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RTEMANN SURFACES AND SPIN STRUCTURES

BY MICHAEL F. ATIYAH.

INTRODUCTION.

The purpose of this paper is to reprove some classical results on compact
Riemann surfaces using elliptic operators, and to show how these results
fit naturally into the general context of spin-manifolds. This programme
was stimulated by discussion with D. Mumford and I am greatly indebted
to him for information about the classical theory. Moreover, in [8],
Mumford gives new algebraic proofs of the theorems in question, rather
in the spirit of this paper.

The theorems we have in mind concern the division of the canonical
divisor class K by 2 (or, multiplicatively, taking the square root of the
canonical line bundle). If g is the genus of the Riemann surface then
there are tlclg solutions of the equation 2 D== K — in the divisor class
group. These solutions are by no means equivalent to one another.
For example the complete linear systems D may have quite different
dimensions, for the different choices of D — as is already seen for the
case g = i, when D == o differs from the other three solutions.

If the complex structure on our Riemann surface varies continuously
with some parameter t then the 22^ divisor classes above will also vary
continuously. The dimensions of the linear systems D( are not in general
constant functions of t — they can jump. In fact this is related to the
fact mentioned above (that dim D | depends on the choice of D) because
dim Dt is a multi-valued function of t and, as we go round a closed
path in ^-space, we may take one choice of D into another.
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If we reduce all dimensions modulo two then there are some remarkable
classical theorems concerning this situation. In the first place we have
stability under deformation :

THEOREM 1. — Let X( be a holomorphic family of compact Riemann
surfaces (<€C, 1 1 < i) and let D( be a holomorphic family of divisor classes
on Xt such that 2D(== K( (where K( is the canonical divisor class). Then
dim [ D( j mod 2 is independent of t.

Remarks. — A holomorphic family means that X^ is the fibre of a
proper holomorphic map f: Y -> C where Y is a complex analytic surface
and df^ o. To define a holomorphic family of divisor classes it is best
to pass to the point of view of line-bundles. Thus if (by abuse of nota-
tion) K( now denotes the canonical line of X^, then we have a holomorphic
line-bundle K on Y (with K(= K | X^), and a holomorphic line-bundle L
on Y with L2^ K defines a family L( of line-bundles corresponding to
the divisor classes D(. It is uniquely determined by the choice of Lo.
With this notation | D^ is the projective space associated to the vector
space F(L() of holomorphic sections of L^, so that dim) D(| = dimT{Lt) — i.
From now on we shall use the line-bundle terminology.

To explain the second result let us denote by S(X) the set of line-
bundles (up to isomorphism) which are square roots of the canonical line
bundle of X. This set has 22^ elements. In fact it is clearly a principal
homogeneous space for the group of line bundles of order 2. This group
is naturally isomorphic with H^X, F^) which is a vector space over Fa
(the integers mod 2). Thus S(X) has a natural structure of afflne space
over Fa with IP(X, F^) as its group of translations. Then the second
classical result is

THEOREM 2. — The function y : '§{X)->F^ defined &y<p(L) = dimr(L)
mod 2 is a quadratic function whose associated bilinear form is the cup-pro'
duct {^on H^X.F^).

Remarks. — If A is an affine space over Fa a function y : A -> Fa is
called quadratic if, for all a€A and x, y€T(A) (the vector space space
of translations of A),

IL(^ y) ==(p(a+^+j) —9(04-^ ) —^(<%+j ) +q?(<2)

is a bilinear form on T(A). It then follows that Ha is independent of a :
it is called the associated bilinear form. If 9(0) = o and we identify A

(1) We identify H^X, F2) with F-z.
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with T(A) by a <-> a 4- x then y becomes a quadratic function on T(A),
in the usual sense, with associated form H. If H is non-degenerate there
are essentially just two possible quadratic functions. These are distin-
guished by their Art invariant or alternatively by the number of zeros
of <p. Art invariant zero is equivalent to the existence of an isotropic
subspace of dimension g . (where dim A = 2 g) : in this case <p has
2^-l(2^4- i) zeros. The function 9 + 1 on A then has ^""^^— i) zeros
and corresponds to a quadratic form on T(A) of Art invariant one.
The identification of the function © in Theorem 2 is then completed by

THEOREM 3. — The function y in Theorem 2 has i^1^-}- i) zeros.

