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Abstract

We prove that there are examples of finitely generated grbupgether
with group ring element§ € QI for which the von Neumann dimension
dimyr ker @ is irrational, so (in conjunction with other known result3-
proving a conjecture of Atiyah.
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1 Introduction

Given a countable discrete groiipwe writeQI" andCT respectively for its ratio-
nal and complex group rings, : I' ~ ¢2(T") for the Hilbertian completion of its
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left-regular representation add” for the resulting group von Neumann algebra,
which may be obtained by completingCr") in the weak operator topology of
B(¢%(T")). Henceforth we will generally identifI" and CT" with their images

in LT under\. In this setup we can define the von Neumann dimension of any
closedLI'-submodule of?(T"); we assume familiarity with this notion, referring
the reader to the book of Luck [10] for an introduction. listBetting we will
address the following classical question.

Is it the case that for ang) € QI the von Neumann dimension
dimyr ker Q lies inQ?

This is known to be equivalent to the classical conjecturAtifah as to whether
any cocompact free prop&-manifold without boundary must have rationzi-
Betti numbers (originally formulated, in slightly differeterms, on page 72 afl[1]).
This equivalence is proved in Lemma 10.5 of Liick/[10], andwilehere restrict
our attention to the purely group-theoretic version. A muoubre thorough dis-
cussion of this conjecture is contained in Lick’s|/[10] Ciead0, and a discussion
of its relation to questions of computability can be foundéttion 8.A of Gro-
mov’s essay in[11].

A stronger version of this question, asking whether in fdat ;- ker Q must al-
ways lie in the additive subgrouin—!(I") < Q generated by the inverses of the
orders of the finite subgroups ©f is now known to be false from the work![8]
of Grigorchuk andZuk (see also the articlg][7] of Grigorchuk, Linnel, Schicida
Zuk), who have shown that the lamplighter grdfip: Z is a counterexample: all
of its finite subgroups have order that is a membe2%afbut a natural finitely-
supported operator with integer coefficients on the grongagt, a rational mul-
tiple of a Markov operator) has an eigenspace with von Nemmidmension%.

A new quite elementary treatment of this fact has now beeengby Dicks and
Schick in [5], and in this work we will adapt some of their adltions to provide a
counterexample to the original question about rationaledisions, as formulated
above. In order to state our main theorem precisely we first @elittle notation.

We write F',, to denote the free group angeneratorssy, so, ..., s, for those
generators themselveS, = {sT!,s31,..., s} for the corresponding symmet-

ric generating set ane for the identity elements dF',,. To these data are asso-
ciated the Cayley grap@ay(F,,, S) with vertex setF,, and edge sef{g, gs} :

g € F,, s € S}, which is simply a2n-regular infinite tree. Here and later in
the paper we will use mostly standard graph-theoretic t@otogy in relation to
Cay(F,,.S), as described, for instance, in Chapter | of Bollobas [3}e6 a sub-
setA C F,, we will write Cay(F,,, S)|4 for the induced subgraph €fay (F,,, S)
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on the set of verticed, and
0A:=A-S\A

for the boundary of A in Cay(F,,,S). A path in Cay(F2,S) is a subsetP =
{90,91,---,9¢} C Fo with g;11 € ¢;5 for everyi < ¢ — 1 and with all the
g;S distinct, and in this case tHength of the path is¢. We denote byp the
left-invariant word metric orF'», which is simply the graph distance arising from
Cay(F,, 5), and will sometimes refer tp(e, g) as thelength of an elemeny €
F,. Giveng € F, andr > 0 we letB(g,r) := {h € F,, : p(g,h) < r} be the
closed ball of radius aroundg in Cay(F,,, S), and more generally giveA C F,,

we letB(A,r) := ,e4 B(g, ) be itsradius-r neighbourhood

In addition we writeZ, to denote the cyclic group of ordé&r andZ?l (respec-
tively Z%) to denote the direct sum (respectively direct product) draily of
copies ofZ; indexed by some other sét We will usually denote members of
Z?l by lowercase bold letters such as = (w;);cr, and will write §; for the
distinguished element &5/ that takes the valug € Z, ati and0 elsewhere.

The main result of this paper is the following, which impligiprovides a coun-
terexample to the original question recalled above.

Theorem 1.1 Let the spaceéP(N) of subsets oN be endowed with the lexico-
graphic ordering. There are parameterizations

P(N) > I V; <ZJF?

of a family of subgroups that are invariant under the lefobnate-translation
action of F, and

I+ Q€ Q((ZFF?/V;) x Fy)
of a family of rational group ring elements such that the assed map

PN)—-R: I+ dimL((Z§F2/V1)xF2) ker(Qr —4)

is strictly increasing, wher@&s ~ Z?FQ / V71 by left-coordinate-translation.

Since a strictly increasing map is an injection, the image of 77(N) under this
map must be uncountable, and so we immediately obtain theiolg.

Corollary 1.2 For some left-translation-invariant subspate< Z?FQ, the finitely-
generated grouQZ?FQ/V) x Fy admits a group ring element with rational co-
efficients whose kernel has irrational (and even transcetade von Neumann

dimension. O



The main innovation of this paper is to exploit the freedonthia choice of the
subgroupl” above in order to obtain a large family of von Neumann dimamsi
some of which must then be irrational, rather than tryingrnd fine single exam-
ple of a group and group ring element and compute the von Nearmi@nension

of its kernel explicitly. It is this idea that we will make mise in obtaining the
family of examples promised in Theordm11.1. A similar insg@mf exploiting
this freedom in the choice df to produce an example of a group with interesting
properties appeared recentlylin [2], and the present pageindirectly motivated
by that one.

2 Some preliminary manipulations

In this section we lef\ be any discrete group arid any discrete Abelian group
equipped with a left action : A ~ U by automorphisms (se@?” = o o), and
form the semidirect produéf x, A as the set-theoretic Cartesian prodlick A
with the multiplication

(u,9) - (w, h) == (" (u) +w, gh).

We now describe an identification of the left regular action
A (C(U 30 A) C L(U %0 A)) ~ 2(U x4 A)
that will prove convenient later.
The point is simply that the Fourier transform sets up a wiomorphism

F:2U) =, LQ(mﬁ)

Frx) =Y {(u,x)f(w),

uelU
and now sincd/ x,, A is set-theoretically simply equal @ x A, we have also

F@ldpp) : U A) 2 2U)@EA) — LHU)@C(A) 2 L2 (mg @ #2),

where we write# s to denote the counting measure on aseteta : A ~ U be
the Pontrjagin adjoint action af defined by the relation

(u,89(x)) = (o
and recall that the duality, -) : U x U — T establishes the Pontrjagin isomor-
phismU = U.

1

(), X)s



As is standard, the isomorphisfof Hilbert spaces now defines an isomorphism
of actions

C(U Ao A) -~ U NQA
()\ N me(UNaA)> — <7T: N mLQ(mﬁ@)#A)),
L(U x4 A) L®(U) x5 A

wherer is the left regular action of the group measure space von daaralgebra
L>(mg) x5 A on L (mg @ #4), and withini/ (L™ (mg) x5 A) we identify

copies ofU = U andA that together generate a copyldfx, A acting by

w(u,e) f(x.9) = (@ (W), X)f(x.9) = (M) /). 9)  for (x,9) € UxA,

whereMr denotes twisted pointwise multiplication

Mrf(x,9) = F(@(x))f(x,9)

by a functionF’ € L>°(mg), and

7(0,h) f(x,9) = fFOx,h lg) = T"f(x,q9)  for (x,g) € U x A,

so this is still a translation operator. Wf C U is a Borel subset we will generally
write Myy in place ofM,,, .

That the above specifications do combine to give an actidi &f, A follows at
once from the identity

T o MpoTh = Mp,z  for F e L), h € A.

