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THE GEOMETRY OF CLASSICAL PARTICLES

MICHAEL ATIYAH

1. Introduction

In a recent paper [2] Berry and Robbins have described a classical ap-

proach to the spin-statistics theorem of quantum physics. In the course
of their investigation they were led to a purely geometrical question in
3-dimensional Euclidean space. This paper grew out of an attempt to
answer their question and to understand its significance.

The Berry-Robbins problem concerns two very well-known spaces:

(ii) the flag manifold U(n)/T™, parametrizing ‘flags’ i.e., n ordered
mutually orthogonal one-dimensional vector subspaces of C™ (here
U(n) is the unitary group, 7™ the diagonal subgroup fixing a given

ﬂag).

The symmetric group L,, acts freely on both these spaces by per-
muting the points or the subspaces.

T

¢

¥

(1.1) Does there exist (for all n) a continuous map
fn : Cu(R?) — U(n)/T™ which is compatible with the action
of 3,7

problem is the following:

using only elementary geometry However, this solution has some un-
satisfactory features and a much more elegant solution may exist. This
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depends on a conjecture which is remarkably simple to state bul appears
to be difficult to settle. I shall explain this in §4 and I shall also deseribe
a natural generalization to hyperbolic 3-space in §5.

There are clear indications that alternative approaches arve possible
which, though more complicated geometrically, have interesting physical
interpretations. I hope to follow up on these in subsequent publications.

There are also further generalizations in a number of divections which |

hope to explore.

In §2 and §3 I make some preliminary comments on the topological
R IS T B H
aspects of the problem. These are helpful steps on the way to the
aspects of the problem ese \
solution.

Before proceeding to study our problem seriously it is helpful to make
a few preliminary remarks.

The case n = 1 is trivial, so the first interesting case arises from
n = 2. By fixing the centre of mass we sce that

C2(R®) = R® x (R® — 0)
with ¥y being the antipodal map on the second factor. Since
U(2)/T? = P(C) = §?

is the complex projective line, with ©9 as the antipodal map, it is clear
how to define fo. We simply use radial projection

(R®~0) = §°.

This special case already shows two things.  First it explains why
the problem is a 3-dimensional one. We can define o configuration space

Cr(RY) for all N, but only for N = 3 does the radial map
(RN _ 0) — SN~L

end up with S2.

The second point, intimately related to the first, is that the complex
numbers appear in our problem through the Riemann sphere “at ~” i
R3. In fact the notable feature about the Berry-Robbins problems is that

1 WOy AN Aty 3 T73 Lo . - 1. R -~
it relates real geometry in £2° to linear independence of vectors over Lhe

numbers. Recalling that complex superposition is the hall-
heory we see here the germ of a link hetween classical
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geometry and quantum theory. This point {in a Minkowski framework,
to which we shall return in a later paper) has been persistently empha-

NSRS N ™ . i)
SIZCUTOY lLLUéC:,Jl LT CTILUdT,

Mathematically this link between R? and the Riemann sphere is best
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is systematically exploited in the theory of hyperkdhler manifolds and in
the related Penrose twistor theory.

Note that our map f> has the following obvious properties.
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(1) f2 1s translation invariant.
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(3) f2 is compatible with the action of SO(3) on both sides.

In fact these properties are easily seen to characterize f; uniquely (mod-
ulo composition with a fixed element of 0(3)).

Our task, for general n, is to search for maps f, which are general-
izations of fo. It would in particular be reasonable to ask for analogues
of properties (1), (2), (3), but for (3) we have to specify an action of
SO(3) on the flag manifold. Any representation of SU(2) on C” will
induce a representation of SO(3) on the complex projective space P(C”)
and more generally on the flag manifold U(n)/T™ (which can be viewed
as a subspace of P(C™)"). We shall see later that the correct choice of
representation of SO(3) is (for each n) given by the (unique) irreducible

: m
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Clearly one would also like all the maps f,, for different n, to be

somechow related to each other. This can be made more precise by
considering a “cluster decomposition” when the n points fall into two
separate clusters of r and n — r points far apart from each other. If we
write x = (z1, ...,z ) and ¥ = (Y1, ..., Yyn—r), we shall denote by z * y the
ordered n-tuple formed by putting  and y ‘far apart’. We then expect
an asymptotic formula.