For example, if g = i, the three non-trivial square roots L of K
(== i in this case) have y(L) = o, whereas < p ( i ) == i. For g = 3 there
are 28 values of L with y(L) = i : these correspond to the famous 28 bitan-
gents of a plane quartic.

Theorem 1 shows that the function <p in Theorem 2 does not depend
on the complex structure of X (since the space of moduli is connected).
To prove Theorems 2 and 3 therefore we could choose a particular complex
structure which simplified the calculations. In fact hyperelliptic curves
(double coverings of the protective line) provide convenient models and
Theorems 2 and 3 reduce to combinatorial calculations involving the
branch points of the double covering X —^ Pi. However our methods
will give natural proofs of all three theorems.

We shall begin, in paragraph 1, with a simple direct analytical proof
of Theorem 1. These methods, with a little extra topology, will then be
extended in paragraph 2 to prove Theorem 2. In paragraph 3 we shall
show how the problems and methods of the first two sections fit into the
general theory of spin-manifolds. Using this general theory we shall
then in paragraph 4 prove Theorem 3. We shall also give a natural
generalization of Theorem 2 to spin-manifolds.

Finally in paragraph 5, following a suggestion of J.-P. Serre, we shall
deduce the following theorem as a purely algebraic consequence of Theo-
rems 1-3 :

THEOREM 4. — Let X( be a holomorphic family of compact Riemann
surfaces parametrized by the punctured unit disc : o << 1 1 < i. Then
there is a holomorphic family of line-bundles Lit on X^ such that L^2 ̂  K(.

Remarks. — 1. We shall in fact prove a slightly stronger differentiable
version of this theorem : this also applies to Theorem 1.
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2. Theorem 4 seems not to have been observed before, although a formal
analogue for curves over finite fields was known (see § 5).

1. Mod 2 STABILITY. — The proof of Theorem 1 depends on the following
simple lemma of functional analysis :

LEMMA (l . i) . — Let H be a complex Hilbert space and denote by 9€ the
space of all continuous ^{-linear operators T on H such that (2) :

(i) T(ih) =-iT(h) (AeH);
(ii) T*=—T;

(iii) o is an isolated point of finite multiplicity in the spectrum of T.

Then T h-> dime KerT mods defines a continuous (and therefore locally
constant) map ^€ — Fa, where 3i is given the uniform (operator norm}
topology.

This lemma is proved in ([6], (5. i)] as part of a more general result about
spaces ^ (the 3€ of Lemma ( l . i ) is ^2 of [6]). Roughly speaking the
proof goes as follows.

For S sufficiently close to T in 3C we have

dim^KerT== ^ dim^E),,
O^A<£

where E/^ is the real subspace of H which complexifies to give the ̂  i \A-
eigenspaces of S. By (i) all E), admit multiplication by i and so are
complex subspaces of H. Since Eo== KerS the lemma will be proved if
we can show that every other E),(A > o) has a quarternion structure.

S . S2
To do this for E), define j = —= and we have j ^ y ^ ^ — i and

ji =-ij [by (i)].
Let us return now to a compact Riemann surface X with canonical

line bundle K and let L be a square root of K. Consider the ̂ -operator on L

^: C'(L)-^C'(L(g)K).

The holomorphic sections of L are the solutions ot^u==o. For any u,
peC°°(L) we have a product u^eC°°(L2) = (^(K) and so

(1.2) /^.P+ / U.~^V= f3(^):= Cd(l/v)==0.
^x ^x ^x ^x

(2) In (ii), (iii) we consider H as a real Hilbert space.
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Now choose a hermitian metric on X : this induces one on K and L and
gives rise to an anti-linear isomorphism

h: (^(L^K)-^30^)

defined by

<^, /^(w)>=: Cuw, u^C^ (L), weC^L^K),
17 x

where <( , )> denotes the hermitian inner product on C^L) induced by the
metric. The composition P = h^^ is therefore an anti-linear map
C^L) -> C^L) and, for u, ^eC°°(L), we have

< ^ P ^ > 4 - < ^ P ^ > = o .

