TOPOLOGY OF ELLIPTIC OPERATORS

MICHAEL F. ATIYAH!

In these notes I will deal with topological questions concerning elliptic
operators, and more particularly with the index theorem. The analytical part of
the theory will be reviewed only briefly and we refer to L. Nirenberg’s lectures [2]
for more details.

1. The symbol and the index of an elliptic operator. Throughout this section let
X be a closed smooth (i.e. C*) manifold of dimension n, and let E, F be smooth
complex vector bundles over X of fiber dimension N. The linear space of smooth
cross-sections of E (resp. F) is denoted by C®(E) (resp. C*(F)). Furthermore let
k be a nonnegative integer.

DEFINITION. A differential operator P (of order k) from E to F is a linear map

P:C®(E) —» C*(F)

which locally, in terms of coordinates, can be expressed as a matrix of polynomials
in partial derivatives of order <k. More precisely, if x,, ..., x, are local coordinates
of X with domain U, and if 7,: EJU = U x C", 7,: F{U = U x C" are smooth
local trivializations of E, resp. F, then the linear operator C*(E) — (C2)N =
C>(F|U) induced by P has the form Y, <, 4(x)D% where for each multi-index
a=(a, .. a,) With Jo| = Ya;, a, is an N x N-matrix of elements of C*(U)
(ie. smooth complex valued functions), and D% denotes the partial derivative
0% /0x3! ... *[oxan.

P is elliptic (of order k) if for each local representation as above, the highest
order term

pilx, ) = | IZkaa(X)é‘“
is a nonsingular matrix for xe U and { € R" — {0}.

The system of functions p,(x, &), given for every local representation of P as
above, is called the leading symbol of P.

There is an intrinsic geometrical interpretation of the leading symbol of an
elliptic differential operator P. We fix a Riemannian metric on X. Thus the tangent
bundle T(X) and the cotangent bundle T*(X) are canonically isomorphic, and
we denote by B(X) (resp. S(X)) the corresponding unit ball bundle (resp. sphere
bundle). If z*(E), n*(F) are the pullbacks of E, F under the projection n: S(X) — X,
then the leading symbol of P determines a well-defined vector bundle isomorphism
over S(X):

o(P): n*(E) <> n*(F),

! Notes by U. Koschorke.
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given by py(x,&): E, 35 F,. This isomorphism o(P) gives a geometrical way of
looking at the leading symbol of P.

It is a classical result that the dimension of both the kernel and the cokernel
of an elliptic differential operator P are finite. The difference of the dimensions,

index P = dim ker P — dim coker P,

is known to depend only on the highest order term, i.e. o(P). Thus it is natural
to try to connect the global data given by the symbol to other global data, such
as the index. In fact our main goal is to give an explicit formula expressing the
index of an elliptic operator P in terms of o(P).

For this purpose it is convenient to enlarge our class of operators by introducing
pseudo-differential operators (cf. [2]). Essentially all smooth isomorphisms from
n*(E) to n*(F) can occur as symbols of such operators. On the other hand, an
elliptic pseudo-differential operator still has a well-defined index which depends
only on the homotopy class (through smooth isomorphisms) of its symbol.
Therefore, since smooth maps on one side and continuous maps on the other
side have a similar homotopy behavior, the index gives rise to an integer valued
function on the set of homotopy classes of continuous isomorphisms between
n*(E) and n*(F). Thus the use of pseudo-differential operators enables us to replace
the set of polynomial symbols by simpler geometrical objects, and to perform
more drastic deformations.

We now indicate briefly an alternative topological approach which would
allow us to avoid the analytical concept of pseudo-differential operators. Let
A(N, n, k) be the set of N x N-matrices p(¢) whose entries are homogeneous
polynomials of order k in &, ..., &, such that det p(¢) # O for &€ R” — {0}. In
an obvious way this set can be imbedded in some euclidean space and hence has
a natural topology. A(N, n, k) is the typical fiber of a fiber bundle over X whose
sections correspond to the symbols of elliptic differential operators of order k
from E to F. Thus, if we deal with deformations of symbols in the framework of
elliptic differential operators we need some information on the homotopy proper-
ties of A(N, n, k). However, not much is known on A(N, n, k), and even the question
whether it is empty or not is rather hard to decide. For example A(N,n, 1) is
not empty if and only if the (N — 1)-sphere S¥~! admits (n — 1) linearly inde-
pendent tangent vector fields. This last problem, which has been solved by J. F.
Adams, is highly nontrivial.

Nevertheless the situation is not quite that hopeless. If we imbed A(N, n, 2j)
into A(N, n, 2(j + 1)) by means of the map p(&) - (D &?)p(&) (which corresponds
by the Fourier transform to composition with the Laplace operator), then the
direct limit lim;_, . A(N, n, 2j) can be interpreted as the set of even polynomial
maps from the sphere S" ! into GL(N, C) (or, equivalently, as the set of poly-
nomial maps from the projective space P"~! into GL(N, C)). This set is dense in
the space of all even continuous maps from $"~! into GL(N, C). We could use
this observation in order to deduce an index function defined on the set of homo-
topy classes of even continuous isomorphisms between n*(E) and n*(F). Without
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resorting to pseudo-differential operators we thus would simplify the computation
of the index of an elliptic differential operator. However, we shall not pursue this
line.

