a G-module, 
then E is also an H-module and as such is denoted by f*E.  If  f :  Y ~ X  is a continuous 
map of spaces, and E is a (discrete or ordinary) vector bundle over X, then f * E  is the 
induced vector bundle over Y. 5) is defined when f is a monomorphism in the group 
case or a finite covering in the space case. For groupsf ,  E is the induced representation 
module, and for coverings f ,  E is the direct image bundle, i.e. the fibre (f ,E)x is defined 

as the direct sum GuE u where y ~ f - l ( x ) .  

(x) We suppose X satisfies the requirements of [ 12, w ~ 3.9].  For example we could take X a finite CW-complex. 
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It  is not difficult to check that  1)-5) are compatible with the mapping of (I .2) 
and also with the passage from discrete vector bundles to ordinary vector bundles. 
We observe only that  if z:l(X ) = G, ~l(Y) = H, a m a p f  induces a homomorphism H - + G  
and that  this is a monomorphism i f f  is a finite covering. 

x)-5) have the following properties: 

a) Q is commutat ive and associative; 
b) | is associative and distributive over @; 
c) f*  commutes  with @, | and ),~; 
d) f .  commutes with @; 
e) f . ( E |  f*F)_~f . (E) |  

These follow trivially from the definitions. For representations e) is the so called 
reciprocity formula. 

Our  main problem is to study the passage from representations p of G to the 
ordinary GL(n, C)-bundle p(~). In view of ( i .  I) and using the notation of [9, w 3. I], 
this means we have to study the map 

Hi(X,  GL(n, C ) ) ~ H I ( X ,  GL(n, C)c ) 

where GL(n, C) denotes the constant sheaf and GL(n, C)c denotes the sheaf of germs 
of continuous maps X-~GL(n,  C). In general this cohomology formulation of the 
problem is of no help, but  when n =  i, the sheaves are sheaves of abelian groups and 
the problem can be dealt with as follows. 

We have two exact sequences of sheaves, related by homomorphisms:  
exp 2n-/ 

o ~ Z -  ~ C ---~- C*~o  

o ~ Z  -----~ C0---~ C ; ~ o  

where C*-----GL(I, C). These give cohomology exact sequences (cf. [9, w 3.8]) 

->HI(X, C) -~ HI(X, C*)-~H~(X, Z ) ~ H ~ ( X ,  C) -~ 

I 1 
---)-HI(X, Co)->Hi(X, C;)-->H2(X, Z)-->H2(X, Co)--~ 

Now the sheaf C e is fine and so Hq(X, C~) = o  (q>o) [9, w 2. i i ] .  Hence we deduce: 

Proposition (x .3). - -  Let X have zero Betti numbers in dimensions i and 2. Then we 
have canonical isomorphisms: 

Hom(r:a(X), C')=~Ha(X, C')_~--H~(X, C;)~H2(X, Z). 

In (I .3) we may take X to be the 3-skeleton of the classifying space Of BG, where G 
is finite. We obtain the isomorphism 

Horn(G, C*)_-~_-H~(X, Z) 
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referred to in the introduction (with C" replacing U(I ) ) ,  and which it is our purpose 
to generalize. 

The notion of discrete vector bundles was introduced in this section simply as a 
bridge between representations and ordinary vector bundles. From now on all vector 
bundles will be ordinary. 

w 2. K*(X) for t i - l t e - d i m e n s i o n a l  X. 

We propose here to recall briefly the definition and basic properties of the fimctor K* 
introduced in [i]. All spaces considered in this section will be finite CW-complexes 

(cf. 
Let F(X) be the free abelian group generated by the set of all isomorphism classes 

of complex vector bundles over X. To every triple t - -  (4, 4', 4") of vector bundles 
with ~ ' ~ ' @ 4 "  we assign the element [t] = [ 4 ] - - [ 4 ' ] -  [4"] of F(X),  where [~l denotes 
the isomorphism class of 4- The group K~ is defined as the quotient of F(X) by 
the subgroup generated by all the elements of the form [t]. In this definition we allow 

a vector bundle to have different dimensions over the different connectedness components 
of X. 

The tensor product of vector bundles defines a commutative ring structure 
in K~ the unit I is given by the trivial bundle of dimension one. K~ is a 
contravariant functor of X. 

Let S 1 denote the circle and let X - + X •  1 be the embedding given by a base 
point of S 1. We define KI(X) to be the kernel of the induced homomorphism 

K~ X S 1) -+K~ 

and we put K ' (X)  ----K~ The ring structure on K~ extends to give a 
ring structure on K*(X), and K*(X) is again a contravariant functor. Moreover 
it is an invariant of homotopy type. A map f :  Y - + X  induces a homomorphism 
K*(X)->K*(Y) which will be denoted b y f  ~. For a point we have: 

(2. x) K~  Kl(point) = o. 

For a connected space X the fibre dimension defines an "augmentat ion" 
: K ~  In view of (2. i) this is the restriction to K~ of the homomorphism 

i ~ : K*(X)-+K*(point) induced by the inclusion of a point in X. Using i ~ we extend 

to K*(X). I f  we denote the kernel of ~. by K*(X) there is a canonical decomposition 

K*(X) ~=K*(X) @Z. 
We define a filtration on K*(X) by putting t ~ ( X ) = K e r { K * ( X ) - + K * ( X  p -t)}, 

where X p - t  is the (p--~)-skeleton of X. I f  X is connected K ~ ( X ) = K ' ( X ) .  This 
filtration is a homotopy invariant and turns K*(X) into a filtered ring, i.e. 

K;(X) cK;+,(X). 
It  has moreover the following property: 

(2.,) K%_I(X ) = K%(X), K~k(X ) = K~k +,(X). 
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I f  f :  Y-+X is a finite covering the direct image of vector bundles (cf. w I) induces 
a group homomorphism f., : K~ -+K~ Replacing X, Y by X • S 1, Y • S 1 this 
extends to a homomorphism f , :  K*(Y)-+K*(X) which preserves filtration (since we 
may take Y P - l - = f - l ( X V - 1 )  [I3, w 4, 5]), multiplies the augmentat ion by the degree 
o f f  and satisfies the formula 

(2.3) Ji (Y-f '  (x)) =f., (y). x, y eK*(V), x eK*(X). 

For elements of K ~ this formula follows at once from e) of w I. The  general case 
can then be shown to follow (1). 

We come now to the most important  property tbr our present purposes, the 
existence of the spectral sequence. We state this as a proposition. 

Proposition (2.4). - -  There is a spectral sequence {EP(X)} with EPOXY2, j - -HP(X,  Z), 
E~ (X) = K;(X) /K;+ t(X), and with the following further properties. 

a) A map f :  Y ~ X  induces a homomorphism of  spectral sequences E~(X)-~-E~(Y) 
which depends only on the homotopy class of f i  

b) A finite covering f :  Y ~ X  induces a homomorphism of spectral sequences E~(Y) -+E~'(X). 
c) The cup-product in H*(X, Z) induces products in each E, (2 <~ r <~ ~ )  which for r - oo 

coincide with the products induced by the ring structure of K*(X). 
d) The even differentials d.2r are all zero, d 3 is the Steenrod operation Sq a, and dr(x ) = o 

for dim x <~ 2 and all r. 

Remark. - -  It  is understood of coarse that  the homomorphism of a) is compatible 
with f* and f~ while that  of b) is compatible with ] .  (the direct image or trace 
for cohomology) and f l .  

In  view of the last part  of d) we have an isomorphism: 

(2.5) K;(X)/K~(X) ~_H~(X, Z). 
This isomorphism can be described directly as follows. First we observe, 

using (2.2), that  K;(X)/K~(X)---~K~176 

Now by assigning to each vector bundle E over X the I-dimensional bundle det(E) 
(i.e. X~(E) if E has dimension n), and then using (I .3) we obtain a homomorphism 
(the first Chern class) 

q: K~ Z). 

Restricting to K~ we obtain the homomorphism which induccs (2.5). 
Next we turn to the more general spectral sequence for a fibre bundle ~: Y---~X 

with fibre F. First we define a filtration on K*(Y) relative to X by putt ing 

K;(Y)x = Ker  {K*(Y) -+K* (Y "-~) } 

whcre Y P - I = r : - I ( X P - t ) .  Then  we have: 

Proposition (2.6). - -  There is a spectral sequence {E, p} with E~=H~(X,K*(F) ) ,  
E~ = I~(Y)x/ I~+t(Y)x , and with the following further properties. 

(1) Statements given without proof here or in [i]  will bc proved in a filture publication with F. HImZEBRtJCH. 
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a) A commutative diagram 
y - + y '  

X ~ X '  

gives rise to a homomorphism of spectral sequences E ; ~ E r ;  
b) The cup-product in H*(X, K*(F)), using the ring strudu,, of K'(F) ,  induces products 

in each E, (2 <<. r <~ oo) which Jbr r = oo coincide with the products induced by the ring structure 

of K*(Y). 
c) I f  K I ( F ) = o ,  all 4 r = ~  

Remarks. - -  i) Taking F to be a point  and Y----X, (2.6) reduces to (2.4). 
2) K*(F) denotes the local coefficient system whose group at x is K'(7:-l(x)). 
3) I n a )  we do not insist that  F = F ' .  
Taking Y ' - - - - X ' = X  in a), with Y-+Y'  being ~, we get a homomorphism of 

the spectral sequence of (2.4) into that  of (2.6). Hence from (2.6) b) we deduce: 
(2.7) The E, of  (2.6) are modules over the E~ of (2.4). 
Applying (2.4) with X = point we get the trivial spectral sequence Z, i.e. 0 E r = Z, 

E,P=o for p > o  (all r). Since the spectral sequence of ~:y0-+x0 with y0eY and 
x0=r:(y0) EX is a direct factor of that  of (2.6) we deduce: 

(2.8) Let Y - + X  be a fibre bundle with Y and F (the fibre) connected. Then the spectral 

sequence Er of  (2.6) decomposes: E , = E , @ Z ,  where Z denotes the trivial spectral sequence, 

E~ = E~ for p >  o and E ~ = H~ K'(F)) ,  E ~ = I~(Y)x/KI(Y)x. 

Easy consequences of (2.4) are the following: 
(2.9) K*(X) is a finitely-generated group. 
(2. xo) Let f :  Y - + X  be such that f*Hq(X, Z) is finite for all q > o  and suppose X 

connected. Then f!K*(X) is finite. 
We now make one formal application of the properties of K*(X). 

Proposition (2.  �9 �9 - -  Let f :  Y - + X  be a finite covering of  degree d. Then d annihilates 
the kernel of  (1) GK*(X)-+GK*(Y). I f  p is a prime not dividing d, then the p-primary component 
Of GK*(X) is a direct factor of GK*(Y). 

Proof. - -  Since f,. and f ! preserve filtration they induce homomorphisms ~?! and q~! 
of GK*, and from (2.3) we deduce 

~,(y .~ ' (x) )  = ? , (y) .x  x eGK*(X) ,y  eGK*(Y). 

Taking y = x we obtain 
q~Iqa!(x) = ~1( i ) . x=dx .  

The  proposition follows at once from this formula. 

Remark. - -  This is quite analogous to the corresponding result for cohomology. 

(1) If A = A o D A 1 D A a D . . .  is a filtered group we denote by GA the graded group ~pA~/Ap+ x. The 
component Ap/Ap+ 1 will be denoted by GPA. 
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w 3- I n v e r s e  l i m i t s  a n d  c o m p l e t i o n s .  

Let M be a filtered abelian group, i.e. we have a sequence of subgroups: 

M = M0~ M I ~ . . .  D M , D . . .  

This filtration gives M the structure of a topological group, the subgroups M, being 

taken as a fundamental  system of neighbourhoods of o in M. We denote by 1VI (or M")  
the completion of M for this topology, i.e. 

(3- x ) 1VI = lim M / M ,  (inverse limit). 

We remark that the topology of M is not necessarily Hausdorff  so that the natural 

map M~/9I  may have non-zero kernel. In fact we have: 
o~ 

(3.2) Ker (M~/~I)---- I"1 M, .  
1 1 = 1  

I f  {,A} is an inverse system of abelian groups (indexed by the non-negative 
integers), the inverse limit A = lim nA has a natural  filtration defined by (1) 

A, = Ker {A~n_xA} 

Moreover A is complete for the topology defined by this filtration, i.e. A__--~/~. Thus 
an inverse limit is in a natural way a complete filtered group. This applies in particular 

to the group NI given by (3. i). It is easy to see that the subgroups of the filtration 

may be identified with the completions /VI, of the subgroups M,  (for the induced 

topology). 
If  M is a finite group then the filtration necessarily terminates, i.e. M n =  Mn+ 1 

for all n/> no, and so I~I~M/Mn, .  We record this for future reference. 

