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Abstract

We prove that there are examples of finitely generated groupsΓ together
with group ring elementsQ ∈ QΓ for which the von Neumann dimension
dimLΓ kerQ is irrational, so (in conjunction with other known results)dis-
proving a conjecture of Atiyah.
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1 Introduction

Given a countable discrete groupΓ, we writeQΓ andCΓ respectively for its ratio-
nal and complex group rings,λ : Γ y ℓ2(Γ) for the Hilbertian completion of its
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left-regular representation andLΓ for the resulting group von Neumann algebra,
which may be obtained by completingλ(CΓ) in the weak operator topology of
B(ℓ2(Γ)). Henceforth we will generally identifyQΓ andCΓ with their images
in LΓ underλ. In this setup we can define the von Neumann dimension of any
closedLΓ-submodule ofℓ2(Γ); we assume familiarity with this notion, referring
the reader to the book of Lück [10] for an introduction. In this setting we will
address the following classical question.

Is it the case that for anyQ ∈ QΓ the von Neumann dimension
dimLΓ kerQ lies inQ?

This is known to be equivalent to the classical conjecture ofAtiyah as to whether
any cocompact free properΓ-manifold without boundary must have rationalL2-
Betti numbers (originally formulated, in slightly different terms, on page 72 of [1]).
This equivalence is proved in Lemma 10.5 of Lück [10], and wewill here restrict
our attention to the purely group-theoretic version. A muchmore thorough dis-
cussion of this conjecture is contained in Lück’s [10] Chapter 10, and a discussion
of its relation to questions of computability can be found insection 8.A4 of Gro-
mov’s essay in [11].

A stronger version of this question, asking whether in factdimLΓ kerQ must al-
ways lie in the additive subgroupfin−1(Γ) ≤ Q generated by the inverses of the
orders of the finite subgroups ofΓ, is now known to be false from the work [8]
of Grigorchuk anḋZuk (see also the article [7] of Grigorchuk, Linnel, Schick and
Żuk), who have shown that the lamplighter groupZ2 ≀ Z is a counterexample: all
of its finite subgroups have order that is a member of2Z, but a natural finitely-
supported operator with integer coefficients on the group (in fact, a rational mul-
tiple of a Markov operator) has an eigenspace with von Neumann dimension1

3 .

A new quite elementary treatment of this fact has now been given by Dicks and
Schick in [5], and in this work we will adapt some of their calculations to provide a
counterexample to the original question about rational dimensions, as formulated
above. In order to state our main theorem precisely we first need a little notation.

We writeFn to denote the free group onn generators,s1, s2, . . . , sn for those
generators themselves,S = {s±1

1 , s±1
2 , . . . , s±1

n } for the corresponding symmet-
ric generating set ande for the identity elements ofFn. To these data are asso-
ciated the Cayley graphCay(Fn, S) with vertex setFn and edge set{{g, gs} :
g ∈ Fn, s ∈ S}, which is simply a2n-regular infinite tree. Here and later in
the paper we will use mostly standard graph-theoretic terminology in relation to
Cay(Fn, S), as described, for instance, in Chapter I of Bollobás [3]. Given a sub-
setA ⊂ Fn we will write Cay(Fn, S)|A for the induced subgraph ofCay(Fn, S)
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on the set of verticesA, and

∂A := A · S \ A

for the boundary of A in Cay(Fn, S). A path in Cay(F2, S) is a subsetP =
{g0, g1, . . . , gℓ} ⊂ F2 with gi+1 ∈ giS for every i ≤ ℓ − 1 and with all the
gis distinct, and in this case thelength of the path isℓ. We denote byρ the
left-invariant word metric onF2, which is simply the graph distance arising from
Cay(Fn, S), and will sometimes refer toρ(e, g) as thelength of an elementg ∈
Fn. Giveng ∈ Fn andr ≥ 0 we letB(g, r) := {h ∈ Fn : ρ(g, h) ≤ r} be the
closed ball of radiusr aroundg in Cay(Fn, S), and more generally givenA ⊆ Fn

we letB(A, r) :=
⋃
g∈AB(g, r) be itsradius-r neighbourhood.

In addition we writeZ2 to denote the cyclic group of order2, andZ⊕I
2 (respec-

tively ZI2) to denote the direct sum (respectively direct product) of afamily of
copies ofZ2 indexed by some other setI. We will usually denote members of
Z⊕I

2 by lowercase bold letters such asw = (wi)i∈I , and will write δi for the
distinguished element ofZ⊕I

2 that takes the value1 ∈ Z2 at i and0 elsewhere.

The main result of this paper is the following, which implicitly provides a coun-
terexample to the original question recalled above.

