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Eta invariants, signature defects of cusps,
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Introduction

The purpose of this paper is to prove a conjecture of Hirzebruch [11] which
gives a topological meaning to certain values of L-functions arising in totally real
number fields. This conjecture was based on the very detailed investigation made
by Hirzebruch for the case of real quadratic fields, and hinged on the fine
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structure of the cusp singularities of the Hilbert modular surfaces. It may
therefore be helpful to recall the motivation and background of the conjecture.

Hirzebruch was interested in classifying these algebraic surfaces and, as a
first step, it was necessary to compute their topological invariants. More precisely
he wanted to find the Todd (arithmetic) genus and signature of their desingulari-
zations. In the absence of any singularities, the Hirzebruch signature theorem
would identify the signature with 3p, where p, was the first Pontrjagin number,
and this in turn could be computed by a suitable curvature integral. In fact, using
the standard Poincaré metric on H this curvature integral turns out to be zero, so
that the signature would be zero if there were no singularities. It turns out that
one can actually assign a rational number to each isolated singularity of our
surface which Hirzebruch calls the signature defect, because it measures the
correction which this singularity produces in the signature theorem.

At this stage we should recall that the Hilbert modular surface attached to a
real quadratic field K is obtained by dividing H? (where H is the upper half
plane) by the discrete group SL(2, O) where O is the ring of integers of K. This
surface is then compactified by adding a finite number of points “at
infinity” —the cusps. The cusps are singular points and there are also internal
singularities which are of elliptic type; that is, they arise from finite isotropy
groups. The signature defect of such elliptic singularities is well understood in
terms of the general G-signature theorem (which generalizes the Hirzebruch
theorem to allow for finite or compact group actions G). The signature defect of
the cusps is however a much more delicate affair.

Hirzebruch was able to compute the signature defect of the cusps because
he found a simple and beautiful explicit resolution of these singularities. This
resolution depended on the periodic continued fraction expansion of quadratic
irrationals and the signature defect was then given by a simple rational formula
involving the integers of this continued fraction.

If one turns from these geometric considerations to the more traditional
number theory, the cusps correspond to ideal classes and to each such ideal class
one can associate an L-function. These L-functions and their generalizations have
been studied by Shimizu [22]. Classical methods for computing the value of these
L-functions at s = 1 lead to the explicit formulae which (up to constant factors)
coincide with the formulae for the signature defects of the cusps computed by
Hirzebruch.

For totally real fields of higher degree the Hilbert modular variety is of
higher dimension and the geometry of the cusp singularities is much more
complicated. Explicit formulae are therefore not in general available but, based
on the quadratic case, Hirzebruch conjectured that the signature defects of the
cusps should still be given by values at s = 1 of the corresponding L-functions.
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Clearly to prove this conjecture in general it is necessary to obtain a more
direct connection between the L-function and the signature defect. The attempt
to understand this connection was one of the main motivations leading to the
results of Atiyah-Patodi-Singer [3], which extend Hirzebruch’s signature theorem
to the case of manifolds with boundary. Let us briefly recall the formulation of
this generalized signature theorem. Let X be a 4k-dimensional compact oriented
Riemannian manifold with boundary Y and assume that, near Y, it is isometric to
the product Y X R. Then the signature of X is given by the formula

sign(X) = fx L(p) — n(0).

Here L(p) is the actual Hirzebruch L-polynomial in the Pontrjagin forms, while
1(0) is the value for s = 0 of an analytic function n(s) depending only on Y (with
its metric). Moreover 7(s) is defined in terms of the eigenvalues A of a certain
elliptic self-adjoint operator A on Y (up to sign A is (*d — d*) on even forms) by

n(s) = 2 (sign M)A| .
A=0

Thus 7(0) may be viewed as the differential geometric “signature defect” of
the boundary, while its analytic expression is clearly analogous to that of an
L-function. .

With this theorem as our starting point we can now revert to Hirzebruch’s
conjecture taking X to be the Hilbert modular variety with the cusps chopped off
(and the elliptic singularities temporarily ignored). The boundary Y of X then has
one component Y; for each cusp and this component has a fairly simple structure
being a torus bundle over a torus: if dim K = 2k then the fibre torus has
dimension 2k while the base torus has dimension 2k — 1. One can then give Y,a
rather natural metric and consider the corresponding invariant 7 10).

By fairly direct although lengthy analysis we shall identify 5 {0) with L (0)
where L {(s) is the Shimizu L-function associated to the j-th cusp. Moreover we
shall show that the topological signature defect as defined by Hirzebruch and our
differential geometric signature defect coincide in these cases. Essentially this
means we have to compare two different connections on Y, namely the Rieman-
nian connection and a flat connection (given by group invariance), and show that
they yield the same value for 1(0). In this way we finally obtain a proof of
Hirzebruch’s conjecture, except that our method leads naturally to the value
L(0), which however coincides (up to a factor) with L(1) because of the standard
functional equation for L-functions.

Since the results of [3] were available ten years ago and were motivated in
part by Hirzebruch’s conjecture, one might ask why it has taken so long to settle
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the conjecture. In fact the details for the case of quadratic fields were worked out
by two of us (Atiyah and Singer) around 1974, but even here the identification of
1(0) with L(0) was quite lengthy. The technical difficulties in extending this to
the general case were substantial. To a great extent this is because the analysis on
the manifolds Y; gets reduced to that of a linear differential operator on R%*-1
(the universal covering of the base of the fibration of Y;). When k = 1 (the
quadratic case), R**"! = R and we have an ordinary differential operator,
whereas in general we have a partial differential operator and the analysis
becomes more involved. The length of the present paper arises mainly from these
extra technical difficulties.

The paper is divided in three parts. Part I gives the precise definitions and
formulates the main theorems. Part II which occupies the bulk of the paper
identifies the value L(0) with the eta invariant 7(0) arising from the flat
connection. Part IT begins with Section 5 which gives an outline of the proof with
an indication of the various technical difficulties involved. Finally in Part III we
show that the flat connection and the Riemannian connection have the same eta
invariants so that the main result of [3] can be applied.

We understand that W. Miiller has also developed a proof of Hirzebruch’s
conjecture, along similar but not identical lines.

1. The L-series of Shimizu

In this section we summarize some basic facts from algebraic and analytic
number theory. Our main purpose is to give a precise definition of the L-func-
tions which occur in the conjecture of Hirzebruch [11]. These L-series were
studied earlier by Shimizu [22]. For more details on number theoretic back-
ground material, the reader may consult [11], [13], and [16].

Let K be a totally real algebraic number field of degree 2k over the
rationals. There are 2k different embeddings of K into the reals and these
embeddings will be denoted by x — x » J=1...,2k. We may assume that
x = x;. An element x € K is said to be totally positive when x; > 0 for all j.

Suppose that M is a lattice in K. In particular, M is an additive subgroup of
K which is free abelian of rank 2k. Denote Uy; to be the subgroup of those units
¢ which are totally positive and satisfy eM = M. The group Uj; is free abelian of
rank 2k — 1 [11, p. 200]. The symbol V will represent a subgroup in Uj; having
finite index. If M is the lattice of all algebraic integers in K, then one may take
V = U™, the group of all totally positive units.

Given a pair (M, V'), as above, one defines Shimizu’s L-series as

_ sign N(u)
(L.1) L(M,V,s) ”Eiﬂ) ———lN(“)ls .
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Here N(p) = p Mty . . pgy- Of course, the norm N(u) does not change when one
multiplies u by a totally positive unit. The L-series (3.1) converges absolutely for
Re(s) > 1 and admits a holomorphic continuation to the entire complex plane
[11, p. 230].

The rational bilinear form Tr(xy) = x,y, + - -+ + x4, Yy is positive definite
and non-degenerate on K [16, p. 40]. Here K is regarded as a vector space of
dimension 2k over Q. Let M’ be the dual lattice of M, with respect to Tr. Since
M’ is also V-invariant, the series L(M’,V, s) is well-defined.

The functional equation for Shimizu’s L-function is easily derived using
standard methods [13, pp. 254-258], [9]. Suppose that Vol(M) is the volume of a
fundamental domain for the lattice M, with respect to the measure induced by
Tr. One may define

s+1
2

Then the functional equation reads
(1.2) H(M,V,s)=(-1)"H(M",V,1 —s).
In particular, setting s = 1 in (1.2), one has the relation
(1.3) L(M',V,0) = (—1)"Vol(M )7 ~2*L(M, V, 1).
Hirzebruch’s conjecture was originally stated [11, p. 230] using the values

L(M,V,1). Equation (1.3) shows that our main result, Theorem 4.1, gives an
equivalent reformulation.

H(M,V,s) = [r( )rkw"‘(‘“)[Vol(M)]SL(M,V, s).

2. Algebraic construction of certain framed manifolds

We will now describe certain framed manifolds (X, f). In fact, X will be a
solvmanifold and f the framing pushed down from a left invariant framing on a
solvable group which covers X. The motivation for considering these particular
manifolds arises in the work of Hirzebruch [11]. In fact, such X are obtained by
slicing along the cusps of the generalized Hilbert Modular Varieties associated to
totally real algebraic number fields.

Let (M,V) be a pair as in Section 1. The lattice M is mapped injectively
into R?* by sending m — (m,, m,,..., my;). Recall that m — m, correspond to
the different embeddings of K into the real line R. Since each v € V is a totally
positive unit, one has v,0,... vy, = 1. Moreover, V acts on M in this representa-
tion by componentwise multiplication. Sending v, — log v, identifies V with an
additive subgroup of rank 2k — 1 in R2~! Here R% ! is realized as a
hyperplane through the origin, ¥ log v; = 0, in R?*. This allows one to extend the
action of V on M to an action of R%*~! on R2k,

Since V acts on M, one may form the semidirect product S(M, V) of the
abelian groups M and V. The above remarks show that S(M, V') embeds naturally
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as a discrete subgroup in the two term solvable Lie group S(R2*, R2k~ 1),
Corresponding to the exact sequences:

0->M-S(M,V)> V-0,

(21) 0— Rzk N S(Rzk, R2k—1) - R2k—l N O,

there is a quotient sequence of coset spaces
(2.2) 0->T* 5 X -T2 159

where X = S(M,V)\ S(R%, R%*~1). This represents the quotient space X as a
2k-torus bundle over the (2k — 1)-torus. Here T2 = M\ R and T% ! =
\% \ R2k - l'

The coset space X inherits a natural framing f on its tangent bundle, pushed
down from the left invariant framing on the Lie group S(R%*, R%~1),

3. The eta invariants of framed manifolds

In [3] a study was made of certain extensions of the Index Theorem for
elliptic operators to manifolds with boundary. A general investigation was
undertaken in the context of elliptic operators. Moreover, the special case of the
signature operator for Riemannian manifolds was discussed in detail.

For the present work, it is necessary to examine more carefully specific
elliptic operators for manifolds W with framed boundary (X, f). These operators
have the same leading symbol but are different from the analogous signature
operators for the underlying Riemannian structure, associated to the framing f.
By applying and extending the work in [3], we will relate certain topological and
spectral invariants of the framed manifolds (X, f).

The goal of the current section is to define precisely the spectral and
topological invariants under consideration. The spectral invariants will be de-
noted by 7,(0) and the topological invariants by o( X, f).

