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Introduction

THE spaces which form the title of this paper were introduced by Thom
in (16) as a tool in his study of differentiable manifolds. In addition certain
special Thom complexes have been studied by James (10) in connexion
with Stiefel manifolds (cf. (8), (9)). The purpose of this paper is to prove a
number of general results on Thom complexes, and to deduce the main
theorems of James (9), (10) as immediate consequences. Qur main result
(3.8) is a duality theorem (in the Whitehead—Spanier S-theory) for Thom
complexes over differentiable manifolds.t Besides its application this is
a result of some independent interest, since it provides a satisfactory place
for manifolds in S-theory.

In § 1 we introduce, for a finite CW-complex X, a finite group J(X):
the group of orthogonal sphere bundles over X under ‘stable fibre homotopy
equivalence’. If X is a sphere then J(X) is just the image of the stable
‘J-homomorphism’ in the appropriate dimension. A general study of
J(X) by the methods of (2) will be given in a future publication.

In § 2 we consider the S-type of Thom complexes over X and examine
the relation with the group J(X) of § 1.

The main duality theorem is established in § 3. As an application we
prove a result which was conjectured in (11): the stable fibre homotopy type
of the tangent sphere bundle of a differentiable manifold X depends only on the
homotopy type of X.

The stunted projective spaces introduced by James in (10) are studied
in § 4, and their identification as Thom complexes is established. In § 5
corresponding results are proved for the quasi-projective spaces of (10).

Applying the general results of §§ 1-3 to the spaces of §§ 4, 5 we deduce
in § 6 the main theorems of James] (9), (10).

1. Stable fibre homotopy type of sphere bundles

Let X be a finite CW-complex. If ais a real vector bundle over X, we
can give o an essentially unique orthogonal structure. Let («) denote the
associated sphere bundle. If n is a positive integer we shall alsointerpret

1 This has also been proved by R. Bott and A. Shapiro (unpublished).

i In one respect our results are slightly weaker than those of James (cf. § 6).
Proc. London Math. Soc. (3) 11 (1961) 291-310,
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it as the trivial bundle X X R». The Whitney sum (or direct sum) of vector
bundles «, 8 will be denoted by o @B.

We recall now the definition of fibre homotopy equivalence. Two fibre
bundles E, E’ over X with fibre F are said to be of the same fibre homotopy
type (E ~ E') if there exist fibre-preserving maps:

[E->E, f:E->E,
and fibre-preserving homotopies:
h: ExI—E, h:E'xI->E,
with h{EX0 = ff, h | E x1 = identity,
W | E'x0 = ff’, b’ | E' x 1 = identity.

We now define two sphere bundles (x) and {«’) to have the same stable

fibre homotopy type ((«) £ («)) if there exist integers », n’ so that

(x @n) ~ (o @n').
The set of equivalence classes of orthogonal sphere bundles with respect
to stable fibre homotopy type will be denoted by J(X). The class of («)
will be denoted by J(«).

Lemma (1.1). Let « be a real vector bundle over X. Then there exists a real
vector bundle B with « @ B trivial.

Proof. Let G,,, denote the Grassmannian of n-dimensional subspaces
of R**™, Qver G, ,, there are two real vector bundles a, b of dimensions
n, mrespectively and @ @ b is the trivial bundle @, ,, X R*+™, If m > dim X
there exists a map f: X - @, ,, with.« =~ f*a (14). Define 8 = f*b, and
we have « @B =~ f*(a @b) is trivial as required.

LeMMA (1.2). The direct sum of vector bundles induces on J(X) the structure
of an abelian group.

Proof. Since the direct sum of vector bundles is commutative and
associative (up to isomorphism) it is sufficient to show that J(oc @B)
depends only on J(«) and J(B). The existence of inverses will follow from
(1.1). Thus we have to show:

() @2 () > @B R (« D).
Replacing o by « @ n, o’ by o’ @n’ it will be sufficient finally to check:
(ii) (@) ~ () = (¢ @B) ~ (' DB).

Letf,f’, h, b’ be the maps and homotopies giving the equivalence (a) ~ (').
We define maps

F: (a@B)—> (o' @B), F': (o' ®B) = (D)
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by ‘
F(ucosd @vsinb) = f(u)cos Pvsinb
(ue(a), ve(®), 0<6<2m),
F'(u' cos @usinf) = f'(u')cosd @vsind
(e (@), ve(f) 0<6<2m),
and homotopies:
H: (« @BXI > («@B), H':(d DBXI—> (" DP)
by H(ucosf @vsinb, t) = h(u,t)cosd Qvsinbd (te I),
H'(u'cosf @vsind, t) = h'(u’,t)cos § @vsiné.
Then F, F', H, H' are all fibre-preserving, and we have
H|(a®B)x0 = F'F, H|(a @B)x1 — identity,
H |(«'! ®@B)X0 = FF', H' | (o' @B)X 1 = identity.
This completes the proof.

Let KO(X) be the ‘Grothendieck group’ defined as in (2) from real vector
bundles over X. From the universal property of KO(X) it follows that there
is a natural epimorphism K O(X) — J(X), and this will also be denoted by J.