Theorem 1.1 Let the spaceP(N) of subsets ofN be endowed with the lexico-
graphic ordering. There are parameterizations

P(N) ∋ I 7→ VI ≤ Z⊕F2
2

of a family of subgroups that are invariant under the left-coordinate-translation
action ofF2 and

I 7→ QI ∈ Q((Z⊕F2
2 /VI) ⋊ F2)

of a family of rational group ring elements such that the associated map

P(N) → R : I 7→ dim
L((Z

⊕F2
2 /VI)⋊F2)

ker(QI − 4)

is strictly increasing, whereF2 y Z⊕F2
2 /VI by left-coordinate-translation.

Since a strictly increasing map is an injection, the image inR of P(N) under this
map must be uncountable, and so we immediately obtain the following.

Corollary 1.2 For some left-translation-invariant subspaceV ≤ Z⊕F2
2 , the finitely-

generated group(Z⊕F2
2 /V ) ⋊ F2 admits a group ring element with rational co-

efficients whose kernel has irrational (and even transcendental) von Neumann
dimension. �
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The main innovation of this paper is to exploit the freedom inthe choice of the
subgroupV above in order to obtain a large family of von Neumann dimensions,
some of which must then be irrational, rather than trying to find one single exam-
ple of a group and group ring element and compute the von Neumann dimension
of its kernel explicitly. It is this idea that we will make precise in obtaining the
family of examples promised in Theorem 1.1. A similar instance of exploiting
this freedom in the choice ofV to produce an example of a group with interesting
properties appeared recently in [2], and the present paper was indirectly motivated
by that one.

2 Some preliminary manipulations

In this section we letΛ be any discrete group andU any discrete Abelian group
equipped with a left actionα : Λ y U by automorphisms (soαgh = αg ◦αh), and
form the semidirect productU ⋊α Λ as the set-theoretic Cartesian productU ×Λ
with the multiplication

(u, g) · (w, h) := (αh
−1

(u) + w, gh).

We now describe an identification of the left regular action

λ :
(
C(U ⋊α Λ) ⊂ L(U ⋊α Λ)

)
y ℓ2(U ⋊α Λ)

that will prove convenient later.

The point is simply that the Fourier transform sets up a unitary isomorphism

F : ℓ2(U)
∼=−→ L2(mbU )

Ff(χ) :=
∑

u∈U

〈u, χ〉f(u),

and now sinceU ⋊α Λ is set-theoretically simply equal toU × Λ, we have also

F⊗Idℓ2(Λ) : ℓ2(U⋊αΛ) ∼= ℓ2(U)⊗ℓ2(Λ)
∼=−→ L2(Û )⊗ℓ2(Λ) ∼= L2(mbU

⊗#Λ),

where we write#S to denote the counting measure on a setS. Let α̂ : Λ y Û be
the Pontrjagin adjoint action ofα defined by the relation

〈u, α̂g(χ)〉 := 〈αg−1
(u), χ〉,

and recall that the duality〈·, ·〉 : U × Û → T establishes the Pontrjagin isomor-

phismU ∼= ̂̂
U .
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As is standard, the isomorphismF of Hilbert spaces now defines an isomorphism
of actions

(
λ :

C(U ⋊α Λ)
∩

L(U ⋊α Λ)
y ℓ2(U⋊αΛ)

)
∼=−→
(
π :

U ⋊α Λ
∩

L∞(Û) ⋊bα Λ

y L2(mbU⊗#Λ)

)
,

whereπ is the left regular action of the group measure space von Neumann algebra
L∞(mbU

) ⋊bα Λ on L2(mbU
⊗ #Λ), and withinU

(
L∞(mbU

) ⋊bα Λ
)

we identify

copies ofU ∼= ̂̂
U andΛ that together generate a copy ofU ⋊α Λ acting by

π(u, e)f(χ, g) = 〈αg−1
(u), χ〉f(χ, g) = (M〈u,·〉f)(χ, g) for (χ, g) ∈ Û×Λ,

whereMF denotes twisted pointwise multiplication

MF f(χ, g) := F (α̂g(χ))f(χ, g)

by a functionF ∈ L∞(mbU ), and

π(0, h)f(χ, g) = f(χ, h−1g) =: T hf(χ, g) for (χ, g) ∈ Û × Λ,

so this is still a translation operator. IfW ⊆ Û is a Borel subset we will generally
writeMW in place ofM1W .

That the above specifications do combine to give an action ofU ⋊α Λ follows at
once from the identity

T h
−1 ◦MF ◦ T h = MF◦bαh for F ∈ L∞(Û), h ∈ Λ.

