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Introduction
THE spaces which form the title of this paper were introduced by Thorn
in (16) as a tool in his study of differentiable manifolds. In addition certain
special Thorn complexes have been studied by James (10) in connexion
with Stiefel manifolds (cf. (8), (9)). The purpose of this paper is to prove a
number of general results on Thorn complexes, and to deduce the main
theorems of James (9), (10) as immediate consequences. Our main result
(3.3) is a duality theorem (in the Whitehead-Spanier $-theory) for Thorn
complexes over differentiable manifolds.f Besides its application this is
a result of some independent interest, since it provides a satisfactory place
for manifolds in $-theory.

In § 1 we introduce, for a finite CW-complex X, a finite group J(X):
the group of orthogonal sphere bundles over X under 'stable fibre homotopy
equivalence'. If X is a sphere then J(X) is just the image of the stable
'J-homomorphism' in the appropriate dimension. A general study of
J(X) by the methods of (2) will be given in a future publication.

In § 2 we consider the $-type of Thorn complexes over X and examine
the relation with the group J{X) of § 1.

The main duality theorem is established in § 3. As an application we
prove a result which was conjectured in (11): the stable fibre homotopy type
of the tangent sphere bundle of a differentiable manifold X depends only on the
homotopy type of X.

The stunted projective spaces introduced by James in (10) are studied
in § 4, and their identification as Thorn complexes is established. In § 5
corresponding results are proved for the quasi-projective spaces of (10).

Applying the general results of §§ 1-3 to the spaces of §§ 4, 5 we deduce
in § 6 the main theorems of James J (9), (10).

1. Stable fibre homotopy type of sphere bundles
Let X be a finite CW-complex. If a is a real vector bundle over X, we

can give a. an essentially unique orthogonal structure. Let (a) denote the
associated sphere bundle. If n is a positive integer we shall also interpret

f This has also been proved by R. Bott and A. Shapiro (unpublished).
X In one respect our results are slightly weaker than those of James (cf. § 6).
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it as the trivial bundle X x Rn. The Whitney sum (or direct sum) of vector
bundles a, j8 will be denoted by a ©/?.

We recall now the definition of fibre homotopy equivalence. Two fibre
bundles E, W over X with fibre F are said to be of the a&me fibre homotopy
type (E ̂  E') if there exist fibre-preserving maps:

f'.E^W, f'.E'^E,
and fibre-preserving homotopies:

h: Exl-+E, h'\ E'xI-**Ef,

with h\ExO=f'f, h\Exl = identity,

h'\E'xO=fff, h'\E'xl = identity.

We now define two sphere bundles (a) and (a') to have the same stable

fibre homotopy type ((a) ~ (a')) if there exist integers n, n' so that

(<x®n)~(ot'®nf).

The set of equivalence classes of orthogonal sphere bundles with respect
to stable fibre homotopy type will be denoted by J(X). The class of (a)
will be denoted by J(a).

LEMMA (1.1). Let ex be a real vector bundle over X. Then there exists a real
vector bundle jS with a ©j8 trivial.

Proof. Let Gnm denote the Grassmannian of n-dimensional subspaces
of Kn+m. Over Gnm there are two real vector bundles a, b of dimensions
n, m respectively and a ©b is the trivial bundle Gnm X Rn+Wl. If m > dimX
there exists a map / : X -> Gnm with.a ^f*a (14). Define jS = f*b, and
we have a 0 j S ^ / * ( a © 6 ) i s trivial as required.

LEMMA (1.2). The direct sum of vector bundles induces on J(X) the structure
of an abelian group.

Proof. Since the direct sum of vector bundles is commutative and
associative (up to isomorphism) it is sufficient to show that J(a©jS)
depends only on J(a) and «/(j8). The existence of inverses will follow from
(1.1). Thus we have to show:

(i) (a) £ (a') => (a ©j8) £ (a' ©0).

Replacing a by a ®n, a' by a' ©n ' it will be sufficient finally to check:

(ii) (a) ~ (a') => (a ©j8) ~ (a' ©jS).

Let / , / ' , h, h' be the maps and homotopies giving the equivalence (a) ^ (a').
We define maps

F: (a©j8)->(a'©j8), F'\ (a'©jS)-> (a ©jS)
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F(u cos 6 © v sin 6) = f(u)cos 6 © v sin 6

(u e (a), v e (0), 0 < 6 < 2TT),

(i*'6(a')f t>e(jB), O<0<27r),
and homotopies:

# : (a ©jS) X / -> (a ©j8), JET: (a' ©j8) X / -> (a' ©j8)
b y H{ucosd®vsine,t) = h(u,t)cosd@vsind (tel),

H'(u' cos 0 © w sin 0,£) = A'(M', «)cos 6 © v sin 6.

Then 2̂ , J", £T, H' are all fibre-preserving, and we have

H | (a ©jS) X 0 = i?1'^, H | (a ©j8) x 1 = identity,

# ' I («' ©j8) X 0 = FF', H' | (a' © ]8) X 1 = identity.

This completes the proof.

Let KO(X) be the 'Grothendieck group' defined as in (2) from real vector
bundles over X. From the universal property of KO(X) it follows that there
is a natural epimorphism KO{X) -> J(X), and this will also be denoted by J.