We now resume our previous study of the index of elliptic (pseudo-) differential
operators and we shall try to understand the topological significance of the
symbol.

First we consider the case when E, F are trivial line bundles. The isomorphisms
between n*(E) and n*(F) are simply maps from S(X) into GL(1, C) = C* (which
retracts onto the unit circle S!), and the index is defined on the set of homotopy
classes [S(X), S'] = H'(S(X)) (cohomology with integer coefficients). It follows
from [2] that the index of an elliptic operator P is zero if for each x e X a(P) is
constant on the sphere S(X), over x. Hence the index vanishes on the image of
7* in the following exact cohomology sequence

- H'(B(X) —» H'(S(X)) é’ H*(B(X), S(X))j—*' H*(B(X)) - ...
[
H!(X) i index

Z

If dim X = n > 2, then, by a classical result of Thom, H(B(X), S(X)) = 0, and
n* is surjective. Hence the index of every elliptic operator from the trivial line
bundle into itself is zero (as proved also in [2]). If X is a Riemann surface of
genus g, we have a commutative diagram of canonical homomorphisms

HY(B(X), S(X)) 1> H2(B(X)),
11 e
HO(X) AX) H3(X),
Il e
Zz — Z,

where the bottom map is given by multiplication with the Euler characteristic
2 — 2g of X. Thusif X is not the torus, j* is injective and n* is surjective, and
again index = 0. In the case of the torus however there might exist elliptic operators
from the trivial line bundle into itself with nonvanishing index.

Next we allow E, F to be arbitrary line bundles. We denote by S'(X) = B™(X) Uy,
B~ (X) the n-sphere bundle over X obtained by gluing together two copies B (X)
and B~ (X) of the unit ball bundle B(X). Then any isomorphism ¢ between n*(E)
and n*(F) gives rise to a line bundle over S'(X): we lift E to B*(X) and F to B~ (X))
and identify them along S(X) by means of g. This gives a perfectly good alternative
description of g. On the other hand each line bundle over S(X) can be constructed
starting from such a . Hence we can define the index on H3(S'(X), Z) = Vect!(S'(X)).
(Here Vect!(S’(X)) denotes the set of isomorphism classes of complex line bundles
over S'(X), made into a group by means of the tensor product. The group iso-
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morphism Vect!(S'(X)) = H?*(S'(X)) is given by the first Chern class.) Furthermore
it follows from the construction that our index function vanishes on n'*(H?(X))
where 7': S'(X) - X is the bundle projection. As 7' admits a section, H*(S'(X))
is the direct sum of n’*(H*(X)) and H?(S'(X), B~ (X)), and it is clear that we lose
no information when we restrict the index function to H2(S'(X), B~ (X)) =
H%(B(X), S(X)).

If dim X > 2, again index = O in this setting. However, if X is a Riemann
surface other than the torus, H3(B(X), S(X)) is isomorphic to Z, and for arbitrary
line bundles E, F there is no longer any reason to think that the index of all
elliptic operators from E to F is zero. In fact we can give a simple example of an
elliptic differential operator with nonvanishing index: the operator

?:f—»%—é—d‘i

is elliptic, ker ¢ consists of the constants, coker 0 = ker 0* consists of the anti-
holomorphic differentials and hence (from the classical theory of Riemann surfaces)
index @ = 1 — g # 0 (since the genus is g # 1).

Now let X again be a compact manifold of arbitrary dimension, and let E, F
be N-dimensional trivial bundles over X. Then the index function takes the form

index : [S(X), GL(N,C)] - Z.

As we saw earlier, [ S(X), GL(N, C)] has a nice cohomological interpretation when
N = 1. For N > 1 however, this group is not even always commutative. It is
therefore convenient to stabilize it.

Thus let

C*=GL(1)c GLQ2)c ... cGL(N) < ... €« GL2N) < ...

be the obvious sequence of imbeddings, and denote by GL(c0) the topological
group limy_  GL(N). If Y is a compact space and 4, B: Y- GL(N) are con-
tinuous maps, then by a rotation argument one can show that the product map
A - B is homotopic to the direct sum map A @ B as maps from Y into GL(2N).
Hence the group

K'(¥): = [¥,GL(c0)] = lim [} GL(V)]

is abelian.
It is now easy to see the above form of the index function gives rise to a group

homomorphism index : K!(S(X)) - Z. We merely have to note that if P and Q are
elliptic operators of order 0, then index (P @ Q) = index P + index Q, and
a(P @ Q) = o(P) @ o(Q); for the identical operator on a trivial bundle of dimen-
sion N the index vanishes and the symbol is a constant function with value
Id € GL(N). Furthermore, in analogy with the case N = 1, this homomorphism
vanishes on the image of n* : K'(X) —» K}(S(X)).
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Finally let P be an elliptic operator from an arbitrary smooth vector bundle
over X into another. As in the case of line bundles, the symbol of P determines a
vector bundle V,;, over S'(X) = B*(X) Ugy, B™(X), and we obtain a homo-
morphism of semigroups index: Vect (S'(X)) — Z, defined by V, ., index P.
Here Vect (S'(X)) denotes the semigroup of isomorphism classes of vector bundles
over S'(X), with addition given by the direct sum. By the following method, due
to Grothendieck, we can make Vect (S'(X)) into a group.