These manipulations lead to a simple identification betweengroup von Neumann
algebrasL(U⋊αΛ) and group measure space algebrasL∞(mbU

)⋊bαΛ correspond-

ing to dynamical systemŝα : Λ y Û of algebraic origin. In the caseΛ = Zd for
d ≥ 2 such dynamical systems are known to exhibit a wide variety ofinteresting
behaviour (see, in particular, the monograph [13] of Schmidt), and in recent years
the analysis of such systems for certain non-AbelianΛ has also begun to make
headway (see, for instance, the paper [4] of Deninger and Schmidt and the further
references given there). In the present paper we make our ownmodest appeal to
this dynamical picture of semidirect products with Abeliankernel, and we hope
that this relationship will lead to an understanding of an increasingly wide class
of geometric group theoretic phenomena in the future.

The above shows that to study the von Neumann algebra properties ofλ(Q(U ⋊α

Λ)) (turning our attention now to the rational group ring) we mayequivalently
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considerπ(Q(U ⋊α Λ)), whose members may all be put into the form
n∑

i=1

T gi ◦Mφi

with gi ∈ Λ for each1 ≤ i ≤ n and eachφi ∈ C(Û) being a trigonometric
polynomial with rational coefficients (that is, a finiteQ-linear combination of
characters) on̂U . It is this form for our operators that will be most convenient for
the proof of Theorem 1.1.

We will henceforth apply the above manipulations in caseΛ = F2, and will
specialize to groupsU of the form Z⊕F2

2 /V for some left-translation-invariant
subgroupV ≤ Z⊕F2

2 , equipped with the left translation action

αg((uh)h∈F2 + V ) = (ug−1h)h∈F2 + V.

In this case the Pontrjagin duals obey the relations

Ẑ⊕F2
2

∼= Ẑ2
F2 ∼= ZF2

2

and
̂Z⊕F2
2 /V ∼= V ⊥ :=

{
χ ∈ ZF2

2 : 〈v,χ〉 = 0 ∀v ∈ V
}
.

We recognizêα : F2 y V ⊥ as the subshift of the left-acting topological Bernoulli
shift F2 y ZF2

2 defined by the relations of annihilating all members ofV . Note
that in this case the rational trigonometric polynomials onÛ are easily seen to be
those functions onV ⊥ that are restrictions of functions onZF2

2 that depend on
only finitely many coordinates and that take only rational values (using the fact
that characters on groups of the formZI2 take only the values±1, so in particular
are all rational-valued), and so henceforth we will freely work with such functions
when specifying members ofπ(Q((Z⊕F2

2 /V ) ⋊α F2)) of interest. We will also
now work only with obvious left-translation actions ofF2, and so will usually
omit their explicit mention from our notation.

3 Introduction of the operators

3.1 Construction

We now specialize to certain particular operators inπ(Q((Z⊕F2
2 /V )⋊F2)). These

will take the form

Q =
∑

s∈S

T s
−1 ◦ (MFs +M

Gs◦bαs−1 )
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whereFs, Gs : ZF2
2 → Q for s ∈ S depend only on some finite patch of coordi-

nates arounde ∈ F2. Note that in considering the above operator as a member of
π(Q((Z⊕F2

2 /V ) ⋊ F2)), we are implicitly regarding the above as a shorthand for

∑

s∈S

T s
−1 ◦ (MFs|V⊥

+M
Gs|V⊥◦bαs−1 );

we will generally overlook this notational detail in the following.

The rather redundant form we have chosen for this operator, with a sum of two
terms of the formMF for eachs ∈ S, is convenient in view of the following
simple calculation.

Lemma 3.1 If Fs = Gs−1 for everys ∈ S thenQ is self-adjoint.

Proof Since any suchMF is self-adjoint and(T s)∗ = T s
−1

, we deduce from the
commutator relation for these operators, the symmetry ofS and our assumption
that

Q∗ =
∑

s∈S

(MFs +M
Gs◦bαs−1 ) ◦ T s

=
∑

s∈S

T s ◦ (MFs◦bαs +M
Gs◦bαs−1◦bαs

)

=
∑

s∈S

T s ◦ (MG
s−1◦bαs +MF

s−1 ) = Q.

�

Most of this section will be concerned with the choice ofFs andGs, which will
be pivotal for what follows. We will choose functions that depend only on coor-
dinates in the ballB(e, 100). Heuristically, the values ofFs(χ) will depend on
different features of the level-setχ

−1{0} describing in what ways it locally re-
sembles a path inCay(F2, S), what that path looks like, and whether it contains
e. To explain this we first make the following useful definitions.

