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Introduction

For any finite CW-complex X we can define the Grothendieck group
K(X). It is constructed from the set of complex vector bundles over X
[see (8) for precise definitions]. It has many formal similarities to the
cohomology of X, but there is one striking difference. Whereas co-
homology is graded, by dimension, K(X) has only a filiratson: the sub-
group K (X) is defined as the kernel of the restriction homomorphism

K(X)~> K(X,1),

where X ,_, is the (¢—1)-skeleton of X. Now K(X) has a ring structure,
induced by the tensor produoct of vector bundles, and this is compatible
with the filtration, so that K(X) becomes a filtered ring. There are also
natural operations in K(X), induoed by the exterior powers, and one of
the main purposes of this paper is to examine the relation between
operations and filtration (Theorem 4.3).

Besides the formal analogy between K(X) and cohomology there is a.
more preoise relationship. If X has no torsion this takes a particularly
simple form, namely the even-dimensional part of the integral co-

hOID.OlOg rmg HW(X, Z) — Zqu(X’ Z)
g

is naturally isomorphic to the graded ring
GK(X) = ;2 Koo(X )/ Byg1(X)-

Since this isomorphism preserves the ring structures, it is natural to
ask about the operations. Can we relate the operations in K-theory to
the Steenrod operations in cohomology ?

If we consider the way the operations arise in the two theories, we see
that in both cases a key role is played by the symmetric group. It is
well known [cf. (10)] that one way of introducing the Steenrod operations
is via the cohomology of the symmetric group (and its subgroups). On
the other hand, the operations on vector bundles come essentially from
representations of the general linear group and the role of the symmetric
group in constructing the irreducible representations of GL(n) is of
course classical {cf. (11)]. A closer examination of the two cases shows
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that the symmetric group enters in essentially the same way in both
theories. The operations arise from the interplay of the kth power map
and the action of the symmetric group S;.

We shall develop this point of view and, following Steenrod, we shall
introduce operations in K-theory corresponding to any subgroup G
of 8. Taking k = p (a prime) and @ = Z,, to be the cyclic group of
order p we find that the only non-trivial operation defined by Z, is
the Adams operation y®. This shows that y? is analogous to the total
Steenrod power operation > P* and, for spaces without torsion, we obtain
the precise relationship between y? and the P* (Theorem 6.5). Inciden-
tally we give a rather simple geometrical description (2.7) of the opera-
tion Y7,

It is not difficult to translate Theorem 6.5 into rational cohomology
by use of the Chern character, and (for spaces without torsion) we
recover & theorem of Adams (1). In fact this paper originated in an
attempt to obtain Adams’s results by more direct and elementary
methods.

Although the only essentially new results are concerned with the
relation between operations and filtration, it seems appropriate to give
& new self-contained account of the theory of operations in K-theory.
We assume known the standard facts about K-theory [cf. (8)] and the
theory of representations of finite groups. We do not assume anything
about representations of compact Lie groups.

In § 1 we present what is relevant from the classical theory of the
symmetric group and tensor products. We follow essentially an idea of
Schur [see (11) 215], which puts the emphasis on the symmetric group
S, rather than the general linear group GL(n). This seems particularly
appropriate for K-theory where the dimension 7 is rather a nuisance
(it can even be negativel). Thus we introduce a graded ring

R, = 3 Homa(R(S,), Z),

where R(S)) is the character ring of S;, and we study this in considerable
detail. Among the formulae we obtain, at least one (Proposition 1.9) is
probably not well known. In § 2, by considering the tensor powers of a
graded vector bundle, we show how to define a ring homomorphism

J: By —~ Op(K),
where Op(K) stands for the operations in K-theory. The detailed

information about R, obtained in § 1 is then applied to yield results in
K-theory.
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§ 3 is concerned with ‘externalizing’ and ‘relativizing’ the tensor
powers defined in § 2. Then in § 4 we study the relation of operations
and filtration. § 5 is devoted to the cyclic group of prime order and ita
related operations. In § 6 we investigate briefly our operations in
connexion with the spectral sequence H*(X,Z) =~ K*(X) and obtain
in particular the relation with the Steenrod powers mentioned earlier.
Finally in § 7 we translate things into rational cohomology and derive
Adams’s result.

The general exposition is considerably simplified by introducing the
functor K(X) for a G-space X (§ 2). We establish some of its elementary
properties but for a fuller treatment we refer to (4) and (9).

The key idea that one should consider the symmetric group acting on
the kth power of a complex of vector bundles is due originally to Grothen-
dieck, and there is a considerable overlap between our presentation of
operations in K-theory and some of his unpublished work.

I am indebted to P. Cartier and B. Kostant for some very enlightening
discussions.

1. Tensor products and the symmetric group

For any finite group @ we denote by R(Q) the free abelian group
generated by the (isomorphism classes of) irreducible complex represen-
tations of G. Itisaring with respect to the tensor product. By assigning
to each irreducible representation its character we obtain an embedding
of R(@) in the ring of all complex-valued class functions on @. We shall
frequently identify R(@) with this subring and refer to it as the character
ring of @. For any two finite groups @, H we have a natural isomorphism

R(G) ® E(H) - R(G XH).

Now let 8 be the symmetric group and let {V,} be a complete set of
irreducible complex S;-modules. Here = may be regarded as a partition
of k, but no use will be made of this fact. Let E be a complex vector
space, E®* its kth tensor power. The group S, acts on this in a natural
way, and we consider the classical decomposition

E®* ~ an ®n(E),
where 7(E) = Homg,(V,, E®*). We note in particular the two extreme
cases: if ¥, is the trivial one-dimensional representation, then =(E) is
the kth symmetric power o*(E); if ¥, is the sign representation, then
w(E) is the kth exterior power A¥( £). Any endomorphism 7' of E induoces
an S;-endomorphism 7T'®* of E®*, and hence an endomorphism =(7T') of
m(F). Taking T € QL(E), we see that =(E) becomes a representation
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space of GL(E), and this is of course the classical construction for the
irreducible representations of the general linear group. For our pur-
poses, however, this is not relevant. All we are interested in are the
character formulae. We therefore proceed as follows.