These manipulations lead to a simple identification betwgenp von Neumann
algebrad.(U x,A) and group measure space algelra&m ) xaA correspond-

ing to dynamical systems : A ~ U of algebraic origin. In the cast = Z¢ for

d > 2 such dynamical systems are known to exhibit a wide varieiptefesting
behaviour (see, in particular, the monograph [13] of Schyméhd in recent years
the analysis of such systems for certain non-Abellahas also begun to make
headway (see, for instance, the papér [4] of Deninger anthisitiand the further
references given there). In the present paper we make ounuwiest appeal to
this dynamical picture of semidirect products with Abelle@rnel, and we hope
that this relationship will lead to an understanding of acréasingly wide class
of geometric group theoretic phenomena in the future.

The above shows that to study the von Neumann algebra piepeft\(Q(U
A)) (turning our attention now to the rational group ring) we negivalently
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considerr(Q(U x4 A)), whose members may all be put into the form
Z TY o M¢i
i=1

~

with g; € A for eachl < ¢ < n and eachp; € C(U) being a trigopnometric
polynomial with rational coefficients (that is, a fini@-linear combination of
characters) ol It is this form for our operators that will be most convertiéor
the proof of Theorern 111.

We will henceforth apply the above manipulations in case= F,, and will
specialize to group#’ of the form Z?FQ JV for some left-translation-invariant
subgroupl’ < Z?“, equipped with the left translation action

I ((un)ner, + V) = (ug-1p)ner, + V-

In this case the Pontrjagin duals obey the relations
— ~F
L3 =7, T =75

and
728%2 )y 2 vt = {xezE: (v,x)=0vv eVl

We recognize : F5 ~ V1 as the subshift of the left-acting topological Bernoulli
shift Fo ~ 252 defined by the relations of annihilating all memberd/ofNote
that in this case the rational trigonometric polynomialsﬁ)are easily seen to be
those functions oV that are restrictions of functions ¢ that depend on
only finitely many coordinates and that take only rationduga (using the fact
that characters on groups of the fofh take only the values:-1, so in particular
are all rational-valued), and so henceforth we will freebyrlwwith such functions
when specifying members af(Q((Z3¥2/V) x,, F3)) of interest. We will also
now work only with obvious left-translation actions B%, and so will usually
omit their explicit mention from our notation.

3 Introduction of the operators

3.1 Construction

We now specialize to certain particular operators (@ ((Z$¥2 /V)xF5)). These
will take the form

Q = ZT871 fe) (MFS + MGsoasfl)
s€S



whereF;, G : 252 — Q for s € S depend only on some finite patch of coordi-
nates around € F5. Note that in considering the above operator as a member of
m(Q((ZFF?/V) x F3)), we are implicitly regarding the above as a shorthand for

-1
ZTS o (MFS‘VL + MGS\Vioasfl);
seS
we will generally overlook this notational detail in thelfming.

The rather redundant form we have chosen for this operaitr,assum of two
terms of the formMr for eachs € S, is convenient in view of the following
simple calculation.

Lemma 3.1 If F, = G,-1 for everys € S then( is self-adjoint.

Proof Since any sucli/r is self-adjoint and7®)* = 75", we deduce from the
commutator relation for these operators, the symmetry ahd our assumption
that

Q" = Z(MFS + Mg oge-1) 0 T°

seS

= ZTS o (MFSOaS + MG’SoaSiloaS)
seS

= Y T o(Mg_,ea+Mp_,)=Q.
ses

d

Most of this section will be concerned with the choicelgfand G, which will

be pivotal for what follows. We will choose functions thatpéed only on coor-
dinates in the balB(e, 100). Heuristically, the values aofs(x) will depend on
different features of the level-sat~'{0} describing in what ways it locally re-
sembles a path i€@ay(F5, S), what that path looks like, and whether it contains
e. To explain this we first make the following useful definitson

Definition 3.2 (Small horizontal doglegs) A (finite or infinite) pathP? C Cay(Fs, S)
contains asmall horizontal dogleg if it contains a subset of the form

/ 2 g Z /!
{gsg .9, gs?,gsln, ... ,gsln, gslnsg } forsomegy € Fy, ¢ € {1,2,...,9},
77/’77777// € {_1, 1}a



{g, gs?,gs%n, . ,gsfn, gs{nsgu} for someg € Fo, ¢ € {1,2,...,9},
n,n" € {~1,1}, with g an end-point of?

or

{gsg/,g, gs?,gs%n, ... ,gsfn} for someg € Fo, ¢ € {1,2,...,9},
n',n € {—1,1}, with gsf” an end-point of?

(note that only the first of these cases really fits the terngliefp). OtherwiseP
containsno small horizontal doglegs.

Definition 3.3 (Locally good points) A pointy € 252 is locally good if

1. x 10} N B(e, 10) is a path inCay (F, S)|B(e,10) that containse and has
length at leastl0 (that is, it connects: with some point oDB(e,9) C
B(e, 10)),

2. the pathy {0} N B(e, 10) contains no small horizontal doglegs, and

3. for everyg € x1{0} N B(e, 10) we also have thag {0} N B(g, 10) is
a path inCay(F2, S)|p(4,10) containing no small horizontal doglegs.

The second part of the above definition is very importantldtes rather severe
restrictions on which paths can appeanas {0} N B(e, 10) if x is locally good:
insofar as a path ilCay(F2, .S) is made up of a concatenation of ‘horizontal’
segments (with steps given by') and ‘vertical’ segments (with steps given by
sQﬂ), this condition tells us that while the maximal verticaljsents that appear in
x {0} N B(e, 10) may be of any length, this path may not contain any maximal
horizontal segments that lie properly inside, 10) and have length less than
10. It follows that if a maximal horizontal segment lies prdgenside B(e, 10)
(that is, its end-points also visibly lie insidg(e, 10)), then it must contaire
as an interior point and either extend to poirfsand s;b with a,b > 1 and
a+b > 10, before being permitted to make at most one more horizaatidieal-
horizontal ‘dogleg’ before leavind3(e, 10) on either side ok. Moreover, the
last condition of the above definition ensures that not onlgsdthe vertex see
this highly constrained behaviour in its radil@-neighbourhood, but also all of
its neighbours inside this path and at distance at miostee this behaviour in
their radiusi0 neighbourhoods. This rather peculiar restriction on thl&iof
path we allow will be pivotal at exactly one point below (Ciaioy 5.7), where it
will restrict a certain sum over paths to terms that posseseadditional helpful
properties.



We will give a definition of F; (and then setG; = F,-1) that uses the above
notion, but we first define another auxiliary functiéi.

Definition 3.4 The functionF? : Z52 — Q is defined according to the following
four cases:

o F2(x) := 1if x islocally good and: and s are both interior points of the
pathx {0} N B(e, 10);

e F2(x) := 2if x is locally good e is an interior point of the pathy =1 {0} N
B(e, 10) ands is its end-point; or ify is locally good and the patig ~* {0} N
B(e, 10) contains botte and also some € S\ {s,s~!}, but does not con-
tain s;

o F2(x) := Wlo if x is not locally good, but we do have thate x—'{0}
and that the translaté* (x) is locally good.

e F?(x) := 0 otherwise.

Remarks 1. In particular, F2(x) = 0 unlesse € x~1{0} andx {0} N
B(e,10) is a path inCay(Fs, S)|p(,10), and given these conditions the exact
value of F? (x) is determined by a further sub-classification.

2. Let us draw attention to the quirk thatyf is locally good but is anend-
point of the pathx {0} N B(e, 10) with neighbours also lying in this path,
then

FS(X) = Fs_l(X):Oa

G@ '(x) = Fa(@ (x) =2
and Fy(x) = 2 forte S\ {s,s1}.

This slightly tricky case will give rise to a useful simpliéiton later.