Let Sn denote the standard 7&-sphere, and let Hn denote the space of
homotopy equivalences of S71-1 (with the C-0 topology). If On denotes
as usual the group of orthogonal transformations of JS71"1, we have a natural
inclusion map On -> Hn. According to Dold and Lashof (6) the H-space Hn

has a 'classifying space' BHn and the map On -> Hn induces a map
in: BOn -> BHn, where BOn is the usual classifying space of the topological
group On. The map in induces a map

where [X, Y] denotes the set of homotopy classes of maps X -» Y. The
main result of (6) then asserts that the set of fibre homotopy t3>pes of
orthogonal 5n~1-bundles over X is in one-to-one correspondence with the
image of 0B.

Now, under suspension, we have natural inclusion maps On -> On+1,
Hn -» Hn+1, and these give rise to natural maps:

im0B-*im0n + 1.

From our definition of J(X), and the result of (6) mentioned above it follows
t h a t

For completeness we shall now prove the following well-known result.

LEMMA (1.3). -nr{BHn) ^ rr^HJ ^ 7rn+r_2(^"1) for 2 < r < n-2,
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and -n^BHn) ^ TT0[Hn) ^ Z2 (n > 1), where 7ro(#n) is the group of com-
ponents of Hn.

Proof. The isomorphism TTT{BHn) ^ irr-i(Hn), r > 1, follows from the
existence of the universal //^-bundle over BHn with contractible total
space (6). Now it is clear that Hn has two components H+, H~ representing
maps S"-1 -> S71-1 of degree -f-1, — 1 respectively. Hence Tro(Hn) ^ Z2 as
asserted. Consider now the space Fn of maps (S71-1, a) -> (S11-1, a), where
a is the standard base point. Let F% denote the component representing
maps of degree d. Then we have a natural inclusion map F\ -> H+. More-
over if fe H+ and if we define TT: H% -> S71'1 by TT(/) = f(a), then -n is a
fibre-map with fibre F\. Hence we have an exact homotopy sequence:

If r < n—3 we have irr+1(5n-1) = TT^^71-1) = 0, and so:

7Tr(Hn) ^ 77r(tf+) ^ W p(Jl) (1 < f < 71-3). (1)

Now Ftl = Cin-1(Sn~1)s where Q71"1 denotes the iterated loop space. For
n ^ 2 therefore i^ is an #-space and so

7 T r « ) ^ 7 r r « ) ( d 6 Z , r > l ) . (2)

Moreover we have the standard isomorphism

-nr{K) = ^n+r-iiS*-1) (r, n > 1). (3)

From (1), (2), and (3) we obtain finally

7rr(Hn) s 7rn+r_x(S^) (1 < r < n-3).

This completes the proof of the lemma.

Since we have the suspension isomorphism

*n+k(Sn) 3* rrn+k+1(S^) (n > fc+2)

it follows from (1.3) that J(X) may be identified with the image of

in the stable range (n—2 ^ dim.X).
If we put 5 0 = U BOn, BH = \J BHn (with the weak topology) we

see that J(X) may be identified with the image of

Now the Whitney sum makes BO a (weak) #-space, so that [X, BO]
has a group structure. In fact [X, BO] is isomorphic with the kernel of the
rank homomorphism K0{X) -> H°(X, Z) and we have the canonical
decomposition K0(X) ^ [X,BO] ®H°(X,Z) (cf. (7)). The composite
map K0{X)-> [X,B0]-+imijj may then be identified with the homo-
morphism J : K0(X) -> J(X) mentioned earlier.
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Suppose now X = Sr. Then we have one-to-one correspondences

[S',BO]<r+TTr{BO),

[Sr,BH]*->7Tr{BH),

where ifr denotes the set of equivalence classes in TTT under the operation of
TTV Now if Y is an IZ-space we have the following well-known facts:

(i)f TTI(Y) operates trivially on 7rr(7),

(ii) the group structure in 7rr{Y) coincides with that induced by the
H-sp&ce structure of Y.

Since BO is an i/-space (i) and (ii) show that we have a group iso-

morphism: [S',BO] ^^(BO).

Since TTX{BO) ^ 7TL{BH) ^ Z2 it follows also that TTX{BH) operates trivially
on im ifj. Hence J(Sr) is isomorphic to the image of

7Tr(B0) -+ 7Tr{BH)

and hence (6) to the image of

Using (1.3) this last homomorphism becomes

T P -I (0)-> ©r-p f o r r ^ 2 , (4)

where Gr_x denotes the stable homotopy group irn+r_x(S
n). Now (4) is just

the stable J-homomorphism of G. W. Whitehead (18). Hence we have
established the following proposition which justifies our notation for J(X).

PROPOSITION (1.4). J(Sr) is isomorphic to the image of the stable J-homo-

morphism J: 7rr_x(0)-> Gr_x (r > 2).

(1.4) shows that J(Sr) is finite. More generally we have:

PROPOSITION (1.5). J(X) is a finite group.

Proof. We have just shown that, for n—2 ^ dimZ, J(X) c [X, BHn].
Since X is a finite complex it will be sufficient, by obstruction theory,
to know that 7Tr(BHn) is finite for 1 < r < n—2. Now by (1.3) we have

TTx{BHn) ^ Z2,

t For Y = BO this can also be seen directly by observing that, for odd n, the
component of On not containing the identity contains the element — 1 o,f the
centre. Conjugation by this element is therefore trivial. Since BO = limJBOn
through odd values, (i) follows.
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and the stable homotopy group Tr^^tf71-1) (r < n—2) is finite (12). This
completes the proof.