(4) fn('/‘: *y) ~ f7(r) X fﬂ.w?‘(y)
where on the right we use the obvious product map

U(T)/TT x U(Tb . ,/_)/Tn—'r

1
&
=
g
S

AT s rmreamoartioe (1Y_(AY it conatrainte an f +hov will na+ (far

YV L11LT JIOPTLLITS (L)7\F) pubt LUllouviallive Vid jn LT Wlih LiVUL o 1V

N iminnely determine f The Berrv-Robbins nroblem 1g. in the
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general case, a problem in equivariant homotopy theory and only the
homotopy class will be unique. However we may hope for some natural
representative map which has special geometric or physical significance.
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3. Homology calculations

A standard test in homotopy theory for a putative map 1s to check

its possible effect on homology or cohomology. It is frequently possible
to disprove the existence of a map by showing inconsistency in its effects

Vv
£

£ .7
Jj

we get an induced map
e H(Y) = H(X)

on the integral cohomology rings. If a group ¥ acts on both X,Y and
is compatible with f, then f* must also be compatible with the X action

on H *(X ), H *(Y). This gives strong restrictions.
As a preliminary test let us consider the (integral) cohomology rings
of our two spaces
v ey ~ _ TTriaN fTm
ALY =Uln)/4

These have well-known descriptions [1] [3]. Each is multiplicatively
generated by its 2-dimensional elements, and

H?(X) is generated by z;;(i # j) with z;; = —xz

e
2

rr2

nv man X =Y wi uce on H* a map f* with

£ . W b I J |
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Compatibility with X,, implies that
ai; = Afor all 4,5

and some integer A.
Forn = 2, and f = f5, wehave A\ = 1 and the asyn pfntic re

(4) will then imply A = 1 for all n. Note that, since e Tij = —T;;, we do
deed have
N ek "
2w =223 my=0
B i gt

as required by Xy; =
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One might expect some inconsistency to appear in the ring structure,
but in fact f* turns out to be fully compatible with the multiplication.
This follows from the following known facts [3] [4] (for the analogous case
of R“)

(i) H*(Y) is the polynomial ring in yi, ..., %, modulo the symmetric
functions (of positive degree).

; ing wi , give the tegular

From (ii) it follows that the only invariant element in H*(X) is in H(X)

and so all the symmetric functions of the y; (of positive degree) get

mapped to zero by f*. In view of (i) this shows that f* does indeed

——extend from H*(Y) to the whole of H*(Y},—

Despite (ii), which gives an abstract Z,-isomorphism between

H*(X)® C and H*(Y) ® C, the map f cannot possibly give such an

isomorphism for n > 2. In fact f* is not even an isomorphism on H? be-

cause the ranks of H2(X) and H%(Y) are different (for n> 2) The way

the pieces of the regular representation of &, i

in the two cases as is clea, from the explicit formulae for the Poincaré

polynomials:

PX) = (1+H1+2% .. 1+ (-1t
PY) = (Q1+)1+E2+¢") . Q1+ +t4+ . +2772),

In both cases, putting ¢t = 1, gives n!, the order of ¥,. Only for n = 2

do the two Poincaré polynomials coincide.
The conclusion of this little excursion in

appears to be no obvious obstruction to th

1 ex1st ) he required
map f. On the other hand, algebraic t.opology alone has difficulty in
giving a positive solution. With a bit more effort one can construct a

map f having the desired COhOIﬂOlOE’ZlC&l properties but making it gen
uinely compatible with £, (beyond its cohomological action) is far from
easy. For this a direct geometrical construction must be sought. The
cohomology calculations do provide a clue which will be followed up in
the next section.

4. A candidate map

We shall now, by direct and elementary construction exhibit a map

L

fn which will be our first candidate for a solution. Its success depends
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however on the non-vanishing of a certain determinant and this, though
highly probable, has not yet been established. First let us recall the
polar decomposition

of ~ m (Y +the
If g = pk is the decomposition of g € GL(n,C) then
PPN anla]a¥
99 = PRR'p

= pp* since k € U(n)
= p? since p = p*.

Hence p is the positive square root of the self-adjoint matrix g¢* and
then k& = p~lg gives the explicit retraction map

Note that this is compatible with the action of U(n) on both left and

ght:

if g = pk and u € U(n), then

dogu) = Ploku) = ku= ¢

and  @(ug) = ¢(upk) = olupu™tuk) = uk = wug(g)

é(g0) = ¢(g)o
so that ¢ is equivariant with respect to the action of the symmetric group
2pn on the column vectors of the matrices. Moreover, factoring on the
right by the action of the maximal torus 7™ of U (n), we get an induced
Yin-equivariant retraction (still denoted by ¢)

- ¢:GL(n,C)/T™ - U(n)/T™.