Let £ = C™ and let T be the diagonal matrix (¢,,...,¢,). Sinoe the
eigenvalues of T'®* are all monomials of degree k in ¢,,...,¢,, it follows
that, for each =, Tracen(7T) is a homogeneous polynomial in ¢,,...,¢,
with integer coefficients. Moreover, Trace n(7T') = Trace(w(S-17'8)) for
any permutation matrix S and so Tracen(7') is symmetric in ¢,,...,¢,.
We define

Apx = Traceg,(T®%) = 3 Tracen(T) Q[V,] € Symy[t,,..., 1] ® R(S,),

where [V.] € R(S;) is the class of ¥V, and Sym,[¢,,...,t,] denotes the
symmetric polynomials of degree k. If we regard R(S,) as the character
ring, then A, is just the function of ¢,...,{, and g € §; given by
Trace(gZ'®%). There are a number of other ways of writing this basic
element, the simplest being the following proposition:

Prorosrrion 1.1. For any partition « = (oy,..., ) of k let p, € RB(S;)
be the representation induced from the trivial representation of
Sy = By X84y X... X8y,
then A= Y m, Qpq

ak
where m, 18 the monomial symmetric function generated by 143 ...t and
the summation 18 over all partitions of k.

Proof. Let E* be the eigenspace of T'®k corresponding to the eigen-
value 52 £5r ... t. This has as a basis the orbit under S; of the vector

€y = e{&rx. ®€1®a' ®€?ﬂ',

where ¢,,..., ¢, are the standard base of C*. Since the stabilizer of e is
just the subgroup §,, it follows that = is the induced representation p,,.
Since S, and Sg are conjugate if « and B are the same partition of k, it

follows that A — 1 Qpy= 2 My ®pa»
Jof =k ark

where the first summation is over all sequences ay, oy,... With
ol = 3 oy = k.
Now let us introduce the dual group
R,(S;) = Homz(R(S}),Z).
Then A, ; defines (and is defined by) a homomorphism
AL y: Ry(Sy) = Symyft,,..., t,).
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From the inclusions S X8~ Spu
we obtain homomorphisms

B(Spv1) > R(S,XS) == R(S,) ® R(S)
and hence by duality
R.(S) ® BlS) > R y(Se4)-
Putting B, = 3 R,(S;) we see that the above pairings turn R, into
k>0

a commutative graded ring. This follows from the fact, already used in

Proposition 1.1, that S, and Sg are conjugate if « and B are the same
partition. Moreover, if we define

AL : R, - Sym[t,,...,t,]
by A, = 3 AL, we see that A} is a ring homomorphism. This follows
from the multiplicative property of the trace:
Trace(g, g, T®*+)) = Trace(g, T'®*)Trace(g, T'®),
where g, € S, g, € S;. Finally we observe that we have a commutative
diagram

_R‘ An+1 — Sym[tls .-.,tﬂ,]

A

Sym [ £y, ..., tn]
where the vertical arrow is given by putting ¢,,, = 0. Henoce passing
to the limit we can define
A’: R, - lim Sym[t,,...,£,].
n

Here the inverse limit is taken in the category of graded rings, so that
li£1 Symlt,,...,t.] = kgol}_m Sym,[t,,..., t,]
n

n

is the direot sum (and not the direct product) of its homogeneous parts.
Prorosrrion 1.2. A’: R, - lim Sym[¢,,...,¢,]

n

8 an tsomorphism.
Proof. Let o*e R,(S,) denote the homomorphism R(S;)—~>Z
defined by HMl)=1, o*F) =0 iV, #1,



170 M. F. ATIYAH
where 1 denotes the trivial representation. Since #(E) is the kth sym-
metric power of £ when V, = 1, it follows from the definition of A , that
A;l,k(ak) = hk(tl"--: tu)
is the kth homogeneous symmetric function (i.e. the coefficient of 2* in
TTI (1—=zt)-1). Since the h, are a polynomial basis for the symmetric
functions, it follows that A}, is an epimorphism for all n. Now the rank
of R(8,) is equal to the number of conjugacy classes of S, that is the
number of partitions of k, and henoe is also equal to the rank of
Sym,[t,,...,,] provided that n» > k. Henoce
A;'L,k: 'R*(Sk) - Synh:[tl""’ tn]
is an epimorphism of free abelian groups of the same rank (for n» > k)
and hence is an isomorphism. Since
Symk[tlr--’ tn+1] g Symk[tly"" tn]
i8 also an isomorphism for n > k, this completes the proof.

CoBOLLARY 1.3. R, 18 a polynomial ring on generators o', d3,....

Instead of using the elements o* € R,(8,) we could equally well have
used the elements A* defined by

A(V,) =1 ifV, is the sign representation.

A¥(F.) = 0 otherwise.
Since 7(#) is the kth exterior power when = is the sign representation
of §,, it follows that AL OF) = ey(tyyoms £a)
is the kth elementary symmetric function. Thus R, is equally well a
polynomial ring on generators A%, A%,....

CoroLLARY 1.4. Let A, = 3 a; ®b; with a; € Sym,[t,,...,¢,] and
b; € R(Sy), and suppose n > k. Then the a; form a base if and only if the
b, form a base. When this is so the a, determine the b; and conversely, i.e.
they are ‘dual bases’.

Proof. This is an immediate reinterpretation of the fact that Aj, , is
an isomorphism.

CoroLLARY 1.5. The representations p, form a base for R(S,).

Proof. ‘Apply Corollary 1.4 to the expression for A, ; given in Pro-
position 1.1. Since the m, are a basis for the symmetrioc functions, it
follows that the p, are a basis for R(S;).

CorOLLARY 1.6. The characters of S, take integer values on all conjugacy
classes.
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Proof. The characters of all p, are integer-valued and so Corollary 1.6
follows from Corollary 1.5.

Note. Corollary 1.6 can of course be deduced fairly easily from other
considerations.

Let C(S,) denote the group of integer-valued class functions on S,.
By Corollary 1.6 we have a natural homomorphism

R(8y) > O(Sy).
This has zero kernel and finite cokernel, and the same is therefore true
for the dual homomorphism
Cu(Sg) > Ry(Sy).
The direct sum C, = > C,(S;) has a natural ring structure, and
k>0
C.,—~ R,

i8 a ring homomorphism. We shall identify C, with the image subring
of R,. From its definition, C,(S;) is the free abelian group on the
conjugacy classes of S,. Let J* denote the class of & k-cycle. Then C, is
a polynomisl ring on ¢,y3,.... The next result identifies the subring
A'(C,) of symmetrioc functions:

PROPOSITION 1.7. AL(*) = my(ty,... b)) = 3 & 0 that A'(C,) is the

i=1
subring generated by the power sums m,.
Proof. By definition we have
A, (*) = Trace(gT®*),
where g € S, is a k-oycle. Now use Proposition 1.1 to evaluate this trace

and we get By = 3. mapala).