Lemma (3-3). - -  l f  M is a finite filtered group M ~ / I  is an epimorphism. 
We also state the following elementary properties of inverse limits, the verifications 

being trivial. 

Lemma ( 3 - 4 ) . -  Let {~,~A}be an inverse system indexed by pairs (~, ~) ~I • J, where I, J 
are two directed sets. Then 

lim lim a ~A~! im ~ a A ~ l i m  !im ~,~A 
( 

Lemma (3.5)- - -  I f  o-+(~,A}-+(aB}-+(~C}-+o is an exact sequence of  inverse systems 
(~ belonging to some directed set), then 

o-+lim :A-+ lim ~B-+lim ~C 

is exact. 
In order for lim to be right exact we need a condition. Following Dieudonn6- 

Grothendieck [8] we adopt  the following definition. An inverse system (~A} is said 
to satisfy the Mittag-Le~ter condition (ML) if, for each a, there exists ~ >/~ such that 

I m ( ~ A ~ A )  = I m ( v A ~ A )  

(a) We put _xA-- o so that A o A. 
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for all y >/~. Moreover we shall assume from now on that all inverse systems are over 
countable directed sets. The following properties of (ML) are proved in [8, chapter o 
(complements)]. 

(3.6) I f  {~A}~{..B}-+o is exact and {~A} satisfies (ML), so does {~B}. 
(3.7) I f  o-~-{~A}~{~B}-+{~C}-+o is exact, and i/'{~A} and {~C} each satisfy (ML), 

so does {~B}. 
(3.8) I f  o-~-{~A}~{~B}~{~C}-+o is exact, and i f  {,A} satisfies (ML), then 

o-+ l~m ~A-+ li, mm ~B---~ lim~__ ,C--+ o 

is exact. 
(3.9) Let {~C'} be an inverse system of complexes, with differentials of degree r. Suppose 

that, for each p, {~C p} and {H'(~C*)} satisfy (ML), then li~m HP(~C*)~HP(!im ~C*). 

Remark. - -  In [8] the differentials in (3-9) are supposed to have degree I, but 
this does not affect the argument. 

Using (3.8) we now prove two further lemmas on completions (1). 

Lemma (3.xo). - -  Let f :  M-+N be a homomorphism of filtered groups. Then the 
following two statements are equivalent: 

(i) f : l~I~lq is an isomorphism of filtered groups. 
(ii) Gf :  G M ~ G N  is an isomorphism (where GM denotes the graded group of M). 

Proof. - -  Suppose first that (ii) holds. Then M/M 0 = N / N 0 = o  and from the 
diagram: 

o - + M , / M , + l  ~ M/M,  +l-+ M/M, -+o  

+ 
o ~ N , / N , +  1 ~ N/N,+'t----~N]N,--~o 

we deduce, by induction on n, that M / M , ~ N / N ,  is an isomorphism for all n. Taking 
inverse limits we deduce (i). 

Conversely let (i) hold, then G1VI-+ G~I is an isomorphism. To prove (ii) it will 

be sufficient therefore to prove that G M ~ G I ~ ,  i.e. to prove the special case where 

N=IVI and f is the natural map. Now we have an exact sequence: 
I o-+,M, + t /M, +~-+ M,,/M, +~-§ M , / M ,  + 1-+ o, 

and the inverse system {M,+JM,+k}  (for n fixed and k-+'oe) satisfies (ML) trivially 
since all maps are epimorphisms. Hence by (3.8) we deduce the exact sequence: 

o-+1~, +, ~IVI,-+ M , / M ,  + 1-+ o, 

which proves that GM~G1VI as required. 

Lemma (3.IX). - -  Let o - + M ' - ~ M - ~  M"--+o be an exact sequence of  abelian groups. 

Let M ,  be a filtration of M and delqne filtrations of  M' ,  M "  by M', = ~-~(M,),  M',' = ~(M,). 
Then o-+M'-+M-+M"--~o is exact. 

(1) Direc t  proofs are  also possible.  
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Proof. - -  From the definitions of M',, M',' it follows that 

o-+ M'/M~,-+ M/M.-+  M"/M"-+ o 

is exact. Since the inverse system {M' /M' .}  satisfies (ML) the lemma follows from (3.8)- 
In addition to the condition (ML) we shall require later the following: 
(F) For each ~ there exists ~ >1 ~ so that Im(aA-+~A ) is finite. 
Clearly (F) implies (ML). 

Lemma ( 3 . x 2 ) . -  Let o-+{~A)-+{~B)--->{~C}-+o be an exact sequence of  i,verse 
systems and suppose {~B} satisfies (V). Then {~A} and {~C} also satisfy (V). 

Proof. - -  By hypothesis there exists ~>~ ~ so that ~,~B-----Im(~B-+~B) is finite. 
Define ~,~A, ~,~C similarly, then we have exact sequences 

These imply that a,~C and ~,~A are finite. Q.E.D. 

Lemma (3.13). - -  Let {~a} satisfy (F), then li_m_m ~A is a compact tlausdorff group. 

Proof. - -  Let ~B = N Im(~A-+~A). Then (F) implies that ~B is finite. But, from 
O~>e 

the definition of inverse limits, lim~A~!im~B. Thus lim~A is an inverse limit of 
finite groups and so compact and Hausdorff (for the inverse limit topology, i.e. the 
topology induced from the direct product II~A). 

Lemma (3. z4). - -  Let {~A} be an inverse system indexed by I, and let J be a cofinal subset 
of  I. Then lim~A~lim~A, and {~A}~e,  satisfies (ML)or (F)c..{~A},ej satisfies (ML) 
or (F). ~ 

Proof. - -  The isomorphism of the inverse limits is well-known and the impli- 
cation =>is trivial. Suppose {~A}~es satisfies (ML), and let Xd.  Since J is cofinal 
there exists ~eJ, ~,>x. S i n c e  {~A}aEj satisfies (ML) there exists ~eJ, ~>~ so that 
Im(aA-+=A)-----Im(vA-+=A ) for all yeJ, y>~}. Now let bteI, b~>[~ and (J being 
cofinal) choose yeJ, u bt. Then it follows that Im(~A-+xA ) =Im(~A-+xA ) which 
shows that {=A}=ei satisfies (ML). If{=A}=ea satisfies (F) then, with the same notation, 
Im(aA-+=A ) is finite. This implies that Im(~A-+xA ) isfinite, showing that {=A}=e, 
satisfies (F). 

Woetherian Completions. 

Let A be a Noetherian ring (commutative and with identity), let a be an ideal 
in A and let M be a finitely-generated A-module. We define a filtration on M by 
M,---= a"M. The topology defined by this filtration is called the "a-adic" topology 
of M or simply the a-topology of M. This topology has a number of important properties 
which we proceed to recall (cf. [6, exp. I8]). 

Proposition (3-I5)- - -  Let M be a finitely generated A-module and let N be a sub-module 
of  M.  Then the topology of  N induced by the a-topology of  M coincides with the a-topology of  N. 
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Proof. - -  We have the inclusion 

a"N c a"M n N. 

To prove the proposition therefore it is sufficient to show that, for each n, there exist m 
so that 

I)  a " M n N  ca"N.  

But by the lemma of Artin-Rees [6, exp. 2] there exists m 0 such that, for m/> m0, 

2) a m M n N = a m - m ' ( a " ' M n N ) .  

Taking m = n + m o ,  I) follows at once from 2). 

Proposition (3. i6). - -  For finitely-generated A-modules, a-adic completion is an exact 

functor. 

Proof. - -  Let o---~M'--~M-+M"---~o be an exact sequence of finitely-generated 
A-modules. By (3.15) the a-topology of M' is induced from the a-topology of M. 
Also the a-topology of M"  is induced from the a-topology of M. Hence we can 

apply (3 . I I )  and we deduce the exact sequence o---~i~I'~i~I---~M"---~o, where each 
completion is the a-adic completion. 

Let G be a finite group. M will be called an A-G-module if it is both an A-module 
(finitely-generated) and a G-module, and if the operations of A and G on M commute. 
Then the cohomology groups Hq(G, M) will be (finitely-generated) A-modules and so 
we can form their a-adic completions Hq(G, M)" .  On the other hand, since 
g(:~(m)) =~(g(m))  for all 0~A, g~G,  m~M, it follows that the sub-modules a"M are 

stable under G. Hence G operates on M / a " M  and so on 1VI. Then we have: 

Proposition (3. x7)- - -  Let M be an A-G-module. Then we have a canonical isomorphism: 

Hq(G, M)"_~_Hq(G, 1V[). 

Proof. - -  Let A = Z [ G ]  be the group ring of G and let {X,} be the standard 
A-free resolution of Z [7, chapter X]. By definition 

I) Hq(G, M ) =  Hq(HomA(X,, M)). 

Now HomA(Xq, M) is, for each q, a finitely-generated A-module. Hence by (3.16) : 

2) Hq(Homa(X.,  M))"__--~Hq(Homa(X., M)") .  

Since Xq is, for each q, a free A-module it follows that 

3) HomA(X .,M) ^ ~ H o m A ( X  , l~i). 

From I), 2) and 3) the proposition follows. 

Spectral sequences. 

We propose next to consider inverse linfits of spectral sequences. By a spectral 
sequence we shall understand a sequence of complexes (1) {Er} ' 2~<r<oo, with given 
isomorphisms Ert t ~ H ( E , ) .  We suppose that E ~ = o  tbr p < o  and that the 

(x) I.e. graded abelian groups with a differential (endomorphism d satisfying d2=o). 
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differential d r of E, has degree r. Thus  each Ey, for 2~<r<m, may be identified 
with a quotient group Z~/B~, where (1) Z~, B, p are subgroups of E~. These subgroups 
are arranged as follows: 

(5:) :o=B~c...cByc...c...cZy...cZ~--Ef. 
We then define B~ = U B~ -= limB~, 

r 

Z~ = rl z~ = !im Z[, 
r 

T 

p iv E~ = Z=/B=. 

By a strongly convergent spectral sequence we shall mean a spectral sequence {Er} 
together with a complete filtered group M and isomorphisms E~---M /M ~1 We shall 

- -  p i v -  " 

write E u ,  M, and say that  the spectral sequence {Er} converges strongly to M. This 
is in agreement with the terminology of [7, chapter  XV, w 2]. I f  all the differentials dr 
are zero we shall say that  the spectral sequence collapses. The  following is then an 
immediate  consequence of the definitions. 

Proposition (3.z$). - -  Suppose Ez=>M and the sOectral sequence collapses. Then 
E , ~  s = G M .  

We now prove a result on inverse limits of spectral sequences. 

Proposition (3. x9). - -  Let {,Er, ,M} be an inverse system of strongly convergent spectral 
sequences. Suppose further that 

a) For each p, {,,E.~} satisfies (F); 
b) {,M} satisfies (F). 

The,, {tim ,Er, lim§ ,M} is a strongly convergent spectral sequence. 

Proof. - -  For each n we have the sequence of inclusions: 

( ,5 #) : o = , B ~ c . . ,  c , B y c . . ,  c , Z [ c . . ,  c , Z ~ = , E ~ .  

v _ pt p ~Fj, and so Now hypothesis a) and (3. i~) imply that  {~Er}--{~Zr~Br} satisfies : ~ (ML). 
Hence writing E,P=! im,E~ and using (3.9) we see that  E y ~ H i v ( E r ) ,  showing 

that  {Er} (2 ~< r<oo) is indeed a spectral sequence (the operators are of course defined 
as d r = !im,dr).  

Taking the inverse limit of (,S a) we get (by (3-5)) a sequence of inclusions: 

(S:) o : - - B ~ c . . ,  c B ~ c . . ,  c Z ~ c . . ,  c Z f  -=-E~, 

where B~ = li+mm,By, Zy = lim.__,,Z~. By a) and (3. i2) again {,By} satisfies (F) at,d so (ML). 

Hence by (3.8) E~Z,P/BY, showing that  (S:) has the same significance as before. 
Now the fact that  ,E~ = o f o r p < o  and that  d r has degree r imply that, for all n, , B ~ , B ~  
for r>~p+ z. 