Taking real parts this gives

Re<^, P ^ > = — R e < F , P ^ > = — R e < P ^ F>.

Since Re<( u, ^ )> is the euclidean inner product on H (considered as real
space) this implies that P* == — P, where P* is the formal adjoint of the
unbounded operator P.

Now P is a first order elliptic differential operator. As usual (3) we

associate to it the bounded operator T = (i + P^P^P. Then T = — T*
and is an anti-linear Fredholm operator ( 4) , which is equivalent to saying
that T lies in the space ^Cof Lemma (1. i). Moreover KerT= KerP=F(L)
(since all solutions of Pu = o are C30).

Given now a holomorphic family of Riemann surfaces X^ as in Theorem 1
with a family of line-bundles L( (such that Lj = K() we obtain a family
of bounded operators T(. Moreover T< is continuous in t (see [3]).
Theorem 1 now follows by applying Lemma (1. i). Actually this requires
an extra argument because the Hilbert space H^ on which T( acts also
varies continuously ( ) ) with t. However this is taken care of by the
observation that, given a continuous family of hermitian operators A/
(on a Hilbert space H) we can, for small t, find a continuous family of
invertible operators P( such that A(= P^AoP^1 : the details are left to
the reader.

(3) See [3] for a general summary of elliptic operator theory.
(4) i. e. T has closed range and dim KerT = dim KerT* < oo.
(5) Since the family X/ is locally a C30 product the space H/ is fixed (independent of t)

but the inner product varies.
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Note that, in this proof of Theorem 2, it is enough that the X^ should
form a differentiable family of (complex) Riemann surfaces : it is not neces-
sary to have the family holomorphic.

2. THE QUADRATIC FUNCTION (6). — In this section we shall investi-
gate the function y : S(X) -> F^ of Theorem 2. By definition, for any
LeS(X) (i.e. L^K) we have y(L) = dimr(L) mod 2. In the pro-
ceeding section we saw that a hermitian metric on X defines an anti-
linear bounded operator T ===== TL and that

cp (L) == KerTLinoda.

TL is an operator on the square-integrable sections of L. To study 9
we shall first generalize it slightly.

Suppose now that E is any real vector bundle over X. Then using a
partition of unity (or a connection in E) we can define an extended
^-operator

^(E): C^L^E^C^L^cK^KE).

Using-metrics on X and E this defines, as in paragraph 1, an anti-linear
operator TL(E) on the space of square-integrable sections of L (^nE.
Since ^L is skew-symmetric [see (1.2)] ^(E) will be skew-symmetric
modulo o-order terms, hence TL(E) is skew-adjoint modulo compact

operators. Replacing Ti,(E) by ^(T^E) —T^(E) ) -- which is still Fred-
holm — we may therefore assume that TL(E) is strictly skew-adjoint.
Hence it belongs to the space S€ of Lemma ( l . i ) (for H the space of
square-integrable sections of L0RE). Because of Lemma ( l . i ) the
function

E h> cpL (E) == dime KerTL (E) mod 2

is independent of the various choices made (metrics and connections).
Clearly

^(E^E')=:^(E)-+-^(E!)

and so ^ extends by linearity to a group homomorphism

cpL: KO(X)-^

where KO(X) is the Grothendieck group of real vector bundles on X
{see [1]). From its definition we have 9r,(i) == ^(L).

(") It is interesting to compare this section with the corresponding section (§ 3) in [8].
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If in particular we take E to be a real line-bundle then E2^ i (the
trivial line-bundle) and so L '=L0KE is another square root of K.
Moreover since the coordinate transformations of E can be taken as cons-
tants (in fact ± i) we do not need a partition of unity to define ^i,(E) :
in f ac t^ (E)=^ . Hence T^E) = T^ and so ^(E) = y(L'). Thus
we have proved

PROPOSITION (2.i). — We have a commutative diagram

Pic.K(X)-^-VcS(X)

^ Y

KO(X)————F2

where Pic^X) is the multiplicative group of real line-bundles over X {iso-
morphic to the additive group H^X, Fs)) and PicR(X) ->- KO(X) is the
natural inclusion into the multiplicative group of units of the ring KO(X).

