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ON FRAMINGS OF 3-MANIFOLDS
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§1. INTRODUCTION

ReCENTLY Witten [7] has generalized to arbitrary 3-manifolds the Jones invariants for
knots in the 3-sphere [4]. In Witten’s theory a crucial role is played by framings of the
3.manifold. These framings are intimately related to the central extensions of the mapping
class groups which occur in the Hamiltonian version of the theory. The purpose of this note
is to present an elementary treatment of these questions in the framework of standard
algebraic topology.

I shall show (Proposition 1) that every oriented 3-manifold has a canonical 2-ffaming,
and so Witten’s theory leads to a 3.manifold invariant. This is presumably related to the
recent work of Reshetikin and Turaev [6] in which framings of 3-manifolds do not enter
explicitly (but signatures of bounding 4-manifolds enter instead).

The essential ideas involved are all due to Witten. In particular he recognized the role of
what I have called 2-framings and the central extension [ of the mapping class group
I introduced in §3. The only additional novelty here is that I relate these ideas to the
signature cocycle of Meyer [5] and its elaboration as developed in [1]. This leads to a novel
computation of the extension class of [ (Proposition 2). I am also indebted to G. B. Segal for
explaining to me his somewhat different approach to the subject.

§2. CANONICAL FRAMINGS

Let Y be a compact connected oriented 3-dimensional and let Ty denote its tangent
bundle. Then

2T, =T, ®Ty
has a natural spin structure arising from the lift to Spin (6) of the diagonal embedding
SO(3) = SO(3) x SO(3) - SO(6).

Since Ty is trivial so is 2Ty. A homotopy class of trivializations of 2Ty (as a Spin (6) bundle)
will be called a 2-framing of Y. Two such 2-framings differ by a homotopy class of maps

Y - Spin (6).

Such maps deform down to Spin (3) = Spin (6) and so are determined by an integer, the
corresponding degree. This integer can be computed as follows. Lift 2T, to Y x I and
trivialize it by 2, B at the two ends ¥ x 0and Y x 1. This enables us to define the relative
Pontrjagin class (or number)

peH*(Y x I, Y x dI) = H¥3Y) = Z.
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For spin bundles p, is always even (because of the relation p, = wi mod 2) and the integer
difference between a and f is 4p,.

Wow lel Z be an oriented 4-manifold with boundary ¥ (this always exists). Given any
2-framing = or ¥ we can define

o) = SignZ — 4p, (27, 2) (2.0)

where the relative Pontrjagin number p, is defined as above by using the trivialization x on
Y = dZ I " is another choice, then we can form the closed 4-manifold W

We=Zu(-Z)

Y

<>

Since both the signature and relative p, are additive the Hirzebruch signature formula
for W

Sign W = iF![TII'} =}, (2T)

shows that oiz) is independent of the choice of £ and hence depends only on x {as the
niotation indicates).

By altering x we can change p, (2T, x) by the corresponding integer. It follows that there
i5 a unique choice of @ making #{z)=0. Thus we have established:

Prorosmion 1. There is @ canonical 2-framing 2 of any compact connected oriented
J-manifold Y, characterized by the property that the Hirzebruch signature formula holds for
any d-manifold Z with boundary Y.

SignZ = {p (27, 2)

Remarks

i1 The Hirzebruch signature formula continues to hold even when ¥ =782 is not
connected, provided each component of ¥ is given its canonical 2-framing,

12) 1f we had worked with conventional framings (instead of the more exotic 2-framings)
this proposition would have failed for two reasons: (a)it would only have held for
a sub-class of 3-manifolds, namely those for which the invariant 5(Y) introduced in
[3:(4.19)] is zero {as observed in [3], 25(Y) is the number {mod 2} of 2-primary summands
in H*(Y, Z1. (b) different framings correspond to maps ¥ — SO(3} and these are distin-
zuished not only by an integer degree but also by an element of H'(Y, Z,) which is related
1o spin structures on Y. For the Abelian version of the Witten theory, spin structures are
necessary, but for the non-abelian version (defined by a compact semi-simple Lie group G}
they are an unnecessary encumbrance.

i3) Applying a reflection converts a 2-framing 2 of ¥ into a 2-framing — 2z of — Yiie
¥ with onentation reversed). Clearly the canonicz! 2-framing of Proposition | is consistent
with reflection.

i4) Determining explicitly the canonical 2-framing of a given 3-manifold ¥ involves
finding an explicit 4-manifold Z with ¥ = JdZ. We can then always modify Z (by taking
a connected sum with an appropriate number of complex projective planes with the relevant
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orientation) to make sign Z = 0. The canonical 2-framing of ¥ is then the unigque one which
extends to Z, so that the relative p, =0. For the 3-sphere therefore the canonical 2-framing
is the one extending to the ball and this is how (from Witten's viewpoint) the Jones
invariants of knots are normalized. A general 3-manifold ¥ can be constructed from a series
of surgerics along a set of links in 5. These involve an explicit set of cobordisms and hence
a definite final choice of Z with /Y = Z. In this way the canonical 2-framing of } can be
made explicit.