3. In the third case above we must have tat'{0} N B(e, 10) is a path
containinge, so this case can arise only because there is some peaing {0}
that lies at distancé0 from e and11 from s, such thaly also lies at distanc&0
from some ‘bad’ feature of ~1{0} — a fork, a distinct connected component, or
a small horizontal dogleg visible in its entirety — so thatngoother condition in
the definition of ‘locally good’ is violated. It is easy to s#®t in this scenario
there can be only one suehsince ifs’ € S were another then the pagr {0} N
B(e, 10) would have to contain bothands’, and so must connect them vigbut



in this case we see easily from the definition that if beth' (x) anda) ™" (x)
are locally good then so ig.

4. Of course, the particular valui% employed in the third case above is not
very important; it has been chosen simply as a rational nuamhia¢ will easily be
shown to satisfy a certain modest algebraic condition tleaheed later. <

We also letG;_, := Fy, and now note the following consequence of this defini-
tion.

Lemma 3.5 For any x € Z5? the set
E(x):={g€Fy: F2(@’ (x))andG2(@ 9" (x)) notboth0} C Fy

S

is a union of connected componentdday (F, .S) each of which takes the form
B(P,1) \ T for some pathP with no small horizontal doglegs and some Fatf

at most two boundary points of end-pointsfafand any two of these connected
components are separated by a distance of at I@ast

Proof If F2(a9 '(x)) andG2(a® '9 ' (x)) are not both zero, then from the
first remark above it follows that eitheris itself a member of~{0} N B(g, 10)
and ag‘l(x) is locally good, so this set takes the form of a path with nolsma
horizontal doglegs iCay (F2, S)|(4,10), OF g is adjacent to such a point. Clearly
these paths in balls of radiu$ patch together to form, together with their im-
mediate neighbourhoods, the connected components ofwtba gét, so each of
these must be a path {ay (F5, S) together with all but possibly two members
of its neighbourhood (these being precisely the points assh! in the situation
described in Remark 2 above). From the definitiorfpiit follows that any two
distinct such paths must lie at a distance of at ldasfrom each other (and so
their radiust neighbourhoods must lie at distance at légstn order that points
internal to these paths should not see foreign connectegp@oemts within their
radius10 neighbourhoods. O

Corollary 3.6 The set
W = {X € ZEQ : E(x) > e but the central path of the component that
containse has length < 4}

depends only on coordinates (e, 100). O

Finally, we set
Fy:=F2 1w Gs :=F1 =G - 1y

S

and consider the resulting operat@r which by Lemma 3]1 is self-adjoint.
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3.2 Decomposition into invariant subspaces

In describing the further consequences of our choicé ofhe following termi-
nology will prove convenient.

Definition 3.7 (Good and bad neighbourhoods)For a given pointy € ZEQ, a
ball B(g,10) C F5 is agood (respectivelybad) neighbourhood for x if ay‘l(x)

is locally good angy is an end-point of the patg ~1{0} N B(g, 10) (respectively,
if ag‘l(x) is not locally good, buy € x~'{0} and for somes € S the translate

~g—

a 5’71(X) is locally good).

Now consider a poing € ZSQ: either there is some € S such that
F,(x) andG,(@* ' (x)) are not bottp,

or there is not. LeC’; be the set of thosg for which there is not; this is clearly a
clopen subset of. Our next step will be to obtain a rather more detailed partit
of the remaindeZ5 2 \ Cy.

Thus, suppose now that € ZSQ \ Cy, and thats € S is such thatF(x) # 0.
It follows that eithery is locally good, or (ifFs(x) = ﬁ) thate € x~'{0} and
as‘l(x) is locally good. In either case this requires tyat! {0} N B(e, 10) be a
path with no small horizontal doglegs that passes threugh

Similarly, if Gs(@*' (x)) # 0, then either is locally good and so¢ {0} N
B(e, 10) is a path that passes througtor a5 (x) is locally good and¢ {0} N
B(e,9) is a path containing but no other member & U {e}.

In either of the above cases we may pick a unigye S U {e} that is closest to
e and such tha% ' (x) is locally good.

Now consider dispatching two walkers frogg towards the two different end-
points of the pathxy ~1{0} N B(go, 10) with instructions to walk in their given
directions along edges that remain in the levehget{0} and through verticeg
such thaﬁgfl(x) is still locally good, until they reach either a good neighbo
hood or a bad neighbourhood fgr where they should stop and report back to us.
It may happen that one or both of them ledvgy, 10), or that they do not move
at all.

If a walker never reaches a good or bad neighbourhood, tHefiatvs that the
level setx~1{0} that she followed in her direction must continue to look like
path, with no end-points, forks, small horizontal doglegslistinct components
lying within distancel0 of it: otherwise the walker would at some point have
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stopped walking in a bad neighbourhood. Let us call this inglorever scenario
(00).

If the walker reaches a good neighbourhood, then she hasviedl a path-like
branch ofx~1{0} with no small horizontal doglegs until reaching an end-poin
of that path, and again this finite-length path-like branelk ho other points of
x {0} lying within distancel0 of it. Note that this includes the possibility that
go is an end-point of the path, and so this walker is already in@geighbour-
hood initially. We call this ending scenaria).

The final scenario, that the walker’s journey terminates load neighbourhood,
may result from three different features pf 1{0}: a point of this level set not
connected to the walker's path, but lying within distari€eof it; a fork in the
path; or a small horizontal dogleg. In any case the walkgy stalking as soon
as he reaches within distante of some further point of his path which, in turn,
can see this feature within its raditi8-neighbourhood (effectively he has had a
premonition of this bad feature within distanb@ of his own radiust0 horizon).
This rather convoluted description is important, becatisauses this walker to
stop far short of actually reaching, or even being himselé ab see, this non-
path-like feature (rather than, for example, continuinglume actually reaches a
fork), and we will find that this greatly simplifies certainuemerations later. Note
that in casegy # e, this includes the possibility that this walker is disp&gh
from go back towards, then reaches where this happens and stops. We call this
ending scenarig2).

Finally, note also that from the definition &, as Fy - 1y, the combined dis-
tances walked by the two walkers must be at |&ahis rules out some annoying
degenerate scenarios, and was why we introduced tHé& set

Now, every pointy € 72\ Cy results in a pair of ending scenarios, each from the
set{(1), (2), (c0)}, according to the fates of the two walkers. Together theiteo
specifies some (finite or infinite) path C x ~{0}. Regarding the two walkers as
indistinguishable except by their ending scenarios, Wenrt:mmpartitionzg2 \ Co

into the six (manifestly Borel) setS,, ;, for a,b € {1,2,00} anda < b, where

x € C, if one walker ends in scenari@) and the other in scenar{@). Also, if
either walker ends in a bad neighbourhood, then we know hiegpath they were
following extends anothel0 steps beyond their ending position to a point that can
see bad behaviour within distantieof itself, and so including these last few steps
if available defines a larger path C x~'{0}, R O P (which respectively equals
P or extends it at one or both of its end-points accordingas C,1 U Cf o,
C12U Cy o 0r O 9).
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Thus we have obtained the Borel partition
ZEQ =CyU C171 U CLQ U C272 U Cl,oo U C27oo ) Coo,oo-

In fact, it is easy to refine this partition even furtherxife C,; with a,b < oo,
then P and R are finite subsets df,. Moreover, the fact thak € C,; now
depends only on the restrictiog g(z,10) (in that any other’ agreeing withy on
this restriction also lies i@, , with walkers seeing just the same configurations).
We may therefore partitiod’, ;, according to the triple$P, R, v), wherey :=
X|B(R,10)\ 7, that can arise in this way.

Let Q,; be the collection of triple$P, R, ) such that any poink giving rise to
them as above must lie ifi, ;, and let

Crry ={x €Z5*: x {0} 2 Randx|prionr = ¥}

be the cylinder set associated to this triple. In this situatve will refer to P as
theinner path and R as theouter path of (P, R, ). Clearly R = P if and only
if a = b = 1, and sometimes we will abusively write membergxf; simply as

pairs(P, ).
We have now obtained the following finer partition.