Since yr. is an additive homomorphism while PicR(X) -> KO(X) is
multiplicative this Proposition really explains the algebraic nature of y.
We proceed to elucidate this further.

Since dimX = 2 the augmentation ideal KO(X) has cube equal to
zero. This implies that the composite map

a : H1 (X, F,) ^ PICK (X) -> KO (X)

is (affine) quadratic. Since Qpj^ is additive (and(^)L is bijective) this
implies that y is quadratic, which is the first assertion of Theorem 2.
To prove the second part of Theorem 2 we have to show that the bilinear
form on H1 (X, F^) given by

(^j) h>9L[a(^+j) —a(^ ) —a( j ) +a(o)J

coincides with the cup-product [identifying H^X, F2) with F2). This
will follow from two lemmas.

LEMMA (2.2). — Let uGKO(X) be the pull back of the generator of

KO(S2) ̂  Fa by a map X -> S2 of degree one. Then

a(^+,r) —a(^ ) —a( j ) + a (o) = {xy) u,

where a : H'(X, F.,) ^ KO(X) and H^X, F,) is identified with Fa.

LEMMA (2.3). — Let u be the element defined in (2.2). Then ^^(u) = i.
Ann. 6c. Norm., (4), IV. — FASC. 1. 8
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To prove (2.2) let / '.-X-^XS1 be a map such that x=f^{a),
V === /*(6) where a, b come from generators of H^S^ F^) by the two pro-
jections. By naturality it is then enough to prove (2.2) with (X, x, y)
replaced by (S4 X S1, a, &), but this is equivalent to saying that

KO(S1)(g)K lD'(S l)->KO(S2)

is an isomorphism (all groups being ^ F,), which is well-known (see for
example [2]).

Remark. — It is not difficult to prove that the total Stiefel-Whitney
class

co : KO (X) -. i © Hi (X, F,) © H2 (X, F,)

is in this case an isomorphism [of the additive group KO(X) onto the
multiplicative group of the cohomology ring]. This implies (2.2).

To prove (2.3) we give another description of the element u. Let P
be a holomorphic line-bundle on X corresponding to a point divisor.
Regarded simply as continuous line-bundle P is then induced from the
corresponding line-bundle Q on the 2-sphere S2 by a map X -> S2 of
degree one. Since Q - 2 generates KO(S2) - where we regard Q as a
2-dimensional real bundle — it follows that u == P — 2€KO(X) . Since

9 L ( P - 2 ) = = ^ ( P ) _ ^ ( 2 ) = = c p ^ ( P ) e F ,

we have just to show that y^(P) == i. Now since P is holomorphic^
has a natural extension to L (g)^P ̂  L (g)cP © L (g)cP* : it coincides
with the ^-operator of the holomorphic bundle L (g)cP © L (g)cP*.
Hence

cpL(P) ^dimI^L^^) +dimr(L(g)cP*) mod 2.

By Serre duality we have (since L*(g) K ^ L)

dimr (L (g)c?*) = dimH' (X, L (g),:P)

and so
cpL(P) FEE dim IP (X, L(g)cP) - dimH1 (X, L(g)cP)mod2

:= deg (L (g) P) — g + i by Riemann-Roch
= ^ — ^ + I = I

as required. This completes the proof of Lemma (2.3) and hence of
Theorem 2.
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3. RELATION WITH SPIN-MANIFOLDS. — In this section we shall set the
proceeding discussion of Riemann surfaces into the general context of
spin-manifolds. We begin by recalling a few basic facts [see [7]).