Remark. I t is possible, though a little more complicated, to give an
obstruction theory proof of (1.5) which avoids the use of (6).

2. #-type of Thorn complexes
All spaces X, Y considered here will be finite CW-complexes, subspaces

will be subcomplexes. According to (19) such a space has the homotopy
type of a finite polyhedron. In view of the triangulation theorem (5)
every compact differentiablef manifold, with or without boundary, is a
finite polyhedron, and so belongs to our class of spaces.

If Y is a subspace of X we shall denote by X/Y the space obtained from X
by collapsing Y to a point. We note that X/Y has a canonical base point,
namely, the point corresponding to Y. If Y is the empty set we adopt the
convention that X/0 is the disjoint union of X and the canonical base point.

We recall that, if X, Y are spaces with base points x0, y0) their 'smash
product' X %. Y is defined as

I t is again a space with canonical base point.
We choose a standard base point for the 1-sphere Sl and then define the

suspension of a space X with base point to be S1 ^ X. The n-sphere S1*1

is then homeomorphic to S1 •%. S1 %.... %-S1 (n times) and the ?i-fold
suspension of X may therefore be identified with Sn ^ X.

Let a be a real vector bundle over X. The Thorn complex X* of a is defined
to be the one-point compactification of a. I t is thus a space with canonical
base point. If a. is given an orthogonal' structure, and if A, A are the associ-
ated bundles with fibres the unit ball and unit sphere respectively, then it is
easy to see that A/A is homeomorphic to Xa in a natural way (base points
corresponding).

If oc = 0 is the zero-dimensional bundle, then X° = X/0 is the disjoint
union of X and a base point. J

We shall suppose now that the cell-structure of X is such that the
restriction of a to the closure of each cell is trivial. Since X has the same
homotopy type as a polyhedron, and since we are only interested in the
homotopy type of Xa, this is not an essential restriction. Under this hypo-
thesis it follows that Xa may be given a cell structure where there is one
cell of dimension k-\-n for each cell of X of dimension k, n being the dimen-
sion of a (n > 0). This leads to the Thom-Gysin isomorphism (cf. (15)).

t Differentiable will mean of class C00.
% The one-point compactification of a compact space X must be interpreted as X°.
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LEMMA (2.1). There are natural isomorphisms

where A is the system of local integer coefficients defined by a, and 3 denotes
cohomology or homology modulo the base point.

The local coefficient system A may be defined as follows. We recall
first that an orientation of an ?i-dimensional real vector space V is a con-
nected component of the space of isomorphisms V -> Rn. The orientation
bundle of a is the bundle whose fibre at x e X is the set of (two) orientations
of a .̂ The orientation bundle of a is thus a double covering of X, i.e. a
principal Z2-bundle. Identifying Z2 with the group of automorphisms of Z
we may consider the associated bundle with fibre Z. This bundle of rings is,
by definition, the local coefficient system A. The orientation bundle of a
may then be identified with the bundle of units of A.

LEMMA (2.2). Let a, ft be real vector bundles over X, and let A, B be the
corresponding local coefficient systems. Then

(i) A g± B o cu,(o) = OJM;

(ii) H°(X, A) g* H°(X, Z) o w^ot) = 0,

where co1 denotes the first Stiefel-Whitney class.

Proof. Since the orientation bundle of a may be identified with the bundle
of units of A it follows that A is trivial if and only if a is orientable. This
proves (i) when B is trivial, and the general case follows at once since
Ag*BoA®B is trivial. Now H°(X,A) ^ H°(X, Z) is equivalent to
saying that A has a non-zero section over each component of X. This in
turn is equivalent to the triviality of A and now (ii) follows from (i).

If a, /? are real vector bundles over X, Y respectively then a X j3 is a vector
bundle over X x Y, the fibre at (x, y) being cxx ©j8r

LEMMA (2.3). Let a, j8 be real vector bundles over X, Y respectively, then we
have a natural homeomorphism X01 % Y& -» (X x Y)aX^.

Proof. We have a natural map / : I a x 7 ^ ( I x Y ) « X P in which
y-i(c) = axYPu X<*xb, and / is a homeomorphism elsewhere (a, b, c
being the base points of Xa, Y&, ( I x 7 ) a X ^ respectively). Hence/ induces
a homeomorphism I ^ 7 ^ ( I x 7)«X0
as required.

A special case of (2.3) arises when Y is a point, so that jS is trivial of
dimension n say. Then YP = Sn, and so (2.3) yields:

LEMMA (2.4). #n(Xa) is naturally homeomorphic to Xa(Bn.

U
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In view of (2.4) the 8-type of a Thorn complex Xa depends only on
the element of KO{X) determined by a. Since by (1.1) every element of
KO(X) is expressible asf <x—n for some integer n and some bundle a, it follows
that we may extend our notation and speak of the $-type of X&, for any
j8 e KO(X). By definition this means the #-type of Xa for any bundle a
with j8 = oc—n in KO{X).