Let 8" denote the standard n-sphere, and let H, denote the space of
homotopy equivalences of S*-1 (with the C-O topology). If O, denotes
as usual the group of orthogonal transformations of 8§71, we have a natural
inclusion map O, - H,. According to Dold and Lashof (6) the H-space H,
has a ‘classifying space’ BH, and the map O, - H, induces a map
i,: BO, - BH,, where BO,, is the usual classifying space of the topological
group O,. The map ¢, induces a map

' [X, BO,] > [X, BH,],

where [X, Y] denotes the set of homotopy classes of maps X - Y. The
main result of (6) then asserts that the set of fibre homotopy types of
orthogonal 87-1-bundles over X is in one-to-one correspondence with the
image of ,,.

Now, under suspension, we have natural inclusion maps O,, - O, ,,,
H, - H,,,, and these give rise to natural maps:

im l/'n —im ¢n+1'
From our definition of J(X), and the result of (6) mentioned above it follows
that J(X) = lim imy,,

n—o

For completeness we shall now prove the following well-known result.

Lemma (1.3). 7 (BH,) = m,_y(H,) 22 7y po(8™) for 2 < r < n—-2,
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and m(BH,) >~ my(H,) == Z, (n > 1), where ny(H,) is the group of com-
ponents of H,. -

Proof. The isomorphism m(BH,) >~ n,_y(H,), r > 1, follows from the
existence of the universal H,-bundle over BH, with contractible total
space (6). Now it is clear that H, has two components H;}', H;, representing
maps S7~1 — §n-1 of degree +1, —1 respectively. Hence my(H,) =~ Z, as
asserted. Consider now the space F, of maps (87-1, a) — (8", a), where
a is the standard base point. Let F¢ denote the component representing
maps of degree d. Then we have a natural inclusion map F — H}. More-
over if fe HY and if we define =: H} — 8§71 by =(f) = f(a), then = is a
fibre-map with fibre F1. Hence we have an exact homotopy sequence:

wo > 1,4 (8*Y) > 7 (FL) > 7 (HY) > 7, (8" 1) > ...
If 1 < n—3 we have =,,,(S*!) = 7,(8*1) = 0, and so:
m(H,) = "r(H;t) = Wr(F}z) 1<r<n=3). (1)
Now F, = Qn-}(87-1), where Q"1 denotes the iterated loop space. For
n = 2 therefore F, is an H-space and so

7(F8) = m(F3) (deZ,r > 1). (2)
Moreover we have the standard isomorphism
T FY) = myp y(8™7Y) (r,m 2 1) (3)

From (1), (2), and (3) we obtain finally
m(H,) = 7y (8771 (I r < n—3).
This completes the proof of the lemma.

Since we have the suspension isomorphism
Tnsk(8") 22 Mg n(8"4)  (n 2 k+-2)
it follows from (1.3) that J(X) may be identified with the image of
4, [X, BO,] - [X, BH,]

in the stable range (n—2 > dim X).

If we put BO = | BO,, BH = |J BH, (with the weak topology) we

n n
see that J(X) may be identified with the image of
Y: [X, BO]— [X, BH].

Now the Whitney sum makes BO a (weak) H-space, so that [X, BO]
has a group structure. In fact [X, BO]is isomorphic with the kernel of the
rank homomorphism KO(X)-> H%X,Z) and we have the canonical
decomposition KO(X) =~ [X, BO) ® HYX,Z) (cf. (7)). The composite
map KO(X) - [X, BO]—imy may then be identified with the homo-
morphism J: KO(X) - J(X) mentioned earlier.
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Suppose now X = §7. Then we have one-to-one correspondences
(87, BO] > =,(BO),

(S7, BH] <> m(BH),

where 7, denotes the set of equivalence classes in 7, under the operation of
7. NowifY is an H-space we have the following well-known facts:

(i)t m(Y) operates trivially on =,(Y),

(ii) the group structure in m,(Y) coincides with that induced by the
H-space structure of Y.

Since BO is an H-space (i) and (ii) show that we have a group iso-
morphism: (", BO] = m,(BO).

Since 7 (B0) =~ = (BH) =~ Z, it follows also that =,(BH) operates trivially
on imy. Hence J(8) is isomorphic to the image of

m,(BO) - m(BH)
and hence (6) to the image of
1y (0) > m,y(H).
Using (1.3) this last homomorphism becomes
m1(0) —> G,_,, forr =2, (4)

where G,_, denotes the stable homotopy group =, ,,_,(8"). Now (4) is just
the stable J-homomorphism of G. W. Whitehead (18). Hence we have
established the following proposition which justifies our notation for J(X).

Prorposition (1.4). J(87) is isomorphic to the vmage of the stable J-homo-
morphism Jim (0> Gy (r > 2).

(1.4) shows that J(S7) is finite. More generally we have:

ProrosiTioN (1.5). J(X) ¢s a finite group.

Proof. We have just shown that, for n—2 > dim X, J(X) c [X, BH,].
Since X is a finite complex it will be sufficient, by obstruction theory,
to know that =,(BH,) is finite for 1 < r < n—2. Now by (1.3) we have

m(BH,) >~ Z,,
"r(BHn) = 7Tn+r—2(Sn~1) (r = 2),

t+ For Y = BO this can also be seen directly by observing that, for odd =, the
component of O, not containing the identity contains the element —1 of the
centre. Conjugation by this element is therefore trivial. Since BO = lim BO,,
through odd values, (i) follows. '
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and the stable homotopy group =,,,,_,(S*-1) (r < n—2) is finite (12). ‘This
completes the proof.