(x) This  conflicts slightly with the usual  notat ion,  bu t  should cause no confusion. 
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Hence 

Also 

lim B v "-~RP for r >/p + I, + - -  f l  O 0 - - - - r  

~B~. 
lim,,Z~ --- lim lim .Zr 
. . r  ,( .,(------- 

n 

~ l i m  lj_m_m, Z~ 
n 

-- lim Z~ 
, < - - -  

T 

by (3.4), 

= Z ~ .  

We now consider M=lj_mm,M. In view of (3-5) this is filtered by subgroups 

Mp = ! im,Mp. To complete the proof we have to show 

(i) Z ~ / B ~ M f l M p + I ;  
(ii) M ~ l i m  M/Mp. 

Now{,B~} satisfies (F) ((a)and (3. x2)), and {,Mp+~} satisfies (F)) (b)and (3. ~2)). 
Hence, by (3.8), (i) follows from the corresponding isomorphisms ,(i) and the iso- 
morphisms B~li .mm,B~, Z ~ l i m , Z ~  established above. Similarly (ii) follows 

. ( _ _  

from,(i i) ,  using (3.8) and (3.4). 

w 4- #l*(X) for infinlte-dlmensional X. 

In this section we shall extend the definition and properties of K*(X), as given 
in w 2, to CW-complexes X all of whose skcletons are finite (1). Throughout  this section 
a CW-complex will always mean one with this property. We define 

#l*(X) = lim_m K'(X"),  

where X" is the n-skeleton of X. Then, as remarked in w 3, ~ * ( X )  is in a natural way 
a complete filtered group, the filtration being defined by 

:,~; (X) = Ker {Off* (X) --> K* (X'- t) } 
~li+__m K ; ( X  n) (by (3.5)). 

)1 

The products in K*(X n) induce products in .:U*(X), so that Jg'*(X) becomes a 
filtered ring. Also, for connected X, ~U*(X) has an augmentation ~ and a direct (group) 

decomposition oU*(X) : :~*(X) @Z. 

Lemma (4.x). - -  Let f :  Y - + X  be a continuous map, X,  Y being CW-complexes. Let 
, A : K ' ( X " ) ,  ~B:K*(Y") ,  nA'-- Im(n+lA-+nA ), nB'--Im(n+lB->nB). Then f induces a 
homomorphism ~f! : ,A'-+nB' which depends only on the homotopy class off .  

Proof. - -  Let g, h be any two cellular maps homotopic to f .  Then there exists a 
cellular homotopy r between g and h. Hence we have maps g~ : Yn--~X n, h n : Y"-+X" 

-'o:' h~ oi" and in og,,~i, oh,, where i n : X ~ X  "+j is the inclusion. This implies that g. ~ . -  

(1) T h i s  res t r ic t ion  is no t  essent ial ,  b u t  i t  covers  the cases we  are  i n t e re s t ed  in.  
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these being homomorphisms, +1A---~nB. Thus gn and h, induce the same homomorphism 
,,A'-~,B' and this is the required , f l  depending only on the homotopy class of.]. 

Lemma (4.2). - - In the notation of  (4. i) suppose f is a homotopy equivalence. Then , f~  
is an isomorphism. 

Proof. - -  This tbllows at once from (4-I). 

Lemma (4.3). --JY"(X) is an invariant of  homotopy type (as a filtered ring). 

Proof. - -  This follows from (4.2) and the fact that lim,A~---lim,A' (as filtered 
rings). 

Note. - -  The above results apply equally to ~*(X).  

Lemma (4.4). - -  Let X and Y be connected CW-complexes of  the same homotopy type, 

and put ,A = K*(X'), ,B -o K*(Y'), ,A = K*(X") ,B = K*(Y"). Then 

(i) {.a} satisfies (ML) <=~ {,,B} satisfies (ML), 

(ii) {,~} satisfies (F) <:., {,B} satisfies (F). 

Proof. - -  This follows from (4.2) and the following facts: 

{,a} satisfies (ML) ~ {,A'} satisfies (ML) 
{,~} satisfies (F) <=~ {,~'} satisfies (F), 

where we adopt the notation of (4-I). 

In view of (4-4) we may say that ,YI*(X) satisfies (ML) or that ,Yd*(X) satisfies (F), 

meaning that, for some cellular structure {K*(X")} satisfies (ML) or that {K*(X")} 
satisfies (F). 

Lemma (4.5). - -  Let X be a connected CW-complex, and let {T"} be an increasing sequence 
of  finite connected sub-complexes of  X with U T ' =  X. Then. 

n 

(i) lim K*(T") --~.)Y*(X), 
- ( - -  

(ii) {K*(T")} satisfies ( M L ) ~  ~*(X)satisfies (ML), 

(iii) {K*(T")} satisfies (F)~,.  Jr (F). 

Proof. - -  Let I be the directed set of all finite connected sub-complexes of X. 
Then the sets {X"}, {T"} (n~> x) (X" being as before the n-skeleton) are confinal in I. 
The lemma now follows from (3. I4). 

Lemma (4.6). - -  Let X be a connected CW-complex with He(X, Z) finite for all q>o. 

Then 3U*(X) satisfies (F). 

Proof. - -  The hypotheses on X imply that Im{Hq(X "+t, Z ) ~ H q ( X  n, Z)} is 

finite for all q > o .  Hence, by (~. io), Im {K*(X "+t) -+ K*(X")} is finite, and so ~ ' ( X )  
satisfies (F). 

Let G be a finite group. Then its classifying space B G may be taken as a 
(connected) CW-complex (with finite skeletons) [io]. The homotopy type of Ba is 
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uniquely determined by G and hence, by (4.3), ~*(Bo) is a filtered ring depending 
only on G. Moreover, since an inner automorphism of G induces a map B o m b  ~ 
homotopic to the identity on each finite skeleton [~2, w I3.9], it follows that ~*(Bo) 
is invariant under inner automorphisms of G. For a direct definition of Jt"*(Bo) by 
means of universal operations on G-bundles, and for a direct proof of the invariance 
under inner automorphisms, see [I, w 4.6]. Since the cohomology groups Hq(Bo, Z) 
are finite for q > o  we deduce, from (4.6). 

Corollary (4.7). - -  Let G be a finite group. Then Or satisfies (F). 

Suppose f : Y ~ X  is a finite covering, X being a CW-complex. Then Y is a 
CW-complex and the n-skeletons Y" of Y are simply the inverse images f -  I(X") of the 
n-skeletons of X [I3, w 4.5]. T h u s f  is the limit of maps f ,  : Y"-+X" of finite CW- 
complexes. It follows that the homomorph i sm~ of w 2 extends to the present infinite- 
dimensional complexes. Moreover the extended f,. will have all the formal properties 
described in w 2. In particular (2. I I) applies. Taking X---B~ and Y the universal 
covering of X we deduce: 

Proposition (4.8). - -  G~*(Bo)  is annihilated by the order of  G. 

Taking X = B  6 and Y = B ~ ,  where H is a p-Sylow subgroup of G, we deduce: 

Proposition ( 4 - 9 ) . -  Thep-primary component of  G~Y'*(Bo) is a direct factor of G.~U*(BH) , 
where H is a p-Sylow subgroup of  G. 

Remark. - -  Both these propositions are analogous to the corresponding results 
for cohomology. 

Proposition (4. xo). - -  For each prime p dividing the order of G let G v be a p-Sylow subgroup 

of  G. Then ~*(Ba) -+ 2~*(B%) is a monomorphism. 
P 

Proof. - -  Suppose x e K e r { O f * ( B o ) ~ * ( B % ) }  for all p, x:~o. Since ~*(Bo) 
is a complete filtered group it is Hausdorff, and so x 4= o implies that there exists an 
integer n so that xe~ : (Bo)  , x r  But then x would define an element of 

G"~*(BQ) giving zero in each G"~*(B%). In view of (4.8) and (4.9) this is a contra- 
diction, and so the proposition is proved. 

The problem of generalizing the spectral sequences (2.4) and (2.6) to infinite- 
dimensional complexes presents serious difficulties (espectally (2.6)). We shall not 
attempt this problem in general but in the next section we deal with the case of classifying 
spaces of finite groups. 

w 5" The  spectral  sequence  o f  a no i=~al  subgroup .  

Let G be a finite group, V a normal subgroup and put S = G / V .  Let Ba, B s 
be the classifying spaces of G, S, and let Ea--->BQ, Es--->B s bc the universal bundles (i.e. 
the universal coverings). Then we have a factorization (cf. [9, Satz 3-44]) 

Ea -~Bv~B o 
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where B v--- Ec,/V is a classifying space for V, and By--Be, is the bundle associated to 
the universal bundle with fibre S. Since V is normal B v ~ B  Q is moreover a principal 
S-bundle. 

An element g e G  defines a map EG~Ec, given by x-+xg. Since V is normal 

we have xgV = xVg and so g inducc~ a map 0~ : By--By. On the other hand g induces 
an automorphism v~g- lvg  of V and hence a weak (1) homotopy class of maps Bv---,B v. 
It is easy to check from the definitions that 0g is a representative map of this class. 

Moreover 0 9 depends only on the coset s ----- gV and it describes the way in which s operates 

on the principal S-bundle B v. 
For simplicity put X = B~, Y = Bs, A - -  Bv, B = E s. Let X", yn be the n-skeletons 

of X, Y and let A", B n be their inverse images in A, B. As already observed in w 4, 
A", B" are the n-skeletons of a CW-structure on A, B. Moreover these CW-structures 

are invariant under the operation of S [13, w 4-5]- Hence Z--- (A xB) /S  will have 
an induced CW-structure and Z" = (A" • B")/S will be a finite sub-complex, connected 

for n>~ I. Now we have two fibrations 

Z 

X Y 

which are the limits, under inclusion, of the fibrations 

Z t~ 

X" Y" 

Since B = E s is contractible it follows that Z - + X  is a homotopy equivalence. Hence, 

oF ( Z ) = . ~  (BG). Since Z - -  UZ" it follows from (4.4), (4.5) and (4 7 )  by (4.3), we have * ~ * 
n 

that {.JU*(Z")} satisfies (F). 
From the fibrations Z"-+Y" we obtain, by (2.6), a spectral sequence {,Er} with 

~I';~ = HP(Y ", K*(A")) 

= iq;(z  ) /K;+t(Z ). 

Here K*(A") is the local coefficient system associated to the operation of 

on A' defined by the fibration A"-~-X ", and (~) K~(Z ") is the filtration on K*(Z ~) induced 

from Y". By (2.8) we can decompose , E r = , E ~ @ Z  where Z is the trivial spectral 

--,,Lr for p > o  and sequence, ,E~--  ~P 

.E.~ = H~ ", K'(A")), 

= 

(a) I.e. defined on each skeleton. 
(2) The suffix of  (~.6) is omitted here to simplify notation. 
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Since Z" is a finite CW-complex there is no convergence problem for {,Er} as r~oo 

(n fixed). Hence {,E'r, K'(Z")} is an inverse system of strongly convergent spectral 
sequences in the sense of w 3. We wish to apply (3. I9). Now condition b) of (3.19) 
has already been verified so it remains to consider a). 

Since A" is a finite CW-complex, K*(A") is a finitely-generated group (2.9). 

Hence ,E~ is finitely-generated. But, for n>p, we have: 

, E ~ H ' ( Y ,  K*(A"))~--HP(S, K'(A")), 

since Y = B  s. Hence nE~ for n>p>o ,  is annihilated by the order of S and so is finite. 

Thus, forp>o,  {,,E~} satisfies (F). F o r p = o  and n>o we have: 

nE ~ = H~ K*(An)) ~---K*(A') s (the invariants). 

By (4-7) wc know that {K*(An)} satisfies (F) (since A=Bv) and so, by (3-i2), {K*(A,,) s} 
also satisfies (F). 

Conditions a) and b) of (3.19) therefore hold, and so we obtain a strongly 

convergent spectral sequence {tim, E ,  ~U*(Z)}. Adding the trivial spectral sequence Z 
does not affect the convergence and gives lim Hv(S, K*(A")) :~Jd*(Z). 
Now 

Hv(S, K' (A"))= HV(HomA(L., K'(A"))) 

where A =Z[S] and L. is the standard A-free resolution of Z [7, chapter X]. Since 

{K*(A')} satisfics (F), {K*(An)} satisfies (ML) and so for cach p {Homh(Lv, K*(A"))} 
satisfies (ML). Moreover as already observed {HP(S, K*(A"))} satisfies (F) for p>o,  and 

{H~ satisfies (F). Hence foral lp {UP(S, K*(A"))} satisfies (ML)(addingZ 
for p- -o) .  Hence (1), by (3-9), 

lim HP(S, K*(A')) -~H'(S, o,'f*(A)). 