Let Spin(M) -> S0(n) be the standard double covering and let
gGH^SO^), F^) be its corresponding cohomology class. Let X be an
oriented Riemannian M-dimensional manifold, and let P be its principal
tangent S0(n)-bundle. Then a spin-structure on X is a double covering
Q -> P whose restriction to each fibre of P is the standard covering
(of course isomorphic double coverings are regarded as defining the same
spin-structure). Q is then a principal Spin(n)-bundle over X. Consi-
dering the exact sequence

(3.i) o -> H1 (X, F,) -> H1 (P, FO -> H1 (SO (n), F,) 4 H2 (X, F,)

arising from the fibration S0(n) -> P ->- X, we see that

(i) a spin-structure exists <=>S(g) == o;
(ii) if S(g) = o the spin-structures are classified by a coset of

H^X.F,) in H^P.F,).

The class §(g) is the second Stiefel-Whitney class co^(X). Note that
the Riemannian metric is not really essential in these considerations :
we can consider the double covering of GL^TZ, R) instead of Spin(n).

Suppose now that X is an almost complex manifold so that the struc-
ture group of its principal SO {in) -bundle P reduces to U(n). Since the
two homomorphisms

U(^)->SO(272), U^^L^I)

both induce isomorphism in H^ , F^) it follows [using (3 . i ) and analo-
gous sequences for V{n) and U (i)] that the spin-structures on X corres-
pond bijectively to those double coverings of the U (i)-bundle detP
which restrict to the squaring map U ( i ) -> U ( i ) on each fibre. If X
is a complex manifold with canonical line-bundle K it follows that the
spin-structures on X correspond bijectively to isomorphism classes of
pairs (L, a) where L is a continuous line-bundle and a : L 2 —^ K is a conti-
nuous isomorphism. Now given a, L inherits a holomorphic structure
from K (making a a holomorphic isomorphism). Conversely, if X is
compact, the holomorphic structure on L uniquely determines a up to a
constant ( 7 ) (on each component of X). Replacing a by ca, where c is

(7) Because the holomorphic automorphisms of a line-bundle are just the non-zero
holomorphic functions.
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j,
a non-zero constant just corresponds to the isomorphism c2 : L -> L.
Thus we have

PROPOSITION (3.2). — The spin-structures on a compact complex mani-
fold correspond bijecti^ely to the isomorphism classes of holomorphic line
bundles L with L2^ K, where K is the canonical line-bundle.

Remark. — It is easy to check that the bisection of (3.2) is compatible
with the natural action of H^X, Fa).

Proposition (3.2) shows that the setS(X) of square roots of K (for X
a Riemann surface) has a natural generalization as the set of spin-struc-
tures on any manifold X with 002 '==- o. We shall now show that the
function 9 : 2>(X) -> F^ of Theorem 2 also has a natural generalization
provided dim X =2 mod 8.

We begin by recalling a few facts about the Clifford algebras Cn of the
n

quadratic form —^^2 on R" {see [2])^ For n = Sk + 2, Cn is a matrix
i

algebra over the quarternions H == C+jC, and the even part C^ is a
matrix algebra over C. Let M be an irreducible C^-module (so the com-
muting algebra is H) and decompose it in the form M = M°(]) M1 where M°,
M1 are the (^: i)-eigenspaces of the operator ej where e^I^CCn is a
unit vector (ej)<l= e2^=— i .— i = + I ) - This grading is independent
of e and makes M a Pa-graded C^-module. M° and M1 are irreducible
C^-modules and x \-> jx establishes a C,°-module isomorphism between
them. The complex structure on M° and M1 is given by the element
CD = eie^ . . . e^ where the ei are an orthonormal basis of R71. Note
that (o is in the centre of C°, but anti-commutes with the ei so that
x h-> CiX is an anti-linear map M°—M 1 . Restricting to Spin(7z)CC°, the
modules M°, M1 become representations of Spin(n) : they are isomorphic
complex representations.

Suppose now that X is a (Riemannian) spin-manifold of dimension
n = Sk 4- 2? and let P be its principal Spin(7z)-bundle. Then form the
associated complex vector bundle

E =:Pxspin(.)M=E°®E1

where
E^PXspin^ (i==0, I).

