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Introduction 
The theory of algebraie surgery on ehain eomplexes with an abstract 
Poineare duality developed in Part I (Ranieki [22]) ia applied here to the 
study of geometrie surgery on manifolds. 

In § 2 {respeetively § 4, § 9} below we shall assoeiate an n-dimensional 
symmetrie Poinear6 {respeetively quadratie Poineare, hyperquadratie} 
eomplex over Z[7T1 (X)] O'*(X} {respeetively 0'*(/, b}, &*(p)} to an n­
dimensional geometrie Poineare eomplex X {an n-dimensional normal 
map (f: M -+ X, b: VM ~ vx), a stable spherieal fibration p: X ~ BG 
over an n-dimensional 0 W eomplex X} such that 

(1 + T)O'*(/, b) Ef) O'*(X) = O'*(M}, 

J O'*(X) = &*(vx). 

The quadratie signature 0'*(1, b) E L n(Z[7T1(X)]) will be identified in § 7 
with the Wall surgery obstruetion. The Mishehenko symmetrie signature 
invariant O'*(X) E Ln(Z[7T1(X)]) appears in the produet formula for surgery 
obstruetions obtained in § 8, 

O'*(lxg: MxN -+ Xx Y, b~c: vMxvN -+ VXXVy) 

= 0'*(1, b) ® O'*(g, c) + o*(X) ® o*(g, c) + 0*(/, b) ® 0*( Y) 

E L m+n(Z[7T1(X x Y)]). 

In § 9 there ia obtained a formula deseribing the effeet on the surgery 
obstruetion G'*(/,b) E Ln(Z[rrl(X)]) of a change in the bundle map 
b; VM ~ vx. It turns out that the surgery obstruetion of a ([ln] -1)­
eonneeted n-dimensional normal map (I, b) is independent of b for 
n # 2,3,6,7,14,15. 

Part 11 eontains the following seetions: 
§ 1. The ehain eonstruetions; 
§ 2. Geometrie Poineare eomplexes; 
§ 3. Equivariant S-duality; 
§4. Normal maps; 
§ 5. Interseetions and self-interseetions; 
§ 6. Geometrie Poineare eobordism; 
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§ 7. Geometrie surgery; 
§8. Produets; 
§ 9. Wu elasses. 

1. The chain constructions 
We develop two ehain level eonstruetions on topologieal spaees, whieh 

we shall use in § 2 to obtain algebraie Poineare eomplexes from geometrie 
Poineare eomplexes. The 'symmetrie eonstruetion' associates to the 
singular ehain eomplex O(X) of a topologieal spaee X a natural ehain 
'homotopy class of ehain maps 

rpx: O(X) ~ HomZ[ZII1(W,O(X)®zO(X)), 

indueing abelian group morphisms in homology 

rpx: Hn(X) ~ Hn(HomZ[Zsl( W, O(X) ®z O(X))) = Qn(O(X)). 

In faet, rpx is the Alexander-Whitney diagonal approximation underlying 
the eonstruetion of the Steenrod squares, whieh may be reeovered from 
rpx: Hn(X) ~ Qn(O(X)) by applying the symmetrie Wu class operations 
Vr of §I.l. The 'quadratie eonstruetion' assoeiates to a stable map of 
spaees F: ~pX ~ ~pY (p large) a natural ehain homotopy class of ehain 
maps 

tPF: C(X) ~ W®ZlZIIJ(C(Y)®zC(Y)), 

indueing abelian group morphisms in homology 

tPF: Hn(X) ~ Hn(W®Z[Zsl(O(Y)®zO(Y))) = Qn(O(Y)). 

The two eonstruetions are related to each other by 

!%rpx-rpy!* = (l+T)tPF: Hn(X) ~ Qn(O(Y)), 

where !: O(X) ~ C( Y) is any of the chain maps in the chain homotopy 
elass of the composite 

l;p F (l;P)-l 
O(X) ) QPO(l;P X) ------)-) QPO(~P Y) ) O( Y). 

If! is induced by a geometrie map, that is if F = l;p Fo for some Fo: X ~ Y, 
then 

tPF = 0: Hn(X) ~ Qn(C(Y)), 

!%rpx-rpy!* = 0: Hn(X) ~ Qn(C(Y)). 

Thus the quadratic eonstruction tP F is a chain level desuspension obstruc­
tion, and measures the failure of! to respect the symmetrie construetions 
rpx, rpy. The effeet of applying the quadratic Wu class operations vr to 
tPF: Hn(X) ~ Qn(O( Y)) ean be expressed in terms of the funetional 
Steenrod squares. 
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Actually, we shall develop the symmetrie and quadratic constructions 
in the context of spaces with a discrete group action and equivariant 
maps, in order to deal with the action of the group of covering translations 
7T on the singular chain complex O(X) of a covering X of aspace X. 

Let R be a commutative ring with 1. 
Write the singular R-module chain complex functor as 

O( ; R): (topological spaces) -+ (R-module chain complexes); 

X ~ O(X; R), 

and denote the homology and cohomology R-modules by 

H*(O(X; R)) = H*(X; R), H*(O(X; R)) = H*(X; R). 

As usual, for R = Z we write 

O(X; Z) = O(X), H*(X; Z) = H*(X), H*(X; Z) = H*(X). 

(Thus G(X; R) = R ®z G(X).) 

PROPOSITION 1.1. (i) There exists a functorial diagonal chain map 

Ll: O( ; R) -+ Homz[~J(W,O( ; R)®RO( ; R)); 

that is for each topological space X there is given an R-module chain map 

Llx : O(X; R) -+ HomZ[~l(W,O(X; R)®RO(X; R)), 

such that for any map of spaces f: X -+ Y there is defined a commutative 
diagram of R-module chain complexes 

with T E Z2 acting on O(X; R) ® R O(X; R) by 

T: Op(X; R) ® R Oq(X; R) -+ Oq(X; R) ® R Op(X; R); x ® Y 1-+ ( - )pqy ® x. 

(ii) Any two such functorial diagonal chain maps Ll, Ll' are related by a 
functorial ehain homotopy 

r: Ll ~ Ll': O( ; R) -+ Homz[zlI)(W,O( ; R)®RO( ; R)). 

A ny two such chain homotopies are related by a functorial homotopy. 

Proof. The proof is by standard acyclic model theory. 

We recall the construction from Ll x of the squaring operations intro­
duced by Steenrod [26]. 
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The Bteenrod 8quares of a topological space X are the Zs-module 
morphisms 

Bq": H'(X; Zs) 4- H,+i(X; Z.s); 

(c: O,(X; Zz) 4- Zs) ~ (Bq"(c) = (c®c)~x(-)(I,_,,): O,+i(X; Zs) 4- Zs) 

with 

{
Z[Z2] (r ~ i) 

1 ,-i E W,-i = 
o (r < i) 

the generator, and ~x any of the diagonal chain approximations given 
by Proposition 1.1(i) for R = Z2' 

The functional Bteenrod 8quares of a map of spaces f: X 4- Y are the 
Z2-module morphisms 

Bqi. ker((f*) . H'( y. Z ) 4- H'(X' Z ) li'\ H,+i( y. z )) f • Bq" . , 2 , 2 IJ:"J , 2 

-+ coker((Bq" f*): H'-l(X; Z2) (f) Hr+i-l( Y; Z2) 4- Hr+i-1(X; Zs)); 

(c: 0,.( Y; Z2) -+ Z2) ~ (Bq~(c) 

= (g ® g)(~x( - )(1,.-i-1) + (1 ® dx)~x( - )(1,._,)) +hf: 0,.+i-1(X; Z2) 4- Zz) 

(cf '= gdx : O,.(X; Z2) -+ Z2' g: 0,._1(X; Z2) 4- Z2' 

(c® C)~y( - )(1,._i) = My: O,.+i( Y; Zs) -+ Zz, h: O,+i-1( Y; Z2) -+ Z2)' 

Let 7T be a group, and let R[ 7T] be the group ring with elements formal 
sums ~OE7T nog (no E R) such that only a finite number of the coefficients 
no is not O. 

Given a group morphism w: 7T -+ Z2 = {± I} define the w-twi8ted 
involution on R[ 7T] 

-: R[7T] ~ R[7T]; ~ ng!l ~ ~ w(g)ngg-1 • 

OE7T OE7T 

The untwisted involution on R[7T] is the w-twisted involution in the case 
where w = 1 (so that g = g-1 (g E 7T)). 

We refer to § 1 of Part I for our conventions and definitions regarding 
modules over a ring with involution. 

Given an R[7T]-module Miet wM denote the R[7T]-module defined by the 
additive group of M, with R[7TJ acting by 

R[7T] x wM -+ wM; (~nog,x) ~ ~ now(g)(gx). 
OE7T OE7T 

The right R[7T]-module (WM)' (respectively the dual R[7T]-module (WM)*) 
defined with respect to the untwisted involution on R[7T] is the same as 
the right R[7T]-module Mt (respectively the dual R[7T]-module M*) defined 
with respect to the w-twisted involution on R[7T]. 
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A 1T-action on a topological space X is a continuous function 

1T x X -+ X; (g,x) f-+ gx 

(with the discrete topology on 1T), such that 

g(hx) = (gh)x, 

Ix = x (x E X, g, hE 1T). 

The singular chain complex O(X; R) is an R[1T]-module chain complex, 
and there are defined homology and cohomology R[1T]-modules 

H*(X; -R) = H*(O(X; R)), H*(X; R) = H*(O(X; R)) 

using the untwisted dual R[1T]-module structure on 

O(X; R)* = HomR [1T](O(X; R), R[1T]). 

For R = Z write 

H.(X; Z) = H.(X), H·(X; Z) = H·(X). 

(Warning: if 1T is infinite H*(X) is not the singular cohomology of X.) 
Define also the homology and cohomology R-modules of aspace with 
1T-action X taking coefficients in an R[1T]-module M, 

H~(X; M) = H*(O(X; M)), H:(X; M) = H*(C(X; M)), 

using the R-module chain complex 

O(X; M) = M'®R(1T]O(X; R). 

Given a group morphism w: 1T -+ Z2 there are natural identifications of 
R[ 1T ]-modules 

W H.(X; R) = H*(WO(X; R)), wH*(X; R) = H*(WO(X; R)), 

making use of the natural isomorphism of R[1T]-module chain complexes 

wHomR [1TJ(O(X; R), R[1T]) -+ HomR [1Tj(WO(X; R), R[1T]); 

f f-+ (x f-+ ~ w(g)ngg) (f(x) = ~ noY E R[1T], ng ER). 
gE1T gE1T 

Given a pointed topological space X define the quotient R-module 
chain complex 

C(X; R) = O(X; R)jO(pt.; R). 

Write the reduced homology and cohomology R-modules as 

H*(X; R) = H.(C(X; R)), H*(X; R) = H*(C(X; R)). 

For R = Z we shall write 

O(X; Z) = O(X), H.(X; Z) = H*(X), H*(X; Z) = H*(X). 
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Given a functorial diagonal chain map 

ßx : C(X; R) -+ HomZrZ21(W,C(X; R)®RC(X; R», 

there is induced a diagonal chain map 

il x: G(X; R) = C(X; R)jC(pt.; R) 

[ßx ] 
--~) HomZr~l(W,C(X; R)®RC(X; R)/HomzrZ21(W,C(pt.; R) 

® R C(pt.; R)) 
[(pr.)%] 
--~) HomZrZ2J(W,G(X; R)®RO(X; R» 

with pr.: C(X; R) -+ G(X; R) the projection. Then ilx is functorial on 
the category of pointed spaces and basepoint-preserving maps. 

Given an (unpointed) space X define a pointed space by adjoining a 
point 

X+ = Xu{pt.}. 
Weshall identify 

O(X+; R) = C(X; R), iI.(x+; R) = H.(X; R), 

iI*(x+; R) = H*(X; R), ilx + = ßx . 

A TT-space is a pointed space X with a TT-action 

TT x X -+ X; (g, x) f-+ gx, 

such that g(pt.) = pt. EX (g E TT). The induced R[TT]-action on C(X; R) 
preserves C(pt.; R) s; C(X; R), so that there is induced an R[TT ]-action on 
O(X; R). Also, there are defined reduced homology and cohomology 
R[TT]-modules 

iI.(X; R) = H.(O(X; R)), H*(X; R) = H*(O(X; R)). 

The reduced diagonal chain map 

Ax : O(X; R) --* HomztZs)(W,O(X; R)®RO(X; R)) 

is an R[TT]-module chain map, with the diagonal TT-action on 

O(X; R)®RO(X; R). 

A TT-map of TT-spaces is a map of spaces 

f: X -+ Y, 
such that 

f(pt.) = pt., f(gx) = gf(x) E Y (x E X, g E TT). 

There are induced R[TT]-module maps 

f: G(X; R) -+ O(Y; R), f*: H*(X; R) -+ H.(Y; R), 

f*: H*(Y; R) -+ H*(X; R), 
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and 

f%6,x = 6,yf: O(X; R) ~ Homz[Z2J(W,O(Y; R)®RO(Y; R)). 

We have the following symmetrie construction tpx' 

PROPOSITION 1.2. Let 7T be a group, w: 7T ~ Z2 a group morphism, R a 
eommutative ring, and give the group ring R[ 7T] the w-twisted involution. 
Regard R aB an R[7T]-module by 

R[7T] x R ~ R; (~ngg,r) ~ (~ng)r. 
(JE1T OE11 

Given a 7T-spaee X there are defined in a natural way R-module morphism8 

q;x: H~(X; WR) ~ Qn(O(x; R)) (n ~ 0) 
such that 

(i) for eaeh x E iI~(X; W R), 

1;x(X)o \ - = x n - : wHr(x; R) ~ Hn_r(X; R), 

(ii) for each 7T-map of 7T-spaces f: X ~ Y there is defined a eommutative 
diagram of R-modules 

H~(X; WR) 
rpx 

) Qn(O(x; R)) 

'·1 rpy 

y% 
H~(Y; WR) ) Qn(O( Y; R)) 

(iii) for each morphism h: R ~ 8 of eommutative rings there is defined a 
commutative diagram 0/ R-modules 

H~(X; W8) 

in whieh the vertieal maps are the ehange of rings h: R[7T] ~ 8[7T]. 

Proof. Applying R'®R[111 - to a functorial diagonal R[7T]-module chain 
map 

t,.x: O(X; R) ~ Homz[zal(W,O(X; R)®RO(X; R)), 

we obtain a functorial Z-module chain map 

Ax : R'®R[1110(X; R) -+ R'®R[111HomZ[Zsj(W,O(X; R)®RO(X; R)) 

= HomZlZt]( W, O(X; R)' ® Rf.11)O(X; R)), 
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indueing the required Z-module maps in homology 

ifJx = (Ax ).: Hn(R'®Rf.lI)C(X; R)) = Ii~(X; WR) 

~ Hn(HomZlZs)(W,O(X; R)'®Rf.lI)O(X; R))) = Qn(G(X; R)). 

Applying the symmetrie eonstruetion to the 7T-spaee X+ obtained from 
aspace wit,h 7T-aetion X by adjoining a base point we obtain an absolute 
symmetrie eonstruetion 

rpx = if;x+: H~(X; WR) = Ii~(x+; WR) ~ Qn(O(X; R)) = Qn(O(x+; R)). 

Applying the symmetrie Wu elass operations Vr of § 1.1 to the symmetrie 
eonstruetion for 7T = {I}, R = Z2 we obtain the Steenrod squares: 

PROPOSITION 1.3. Let X be a {1}-space. The composite Z2-module 
morphism 

n CPx 0 vr T'r nn(X; Z2) ~ Qn( (X; Z2)) ---+ Hom~(nn-r(X; Z2),Hn-2r(Z2; Z2)) 

= (HOmZt(Ii'n-r(x; Z2)' Z2) il n ~ 2r, 

o ifn< 2r, 
is given by 

vr(~X(x))(y) = (Sqr(y), x) E Z2 (x E Ii'n(X; Z2)' y E Ii'n-r(x; Zs)), 

with ( , ) the Kronecker product. 

Let 1,/': 0 ~ D be ehain maps of A-module ehain eomplexes (for any 
ring A), and let g, g': / ~ f': 0 ~ D be ehain homotopies. A homotopy 
of chain homotopies 

h: g ~ g':f~f': 0 ~ D 

is a eollection of A-module morphisms {h E Hom,A(Or' Dr+2)1 r E Z} 
such that 

g' -g = drJt-hdo : Or ~ Dr+l' 

The suspension of a 7T-spaee X is the redueed suspension 7T-spaee 

:EX = SI "X = (SI X X)/(Sl X pt. upt. x X), 

with the trivial7T-aetion on SI. Aeyelie models give funetorial Z[ 7T ]-module 
ehain equivalenees on the eategory of 7T-spaees and 7T-maps, 

:Ex: SO(X) ~ O(:EX), :EX-I: O(:EX) -+ SO(X), 

and funetorial Z[7T]-module ehain homotopies, 

hx : :Ex(:Ex - 1) ~ 1: O(:EX) ~ O(:EX), 

hX - 1 : (:EX-1):EX ~ 1: SO(X) ~ SO(X), 

such that ~x,:EX-l are unique up to funetorial ehain homotopy, and 
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h x' h X-I are unique up to functorial homotopy of chain homotopies. (This 
follows from the standard proof of the Eilenberg-Zilber theorem, which, 
in particular, gives inverse chain equivalences O(SI)®ZO(X) ~ O(SI"X), 
since SZ c O(SI), SO(X) = SZ®zO(X) c O(SI)®ZO(X) are chain homo­
topy deformation retracts.) Let 

6.x : O(X) -+ HomZ[Zsl(WO(X)®zO(X)) 

be a functorial diagonal Z[1T]-module chain map, as before, and let 

S: SHomz(Zz)(W,O(X)®zO(X)) ~ HomZ[Za)(W, SO(X) ®zSO(X» 

be the algebraic suspension chain map of §I.l. Acyclic models also give a 
functorial Z[1T]-module chain homotopy 

r x : ~I:x1:x ~ 1:}.sLix : SO(X) ~ HomzrZal(W, O(1:X) ®z O(1:X» 

in the diagram 

~x 
SO(X)----.--;;;,;;.-----+) O(~X) 

8Axl 
Homzrzsl( W, SO(X) ®z SO(X» 

(This is the chain level relation implying that the Steenrod squares 
commute with suspensions in cohomology. The chain map S~ x can also 
be expressed as the composite 

. ° ßs®llx ° Sßx : SZ®z (X) ) Homz[z21(W,SZ®zSZ)®zHomzrZ21(W, (X) 

®zO(X» 
ß* 

_......;,.w~) HomztZ2l(W, (SZ ®z O(X» ®z (SZ ®zO(X))), 

where ßs : SZ -+ HomZ[Z2l(W,SZ®zSZ) is the restrietion of 

defined by 
llSl: O(SI) ~ HomZlZi1(W,O(SI)®zO(SI» 

ßs : (SZh = Z -+ Homz[z21(ßi, (SZ ®z SZ)2) = Z; 1 1--+ 1, 

and ßw : W -+ W ®z Wis the diagonal Z[Z2]-module chain map defined by 

8 

18 1--+ ~ Ir ® T=-r 
r-O 

(8 ~ 0), 

exactly as in §1.8. More generally, for any pointed spaces X, Y there are 
defined a chain equivalence O(X" Y) ~ O(X) ®z O( Y) and a chain 
homotopy Li Xl\Y ~ (A x ® Ay)ßw, cf. the proof of Proposition 8.1 below.) 
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Applying R®z- we have the same types of ehain maps and ehain 
homotopies for any eoeffieient ring R. 

Thus the algebraie and geometrie suspension operations eorrespond to 
eaeh other under the symmetrie eonstruetion: 

PROPOSITION 1.4. For any 'TT-space X, commutative ring R, and group 
morphism w: 'TT ~ Z2 there is defined a .commutative diagram 01 R-modules 

Proof. The underlying ehain maps are ehain homotopie. 

A. 'TT-homotopy of 'TT-maps 10,/1: X ~ Y is a 'TT-map 

H:XAl+~Y 

whieh restriets to I." on X A{i} (i = 0,1), with the trivial 'TT-aetion on 
1 = [0, I]. The funetoriality of the usual proof of the homotopy invarianee 
of singular homologyensures that Hinduces an R['TT ]-module chain 
homotopy (for any ring R) 

H:/o ~/1: 6(X; R) ~ 6(Y; R). 

We have the following quadratic construction ~F' 

PROPOSITION 1.5. Let 'TT be a group, let w: 'TT ~ Z2 be a group morphism, 
let R be a commutative ring, and give the group ring R[ 'TT] the w-twisted 
involution. 

Given 'TT-sPaces X, Y and a 7T-map F.: ~p X ~ ~p Y (p ~ 0) there are 
defined in a natural way R-module morphism8 

~F: lI~(X; WR) ~ Q~,P-11(6(Y; R)) (n ~ 0) 
such that: 

(i) afrF depends only on the 'TT-homotopy class 01 F, and afrr.F is given by 

"'r.F: lI~(X; WR) ~ Q~,P-11(6(Y; R)) ----')0 Q~,pl(6(Y; R)), 

with "LF: "LP+l X ~ "LP+l Y the suspension 01 F. Passing to the 
suspension limit Limk "Lk F there are defined R-module morphisms 

~ 

t/JF: Ii~(X; WR) ~ ~Q~'P+k-l](6(Y; R)) = Qn(O(Y; R)), 
k 

depending only on the stable 'TT-homotopy class 01 F; if p = 0 then 
'" F = 0 (unstably); 
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(l+T)~F = rpyl.-I%rpx: Ii~(X; WR) ~Qn(G(Y; R)), 

with f the composite R[7TJ-module ehain map 

~ F l:-P 
I: C{X; R) ~ npC(~PX; R) ~ npC(~PY; R)~ C(Y; R); 
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(ili) if G: ~P Y ~ ~PZ is another 7T-map between p-fold suspensions of 
7T-spaces Y, Z, and g = (~?)G~: C(Y; R) ~ C(Z; R), then 

~GF = g%~F+~GI.: Ii~(X; WR) ~ Q~,P-l](C(Z; R)); 

(iv) il j: R ~ S is a morphism 01 eommutative rings then there is defined a 
eommutative diagram 01 R-modules 

lI~(X; WS) 

in which the vertical maps are the change olringsfor j: R[7T] ~ S[7T]. 

Proof. (We consider only the case where R = Z. To obtain the general 
case apply R ®z - on the chain level.) 

Iterating the previous constructions p times there are defined functorial 
Z[7T]-module chain equivalences on the category of 7T-spaces and 7T-maps 

~: SPC(X) ~ C(~P X), l:J!: C(l:P X) ~ SPC(X), 

and a functorial Z[7TJ-module chain homotopy 

h&: ~~l:J! ~ 1: G(~P X) ~ C(~P X). 

Also, applying zt ®Z[1T) - we see that there are defined a functorial diagonal 
Z-module chain map 

~x: Z'®Z[1T]C(X) -+ HomZ[ZIl](W,C(X)'®Z[1T)C(X)) 

and a functorial Z-module chain homotopy 

r p . Ä ~P "'" ~P%Sp Ä • 
X· L.lI:JlX~X - ~x L.lx· 

Z' ®Z[1T) C(X) -+ OP HomZ[ZaI( W, G(~P X)' ®Z[17]C(~P X)), 

where SP is the p-fold algebraic suspension chain map 

SP: HomZ[ZIlJ(W,G(X)t®zl1T)C(X)) -+ OPHomZ[ZIll(W,SPG(X)'®Z[17ßPG(X)) 

and OC denotes the desuspension of a chain complex C, OCr = Cr+1, 

dna = da· 



204 ANDREW RANICKI 

Given a 1T-map F: ~pX ~ ~py define a Z-module chain map 

~F: Z'®Z[tT)O(X) ~ nO(SP) 

to the desuspension QO(SP) of the algebraic mapping cone C(SP) of the 
p-fold algebraic suspension chain map 

SP: HomZ[Zsl( W, QPG(~P Y}' ®Z[1t] QPG(~P Y}) 

by 
~ QP HomZiZIIJ( W, G(.'EP Y}'.®Z[1t}O(~P Y», 

(~%L\y.'EYP F~ - F%'VX%h..x ) 
~F= .: 

F%r~- r~~ppF~-ßI;Jly~F~ 

Z'®Z[1t]G(X)n ~ QO(SP)n = HOIDZ[Z21{W, QPG(.'EPY)'@Z[1t]QPG(.'EPY»" 

$ Qp HomZfZa}( W, G(.'EP Y)'® Z[1fP(.'EP Y»"+l. 
The composition of ~ F: Z' ®Z[1T1 O(X) ~ nC(SP) with the Z-module chain 
equivalence given by Proposition 1.1.3, 

QC{SP) ~ W[O,p-I]®z[zaJ{n~G(~PY)'®Z{tT)nPG(~PY», 
and the Z-module chain equivalence induced by ~pp: nPG(.'Ep Y) ~ G( Y), 

(l:~)%: W(O,p - 1] ®z[Za](npÖ(~p-y), ®Z[tT]!lPÖ(l:P Y» 

is a Z-module chain map 
~ W[O,p -I] ®Z{Za)(O( Y)'®Z[1T10( y», 

tPF: Z'®ZftrlG(X) -7 W[O,p-I]@zrztl(G(Y)'®Z{trlG(Y» 

inducing the quadratic construction in homology 

tfrF: Hn (Z'®Zf1f]G(X» = I:i~(X; WZ) 

-+ Hn ( W[O, P - 1] ®ZfZa1( G( Y)' ®Z[1f] G( Y») = Q~,P-l]( O( Y». 