The relation of § 1 to the #-type of Thorn complexes is explained by the
following results:

LEMMA (2.5). Let a, p be real vector bundles over X, (a), (P) the associated
sphere bundles. Suppose (a) and (P) are of the same fibre homotopy type.
Then Xa and X& are of the same homotopy type.

Proof. Let A = (a) be the boundary of the unit ball bundle A associated
to a. Similarly for B, B with respect to p. Then X<* = A/A, X? = B/£.
Let / : A -+B, g: B ->A be the given fibre homotopy equivalences. Then
/ , g can be extended radially to maps:

F: (A, A) -> (B,B), Q: (B,B) -> (A, A),

and these induce maps

F: A\A -> BIB, G: B/fi -> A/A.

Let h: A X / ->• A, k: B X / -> B, be the given homotopies of gf ^ l,fg~ 1.
Extend these radially and we get homotopies:

H: (Ax I, Ax I) -+ (A, A), K: (BxI,&xI)-»{B,&),

of GF ~ 1, FG ~ 1. These induce homotopies

H.A/AxI-^AjA, K.BI&XI-+BIB

of GF ~ 1, FG ~ l a s required.

PBOPOSITION (2.6). Let a, P be real vector bundles over X, and suppose
J(a) = J(P). Then Xa and X& are of the same 8-type.

Proof. By definition J(a) = «7(jS) means there exist integers m, n so
that (a 0 m) and (jS ®ri) are of the same fibre homotopy type. Hence by
(2.5) Xa9m and X$®n are of the same homotopy type. But by (2.4)
X*®m = s^X"), X$®n = Sn(XP). Hence Z« and X& are of the same
#-type.

LEMMA (2.7)4 Let a, P be real vector bundles over X and suppose
J(<x) = J(p). Then w^oc) = co^p).

f Here and elsewhere we shall use the same symbol for a vector bundle and for
the corresponding element of KO(X). The two meanings of the symbol J(a) then
coincide.

J This lemma is also a consequence of the general results of (15), on Stiefel-
Whitney classes a^ for all i.



THOM COMPLEXES 299

Proof. Since J and cox define homomorphisms KO{X) -> J(X),
KO{X) -» H^X, Z2) respectively it is sufficient to consider the case jS = 0.
Let dim a = n, and let A be the local coefficient system defined by a.
If J(a) = 0 then by (2.6) Xa is of the same 8-type as X°, and so

)^an(X«,Z), by (2.1),

Hence, by (2.2 (ii)), Wl(a) = 0.
Let y be a space with base point y0. Following James (10) we shall say

that y is reducible (S-reducible) if there is a map (#-map)/: (Sn, a) -> (Y, y0)
inducing isomorphism of Hq for q ^ n. Dually we shall say that Y is
coreducible (S-coreducible) if there is a map (#-map) / : (Y, y0) ->• (Sn, a)
inducing isomorphism of 3Q for q ^. n.

It is clear that reducibility and coreducibility are properties of homotopy
type, that #-reducibility and #-coreducibility are properties of /S-type, and
that y is ^-reducible if and only if its $-dual, in the sense of Spanier-
Whitehead (13), is ^-coreducible.

From cohomology considerations, using (2.1) and (2.2), we see that a
Thorn complex X* over a connected space X cannot be $-coreducible unless
a is orientable.

If X is a compact connected differentiate manifold of dimension
q, oca, real vector bundle of dimension n, we have

nq+n(X«,Z)^Hq(X,A), by (2.1),
^ H°(X, A®T) (Poincare duality),

where T is the local coefficient system defined by the tangent bundle of X.
From (2.2 (ii)) it follows that X* cannot be ^-reducible unless

PEOPOSITION (2.8). Let ocbea real vector bundle over a connected space X.
Then X01 is S-coreducible if and only if J(a) = 0.

Proof.f If a is not orientable then Xa cannot be #-coreducible, as ob-
served above, and J(oc) =£ 0 by (2.7). Hence we may suppose a orientable,
and it will be sufficient to prove that, if dim a = n is large, then X* is
coreducible if and only if (a) ^ (n). Let A, A be as in the proof of (2.5)
and let XE X. Then from the exact cohomotopy sequences of A, A and
Ax, Ax (which are valid for large n), we have the commutative diagram:

This proof appeared in an earlier (unpublished) version of (11).
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Now, according to a criterion of Dold (5a, 121, Corollary 2), (a) ~ (n) if
and only if there is a map / : A -+ S'1'1 whose restriction to Ax is a homo-
topy equivalence. Thus, in terms of our diagram,

(a) ~ (n) o 9 is an epimorphism,

<=> </> is an epimorphism.

On the other hand, by (2.1), Hr{A,A\ Z) -> Hr{Ax,Ax; Z) is an isomor-
phism for 0 < r ^ n, from which it follows that

<f> is an epimorphism o A/A is coreducible.

This completes the proof.

PROPOSITION (2.9). Let a be a real vector bundle over a connected space X.
Then J(a) = 0 if and only if X* and X° have the same S-type.

Proof. In one direction this is a special case of (2.6). Conversely, suppose
that Xa and X° have the same $-type. Since X is connected X° is co-
reducible, hence Xa is #-coreducible, and so J(<x) = 0 by (2.8).

PROPOSITION (2.10). Let a be a real vector bundle over a connected space X.
Then there exists a positive integer q such that Xna has the S-type of X° if and
only if n is a multiple of q.