As explained in [4] the Dirac operator D is then defined acting on C°°(E).
It is an elliptic first-order differential operator defined by

Ds==^ei(()iS),
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where ^5 is the covariant of 5 in the direction e^ d{ ) denotes Clifford
multiplication and the ei are an orthonormal basis of tangent vectors.
D is (formally) self-adjoint and interchanges E° and E1. Moreover, since
^co = — (o^, D is anti-linear. Now define

P : G^E^-^C'CE0)

to be the composition jD. Since jD = Dj and j2=— i (and jj* = i)
it follows that P* == — P. Since j is complex-linear P is still anti-linear
and of course P is also elliptic.

It is easy to check that, in the case of Riemann surfaces, this operator P
coincides with that defined in paragraph 1. Exactly as in the proof
of Theorem 1 [i. e. using Lemma (l.i)] it follows that dimcKerP mod2
is independent of the choice of metric and depends only on the spin-struc-
ture. Note that

KerP ̂  KerD°= Kei^D^D0^ H,

where D° denotes the restriction of D to E° : H is the space of harmonic
spinors on X. Thus we have

PROPOSITION (3.3). — On a [Riemannian) spin-manifold of dimen-
sion 8 A * + 2 the harmonic spinors H form a complex vector space and
dime H mod 2 is independent of the Riemannian metric.

Thus if S(X) denotes the set of spin-structures on X we have a func-
tion 9 : S(X)-> Fa defined by s ̂  dim^H, mod2, where Hy denotes
the harmonic spinors for the spin-structure s (and some metric). This
generalizes the function 9 of Theorem 2.

Just as in paragraph 2 we can extend 9 to define a homomorphism

cp,: KO(X)-->F,

for each ^eS(X) and we have the analogue of Proposition (2. i ) . In the
next section we shall use the results of [5] to derive more information
about 9,. In particular we shall prove Theorem 3.

4. APPLICATIONS OF THE INDEX THEOREM. — The index theorem of [3]
has been extended in [5] and enables us to compute " mod2 indices
of elliptic operators in terms of K-theory. In particular the homomor-
phism 9, defined at the end of paragraph 3 coincides with the direct
image homomorphism f; for spin-manifolds ([5], Theorem (3.3)], where f
is the map X -> point and we identify K0~2 (point) with F^. In particular
it follows that 9^(1) is an invariant of spin-cobordism. Now in dimen-
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sion 2 the spin-cobordism group has just two elements f7]. Since
y(5) == y.(i) is not identically zero (for example take X an elliptic curve)
it follows that we have.

PROPOSITION (4.i) . — For a Riemann surface X with spin-structure s
we have f{s) = o if and only if (X, s) is a spin-boundary.

Using (4. i) we will now prove Theorem 3. We take a standard embed-
ding XCR 3 as a sphere with g handles. Then X = ^Y, Y the interior,
and we have the standard symplectic basis (^i , . . . ,^. , ^ / i , . . . , ^ . )
of H^X.F,) in which ^ i , . . . ,^ . extend to elements of H^Y, F^).
We give X the spin-structure s induced by the spin-structure of R3.
Identifying H^X, F^) withS(X) by means of s the function (p : S(X) -> F^
gives a function ^ : H^X, F^) -> F^. By (4. i) we have ^(o) == ^(^) = o
(i = i, . . ., g). Hence the quadratic function ^ has Art invariant

M^^^O^CrO^o.

This implies that ^, and so y, has 2^-l(^+ i) zeros, proving Theorem 3.
In view of (4 . i ) this may be rephrased as

THEOREM 3'. — On a compact orientable surface of genus g there are
precisely s^-^^ i) spin-structures which bound.

Returning to the general case of a spin-manifold of dimension n = 8k + 2
we observe that the function y : ̂ (X) — F^ is not in general quadratic.
Since (KO (X))^1^ o it follows that 9 is a polynomial of degree ^ n.
If however we assume that IP(X, Z) -. H^X, F^) is surjective (as
happens for Riemann surfaces) then we can again prove that cp is qua-
dratic. In view of Proposition (2 . i ) it is enough to prove that for any
three real line-bundles ^, YJ, ^ on X we have

( 4 - 2 ) a- l ) (Y?- l ) (^- l )==0.