Since OU*(A) =Jg'*(Bv) and J~f*(Z)~gU*(Bo) we have established the following 
theorem. 

Theorem (5. x). - -  Let G be a finite group, V a normal subgroup and S = G/V. Then 
~'(BG) has a filtration defined relative to S (denoted by a subscript S), and we have a strongly 
convergent spectral sequence: H*(S, ~f*(gv) ) ~.XP'(Bo)s . 

Either by taking S-----G in (5. i) or more directly by repeating the proof and 
using (2.4) instead of (2.6) we obtain 

Theorem (5.2). - -  Let G be a finite group. Then there is a strongly convergent spectral 

sequence: H*(G, Z) ~.)g"*(Bo). 

All the properties of the spectral sequences (2.6) and (2.4) go over to (5.1) 
and (5.2). In particular this applies to the product structures and to the conditions 
under which d2r----o. 

(a) This could have been incorporated in the proof of (3.19) by starting the spectral sequence with E x. 
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In (5. i) ~V*(Bv) is an S-module, the operation being induced by conjugation as 
explained earlier (see [I, w 4.6] for a direct definition of this operation). 

The  filtrations of (5 . I )  and (5.2) are such that  JY'~(Bo)sCJ{-~(Bo). Thus  the 
"S-topology" of Jg'*(Bo) is finer than the "G-topology".  

A notable case of (5.2) is the following: 

Corollary (5.3)- - -  I f  Ha(G, Z) = o for all odd q, then 
graded rings). 

H (G, Z) = G ~ * ( B a )  (as 

then 

then 

Proof. - -  The hypothesis and d) of (2.4) imply that  d, = o for all r. The corollary 
follows from (3. I8). 
A similar result holds for (5-I) .  

Corollary ( 5 . 4 ) - -  I f  in (5.x) H q ( S , ~ * ( B v ) ) = o  for all odd q, and .Yd'(By)----o, 
H*(S, ~*(Bv) ) ~G~F*(Bo) s (as graded rings). 

Proof. - -  This follows from c) of (2.6) and (3. I8). 

w 6. The representation ring R(G). 
Let G be a finite group. We denote by R(G) the free abelian group generated 

by the equivalence classes of irreducible complex (or unitary) representations of G. 
Thus, if ~t, . . . ,  ~n are the (classes of) irreducible representations of G, every element 
of R(G) can be written uniquely as 

n 

p = 51 r ~ ,  qeZ .  
i = 1  

The  (classes of) representations of G correspond to the "positive" elements of R(G),  
i.e. those with ri~> o for all i (but not all r~= o). 

The  tensor product  makes R(G) into a ring. We shall call this the representation 
ring of G - -  it is isomorphic to the character ring of G. In this section we shall identity 
these two rings. 

We define an augmentat ion e : R ( G ) - + Z  by ~ ( ~ i ) = d i m ~  i, and we denote 
by I(G) the kernel of ~. We shall consider R(G) with the I(G)-adic (or augmentat ion) 

topology, and its completion R(J-G) in this topology. The  main result of this section 
will be 

Theorem (6. x). - -  Let H be a subgroup of G. Then the I(H)-adic topology of R(H) 
is the same as its I(G)-adic topology (R(H) being viewed as R(G)-module via the restriction 
homomorphism R(G) -+R(H) ) .  

Let G have order g. Let X 1 , . . . ,  X, be the characters of ~ 1 , . . . ,  4,. Then  

R (G) = ~ ZX,- 
i 

Let O=exp(2~i/h) where h is a multiple of g, and put  A-=Z[0] ,  so that  

Define 

A ---- Z -{- Z0 + . . .  + Z.  0 ~(h)-t 

RA(G ) = R(G)| = Y_Ax,. 

(q~ the Euler function). 
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N o w  a character  is a (class) function on G and its values are in A, being sums of eigen- 
values 0 ~ of  uni tary  representat ions of  period dividing g. Hence  we may regard Ra(G) 
as a subring of  the ring (1) A 0 of  all A-valued functions on G. 

Lemma (6.2) .  - -  (i) Every prime ideal of RA(G ) is the restriction of a prime ideal of A ~ 
(ii) Every prime ideal of R(G)  is the restriction of a prime ideal of RA(G ). 

Proof. - -  A ~ is a f initely-generated Z-module .  In  fact if, for each SEG, we 
let e s denote  the function taking the value I on S and o elsewhere, then 

~(h)- i 
A ~  Y- 2 ZOnes �9 

SEG v = O  

Z is imbedded  in R(G)  by the trivial representat ion,  in A ~ by the constant  integer valued 

functions. Since we have inclusions 

z oR(G) eRA(G) cA ~ 
it follows that  

a) A ~ is a f initely-generated RA(G)-module;  

b) RA(G ) is a f initely-generated R(G) -modu le .  

By the theorem of  Cohen-Seidenberg  [I4, p. 257 , Th.  3] a) and b) imply (i) 
and (ii) respectively. 

We may  remark,  at  this point,  that  all the rings occurr ing here are finitely- 

generated Z-modules  and so certainly Noether ian.  
The  pr ime ideals in A ~ are easy to describe, because A G is just  a sum of g copies 

of  A. I f  S e G  and p is a prime ideal of  A, then the set of  functions ~b~A ~ such that  
~b(S) ~p is a pr ime ideal of  A G, and every pr ime ideal of  A G is of  this type. We  denote  

the restriction of  this pr ime ideal to RA(G ) by  Pp, s. Thus  

Po, s = {z l s(G)I 

By (6.2) (i) we know that  every pr ime ideal of  RA(G ) is of  this form for some p and 

some S. 
If p4=(o) then p n Z = p Z  for some primep~eo of Z, pis a maximal ideal of A 

and A/p is a finite field of characteristic p. We then define Sp by the decomposition 
S=Sp.B, where Sp and B are powers of S, Sp has order prime topand B has order a 
power  of  p. I f  p = (o) we define Sp---- S. Sp is called the p-regular  factor of  S. 

Lemma (6.3) .  - -  Pp, s 3 Pp', s' / f  and only i f  (i) p 3 p' and (ii) S~ and S'p are conjugate in G. 

Proof. - -  Suppose first that  (i) and (ii) hold. To  prove that  Pp, s D P r s ,  it will 

be sufficient to show that ,  for any p, S and x~:RA(G) we have 

z ( S ) ~ z ( S ~ )  rood p. 

This  is trivial if  p = - ( o ) ,  so we may  suppose p n Z = p Z ,  poeo.  Restr ict ing z to the 
cyclic subgroup generated by  S we see that  it is sufficient to deal with the case where  G 

(t) Elsewhere this notation is used for the invariants, but there should be no confusion. 
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is cyclic and generated by S. Also we may suppose Z is irreducible, hence one-dimen- 

sional, hence multiplicative: z(S1S~) = ;(($1).z(S2). 

Let f~ : A ~ A / p  be the canonical homomorphism.  Then  from S = S p . B  we obtain 

fp(z(S)) =fp(z(S~)) -f,(z(B)). 

Since BP~= I for some v, we have (f~(z(B)))P*= I for some ,~. But A/p is a finite field 
of characteristic p, hence f p ( z ( B ) ) = i ,  and this completes the proof. 

Conversely suppose P~,sDPp,,s,. Then  

p = P~,snA D Pp, , s , •A=p ' .  

Suppose first that  p 4  (o). Then  according to (1) [5, Lemma 3] there exists HeRA(G) 
such that 

(i) ~} has values in Z;  
(ii) ~ ( T ) = o  i f T v  is not conjugate to S,;  

(iii) ~ ( T ) - - I  (mod p) if Tp is conjugate to S~. 
I f  S'p and Sp were not conjugate we would have ~eP~',s' but  ~r This gives 

t a contradiction and so S~ and S~ are conjugate. I f  p = ( o )  and S and S' are not 
conjugate, then as is well-known there exists ~eR(G)  with ~ ( S ' ) = %  ~(S)4=o, which 
gives a contradiction also in this case. 

This lemma leads at once to the following description of the "scheme" of the 
prime ideals of RA(G ). 

Proposition (6.4). - -  The prime ideals of RA(G ) are all of the form Pp, s- Two such 
ideals Pp, s and P~',s' coincide i f  and only i f  p = p' and S,  and S~, are conjugate in G. I f  p = (o), P~,s 
is a minimal prime ideal, while /f  p 4= (o) Pp, s is a maximal prime ideal. The maximal prime 
ideals containing P0,s are the ideals Pp, s with p 4: (o). The minimal prime ideals contained 
in P~,s(pOe (o)) are the P0,s' with S'p conjugate to S~. 

Lemma (2) (6.5). - -  Po, t = A . I (G) .  

Proof. - -  Trivially A . I (G)  cPo, t. On the other hand let XePo, t and write 
~(h) -1 

Z =  Y X~0 ~ 
v=0 

with z~eR(G). Then  X( I )=XZv( i ) . 0~=o ,  with Xv(I)eZ. This implies X~(x)=o 
-/ 

for all v and Z~eI(G), i.e. z e A . I ( G ) .  
Now let H be a subgroup of G. To  distinguish we shall write P~,s(G) instead 

of P~,s. Let p : RA(G)-+RA(H ) be the restriction homomorphism.  

Lemma ( 6 . 6 ) . -  Suppose p-a (P~ , s (H) )=P~, t (G ). Then Pp, s (H)=P~, , I (H) .  

P r o o f . -  Since SeH,  p-x(P~,s(H))=P~,s(G).  Hence Pp, s(G)=P~,,x(G),  and 
so by (6.4) p-----p' and Sp is conjugate in G to I p = I .  Hence S ~ = I  and so Sp is 

(x) This lemma is the main step in the proof of Brauer's theorem given in [5]' Brauer's theorem itself will 
be needed in w I I. 

(~) We denote the identity of G by x. 
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conjugate to I~ in H. Hence hy (6.4) applied to H we conclude that  P~,s(H) = P~,,~(H) 
as required. 

Lemma (6.7). - -  The prime ideals of R(H) which contain aI(G) are the same as those 

which contain I(H).  

Proof. - -  Trivially pI(G) c I (H) .  Hence we must  show that, if Po is a prime ideal 
of R(H) which contains oI(G), then PoD I(H).  By (6.2) (ii) applied to H there exists p, S 
so that  P0 = R(H)t~Pp, s(H ). Then  0I(G) r implies pI(G) cPp, s(H). Hence by (6.5) 

pP0,t(G) = p(A.I(G))  cA .  oI(G)r s(H) and so 

P0,1(6) cp- ' (Pp,  s(H)). 

By (6.4) this implies p - I (P~ ,s (H))=Pp ,  I(G ) and so by (6.6) Pp, s ( U ) = P p ,  t(H). 
Hence I(H) cPp, s(H), and therefore I(H) c R ( H ) n P ~ , s ( H  ) =P0 .  Q.E.D.  

Theorem (6. I) follows at once from (6.7) and the fact that, in a Noetherian 
ring, the a-adic topology is the same as the a'-adic topology where a' is the radical of a 
(i.e. the intersection of all the prime ideals containing a). For the proof of this statement 
see [ I I ,  p. I4, Th.  I and p. 22, Prop. 8]. 

Lemma ( 6 . 8 ) .  - -  Let B be a Noetherian ring with no (non-zero) nilpotent elements. Let b 

be a prime ideal of B, and let Pl , �9 �9  Pk be the minimal prime ideals of B numbered so that 

for I<~i<<.m b +p~4=B and 

for i > m  b + p ~ = B .  
oo 

Then rl b " =  plnp~n �9 �9 �9 npm. 
n = l  

Proof. - -  In any Noetherian ring we have [i I, p. i4, Th.  i] 
k 

~ =  flpi, 
i = l  

where Tt is the ideal of nilpotent elements and the Pi are the minimal  prime ideals. 
With the hypothesis of the lemma we have ~ = (o). Thus Pl, �9 . . ,  Pk are the primary 
components of (o) and the lemma now follows from [i4, p. 218 Corollary]. 

We observe that  the condition b + p i ~ e B  in (6.8) is equivalent to: there exists 
a maximal  prime ideal q with b-}-Plcq. I f  b ~-piJe B we take q to be a maximal  
ideal containing b + Pi and recall that  a maximal  ideal is necessarily prime. 