Remark. 1t is possible, though a little more complicated, to give an
obstruction theory proof of (1.5) which avoids the use of (6).

2. S-type of Thom complexes

All spaces X, Y considered here will be finite CW-complexes, subspaces
will be subcomplexes. According to (19) such a space has the homotopy
type of a finite polyhedron. In view of the triangulation theorem (5)
every compact differentiablet manifold, with or without boundary, is a
finite polyhedron, and so belongs to our class of spaces.

IfY is a subspace of X we shall denote by X/Y the space obtained from X
by collapsing Y to a point. We note that X/Y has a canonical base point,
namely, the point corresponding to Y. If Y is the empty set we adopt the
convention that X /@ is the disjoint union of X and the canonical base point.

We recall that, if X, Y are spaces with base points z,, y,, their ‘smash
product’ X %Y is defined as

X%Y =XXY/XXyyUxyXY.

It is again a space with canonical base point.

We choose a standard base point for the 1-sphere S! and then define the
suspension of a space X with base point to be 8! % X. The n-sphere 8?
is then homeomorphic to S!3¢ S!3%...%S! (n times) and the n-fold
suspension of X may therefore be identified with S» x X.

Let « be areal vector bundle over X. The Thom complex X of a is defined
to be the one-point compactification of «. It is thus a space with canonical
base point. If «is given an orthogonal structure, and if 4, 4 are the associ-
ated bundles with fibres the unit ball and unit sphere respectively, then it is
easy to see that 4/4 is homeomorphic to X* in a natural way (base points
corresponding).

If « = 0 is the zero-dimensional bundle, then X° = X /@ is the disjoint
union of X and a base point.]

We shall suppose now that the cell-structure of X is such that the
restriction of « to the closure of each cell is trivial. Since X has the same
homotopy type as a polyhedron, and since we are only interested in the
homotopy type of X, this is not an essential restriction. Under this hypo-
thesis it follows that X* may be given a cell structure where there is one
cell of dimension k- for each cell of X of dimension %, » being the dimen-
sion of « (n > 0). This leads to the Thom—Gysin isomorphism (cf. (15)).

1 Differentiable will mean of class C®.
1 The one-point compactification of a compact space X must be interpreted as X°,
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Lemma (2.1). There are natural isomorphisms

HY(X,A) ~ Bo+v(X, Z),

H(X,A) =~ H,,,(X*,Z),

where A is the system of local integer coefficients defined by o, and H denotes
cohomology or homology modulo the base point.

The local coefficient system A4 may be defined as follows. We recall
first that an orientation of an n-dimensional real vector space V is a con-
nected component of the space of isomorphisms ¥V — R», The orientation
bundle of « is the bundle whose fibre at z € X is the set of (two) orientations
of o,. The orientation bundle of « is thus a double covering of X, i.e. a
principal Z,-bundle. Identifying Z, with the group of automorphisms of Z
we may consider the associated bundle with fibre Z. This bundle of rings is,
by definition, the local coefficient system 4. The orientation bundle of «
may then be identified with the bundle of units of 4.

LeMMA (2.2). Let o, B be real vector bundles over X, and let A, B be the

corresponding local coefficient systems. Then
(i) : A == B < wy(a) = wy(B);

(ii) HYX, 4) = HY(X,Z) < w,(@) = 0,
where w, denotes the first Stiefel-Whitney class.

Proof. Since the orientation bundle of « may be identified with the bundle
of units of 4 it follows that 4 is trivial if and only if « is orientable. This
proves (i) when B is trivial, and the general case follows at once since
A=~ B+ AQ®B is trivial. Now HY%X,A) >~ H%X,Z) is equivalent to
saying that 4 has a non-zero section over each component of X. This in
turn is equivalent to the triviality of A and now (ii) follows from (i).

If «, B are real vector bundles over X, Y respectively then o X 8is a vector
bundle over X XY, the fibre at (x, y) being o, @ B,

LeMMa (2.3). Let «, B be real vector bundles over X, Y respectively, then we
have a natural homeomorphism X* ¢ YB — (X x Y)*xA.

Proof. We have a natural map f: X*xYB-> (X xY)># in which
fYc) = axYPU X*xb, and f is a homeomorphism elsewhere (a, b, ¢
being the base points of X, Y8, (X x Y)** respectively). Hence f induces

a homeomorphism Xo ¢ YB — (X x Y)oxB
as required.

A special case of (2.3) arises when Y is a point, so that 8 is trivial of
dimension » say. Then Y8 = 8%, and so (2.3) yields:

LeEMMA (2.4). S™(X®) is naturally homeomorphic to X®™,

|
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In view of (2.4) the S-type of a Thom complex X depends only on
the element of KO(X) determined by «. Since by (1.1) every element of
KO(X)isexpressible ast « —n for some integer » and some bundle «, it follows
that we may extend our notation and speak of the S-type of X8, for any
B € KO(X). By definition this means the S-type of X* for any bundle «
with 8 = a—n in KO(X).

The relation of § 1 to the S-type of Thom complexes is explained by the
following results:

LeMMA (2.5). Let o, B be real vector bundles over X, (), (B) the associated
sphere bundles. Suppose (a) and (B) are of the same fibre homotopy type.
Then X* and XPB are of the same homotopy type.