Proof. This follows at once from (2.9) and (1.5). The integer q is the order
of J{OL) in the finite group J(X).

3. The duality theorem
We shall require a lemma on the embeddings of manifolds with boundary

which is a simple consequence of the theorems of Whitney (20).

LEMMA (3.1). Let X be a compact differentiate manifold with boundary
Y. Then, if n > 2 dim X, we can embed X differentiably in Rn so that

(i) X—Y lies in the open unit cube 0 < xi < 1 (1 ^ i ^ n)\

(ii) Y lies in the open face 0 < a ^ < l (1 ^ i ^ n— 1), xn = 0;

(iii) X intersects xn = 0 normally in Y.

Proof. By Theorem 1 of (20) we can find a differentiable embedding
g: y-^R7 1-1. Define a differentiable embedding / : YxI^Rn by
f(y,t) = (g(y), t), where / denotes the unit interval 0 ^ t ^ 1. Now we
can find a neighbourhood Z of Y in X which is diffeomorphic to Yxl, Y
corresponding to FxO. Then applying Theorem 5 of (20) to the closed
submanifold Z—Y of X—Y we deduce the existence of a differentiable
embedding F: X—7->-R£ with F =f on Z—Y, where R£ denotes the
subspace of Rn "with xn > 0. The pair F, f then defines a differentiable
embedding of X in R71, which, after a change of scale, has all the required
properties.
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Next we prove a duality theorem for manifolds with boundary.

PROPOSITION (3.2). Let X be a compact differentiable manifold with boun-
dary Y, and let r denote the tangent bundle ofX. Then X~T is the S-dual ofX/Y.

Proof. Let X be embedded in the closed unit cube In of Ru as in (3.1).
Let P be the point of Rn+1 with coordinates (0,..., 0,1) and form the join
of P to In. This is a pyramid whose boundary Sn is homeomorphic to the
w-sphere. The space X U PY (where PY denotes the join of P to 7) has
the homotopy type of XjY and is embedded in Sn. Hence an $-dual of
X/Y is given by a deformation retract of Z = Sn-(X u PY) (cf. (13)).
Now by projection from P the space Z may be deformed into In—X, and
this in turn may be deformed into In—A, where A is a normal tubular
neighbourhood of X in In. There is no trouble on the boundary of In

because of the property (iii) of (3.1). Since In is contractible and the pair
(In, Jn—A) has the homotopy extension propertyf In/In—A has the
homotopy type of the suspension of In—A, and hence is also an $-dual of
X/Y. But In/In—A = A/A, where A = In—A n A is the closure of that
part of the boundary of A which is interior to In. If v is the normal bundle
of X in In, A and A may be identified with the unit ball and unit sphere
bundles associated to v. Hence A/A = Xv is an #-dual of X/Y. Since
v 0 T is trivial this concludes the proof.

Remark. If one is prepared to allow the triangulability of manifolds
with 'corners' (e.g. a square), or at least that these are finite CW-complexes,
then this proof can be simplified using the fact (13) that if DY D DX is
*S-dual t o J c I then DY/DX is /S-dual to X/Y (all spaces being finite
CW-complexes).

We are now in a position to deduce the duality theorem for Thorn
complexes.

THEOREM (3.3). Let X be a compact differentiable manifold (without boun-
dary) with tangent bundle r. Let a. be a real vector bundle over X. Then the
S-dual of X<* is Z-a~T.

Proof. It is well known that we may give a a differentiable structure.
For example we may take a continuous map/ : X -> Gnm which induces a
(Gnm denoting as before a real Grassmannian), and approximate it by a
differentiable map g. The map g will induce a differentiable bundle over X
which is equivalent to a. Now let A, A be the bundles associated to a with
fibre the unit ball and unit sphere respectively. Then A is a compact differ-
entiable manifold with boundary A. By (3.2) the /S-dual of Xa = A/A

f This is equivalent to (A, A) having the homotopy extension property, and this
is true for any sphere bundle.
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is A~l, where t is the tangent bundle of A. Let TT\ A ->• X be the projection
map, then it is clear that t ^ TT*(T © a). Since v is a homotopy equivalence
it follows that A~l and Z~a-T are of the same $-type, and hence X~a-T is the
$-dual of X* as required.

Remark. The special case of (3.3) with a = 0 (or equivalently the special
case of (3.2) with Y = 0) is proved in (11).

PROPOSITION (3.4). Let X be a compact connected differentiate manifold
with tangent bundle r. Let a be a real vector bundle over X. Then Xa is S-
reducible if and only if J(a) = —J{T).

Proof. X« is ^-reducible if and only if its S-dxrnl Z- a - T (3.3) is 8-
coreducible. The required result now follows from (2.8).

We propose now to give an application of (3.4). First we make a few
remarks on orientability. Let X, Y be compact differentiate manifolds
with tangent bundles £, rj and let A, B be the local coefficient systems
defined by £, -q. A map/ : Y->• X is said to be orientable if B ^f*A. In
view of (2.2) (i), / i s orientable if and only if wx(Y) = f*w1(X), where wx(Y)
denotes as usual o>1(̂ ) and similarly for X. The map/is said to be oriented
if we are given an isomorphism B ^f*A. An oriented map / induces a
homomorphism: ^ ^ ^ B) ^ ^ { X ^

THEOREM (3.5). Let X, Y be compact differentiate manifolds with tangent
bundles £, rj respectively. Let A, B be the local coefficient systems defined by
tj, 7). Letf: Y -> Xbean oriented map which induces an isomorphism

Then J(rj) = J{f*£).