Lemma 3.8 The equality

252 =CoU < U U CP,R,dJ) U Cl,oo U 02700 @) Coo,oo
a, be {17 2}7 (P7R=,(/))6Q(L,b
a<b
holds, and is a Borel partition @52. O

From this partition we can obtain a related orthogonal dgamsition of the Hilbert
spaceL?(my . ® #w,), and it in this form that its importance will become clear:
we will later obtain a simple description @} in terms of its behaviour on each
of these subspaces that will then enable us to identify iceofaits eigenspaces
exactly. For eacliP, R,v) € Q,; we define

S{)P7R="/) = img(MCP,R,w)
and also

$o = img(M¢,) and  $g,00 := img(Mc, ) fora € {1,2, 00},
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and so now we can write

L2 (’rnVL ® #FQ)

o (D P rrw) @D ® Doe ® Dooyoe:
a,be{1,2}, (PRY)EQ
a<b

It will turn out that for a suitable choice df+ we have
My 1 (Caoo) =0 Va € {1,2, 00},

so that the space, -, for a € {1,2,00} contribute trivially to the above de-
composition. This will be proved in Proposition 5.8 once vewédnspecified our
method for choosind’. In the remainder of this section we make a closer exami-
nation of the behaviour a on the subspacesp i .

We first organize the above orthogonal decomposition bysteling’ the sub-
spaces involved into certain equivalence classes, in su@yahat the subspaces
of the coarser decomposition that results from this clusgesre individuallyQ-
invariant and each admit a relatively simple descriptiorthef action of). The
equivalence relation we need is the following.

Definition 3.9 (Translation equivalence) Two triples( Py, Ry, 1) and( Py, Ra, 1)
with Py, P (finite or infinite) paths inFy that pass within distancé of e and

Y; : B(R;,10)\ R; — Zo aretrandation equivalent (denoted by(P;, Ry, 1) ~
(P2, Ra,1)) if there is somegy € F, such thatP, = gP;, Ry = gR; and
Pa(gh) = 1(h) forall h € B(R;,10) \ R;. In this case we will also write that
(Py1, Ry,%1) is atrandate of (P, Ro,12). SinceP; and P, are both required
to pass within distance of e, if P; is finite then clearly the equivalence class of
(P1, R1,1) is afinite set of sizeB(P;,1)|.

We use this to re-organize the above orthogonal decomposis

Lz(mvi (%9 #FQ) = 5’_')0 ©® < @ @ 53(2) 3, Sjl,oo S ﬁQ,oo S Sjoo,ooa

a,be{1,2} CeQqyp/~
a<b

where

e = EB PR
(P,Rb)eC

We will rely on the following straightforward extension ofj&ation (3.5) in Dicks
and SchickI[5].
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Lemma 3.10 For anyg € F5 and any Borel subsét C 252 we have

-1 -1 -1
QoT? oMy = ZTS 7o Mg oaetyay t Mg oaetet)ay)-

seS

U

Lemma 3.11 We have))|s, = 0.

Proof By the definition ofCy and Lemm&3.10 we have

Fy,-1¢, = (Gsoa® )1, =0 VseS
and so
MCof = f
s—1
= Qf =(QoMg,)f =Y (T° o(Mg,1,, + M oge1y10,)) f =0
seS

O

Proposition 3.12 Let (V4%t B4ab) for a,b € {1,2} be the weighted graphs
shown in Figuré 1l and

Cab _  Lab
Q WP = (QU,?) )u,vEVZ’avb

their weighted adjacency matrices, regarded as operatar& 6/ “"), which we
interpret as a trivial von Neumann right-module f6(Z5¥2/V) x F3). Then
for eachC € Q,,/ ~ such that(P, R, ) € C has|P| = ¢, the subspacé is
Q-invariant, and there is some von Neumann right-modyléwhich will in fact
depend on the measure,, . ) such that we have

Q‘Y)C ~ ldhc ® Q&a,b.

Proof We treat the case @| . for someC € Q, 5/ ~, the others being similar.

Pick a representativeP, R, 1) € C, say withP being a path of length, such that
e is the ‘good’ end-point ofP: that is, such thak itself is locally good. There
is exactly one such end-point (°, R, ) € ;2. Lethe be the von Neumann
right-module$)p r ,, (of course, the dimension of this dependsrmop.). Owing
to the involvement o1 in the definition ofF; and hence of2; 5, we know that
¢ >5.
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Figure 1: The weighted graptv %, £t corresponding t@)| . for (a)C €
9171/ ~, (b)C S QLQ/ ~ and (C)C S 9272/ ~
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Next observe that iff € B(P, 1), then the values

1

F@ ' (x) and Gi(@a% (x)) = Fr (@) (x))
are the same for aj¢ € Cp r . In view of this we can define

#(g,95) := Fo(@? (%))

for g € B(P,1) using any representative € Cp ., and obtain

(Fsoa9™ 1) (Gsoas™ta™h)

1p py

= (¢(9,95) + ¢(98,9)) - Mcp - (1)

1p py

We can now simply read off from the definition 6f a very explicit description
of this function¢ on the set of pairs

{(g,h) : g,h € B(P,1), p(g,h) =1} :

e If g is an interior point ofP, then it has

— two neighboursh that are not inP, and for each of these we have
o#(g,h) =2and¢(h,g) =0, sop(g,h) + ¢(h,g) = 2, and

— two neighboursh that are also i, so if such arh is also an interior
point then¢(g,h) = ¢(h,g) = 1 and if it is an end-point o’ then
¢(g,h) = 2 and¢(h,g) = 0, and in either case overall(g, h) +

¢(h.g) =2;
e If g = eis the good end-point, then it has
— one neighbous that must lie in the interior oP, for which¢(e, s) =
0 and¢(s,e) = 2 and sop(e, s) + ¢(s,e) = 2,
— an opposite neighbour!, for which ¢(e, s7!) = ¢(s71,e) = 0, S0
dle,s )+ é(s71e) =0,and
— two neighbourst neither of which lie inP and such that is their
mid-point, for each of whichy(e,t) = 2 and¢(¢t,e) = 0 so that
pe,t) + o(t,e) =2;
e If g is the other (‘bad’) end-point aP, so that it still lies in the interior of
R, then it has

— one neighbour: that lies in the interior of?, for which ¢(g,h) = 1
and¢(h, g) = 1 and sop(g, h) + ¢(h, g) = 2,
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— one neighbouk that lies inR\ P, for which¢(g, h) = 1 and¢(h, g) =
T00» S09(g, h) + 6(h, g) = 155, and

— two neighbours: which do not lie inR, for each of whichy(g, h) = 2
and¢(h, g) = 0 so that¢(g, h) + ¢(h, g) = 2.

Note that the cases above involving the ‘good’ end-pointdrere we have used
the quirk in the definition of’ discussed in Remark 2 after Definition13.4.

Putting these possibilities together, and comparing théttm Rigure[1(b), we see
that if we letVy C V412 be the subset of vertices on the central path of that
graph then we may choose a bijection: 1, — P such that the left (respectively
right) end-point ofl/ is sent toe (respectively, to the ‘bad’ end-point @t), and
now extend this to an isomorphism of weighted graphs

¢ (Vé,l,Q EbL2 Qé,1,2)

— (B(P,1),Cay(F2, 5)|p1y: (¢(g, h) + &(h, 9) g neB(P1) plgh)=1)
(where we have been just a little sloppy, in that we allow asorhorphism of
weighted graphs’ to miss the isolated neighbou wiith no positive-weight con-
nections). That this is possible follows by inspection afifel1(b) and the list of

possibilities above, which shows that for eacke V[, we may pair up its neigh-
bours with those ofy(v) € P so as to respect the edge-weights:

{uo} € B2 = 6(E(u),€(v) + B(E(v), () = agy”.