First, we proceed to describe the spectral invariants 1,(0). Suppose that
(X, f) is any framed manifold of dimension 4k — 1. The framing f defines a flat
connection V on the tangent bundle of X. There are induced connections on the
associated bundles of exterior algebras APT*X. Let d be the skewed covariant
differential associated to this framing. This means that d is given by the
composition:

T(APT*X) 5 T(APT*X ® T*X) - T(AP*'T*X)

where the second map is exterior multiplication. Denote * to be the Hodge star
operator obtained by regarding the framing as an orthonormal basis at each
point.
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The operator A defined for ¢ € I'(A??T*X) by A = (— 1)**P*1(*d — d*)¢
is self-adjoint and elliptic acting on T(A®T*X) = ¥ T(A*T*X), the forms of
even degree. Since M is compact, A has pure point spectrum consisting of real
eigenvalues A.

One may define the eta function

(3.1) ni(s)= Y 98X pe) >0,

=0 IAP
where sign A = A/|A| = +1. Standard arguments using the Mellin transform
show that the n-series converges for Re(s), the real part of s, sufficiently large.
Moreover, 7 has a meromorphic continuation to the entire complex plane with
14(0) finite [4]. The quantity 1,(0) is our basic spectral invariant.

The topological ingredients will now be described. Again, we suppose that
(X, f) is any framed manifold of dimension 4k — 1. The Pontrjagin and Stiefel-
Whitney classes of X vanish, so there is a compact oriented manifold W with
awW = X.

Since X is framed, the tangent bundle of W is pulled back from a bundle
over the quotient space W /X. This allows one to define the Pontrjagin classes of
W as relative classes p, € H*(W, X). Let Ly(p,,..., p;) € H*(W, X) be the
Hirzebruch L-polynomial in the relative Pontrjagin classes.

Our basic diffeomorphism invariant is

o(X, f) = Li(pys---» pi)[W, X] — signW,

the signature defect. Here [W, X] € H,,;(W, X) is the fundamental class and
sign W is the signature of W. By applying the Hirzebruch signature theorem and
the Novikov additivity of the signature [3], one sees that o(X, f) depends only
on X and the framing £, but not on the choice of W.

4. Relationship between L-series and eta invariants

The basic definitions and background material have been summarized above
in Sections 1-3. Given this preparation, we may now state our main result which
identifies the value at s = 0 of the Shimizu L-function with a signature defect:

THEOREM 4.1. Let (M,V) be a pair as described in Section 1, and (X, f)
the associated framed manifold of Section 2. Then
L(M’,V,0) = n,(0) = o(X, f).

The proof of Theorem 4.1 breaks into two distinct parts both in terms of the
concepts and techniques involved. For the purposes of exposition, it is suitable to
divide our main result into two separate theorems.
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Our first goal will be to relate L-functions to the analytic eta invariant:

THEOREM 4.2.
L(M’,V,0) = n,(0).

The proof of Theorem 4.2 will be presented in Part II.
In Part II1, the proof of Theorem 4.1 will be completed relating the analytic
eta invariant to the signature defect.

THEOREM 4.3.

14(0) = o(X, £).

Theorem 4.3 is essentially an application of the main result of [3] although
some extra work is needed to deal with connections having non-zero torsion.
Theorem 4.2 involves a direct comparison of the two analytic functions L(s)
and n(s). There are a number of algebraic and analytic complications which
require detailed treatment, so that Part II is in fact the longest and most
substantial part of the paper.

In particular, Theorem 4.1 implies the rationality of L(M’,V,0). This is a
known result [21].

5. Outline of the proof of Theorem 4.2

This Part II of the paper is devoted to the proof of Theorem 4.2. Since the
details are quite lengthy, it seems sensible first to give some overview of the
general attack.

In preparation, we need to recall a known result concerning the eta
invariant for deformations of operators. Let A(u) be a one-parameter family of
first order self-adjoint elliptic operators acting on sections of a vector bundle over
a compact manifold X. Denote n(u, s) to be the value at s of the analytic
continuation of the eta series (1.1) associated to A(u). To compute the depen-
dence of n(u, s) on u, one has [4]:

ProrosiTion 5.1. Suppose that zero is not an eigenvalue of A(u) for
u; < u < uy. Then

(uy, 8) = m(uy, s) = ‘S[F(s 5 : )]_I/u

uy

e 2T Ao ) dt du
0

where

: d
A= %A.
Now let us return to the setting of Part I. We proceed to outline the proof of

Theorem 4.2. Let (M, V) be as in Section 1. If (X, f) is the associated framed
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manifold, then the operator A: T'(A®T*X) — ['(A*'T*X) was defined in Sec-
tion 3.

Recall that X is a T2* torus bundle over the torus T2~ !, The first step is to
unwind A in a Fourier series along the fibers of this bundle. Let (M’ — 0) /V be
the collection of orbits of V in M’ — 0. As in Section 1, M’ denotes the dual
lattice of M. For each p &€ (M’ — 0)/V, one unwinds a piece of A:
LX (X, AT*X) - L*(X, A“T*X) into an operator A : LA(R*~!, A"R**" 1) -
L2(R2k - l, AevR4k - 1).

After unwinding along the fibers, one has a decomposition, in the sense of
unitary equivalence:

(5.2) A=A, Y A,
pe(M'~0)/V

Here A, LXT2*~!, AYR*~ 1) > LX(T?*~!, AR**~!) corresponds to forms
which are constant along the fibers.

The detailed description of unwinding along the fibers is given in Section 7.
In general, one hopes that the A, will be easier to analyze than A. For
motivation, note that A acts on the multiply connected space X for which
7(X) = S(M,V). However, each A, is defined over the simply connected
Euclidean space R**~!. Nevertheless, serious new difficulties arise from the
noncompactness of R** ~!, Recall that our original manifold X was compact.

From (5.2), one has the formula:

ma(s) =m(s)+ X m(s)  Re(s) >0,
ne(M'~0)/V
valid for Re(s) sufficiently large. Here () is the eta function of A, and 7,(s) is
the eta function of A,.
It will be shown in Lemma 8.1 that 7,(s) = 0. Therefore, we actually have

(5.9) ()= L n(s)  Re(s)>o.
REM=0)/V

Already, one notices the formal similarity between (5.3) and the definition of
the series L(M’,V, s), given by (1.1). However, both (1.1) and (5.3) apply only
for the real part of s sufficiently large. Theorem 4.2 concerns the analytic
continuations of these series to s = 0.

To proceed further, we need to investigate the dependence, upon p, of the
spectrum of A . In fact, one has, up to unitary equivalence:

(5.4) A, = sign N(u)|N(w)|/**B,

where h = |[N(p)|~ /2%, Here N(p) is the norm of u as defined in Section 1. The
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operator B,: LA(R%~ 1, A*R**~1) - [}(R*~! A*R* 1) is given by Lemma
8.3. In particular, 7,(s) depends only on N(p).

The proof of (5.4) relies upon computations of the local formulae for A and
A,. Detailed calculations are presented in Sections 6 and 8. These explicit
formulas are also employed later in Sections 10, 11, and 12.

Let n(h, s) denote the eta function of B,. From (5.3) and (5.4), one
immediately has the equality:

(5.5) ma(s) = X sign N(u)IN(p)| = n(h(n), s)
pE(M ~0)/V
where h(pn) = |N(p)| ~'/2~.

We would now like to apply Proposition 5.1, in order to understand the
change of n(h, s) under deformation of h. A slight technical difficulty arises here
since it is not clear that dim Ker(B,) = 0 throughout the desired deformation.

This problem of spectral flow across zero is easily overcome. After scaling,
we may assume that 0 < h(p) < e for all h(p),p € (M’ — 0)/V. Here ¢ is
chosen so that Corollary 8.6 applies. This scaling will not change L(M’,V, 0) as is
obvious from the definition (1.1). The invariance of 71,(0) under scaling is a
consequence of Theorem 4.3 (whose proof in Part III is logically independent of
Theorem 4.2).

After scaling, we may apply Proposition 5.1 to deduce:

if 0 < hy, hy, < & The equality (5.6) is shown in Proposition 11.12. The proof of
(5.6) requires significant technical work which will be described later in this
section.

Let a be chosen so that 0 < h(p) < a < g, for all h(p), p € (M’ — 0)/V.
The equality (5.6) motivates the following rewriting of (5.5):

(5.7) mu(s) = (e, s)L(M',V, s/2k)
+ X sign N(p)IN(p) =/ [n(h(p), s) — n(a, s)].
peEM —0)/V
Formula (5.7) is valid for Re(s) > 0, as is immediate from the definition (1.1) of
L(M',V,s).
The equality (5.6) leads one to speculate that the analytic continuation of
the last summand in (5.7) vanishes at s = 0. Of course, this is not at all obvious.
Set
(5.8) y(s)= X sign N(p)IN(p)l > *[n(h(p), s) — n(a, s)].
pEM'-0)/V
A crucial point in the proof of Theorem 4.2 is to show that y(0) = 0. We
now describe the work involved.
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Using Proposition 5.1, we may write

(59) vs) = S[r( S ; 1 )]_1 e(M;O)/VSign NCwINGI ™

x/a foot“‘“/zfi(t,h)dtdh.
h(p)¥Y0

Here £(t, h) = Tr(Bhe - tB’?) where B, = dB,,/dh. Although B, does not act
over a compact manifold, Proposition 5.1 still applies, by the rewinding argument
of Section 9.

Our key technical result is to describe the asymptotic behavior of (¢, h),
for small values of h. In fact, one has

(5.10) R(t, h) ~ by(t) + by(t)h + by(t)h2 + - --

with b (t) bounded for 0 <t < oo and satisfying b(t)=0(e™ "), as t > 0.
Here ¢; > 0 is a positive constant.

The proof of (5.10) is quite involved. In Section 9, we show that £(¢, h) has
an asymptotic expansion in powers of h. However, a priori, there may be some
negative powers of h appearing. In Section 11, we use the Feynman-Kac formula
to show that, for the special operator B, under consideration, the singular terms
in h will vanish. The argument of Section 11 relies essentially on the algebraic
cancellation lemmas proved in Section 10.

Let us pause briefly to note that (5.6) is an easy consequence of Proposition
5.1 and (5.10). Details are given in Proposition 11.12.

We now return to the analytic continuation of y(s). Using (5.10), we see
that £(t, h) is integrable down to h = 0. Consequently, for Re(s) sufficiently
large,

« /hw)f""t(s—l)/zg(t, h) dt dh + R(s).
0 0

Here

R(s) = s[r(s ; 1 )]_l[foafowt“-lvze(t, h)dt dh |L(M',V, s /2K).

Now L(M’,V,s) is holomorphic in s [11, p. 230], and in particular
L(M’,V,0) is finite. Moreover, by (5.10) [&&t®~Y/2R(¢, h) dt dh converges
down to s = 0.
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Consequently, for the continuation of R(s), to s = 0:
R(0) = O[I‘(é)]_l[fafwt‘l/zﬁ(t, h) dt dh]L(M’,V, 0) =
0 Y0

Using (5.10) again, we may write

== E e o

XL(M',V,s/2k + (j+ 1)/2k) — S[T(S ; 1 )]_1

XX sign NN O EGR(w) + R(s)
pEM' =0)/V
where G(h) is bounded as h — 0. Recall that h(p) = [N(p)| /2.
However, the series defining Shimizu’s L-function:

L(M',V,s)= ) signN(p)IN(p)
peEM =0)/V
converges absolutely for Re(s) > 1, as noted in Section 1.