We now apply (6.8) with RA(G ) for B and P0,1 for b. From (6.4) it follows that  
the maximal  prime ideals containing P0,1 are the Pp,~ (p + (o)), and that  the minimal  
prime ideals contained in P~,I are the P0,s' with S~ conjugate to i p =  i, i.e. S' of order a 
power o fp .  Hence (6.8), together with (6.5), gives 

Lemma ( 6 . 9 ) , -  [7 ( A . I ( G ) ) " = { ; ( e R A ( G ) I z ( S ) = o  for all S~G having prime 
n = l  

power order}. 
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Suppose now t h a t J  is any ideal of R(G).  Then  A . J  is the ideal ofRA(G ) consisting 
~(h) - -1  

of elcments of thc form ~ j~0 ", j~eJ. 
~=0 

Since the 0 v form a free basis for RA(G ) overR(G)  it follows that  A . J n R ( G )  - -J .  Taking 
J = I ( O ) " ,  and observing that  A . I ( G ) n =  (A.I(G))" ,  we deducc from (6.9): 

0o 

Proposition (6. xo). - -  17 I(G)" = { x e R ( G )  [7.(S) = o for all SEG having prime power 

order}. , = 1 

(6.1o) and (3.2) together imply 

Proposition (6. xx). - -  I f  G is a p-group then R(G)-~-R(G) is a monomorphism. 

In general, for each prime p dividing the order of G, let G v be a p-Sylow subgroup 
of G. Then  we have a restriction homomorphism 

R(G) ~ER(Gp) .  
P 

Proposition (6. I2). - -  The kernels of the two homomorphisms 

R(G)-+R(G~-) and R ( G ) - ~ R ( G p )  
P 

coincide. 

Proof. - -  Denote the homomorphisms by oc, ~ respectively. In (6.1o) Ker 0( is 
explicitly determined and from this it is immediate  that  Ker 0~cKer ~. Conversely 
suppose zeR(G)  is in Ker  ~. Then  ~((S) = o  for SeGp. But every element of G of 
order p is conjugate to an element S of Gp. Hence z(S) = o  for all S of prime power 
order, i.e. z~Ker  0c. 

Next we shall examine the quotients I(G)"/I(G) ~.1 

Proposition (6.13). - -  Let g be the order of G, and let n> o. Then I(G)"/I(G)" + 1 is a 

finite group annihilated by g. 

Pro@ - -  Since R(G) is a finitely-generated group the same is true of I(G)"/I(G)" .-1. 
Hence it will be sufficient to show that g . I (G)"  c I (G)  "+1 for n>o .  

For any subgroup H of G we have the two homomorphisms:  

i*: R ( G ) ~ R ( H )  (restriction) 
i~ : R(H) -+R(G) (induced representation), 

and the formula ((e) of w I) 

i ,(~(a).~) = ~.i,(~) ~eR(G) ,  ~eR(H) .  

In particular we may take H =  I, and apply the formula with 0ceI(G)" (n>o) and 
~ = I .  Then  i*(00=o and so we deduce a . i , ( I ) = O .  Now i,(I) has augmentat ion g 
(in fact i,(I) is the regular representation of G), and so g - -  i,(i) E I(G). Hence 

g~ = ( g - - / , ( i ) ) . ~  ~ I(G) "+1, 

which completes the proof. 
Remark. - -  This proof  is formally similar to that  of (4.8) or to the corres- 

ponding result for cohomology. 
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w 7" Statement  o f  the m a i n  theorems.  

Let G be a finite group, ~ a principal G-bundle over a finite CW-complex X. 
Then,  as observed in w i, each complex representation p of G defines a complex vector 
bundle p(~) over X. Because ofpropcr t ics  (i)-(5) of w I this extends to a ring homo- 
morphism R(G)->K~ compatible with inverse images, direct images and cxterior 
powers. I f  X is an infinite dimensional CW-complex with finite skeletons X", then 
the homomorphisms R(G)-+K~ ") are compatible with each other and so define a 
homomorphism R(G)-+JI~  = ! i m K ~  In particular, taking X = B  o and 
the universal G-bundle we obtain a homomorphism 

: R ( G ) - ~ K ~  

Following a by the inclusion of ,%'~ in JY'*(Bo) we obtain a homomorphism,  which 
we still denote by 

: R(G) ~Js 

is a ring homomorphism and commutes with inverse images, direct images (for H r 
exterior powers and augmentat ion (cf. w 4 and w 6). 

I f  peI(G) then 0~(p)e.~/'*(Ba)=~2(Bo) (by (2.2)), and so 

(7" I )  a(I(G)") cOKe2, (Bo). 

Thus o~ is continuous, R(G) having the I(G)-adic topology, and ~K*(BQ) having the 
filtration (or inverse limit) topology. Hence a induces a homomorphism i of the 

*B completions. Since O K ( o )  is an inverse limit and hence complete (2 3), it follows 
that  ~ is a homomorphism:  

a : R(G) ~JT"(Ba).  

Our  main theorem is then: 
A 

Theorem ( 7 . 2 ) . -  a : R ( G ) ~ O g ' ( B o )  is a topological isomorphism. 
Obvious corollaries are: 

Corollary (7.3). - -  ~ '(BQ) = o. 

Corollary (7.4). - -  Jl~ has no elements of finite order. 

Corollary (7.5). - -  The topology on R(G) induced by o~ from the filtration on ~ ' (Bo)  
coincides with the I(G)-adic topology. 

Combining (7.2) with (5.2) we obtain 

Theorem (7.6). - -  Let G be a finite group, then R(G) has a filtration for which there is a 
strongly convergent spectral sequence 

H'(G,  Z ) ,  R(G).  

This is the spectral sequence referred to in the introduction, bearing in mind 

that  GR(G)=~GR(G)  (3. IO). Properties a)-d) of the introduction follow from a)-d) 
of (2.4). Ploperty e) follows from (2.2). 

From (2.5), and the fact that  the mapping  p~p(~)  commutes with exterior 
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powers ((3) of w I) and so in particular with the determinant operation "det" ,  we 
deduce: 

Proposition (7.7)- - -  The 2-dimensional part of  (7.6) gives an isomorphism 

R2(G)/R4(G ) -~ H2(G, Z). 

This isomorphism is induced by the mapping p--s(p)-+det  p, followed by the isomorphism 
Horn(G, C*)~H2(G,  Z) of  (I .3). 

Combining (7.2) with (5.1) we obtain the following generalization of (7.6): 

Theorem (7.8). - -  Let G be a finite group, V a normal subgroup, S = G/V. Then R(G) 
has a filtration defined relative to S (denoted by a subscript S).for which there is a strongly convergent 
spectral sequence: 

H*(S, R(V)) --> R(G)s.  

Here R(V) is an S-module, the operation of  S being induced by conjugation in G. This spectral 
sequence is contravariant in (V, G, S), has products and is such that all d2r = o. 

The extra properties of the spectral sequence in (7.8) follow as before from (2.6). 

Lemma (7.9). - -  To prove (7.2) it is sufficient to prove 

(i) ~ is a monomorphism; 
(ii) ~R(G) is dense in JT'*(Bo). 

Proof. - -  We decompose 

R(G) = Z Q I ( G ) ,  ~ ' (Bo)  = Z O ~ T  (BG). 

Then ~ and ~ decompose accordingly. Consider then 

-+3((Bo). I) a : I (G)  ~* 

Now I(G) is an inverse limit of finite groups (6.13) and so is a compact Hausdorff 

group. The same applies to ~*(B~), by (4.7) and (3.13). Hence ~(I(G)) is closed 

in ~#*(Bo). Now (ii) implies that a(I(GJ-")) is dense in ;,~*(B~) and so i) must be an 

epimorphism. Together with (i) this proves I) is an isomorphism. Since I(G) and 

OU*(Bo) are compact Hausdorff groups any continuous isomorphism between them must 

be a homeomorphism. The same is then true for ~ : R(G)-+~U*(BG). 

w 8. Cyclic Groups. 

In this section we shall prove (7.2) for cyclic groups and then derive (i) of (7.9) 
for general finite groups. 

Let G be a cyclic group of order n, and let p the representation which maps a 

generator of G to exp - --. Then from (I .  3) it follows that p corresponds to a generator x 
n 

of H~(G~ Z). Now it is well-known [7, P' 25I] that 
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in x. In  particular there is no odd-dimensional cohomology and so, from (5.3) we 
have an isomorphism 

2) H*(G, Z) ~ Ggff'(Bo). 

Now R ( G ) = Z [ p ]  where p n = I .  I f w e p u t  a = p - - I ,  then R ( G ) = Z [ a ]  wherc 
(I + a ) n =  I, and I(G) is the idcal (~). Since 

o = (I + ~) n -  I -= n~ mod ~2, 

it follows that, for k>o ,  I(G)k/I(G) k+t is cyclic of order n generated by the class of ~.  
I f  we filter R(G) by defining R2k(G ) = R2k_I(G ) = I(G) k it follows that  we have 

3) GR(G)=Z[-f f ]  where n d = o ,  and ~/is the residue class of e mod I(G) 2. 
Consider now the homomorphism 

It is a homomorphism of filtered rings, and so induces a homomorphism of gradcd rings: 

G~:  GR(G) --> GJ('*(Bo). 

I f  we identify GJT'*(Bo) with H'(G,  Z) by 2) we find, from (2.5) , that  

G~(~) = q~(p) = x. 

Hence from I) and 3) G~ is an isomorphism. From (3. IO) we deduce: 

Proposition (8. I). - -  Let G be a cyclic group and filter R(G) by putting 

R2k_,(G ) = Rek(G ) = I(G) k. 

Then R(G) has an induced filtration, and ~ :R(G)-->,~d'(Bo) is an isomorphism of  filtered 
groups. 

This is, for cyclic groups, a more precise result than (7.2). 
We proceed now to prove (i) of (7.9). 

Lemma (8.2).  - -  Let G be a finite group, {Gz} the family of  all cyclic subgroups of  G. 

Then R ( G ) ~ E R ( G z )  (given by the restriction) is a monomorphism. 

Proof. - -  I f  peR(G)  gives zero in each Gx, then z~lax--o, where )~p is the 

character o fp .  Since G=-kJGz,  this implies Zp-----o and so X = o .  
x 

Lemma (8.3).  - -  With the same notation as (8.2) 

is a monomorphism (where each completion is with respect to the augmentation ideal of  the corres- 
ponding group). 

Proof. - -  By (8.2) we have an exact sequence 

o- R(G) 

By (6.1) the I(Gx)-topology of R(Gx) is the same as the I(G)-topology. Hence 

regarding R(G) and ER(Gx) as R(G)-modules,  and completing with respect to the 

I(G)-topology, we get (by (3.16)) an exact sequence: 
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R(G) (~xR(G))" 0--+ ---> ~, 

But (~xR(Gx))^---~-~zR(Gx) ̂ , and so the lemma is proved. 

Proposition (8.4). - -  For any finite group G 

a : R(G)--.Jd'(Bo) 
is a monomorphism. 

Proof. - -  Let {Gx} be the family of all cyclic subgroups of G. 
commutative diagram 

R(G~-)- 0> ER(Gz)^ 

X " ~'*(Bo) --> 9K (BQx). 

Ker 0 = o  (8.3) and q~ is an isomorphism (8.1). Hence 

Then we have a 

Ker ~ = o as required. 

w 9. S o m e  l e m m a s  on  r e p r e s e n t a t i o n s .  

Let V be normal in G, S = G / V .  Let N be an irreducible G-module (complex 

representation space), M c N  an irreducible V-module. Then E g M c N  and is invariant 
g E G  

under G, hence ge~QgM=N" Now each gM is an irreducible V-module. Hence we 

can find a subset g : , . . . , g i n  of elements of G such that 
t n  

N : - - E I & M  as direct sum. 
m 

To see this consider a maximal subspace of N of the form E giM (direct sum). I f  this 
i = l  771 

is different from N, then some further gM exists which is not contained in E gi M; since gM 
i = l  

m 

is irreducible gMni=~ lg iM=o  , and so i=:i ~ g~M is not maximal. 

