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Introduction

FOB any finite CW-complex X we can define the Grothendieck group
K(X). I t is constructed from the set of complex vector bundles over X
[see (8) for precise definitions]. I t has many formal similarities to the
oohomology of X, but there is one striking difference. Whereas co-
homology is graded, by dimension, K(X) has only & filtration: the sub-
group Kq(X) is defined as the kernel of the restriction homomorphism

where -Xg_i is the (q— l)-skeleton of X. Now K(X) has a ring structure,
induced by the tensor produot of vector bundles, and this is compatible
with the filtration, so that K(X) becomes a filtered ring. There are also
natural operations in K(X), induced by the exterior powers, and one of
the main purposes of this paper is to examine the relation between
operations and filtration (Theorem 4.3).

Besides the formal analogy between K(X) and cohomology there is a-
more preoise relationship. If X has no torsion this takes a particularly
simple form, namely the even-dimensional part of the integral oo-
homology ring H°*(X; Z) = £ H*{X; Z)

is naturally isomorphio to the graded ring

GK(X) =

Since this isomorphism preserves the ring structures, it is natural to
ask about the operations. Can we relate the operations in isT-theory to
the Steenrod operations in cohomology ?

If we consider the way the operations arise in the two theories, we see
that in both cases a key role is played by the symmetric group. I t is
well known [cf. (10)] that one way of introducing the Steenrod operations
is via the oohomology of the symmetric group (and its subgroups). On
the other hand, the operations on vector bundles come essentially from
representations of the general linear group and the role of the symmetric
group in constructing the irreducible representations of 0L{n) is of
course classical [cf. (11)]. A closer examination of the two cases shows
Quart. J. Mmtb. Oxford (2), 17 (1966), 165-93.
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that the symmetric group enters in essentially the same way in both
theories. The operations arise from the interplay of the fcth power map
and the action of the symmetric group Sk.

We shall develop this point of view and, following Steenrod, we shall
introduce operations in JT-theory corresponding to any subgroup 0
of Sk. Taking k = p (a prime) and 0 = Zp to be the cyclic group of
order p we find that the only non-trivial operation defined by Zp is
the Adams operation ifi*. This shows that ipp is analogous to the total
Steenrod power operation 2-P1 and, for spaces without torsion, we obtain
the preoise relationship between 0" and the P* (Theorem 6.5). Inciden-
tally we give a rather simple geometrical description (2.7) of the opera-
tion ipp.

It is not difficult to translate Theorem 6.5 into rational cohomology
by use of the Chern character, and (for spaces without torsion) we
recover a theorem of Adams (1). In fact this paper originated in an
attempt to obtain Adams's results by more direct and elementary
methods.

Although the only essentially new results are concerned with the
relation between operations and filtration, it seems appropriate to give
a new self-contained account of the theory of operations in iT-theory.
We assume known the standard facts about ^-theory [cf. (8)] and the
theory of representations of finite groups. We do not assume anything
about representations of compact Lie groups.

In § 1 we present what is relevant from the classical theory of the
symmetric group and tensor products. We follow essentially an idea of
Schur [see (11) 215], which puts the emphasis on the symmetric group
Sk rather than the general linear group OL(n). This seems particularly
appropriate for ^-theory where the dimension n is rather a nuisance
(it can even be negative!). Thus we introduce a graded ring

B* = J Komz(R(Sk), Z),

where R{Sk) is the character ring of Sk, and we study this in considerable
detail. Among the formulae we obtain, at least one (Proposition 1.9) is
probably not well known. In § 2, by considering the tensor powers of a
graded vector bundle, we show how to define a ring homomorphism

where Op(K) stands for the operations in ^-theory. The detailed
information about R+ obtained in § 1 is then applied to yield results in
^-theory.
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§ 3 is concerned with 'externalizing' and 'relativizing' the tensor
powers defined in § 2. Then in § 4 we study the relation of operations
and filtration. § 5 is devoted to the cyclic group of prime order and ita
related operations. In § 6 we investigate briefly our operations in
connexion with the spectral sequence H*(X, Z) => K*(X) and obtain
in particular the relation with the Steenrod powers mentioned earlier.
Finally in § 7 we translate things into rational cohomology and derive
Adams's result.

The general exposition is considerably simplified by introducing the
functor KQ(X) for a G-spaoe X (§ 2). We establish some of its elementary
properties but for a fuller treatment we refer to (4) and (9).

The key idea that one should consider the symmetric group acting on
the kth power of a complex of vector bundles is due originally to Grothen-
dieok, and there is a considerable overlap between our presentation of
operations in ̂ -theory and some of his unpublished work.

I am indebted to P. Cartier and B. Kostant for some very enlightening
discussions.

1. Tensor products and the symmetric group
For any finite group 0 we denote by R{0) the free abelian group

generated by the (isomorphism classes of) irreducible complex represen-
tations of 0. I t is a ring with respect to the tensor product. By assigning
to each irreducible representation its character we obtain an embedding
of R{0) in the ring of all complex-valued class functions on 0. We shall
frequently identify R{0) with this subring and refer to it as the charader
ring of 0. For any two finite groups 0, H we have a natural isomorphism

R(O) ®R(H)^R(GxH).
Now let Sk be the symmetric group and let {Vn} be a complete set of

irreducible complex $fc-modules. Here -n may be regarded as a partition
of k, but no use will be made of this fact. Let E be a complex vector
space, E9k its kth tensor power. The group Sk acts on this in a natural
way, and we consider the classical decomposition

where n{E) = HomSt(T^, E9k). We note in particular the two extreme
oases: if T̂  is the trivial one-dimensional representation, then TT(E) ia
the Jfeth symmetric power a*(.87); if Vv is the sign representation, then
TT(E) is the /kth exterior power \k(E). Any endomorphism T of E induces
an £t-endomorphisin T®fc of E®k, and hence an endomorphism TT(T) of
•n(E). Taking T e OL(E), we see that IT(E) becomes a representation
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space of OL(E), and this is of course the classical construction for the
irreducible representations of the general linear group. For our pur-
poses, however, this is not relevant. All we are interested in are the
character formulae. We therefore proceed as follows.