For 7T-maps of the type F: l:P(X+) -7 l:P(Y+) (for some spaces with 
7T-action X, Y) we have an absolute quadratic construction 

!/lF = ~F: Hn(X; WR) = Hn(X+; WR) -+ Q~,P-ll(C(Y; R» 

= QW,P-IJ(O(Y+; R». 
REMARK. t As noted in the Introduction to Part I there is an alternative 

expression for the quadratic construction "'F: lI~(X; WR) -+ Qn{O{ Y; R» 
of a stable 7T-map F: .'EooX -7 ~ooY, using the adjoint 7T-map 

adj (F): X -7 noo~GO Y 

and the canonical group completion 7T-map 

( II E~k X~l n Y)/ - -+ QGO~oo Y 
k;;l:l k 

t See note added in proof (p. 279). 
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(where '" is the equivalence relation given by the inclusions ~k c ~k+l 
and the base point of Y), as the composite 

( d· F) 
~F: lI~(X; WR) a J *) lI~(nOOLooy; WR) 

= (EB lI~(E~k I><~A: (A Y)/1T; WR)) ® R(N]R[Z] 
kcol k 

projection . 
----.+) H~(EL21><E"II(Y Ä"Y); WR) = Qn(G(Y; R)). 

The unstable-quadratic construction ~F: lI~(X; WR) ~ Q~,P-l)(G(Y; R)) 
has a similar description, using the approximation theorem for nPLP Y, 
and the adjoint 1T-map adj(F): X ~ np~p Y of a 1T-map F: ~P X ~ LP Y. 

The result of applying the quadratic Wu class operation vr of §I.l to 
the quadratic construction ~F for 7T = {I}, R = Z2 can be expressed in 
terms of the funetional Steenrod squares: 

PROPOSITION 1.6. Let X, Y be {l}-spaces, and let F: LPX ~ LPY be a 
{I }-map, indueing the ehain map f: O(X; Z2) -+ O( Y; Z2). The composite 

Hn(X; Z2) ~ Q~,P-l](O(Y; Z2)) 
v" . 
~ HomZ2(Hn-r( Y; Z2)' Q~,p-l](sn-rZ2)) 

= {HOmZl!(Hn-r(y; Z2),Z2) ifn ~ 2r ~ n+p-l, 

o otherwise, 
is given by 

Vr(fF(X))(Y) = <S~+l(LP,), ~(x) E Z2' 

where x E lIn(X; Z2)' ,= generator E lIn- r(K(Z2,n-r); Z2) = Z2' 

Y E lIn- r(y; Z2) = [Y,K(Z2,n-r)], 

f*y E lIn- r(x; Z2) = [X,K(Z2,n-r)], 

h = (LPy)F-~P(f*y) E [~PX,~PK(Z2,n-r)], 

satisfying the sum formula 

vr( ~F(X))(Yl +Y2) - V"(~F(X))(Yl) - Vr(~F(X))(Y2) 

= {<f*(Yl UY2) - (f*Yl Uf*Y2)'X) E Z2 if n = 2r, 

o otherwise, 

(x E lIn (X; Z2)' Yl, Y2 E I:in-r( Y; Z2)). 

2. Geometrie Poineare eomplexes 
Given an oriented eovering X of an n-dimensional geometrie Poincare 

complex X with group 1T of eovering translations we shall use the 
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symmetrie eonstruetion of § 1 to define an n-dimensional symmetrie 
Poineare eomplex over Z[ '7T] 

u*(X) = (O(X), (!J E Qn(o(X))). 

A degree I map of n-dimensional geometrie Poineare eomplexes/: M ~ X 
has a kernel n-dimensional symmetrie Poineare complex u*(/) such that 

a*(M) = a*(/) Er> a*(X). 

Given also a stable '7T-map F: ~P X+ ~ ~P M+ indueing the Umkehr 
f': G(X) ~ O(M) we shall use the quadratic construction of § I to define 
an n-dimensional quadratic Poincare complex over Z[ '7T] a * (/, F) such that 

(1 +T)u*(f,F) = u*(f). 

In § 4 we shall show how such geometrie Umkehr maps F may be obtained 
for normal maps (/: M ~ X, b: VM ~ vx), and in §§ 5 and 7 we shall relate 
the resulting quadratic Poineare eomplex u*(/, b) = u*(/, F) to the 
surgery obstruction. 

An n-dimensional geometrie Poincare eomplex X (as defined by Wall [29]) 
is a finitely dominated OW complex X together with an orientation group 
morphism 

and a fundamental elass 

[X] E Hr;t(X> CI ; W(x>Z), 

such that the cap products 

[X] n - : w(x>Hr(.!) ~ Hn-re!) (0 ~ r ~ n) 

are Z['7Tl(X)]-module isomorphisms, with X the universal cover of X and 
7t1(X) acting on the left of X as the group of covering translations. The 
singular chain eomplex G(X) is an n-dimensional Z['7Tl(X)]-module chain 
eomplex, and the Poineare duality isomorphisms are induced by a 
Z['7T1(X)]-module chain equivalence 

[X] ('l - : W(X)G(X")'~-* ~ O(X). 

(For finite X and w(X) = I such a geometric Poincare complex X is a 
P-space of formal dimension n in the sense of Spivak [25], since applying 
Homz( -, Z) we obtain a Z['7Tl(X)]-module chain equivalence 

[X] ('l- : Homz(G(X), Z) ~ Homz(O(X)n-*, Z) = GLF(.!)n_* 

inducing Poincare duality isomorphisms 

[X] ('l- : H*(X) ~ H~~*(.!) 

between the singular eohomology groups of :r. and the homology groups 
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of X defined by loeally finite infinite ehains, with [.1] E H~F(X) the 
transfer of the fundamental class [X] E Hn(X).) 

Let X be an n-dimensional geometrie Poineare eomplex. If X is a (not 
neeessarily eonneeted) eovering of X with group of eovering translations 
1J' and X' is the universal eovering of X, the natural projeetion 

Z[7T] Q9Z[7Tl(X)]O(.f) -+ 0(:1) 

is a ehain equivalenee of n-dimensional Z[1J']-module ehain eomplexes, 
with Z[1J'l(X)] -+ Z[1J'] the group ring morphism defined by the eharaeter­
istie map 7Tl(X) -+ 7T. The eovering X of X is oriented witk data (7T, w) if 11' 
is equipped with a group morphism w: 1J' -+ Z2 such that the orientation 
map w(X) faetors as 

w 
w(X): 11'l(X) ~ 7T ~ Z2. 

In particular, the universal cover i. is oriented 'with data (7T1 (X), w(X)). 
If X is oriented with data (1J',w) applying Z'®Z[7T]- to the above Z[1J']­
module ehain equivalence we obtain a Z-module chain equivalence 

Zt(X) Q9Z[7Tl(X)]O(..f) = Z'Q9Z[7T](Z[11'] <8>Z[7Tl(X)]Oef)) -+ ZI<8>Z[7T]O(X), 

where t(X) {respeetively t} refers to the w(X) {w}-twisted involution on 
Z[11'l(X)] {Z[11']}, so that there is a fundamental class 

[X] E H~(X; WZ) = Hn (Z'<8>z[lIjO(X)) 

for X. Applying Z[11'] <8>Z[1I1(X)]- to the Z[11'l(X)]-module ehain equivalenee 

[X] n - : W(x)o(.f)n-* -+ 0(1), 

we obtain a Z[1J']-module ehain equivalenee 

[X] n - : wo(X)n-* -+ O(X). 

Thus a geometrie Poineare eomplex satisfies Poineare duality with 
respeet to any oriented cover X. 

The symmetrie eonstruetion of Proposition 1.2 associ~tes asymmetrie 
Poineare eomplex to every oriented eovering of a geometrie Poineare 
eomplex, by a ehain homotopy invariant version of the proeedure of 
Mishehenko [18]. 

PROPOSITION 2.1. Given an n-dimensional geometrie Poincare eomplex X 
and an oriented eover X witk data (1J', w) tkere is defined in a natural way an 
n-dimensional symmetrie Poincare eomplex over Z[ 1J'] witk tke w-twisted 
involution 
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11 1. is the universal cover 01 X then 

a*(X) = Z[1T] (8)Zbrl(X)la*(.f) 

up to homotopy equivalence. 

Prool. Evaluating 'Pj: H~(X; WZ) -+ Qn(o(X» on the fundamental 
class [X] E H~CX; WZ) we see that there is obtained a Z2-hypercohomology 
class 'Px[X] E Qn(o(X» such that slant product with 

'Px[X]o E Hn (O(X)'®Z[l1]O(X)) 

defines the Poincare duality Z[1T]-module isomorphisms 

soi[X]o \ - = [X] n - : wH*(X) -+ Hn_*(X) 

(cf. Proposition 1.2(i»). Also, there is defined a commutative diagram 

H:;(x)(I; w(X)Z) 'Pj 
) Qn(o(.f» 

1 
'Pi 

1 
H~C!; WZ) ) Qn(o(X)) 

in which the vertical maps are the change of rings Z[1T1(X)] -+ Z[1T]. 

We shall normally write a*(X) as a*(X). 
A map of geometric Poincare complexes (not necessarily of the same 

dimension) 
I: M-+X 

is a map of the underlying spaces which preserves the orientation maps, 
that is such that w(M) factors as 

1 w(X) 
w(M): 1Tl(M) ~ 1Tl(X) ~ Z2' 

If-X is an oriented cover of X with data (1T, w) then the pullback 1ft is an 
oriented cover of M with data (1T, w). 

Let/: M -+ X be a map of n-dimensional geometric Poincare complexes, 
and let. X be a (not necessarily connected) cover of X with group of 
covering translations 1T and induced cover M of M. Define the Umkehr 
Z[1T]-module chain map 

(up to non-canonical Z[1T ]-module chain homotopy) by applying 
Z[1T]®Z[111(X)]- to the composite Z[1Tl(X)]-module chain map 

f': 0(1) ([X] n - )~l w(x)ocl)n-* /*) w(x)o(A)n-* [M] n -) 0(..1) 
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with 1 the universal cover of X and 11 the induced oriented cover of M. 
If X is an oriented cover of X with data (17, w) then the Umkehr factors as 

f1: O(X) ([X] n - )~l wo(X)n-* J* ) wo(N)n-* [M] n - ) O(N). 

A map of n-dimensional geometrie Poincare complexes f: M -+ X is 
of degree 1 if it preserves the fundamental classes, that is if 

f*[M] = [X] E H~(X; WZ) 

for any oriented cover X of X with data (17, w). The induced chain map 
J: O(N) -+ O(X) defines a map of n-dimensional symmetrie Poincare 
complexes over Z[l7] 

J: a*(N) -+ a*(X), 

which is a homotopy equivalence if f: M -+ X is a homotopy equivalence 
of spaces. Conversely, if I: M -+ X is a degree 1 map inducing an iso­
morphism I: l7l(M) -+ l7l(X) and a homotopy equivalence 

J: a*(M) -+ a*(.1), 

with ß, X the universal covers then I: M -+ X is a homotopy equivalence, 
by Whitehead's theorem. 

PROPOSITION 2.2. Let I: M -+ X be a degree 1 map 01 n-dimensional 
geometrie Poincare complexes. Let X be a eover 01 X with group 01 covering 
translations 17 and induced cover N 01 M. Then the Umkehr Z[l7]-module 
chain map 

11: 0(.1) -+ O(N) 

is a ehain homotopy right inverse for J: O(N) -+ O(X), that is 

1f1 ~ 1: 0(:1) -+ 0(:1). 

The inclusion in the algebraie mapping cone e: O(N) -+ 0(1') is such that 

(j) : C(N) -+ 0(1') $ O(X) 

defines a ehain equivalence 01 n-dimensional Z[ 17 ]-module ehain complexes. 
11 X is an oriented eover of X with data (17, w) the symmetrie kernel of I, 

a*(f) = (0(1'), e%(~M[M]) E Qn(O(f'))), 

is an n-dimensional symmetrie Poincare complex over Z[ 17] with the w-twisted 
involution, and there is defined a homotopy equivalence 01 such eomplexes 

(i): a*(M) -+ a*(f) $ u*(X). 

Proof. To obtain 11' ~ 1 apply Z[l7]@Z[7Tl(X)]- to the Z[171(X)]-module 
5388.3.40 o 
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chain homotopy commutative diagram 

= = with X the universal cover of X and M the induced cover of M. To show 
that 

(i)": Qn(C(ß)) ..... Q"(C(f) (Il C(1')) = Q"(C(f')) (IlQ"(C(1')) 

~ Hn (G(f')'®Z[1T]G(X)) 

sends ~M[M] to e%(~M[M]) ~ ~.f[X] ~ 0 (using the decomposition of 
Proposition 1.1.4(i)) consider the chain homotopy commutative diagram 

wG(jI)n-* 
e* 

) wG(M)n-* 1'* ) wG(1')n-* 

[X1n-l 
J 

1[M1n-
G(ß) ) G(X) 

which gives J ([M] n - )e* ~ 0: wG(jI)n-* ~ G(X), and so 

(e'®Z(1T]J)~M[M]o = 0 E Hn(C(jI)'®Z(1T)C(X)), 

Define the homology {cohomology} kernel Z[7T]-modules of a degree 1 map 
of n-dimensional geometrie Poineare eomplexes f: M ~ X with respeet 
to a eovering X of X with group of eovering translations TT 

{
K*(M) = H*(G(jI)) 

K*(M) = H*(G(jI)) 

using any w-twisted involution on Z[TT] to define the dual Z[TT ]-module strue­
ture on G(jI)*. Proposition 2.2 gives natural direet sum deeompositions 

{ 
H*(M) = K*(M) Ei1 H*(X), 

wH*(M) = K*(M)~wH*(X). 

If Xis oriented with data (TT, w) the symmetrie kernel a*(/) gives Poineare 
duality in the kernel modules 

K*(M) = Kn_*(M). 



THE ALGEBRAIC THEORY OF SURGERY. 11 211 

A geometrie Umkehr map for a degree 1 map I: M -+ X and a cover X 
is a 1T-map 

F: LP.!+ -+ LPß+ (p ~ 0), 

inducing the Umkehr f' on chain level, that is such that there exists a 
Z[1T]-module chain homotopy 

(~)-lF(~) ~ j!: O(X) -+ O(ß). 

PROPOSITION 2.3. Given a degree 1 map 01 n-dimenBional geometrie 
Poincare complexe8 f: M -+ X and a geometrie Umkehr map 

F: LP.!+ -+ LP.19"+ 

with re8peet to an oriented eover X 01 X with data (1T, w), there i8 defined in a 
natural way an n-dimensional quadratie Poincare complex over Z[ 1T] with 
the w-twi8ted involution, the quadratic kernel 0/ (/, F), 

u.(I, F) = (O(!'), e%-PF[X] E Qn(O(!'») 

depending only on the 8tahle 1T-homotopy das8 01 F, 8uch that 

(I + T)u*(/, F) = u*(/). 

Proof. The absolute version of the quadratic construction of 
Proposition 1.5 

is such that 

rpM/~-jl%rp:x = (I+T)I/JF: H~(X; WZ) -+Qn(o(ß)). 

Let e: O(1i1) -+ O(jI) be the inclusion, so that 

(I + T)e%I/JF[X] = e%(1 + T)I/JF[X] 

= e%rpM/~[X] -e%jI%rp:x[X] = e%rpjf[M] E Qn(o(ß)). 

Here, as elsewhere, we let e%I/JF[X] stand both for an element of 
Q~,P-l](O(jI» and for its image in Qn(O(jI». 

The symmetrie {quadratic} kerneIs u·(/) {u.(f,F)} of a degree 1 map 
f: M -+ X {with Umkehr F: ~pX+ -+ ~Pß+} associated to the various 
oriented covers of X are all induced from the kernel associated to the 
universal cover X. 

In § 7 below we shall show how to obtain the surgery obstruction of a 
normal map (/, b): M -+ X from the quadratic kernel u*(/, F), using the 
given normal bundle map b: VM -+ Vx and the equivariant S-duality of § 3 
to produce a geometrie Umkehr map F: ~pX+ -+ LPß+ for the universal 
cover X. In favourable circumstances it is possible to obtain F directly 
from (I, b) without the S-duality machinery. For example, if/: M -+ Xis 
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a degree 1 map of manifolds which is covered bya map b: vM -+ v x of stable 
normal bundles then 1 can be approximated by a framed embedding 
Mx Dp C interior(X x DP) (p large) which lifts to an embedding of covers 
11 x Dp C X. x Dp for any cover X. of X, giving F by the Pontrjagin-Thom 
construction 

collapse 
F: ~p.r+ = X. x DP/XxSp- 1 ) XxDP/XxDP-l1xDP 

= 11 x DP/l1 X Sp-l = ~pß+. 

The case where p = 1 is of interest in co dimension 2 surgery. 
The mod 2 reduction of the quadratic kernel construction gives the 

Z2-valued quadratic form used by Browder [3, Chapter 111, § 4] to 
define the Arf invariant. An n-dimensional geometrie Z2-Poincare complex 
is a finitely dominated 0 W complex X together with a mod 2 fundamental 
class [X] E Hn(X; Z2) defining mod 2 Poincare duality isomorphisms 

PROPOSITION 2.4. (i) Given an n-dimensional geometrie Z2-Poincare 
complex X there is defined in a natural way an n-dimensional symmetrie 
Poincare eomplex over Z2 

O'*(X) = (O(X; Z2)' ~x[X] E Qn(o(x; Z2))) 

sueh that the symmetrie Wu classes oIO'*(X) are just the Wu classe8 0/ X 

vr(~X[X]) = vr(X) E Homz\l(Hn-r(x; Z2), Z2) = Hr(x; Z2)' 

as eharacterized by 

(ü) Given a degree 1 (mod 2) map I: M -+ X 01 n-dimensional geometrie 
Z2-Poincare complexes and a {I }-map F: ~P X+ -+ ~P M+ inducing the 
mod 2 Umkehr j1: O(X; Z2) -+ O(M; Z2) there is defined in a natural way 
an n-dimensional quadratie Poincare eomplex over Z2' 

such that 
0'*(1, F) = (O(f!), e%cpF[X] E Qn(O(f!))), 

O'*(M) = (1 + T)O'*(/, F) (f) O'*(X) 

up to homotopy equivalence. The quadratie Wu clasSe8 01 0'.(/, F), 

{
Z2 il n ~ 2r ~ n + p - 1, 

vr = vr(e%cpF[X]): Kn-r(M; Z2) -+ . 
o othe1'W'bse, 
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can be expressed in terms of functional Steenrod squares 

vr(y) = (Sqrt-}71)F(:EP(I.)), :EP[X]) E Z2 (n ~ 2r), 

(y E Kn-'(M; Z2) ~ Hn-r(M; Z2) = [M+,K(Z2,n-r)], 

I, E Hn-r(K(Z2,n-r); Z2) = Z2)' 
and are such that 

{
(Yl UY2' [M]) E Z2 if n = 2r, 

Vr(Yl + Y2) - Vr(Yl) - Vr(Y2) = 
o E Z2 if n <, 2r. 

Proof. Apply Prop-ositions 1.3 and 1.6. 

The kernel constructions behave as follows under composition. 

PROPOSITION 2.5. Let X, Y,Z be n-dimensional geometrie Poincare 
eomplexes. The eomposite 01 degree 1 {geometrie Umkehr} maps I: X -+ Y, 
g: y ~ Z {F: ~Py+ -+ ~pX+, G: ~pZ+ -+ ~Py+} is a degree 1 {geometrie 
Umkehr} map gf: X -+ Z {FG: ~pZ+ -+ ~P.1"+}, with symmetrie {quadratie} 
kernel 

{

(J*(gf) -= (J*(f) ® (J*(g), 

(J*(gf, FG) = (J*(f, F) ® (J*(g, (:EpJ+)FG) 

up to homotopy equivalence, with .1", 1 the oriented covers of X, Y induced 
from an oriented eover Z of Z. 

Proof. Write the inclusions in the algebraic mapping cones as 

ef: 0(.1") -+ O(JI), 

eg: O( 1) -+ O(gl), 

egf: O(Z) -+ O((gf)'), 

and note that (gf)' = f'g!: O(Z) -+ O( 1) -+ 0(.1"). The stable composite of 
the chain equivalences, 

is a chain equivalence 

(1) : 0(.1") ~ 0(1') ® O( 1), 

(j): 0(1) ~ O(gl)®O(Z), 
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aI10wing us to identify 

eDf = (e:'): G(1:) -->- G(/'g') = G(/') EI) G(g'). 

Using the direct sum decomposition of Proposition I.1.4(i) we have 

e:~x[X] = (e~9'x[X], e: !%9'x[X], (e~(8) eg!)9'x[X]o) 

E Qn(G(jI) (f) G(gl)) = Qn(G(f')) (f)Qn(G(gl)) (f) Hn(G(fl)'(8)Z[ 1TJG(g')). 

Now j%9'x[X] = 9'ij.[X] = 9'i[Y] E Qn(G(f)), and 

(e~(8)eg!)(9'x[X])o = 0 E Hn(G(fl)'(8)Z[1TJG(gl)) 

since there is defined a Z[ 1T ]-module chain homotopy commutative diagram 

e· 
, wG(.1)n-* 

j'* 
) wG(t)n-* wG(!')n-* / 

'l'x[Xl. = [Xl n-l 

! 
l[Yln-

eg 
G(.1) ) G(}T)- ) G(g') 

with f'*e1 ~ O. Thus 

e:/9'x[X] = e~9'x[X] (f) e:9'i[Y] E Qn(G((gf)')) = Qn(O(jI) (f) G(gl)), 

and so 
u*(gf) = u*(f) (f) u*(g). 

(The formula u*(X) = u*(f) (f) u*( Y) is the special case Z = 0.) 
In the quadratic case we have 

u*(gj, FG) = (G((gj)'), eg/%tPFO[Z] E Qn(G((gf)'))) 

with rPFO = .pFfJ~+f~rPo: H~(Z; WZ) ~ Qn(G(X)) by the sum formula of 
Proposition 1.5(iii). Working as above, we have 

eg/%.pFO[Z] = (e/%.pFO[Z], eg%J%tPFO[Z], (e~(8) egJ)((1 + T)tPFO[Z])O) 

= (e/%tPF[Y]' eg%(!%tPFU~ + tPo)[Z], 0) 

= e/%tPF[Y] (f) eg%tP(I;pf+)FO[Z] 

E Qn(O((gf)')) = Qn(G(jl) (f) G(g')) 
so that 

u*(gf, FG) = u*(j, F) (f) u*(g, (~p!+)FG). 

A degree 1 map of n-dimensional geometrie Poincare complexes 
f: M ~ Xis k-conneeted with respect to some covering X of X if Kr(M) = 0 
for r ~ k. Recalling the definition of skew-suspension S in § 1.1 we have: 

PRO:POSITION 2.6. The symmetrie {quadratie} kernel u*(f) {u*(f,F)} 
0/ an (r - 1 )-connected degree 1 map 0/ n-dimensional geometrie Poincare 
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complexes f: M ~ X {with geometrie Umkehr TT-map F} with respeet to an 
oriented eovering X of X with data (7T, w) is the r-fold skew-suspension 0/ an 
(n - 2r)-dimensional (- )r-symmetrie {( - )r-quadratie} Poincare eomplex over 
Z[TT] ar(f) {ar(f,F)}, with 

{
Sar(f) '= ar- 1(f), aO(f) = a*(f), 

Sar(f, F) = ar-l(f, F), ao(/, F) = a*(f, F), (1 + T(_)r)ar(f, F) = ar(/). 

In § 5 below we shall identify the quadratic kernel a,,(/, F) associated to 
an (i - 1 )-connected 2i {2i + 1 }-dimensional normal map (f, b): M ~ X 
with the surgery obstruction kernel obtained in § 5 {§ 6} of Wall [30], 
using the one-to-one correspondence between O-dimensional {I-dimensional} 
(_)i quadratic Poincare complexes and non-singular (_)i quadratic 
forms {formations} of Proposition 1.2.1 {1.2.5}. 

3. Equivariant S -duality 

The S-duality between M+ and the Thom space T(vM) of the normal 
bundle VM of an embedding Mn c Sn+p (p large) of a compact manifold M 
was first established by Milnor and Spanier [17]. This was then generalized 
by Atiyah [2], and extended to geometric Poincare complexes by Spivak 
[25] and Wall [29]. In particular, if f: M ~ X is a degree 1 map of 
geometric Poincare complexes which is covered by a map of Spivak 
normal fibrations b: VM ~ Vx then the S-dual of T(b): r(VM) ~ T(vx) is a 
geometric Umkehr map F: ~PX+ ~ l:;PM+, and this was used by Browder 
[3] to obtain the surgery obstruction in the simply-connected case 
TT1(X) = {I}. We shall now develop an equivariant S-duality theory for 
TT-spaces with a special type of TT-equivariant cell structure ('OW TT­
complexes') in order to obtain a geometric Umkehr TT-map 

F: l:;P X+ ~ ~P ß+ (p large) 

for any covering X of X with group of covering translations 'TT, giving the 
non-simply-connected surgery obstruction by means of the quadratic 
construction I/J F of § 1. 

Given TT-spaces X, Y let [X, Y]1T be the pointed set of TT-homotopy 
classes of TT-mapsf: X ~ Y. Regarding the loop space QX = (X, pt.)(Sl,pt.) 
as a TT-space using the trivial TT-action on SI we have that 

[~PX, Y]1T = [X, QPY]1T 

is a group for p ~ 1, abelian for p ~ 2. Define the abelian group of STT-mapS 
between TT-spaces X, Y to be the direct limit 

{X, Y}1T = Lim[~P X, ~P Y]1T 
~ 

P 
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of the suspension sequence 

~ ~ ~ 
[X, Y]" ----+ [~X, ~ Y]" ----+ (~2 X, ~2 Y]" ----+ (~8 X, ~8 Y]" ----+ .... 

For 1T = {l} we write [X, Y]{I} = [X, Y], {X, Y}{1} == {X, Y} as usual. 
The mapping cone of a 1T-map f: X ~ Y is the 1T-space 

Cf = YufX 1\ 1. 