We can now simply turn this isomorphism of weighted graptie Bn isomor-
phism of Hilbert space operators as follows. [&f), 1.2 be the standard basis
of £2(V%12), Observe from the definition of translation equivalence tha

C={(gP,gR,¢(g9-)): g € B(P,1)}

and thatCyp yr y(s) = @7 (Cpry), and hence that

He = @ Np Ry = @ img(Mag_l(CP,R,w))
(P/7R/7w/)N(P7R,'¢v) gEB(P,l)
= @ img(T“fl o MCP,R,U) °© Tg) = @ Tgil(hc)
geB(P,1) 9eB(P1)
Now define

d - ﬁC N hc ®€2(V€,1,2)
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by setting

O(f) =T(f)®0c1yy Torge B(P1), f€T (be).

This is clearly an isomorphism of von Neumann right-modukesd it is now
simple to check thaf)|s, = ® ! o (idy, ® Q“12) 0 ®: indeed, iff € T9 " (be),
soMcy, . ,(T9f) = T9 f, then using Lemm@a3.10 and equatibh (1) we have

Qf = (QoT9 )I9f)=(QoT? )(Mcy,,(T?f))
= (Qo Tg_l ° MCP,R,w)(Tgf)
= Y (6(g.95) + blgs.9) - T 0 Moy (T9F)

seS

= S (8lg.95) + d(gs,g) - T* 9 (T9))
seS

= ST )

- (Tgf@ (qu g6 (g9 1(98)>>
= ¢ N(Tf® (Q&lg(&{*l(g)))) = (27" o (idp, ® Q“*) 0 @)(f),

as required. O

4 Computation of an eigenspace

We now specialize to a particular selection of an eigenvafuaterest to us: the
value4. We will find (in Corollary[4.3 below) that we can describe gigenspace
ker(Q — 4 - id) rather explicitly. The choice of here is important: it originates
in a particular quadratic equation that arises from a tvep-finear recursion that
will appear repeatedly below in the description of the aisded eigenspaces. For
which value we can obtain a proof of the non-existence of sighnspaces for
some of the restrictiong)|s, or Q|g, .., and an explicit construction of these
eigenspaces for others.

We will find that (in much the same way as for the simple lantpkg group as
described in Dicks and Schick][5]) we can arrange a ‘piledghbinitely many
eigenspaces corresponding to this eigenvalue, each ofdlemitting a relatively
simple description, and it is this that will ultimately givs the control over von
Neumann dimensions required for Theorflen 1.1.
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Lemma 4.1 The valued is not an eigenvalue af|g, for anyC € Q;o/ ~ or
C e 92’2/ ~,

Proof We give the proof foC € Q; 5/ ~, the other case being exactly similar.
By Propositior 3.1 it will suffice to show that (>, R, v)) € C with |P| = ¢ then

for x € (2(V512), Q?x=4x = x=0.

To this end, enumerate the central lenghath of V%12 asVy = {v1,vs, ..., v},

and observe that each pair of neighbours in this path isgdayean edge of weight

2, that each vertex in this path is joined to exactly two nonmwbers of this path
by edges of weigh®, and that one of the end-points is additionally joined to a
non-member of this path by an edge of weié@g. These are all the positive-
weight edges in the graph. For each {1,2,...,¢ — 1} letv; ; for j = 1,2 be
the two neighbours of; in V412 \ 14, and also let,; andw,» be the two outer
neighbours oty joined to it by a weight o2, andv; the neighbour of, joined to

it by the weight2L. Finally let

100"
1+/-3
wi=—
2
so that{1,w,w?, —1,&?% w} are the sixth roots of unity.

We can evaluate the equati@f-!?x = 4x atv; for 2 < < £—1 and also at; ;
for suchi, and find that

atv, ; Ax(vi ;) = 2x(v;) = x(v;;) = %X(?}i)
atv; 4x(v;) = 2x(vi—1) + 2x(vit1) + 2x(v;1) + 2x(v; 2)
= x(v;) = x(vi—1) + x(vit1),
and so re-arranging we obtain
x(viy1) = x(v;) — x(v;—1) Vi=2,2,...,0—1,

and hence by solving this quadratic recursion that therezdre= C such that
x(v;) = aw' + bw'; and we also obtain similarly that(v; ;) = 3x(v;) for all
i€ {1,2,...,4} andj = 1,2. Similarly, evaluating av, gives thatx(v;) =

18 %(ve), and now evaluating a, gives
1012

11002

dx(vg) = 2x(ve1) + 2(x(ve1) + x(vg2)) + (ve)

1012
11002 X0

)(awe +b0%) = aw’ ! 4 b L.

= 2x(vp—1) + 2x(vg) +

1012
(- 55
8- 1002
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It follows that eitherx = 0 or at least one of, b is non-zero. Let us suppose itis
b and derive a contradiction, the case 0 being similar. In this case the above
conclusion can be re-arranged to give

<(1 __1o1? )we B wé—l) a_ 1 (1 _ 101 )@e’

8 - 1002 b 8 - 1002
and now evaluating the eigenvector equatiomgthe only vertex where we have
not yet checked it) gives similarly

aw + b = x(v1) = x(v2) = aw? + b? = (w—-—uwhs=w

It can now be verified directly that no valde can simultaneously satisfy both
of the above equations (bearing in mind that the sequénte- takes only six
values). This gives the desired contradiction, and so cetaplthe proof. O

Lemma 4.2 The valued is an eigenvalue of)“'! with multiplicity 1 whenever
= —1 mod 6, and hence also dp|, for anyC € Q; 1/ ~ such that(P, ¢) €
C has|P| = —1 mod 6 andh¢ # {0}.

Proof If he # {0} then the conclusion fof)|s,. follows directly from that for
Q%Y1 using Propositioi.3.12, so we focus on the latter. We expliexhibit a
suitable eigenvector, and then the argument of the pregdeimma shows that it
is the only one up to scalar multiples. Uét = {vi,v2,..., v}, v for j =1,2
andw € C be as in the preceding lemma, and now define ¢2(V%11) by

A _ 1 . _
x(v3) 1= w' 4+ @3 and  x(v;;) = E(wl + @31

for v;, Vij € yoLl

It is now a simple check tha®'x = 4x:

o Aty for2 <i</¢—1we have

(Qé’l’lx)(ui) = 2x(vi—1) + 2x(vip1) + 2x(vi 1) + 2x(v; 2)
2w + o 4 W BT 4 W 4 B
= 2((w'+@") + (W' +&"))

= 4w+ ") = dx(v;),

sincew + @ = 1.
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e Atv; we havex(vy) = w + @* = w + w?, and
(Qé’l’lx)(ul) = 2x(v2) + 2x(v1,1) + 2x(v2,2)
= 2<w2 + @5 +2. %(w + w2)> = 4(w + w?) = 4x(v1),
using now thato® = w, and similarly sincé = —1 mod 6 we have
(QV1x)(vy) = 2x(ve_1) + 2x(vg,1) + 2x(ve2)
=2+ 12, %(w‘f +3*) = 4™ +2) = dx(wr)

(notice, however, that more general linear combinations’ @ndw® would
not work here);

e Finally, at at leaf; ; we need2x(v;) = 4x(v; j), and this is obvious. [

Combining the above calculations now gives the following.

Corollary 4.3 WithT' := (Z$¥2/V') x Fy, under the assumption thad) o =

ker(Q — 4 -1dp2(m | or,)) = ED ker(Qla, — 4 -idg,,)
i>1

for some infinite sequencg, Cs, ..., in{; 1/ ~, and hence

dimzrker(Q — 4 - idpyom, | g#r,) = D dimrrker(Qlg, —4-ids. )
i>1
= ZdimLF be, .

i>1

Proof This all follows directly from the preceding lemmas uponingtthat
since the value has multiplicity1 as an eigenvalue @*!! we have

dimpr ker(Q|s., —4-idg, ) = dimpr ker(idy,, ® (@M —4-idgyei)
= dimyr be;.