Definition 3.2 (Small horizontal doglegs)A (finite or infinite) pathP ⊂ Cay(F2, S)
contains asmall horizontal dogleg if it contains a subset of the form

{gsη′2 , g, gs
η
1 , gs

2η
1 , . . . , gs

ℓη
1 , gs

ℓη
1 s

η′′

2 } for someg ∈ F2, ℓ ∈ {1, 2, . . . , 9},
η′, η, η′′ ∈ {−1, 1},
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{g, gsη1 , gs2η1 , . . . , gsℓη1 , gsℓη1 sη
′′

2 } for someg ∈ F2, ℓ ∈ {1, 2, . . . , 9},
η, η′′ ∈ {−1, 1}, with g an end-point ofP

or

{gsη′2 , g, gs
η
1 , gs

2η
1 , . . . , gs

ℓη
1 } for someg ∈ F2, ℓ ∈ {1, 2, . . . , 9},

η′, η ∈ {−1, 1}, with gsℓη1 an end-point ofP

(note that only the first of these cases really fits the term ‘dogleg’). OtherwiseP
containsno small horizontal doglegs.

Definition 3.3 (Locally good points) A pointχ ∈ ZF2
2 is locally good if

1. χ
−1{0} ∩B(e, 10) is a path inCay(F2, S)|B(e,10) that containse and has

length at least10 (that is, it connectse with some point of∂B(e, 9) ⊂
B(e, 10)),

2. the pathχ−1{0} ∩B(e, 10) contains no small horizontal doglegs, and

3. for everyg ∈ χ
−1{0} ∩ B(e, 10) we also have thatχ−1{0} ∩ B(g, 10) is

a path inCay(F2, S)|B(g,10) containing no small horizontal doglegs.

The second part of the above definition is very important. It places rather severe
restrictions on which paths can appear asχ

−1{0} ∩B(e, 10) if χ is locally good:
insofar as a path inCay(F2, S) is made up of a concatenation of ‘horizontal’
segments (with steps given bys±1

1 ) and ‘vertical’ segments (with steps given by
s±1
2 ), this condition tells us that while the maximal vertical segments that appear in

χ
−1{0} ∩B(e, 10) may be of any length, this path may not contain any maximal

horizontal segments that lie properly insideB(e, 10) and have length less than
10. It follows that if a maximal horizontal segment lies properly insideB(e, 10)
(that is, its end-points also visibly lie insideB(e, 10)), then it must containe
as an interior point and either extend to pointssa1 and s−b1 with a, b ≥ 1 and
a+ b ≥ 10, before being permitted to make at most one more horizontal-vertical-
horizontal ‘dogleg’ before leavingB(e, 10) on either side ofe. Moreover, the
last condition of the above definition ensures that not only does the vertexe see
this highly constrained behaviour in its radius-10 neighbourhood, but also all of
its neighbours inside this path and at distance at most10 see this behaviour in
their radius-10 neighbourhoods. This rather peculiar restriction on the kinds of
path we allow will be pivotal at exactly one point below (Corollary 5.7), where it
will restrict a certain sum over paths to terms that possess some additional helpful
properties.
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We will give a definition ofFs (and then setGs = Fs−1) that uses the above
notion, but we first define another auxiliary functionF ◦

s .

Definition 3.4 The functionF ◦
s : ZF2

2 → Q is defined according to the following
four cases:

• F ◦
s (χ) := 1 if χ is locally good ande ands are both interior points of the

pathχ
−1{0} ∩B(e, 10);

• F ◦
s (χ) := 2 if χ is locally good,e is an interior point of the pathχ−1{0}∩
B(e, 10) ands is its end-point; or ifχ is locally good and the pathχ−1{0}∩
B(e, 10) contains bothe and also somet ∈ S \ {s, s−1}, but does not con-
tain s;

• F ◦
s (χ) := 1

100 if χ is not locally good, but we do have thate ∈ χ
−1{0}

and that the translatêαs
−1

(χ) is locally good.

• F ◦
s (χ) := 0 otherwise.

Remarks 1. In particular,F ◦
s (χ) = 0 unlesse ∈ χ

−1{0} and χ
−1{0} ∩

B(e, 10) is a path inCay(F2, S)|B(e,10), and given these conditions the exact
value ofF ◦

s (χ) is determined by a further sub-classification.

2. Let us draw attention to the quirk that ifχ is locally good bute is anend-
point of the pathχ

−1{0} ∩ B(e, 10) with neighbours also lying in this path,
then

Fs(χ) = Fs−1(χ) = 0,

Gs(α̂
s−1

(χ)) = Fs−1(α̂s
−1

(χ)) = 2

and Ft(χ) = 2 for t ∈ S \ {s, s−1}.

This slightly tricky case will give rise to a useful simplification later.

3. In the third case above we must have thatχ
−1{0} ∩ B(e, 10) is a path

containinge, so this case can arise only because there is some pointg ∈ χ
−1{0}

that lies at distance10 from e and11 from s, such thatg also lies at distance10
from some ‘bad’ feature ofχ−1{0} — a fork, a distinct connected component, or
a small horizontal dogleg visible in its entirety — so that some other condition in
the definition of ‘locally good’ is violated. It is easy to seethat in this scenario
there can be only one suchs, since ifs′ ∈ S were another then the pathχ−1{0}∩
B(e, 10) would have to contain boths ands′, and so must connect them viae, but

9



in this case we see easily from the definition that if bothα̂s
−1

(χ) andα̂(s′)−1
(χ)

are locally good then so isχ.