The cofibration sequence of 1T-spaces and 1T-maps 

f ~f 
X ----+ Y ----+ Cf ----+ ~X ----+ ~ Y ----+ CT.f ----+ ... 

induces the fo11owing 1T-equivariant analogue of the Puppe exact sequence. 

PROPOSITION 3.1. For any 1T-map f: X ~ Y and 1T-space Z there ~s 

defined in a natural way an exact sequence 

[X,Z]" L [Y,Z]" ~ [C"Z]" ~ [~X,Z]" 
~f 
~[~Y,Z]"~ .... 

. For any {I}-space K regard V"K as a 1T-space by permutation of the 
summands. Note that for any 1T-space X, 

[V K,X]" = [K,X], {V K,X}" = {K,X}. 
" " 

Define the 1T-space obtained from a 1T-space X by attaching an r­
dimensional1T-cell to be the disjoint union {identification space} 

(

X U1T x DO if r = 0, 
X' = 

X u"xf1T X D', for some map f: 8'-1 ~ X if r ~ 1. 

The '7T-cell is pointed if the attaching map f: Sr-l ~ X (1' ~ 1) preserves 

basepoints, in which case f extends to a 1T-map f': V" 8'-1 ~ X such that 

X' = Cf' = XUf'V D'. 
" 

If X is a path-connected 1T-space then any map f: 8'-1 ~ X (r ~ I) is 
homotopic to a basepoint-preserving map 10: 8'-1 ~ X extending to a 
1T-map f~: V" 8'-1 ~ X, and X' = X U"Xf1T X D' is 1T-homotopic to the 
mapping cone 1T-space Cfo' = X Ufo' V" D'. 

A CW1T-complex X is a 1T-space which is a based CW complex obtained 
from the base O-ce11 by successively attaching 1T-ce11s of non -decreasing 
dimension. A CW1T-complex is thus an ordinary CW complex with a 
ce11ular 1T-action which preserves the base O-cell and which acts freely by 
permutation on the other cells. The suspension of a CW1T-complex X is 
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a aW7T-complex LX, with one r-dimensional 7T-cell for each (r-l)­
dimensional 7T-cell of X (r ~ 0). 

aw 7T-complexes arise as folIows. 

PROPOSITION 3.2. 11 (X, r) is a covering 01 a aw pair (X, Y) with group 
7T 01 covering translations, then X / r is a 0 W 1T-complex with one 7T-cell for 
each cell of X - Y. 1f Y = 0 interpret the quotient a8 :%./0 = :%.+. 

A OW7T-complex is pointed if it involves only pointed 7T-cells. A aW7T­
complex with no O-dimensional 7T-cells (for example, a suspension) is 
7T-homotopic to a pointed aW7T-complex. 

A aw 7T-complex X is finite if it involves only a finite number of 1T-cells. 
A GW1T-complex X is finitely-dominated if there exist a finite OW7T­
complex K and 7T-mapsj: X -+ K, g: K -+ X such that gf = 1 E [X, X]7T' 
and it is n-dimensional if hr(X) = 0 for r > n, in which case O(X) is an 
n-dimensional Z[ 1T ]-module chain complex. 

We have the following analogue of the FreudenthaI suspension theorem. 

PROPOSITION 3.3. Let X be an n-dimensionalfinite pointed OW1T-complex, 
and let Y be a 7T-space of the homotopy type of a OW complex. Then the 
suspension map 

L: [LP X, LP Y]7T -+ [LP+1 X, LP+1 Y]7T 

is an isomorphism for p ~ n + 1, and 

{X, Y}7T = [Ln+1 X, Ln+1 Y]7T. 

Proof. The proof is by induction on the number of pointed 7T-cells in 
X. The result is trivial for n = 0; assume it is true for X, and let 
X' = XU,V7TDn for so me 7T-map f: V7TSn-1-+ X (n ~ 1). There is 
defined a commutative diagram of abelian groups and morphisms 

[~P+2X, ~P+1 Y]7T ---+) [V Sn+P+1, ~P+1 Y]7T ---+) [~P+1X', ~P+1 Y]7T 
7T 

--~) [~P+l X, ~P+l Y]7T ---+) [V Sn+p, ~P+l Y]17 
17 
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in which the rows are exact (Proposition 3.1). The suspension maps 
involving X are isomorphisms for p ~ n + 1 by the inductive hypothesis. 
Since Y is of the homotopy type of a 0 W complex ~p Y is (p - 1)­
connected and 

~: [V Sn+p, ~p Y]1T = [Sn+p, ~p Y] ~ [Sn+p+l, ~P+l Y] 
11 

is an isomorphism for p ~ n + 1 by the ordinary Freudenthal suspension 
theorem. Application of the 5-lemma gives the induction step. 

Given 1T-spaces X, Y define the {I}-space 

X "11 Y = (X" Y)/1T 

to be the space of orbits of the diagonal1T-action 

1T x X" Y ~ X" Y; (g, X "Y) ~ gx" gy. 

Note that for any 1T-space X and {I}-space K 

X"1T(V K) = X"K. 
1T 

A 1T-spectrum ~ is a sequence of 1T-spaces Zp (p ~ 0) and 1T-maps 
ep: ~Zp ~ Zp+l (p ~ 0). Given a 1T-space X define the abelian group 

{X,Z}7f = ~ [~PX,Zp]7f 
P 

to be the direct limit of the sequence 

~ eo ~ el 
[X,ZOJ7T ~ [~X, ~ZOJ7T ~ [~X,Zl]7T ---+ [~2X, ~Zl]7T ---+ .... 

In particular, for ~p = id.: ~Zp = ~P+lZo ~ ZP+l = ~P+lZo we have 

{X'~}1T = {X,Zo}7f' 
Given a 1T-space X and a 1T-spectrum ~ let X "7f ~ be the {I }-spectruin 
defined by 

(X ""~)P = X "1T Zp, I" ep: ~(X "7fZp) = X "1T ~Zp ~ X }\1T ZP+1' 

PROPOSITION 3.4. Given a {l}-space W, a 1f-map I: X ~ Y and a 1T­
spectrum ~ there are defined exact sequences 01 abelian groups 

{W, X ""~} ~ {W, Y ""~} ~ {W, C, "7f~} ~ {W, ~X "1T~} ~ ... 

{X'~}1T ~ {Y'~}1T ~ {C"~}1T ~ {~X'~}1T ~ .... 

Proof. The first sequence is just the Puppe sequence associated to the 
(co )fibration sequence of {I }-spectra 

1,,1 
X ""~ ~ Y ""~ ~ C,,,"~ ~ X ""~ ---+ .... 
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The exactness of the other sequence may be established as in the case 
where 7T = {I} (Puppe sequence again) by insisting on 7T-maps and 7T­
homotopies. 

Given 7T-spaces X, Y and a {I }-map 

Cl: SN ~ XA" Y 

for so me N ~ 0 define slant products for any 7T-spectrum~, 

cx\ -: {X,~}" ~ {SN,~A" Y}; 
l:Pcx fA 1 

(/: LP X ~ Zp) 1-----+ (SN+P ~ l:P X A" Y --+ Zp A" Y), 

cx\ -: {Y,~}" ~ {SN,XA"~}; 

l:Pcx 1 Ag 
(g: LPY --+ Zp) ~ (SN+P --+ XA"LPY --+ XA"ZP). 

CaU Cl: SN ~ X A" Y an STT-duality map if these slant products are iso­
morphisms for every 7T-spectrum ~, in which case the suspensions 

l:Cl.: SNH ~ l:(X A" Y) = l:X A" Y, l:Cl: SN+l ~ l:(X A" Y) = X A"l: Y 

are also S7T-duality maps. For 7T = {l} this is classical Spanier-Whitehead 
S-duality. 

Given STT-duality maps 

0:: SN ~ X A 1T Y, 0:': SN ~ X' A 1T Y', 

define the S7T-dual of an STT-map fE {X, X'}" to be the S7T-map 
g E {Y', Y}1T to which / is sent by the composite isomorphism 

{X,X'}" 0:\) {SN,X' A" Y} (o:'\)-~ {Y', Y}". 

In particular, if X = X' the STT-duals of 1 E {X, X}" are an inverse pair 
of STT-homotopy equivalences g E {Y, Y'}", g' E {Y', Y}". 

PROPOSITION 3.5. Every finite OW 7T-complex X admit8 an STT-duality map 

Cl: SN ~ X A
1T 

Y 

witk Y a finite OW TT-complex. 

Proo/. Suspending if necessary we may assume that X is a pointed 
OW7T-complex. Our construction of an S7T-dual is by induction on the 
pointed 7T-cells: given an STT-duality map 0:: SN -+ X A 1T Y between finite 
pointed OW7T-complexes X, Y and a 7T-map f: V" Sr-l ~ X we shaU 
construct an STT-duality map Cl': SN' ~ X' A" Y' for X' = X u, V" Dr. 

Let m = max( dimension ( Y) + 1, 2r - 1-N). Replacing 0:: SN ~ X A" Y 
by l:mCl : SN+m ~ X A

1T 
l:m Y we have that N - r + 1 ~ 0 and 

{V Sr-i, X}" = [V SN, l:N-r+1X]", {Y, V SN-rH}" = [Y, V SN-rH]" 
"" " " 



220 ANDREW RANICKI 

(by Proposition 3.3). Define an S1T-duality map 

ß: SN ~ (V sr-I) "11 (V SN-rH) = V SN 
11 11 11 

by sending SN to the summand labelIed by 1 E 1T. Let g: Y ~ V 11 SN-r+l 
be a 1T-map representing the S1T-dual of f E {V 11 sr-I, X}11' and let Y' = q7 
be the mapping cone 1T-space. Denote the cofibration sequences by 

f e d V Sr-l ----+ X ----+ X' ----+ V Sr, 
11 11 

g h k 
Y ----+ V SN-r+l----+ Y' ~ ~Y. 

11 

The diagram of {l}-spaces and {l}-maps 

0: e"l SN ) X "11 Y ) X' "11 Y 

ßi IAgl llAg 
f" 1 e" 1 (V sr-I) "11 (V SN-rH) ) X "11 (V SN-rH) ) X' "11 (V SN-rH) 

11 11 11 11 

is homotopy commutative, with the bottom row null-homotopic. It is 
thus possible to define a {I }-map j: DNH ~ ~' "11 (V 11 SN-rH) such that 
the diagram 

(e" 1)0: 
SN ----0+) X' "11 Y 

llAg 

11 

is actually commutative, with i: SN ~ DNH the inclusion. The induced 
{I }-map of mapping cones 

0:': 0, = SNH ~ 01/1.0 = X' "11 y' 

is such that both the squares in the diagram of {l}-spaces and {l}-maps 

X "11LY ( 
l:o: 

SNH l:ß ) (V sr) "11 (V SN-rH) 

MIl l~' 
11 

l:Ah 
l"k d"l 

X' "11l:Y E X'" Y' ) (V sr) "11 Y' 11 
11 
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are homotopy commutative. There is thus·defined a commutative diagram 
of abelian groups and morphisms 

{LX'~}11 
LI 

) {V sr'~}11 
d 

) {X"~11 

(l:0:)~ 
g 

• l(l:ß)\ 
h 

10:'\ 

{SN+1,~ "11 Y} ) {SN+t,~ "1T (V SN-r+1)} ) {SN+1,~ "1T Y'} 
1T 

e 
) {X'~}1T 

I ) {V Sr-l,~}1T 

1l:0:\ 

1T 

ll:ß\ 
k :Eg 

) {SN+1 Z" ~Y} ) {SN+1,~ "1T (V SN-r+2)} ,_ 11 
fI 

for any 1T-spectrum ~, with exact rows (Proposition 3.4). Applying the 
5-lemma we have that the middle column is an isomorphism, and similarly 
for the other type of slant product. Therefore 01.': SN+l ~ X' "11 Y' is an 
S1T-duality map. 

We can use S1T-duality to prove an equivariant analogue ofWhitehead's 
theorem. 

PROPOSITION 3.6. A 1T-map 01 finite CW1T-complexes f: X -+ Y induces 
isomorphism8 in homology if and only if ~P/: :EpX ~ :Epy is a 1T-homotopy 
equivalence lor some p ~ o. 

Proof. Let I: X -+ Y induce isomorphisms in homology. Applying the 
ordinary Whitehead theorem we have that ~/: :EX ~ LY is a homotopy 
equivalence, and hence that 

f: {SN, (V sr) "n X} ~ {SN, (V sr) "11 Y} 
fI fI 

is an isomorphism for all N, r ~ o. This gives the induction step in proving 
that 

I: {SN, W "1TX} -+ {SN, W"fI Y} 
is an isomorphism for every finite CW1T-complex W. Given an S1T-duality 
map 01.: SN -+ W"11 Y (by Proposition 3.5) we thus have isomorphisms 

01.\ I (01.\)-1 
{Y, X}n ) {SN, W "11 X} ) {SN, W"l1 Y} ) {Y, Y}fI. 

The element g E {Y, X}l1 corresponding to I E {Y, Y}11 is represented by a 
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7T-map g: ~Py ~ ~PX for some p ~ 0 (by Proposition 3.2) which is a 
7T-homotopy inverse for ~Pf: ~PX ~ ~pY. 

For any 7T-spaces X, Y the natural projection defines a Z-module 
chain map 

Z'®Z[,,] (O(X)®z O(Y)) = O(X)'®Z("lO(Y) ~ O(XA" Y), 

where t refers to the untwisted involution on Z[7T]. If X, Y are finitely­
dominated OW7T-complexes this is a chain equivalence (consider the 
reduced ce11ular chain complexes) and the chain level slant product 

(O(X)'®Z("]O(Y))®zO(X)* ~ O(Y); (x®y)®fr-+-f(x)y 

induces a slant product in homology 

\ : 1JN(X A" Y) ®z 1Jr(X) ~ 1JN- r( Y). 

The S7T-duality map cx: SN ~ X A" Y constructed in Proposition 3.5 is 
such that cx*[SN] \ - : O(X)N-* ~ O( Y) is a Z[7T ]-module chain equivalence, 
since the 7T-ce11ular structure was constructed as the dual of that of X. We 
sha11 show (in Proposition 3.8 below) that this property characterizes 
S7T-duality maps for finite OW7T-complexes, generalizing the case 7T = {I} 
of ordinary S-duality. 

Define the r-dimensional Eilenberg-MacLane 7T-spectrum K7T(Z, r) by 

K7T(Z,r)p = V K(Z,p+r), gp = V7Jp: ~K7T(Z,r)p = V~K(Z,p+r) 

" " " 
~ K7T(Z,r)p+l = V K(Z,p+r+ I) (r ~ 0), 

" 
with 7Jp: ~K(Z,p+r) ~ K(Z,p+r+l) the standard map. For 7T = {I} 
this is the usual Eilenberg-MacLane spectrum K(Z,r). 

PROPOSITION 3.7. 11 Xis afinite OW7T-complex X then 

1Jr(X) = {sr, X A"K7T(Z, O)}, 1Jr(x) = {X, K7T(Z, r)}" (r ~ 0). 

Proof. For any OW7T-complex X we have 

{sr, X A"K7T(Z, on = {sr, X AK(Z, O)} = 1Jr(x) (r ~ 0) 

by the usual identmcation of integral homology with K(Z,O)-homology. 
Also, -there is defined a natural Z[7T]-module morphism 

,: {X,K7T(Z,rn" ~ lir(X); (I: ~pX ~ V K(Z,p+r)) r-+- f*(I) 
" 

with f*: HP+r(V"K(Z,p+r)) = Z[7T] ~ lip+r(~PX) = lir(X). If X is 
finite we have an S7T-duality cx: SN ~ X A" Y (Proposition 3.5) and , can 
be identmed with the S7T-duality isomorphism 

cx\-: {X, K7T(Z, r)}" ~ {SN,K7T(Z,r)A" y} = 1JN- r(Y) = 1Jr(X). 
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If X, Y are finite CW7T-complexes and 0:: SN ~ X "TT Y is a {l}-map 
then the identification of Proposition 3.7 carries the chain level slant 
product 

0:* [SN] \ - : Hr(x) ~ HN- r( Y) (o:*[SN] E 11 N(X "TT Y)), 

to the geometrie slant product 

0: \ - : {X, K7T(Z, r)}l1 ~ {SN, K7T(Z, r) "11 y} = {SN-,., K7T(Z, 0) "11 Y}, 

defined previously. 

PROPOSITION 3.8. Let X, Y be finite CW7T-complexes. A {l}-map 
0:: SN ~ X "11 Y is an S7T-duality map il and only il the ehain level slant 
produet 

is a Z[7T ]-module ehain equivalence. 

Proof. If 0:: SN ~ X "TT Y is an S7T-duality map then the chain level 
alant product with o:.[SN] E HN(X "1T Y) induces the S7T-duality iso­
morphisms 

Hr(x) = {X, K7T(Z, r)}l1 ~ {SN, K7T(Z, r) "11 Y} 

= {SN-r, K7T(Z, 0) "TT Y} = 1IN- r'( Y). 

Conversely, suppose given a {I }-map 0:: SN ~ X "11 Y such that 
0:. [SN] \ - : H·(X) ~ HN _*( Y) is an isomorphism. Let 0:': SN ~ X "11 Y' 
be the S7T-duality map constructed for X in Proposition 3.5 for N suffi­
ciently large, aild let 1 E {Y', Y}1T correspond to 0: E {SN, X "1T Y} under the 
S7T-duality isomorphism 

0:' \ - : {Y', Y}1T ~ {SN, X "TT Y}. 

Now 1 E {Y', Y}l1 induces isomorphisms in homology 

1 = 0:. [SN] \ - : H.(Y') = HN-*(X) ~ H.(Y). 

Applying Proposition 3.6 we have that fE {Y', Y} is an S7T-homotopy 
equivalence, and hence that 0:: SN ~ X "1T Y is an S7T-duality map. 

With a little more effort Propositions 3.5-3.8 can be made to apply 
also for finitely-dominated CW 7T-complexes. 

S7T-duality maps arise as folIows. 

PROPOSITION 3.9. Let E be a eompaet N-dimensional submanilold 
01 SN with non-empty boundary aE and let R be a covering space 01 E 
with group 01 eovering translations 7T, with 'iiE c: R eovering aE. Then the 



224 ANDREW RANICKI 

composite {I }-map 

collapse "-J diagonal "-J 

0:: SN ) SN/SN -E = E/oE = (ß/OE)/l7 ) ß+"1T (ß/oE) 

is an Sl7-duality map. 

ProoJ. The diagonal map is obtained from 

ß: ß/aE ~ ß+" ß/aE = (ß x ß)/(E x aE); X 1-+ (x, x) 

by quotienting out the l7-action. Now ß+ and ß/aE are finite GWl7-
complexes by Proposition 3.2, and 0:: SN ~ E+,,"ß/'iiE is an Sl7-duality 
map by Proposition 3.8 since 

0:. [SN]/ - = [E] n - : Iir(ß/aE) = Hr(E, BE) ~ lIN_r(ß+) = HN_r(E) 

defines the Poincare-Lefschetz duality isomorphisms of (E, oE), with 
[E] E HN(E, oE) the fundamental class. 

Given a fibration F ~ E L Band a covering 13 of the base 
space B with group 17 of covering translations define the' Thom l7-space to 
be the mapping cone l7-space of the induced l7-map P+: ß+ ~ 13+, 

Tl7(p) = B+up+R+I\I = BUpxoRxi/Rx l. 

The quotient {l}-space Tl7(p)/l7 = T(p) is the usual Thom {l}-space of p, 
and if B = 17 X B is the trivial covering then 

Tl7(p) = V T(p). 
" 

Ifp: E ~ B is a cellular map of GW complexes then Tl7(p) is a GWl7-
complex by Proposition 3.2. 

Fibre homotopy equivalence classes of (k - 1 )-spherical fibrations 

Sk-l~E~X 

over a GW complex X are in a natural one-one correspondence with 
the homotopy classes of maps p: X ~ BG(k), for the appropriate 
classifying space BG(k). Given such a fibration we shall say that a 
covering X of X is oriented witk respect to p if the group of covering 
translations 17 is equipped with a group morphism w: 17 ~ Z2 such that 
the first Stiefel-Whitney class w1(p) E Hl(X; Z2) = Hom(l7l(X), Z2) 
factors as 

W 
w1(p): 171(X) ~ 17 ~ Z2 

with 17'l(X) ~ 17' the characteristic map, and the pair (17', w) is the data 
of the covering. A covering X of X can be oriented with respect to 

p: X ~ BG(k) if and only if the pullback p: X ~ X L BG(k) is 
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an orientable (k - 1 )-spherieal fibration, but the ehoiee of w is not unique. 
If I: M -+ X is a map of OW eomplexes then the pullbaek cover 
1t of M is oriented with respeet to the pullbaek fibration 

f*(p): M L xL BO(k), 

with the same data (17, w). 
A eovering X of a geometrie Poineare eomplex X is oriented with data 

(17, w) in the sense of § 2 if and only if it is oriented in the above sense 
with respeet to the Spivak normal fibration Vx: X -+ BO with data 
(1T, w) (cf. Proposition 4.1). 

Spherieal fibrations are eharaeterized by the following equivariant 
generalization of the Thom isomorphism theorem. 

PROPOSITION 3.10. LetF ~ E L BbeafibrationofOW complexes, 
witk E, B jinitely dominated. If F = Sk-l (up to homotopy equivalence) 

and 13 is an oriented covering 01 B with data (1T, w) then there exists 
an element Up E li~(T1T(p); WZ), the Thom class of p, such that the cap 
produet 

llpn-: WO(T1T(p)) -+ SkO(13) 

is a ehain equivalenee of finite-dimensional Z[1T]-module ehain complexes, 
the Thom equivalenee. Oonversely, if F is simply-eonneeted and there 
exists an element IIp E li~(B)(T1TI(B)(p); WZ) (k ~ 3) for the Thom 1TI(B)­
spaee with respeet to the universal cover 13 01 B, for sorne group morphism 
w: 1TI(B) -+ Z2' such that 

llpn-: WO(T1TI(B)) -+ SkO(13) 

is a Z[1TI{B)]-module ehain equivalence then F is a homotopy Sk-I and 
w = wI(p): 1TI(B) -+ Z2 is thefirst Stiefel-Whitney dass olp. 

Proof. The proof is by the spectral sequence argument of Browder 

[3, Lemma 1.4.3] applied to the pullbaek F ~ 11 L 13 of p to the 
universal cover 13 of B. 

We can now state the analogue of Proposition 4.4 of Spivak [25] 
appropriate to geometrie Poineare complexes in the sense of Wall [29] 
(cf. Browder [4]). 

PROPOSITION 3.11. Let X c SN be a finite subcomplex with a elosed 
regular neighbourhood E, and let F be the homotopy-theoretie fibre 0/ the 
inelusion p: oE -+ E. Then X is an n-dimensional geometrie Poincare 
complex if and only if Fis a homotopy SN-n-I (N ~ n+3). 
5388.3.40 p 
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Proof. The inclusion X ~E is a (simple) homotopy equivalence, so we 

ean identify l7l(X) = l7l(E) = 17, X = R, Tl7(p) = R/'iE with X, R the 
universal covers. Proposition 3.9 gives an Sl7-duality map 

cx: SN ~ X+"1T Tl7(p) 

such that there is defined a eommutative diagram 

n 
H~(X; WZ)®zwHr(X) -----+) Hn_r(X) 

(",,[SN] \ - )-l® ("'. [SN] \ -)1 lid. 
n 

H~-n(Tl7(p); WZ)®z WHN _ r(Tl7(p)) ---+) Hn_r(X) 

for any group morphism w: 17 -+ Z2. Comparison of the definition of a 
geometrie Poincare complex (as in § 2) with the criterion of Proposition 
3.10 gives the required correspondence. 

4. Normal maps 
Given a degree I map of n-dimensional geometric Poincare complexes 

f: M ~ X and a covering map of the Spivak stahle normal fihrations 
b: VM -+ Vx we shall apply the equivariant S-duality of § 3 to ohtain a 
geometrie Umkehr map F: ~pX+ -+ ~PM+, and hence hy the quadratic 
kernel construetion of § 2 an n-dimensional quadratic Poincare complex 
over Z[l7], 

u.(f,b) = u.(f,F). 

In § 7 we shall identify the quadratic Poincare cohordism class 

u.(!, b) E Ln(Z[7Tl(X)]) 

with the Wall surgery obstruction. 
An n-dimensional normal space (X, vx, Px) is an n-dimensional finitely­

dominated OW eomplex X together with a (k-l)-spherical fihration 
Vx: X -+ BG(k) and an element Px E l7n+k(T(vx)). (This eoncept is due to 
Quinn [21].) Given a covering X of X with group of covering translations 
17 define thefundamental map of (X, vx, Px) to be the composite {l}-map 

Px ß ~ 
(Xx: Sn+k ~ T(vx) = X/E = CX/ R)/l7 ~ X+Ä1T X/ E = A+Ä1T T7T(VX)' 

with R the induced covering of the total space E of Vx, and ß the diagonal 
map. If X is oriented with data (17, w) with respect to Vx define the 
fundamental class to be the twisted homology class 

[X] = ~xnh(px) E H~CX; WZ), 
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with u"ll E H~(T1T(VX); WZ) the Thom class of Vx and 

h: 1Tn+k(T(vx)) -+ Hn+k(T(vx)) 

the Hurewicz map. The fundamental map is related to the fundamental 
class by a Z[1T]-module chain homotopy commutative diagram 

in which the cup product with u"x is a chain equivalence (a variant of the 
Thom equivalence of Proposition 3.10). 