Proof. Let a be a real vector bundle over X with a ©£ trivial (1.1) and
suppose dim a > 1. Then w^a) = w^) and so, by (2.2) (i), we may choose
an isomorphism of A with the local coefficient system of a. Put jS = / *<x,
then the local coefficient system of jS may be identified w i th /M and hence
with B, since/is oriented. Also/induces a map F:YP -> X01. Then, by the
naturality of the Thom-Gysin isomorphism (2.1) we obtain a commutative
diagram:

Since /* is an isomorphism so is F^. Since dimjS = dim a > 1, JCa and Y&
are simply-connected. Hence, by the theorem of J. H. C. Whitehead (19)
F is a homotopy equivalence. Since «/(«) = —J(£), X* is ^-reducible
(3.4). Hence Y&, being of the same homotopy type as Xa, is ^-reducible,
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and so by (3.4) J(jS) = - J{rj). But J(j8) = J{f*<x) = -J(f*£). Hence
J(rj) = J(f*£) as required.

Since wx is a homotopy invariant (15) a homotopy equivalence is neces-
sarily orientable. Hence as a corollary of (3.5) we deduce:

THEOREM (3.6). Let X,Y be compact differentiable manifolds with tangent
bundles | , t). Letf: Y -> Xbea homotopy equivalence. Then J(r)) = «/(/*£).

Remark. One can give a direct proof of (3.5) and (3.6) without using (3.3).
However the proof given here is somewhat simpler.

4. Stunted projective spaces
We recall here some definitions and notation of (10), adapting them to

our purpose.
Let F denote one of the three basic fields: R, G, or K (quaternions). Let

V = Fk be regarded as a right .F-module and let Pk be the associated right
projective space. Thus we have a principal 2^*-bundlef TT: V—0->Pk>

which we shall denote by M, and an associated right line-bundle (fibre F,
group F* operating on F on the left) which we denote by L. We may also
consider the left line-bundle L* — HomF(L, F). This defines a real vector
bundle f of dimension d, where d = dimR F.

The 'stunted projective space' Pnk is defined by

•*n,fc •*nl*n—k'

James excludes the case n = k, but with our conventions this case presents
no anomalies.

LEMMA (4.1). Let Tx denote the tangent space of Pk at a point x. Then we
have a canonical isomorphism (of real vector spaces)

Proof. Applying the construction of § 2 of (1) to the principal bundle M
we get an exact sequence of vector spaces:

where an element of Qx is a field of tangent vectors of M = V— 0 along
TT-^X), invariant under F*, and Sx is the subspace of fields tangent to the
fibre 7r-1(a:). If y e V, then the tangent space to V at y may be identified
with V itself by translation. A vector field v(y) defined for y e TT~\X) is
then invariant under F* if

v{yX) = v(y) A for A G F*.

f F* denotes the multiplicative group of non-zero elements of F.
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We have a canonical isomorphism 6: V ®FL*-> Qx defined by

6(v®<f>)(y) = v <f>(y), veV, <f>e RomF(Lx, F), y e n-^

Clearly 6 induces an isomorphism

LX<S)FL* -^ Sx,

and hence an isomorphism of quotients

as required.

LEMMA (4.2). Let T denote the {real) tangent bundle of Pk. Then we have
an isomorphism of real vector bundles: T ^ (V/L)(g)FL*, where V denotes
the trivial bundle Pk X V.

Proof. This follows at once from (4.1). We have only to observe that tf/x

varies continuously with x.

PKOPOSITION (4.3). Pnk is homeomorphic to the Thorn complexPk
n~k)Z.

Proof. By definition Pnk = PJPn-k. Let Pk be complementary to
Pn_k in Pn. In terms of vector spaces this corresponds to a decomposition
Fn = U ©W with diuip U = k, dim^ W = n—k. For each point xsPk

we consider the vector space W ® Lx and the associated protective space Ax

of dimension (n—k). The tangent space of Ax at x may be identified, on the
one hand with the affine space Ax—Ax D Pn-k, and on the other hand (by
(4.1)) with ((W@LX)/LX)<S>FL* s W®FL*X.

Hence, allowing x to vary in Pk, we see that Pn—Pn-k may be identified
with the bundle space of the vector bundle W <g>F L* over Pk (W denoting
the trivial bundle Pk X W). Since W is a trivial bundle we have

W<S>F L* ^ L* ® L* ®... ®L* (n—k) times,

and so the underlying real vector bundle is (n—k)£. Clearly PJPn-k is the
one-point compactification of Pn—Pn_k, i.e. of the bundle space of (n—k)£.
Thus PJPn-k is homeomorphic to the Thorn complex Pk

n~k)Z.

LEMMA (4.4). The real vector bundle L <g>F L* is isomorphic to the bundle rj
with fibre the Lie algebra F of F* associated to M by the adjoint representation
(in brief: T) = ad(M)).