Proof. Let A = («) be the boundary of the unit ball bundle 4 associated
to «. Similarly for B, B with respect to 8. Then X* = A/4, X = B/B.
Let f: A - B, g: B> 4 be the given fibre homotopy equivalences. Then
J» g can be extended radially to maps:

F:(A,A)~ (B,B), G:(B,B)-(4,4),
and these induce maps

F:A|4A - B/B, G: B/B—> A/A.
Let h: AX I -~ A, k: Bx I — B, be the given homotopies of gf ~ 1, fg ~ 1.
Extend these radially and we get homotopies:
H:(AxI, AxI)-(4,4), K:(BxI,BxI)-(B,B),

of GF ~ 1, FG =~ 1. These induce homotopies

H: AJ[AxI—> A/A, K: B/BxI— BB
of GF ~ 1, FG ~ 1 as required.

PRroPOSITION (2.6). Let «, B be real vector bundles over X, and suppose

= J(B). Then X*and XB are of the same S-type.

Proof. By definition J(a) = J(B) means there exist integers m, n so
that (« @m) and (B @ n) are of the same fibre homotopy type. Hence by
(2.5) X«®m and XPRen are of the same homotopy type. But by (2.4)
Xoom — §m(X«) XBen — Sn(XB). Hence X* and XA are of the same
S-type.

Lemma (2.7).1 Let o, B be real vector bundles over X and suppose
J(@) = J(B). Then wn(a) = wi(B).

+ Here and elsewhere we shall use the same symbol for a vector bundle and for
the corresponding element of KO(X). The two meanings of the symbol J(«) then
coincide.

t This lemma is also & consequence of the general results of (15), on Stiefel-
‘Whitney classes w; for all <.
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Proof. Since J and w, define homomorphisms KO(X) - J(X),
KO(X) > H\(X,Z,) respectively it is sufficient to consider the case § = 0.
Let dima = 7, and let 4 be the local coefficient system defined by «.
If J(a) = 0 then by (2.6) X= is of the same S-type as X9 and so

HY(X,A) ~ A~X*,Z), by (2.1),
=~ HYX,Z).
Hence, by (2.2 (ii)), w,(a) = 0.

Let Y be a space with base point y,. Following James (10) we shall say
that Y is reducible (S-reducible) if there is a map (S-map) f: (8*, a) — (¥, y,)
inducing isomorphism of H, for ¢ > n. Dually we shall say that Y is
coreducible (S-coreducible) if there is a map (S-map) f: (Y, y,) = (S*, a)
inducing isomorphism of ¢ for ¢ < n.

It is clear that reducibility and coreducibility are properties of homotopy
type, that S-reducibility and S-coreducibility are properties of S-type, and
that Y is S-reducible if and only if its S-dual, in the sense of Spanier—
Whitehead (13), is S-coreducible.

From cohomology considerations, using (2.1) and (2.2), we see that a
Thom complex X* over a connected space X cannot be S-coreducible unless
« is orientable. '

If X is a compact connected differentiable manifold of dimension
¢, o a real vector bundle of dimension n, we have

B . (X*Z) >~ H(X,4), by (2.1),
=~ HYX,A®T) (Poincaré duality),
where 7' is the local coefficient system defined by the tangent bundle of X.
From (2.2 (ii)) it follows that X* cannot be S-reducible unless
wy (@) = w,(X).

ProrosiTioN (2.8). Let o be a real vector bundle over a connected space X.
Then X« is S-coreducible if and only if J(a) = 0.

Proof.t If « is not orientable then X* cannot be S-coreducible, as ob-
served above, and J(a) 5% 0 by (2.7). Hence we may suppose « orientable,
and it will be sufficient to prove that, if dim o = » is large, then X* is
coreducible if and only if () ~ (n). Let 4, 4 be as in the proof of (2.5)

and let z € X. Then from the exact cohomotopy sequences of 4, 4 and
4,, A, (which are valid for large n), we have the commutative diagram:

71 4) = 74, 4)
ol e
A(A,) = (A, Ay,

1 This proof appeared in an earlier (unpublished) version of (11).
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Now, according to a criterion of Dold (5a, 121, Corollary 2), («) ~ (n) if
and only if there is a map f: 4 - S»-! whose restriction to 4, is a homo-
topy equivalence. Thus, in terms of our diagram,

(x) ~ (n) <0 is an epimofphism,

<= ¢ is an epimorphism.
On the other hand, by (2.1), H(4,4;Z) - H"(A4,,4,; Z) is an isomor-
phism for 0 < r < n, from which it follows that
¢ is an epimorphism <> 4/4 is coreducible.

This completes the proof.

ProPosITION (2.9). Let « be a real vector bundle over a connected space X.
Then J(«) = 0 if and only of X* and X° have the same S-type.

Proof. In one direction this is a special case of (2.6). Conversely, suppose
that X* and X° have the same S-type. Since X is connected X° is co-
reducible, hence X* is S-coreducible, and so J(x) = 0 by (2.8).

PROPOSITION (2.10). Let « be a real vector bundle over a connected space X.
Then there exists a positive integer q such that X™* has the S-type of X°if and
only if n is a multiple of q.

Proof. This follows at once from (2.9) and (1.5). The integer g is the order
of J(«) in the finite group J(X).