But, if H ¢ @, any character of @induced from H is zero on all elements of

G not conjugate to elements of H. Hence, taking H = S,, @ = §;, we

see that p,(g) = O unless « = k (i.e. « is the single partition k). Since
= 1 ded ’

Px(9) , we deduce ALk — m,,

a8 required.
CoroOLLARY 1.8. Let Q, be the Newton polynomial expressing the power
sum m, n terms of the elementary symmetric functions e,,..., e, t.e.

me = Qk(clr---)ck)y
then b = Qu(ML,...,A¥) € R,.
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Remark. Let us tensor with the rationals Q, so that we can introduce

€a € B(S) ®Q,
the characteristic function of the conjugacy class defined by the partition

«. Then Proposition 1.7 is essentially equivalent to the following
expression [cf. (11) VII (7.6)] for A, ,

An,k = agkpa(t) ® €4 € Symk[tl"": tn] ® R(Sk) ® Q:

where p, is the monomial in the power sums

k
Pa = ]:Il (m._»)a‘, o = 19126 |
Since A’(A,) = &, it follows that we can write A, ; in the form
An,k = z Qa(t) ®ba’
d-k
where ¢, is the monomial in the elementary symmetric functions

k
o= I 0 am1m2m,

and the b, are certain uniquely defined elements in R(S;). We shall not
attempt to find b, in general, but the following proposition gives the
‘leading coefficient’ b.

Prorosrrion 1.9. Let M denote the (k—1)-dimenssonal representation
k
of S given by the subspace > z, = 0 of the standard k-dimenssonal represen-
=1
tation. Let AY(M) denote the ith extersor power of M, and put

A_(M) = 3 (—1)'AY(H) € B(S,).
Then we have

Ay x = (—1)*2e,(t) ® A_;(M)+-composite terms,
where ‘composite’ means involving a product of at least two e(t).
Proof. In the formula
An,k = Z Qa(t) ®ba’
ok

the b, are the basis of R(S;) dual to the basis of R,(S,) consisting of
monomials in the Af. Thus b, is defined by the conditions

(bk: Ak) = 1)

bpu) =10
if 4 is composite in the A’. Since the it are related to the A* by the
equations of Corollary 1.8

Y& = Qu(\L,...,A¥) = (—1)*-1kA, 4 composite terms,
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we can equally well define b, by the conditions

by, Y*) = (—1)*1k,

(bkx ) =0
if u is composite in the y*. To prove that b, = (—1)¥-1A_,(M), it remains
therefore to check that the character A_,(M) vanishes on all composite
classes and has value k on a k-cycle. Now, if g € S, is composite, i.e. not &
k-oycle, it has an eigenvalue 1 when actingon M ;ifg = (1...r)(r+1,... 8)...
is the cycle decomposition, the fixed vector is given by

1 . 1 .
2= 1<), e (J>n.

Since A_,(M)(g) = det(l—g,,), where g,, is the linear transformation
of M defined by g, the existence of an eigenvalue 1 of g,, implies
A_,(M)(g) = 0. Finally take g = (1 2 ... k) and consider the k-dimen-
sional representation N = M@ 1. Then gy is given by the following
matrix 0 1

gn =

1
and so det(1—tg,) = 1—tk. Hence

det(l—tgy) = det(l1—tgy). (1—1)~*

1—¢ 2 k-1
=l—_t=l—|—t—|—t 4. R
and so A_(M)(g) = det(l—gy) = &,

which completes the proof.
If @ c S, is any subgroup, then we can consider the element

A, (@) € Sym,lt,,.... t,] ® B(G)
obtained from A, , by the restriction 7: B(S,) - B(G). Similarly
A;z,k(G) : R#(G) g Symk[tli"" ta]
is the composition of A , and
N Be(G) = B (8).

Consider in particular the special case when & = p is prime and G = Z,,
is the cyclic group of order p. The image of

n: R(8,) > R(Z,)
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is generated by the trivial representation 1 and the regular representationr
N of Z,, (this latter being the restriction of the standard p-dimensional
representation of S,). Hence we must have

Anp(Zp) = a(t) @ 1+b(t) ® N

for suitable symmetric functions a(t), b(t). Evaluating E(S,) on the
identity element we get e — atpb.

Evaluating on a generator of Z,, and using Proposition 1.7 we get

m, = a.
Hence b = ef—m, which has, of course, integer coefficients since
(3t)p=3tF modp.
Thus we have established the proposition:

PRrOPOSITION 1.10. Lef p be a prime. Then restricting A,, ,, from the sym-~
meiric group to the cyclic group we get

AppZp) =m, @1 +ef;mp ®N,

where N &3 the regular representation of Z,.
Let 67 € R,(S,) be the element corresponding to

e’-f—;ﬂ” € Sym,[¢,,..., t,]

by the isomorphism of Proposition 1.2 (for » > p), i.e.

' pp _ F—mmy
AP = P
Then Proposition 1.10 asserts that 67 is that homomorphism R(8,)>Z
whioch gives the multiplicity of the regular representation N when we
restriot to Z,. Thus, for p € R(S,),

7(p) = $¥(p)1+67(p) X, (1.11)
where 7: E(8,) > R(Z,) is the restriction.

2. Operations in K-theory

Let X be a compact Hausdorff space and let @ be a finite group. We
shall say that X is a G-space if G acts on X. Let E be a complex vector
bundle over X. We shall say that E is a G-vector bundle over the G-
space X if F is a G-space such that

(i) the projection E — X commutes with the action of @,

(ii) for each g € G the map E, —» E,, is linear.
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The Grothendieck group of all @-vector bundles over the G-space X is
denoted by K(X). Note that the action of @ on X is supposed given:
it is part of the structure of X. Since we can always construct an in-
variant metric in a G-vector bundle by averaging over G, the usual
arguments show that a short exact sequenoce splits compatibly with G.
Hence, if

0>E >E,—>..>E, >0

is a long exact sequence of G-vector bundles, the Euler charaocteristio
> (—1)[E,] is zero in K4(X). For a fuller treatment of these and other
points about K ;(X) we refer the reader to (4) and (9).

In this section we shall be concerned only with a trivial G-space X,
l.e. g(x) = z for all z € X and g € G. In this case a G-vector bundle is
just a vector bundle F over X with a given homomorphism

G > Aut K,

where Aut E is the group of vector bundle automorphisms of £. We
prooceed to examine such a Q-vector bundle.