Proof. In the proof of (4.1) we obtained a canonical isomorphism
Lx (&F L* -> Sx. In (1) it is provedf as a special case of a general result on
principal bundles, that #x is canonically isomorphic to r)x. This gives an

f Actually in (1) all structures are complex but the argument is identical for real
bundles, real Lie groups, etc.
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isomorphism Lx <g)F L* -+ rjx which varies continuously and so defines
an isomorphism of vector bundles L®FL* ^.rj.

Since the centre of F always contains R it follows that we can decompose
7} in the form -q = 1 © £. In the commutative cases (F = R, G) we even
have £ trivial, but this is not so for K.

LEMMA (4.5). Let T denote the tangent bundle of Pk. Then T ©77 ^ k£.

Proof. This follows from (4.2) and (4.4) and the fact that all exact
sequences of real vector bundles split topologically (cf. (1)).

Remark. The well-known formula for the characteristic classes of Pk

follows easily from (4.5). One has just to find the characteristic classes of 77.

5. Quasi-projective spaces
We start with some generalities. By a group we shall mean a compact

Lie group, and a subgroup will mean a closed subgroup.
Let G be. a group, H a subgroup, N the normalizer of H in G. Then

G -> G/N is a principal 2V-bundle (N operating on G on the right). Since
N operates on H (by conjugation) as a group of automorphisms we can form
the associated bundle E = GxNH over G/N with fibre H. Moreover this
is a bundle of groups and so in particular it has an identity cross-section s.

We now define a map » ^ y u n

by f(g, h) = ghg-1. This is well-defined, for if n e N,

f(gn, n~>hn) = gn n~xhn n^g-1 = ghg-1 = f(g, h).

Clearly/(s) = e (the identity of G), and/restricted to each fibre EllN gives
an isomorphism onto the subgroup gHg~x of G. Thus/(i£) = (J Ha, where

a

a runs through the inner automorphisms of G. The following lemma is
therefore obvious:

LEMMA (5.1). Suppose His a subgroup of G with the property that, for any
inner automorphism a of G, we have H = Ha or H n Ha = e. Then
f{E) = Ejs {the space obtained from E = GxNH by collapsing the identity
cross-section s).

Examples of pairs (G, H) satisfying the hypothesis of (5.1) are provided
by the classical groups. Following (8) we let On denote the group of auto-
morphisms of Fn (F = R, C, or K) which preserve the standard scalar
product. We take G = On and H = Olt this being embedded in On via
the standard embedding of F1 in Fn. It is clear that the conditions of (5.1)
are satisfied. Moreover, H = Ox X In^ (/n_! being the unit matrix),
N = OxxOn_x, and O/N = Pn. Thus E is a sphere bundle over Pn, the

5388.3.11
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dimension of the sphere being (d— 1), where d = dimRjF. By definition E
is associated to G -> C/JV by the operation of N onH (conjugation). Since
N = Hx 0n_x it follows that E is also the bundle associated to the Hopf
bundle OJOn_x -> Pn by the operation of £T on itself (conjugation). Now
the Hopf bundle On/On_1;^>Pn is just the orthogonal reduction of the
principal ^•-bundle M of § 4. Hence E is the sphere bundle associated to
the vector bundle 77 = ad(M). As remarked in § 4 we have a decomposition
V — 1 © £ in which the factor 1 comes from Re F and so corresponds to
the identity cross-section s of E. Hence E/s is just the Thorn complex of £.
We have then established, as a special case of (5.1):

LEMMA (5.2). Let Xn be the subspace of On defined byXn= \J O\ where a
a

runs through the inner automorphisms of On. Then Xn is homeomorphic
to Pi

In (10) James defines an explicit subspace Qn of On, which he calls a quasi-
projective space. We shall now establish:

PROPOSITION (5.3). The spaces Qn of (10) and Xn of (5.2) coincide. Hence
Qn is homeomorphic to P£.

Proof. In terms of matrices a point of Ox is given by a diagonal matrix:

'A
1

1
A = (XeF, |A| =

Hence a typical conjugate point is given by a matrix BAB' {B e 0n). If
(yx,..., yn) is the first column of B we find:

{B'AB)^ = 8,,—y,(l—A)yy (1 < i < j < n). (1)

In James's definition a point of Q'n is given by the matrix A with

Ay = Sy-2^(l+a;0)-2f/ (1 < i < j < w), (2)
n

where 2 l^tl2 = »̂ ^o+^o = «̂ (3)
o

If we put A = -

it is easy to check that A = BAB', showing that Q'n c Xn. Moreover,



THOM COMPLEXES 307

n
given A, yt with |A| = 1, 2 |^ |2 = 1, we can find xQ, xv..., xn to satisfy
(3) and (4), except when F = R and A = 1, i.e. when A is the unit matrix.
But by definition (10) Qn = Q'n, F ^ R, and Qn = Q'n U e (e the identity
of On) for F = R. Thus # n = Xn as asserted in all cases.

We have natural inclusions Qn-k c Qn and James defines the stunted
quasi-prqjective space Qnk = QJQn-k. The inclusion Qn-k c (^ corre-
sponds in the homeomorphismf Qn ~ p£ of (5.3) to the natural inclusion
Pn-k c Pn- Here we use the same symbol I for all dimensions of projective
space, since the £ on Pn_k is just the bundle induced by the £ on Pn (this being
true of their principal bundles M).