Let E = Cn and let T be the diagonal matrix (tlt...,tn). Sinoe the
eigenvalues of T9k are all monomials of degree k in <!,...,<„, it follows
that, for each TT, Tracen(T) is a homogeneous polynomial in t1,...,tn

with integer coefficients. Moreover, TraceTT(T) = Trace^S" 1 ^)) for
any permutation matrix S and so Trace -n{T) is symmetric in tx,...,tn.
We define

AnJc = TraceSl(T®*) = 2 T r a c e d ) ® [FJ e Sym^,. ••,'„] ® B(Sk),
n

where [Ĵ J e R(Sk) is the class of Vn and Symk[t1,...,tn'] denotes the
symmetric polynomials of degree k. If we regard R(Sk) as the character
ring, then AnJt is just the function of t1,...,tn and g e Sk given by
Tr&ce(gTlsk). There are a number of other ways of writing this basic
element, the simplest being the following proposition:

PROPOSITION 1.1. For any partition a = (a1;..., a,) of k let pa e B{8k)
be the representation induced from the trivial representation of

then A = T ma®Pa,

where ma is the monomial symmetric function generated by ff1 ̂ * ...f? and
the summation is over all partitions of k.

Proof. Let Ea be the eigenspace of T9k corresponding to the eigen-
value t%* tff... t^r. This has as a basis the orbit under Sk of the vector

where ex,..., en are the standard base of Cn. Sinoe the stabilizer of ea is
just the subgroup 8a, it follows that Ea is the induced representation pa.
Since Sa and *Ŝ  are conjugate if a and /? are the same partition of k, it
follows that A v .a „ v „

\aj-k ct)-lc

where the first summation is over all sequences ax, aj,... with
l«l = 2<x< = t.

Now let us introduce the dual group
Rt{8k) = H.omz{R{8k),Z).

Then An^. defines (and is defined by) a homomorphiflm
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From the inclusions Sk X$, -*• Sk+l

we obtain homomorphisms

B(Sk+l) -+ R(Sk xS,) ^ R(Sk) ® B{8,)

and hence by duality

Putting i?+ = T R*(Sk) we see that the above pairings turn R* into

a «wim«taitue graded ring. This follows from the fact, already used in
Proposition 1.1, that Sa and 8p are conjugate if <x and /? are the same
partition. Moreover, if we define

by AJ, = 2 Â i,*> w e s66 th&t AJ, is a ring homomorphism. This follows
from the multiplicative property of the trace:

T r a c e d gt T®<*+0) = T r a o e ^ T®fc)Trace(^2 T«"),

where grx 6 Sfc) £, e 5 .̂ Finally we observe that we have a commutative
diagram

where the vertical arrow is given by putting tn+1 = 0. Hence passing
to the limit we can define

Here the inverse limit is taken in the category of graded rings, so that

IimSym[t1,...,<n]= 2
t-o *-

n

is the direct sum (and not the direct product) of its homogeneous parts.

PROPOSITION 1.2. A': iJ+->hm Sym[f1,...,tn]

is an isomorphism.

Proof. Let o* e R*[8k) denote the homomorphism R(8k) -> Z
defined by ffi(1) = ^ ^ ^ = Q tf ^ ^ ^
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where 1 denotes the trivial representation. Since TT(E) is the fcth sym-
metric power of E when Vn = 1, it follows from the definition of A ^ that

is the kth homogeneous symmetric function (i.e. the coefficient of zk in
IX (1—^i)"1)- Since the hk are a polynomial basis for the symmetric
functions, it follows that A^ is an epimorphism for all n. Now the rank
of R(Sk) is equal to the number of conjugacy classes of Sk, that is the
number of partitions of k, and henoe is also equal to the rank of
8ymk[tlt...,tn] provided that n > k. Henoe

is an epimorphism of free abelian groups of the same rank (for n ^ k)
and henoe is an isomorphism. Since

Symfc[tlt..., fn+j -* Sym^,. . . , tn]

is also an isomorphism for n ^ k, this completes the proof.

COROLLARY 1.3. R+ is a polynomial ring on generators a1, a3,....

Instead of using the elements <r* e R+(8k) we could equally well have
used the elements A* defined by

Afc(T̂ .) = 1 if V^ is the sign representation.
A*(FJ == 0 otherwise.

Since TT{E) is the ifcth exterior power when 7T is the sign representation
of Sh, it follows that A, ,^k, .. . v

is the fcth elementary symmetric function. Thus R+ is equally well a
polynomial ring on generators A1, A2,....

COROLLABY 1.4. Let A ^ = 2 a i ®^i w^1 ai e Synifcp!,...,^] and
bt e B(Sk), and suppose n ^ k. Then the ai form a base if and only if the
biform a base. When this is so the ai determine the b{ and conversely, i.e.
they are 'dual bases'.

Proof. This is an immediate reinterpretation of the fact that AJ,̂  is
an isomorphism.

COROLLARY 1.5. The representations paform a base for R(8k).

Proof. Apply Corollary 1.4 to the expression for A,^ given in Pro-
position 1.1. Sinoe the mo are a basis for the symmetric functions, it
follows that the pa are a basis for B(Sk).

COROLLARY 1.6. The characters ofSk take integer values on all conjugacy
classes.
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Proof. The characters of all pa are integer-valued and so Corollary 1.6
follows from Corollary 1.5.

Note. Corollary 1.6 can of course be deduced fairly easily from other
considerations.

Let C(Sk) denote the group of integer-valued class functions on Sk.
By Corollary 1.6 we have a natural homomorphism

R(Sh) -> C(Sk).

This has zero kernel and finite cokernel, and the same is therefore true
for the dual homomorphism

The direct sum C* = 2 C*($t) has a natural ring struoture, and

is a ring homomorphism. We shall identify C* with the image subring
of R+. From its definition, C+(8k) is the free abelian group on the
•conjugacy classes of Sk. Let ̂ r* denote the class of a A-cyole. Then O* is
a polynomial ring on tfj1,^,.... The next result identifies the subring
A'(C^) of symmetric functions:

PROPOSITION 1.7. A;(ii*) = mk(t,,...,tn) = Y if so that A'(C+) is the
i-l

•subring generated by the power sums mk.