If we set

w0 =[]

X Y. sign N(p)IN(p)| "1 ~¢+D25G(h(p)) + R(s),
pEM’ -0)/V

then it follows that

R,(0)= —O[T(3)]"" X sign N(w)IN(p)|~*~/**G(h(p)) + R(0) = 0.
pe(M’ ~0)/V

Finally, one has
2k

1) w0 = —olr ] E | [T e ai

XL(M',V,(j+ 1)/2k) + R,(0) = 0.
Note that b(¢) is bounded to ¢ = 0.

We are almost finished with the proof of Theorem 4.3. Returning to formula
(5.7), we see that it may be rewritten as

- (5.12) n4(s) = (e, s)L(M",V, s/2k) + v(s).
This is just the definition of y(s) given in (5.8).
Evaluating (5.12) at s = 0, one has via (5.11):
nA(O) = n(aa O)L(M,a Va 0)

Since 0 < & < ¢, it follows from (5.6) that the value n(a, 0) is independent
of the choice for a. By the formula for B, given in Lemma 8.3, n(«, 0) depends
only upon k. Recall that 2k is the degree of K over the rationals; see Section 1.
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At this point, we know that
(5.13) 14(0) = ¢, L(M’,V,0)

where ¢, = 1(a, 0).
In Theorem 12.7, the constant ¢, will be computed. In fact, ¢, = 1.
Thus

n4(0) = L(M’,V,0).

The outline for the proof of Theorem 4.2 is now complete. Details will be
supplied in the remaining sections of Part II.

6. Computing the operator A

An operator A was defined for framed manifolds (X, f) in Section 3, using
the skewed covariant differential associated to the framing. The purpose of this
section is to give explicit formulas for A when X is one of the algebraic manifolds
constructed in Section 2. Thus, X = S(M,V)\ S(R%*, R%*~1). Recall that the
framing f on X descends from a left invariant framing on the solvable group
S( R2k, R2k - 1).

Ify,i=1...,2k—1 and x, j=1..., 2k are suitable coordinates on
R?*~! and R?, then a left invariant framing on the cotangent bundle of
S(R?*, R%~1) is spanned by dy,, e ~ ¥ dx ;, [11]. Here one defines y,, = —y, —
Yy — = — Ygi_ - This left invariant framing descends to a framing f on T*X.
The y, correspond to the base and the x j correspond to the fiber in the fiber
bundle (2.2) with X as total space.

Let A: T(A®T*X) — I'(A*'T*X) be the differential operator constructed in
Section 1 for any framed manifold X. Denote C = A% Then C preserves the
parity of forms. The operator C is analogous to the Laplace-Beltrami operator.
However, C is constructed using the skewed covariant differential of the flat
connection corresponding to f. The same construction using the standard exterior
derivative would give the Laplace-Beltrami operator on forms.

The framing f induces framings on the associated bundles of exterior
algebras. By taking components with respect to these framings, one may regard
A and C as operators acting on functions with values in a fixed vector space IN.
Here 9N is identified with the fiber of A*’T*X, over any point in X.

The differential operator A is self-adjoint. From the defining formula A =
+(*d — d*), one finds that it is of the form

6.2) A= ZF].£ _VTIYE, e
j

ox

m

where F;, E,: I — I are endomorphisms independent of both x and y. The
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representation (6.2) of A follows alternatively from the group invariance of A.
Notice that {3/ 8yj, eYd/dx, ) form a basis for the Lie algebra of S(M, V).

By computing the symbol of A and noting that A% has the same symbol as
the laplacian, one deduces

ProrosiTioN 6.4. If (X, f) is a framed manifold associated to a pair (M, V)
as in Section 4, then the basic operator A is given by:

d d
A=Lhg — /T LEem

m

where F, E,: M - N are endomorphisms independent of both x and y.
Moreover, F ].2 = —1, E2 = 1, and distinct pairs from the collection { F » E) will
anticommute.

7. Unwinding along the fibers

In this section, we introduce an idea which is of basic importance. That is,
we decompose the operator A using a Fourier series along the fibers. Much more
general formulations of this method are well known in the study of representation
theory for compact solvmanifolds, [7]. However, because we are studying a quite
specific solvmanifold X, it seems desirable to give a self-contained and elemen-
tary treatment.

Recall that our manifold X is a T2 torus bundle over the 2k — 1 torus
T2k~ 1 The fibering is given as in (2.2). One may unwind this bundle to a trivial
bundle over the universal cover R%~! of T2k~ 1,

If one expands in a Fourier series along the fibers, there is a corresponding
unwinding of A. The effect is to decompose A, up to unitary equivalence, as a
direct sum:

A=A,+ Z A#.
peE(M’ —0)/V

Here, each A, p = 0, acts on sections of a trivial bundle over the simply
connected Euclidean space R%*~!. The advantages of expanding in a Fourier
series along the fibers are twofold. First, one replaces differentiation operators
along the fibers by simpler multiplication operators. Secondly, the A act over
the simply connected space R2* 1. Thus, one avoids problems associated to the
fundamental group of X. Of course, A acts on sections of a trivial bundle over X.
Recall that 7)(X) is the solvable group S(M, V).

Unfortunately, new difficulties are introduced by the noncompactness of
R%~ ! Our original manifold X is compact. In particular, certain analytic results
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for elliptic operators, which are routine for compact manifolds, will require more
careful discussion in the noncompact setting.

Let us now give a detailed description of the unwinding of A along the
fibers.

Recall that X is the bundle associated to the action of V = 7,(T%*~1) on
T2* = M\ R?*. In the coordinate system of Section 2, this is given by compo-
nentwise multiplication. Each vector-valued function ¢ on X may be expanded in
a Fourier series along the fibers T2*, of the fibering (2.2). Thus, one has in local
coordinates

o(x,y) = L ¢ (y)e™™
pEM’
where M’ is the dual lattice to M. Here the y’s are the base coordinates and x’s
are the fiber coordinates, as in Section 6.

However, since (2.2) is not a trivial bundle, ¢,(y), p * 0, will not be
periodic in y. To obtain a global Fourier decomposition, one must unwrap the
bundle (2.2) to a trivial bundle over the universal cover R2* ! of T2*~ !, Let
(M’ — 0)/V denote the orbits of V in M’ — 0. One has an isomorphism of
M-valued L%:spaces:

(7.1) L(X,90) > L(T** "L on)e ) L¥R*1,9n),

(M—0)/V
obtained by sending ¢ — ¢, + Ly ¢y v, With p € (M’ — 0)/V. Here I is
the vector space of Section 6. In fact, 91U may be identified with A®T*X.

The identification (7.1) sends differentiations d/dx; along the fibers into

multiplication operators v — 1 p ;. Thus, one has a corresponding decomposition of
A as

(7.2) A->A e Y A,
(M'-0)/V

Referring to Proposition 6.4, and replacing d/dx j by v—1p;, one deduces
the basic lemma:

LemMa 7.3. The operators A, A, are of the form:

where F,, E,: M — 9N are endomorphisms independent of y. The summation in
jruns from 1 to 2k — 1, while the summation in m runs from 1 to 2k. Moreover,
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F? = —1, E} = 1, and distinct pairs of the collection (E,,, F}} will anticom-

mute.

The operator C = A? also unwinds as

(7.4) C-Ge ) C,.
(M'=0)/V

By squaring the formulas given in Lemma 7.3, we may deduce:
LemMA 7.5. The operator G, is just
(92
CO = - ——2 .
Ay,

For pu # 0, the operator C, is given by
2

d
C,=-)—+YV

where the endomorphism V depends upon .
We may write V = V| + V,, with

2k
_ 2 2y,
Vl - Z lu’me v
m=1
and

Vo

2k—1 2k—1
Y
E, ev2.

Z y’mFmEmeym — Mo Z F]
m=1 =1

The unusual form of V, arises from the fact that y,, is by definition
YT Yo T Yoy

8. The operators A,

Our present purpose is to investigate the spectrum of A,. In particular, we
will show that, up to unitary equivalence, A, depends only upon N(u). Here
N(p) is the norm of u, as defined in Section 1.

Recall that A, is the piece, of our basic operator A, which corresponds to the
orbit of uin M’/V. Since A has pure point spectrum, so does each A,. We will
employ the explicit formulas for the A, given in Lemma 7.3.

If u = 0, one has

LEmMa 8.1. The operator A,: LX(T% 1, OL) » LY(T?*~1, 9N) is unitarily
equivalent to —A,. Consequently, A and —\ appear with equal multiplicity in
the spectrum of A, for any real number .
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Proof. Let E,, be as in Proposition 6.4. Then, since A is self-adjoint, one
deduces E}, = E, . Here 1 < m < 2k is arbitrary. However, EZ = 1, so that E,,
must also be unitary, E, E* = 1.

By Lemma 7.3, one has A, = ZF].B/ dy s where each F ; anticommutes with
E,. So E A\E, = —A,, for any m, which establishes the required unitary
equivalence.

For the rest of this section, we assume that p = 0. Recall that A
L*(R*~1 91L) - L R%* ! 9) is of the form

= X Fo- " Y ppe"E,

where F » En M — 9N are endomorphisms independent of y.
Denote N(pn) = p prg. .. foy, as in Section 1, for the norm of w. To begin,
one has

LemMA 8.2. The operator A, is unitarily equivalent to
A, = sign N(u)[Z ==+ LlpaleE, ]

where the vertical bars denote absolute value.

Proof. For each [, the endomorphism E;: 9 — 9N induces a unitary
equivalence, E;: LX(R*~1, 9IL) - L¥(R%*~! 9), as in the proof of Lemma 8.1.
Moreover, using Lemma 7.3,

EAE, = [E F Y w,e'E, — u,ey’El
m=]

The lemma follows from successive conjugation by each E, for which the
corresponding p, < 0.

One may make the change of variables y, — y, — log(|p.|/|N(1)|/%%).
This preserves the relation y,, = —y, — y, — -+ - — y,;_,. Moreover, Al is
transformed into the unitarily equivalent operator

A = sign N(u)|N(u) [IN(H)I‘I/Q"ZFj% + ZE]
j

Combining these observations with Lemma 8.2, one has

Lemma 8.3. The operator A, is identified up to unitary equivalence, de-
noted ~ , as

A, ~ sign N(p)|N(p)|'/**B,



148 M. F. ATIYAH, H. DONNELLY, I. M. SINGER
where h = |N(p)| Y2, and

B, = hZFja% + ) e*E,.
]

Here we assume p = 0. The index jis summed from 1 to 2k — 1 and the
index m is summed from 1 to 2k.

Now let h > 0 be arbitrary and put D, = B}.