The subspace of E left fixed by G forms a subvector bundle £¢ of E:
in fact it is the image of the projection operator

1
] Z g
oeG
and the image of any projection operator is always a sub-bundle (4). If
E, F are two G-veotor bundles, then the subspace of Hom(E, F) con-
sisting of all ¢,: E, - F, commuting with the action of G forms a sub-
vector bundle Hom(E, F): in fact Homy(E, F) = (Hom(E, F))¢. In
particular let ¥V be a representation space of @, and let V denote the
corresponding G-vector bundle X XV over X. Then, for any G-vector
bundle F over X, Hom(V, E) is a vector bundle, and we have a natural
homomorphism V @ Hom 4V, E) - E.
Now let {V.}... be a complete set of irreducible representations of G
and consider the bundle homomorphism

a: >{V, ®Homy(V,, E)} > E.

For each z € X, «_ i8 an isomorphism. Hence « is an isomorphism. This
establishes the following proposition:

ProposrrioN 2.1. If X is a trivial G-space, we have a natural ts0-
morphism K(X) ® R(G) > K4(X).
In particular we can apply the preceding discussion to the natural
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action of S, on the k-fold tensor product E®* of a vector bundle £. Thus
we have a canonical decomposition compatible with the action of S,

Eex = Z {Vfr ® Homsl(vn! E@k)}'

We put 7n(E) = Homg,(V,,, E®¥).

Thus = is an operation on vector bundles. In fact #(Z) is the vector
bundle associated to E by the irreducible representation of GL(n)
{(n = dim E) associated to the partition =, but this fact will play no
speoial role in what follows.

Our next step is to extend these operations on vector bundles to
operations on K(X). For this purpose it will be convenient to represent
K(X) as the quotient of a set ¥(X) by an equivalence relation (elements
of (X)) will play the role of ‘cochains’). An element of €(X) is a graded
vector bundle E =5E{, where K, = 0 for all but a finite number of

values of . We have a natural surjection
€(X) > K(X)
given by taking the Euler characteristic [E] = > (—1)[E,]. The
equivalence relation on ¥(X) which gives K(X) is clearly generated by
isomorphism and the addition of elementary objeots, i.e. one of the form
> P, with
P, = F,,, (forsomej), FB=0 (¢++#735+1).

Similarly for a G-space X we can represent K, (X) as a quotient of
€s(X), where an element of €,(X) is a graded G-vector bundle.

Suppose now that E € €(X) is a graded vector bundle. Then E®* is
also a graded vector bundle, the grading being defined in the usual way
as the sum of the degrees of the % factors. We consider 8, as acting on
K%k by permuting factors and with the appropriate sign change. Thus a
transposition of two terms e, ® e, (where ¢, € H,, ¢, € ) carries with it
the sign (—1)?¢. The Euler characteristic [ £®*] of E®*is then an element
of Kg (X).

ProrosrTION 2.2. The element [E®*] € Kg,(X) depends only on the
element [ K] € K(X). Thus we have an operation:
®k: K(X) - Kg,(X) = K(X) ® E(S).
Proof. We have to show that, if P is an elementary object of €(X),
then [(E@® P)®*] = [E®¥] ¢ K (X).
But we have an S,-decomposition:
(B® P)®* ~ E®* D Q.
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We have to show therefore that [@] = 0in Kg (X). To do this we regard
E a8 a complez of vector bundles with all maps zero and P as a complex
with the identity map P, » P,,;. Then (F @ P)®*is a complex of vector
bundles, and 8, acts on it as a group of complex automorphisms (because
of our choice of signs). The same is true for E®* and Q. Now @ contains
P as a factor, and so @ is certainly acyclic. Hence, by the remark at the
beginning of this section, we have [@] = 0 in K, (X) as required.

Remark. If we decompose E®* under S,
E® 3V, @(B),

where 7(E) = Homg,(V,,, E®*), Proposition 2.2 asserts that E > n(E)
induces an operation = K(X) > K(X).

Let Op(K) denote the set of all natural transformations of the functor
K into itself. In other words, an element 7' € Op(K) defines for each
X a map T(X): K(X) > K(X),
which is natural. We define addition and multiplication in Op(K) by
adding and multiplying values. Thus, for a € K(X),

(T+8)(X)a) = T(X)(a)+8(X)a,
T8(X)(a) = T(X)a.S8(X)a.
If we follow the operation
®k: K(X) > K(X) ® R(S)
by a homomorphism ¢: B(S;) - Z we obtain a natural map
T,: K(X) - K(X).
This procedure defines a map
Ji: Ba(S) ~ Op(K)
which is a group homomorphism. Extending this additively we obtain
& ring homomorphism j:R, - Op(K).
We have now achieved our aim of showing how the symmetric group
defines a ring of operations in K-theory. The structure of the ring R,
has moreover been completely determined in § 1. We conclude this
section by examining certain particular operations and connecting up
our definitions of them with those given by Grothendieck [cf (5); § 12]
and Adams (2).
To avoid unwieldy formulae we shall usually omit the symbol j and

just think of elements of R, as operations. In fact it is not difficult to
3695.2.17 N
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show that j is a monomorphism (although we do not really need this
fact), so that R, may be thought of as a subring of Op(K).

Al] the particular elements that we have described in § 1, namely
o*, A J* 67, can now be regarded as operations in K-theory. From the
way they were defined it is clear that, if £ is vector bundle, then A¥[E]
is the class of the kth exterior power of E, and o*(E) is the class of the kth
gsymmetric power of E. A general element of K(X) can always be re-
presented in the form[ E,]1—[E,], where E, E, are vector bundles. Taking
(Eo @ E,)®* as an S,-complex and picking out the symmetric and skew-
symmetric components, we find

HUEN—B]) = 3 (— 1o IEWE) )
MIEI-B) = 5 (—)V¥EJE) @

Putting formally A, = > A*u¥, o, = 3 o*u*, where u is an indeterminate,
and taking E, = E, in (1), we get
o B A [E] = 1. (3)
This identity could of course have been deduced from the corresponding
relation between the generating functions of ¢, and A, by using the iso-
morphism of (1.2). Now from (2) we get
’\u( [Eo]_[El]) = AJ[EoJo [ Ey]
= AJE[E ] by (3).

This is the formula by which Grothendieck originally extended the A*
from vector bundles to K. Thus our definition of the operations A*
coincides with that of Grothendieck. Essentially the use of graded tensor
products has provided us with a general procedure for extending opera-
tions which can be regarded as a generalization of the Grothendieck
method for the exterior powers.t

Adams defines his operations * in terms of the Grothendieck A* by
use of the Newton polynomials

P = Qp(AL,..., AF).
Corollary 1.8 shows that our definition of y* therefore agrees with that
of Adams. An important property of the * is that they are additive.
We shall therefore show how to prove this directly from our definition.

