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1 Main Theorems

If A is a positive self-adjoint elliptic (linear) differential operator on a compact
manifold then it has a discrete spectrum consisting of positive eigenvalues {X}. In
analogy with the classical Riemann zeta-function one can define, for Re(s) large,

This has an analytic continuation to the whole s-plane as a meromorphic function of 5
and s = 0 is not a pole: moreover CA(o) can be computed as an explicit integral over
the manifold [9]. In this note we shall introduce a refinement of this invariant when A
is no longer positive and we shall study its geometrical significance for an important
class of operators (first order systems) arising from Riemannian geometry. A full
exposition will be given elsewhere.

Suppose therefore that A is self-adjoint and elliptic but no longer positive. The
eigenvalues are now real but can be positive or negative. We define, for Re(s) large,

and again it is true that this extends meromorphically to the whole s-plane. A consider-
ably more difficult result is

THEOREM 1. t]A(s) is finite at s = 0.

The number nA(p)—which we also write simply as r\{A)—is clearly a measure of
asymmetry of the spectrum of A. As a simple example take A = i(d/dx) + t where
x(mod 2n) is the angular coordinate on the circle and ; i s a real parameter 0 < t < 1.
Then a simple computation gives t](A) = \ — 2t: note that Spec A consists of ±n + t
and is symmetric about 0 only if t = \.

For an interesting example in higher dimensions take a compact oriented
Riemannian manifold X of dimension 4k—\ and let A be the operator, acting on
exterior differential forms of even degree, given by

A(4>) = ( - l ) p + 1 *<ty> + (-l)p<W> (deg^ = 2p).

Here d is exterior differention and * is the Hodge duality operator defined by the metric.
It is easy to check that A is self-adjoint and elliptic. Suppose now that X is the
boundary of an oriented Riemannian manifold Y which is isometric near the boundary
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to the cylinder X x [0,1]. Let Pi(Y) denote the i-th Pontrjagin form of 7, that is, the
differential form constructed from the Riemannian curvature, which represents the
i-th Pontrjagin class. Then we have the following theorem:

THEOREM 2.

Sign ( 7 ) - | Lk{p(Y))=(-l)k+lr,(A),

where Lk(p) = Lk(pup2, •••,Pk) is the Hirzebruch L-polynomial and sign(7) is the
signature of the quadratic form on H2k( Y, X).

HX is empty Theorem 2 reduces to the Hirzebruch signature theorem for a closed
4A:-manifold. Thus we can view Theorem 2 as a differential-geometric generalization
of Hirzebruch's theorem to manifolds with boundary. If we compare it with the
Gauss-Bonnet theorem for manifolds with boundary we see there is an important
difference. Thus in Gauss-Bonnet the boundary only contributes a term due to
geodesic curvature and this vanishes when Y is a product near the boundary. Our
boundary invariant n(A) therefore represents a new phenomenon not present in Gauss-
Bonnet. When 7 is not a product near the boundary there is an additional term in the
formula of Theorem 2 involving the second fundamental form of X in Y.

To understand Theorem 2 in its correct analytical context one has to re-interpret
the integer sign (7). To do this let 7 denote the complete non-compact Riemannian
manifold obtained from 7 by attaching the semi-infinite cylinder X x [0, oo) to the
boundary. Then we have

THEOREM 3. The space of square-integrable harmonic forms on 7 is naturally
isomorphic to the image # of H*(Y, X) in H*(Y).

Since sign (7) is in effect the signature of a non-degenerate quadratic form on 6,
Theorem 3 leads to an interpretation for sign (7) in terms of harmonic L2-forms
analogous to the situation for closed manifolds.

There are counterparts of Theorem 2 for all the other classical operators associated
to a Riemannian metricf. For simplicity we shall describe only the case of the Dirac
operator. Let X, 7 be as above and assume further that 7 (hence also X) is a spin-
manifold. Let D denote the Dirac operator of X, acting on the spinor fields. This is a
self-adjoint elliptic operator hence rj(D) is defined. Then we have

t There are interesting cases whenever dim A'is odd. It is not necessary for dim A'to be of the
form 4fc-l: when dim X= 4k+l the operator iA is self-adjoint and elliptic; it generalizes id\dx
in the circle example given earlier.
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THEOREM 4.

Spin (t)+h+- [ A(p{Y)) = ^h-n{D)).
Y

Here A is the Hirzebruch il-polynomial and h, h+, Spin(?) are integers defined as
follows. First h = dim H where H is the space of harmonic spinors on X (the null
space of D2 or D). Next Spin(?) is the " L2-spinor index ", namely it is p—q where
p and q are respectively the dimensions of the square-integrable harmonic 4- and —
spinors on Y: recall that the spin-bundle of f breaks up into two parts S+ and S~
corresponding to the ^-spin representations of Spin(4k). Finally, identifying S+ on
the cylinder with the spin bundle of X, we define h+ = dim H+ where H+ <= H
consists of limiting values of harmonic sections of S+. More precisely (f>eH+ if there
is a harmonic section \j/ of S + such that \j/ — 0 e L2 (in the cylinder).

The minor formal differences between Theorems 2 and 4 are easily accounted for.
For forms the analogues of h+ and h/2 cancel because of Poincar6 duality and the
factor i multiplying rj(D) disappears because the analogue of D consists of two copies
of A (one for even forms and one for odd forms).