What we shall try to do is to construct a Yn-equivariant map

Fp : Cn(R®) = GL(n,C)/T™
and then follow this by the retraction ¢, so that fn = oF,.
We now describe our construction. Given a configuration
= (@1, ..., Tn) € Cp(R?) we consider the points on the unit 2-sphere S2

1,-
3 ) S
IVENL O

® 8

b = xj—a;i
Y e — ]
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In other words ¢;; is the direction of the line ZTiZ; (ch;v’&lenul}
b il N Tiving i and takine all valie
tij = Jf2(Zi,%5)). LrIXIDE T and taki 18 11 values i # 1 we get n — 1
points on $? and hence a point
aon=1/a2 1 [ 1N
D & 0o (07 ) = -1 U)

in the symmetric product. If we identify S? with the Riemann sphere
we can think of each ¢;; as a complex number (or co), and then p; is
_ gimply the polynomial whose roots are the t;; for j # 1. The coefficients
of the polynomial are the homogeneous coordinates of P,-1(C). The
polynomial p; is only determined up to a non-zero scalar, but we can
normalize so that ||p;|| = 1 in C™ and then p; is only ambiguous up to
a phase factor. The metric we use in C” is the natural metric induced
by a metric in C2. This means it is invariant under SU (2), the double

uniquely determined up to an overall scale. We now have n (normahzed)
polynomials, associated to = € C,(R?), namely

P1,P2, -3 Pn-

P AY II'T‘l’n 21 £

is well-defined in GL(n,C)/T™, the fa
biguous phase factors. Clearly, fron

this question later). Then the matrix g, whose columns are p1,...,Pn
S
v

u
e ok Yoo da e A CoTTed ~AanAing Nerm1 3
points 1, ..., Zr, just leads to the corresponding permutation of pi, ..., Pn.
Hence
z— (pl,---,pn)

gives a Lp-equivariant map

F, : Co(R?) = GL(n,C)/T™.

Following this by the retraction

11

would then give us our map

now
fu : Ca(RS) = U(m) /T
This is compatible with £, and also with the action of SU(2) (or SO(3)).
Note that SU(2) acts on the left on U(n)/T™.

Instead of working with matrices a more invariant way of thinking is
to say that the p; define a linear map C™ — V, where V is the (n — 1)tk
symmetric power of C?. The symmetric group ¥, acts by permuting
the basis of C™, while SU(2) acts on V.

Clearly our map f, would have the invariance properties (1)( 2)(3) of
§2.

v



8 MICHAEL ATIYAH

i i establish the following.

(4.1) Conjecture. For any configurat tion of points in
Cn(R3) the complex polynomials pi,...,pn are linearly indepen-

dent.

We now turn to examine this point. At first glance one might expect
the p; would become dependent for certain degenerate configurations of
points. In particular the worst case would seem to be when the Iomts

c e t on S so that the line of the z; gives t = 0 and
t = co. We can assume that z1, ..., z, appear on the line in that order
and let 21z, be the direction ¢ = co. Then we see that our polynomials

b; are:
o= 1
p2 =1
Pn = t'n——l

and these are clearly linearly independent. This is very encouraging!

Suppose next that our n points fall into 2 clusters z and y far apart,
as discussed in §2. We again choose s on 52 so that t = oo is
IS

~ 4+
A\ LG
the direction connecting the clusters (from z to y). We then find that

pi(z*xy) = pi(z) 1<r
= t'pir(y) 1>r

Since the p;(x) hav

follow from 11near mdependence for z and y se
establish property (4) of §2.

We have therefore reduced our problem to that of establishing the

linear independence of the polynomials p;,...,p, for all configurations
T T In ]-?3 We have seen that linear ind dence hnlde in the

Legg seegebyy 111 T ALGVT SCOULL Vildv aaialbaad 1l p naence noias 1n iane

collinear case (which includes the trivial case n = 2), so the first signif-
icant case is for n = 3. We shall now give a direct geometric proof for

'D
2
D
ag
[}
D
D
=
|
Je—t

arately Th1s also would

‘U

D

n = 3.