ProrosiTioN 2.3. Let E, F be vector bundles, then
YHE1L[F]) = Y E) Ly F).

1 This fact was certainly known to Grothendieck.
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Proof. Construct a graded vector bundle D with D, = E, D, = F and
consider D®*. The same reasoning as used in Proposition 1.1 shows
that X
[D]®* =12 (—1Y ind,[E®*~ @ F®] € K(X) ® R(S,),

=0

where ind;:K(X) ® R(S,;X8;) > K(X) ® R(S,) is given by the
induced representation. Here E®*-J is an S,_;-vector bundle via the
standard permutation, while S acts on F® via permutation and signs.
To obtain y*[D] we have to evaluate R(S,) on a k-cycle. As in Proposi-
tion 1.1 all terms except j = 0, k give zero ; since the sign of a k-oycle is
(—1)*1 we get
YHE]—[F]) = MET+(—1)F(—1)*Y*[F]
= YME]—y*[F].

For [E]4[F] the argument is similar but easier.

The multiplicative property

YME @ F] = * EW*[F]
follows at once from the isomorphism
(E ® F)®k o E®* @ Fok

and the multiplicative property of the traoce.

Suppose now that we have any expansion, as in Corollary 1.4, of the
basic element A, , in the form

An,k = 2 a; bi!
where the a; € Sym,|[¢,,...,¢,] are a basis and the b, € R(S;) are therefore
a dual basis (assuming n > k). Then, for any z € K(X), we obtain &
corresponding expansion for z®*:
2% — a(2) ® b € K(X) @ R(S),

where o; = (A’)a, € R,. This follows at once from the definition of A’
and the way we have made R, operate on K(X).

Taking the a, to be the monomials in the elementary symmetrio
functions the «, are then the corresponding monomials in the exterior
powers A'. Proposition 1.9 therefore gives the following proposition:}

ProposrriOoN 2.4. For any z € K(X) we have
8 = (—1)k-1A¥(z) ® A_,(M)4-composite terms,
where ‘composite’ means involving a product of at least two A (z) and M 18
the (k— 1)-dimensional representation of S,.
+ Now that we have identified the A* of § 1 with the exterior powers we revert
to the usual notation and write A¥(M) instead of A‘(M), and correspondingly

A_1(M) instead of A,(M).
N2
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Now let us restrict ourselves to the cyclic group Z,. The image of
z®* in K(X) ® R(Z,) will be denoted by P*(z) and called the cyclic
kth power. In the particular case when k = p (a prime), (1.11) leads to
the following proposition:

ProrosrrioN 2.5. Let p be a prime and let x € K(X). Then the cyclic
pth power PP(x) 18 given by the formula
Pr(z) = ¢?(z) ® 14-67(z) ® N € K(X) ® R(Z,),
where N 15 the regular representation of Z,,.
Now ¢? and 67 correspond, under the isomorphism
AR, —~ IED Symft,,..., t,],

n
to the polynomials 3 ¢? and -2 respectively. Hence they are
4

related by the formula
yP = (PP —pb7,

so that, for any z € K(X), we have
YP(x) = zP—plP(x).
Substituting this in (2.5) we get the formula

Pr(z) = z? @ 14-67(z) @ (N —p). (2.6)
This is a better way of writing (2.5) since it corresponds to the decomposi-
tion R(Z,) = Z ®1(Z,),

where I(Z,) is the augmentation ideal. Thus

o7 (z) @ (N—p) € K(X) ® I(Z,)
represents the difference between the pth oyclic power P?(z) and the
‘ordinary’ pth power 27 ® 1.

Proposition 2.5 leads to a simple geometrical desoription for J*[V],
where V is a vector bundle. Let 7' be the automorphism of ¥®? which
permutes the factors cyclically and ¥; be the eigenspace of T' corre-
sponding to the eigenvalue exp(2mij/p). Then

YP[V] = [ll—[Nl- (2.7)
In fact from Proposition 2.5 we see that
Vol = y#[V]+67[F]),

Vi=ev] (j=1L..,p—1).
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3. External tensor powers

For a further study of the properties of the operation ® k it is neces-
sary both to ‘relativize’ it and to ‘externalize’ it.

First consider the relative group K4(X,Y), where X is a G-space,
Y asub G-space. As with the absolute case we can consider Ky(X,Y) as
the quotient of a set €4(X, Y) by an equivalence relation. An object £
of €4(X,Y) i8 a G-complex of vector bundles over X acyclic over Y,
i.e. E consists of G-vector bundles E; (with E; = 0 for all but & finite

number) and homomorphisms
d d

b d E‘l - E‘l:+l -

commuting with the action of @, so that d2 = 0 and over each point of
Y the sequence is exact. An elementary object P is one in which P, = 0
(¢ #3, j+1), P, = F,,, and d: P~ P,,; is the identity. The equi-
valence relation imposed on ¥4(X, Y) is that generated by isomorphism
and addition (direct sum) of elementary objects. Then, if F e €4(X,Y),
its equivalence class [E] € K4(X,Y). For the details we refer to (4).
For the analogous results in the case when there is no group, i.e. for the
definition of K(X,Y) a8 a quotient of ¥(X, Y), we refer to (7) [Part II].

Consider next the external tensor power. If E is a vector bundle over
X, we define E®% to be the vector bundle over the Cartesian product
X* (k factors of X) whose fibre at the point (z;XzyX...X%;) i&
E, QFE, Q.. ®E,,. Thus ER®k jg an 8,-vector bundle over the §,-
space X*, the symmetric group S, acting in the usual way on X* by
permuting the factors. Clearly, if

d:X > X*
is the diagonal map, we have & natural S;-isomorphism
d*(EBx) ~ pox. (3.1)

If E is a complex of vector bundles over X, then we can define in an
obvious way EE", which will be a complex of vector bundles over X*.
Moreover E& will be an 8;-complex of vector bundles, X* being an S, -
space as above. If K is acyolic over ¥ c X, then ERk will be acyclic over
the subspace of X consisting of points (z; Xzs X ... X2;) with z; € Y for
at least one value of . We denote this subspace by X*-1Y and we write
(X, Y)* for the pair (X*, X¥-1Y). Thus we have defined an operation

Rk €(X,Y) > €, (X, Y)*
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The proof of (2.2) generalizes at once to this situation and establishes

ProrosrrioN 3.2. The operation E —> EBk induces an operation
Rk: K(X,¥) > Kg (X, T~
COROLLARY 3.3. If z is in the kernel of K(X) - K(), then z8% is in
the kernel of Kg(X%) > g (X*1Y).