Anormal map of n-dimensional normal spaces 

(f, b): (M, vM' PM) -+ (X, vx, Px) 

consists of a map f: M -+ X of the underlying spaces together with a 
stahle fihre homotopy class of stahle fihre maps b: VM -+ Vx over f such 
that 

for sufficiently large k. 
An equivalence of normal structures (vx,Px), (v~, p~) on aspace X is 

anormal map of the type 

(1, b): (X, vx, Px) -+ (X, v~, p~), 

PROPOSITION 4.1. A.n n-dimensional geometrie Poincare eomplex X 

admits anormal structure (vx, Px) with w1(vx) = w(X) and the same 
fundamental dass [X] E H:,CX; WZ) such that the fundamental map 

<Xx: Sn+k -+ X+"trT1T(vx) 

defines an S1T-duality for every eovering X of X, with 1T the group of eovering 
translations. A.ny two sueh normal structures (vx, Px), (v~, p~) are related 
by a unique equivalenee (1, b): (X, vx, Px) -+ (X, v~, p~). Oonversely, if X 
is a finitely-dominated OW eomplex with anormal strueture (vx, Px) 
sueh that the fundamental map 

<Xx: Sn+k -+ X+"trT1T(vx) 

with respeet to the universal eover X (1T = 1T1(X)) defines an S1T-duality map 
then X is an n-dimensional geometrie Poineare eomplex with w(X) = w1(vx) 
and the same fundamental dass [X] E H:,(X; WZ). 
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Proo/. If X is finite there exists an embedding X c SN for 
N ~ 2(geometrie dimension of X) + 1 by general position, with elosed 
regular neighbourhood E say. If X is any eovering of X with group of 
eovering translations 1T then Proposition 3.9 gives an S1T-duality map 

P x = eollapse ß. ~ 
OI.x: SN ) E/8E -----+-) X+AlI R/8E. 

Let F be the homotopy-theoretie fibre of the inelusion 8E c E, so that 
there is defined a fibration 

F---+ 8E~ X 

with T1T(VX) = B/aE. If X is an n-dimensional geometrie Poineare 
eomplex then F ~ SN-n-l, by Proposition 3.11, and (vx, Px) defines a 
normal strueture with S1T-duality. If X is not finite use the triek of Wall 
[29, § 3] of erossing with SI to reduee to the finite ease. The uniqueness 
elause is as in [29, Corollary 3.6] (see also Theorem 1.4.19 of Browder [3]). 
Conversely, given anormal strueture with S1T-duality for the universal 
eover we ean obtain Poineare duality by eombining the S1T-duality 
eriterion of Proposition 3.8 with the Thom isomorphism of Proposition 
3.10. 

Thus an n-dimensional geometrie Poineare eomplex X earries a 
eanonieal equivalenee elass of normal struetures (vx, Px) with S1T-duality. 
We shall eall this the Spivak normal ela8s, calling any such Vx a Spivak 
normal fibration of X. A normalization of X is a choice of normal structure 
(vx, Px) in the Spivak normal class. 

We are now in a position to apply S1T-duality to obtain geometrie 
Umkehr maps of the type considered in § 2 for degree 1 maps of geometrie 
Poincare complexes which preserve Spivak normal struetures. 

PROPOSITION 4.2. Given a degree 1 normal map 0/ normalized n­
dimenBional geometrie Poincare complexe8 

(/, b): (M, VM, PM) -+ (X, vx, px) 

and a eover X 0/ X with group 0/ eovering tranBlatiOnB 1T there is induced a 
1T-map of Thom 1T-Space8 T1T(b): T1T(VM) -+ T1T(VX) such that the S1T-dualo/ 
T1T(b) with respeet to the fundamental S1T-duality maps 

OI.M: SN -+ N+AlI T1T(VM)' OI.x: SN -+ X+AlI T1T(VX) 

is an S1T-homotopy dass FE {X+,N+}17 of geometrie Umkehr maps 
F: ~pX+ -+ ~pN+ such that (~p!+)F ~ I: ~pX+ -+ ~pX+ up to stable 1T­
homotopy. 
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Proof. The 81T-duality is defined by the composite 

(aM\-)-l (aX\-) 
{TlT(VM),TlT(VX)}1T ) {SN,TlT(VX)A1T N+} ) {.1+,N+}1T. 

W orking round the stable homotopy commutative diagram 

we have that 

((~p!+)F" l)(~Pax) ~ (~Pax): SN+p ~ ~P.1+A1T TlT(VX). 

Since ~Pax is also an SlT-duality map it follows that 

(~p!+)F ~ 1: ~P.1+ ~ ~P.1+ 

for p large enough. The diagram also shows that F induces the Umkehr 
f': 0(.1) ~ O(N) on the chain level, identifying the Poincare duality 
chain equivalences with the appropriate Thom equivalences. 

Define the quadratic kernel of anormal map of normalized n­
dimensional geometric Poincare complexes 

(f, b): (M, VM' PM) ~ (X, Vx, Px) 

with respect to an oriented cover.! of X with data (17, w) to be the 
n-dimensional quadratic Poincare complex over Z[lT] with the w-twisted 
involution 

u.(f, b) = u.(j, F) = (O(jI), e%!fJF[X] E Qn(O(j'))), 

using the quadratic kernel construction of Proposition 2.3 with any of 
the geometric Umkehr maps F: ~P.1+ ~ ~P N+ such that (~p!+)F ~ 1 
provided by Proposition 4.2. All such quadratic kerneIs are induced from 
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that associated to the universal covering X of X with data (7T1(X), w(X)). 
We have the sum formula: 

PROPOSITION 4.3. The quadratie kernel 01 the composite 

(I, b) (g, e) 
(gl,eb): (X,vx,Px) ~ (Y,Vy,Py) ~ (Z,vz,Pz) 

0/ normal maps 01 normalized n-dimensional geometrie Poincare complexes is 

u*(gl,eb) = u*(/,b)f3:J u*(g,e) 

up to homotopy equivalence. 

Proof. This is immediate from Proposition 2.5, since (~pJ+)F ~ 1. 

The difference if;' - if; E ker((1 + T): Qn(O(f!)) -+ Qn(O(f'))) of the hyper­
homology classes appearing in the quadratic kerneIs u*(/, b) = (0(1'), if;), 
u*(f, b') = (O(f'), if;') of normal maps 

(I, b): (M, VM, Pßf) -+ (X, vx, Px), (I, b'): (M, VM, PM) -+ (X, vx, Px) 

such that b' = be: VM -+ Vx for some automorphism e: VM -+ VM will be 
expressed in terms of e in Proposition 9.10 below. 

Anormal bundle map 
(/,b): M -+ X 

is a degree 1 map I: M -+ X from an n-dimensional smooth manifold M 
to an n-dimensional geometric Poincare complex X together with a bundle 
map b: vM -+ Vx from the normal bundle vM: M -+ BO(k) for some 
embedding M c Sn+k (k ~ n) to some bundle Vx: X -+ BO(k). This is the 
definition of normal map due to Browder [3] (with M compact and X 
finite). The quadratie kernel of such anormal bundle map with respect to 
an oriented cover X of X is the quadratic kernel 

u*(/, b) = u*(!, Jb) = (0(1'), e%(if;F[X]) E Qn(O(P))) 

of the normal map of normaIized n-dimensional geometric Poincare 
complexes 

(I, Jb): (M,JVM' PM) -+ (X, Jvx, Px), 

obtained by passing to the associated spherical fibrations JVM: M -+ BG(k), 
Jvx: X -+ BG(k), with 

collapse 
PM: Sn+k ) T(VM)' Px = T(b)PM: Sn+k ) T(vx)· 

The surgery obstruction of a 2q-dimensional normal bundle map 
(I, b): M -+ X such that 1T1(X) = {I} is l(signature) {the Arf invariant} 
of the non-singular quadratic form over Z {Z2} defined on Kq(M) 
{Kq(M;Z2)} by u*(!,b) {Z2@u*(/,b)} if q=:O {q=:l} (mod2) (cf. 
Propositions 2.4(i), 1.7.1, and 1.7.2). 
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Anormal map in the sense of Wall [30] 

(/,B): M ~ X 

is a degree 1 map I: M ~ X from an n-dimensional smooth manifold M 
to an n-dimensional geometric Poincare complex X together with a bundle 
isomorphismB: eM ~ TM$I*vx, withTM: M ~ BO(n) the tangent bundle 
of M, vx: X ~ BO(k) some bundle over X, and eM = 0: M ~ BO(n+k) 
the trivial (n + k)-plane bundle (with M compact and X finite). Choosing 
an embedding Me SN (N ~ n) with normal bundle VM: M ~ BO(N -n) 
we have a stable inverse VM for TM and a bundle map over 1 

lEeB 
b: vM$eM~ vMEe(TM$I*vx) 

= (VM$TM)$f*vx ~ f*exEef·vx ~ e~$vx 

with ex = 0: X ~ BO(N). The quadratic kernel u.(f,b) of the normal 
bundle map (/, b): M -+ X does not depend on the choice of VM: for 
if VM, v~ are two such then there exists a bundle isomorphism c: v.it ~ VM 
such that b' = bc: v~ -+ Vx and T(c)(p~) = PM E 7TN(T(VM» (by the 
uniqueness of embeddings M c SN for N ~ n), so that applying the sum 
formula of Proposition 4.3 to the composite normal map 

, ,,( I , c) (I, b) 
(f,b): (M,vM,PM) ~ (M'VM' PM) ~ (X,vx,Px), 

we have that up to homotopy equivalence 

u.(f, b') = u.(f, b) $ u*(l, c) = o-*(f, b). 

Conversely, anormal bundle map (f, b): M ~ X determines anormal map 
in the sense of Wall [30] (I, B): M ~ X with 

l$b 
B: eM = TM$vM ~ TMe>f*vx· 

From now on we shall not distinguish between the two formulations of 
normal bundle maps. 

5. Intersections and self-intersections 
We have used the quadratic construction .p of § 1 to define in § 4 the 

quadratic kernel u.(/, b) = u*(I, F) of anormal bundle map (I, b): M ~ X, 
using the equivariant S-duality of § 3 to obtain the geometric Umkehr 
map F: ~P:1+ -+ ~P M+. We shall now describe the self-intersections of an 
immersion Sr -+ Mn in terms of the quadratic construction .p, allowing us 
to identify the quadratic kernel u*(f, b) for a highly-connected f with the 
geometrically defined surgery obstruction kernel of Wall [30, §§ 5, 6]. 
(See the note added in proof (p. 279) for the generalization to arbitrary 
immersions of manifolds.) 
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PROPOSITION 5.1. For any p,q ~ 0 there i8 defined in a natural way a 
morphi8m 0/ commutative braids 0/ exact 8equences 0/ abelian group8 

j:'TT-+Q 
Irom 

to 

Q: 

J 

~ ~ ~ /\ 
Q~.fql](saz) Qm+q(SaZ) Qm+q(saz) 

/ ~ I+Y ~ j/' ~ 
Qm+P+tl+1(SP+q) Qm+q(saz) Qm+P+q(SP+tlZ) 

/ ~ Y ~ I+V ~ / 

0"'l+1(8~+q(8PU'.f.21(80 

Proof. Q is a partieular ease of the braid of Proposition 1.1.3. 
Define as follows abelian group morphisms 

j: 7Tm(BSO(q)) = 7Tm_1(SO(q)) -+ Qm+q(saz) = H a-m(Z2; Z, (- )a), 

j: 7Tm+l(BSO(p +q), BSO(q)) = 'TTm(SO(p+q)jSO(q)) 

~ Q~~lJ(saz) (= Hm-Q(Z2; Z, ( - )a) if m - q < P - I #: 0). 

Given an oriented q-plane bundle ex: Sm ~ BSO(q) over Sm apply Lemma 1 
of Milnor [15] to identify the Thom spaee T(ex) with the mapping eone of 
J(ex) E 7Tm+tl_l(Sa) 

Applying the symmetrie eonstruetion if; and the symmetrie Wu class Vm 

Z = Hm+q(T(ex)) ~ Qm+q(O(T(ex))) ~ Homz(Ha(T(ex)), Qm+q(saz)) 

set 
j(ex) = vm(~T«x>(I))(I) E Qm+q(saz) (lia(T(ex)) = Z). 

(By Propositions 1.2(i) (if m = q) and 1.3 (if m ::f: q) j(ex) ean be expressed in 
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terms of the cup product structure of Ii*(T(ex)) and the action of the 
Steenrod algebra on Ii*(T(ex); Z2)' In § 9 below we shall use this to identify 
j(ex) with the Hopfinvariant of J(ex).) Furthermore, given a nulI-homotopy 
ß: Dm+! -+ BSO( p + q) of ex E9 eP: Sm -+ BSO( p + q) there is defined an 
isomorphism ß: eP-Hl -+ exEgeP of oriented (p+q)-plane bundles over sm, 
inducing a homotopy equivalence of Thom spaces 

T(ß): T(eP-Hl) = Sp+qv Sm+p+q -+ T(ex E9 eP) = ~PT(ex). 

The composite 
inclusion T(ß) 

I(ß): LP(sm+q) = Sm+p+q ) Sp+qv Sm+p+q ) LPT(ex) 

represents the generator 1 E Iim+p+q(~PT(ex)) = Z. Applying the quadratic 
construction ~ and the quadratic Wu class vm 

~ vm 

Z = Iim+q(sm-Hl) ~ Q~t-l](O(T(ex))) ~ Homz(Iiq(T(ex)),Q~t-l](SqZ)) 
set 

j(ex,ß) = vm(~I(p)(I))(I) E Q~~l](SqZ). 

Applying the symmetrie Wu class operation vm to the relation 

~T«X)(I) - ((~P)-lI(ß)LP)%~Sm+a[sm+q] = (1 + T)~I(P)(l) E Qm+q(O(T(ex))) 

given by Proposition 1.5(ü) we have that 

j(ex) = (1 + T)j(ex, ß) E Qm+q(sqz). 

The remaining morphisms j: 1T -+ Q are obtained from these by passing 
to the suspension limits in both the geometry and the algebra (cf. 
Proposition 1.4). 

(It is possible to factorize the map of braids j: 1T -+ Q as j: 1T -+ II -+ Q, 
with II defined exactly as 1T but using SG instead of SO. In particular, 
for m = q = 2k, j factorizes as 

J Hopf invariant 
j: 1T2k(BSO(2k)) ) 1T4k_l(S2k) ) Q4k(S2kZ) = Z, 

and is just the function assigning the Euler number X(ex) E Z to the oriented 
2k-plane bundle over S2k classified by ex: S2k -+ BSO(2k). For m ~ q, 
j: 7Tm(SOjSO(q)) -+ Qm+q(sqZ) is an isomorphisrn.) 

Let Mn be an n-manifold, which for the sake of simplicity we take to be 
compact, smooth, and closed. Let (1T, w) = (1T1(M), w(M)), and give the 
group ring Z[1T] the w-twisted involution. Let Sr(M) (r ~ 2) be the 
Z[1T]-module of regular homotopy classes of oriented . immersions 
g: Sr -+ M with a preferred lift g: sr = 1T X Sr -+ ß to the universal 
cover ß of M, where addition is by connected sum and 1T acts by 
changing lifts. Given such an immersion g define a Z[1T]-module chain map 
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gl: 0(11) ~ C(T1T(Vg )) by 

([M] n - )-1 0* ([S'] n - ) 
gl: 0(11) ~ ) o(11)n-* ---~) o(s,)n-* ~) sn-,o(s') 

(Tlv n - ) 
~ . 

---~) O(T1T(Vg )) , 

where T1T(Vg) = V 1T T(vg) is the Thom 1T-space of the normal bundle 
Vg: S, ~ BSO(n-r), and Tlv(/ E }jn-'(T(vg)) is the Thom class of Vg. 

The symmetrie self-interseetion of an immersion g: S, ~ Mn is the 
Z2-cohomology class 

A(g) = vr(q;j'i[M])(x) E Hn-2'(Z2; Z[1Tl(M)], (- )n-,) 

obtained by evaluating the composite 

H~(11; WZ) ~ Qn(o(11)) 

V r ~~ 
~ HomZ [1T)(WHn-'(M), Hn-2'(Z2; Z[1T], (- )n-,)), 

with X = gl*(U,,) E wHn-r(.lJt1) the Poincare dual of 0* [Sr] E H,(11). For a 
fixed M the cl~ss A(g) depends only on O*[Sr] E HA11). In the case where 
n =r 2r, A(g) can be identified with the evaluation A(g, g) of the geometric 
intersection pairing 

A: Sr(M) x Sr(M) ~ Z[1Tl(M)]. 

By Propositions 1.3 and 2.4(i) the mod 2 reduction of A(g) (for n ~ 2r) 
can be expressed as 

A(g) = (Sqr(x), [M]) = (vr(M) ux, [M]) E Z2 

(x = gl*(U,,) E Hn-'(M; Z2)). 

Given an immersion g: S, ~ Mn and a non-negative integer 

p> 2r-n+l, 

it is possible to deform the immersion g xl: Sr ~ Mn X Dp by a regular 
homotopy to an embedding g' : Sr <=-+ interior(Mn x Dp) with normal bundle 

va' = vgEB8P : Sr ~ BSO(n-r+p). 

Let E be a closed tubular neighbourhood of g' (S') in Mn X DP, with 
induced cover 2 = 1T X E c M x Dp. The 1T-map 

~~ _ _ collapse _ :e 

G: ~P.LY.L+ = M x DP/M X Sp-l ) MxDP/MxDP-E 

= 2/82 = T1T(Vg') = ~pT1T(Va) 
induces gl: 0(11) ~ C(T1T(Va)) on the chain level. 
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The quadratie 8elf-inter8eetion of an immersion g: S,. ~ Mn IS the 
Z2-homology class 

p,(g) = -v"(~a[M])(~,) E H2r- n(Z2; Z[1Tl(M)], (- )n-,.) 

obtained by evaluating the composite 

~ v" 
H~(1fl; WZ) ~ Qn(C(T1T(Vg))) ~HomZ[1Tl(wHn-r(T1T(vg)), 

H2,.-n(Z2; Z[1T], (- )n-r)). 

In the ca se where n = 2r, p.(g) will be identified with the geometrie self­
interseetion of g (in Proposition 5.2 below). By Proposition 1.6, the mod 2 
reduction of p.(g) ean be expressed as 

p,(g) = <S~+l(~p,), ~P[M]> E Z2 

(h = (~P~(I)G-~P(x) E [~PM+,~pK(Z2,n-r)], 

" = generator E .lin
-

r (K(Z2' n - r); Z2) = Z2)' 

PROPOSITION 5.2. The 8ymmetrie and quadratie 8elf-inter8eetions define 
junetions 

A: 8,.(Mn) ~ Hn-2r(Z2; Z[1Tl(M)], (- )n-r); (g: Sr ~ Mn) ~ A(g), 

p.: 8 r(Mn) ~ H2r- n(Z2; Z[1T1(M)], ( - )n-r); (g: Sr ~ Mn) ~ ,.,,(g), 

8uch that 

(i) A(ag) = aA(g)a, p,(ag) = ap.(g)a (a E Z[1Tl(M)], g E Sr(Mn)), 

(ii) A(g) = (j(vg), 0) + (1 + T)JL(g) E Hn-2r(Z2; Z[1T1(M)], (- )n-,.) 

= Hn-2r(Z2; Z, (- )n-r) Ei1Hn-2r(Z2; Z[1T1(M)]jZ, (_ )n-r), 

(

[A(gl' g2)] if n = 2r 
(iii) P.(gl + g2) - P.(gl) - P,(g2) = (gI' g2 E Sr(Mn)), 

o otherun8e 

(iv) if the dass g E Sr(Mn) eontains an embedding then p.(g) = 0, and if it 
eontain8 a framed embedding then also A(g) = 0, 

(v) if n = 2r ~ 6 and p.(g) = 0 then the dass g E Sr(M2r) eontains an 
embedding. 

Proof. (i) By eonstruction. 
(ü) Apply the symmetrie Wu elass v,. to the relation given by Pro­

position 1.5(i), 

gl%)')M[M] = sOT1dv
ll
)g!*[M] - (1 + T)if,a[M] E Qn(G(T1T(Vg))). 

(ili) The quadratie self-interseetion P.(gl + g2) of the conneeted sum 
gl + g2 of immersions gl' g2: Sr ~ Mn is given by 

P,(gl +g2) = -vr(if,a[M])(~1I1 Ei1 ~II) E H2r- n(Z2; Z[1TI(M)], (- )n-r), 
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with 
G = GI V G2: ~P N+ ~ ~P(Tl7(V01) V Tl7(VU.)) = ~PTl7(VU1) V ~PTl7(VU.)' 

There is a natural identmcation of Z[ 17 ]-module chain cornplexes 

O(Tl7(VU1 ) v Tl7(VUI )) = O(Tl7(VU1 )) Ef) O(Tl7(VUIl ))' 

and Proposition 1.1.4(i) allows us to express ~G as 

( 

~Gl ) 

~G = ~G. : H~(N; WZ) ~ Qn(O(Tl7(V01)) Ef) O(Tl7(Vua))) 

- (gi ®gk)~o 

= Qn(O(Tl7(VU1 ))) Ef) Qn(O(Tl7(Voll ))) Ef) Hn(O(Tl7(V01))'®~[7I'] O(Tl7(Voa))) , 

with (gi ® gk)~o the cornposite 

11'" ~o (gi ® gk)~o: H~(lr.J. ; WZ) ---+) Hn(O(N)' ®Z(7I'] o(N)) 

gi®g\ 
-..;;....~ Hn(O(Tl7(VU1))'®Z(7I'] O(Tl7(VO\)))' 

Now apply the rth quadratic Wu class v' to the identity 

~G[M] = (~Gt[M], ~GI.[M], - (gi ® gk)~o[M]) E Qn(O(Tl7(V01)v Tl7(VO.)))· 

(iv) By definition ~G is a cornposite 

~G: H~(M; WZ) ~ Q~,p-l](O(Tl7(VO))) ~ Qn(O(Tl7(Vo))), 

and the middle group is 0 if p = o. 
(v) Let {l.(g) E HO(Z2; Z[171(M)], (- Y) be the geometrie self-intersection 

of an immersion g: S' ~ M2, (1 ~ 2), as defined by Wall in [30, Theorem 
5.2]. It was proved there that 

{l.(gl +g2) - {l.(gl) - {l.(g2) = [A(gl' g2)] E HO(Z2; Z[171(M)], (- )'), 

and that, for r ~ 3,. (l(g) is the sole obstruction to deforming g to an 

embedding. 
We shall prove that p.{g) = P.{g) (for r ;;?; 3) by a generalization of the 

trick used by Browder in the proof ofTheorem IVA.l of [3].t Lift {l.(g) to 
some element a E Z[171(M)], and let g': S' ~ M'2, = M2,# (S' x Sr) be an 
immersion representing the homology class 

y~[S'] = (0, -a, 1) E H,(M') = H,(M) Ef) Z[l7l(M)] Ef) Z[l7l(M)]. 

The immersion g # 0: S' ~ M'2r represents the homology class 

(y# 0). [S'] = (Y.[S'], 0, 0) E H,(J1') = H,(N) Ef) Z[171(M)] Ef) Z[l7l(M)]. 

Define an immersion 

g" = (g# 0) +g': S' ~ M'2" 

t See note added in proof on p. 279. 
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and apply the sum formulae for,." and fl to obtain 

,.,,(g") = ,.,,(g # 0) + ,.,,(g') = ,.,,(g) - [al = ,.,,(g) - P.(g) E HO(Z2; Z[7Tl(M)], ( - )r), 

fl(g") = fl(g# 0) +fl(g') = fl(g) - [al = 0 E HO(Z2; Z[7Tl(M)], (- )r). 

Thus g" can be deformed to an embedding, and ,.,,(g") = 0 by (iv). 

The relation ofProposition 5.2(ii) for n = 2r, 

;\(g) = (j(vg ), 0) + (1 + T),.,,(g) E HO(Z2; Z[7Tl(M)], ( - )r) 

is precisely the relation of Theorem 5.2(ili) of Wall [30], with 

j(vg ) = X(vg ) E HO(Z2; Z, (- )r) 

the Euler number of Vg E 7Tr(BSO(r)). 

PROPOSITION 5.3. Let f: M -+ X Hf, b): M -+ X} be a degree 1 {normal 
bundle} map from an n-dimensional manifold M to an n-dimensional geo­
metrie Poincare eomplex X. Let g: Sr ~ M be an immer8ion witk an oriented 

normal bundle vg : Sr -+ BSO(n-r) and a null-homotopy h: Dr+1 -+ X 01 
fg: Sr -+ X {and let VII.: Dr+l -+ BSO be the 8table trivialization 0/ 

vg : Sr -+ BSO(n-r) determined by b: VM -+ vx}. The rth symmetrie 
{quadratie} Wu dass of the symmetrie {quadratic} kernel, 

{ 
a*(f) = (0(1'), rp = e%rpj'j[M] E Qn(O(f'))), 

a*(f, b) = (O(f'),.p = e%.pF[X] E Qn(O(f'))), 

( 

vr(rp): Hn-r(O(f')) = Kn-r(M) -+ Hn-2r(Z2; Z[7T1(X)], (_ )n-r), 

vr(.p): Hn-r(c(f')) = Kn-r(M) -+ H2r- n(Z2; Z[7Tl(X)], ( _ )n-r), 

8ends the Poincare dual x E Kn-r(M) of the Hurewicz image in 

Hr+1(!) = Kr(M) 

of (h,g) E 7Tr+1(f) = 7Tr+l(J) to 

f 
vr(rp)(x) = A(g) = (j(vg), 0) + (1 + T),.,,(g) E Hn-2r(Z2; Z[7Tl(X)], (- )n-r), 

vr(.p)(x) = (j(Vh' vg ), 0) + ,.,,(g) E H2r- n(Z2; Z[7Tl(X)], ( - )n-r). 

Proof. The expression for vr(rp)(x) is immediate from Proposition 5.2(i), 
so only the normal bundle case need be considered. The commutative 
diagram of maps of spaces 

g ) M 

h Y 
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is covered by a commutative diagram of bundle maps 

h*vx ) Vx 

with h*vx a trivial bundle and c: g*vM ~ h*vx giving rise to 

Vh: Dr+1 ~ BSO. 