We can assume that the three points x1, z2, £3 are not collinear (since
fhiq CcaQe 'iQ 9] quv fele)! raraA\ and an thaoov o in a Aafinitas wlan Q"-r\‘v-‘-nhﬂ
VALD LAGLT Lo QuiTany LUVELITU ) alil oU wlily G 1l d ACIinite J:Jla; D UAL LLLLE

with the triangle 1,2,3, take 1 (i.e., z1) as origin and draw t he parallel
to 23 through 1.
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Taking intersections of the extended lines (both directions) with the unit

circle we get the following picture, where ¢;; is just the point denoted by

1j on the circle:

23//—_\\

JAVAY

)1\3

\

31

32

The essential point is the order in which the points ¢ (which are all

distinct) appear on the circle.

The three polynomials p1, pe,ps can be represented (linearly) by the

Linear independence means that the

three dotted lines in the picture.

But this is clear: p; and ps meet

three lines should not be concurrent.

above the diameter joining 1 and

<X
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proof can be constructed for all n but despite my publicizing the problem
on several occasions no solution has yet emerged.

Since a direct assault along these lines has reached an impasse we can
try to think of ways round the problem. One well known mathcematical
procedure, when faced by an intractable problem, is to gencralize it in the
hope that new insight might follow. We shall follow this strategy in the
next section and see that it does in fact lead to a solution of the Berry-
Robbins problem. This solution, although explicit and elementary, does
suffer from some aesthetic drawbacks and it should not be regarded as
the end of the story, as I shall explain in subsequent papers.

5. The hyperbolic analogue
31

H3. The curvature will play no role and it can be normalized to —1,
though at a later stage we may wish to allow it to vary. We can there-

fare introduce the space O (H3 \ renregentinge ordered cor fIO‘!'IY,}‘t“I(\\I}k of

Q
rore 1mirodauce tne e A 2 UL OOTIIVALL 5 YALTilAL

n distinct points in H3, and we can again ask for an analogue of the
Berry-Robbins conjecture. Is there a continuous map

f:Cu(H? - U(n)/T™

compatible with the action of £,? Since H® and R® are topologi-
cally equivalent this question, as it stands, is equivalent to the original

conjecture concernmg Ch (R3) he problem however becomes more nat-

11ral and interecting we acl ~ tbh A Avictariea M
ural and interesting if we ask for the existence o

a coutinuous map
(5.1) f:Cu(H?) — GL(n,C)/(C*)"

which is compatible with 3, and with the action of SL(2,(). Here
SL(2,C) acts on H3 as its group of isometries and on GL(n,C) via the
irreducible n-dimensional representation. Note that there is no invariant
metric on C™, so we use the full diagonal (C*)", not just T™.

The construction of §4, based on the polynomials, p, ..., p,, can be
repeated here in essentially the same way. Given two distinct pc)mts
i, z; of H* we define t;; to be the “point at t :
geodesic z;z;. If we take the projective model of H®, as the interior o
the unit ball in R3, the geodesics are just the usual straight lines, and

tij 1s3 just the point where the (oriented) line z;xj meets the unit sphere
of R
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As before p; is the polynomial with roots ¢;; (j # ¢), and is determined
up to a scalar. Again we may

(5.2) Conjecture. For any configuration in C,(H?) the
complex polynomials p,...,p, are linearly independent.

If this conjecture is true then the polynomials p; define the required
map (5.1).

Evidence! for the conjecture parallels that for the Euclidean case.

The collinear case follows by the same argument as before, and the case
n = 3 can be proved explicitly (see below). The cluster decomposition

property also holds as before.

The fact that the p; are constructed purely geometrically means,
both for R® and for H?, that the construction is compatible with the
appropriate isometry group. In this respect the hyperbolic case is more
interesting and more natural, because the whole group SL(2, C) (modulo
+1), acts effectively, whereas in the Euclidean case the translations act
trivially and only the orthogonal group acts effectively.

Ao promi od we novr
a

AS piulil ise

very similar to the Euclidean

!Added in proof: Further computer calculations by P. Sutcliffe have now ex-
tended the evidence for the conjecture up to n = 20
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As before the lines p1, ps, p3 are not concurrent for essentially the same
reason as before. Lines tnrougn A which cut the circle do so at points
on either side of the line joining 1 and 2, whereas p3 cuts the circle at
two points (31) and (32), both of which are below the line.