Proof. This follows at once from (3.2) and the naturality of the
operation X k.
From (3.1) we obtain the commutative diagram

Rk
E(X) > (x*)
",

Sk i* (3.4)

A 4
B @

Tk .
4. Operations and filtrations

From now we assume that the spaces X, Y ,... are finite C W-complezes.

Then K(X) is filtered by the subgroups K (X) defined by
K (X) = Ker{K(X) -~ K(X,,)},
where X ,_; denotes the (g—1)-skeleton of X. Thus K(X) = K(X) and
K (X) = 0if dim X < n. Moreover, as shown in (8), we have
Ko X) = Koy (X)

for all g. Since any map Y — X is homotopic to a cellular map, it follows
that the filtration is natural.

In [8] it is shown that K(X) is a filtered ring, i.e. that K, K, c K.
In particular it follows that

z € K)(X) = z* € K (X).

‘We propose to generalize this result to the tensor power ®k.

We start by recalling (5) that, for any finite group, there is a natural
homomorphism . a:R(@) - K(By),
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where By is the classifying space of 4. This homomorphism arises as
follows. Let 4 be the universal covering of B, and ¥V be any G-module.
Then A X 4 V is a vector bundle over B;. The construction VA4 X sV
induces the homomorphism

a: B(G) > K(By).
This construction can be generalized as follows. Let X be a @-space and
denote by X ; the space 4 X ; X. If V is & G-vector bundle over X, then

VG - A X G V
is & vector bundle over X ;. The construction ¥V —> V; then induces &
homomorphism ax: Ko(X) > K(Xg).

A couple of remarks are needed here. In the first place there is a clash of
notation concerning Bg. To fit in with our general notation we should
agree that ‘B’ is a point space. Secondly X, like By, is not a finite
complex. Now B, can be taken as an infinite complex in which the
g-skeleton B, is finite for each ¢, and K(Bg) can be defined by
K(Bg) = lim K(Bg,).
4

If we suppose that G acts cellularly on X, then we can put
X5, = A4, XgX, where A, is the universal covering of By, and Xg,
will be a finite complex. We then define

K(X) = lim K(Xo,).

In fact, as will become apparent, there is no need for us to proceed to the
limit. All our results will essentially be concerned with finite skeletons.
We have introduced the infinite spaces B, X ; because it is a little tidier
than always dealing with finite approximations.

Applying the above to the group S, and the spaces X (trivial action)
and X* (permutation action) we obtain a commutative diagram

K (X —2__,K(X%,)
d* da*
(4.1)

Ko (X)—Z > K(Xg,)

K(X) ® B(S,)——K(X X Bg,),
where d* is induced by the diagonal map d: X - X*.

PropostrioN 4.2. Let z € K (X), then
ax1(zB¥) e K (XE).
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Proof. By hypothesis z is in the kernel of
K(X) > K(X,_,).

Hence applying (3.3) with ¥ = X,_; we deduce that 28k ig in the kernel
of p in the following diagram

Ko (X%)——5—>E(X})
[
Kg (X*¥1X,_) — K((X¥1X,_,)g,)
The required result now follows from this diagram, provided that we
verify that (X&) rgor C (X*2X, ),

But any cell ¢ of the (kg—1)-skeleton of X%, = X* X g, A arises from
a product of k cells of X and a cell of A. Hence at least one of the cells
of X occurring must have dimension less than ¢, and 8o ¢ is contained in

as required (X*1X ) )g = XF1X ) X 4,
re ed.

Since the filtration in K is natural, Proposition 4.2 together with the
diagram (4.1) and Corollary 3.3 gives our main result:

THROREM 4.3. Let @k:K(X)—> K(X) ® R(S,) be the tensor power
operation, and let
«: K(X) ® R(S,) > K(X X Bg,)

be the natural homomorphism. Then
z € K (X) > o(2®*%) € K ,(X X Bg,).

COROLLARY 4.4. Let dim X < n and let z € K(X). Then the image of
z®k in K(X) ® K(Bg,q—n-1) 18 ze10.
Proof. By Theorem 4.3 z®* has zero image in K(X X Bg, yy—a—1). But
for any two spaces 4, B the map
K(4) ® K(B) > K(4XB)
isinjective (6). Hence z®*giveszeroin K(X) ® K(Bg, xq-n-1) 88Tequired.
Remark. Theorem 4.3 suggests that for any finite group ¢ and G-
space X we should define a filtration on K4(X) by putting
KG(X)Q = aiqu(X XBG)
With this notation Theorem 4.3 would read simply
z € K(X) => 2®* € Kg,(X)iq-
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To exploit Theorem 4.3 we really need to know the filtration on
K(Bg,) as is shown by the following theorem:

THEOREM 4.5. Assume that K(X)1istorston-free and let dim X < n. Let
z € K (X) and assume that all products X{(z)M(z) witht,j > 0,i+j < k
vanssh. Then X¥(x) 18 divisible by the least integer m for which

mad_,(M) € Kpy_n(Bs,),
M being as in Proposstion 2.4. In particular this holds in the stable range
n < 2q.

Proof. The hypotheses and Proposition 2.4 imply that
28 = (—1)*10%(z) ® (M) € K(X) ® R(Sy).

Let 4 = K(Bg,)/Ki;—n(Bg,), 80 that A4 is a subgroup of K(Bg, z;—n-1)-
From Corollary 4.4 and the fact that K(X) is free it follows that the
image of z®*in K(X) ® A must be zero. Hence A¥(z) must be divisible by
the order of the image of A_,(M) in 4, i.e. by the least integer m for which

mod_y(M) € Kyy_n(Bg,).

Remark. In the proof of Proposition 1.9 we saw that the character
of A_,(M) vanishes on all composite cycles of S,. Thus, if k is not a
prime-power, the character of A_,(M) vanishes on all elements of S, of
prime-power order and so by (5) [(6.10)] A_,(M) is in the kernel of the
homomorphism o~
R(8i) > R(Sy).

Hence oA_,(M) =0 and so Theorem 4.5 becomes vacuous. Thus
Theorem 4.5 18 of tnterest only when k 18 a prime-power.