4. Of course, the particular value1100 employed in the third case above is not
very important; it has been chosen simply as a rational number that will easily be
shown to satisfy a certain modest algebraic condition that we need later. ⊳

We also letG◦
s−1 := F ◦

s , and now note the following consequence of this defini-
tion.

Lemma 3.5 For anyχ ∈ ZF2
2 the set

E(χ) :=
{
g ∈ F2 : F ◦

s (α̂g
−1

(χ)) andG◦
s(α̂

s−1g−1
(χ)) not both0

}
⊆ F2

is a union of connected components inCay(Fs, S) each of which takes the form
B(P, 1) \ T for some pathP with no small horizontal doglegs and some setT of
at most two boundary points of end-points ofP , and any two of these connected
components are separated by a distance of at least9.

Proof If F ◦
s (α̂g

−1
(χ)) andG◦

s(α̂
s−1g−1

(χ)) are not both zero, then from the
first remark above it follows that eitherg is itself a member ofχ−1{0}∩B(g, 10)
and α̂g

−1
(χ) is locally good, so this set takes the form of a path with no small

horizontal doglegs inCay(F2, S)|B(g,10), or g is adjacent to such a point. Clearly
these paths in balls of radius10 patch together to form, together with their im-
mediate neighbourhoods, the connected components of the given set, so each of
these must be a path inCay(F2, S) together with all but possibly two members
of its neighbourhood (these being precisely the points suchass−1 in the situation
described in Remark 2 above). From the definition ofFs it follows that any two
distinct such paths must lie at a distance of at least11 from each other (and so
their radius-1 neighbourhoods must lie at distance at least9), in order that points
internal to these paths should not see foreign connected components within their
radius-10 neighbourhoods. �

Corollary 3.6 The set

W :=
{
χ ∈ ZF2

2 : E(χ) ∋ e but the central path of the component that

containse has length≤ 4
}

depends only on coordinates inB(e, 100). �

Finally, we set

Fs := F ◦
s · 1W Gs := Fs−1 = G◦

s · 1W
and consider the resulting operatorQ, which by Lemma 3.1 is self-adjoint.
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3.2 Decomposition into invariant subspaces

In describing the further consequences of our choice ofFs the following termi-
nology will prove convenient.

Definition 3.7 (Good and bad neighbourhoods)For a given pointχ ∈ ZF2
2 , a

ballB(g, 10) ⊂ F2 is agood (respectively,bad) neighbourhood for χ if α̂g
−1

(χ)
is locally good andg is an end-point of the pathχ−1{0}∩B(g, 10) (respectively,
if α̂g

−1
(χ) is not locally good, butg ∈ χ

−1{0} and for somes ∈ S the translate
α̂s

−1g−1
(χ) is locally good).

Now consider a pointχ ∈ ZF2
2 : either there is somes ∈ S such that

Fs(χ) andGs(α̂
s−1

(χ)) are not both0,

or there is not. LetC0 be the set of thoseχ for which there is not; this is clearly a
clopen subset ofχ. Our next step will be to obtain a rather more detailed partition
of the remainderZF2

2 \ C0.

Thus, suppose now thatχ ∈ ZF2
2 \ C0, and thats ∈ S is such thatFs(χ) 6= 0.

It follows that eitherχ is locally good, or (ifFs(χ) = 1
100 ) thate ∈ χ

−1{0} and

α̂s
−1

(χ) is locally good. In either case this requires thatχ
−1{0} ∩ B(e, 10) be a

path with no small horizontal doglegs that passes throughe.

Similarly, if Gs(α̂s
−1

(χ)) 6= 0, then eitherχ is locally good and soχ−1{0} ∩
B(e, 10) is a path that passes throughe, or α̂s

−1
(χ) is locally good andχ−1{0}∩

B(e, 9) is a path containings but no other member ofS ∪ {e}.

In either of the above cases we may pick a uniqueg0 ∈ S ∪ {e} that is closest to
e and such that̂αg

−1
0 (χ) is locally good.

Now consider dispatching two walkers fromg0 towards the two different end-
points of the pathχ−1{0} ∩ B(g0, 10) with instructions to walk in their given
directions along edges that remain in the level setχ

−1{0} and through verticesg
such that̂αg

−1
(χ) is still locally good, until they reach either a good neighbour-

hood or a bad neighbourhood forχ, where they should stop and report back to us.
It may happen that one or both of them leaveB(g0, 10), or that they do not move
at all.