There is induced a commutative diagram of Thom l7-spaces and l7-maps 
(17 = 171(X)) 

Tl7(g*VM) --~) Tl7(vM) 

T7T(C) 1 1 T7T(b) 

Tl7(h*vx) ) Tl7(VX) 

whose Sl7-dual is a l7-homotopy commutative diagram of l7-maps 

G 
~P.M+ ~PTl7(Vg) ( 

I(Vh)l 
H 

IF 
~P(V Sn) E ~pX+ 

1T 

for p ~ 0 sufficiently large. Applying the sum formula for the. quadratic 
construction of Proposition 1.5.(iii) we have 

g~tfF[X]+.fG[M] = .fOF[X] = .f](I/lI)H[X] 

= ~](I/,,)(l) +I(vh)*~H[X] E Qn(C(Tl7(Vg))). 

The disc theorem for geometrie Poincare complexes (Wall [29, Theorem 
2.4]) provides a .homotopy equivalence 

X ~ Yuken 

with Y a homologically (n-l)-dimensional complex and k: Sn-l ~ y 
so me map. Passing to the universal covers, adjoining basepoints, and 
collapsing Y we obtain an unstable l7-map 

H: X+ ~ (Y U;;(l7 x en))+ ~ V sn, 
1T 

representing the Sl7-dual of Tl7(h*vx) ~ Tl7(VX)' so that 

~H = 0: H~(X; WZ) ~ Qn(C(V sn)) (w = w(X)). 
1T 
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Applying the rth quadratic Wu class vr to the Z2-hyperhomology class 

g~~F[X] = ~lh)A)(l) - ~G[M] E Qn(O(T7T(Va))) 

we obtain the desired expression for vr(~)(x). 

At this point it is instructive to compare the approaches taken by Wall 
[30] and Browder [3] to the problem of performing framed surgery on an 
element (X E 7Tr+1(/) for so me n-dimensional normal bundle map (I, b): 
M ~ X. Theorem 1.1 of [30] establishes that for r ~ n - 2 every 
(X E 7Tr+l(/) determines a regular homotopy class of framed immersions 
g: Sr ~ M together with a prescribed null-homotopy h: Dr+1 ~ X of 
Ig: Sr ~ X, such that (Vh, va) = 0 E 7T r+l(BSO, BSO(n - r)). Surgery on <X 

is possible if and only if this class contains an embedding, so that on the 
chain level the surgery obstruction is 

vr{t/J)(x) = JL{Y) E H2r- n {Z2; Z[7T1{X)], ( - )n-r). 

On the other hand, Theorem IV.1.6 of [3] assumes that (X E 7Tr+1(f) is 
already represented by an embedding g: Sr <=-+ M with a null-homotopy 
h: Dr+l -+ X of fg: Sr ~ X, so that J-L(g) = O. Surgery on (X is possible if 
and only if (vh, va) = 0 E 7Tr+1(BSO, BSO(n-r)) (= 7Tr(SOjSO(n-r)) = 

7TlJ:-k,n-r)' klarge), so that the chain level surgery obstruction is 
vr(~)(x) = (j(vh' va)' 0). In Proposition I.4.6(i) we interpreted the e-quad­
ratic Wu class vr(~)(x) E H2r- n(Z2; A, (- )n-re) associated to an abstract 
n-dimensional e-quadratic Poincare complex over A, (0, ~ E Qn(O, e)), as 
the obstruction to performing algebraic surgery on x E Hr(O). (Algebraic 
surgery will be related to geometrie surgery in § 7 below.) 

Given an (i - I )-connected 2i-dimensional {( 2i + I )-dimensional} normal 
bundle map for i ~ 3 {i ~ 2}, (I, b): M ~ X, let 

(

(Ki(M),,\, J-L) 
8(f, b) = 

(H<_)i(Kt+1(U, aU)); Kt+1(U, aU), K H1(Mo, aU)) 

be the non-singular (_)i quadratic form {formation} over Z[7Tl(X)] with 
the w(X)-twisted involution obtained by Wall in § 5 {§ 6} of [30] as the 
surgery obstruction kerneI, using geometrically defined intersection and 
self-intersection forms. The odd-dimensional terminology involves the 
union U of disjoint framed embeddings Si x Di+l C M such that the 
images I(Si x Di+l) C X are contractible, and such that the corresponding 
elements of Ki(M) are a set of generators, with Mo = M \ U c M. The 
quadratic kernel u*(/, b) is the i-fold skew-suspension of a O-dimensional 
{I-dimensional} (- )i quadratic Poincare complex over Z[7Tl(X)], 

u*(f,b) = Siu,(f,b) 
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(as in Proposition 2.6), and O'i(/, b) ean be regarded as a non-singular 
( - )i quadratie form {formation} by Proposition 1.2.1 {I.2.5}. 

PROPOSITION ß.4. The surgery obstruction kernel 01 a highly-conneeted 
n-dimensional normal bundle map (I, b): M -+ X agrees with the quadratio 
kernel defined using a geometrie Umkehr map F E {.!+,N+}1f (1T = 1Tl(X)) 

8(/, b) = 0',(/, b) (n = 2i or 2i + 1 ~ 5). 

Proof. Consider first the ease where n = 2i. Now C(jI) is given up to 
ehain equivalenee by 

C(jI): ... -+ 0 -+ ~(M) -+ 0 -+ ... , 

and the quadratie kernel is given by 

0'*(/, b) = (C(jt~, tP = e%tPF[X] E Q2i(C(jI» 

= eoker(l- 2(_)i: HomZ[1fl(~(M), ~(M)*) 

-+ HomZ[1fl(.K.t(M), ~(M)*»)), 

identifying Kt(M) = Ki(M) by Poineare duality. By [30, Theorem 1.1], 
every element x E Kt(M) is represented by a framed immersion g: Si -+ M2i 
together with a null-homotopy h: Di+l -+ X of ig: Si -+ X, and Pro­
positions 5.2 and 5.3 allow the identifieation 

tP(x)(x) = /L(g) E HO(Z2; Z[1Tl(X)], (- )i). 

Thus 8(/, b) = O'i(/, b) if n = 2i. 
In the ease where n = 2i+ 1 we have that up to ehain equivalenee 

C(jI): ... -+ 0 -+ Kt+l(M, U) -+ Kt(U) -+ 0 -+ ... , 

so that O'i(/' b) is a non-singular ( - )i quadratie formation over Z[1Tl(X)] 

0-,,(/, b) = (H<_>i(K,,(U)*); K,,(U)*, K,,+l(M, U». 

Identifying Kt+1(U, aU) = Ki(U) = Kt(U)* by Poineare duality and the 
universal eoeffieient theorem we ean write the inelusion of the lagrangia,n 

K1+1(M, U) -+ K1(U)*~ K1(U) 
as the map 

Kt+l(M, U) = Kt+l(Mo,aU) -+ ~(aU) = ~+l(U, aU) <T> ~+l(U, aU)* 

appearing in the definition of 8(j, b). Thus 8(j, b) = O',(j, b) if n = 2i + 1. 

6. Geometrie Poincare cobordism 
We now relativize a11 of the results of §§ 1-4, in order to eonstruet 

algebraie Poineare pairs from geometrie Poineare pairs. Given an (n + 1)­
dimensional geometrie Poineare pair (X,aX) we define an (n+ 1)-dimen­
sional symmetrie Poineare pair O'*(X,aX) with boundary O'*(aX), and 
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given a degree 1 {normal} map of (n + 1 )-dimensional geometrie Poincare 
pairs (f, of): (M, oM) ~ (X,oX) {((I, (/), (b, ob)): (M, oM) ~ (X,oX)} we 
define an (n+ 1)-dimensional symmetrie {quadratie} Poineare pair 
u*(f, of) {u.((/, (/), (b, ob))} with boundary u*(of) {u*(of, ob)}. 

The relative symmetrie construction 'PI defined below is a relative version 
of the absolute symmetrie eonstruetion 'Px of Proposition 1.2. 

PROPOSITION 6.1. Let 17 be a group, and give Z[l7] the w-twisted involution 
for some group morphism w: 17 ~ Z2. Given a l7-map 01 l7-SPaces 

f:X~ y 

there are defined in a natural way abelian group morphism8 

(()/: H~+l(f; wZ) ~ Qn+1(f: 6(X) ~ 6(Y)) (n E Z) 

such that 
(i) for each Z E H~+1(f; WZ), 

'P/(z)O \ - =z n - : wHr(f) ~ Iin+1-r( Y), 

(ii) there is defined a morphism of long exact sequences 

) 11" ( y. WZ) n+l , ) H" (I· WZ) n+l , ) Ii:(X; WZ) 

~yl ~,l ~xl 
) Qn+1(O( Y)) ) Qn+1(f) ) Qn(6(x)) 

f* ) Ii~(Y; WZ) ) H~(/; WZ) 

1% 

~yl ~,l 
) Qn(6(Y)) ) Qn(f) ) ... 

Proof. Choosing a funetorial diagonal approximation ll. we have a 
eommutative diagram of abelian group ehain eomplexes and ehain maps 

l®f 
ZI®Z[lI)O(X) -------~) Z'®z[1I)6(Y) 

Q;x=I® Lixl 11®Liy =q;y 
f% 

Homz[Zt)(W,O(X)'®Z[lI)O(X)) ) HomZ[Ztl(W,O(Y)'®Z[lI)O(Y)) 

with eorresponding ehain map of algebraie mapping eones 

'PI: 0(1 ®f) ~ O(f%)· 

5388.3.40 Q 
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The relative symmetrie eonstruetion is given by the maps indueed in the 
homology groups 

'PI: Hn+1(O(l (Sf)) = H~+1(f; WZ) ~ Hn+1(O(f%)) = Qn+1(f)· 

Given a pair of 1T-spaees (X, Y) we shall write the relative symmetrie 
eonstruetion for the inelusion i: Y ~ X as 

'px,y = 'Pi: H~+l(X, Y; WZ) = H~+l(i; WZ) ~ Qn+1(i: O( Y) ~ O(X)). 

An (n+ l)-dimen.sional geometrie Poincare pair (X, aX) is a OW pair of 
finitely-dominated OW eomplexes, such that ax is an n-dimensional 
geometrie Poineare eomplex, together with a group morphism w(X): 
7Tl(X) ~ Z2 such that w(aX) faetors as 

w(X) 
w(aX): 7T1(aX) ~ 1Tl(X) ~ Z2 

and with a relative homology class [X] E H~f)Cl, ax; W(X)Z) such that 
the eap produets 

[X]n-: w(X)Hr(X,ax) ~ Hn+1-r(X) (0 ~ r ~ n+l) 

are Z[1Tl(X)]-module isomorphisms (Poineare--Lefsehetz duality) and 
~ 

a*[X] = [ax] E H-::(X)(oX; W(X)Z), 

with X the universal cover of X and ax the indueed cover ofaX . 
The relative symmetrie eonstruetion of Proposition 6.1 gives a relative 

version of the eonstruetion of C1*(X) in Proposition 2.1 . 

. PROPOSITION 6.2. Given an (n + 1 )-dimensional geometrie Poincare pair 
(X, aX) and an oriented cover X 0/ X witk data (1T, w) and induced cover ax 
ofax there i8 defined in a natural way an (n + 1 )-dimen.sional 8ymmetrie 
Poincare pair over Z[ 1T] with the w-twi8ted involution 

C1*(X, aX) = (ix: O(ax) ~ O(X),9'x,ax[X] E Qn+1(ix )) 

with boundary C1*(aX) = (O(ax), cpäX[~X] E Qn(o(8X))), where i x is the 
inclusion. 

Define the symmetrie signature of an n-dimensional geometrie Poineare 
eomplex X with respeet to an oriented cover X of X with data (1T, w) to be 
the symmetrie Poineare eobordism elass 

C1*(X) E Ln(Z[1T]) 

with C1*(X) = (O(X), 'Px[X] E Qn(o(X))) the n-dimensional symmetrie 
Poineare eomplex over Z[1T] with the w-twisted involution eonstrueted in 
Proposition 2.1. The symmetrie signature C1*(X) E Ln(Z[7I']) is indueed 
via the change ofring maps Z[1Tl(X)] ~ Z[1T] from the universal symmetrie 
signature C1*(X) E Ln(Z[1T1(X)]) assoeiated to the universal cover of X. 
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The symmetric signature invariant u*(X) E Ln(Z[1T1(X)]) was introduced 
by Mishchenko [18]. 

Given aspace K and a group morphism w: 1Tl(K) ~ Z2 let n~(K,w) 
be the group of geometric Poincare bordism classes of maps f: X ~ K 
from n-dimensional geometric Poincare complexes X such that the 
orientation map factors as 

/ w 
w(X): 1Tl(X) ~ 1Tl(K) ~ Z2' 

that is, such that the cover X of X induced from the universal cover f{ of 
K is oriented with data (1T1(K), w). 

PROPOSITION 6.3. The symmetrie signature defines ahelian group 
rrwrphism8 

u*: n!:(K, w) ~ Ln(Z[1T1(K)]); (/: X ~ K) ~ u*(X) (n ~ 0). 

Proof. If (g; J, J '): (Y; X, X') ~ K is an (n + 1 )-dimensiönal geometrie 
Poincare bordism then the construction of Proposition 6.2 defines an 
(n+ l)-dimensional symmetrie Poineare eobordism over Z[7Tl(K)] 

u*(Y; X,X/) 

from u*(X) to u*(X/). 

As a special case of the geometric Poincare bordism invariance of the 
symmetric signature we have homotopy invariance: if f: X ~ X' is a 
homotopy equivalence of n-dimensional geometric Poincare complexes 
then 

u*(X) = u*(X/) E Ln(Z[1Tl(X)]). 

It follows from the computation of L*(Z) (Proposition 1.7.2) that the 
simply-connected symmetric signature map 

a*: ni{pt.) ~ Ln(z) = 

Z 

Z2 ifn == 
o 
o 

o 
1 (mod4) 

2 

3 

sends an oriented 4k-dimensional {( 4k + 1 )-dimensional} geometric Poin­
care complex X (w(X) = 1) to 

u*(X4k) = (signature of X) == (signature of the Poincare duality 
intersection form (H2k(X; R),9'x[X]o)) E L4k(Z) = Z, 

u*(X4k+l) = (deRham invariant of X) == (deRham invariant of the 
Seifert linking form (H2k+l{X; Q/Z),9'x[X]o)) 

= (dimZg H2k+l(X; Z2)) E L4k+l(Z) = Z2. 
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The relative quadratic construction tP F.G deseribed below is the relative 
version of the absolute quadratie eonstruction ~ F of Proposition 1.5. 

PROPOSITION 6.4. Let 7T be a group, and give Z[7T] the w-twiated involution 
for aome group morphiam w: 7T -+ Z2' Given 'TT-apacea X, X', Y, Y' and 
'TT-mapa f: X -+ Y, f': X'·-+ Y', F: ~pX -+ ~PX', G: ~pY -+ ~pY' for 
aome p ~ 0 auch that the diagram 

~Pf 
) ~pY 

h lG 
~Pf' 

) ~pY' ~PX' 

commutea there are defined in a natural way abelian group morphiam8 

tPF.G: H:+1(!; WZ) -+ Qn+l(f': O(X') -+ O( Y')) (n E Z) 

auch that 
(i) h%q;f-q;fh. = (I +T)tPF.G: H:+l(f; WZ) -+ Qn+l(f'), 

witk k.: H';,,+l(f; WZ) -+ H;"+l(f'; WZ), k%: Qn+l(f) -+ Qn+l(f') the 
induced mapa, 

(ü) there ia defined a map of long exact aequences 

) H" (/' WZ) ,,+1 , ) 1I:(X; WZ) 

~F.Gl ~Fl 
) Qn+l(f') ) Qn(O(X')) 

f. ) li~(Y; WZ) ) H~(f; WZ) --'+) ... 

f~ 
~Gl ~F.Gl 

) Qn(O(Y')) ) Q,,(f') --~) ... 

(ili) tPF.G factorizea through Q~f1-11(f') 

tPF.G: H:+1(f; WZ) -+ Q~f1-11(f') -+ Q~fi](f') == Qn+1(f')· 

1f p = 0 then tPF.G = O. 

Given a degree 1 map of (n + 1 )-dimensional geometrie Poineare pairs 

(f,of): (M,oM) -+ (X,oX) 
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and a eovering X of X with group of eovering translations 1T define 
Z[1T]-module Umkehr ehain maps 

( 
/': 0(:1) -+ 0(.&) 

01': O(aK) -+ O(iM) 

by applying Z[1T] (8)Z[7Tl(X)] - to the Z[1Tl(X)]-module Umkehr ehain maps 

j1: 0(1) (LX] n - )-~ W(X)O(X, Ci)n+l-. 

f- ire = F::::J [M] n - , O( JIl) ----+) W(X)O(M,oM)n+l-· -----+,. .M. 

~ ([oX]n- )-1 ~ 
01': O(oX) , W(X)o(ox)n-· 

F::::i 
01 * F::::i [aM] n - F::::J 

----+) W(X)O(oM)n-* , O(oM) 

with :f the universal eover of X and JI, oM, ax the indueed eovers of 
M, oM, oX. There is defined a ehain homotopy eommutative diagram 

~ ix ) O(X) O(oX) 

01,1 
iM k 

~ 

) 0(.&) O(oM) 

with iM' ix the inelusions, so that there is indueed a Z[ 1T ]-module ehain 
map in the algebraie mapping eones 

i;: O(ojl) ~ O(jI). 

A geometrie Umkehr map for (I, (1) is a 1T-map of pairs of 1T-spaees 

(F, oF): (~pX+, ~P(ax)+) ~ (~Pß+, ~P(oM)+) 
for some p ~ 0, whieh induees the Umkehr (f', of') on the ehain level. 

The relative symmetrie {quadratie} eonstruetion of Proposition 6.1 
{Proposition 6.4} ean be used to obtain a relative analogue of the sym­
metrie {quadratie} kernel u*(f) {u*(/,F)} of Proposition 2.2 {Proposition 
2.3} as folIows. 

PROPOSITION 6.5. Given a degree 1 map 01 (n+ 1)-dimensional geometrie 
Poincare pairs 

(I, (1): (M,oM) -+ (X,oX) 

and or oriented eover X 01 X with data (1T, w) there is defined in a natural way 
asymmetrie kernel (n+ 1)-dimensional symmetrie Poincare pair over 
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zr 17] with the w-twisted involution 

u*(f, of) = (i;: O(ofl) ~ 0(/,), e%qJM,aM[M] E Qn+1(il)) 

with boundary u*(of), and such that 

u*(M,oM) = u*(f, of)$) u*(X, oX) 

up.to homotopy equivalence of pairs. Given also a geometrie Umkehr map 

(F,oF): (~pX+,~pax+) ~ (~P.M+,~p(fM+) 
there is defined in a natural way a quadratic kernel (n+ I)-dimensional 
quadratie Poincare pair over Z[l7] 

u*(f,of; F,oF) = (ir: O(o/,) ~ 0(/,), e%ifJF,8F[X] E Qn+l(i?)) 

with boundary u*(of,oF), and such that 

(I + T)u*(f, of; F,oF) = u*(f,of). 

Next, we outline the relative version of the equivariant S-duality 
theory of § 3 required to obtain geometrie Umkehr maps for normal bundle 
maps of pairs. A l7-pair (X, Y) is a pair of l7-spaces, Y c X, in which case 
the suspension ~(X, Y) = (~X, ~Y) is also a l7-pair. Given l7-pairs 
(X, Y), (A,B) let {X, Y; A,B}1T be the abelian group of stable relative 
l7-homotopy classes of l7-maps of l7-pairs (I, g): ~P(X, Y) ~ ~p(A, B) 
(p ~ 0). The l7-pairs (X, Y), (X*, Y*) are relatively Sl7-dual if there is 
given a {I }-map of pairs 

((X, ß): (DN, SN-l) ~ (X "11 X*, Y "1T Y*) 

such that for every 1T-spectrum of paks t4,!l) the slant products 

\: {X, Y; 4'~}1T ~ {DN,SN-l; 4 "1T X *, 1l"1T Y*}; 
((f,g): (LPX,LPY) ~ (Ap,Bp)) 

~ (((I" 1)~P(X, (g" I)LPß): 

(DN+p, SN+p-l) ~ (Ap "1T X*, Bp "1T Y*)), 

\: {X*, Y*; 4'~}11 ~ {DN,SN-l; X "1T4, Y "1T!l}; 

((/*,g*): (~PX*,~PY*) ~ (Ap,Bp)) 

~ (((1" 1*)~p(X, (1 "g*)~Pß): 

(DN+P, SN+P-l) ~ (X "1T Ap, Y "1T Bp)) 

are isomorphisms, and such that the {I }-map ß: SN-l ~ Y "1T y* is an 
absolute Sl7-duality map. It then follows that there are defined absolute 
81T-duality maps 

(X/ß: SN ~ (X/Y)"11X*, (X/ß: SN ~ X "1T (X*/Y*). 
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An n-dimensional geometric Poincare pair (X, oX) can be embedded in 
(Dn+k,sn+k-l) (k large) with X nSn+k-l = oX C Sn+k-l, such that there 
exists a closed regular neighbourhood E of X in Dn+k with 

E' = E nSn+k-l c oE 

a closed regular neighbourhood of oX in Sn+k-l. The inclusions 

oE\E' <=---+ E, oE·' <=---+ E' 

define (k - 1 )-spherical fibrations 

Vx 
Sk-l ---+ oE\ E' ---+ E = X, 

Sk-l ---+ oE' vax) E' = oX, 

such that Vax is the restriction of Vx to oX 

Vx 
vax: ax ~ X ---+ BG(k). 

The collapsing map of {l}-pairs 

(p x' Pax): (Dn+k, sn+k-l) -+ (Dn+k j Dn+k - E, Sn+k-l j Sn+k-l - E') 

= (EjaE\E', E'/oE') = (T(vx), T(vax» 

can be used to define a relative S1T-duality map 

( ) . (Dn+k Sn+k-l) (Px, Pax) (T( ) T( )) (Xx, (Xax ., ) Vx, Vax 

fj. 
-----+) (.!+A7I'T1T(VX)' 8X+A7I'T1T(Vax)) 

between the 1T-pairs (.!+,8X+) and (T1T(VX)' T1T(Vax)) for any covering .1 
of X with group of covering translations 1T. Given n-dimensional geo­
metric Poincare pairs (M,oM), (X,aX) and any coverings N, X with the 
same group of covering translations 1T we thus have relative S1T-duality 
isomorphisms 

{T1T(VM)' T1T(VaM); T1T(VX)' T1T(Vax)}7I' 

-+ {Dn+k,sn+k-l; ß+A7I'T1T(VX),aM+A7I'T1T(Vax)} 

-+ {X+, 8X+; N+, Mf+}I7. 

Thus given anormal bundle map of pairs 

(/,0/; b, ob): (M,oM) -+ (X,oX) 

and an oriented covering .! of X with data (1T, w) the S1T-dual of the 
1T-map of 1T-pairs 

(T1T(b), T1T(ob)): (T1T(vM)' T1T(vOM)) -+ (T1T(VX)' T1T(Vax)) 
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is the relative S7T-homotopy class of a relative geometrie Umkehr map 

(F,8F): (~p.!+,~p8X+) -+ (~P.M+,~p8M+). 
The eonstruetion of Proposition 6.5 now gives a quadratie kernel n­
dimensional quadratie Poineare pair over Z[ 7T ] 

a*(!,8!; b,8b) = a*(!,8!; F,8F) 

with boundary a*(!, b). 
Define the symmetrie {quadratie} signature 

a*(/) E Ln(Z[7T1(X)]) {a*(/, b) E Ln(Z[7Tl(X)])} 

of a degree 1 {normal} map I: M -+ X H/, b): M -+ X} of n-dimensional 
geometrie Poineare eomplexes to be the symmetrie {quadratie} Poineare 
eobordism class of the symmetrie {quadratie} kernel 

{ 
a*(/) = (0(/ 1), e%9'M[M] E Qn(O(f'))) 

a*(/, b) = (0(/,), e%.p F[X] E Qn(O(/,))) 

defined in Proposition 2.2 {Proposition 4.3}. 
A degree 1 {normal} bordism between n-dimensional degree 1 {normal} 

maps 

{
I: M -+ X, I': M' -+ X 

(/,b): M -+ X, (/',b'): M' -+ X 

is a degree 1 {normal} map of (n+ I)-dimensional geometrie Poineare 
eobordisms 

( 

(g; 1,1'): (N; M,M') -+ (XxI; Xx{O},Xx{I}) 

(I = [0, I]) 

((g; I, I'), (e; b,b')): (N; M,M') -+ (XxI; Xx{O},Xx{I}). 

PROPOSITION 6.6. (i) The symmetrie {quadratie} signature 

a*(f) E Ln(Z[7T1(X)]) {a*(f, b) E Ln(Z[7T1(X)])} 

of an n-dimensional degree 1 {normal} map f: M -+ X Hf, b): M -+ X} is a 
degree 1 {normal} bordism invariant such that 

{ 
a*(/) = a*(M) - a*(X) E Ln(Z[7Tl(X)]), 

(I + T)a*(/, b) = a*(/) E Ln(Z[7T1(X)]). 

(ü) The symmetrie {quadratie} signature of the composite g/: M -+ Y 
{(gI, eb): M -+ Y} 01 n-dimensional degree 1 {normal} maps 

I: M -+ X, g: X -+ Y {(f,b): M -+ X, (g,e): X -+ Y} 
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i8 the 8um 

{ 
u*(gj) = u*(j) + u*(g) E Ln(Z[1Tl( y)]), 

u*(gj, cb) = a*(j, b) + u*(g, c) E Ln(Z[1Tl( y)]). 