In order to obtain explicit results it is necessary to restrict from S,
to the cyclic group Z,. In this case the calculations are simple. First we
need the lemma:

Lemma 4.6. Let Y = B, then
K(Yaq-l) = R(Zy)[1(Z)%
Proof. Since Y has no odd integer cohomology, it follows that
KY(Y,Y,, ,) = 0, and so from the exact sequence of this pair we deduce

K (Yog-1) = K(Y)[Ezy( Y).
But we know [(5) (8.1)] that
K(Y) = R(Zy),
and K, (Y) is the ideal generated by 1(Z,)?. Hence
K(Y)[Eo( Y) 2 R(Z) 1(Z,)0,
and the lemma is established.
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Remark. The results quoted from (5) are quite simple, and we could
easily have applied the calculations used there direotly to Yo _;.
Combining Corollary 4.4 and Lemma 4.6 we deduce the proposition:

PropoSITION 4.7. Let dim X < 2m and let x € Ky((X). Then the kih
cyclic power P¥(z) € K(X) ® R(Z,) i tn the image of K(X) ® I(Z;)«™.

The case when k¥ = p, a prime, is of particular interest because Z,, is
then the p-Sylow subgroup of 8. This means that, as far as p-primary
results go, nothing is lost on passing from 8, to Z,,. In the next section
therefore we shall study this case in detail.

5. The prime cyclic case

Lemma 5.1. Let pe R(Z,) denote the canonical one-dimensional
representation of Z,,

=1
N =5
PN
the regular representation and n = p—1.
Then in E(Z,) we have
P¥(N —p) = (—1)kn®+DXp-D L higher terms.

Proof. Since p? = 1, we have (1+7)? = 1. Thus »? = —pne, where
€ = 1 mod 7 and 80 is & unit in 2. Hence

(=2 ~ 7%, (1)
where we write a ~ b if a = €b with ¢ = 1 mod . Now the identity
Ip—1 —_—
fzo (148) = ﬂ_} = p4+#9-1 modpt

with ¢ replaced by 7 shows that
N—p = 7?1 modpy
= 7?1 modn? by (1).

Hence we have (N—p) ~ 7P-1, (2)
From (1) we have (—p)en ~ P}y,
and so (—p)enP1 ~ oD, (3)

The lemma now follows from (2) and (3).

CoROLLARY 5.2. The order of the image of (N—p) in R(Z,)[1(Z,)" is
* where k i8 the least integer such that k-+1 9_2_1.

Proof. I(Z,) is the ideal (n).
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We can now state the explicit result for the prime case:

TEEOREM 5.3. Suppose that dim X < 2(g-+t) with t < q(p—1) and
let x € Ky \(X). Then 0°(x) is divisible by p?—"-1, where

r=|:p—i—l].

Proof. Since dim X < 2¢gp, we have 27 = 0. Hence by Proposition
2.5 we have
Pr(z) = 67(z) ® (N—p) € K(X) ® R(Zy).
By Proposition 4.7 it follows that 67(z) is divisible by the order of the
image of (N—p) in R(Z,)/1(Z,)*, where
n = pg—q—i.
From Theorem 5.3 it follows that 67(z) is divisible by p*, where k is the

least integer for which

¢
(k1) > 4———.

namely k= q—[;—i—l]—l.

CoROLLARY b5.4. Let the hypotheses be the same as in Theorem 5.3.
Then y»(z) is divisible by pi—, where r — [pL]

Proof. J* and 67 are related by the formula
YP(z) = 2P —pbP(z).
Since zP = 0 in our case, we have

l)l’p(:v) = —pB”(x),
and so the result follows at once from Corollary 5.2.

Remark. Taking ¢t = 0 we find that ?(z) is divisible by p? on the
sphere S®. Note that this result was not fed in explicitly anywhere. It
is of course a consequence of the periodicity theorem, and the computa-
tion we have used for K(Bg) naturally depended on the periodicity
theorem.

The preceding results take a rather interesting form if X has no
torsion. First we need a lemma:

Lemma 5.5. Suppose that X has no torsion (i.e. H*(X,Z) has no torsion)
and let z € K(X). Suppose that the image of z in K(X ) is divisible by d.
Then z 1s divisible by d modulo K, ,,(X), t.e.

T = dy+zr Yy € K(X): zZe€ Kq+1(x)‘
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Proof. Let A, B denote the image and cokernel of

J* K(X) > K(X)).

From the exact sequence of the pair (X, X ) we see that B is isomorphio
to a subgroup of K*(X,X,). But, since X is torsion-free, so is X/X,.
Hence K1(X, X)) is free and therefore also B. Hence, if a € 4 is divisible
by d in K(X,), it is also divisible by d in A. Taking a = j*(z) therefore
we have j*(x) = dj*(y) for some y € K(X),
and 80 z = dy -z, for some z € Kerj* = K, (X).

Using this lemma we now show how Corollary 5.4 leads to the following
proposition:

ProrosrrioN 5.6. Suppose that X has no torsion and let x € Ky )(X).

Then there exist elements
z, € qu+2£(p—1)(X) (‘l = 0, 1,,q)
such that W) = 3 pia,
=0
Moreover we can choose 2, = zP.

Proof. By Theorem 5.3 the restriction of y?(z) to the 2(¢-t)-skeleton,
with ¢ = ¢(p—1)—1, is divisible by p?—*+1. By Corollary 5.4 it follows
that ¢P(z) is divisible by p?-*+! modulo K ,s4,-(X). The required
result now follows by induction on 4. Since yP(z) = z? modp and
z? € K, (X), it follows that z? is a choice for ,.

The elements z; occurring in Lemma 5.6 are not uniquely defined by z.

If, however, we pass to the associated graded group GK*(X) and then
reduce mod p, we see that the element

Z; € GuHe-VK(X) ® Z,
defined by z, s uniquely determined from the relation

YPz = ﬁ Pz
=0
If we multiply z by p or add to it anything in K, ,,(X), we see from
Lemma 5.5 that £, is unchanged. Hence #; depends only on
Z € G¥K(X) ® Z,,.
Now we recall [(8)§ 2] that, since X has no torsion, we have an
isomorphism of graded rings
H%X,Z) ~ GK*(X),
and hence H%(X,Z,) >~ G¥K(X) @ Z,,
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By this isomorphism the operation Z —» Z, must correspond to some
cohomology operation. In the next section we shall show that this is
precisely the Steenrod power P%.