Quite generally let A be an abelian semigroup. Define B to be the quotient of
A x A under the following equivalence relation: (a,, a,) ~ (a}, a;) if there exist
a,a’ € A such that (a, + a,a, + a) = (@} + a’,a, + a'). Then B is an abelian
group; the map j: 4 — B which maps a€ 4 into the equivalence class of (a, 0)
is additive; and each additive map from A into a group factors uniquely through j.

In particular if A = Vect(Y) is given by the (complex) vector bundles over a
compact space Y, one denotes by K(Y) the corresponding group. Furthermore, if
Z is a closed subspace of Y, we define K(Y, Z) to be the kernel of the obvious
restriction K(Y/Z) —» K(Z/Z). Here Y/Z is the space obtained from Y by collapsing
Z to a point, and Z/Z is this resulting point.

We can now interpret our index function as a group homomorphism from
K(S'(X)) into Z. Again, as in the case of line bundles, we lose no information
when we restrict it to K(S'(X), B~ (X)) = K(B(X), S(X)). Thus we will consider it
from now on as a group homomorphism index : K(B(X), S(X)) —» Z.

In examining the topological role of the symbol of elliptic operators we have
been led to introduce the functors K and K!. In fact they fit into an extraordinary
cohomology theory— K-theory—which is the appropriate setting for the study
of the index. In particular we have coboundary operators, and our two last
interpretations of the index are related to one another by the following commuta-
tive diagram

K'(S(X) S K(BX), S(X))
index index
Z

II. Classical Examples. We will now give some concrete examples of elliptic
differential operators. This will not only motivate our investigation of the index
problem, but also give us some idea what the index formula should look like.

First we study purely locally homogeneous elliptic differential operators with
constant coefficients. Such an operator can be given by its symbol over one base
point, i.e. by an N x N matrix p({) (whose entries are homogeneous polynomials
of a fixed degree in & = (&,, ..., &,)) such that det (p(¢)) # O for & # 0. In this
terminology e.g. the Laplace operator A corresponds to ) ¢Z - Id.

Since many important elliptic operators are of order 1 or can be decomposed
into first order operators, it is reasonable to ask whether —A admits a square
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root. Thus we have to look for N x N-matrices 4,, ..., A, such that

(i A,.c..)' — —(¥eh)1d,
i=1

or, equivalently, such that
(*) Ai = —1d fori=1,...n; AA;=—A;A, fori#j.

Theserelations generate abstractly the complexified Clifford algebra C, = ClifI(R")
of R", and the solutions of (*) correspond to the representations of C,on C*. If
n is even, C, is simple and hence a matrix algebra. Therefore the equations *)
have a solution with N?> = 2" = dim C,, ie. N = 2"2, The corresponding first
order differential operator is called the Dirac operator.

Since C, is simple for even n, there is no square root of —A when 0 < N2 < 2".
However, it follows from the general theory of Clifford algebras that the Dirac
operator can be written in the form

D™ 0

0 D*)

where D* and D~ are adjoint to one another. Hence D* is a solution to the
modified condition D*-D** = —A.

We will later give an explicit description of the Dirac operator and of D*, and
we will see that e.g. for n = 2, D* is just the Cauchy-Riemann operator 3. Now
we only state two important properties of D*. First, D* has minimal N, i.e. D*
is defined on systems of N = 2"2~! complex valued functions, and there is no
first-order elliptic differential operator over an open subset of R" defined on a
small number of functions. This follows from the results of J. F. Adams, and from
the remarks in §I concerning the space A(N, n, 1). Second, we have the “‘local Bott
theorem™ : the symbol of D*

o(D*):$*""1 - GL(2"" 1, 0)

generates the infinite cyclic group =x,,_,(GL(0)).

Next we indicate how, in the setting of exterior differential forms, one can find
another square root of the Laplace operator. For 0 < p < n let Q” denote the
space of differentiable p-forms over an open set U = R", and let d: Q? —» QP*!
be the exterior derivation. We are going to make d into a square system. Thus,
for p-forms 1, # with compact support, define an inner product by

= anxfi,

where *:QF - Q""P is the C*(U)-linear operator with *(dx'A...Adx") =
dxP* ' A ... Adx" etc. We can then define the formal adjoint d*: Q?*! — Q” of d
by the following condition: {dx, ) = (x, d*B) for 1€ Q”, B QP! with compact
support. Clearly
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D=d+d*:Q= 3 QF = CoU x A*C") - Q,

p=0
is a first order differential operator, and we have
D* = DD* = dd* + d*d = —A.