Hence
Q»-Qn-k~Pk-Pi-t

^ bundle space of £ over (Pn—Pn-k)

~ bundle space of £ © (n—k)g over Pk

by (4.3). Taking the one-point compactifications we obtain finally:
PROPOSITION (5.4). Qnk is homeomorphic to the Thorn complex pj>l-fc)£©£.

6. The theorems of James
We are now in a position to apply the general results on Thorn complexes

proved in §§ 1-3 to the spaces Pn>k, Qn>k.
We have established the homeomorphisms:

(5.4).

The spaces on the left are only defined for n > k > 1. However, the Thorn
complexes on the right have been defined (§ 2) for k > 1 and all integers n,
provided that we are only interested in $-types. We use (4.3) and (5.4)
to extend similarly the definition of the #-types of % Pnk and Qnk.

THEOREM (6.1).§ Qnk and Pk-n>k are S-duals.

Proof. We have by (4.3) and (5.4) Qnk ~ Pg*-**©*, Pk_nk ~ P^-<
Hence, by (3.3), Qn>k is S-dual to P% where

«= -(n-k)£-£-T in. K0{X)
= -(n-W-Z-ikt-ri) by (4.5)

Since Pk and Pk~
l have the same #-type (2.4) the theorem is proved.

t In this section and the next we denote a homeomorphism by ~ .
X Thus Pnk stands for the £-type of P^^, where n+r > k and rj(g) = 0.
§ This result was conjectured by James (unpublished).
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THEOEEM (6.2). Qn k is S-reducible if and only ifn is a multiple of the order

Proof. Since Qn>k ~ p<j*-*XH (5.4) w e can apply (3.4) and we obtain":

Qn>k ^-reducible o J{(n-k)£+Z,} = -J{T)

o J{n $) = 0 by (4.5)

o nJ'd) = 0 (q.e.d.).

Remark. Since J(Pk) is a finite group (1.5), /(£) is of finite order qk say.
Then (6.2) asserts that Qnk is ^-reducible if and only if n = Omodg^.
In particular, values of n for which Qnk is /S-reducible always exist.
Theorem (6.2) includes one of the main results of (10). Most of the other
results of (10) are simple consequences of (6.1), (6.2) and the results of

§§ 1-3.
The interest of the spaces Qnk lies in their relation to the Stiefel manifolds

Onk = OJOn_k as explained in (10). There is a commutative diagram
of maps i

Qn,k - * On,k
P\ / *

where i is an inclusion induced by the inclusion Qn c On, n is the fibre map
°n,k -> On>1 = S^-1 and p is the 'cofibre map ' Qn>k -> Qn>l = S^-1. By-
determining the connectivity of the pair (Onk, Qntk) James in (8.2) of
(10) proves:

LEMMA (6.3). Qnk is reducible if and only if Onk -> SAn-x has a cross-
section and, for F = R, n > 2k or k = 1.

Now Qn>kis r-connectedwhere r = d(n—k+l) — 2. Hence by (2.6) of (17)

"dn-x(Qn,k) "> * £ n - i « W (the stable group)

is an epimorphism for 2r ^ dn—2, i.e. for n > 2(k—\)-\-2jd. Now from
cohomology considerations Qnk cannot be reducible unless n ^ 2k, or
k — 1. Hence we have

LEMMA (6.4). Qnk is reducible if and only if it is S-reducible and n > 2k
or k = 1.

By (6.2), if Qnk is ^-reducible, n is a multiple of qk (the order of J ( | )
in J(Pk)). The results of (3) or (4) show that in the complex and quater-
nionic cases qk ^ 2k for k > 1. Hence from (6.2), (6.3), and (6.4) we obtain
finally:

THEOREM' (6.5). In the real case suppose n ^ 2k. Then (for all cases)
Onk -» S^-1 has a cross-section if and only if n is a multiple of qk, where qk

is the order ofJ(g) in J(Pk).
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In one respect this result is weaker than results of (9). In the real case
we make no assertion for the case n < 2k whereas James proves one half
of (6.5) in all cases.

The problem of determining the actual numbers qk in (6.5) is thus seen
to be a special case of the more general problem of determining the struc-
ture of the group J(X). An attack on this problem by the methods of (2)
and (3) will be given in a future publication.

We conclude with a few remarks on the relation between the methods of
this paper and those of James. The main tool of James is the 'intrinsic
join'. Actually he defines several 'intrinsic joins', two of them being maps

*vn,k * * m , k ~* •Lm+n,k>

Qn,k * Qm,k ~*" Qm+n,k>

where X * Y denotes the join of X and Y. Since X * Y and S(X %. Y) are of
the same homotopy type these two maps, in view of (2.4), (4.3), and (5.4),
give rise to maps

In view of (4.5) both these are maps of the type

where X is a compact differentiate manifold with tangent bundle T.
By (3.3), and the fact that the smash product commutes with duality,
the dual of/ is an $-map of the form:

where y = — a—T, 8 = —j8—T. NOW the diagonal map X -> X x X induces.

a map A : xv+*-+ (XxX)vxS ~ Xv%.X8 by (2.3).

I t would seem reasonable to suppose that Df and A are #-homotopic.
In addition to the maps just mentioned James also defines an intrinsic

join for the Stiefel manifolds Onk. This has no counterpart here, since we
are not directly concerned with Stiefel manifolds.
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