3. The duality theorem

We shall require a lemma on the embeddings of manifolds with boundary
which is a simple consequence of the theorems of Whitney (20).

Lemma (3.1). Let X be a compact differentiable manifold with boundary
Y. Then, if n > 2 dim X, we can embed X differentiably in R™ so that

(i) X—Y lies in the open unit cube 0 < 2, < 1 (1 < ¢ < n);

(ii) Y lves in the open face 0 < z;, <1 (1 <1< n—1), 2, = 0;

(iii) X intersects x,, = 0 normally in Y.

Proof. By Theorem 1 of (20) we can find a differentiable embedding
g: Y >Re1, Define a differentiable embedding f: ¥xI—>R» by
fy,t) = (9(y), t), where I denotes the unit interval 0 < ¢ << 1. Now we
can find a neighbourhood Z of Y in X which is diffeomorphic to Y x I, ¥
corresponding to Y X 0. Then applying Theorem 5 of (20) to the closed
submanifold Z—Y of X—Y we deduce the existence of a differentiable
embedding F: X—Y — R%? with F = f on Z—Y, where R% denotes the
subspace of R with z,, > 0. The pair F, f then defines a differentiable
embedding of X in R®, which, after a change of scale, has all the required
properties.
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Next we prove a duality theorem for manifolds with boundary.

ProrosiTION (3.2). Let X be a compact differentiable manifold with boun-
dary Y ,and let T denote the tangent bundle of X. Then X-"isthe S-dual of XY .

Proof. Let X be embedded in the closed unit cube I™ of R™ as in (3.1).
Let P be the point of R*+! with coordinates (0,...,0, 1) and form the join
of P to I™. Thisis a pyramid whose boundary S is homeomorphic to the
n-sphere. The space X U PY (where PY denotes the join of P to Y) has
the homotopy type of X/Y and is embedded in S*. Hence an S-dual of
XY is given by a deformation retract of Z = §*—(X U PY) (cf. (13)).
Now by projection from P the space Z may be deformed into /*—X, and
this in turn may be deformed into I"—A4, where 4 is a normal tubular
neighbourhood of X in I™. There is no trouble on the boundary of I
because of the property (iii) of (3.1). Since I™ is contractible and the pair
(I», T"—A4) has the homotopy extension propertyt I?/I"—A has the
homotopy type of the suspension of I*—A4, and hence is also an S-dual of
X/Y. But I*/I"—A4 = AJA, where A = I*—A4 n A is the closure of that
part of the boundary of 4 which is interior to I®. If v is the normal bundle
of X in I, A and 4 may be identified with the unit ball and unit sphere
bundles associated to v. Hence 4/4 = X¥ is an S-dual of X/¥Y. Since
v @7 is trivial this concludes the proof.

Remark. If one is prepared to allow the triangulability of manifolds
with ‘corners’ (e.g. a square), or at least that these are finite CW-complexes,
then this proof can be simplified using the fact (13) that if DY > DX is
S-dual to ¥ c X then DY /DX is S-dual to X/Y (all spaces being finite
CW-complexes).

We are now in a position to deduce the duality theorem for Thom
complexes.

THEOREM (3.3). Let X be a compact differentiable manifold (without boun-
dary) with tangent bundle . Let « be a real vector bundle over X. Then the
S-dual of X* is X--7.

Proof. 1t is well known that we may give « a differentiable structure.
For example we may take a continuous map f: X — @, ,, which induces «
(@, denoting as before a real Grassmannian), and approximate it by a
differentiable map ¢g. The map ¢ will induce a differentiable bundle over X
which is equivalent to «. Now let 4, 4 be the bundles associated to « with
fibre the unit ball and unit sphere respectively. Then 4 is a compact differ-

entiable manifold with boundary 4. By (3.2) the S-dual of X* = 4/4

t This is equivalent to (4, 4) having the homotopy extension property, and this
is true for any sphere bundle.
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is A~, where ¢ is the tangent bundle of 4. Let =: 4 — X be the projection
map, then it is clear that ¢ >~ #*(r @ «). Since 7 is a homotopy equivalence
it follows that A~ and X-*-7 are of the same S-type, and hence X-*-7 is the
S-dual of X« as required.

Remark. The special case of (3.3) with « = 0 (or equivalently the special
case of (3.2) with Y = @) is proved in (11).

ProrosiTioN (3.4). Let X be a compact connected differentiable manifold
with tangent bundle . Let o be a real vector bundle over X. Then X is S-
reducible if and only if J(o) = —J(7).

Proof. X* is S-reducible if and only if its S-dual X (3.3) is 8-
coreducible. The required result now follows from (2.8).

We propose now to give an application of (3.4). First we make a few
remarks on orientability. Let X, Y be compact differentiable manifolds
with tangent bundles £, n and let 4, B be the local coefficient systems
defined by £, ». A map f: ¥ - X is said to be orientable if B ~ f*4. In
view of (2.2) (i), f is orientable if and only if w,(Y) = f *w,(X), where w,(Y)
denotes as usual w,(7) and similarly for X. The map fis said to be oriented
if we are given an isomorphism B =~ f*4. An oriented map f induces a

homomorphism: fa: Hy(Y, B) > H, (X, A).

THEOREM (3.5). Let X, Y be compact differentiable manifolds with tangent
bundles £, n respectively. Let A, B be the local coefficient systems defined by
&, . Let f1 Y — X be an oriented map which induces an isomorphism

Foi H(Y, By~ Hy(X, A).
Then J(n) = J(f*8).