Thus, being a square root of the Laplacian, D is elliptic. Since dim (A*C") = 2",
the symbol of D corresponds to the regular representation of Cliff-(R") on itself.

Similarly if U is an open subset of R2" = C let Q°'? denote the space of exterior
differentials of the form a; ., dz; A...Adz,. Then the exterior derivation 0
gives rise to a first order elliptic operator 0 + 0* whose square is the Laplace
operator. Hence the symbol of d + 0* defines a (nonzero) homomorphism from
C,, = CIliff(R*") into the matrix algebra End (A*(C")). As both algebras have
dimension 22" and as a full matrix algebra is simple, it follows that this homo-
morphism is in fact an isomorphism

Clifi (R?") = EndA*(C")).

This gives an explicit description of the minimal representation of C,, which we
used when defining the Dirac operator. Thus 6 + 0* is just the Dirac operator,

( )
D 0

can be given by

D* =@+7%| Y Q°%, D~ =@+ 3% Qo2rte,
p=0 p=0

Next we study global versions of some of the local elliptic operators investigated
so far. Thus let X be a closed Riemannian manifold. Then we have the exterior
differentiation d operating on the space Q of (complexified) global exterior dif-
ferential forms, and the Riemannian structure defines an adjoint d*. Also
D = d + d* is an elliptic differential operator over X and hence has an index.
Since D is selfadjoint, this index vanishes.

D does not preserve the degree of a differential form; however, it preserves the
parity. Thus, if we define Q* =) . . QF, Q™ =3 ., QF we can split D into
two operators

DY :Q* - Q~, D :Q" - Q*
which are adjoint to one another. D* is elliptic (since D is), and its index is given
by

index D* = dim ker D* — dim ker D".

Next we show that ker D = ker D?. We have only to see that for ue ker D?
Du vanishes. But this is clear because 0 = {D?*u, u) = (D*Du,u) = {Du, Du).
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Now D? = —A is the Laplace operator. By definition its kernel is formed by the
harmonic forms on X. Thus, if H” denotes the space of harmonic p-forms,
kerD* = ) HP, kerD = ) H’,

peven podd
and we have
index D* = ) (—1)" dim H”.

According to the main theorem of Hodge theory, H? is isomorphic to the cohomo-
logy group H?(X, C). Thus B? = dim H? is the pth Betti number of X, and the
index of D* is just the Euler characteristic y(X) = Y (—1)*B? of X.

It is a well-established result in algebraic topology that y(X) vanishes if X
admits a tangent vector field without zeros. Now we can use the above index
interpretation of y(X) to give a proof of this fact which stresses more the operator
point of view.? We first observe that the symbol (D) is given by exterior and
interior multiplication on the left in A*(T*(X)). A nonvanishing vector field on X
gives rise, by exterior and interior multiplication on the right, to a bundle iso-
morphism which commutes with ¢(D), and interchanges o(D*) with a(D").
Therefore index D~ = index D*. On the other hand, since D~ = D**
index D~ = —index D*. We thus obtain finally that y(X) = index D™ = 0.

Now assume that X is an orientable compact Riemannian manifold with
dim X = 4k. Then there is a canonical isomorphism *: QF — Q*~7 such that on
Qr (#)? = (—=1). If we define

7:Q0-Q

by 7|QF = (—1)PP=D*2V2.x ¢ js an involution. Hence Q splits into the eigen-
space Q, of +1 and the eigenspace Q_ of —1. Since Dt = —1D, D also can be
decomposed into the direct sum of the elliptic operators D,:Q, - Q_,
D_:Q_—-Q,.D, and D_ are adjoint to one another, and therefore

index D, = dim ker D, — dimker D_.

Clearly ker D, = {a harmonic form|t = +7a}. Moreover we may restrict our
attention to real harmonic 2k-forms, because the contributions to the index from
the other dimensions cancel out, and on H?* 7 = # is real. Now if a # 0 is a real
harmonic 2k-form with a = ++a, then + [yana = fyaAa*a > 0, and hence
the corresponding expression in real cohomology =+ (a U a)[ X] is positive. Thus
index D, is the difference of the dimensions of maximal subspaces of H??(X, R)
on which the nondegenerate quadratic form a+— (a U a)[ X] is positive, resp.
negative, definite. In other words the index of D, equals the signature (or index)
of the manifold X.

Let us remark here that one can also interpret sign (X) as the index of the
elliptic operator d*d — dd* = (d + d*)(d — d*): Q3* —» Q3

2 For fuller details and generalizations of this argument see: M. F. Atiyah, Vector fields on mani-
Jolds. Arbeitsgemeinschaft fiir Forschung des Landes Nordrhein-Westfalen (1969).
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The signature sign (X) of X is related to the Euler characteristic by
sign (X) = y(X) (mod 2). However, sign (X) is a much more sophisticated in-
variant. For example if X has a nonvanishing vector field, we can still have
sign (X) # 0. The argument which shows that in this case y(X) vanishes, does not
necessarily extend to the signature, because the definition of D, involves the
Riemannian metric on X in a much more essential way than the definition of D*
does. However, if the vector field preserves the Riemannian metric, i.e. if it is an
infinitesimal isometry, then sign (X) = 0.