Proof. By definition we have

where g e Sk is a fc-oycle. Now use Proposition 1.1 to evaluate this trace
and we get

But, ifHcG, any character of 0 induced from H is zero on all elements of
G not conjugate to elements of H. Hence, taking H = Sa, G = Sk, we
see that pa(g) = 0 unless a = k (i.e. a is the single partition k). Since
Pk(g) = 1, we deduce

= mk

as required.

1.8. Let Qk be the Newton polynomial expressing the power
sum mk in terms of the elementary symmetric functions e1,...,ek, i.e.

mk= Gi(ei,-,et),
then 4,k = Qk(\\...,\><)<=Rt.
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Remark. Let us tensor with the rationals 0 . so that we can introduce

ea e R(Sk) ® 0,

the characteristic function of the conjugacy class defined by the partition
a. Then Proposition 1.7 is essentially equivalent to the following
expression [cf. (11) VII (7.6)] for AnJt

An,* = 2 PS) ® <<* e Sym^, . . . , tn] ® R(Sk) ® Q,
ai-k

where pa is the monomial in the power sums

P«= jft (m<)%. « = 1«2«. . . .
Since A'(Ak) = et, it follows that we can write AnJk in the form

K*= 2 ?«(0®&«>
m-fc

where ga is the monomial in the elementary symmetric functions

?« = fi K)% « = i«2«...,
and the 6a are certain uniquely defined elements in R{Sk). We shall not
attempt to find ba in general, but the following proposition gives the
leading coefficient' bk.

PBOPOSITIOK 1.9. Let M denote the (k—l)-dimensional representation,
k

ofSk given by the subspace '^zi = Oofthe standard k-dimensional represen-

tation. Let Ai(M) denote the ith exterior power of M, and put
A_1(M) = Z(-I)<A<(M)eR(Sk).

Then we have
A,^ = (—l)*-1^^) ® A^-JfJ+composite terms,

where 'composite' means involving a product of at least two et(t).

Proof. In the formula

, 2
oo-fc

the ba are the basis of R(Sk) dual to the basis of R+(8k) consisting of
monomials in the A*. Thus bk is defined by the conditions

if u is composite in the A*. Since the tji1 are related to the A* by the
equations of Corollary 1.8

^ = ^(AV-.A*) = ( — l ^ - ^ + o o m p o s i t e terms,
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we can equally well define bk by the conditions

173

(bk,u) = 0

ifu is composite in the ipi. To prove that bk = (—lJ ' - 'A^Jf) , it remains
therefore to check that the character A._X{M) vanishes on all oomposite
olaeses and has value k on a fc-cycle. Now, if g e Sk is composite, i.e. not a
A-oycle, it has an eigenvalue 1 when acting on M; if g = (l...r)(r+l,...«)...
is the cycle decomposition, the fixed vector is given by

Zi=- U >

Since A_1(Jf)(^) = det(l— gM), where gM is the linear transformation
of M defined by g, the existence of an eigenvalue 1 of gM implies
A_x(M)(g) = 0. Finally take y = (1 2 ... k) and consider the fc-dimen-
sional representation N = M © 1. Then gN is given by the following
matrix

9N =

1

and so det(l—tgN) = 1—tk. Hence

det(l-tgM) = det(l-tgN).(l-t)-i

and so A^Mftg) = det(l—gM) = k,

which completes the proof.

If 0 c Sk is any subgroup, then we oan consider the element

AnJC(G)eSymk[t1,...,tn]®R(G)

obtained from Anft by the restriction -q: R(Sk) -*• B(O). Similarly

is the composition of A!nk and

Consider in particular the special case when k = p is prime and O = Zp

is the cyolic group of order p. The image of
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ifl generated by the trivial representation 1 and the regular representation-
N of Zp (this latter being the restriction of the standard p-dimensional
representation of Sp). Hence we must have

AnJ)(Zp) = a(<) <S> l+b(t)®N
for suitable symmetrio functions a(t), b(t). Evaluating R(Sp) on the*
identity element we get p . ,

Evaluating on a generator of Zp and using Proposition 1.7 we get

mp = a.

Hence b = — 2 which has, of course, integer coefficients since

Thus we have established the proposition:

PROPOSITION 1.10. Let pbea prime. Then restricting AHJ) from the sym-
metric group to the cyclic group we get

where N is the regular representation of Zp.

Let d* e R+(SP) be the element corresponding to

by the isomorphism of Proposition 1.2 (for n ~$> p), i.e.

P
Then Proposition 1.10 asserts that OP is that homomorphism i?((Sfp)->-Z
whioh gives the multiplicity of the regular representation N when we
restriot to Zp. Thus, for p e R(SP),

r,(p) = f»(p)l+6*(p)N, (1.11)

where r):B(Sp) -> R(Zp) is the restriction.

2. Operations in ^-theory
Let X be a compact Hausdorff space and let G be a finite group. We

shall say that X is a O-space if 0 acts on X. Let E be a complex vector
bundle over X. We shall say that E is a O-vector bundle over the O-
spaoe X if E is a (?-space such that

(i) the projection E -+ X commutes with the action of O,
(ii) for each g e 0 the map Ex -> E^ is linear.
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The Grothendieok group of all G-vector bundles over the G-space X is
denoted by Ka(X). Note that the action of G on X is supposed given:
it is part of the structure of X. Since we can always construct an in-
variant metric in a G-vector bundle by averaging over G, the usual
arguments show that a short exact sequence splits compatibly with G.
H e n c e > i f 0 + E1 + Ei+... + En + 0

is a long exact sequence of G-vector bundles, the Euler characteristic
2 (—1)*[̂ <] is zero in KO(X). For a fuller treatment of these and other
points about Ka(X) we refer the reader to (4) and (9).

In this section we shall be concerned only with a trivial G-space X,
i.e. g(x) = x for all x e X and g e O. In this case a G-vector bundle is
just a vector bundle E over X with a given homomorphism

G -+ Aut E,

where Aut E is the group of vector bundle automorphisms of E. We
proceed to examine such a G-veotor bundle.