Prooj. The symmetrie {quadratie} kemel 

u*(g; j,j') {u*«g; j,j'), (c; b,b'»)} 

of a degree 1 {normal} bordism (g; j, j') {«g; j, j'), (c; b, b'»)} is a sym­
metrie {quadratie} Poineare eobordism between the symmetrie {quadratie} 
kerneis a*(/), u*(/') {a*(/, b), u*(/', b'n. Proposition 2.2 {Proposition 2.3} 
gives that a*(/) ~ a*(X) = a*(M) {(l + T)a*(j, b) = a*(/)}, and Proposi­
tion 2.5 {Proposition 4.3} that 

a*(g/) = u*(j)~ a*(g) {a*(g!,cb) = a*(!,b)EB a*(g,c)}, 

up to homotopy equivalenee. By Proposition 1.3.2 homotopy equivalent 
symmetrie {quadratie} Poineare eomplexes are eobordant. 

In Proposition 7.1 we sball identify tbe quadratic signature 

a*(!, b) E Ln(Z[1Tl(X)]) 

of an n-dimensional normal bundle map (j, b): M ~ X with the surgery 
obstruetion 8(/, b) E Ln(1Tl(X) , w(X)) obtained by Wall [30] using geo­
metrie interseetion and self-interseetion forms. Wehave already related 
the two eonstructions in Proposition 5.4, and the normal bordism in­
varianee of the quadratie signature (Proposition 6.6(i) ) ensures tbat there 
ia defined a morphism of abelian groups 

Ln(1Tl(X),W(X» ~ Ln(Z[1Tl(X)]); 8(!,b) f--+ a*(!,b). 

In § 7 below we shall identify this geometrieally defined map with the 
algebraieally defined isomorphism of § 1.5. 

In view of the above, the quadratie signature sum formula of Pro­
position 6.6(ü) may be eonsidered as a homotopy-theoretie version of the 
sum formulae ofWall [30, §l7H] and Theorem 7.0 of Jones [6]. 

7. Geometrie surgery 
The original work of MiInor [16] and Wallaee [31] {Kervaire and Milnor 

[8]} developed oriented {framed} surgery as a method for killing the 
homotopy groups of an oriented {framed} smooth manifold M. The 
framed surgery teehnique was generalized to surgery on anormal bundle 
map (/, b): M ~ X from a eompaet manifold M to a finite geometrie 
Poineare eomplex X (previously X = Sn) by- Browder [3], Novikov [20] 
(for 1T1(X) = {l}), and Wall [30] (for any 1T1(X». The manifold M may be 
taken to be smooth, PL, topologieal (Kirby and Siebenmann [9)) and 
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even a homology manifold (Maunder [14]). There are also versions for 
paraeompaet M and infinite X (Taylor [27], Maumary [13]). Various 
authors, Levitt [11], Jones [6], Quinn [21], Lannes, Latour and Morlet 
[10], went on to eonsider framed surgery on normal maps of geometrie 
Poineare eomplexes. In all eases the obstruetion to making anormal map 
a homotopy equivalence by a sequence of framed surgeries is an element 
8(/, b) of the group L n(1T1(X), w(X)) of Wall [30], or of one of the closely 
related variants described in §I.9. We sha11 now identify the surgery 
obstruction 

8(/, b) E Ln(1Tl(X), w(X)) 

with the quadratic signature 

CI.(/, b) E Ln(Z[7Tl(X)]), 

Also, we shall show that the ehain level effect of an oriented {framed} 
geometrie surgery on a degree 1 {normal} map I: M ~ X {(I, b): M ~ X} 
is an elementary symmetrie {quadratic} surgery on the symmetrie 
{quadratie} kernel CI*(/) {CI.(/,b)} (as defined in §I.4). For the purpose 
of exposition we shall consider only smooth surgery in geometry, and only 
the projective symmetrie {quadratic} L-groups Ln(A) {Ln(A)} in algebra. 

PROPOSITION 7.1. The quadratic signature 01 an n-dimensional normal 
bundle map (I, b): M ~ X is the Wall surgery obstruction 

CI. (I, b) = 8(1, b) E Ln(Z[7Tl(X)]) = Ln(1Tl(X), w(X)) (n ~ 5). 

ProoJ. Let n = 2i or 2i + I, and write (I', b'): M' ~ X for the normal 
bordant (i-I)-connected n-dimensional normal bundle map obtained 
from (I, b): M ~ X by framed surgery below the middle dimension, as in 
Theorem 1.2 of Wall [30]. Propositions 4.2 and 2.6 give an (n-2i)­

dimensional (_)i quadratic Poincare complex over Z[1Tl(X)], Cli(/', b'), 
such that 

SiCl,(I', b') = CI.(/', b'). 

It follows from the normal bordism invariance of the quadratic signature 
(Proposition 6.6(i) ) that 

CI.(/', b') = u.(I, b) E Ln(Z[1Tl(X)]), 

Proposition 5.4 identifies the ( - )i quadratic Poincare cobordism class 

CI,(/', b') E L n_2,(Z[1Tl(X)], (- )i) 

with the framed surgery obstruction obtained by Wall in [30, §§ 5, 6], 

8(/,b) = 8(/',b') E Ln(7Tl(X),W(X)), 
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under the identifieations 

Ln- 2i(Z[1Tl(X)], ( - )i) = Ln(1Tl(X), W(X)) 

ofPropositions 1.5.1 and 1.5.2. The i-fold skew-suspension isomorphism of 
Proposition 1.4.3 

Si: L n_2((Z[1T1(X)], ( - )i) ~ L n(Z[1T1(X)]) 

is therefore sueh that 

Si8(/,b) = Si8(/',b') = Siai(/',b') = a.(/',b') = a.(/,b) E Ln(Z[1Tl(X)]), 

As yet, there is no geometrie interpretation of the symmetrie signature 
a·(X) E Ln(Z[1Tl(X)]) of an n-dimensional geometrie Poineare eomplex X. 
At any rate, the symmetrie signature appears in the produet formula for 
surgery obstruetions (Proposition 8.l(ü) below). 

Given an n-dimensional normal bundle map of pairs 

((/,of), (b, ob)): (M,oM) -+ (X,oX) 

sueh that of: oM ~ oX is a homotopy equivalenee we have that the 
quadratie 'kernel u.((j, oj), (b, ob)) is an n-dimensional quadratie Poincare 
pair over Z[1T1(X)] with eontraetible boundary (n-l)-dimensional quad­
ratic Poineare eomplex u.(oj, ob). The homotopy equivalenee classes of 
n-dimensional quadratie Poineare pairs with eontractible boundary are 
in a natural one-one eorrespondenee with the homotopy equivalenee 
classes of n-dimensional quadratie Poineare eomplexes (by Proposition 
I.3.4(i». We thus obtain a quadratic signature 

u.((/, oj), (b, ob)) E Ln(Z[7Tl(X)]), 

whieh we can identify with the obstruction obtained by Wall [30] (for 
n ~ 5) to making (/,0/): (M, oM) ~ (X,oX) a homotopy equivalence by 
a sequenee of framed surgeries on the interior of M, keeping 8/: 8M -+ 8X 
fixed. 

The identification of Proposition 7.1 can be interpreted as an instant 
surgery obstruction, solving, Problem 5 of Shaneson [24]. Given a 2i­
dimensional {(2i + 1)-dimensional} normal bundle map (/, b): M ~ X we 
can write down a non-singular (- )i-quadratic form {formation} over 
Z[1T1(X)] representing the surgery obstruetion a.(/, b) E L 2i(Z[7T1(X)]) 
{a.(/, b) E L2i+1(Z[1Tl(X)])}, without preliminary surgeries below the 
middle dimension. 

PROPOSITION 7.2. Let (j, b): M -+ X be an n-dimensional normal bundle 
map, with quadratic kernel 

u.(/, b) = (0(/'), e%ifsF[X]) = (0, ifs E Qn(O». 
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Then the surgery obstruction u.(f, b) E Ln(Z['7T1(X)]) is the class 0/ the non­
singular (_)i quadraticform {formation} over Z['7Tl(X)], 

(eoker(( d* d
O
) : 

( - )i+l( 1 + T)tPo 

Proof. This is just the explieit inverse 

Qi: Ln(Z[1Tl(X)]) ~ Ln_ 2i(Z['7T1(X)], ( - )i) 

to the i-fold skew-suspension isomorphism Si of Proposition 1.4.3. (It is 
required that all the ehain modules Cr appearing in the above formulae be 
finitely generated projeetive Z[1T1(X)]-modules.) 

We shall now show that a geometrie surgery induees an elementary 
algebraie surgery on the ehain level (as defined in §I.4). Let us reeall the 
elements of geometrie surgery. 

An elementary oriented {framed} surgery of type (r, n - r - 1) (0 ~ .r ~ n - 1) 
on a degree 1 {normal bundle} map f: M -+ X {(f, b): M ~ X} from an 
n-dimensional manifold M to an n-dimensional geometrie Poineare 
complex X is determined by the following data: 

(i) an emhedding g: Sr ~ M with an oriented normal hundle 
Vg : Sr -+ BSO(n-r)~ 

(ii) a null-homotopy vg : Dr+l -+ BSO(n-r) of Vg: Sr -+ BSO(n-r), 
that is an embedding g: Sr X Dn-r <=-+ M extending g; 

(ili) a null-homotopy h: Dr+l -+ X of fg: Sr -+ X; 
and in the framed oase also 

(iv) a relative null-homotopy (vh' va): (Dr+l, Sr) AI -+ (BSO, BSO(n -r)) 
extending va' of the map of pairs 

(vh'Va): (Dr+l,Sr) -+ (BSO,BSO(n-r)), 

with vh: Dr+l -+ BSO the null-homotopy of the olassifying map for 
the stahle normal bundle va: Sr -+ BSO(n-r) -+ BSO determined 
by b: VM -+ Vx and h: Dr+l-+ X. 
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The surgery replaees I {(/,b)} by the n-dimensional degree 1 {normal 
bundle} map I': M' ~ X {(/',b'): M' ~ X} appearing in the (n+l)­
dimensional degree 1 {normal bundle} map of eobordisms 

( 
(e; 1,1'): (N; M,M') ~ (XxI; XxO, Xx 1), 

(( e; I, I'), (a; b, b')): (N; M, M') ~ (X x I; X x 0, X xl) 

defined by 

N = M x I ugX1 Dr+1 x Dn-r, M' = M\g(sr x Dn-r) UDHI X Sn-r-l, 

using h: DHI ~ X to extendJ: M ~ X x 0 to a map of pairs 

(e, f'): (N, M') """* (X X I, X xl), 

and in the framed ease using vh to extend b: VM ~ Vxxo to a bundle map of 
pairs (a, b'): (VN' VM') ~ (VXXI' VXXl). The surgery is said to kill 

(h,g) E 1Tr+l(/). 

PROPOSITION 7.3. Let 

I: M ~ X,I': M' ~ X {(/,b): M ~ X, (/',b'): M' ~ X} 

be n-dimensional. degree 1 {normal bundle} maps sueh that I' {(f.'l.b')} is 
obtained Irom 1 {(I, b )} by an elementary oriented {/ramed} surgery 01 type 
(r,n-r-l) killing (h,g) E 'TTr+1(/). Then the symmetrie {quadratie} kernel 
u*(/') {u*(/',b')} is obtained Irom u*(/) {u*(/,b)} by an elementary 
symmetrie {quadratie} surgery 01 type (r, n - r - 1) killing the image 01 
(h, g) E 'TTr+l(/) under the Hurewiez map 

'TTr+1(/) = 'TTr+l(!) ~ Hr+1(!) = Kr(M). 

Prool. Let 

{ 
(e; I, I'): (N; M,M') ~ (X x I; X x O,X xl) 

((e; 1,1'),(a; b,b')): (N; M,M') ~ (XxI; XxO,Xx 1) 

be the assoeiated degree 1 {normal bundle} bordism, with symmetrie 
{quadratie} kernel (n+ 1)-dimensional symmetrie {quadratie} Poineare 
pair over Z['TTl(X)] 

( 

u*(e; I, I') = ((i i'): 0(1') Ef) 0(/'1) ~ O(el ), (S97, 97 Ef) - 97') E Qn+1((i i'))), 

u.((e; I, I'), (a; b, b')) 

= ((i i'): 0(1') Ef) 0(/'1) ~ O(e l ), (S.p,.p Ef) - .p') E Qn+l((i i'))). 

Let k: O(e l ) ~ O(i') be the inelusion of O(el ) in the algebraie mapping 
eone of i': 0(/'1) ~ O(e l ), whieh is sueh that O(i') = Sn-rz['TT1(X)] up to 
ehain equivalenee. Use the ehain homotopy eommutative diagram of 
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Z[1Tl(X)]-module ehain maps (withj: ki(I 0) ~ k(i i') any ehain homotopy) 

(i i') 
O(JI) ffJ O(J'I) ) O(el ) 

(1 Oll· _~ lk 
0(1') 1, = ki) O(i') = sn-1'Z[1T1(X)] 

to define a relative Z2-hypereohomology {Z2-hyperhomology} c1ass 

{ 

(8q;,tp) = «1 0),k;j)%(8q;,tp$-tp') EQn+l(i), 

(8t/J,t/J) = «1 0),k;j)%(8t/J,t/J$-f) E Qn+l(i). 

The symmetrie {quadratie} kernel 

( 

a*(J') = (O(f'I), rp' E Qn(O(f'I))), 

a.(J', b
O

') = (O(f'I), t/J' EQn(O(J'I») 

is obtained from a*(f) = (O(I'),rp) {a.(f,b) = (O(f'),t/J)} by an elementary 
symmetrie {quadratie} surgery on the (n+ I)-dimensional symmetrie 
{quadratie} pair 

{

(i: O(fl) ~ Sn-rZ[1T1(X)], (8rp, rp) E Qn+l(i)), 

(i: 0(1') ~ Sn-rZ[1T1(X)], (8"', "') E Qn+l(i)). 

We have the following partial eonverse to Proposition 7.3. 

PROPOSITION 7.4. Let (f,b): Mo~ X be an n-dimensional normal bundle 
map with quadratic kernel a*(f, b) = (0(1'), '" = e%"'F[X] E Qn(O(f'»)). I/ 
f: M ~ X is (r-I)-connected (2r ~ n) and n ~ 5 it is possible to kill 
x E 1T r+l (I) = Kr(M) by an elementary Iramed surgery il and onlyil it can 
be killed by an elementary quadratic surgery on u*{!, b), that is if and only if 

vr(",)(x) = 0 E H2r- n(Z2; Z[1Tl(X)], (- )n-r) (= 0 ij 2r < n). 

For the sake 0 of eompleteness we shall now deseribe the effeet on an 
elementary geometrie surgery of a change in the framing ofthe embedded 
sphere. We reeall that the investigation of such ehangeso played an impor­
tant part in the original proof that there is no surgery obstruetion in the 
odd-dimensional simply-eonneeted ease (Kervaire and Milnor [8, § 6], 
Browder [3, Chapter IV.3]). 

Letj: M ~ X {(j,b): M ~ X} be a degree 1 {normal bundle} map from 
an n-dimensional manifold M to an n-dimensional geometrie Poineare 
eomplex X. Let g: Sr ~ M be an embedding with a null-homotopy 
h: Dr+l ~ X of jg: Sr ~ X on whieh it is possible to perform oriented 
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{framed} surgery, and let 

I': M' -+ X, I": M" -+ X {(I', b'): M' -+ X, (I", b"): M" -+ X} 

be the degree 1 {normal bundle} maps obtained from! {(/,b)} by oriented 
{framed} surgery using two different extensions y, g: Sr X Dn-r ~ M of g 
rand two different relative null-homotopies (vh' Vg), (Vh' üg) of 

(Vh'Vg): (Dr+l,sr) -+ (BSO,BSO(n-r))}. 

The differences are measured by elements 

cx E 71r(SO(n-r)) {ß E 71r+l(SOjSO(n-r))}. 

The symmetrie {quadratie} kemels u*(/'), u·(/") {u.(/',b'), u.(f",b")} are 
obtained from the symmetrie {quadratie} kernel 

( 
u*(/) = (0(/ 1), rp = e%rpM[M] E Qn(O(/I))) 

u*(!, b) = (O(jI), tP = e%tPF[X] E Qn(O(fl))) 

by elementary symmetrie {quadratie} surgeries oftype (r,n-r-l) on the 
(n + 1 )-dimensional symmetrie {quadratie} pairs 

(i: 0(/1) -+ sn-rZ[711(X)], (5rp, rp) E Qn+l(i)), 

(i: 0(1') -+ Sn-rZ[71l(X)]' (5rp, rp) E Qn+l(i)) 

(i: O(jI) -+ sn-rZ[711(X)], (5t/J, t/J) E Qn+l(i)), 

(i: O(jI) -+ Sn-rZ[1Tl(X)]' (5t/J, t/J) E Qn+l(i)) 

defined in the proof of Proposition 7.3, with i = i: 0(/1) -+ Sn-rZ[71l(X)]. 
Now Proposition 1.3.1 gives exaet sequenees 

( 

Qn+l(Sn-rZ[71]) ~ Qn+1(i) ~ Q'n(O(f')) 
(71 = 71l(X)), 

Qn+l(Sn-rZ[71]) ~ Qn+l(i) ~ Qn(O(/I)) 

80 that 

{
. (:' rp) - (5rp, rp) E ker(o) = im(y: Qn+l(Sn-rZ[71]) -+ Qn+l(i)), 

(5t/J, t/J) - (5t/J, t/J) E ker(o) = im(y: Qn+l(Sn-rZ[71]) -+ Qn+l(i)). 

Next, reeall from Proposition 5.1 the morphism 

( 
j: 71 r(SO(n - r)) -+ Qn+l(Sn-rz), 

j: 71r+l(SOjSO(n-r)) -+ Qn+l(Sn-rz). 
/ / 

PROPOSITION 7.5. The algebraic effect on an elementary oriented {/ramed} 
8urgery of type (r,n-r-l) of a change of /raming by cx E 71r(SO(n-r)) 



256 ANDREW RANICKI 

{ß E 7Tr+1(SO/SO(n-r))} is given by 

with 
( 

(89',9') - (89', 9') = y(j(cx), 0) E Qn+l(i), 

(8!/s,!/s) - (~,!/s) = y(j(ß), O) E Qn+1(i), 

{ 
(~ (<xl, 0 l E Q"+l(S:~:Zl Ei) Hn-2r-l(Z. ~ Z[ 1T JjZ, ( - l:~:l = Q"+l(S:~:Z[ 1T ]l, 
(J(ß),O) E Qn+l(S Z) E9 H2r- n+1(Z2' Z[7T]/Z, (-) ) = Qn+l(S Z[7T]). 

8. Products 
We shall now apply the L-theoretio produet operations of § 1.8 to 

obtain produet formulae for the symmetrie signatures of geometrie 
Poineare eomplexes, and for the quadratie signatures (surgery obstrue­
tions) of normal maps. 

PROPOSITION 8.1. (i) The symmetrie signature oj the cartesian product 
X x Y oj geometrie Poincare complexes is 

a*(X x Y) = a*(X) ® a*( Y) E Lm+n(Z[7Tl(X x Y)]), 

where m = dimX, n = dim Y. 
(ü) The symmetrie {quadratie} signature of the carte8ian produot 

jxg: MxN ~ Xx Y {(jxg,bxe): MxN ~ Xx Y} oj degree 1 {normal} 
maps j: M ~ X, g: N ~ Y {(j,b): M ~ X, (g,e): N ~ Y} oj geometrie 
Poincare complexes is 

a*(/x g) = a*(/) ® a*(g) + a*(X) ® a·(g) 

+ a*(/) ® a*( Y) E L m+n(Z[7T1(X x Y)]), 

a.(jxg,bxc) = a*(j, b) (8) u.(g,c) + u*(X) (8) a*(g,c) 

+ a.(/, b) ® a*(Y) E Lm+n(Z[7Tl(X x Y}]}. 

Proof. (i) Choose a funetorial diagonal ehain approximation ~. The 
standard acyclic model proof of the Eilenberg-Zilber theorem gives a 
functorial chain equivalence on the category (topologieal spaees) x 
(topologieal spaees) 

hx,y: O(X x Y) ~ O(X) ®z O( Y) 

and the aeyelie model argument underlying the Cartan produet formula 
for the Steenrod squares' gives a funetorial ehain homotopy 
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in the diagram 

hx,y 
O(X x Y)---------';;;.:..;;....----~) O(X) ®z O( Y) 

kx,y lAX I8>Ay 

HomnZt1( W, O(X) ®z O(X)) 
®z HomZlZtl( W, O( Y) ®z O( Y)) 

Itl* 
h% 

HomZ[Ztl(W,O(Xx Y)@zO(Xx Y)) ~ HomZ[Ztl(W,(O(X)®zO(Y)) 
®z (C(X) ®z C( Y))) 

with tl: W ~ W ®z Wan algebraic diagonal approximation for W = 0(800). 

The product of an m-dimensional geometric Poincare complex X and an 
n-dimensional geometric Poincare complex Y is an (m+n)-dimensional 
geometric Poincare complex X x Y, with orientation map 

w(X x Y) = w(X) x w( Y): 1Tl(X x Y) = 1Tl(X) x 1Tl( Y) ~ Z2 

and fundamental class 

[Xx Y] =.[X]®[Y] E H::~:~XY)(Xx Y; W(XXY)Z) 

= H 7Tl(X)(X . W(X)Z) IX' H7T1(Y)( y. W(Y)Z) m , \CIZ n , , 

where X, rare the universal covers of X, Y. I t now follows from the 
chain homotopy invariance of the Q-groups that there is defined a homo­
topy equivalence of (m+n)-dimensional symmetric Poincare complexes 
over Z[1Tl(X x Y)] = Z[1Tl(X)] ®z Z[1T1( Y)], 

hx,y: a*(X x Y) = (O(X x Y), SOXXy[X x Y] E Qm+n(o(x x Y))) 

~ a*(X) ® a*( Y) 

= (O(X)®zO(Y),SOj[X]®SOY[Y] E Qm+n(O(X)®zO(r))), 

and the homotopy invariance of symmetric Poincare cobordism gives 

a*(X x Y) = a*(X) ® a*( Y) E Lm+n(Z[1T1(X x Y)]). 

(ii) Consider first the special case of the product I xl: Mx N ~ X x N 
{(Ix 1, b xl): Mx N ~ X x N} of an m-dimensional degree 1 {normal} 
mapf: M ~ X {(/,b): M ~ X}withan n-dimensionalgeometricPoincare 
complex N. Given an Umkehr chain map for f: M ~ X 

5388.3,40 

([X] n- )-1 
jI: O(X) . ) . W(x)o(x)m-* 

J* ) W(X)O(M)m-* [M] n - ) O(M) 

R 
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there is defined an Umkehr ehain map for f xl: Mx N ~ X x N 

h- -
(fx 1)1: Ce! x B) ~ C(X)®zC(B) 

fl h-1 

~ C(111) ®z C(B) M;: C(il x B). 

There are also defined a ehain equivalenee 

hil,;;: C«fx 1)1) ~ C(/'® 1) = C(/')®zC(B) 

and a ehain homotopy eommutative diagram 

c(ilxB) 
efxl 

) C((fxl)l) 

hM.Nl Ih:' -M,N 

e,® 1 
C(il) ®z C(B) ) C(jI) ®z C(B) 

with e;, e;Xl the inelusions. The homotopy equivalenee of (m+n)­
dimensional symmetrie Poineare eomplexes over Z[7Tl(X x N)] 

h';t,'N: a*(fx I) = (C«fx I)'), e!xl<f1MXN[M x N]) 

implies that 
~ u*(f) ® u*(N) = (0(1') ®z OCN), eJq;M[M] ® q;N(N]) 

a*(fx I) = a*(f) ® a*(N) E Lm+n(Z[7Tl(X x N)]). 

Furthermore, if F: LPX+ ~ LP1J1+ is a geometrie Umkehr map for 
(f,b): M ~ X then 

F" I: ~P(X x R)+ = ~px+"B+ ~ ~p(il x R)+ = ~pil+"B+ 

is a geometrie Umkehr map for (Ix 1, b xl): Mx N -+ X x N, with 
quadratie eonstruetion 

tPFI\l: H~~:~XN)(X x B; W(XXN)Z) ~ Qm+n(C(M x B)) 

such that 

hM,N"IotPFI\l[X x N] = tPF[X] ® <f1N[N] E Qm+n(C(M) ®z c(R)). 

The homotopy equivalenee of (m+n)-dimensional quadratie Poineare 
eomplexes over Z[7Tl(X x N)], 

h';t;;: a*(fx 1, b x 1) = (Q((fx 1)1), eixl"lotPFI\l[X x N]) 

implies that 
~ a*(f, b) ® a*(N) = (O(/,) ®z OCR), e;%tPF[X] ® <f1N[N]) , 

a*(!x I,b x I) = a.(!,b)® a*(N) E Lm+n(Z[7T1(X x N)]). 



THE ALGEBRAIC THEOR Y OF SURGER Y. 11 259 

In the general ease express the produet degree I {normal} map as the 
eomposite 

(

/Xg:MXN lxI) XxN Ixg) XxY, 

(/xI,bxI) (Ixg,Ixc) 
(/xg,bxc): MxN ~ XxN ~ Xx Y, 

and apply the surn forrnula of Proposition 2.5 {Proposition 4.3} to obtain 
that 

u*(/ x g) = u*(/ x I) Ef) u*(1 x g) 

= u*(/) ® u*(N) (f) u*(X} ® u*(g}, 

u*(/x g, b xc) = u*(/x 1, b x 1) (f) u*(1 x g, 1 xc) 

= u*(/,b)® u*(N)$ u*(X)® u*(g,c) 

up to homotopy equivalenee. Now u*(N) = u*(g) + u*( Y) E Ln(Z[?T1( Y)]) 
(by Proposition 2.2), so that 

a*(/ x g) = u*(/) ® u*(g) + u*(X) ® u*(g) 

+ a*(f) ® a*( Y) E Lm+n(Z[?T1(X x Y)]), 

u*(/ x g, b xc) = u*(/, b) ® u*(g, c) + a*(X) ® u*(g, c) 

+ u*(/, b) ® u*( Y) E Lm+n(Z[?T1(X x Y)]). 