O

Definition 4.4 We will refer to thos& € 1/ ~ that contribute nontrivially to
the above sum expression féimr ker(Q — 4 - idLQ(va@)#FQ)), or also any
(P, 1) that lies in such &, asactive.
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5 Estimates on von Neumann dimensions

So far our results have been independent of the particulzicetof the subspace
V, and in particular of the Haar measurg, ., even though it has already been
mentioned in the notation a number of times. That choiceneilt become impor-
tant, as we seek to show how certain possible choic&sgife different possible
values for the von Neumann dimensions of the subspaces oll@yi4.3.

The calculation of these dimensions will rest on the follogviemma.

Lemma 5.1 Suppose that” < ZEQ is a subgroupA C Fs is a finite subset and
fory : A — Zs let

C(¢) == {x €Z5*: xla=¢}.
Then

1 . n
myL(C(9)) = { (|){¢’€Z§‘= C()NV LAY Z|;(¢) NV+E#£0

(that is, the measuren, . is shared equally among those cylinder sé{®) that
intersectl/ - nontrivially).

Proof Clearly m, . (C(¢)) = 0if C(¢) N V+ = 0, so it suffices to prove
that everyC(¢) for which C(¢) N V+ # () has equal measure under, .. If
C(¢1),C () are two such, then we can pick somec C(¢;)NV=+fori = 1,2,
and now inside the grou:{éig2 the translation by, — x; is my .L-preserving and
sendsC(¢;) N V+ to C(¢2) NV, so this completes the proof. O

We now turn to the steps needed in our construction of thersupgV;. Our first
step is to pick an arbitrary strictly increasing sequefi¢e)),,>; in N.

Lemma 5.2 The elements; := s;(i)sls;l(i), i > 1, are free inF3, and so gener-
ate a homomorphic embeddidty, — Fs.

Proof Suppose that
el = e

for some sequences, is, ... ,i, € {0,1,...,n}andky, ko, ..., kn € Z\ {0}.
Then since = s\” sks, ') for all k € Z, we may reduce this evaluation to

Sé(il)sllﬂSé(i2)_l(il)SleSZQ(i3)_l(i2) . Slgmsl—l(im) —e,
and it is now clear that this is possible onlyiif= i, = ... = i,,, andk; + ko +
.-+ + k., = 0, hence only if the original word was trivial. O
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Lemma5.3 Foranyh € A; \ {e} the path inCay(F5, S) joining e to h passes
throughs; ! and not throughs:!.

Proof If

h= i g
for someiy, ia, ..., i, € {1,2,...,n} with consecutive members distinct and
someky, ko, ...k, € Z\ {0}, then as before we can write this out as

U(i1) k1 l(i2)—1(i1) ko _U(i3)—I(i2) km —l(im)
So 51 59 81782 TS89 5

)

and this is now the reduced word form /af Since the path in question is just the
sequence of initial segments of this word, we can see thdirtestep must be
531, as required. O
Now, adopting the convention thatZ N, for I C N we define

10
Vi = SpanZg{ D Gyt = 0gsi): gEF2, m € I}v

i=—10
so that
10 A 10 A
Vit = {x €Z5: > x(gst) = > x(gtusi) Vg €Fa,n e I}-
i=—10 i=—10

Let us also writd'; := (Z?FQ/VI) xFy and letQ; be the operator iQI"; defined
as in Sectionl3. Finally, let

Ar:={t,: nel) <Fo,
and for any subset C Fs let
A/Ar ={ANgA: ge A},
the partition ofA induced by the partition dF'; into left-cosets of\.
Lemma5.4 LetCy, Cs, ...€ 211/ ~ be the active equivalence classes, and for

eachi € Nlet (P, ;) € C; be a representative for whidr, = $p, ,. Then for
anyl C N we have

dimpr, ker(Qr —4) = Z my L (Cp,) (2)
i>1
_ Z I{CPiywﬂVf#@} (3)

= Ho ez Co)nVE# 0}
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Proof This follows simply from evaluating the individual terms ihe right-
hand side of Corollarf 413 and observing directly from therfola for the trace
on L>®(mp) x Fy that

dimLF] f)Ci = trLF] MCPiﬂl’i =myL (szﬂ//'z)

The second line now follows from Lemrhab.1. O

Next we need a criterion for deciding whetl@f¢) N V- = 0.

Lemma 5.5 (Extensibility lemma) If A C F, is connected in th€ay(F3,.5)
and¢ : A — Zs is such that

10 10
Y blgsi) = > dlghst) @)
i=—10 i=—10
wheneverg € F, andh € Aj are such thags;'%, gs7?, ..., gsi%, ghs7'°,

ghsy?, ...andghs]® all lie in A, then¢g admits an extensiog € C(¢) N V.

Remark Both the connectedness assumptiondoand the fact that the removal
of any vertex fromCay (F, S) disconnects this graph are crucial to this proof.

Proof Givenx € C(¢), it is a member ofi/- if and only if for some (and
hence any) upwards directed family of subsBts. F that covers all of'; and

for each of which we have that conditidfl (4) holds wheneyxgr'®, gs;”, ...,

gsi0, ghsl_lo, ghsl_g, ...andghs10 all lie in B. Now let

Ag=ACA  CAyC...CFy

be an exhaustion @ in which eachA,, . is obtained fromA,, by the inclusion
of a single new point fronB(A,,,1) \ A, (clearly such an exhaustion exists). If
we show how to construct recursively a sequence of functigns A,, — Z, for
n > 0 such that

i XO = ¢!

® Xni1la, =X, foraln > 0and

« condition [3) is satisfied by,, whenevergs;'%, ..., gs1%, ghs; ¥, ... and

ghsi® allliein A,,

then it follows that(U,,>1x,,) € C(¢) N V= is the desired point.
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Moreover, having sex, := ¢, it suffices to give the construction fo;, since
then simply repeating this construction with), in place of A at every step com-
pletes the proof.

To this end, supposé; = AU {g; }, let us write€(A) for the set of all equations
of the form [@) for whichys; °, ..., gs1°, ghs7 ', ... andghs}O all lie in A;, and
let us partition this as

E(A) =& (A)U 51(A),

where&y(A) contains those equations that do not involve the valug,¢§) and
&1(A) contains those that do. All members&f( A) are satisfied by our assump-
tions on¢, whereas each member &f(A) prescribes a value fog,(¢) in terms

of values ofp. If £1(A) = () then we may take either value fgr, (¢), so it suffices

to show that if€;(A) # 0 then all the resulting prescriptions agree. To see this,
observe that any two of these equations fi&A4) must take the form

10
x(g)=— Y. dlgsh)+ D élghisi)

~10<i<10, g5 £g1 i=-10

for someg € A andhq, he € A;. However, if
g1 S {951_107931_97 LRI 798%0} - A17

theng; must be one of the end—poirﬁslﬂo, for otherwisey; ¢ A would separate
A into the two connected components containing these twgoeinds, contrary
to our assumption that is connected. Moreover, if € A is another point such
that

ge{gs70 g5 ...,¢'s1° C Ay,

then we must havg = ¢/, for if alternatively gs;'° = g1 = ¢'s{° theng;
disconnects the components 4fcontainingg and¢’. Hence we may assume
without loss of generality that all of the above equationsfthe collectiort; (A)
havegsi® = g;. However, sincéi; 'hy € A7, we now see that the equation

10 10 10

> d(gh)st) = > d((gh)hy ' hast) = > ¢(ghast)

i=—10 1=—10 i=—10

is a member of,(A) and so is satisfied by assumption; this implies that theight
hand-sides above are equal for the equatiorg () corresponding té; and to
hs, and hence prescribe a consistent valuexfpigsi®), as required. d
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Corollary 5.6 If P C Fyis apath andp : B(P,10) — Zy thenC(¢) N V- # 0
if and only the function

10

P—Zyigm Y olos)

i=—10

is constant on the cells d?/A;.