The subspaoe of E left fixed by G forms a subveotor bundle E° of E:
in fact it is the image of the projection operator

1

and the image of any projection operator is always a sub-bundle (4). If
E, F are two G-veotor bundles, then the subspace of Hom(#, F) con-
sisting of all <f>x: Ex ->• Fx commuting with the action of O forms a sub-
vector bundle B.omo(E, F): in fact B.omo(E, F) = (B.om(E, F))a. In
particular let V be a representation space of G, and let V denote the
corresponding G-vector bundle X X V over X. Then, for any G-vector
bundle E over X, Homo(V, E) is a vector bundle, and we have a natural
homomorphism V (g> HomG(V, E) -> E.

Now let {Ty... be a complete set of irreduoible representations of O
and consider the bundle homomorphism

For each x e X, o^ is an isomorphism. Hence a is an isomorphism. This
establishes the following proposition:

PROPOSITION 2.1. If X is a trivial O-space, we have a natural iso-
morphism K{X) 0 R(G) ^ KQ{X)

In particular we can apply the preceding discussion to the natural
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action of Sk on the k-iold tensor product E9k of a vector bundle E. Thus
we have a canonical decomposition compatible with the action of Sk

We put TT(E) = HomSt(Vw

Thus 77 is an operation on vector bundles. In fact 7T(E) is the vector
bundle associated to E by the irreducible representation of OL(n)
(n = dim E) associated to the partition n, but this fact will play no
speoial role in what follows.

Our next step is to extend these operations on vector bundles to
operations on K(X). For this purpose it will be convenient to represent
K{X) as the quotient of a set ̂ (X) by an equivalence relation (elements
of <if (X) will play the role of 'cochains'). An element of ̂ (X) is a graded
vector bundle E = T Et, where Ei = 0 for all but a finite number of

values of t. We have a natural surjection

V(X) - • K{X)

given by taking the Euler characteristic [E] = J (— 1 )*[.#<]. The
equivalence relation on ^(X) which gives K(X) is clearly generated by
isomorphism and the addition of elementary objects, i.e. one of the form
2 Pi with

Pi = Pi+i (for some j), Pi=0 (i # j , j+1).
Similarly for a (?-space X we can represent Ka{X) as a quotient of
<ifa(X), where an element of ^ai^) ^8 a graded G-vector bundle.

Suppose now that E e ^(X) is a graded vector bundle. Then E9k is
also a graded vector bundle, the grading being defined in the usual way
as the sum of the degrees of the k factors. We consider Sk as aoting on
E9k by permuting factors and with the appropriate sign change. Thus a
transposition of two terms ep ® efl (where ep e Ep, eff e EQ) carries with it
the sign (—1 )M. The Euler characteristic [E9k] of E9k is then an element
o£Kgt(X).

PBOPOSITION 2.2. The element [^®fc] 6 K8t{X) depends only on the
element [E] e K(X). Thus we have an operation:

®k:K(X) -y K8h(X) = K(X) ® B(Sk).

Proof. We have to show that, if P is an elementary object of

^en [(E@ P)»*] = [E9k] e KBt(X).
But we have an ^-decomposition:
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We have to show therefore that [Q] = 0 in K8k(X). To do this we regard
E 8&a. complex of vector bundles with all maps zero and P as a complex
with the identity map Py -> Pi+l. Then (E © P)9k is a complex of vector
bundles, and Sk acts on it as a group of complex automorphisms (because
of our choice of signs). The same is true for E9k and Q. Now Q contains
P as a factor, and so Q is certainly acyclic. Hence, by the remark at the
beginning of this section, we have [Q] = 0 in K8t(X) as required.

Remark. If we decompose E®k under Sk

where -n(E) = HomSt(Vff, E
9k), Proposition 2.2 asserts that E i—• ir{E)

induces an operation . KCX\

Let Op(iT) denote the set of all natural transformations of the functor
K into itself. In other words, an element T e Op(iT) defines for each
X a map

which is natural. We define addition and multiplication in Op(iT) by
adding and multiplying values. Thus, for a e K(X),

(T+S)(X)(a) = T(X)(a)+S(X)a,

TS(X)(a) = T(X)a.8(X)a.

If we follow the operation

®k:K(X) -• K(X) <g> R(Sk)

by a homomorphism <f>: R(Sk) -*• Z we obtain a natural map

This procedure defines a map

which is a group homomorphism. Extending this additively we obtain
a ring homomorphism • D ,-v , vs

J' -K+ ~*~ vJp(-t)-
We have now aohieved our aim of showing how the symmetric group
defines a ring of operations in if-theory. The structure of the ring R+
has moreover been completely determined in § 1. We conclude this
section by examining certain particular operations and connecting up
our definitions of them with those given by Grothendieok [cf (5); § 12]
and Adams (2).

To avoid unwieldy formulae we shall usually omit the symbol j and
just think of elements of R+ as operations. In fact it is not difficult to

8095.2.17 N
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show that j is a monomorphism (although we do not really need this
fact), so that R+ may be thought of as a subring of Op(^).

All the particular elements that we have described in § 1, namely
<r*, Ak, ifP0, &", can now be regarded as operations in .fiT-theory. From the
way they were denned it is clear that, if E is vector bundle, then Xk[E]
is the class of the &th exterior power of E, and ̂ (E) is the class of the kth
symmetric power of E. A general element of K(X) can always be re-
presented in the form [Eo]—[Ex], where Eo, Ex are vector bundles. Taking
(Eo 0 ^1)®

fc as an <St-complex and picking out the symmetric and skew-
symmetrio components, we find

i-o

| (2)| (

Putting formally X^ = ]T A*!/.*, au = 2 O*M*I where u is an indeterminate,
and taking Eo = Ex in (1), we get

This identity could of course have been deduced from the corresponding
relation between the generating functions of ek and hk by using the iso-
morphism of (1.2). Now from (2) we get

y- 1 by (3).
This is the formula by which Grothendieck originally extended the Afc

from vector bundles to K. Thus our definition of the operations A*
coincides with that of Grothendieck. Essentially the use of graded tensor
products has provided us with a general procedure for extending opera-
tions which can be regarded as a generalization of the Grothendieck
method for the exterior powers.f

Adams defines his operations i/f* in terms of the Grothendieck Afc by
use of the Newton polynomials

V = Qk(\\...,\*).
Corollary 1.8 shows that our definition of tfP0 therefore agrees with that
of Adams. An important property of the r̂* is that they are additive.
We shall therefore show how to prove this directly from our definition.