If a walker never reaches a good or bad neighbourhood, then itfollows that the
level setχ−1{0} that she followed in her direction must continue to look likea
path, with no end-points, forks, small horizontal doglegs or distinct components
lying within distance10 of it: otherwise the walker would at some point have

11



stopped walking in a bad neighbourhood. Let us call this walking-forever scenario
(∞).

If the walker reaches a good neighbourhood, then she has followed a path-like
branch ofχ−1{0} with no small horizontal doglegs until reaching an end-point
of that path, and again this finite-length path-like branch has no other points of
χ
−1{0} lying within distance10 of it. Note that this includes the possibility that

g0 is an end-point of the path, and so this walker is already in a good neighbour-
hood initially. We call this ending scenario(1).

The final scenario, that the walker’s journey terminates in abad neighbourhood,
may result from three different features ofχ

−1{0}: a point of this level set not
connected to the walker’s path, but lying within distance10 of it; a fork in the
path; or a small horizontal dogleg. In any case the walker stop walking as soon
as he reaches within distance10 of some further point of his path which, in turn,
can see this feature within its radius-10 neighbourhood (effectively he has had a
premonition of this bad feature within distance10 of his own radius-10 horizon).
This rather convoluted description is important, because it causes this walker to
stop far short of actually reaching, or even being himself able to see, this non-
path-like feature (rather than, for example, continuing until he actually reaches a
fork), and we will find that this greatly simplifies certain enumerations later. Note
that in caseg0 6= e, this includes the possibility that this walker is dispatched
from g0 back towardse, then reachese where this happens and stops. We call this
ending scenario(2).

Finally, note also that from the definition ofFs asF ◦
s · 1W , the combined dis-

tances walked by the two walkers must be at least5; this rules out some annoying
degenerate scenarios, and was why we introduced the setW .

Now, every pointχ ∈ ZF2
2 \C0 results in a pair of ending scenarios, each from the

set{(1), (2), (∞)}, according to the fates of the two walkers. Together their route
specifies some (finite or infinite) pathP ⊆ χ

−1{0}. Regarding the two walkers as
indistinguishable except by their ending scenarios, we cannow partitionZF2

2 \C0

into the six (manifestly Borel) setsCa,b for a, b ∈ {1, 2,∞} anda ≤ b, where
χ ∈ Ca,b if one walker ends in scenario(a) and the other in scenario(b). Also, if
either walker ends in a bad neighbourhood, then we know that the path they were
following extends another10 steps beyond their ending position to a point that can
see bad behaviour within distance10 of itself, and so including these last few steps
if available defines a larger pathR ⊆ χ

−1{0}, R ⊇ P (which respectively equals
P or extends it at one or both of its end-points according asχ ∈ C1,1 ∪ C1,∞,
C1,2 ∪ C2,∞ orC2,2).
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Thus we have obtained the Borel partition

ZF2
2 = C0 ∪ C1,1 ∪ C1,2 ∪ C2,2 ∪ C1,∞ ∪ C2,∞ ∪ C∞,∞.

In fact, it is easy to refine this partition even further. Ifχ ∈ Ca,b with a, b < ∞,
thenP andR are finite subsets ofF2. Moreover, the fact thatχ ∈ Ca,b now
depends only on the restrictionχ|B(R,10) (in that any otherχ′ agreeing withχ on
this restriction also lies inCa,b, with walkers seeing just the same configurations).
We may therefore partitionCa,b according to the triples(P,R,ψ), whereψ :=
χ|B(R,10)\R, that can arise in this way.

Let Ωa,b be the collection of triples(P,R,ψ) such that any pointχ giving rise to
them as above must lie inCa,b, and let

CP,R,ψ := {χ ∈ ZF2
2 : χ

−1{0} ⊇ R andχ|B(R,10)\R = ψ}

be the cylinder set associated to this triple. In this situation we will refer toP as
the inner path andR as theouter path of (P,R,ψ). ClearlyR = P if and only
if a = b = 1, and sometimes we will abusively write members ofΩ1,1 simply as
pairs(P,ψ).

We have now obtained the following finer partition.

Lemma 3.8 The equality

ZF2
2 = C0 ∪

( ⋃

a, b ∈ {1, 2},
a ≤ b

⋃

(P,R,ψ)∈Ωa,b

CP,R,ψ

)
∪C1,∞ ∪ C2,∞ ∪ C∞,∞

holds, and is a Borel partition ofZF2
2 . �

From this partition we can obtain a related orthogonal decomposition of the Hilbert
spaceL2(mV ⊥ ⊗ #F2), and it in this form that its importance will become clear:
we will later obtain a simple description ofQ in terms of its behaviour on each
of these subspaces that will then enable us to identify certain of its eigenspaces
exactly. For each(P,R,ψ) ∈ Ωa,b we define

HP,R,ψ := img(MCP,R,ψ)

and also

H0 := img(MC0) and Ha,∞ := img(MCa,∞) for a ∈ {1, 2,∞},

13



and so now we can write

L2(mV ⊥ ⊗ #F2)

= H0 ⊕
( ⊕

a, b ∈ {1, 2},
a ≤ b

⊕

(P,R,ψ)∈Ωa,b

HP,R,ψ

)
⊕ H1,∞ ⊕ H2,∞ ⊕ H∞,∞.