Proof The necessity is obvious, and the sufficiency follows from pinevious
lemma and the fact that

{gsflo,gsfg,...,gs%‘)} C B(P,10) = geP.

This follows from the connectednessBf because there must be someg, € P
that lie within distancd 0 of gsl_lo andgsi? respectively, and werg not itself a
member ofP then these two other members@fvould occupy distinct connected
components, giving a contradiction. O

Corollary 5.7 If P C F5 is a path with no small horizontal doglegs awd:
B(P,10) — Z takes the valu® inside P and1 on B(P,10) \ P thenC(¢) N
Vi £0.

Remark Itis in this proof that we will finally see the purpose of theasption
of no small horizontal doglegs. <

Proof By the previous corollary this depends only on the constafitlye values

10

> blgsi), geP

1=—10
on each cell ofP/A;. For ¢ as described this value is just
{gs7'% 9577, ... ,951° N (B(P,10) \ P)| mod 2
= \{gsl_lo,gsl_g, o ,gs%o} \ P| mod 2.

If ¢ lies in a singleton cell o?/A; then there is nothing to check. On the other
hand, ifg, gh € P for someh € A;\ {e}, then by applying Lemmia_ 5.3 to the
segment of” joining g andgh that we must haves] € P for somen = +1 and
ghsl for somen = +1. From this it follows thaigsi' cannot both lie inP and
thatghs:! cannot both lie inP. Hence the intersection

PN{gsy" gsi% ... 951"}
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is either just{g}, in which case
{gs7'% g57%,...,g51°3\ P| =20 =0 mod 2;

or else it contains some poigs§ with a # 0 and also som@sg' with o’ # 0,
so that by the assumption of no small horizontal doglegs stritufact contain
exactly one of the whole branches

{957"%9s1°,....g} or  {g.gs1,...,951°},

in which case

{gs7™,957%,...,951°}\ P|=10=0 mod 2.

Thus the value in question is alwagsc Z- for thoseg lying in a nonsingleton
cell of P/Ay, and so we have proved the necessary constancy on these dells

We will now use the preceding lemmas and corollaries to tvgtirdit ends. We
first show that we must have

mVIL (Cl,oo) = mVIL (02700) = mVIL (Coo,oo) =0 VI g N.

Combined with Lemma_4l1, this justifies restricting our atiten to Q| for C €
1,1/ ~ when calculatinger(Q) — 4 -id). We will then give that calculation, and
use it to deduce the monotonicity needed for Thedrem 1.1.

Proposition 5.8 For any I C N we have

mVIL (Cl,oo) == mVIL (C27OO) == mVIL (COO,OO) == 0

Proof If
X € Cl,oo U CQ’OO U COO,OO

then, in particular, there is songec S U {e} and some singly-infinite patk =

{91,42,...} C x~'{0} starting fromg; € 0{g}, and such that for any ¢

B(P,10) whose connection t@ does not pass throughwe havex(h) = 1.

Now given anygy € F5 andg; € goS, let K C Fy be the set of points that are
not disconnected from, by go. SinceB({e}, 2) is finite, it will suffice to prove
that for any fixed sucly, andg; we have

my L {X : x {0} connectsy; to co inside K along some pati®

andx|(p(p10)nx)p = 1} = 0.
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This, in turn, will follow if we show thatny, . (Dy) — 0 asN — oo where

Dy = {x : xfl{o} connectsy; to 9B(g1, N) N K along some pati¥
andx|((p,10)nB(g1,N)NE)\P = 1},

Now for each pathP that connectg; to 9B(g1, N) inside K we let

Dyp:={x: P Cx {0} andx|(sr10nB(g.Nnxne = 1},

and now we havdy = |Jp Dy, p. Finally, on the one hand we know that there
are at moss” such paths?, and on the other we know th&/ A1 has size at most
|P| = N for any P and any/ C N, and hence Lemnia$5.1 and Corollary]5.6 give

1 2N
my.(Dn,p) < 9|B(P,10)NB(g1,N)NK|—|P/A] = 2(2:39)(N-10) *

Combining these estimates gives
my(Dy) <3N . 2N . 2= @3)(N-10) g asN — o0,
as required. O
Remark In fact, one can use a different argument to prove that
V(Cl,00) =1(Co00) =0

for any left-translation-invariant Borel probability measureon ZEQ. Any ele-
mentx € C « gives rise to a semi-infinite patR(x) C F; that passes within
distancel of e by selecting the connected componentyof! {0} closest toe.
Based on this we may classify members(if,, according to the position of
relative to this path, where we record that position usingesdabeling of the
vertices inB(P(x), 1) by the vertices of the infinite tree that has a semi-infinite
central path and two extra leaves adjacent to every poitadfgath (where just a
little care is needed so that the labeling is a Borel functibiy). This now gives

a Borel partition ofC'; », into countably many cells indexed by the vertices of
this infinite tree, and these cells are now easily seen tola&eteone to another
by members of the full group of measure-preserving transftions of(ZEQ, v)
generated by the coordinate-translation actio f It follows that these count-
ably many cells must all have the same measure, and hencthdhaheasure is
zero. However, this argument breaks down for doubly-irdipiaths because we
have no end-point of the path to use a reference so as to defitabeling of the
members ofB(P, 1) in a Borel way; and, indeed, it is not hard to find some exam-
ples of translation invariant probability under whichalmost everyy € Z§2 is
such thaty=1{0} is a union of disconnected doubly-infinite paths, one of Wwhic
paths often passes closeetdn view of this it seems easier to treat all three cases
together using the more analytic argument above. O
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Corollary 5.9 For any finite pathP c F, we have
{p € ZEP1 . o(¢) NV £ 0}] = 2BPIOI-IP/AL

and so
dimrp, ker(Qr —4) = Z 9~ (I1B(P;,10)|—|Pi|+|P:/Arl)
i>1

Proof From Corollary(5.6 and the standard relatidr| - |[F*-| = 2V for sub-
groupsF < Z% we can identify
{0 ezy ™ Clo)nvi-#0)

Pi7

with the subgroup of those € ZQB( 10 the annihilates all the vectors of the

form
10 10
Z 598% - Z 59’183

i=—10 i=—10
such thath € A; andg andhg both lie in P;. Clearly each celC' € P;/A; gives

rise to a subspace MQB(P"’N) of dimension|C| — 1 spanned by these differences
with g, hg € C, and so the total dimension of the resulting subspace is

> (Cl-1) = B|-|Py/Al.

CEPZ'/A]

This gives the dimension of
{p ez ™ Clo) NV £ 0)

as|B(P;,10)| — |F;| + |P;/Arl, and so both the desired conclusions now follow
from Lemmd5.4. O

Proof of Theorem[1.1 We will show that the conclusion holds for the parame-
terized family of subgroup®; and the operator®; — 4 in place ofQ; provided
the sequence of lengtli&:), n > 1, appearing in the definition a@f, grows suffi-
ciently fast.

Letting
o(I) :=dimzr, ker(Qr — 4) forI C N,

we must prove that

I <jex J = o(I) < @(J)
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provided that for each the valued(n’) for n’ > n are sufficiently large relative
tol(1),1(2),...,l(n).
Suppose that € N is minimal such that € J butn ¢ I (so by the definition
of the lexicographic ordering we must hale [1,n — 1] = J N [1,n — 1]). By
Corollary[5.9 we have

o(J) — p(I) = Z (2—(\B(Pi710)|—\Pz'|+\Pi/AJ|) _ 2—(\B(Pi710)|—\Pz'\+|Pi/AI|)).

i>1

Clearly (from the freeness of thgs) there will be some path’; in the above list
for which P;/A ;[ ) is @ nontrivial coarsening aF; /A jni1 n—1) = Fi/ A
(that is, the left cosets of the larger subgraup,; ,,) intersect?; in fewer, larger
patches than those of the smaller subgraypy; ,,_ ), and so the expression

9—(IB(Pi,10)|=[Pil+[Pi/Aynpr,ml) _ 9—(B(Fi,10)|=[Pil+[Pi/Arnp,nl)

in the above sum will be strictly positive for each of thesket £ C N be a finite
subset of € N for which this is so, and such that

Z 9= (IB(Pi,10)|=|Bil+|Pi/AynnmD) 9= (B(F:,10)[=|Pil+|Pi/Arap,ml) —. n> 0.