PKOPOSITION 2.3. Let E, F be vector bundles, then

^i[E]±[F]) = nm±'pk[F).

t This fact was certainly known to Grothendieck.
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Proof. Construct a graded vector bundle D with Do = E,D1 = F and
consider D9k. The same reasoning as used in Proposition 1.1 shows
that k

[£>]•* = £ (-1)* indjtf®*-' ® JW] e K(X) ® 2!(5fc),i-o
where ind,:Z(X) ® i?($fc_,Xty) ->•£(-£) ® iJ(/Sfc) is given by the
induced representation. Here E9k~* is an $t_^-vector bundle via the
standard permutation, while S} acts on F9i via permutation and signs.
To obtain ^[D] we have to evaluate R(Sk) on a &-cycle. As in Proposi-
tion 1.1 all terms except j = 0, k give zero; since the sign of a 4-oyole is
(—I)*-1 we get

For [-Ej+t-P1] the argument is similar but easier.
The multiplicative property

•/-*[# ® F] =
follows at once from the isomorphism

(E
and the multiplicative property of the traoe.

Suppose now that we have any expansion, as in Corollary 1.4, of the
basic element AnJfc in the form

Kjc = 1 "i ® bt,
where the at e Sym^, . . . , tn] are a basis and the b{ e R{8k) are therefore
a dual basis (assuming n ^ k). Then, for any x e K(X), we obtain a
corresponding expansion for a;®*:

x®k = cttix) ® bt e K(X) ® R{Sk),

where a4 = (A')-1^ e B^. This follows at once from the definition of A'
and the way we have made R+ operate on K(X).

Taking the ai to be the monomials in the elementary symmetrio
functions the a{ are then the corresponding monomials in the exterior
powers Ai. Proposition 1.9 therefore gives the following proposition if

PROPOSITION 2.4. For any x e K(X) we have
x®k = (—l)fc-1Ak(a;) ®A_1(Jf)+oomposite terms,

where 'composite' means involving a product of at least two \{(x) and M is
the (k—l)-dimensional representation of Sk.

t Now that we have identified the A1 of § 1 with the exterior powers we revert
to the usual notation and write \*{M) instead of Ai{M), and correspondingly
A_!(Af) instead of A^j
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Now let us restrict ourselves to the cyclic group Zk. The image of
x®k in K{X) <g> R(Zk) will be denoted by Pk(x) and called the cyclic
Jcth power. In the particular case when k = p (a prime), (1.11) leads to
the following proposition:

PROPOSITION 2.5. Let p be a prime and let x e K{X). Then the cyclic
pth power Rvfo) is given by the formula

P*(x) = #>>(x) ® 1+6>{X) ®NeK(X) ®R(ZP),

where N is the regular representation of Zp.

Now <ftp and &" correspond, under the isomorphism

to the polynomials Y t? and -^ v~^ * respectively. Hence they are
P

related by the formula

so that, for any z e K(X), we have

Substituting this in (2.5) we get the formula

PP(X) = x* ® 1 +6P(X) ® (iV—;»). (2.6)

This is a better way of writing (2.5) since it corresponds to the decomposi-

where I(ZP) is the augmentation ideal. Thus

0P(X) ® (N-p) e K(X) ® I(Zp)

represents the difference between the pth. oyclio power P"(x) and the
'ordinary' pfh power xv ® 1.

Proposition 2.5 leads to a simple geometrical description for t/A'lV],
where V is a vector bundle. Let T be the automorphism of F®* which
permutes the factors cyclically and Vj be the eigenspaoe of T corre-
sponding to the eigenvalue exp(2irij/p). Then

In fact from Proposition 2.5 we see that
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3. External tensor powers

For a further study of the properties of the operation <g> k it is neces-
sary both to 'relativize' it and to 'externalize' it.

First consider the relative group Ka(X, Y), where X is a <?-space,
Y a sub ©-space. As with the absolute case we can consider Ka(X, Y) as
the quotient of a set "^(X, Y) by an equivalence relation. An object E
of Va(X, Y) is a (?-complex of vector bundles over X acyclic over Y,
i.e. E consists of 6-vector bundles Ei (with Ei — § for all but a finite
number) and homomorphisms

d d
—> E± —> E^+1 —>•

commuting with the action of G, so that d2 = 0 and over each point of
Y the sequence is exact. An elementary object P is one in whioh Pt = 0
(i jtzj, j-\-l), Pj = Pj+1, and d:P)-+ Pj+1 is the identity. The equi-
valence relation imposed on ̂ O{X, Y) is that generated by isomorphism
and addition (direct sum) of elementary objects. Then, if E e C€Q{X, Y),
its equivalence class [E] e KO{X,Y). For the details we refer to (4).
For the analogous results in the case when there is no group, i.e. for the
definition of K(X, 7) as a quotient of «"(X, Y), we refer to (7) [Part II].

Consider next the external tensor power. If E is a vector bundle over

X, we define E^k to be the vector bundle over the Cartesian product.
Xk (k factors of X) whose fibre at the point (x1XxiX--. X f̂c) is

EXl ®EXt ®... ®Ext. Thus E®k is an ^-vector bundle over the Sk-
space Xk, the symmetric group Sk acting in the usual way on X* by
permuting the factors. Clearly, if

d:X-yXk

is the diagonal map, we have a natural ^-isomorphism

d*(E®k)^E®k. (3.1)

If E is a complex of vector bundles over X, then we can define in an

obvious way E™k, which will be a complex of vector bundles over X*.

Moreover E^k will be an #A-complex of vector bundles, X* being an Sk-

space as above. If E is acyclic over Y cX, then E^k will be acyclic over
the subspaoe of X consisting of points (xx Xx8 X... Xxk) with xi e Y for
at least one value of i. We denote this subspaoe by Xk~1Y and we write
(X, Y)k for the pair (Xfc, X*-1^). Thus we have defined an operation
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The proof of (2.2) generalizes at onoe to this situation and establishes

PBOPOSITION 3.2. The operation E \—> E®k induces an operation

®k:K{X,Y)-+KSi(X,Y)*.