6. Relation with cohomology operations
In the proof of Proposition 4.2 we verified that there was an inclusion
JiXEXE D) > (X, X )
Hence we can consider the map
K(X: qu—l) - K(Xg., (ng)abq—l)

given by z +— o *z®k  If we follow this by a cellular approximation to
the diagonal map X5, - X¥%,, we obtain & map

piK(X, Xpy ) > K(Xsg, (Xg)arg-1)-
From its definition this is compatible with the operation
z > d*ax®k — oy®k

for the absolute groups, i.e. we have a commutative diagram
K(Xs X?q—l) _ K(XSp (XSg)abq—l)
(6.1)
E(X) K(Xg,)

On the other hand, by restricting X to X,  and Xg, to (Xg,)ex, We obtain
another commutative diagram

K(X, Xygy_1) ———> E(Xg,, (Xg,)aeq1)

K(i ag» Xgg-1) K((Xg) sk (X, erg-1) (6.2)
C¥(X) > C'W(Xsk)

where v is the map of cochains given by
vic) =d*[(c®c Q... ®¢c) @rll (6.3)
Here we have made the identification
O%(XE,) = (C*(X) ®z... @2 C*(X)) ®p O*(4),
where 4 — By, is the universal S;-bundle and I is the integral group
ring of S, and similarly we identify
C*Xg,) = C*(X) @ C*(4).
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The commutativity of Diagram 6.2 depends of course on the fact that
the isomorphism K(Xyy, Xgyy) o C%(X)

is compatible with (external) products.
The map » defined by (6.3) induces & map of cohomology (denoted

also by ») v: H9(X,Z) > H™(X g, Z).
The diagrams (6.1) and (6.2) then establish the following

ProrostriOoN 6.4. Let x € K, (X) be represented by a € H3(X,Z) in the
spectral sequence H¥(X,Z)= K*(X). Then oz®*)e Ky, (Xg,) 8
represented by v(a) € H*(Xg,, Z) in the spectral sequence

‘H‘(XSV Z) = K‘(XSE)’
where v 18 tnduced by the formula (6.3).

Remarks. (1) It seems plausible that one could in fact define a tensor-
power operation mapping the spectral sequence of X into the spectral
sequence of Xg,. Proposition 6.4 concerns itself only with the extreme
members E, and E, (and only for even dimensions).

(2) The map v is essentially the parent of all the Steenrod operations,
while 2 —» z®* is the parent of all the operations in K-theory introduced
in § 2. Proposition 6.4 contains therefore, in principle, all the relations
between operations in the two theories. We proceed to make this explicit
in the simplest case:

THEOREM 6.5. Suppose that X has no torsion so that we may sdentify
H*X, Z,) with GK*(X) ® Z,. Ifx € Ky, (X)we denote the corresponding
element of H¥(X,Z,) by z. Let

bz = 5 proia,
=0
be the decomposition of YyPx given by (5.6). Then we have
j{ = P;)(i):
where Pi:H%(X,Z )~ H¥+2e-(X 7,)

8 the Steenrod power (for p = 2 we put Pt = S¢g*).
Proof. By Proposition 6.4 the map
P:K(X) > K(X) @ R(Z,)
induces P.H%X, Z,)~» H"X,Z,) @ H*(Z,, Z,), (1)
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where P is v reduced modp. Now by (2.8) and Lemma 5.5 (choosing
z, = z?) we have the following expression for P(z),

P@) =2, ®1— 3 2 @p-1(N—p) @
By definition of the Steenrod powers [(10) 112] we have
P = § (—10-P@) @ qepo,
where 7 is the canonical generator of H%(Z,; Z,).
Comparing (1) and (2) and using Lemma 5.1 we have the result.

Remark. Proposition 8.5, together with the kind of calculations made
in (3), leads to a very simple proof of the non-existence of elements of
Hopf invariant 1 mod p (including the case p = 2).

7. Reladon with Chern characters
If the space X has no torsion, it is possible to replace the operations
¢* by the Chern character
ch: K*(X) > H*(X; Q).
In fact ch is a monomorphism and y* can be computed from the formulae
chz = 3 chy(z), z € K(X), chy(z) e H¥(X; Q)
‘ chy*z = GZ ke ch ().

Conversely one can define H*(X; Q) and ch purely in terms of the
4% (3). It is reasonable therefore to try to express Theorems 5.6 and
8.5 in terms of Chern characters. We shall see that we recover the
results of Adams (1), at least for spaces without torsion.

If X is without torsion, we identify H*(X;Z) with its image in
H*(X; Q). If a e H¥X; Q), we can write a = b/d for b e H*X; Z)
and some integer d. If d can be chosen prime to p, we shall say that a is
p-integral.

THEOREM 7.1. Let X bea spacewithout torsion, z € Ky (X)and p aprime.
hen
T P ohg.n(@)
n

is p-integral, where  — [p__]

Proof. We proceed by induction on n. For n = 0 (and all ¢) the result
is a consequence of the periodicity theorem (8). We suppose therefore
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that n > 0 and the result established for all r << n—1. By Proposition
5.6 we have

iz = 3 iy 7€ KogratplX),

-0

and so chyrz = ‘io p*tchz,.
Taking components in dimension 2(g+n) we get
Py @) = 3 pertoa@), =[] (1)
In particular, for n = 0, we have
chy(z) = chy(,). (2)

Sinoe X has no torsion, this implies that
Yy = zg—x € Ky o(X).
Replacing z, by 2ty in (1) and multiplying by p*—? we get

PO —1)ohgin@) = Pobonyt 3 Piohn(e). ()

But by the induoctive hypothesis (with g replaced by ¢+1 and ¢+1(p—1)
(¢ > 1)) we see that all terms on the right-hand side of (3) are p-integral.
Hence p*ch,,,(z) is p-integral and so the induction is established.
For any z € K, (X) we denote by Z € H*¥(X, Z,) the corresponding
element obtained from the isomorphism
K(X) ® Z, =~ H¥(X; Z,,).

Now, by Theorem 7.1, pfch,.x, ;) z is p-integral. We may therefore
reduce it mod p and obtain an element of H*+3¢-1(X; Z,). It follows
from Theorem 7.1 that this depends only on Z. We denote it therefore
by T*(Z), so that T*is an operation

H¥%(X; Z,) » H%+20-0(X; Z ).
We now identify this operation.
THEOREM 7.2. The operation 3 T is the snverse of the ‘total’ Steenrod
power S Pt 50
i.e. 20 (3 T o (3, P') = identity.
Proof. As in Theorem 7.1 we have

Yrz = ﬁ P,

=0
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Now in equation (1) above take n = ¢ (p—1) and multiply by »*¢. Then

reducing mod p we get .

0=3Tz) (>0,
-0

£ = TO(&,).
But by Theorem 6.5 we have £; = Pz, and s0 we deduce
!
0= (¥ T-4P)e, &= TPz
=0
In other words, the composition

(2T o (X P)
is the identity operator as required.
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