Let p, a be respectively the isomorphism classes of N (as G-module) and M (as 
V-module). Then  if i* : R ( G ) - + R ( V )  is the restriction homomorphism, we have 

m 

( i )  i ' (p)  = 

where s i = g i - l V .  We have just to recall that S operates on R(V), and this operation 
is such that s(a) is the class of gM if s = g - l V .  In detail, if s = h V  a representative 
V-module for s(a) is given by defining a new V-module structure on M as follows 

v[x] = hvh - t  . x, x e  M .  

Hence x - + h - a . x  defines an isomorphism of this new V-module structure on M with 
the original V-module structure on h - lM.  

Now S operates trivially on R(G) and so i*(p) must be invariant under S. But 
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by (I) every i rreducible componen t  o f~ (p )  is of  the form s(a) for some seS.  Hence  

we must  have i*(p)=n(Y.oj), where  {oj} is the complete  set of  (distinct) conjugates 

of  o (i.e. the "orb i t "  So). We  state this as a lemma.  

Lemma (9. x). - -  Let V be normal in G, p an irreducible representation of G. Then 

i ' (p)  = n:Coj, 

where {~j} is a complete set of conjugate irreducible representations of V.  

Lemma (9.2). - -  Let V be normal in G with G/V = S. Let o be an irreducible repre- 
sentation of V,  So the stabilizer of o in S. Let 

i.(a) = ~mkPk 

be the decomposition of i,(o) (the induced representation) into irreducible representations Oh of G. 

Then Zm~= (S o : I). 

Proof. - -  From i,(o) = Zmkp k we have 

(2) (S : I ) . d i m  o = Z m k  dim Pk- 

By Frobenius 's  theorem and (9. I) we have i*(p~) = m k ( Z @ ,  where  {~i} is the complete  
set of  conjugates of  o. Hence  

(3) 
From (2) and (3) we deduce  

and so 

dim Pk = (S : So). m k. d im o. 

(S : I) -= (S : So) Zm~, 

(So : i) = Zm~. 

Lemma (9.3)-  - -  Let V be normal in G with G/V = S. Let o be an irreducible repre- 
sentation of V with stabilizer So, and let {oi} be the complete set of conjugates of ~. Suppose 
that (S o : i) is square-free. Then 

Zo~ci*R(G). 

Proof. - -  From (9.2) we have Y,m~= (So : i).  Since (So : i) is square-free this 
implies tha t  the m k have no c o m m o n  factor. Hence  there exist integers a k such that  
Y, akmk= I. Hence  

i*(Za~pk) = (Zakm~) (Z@ = Zoj. 

Lemma (9.4) .  - -  Let V be normal in G with G / V = S .  Suppose that (S : I) is square- 

free. Then R(V)  s----- i*R(G), 

where R ( V )  s denotes the invariants of S. 

Proof. - - W e  have al ready remarked  that  i*R(G) c R ( V )  s. Now a Z-basis for R ( V )  s 

is given by  the sums of  complete  sets of  conjugates  Z~j. But  for any ~, since S o t S  
and (S : I) is square-free, it follows that  (S O : I) is square-free. Hence  (9.4) follows 

at once from (9.3) .  
The  special case of  (9-4) which we shall need later is explicitly: 

Proposition (9 .5) .  - -  Let V be normal in G with G/V = Zq cyclic of prime order q. Then 
R(V)  zq = ~ R ( G ) .  
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w IO. So lvab le  g r o u p s .  

In this section we shall prove (7.2) for solvablc groups. The  main step is the 
following: 

Proposition (xo.x). - -  Let V be normal in G with G / V = Z q  (q prime). Suppose 

i v : R(V)-+Jd*(Bv) is an isomorphism. Then iQ : R(G)---~o,~*(B~) is an isomorphism. 

Proof. - -  By (5-I) we have a strongly convergent spectral sequence: 

H*(Zq, ,T'*(Bv) ) ~U*(Ba)zq. 

By hypothesis ~{'*(Bv)=~R(V), so that  

(i) E ~  H'(Zq, R ( V ) ) = H  (Zq, . , . r , ,  ^ l-,~vjj by (3-I7).  

Here we must  observe the following: R(V) is the completion in the I(V)-adic topology. 
By (6. I) this is the same as the I(G)-adic topoh)gy, R(V) being viewed as R(G)-module.  
Since i*R(G) cR(V)  zq it follows that  R(V) is an R(G)-Zq-module as required for (3.17). 
Moreover H~(Zq, R(V)) ^ denotes the I(G)-adic completion. 

Let 41, - - - ,  ~n be the (classes of) irreducible representations of V. Suppose ~i 
for i <~i<~r are invariant under  Zq, and that  the ~. for i>r  fall into sets of q conjugates 
(these are the only possibilities since q is prime). Then  as a Zcmodule  

\ 2 j  �9 . �9 

where M is a free Zq-module. Hence H2k+t(Zq, R(V)) = o ,  and so E ~ + l = o .  Since 

R(V) ~)U~ and OUI(Bo) = o  (by assumption) it follows from (5.4), and (i), that 

(3) G~'(Ba)z~ ~-- H'(Zq, R(V)) ^. 

To  prove ~a an isomorphism it is only necessary, by (7.9), to show that 0~(R(G)) is 

dense in X"(Bc). Since 0c(R(G))c~R(G),  and since the Zq-topology of X' (Ba)  is 

finer than its G-topology it will be sufficient to prove that  ~(R(G)) is dense in X'*(B~) 
for the Zq-topology. This means we have to prove, for each p, that  

(4) G~R(G) -+ GP~*(BQ)zq 

= ea ":f;(Bo)z~" is an epimorphism, where we give R(G) the induced filtration: Rp(G) ^-1 * 
For p = o we have to show (using 3)) that  

(5) R(G) ~ (R(V) zq) ̂  ~ o 

is exact. But this follows from the fact that  

(6) R(G) -+ R(V)Zq ~ o 

is exact (9.5), and that  I(G)-adic completion is an exact functor (3- I6). For p = 2k + i 
it is trivial. Suppose therefore p=2k ,  k>o .  To prove (4) in this case it will be sufficient, 
using (5), to prove that  

2k * X : G~kR(Zq)| ^ -+ G Jd (BG)zq 
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is an epimorphism, where X is defined using the module multiplication of (2.7). 
we have a commutative diagram: 

H2~(Zq, Z)| ~ , H2k(Zq, R(V)) 

But 

HZk(Zq, Z) |  z ^ H2k(Zq, R(V)) , 

where we have substituted for G2kR(Zq) and G2~.fd*(Ba) by (8.1) and (3), and 
where X, ~ are now the obvious maps (as follows from (2.7))- From (2) we see that ~t is 
an epimorphism, and the finiteness of HZk(Zq, R(V)) implies, by (3.3), that z is an 
epimorphism. Hence X is an epimorphism as required. This completes the proof. 

Proposition (xo.2). - -  Let G be a solvable group. Then ~ :R(G)  --~*(BG) is an 
isomorphism. 

Proof. - -  A solvable group has, by definition, a composition series 

G =  GoDG1DG2D . ..  DGn_tDG n =  I. 

With G~_t/G i cyclic of prime order. The length n depends only on G. We prove (io.  2) 
by induction on n. For n = i, G is cyclic and so the result follows from (8. x). Suppose 
it is true for groups of length n--1. I f G  is of length n, then G I has length n-- i. Hence ~Q, 
is an isomorphism and G/G t =  Zq (q prime). Hence by (IO. I) ~o is an isomorphism. 

w I I ,  The "comple t ion"  o f  Brauer's  theorem.  

We recall that an elementary group is a product of a p-group and a cyclic group. 
In  particular an elementary group is solvable. 

Let G be a finite group, {Hx}xe A the family of all elementary subgroups of G. 
Let Q denote the group of inner automorphisms of G. Then Q operates on A, ~s(X)cA 
being defined for ~ e Q ,  xcA by HoCx)=~H x. For any (ordered) triple X, ~, yeA we 
define a homomorphism 

as follows: 

| : R(Hx) -+ R ( H j ~ H , )  

restriction if X = ix, X 4= v 

6~x,~,~= l--restr ict ion if X=v,  X4= 
I o otherwise. 

For any triple ;% ~, rs with X, txeA and , e Q  we define a homomorphism 
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as follows 

Ox,~, o : R(Hz) -+ R(Ho(~)) 

t i if X=~(~) ,  X:t:~t 
Ox~o = --~* if X + ~ ( ~ ) , X = ~  

! o otherwise. 

The  set of all @a,~,, and O~,~,o defines a homomorph ism 

W: ~ R(Hx) -+ Y R(H~,nH,)@ Z R(Ho(~j). 
a EA  !~.,v~ A ~ A  

We shall now examine the kernel of ~F. For any pair ~x, v~A and p =~px~YR(Hz) ,  
a x 

the component  ~F(p)~,, is by definition 

= 

where r~., is the restriction R ( H ~ ) ~  R(H~nH, ) .  
Next, for any pair ~ A ,  a s Q  the component  W(p),~.o is by definition 

q:(O),,,. = ~Oa,=,o (Px), 

Hence peKer  tF if and only if 
(i) G,*(P~)=r~,~(P*) for all B, yEA, 

(ii) p~(,~l=~*(p,,) for all 7~eA, a e Q .  
Consider now the character ?(x=X(Pa). I t  is a function on H a. (i) and (ii) are 

equivalent to: 

(i') ?(~=)~ in H~raH,, for all V, yeA, 
(ii') Zo(,~l=cr*(Z,~) for all ~eA,  cr~Q. 

From (i') the set of Zx defines a single-valued function (with values in t3) on U H  x. 

Since the family of elementary groups includes all cyclic groups it follows that  O H  x = G. 
X 

Thus we have a function Z on G. Then  (ii') asserts that  a*()) = )  for all a e Q .  Hence 
P = NPx belongs to the kernel of W if and only if Za=  Z(Px) is, for all X, the restriction 
to H z of a class function Z on G. But the theorem of Brauer [5, Theorem B] asserts 
that  such a class function Z is necessarily a character of G. Thus  we may reformulate 
Brauer's theorem as follows: 

Lemma ( x x .  x ) .  - -  We have an exact sequence 

o--->R(G) .1~ ~_ R(H~) ~ E R(H~nH~)@ E R(Ho(~)) 
XEA ~,'J~A ~EA 

o E q  

where r is the restriction, {Hx}xE A is the family of all elementary subgroups of G and ~ is the 
homomorphism defined above. 
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Lemma ( �9 I .  2). - -  In the notation of  ( i I .  I ) we have an exact sequence. 

o ~ R ( G )  ~ ~ E R(H~nH~)^@ 2 R(Ho(~))^ 

where each completion is with respect to the augmentation topology. 

Pro@ - -  This follows at once from (i i .  i), (6. I ) and (3- 16). 

Proposition (xz  .:3). - -  For any finite group 

a :R(G)  ~ ~T'*(B~) 
is an epimorphism. 

Proof. - -  With the notation introduced above we have a commutative diagram: 

R ( O )  - 

The top line is exact by (i I .2). 

, ^ 

~ [, 
In the bottom line we have exactness at ~*(BQ), i.e. p a 

monomorphism, by (4. io) and the fact that the H a include all Sylow subgroups of G. 
8 is defined in a precisely analogous way to ~F, and since Q (the group of inner auto- 
morphisms of G) operates trivially on JY'*(Bo) (cf. w 4) it follows that 8p--= o. Now 
is an isomorphism, since the H x are solvable (IO.2). Also y is a monomorphism (8.4). 

Hence p~a : R(G)---~Ker 8 is an epimorphism. Since p.,Y'*(Ba) c K e r  8, it follows that 

pJf*(B~) = Kcr 8 ---- paa(R(G~-)). 

Since p is a monomorphism this implies Js ~G(R(G)), i.e. ~o is an epimorphism. 
( i i . 3 )  and (8.4) together complete the proof of the main theorem (7.~) (in 

view of (7.9)). 

w I2. The  fi ltration o f  R(G). 

As remarked in the introduction the filtration on R(G) has been defined topolo- 
gically, via Bo, and the problem of giving an algebraic definition of the filtration is left 
unsolved. There is however a good candidate for such an algebraic definition due to 
Grothendieck, which we shall proceed to describe. 