COBOLLAEY 3.3. If x is in the kernel of K{X) -+ K{T), then x®k is in
the kernel of

Proof. This follows at once from (3.2) and the naturality of the
operation E3 k.

From (3.1) we obtain the commutative diagram

4" (3-4)

4. Operations and filtrations

From now we assume that the spaces X, T,... are finite CW-complexes.
Then K(X) is filtered by the subgroups Kg(X) defined by

where X ^ denotes the (q— l)-skeleton of X. Thus Ko(X) = K(X) and
= 0 if dimX < n. Moreover, as shown in (8), we have

for all q. Since any map Y -> X is homotopio to a cellular map, it follows
that the filtration is natural.

In [8] it is shown that K(X) is a filtered ring, i.e. that K^K^c Kp+q.
In particular it follows that

x e K^X) => x* e K^X).

We propose to generalize this result to the tensor power ®k.
We start by recalling (5) that, for any finite group, there is a natural

homomorphism a:B(G)->K(Ba),



ON POWER OPERATIONS IN Z-THEORY 183

where Ba is the classifying space of Q. This homomorphism arises as
follows. Let A be the universal covering of Ba and F be any G-module.
Then A X Q V is a vector bundle over Ba. The construction V >—*• A^QV
induces the homomorphism

«:R(G)-+K{BO).
This construction can be generalized as follows. Let X be a G-spaoe and
denote by Xa the space Ay.aX. I f F i s a (?-vector bundle over X, then

VO = AXOV
is a vector bundle over Xa. The construction F i—*• Va then induces a
homomorphism ax. KQ(X) -> K(XO).

A couple of remarks are needed here. In the first place there is a clash of
notation concerning Ba. To fit in with our general notation we should
agree that 'B' is a point space. Seoondly Xa, like Ba, is not a finite
oomplex. Now Ba can be taken as an infinite complex in whioh the
g-skeleton BGa is finite for each q, and K(BO) can be defined by

K{BQ) = lim

11 we suppose that 0 acts cellularly on X, then we can put
Xa^ = Aq X O I , where Ag is the universal covering of BQa and XQa

will be a finite complex. We then define

K(XO) =

In fact, as will become apparent, there is no need for us to proceed to the
limit. All our results will essentially be concerned with finite skeletons.
We have introduced the infinite spaces Ba, XG because it is a little tidier
than always dealing with finite approximations.

Applying the above to the group Sk and the spaces X (trivial action)
and Xk (permutation action) we obtain a commutative diagram

(4.1)

\
K{X) <g> R(Sk)

where d* is induced by the diagonal map d: X -*• Xk.

PBOPOSTTION 4.2. Let x e Kq(X), then
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Proof. By hypothesis a; is in the kernel of

Hence applying (3.3) with T = Xq_x we deduce that x®k is in the kernel
of p in the following diagram

K8t{X*)

The required result now follows from this diagram, provided that we
verify that

^ c

But any cell a of the (kq—1)-skeleton of X%t = Xfc XSl^4 arises from
a product of k cells of X and a cell of A. Hence at least one of the cells
of X occurring must have dimension less than q, and so a is contained in

as required.
Since the filtration in K is natural, Proposition 4.2 together with the

diagram (4.1) and Corollary 3.3 gives our main result:

THBOBEM 4.3. Lei ®k:K{X) -> K{X) ® JR(Sk) be the tensor power
operation, and lei

oc:K{X) ® R(Sk) - • K(X

be the natural homomorphism. Then

x e

COROLLABY 4.4. Lef dim X ^ » arui l e t i e K^X). Then the image of
*®* in K{X) ® KiBg^^) is zero.

Proof. By Theorem 4.3 a;®* has zero image in I ( I x B w - , - i ) . But
for any two spaces A, B the map

K(A)®K(B)-+K{AxB)
isinjective(6). Hence x®1 gives zero in K{X) ®5T(5Sfcio_n_i) as required.

Remark. Theorem 4.3 suggests that for any finite groiip O and O-
space X we should define a filtration on KO(X) by putting

With this notation Theorem 4.3 would read simply

x e Kg(X) => x°* e K
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To exploit Theorem 4.3 we really need to know the nitration on
K(B8t) as is shown by the following theorem:

THEOREM 4.5. Assume that K(X) is torsion-free, and let dim X ^.n. Let
x e -£g(X) and assume that all products A*(x)A*(x) with t, j > 0,i-\-j ^. k
vanish. Then Afc(x) is divisible by the least integer mfor which

M being as in Proposition 2.4. In particular this holds in the stable range
n < 2q.

Proof. The hypotheses and Proposition 2.4 imply that

a:®* = (_i)*-iAt(x) ®A_X(M) eK(X) ® R(Sk).

Let A = KiBgJIK^^Bg,), so that A is a subgroup of K{B8iM_n_x).
From Corollary 4.4 and the fact that K(X) is free it follows that the
image of x®k in K(X) <g> A must be zero. Hence Afc(x) must be divisible by
the order of the image of A_x(Jf) in A, i.e. by the least integer m for which

Remark. In the proof of Proposition 1.9 we saw that the character
of X^M) vanishes on all composite cycles of Sk. Thus, if k is not a
prime-power, the character of A_j(-3f) vanishes on all elements of 8k of
prime-power order and so by (5) [(6.10)] X_X(M) is in the kernel of the
homomorphism ^ ^

R(Sk) -y R(Sk).
Hence aA_x(Jf) = 0 and so Theorem 4.5 becomes vacuous. Thus
Theorem 4.5 is of ivierest only when k is a prime-power.

In order to obtain explicit results it is necessary to restrict from Sk

to the cyclic group Zk. In this case the calculations are simple. First we
need the lemma:

LEMMA 4.6. Let 7 = BZi, then

Y^) s* R{Zk)\I{Zky.
Proof. Since T has no odd integer cohomology, it follows that

K?-{7, T^-i) = 0, and so from the exact sequence of this pair we deduce

But we know [(5) (8.1)] that

K(Y) s R(Zk),

and K^T) is the ideal generated by I{Zk)
q. Hence

KWIK^Y) ^ R{Zk)\I{Zky,

and the lemma is established.
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Remark. The results quoted from (5) are quite simple, and we could
easily have applied the calculations used there directly to T^^.