Proof. Let « be a real vector bundle over X with o @ £ trivial (1.1) and
suppose dim « > 1. Then w,(a) = w,(£) and so, by (2.2) (i), we may choose
an isomorphism of 4 with the local coefficient system of «. Put 8 = f*a,
then the local coefficient system of 8 may be identified with f*4 and hence
with B, since fis oriented. Also finduces a map F: Y# — X* Then, by the
naturality of the Thom-Gysin isomorphism (2.1) we obtain a commutative
diagram: F
B (YR, Z) 2> A, (X*Z)

R R
H,(Y,B) 2% H(X, A).

Since f, is an isomorphism so is F,. Since dimf = dim« > 1, X* and ¥#
are simply-connected. Hence, by the theorem of J. H. C. Whitehead (19)
F is a homotopy equivalence. Since J(x) = —J(£), X* is S-reducible
(3.4). Hence Y8, being of the same homotopy type as X¢, is S-reducible,
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and so by (3.4) J(B) = —J (). But J(B) = J(f*a) = —J(f*£). Hence
J(n) = J(f*£) as required.

Since w, is a homotopy invariant (15) a homotopy equivalence is neces-
sarily orientable. Hence as a corollary of (3.5) we deduce:

TuEOREM (3.6). Let X, Y be compact differentiable manifolds with tangent
bundles £, n. Let f: Y — X be a homotopy equivalence. Then J(n) = J(f*¢).

Remark. One can give a direct proof of (3.5) and (3.6) without using (3.3).
However the proof given here is somewhat simpler.

4. Stunted projective spaces

We recall here some definitions and notation of (10), adapting them to
our purpose. _ ‘

Let F denote one of the three basic fields: R, G, or K (quaternions). Let
V = F* be regarded as a right F-module and let P, be the associated right
projective space. Thus we have a principal F*-bundle} »: V—0 - B,,
which we shall denote by M, and an associated right line-bundle (fibre F,
group F'* operating on F on the left) which we denote by L. We may also
consider the left line-bundle L* = Homg(L, F'). This defines a real vector
bundle ¢ of dimension d, where d = dimg F.

The ‘stunted projective space’ P, is defined by

Pn,k = P’n/P’n—k'

James excludes the case n = k, but with our conventions this case presents
no anomalies.

Lremma (4.1). Let T, denote the tangent space of P, at a point x. Then we
have a canonical tsomorphism (of real vector spaces)

Proof. Applying the construction of § 2 of (1) to the principal bundle M
we get an exact sequence of vector spaces:
0->8,->@,~>T,->0,

where an element of @, is a field of tangent vectors of M = V—O0 along
n-1(x), invariant under F*, and S, is the subspace of fields tangent to the
fibre #-}(z). If y € V, then the tangent space to V at y may be identified
with V itself by translation. A vector field v(y) defined for y € n~1(x) is
then invariant under F* if

v(yd) = vy) A for Ae F*,

t F'* denotes the multiplicative group of non-zero elements of F.
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We have a canonical isomorphism 6: V ® » L} - @, defined by

00 @¢)y) =vé(y), veV, ¢eHomp(L, F), yeni(z).
“Clearly 6 induces an isomorphism
L,®pL; =8,
and hence an isomorphism of quotients
$o: (V|L)®p Ly > T,
as required.
Lemma (4.2). Let T denote the (real) tangent bundle of Fy.. Then we have

an isomorphism of real vector bundles: T =~ (V|/L)®g L*, where V denotes
the trivial bundle P,X V.

Proof. This follows at once from (4.1). We have only to observe that i,
varies continuously with z.

ProrosrITION (4.3). F,; 18 homeomorphic to the Thom complex P{p-ki,

Proof. By definition P,;, = P,/P,_,. Let P, be complementary to
P,_;in P,. In terms of vector spaces this corresponds to a decomposition
Fr = U @W with dim, U = k, dimz W = n—k. For each point z € B,
we consider the vector space W @ L, and the associated projective space 4,
of dimension (n—k). The tangent space of 4, at z may be identified, on the
one hand with the affine space 4,— A, N P,_;, and on the other hand (by

(4.1)) with (W @ L,)/L,) ®p L¥ =~ W ®p L.

Hence, allowing z to vary in P, we see that P,—P,_, may be identified
with the bundle space of the vector bundle W ® L* over B, (W denoting
the trivial bundle B, X W). Since W is a trivial bundle we have

WpL* =~ L*®L*D... DL* (n—k) times,

and so the underlying real vector bundle is (r—k)¢. Clearly B, /P, _; is the
one-point compactification of P, — P, ;, i.e. of the bundle space of (n—Fk)¢.
Thus P,/P,_, is homeomorphic to the Thom complex P{»—k)¥,

LeMMmA (4.4). The real vector bundle L Qg L* is isomorphic to the bundle n
with fibre the Lie algebra F of F* associated to M by the adjoint representation
(in brief: n = ad(M)).

Proof. In the proof of (4.1) we obtained a canonical isomorphism
L,®p L - 8,. In (1) it is provedf as a special case of a general result on
principal bundles, that S, is canonically isomorphic to n,. This gives an

1 Actually in (1) all structures are complex but the argument is identical for real
bundles, real Lie groups, etc.
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isomorphism L,®p Ly - u, which varies continuously and so defines
an isomorphism of vector bundles L ® L* o~ «.