For the special value h = |N(u)|/2*, given in Lemma 8.3, one clearly has

(8.4) C = Ai ~h 2B =h"2D,.
By squaring the formula defining B,, in Lemma 8.3, we easily deduce

Lemma 8.5. For any h > 0, the operator h™ 2D, may be written as
82
h_zDh = _Z——Z + Wh’
dy:

where W, = h™2W, + h~'W,, with W,, W, endomorphisms independent of h.
Specifically,

2k
= 2m
W, = ) e,
m=1

m=1

2k—1 2k—1
W, = Y. F,E, e — ( Y F.)Ezke”zk.

We pause to record:

CoroLLARY 8.6. For h sufficiently small, say 0 < h < ¢, zero does not
appear in the spectrum of B,,.

Proof. By examining the formulas in Lemma 8.5, we see that W, > 0, for
any y, if h is sufficiently small. So D, will be positive definite. Since D, = B,
the corollary follows.

9. Existence of the asymptotic expansion of the heat kernel

The next three sections are devoted to establishing the basic asymptotic
expansion (5.10) of our outline. In the present section, we show the existence of
such asymptotic expansions in powers of h. However, a priori, some negative
powers of h may appear. In Sections 10 and 11, we prove vanishing of the
singular terms. This general approach is reminiscent of the heat equation proof of
the Index Theorem [2]. However, new complications arise since we are working
with operators over the noncompact Euclidean space R~ 1,
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Let B, be given by Lemma 8.3. We define
L(t, h) = Tr(Bhe_'B’%).

Since B, may be realized as being unwound from an operator over a compact
manifold, it is easy to see that the trace is well-defined.
From the explicit formula given for B), in Lemma 8.3, it follows that

_ 9 i,
(9.1) L(t,h) = ZTr(F]. Byje
where D, = B3.
For this section, we will not need the special form of the endomorphisms F i
Fix some endomorphism U: 91U — 9 with U having constant coefficients,
independent of y. Denote, for any given 1 < i < 2k — 1:

9.2) A (¢, h) = Tr(Uai%e—ch).

To demonstrate existence of an asymptotic expansion for R.(t, h), as h |0,
we will realize the D, as being unwound from a family of operators over a
compact solvmanifold. This allows one to apply the standard elliptic theory for
compact manifolds. Thus, as far as existence of an expansion is concerned, one
can avoid difficulties stemming from the noncompactness of R%* ! and the rapid
growth of the potential W, as given in Lemma 8.5.

Choose some compact solvmanifold X and some h, = h(p,), so that D)
arises from a piece of the operator C: L*(X,91) — L*(X, 9). This means that
hy = |N(p,)| '/, for some p, € M’. Moreover, as in (8.4), C, is unitarily
equivalent to h; *D,, . Let m: L*(X,9) - L¥ X, 9N) denote the orthogonal
projection onto those forms whose Fourier series along the fiber has non-zero
entries only for p in the orbit of p,. Then #Cx ~ C, ~ hy ®D,, , where ~
denotes unitary equivalence.

Set h = h,y. To investigate the behavior of (9.2) as y | 0, we will imbed C
into a family of operators C, and let y | 0. The C, will be chosen to guarantee
that 7C 7 ~ hy 2D,,. This reduces one to studying the family of elliptic operators
C, over the compact manifold X. Standard methods may then be applied.

In the notation of (6.1), set
oy 07 2y 0
9.3 C = - —+ ) eV + YR.
(9.3) 3 > P by o | T

m

Here R is the first order part of C.
Unwinding C, in a Fourier series along the fibers, corresponding to the orbit
of py, one obtains an operator C, .. Following through the steps leading to
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Lemma 7.5, we see that

82
CHO»Y = —‘YzZF + Vl + 7‘72
Y;
where V|, V, are as in Lemma 7.5, with p = p,.
Continuing the identification process, with the additional parameter vy, we
find that C, . is unitarily equivalent to

2
ho_zDh = _722 “8(2‘5 + ho_2W1 + vhy le
Y
where h = h,y and W, W, are given by Lemma 8.5.
Thus D, is unitarily equivalent to 'n'h%CYw. Consequently,

(9.4) R(t,h) = Tr(ﬂU;y—e‘thgcvw)

1
with h = hyy.
The main result of this section is:

TuEOREM 9.5. Let R.(t, h) be given by (9.2). As h |0, one has an asymp-
totic expansion:

R(t, h) ~ h=2Re =4 =2(q (¢) + a,(t)ht*® + ay(t)h%t + ---).
Moreover a (t) is bounded as t |0 and has at most polynomial growth as t 1 co.

If R(t, h) is defined by (9.1), then (¢, h) has an asymptotic expansion of
the same type.

Once the expansion for R (¢, h) is known, the analogous expansion for
£(t, h) follows immediately from (9.1). Thus, it suffices to establish the result for
R(t, h).

To prepare for the proof of Theorem 9.5, we derive:

Lemma 9.6. Let 7: LA(X, 9N) - L% X, ON) be the orthogonal projection
onto those sections of N whose Fourier series along the fibers contains non-zero
entries only from the orbit of p, € M'.

Then, for ¢ € C*(X, ), supported near any given point in X, one has the
local representation

7¢ = D(w # ¢).
Here w is a continuous function and # denotes convolution. Moreover, D is a
differential operator of order 2k + 2, acting along the fibers.

Proof (Lemma 9.6). Let |u|®> = p2 + p3 + -+ + p3; for p € M’ and de-
note vol to be the volume of a fundamental region in R2*, for the dual lattice M.
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For x, ¥ € T?*, the fiber, set

eim(x — %)

1

w(x,x =;a

pe v, |2
where V. is the V-orbit of p, in M’. Note that the right-hand side converges
absolutely, even if one sums over all p € M.

Let P = —¥9/9x?. Then

1 , _
k+1 =) — ip(x —x) =
P lo(x, x) vol > e 7(x, %)

€ Vig

in the sense of distributions. Here #(x, ) is the distribution kernel of #. This
gives the lemma with D = P**1,
We now proceed with the proof of Theorem 9.5:

Proof (Theorem 9.5). We will employ (9.4) and investigate the asymptotic
behavior of the right-hand side as y | 0.

One may cover X by a finite number of coordinate charts £, which are
compatible with the fibering of X. Thus = @, X Q,, with @ c R*~! and
Q, C R*. Let y,(y) be a partition of unity subordinate to .

In the notation of (9.3), we let E (t) be a fundamental solution for
4/t — £9%/dy} and F,(t) a fundamental solution for 9/9¢t — Le%»32/dx2.
For concreteness, we assume that E_, F, are defined on some neighborhood of
the support of y, and that E satisfies Dirichlet boundary conditions.

Let C, be given by (9.3). As a parametrix for the fundamental solution K(¢)
of d/dt + C,, we employ

G(t,(x,9), (%, 7)) = Ldo(w)E(tv% (x, y), (%, 7))

XF(t,(x,y), (%, 5))¥(7).

Standard methods [1], [14] give K(t) as an infinite sum with G(t) as leading
term.

Analyzing this construction for K(¢) in the usual way, we find that K(¢) has
an asymptotic expansion as y l‘O:

_2
o —~2k-1)/2 —ly —
K(t,(x,y), (%, 7)) ~ (¢y2) &Y exp( |Zt72y| )

X Y¥aly)E(t, (2, y), (%, §))¥a(¥)

X Y b((x,y),(%, 7). t)yiti”
j=0
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where b]. are smooth and bounded, along with their derivatives. This expansion is
valid for ((x, y), (%, ¥)) in a neighborhood of the diagonal.
Applying Lemma 9.6 and integrating, we find that

0
8y.K(th%)7T)

1

Tr(ng—e“hﬂgcw) = Tr(wU

1

has an asymptotic expansion as y | 0:

Tr(aniyeth‘%va) ~ v " 2(co(8) + ey(8)¥t2 + co(t)y2t + -+ +)
with ¢(t) = O(t ~*7?%), 0 <t < 1, and c(t) bounded as ¢ — 0.

Since h = h,y, with h,, fixed, Theorem 9.5 follows by reference to formula
(9.4).

10. Vanishing of algebraic traces

Theorem 9.5 shows the existence of an asymptotic expansion for £(¢, h), in
powers of h. A priori, the coefficients of negative powers of h may be non-zero.
Our goal in Sections 10 and 11 is to show that these singular terms actually
vanish. Although different in detail, our vanishing theorems are reminiscent of
the paper of V. K. Patodi [17].

Sections 10 and 11 represent a key step in the entire proof of Theorem 4.2.
At the conclusion of these two sections, we will have established the basic
formula (5.10) from our outline.

The present section is purely algebraic in nature. We show the vanishing of
certain traces using the fact that (F, V—1E,), of Lemma 7.3, define a represen-
tation of a 4k — 1 dimensional Clifford algebra, [2]. That is, F? = —1, E? =1,
and distinct pairs from the collection {F;, E,,} will anticommute. The methods
employed in this section are standard. We include proofs of Lemmas 10.1 and
10.2 for completeness.

Lemma 10.1. Consider a product I1E,I1F;, where i) < iy < ---, and j, <
jp < ++-. Then
Tr([1E,I1F; ) = 0

if at least one but not all 4k — 1 of the E’s and F/s appear in the product
expression.

Proof. Set 9 =T1E,I1F,. Let I < 4k — 1 be the total number of E,’s and
F}'s appearing in 9.

If 1 is even, then 9) anticommutes with any E, or F ; which appears in oD If 1
is odd, then ) anticommutes with any E; or F ; which does not appear in .
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In either case, %) anticommutes with an invertible matrix M, so that
Tr(D) = Tr(MDM ~') = —Tr(D)
and thus Tr(%D) = 0.

LemMa 10.2. The product E,, I12% [ 'E F, is the 2" X 22" identity matrix,
where n = 2k — 1. Consequently,

2k—1
Tr(Ezk I EF) = 92",
i=1

Proof. ) = E, I1?5 'E,F, commutes with all the E;’s and F’s; hence 9
also commutes with the SO(4k — 1) action on M = A“T*X.

By the representation theory of SO(4k — 1), [6, p. 258], each A% is a
distinct irreducible of SO(4k — 1). Thus D = +1 on every A%", where the sign
+ may depend upon p. Here A®? is the 2p’-th exterior power of the standard
representation.

Computing out the explicit formulas for the E’s and F;’s and using that )
commutes with all these endomorphisms, one verifies that ) = +1 on 9 =
AVT*X,

A tedious chase through the orientation conventions of [3] and [11] verifies
that ) = 1, the identify matrix.

Of course, one may also prove Lemmas 10.1 and 10.2 by doing a direct
calculation. This seems less enlightening than the method above.

The following result will be crucial to our estimates of heat kernels:

Lemma 10.3. Suppose that W, is the endomorphism of Lemma 8.5. Let
Y1» Yos- - - » Y be points in R®*~ 1. Then,
a) Forany 1 <i <2k — 1 and 0 <l < 2k, one has

Tr(FW,(y,)Wo(yy)- - Wz(yl)) =0
and
b) Forany 1 <i < 2k and 0 <1 < 2k — 1, one has

Tr(Eiwz(yl)Wz(yz)‘ e Wz(yz)) =0.

Lemma 10.3 follows immediately from Lemma 10.1 and the explicit expres-
sion for W, given in Lemma 8.5.