Combining Corollary 4.4 and Lemma 4.6 we deduce the proposition:

PEOPOSITION 4.7. Let dimX < 2m and let x e K^X). Then the kth
cyclic power Pk{x) e K(X) <g> B(Zk) is in the image of K(X) <g> I(Zk)^-^.

The case when k = p, a prime, is of particular interest because Zp is
then the p-Sylow subgroup of Sp. This means that, as far as jj-primary
results go, nothing is lost on passing from Sp to Zp. In the next section
therefore we shall study this oase in detail.

5. The p r ime cyclic case

LBMMA 5.1. Let p e B{Zp) denote the canonical one-dimensional
representation of Zv, ,,_,

the regular representation and ij = p—1.

Then in B(Zp) we have

p*{N—p) = ( — l)*7?(
fc+:tXp-1)+nigher terms.

Proof. Since p" = 1, we have (1-f-TJ)P = 1. Thus rj" = —pqe, where
e ~ 1 mod f\ and so is a unit in &. Hence

(—pfy ~ 7f>, (1)

where we write a ~ b if a = eb with e ^ 1 mod 77. Now the identity

-1 modpt^ (1 +*)
i-o t

with t replaced by 77 shows that

N—p = if-1 modpr)

= if-1 mod?/*" by (1).

Hence we have (N—p) ~ T?""1- (2)

From (1) we have (—p)"v ~ v^-1)^,

and so (— pfrf-1 ~ iy(
l+W*'-«. (3)

The lemma now follows from (2) and (3).
COROT.T.ABY 5.2. The order of the image of (N—p) in B{Zp)\I(Zp)

n \9

p* where k is the least integer such that k+l ^ ——.
p—\

Proof. I(Zp) is the ideal (T?).
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We can now state the explioit result for the prime case:

THEOREM 5.3. Suppose that Him X < 2(q+t) with t < q(p—1) and
letxe K^X). Then ffl>(x) is divisible by p"^'1, where

r =

Proof. Since dimJf < 2qp, we have xp = 0. Hence by Proposition
2.5 we have

P*(x) = 6»(x) ® (N-p) e K(X) ® iJ(Zp).
By Proposition 4.7 it follows that ^(x) is divisible by the order of the
image of (N—p) in R(Zp)II(Zp)

n, where
n = pg—q—t.

Prom Theorem 5.3 it follows that (Pfa) is divisible byp k , where jfc is the
least integer for which

' » p-l'

namely k = q — — 1.

COBOLLABY 5.4. Let the hypotheses be the same as in Theorem 5.3.

Then <p"(x) is divisible by pt~r, where r = .

Proof, tffl1 and &* are related by the formula

Since as" = 0 in our case, we have

ip(x) = -p6»{x),

and so the result follows at once from Corollary 5.2.
Remark. Taking ( = 0we find that <pv(x) is divisible by p* on the

Bphere S^. Note that this result was not fed in explicitly anywhere. I t
is of course a consequence of the periodicity theorem, and the computa-
tion we have used for K{BZ ) naturally depended on the periodicity
theorem.

The preceding results take a rather interesting form if X has no
torsion. First we need a lemma:

LEMMA 6.5. Suppose that X has no torsion (i.e. H*(X, Z) has no torsion)
and letxe K(X). Suppose that the image of x in K(XQ) is divisible by d.
Then x is divisible by d modulo Kg+1(X), i.e.

yeK(X), z e Kq+1{X).
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Proof. Let A, B denote the image and cokernel of

j*:K(X)-+K(Xg).
From the exact sequence of the pair (X, Xg) we see that B is isomorphio
to a subgroup of K^X, XQ). But, since X is torsion-free, so is X/Xa.
Hence . ^ (X, Xff) is free and therefore also B. Hence, if o e A is divisible
by d in K(Xq), it is also divisible by d in A. Taking a = j*(x) therefore
we have ^ ^ ^

^ ^ = ^ ( y ) for 8 o m e y

and so x = dy-\-z, for some z e Kerj* = Kg+1(X).
Using this lemma we now show how Corollary 5.4 leads to the following

proposition:

PBOPOSITION 5.6. Suppose that X has no torsion and let x e
Then there exist elements

(t = 0,1,..., q)

such that tht>(x) = f pq-%,
t-0

Moreover we can choose xq = xp.

Proof. By Theorem 5.3 the restriction of <J>p(x) to the 2(g+t)-skeleton,
with t = i(p—l) — l, is divisible by pq-i+1. By Corollary 5.4 it follows
that ifip(x) is divisible by pi-**1 modulo -Ksa+ssik-î X). The required
result now follows by induction on i. Since ^"{x) = xpmod^> and
xv e KtpqiX), it follows that xp is a choice for xq.

The elements xt occurring in Lemma 5.6 are not uniquely defined by x.
If, however, we pass to the associated graded group GK*(X) and then
reduce modp, we see that the element

xt e GP-i+wp-VK(X) ® Zp

defined by xt is uniquely determined from the relation

= 2,
i0
2, Pi

i-0

If we multiply x by p or add to it anything in jK1(a+1)(X), we see from
Lemma 5.6 that xi is unchanged. Hence x{ depends only on

x e G*K(X) <g> Zp.

Now we recall [(8) § 2] that, since X has no torsion, we have an
isomorphism of graded rings

H*(X, Z) s* 0K*{X),

and hence H^{X, Zp) ^ G*>K(X) ® Zp.
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By this isomorphism the operation x -> xi must correspond to some
cohomology operation. In the next section we shall show that this is
precisely the Steenrod power P*,.

6. Relation with cohomology operations
In the proof of Proposition 4.2 we verified that there was an inclusion

j:(X*,Xikt_1) + (X,Xaa_iy.

Hence we can consider the map

K(X, X^-J -y K(XSt, (X*,)^)

given by x i—*• <xj*x™k. If we follow this by a cellular approximation to
the diagonal map XSt -*• XSt, we obtain a map

/i: K(X, X^.j) -> K{XSh, (X8i)m_^).