As an example we determine x(X) and sign (X) when X is the projective space
P%(C). One knows that there is a class c, € H2(P?(C), R) such that H*(P*(C), R)
is the truncated polynomial algebra R[c,]/(c3). Hence 2(P¥(C)) =3 and
sign (P%(C)) = 1.

In the last examples we assumed the main theorem of Hodge theory without
proof. However, we can deduce it, and even a more general theorem on elliptic
complexes, from [2].

First we digress to show how the regularity results of [2], expressed in terms of
the Sobolev spaces H?, lead quickly to statements in C*. Thus let

P:C*®(E) —» C*(F)
be an elliptic pseudo-differential operator of order m and let
P,: H(E) —» H*"™(F)

be the induced operator on the Sobolev spaces. Let P*, P denote the corresponding
transposed operators. Then the regularity results in [2] assert that

(i) Ker P, = Ker P for all s.

(i) P, has closed range.
Thus if fe C*(F) c H*"™(F) we can write f= Pe) + h, where ee H*(E) and
heKer P' € C*(F). By the regularity (hypoellipticity) of P this equation implies
that e e C*(E). Thus we deduce that C*(F) is the direct sum of P(C®(F)) and
Ker P'..

Now let

of 0 d © d [ d )
0 — C®(E%) -8 C*(E") 3 C*(E?) 3 ... » C*(E") -0

be a complex of differential operators over the closed manifold X, i.e. E°, E*, ..., E"
are smooth complex vector bundles, and dg, d, ... are differential operators of a
fixed order such that d-d = 0. If for each xe X and ¢ e TXX) — {0} the leading
symbol sequence

0—>E°a—(—q°—)>€Ela—(‘il-)-)§E2—>...—>E"'—>0

is exact, then the complex is called elliptic. This definition extends in a natural
way the notion of elliptic operators (m = 1). On the other hand an elliptic complex
can easily be transformed into an elliptic operator. If an elliptic complex as above
is given, we can choose hermitian inner products on E°, ..., E™ and a measure on
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X and thus introduce adjoint operators d*. Clearly the exactness of the symbol
sequence implies the ellipticity of the operator

D =d + d*: CX@ E) » C( EY).
0 0

Now define the ith cohomology H' of our complex by
H'(complex) = Ker d/Imaged,_,

We claim that this vector space is of finite dimension, or more precisely that the
obvious map

Ker (D?|C*(E')) = Kerd, » H'

is an isomorphism. In fact as we have already explamed the regularity theorems
in [2] imply that each u € C*(E’) can be written in the form u = di_ v +dw+ h,
where h is harmonic, i.e. D*(h) = 0. In particular if ue Kerd, then dd*w =0
and hence is exact off the zero section of T*(X). A Riemannian metric on X
boundary and a harmonic element. In addition this decomposition is unique
because the image of d is orthogonal to the kernel of d* and thus to the kernel
of D?. This proves the assertion above. Thus we can define the Euler characteristic
of the elliptic complex by

x = Y.(—1)'dim H' (complex).
This number generalizes naturally the notion of the index of an elliptic operator.
On the other hand it is the index of the elliptic operator

D*:C*(@® E)- C™(® E)

ieven iodd

associated to the complex.
A classical example of an elliptic complex is the complex Q of exterior forms

over a closed manifold X

0 - Q%X) i QY(X) i Q%(X) - ... » Q"(X) > 0.

Its symbol sequence is given by exterior multiplication with cotangent vectors,
and hence is exact off the zero section of T*(X). A riemannian metric on X
determines a choice of the structures needed in the construction above, and we
have a canonical isomorphism between the space of harmonic p-forms on X
and H?(Q). Together with de Rham’s theorem, which gives an isomorphism
between H?(Q) and H”(X, C), this yields the main result of Hodge's theory.

If X is a compact, complex analytic manifold of complex dimension n, the
Dolbeault complex

0-0Q°5 Q‘“iﬂoz = Q050

provides an even more interesting and delicate example of an elliptic complex.
Here the symbol sequence is given by exterior multiplication 'in the complex
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exterior algebra of T*(X). If we introduce a metric, we again get an isomorphism
between the space of harmonic p-forms and H?(complex) = Kerd®?/Im¢®r~! =
HP(X, (), where C is the sheaf of holomorphic functions. Thus the Euler charac-
teristic of X with coefficients in (

(X, €) = Y (—1)Pdim H?(X, ()

is the index of the elliptic operator associated to the Dolbeault complex.