The produet formula for symmetrie signatures ofPropositions 8.I(i) is a 
generalization of the elassieal produet formula for the signature. 

The produet formula for surgery obstruetions (quadratie signatures) of 
Proposition 8.I(ii) is a eommon generalization of the produet formulae of 
Sullivan (for 7Tl(X) = {I}, 7T1(.Y) = {I}, proved by Browder in [3, Chapter 
111]), Williamson [32], Shaneson [23], and Morgan [19] (all for 7Tl(X) = {I}, 
f = 1: M -+ X = M). 

PROPOSITION 8.2. The periodicity isomorphism in the e-quadratic 
L-groups is defined by the product with u*(CP2) E L'(Z), 

82 = u*(Cp2)®-: Ln(A,e) -+ Ln+,(A,e) (Z®zA = A, nE Z). 

Proof. Removing the fundamental class [Cp2] E H,(Cp2) by symmetrie 
surgery represent a*(Cp2) E L'(Z) by the 4-dimensional symmetrie 
Poineare eomplex over Z, (0, rp E Q'(O», defined by 

o = {Z 
r 0 

ifr = 2 
rpo = 1: 0 2 -+ O2, 

if r i= 2, 



260 ANDREW RANICKI 

The algehraie 4-periodieity in the e-quadratie L-groups is thus 
seen to eorrespond to the geometrieally defined 4-periodieity of surgery 
ohstruetions 

L n(7T) ~ L n+4(7T); 

u*«!,b): M ~ X) ~ u*«!x I,b x I): Mx Cp2 ~ X X CP2) 

of Wall [30, Theorem 9.9]. 

9. Wu classes 
We shall now use the equivariant S-duality of § 3 to describe the extent 

to w!rieh the n-dimensional symmetrie Poineare eomplex 

u*(X) = (0(.!),1x[X] E Qn(o(.!))) 

of an n-dimensional geometrie Poineare eomplex X refleets the properties 
of the Spivak stable normal fibration Vx: X ~ BG. For any stable 
spherieal fibration p: X ~ BG over any n-dimensional OW eomplex X 
we shall eonstruet an n-dimensional hyperquadratie eomplex over 
Z[7Tl(X)] 

The hyperquadratie Wu classes v,(8p ): H,(.!) -+ 11'(Z2; Z[7T1(X)]) of 
&*(p) are equivariant analogues of the Wu elasses vr(p) E H'(X; Z2)' 
In partieular, for the Spivak normal fibration vx: X -+ BG of a geometrie 
Poincare complex X there is a natural identification 

J u*(X) = &*(vx) 

(up to homotopy equivalence), giving rise to an equivariant analogue ofthe 
elassical Wu formula 

v,(X} = v,(vx} E H'(X; Zz} 

relating the diagonal structure of O(X; Zz) to vx. The quadratic strueture 
in the kernel u*(!,b) of anormal map (f: M ~ X,b: VM -+ vx) expresses 
the vanishing of the equivariant Wu classes of VM on 

K*(M) = ker(!*: H*(lfl) -+ H*CX)). 

We shall also develop equivariant analogues of the suspended Wu classes 
(uv),(h) E H'-I(X; Zz) ofthe automorphisms h: p -+ p of a stable spherical 
fibration p: X ~ BG (over any OW complex X). We shall use them to 
describe the efIect on the quadratie kernel u*(!, b) of anormal map 
(f, b): M -+ X of a change in the bundle map b: vM ~ v x. 

To the symmetrie and quadratic constructions of § 1 

1x: H*(X) -+ Q*(O(X)), I/JF: H*(X) -+ Q*(O(Y)) (F E {X, Y}) 
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we now add the 'hyperquadratie eonstruetion' 

(Jx: H*(X) ~ Q*(C(X)*). 

This is defined to be the eomposite 

(Jx: H*(X) = H*(Y) ~ Q*(C(Y)) = Q*(C(X)*) ~ a*(C(X)*) 

for any S- (or S7T-)dual Y of X. For example, if Vx: X ~ BG(k) is a 
Spivak normal fibration of an n-dimensional geometrie Poineare eomplex 
X, and X is an oriented eovering of X with data (7T, w), then the S7T-duality 
between X+ and T7T(VX) obtained in Proposition 4.1 expresses the stable 
symmetrie eonstruetion JrpJf. on the fundamental class [X] E H~CX; WZ) 
in terms of the hypeFquadratie eonstruetion (JT1T(VX) on the Thom class 
Uvx E H~(T7T(VX); WZ). 

Given a group 7T and an S7T-duality map cx: SN ~ X A" Y between 
finitely-dommated GW1T-eomplexes X, Y there is defined a chain equi-
valenee of finite-dimensional R[ 7T ]-module chain eomplexes 

Xex = (cx*[SN] \ - )-1: G( Y; R) ~ G(X; R)N-* 

for any commutative eoefficient ring R, which is obtained by applying 
R[7T]®Z[1T]- to the Z[7T]-module chain equivalence Xex: C(Y) ~ C(X)N-* 
given by Proposition 3.8: Given a group morphism w: 1T ~ Z2 endow 
R[ 7T] with the w-twisted involution, and define an R[ 1T ]-module ehain map 

(Jx,ex: HomR[1T)(C(X; R), WR) 

x: --~-~) HomR[1T)(C(Y; R)N-*, WR) = R'®R[1T)C(Y; R)N-* 

1Jy = 1 ®Lly 
---~) Homz[z21(W,C(Y; R)'®R[1T)C(Y; R))N_* 

x~ --~--)o) HomZlZa)(W, (C(X; R)N-*)'®R[7T)C(X; R)N-*)N_*. 

This induces R-module morphisms in homology 

(Jx,ex: Ii~(X; WR) -)0 QN-k(C(X; R)N-*) 

such that there is defined a eommutative diagram of R-module morphisms 
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with if'y the symmetrie eonstruetion of Proposition 1.2. Thus for the 81T­
duality map (Xx: Sn+k ~ X+Ä7T T1T(VX) assoeiated to a normalized n­
dimensional geometrie Poineare eomplex 

(X, Vx: X ~ BG(k), px E 1Tn+k(T(vx))) 

and an oriented eovering X with data (1T, w) we have a eommutative 
diagram 

({Jj 
H~(X; WR) ) Qn(o(x; R)) 

xo··l lx~z . 
1i~(T1T(VX); WR) 8P1TC

/1X),
lXx) Qn(O(T1T(Vx); R)n+k-*) 

using the untwisted dual R[1T]-module strueture in G(T1T(VX); R)n+k-*. 
Evaluating on the fundamental c1ass [X] E H~CX; W R) and using the 
isomorphism x:x as an identifieation we ean write 

({Jx[X] = 8T1TCVX),lXx(D;,x) E Qn(o(x; R)), 

with u"x E Ii~(T1T(VX); WB) the Thom class of Vx' (We are using only the 
orientability of X with eoefficients in R here.) 

We shall now show that for a fix~d finitely-dominated OW1T-complex X 
the eomposite 

1i~(X; WR) 8x,~ QN-k(G(X; R)N-*) ~ (j-k(G(X; R)-*) 

is independent of the 81T-duality map (X: SN ~ X Ä 1T Y, with J as in 
Proposition 1.1.2. We have the foll<:>wing hyperquadratic construction. 

PROPOSITION 9.1. Let 1T be a group, w: 1T ~ Z2 a group morphism, R a 
commutative ring, and give the group ring R[ 1T] the w-twisted involution. 

Given a finitely-dominated OW 1T-complex X there are defined in a natural 
way R-module morphism8 

8x : Ii:(X; WR) ~ (j-k(O(X; R)-*) (k ~ 0) 

with the untwisted dual R[ 1T ]-module structure on G(X; R)-*, such that 
(i) if (X: SN ~ X Ä 1T Y is an S1T-duality map there is defined a commuta­

tive diagram of R-modules 
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(ii) il I: X -+ Y is a 17-map 01 finitely-dominated OW17-complexes then 
there is defined a commutative diagram 01 R-modules 

H~(Y; WR) 
8y 

) Q-k(O( Y; R)-*) 

1*1 
8x 

11*% 

I:i~(X; WR) ) Q-k(O(X; R)-*) 

(iii) the construction is invariant under suspension, in that there is defined 
a commutative diagram 01 R-modules 

in which the vertical maps are the suspension isomorphism8, 
(iv) il h: R -+ S is a morphism of commutative rings, there is defined a 

commutative diagram 01 R-modules 

Ii~(X; WR) 
8x ) Q-k(G(X; R)-*) 

h1 
8x 

Ih 
Ii~(X; WS) ) Q-k(O(X; S)-*) 

in which the vertical maps are the change of rings h: R[17] -+ S[17]. 

Proof. If 0:: SN -+ X "rr Y is an S17-duality map then 80 is 

~o:: SN+! -+ X "rr ~ Y, 

and Proposition 1.4 gives a commutative diagram 

If 0:': SN -+ X "11 Y' is another S17-duality map let FE {Y, Y'}11 be the 
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image of I E {X, X}1T under the S7T-duality isomorphism 

{X, X}" (<X' \ - )) {SN, Y' A" X} (<X \ - )-~ {Y, Y'}1T' 

Applying the quadratic construction of Proposition 1.5 we obtain 

~F: lIJ,;-k(Y; WR) -+ QN-k(G(Y'; R)) 
such that 

F%{Py-lpy,F* = (I+T)~F: lIJ,;-k(Y; WR) -+QN-k(G(Y'; R)). 

The composite 
I+T J 

QN-k(G(Y'; R)) ~ QN-k(G(Y'; R)) ~ QN-k(G(Y'; R)) 

is 0 (Proposition 1.1.2), so that there is defined a commutative diagram 

Thus 
J8x ,(X = J8x ,(X': lI~(X; WR) -+ Q-k(G(X; R)-*) 

is independent of the S7T-duality maps involved, and may be written as 8 x. 

Applying the hyperquadratic Wu class operations vr of §tl to the 
hyperquadratic construction for 7T = {I}, R = Z2, we re cover the duals of 
the Steenrod squares. 

PROPOSITION 9.2. Let X be a jinitely-dominated GW complex. The 
composite 

. 8x 11 n vr r7 
Hk(X; Z2) ~ "t-k(v(X; Z2)-*) ~ HomZs(nk+r(X; Z2)' Z2) 

is given by 

vr(8x (x))(y) = (X(Sqr)(x), y) E Z2 (x E Hk(X; Z2)' Y E Hk+r(X; Z2)) 

with X(Sqr) the image 01 Sqr under .the canonical anti-automorphism X 01 the 
mod 2 Steenrod algebra, as characterized by 

{

Srf ifr = 0, 
~ X(Sqi)Sqi = 

i+i=r 0 if r ~ O. 
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ProoJ. Apply Proposition 1.3 to an S-dual Y of X, and use the result of 
Thom [28] that Steenrod squares in Y correspond to the duals of the 
Steenrod squares in X. 

We shall say that aspace X is n-dimensional if it is a finitely-dominated 
OW complex and the universal cover X is such that Hr(X) = 0 for r > n, 
in which case O(X) is an n-dimensional Z[7Tl(X)]-module chain complex. 
In particular, an n-dimensional geometrie Poincare complex is an n­
dimensional space. 

The hyperquadratic construction associates a hyperquadratic complex 
to every oriented covering of the base space of a stable spherical flbration 
over a finite-dimensional space. 

PROPOSITION 9.3. Given a stable spherical fibration p: X ~ BG over an 
n-dimensional space X and an oriented eovering X with data (1T, w), and given 
also a eommutative ring R, there is defined in a natural way an n-dimensional 
hyperquadratie eomplex over R[ 1T] with the w-twisted involution, the W u 
complex 01 p, 

&*(p) = (WO(X; R)n-*, 8T1T(P)(~) E Qn(wo(X; R)n-*)) 

depending only on the stable fibre homotopy class 0/ p. 
The hyperquadratie Wu ciasses 0/ a*(p) are the Wu classes 0/ p, R[1T]­

module morphisms 

vr(p) = 1\(8T1T(P)(~)): Br(X; R) ~ l1r(Z2; R[1T]) (r ~ 0) 

sueh that 
(i) the Oth W u class is the augmentation map 

vo(p): BoCg ; R) ~ 11°(Z2; R[ 1T]) ; 

~ nggx ~ ~ ng E Rj2R = 11°(Z2; R) ~ 11°(Z2; R[1T]) 
ge1T ge1T 

with x E BoCX;- R) the geometrie R[ 1T ]-module generator defined by any 
path-component 0/ X, 

(ii) i/ I: M ~ X is a map 0/ n-dimensionalspaces with induced cover.M 

and pullback fib~ation I*p: M L X L BG then there is 
defined a map 0/ Wu complexes 

J*: &*(p) ~ &*(/*p) 

and the W u classes are such that there is defined a eommutative diagram 

B..{M; R) 1*) H,.(X; R) 

vr(f·p~ /vr(P) 

l1r (Z2; R[1T]) 
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(iü) if p: X ~ BG is stably fibre hmnotopy trivial then 

v,(p) = 0: H,(X; R) ~ b'(Z2; R[l7]) (r> 0), 

(iv) &*(p) is induced via R[l7]®R[17 (X)]- from the Wu complex &*l~) 
a8sociated to the universal cover t, and there is defined a commutative 
diagram 

in which the vertical maps are the change 01 rings R[l7l(X)] ~ R[l7], 
with 171(X) ~ 17 the characteristic map 01 the covering, 

(v) il h: R ~ S is a morphism 01 CO'lfl,mutative rings there is defined a 
commutative diagram 

in which the vertical maps are the change 0/ rings h: R[7T] ~ S[7T]. 

Proof. Choose a representative (k - 1 )-spherical fibration p: X ~ BG(k), 
evaluate the hyperquadratic construction 

8 T7T(P): I:i~(Tl7(p); WR) ~ a-k(G(Tl7(p); R)-*) = an(G(Tl7(p); R)n+k-*) 

on the Thom class Up E li~(Tl7(p); WR), and use the Thom equivalence 

Up n - : O(Tl7(p); R) ~ WSkO(X; R) 

to obtain an element 8T7T(P)(~) E (jn(wo(X; R)n-*). 
To prove (iü), that v,(O) = 0 (r > 0), let Y be. a. skeleton of K(l7, 1) of 

dimension greater than r containing the image of the classifying map 
I: X ~ K(7T, 1) of the covering X (assuming that X is finite, in the first 
instance), and apply the naturality property (ü) to obtain a commutative 
diagram 

JI,,(X; R) y*) H,C1; R) = 0 

".(g*O) ,;" ".(~ /v.(O) (g = 11: X -+ Y) 

ß'(Z2; R[l7]) 



THE ALGEBRAIC THEORY OF SURGERY. 11 267 

The mod 2 Stiefel-Whitney clasSe8 w* (p) E H*(X; Z2) of a spherieal 
fibration p: X ~ BG(k) are eharaeterized by the property 

Up()Wi(p) = Sqi(~) E Hi+k(T(p); Z2) 

(Thom [28]), whieh may be expressed in terms ofthe symmetrie eonstrue­
tion and the symmetrie Wu classes as 

X Z (u" () - )-1 11 (T( ) Z) ~T(P») Qi+k(n(T(p)', Z2» wj(p): H;( ; 2) ) Hk p; 2 li 

~ (~ ffj~k 
---'-~) HomzlI(Hk(T(p); Z2)' Hk-i(Z2; Z2» = 

o ifj> k 

(cf. Proposition 1.3), with ~ E Hk(T(p); Z2) the mod2 Thom elass. 
The mod 2 Wu classes v*(p) E H*(X; Z2) of a stable spherieal fihration 

p: X ~ BG over a finite-dimensional space X are defined hy 

v,(p) =' ~ X(Sqi)wi(-P) E Hr(x; Z2) (r ~ 0) 
i+i=' 

with -p: X ~ BG any stahle inverse for p. The mod2 Wu classes are 
characterized by the property 

v,(p)(Upnz) = <X(Sqr)(~),z> E Z2 (z E Hr+k(T(p); Z2»' 
, 

PROPOSITION 9.4. The mod 2 reductions of the Wu classe8 of astahle 
spherical fibration p: X ~ BG over a finite-dimensional space X with 
respect to an oriented cover X of X with data (TT, w) agree with the mod 2 W u 
classes, that is there are defined commutative diagrams 

H,(X) 
v,(p) 

) llr (Z2; Z[TT]) 

1 vr(p) 1 
H,(X; Z2) ) IJ'(Z2; Z2) = Z2 

in which the vertical maps are the change 0/ rings 

Z[TT] ~ Z2; ~ ngg ~ ~ ng. 
gEl1 gEl1 

Proof. Applying Proposition 9.2 we can express the mod 2 Wu classes 
of p in terms of the hyperquadratie .eonstruetion by evaluating the 
eomposite 

Hk(T(p); Z2) 8T
(pl a-k(G(T(p); Z2» ~ HomzlI(Hk+,(T(p); Z2)' Z2) 

= HomzlI(Hr(X; Z2)' Z2) = H'(X; Z2) 
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on the mod 2 Thom class Up E Jjk(T(p); Z2)' so that 

vr(p) = vr8p (p)(Up) E Hr(x; Z2)' 

Define the H opl invariant funetion, 

(

z if m = n + 1, n == 1 (mod 2), 

H: 7Tm+n(sm) -+ Hm-n-l(Z2; Z, ( - )m) = Zo 2 if m > n + 1, n == 1 (mod 2), 

otherwise; 

(I: Sm+n -+ sm) ~ H(/), 

by applying the symmetrie eonstruetion to the mapping eone 

with 

Z = Hm+n+1(X) ~ Qm+n+1(O(x)) 

vn+1 11 ~ Homz( m(x), Hm-n-l(Z2' Z, ( _ )m)); 

1 ~ Vn+1(1;x(1)) = H(/) (Hm(x) = Z). 

Alternatively, apply the quadratic construction to 

j: ~m(sn) = Sm+n -+ ~m(So) = sm, 

~f: Hn(sn) = z -+ Q~,m-l](O(SO)) 

= Hm-n-l(Z2; Z, (- )m); 1 ~ ~f(l) = H(/) (n > 0). 

Both these ways agree with the eonstruetion of the Hopf invariant due to 
Steenrod [26], by Propositions 1.2(i), 1.3 and 1.6. The morphism j 
defined in § 5 is the eomposite 

J H 
j: 1Tn(SO(m)) ~ 7Tn(SG(m)) = 7Tm+n(sm) ~ Qm+n+1(smz). 

The diagram 

H 
7Tm+n(sm) ------+~ Hm-n-l(Z2; Z, ( _ )m) 

l: 1 1 s ( = id. if m > n + 1) 

H 
7Tm+n+1(Sm+1) --~) Hm-n(Z2; Z, (- )m+1) 

eommutes, so that it is possible to define the stahle Hopj invariant 

(

Z2 if n == 1 (mod 2), 
11: ~ = Lim7Tm+n(Sm) -+ ßn+1(Z2; Z) = 

~ 0 ifn == 0 (mod2). 
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PROPOSITION 9.5. The Wu classes of a stable spherical fibration 
p: Sm -+ BG over Sm (m ~ 2) are given by 

vo(p): Ho(sm) = Z -+ bO(Z2; Z) = Z2; z ~ Z2 == z (mod 2), 

{
Z2 if m == 0 (mod 2), 

vm(p): Hm(Sm) = Z -+ [Jm(Z2; Z) = 
o if m == I (mod 2) ; 

z ~ Z2 (stable Hopf invariant of p E 71'm(BG) = ~-1)' 

Proof. Choosing a representative (k - 1 )-spherieal fibration 

p: Sm -+ BG(k) (k ~ m) 

we have that the Thom spaee T(p) is the mapping eone of 

Now 
p E 71'm(BG(k)) = 71'm+k_l(Sk), T(p) = Sk upek+m• 

vm(p) = ~ X(Sqi)Wj( - p) = Wm{ - p) = wm(p) E Hm{sm; Z2) = Z2' 
i+j=m 

and wm(p) = [J (p) E Z2 by eonstruetion. 

The rth Wu class of an n-dimensional geometrie Poineare eomplex X 
with respeet to an oriented cover X of X with data (71', w) is the rth 
symmetrie Wu elass of the assoeiated n-dimensional symmetrie Poineare 
eomplex a*(X) = (O(.1"),9'x[X]) over Z[71'], the Z[71' ]-module morphism 

vr(X) = vr{9'.f[X]): HreI) -+ Hn-2r(Z2; Z[71'], (- )n-r) (r ~ 0). 

The mod 2 W u classes vr{X) E Hr(X; Z2) of X are eharaeterized by 

vr(X)([X] n y) = (Sqr{y), [X]) E Z2 (y E Hn-r(x; Z2)' [X] E Hn(X; Z2)) 

and Proposition 1.3 gives eommutative diagrams relating the two types of 
Wu class 

Vr(X) 
Hr(X) ----+) Hn-2r(Z2; Z[71'], (- )n-r) 

HrJ; z.) vr(X) , H,,-.r(z.; 1 .. ( _ ),,-r) = {Z2 if 2r ~ n 
o if 2r > n, 

in whieh the vertieal maps are the change of rings 

Z[71'] -+ Z2; ~ ngg ~ ~ ng. 
gE1T gE1T 

The reduced Wu classes of X are defined by passing to the redueed (Tate) 



270 ANDREW RANICKI 

cohomology groups 

PROPOSI~ION 9.6. 1/ X is an n-dimensional geometrie Poincare complex 
and X is an oriented covering with data (TT, w) then the Poincare duality ehain 
equivalenee 

defines a homotopy equivalence 0/ n-dimensional hyperquadratie complexes 
over Z[ TT] with the w-twisted involution 

[X] n - : &*(vx) = (wo(x)n-*,8T7r (lIx)(lfvx ) E Qn(wo(x)n-*)) 

~ J a*(X) = (O(X), Jq;j[X] E Qn(o(.l"))). 

1 n partieular, the reduced W u classes 0/ X are just the W u classes 0/ the 
Spivak normalfibration Vx: X ~ BG, 

v,(X) = v,(vx): H,(X) ~ n'(Z2; Z[TT]) (r ~ 0). 

Proof. We have already obtained the identity 

1Jx[X] = 8T7r (lIx),cxx(lfvx ) E Qn(o(.!)) 

(just before Proposition 9.1). Now apply the J-homomorphism of passing 
to the suspension limit to remove the dependence on the choice of STT­
duality o::x' 

The identities J a*(X) = &*(vx), v,(X) = v,(vx) may be considered as 
equivariant generalizations of the formulae of Wu [33] and Thom [28] 
relating the mod 2 Wu cIasses of a manifold X to the mod 2 StiefeI­
Whitney cIasses ofthe tangent bundle "x, since v,(X) = v,(vx) E H'(X; ~i) 
can be written as 

or equivalently 
w,("x) = ~ SqiV;(X) E H'(X; Z2)' 

i+i=' 

If T E Z2 acts on a group ring Z[ TT] by the w-twisted involution, for some 
group morphism w: TT ~ Za, then the direct sum decomposition of 
Z[Z2]-modules 

Z[7T] = Z ~ Z[7T ]/Z 

gives rise to a direct sum decomposition of Z2-cohomology {Z2-homology, 
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Tate Z2-cohomology} groups, 

( 

H'(Z2; Z[7T],e) = H'(Z2; Z,e)EBH'(Z2; Z[7T]/Z,e), 

H,(Z2; Z[17],e) = H,(Z2; Z,e)EB H,(Z2; Z[17]/Z,e), 

11'(Z2; Z[17], e) = 11'(Z2; Z, e) EB 11'(Z2; Z(17 ]/Z, e), 

with e = ± I E Z. We shall call elements of these groups regular if they 
have a decomposition of the type (1,0). The Wu classes of an orient­
able spherical fibration p: X ~ BG(k) with respect to the trivial cover 
X = 17 X X take regular values, 

vm(p): Hm(X) = Z[17]®zHm(X) ~ I1m(Z2; Z[17]); l®x ~ (vm(p)(x),O). 

A map of geometrie Poincare complexes I: M ~ X such that 
dimM = m ~ dimX = n represents the homology class x E Hm(X) if Xis 
an oriented cover of X with data (17, w) such that the composite 

7Tl(M) L 7Tl(X) ~ 7T is trivial, so that il = 7T X M is the trivial cover 

of M and M is oriented (since w(M): 17l(M) L 17l(X) ~ 17 ~ Z2 
is trivial), and ifthe induced Z[17]-module morphism 

I: Hm(M) = Z[17] ®z Hm(M) = Z[17] ~ Hm(X) 

sends the generator to 1(1 ® [M]) = x E Hm{X) for so me lift I: M ~ X. 
The lift is non-unique, all such lifts being given by g! =!g: M ~ X 
(g E 17), so that if x E HmCX) is representable then so is gx E Hm(X) (g E 17). 
(Note that for 17 = {I} we have the result of Levitt [11] that every homo­
logy class x E Hm(X) is representable in this sense, for any OW complex X.) 
The homology classes x E l4n(X) which are represented by maps 
I: Sm ~ X are spherical. 

PROPOSITION 9.7. The mth redueed Wu class 0/ a geometrie Poincare 
eomplex X with respeet to an oriented eover X 01 X with data (17, w) 

vm(X): Hm(X) ~ 11m(Z2; Z[17]) 

takes regular values on representable homology classes. 1/ XE Hm(X) is 
represented by /: M ~ X then 

vm(X)(x) = (vm(/*vx)([M]), O) E I1m(Z2; Z[17]) 

= b m(Z2; Z)@bm(Z2; Z[17]/Z), 
and if M = Sm then 

vm(X)(x) = (stable Hopf invariant of I*vx E 17m(BG) = ~-l' 0) 

E I1m(Z2; Z[7T]). 
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Proof. Combining Propositions 9.3(ü) and 9.6 we have 

vm(X)(/(1 ® [M])) = vm(vx)(/(l ® [M])) 

= vm(f*vx)(l ® [M]) 

= I ®vm(f*vx)([M]) E b m(Z2; Z[1T]). 