It will turn out that for a suitable choice ofV ⊥ we have

mV ⊥(Ca,∞) = 0 ∀a ∈ {1, 2,∞},

so that the spacesHa,∞ for a ∈ {1, 2,∞} contribute trivially to the above de-
composition. This will be proved in Proposition 5.8 once we have specified our
method for choosingV . In the remainder of this section we make a closer exami-
nation of the behaviour ofQ on the subspacesHP,R,ψ.

We first organize the above orthogonal decomposition by ‘clustering’ the sub-
spaces involved into certain equivalence classes, in such away that the subspaces
of the coarser decomposition that results from this clustering are individuallyQ-
invariant and each admit a relatively simple description ofthe action ofQ. The
equivalence relation we need is the following.

Definition 3.9 (Translation equivalence) Two triples(P1, R1, ψ1) and(P2, R2, ψ2)
with P1, P2 (finite or infinite) paths inF2 that pass within distance1 of e and
ψi : B(Ri, 10) \Ri → Z2 are translation equivalent (denoted by(P1, R1, ψ1) ∼
(P2, R2, ψ2)) if there is someg ∈ F2 such thatP2 = gP1, R2 = gR1 and
ψ2(gh) = ψ1(h) for all h ∈ B(R1, 10) \R1. In this case we will also write that
(P1, R1, ψ1) is a translate of (P2, R2, ψ2). SinceP1 andP2 are both required
to pass within distance1 of e, if P1 is finite then clearly the equivalence class of
(P1, R1, ψ1) is a finite set of size|B(P1, 1)|.

We use this to re-organize the above orthogonal decomposition as

L2(mV ⊥ ⊗#F2) = H0 ⊕
( ⊕

a, b ∈ {1, 2}
a ≤ b

⊕

C∈Ωa,b/∼

HC

)
⊕H1,∞ ⊕H2,∞ ⊕H∞,∞,

where
HC :=

⊕

(P,R,ψ)∈C

HP,R,ψ.

We will rely on the following straightforward extension of Equation (3.5) in Dicks
and Schick [5].
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Lemma 3.10 For anyg ∈ F2 and any Borel subsetY ⊆ ZF2
2 we have

Q ◦ T g−1 ◦MY =
∑

s∈S

T s
−1g−1 ◦ (M

(Fs◦bαg−1 )·1Y
+M

(Gs◦bαs−1g−1 )·1Y
).

�

Lemma 3.11 We haveQ|H0 = 0.

Proof By the definition ofC0 and Lemma 3.10 we have

Fs · 1C0 = (Gs ◦ α̂s
−1

) · 1C0 = 0 ∀s ∈ S

and so

MC0f = f

⇒ Qf = (Q◦MC0)f =
∑

s∈S

(
T s

−1◦(MFs ·1C0
+M

(Gs◦bαs−1 )·1C0
)
)
f = 0.

�

Proposition 3.12 Let (V ℓ,a,b, Eℓ,a,b) for a, b ∈ {1, 2} be the weighted graphs
shown in Figure 1 and

Qℓ,a,b = (qℓ,a,bu,v )u,v∈V ℓ,a,b

their weighted adjacency matrices, regarded as operators on ℓ2(V ℓ,a,b), which we
interpret as a trivial von Neumann right-module forL((Z⊕F2

2 /V ) ⋊ F2). Then
for eachC ∈ Ωa,b/ ∼ such that(P,R,ψ) ∈ C has |P | = ℓ, the subspaceHC is
Q-invariant, and there is some von Neumann right-modulehC (which will in fact
depend on the measuremV ⊥) such that we have

Q|HC
∼= idhC ⊗Qℓ,a,b.

Proof We treat the case ofQ|HC
for someC ∈ Ω1,2/ ∼, the others being similar.