11. Estimate of the heat kernel

In this section, the proof of the basic expansion for £(¢, h) is completed.
That is, formula (5.10) of our outline is established. We will work over the
noncompact Euclidean space R%*~! and use the Feynman-Kac representation of
the heat kernel.
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There is a formal procedure due to Kac [12] for obtaining asymptotic
expansions directly from the Feynman-Kac formula. It appears that his method
cannot be rigorously justified in our case. This is due to the extremely rapid
growth at infinity of the derivatives of the potential W,. Recall that W, is the
zero'th order term in our basic operator o~ 2D, of Lemma 8.5.

Fortunately, we have already shown the existence of an expansion for
£(¢, h) in Section 9. The essential idea was to utilize the fact that D, was
unwound from an elliptic operator on a compact manifold, by the method of
Section 7. The technique of Section 9 will be called the rewinding argument.

Note that the expansion of Theorem 9.5, for £(#, h), contains some coeffi-
cients of negative powers of h. Our present purpose is to show the vanishing of
these singular terms. It is very important that the basic expansion (5.10), for
£(t, h), should not contain negative powers of h. The essential point is to obtain
an upper bound on £(¢, h), i.e., |2(t, h)| < F(t), for suitable F(t).

We establish the required upper bound on £(t, h) by a delicate argument
using the Feynman-Kac formula. For this, the special nature of our potential is
crucial. In particular, the algebraic lemmas of Section 10 will be needed.

Let D, = B} be the second order differential operator described in Lemma
8.5. Recall that D, is of the form

D, = h*(A + W,)

where A = —Y2k.19%/9y2 is the standard Laplacian, acting on M-valued
functions.
The zero'th order term W, is written as

Wh = h_zwl + h_l%

Moreover, W, and W, are endomorphisms, of the trivial vector bundle 91U, which
are independent of h > 0.
Specifically, one has, according to Lemma 8.5:

11.1 2k
(1L.1) -
m=1
2k—1 2k—1
W,= Y FmEme”m—( Y Fj)Ezkey“
m=1 j=1
where Yo, = —y; — Yy — 0~ Yoy

Our goal is to obtain an upper bound for £(t, h) = Tr(B,e ~*"+), for h
sufficiently small. Note that the right-hand side is of trace class, by the rewinding
argument.

Since D, has matrix-valued terms, the Feynman-Kac representation of
exp(—tD,,) requires the solution of stochastic integral equations [5]. In particular,
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one does not obtain a simple exponential term appearing, as in the case of scalar
potentials.

To avoid these probabilistic technicalities, we attack the problem in two
steps. First, by use of Duhamel’s principle and the algebraic cancellation lemmas
of Section 10, a suitable upper bound is established in terms of heat kernels for
scalar potentials. We then employ the Feynman-Kac formula for operators acting
on functions.

Let P, and P, be second order elliptic operators acting on sections of a
vector bundle over a compact manifold. Suppose that P, and P, both have
leading order symbol given by the metric tensor. Thus P, — P, is a first order
operator.

Duhamel’s principle [14] states:

1
e B—e™h =f e (P, — Py)e 9By
0
(11.2) 3 .
=e N(P —Py) #e B
Here # is an abbreviation for the convolution product appearing on the line
above.
By iterating Duhamel’s principle / times, we find that:
-1
(11.3) e =) e H(P—P)#e N(P,—P)# -
j=0
#e N(P,—P,)#e N+ e N(P, - P)

#e N(P,—P)# - #e N(P,—P,) #e D
Here [ is any integer greater than or equal to one.

Let 5h denote the operator D, with the matrix-valued potential, hW,,
removed. Thus D, = h%(A + h~2W)) is a scalar operator times the identity
matrix. Note that || W,|| << W, at infinity, so one expects D,, to be the dominant
part of D,,.

We apply (11.3) with P, = tD,, and P, = tD,. Although these operators act
over the noncompact space R%*~1, the use of (11.3) is justified by the rewinding
argument, as in Section 9. In particular, D, and D, may be simultaneously
unwound from operators over a compact manifold.

Since D;, — D, = hW,, substitution in (11.3) gives:

-1
(11.4) e =Y (—th)le D:W, #te DWW, # ---
i=0
#e 'DW, #e P+ (—th) e DW,

He DWW, # - He DWW, He D,
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Recall that £(¢, h) = Tr(B,e ~*P+). From (9.1), one obtains:

2k—1

(11.5) L(t,h)= Y E.(t, h)
i=1
with
©(t,h) = Tr| F-Le~ D
[ AN layi .

Our object is to obtain an upper bound for £(¢, k). Of course, it suffices to give
an upper bound for each £(¢, h), 1 <i < 2k — 1.
Let i be fixed. Using (11.4) and the definition of £.(¢, h), we derive:

(11.6)

-1 _ _ _ _
P(t,h)=Y (—th)]Tr(Fiie_‘thz#etD"Wz# #e“D"Wz#e_‘D")
j=0

i

+ (-—th)lTr(Fiée’D—'lW2#gt5hW2# #e“Ehwz#e‘ch),

Here | > 1 is an integer.
Now set [ = 2k and apply the algebraic cancellation Lemma 10.3a, to write:

(11.7)

R.(t, h) = (—th)szr(Eaiye‘”shwz He DWW, # - #e DIW, #e-“?f-).

Note that exp(—tD,) is a scalar operator and therefore it does not disturb the
vanishing of traces given by Lemma 10.3.

It is important to realize the essential use of algebraic arguments to
eliminate the lower order terms in h, which occur in (11.6). For this, we
employed very specific information about the symbol of our basic operator B,,.
Recall that, by definition, one has D, = Bj.

It will be straightforward to obtain an upper bound, for the right-hand side
of (11.7), in terms of scalar operators. Thus, the first step in estimating £,(¢, h) is
essentially complete. We have circumvented the difficulties arising from the
matrix-valued potential W,

To proceed further, we will employ the Feynman-Kac representation of the
heat kernel exp(—tD,). Note that this operator acts on functions. Thus, by the



ETA INVARIANTS 157
results of [12] and [18], we have:

11.8 - - ~lv — &P
(11.8) exp(—tD,)(y, £) = (47th?) "/2exp(|Zt—hz$|)’

E[exp(—fothzh_zwl(i + x(7)) dr|x(th®) = y — $].

Here, E denotes the conditional expectation for Wiener measure with respect to
paths starting at the origin, x(0) = 0, and reaching y — £ at parameter value
th?, x(th*) = y — £. Moreover, n = 2k — 1 denotes the dimension of the un-
derlying Euclidean space.

Also, if A= —Y0%/dy? denotes the usual Laplacian, then there is a
standard formula:

ey — £12
(11.9) exp(—th®A)(y, §) = (477th2)_n/2eXP(lZngl)‘

This may be derived by Fourier transforms.
Using (11.7) and the Feynman-Kac formula, we will establish:

ProposiTioN 11.10. Let £(t, h) be defined as in (11.5). Here 1 <i <
2k — 1 is arbitrary. Then, one has the estimate:

I2,(¢, h)| < Ce <

for h sufficiently small and 0 < t < oo. The symbols C, and C, denote positive
constants, independent of h.

Proof. i) The first step is to obtain an upper bound, for £.(¢, h), involving
only scalar operators. We use the expression for £,(¢, h), given in (11.7), as our
starting point.

By the rewinding argument and the analogous fact for compact manifolds
[14]:

et h) = (~en* [ Tr(m-aiye—@wz fo D, ...

#e DWW, #eDn|(¢, £) dE.

Here Tr denotes the pointwise trace of the kernel for the convolution product,
restricted to the diagonal. The integral runs over R2* ~1, Moreover, the convolu-
tion # appears 2k times.
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Clearly, since F, has constant entries:

IBi(t9h)' < C3(th)2kf ie_tﬁhwz#e_tﬁhwz#

3!/:‘
#e W, e D || (£, ¢) de.

From (11.1), one has W, + hW, > C,, for h sufficiently small. Here C, > 0
is a positive constant. Since D, = h®A + W, + hW,, the Trotter product for-
mula [23, p. 297] yields

lle = *Ph|(y, §) < e~ Gle ~tH*8(y, £)

with A = —Y¥9%/3dy?, the standard Laplacian on R2*~1,
By substitution, one has

0

_a_e—tﬁh% #e_tD—h%#

(11.10a) |B,.(t,h)|sCSe‘C4t(th)2kf 3y

— 0

#o- P, “ #o (g ) dt.

This gives an upper bound, for £,(¢, h), involving only scalar potentials.

ii) To continue, we need a representation for the kernel
3/ dy,exp(—tD,)(y, £). By Duhamel’s principle (11.2), with P, = th®A and
P, = tD,, one may write:

e—tﬁh(y’ £) = e—tth(y’ £) - e—tthtWI #e‘tﬁh(y, £).
Here we used the definition D, = h?A + W,. It follows that
i —tD,, _ 9 _uea _i — th®A —tD,
(11.10b)  5-e™ " (y, §) = g ¢ W) mgie T MW e Py, §).

1 1 1

This last formula is useful, since the Euclidean heat kernel, exp(—th?A)(y, £), is
given explicitly by (11.9). From calculus, one deduces:

—th?A
2

(11.10c) ‘a%e‘”‘“(y, £)

< Cs(thz)_l/zexp( )(y,g).

Substituting (11.10b) and (11.10c) into (11.10a) gives:
B;(¢, R)l < [Dy] + |9,

where

Dy = Coe = Cu(th* ()2 [7 e are

— o0

#|Woe DiW, # - #e DiW,|| #e "¢, £) dE.
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The convolution # appears 2k times in °),. Moreover,

Dy=Cye ~Gt(th)* (th?) ™%t
[oe] 9 — — —_
X/ e A2 B Wie W, #e DW, # - #He DWW,
— o0

#e MA(¢ ¢) dE.

Here, the convolution # appears 2k + 1 times.

iii) The same procedure will be used to estimate the terms ), and %),. We
begin with ).

From the explicit formulas (11.1), one has

| Waly1) — Walyo)ll < CW2(y1)llyy — wsll
for y, and y, in a uniform neighborhood of the diagonal, i.e., for ||y, — y,||
uniformly bounded. Note that | W,|| = O(W/?).

Using this estimate, and the rapid decay of the heat kernel (11.8) outside the
diagonal, we may deduce:

|6D1| che~'C10t(th)2k(th2)_l/2foo eftth/Q

— 0
He Dig ... fe Drgte ML E)W (L) dE.
Since the heat kernels appearing are positive and scalar valued, we have omitted
the norm symbol.
By the semigroup property of exp(—tD,):
|6D1| < Clle4C1ot(th)2k(th2)71/2‘/ e—tth/2
#eo~Phare AL, £ Wy(£) de.
Using the explicit formulas (11.8) and (11.9), one has
o0 —
D] < Cuoe ™ Cut(th)™ (eh®) V2 [ e~ Pu(E, )| Wy(¢)|* di.