We recall first the notion of a X-ring, introduced by Grothendieck. A X-ring is 
a commutative ring R (with identity) with operators 

k ~ : R ~ R  
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(i an integer 1>o), satisfying the following conditions: 

(i)  x0x=~,  x l x = x ,  x - ( x + y ) -  y_ x ' (x ) .x" - ' (y ) .  
i = 0  

I f  we put,  for any  xeR,  
(2) X,(x) = Y X"(x)r'eR[[t]l, 

n~>0 

the relations (I) express the fact that  x~Xt (x  ) is a homomorph i sm of the addi t ive 
group R into the mult ipl icative group I + R [ [ t ] ]  + (formal power  series with constant  

term i) which is a right inverse of  the homomorph i sm (I q- ~ xit i)--+x 1. 

The  ring Z of  integers has a unique X-ring structure such that  

(3) x,(i) = i + t .  

Then  we have 

(4) X,(n) = . ( I  + t)", X'(n) = (~). 

An augmented X-ring will then mean  a X-ring R together  with a homomorph i sm 

: R ~ Z  of  X-rings, Z having the X-structure jus t  described.  
I f  R is any  X-ring, Grothendieck  defines operators  7" by the formula:  

(5) v"(~) = x " ( x + n - - , ) ,  
and yt(x) by  

(6) y,(x) = X y"(x)t". 
n>~0 

Then  Yt and X~ are related by  the formula 

(7) u = X,/l_,(x), 
or equivalent ly 

(8) xs(x) = vs/, +,(x).  
These show, in part icular ,  tha t  the yn also satisfy the identities (I).  

No w let R be an augmented  X-ring and let I = K e r  ~, where  ~ : R - + Z  is the 
augmenta t ion .  Then  the filtration on R defined by  Grothendieck  is as follows (1): 

R2, is the subgroup generated by the monomials 

v",(x,), v"'(x2), . . . ,  v"~(~) 
k 

with xieI and Yni>~n. We shall refer to this as the y-filtration of the augmented  X-ring. 
1 

Since ~ commutes  with X t it also, by  (7), commutes  with Yt, and hence if x e I  

ey"(x) ----- y"r = yn(o) = o for n >1 I. 

This  shows that,  in the y-filtration, we have 

(9) R~ -= I, R 0 = R.  

F rom the definition it is clear that  the y-filtration makes R a filtered ring, i.e. 
I R~n. RfimcR2,+2m. 

(1) We adopt an "even"  notation for the filtration in order to conform with the topological aspect. 
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As pointed out by Grothendieck the rings K~ (for a connected finite CW- 
complex X) and R(G) are augmented  X-rings, the X ~ being the exterior powers. Thus  
if xeK~ is represented by the formal sum 

x = Y~n~i, 

where the ~. are vector bundles on X, X~(x) is defined by 

x,(x) = n x , ( ~ )  ,, 

where Xk(~) is the k-th exterior power of the vector bundle ~i. It  is not difficult to show 
that this definition of X~(x) is unambiguous,  and makes K~ an augmented X-ring. 
In a similar way if peR(G)  is given by 

p = ~n ip i ,  

where the Pi are the irreducible representations of G, then Xt(p) is defined by 

x,(p) = IIz,(p,)", 

where Xk(p~) is the k-th exterior power of the representation Pl- Since R(G) is a free 
abelian group with the pi as basis, there is in this case nothing to prove. I t  is perhaps 
worth remarking that  if we identify R(G) with the character ring of G, so that  R(G)[[t]] 
becomes a subring of the ring of all functions G~C[[t]], then for any representation p 
of G, Xt(p) is the function given by 

g ~ d e t ( I  q- tp(g)). 

We shall now consider the y-filtration of R(G),  and to distinguish it from the 
topological filtration we shall denote the subgroups of the ,(-filtration by R~n(G). 

Proposition (x2.x). - -  Let G be a finite group, Pl, . . . ,  Pk its irreducible representations. 
Put %=X~(p j - -~ (p j )+ i - - I )  anddefinetheweightof %tobei.  ThenR~n(G),then-thsubgrou p 
of the y-filtration of R(G),  is the subgroup generated by the monomials of weight >>.n in the elements 
% ( i =  x, 2, . . . ,  r  I, . . . ,  k). 

Proof. - -  The  elements pi--e(pi) form an additive base for I(G).  Now by (7) 
it follows that  yi(nx+my) is expressible as a polynomial of weight i in the yk(x), "~(y) 
(where weight yk=k)  for all integers m, n. Hence, from the definition of R~n(G), we 
see that  it is generated additively by the monomials of weight >/n in the %. However 
for i>~-(pj) we have 

~ ,~=  x'% + k) 
where k~>o and i>~(pi) + k ,  so that  (rq=o. This completes the proof. 

Corollary (x2.2). - -  The graded ring associated to the y-filtration of R(G) is finitely- 
generated. The number of generators can be chosen equal to the sum of the dimensions of the 
irreducible representations of G. 

The  y-filtration of R(G) defines a topology which we shall call the u 

Corollary (I2.3).  - -  The "(-topology of R(G) coincides with the I(G)-adic topology. 
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Proof. - -  From the definition we have 

I ( e )  ~ r R'2,(G ) . 

Conversely, let n be given, and put m = sn where s = max ,(pj). Consider any monomial 
m 

in the % of weight >lm. Since i~<s, the degree of the monomial must be > / - = n ,  
s 

where we define the degree of each % to be I. But by 9) aijeI(G) �9 Hence 

R;m(O ) c I(G)", 
completing the proof. 

Corollary (x2.4) .  - -  For an abelian group G, we have 

R~(G)  = I(O)" 

Proof. - -  I f  G is abclian all the irreducible representations Pi have dimension I. 
Hence, by (12. I), R',,(G) is generated by the monomials in the elements a ~ j :  (pj--I)  
of weight />n. Since the ~1i form an additive basis for I(G) we have 

R'2,(G ) = I(G) ~ 
as required. 

We turn next to consider the y-filtration of the augmented ring K~ Again 
K2,(X). to distinguish this from the topological filtration we shall denote the subgroups by 0, 

Proposition (x2.5). - -  For all n we have 
0, KO ( x ) .  K2,,(X) c 

Proof. - -  Since K~ with the topological filtration, is a filtered ring it will be 

sufficient to show that if xEK~ with r  then 

X"(x + n - -  I) eK~ 

In view of (2.2) it will be sufficient to show that, if dim X,.<2(n--I),  then 
x " ( x + n - -  = o .  

I 
Now since ~ ( x + n - - l )  = n--1/> -- dim X it follows that x + n - - I  is in the "stable range" 

2 
and so (it is easy to show) can be represented by a vector bundle ~ of dimension n- -  I. 
Then X " ( x + n - - I )  is represented by X"(~) and this is zero since n > d i m  ~. 

Since K~ is an augmented X-ring, for all finite connected CW-complexes X, 
it follows that the inverse limit group A"~ is also an augmented X-ring. Moreover 
from the definitions it is immediate (cf. w I) that 

:R(G)  ~ ~f~ 

is a homomorphism of augmented X-rings, and hence ~(R~n(G)) cJT'~ From (i 2.5) 
therefore we deduce 

Proposition ( ,2 .6) .  - -  Let {R~(G)} be the T-filtration of the augmented X-ring R(G), 
and let {R2~(G ) } be the topological filtration. Then, for all n, we have 

R~.(G) r 

Next we need an elementary lemma. 
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Lemma (x2.7).  - -  In any X-ring, with u being defined by (5), we have the identity 
n 

x"(x) = ~ j ' ( x - - n ) .  

P r o o f . -  By (i) and  (7) 

x,(x) = x , ( x -  n). X,(n) -- V,;t ~ , ( ; -  n). (, + t)" 
= ~ ~'(x--n)t~(, + t )  .-~. 

i>!o 

Equat ing  coefficients of  t '~, the l emma follows. 

Proposition (x2.8) .  - -  For n = o ,  I, 2 we have 

R~,(G) -- R2,(G ) . 

Proof. - -  In view of (9) we need only consider the case n---- 2. Let  yERa(G) ,  then 

we can write y - =  p - -v ,  where p, ~ are representations of G of  dimension n and by (7.7),  
X~(p) = X"(,r). Thus  

y = {p - -Xn(p ) - -n  -[-I } - - { T - -  Xn(T) - - n  --]-I } 

Applying (x2-7) with p, -r instead o f x  we see tha t  
n 

p - x " ( p ) - - n + ,  = - -  2 vi(0--n) 

�9 - - x " ( , ) - - n + ~ - -  ~ v ' ( , - -n ) .  
i=2 

This shows that  yER~(G) which, in view of ( ,2 .6 ) ,  completes the proof. 

The  preceding results make it not  unreasonable to conjecture that ,  for all n and  G, 

we have R'2,,(G ) = Rz, (G ). We shall in fact verify this conjecture in the next section 

for a few explicit groups. 

In  connection with  this conjecture, ( I2 .2)  should be compared with a recent 
result of L. Evens, to the effect tha t  H*(G, Z) is finitely-generated (1). 

w x 3. S o m e  e x a m p l e s .  

In  this section we shall compute  a few illustrative examples of the spectral sequence 

H*(G, Z) ~ R(G) .  

The symmetric group S a. 

The  character  table of S 3 is 

(Irreducible 
representations) 

(Conjugacy classes) 

f1 
3_ 21 3 

I I I 

X I - - I  I 

y 0 

(t) (Added in proof) I t  can in fact be proved that  G..vg'*(B~) is finitely generated.  
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Now by (4-9) the filtration on R = R(S3) is determined by its p-Sylow subgroups 
(p = 2, 3). Since these are cyclic (8. I) enables us to determine the filtration completely. 
Putting a = I - - X ,  ~ = 2 - - y  we find 

R2={ I 
R4k+,=(~+~)P'4k (k>~ ~), 

where for R2, R 4 we have written the generators. 
For the cohomology of S 3 it is well-known that we have 

H4k+2(Sa, Z ) = Z 2 ,  H"q+*(S3, Z ) = o  

H4k+4(Sa, Z) = Z6, 

and that the generator of H4($3, Z) gives the periodicity (by cup-products). 
Since there arc only cven dimensions the spectral scquence collapses and we 

have (5.3) a ring isomorphism H*(S3, Z)~GR(S~) .  This checks with the above 
formulae, ~ mod R 4 giving the generator of H~(Sa, Z) and (~ + 3) mod R 6 giving the 

generator of H4($3, Z). 
Since X~y=x,  the elements % of (I2. i) which generate the y-filtration of R(G) 

are --0~, --~ER'2(G), --0c q- [3~R;(G). 

Since ~----- ~ 0c, ~2 = 3 ~5--e, 0~ = 2 0~ it follows that R~,(G) = Rz,(G) for all n, in accor- 

dance with the conjecture of w I2. 

The Quaternion group. 

G is now the group whose 
multiplication. 

The character table of G is 

elements are 4-1, +i ,  +j ,  +k  under quaternion 

(Conjugacy classes) 

I - - I  

I I 

I 

! 

I Xk 

y 2 I - -2  

x~ 
(Irreducible 

representations) xj 

_+i 

i 

i 

- - - - I  
_ _  § - -  

o 

The cohomology of G is [7, P. 254] 
H4k+2(G, Z) ----- Z~| 

H4k+4(G, Z) -=- Zs, 
HZq+l(G, Z ) = %  

and the generator of H4(G, Z) gives the periodicity. 

+j +k 

I I 

- - I  

I - - I  

I 

0 0 
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Thus again the spectral sequence is trivial and so we have a ring isomorphism 

H*(G, Z ) ~ G R ( G ) .  However,  unlike the case of  $3, we have no guaranteed method 
of determining the filtration on R(G).  In fact we can determine the filtration as follows. 

Firs tput  ~=~- -x~ ,  ~ = i - - x ~ ,  y = 3 - - x ~ - - x j - - x k ,  8 = 2 - - y .  Then R~={~, ~, y, 8} 
and the products are given by: 

y 2 = 4  y, y 8 = 2  y, 
8 2 : 2  8 - -y .  

Now to determine R 4 it is sufficient by (7.7) to consider determinants (or the first Chern 
class). It  is easy to see that q(~) = a ,  q(~) = b are generators of H2(G, Z), and that 

q(u -----o. Since there is an automorphism of G permuting x~, xi, x k cyclically, it follows 
by symmetry that d e t y =  I, i.e. ca(8 ) = o .  Thus R 4 = { 2  ~, 2 ~, T, 8}. From the 
product formulae we find 

R~R 4 = 8R 2 ----- { 2 ~, ~ [~, 2 ~', 4 8 - -  u }. 