Prom its definition this is compatible with the operation

x H-> d*ax^k = ax®k

for the absolute groups, i.e. we have a commutative diagram

K(X, X ^ • K(XBk, (XsJ^J

(6.1)

K(X) >K(XSk)

On the other hand, by restricting X to X^ and X8t to (Xgjyq we obtain
another commutative diagram

K(X, X^) 1 „ K(XSl, (Xai)m^)

where v is the map of cochains given by

v(c) = d*[(c®c®... ®c) igirl]. (6.3)

Here we have made the identification

C*(XSt) = (C*(X) ®z . . . ®ZC*(X)) ®TC*{A),

where A -»• BS i is the universal 5t-bundle and Y is the integral group
ring of Sk, and similarly we identify

C*(XSt) = C*(X)®rC*(A).
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The oommutativity of Diagram 6.2 depends of course on the faot that
the isomorphism

is compatible with (external) products.

The map v defined by (6.3) induces a map of cohomology (denoted
a l s o b y v ) v.H*>(X, Z) -> E**>(XSt, Z).

The diagrams (6.1) and (6.2) then establish the following

PROPOSITION 6.4. Let x e K^(X) be represented by a e H^(X, Z) in the
spectral sequence H*(X,Z) => K*(X). Then a{x®k) e K^Xg^) is
represented by v(a) e Hikq(XSl, Z) in the spectral sequence

H*(XSk,Z) => K*(X8l),

where v is induced by the formula (6.3).

Remarks. (1) It seems plausible that one could in fact define a tensor-
power operation mapping the spectral sequence of X into the spectral
sequence of X8t. Proposition 6.4 concerns itself only with the extreme
members E% and ~Em (and only for even dimensions).

(2) The map v is essentially the parent of all the Steenrod operations,
while x i—>• x®k is the parent of all the operations in iT-theory introduced
in § 2. Proposition 6.4 contains therefore, in principle, all the relations
between operations in the two theories. We proceed to make this explicit
in the simplest case:

THEOREM 6.5. Suppose that X has no torsion so that we may identify
H*(X, Zp) with 0K*(X) ® ZP. Ifx e K^X) we denote the corresponding
element of H**{X, Zp) by x. Let

i p%
<—o

be the decomposition of i//px given by (5.6). Then we have

where 1%: H*(X, Zp) -+ H*+i«P-»(X, Zp)

is the Steenrod power (for p = 2 we put P* = Sq2*).

Proof. By Proposition 6.4 the map

P:K{X)-+K(X)®R{Zp)

induces F:H*(X, Zp) -> H*(X, Zp) ®H*{Zp, Zp), (1)
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where F is v reduced modp. Now by (2.6) and Lemma 5.5 (choosing
xg = x") we have the following expression for P(x),

P{x) = *, ® 1 - "Y x< ®pi-*-i(N-pi (2)

By definition of the Steenrod powers [(10) 112] we have

where 77 is the canonical generator of H%(Zp; Zp).
Comparing (1) and (2) and using Lemma 5.1 we have the result.

Remark. Proposition 6.5, together with the kind of calculations made
in (3), leads to a very simple proof of the non-existence of elements of
Hopf invariant 1 modjj (including the case p = 2).

7. Relation with Chern characters

If the space X has no torsion, it is possible to replace the operations
î* by the Chern oharacter

ch:K*(X)-+H*(X;Q).

In fact oh is a monomorphism and ^* can be computed from the formulae

oh x = 2 cha(z), x e K{X), o\{x) e H*(X; Q)

ch^*a: = 2*ccha(x).
a

Conversely one can define H*(X; Q) and ch purely in terms of the
</i* (3). It is reasonable therefore to try to express Theorems 5.6 and
6.5 in terms of Chern characters. We shall see that we recover the
results of Adams (1), at least for spaces without torsion.

If X is without torsion, we identify H*(X; Z) with its image in
H*(X; 0). If aeH*(X; Q), we can write o = 6/d for beH*(X; Z)
and some integer d. If d can be chosen prime to p, we shall say that o is
p-integral.

THEOBBM7.1. Let X be a space tvitJiout torsion, x eKia(X)andpaprime.

is p-integral, where t = .

Proof. We proceed by induction on n. For n = 0 (and all q) the result
is a consequence of the periodicity theorem (8). We suppose therefore
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that n > 0 and the result established for all r ^ n— 1. By Proposition
5.6 we have _

and so ch ippx = > JJ8"1 ch xt.
<-o

Taking components in dimension 2{q-\-n) we get

i>fl^oha^(a0= j^-'ch^fo), «=|-^_J. (1)

In particular, for n = 0, we have

chfl(x) = cha(z0). (2>

Sinoe X has no torsion, this implies that

y = xQ—x e Ksg+tiX).

Replacing x0 by z+y in (1) and multiplying by j?-* we get

p'(pn-l)ohg+n(x) = ^ c h f l ^ y + ^ jM c h ^ ^ ) . (3)

But by the induotive hypothesis (with q replaced by q-\-1 and q-\-i(p—1}
(» ^ 1)) we see that all terms on the right-hand side of (3) arep-integral.
Hence p'ohg+n(x) is ̂ -integral and so the induction is established.

For any x e K^X) we denote by x e H^{X, Zp) the corresponding
element obtained from the isomorphism

<P*K{X) ®ZpS± H*(X; Zp).

Now, by Theorem 7.1, j/ohg+t(l)_j) x is ^-integral. We may therefore
reduce it modp and obtain an element of Hia+2Ul>-1'>(X; ZP). I t follows
from Theorem 7.1 that this depends only on x. We denote it therefore
by T*(x), so that T* is an operation

H**(X; Zp) -*• 5«B+M&»-«(X; Zp).

We now identify this operation.

7.2. The operation Y 7* is the inverse of the 'total' Steenrod

power X P*>

i.e. (2 T<) o(XP*) = identity.

Proof. As in Theorem 7.1 we have

i-0
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Now in equation (1) above take n = t (p— 1) and multiply by p*-*. Then
reducing modp we get (

i - 0

But by Theorem 6.5 we have xi = P*x, and so we deduce

0 = ( 2 T'-'P^x, x = T°P°x.

In other words, the composition

ifl the identity operator as required.
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