Since the centre of F always contains R it follows that we can decompose
7n in the form n = 1 @{. In the commutative cases (F = R, C) we even
have { trivial, but this is not so for K. -

LemMMA (4.5). Let T denote the tangent bundle of P,. Then T @7 = k¢.

Proof. This follows from (4.2) and (4.4) and the fact that all exact
sequences of real vector bundles split topologically (cf. (1)).

Remark. The well-known formula for the characteristic classes of P,
follows easily from (4.5). One has just to find the characteristic classes of 7.

5. Quasi-projective spaces

We start with some generalities. By a group we shall mean a compact
Lie group, and a subgroup will mean a closed subgroup. _

Let G be. a group, H a subgroup, N the normalizer of H in G. Then
G — G|N is a principal N-bundle (N operating on & on the right). Since
N operates on H (by conjugation) as a group of automorphisms we can form
the associated bundle ¥ = ¢ X y H over G/N with fibre H. Moreover this
is a bundle of groups and so in particular it has an identity cross-section s.

We now define a map F GxyH > G

by flg,h) = ghg~. This is well-defined, for if n e N,
flgn, n3hm) = gn n-thn n-1g1 = ghg= = f(g, h).

Clearly f(s) = e (the identity of @), and f restricted to each fibre E  gives
an isomorphism onto the subgroup gHg-! of @. Thus f(E) = |J H°, where

o runs through the inner automorphisms of G. The following lemma is'
therefore obvious:

Lemma (5.1). Suppose H is a subgroup of G with the property that, for any
anner automorphism o of G, we have H = H°® or HN H° =e. Then
f(E) = E|s (the space obtained from E = G X y H by collapsing the identity
cross-section §).

Examples of pairs (G, H) satisfying the hypothesis of (5.1) are provided
by the classical groups. Following (8) we let O,, denote the group of auto-
morphisms of F* (F = R, C, or K) which preserve the standard scalar
product. We take G = O, and H = O,, this being embedded in 0,, via
the standard embedding of F*in F. It is clear that the conditions of (5.1)
are satisfied. Moreover, H = O, xI,_; (I,_, being the unit matrix),
N = 0,%X0,_,, and G/N = P,. Thus E is a sphere bundle over F,, the

5388.3.11
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dimension of the sphere being (d—1), where d = dimg F. By definition £
is associated to G — G/N by the operation of N on H (conjugation). Since
N = HXO0,_, it follows that F is also the bundle associated to the Hopf
bundle 0,/0,,_, - P, by the operation of H on itself (conjugation). Now
the Hopf bundle 0,/0,_; ~ P, is just the orthogonal reduction of the
principal F*-bundle M of § 4. Hence E is the sphere bundle associated to
the vector bundle » = ad(M). Asremarked in§ 4 we have a decomposition
n = 1 @ in which the factor 1 comes from R c F and so corresponds to
the identity cross-section s of E. Hence E/s is just the Thom complex of {.
We have then established, as a special case of (5.1):

LEemMMa (5.2). Let X, be the subspace of O, defined by X,, = |J 05 where o
runs through the inner automorphisms of O,. Then X, is homeomorphic
to P%. _

In (10) James defines an explicit subspace @,, of O,, which he calls a guasi-
projective space. We shall now establish:

ProrosiTioN (5.3). The spaces @, of (10) and X, of (5.2) commde Hence
Q,, is homeomorphic to P5.

Proof. In terms of matrices a point of O, is given by a diagonal matrix:
\ A
1

A= . (AeF, | =1).

1

Hence a typical conjugate point is given by a matrix BAB' (B 0,). If
(%1,--+»¥,) 18 the first column of B we find:

(B'AB)y; = 8;—y,(1-2)g; 1<i<j< ). (1)
In James’s definition a point of @, is given by the matrix 4 with
Ay = 8;—2x,(142)%%; (1<i<j<n) (2)
where f l2;]* =1, Zy+E, = 0. : (3)
0
Tt we put N = —(l—2p)(1+2,)?

yi= (14, (1<i<n)
2 -t
= (2 |xi|2) i
1

it is easy to check that 4 = BAB’, showing that @ c X,. Moreover,

g (4)
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n .
given A, y, with |A| = 1, > |y;|2 = 1, we can find x,, %,,..., %, to satisfy
1

(3) and (4), except when F = R and A = 1, i.e. when 4 is the unit matrix.
But by definition (10) @, = @,, F #* R, and @,, = @, U e (e the identity
of 0,) for F = R. Thus @, = X, as asserted in all cases.

We have natural inclusions Q,,_, c @, and James defines the stunted
quasi-projective space @ = @,/Qn-z- The inclusion @, ;c @, corre-
sponds in the homeomorphismt @, ~ P4 of (5.3) to the natural inclusion
P,_,. c P,. Here we use the same symbol  for all dimensions of projective
space, since the { on P, _; is just the bundle induced by the { on P, (this being
true of their principal bundles ).