This last integral may be estimated from above by (11.8) and the method of
Ray [18, p. 317] to give:

|6D1| < C146_Clst(th)zk(th2)_l/2(th2)_(2k_1)/2/00 e—twl(g)IWl(é-)lk df

— 0
Recall that our Euclidean space has dimension 2k — 1.
Finally, calculus and the definition of W, (£), given by (11.1), may be
applied to give:

19| < Cige =",
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iv) The term 9D, is estimated by the same method as for %,. By repeating
the steps in iii) with small modification, we obtain:

|GD | <C e_cmt(th)zk(thz —l/2t(th2)—(2k—l)/2 *® e_tW‘(g)|W($)|k+l dé.
2 17 1

— 0
Calculus and the definition of W,(¢) give:
|D,| < Crge ™"

v) Since |2,(¢, h)| < |9D,| + |%D,|, as shown above, Theorem 11.10 follows
from the estimates for 9, %), given in Part iii), iv) of the proof.
The proof of Proposition 11.10 is complete.

By combining 9.5 and 11.10, we deduce:

Proposirion 11.11. Let £(¢, h) = Tr(B,e ~'P+), where B, and D, are as in
Section 8. Then, as h |0, there is an asymptotic expansion:
L(t, h) ~ by(t) + by(t)h + by(t)h* + - -

with b(t) bounded, for 0 < ¢ < oo, and satisfying b(t) = O(e ~%"), as t — 0.
Here C]. > 0 is a positive constant, for j > 0.

Proof. One has £(t, h) = LL,(¢, h), where £,(t, h) are as in (11.5). There-
fore, it suffices to show the existence of such expansions for each £,, 1 <i <
2k — 1.

For the remainder of the proof, we fix a value of i. Suppose that, for some
[ > 0, we have

Bi(t’ h) - h_l(ﬁ—z(t) + :3—1+1(t)h + - )

for some functions B,(t). Notice that Theorem 9.5 gives such an expansion with
I = 2k. One has, by 11.10,

B_,(t) = ’llirr})hlﬁi(t, h)=0
since | > 0. It follows, by a finite induction, that

L,(¢, h) ~ By(t) + Bi(t)h + Bo(t)h® + - -

as required.

A similar induction argument, starting from 9.5, and using 11.10 at each
step, gives the desired estimates for the S, (¢).

Now let n(h, s) be the eta series (3.1) for our basic operator B,:

n(h,s)= Y S Re(s) s o0,
A=0 |}\I

Here B,, is as given in Lemma 8.3.



ETA INVARIANTS 161

The following result can be deduced from 11.10:

ProposiTiON 11.12. Let 0 < h|, h, < &, where ¢ is sufficiently small. Then
n(hy,0) = n(hy,0). In other words, the analytic continuations of n(h,, s) and
n(hy, s) agree at s = 0.

Proof. If ¢ is suitably chosen, then, by 8.6, zero does not occur in the
spectrum of B;,, 0 < h < &. Thus, one may apply 5.1 to write:

n(hy, s) —n(h,, s) = —S[F(S -'2_ 1 )] fhzf t6-D20 (¢, h) dt dh
hy Y0

for 0 < hy, hy < € and Re(s) > 0. By 11.10, the integral converges down to
s = 0, so that

1(hy,0) = n(hy,0) = —O[T(3)] f"zf £-1/20(¢, h) dt dh = 0.

This proves Proposition 11.12.

12. Normalization

The proof of Theorem 4.2 is almost complete. We have given the technical
details needed to establish formula (5.13) of our outline. Thus, 7(0) =
¢, L(M’,V,0), for some constant ¢, depending only on k. It remains to evaluate
Cy-

Let B, be the basic operator of Lemma 8.3. According to our outline of
Section 5, and the subsequent details in Sections 6 to 11, ¢, is the value of the eta
series of B, at s = 0, for h sufficiently small. Proposition 11.12 shows that, as
long as h is small enough, this value is independent of h.

We define, for 8 > 0 sufficiently large, |

Z + ,BZey’E

Clearly, by the definition of B, given in Lemma 8.3, one has P, = BB, where
one imposes the relation 8 = h~ L. It follows from formula (3.1) that the eta series
of P, and B, continue to the same value at s = 0.
Suppose 1,(s) denotes the eta series of P,. Clearly, ¢, = 1,(0), as long as 8 is
sufficiently large. Therefore, we do not indicate the dependence of 1,(s) upon S.
One may define an operator P,: L3 R%* ™!, O) — LA R%*~ !, 9N) via the
formula:

ZF—— s B(en v om)(E, + By 4B T evE,
1<I1<2k
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Since ¢, P2 < B¢ < c,P?, the minimax principle implies that P, has pure
point spectrum. Moreover, the eta series 1,(s) of F, is absolutely convergent for
Re(s) large.

We record the easy

LemMA 12.1. For all s, one has ny(s) =

Proof. Let us conjugate P, successively by the unitary matrices
V=1F,V—1F,,....,.V—1F, _,,1/V2(E, + E,), E,,..., E;, ,. Wefind that

P, is unitarily equivalent to —F,. Lemma 12.1 now follows from the definition
(3.1) of ny(s).

To compute the constant ¢, = 1,(0), we deform linearly from P, to P,. Set
P, = uP, + (1 — u)PF,, so that

(122) B = LF-+ 5[0+ wen + (1 - wem]E,
j

PPl wen + (1 - wenEy + B T e
1<l<2k
Clearly, one has
[ d B y y
(12.3) P,=5.F.= P —P0=§(e L= e¥*)(E; — Eyy).

Define Q, = P2. A computation using (12.2) shows that one has:

LemMmA 12.4. The operator Q,, is of the form:

= —§:—+,32WI+BW2

where

Wi(y) = 4(u? + 1)(e® + e?¥2) + (1 — u?)enr v + Y
1<l<2k

and
1+ u 1—u
Wy(y) = Fl[(T)El + ( B) )Ezk]eyl

‘ZEKL%EF%+(L%EFJ““+ Y, e“F,E,.

1<1<2k

From this we can deduce:

LemmMma 12.5. For B sufficiently large, Ker(P,) = 0, forall 0 < u < 1.
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Proof. When B is large, B2W, + BW, is positive definite for all u and y.
Thus Ker(Q,) = 0. Since Q, = P2, the lemma follows.

The primary technical step, in computing 7,(0), is:

LEmMma 12.6. As t |0, one has

. -2 1 _
Tr(Pue to“) = —‘/—;T:mt 172 4 O(l)

where the error estimate is independent of u. Here 0 < u < 1.

Proof. The rewinding argument of Section 9 shows that Tr( P,e ') has an
asymptotic expansion as ¢ | 0, with coefficients depending on u. A priori, a finite
number of the coefficients may be singular as u decreases to zero. However, we
will employ the Feynman-Kac formula to show bounded dependence upon u,
and to calculate the first non-vanishing term in ¢. This is the same type of method
as used in Sections 9, 10, and 11. Therefore, for more detail on technical points,
the reader may refer back to these sections.

Let O, be defined as Q, = A + B*W,, where A = —¥3°/dy; is the
standard Laplacian on R", for n = 2k — 1. Thus Q,, is the dominant scalar part
of Q,. By Lemma 12.4, we see that Q, — Q, = BW,. Note that | W,|| < W, at
infinity.

We apply Duhamel’s principle (11.3) with P, = Q, and P, = Q,. Substitu-
tion in (11.3) yields

-1 _ _ _ _ _
e =Y (=Bt)e OW, #e OW, # - e OW, He OW, #e '
i=0

+ (—,Bt)le_tauW2 # . #l-'e_t‘5"W2 #He
for any integer I > 1. It follows that

-1 _ _ _
Tr(Pe ) =3, (—,l'?t)jTr(Pue_tQ"W2 #He QW # - #e‘tQ")
j=0

+ (_Bt)lTr(Pue_td‘Wz#e"dWZ# #e‘t@WQ#e_tQ").

Now set [ = 2k. By using formula (12.3) for P, and the algebraic trace
Lemma 10.3b), we may write:

(12.6a) Tr(P,e'€«) = D, + 9D,.
Here, with n = 2k — 1,
D, = (—Bt)"Tr(Be OWy #e OW, #t -+ #e W, #e %),
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The convolution # appears 2k — 1 times. Moreover,
Dy = (=Bt)" " 'Tr(Pe W, #e QW # - #e W, #e %),

The convolution # appears 2k times in the definition of D,.
By applying the method of Theorems 11.10, 11.11, with small modifications,
we deduce:

D, = (—,Bt)"Tr(PuWZZk‘le_‘d‘ Heo Ot ... #e“d‘) + O(1)

and %), = O(1). These error estimates are uniform in 0 < u < L.
Thus, by (12.6a), one has:

Tr(Pe 1) = (—,Bt)"Tr(Pqu"‘le_‘d‘ # .- #e“d‘) + O(1).

The convolution # appears n times.
By the definition (11.2) of the convolution and the semigroup property of
exp(—tQ,), we have:

Tr(Pe~19) = — (Bt)"[(2k — 1)!]_1Tr(PuW22"“le_‘6“) + 0(1).
The rewinding argument shows that we may write:

Tr(Be %) = — (Bt)"[(2k — 1)!]'1j°° Tr(BWZE 1) (£)e 9 (£, £) + O(1).

— 00

The lead term estimate of D. B. Ray [18] now gives:
7 — -n 1 n g2 5 n
Tr(Pe ) = (4mt) /2(— m)(/}t) f_we FEWOT W) dy + O(1)

Using Lemmas 10.1, 10.2 and calculus, we find:
Tr(Pe ') = (4'17‘)_"/2(,32t)"/2(GDl + 9,)2%" + O(1).

Here
B =5}
GDI = — = e—tB2W1(y)62y1+y2+~~-+y2k_1dy,
2 — o0
GD2 - _ ﬁ ” e—tﬁzwl(!/)e_z!/l—yz_"'_yzk—ldy.
2 — o0
The change of variables §, = —y, — ¥y — " —Yy_1, ;=Y j> 1L,

gives 9, = 9,. Moreover, by employing elementary calculus methods to esti-
mate 9, one finds

=21 iy 00).

Vo u?+1

Tr(P et

u

This proves Lemma 12.6.
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The main result of the present section is
ProposiTioN 12.7. The eta invariant of P, at s = 0, is the number one,
771(0) =1
Thus, the universal constant c,, appearing in formula (5.13), is one,
¢, = 1.

Proof. We observed at the beginning of this section that ¢, = 1,(0). Thus, it
suffices to find the value of 7,(0). Using Lemma 12.5, one may apply Proposition
5.1 to write:

(12.8) m(s) =

__S__/lfwt(s ~0/21y( P e~ 1) dt du
r( s+ 1) 0 Yo

2
for Re(s) sufficiently large. One needs to justify using Proposition 5.1 in this
noncompact setting. However, when Re(s) is large, only elementary arguments
based on the minimax principle are required.

We now use Lemma 12.6 to analytically continue the right-hand side of
(12.8). This gives

-2 1 -2 du
0) = =
Th( ) _/(;

v Jr w41

With the evaluation of the constant ¢,, the proof of Theorem 4.2 is
complete.

13. Preparatory discussion

The goal of Part III of the paper is to prove Theorem 4.3. Recall that this
theorem identifies the signature defect and the analytic eta invariant for the
special framed manifolds constructed algebraically in Section 2.