Now our hypothesis on H^X, F^) implies that all line-bundles on X come
from the line-bundles on S1 by maps X -> S1. Hence it is enough to
prove that (4.2) holds when X= S4 X S4 X S1 and ^ Y], ^ come from S1

by the three projections, i. e. that the product

KO(S1) (g)KO(S1) (g) KO(S1) -.KO(S3)

is zero — which is trivially true because KO(S3) = o. Since y is qua-
dratic in this situation it is reasonable to ask for an explicit description
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of it and in particular of its associated bilinear form, thus generalizing
Theorems 2 and 3. To do this let us first write Spin(X) ==/*,(i) for any
spin-manifold of dimension n, where f^: KO(X) -> KO"" (point) is the
direct-image homomorphism. This is zero unless n = o, i, 2 or 4 mod 8.
For n =. i mod 8 it is the invariant we have been discussing. For
n = i mod 8 it also has an interpretation as a mod 2 dimension of harmonic
spinors ([5];(3.i)]. For n =. o mod8 it is equal to A(X), while for

T y\. y\ ^ ^

n^^modS it is equal t o - A ( X ) , where A is given by a certain poly-

nomial in the Pontrjagin classes of X (see [4]). Then we have the following
theorem :

THEOREM 5. — Let X be a spin-manifold of dimension 8k 4- 2 ^n(^
assume that H^X, Z) -> H^X, Fa) is surjective. Then the function
<p : S(X) -> Fa is quadratic. If we fix a spin-structure on X and use this
to identify S(X) with H^X, F^) = H^X, Z) mod2, then in terms of a
basis e^y . . ., e,n of H^X, Z) (p is given by

cp( V Xtd ) = Spin (X) +Y ^-Spin (Y;) 4-Y ^^ySpin (Y^) mods,
i<7

where Y^ is a submanifold dual to e^ Y^== YiHYy {assuming transversal
intersections) and Y(, Y^- are given the induced spin-structure. The bili-

near form y^^ySpin(Y^) can be given cohomologically by

a,b^^(X)ab[X\, ^eH^X.Z).

Proof. — The quadratic nature of y has already been proved. For the
next part let a, fceH^X, Z), let A, B be transversal submanifolds repre-
senting a, b and denote by a, ^ the line-bundles defined by a, &. If j^
denotes the inclusion map A -> X, then a — i === ry^ (i), where T] is the
generator of K0~1 (point) : this follows by considering the map X-^ S1

corresponding to a. Similarly P — i = r\j^(i) and (a — i) ((3 — i)== ^^'^(i),
where 7° : B — X, j^: A n B — X are the inclusions. Hence (8), if />x

denotes the mapX -> point, etc.

cp^+^/^ap)

^(i) +/? (^ - i) +/X(P - i) +/x(^ - i) (P - i))
^^(i) + ̂ (i) +^(1) 4- Y^^eKO-2 (point)
=Spin(X) + Spin (A) +Spin(B) + Spin (An B) eF.2.

(8) We use the functoriality of the direct image homomorphism, so that ft == f^J\-
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Since <p is quadratic this formula is equivalent to the one in terms of a
basis. For the last part we have

Spin(AnB) =:^-(AnB) [AnBJ

=-=iVs^-(X) [AnB] since A n B has trivial normal bundle

==^,(X)ab[X].

Remarks. — 1. The proof shows that the rational class ^Ls/^X) ab is
always integral, so that it may be reduced modulo 2.

2. If d imX=omod4, then the cohomological formula shows that
Spin X is independent of the choice of spin-structure. For dim X == 2 mod 8,
Theorem 5 (and in particular Theorem 2) shows that this is not so.

3. The bilinear form in Theorem 5 may be degenerate. An example
is given by taking X = Y x Z where Z is a Riemann surface and Y is
a spin-manifold of dimension 8/c with H^Y, F^) 7^0. In fact the spin
number is multiplicative so that

Spin (X) == Spin (Y) X Spin (Z)

and hence this is independent of the choice of spin structure in Y
(Remark 2). Thus rank y = 2 genus Z < dimH^X, Fa).