§1 DIFFEOMORPHISMS OF SURFACES

Let X be a compact connected oriented surface and let I be the group of components of
Diff™ (X} (the orientation preserving difeomorphisms of XL For any fe Dilf 7 {X') we can
form the oriented 3-manifold Y= X, fibred over the circle with fibre X and monodromy f.
More precisely we form ¥, from X = [ by using f to identify X » 0 and X x 1. The
isomorphism class of the fibration ¥ — §' depends only on the class of fin T. Note that

where — X denotes X, with orientation reversed.

Now let [ be the set of isomorphism classes of fibrations ¥ — §' with fibre endowed
with a choice of 2-framing z on ¥. Thus [ is essentially a set of pairs (7, a) with ye " and
a a 2-framing on a representative X ; (with () = 7). There is a natural group law on " which
may be defined as follows. Given f, g & Diff * (X)) we construct the 4-manifold £ fibred (with
hbre X) over a plane region B as indicated

B has 3 circles as boundaries and correspondingly

fZ=X,+X,— Xy,
Given a, ff 2-framings on X, X, respectively there is then a unique 2-framing y on X, s0
that the relative p,(2T), for the trivialization z, fi, y on 8Z, vanishes. We define

[N, 2] lgh B = [1fa), 7).

The obvious additivity of relative p, ensures the associativity of the product in 7, while

[fhal™t =1 ==l

An alternative way (due to Witten) of describing the group [ is to represent its elements
by pairs (f, ¢,) with fe DIT * (X) and ¢,, 0 < ¢ < 1, a path in the space of trivializations of
2T, such that ¢, = [*¢,. The group law is then given by composition of paths (one must
first make a homotopy so that the end of one path is the beginning of the next)

The map [(F) 2] —(f). forgetting about the 2-framing, clearly defines a surjective
homomorphism [ — I'. Moreover different choices of x differ by integers (relative p, ), so
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that we have an exact sequence of groups
1oZ->T>T -1 @3.1)

An integer me Z acts on a pair [(f), a] simply altering o by the integer m. In particular Z is
in the centre of [ so that (3.1)is a central extension. In the next section we shall identify this
extension by its cohomology class.

§4. COCYCLES

Applying the canonical 2-framing of §2 to the 3-manifolds Y, of §3 we see that we get
a canonical section s of the central extension

zZ-T

|

T

2%

This gives us a canonical 2-cocycle for this extension, namely

c(f; 9) = s(Ns(e)ls(f1™*

is the integer difference between the two 2-framings s( f)s(g) and s(fg) of X ;4. Now consider
the 4-manifold Z introduced in §3 whose 3-boundary components are X, X, and — Xy
By definition of the product in [, the relative p, for Z (ie. 3p,(2TZ)) with 2-framings s(f),
s(g) and s(f)s(g) is zero. By definition of the canonical 2-framings of §2, the relative p, for
7 with 2-framings s(f), s(g) and s( fg) is 3 Sign Z (see Remark (3) following Proposition 1).
Hence

c(f,g) = 3Sign Z. @.1)

Now the cohomology of the 4-manifold Z (constructed from f, g) depends only on the
induced elements f*, g* in the symplectic group Sp(2n, R), where n = genus of X, induced
by the action of f, g on H!(X, R). Moreover Sign Z viewed as a function of f*, g* is
a 2-cocycle for the symplectic group. This follows easily from the additivity of the signature
and was observed by Meyer [5], who identified the cohomology class of this signature
cocycle as 4 times the standard generator.

Another (elementary) treatment of the signature cocycle can be found in [1; §2] in
a context close to the present one. From the results in [1] we have

[Sign] = 4c,(V)e H*(T, Z) 4.2)

where [Sign] is the cohomology class of the signature cocycle and V is the equivariant
vector-bundle on Teichmiiller space which associates to each complex structure 7 on X the
space of holomorphic differentials on X,.