In the more special case when X is algebraic, i.c. a complex analytic submanifold
of a projective space, the number, g, = dim H?(X, ) = dimension of the space of
holomorphic p-forms, can be interpreted as a higher dimensional genus (for
Riemann surfaces g, is just the usual genus). XX, 0)=1—-¢, +9g, — 93+ .-
is also called the arithmetic genus of X.

A holomorphic vector bundle over a complex manifold X gives rise to a
generalized Dolbeault complex,

0 Qo Qo1 % Qo2(v) ...

Here Q%?(V) is defined by the use of the tensor product; for instance Qo(V) = C*(V).
Locally the definition of 9, is clear. Since it annihilates the holomorphic transition
matrices of ¥, the extension to a global operator Oy poses no problem.

The index of the elliptic operator Dy associated to the complex above has the

form
index Dy = (X, V) = Z(— 1)? dim H?(X, O(V)).

In favorable situations H?(X, @(V)) = Ofor p > 0,and x(X, V) = dim H°(X, O(V)).
Now H°(X, ®(V)) is the space of holomorphic sections of ¥, and it is important
to determine its dimension. If ¥ is a line bundle with a holomorphic section ¢ *0,
this question can be reduced to another classical problem: the holomorphic
sections y of V are in one-to-one correspondence with the meromorphic functions
w/¢ on X with a prescribed set of poles.

These few remarks indicate that a formula expressing index D} = x(X,V)in
terms of topological invariants of X and Vis of fundamental interest. The solution,
which includes the Riemann-Roch Theorem, has been given by F. Hirzebruch [3]
For example if ¥ is a trivial line bundle we get

AX, V) = Xc,(X)[X] fordimX =1,
21X, V) = (X)) + c,(X))[X] fordimX = 2etc,

where c;(X) e H*(X) is the ith Chern class of TX. Hirzebruch proved his formulas
only for algebraic manifolds; however the general index theorem implies that
they are still valid in the general case of a complex manifold X.

Hirzebruch gave also a formula for the index of the operator D, canonically
associated to a real oriented Riemannian manifold X of dimension 4k. He showed
that the signature of X equals the L-genus. Thus the index of D, has the form
1p.[X] for k = 1,(1/45)(Tp, — p})[X] for k = 2 etc,, where p; is the ith Pontrjagin
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class of X. The polynomials used here are related to, but different from, the
polynomials involved in the formulas for index D* = y(X, V) above.

111. The index theorem. In this section we will state the index theorem for elliptic
operators, and outline its proof. In other words, we will give an explicit description
of the homomorphism index: K(B(X), S(X)) — Z (defined in §I) in terms of the
topological invariants of the compact manifold X. For this purpose we will use
the language of K-theory which seems to be most appropriate to the problem.
However, it is not difticult to transform the result into a formula involving Chern
character, Todd class, and other objects of algebraic topology which might be
more familiar.

First we recall some additional notions and results of K-theory. In §1 we
introduced, for compact Y, the group K(Y) of virtual complex vector bundles over
Y, For a locally compact space Y we now define K(Y) to be the kernel of the
restriction map K(Y*) » K(+) = Z, where Y* denotes the one-point compacti-
fication of Y (with the obvious base point +). With this notation if Z is a closed
subset of a compact space Y, then K(Y, Z) = K(Y — Z). We can interpret elements
of this group as equivalence classes of isomorphisms ¢ of the form o E|Z 5 F|Z,
where E, F are complex vector bundles over Y.

In the special case when X is a compact manifold (with a Riemannian metric),
the tangent bundle TX is diffeomorphic to its open ball bundle, and hence
K(TX) = K(B(X), S(X)). The description of this group by means of isomorphisms
¢ is particularly meaningful, because here such isomorphisms correspond to
symbols of elliptic operators. The index homomorphism thus takes the following
form:

index: K(T(X)) - Z
[o(P)] — index P.

We shall refer to this as the analytical index.

The tensor product of vector bundles defines a ring structure on K(X), and
via the projection, K(T(X)) is a module over K(X). A typical example of this
module multiplication is the following: if X is a complex manifold, let [V]e K(X)
be represented by a holomorphic vector bundle ¥, and let [6(@)] (resp. [(0y)])
€ K(T(X)) be given by the symbol of the operator D™ (resp. D;;) corresponding to
the Dolbeault complex (of V). Then

[o(0y)] = [o()]- [V]-
Moreover we can assert the following *‘global Bott theorem™: For a compact
complex manifold X, K(T(X)) is a free module over K(X) with generator [¢(d)],
i.e. we have an isomorphism of the form
K(X)- K(T(X)  [V]e [a@®]-[V].

These results which can be extended to quasi-complex manifolds, show that the
situation in the Riemann-Roch theorem is quite typical for the index question.
In fact the partial answers contained in the classical Riemann-Roch-Hirzebruch
theorem provide the main guide to the general index formula.
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The global Bott theorem above holds in greater generality: if E is a complex
vector bundle over any (compact) space X, then there is an isomorphism
K(X) = K(E) given by multiplication with the fundamental element i e K(E)
which is derived from the exterior algebra of E. For X = point this assertion is
equivalent to the “local Bott theorem™ stated in connection with the Dirac
operator. The isomorphism K(X) = K(E) also holds for locally compact X.