For spherieal homology elasses apply Proposition 9.5 to identify the Wu 
c1ass with the stable Hopf invariant. 

The result of Proposition 9.7 restriets the ± symmetrie forms and 
formations oeeurring as the symmetrie kerneis of highly-eonneeted 
degree I maps of geometrie Poineare eomplexes to be even, exeept in 
dimensions related to Hopf invariant 1. (See §I.2 for the definition of 
'even'.) 

PROPOSITION 9.8. Let f: M -+ X be an (i-l)-eonnected degree I map 
of n-dimensional geometrie Poineare eomplexes (2i ~ n), with symmetrie 
kernel a*(f) = (0, rp E Qn(O)). The redueed ith symmetrie Wu class 

vi(rp): Hn-i(O) = Kt(M) -+ lli(Z2; Z[7Tl (X)]) 

is such that Vi(rp) = 0 for i :F 2,4,8, in whieh case a*(/) = Siai(f) is the 
i-fold skew-suspension of an (n - 2i)-dimensional even (- )i-symmetric 
Poineare complex ai(f), and 

a*(f) E im(Si+l: Ln-2(i+1)(Z[7Tl(X)], (- )i+1) -+ Ln(Z[7Tl(X)])) 

(killing Kt(M) by symmetrie surgery if 2(i+l) ~ n); for i = 2,4,8, Vi(rp) 
only takes regular values in lli(Z2; Z[7Tl(X)]). 

Proof. By the Hurewiez theorem Ki(M) = 7THl(f), so that every 
homology c1ass x E Ki(M) ~ Hi(M) is spherieal, eorresponding to a relative 
homotopy elass 

x = ((h,g): (DHl,Si) --? (X,M» E 7Ti+l(f) = Kt(M). 

By Proposition 9.7, 

Vi(rp)(X) = (B(g*VM)'O) E Bi(Z2; Z[1T1(X)]). 

Now apply the result of Adams [1] that the stahle Hopf invariant map 
1l: 7Ti(BG) = -nf-l -+ lli(Z2; Z) is 0 for i :F 2,4,8. 

(Note that even if 2(i + 1) ~ n and vi(rp) = 0 it may not be possihle to 
kill Kt(M) hy geometrie Poineare surgery, that is obtain a degree 1 
geometrie Poineare bordism to an i-eonneeted degree I map f': M' -+ X, 

(e; f,f'): (N; M, M') -+ (X x I; X x 0, X xl), 

sinee this would require every element x = (h, g) E Kt(M) to be sueh that 
g*VM = 0 E 1Ti(BG) = -nf-l' and we are only given that 

l1(g*vM) = 0 E l1i (Z2; Z).) 
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In the ease where n = 2i {n = 2i + I} Proposition 9.8 states that for 
i =F 2,4,8 the symmetrie kernel ai(f) must eorrespond to a non-singular 
(- )i-symmetrie form {formation} whieh is even (under the eorrespondenee 
of Proposition 1.2.1 {I.2.3}). By eontrast, the realization Theorem 5.8 
{6.5} of Wall [30] shows that for n ~ 5 every non-singular (- )i-quadratie 
form {formation} over Z[7T] is the quadratie kernel ai(f,b) of an (i-l)­
connected n-dimensional normal map (/, b): M ~ X, with 1T = 1Tl(X) 
any finitely-presented group. 

For i = 2,4,8 let M be the (i -1)-eonneeted 2i-dimensional geometrie 
Poin'eare eomple"i defined by the eomplex projeetive plane CP2 = 8 2 U'1 e', 
the quaternion projeetive plane HP2 = 8' u1] e8 and the Cayley projeetive 
plane Op2 = 88 u'1 e16 respeetively, with 7] E 172i_l(8i) the Hopf invariant 1 
elements. The symmetrie kerneIs of the assoeiated degree 1 maps 
f: M -+ 82i are all given by the non-singular symmetrie form over Z, 

ai(f) = (Z,I), 

with non-trivial redueed Wu class. Further, erossing with 8 1 gives 
(i -1)-eonneeted (2i-+ 1)-dimensional degree 1 maps 

f xl: M x 81 -+ 82i X 81 

sueh that the symmetrie kerneIs are all given by the non-singular sym­
metrie formation over the Laurent extension Z[z, Z-I] (z = Z-I) 

u'(f xl) = u'(f) ® u*(8') = (Z[ z, r'] $ Z[ z, z-']*, (: :); Z[ z, z-'] , 

im( C~ J Z[z, z-'] -->- Z[z, z-'] $ Z[z, Z-']*)) 
with non-trivial redueed Wu class. We ean also eonstruet simply­
eonneeted odd-dimensional examples, as folIows. For eaeh of i = 2,4,8 
let N be the (i - 1 )-eonneeted (2i + 1 )-dimensional manifold obtained from 
M x I by glueing the ends together using the eonjugation map M -+ M, 
and killing 171 by oriented surgery. The symmetrie kernel ai(g) of the 
assoeiated (i -1 )-eonneeted degree 1 map g: N -+ 8 2i+1 is given by the 
non-singular symmetrie formation over Z of deRham invariant 1 

with non-trivial redueed Wu class, representing the generator 

ai(g) = 1 E L2i+1(Z) = Z2' 
5388.3.40 s 
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The stable automorphisms h: p ~ p over 1 : X ~ X of a stable spherical 
fibration p: X ~ BG over a finite-dimensional space X are classified by 
homotopy classes of maps h: X ~ G = Limm G(m), or equivalently by the 

~ 

relative homotopy classes of maps h: (X x Dl, X x SO) ~ BG such that 
h Ixxso = pup: X x So ~ BG. Define the rth suspended mod 2 W u class 
of h, (uvr)(h) E Hr-1(X; Z2)' to be the image ofthe universal rth mod 2 Wu 
class vr E Hr(BG; Z2) under the composite 

h* 
Hr(BG; Z2) ) Hr(x x Dl, X x So; Z2) 

(proJ' )*-1 1:* 
--'-~) Hr(1:X+; Z2) ) Hr-1(X; Z2)' 

In terms of the mod 2 Stiefel-Whitney classes this is just 

(uvr)(h) = ~ X(Sqi)(1:*wj ( -h)) E Hr-1(X; Z2) 
i+j=r 

(wj(-h) E Hi(XxDl,XxSo; Z2) = Hj(1:X+; Z2))' 

PROFOSITION 9.9. Let h: p ~ p be a stable automorphism over 1: X ~ X 
0/ a stable spherical fibration p: X ~ BG over an n-dimensional space X. 
Let X be an oriented cover 0/ X with data (7T, w), and let R be a commutative 
ring. Then there is defined in a natural way an (n + 1 )-dimensional hyper­
quadratic complex over R[7T] with the w-twisted involution, the suspended Wu 
complex of (p, h) 

&*(p, h) = (WO(X; R)n-*, 8p ,h E an+1(WO(X; R)n-*)), 

depending only on the homotopy class of h: X ~ G, such that 
(i) if 0:: Sn+k ~ Y "TT T7T(p) is an S7T-duality map for some finite­

dimensional OW7T-complex Y, and H E {Y, Y}TT is the S7T-dual of 
T7T(h) E {T7T(p), T7T(p)}TT then the Z[7T]-module chain equivalence 

U. n -. (o:[Sn+k] \ - ) 
j: WO(X; R)n-* p ) O(T7T(p); R)n+k-* ) O(Y; R) 

sends H8p ,h E Qn(WC(X; R)n-*) (with H as in Proposition I.1.2) to 
~H(o:[sn+k]\~) E Qn(O(Y; R)), 

~H(o:[sn+k]\~) = j%H8p ,h E Qn(O( Y; R)), 

(ii) if f: M ~ X is a map of n-dimensionalspaces with induced cover Jl 
there is defined a map of the suspended W u complexes 

J*: &*(p, h) ~ &*(f*p, f*h), 

(iii) 8p ,gh = 8p ,g + 8p ,h' 8P ,l = 0, 
(iv) for R = Z2' the mod 2 reduction of the rth hyperquadratic Wu class 0/ 

8p .1' is the rt~ suspended mod 2 W u class of h 

Vr(8p ,h) = (uvr)(h) E Homz,(Hr_1(X; Z2)' Z2) = Hr-l(X; Z2)' 
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For X = Sn, 

Vn+1(8p ,h) = (stable Bopf invariant of h E 17'n(G) = ~) E Bn(sn; Z2) = Z2' 

Proof. The relative version of the Wu complex construction of 
Proposition 9.3 applied to h: (X x Dl, X X SO) ~ BG gives a relative Tate 
Z2-hypercohomology class 

8Tl1 (h)(Uh) E Qn+1(i = (inclusion)*: WC(X X Dl; R)n-* 

~ WC(X X So; R)n-*). 

The inclusion wCrX x So; R)n-* ~ C(i) = WC(X; R)n-* sends 8Tl1 (h) (U,,) 
to the required element 8p ,,, E Qn+1(wc(X; R)n-*). 

The hyperquadratic Wu classes of the suspended Wu complex 
&*(p, h) = (WC(X; R)n-*,8p ,h E Qn+1(wc(X; R)n-*)) are the suspended Wu 
elasses of an automorphism h: p ~ p of p: X ~ BG, R[7T]-module 
morphisms 

(uvl')(h) = VI'(8p ,h): HI'-lCX; R) ~ flr(Z2; R[17']) (r ~ 1). 

We have already related these classes with the suspended mod 2 Wu 
classes, in Proposition 9.9(iv) above. Note that the quadratic Wu classes 
of HtJp,h E Qn(WC(g; R)n-*) are given by 

vr(B8p ,,.) = H(avr+l)(h): Hr(X; R) ~ H2r- n(Z2; R[7T], (- )n-r) (r ~ 0) 

with B: Qn+1(wc(x; R)n-*) ~ Qn(WC(X; R)n-*) as defined in Proposition 
1.1.2, and H: b r+1(Z2; R[17']) ~ H2r- n(Z2; R[17'], (- )n-r) the natural map. 

PROPOSITION 9.10. Let (f, b): (M, VM, PM) ~ (X, vx, Px) be anormal map 
of normalized n-dimensional geometrie Poincare eomplexes with quadratie 
kernel u*(f, b) = (C(jI),!fJ = e%!fJF[X] E Qn(C(jI))). Given an automorphism 
e: VM ~ VM of VM: M ~ BG(k)-define normal maps 

(f,b'): (M,VM,PM) ~ (X,vx,p~), (f,b"): (M,VM'P~) ~ (X,vx,p~) 

by 
p~ = T(e)PM E 17'n+k(T(vM))' p~ = T(b)p~ E 7Tn+k(T(vx)), 

b' = be, b" = b: VM ~ vx. 

Then the quadratie kernels of (f, b'), (f, b") are given by 

u*(f,b') = u*(f,b") = (C(jI),!fJ' = !fJ+ H8 E Qn(C(jI))) 

with 8 = e%8
VM

,c E Qn+1(C(jI)), and the quadratie Wu elasses are such that 

vr(!fJ')-vr(!fJ) = H(uvr+1)(c): Kr(M) ~ H2r- n(Z2; Z[17'],(-)n-r) (r ~ 0). 

Proof. Let (I, d): (X, vx, p~) ~ (X, vx, Px) be the canonical equivalence 
of S~ivak normal structures given by Proposition 4.1. The fundamental 
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S1T-duality maps 

CXx = ßpX' cx~ = ßp~: Sn+k ~ X+A7T T1T(VX) 

are such that there is defined a homotopy commutative diagram 

~ Y' 
T(vx) 

1 IT(d) 1 fS7T(d) 

T(vx) A 

y ~ 

Let H: ~P X+ ~ ~P X+ be a 1T-map which is S1T-dual to 

T1T(d): T1T(VX) ~ T1T(VX) 

with respect to cx~, so that there is defined a homotopy commutative 
diagram 

Working as in the proof of Theorem 3.5 of Wall [29] we can take H to be 

H: ~PX+ = X+ASP ~ X+ASP; XA8 ~ xAd(x)(8) 

with d: X ~ G(p) a classifying map for d: Vx ~ Vx, and similarly for a 
7T-map 0: ~1Jß+ -+ ~1Jß+, S7T-dual to T7T(C): T7T(vM) -+ T7T(vM) with respect 

to the fundamental S1T-duality map 

CXM = /);'PM: Sn+k ~ 1f1+ A,7T T1T( vM)' 

By the definition of quadratic kernel we have that 

{ 
0'.(/, b) = (G(f!), e%.pF[X] E Qn(G(f!))), 

0'.(/, b') = (G(jI), e%ifiF'[X] E Qn(G(jI))), 

with F: ~P X+ ~ ~P 1f1+ {F': ~P X+ -+ ~1J 1f1+} a 1T-map S1T-dual to 

T1T(b): T1T(VM) ~ T1T(VX) {T1T(b'): T1T(VM) ~ T1T(VxH 
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with respect to CiM' Cix {CiM' Ci~}. Considering the homotopy commutative 
diagram 

GFHAl. 

we can identify 
F' = GFH: ~p.r+ -?- ~pM+. 

Applying the sum formula for the quadratic construction of Proposition 
1.5(iii) we obtain 

tPr = tPa!'*+tPF+j~tPH: H~(X; WZ) -?-Qn(C(M)), 
so that 

e%tPF,[X] -e%tPF[X] = e%tPa[M] E Qn(C(jl)). 

Further, applying the construction of Proposition 9.9(i) to the funda­
mental S17'-duality map CiM: Sn+k -?- M+ "11 T17'(vM) we can identify 

tPa[M] = H8"JI.c E Qn(C(M)) 

with 8"M.C E Qn+1(wO(M)n-*) = Qn+1(O(M)), and so 

e%tPF,[X] - e%tPF[X] = H(e%8"M.C) E Qn(C(!')), 

Applying the quadratic kernel sum formula of Proposition 4.3 to the 
composition of normal maps 

, (I, c) ,(/, b") 
(j,b): (M,VM,PM) ~ (M'VM' PM) ~ (X,vx,p~), 

we have that up to homotopy equivalence 

a.(j, b') = a*(j, b") ffi a*(I, c) = a*(j, b"). 

The mod 2 reduction of the quadratic Wu cIass identity of Proposition 
9.10 in the case where n = 2r == 2 (mod4), 17' = {I} is the formula for the 
twisting of the Arf form due to Brown [5]. 
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PROPOSITION 9.11. (i) Let (j,b): M ~ X, (j,b'): M ~ X be normal 
bundle maps with b' = bc: VM ~ Vx /or some stable bundle automorphism 
c: VM ~ VM classified by c: M ~ 80. The quadratic kernels, 

u*(j, b) = (O,.p) = (O(jI), e%.pF[X] E Qn(O(j'))), 

u*(/, b') = (0, .p') = (0(/'), e%.pF'[X] E Qn(O(/'))), 

are such that il x E K,(M) = H,+1(!) is the Hurewicz image 01 

(h,g) E 7T,+1(/) = 7TH l(!) 

with g: S' ~ M an immersion and h: D,+1 ~ X a null-homotopy 0/ 
jg: 8' ~ X then 

v'(.p')(x) - v'(.p)(x) = (Hj(cg), 0) E Qn(Sn-'Z[7T]) 

= Qn(sn-'Z)Ef> H2r- n(Z2; Z[7T]/Z, (- )n-,) (7T = 7Tl(X)) 
. H 

with Bj: 17 ,(SO) -.L,. Qn+l(sn-,z) ~ Qn(sn-,z). 
(ii) The surgery obstruction u*(j, b) E Ln(Z[17l(X)]) 01 an (i -l)-connected 

n-dimensional normal bundle map (/, b): M ~ X lor n = 2i or 2i + 1 is 
independent 01 the bundle map b: VM ~ v X lor i i- 1, 3, 7. 

P'I'ooj. (i) The universal cover 1: of X induces the trivial cover 
Sr = 17 X Sr of Sr, so that applying Propositions 9.10 and 9.9(iv) we have 

v'(.p')(x) - v'(.p)(x) = (B UV'+l(C)(X) , 0) = (Hj(cg), O) E Qn(8n-'Z[7T ]), 

sinee j is the eomposite 

J stable Hopf invariant 
j: 17,(80) ~ 17,(80) = ~ ) 1l,+l(Z2; Z) 

byeonstruetion. 
(ü) Let,p,,p' E Qn(O(f')) be the Z2-hyperhomology classes appearing in 

the quadratic kerneIs O'.(f,b) = (C(f'),t/J), O'.(f,b') = (O(f'),t/J') of (i-l)­
eonneeted n-dimensional normal bundle maps 

(f,b): M ~ X, (f,b'): M -+ X 

for n = 2i or 2i+ 1, with b' = bc: vM ~ Vx for some automorphism 
c: VM ~ VM classified by c: M ~ SO. By the Hurewicz theorem every 
element x E Ki(M) = 7Ti+1(f) is represented by an immersion g: Si -+ M 
together with a null-homotopy h: Di+l -+ X of Ig: Si -+ X, so that by (i) 

vi(,p')(x) - vi(,p)(x) = (Hj(cg), O) E Qn (Sn-iZ [7T ]). 
Now 

j(cg) = (stable Hopf invariant of J(cg) E 7Ti(SG) = -rrf) = 0 E l1i +l(Z2; Z) 

for i :f:. 1,3,7 by the result of Adams [1], so that the (_)i quadratie forms 
{formations} assoeiated to u*(f, b), u.(/, b') are isomorphie by Pro­
position 1.2.1 {Proposition I.2.5}. 
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For X = S2i, i == 1 (mod2) Proposition 9.11(ü) is the familiar result 
that the Arf invariant of an (i-l)-connected framed 2i-manifold is 
independent of the framing for i :F 1, 3, 7. Indeed, the original definition 
by Kervaire in [7] of the Arf invariant of such a manifold was independent 
of the choice of framing. For i = 1,3,7 there exists an (i-l)-connected 
2i-dimensional normal bundle map 

(/, b): Si x Si -+ S2i 

involving an exotic framing b of Si x Si, with Arf invariant 

u*(/, b) = 1 E L 2i(Z) = Z2' 

Moreover, crossing with SI gives an (i -1)-connected (2i + 1)-dimensional 
normal bundle map 

(/ xl, b xl): Si x Si X Sl -+ S2i X SI 

involving an exotic framing b x 1 of Si x Si X SI, with surgery obstruction 

u*(/x 1, b x 1) = 1 E L2i+l(Z[Z]) = Z2' 

Proposition 9.11(ü) has the following consequence: for n :F 2,3,6, 7, 14, 
15 the bundle map b of an n-dimensional normal bundle map (/, b): M -+ X 
determines the sequence of framed surgeries below the middle dimension 
needed to obtain anormal bordant ([ln] -l)-connected normal bundle 
map (f',b'): M' -+ X, but the surgery obstruction 

u*(f, b) = u*(/', b') E Ln(Z[711(X)]) 

is independent of the bundle map b'. For example, let (f, b): SI x Sl -+ S2 
be anormal bundle map of Arf invariant 1, and let 

(f', b'): M4 -+ S2 X SI X SI 

be the l-connected 4-dimensional normal bundle map obtained from 
(fx 1, b x 1): SI x Sl X SI X SI -+ S2 X SI X SI by two framed surgeries on 
712(f xl) = Z[Z2] Er> Z[Z2]. The surgery obstruction 

(J*(!x 1, b x 1) = (J*(f', b') = (0,0,0,1) E L 4(Z[Z2]) = Z Er> O~ O~ Z2 

is independent of b', and in fact can be expressed as the Witt class of the 
non-singular even symmetrie form over Z[Z2] associated to the degree 1 
map 

f': M4 -+ S2 X SI x SI, 

u1(f') = (0,0,0, 1) E L(vo>+(Z[Z2]) = L4(Z[Z2]). 

Added in prooj. The recent paper ofKoschorke and Sanderson [34] inter­
prets the approximation theorem noo~oox = (I1k~l E~k xEl: (TIk X ))/ '" 
for a connected pointed space X (with '" the equivalence relation given by 
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l:k C l:k+l and the base point) in terms ofimmersion theory. This interpre­
tation can be used to give a direct proof of the identification in Proposition 
5.2 of the quadratic self-intersection 1-'(/) of an immersion I: 8r ~ M2r 

defined by the quadratic construction ifJ of § 1 with the geometrie self­
intersection defined in § 5 of Wall [30]. We shall give only a sketch of the 
argument here, leaving the details to a later occasion. 

An oriented immersion of smooth manifolds I: Mm ~ Nn (m ~ n) with 
normal bundle Vj: M ~ BSO(n-m) can be approximated by an embedding 
I' = Ix g: .M <=-+ N x Rp (p large). The Pontrjagin-Thom construction 
applied to I' by collapsing the complement of a tubular neighbourhood 
of I'(M) in N x Rp gives a stable map F: "f/,JN+ ~ ~OOT(vj) inducing the 
Umkehr chain map 

I': O(N) = O(N)n-* L O(M)n-* = Sn-mO(M) = O(T(vj))' 

Assuming that I is in general position we have that the k-tuple point set 
of/, 

8k(/) = {(Xl' X2, ... , Xk) E TI MI I(Xi) = I(xi) E N, Xi :F Xi for i :F j}/~k' 
k 

is an (n - k(n - m))-dimensional manifold, with an immersion 

Ik: 8 k(/) ~ N; [xV x2"",Xk] ~/(Xl) (k ~ 1,81(1) = M,/l =1)· 

Let l:k act on the contractible space 

E~k = {(tl' t2, ... , tk) E TI ROO I ti :F ti for i :F j} 
k 

by permutation of components, as usual, and define a map 

Fk: Sk(f) ~ E~k XE,. (TI M); 
k 

[Xl ,X2, ""Xk] ~ [(g(xl ),g(X2), ... ,g(Xk))' (XV X2' ""Xk)] (RP c Roo, k ~ 1). 

The maps appearing in the approximation theorem 

ak : E~k XE,. (TI X) ~ noo~oox (k ~ 1) 
k 

are also defined by the Pontrjagin-Thom construction: given 

b = [(tl' t2 , ... , tk), (Xl' X2, ... , Xk)] E E~k XE (TI M), 
A: k 

let t: Sq ~ Vf=l Sq be the map obtained by collapsing the complement of a 
tubular neighbourhood of {tl' t2 , ... , tk } c Rq (q large), define base-point­
preserving maps 

Xi: Sq ~ ~qX = SqAX; S ~ SAX, (1 ~ i ~ k), 
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and define ak(b) E noo~oox = ~qnq~qx by 

t k \liXi 
ak(b): Sq ~ \I Sq ~ ~qX. 

i=l 

Thus there is defined a commutative diagram 

with z: M ~ T(vj) the inclusion given by the zero section of Vj. Now 
nOO~OOT(vj) = (Ilk~l E~k x~..,(IIk T(vj)))/ '" is the stratified Thom space of 
the extended power bundles 

ek(vj): E~kX~..,( TIM) -+ BO(k(n-m)) 
k 

(k ~ 1, T(ek(vt)) = E~kr><. ~.., (Ak T(vj))) and adj(F): N+ -+ nOO~OOT(vj) IS 

transverse regular at the stratified zero section 

I1 E~k xI:A: ( TI M) ~ nOO~OOT(vj)' 
k~l k 

with inverse image 

S(f) == im( IJ fk: IJ Sk(f) -+ N) = {y E NI f-l(y) # 0} 
k k~l 

stratified by im(fk: Sk(f) -+ N) = {y E N Ilf-1(y) I ~ k}, and 

Fk ek(Vj) 
vIA:: Sk(f) ~ E~k xI:A: (TI M) ~ BO(k(n-m)) (k ~ 1). 

k 

It follows that the map 

adj(F)* : Hn(N) = Iin(N+) -+ Iin(nOO~OOT(vj)) 

= Et> Hn(T(ek(Vj))) 
k~l 

= Et> H'i:.-k(n-m)(E~k xI:..,(TI M)) 
k~l k 

sends the fundamental class [N] E Hn(N) (defined using w(N)-twisted 
homology) to 

adj(F)*[N] = Et> Fk[Sk(f)] E Et> H'i:.-k(n-m)(E~k xI:A: (TI M)), 
k~l k~l k 

where [Sk(f)] E H~-k(n-m)(Sk(f)) is the fundamental class of Sk(!) and w 
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refers to W{N)W1(ek(Vj))-twisted homology, with 

(n-m)sgn 
w1(ek(Vj)): 171(Er.k XI;t (TI M)) = r.k l171(M) -----+~ r.k ) Z2' 

k . 

Similar considerations apply to the multiple point manifolds S.(/) of a 
l7-equivariant immersion I: .M' ~ B lifting I, with B a covering of N with 
group of covering translations 17, taking into account the diagonall7-action 
on S*(/). In particular, for an immersion I: sr ~ N2r (r ~ 2) and the 
universal cover B of N we have Sr = 17 X Sr (17 = 171(N)) and astahle 
l7-map F: r.ooB+ ~ r.ooTl7(Vj) such that the quadratic component of 
adj(F). [N] ia 

.p(adj(F).[N]) = F2[S2(/)/7T] 

E HW(EL2 XI;s(sr x 7T Sr)) = Qo(o(sr), (- )r) = HO(Z2; Z[l7], (_ )r), 

with the w(N)-twiated involution on Z[ 17]. The left-hand side of the equa­
ti on ia the quadratic self-intersection /1-(/) defined in § 5 ahove, while the 
right-hand side is the geometrie self-interseetion /1-(/) defined in § 5 of 
Wall [30]. 
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