From (4.1) and (4.2) we deduce immediately

PRrOPOSITION 2. The cohomology class of the extension Z — [ — I defined in §3 is 12 times
the first Chern class of the bundle V of holomorphic differentials.

Remarks

1. The factor 12 is well-known in conformal field theory and there are many derivations
of it. Our computation was based on the Hirzebruch signature theorem and used only
standard topological constructions.
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2. Proposition 2 merely identifies the cohomology class of the extension. In fact formula

(4.1) gives more precise information identifying the section s in terms of the signature
cocycle (and its associated section s'). This can also be expressed in terms of a commutative

diagram
V4 =
1]

The sections s and s’ are both “natural”, i.e. they are invariant under conjugation.

§5. FURTHER COMMENTS

The canonical 2-framing of §2 can also be interpreted in terms of the n-invariant of [2].
Recall that this is a spectral invariant of a Riemannian metric on a 3-manifold Y which
refines the “gravitational Chern-Simons” invariant. More precisely the Chern-Simons
invariant of a connection 4 on Ty

CS(4)eR/Z

is only defined modulo integers, and a trivialization of TY picks a particular branch of
CS(A) as a real-valued function. For the Levi-Civita connection A, of a metric p it was
shown in [3; (4.19)] that

CS(4,) = 3n,mod Z,

so that 3z, defines a canonical branch of CS(4,). This then extends to give a canonical
branch of CS(A) for all connections A.

On the other hand the canonical 2-framing of Y also defines a canonical branch of
CS(A), using the formula

CS(A) = 3CS(24),

where 24 is the induced connection on 27y.
It is not hard to see that these two canonical branches of CS(A) coincide. In fact let
0Z =Y, then (by definition)

SignZ = §p,(2T;, ®), (5.1

where « is the canonical 2-framing of Y. Now compute this relative p, by using a connection
on 27T, which comes from a Levi-Civita connection on all Z, except for a final cylinder:

2 framing
metric p

This gives
02T, 0) = j pi(4,) — CS,(4,),
z

where CS, is the branch given by a. Substituting in (5.1) and comparing with the main
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theorem of [2]
. 1
SignZ = 3 jp‘(A”) — 1,

shows that
CS,(4,) =31,

identifying the two canonical choices of the gravitational Chern—Simons function.

In [7] Witten explains that to get a topologically invariant regularization of the
Feynman integral with Chern-Simons Lagrangian it is necessary to add a “counter-term”
depending on the metric. For this to be unambiguously defined he needs a framing of the
3-manifold Y. In fact a 2-framing is equally good. Our canonical 2-framing would therefore
give an invariant for an oriented 3-manifold. As mentioned in §1 this is perhaps relevant in
connection with the recent work of Reshetikin and Turaev [6] in which framings do not
appear explicitly.

In computing the large k (semi-classical) limit of his partition function Witten gets a sum
over representations of 7,(Y) multiplied by an overall phase factor

exp <2nid0(a)>
—5 )

where d = dim G and o(«) is essentially the topological invariant of the 2-framing o on
Y defined by (2.1). Thus if we choose the canonical 2-framing for o this phase factor disappears.

The canonical 2-framings of 3-manifolds that we have introduced therefore provide
a convenient normalization of Witten’s 3-manifold invariants. However, from the Hamil-
tonian point of view, the central extension [~ of I plays an essential role. It is supposed to act
on the (finite-dimensional) Hilbert spaces of the theory, while I" itself only acts projectively.
If

p=0(f)ael

then its character for the Hilbert space representation in question is supposed to give the
partition function for the 3-manifold X, with the 2-framing o. Choosing always the
canonical 2-framing would mean that we would compute the character of the representa-
tion of T~ on the image s(I') given by the canonical section s: T — . Such formulae would
then need to be supplemented by the explicit form of the cocycle ¢ (given by (4.1)) which
describes the deviation of s from being a homomorphism.

Finally the case of genus 1 deserves a comment. In that case [=SLQ2,2) and
H2(T, Z) = Z,,, so that (by Proposition 2) the extension [ splits. Moreover since there are
no non-zero homomorphisms I' — Z, the splitting s,:T — f is unique. It is therefore
interesting to compare this splitting s, (a homomorphism) with the canonical section s of §3
(which is not a homomorphism). The computation of the integer function of yeI" which
gives the difference between s(y) and s, (y) is the main topic treated in [1] in relation to the
Dedekind n-function.
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