5. INVARIANT SPIN-STRUCTURES. — As we have seen the set S(X) of
spin-structures on a Riemann surface is an affine space over F^ endowed
with a non-degenerate quadratic function. Rather surprisingly such an
algebraic structure has the fixed-point property, namely we have the
following algebraic lemma (9) :

LEMMA (5. i). — Let V be a finite-dimensional vector space over the field F^
and let y : V -> F^ he a quadratic function whose associated bilinear
form H(rp, y) is non-degenerate. Then any affine transformation x \-> Ax -[~ B
o/*V which preserves the function y has a fixed point.

Proof. — By hypothesis we have

<p(^) ==:cp(A.r+B) ==cp(A^) + c p ( B ) + H (A.r, B) .

Putting x = o we get <p(B) == o and so

(i) cp(^) =co(A^) +H(A^ B) .

(9) I owe this lemma to J.-P. Serre,
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This implies ( i o ) H(rr, y) = H(A^, Ay) and so i = A* A, where A* is
the adjoint of A with respect to the non-degenerate inner product H [x, y).
Hence

^x=x ==> k.x=x -==^ H ( . a ? , B ) = o by( i ) .

Thus B is orthogonal to Ker(A — I)* and so lies in the image of A — I.
Thus there exists y € V with B = (A — I) y or equivalently y = Ay 4- B.
This is the required fixed-point.

Applying this to Riemann surfaces we deduce

PROPOSITION (5.2). — Any orientation preserving diffeomorphism of a
compact oriented surface leaves fixed some spin-structure.

Now a diffeomorphism of X corresponds to a differentiable fibration
over the circle with X as fibre. Hence this Proposition — together
with (3.2) — implies Theorem 4. In fact it implies a stronger version
in which the family X^ need only vary differentiably with t.

Remarks. — 1. We can apply (5. i ) to a spin manifold X of dimension
8 k + 2 provided it satisfies the hypothesis of Theorem 5 and provided
also that the bilinear form of Theorem 5 is non-degenerate. We then
obtain a result like (5.2).

2. Since Mumford in [8] has now established the analogue of Theorem 2
for algebraic curves over algebraically closed fields (of characteristic 7^ 2),
we can also apply Lemma (5. i) to that context. Thus, let k be a field
(of characteristic 7^ 2) such that every finite separable extension is cyclic
and let X be an algebraic curve over k, then the canonical line bundle K
of X has a square root invariant (up to isomorphism) by the Galois group
of k. If the Brauer group of k is trivial (or if X has a rational point
over k) this square root can be defined over A*. This applies in particular
to a finite field (in which case the result was already known, cf. [9]; p. 291,

and to the field of power series Ya^t" convergent near t = o (which is
—N

essentially the case of Theorem 4).
The case when k == R is interesting : this involves a Riemann surface

with a complex conjugation, and the existence of an invariant square
root of K can also be proved analytically by extending (5.2) to orien-
tation reversing diffeomorphisms — the essential point being that the
homomorphism <PL '- KO(X) -> Fg of paragraph 2 is independent of the

(10) This is just verifying (what we have already observed) that the bilinear form is
canonically associated to the affine quadratic function.

Ann. J^c. Norm., (4), IV. — FASC. 1. 9
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orientation of X. Since the Brauer group of R is isomorphic to F^ an
invariant square root of K, on a curve without real points, may not be
definable over R. In fact it is not difficult to show that a line bundle L
defined over R has, in this case, a square root defined also over R if and
only if

^ (V)=o inH^X^F^) ,

where X' is the non-orientable surface representing the pairs of complex
conjugate points of X, L' is the non-oriented R'-bundle over X' defined
by L and co^ is the second Stiefel-Whitney class. For L = K, L'= K'
is the tangent bundle of X', hence co^K') is equal to the Euler

number e mod 2 and so co^K') = e{X') = ̂ (X) = i — gmods, where

g is the genus of X and we identify H^X', F^) with F^. Thus, on
a real curve X without real points the canonical line bundle K has a
real square root if and only if g is odd. One can also show (by using a
hyperelliptic curve or an embedding in R3) that, for odd g, there are ^
real square roots of K and that the quadratic function y of Theorem 2
takes the value zero for just half of these square roots. For example
(taking g == 3) a real non-singular plane quartic with no real points has
precisely four real bitangents.
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