€N
Letiy := max FE. Next we observe, using only very crude estimates at evepy st
that for anyl andJ and anyL > 1 we have

Z (2*(\B(P¢,10)|*\Pi\+|P¢/AJ|) _ 2*(\3(3710)\*|P¢\+|P¢//\1|))

i>1,[P[>L

<2. Z 90— (IB(P10)|=|Ri[) — o . Z 9|Pilg—|B(F;,10)|
i>1, [P >L i>1,|P>L

<92. Z 9|Plo—|B(P,10)|

all paths P in Cay(F2, S)
withe € B(P,1)and |P| > L

<2 Z Z 9l9—(2+2:3+...+2:3%)¢

¢{>L  allpaths Pin Cay(F2, S)
withe € B(P,1)and |P| = ¢

<2. 2(35 +2)-30. 2. 9—(242:3+..4+2:3%)¢
>L
< Q.

Since for any finitel. there can be only finitely many paths amaRg P, ... of
length< L, it follows that

Z (2—(\B(Pia10)\—|Pi\+|Pi/AJD _ 2—(|B(Pi,10)\—|Pi\+|Pi//\1\))

i>i1+1
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tends ta) asi; — oo uniformly fast in/ and.J, and so we may pick > iy such
that

Z (2*(|B(Pi710)\*|P¢\+|P¢//\J\) _ 2*(|B(Pi710)\*|P¢|+\Pi//\1\)) <n/2
i>i1+1

irrespective of the choice étn + 1), [(n + 2), . ... Therefore if we simply insist
that these lengthn’) for n’ > n should be so large that

Pi/Ar=P/Arepn Vi<,

we deduce that

(51

o(J) —p(I) = Z ( 9= (IB(Pi,10)|=|Pil+|Pi/Ayrp,m ) _ 2*(|B(Pi,10)|*\PilJr\Pi/Amu,n]\))
+ Y (2 UBERAOIRIHR/ASD) _ g=(BEI0)|-IR+P/ALD)
1>i1+1
> 37 (27 (BEAOIIRHP A l) — 9= (BEAOI-IPI+P/ D)
i€l
_‘ S (2 UBEOIIRIHE/AD) _ 2—(|B<Pi,1o>\—|Pi|+\Pi/AI\>)‘
i>i1+1
> n—n/2=n/2>0,
as required. O

Remark Similar arguments also prove the continuity of the midpr the prod-
uct topology orP(N), but we do not need this. N

6 Closing remarks

As they stand, the methods of this paper are too crude to tadnzlt may be

the most interesting special case of the Atiyah conjectthat for torsion-free
groups. Even the strong version of the conjecture discussin introduction is

known to be true for large classes of torsion-free groups, fee example, Reich’s
thesis [12]), among which it implies such striking consemqes as Kaplansky’s
conjecture that the group ring has no nontrivial zero-dings In order to query
the torsion-free instance of the original Atiyah conjeefun our setting it might
be natural to study group extensions of the fdf&¥" /V) x A for some torsion-
free base group. and some translation-invariant subgrodp< Z® chosen so
that Z& /V is siill torsion-free. After passing through the Fourieartsform,
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this converts our problem into a study of elements of the gnmeasure space
von Neumann algebra™ (mg) x A for someconnecteccompact subgrouﬁ’ <
T*, where we must restrict attention to elements of the foin7% o My, for
i € C(ﬁ) a trigonometric polynomial with rational coefficients. Wit is not
obvious that counterexamples to the Atiyah conjecturectnat be found among
such groups (and they are generally not covered by the knositiye statements
such as Linnell's Theorem|[9]), most of the arguments we leen able to make
above relied on the ability to obtain indicator functionsciifpen subsets df -+
as trigonometic polynomials, and it is clear that considgranore sophisticated
analytic ideas would be needed to decide whether any operstich as the above
can have pure point spectrum at all.

Other natural classes of groups not to be found among ounyfashiexamples
might also be interesting to consider, such as heredithnikgly-generated groups
or amenable groups. In the case of amenable groups | thirdeytlikely that a
similar constructior(Z$ /V) x A with a discrete amenable base grouphould
exist that admits an element of the rational group ring hg\kearnel with irra-
tional von Neumann dimension, but here the absence of thalesitmee structure
on Cay (A, S) will again mandate some much more delicate constructioneand
timates than we have used above.

It would also be interesting to know whether the semidirgotipct constructions
we have used, which seem to offer a great deal of flexibiliyld be brought to
bear on the search for counterexamples elsewhere in geometup theory, such
as for the conjecture that all groups have the algebraiaeidae property ([6]).

References

[1] M. F. Atiyah. Elliptic operators, discrete groups anadwédeumann algebras.
In Colloque “Analyse et Topologie” en 'Honneur de Henri CantéOrsay,
1974) pages 43—-72. Astérisque, No. 32—-33. Soc. Math. Francis, Ra76.

[2] T. Austin. A finitely generated amenable group with vergop compres-
sion into Lebesgue spaces. Preprint, available onlinarafi v. or g:
0909.2047, 2009.

[3] B. Bollobas. Modern Graph TheorySpringer, Berlin, 1998.

[4] C. Deninger and K. Schmidt. Expansive algebraic actimindiscrete resid-
ually finite amenable groups and their entroygodic Theory Dynam. Sys-
tems 27(3):769-786, 2007.

33



[5] W. Dicks and T. Schick. The spectral measure of certagmelnts of the
complex group ring of a wreath productGeom. Dedicata93:121-137,
2002.

[6] J. Dodziuk, P. Linnell, V. Mathai, T. Schick, and S. Yateépproximat-
ing L2-invariants and the Atiyah conjectureComm. Pure Appl. Math.
56(7):839-873, 2003. Dedicated to the memory of Jirgen &sévi

[7] R. . Grigorchuk, P. Linnell, T. Schick, and Zuk. On a question of Atiyah.
C. R. Acad. Sci. Parisé&. | Math,, 331(9):663—-668, 2000.

[8] R. 1. Grigorchuk and AZuk. The lamplighter group as a group generated by
a 2-state automaton, and its spectru@eom. Dedicata87(1-3):209-244,
2001.

[9] P. A. Linnell. Division rings and group von Neumann alget Forum
Math, 5(6):561-576, 1993.

[10] W. Liick. L2-invariants: theory and applications to geometry alietheory;
volume 44 ofErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge
A Series of Modern Surveys in Mathematics [Results in Madkiesnand
Related Areas. 3rd Series. A Series of Modern Surveys inaviattics]
Springer-Verlag, Berlin, 2002.

[11] G. A. Niblo and M. A. Roller, editorsGeometric group theory. Vol, 2ol-
ume 182 ofLondon Mathematical Society Lecture Note Serieambridge,
1993. Cambridge University Press.

[12] H. Reich. Group von Neumann algebras and related algebras
PhD thesis, Universitat Gottingen, 1999. Available pali from
http://ww. mat h. uni - nuenst er. de/ u/ | ueck/ publ /rei ch/.

[13] K. Schmidt.Dynamical systems of algebraic origivolume 128 oProgress
in Mathematics Birkhauser Verlag, Basel, 1995.

34



	Introduction
	Some preliminary manipulations
	Introduction of the operators
	Construction
	Decomposition into invariant subspaces

	Computation of an eigenspace
	Estimates on von Neumann dimensions
	Closing remarks