This is of index 8 in R 4 and so must be R~. Moreover 8 mod R 6 gives a generator d 
of H4(G, Z). The fact that d gives the periodicity of H ' (G,  Z) then shows that the 
filtration of R(G)  is given by 

R4k+2 = 8kR2, R4k t-r 8kR~" 

Since X 2 y = I ,  the elements ~q of (I2.1)  are 

Since xixix ~ = I we deduce 

( I - - a )  ( I - - ~ ) ( I  -~-0~-t-~--V) = I 

and hence y~I(G)  ~ cRy(G).  Also ~ = ~ ~, ~2 = ~ ~, so that we have R~,(G) = R.,,(G) 
for all n, in accordance with our conjecture. 

We can now use the product formulae in R(G)  to compute cup-products. We get 

a s = b ~ = o, ab = 4 d. 

Remark. - -  Whenever, as in this example, the odd cohomology groups vanish and 

the filtration on R(G) is known the cup-products in H*(G, Z) can be read off from the 
character table of G. 

A product o f  cyclic groups o f  order 2. 

Let G = Z 2 • 2 1 5  2 (n factors). Then H*(G,Z)  has non-zero odd- 
dimensional groups, so that the spectral sequence does not collapse. Now the first 
operator d z of  the spectral sequence is the Steenrod operation Sq 3 (2.4) , d) .  A direct 
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ca lcula t ion  (1) shows tha t  E 4 = H ( H * ( G  , Z) ,  d3) is gene ra t ed  mul t ip l ica t ive ly  over  Z 2 

by  e lements  x~ (of  d imension  2) i =  i ,  . . . ,  n wi th  relat ions 

( I )  4 x i = x , x ~  ( i , j =  I, . . . ,  n) .  

T h u s  E 4 has only  even-d imens iona l  te rms and  so (cf. (5 .3))  E4~E~o~- - -GR(G) .  

O n  the o the r  h a n d  R ( G )  is gene ra t ed  over  Z by  e lements  p~ ( i =  I,  . . . ,  n) wi th  

~ = I .  Pu t t ing  0q = I - -0~,  we get the re la t ions ~ = 2 ~i. These  imp ly  the equat ions  

( 2 )  = 2 = 

~i rood R 4 gives an  e lement  of  E~ which  is easily seen to be  xi. T h e  relat ions (2) then  

check wi th  the relat ions ( i ) .  M o r e o v e r  we see tha t  R2n(G ) = I ( G )  n which,  in view 

of  ( I 2 . 4 )  , agrees wi th  our  conjecture .  

Remark.  - -  T h e  ca lcula t ion  for a p r o d u c t  o f  cyclic groups  Zp (p a p r ime  4: 2) is qui te  

similar .  O n e  has to use the ope ra t o r  d2p_ t o f  the spectra l  sequence.  

A direct  descr ipt ion of  the f i l t rat ion on R ( G ) ,  for example  a p r o o f  of  the conjec ture  

of  w I2, would  lead to lower  bounds  for the cohomology  groups  o f  G. I n  the absence  

of  such a descr ip t ion we can  only  give a weak  qual i ta t ive  result  in this direct ion.  

Theorem (x 3. x). - -  Let G be a finite group containing more than one element. Then there 

exist arbitrarily large integers n so that Hn (G, Z) oe o. 

Proof. ~ T h e  hypothesis  on G a n d  (6. to) i m p l y  tha t  

00 

I m { I ( G )  -> I ( G ) } =  I ( G ) / [ 7  I ( G ) "  
n = l  

is a free abe l ian  g roup  of  r a n k  > o. N o w  if  Hn(G,  Z) ---- o for all sufficiently large n then  

by  (7.6)  I (G)  would  be  finite. Th is  gives a contradic t ion ,  and  so the t heo rem is proved.  

APPENDIX 

Chern Classes.  

If ~ is an n-dimensional complex vector bundle over a CW-complex X, then ~ has Chern classes 
ci(~ ) ~Hai(X, Z). For the definition and properties of these classes we refer to [9, w 4] or [2, w 9]. Taking X = BG, 
the classifying space of a finite group G, we deduce 

(1) To each complex representation p of G there are associated Chern classes ci(p) ~H2i(G, Z), c0(i~ ) = x and ci(p) = o 
for i >dim p. 

The Chern classes ci(9) are thus defined topologically. It would be highly desirable to have a direct algebraic 

definition of them, but like the corresponding problem for the spectral sequence H*(G, Z) =>R(G) this is still 
unsolved. 

We proceed now to give the formal properties of Chern classes. 
(2) 1f f :  G'----~G is a homomorphism and p is a representation of G, then 

ci(f* 9) =f*ci (~). 

(a) I am indebted to C.T.C. Wall for this calculation. 
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(3) For l-dimensional representations 

q : Horn(G,  U( I ) ) - -~H2(G ,  Z) 
is an isomorphism. 

This  is in fact the isomorphism (i .3). 

(4) I f  g* is the dual (or contragredient) representation of  p, then 

q(0*) = ( -  ~)~q(P). 

It  is convenient  to consider thc sum of all the Chern  classes 

c(9 ) -= Z c i ( p ) e  H*(G, Z) .  
i 

(5) c(p e a5 - c ( p ) . c ( ~ ) .  
Suppose now that  ~ : U(n) - -+U(m)  is a representat ion of the uni ta ry  group U(n).  T h e n  [• has associated 

with it m integral  linear forms wx, . . . ,  w m (the weights) in variables xl, . . . ,  x n (el. [2, w i o]). Moreover  the e lementary 

symmetr ic  functions a i (w v . . . ,  win) are symmetr ic  in x v . . . ,  x n and  hence expressible as polynomials  in the e lementary  
symmetr ic  function ~r~(xl, . . . ,  Xn). Let Pvt,~ be this polynomial ,  thus 

ai (w 1 . . . . .  win) = l '~ ,~ (a : (x :  . . . . .  x . )  . . . .  , % ( x ,  . . . . .  x . ) ) .  

Now if ~ : G--->U(n 5 is a representat ion of G then ~9 : G--+ U(m) is another  representation. The  relation 
between their Chern  classes is given by [2, w Io]. 

(6) q(,~p) = P ~ , d q ( p )  . . . . .  c . (p)) .  

In  part icular ,  taking g. to be the n-th exterior power representat ion X n : U(n)----~U(I) we deduce 

(7) I f  d i m g = n ,  then 

Ca(0) = cl(x'*0).  

In  view of (3) this means  that  Ca(p) is effectively known for any  p. 

I f  xl, . . . ,  Xn, Yl, �9 �9 �9 Yra are two sets of  indeterminates  with e lementary  symmetr ic  functions ai, b i respectively, 
we can define polynomials  (~k by the formula  

I I  (x -}- t(x i -~'Yi)) = ~]Qk(aa . . . . .  an' ba . . . .  ' bm)tk 
l <~ i <~ n k 
l<<.i<~m 

where t is an  indeterminate.  The  Chern  classes of  a tensor product  are then givcn by 

(8) ck(p|  ) = Qk(q(P)  . . . . .  en(p), el(a) . . . . .  era(a))" 
Note tha t  if d im p = d im ~ ~= I, (85 gives Q(p |  = cx(9) -!- ca(a) which is par t  of  the assertion of (35. 
In  view of  (5) the " to ta l "  Chern  class c m a y  be extended to give a h o m o m o r p h i s m  

r : R ( G )  - +  A ( G )  
0r 

of the additive group R(G)  into the multiplieative group A(G) consisting of elements of  I I  H2k(G, Z)  with constant  
k=O 

term ~. For example suppose G is a cyclic group of  order n, and  let p be the basic I-dimensional  representat ion 
and  x the corresponding generator  of  H~(G, Z)  (cf. w 8). T h e n  the elements of  A(G) are formal power series 

x + ~ akxl~ , a k ~ Z  n. 
k = l  

R(G)  is a free abelian group gcncrated by i,  p, ~a, . . . ,  on -1  and  c is given by 

where on the right k is regarded as an  e lement  of Z n and  if m k < o we expand  (i + kx) ~l~ as a formal power series. 

If  n = p  is a pr ime then Zp is a field and  so 

p - 1  
1"I (I + k x ) m k =  [ r r n k = o  for k * o .  

k=0  

Thus ,  for G cyclic of  prime order, c :  I ( G ) - + A ( G )  
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is a monomorph i sm.  This  certainly cannot  hold for general  cyclic groups, since 0 : R(G)  --> R(G)  is not  in general  
a m o n o m o r p h i s m  (6. i o) and  0(~) - - o ~ c(~) = o (see below). However  even in the case of a p-group,  when 0 
is a monom orph i sm  (6. I i), it is still possible for c : I (G) ---> A(G) to have a non-zero kernel. As an example  let G 

be cyclic of  order F a, then c ( p p P - - p )  --  (I + p x ) P  = x. 
I t  appears  unlikely that  the formal properties of  Chern  classes listed above are sufficient to prove their uniqueness  

(working only within the category of  finite groups).  I t  is probable tha t  one would have  to add  a formula  for 

ei(i,(p) ) where i,(p) is the " induced  representat ion".  However  it is easy to see that  there can be no simple formula  
involving only ci(p). For example let i : G ' - - > G  be the inclusion with G = Z p  and  G '  the identity, and  take 

p - i  

p = I. T h e n  i.(p) is the regular  representat ion ~ pk of G and  
k = 0  

c k~o~. k { kx) - { i - - x P  i ) .  

T h u s  c p ( i , ( p ) ) * o  while Q ( p ) ~ o  for all i > o .  
If  a formula  for ci(i,(p) ) were known, for p l -dimensional ,  then one could use Brauer 's  Theo rem [5] and  (3) 

to determine all Che rn  classes. 

Relat ion wi th  the spectral sequence.  

Wc shall now describe the relation between the Chern  classes of  a representat ion and  our  spectral sequence.  

T h e  s tatements  which follow are given without  proof, bu t  they arc all e lementary  consequences of the results in i l l .  
We recall that  R((7,) is filtered by subgroups R~n(G ) defined topologically. If  we filter the group A(G) by 

00 

defining .A2n(G ) to be the subgroup of elements a = I ]  az, ~ with a z ~ = o  for ~ < v ~ < n - - 1 ,  then 
" ~ 0  

(9) c : R ( G ) - + A ( G )  is a homomorphism o f  filtered groups. 
In part icular  c induces a homomorph i sm  of completions (A(G) is itself complete) 

"~" : R (G) - ->A(G) ,  

and  c(c 0 - - o  for c in the kernel of  R(G)-->-R(G) as stated above. 

I.et H '  (G, Z) C H* (G, Z) denote the subgroup of "universa l  cycles" in the spectral sequence H* (G, Z) :=> R (G), 
i.e. H ' ( G ,  Z) = Zoo in the notat ion of  w 3. F rom the spectral sequence we obtain an  ep imorphism 

: H'(G, Z)-+GR(G). 

T h e n  we have:  

(io) For all pf fR(G)  and all i c / (~)~H' (G,  Z) ,  

( I t )  Let ? f fRsn(G) ,  [p] the image o f p  in G~nR(G) .  Then 

9(c.(p)) - ( - - 0 n - ~ ( n  - ~)! M. 

There  is also a close relation between Chern  classes and  the operators yn of w I2. If  p e R ( G )  then, by 

definition of R2n(G),  Tn(p -~'(~)) @ R~n(G). 

Since R~n(G ) C R2n(G ) (I~.6) we obtain an element  [vn(p-v . (p) ) ]EG2nR(G) .  T h e n  

( I2) For any p E R ( G )  we have c?(Cn(9) ) : :  [vn(p-e (p) ) ] .  

From this we see that  the conjecture that  R~n(G ) = R2n(G ) which was made  in w i2 is equivalent  to the 

following conjecture: the subr ing of H ' ( G ,  Z) generated by all Chern  classes is mapped ,  by % onto GR(G) .  
We  already know (~-5) that  q induces an isomorphism G2R(G)-~-H~(G,  Z) .  It  follows from (I I) that  c, 

induces a monomorphism (a) G4R(G) - + H * ( G ,  Z) .  

Thus  up to this dimension tile filtration is de termined by the Chern  classes. This  is no longer true in higher  

dimensions as is shown by the example above with G cyclic of  order p2. 
In  conclusion we m a y  add that  for real representations p one can introduce Stiefel-Whitney classes 

w i ( p ) E H i ( G  , Z2) [2, w io]. Thei r  formal properties are similar to those of Chern  classes. 

(1) From the spectral sequence view-point this corresponds to the fact that  the first non-zero group B~  arises 

for p---6. 
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