Now we are well prepared to define, for a closed smooth manifold X, a homo-
morphism i, from K(T(X)) into Z, called the topological index, which will turn
out to coincide with the analytical index. Embed X in a high dimensional
euclidean space E and choose a tubular neighborhood N. Thus N is open in E,
but can be thought of as a (real) vector bundle over X, with projection p. Then
i, is defined to be the composition of three homomorphisms:

i,: K(T(X)) L K(T(N)) Iy K(TE) Lys

Here i, is induced by the map (TE)* — (TN)* which collapses the complement
of the open set TN in TE into the compactifying point + € (TN)*. The tangent
bundle of the euclidean space E can be identified with E ® x C, and i, is defined
to be the canonical isomorphism from K(E ®g C) to K(point) = Z, given by
the (local) Bott theorem. A similar (but global) argument leads to the definition
of iy: since p: N —» X is a real vector bundle over X, Tp: TN — TX can be
considered as a complex vector bundle (for xe X and {e T(X) the fiber
(Tp)~1(&)is N, ® T(N,) = N, ® C, where N, = p~!(x)). Then the (generalized)
global Bott theorem above yields the isomorphism i;: K(TX) — K(TN).

The homomorphism i, is well defined and in particular independent of the
choice of the embedding. In fact let f: X — E, g: X — E’ be two embeddings of
X into euclidean spaces. Clearly the product embedding fx g: X — E X E'is
homotopic through embeddings to both f x 0and 0 x g. Thus, since the construc-
tion above is stable and homotopy invariant, we obtain the same topological
index, whether we use for g.

Now we can state the central theorem of these notes.

INDEX THEOREM. The analytical index equals the topological index.

We now proceed to outline the proof of the index theorem. The idea is to
interpret the transformations i,, i, and iy (introduced in the construction of the
topological index merely at the symbol level) as operations on operators them-
selves. At the same time we have to show that the analytical index is not changed
by these operations. Thus conceptually the proof of the index theorem is rather
simple: given an elliptic operator on X one has to construct an operator of the
same index first on N, and finally on the sphere E*, where the computation of the
index is much easier. This method has much in common with A. Grothendieck’s
approach to the Riemann-Roch problem.

As a preliminary step in the proof, we have to introduce, on noncompact
manifolds, an appropriate class of elliptic operators which still have finite dimen-
sional solution spaces. Thus, if U is a possibly noncompact manifold, let P be an
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elliptic pseudo-differential operator of order zero on U which equals the identity
at oo, i.e. outside a compact subset K of U. This means P¢ = ¢ for all smooth
sections ¢ with supp ¢ N K = &&. We furthermore put the same condition on

the transpose P'. An equivalent way of describing these conditions is to say that
P is represented by a distribution K(x, y) on U x U which outside K x K is a
delta function on the diagonal.

These restrictions for P guarantee that the main results of the theory of elliptic
operators are still valid. In particular the kernel and the cokernel of P are finite
dimensional. Furthermore each element of K(TU) can be represented as the
symbol class [o(P)] of such an operator P, and the index of P gives rise to a well--
defined homomorphism index: TU — Z.

A
Ul [k
I K 1 L'
[ 4
W\.—/
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If U = V is open in a manifold ¥, we can extend an operator P as above to an
operator P, on V by taking the identity outside U. If P,¢ =0 on ¥, then
supp ¢ = K = U, since P¢ = ¢ outside K. Hence Ker P, is isomorphic to Ker P
by the obvious restriction map. The same applies to the transposed P, and hence
index P = index Py.

Now we come back to the situation in the construction of the topological index.
Our extension of the analytical index function to noncompact manifolds now
yields the following diagram:

K(TX) 3 K(TN) 'y K(TE)

index j
index index| 2

zZ = VA

The index theorem is proved once we have shown that all three triangles in this
diagram are commutative. Hence we proceed in three steps.

(1) Since N is an open submanifold of E, we can apply the above extension
argument, and it is clear that i; commutes with the analytical index.

(2) In order to prove the commutativity of the triangle involving i, we have
to represent the fundamental generator [4] of K(TE) by an elliptic operator and
to show that its index is equal to 1. Here 4 is derived from the exterior algebra of
TE = C* (m = dimgE) in the usual way: by means of the hermitian metric in
C™ we make the sequence (A):

0— AYC™) 2¥ AlCm) 2Y AYCT) - ... B AMC) > 0

of vector bundle homomorphisms over C™ (exact over u # 0) into a single vector
bundle isomorphism over C" — {0}:

Az A (C™) 55 ATY(CT).