Any fixed configuration of R? lies inside some ball and, by rescaling,
this can be taken as the unit ball, so that our configuration can now be
thought of as in H3. Varying the size of the ball corresponds to changing
the curvature of H® and, if the size of the ball tends to oo the curvature
tends to zero, so that we recover flat space. Moreover, taking a minimal
ball, i.e., one which has a point of the configuration on its boundary
corresponds to a configuration in H?® with a point “at co”. This casc of
the conjecture reduces easily to that for (n — 1) points, so this suggests a
possible inductive proof of the conjecture for R? by using balls of different
sizes, i.e., coples of H3 W1th different curvatures. In fact, and perhaps

i lly be made to work and
will be e ]ained in de’raﬂ in fhe next section. Th1

xpl eta ext sec will justify our belief

in the advantage of generalizing difficult conjectures!

- <

6. An explicit map
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compatible with the action of X, and SO(3).

We sha.ll break the translation symmetry of the problem by fixing
an orig We shall also identify, by radial projection, all spheres with
this origin as centre. Given a configuration zi,...,2, of R3 we shall
define polynomials, p1, ..., P, With roots %,; (j # 1) by a slight variant of
the construction in §5. To define the roots of p; we shall distinguish

between the values of j:

(a) if |z;| > |2;| we take t;; = z;(on the sphere of radius |z,|).

(b) if |z;] < |z;| we take ¢;; to be the second intersection of the line
z;x; with the sphere of radius |z;].

hyperbohc space whﬂe leavmg alone the external pomts. Note that

when {z;| = {z;{ (a) and (b) agree, so that ¢;; and hence p; is a continuous
function of (z1,...,zx,).

Although the points are treated differently in (a) and (b) our con-
struction is still compatible with ¥,. The action of X,, should be viewed
as just altering the labels (suffixes) of the points, and the dichotomy lead-

ing to (a) or (b) does not depend on the labelling, but on the intrinsic
geometry of the configuration

The key claim is that the polynomials p;,...,p, given by this
new construction are linearly independent. This is easily proved
by induction on n. Given (1,...,2,), choose an index j for which |z;|
is maximal. For simplicity of notation we may take j = n. Now

let g1,...,gn—1 be the polynomials defined by the smaller configuration
(z1,...,Zn-1). By the inductive hypothesis these are independent poly-
nomials (of degree n — 2). Now choose our complex parameter ¢ on the

2-sphere so that ZTp ist = o0o. Then p; = ¢; for i < n — 1, while p, is a

polynomial of genuine degree n — 1 (i.e., none of its roots ¢,; is co)
Thus adding pp to the set pi,...,pn~1 we still have linear indepen-
dence, establishing the induction (which starts trivially with n = 2).
Just as in §4 we can normalize the p; and then use the polar decom-
position to end up with the required map

We have thus settled the original question posed by Berry and Rob-
bins. As a bonus our map has SO(3)-invariance relative to our chosen
origin (and also dilation-invariance). Unfortunately, and this is certainly
a drawback, our map is definitely not translation invariant. We could
make the origin depend on the configuration by choosing the “centre
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of mass”, and this would restore translation invariance. However we
would then lose the “cluster decomposition” property (4) of §2, which
our construction with a fixed origin does satisfy.

[ A

__//

/ /
£ /

\ e
\J/ g

There is another variant of our construction which uses the upper
ce model of H3. We identify H3 with O x RT that a boint

Pace modael neiry Wit O X £, 80 thatl a point
z is represented by a point (¢,u) with ¢t € C and u > 0. The geodesics
are now circles orthogonal to v = 0. The dichotomy (a) versus (b) now
depends on the u—component with (a) corresponding to u; < u;).

-1 g

L evrega
The role of exp X NaUSTING R3is nere pm,ytu

o
.l. J.J.\; 10 UL \JAPO/-Ll

by parallel planes u = constant, and these are all identified with C
through their t-component (we now take R“" C x 1?)

[ RN S e 1 P
This alternati t

ive Consiruc
SL(2,C) keeping a point (t = ) fixed. This consists of tmnbfox ma-
tions ¢ — at + b. It is also compatible with u-translations (the analogue
of dilations).

All these constructions, though continuous, are not actually differ-
entiable because of the sharp transition from (a) to (b). This can be
overcome by a Y,-equivariant smoothing, but this is a little cumbersome.

To sum up, while the Berry-Robbins problem has been settled by
constructing an explicit map there are some unsatisfactory features of
this solutlon. One might hope for a more elegant geometric solution, for

example by settling the conjecture of §4 (and its hyperbolic analogue in
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o Y t also ask for a solution which has some phvsical meaning
UI1Ee Hllg 1T a1SO aSK 10T a SO1urion wiicCh nas Soire paysiCdl 1licailllly.

oy
39)-
I hope to return to these questions in future publications.
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