2. Generalizations

If T is a linear transformation commuting with our self-adjoint operator we can
define the function

1A. r(«) = I (sign A) Trace Tx \X\~S

where the summation is taken over distinct eigenvalues and TA is the transformation
induced by T on the A-eigenspace. In the Riemannian cases such transformations
arise naturally from the (compact) group G of isometries (preserving orientation and
spin structure where relevant). Putting s = 0 this leads to invariants r\(Ai g) for
g e G and Theorems 2 and 4 have natural generalizations in which the integral over Y
is replaced by an integral over Y8—the fixed-point set of g. \ig has no fixed-points on
X then Y8 is closed and the integrals become independent of the metric. The generali-
zation of Theorem 2 then identifies rj(A, g) with the invariant for fixed-point free
actions defined in [3: §6]. An important example of this theorem is given by taking X
to be a sphere and g to be a rotation. In this case the result can be verified directly by
computing the eigenvalues and comparing the resulting value of t\(A, g) with the
explicit formula given in [3]: this was done by D. B. Ray.

A closely related generalization arises if we extend our operator A to a local
coefficient system given by a unitary representation x of the fundamental group of X.
We then obtain invariants rj(A,x), and r\ (A,x) - dim x • *i(A) is independent of the metric.
If Tti(X) is finite this invariant is essentially equivalent—via Fourier transforms—
to the invariant t\(A, g) for the universal cover of JT(with ge n^X)). However if
nt(X) is infinite we have a new situation not covered by the other point of view. In
this way the invariant of [3] is extended to infinite fundamental groups.
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The preceding remarks show that there is a strong analogy between our ^-invariants
and the analytic torsion of Ray-Singer [7][8]. While this analogy played a role in
suggesting the form of Theorem 2 we are far from having a unified point of view
embracing [7] [8] and our present results.

Theorems 2 and 4 show that our ^-invariants are closely related to the invariants
studied by Chern and Simons [4]. However there are significant differences and these
can be exploited. Thus suppose X has a given framing/ (that is, a trivialization of its
tangent bundle). Then, by the Pontrjagin-Thom construction, (X, / ) determines
an element in the stable homotopy group of spheres in dimension 4fc— 1. In particular
one can associate to (X, f) its Adams e-invariant, which identifies a finite cyclic
summand in ns

4k_ t . It is reasonable to ask for an explicit way of calculating e(X, / ) ,
and this is provided by the following: f

THEOREM 5.

e(XJ) = \{r\{D)-h)- f A(f) modZ (A: even)
^ mod 2Z (k odd).

Here D, h are associated to the metric and spin structure defined by/as in Theorem
4, and A(f) is a (4k— l)-form on X canonically defined by the metric, the framing and
the ^-polynomial. More precisely A(f) = /*(a>) where/is now viewed as a section
of the principal orthogonal bundle Q and co is the form on Q defined by the metric
connection and A in the manner of Chern-Simons [4]. Universally co is characterized
by the requirement that dco = A(p).

The right-hand side of Theorem 5 is a real number given by analysis on X: in fact
it has to be rational, since e e Q/Z. Such rationality properties of the ^-invariant are
connected with rational values of some L-functions in number theory. The connection
comes about because certain manifolds X of the form G/F with G, F solvable, G a Lie
group and T discrete, arise naturally in number theory and have natural framings [5].
In fact the present work was, to a considerable extent, motivated by the attempt to
understand some of the results in [5]. The details of all this will be explained elsewhere.

3. Outline of proof

Since Theorems 2 and 4 generalize certain cases of the index theorem on closed
manifolds it is natural to try and formulate them as index theorems for elliptic
operators with boundary condition. The difficulty is that the operators on Y which
are involved are known not to admit any local elliptic boundary conditions of the
conventional kind. There are non-vanishing topological obstructions to this as
explained in [6; Appendix I]. The way round this difficulty is to consider more general
boundary conditions of a global character. More precisely (for the case of spinors

t In the notation of [1] e = ec for k even and \e = eR for k odd.
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say) we define the boundary operator B acting on a section 0 of S+ on Y by:
Bcj) = P((j)\X) where P is the spectral projection of the Dirac operator D on X
corresponding to eigenvalues X ̂  0. Such boundary operators present no serious
analytical problems and have been considered by various authors although not from
our point of view in relation to index problems.

Once we have set the problem up as an index problem for an elliptic operator with
boundary condition, standard analytical methods on the lines of [10] show that our
index can be evaluated in terms of a contribution from the interior and a contribution
from the boundary. The first of these is locally the same as the contribution for a
closed manifold and, for the classical Riemannian operators, have been determined in
[2] where they are identified with the appropriate polynomial in the Pontrjagin forms.
The boundary contribution is computed by a direct and elementary calculation in
terms of the eigenvalues of D and gives the right hand side of Theorem 4. The index
of our problem (for spinors) contributes the first two terms in Theorem 4. The
reason why L2(7) enters is that the harmonic spinors satisfying our boundary
condition are essentially those which decay exponentially in the cylinder.

The Gauss-Bonnet formula is much simpler than Theorem 2 or 4 precisely
because the operator associated to the Euler characteristic (namely d+d* : even
forms -* odd forms) does admit a local elliptic boundary condition: the obstruction
vanishes in this case.

Finally we shall comment on Theorem 1. Although, for convenience, this was
stated first we do not know of a direct analytic proof. In fact Theorem 1 can be
deduced as a Corollary of Theorem 4 (and its analogues) by topological methods
rather in the way the general index theorem was derived in [2] from the classical
special cases of Riemannian geometry. An essentially equivalent method is to try
and treat the general case of rj(A) by a boundary value problem on the lines of the
Riemannian cases. However topological methods are needed to show that a suitable
boundary value problem can be set up.
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