¢ e To(R™)

—

X R™

We already know the sequence (A) as the local symbol sequence of the Dolbeault
complex. However, as we need to get an operator on E = R™ and not on C" it
is necessary to stress rather the real point of view. Thus we write ue C" as
x + if € R™ @ T,(R™), and (A) takes the form

0 - A%R™ ® CYEHE) AYRmM @ C > ... » AMR™ ® C - 0.
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For x = 0 we get the local symbol sequence of the de Rham complex.

The main problem is now to find an elliptic operator P with [o(P)] = [1]
which is sufficiently simple for us to compute its index. Since P is supposed to
be the identity at oo, P cannot have constant coefficients, nor can it be a differential
operator (since it is of order zero).

We first consider the case m = 1. Thus 4 has the form

Cc>AR)®CET ) A ry@C=C.

As it stands this does not represent a pseudo-differential operator. However, we
can deform 4 into a map p with

px,&) =1 for|x| =1,
p(x, 4 = p(x,&) for 4 > 0,
p(x, &) #0 for¢ # 0.

N

N

N

FIGURE 3

This map defines the operator we need, and it is possible to show by straightforward
computation that its index is 1.
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For m > 1 this method however is inconvenient, and we use a different tech-
nique. If m is even, we interpret R™ as the top hemisphere of S™ and extend (A)
trivially on the bottom. Furthermore, if we deform the symbol of the de Rham
complex on §™ in a way to make it constant on the equator S™~!, we obtain two
copies of (A). Thus index (2[1]) = index D* = x(S™) = 2, and therefore index
([A]) = 1. If m is odd, we have to combine the results for m = 1 and for even
m in order to see also that index ([4]) is 1.

FIGURE 4

A third method of calculating index ([1]) allows us to construct an operator
directly from A without first deforming it. However, we have to introduce the
weight function e!*!”/2 and the corresponding L2-space, and we need a more
general class of elliptic operators (with certain growth conditions at oo instead
of our drastic restrictions). For example, on R the operator we look for is
X + dfdx. Its symbol (in some more general sense) is x + i&, and its index in this
setting turns out to be 1. While the previous methods of computing index (X))
were rather topological, the delicacy of this last approach lies in the analysis,
and we refer to [4] for more details.

For further applications we observe that, because of the spherical symmetry
of e!l*1*/2, [4] can be represented by an operator whose null space etc. is invariant
under the action of the orthogonal group on R™. If we are careful enough with
the choice of deformations, we can deduce this fact also by the more topological
methods above.

(3) We now proceed to the last and most delicate step of the proof: we have
to show that the homomorphism i,: K(TX) — K(TN) preserves the analytical
index. First we assume that N is trivial, ie. N = X x R Then i, is realized by
multiplication of operators on X with the fundamental operator on R* (or on
S* if we prefer to work with the compact manifold X x S*). According to the
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last section the index of the fundamental operator on S* is 1. Hence the case of
trivial N is sufficiently dealt with once we know that in fact quite generally the
analytical index is multiplicative.

So let ¥, Z be compact manifolds, and let (E) and (F) be elliptic complexes on

Y and Z respectively:

d

(E):O—»E"—’EE‘d

SES

(F):O—»FotifF'—n..

Then their product (G) is defined by G' = YEP®@F iand dy=d, ® 1 +
(—1)'1 ® d;. (d; ® 1 denotes partial differentiation by d; on the y-variables.) If
d, dp are differential operators so is d; and (G) is elliptic. If dg, di are only pseudo-
differential then d is not pseudo-differential. However, as explained by Nirenberg
[2] d; is a limit of pseudo-differential operators (if order dg, d, > 0) and everything
still works out nicely.

Now we want to see that the index of the elliptic operator associated to G is
the product of the indices of the corresponding operators for E and F, i.e. that the
Euler characteristics of the above complexes satisfy the equality X(G) = x(E)- x(F).
In the special case when E and F are the de Rham complexes of Y and Z, this
follows from the isomorphism HYYx Z;C) = H¥(Y,O) ® H*(Z, C) and can be
shown by the use of harmonic forms. The same can be carried through for elliptic
complexes in general. ;

If N is not trivial we must generalize the argument above. In the general setting
of fiber bundles the index of elliptic operators does not always multiply. However,
in our special case we can use the strong symmetry properties of the fundamental
operator on the sphere. Thus coordinate changes preserve the fact that iy com-
mutes with the analytical index, and we obtain the full global commutativity of
the left hand triangle in the diagram in § I11(2). This completes the proof.

Let us now add some final remarks on possible extensions and further develop-
ment of the index theory. First one can study the situation when a compact Lie-
group acts on X and when the elliptic operator under consideration is compatible
with this action. The above proof can be generalized to this situation, and one
can deduce fixed point formulae connecting fixed points of the action of G with
global invariants. Another generalization is to extend the index theorem to
families of elliptic operators parametrised by a compact space M. In this case the
index is an element of K(M). Finally, for a real, skew adjoint operator one has an
analog of the index with more refined properties. The dimension of the kernel
equals the dimension of the cokernel and is a mod 2 homotopy invariant. An
appropriate extension of the index theorem gives a topological description of this
invariant.
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