Theorem 4.3 is essentially a long corollary to the general result of [3] on
certain elliptic boundary value problems. In this section, we describe what can be
deduced immediately from [3] for the eta invariants of a general framed
manifold. The eta invariants under consideration are those of the flat connection
associated to the framing.

The eta invariants for the Levi-Civita connection of a Riemannian metric
were studied very thoroughly in [3]. For our special framed manifolds, of Section
2, we can control the deformation from the Levi-Civita connection, of the metric
induced by the framing, to the flat connection, given by the framing. This leads
to a proof of Theorem 4.3. Details are given in Sections 14 and 15.
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In the remainder of this section, we discuss the eta invariant theorem for a
general framed manifold X** !, with framing f. Our eta invariants will be those
of the flat connection for the given framing.

Let W* be a compact Riemannian manifold with a given connection on
TW preserving the metric. Suppose that X*~! = gW is our framed manifold
with framing f. Assume that, in a product neighborhood of the boundary X, the
metric and connection coincide with the product metric and product flat
connection induced by the framing f. Of course, this means that the connection
on TW will, in general, have non-zero torsion and thus cannot coincide with the
Levi-Civita connection.

Note that such W can always be found for a given (X, f). This is a
consequence of cobordism theory and partition of unity arguments. We assume
that W is chosen and fixed throughout the discussion.

We may define the analytic eta invariant 1,(0), as in Section 3, by using the
skewed covariant differential of the framing. The main result of [3] now
specializes to give:

Tueorem 13.1. We may write 1,(0) = [°D — l. Here l is an integer. The
integrand ) is locally defined. Moreover, %) is invariant under scaling of the
metric on W.

Proof. Let d: AW — AP*!'W be the skewed covariant differential obtained
from the connection on TW. Suppose 8 is the adjoint of d. Clearly, d + 8 is a
first order elliptic operator, acting on the bundle of differential forms.

Define an involution 7 by ¢ = i?®® ~D*2k*¢ for 6 € APW, where * is the
Hodge star operator. Since 72 = 1, we have a decomposition of the bundle of
differential forms A = A*® A, into the +1 eigenspaces of 7. It may be
verified that d + 8 interchanges A* and A™.

To obtain Theorem 13.1, one applies the general result of [3] to the modified
signature complex:

d+6
ATW = A~ W.

Here, the suitable non-local boundary conditions are imposed. It follows routinely
that 7,(0) = [ — L. Also, [ is an integer and 9 is locally defined.

To complete the proof, we need only show that ) is invariant under scaling
of the metric. Suppose that ¢ is an eigenfunction of A = (d + 8)? with ei-
genvalue A. Define ¥ by ¥, = cP¢,, where ¢, is the p-form component of ¢.
Then ¥ is an eigenfunction of the Laplacian A, for the scaled metric g = c%g,
with eigenvalue A = ¢ ~2A. The scale invariance of ) now follows from the
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standard formula:

K(t,x,y) = 2}\:6_”\%\(") ® ¢5(y).

Here the sum runs over the eigenfunctions ¢, of A.

For the remainder of this section, we will investigate the nature of the
integrand ¢).

To identify ) more precisely, one may employ the invariance theory
methods of [1]. In that work, only the torsion-free Levi-Civita connection was
considered. However, a routine extension of the argument in [1] shows that 9D is
an O(4k) invariant polynomial map, in the components of the torsion T and
curvature R and their covariant derivatives for the extended connections, with
values in 4k forms. For more details on how the torsion T enters, the reader is
referred to Section 1 of [8].

If T is identically zero, then ) depends only on the curvature of the
Levi-Civita connection. The fact that 9) is invariant under scaling of the metric is
then sufficient to identify %) with the L-polynomial of Hirzebruch [1].

Unfortunately, when T = 0, there are many more scale invariant maps in
the components of T and its covariant derivatives. In fact, the proof of @) = L,,
for T =0, in [1, pp. 286-289] relied heavily on symmetries of the curvature
tensor. Such arguments fail when the torsion is non-vanishing.

To summarize, we may state:

LEmma 13.2. The integrand %) appearing in Theorem 13.1 is an O(4k)
invariant polynomial in the components of the curvature tensor R and torsion
tensor T and their covariant derivatives, for the metric preserving connection on
T*W, with values in 4k-forms. Moreover, ) is invariant under scaling of the
metric.

If T and all its covariant derivatives vanish, at some point, then %) = L, (Q)
is the Hirzebruch L-polynomial at that point. Here £ denotes the curvature form.

To gain more control of the situation, we will restrict the connection on
T*W to be of a special type. Note that Theorem 13.1 applies to any connection
which coincides with the flat connection on a product neighborhood of the
boundary and preserves the extended metric.

First, recall the following [10, p. 48]:

Lemma 13.3. Let M be a complete Riemannian manifold. Suppose that
there is an alternating bilinear map T: TM X TM — TM. Then there is a unique
connection v on TM such that:

(i) v preserves the Riemannian metric.

(ii) Vv has torsion tensor T.
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Suppose now that T;, denotes the torsion tensor of the flat connection given
by the framing on X. We regard T, as a tensor over X X I by lifting from the
projection X X I — X. Here I is the unit interval.

Let 0 <y <1 be the standard coordinate on I. Choose a function
f € C*[0, 1] satisfying:

I |yl <e

fly) = 0 [yl >1—¢

for some 0 < ¢ < 1/2. Denote T to be the tensor f(y)Tj,.

Considering X X I as a sufficiently small product neighborhood of X = dW
C W, we may extend the metric given by the framing on X to a metric g on W,
so that g is a product metric on X X I. Similarly, T may be extended to W by
setting T =0on W — X X [0,1 — ¢]. Let ¥ be the unique connection, given in
Lemma 13.3, which preserves the metric g and has torsion tensor T.

It follows from 13.3 that on X X I the curvature and torsion tensors and
their covariant derivatives, for v, depend polynomially upon the derivatives of f
and the torsion tensor T, and its covariant derivatives with respect to the flat
connection on X, after we raise and lower indices via g.

Recall that an invariant polynomial map P has weight k [1, p. 282] if
P — NP under scaling of the metric g = A’g. Of course, when k > 0, we say
that P has non-negative weight.

By consolidating the above discussion, we may deduce:

ProposiTioN 13.5. Let the connection v on W be chosen as described
above. Then the local integrand ) appearing in Theorem 13.1 satisfies:

i) On W — X X[0,1 — €], D= L,(Q), the Hirzebruch L-polynomial ap-
plied to the curvature form Q.

ii) On X X [0,1 — &],

o = Zai(f)Pi(TO)’
Here 9) is regarded as an O(4k) invariant polynomial with values in 4k-forms.

Here a,( f) is a polynomial in fand the derivatives of f with values in A'(I).
Moreover, each P(T,) is an O(4k — 1) invariant polynomial, in the components
of T, and its covariant derivatives with respect to the flat connection, having
values in the 4k — 1 forms on X. Moreover, each P, has non-negative weight.

Proof. It is important to see that each P, has non-negative weight. For this,
observe that the derivatives of f have weight zero and a,(f) is obtained, from
these derivatives, by contractions with g'/, actually g"", where n = 4k. There-
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fore, each a,;(f) has non-positive weight. Since %D has weight zero, the P, must
have non-negative weight.

It should be emphasized that invariance theory methods do not allow one to
conclude P(T;,) = 0 in general.

We close this section with some general facts concerning polynomial maps
of non-negative weight in the components of a general torsion tensor T. Recall
that T is of weight zero when considered as a tensor of type (1,2), in indicial
notation T},. Specifically, the definition is

(13.6) T(Y,Z) = vyZ — v,Y — [Y, Z]

for vector fields Y, Z. Formula (13.6) is unaffected by scaling of the metric.
Lowering the first index gives a tensor of weight two:

Lix = 8T}
In general, the only symmetry of the torsion tensor is
(13.7) T = — Ty

This fact follows from (13.6) and Lemma 13.3.
If « is a multi-index with length [ = |a| > 3, then one denotes:

Ta = Talaza;},a4a5~~al
where a = (a;, ay,..., «;). The indices a,, as,. .., a; refer to covariant deriva-

tives of T.

Every invariant polynomial is a finite linear combination of elementary
monomials. By the definition of [1, p. 286], an elementary monomial m(T), in T,
is given by:

(13.8) m(T) =Y TaT2- T,
q
Alternation runs over precisely g indices and the remaining indices are con-
tracted. Moreover, a' are multi-indices.
By analogy with Lemma 2 of [1, p. 287], it is easy to derive:

Proposition 13.9. The elementary monomial m(T) given in (13.8) has
weight 2r + q — L|d'|. Here |a'| denotes the length of the multi-index o'

Proof. Each T,. has weight two before any contractions are applied. The
total number of contractions is [L|a’| — q]/2. Moreover, each contraction
decreases the weight by two. Thus, m(T) has weight

2r —2[Yla'| — q]/2=2r+q— Y]
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14. The integer part

In Sections 14 and 15, we study the eta invariant for the flat connection on
the special framed manifolds X = S(M, V) \ S(R2*, R%*~1). Here, the flat con-
nection comes from a left invariant framing on the solvable group S(R2*, R2k~1),
The goal is to identify the integrand %) and integer [ appearing in Theorem 13.1.
The method in both cases is by a deformation argument from the flat connection
to the Levi-Civita connection of a left invariant metric.

In this section, we show that the integer | appearing in Theorem 13.1 is
signW, the signature of W. For the operator associated to the Levi-Civita
connection, of any Riemannian metric, this is proved in [3]. In general, such
integers will jump under deformation of elliptic operators, even if the leading
symbol of the operator is preserved. This is due to the spectral flow of eigenval-
ues across the origin [4]. However, for the special case under consideration, it will
be shown that [ is invariant under deformation from the flat connection, of the
left invariant framing, to the Levi-Civita connection, of the associated left
invariant metric.

Let X = S(M,V)\ S(R%, R%*~1) be one of the framed manifolds con-
structed in Section 2. Formula (6.2) shows that the eta invariant operator of the
flat connection is given by:

(14.1) Ay=YFf,—V-1YE,e,.

Here f,= 9/dy; and e, = e'"d/dx,, are a basis for the Lie algebra of the
solvable group S(R%*, R%*~1). Moreover, F > E,0 O — 9N are endomorphisms
of the fixed vector space M = A®'S, where S denotes the Lie algebra of the
solvable group S(R2, R% 1),

We may decompose the Hilbert space of square integrable 9N -valued
functions on X as an orthogonal direct sum:

(14.2) LXX,9%)=Heo H*.

Here H is the space of constant 9lU-valued functions. Thus H is finite dimensional
and isomorphic to L. Moreover, H* is the orthogonal complement of H in
L3(X, 9N).

The relevance of the decomposition (14.2) is suggested by:

Lemma 14.3. Given a positive constant ¢ > 0, then by a uniform scaling of
the lattices M and V, we may assure:

i) KerA, = H,

ii) A2 —c>0on H*.
Here A, as in (14.1), is the operator associated to the flat connection.
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Proof. This follows from the formulas in Lemma 7.3. For a related observa-
tion, see Corollary 8.6.

Now let A, be the eta operator associated to the Levi-Civita connection of
the metric induced by the framing. Thus, A, is constructed as in Section 3, but
with the Levi-Civita connection instead of the flat connection.