Hence

Qn"" Qn—k ~ PgL—P‘);'L—k
~ bundle space of { over (F,,—F,_;)
~ bundle space of { ® (n—k)¢ over P,
by (4.3). Taking the one-point compactifications we obtain finally:

PROPOSITION (5.4). @, 18 homeomorphic to the Thom complex P{-F¥E®L,

6. The theorems of James
We are now in a position to apply the general results on Thom complexes
proved in §§ 1-3 to the spaces F, ;, @, -
We have established the homeomorphisms:
Poy~ PRt (4.3),
Qn i ~ Pr-0éel  (5.4).
The spaces on the left are only defined for n > k& > 1. However, the Thom
complexes on the right have been defined (§ 2) for £ > 1 and all integers =,
provided that we are only interested in S-types. We use (4.3) and (5.4)
to extend similarly the definition of the S-types off P, ; and @, 4.
TueoreM (6.1).§ @, and By, ; are S-duals.
Proof. We have by (4.3) and (5.4) @, ; ~ P9 P\ ~ P;é.
Hence, by (3.3), @, is S-dual to P§ where
a= —(n—k)f—{—T in KO(X)
= —(n—k){—{—(k{—n) Dby (4.5)
= —né+1.
Since P§ and P! have the same S-type (2.4) the theorem is proved.
t In this section and the next we denote & homeomorphism by ~.

1 Thus F,; stands for the S-type of By, where n+4r > k and rJ(§) = 0.
§ This result was conjectured by James (unpublished).
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THEOREM (6.2). @, is S-reducible if and only if n is a multiple of the order

of J(£).
Proof. Since @, ; ~ P{-#¢et (5.4) we can apply (3.4) and we obtain:
Q.. x S-reducible < J{(n—k)(+{} = —J(T)
< J(né) =0 by (4.5)
<nJ(E) =0 (qed)

Remark. Since J(P,) is a finite group (1.5), J(£) is of finite order g, say.
Then (6.2) asserts that @, is S-reducible if and only if » = Omodg,.
In particular, values of n for which @, is S-reducible always exist.
Theorem (6.2) includes one of the main results of (10). Most of the other
results of (10) are simple consequences of (6.1), (6.2) and the results of

1-3.

B The interest of the spaces @,, ; lies in their relation to the Stiefel manifolds
O, = 0,/0,_; as explained in (10). There is a commutative diagram

of maps i
Qn,k - On,k
R
Sdn-1
where ¢ is an inclusion induced by the inclusion @,, ¢ 0,,, = is the fibre map
0,1 0,1 = 891 and p is the ‘cofibre map’ @, ~ @, = S¢-1. By
determining the connectivity of the pair (0, ;, @,;) James in (8.2) of
(10) proves: :
Lemma (6.3). @, is reducible if and only if O, — 81 has a cross-
section and, for F =R, n > 2k or k = 1, ‘
Now Q,, ;. is r-connected where r = d(n—k+-1)—2. Hence by (2.6) of (17)

'”dn—l(Qn,k) - ﬁn—l(Qn,k) (the Sta'ble gI‘OllP)

is an epimorphism for 2r > dn—2, i.e. for n > 2(k—1)+42/d. Now from
cohomology considerations @, ; cannot be reducible unless n > 2k, or
k = 1. Hence we have

LemMa (6.4). @, is reducible if and only if it s S-reducible and n > 2k
ork =1

By (6.2), if @, is S-reducible, n is a multiple of g, (the order of J(£)
in J(B,)). The results of (3) or (4) show that in the complex and quater-
nionic cases q; > 2k for k > 1. Hence from (6.2), (6.3), and (6.4) we obtain
~ finally:

THEOREM: (6.5). In the real case suppose n 2> 2k. Then (for all cases)
0,1 > 81 has a cross-section if and only if n is @ multiple of q, where g,
1s the order of J(§) in J(B,).
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In one respect this result is weaker than results of (9). In the real case
we make no assertion for the case n < 2k whereas James proves one half
of (6.5) in all cases.

The problem of determining the actual numbers g, in (6.5) is thus seen
to be a special case of the more general problem of determining the struc-
ture of the group J(X). An attack on this problem by the methods of (2)
and (3) will be given in a future publication.

We conclude with a few remarks on the relation between the methods of
this paper and those of James. The main tool of James is the ‘intrinsic
join’. Actually he defines several ‘intrinsic joins’, two of them being maps

Qn,k *F, mi "> F m+n,k>

Qn,k * Qm,k - Qm+n,k’
where X %Y denotes the join of X and Y. Since X %Y and S(X % Y) are of
the same homotopy type these two maps, in view of (2.4), (4.3), and (5.4),
give rise to maps

. P;Cn-k)fe)'q% P;Gm"‘)f - P;cm+n—k)§’
chn—k)febn%l)gcm—k)fe{ > P}cm+n—k)§$§.

In view of (4.5) both these are maps of the type
f: Xox XB Xa+/3+‘r’
where X is a compact differentiable manifold with tangent bundle 7.
By (3.3), and the fact that the smash product commutes with duality,
the dual of f is an S-map of the form:
Df: Xr+ > Xr¢ X8,
wherey = —a—7,8 = —B—r. Now the diagonal map X - X x X induces
a map A: X+ 5 (X x X8 ~ Xr% X3 by (2.3).
It would seem reasonable to suppose that Df and A are S-homotopic.
In addition to the maps just mentioned James also defines an intrinsic

join for the Stiefel manifolds O, ;. This has no counterpart here, since we
are not directly concerned with Stiefel manifolds.
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