One may write:

(14.4) A=A, +G

where G: O — I is a constant endomorphism. Formula (14.4) follows from the
fact that A, and A, are first order operators with the same leading symbol and
descend from left invariant operators on the Lie group S(R2*, R%x~1),

Let us deform linearly from A, to A,. We set

(14.5) A, =tA;+ (1 —-t)A, = A, +tG forO0<t<1.
LemMMa 14.6. Assume that the lattices M and V have been suitably scaled.
Then Ker A, C H, for all 0 < t < 1. Consequently,

H t=0
KerG t>0.

Here Ker G denotes the kernel of G as an endomorphism of the finite dimensional
vector space H.

KerA, = {

Proof. This follows from Lemma 14.3 and formula (14.5). One just chooses
c> ||G|>%
Now suppose that 7, is the eta invariant of A,. That is, 7, is the value of the

eta function (3.1) at s = 0. Since each A, preserves the decomposition (14.2), one
has

n, = n,(H) +n,(H")
where m, is the eta invariant of A, restricted to H. Recall that H is finite
dimensional, so there is no problem regarding analytic continuation of the eta
series restricted to H.
We study each piece of 7, separately, to determine the dependence upon ¢:

Lemma 14.7. If M,V are scaled as in Lemma 14.3, then n,(H") is a
continuous function of t.

Proof. According to Lemma 14.6, we have H* NKer(A,) = 0 forall 0 < ¢
< 1. Since discontinuities arise only via the spectral flow across the origin, the
result follows (see Proposition 5.1).

Also, one has

LEmma 14.8. For all 0 < t < 1, one has n,(H) = 0.
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Proof. If (y;, x;) are the coordinates chosen at the beginning of Section 6,
then the map y;, = y,, x; > —x, x; > x,, j > 2, defines an orientation revers-
ing local diffeomorphism near the origin.

This map induces an isometry i,: H — H which anticommutes with the
action of A,. Since G is exactly the restriction of A, to H, i, anticommutes with
G. However, A, restricts to H as tG, so iy and A, will anticommute, as
endomorphisms of H, for ¢ > 0. Lemma 14.8 follows.

Combining Lemmas 14.7 and 14.8, one deduces:

Lemma 14.9. Under the hypothesis of Lemma 14.3, the eta invariant v, of
A, acting on L*(X, O) is a continuous function of t,0 <t < 1.

We can now establish:

TureoreM 14.10. If X = S(M, V)\ S(R%*, R%k~ 1), with the lattices M,V
suitably uniformly scaled, then the integer | appearing in Theorem 13.1 is the
signature of W, | = sign W.

Proof. Using the general theorem of [3, p. 57] on elliptic boundary value
problems, we find that, for the operator A,:

l, = fWGDt -

where [, is an integer. Moreover, the integrand 90, is a continuous function of ¢.
By Lemma 14.9, 7, is also continuous for the special case under consideration.
Therefore [, is a constant, since it is a continuous integer-valued function. In
particular, [ = [, = [,. However, A, is the operator associated to the Levi-Civita
connection of a Riemannian metric and from [3, p. 66], we know that [, = sign W.
This proves Theorem 14.10.

The technical devices of scaling the lattices M and V, employed in this
section, will not disturb the proof of Theorem 4.3. To see this, let A be the
operator associated to the flat connection. If A € Spec A, then, under the
uniform scaling of Theorem 14.10, A — b2\. Here b2 is a positive constant,
independent of A. By the definition (3.1) of the analytic eta invariant, 7,(s) —
b~ 2n,(s). Thus n,(0) is independent of the uniform scaling. Similarly, o(X, f)
is a diffeomorphism invariant and therefore unchanged under scaling.

5. Identifying the integrand

Let X = S(M, V) \ S(R%, R%*~!) be one of the algebraically defined framed
manifolds appearing in Section 2. Suppose that X = dW and that the flat
connection on TX, given by the framing, has been extended to a connection on
TW, by the construction of Section 13.
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The purpose of the present section is to show that, under these circum-
stances, the integrand 0, of Theorem 13.1, is the Hirzebruch L-polynomial. That
is, D = L,(2). Here Q is the curvature form of the extended connection on TW.
Our work in the current section is purely local and therefore does not depend
upon the discrete group S(M, V).

In Proposition 13.5, we observed that %) = L,() outside a collar neighbor-
hood of the boundary X. Moreover, on this collar, %) is an invariant polynomial of
specified type. In particular, %) is a sum of invariant polynomials of positive
weight in the torsion tensor T of the flat connection on TX. Our notation differs
slightly from Proposition 13.5, where T;, denoted the torsion tensor of the flat
connection on TX.

Now, T has special symmetries, since it is defined by the Lie bracket on the
solvable group S(R?*, R%*~ 1), By exploiting these extra symmetries in T, we will
show that all invariant polynomials of positive weight must vanish.

Thus, %) = 0 on the collar neighborhood of X = dW. Also L,(22) = 0, on the
collar, since the metric is a product near the boundary. Combined with Proposi-
tion 13.5, this gives %) = L,(§) everywhere on W.

Let us turn to the detailed proof of the above assertions.

Suppose that S is the Lie algebra of S(R2*, R*~1). For vector fields
Y, Z € 3, it follows from formula (13.6) that the torsion is given by:

(15.1) T(Y,Z)= —[Y, Z].
Here, we are working with the flat connection which defines elements of & to be

parallel vector fields.
We begin by recording:

LEmMa 15.2. The torsion tensor T of the flat connection associated to S is
parallel. This means that all covariant derivatives of T vanish identically.

Proof. This follows immediately from (15.1) and would hold for any Lie
group. It does not require the special structure of the group S(R2, R%F 1),

Lemma 15.2 shows that, in studying the elementary monomials m(T) of
(13.8), one may assume |a'| = 3, for all i. Therefore, Proposition 13.9 gives that
weight (m(T)) =2r+q—3r=q — r.

We are concerned with the case ¢ = 4k — 1 = dim X and weight (m(T))
> 0. Therefore, one has r < 4k — 1 for each elementary monomial under
consideration.

Let us consider the special structure of the Lie algebra of S(M,V). In
Section 6, a basis f; = 9/dy;, 1 <i <2k — 1,and ¢;, 5, = €%d/0x, 1 < j<
2k, was given for the Lie algebra &. Recall that by definition y,, = —y,

T Yop—ae
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LemMma 15.3. In the frame field f,, e, , the only non-vanishing components of
T are:

(@) Iy = —TY =1, where y — i = 2k — 1. Moreover, 1 < i < 2k — 1 and
2k <y <4k - 2.

(i) Ty = —TY = —1, where y = 4k — 1 and 1 < i < 2k — 1 is arbitrary.

Proof. This follows by explicit computation using (15.1) and the local
coordinate expressions for f; and e, .

Since we have chosen an orthonormal frame field, g;; = §;;, Lemma 15.3
also holds when the first index in T is lowered.
A useful consequence of Lemma 15.3 is the identity:
(15.4) T, = 0.
N\

1

Here, the bow denotes alternation.
The main technical result of this section is:

ProposiTiON 15.5. Let T be the torsion tensor of the flat connection on
the 4k — 1 dimensional manifold X = S(M,V)\ S(R**, R%~1). Then any
O(4k — 1) invariant polynomial map of non-negative weight, in the components
of T and its covariant derivatives, with values in 4k — 1-forms, must vanish
identically.

Proof. By the usual invariant theory of O(4k — 1), [1, p. 286], it suffices to
establish this result for the elementary monomials m(T) of (13.8). We assume
that a non-zero m(T') exists and reason by contradiction.

For convenience, we let the Greek indices y refer to the vector fields e,
2k < y < 4k — 1. Latin indices 1 < j, I, m < 4k — 1 will refer either to the e].’s
or the f’s.

As a consequence of Proposition 13.9 and Lemma 15.2, we may assume that

m(T) = Z Tflll'"lszlzmz o Tjrlrmr
q

where ¢ = 4k — 1 and r < q. This was already observed.
By Lemma 15.3, we may write

*

m(T) = Z TYlllmlTYzlzmz e T‘lermr
q
since it is only necessary to sum over non-zero terms.
Since g = 4k — 1, we must alternate over at least one of the second or third
indices in 2k — 1 of the T’s. This is because each ¥, is restricted to the range
2k <y, <4k - 1
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Moreover, by the basic symmetry (13.7), if either the second or third index
is alternated in any T, we may assume that both indices are alternated.
Otherwise, m(T) factors through 4k-forms and must vanish since dim X =
4k — 1.

By reordering the terms, one may write

*

(156) m(T) = Z TYlllmlTYzlzmz e TynlnmnT'YZkl2km2k. o Tlermr
a o —/

where n = 2k — 1. The bow denotes alternation in all indices involved.

Since ¢ = 4k — 1 = 2(2k — 1) + 1, there is just one more alternation in
addition to those indicated explicitly in (15.6). By (15.4), we may alternate at
most two indices in any given copy of T. Consequently, an index must be
alternated in some Tvslsm,’ for s > 2k. Finally, only a first index, some v,, can be
alternated, since otherwise the map factors through 4k-forms.

Again, by reordering the terms, we may assume that
(157) m(T) = Z TYlllmlTYzlzmz e TYnlnmnTYZkl2km2k. v Tlermr

q — N\
with n = 2k — 1. All g = 4k — 1 alternations have been indicated, so the
remaining indices must be contracted.

By Lemma 15.3, one may suppose that vy, = [, or vy, =m,, 1 <i <r, for
each term giving a non-zero contribution to the sum (15.7). Therefore, v, v,,. . .,
Yok — 1> Yox Must have different values.

Each of the v,’s for 1 < i < 2k — 1 must be contracted with an index in
some T, ; ., s > 2k. This follows from Lemma 15.3 and the fact that v, v5,.. ., Yax
are distinct. By Lemma 15.3, no two v,’s can be contracted with indices in the
same copy of T. This restriction forces r > 2k + 2k — 1 = 4k — 1.

Pursuing this argument one step further, observe that either vy, = Iy, or
Yor = Mgy. In each case ly;, respectively m,,, must be contracted with an index
in yet another copy of T. This yields r > 2k + 2k = 4k. However, we have
already shown that the condition of non-negative weight requires r < 4k — 1.
This fact was noted at the beginning of our proof. Since the inequalities
r < 4k — 1 and r > 4k cannot both hold, we have obtained a contradiction.

Thus m(T) = 0. The proof of Proposition 15.5 is complete.

By combining the results of Proposition 13.5 and Proposition 15.5, we may
deduce:

ProposITION 15.8. Let the connection v on TW be chosen as described in
Proposition 13.5 and let X = S(M,V)\ S(R%*, R%~1) be one of the manifolds
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considered above. Then the integrand ), appearing in Theorem 13.1, is given by
o) = L,(R), the Hirzebruch L-polynomial in the curvature form Q of V.

Finally, Theorem 4.3 follows from (13.1) and (15.8) because, by the theory
of relative characteristic classes, one has

fw@ = Li(pyse . p) [W, X]

where p, € H*(W, X) are the relative Pontrjagin classes associated to the
framing of X.
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