Pick a representative(P,R,ψ) ∈ C, say withP being a path of lengthℓ, such that
e is the ‘good’ end-point ofP : that is, such thatχ itself is locally good. There
is exactly one such end-point if(P,R,ψ) ∈ Ω1,2. Let hC be the von Neumann
right-moduleHP,R,ψ (of course, the dimension of this depends onmV ⊥). Owing
to the involvement ofW in the definition ofFs and hence ofΩ1,2, we know that
ℓ ≥ 5.
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Figure 1: The weighted graph(V ℓ,a,b, Eℓ,a,b,) corresponding toQ|HC
for (a) C ∈

Ω1,1/ ∼, (b) C ∈ Ω1,2/ ∼ and (c)C ∈ Ω2,2/ ∼
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Next observe that ifg ∈ B(P, 1), then the values

Fs(α̂
g−1

(χ)) and Gs(α̂
s−1

α̂g
−1

(χ)) = Fs−1(α̂(gs)−1
(χ))

are the same for allχ ∈ CP,R,ψ. In view of this we can define

φ(g, gs) := Fs(α̂
g−1

(χ))

for g ∈ B(P, 1) using any representativeχ ∈ CP,R,ψ, and obtain

M
(Fs◦bαg−1 )·1CP,R,ψ

+M
(Gs◦bαs−1g−1 )·1CP,R,ψ

= (φ(g, gs) + φ(gs, g)) ·MCP,R,ψ . (1)

We can now simply read off from the definition ofFs a very explicit description
of this functionφ on the set of pairs

{(g, h) : g, h ∈ B(P, 1), ρ(g, h) = 1} :

• If g is an interior point ofP , then it has

– two neighboursh that are not inP , and for each of these we have
φ(g, h) = 2 andφ(h, g) = 0, soφ(g, h) + φ(h, g) = 2, and

– two neighboursh that are also inP , so if such anh is also an interior
point thenφ(g, h) = φ(h, g) = 1 and if it is an end-point ofP then
φ(g, h) = 2 andφ(h, g) = 0, and in either case overallφ(g, h) +
φ(h, g) = 2;

• If g = e is the good end-point, then it has

– one neighbours that must lie in the interior ofP , for whichφ(e, s) =
0 andφ(s, e) = 2 and soφ(e, s) + φ(s, e) = 2,

– an opposite neighbours−1, for whichφ(e, s−1) = φ(s−1, e) = 0, so
φ(e, s−1) + φ(s−1, e) = 0, and

– two neighbourst neither of which lie inP and such thate is their
mid-point, for each of whichφ(e, t) = 2 andφ(t, e) = 0 so that
φ(e, t) + φ(t, e) = 2;

• If g is the other (‘bad’) end-point ofP , so that it still lies in the interior of
R, then it has

– one neighbourh that lies in the interior ofP , for whichφ(g, h) = 1
andφ(h, g) = 1 and soφ(g, h) + φ(h, g) = 2,
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– one neighbourh that lies inR\P , for whichφ(g, h) = 1 andφ(h, g) =
1

100 , soφ(g, h) + φ(h, g) = 101
100 , and

– two neighbourshwhich do not lie inR, for each of whichφ(g, h) = 2
andφ(h, g) = 0 so thatφ(g, h) + φ(h, g) = 2.

Note that the cases above involving the ‘good’ end-point arewhere we have used
the quirk in the definition ofFs discussed in Remark 2 after Definition 3.4.

Putting these possibilities together, and comparing them with Figure 1(b), we see
that if we letV0 ⊆ V ℓ,1,2 be the subset ofℓ vertices on the central path of that
graph then we may choose a bijectionξ0 : V0 → P such that the left (respectively
right) end-point ofV0 is sent toe (respectively, to the ‘bad’ end-point ofP ), and
now extend this to an isomorphism of weighted graphs

ξ : (V ℓ,1,2, Eℓ,1,2, Qℓ,1,2)

→
(
B(P, 1),Cay(F2, S)|B(P,1), (φ(g, h) + φ(h, g))g,h∈B(P,1),ρ(g,h)=1

)
,

(where we have been just a little sloppy, in that we allow our ‘isomorphism of
weighted graphs’ to miss the isolated neighbour ofe with no positive-weight con-
nections). That this is possible follows by inspection of Figure 1(b) and the list of
possibilities above, which shows that for eachv ∈ V0 we may pair up its neigh-
bours with those ofξ0(v) ∈ P so as to respect the edge-weights:

{u, v} ∈ Eℓ,1,2 ⇒ φ(ξ(u), ξ(v)) + φ(ξ(v), ξ(u)) = qℓ,1,2u,v .

We can now simply turn this isomorphism of weighted graphs into an isomor-
phism of Hilbert space operators as follows. Let(δv)v∈V ℓ,1,2 be the standard basis
of ℓ2(V ℓ,1,2). Observe from the definition of translation equivalence that

C = {(gP, gR,ψ(g · )) : g ∈ B(P, 1)}

and thatCgP,gR,ψ(g · ) = α̂g
−1

(CP,R,ψ), and hence that

HC =
⊕

(P ′,R′,ψ′)∼(P,R,ψ)

HP ′,R′,ψ′ =
⊕

g∈B(P,1)

img
(
M

bαg−1 (CP,R,ψ)

)

=
⊕

g∈B(P,1)

img
(
T g

−1 ◦MCP,R,ψ ◦ T g
)

=
⊕

g∈B(P,1)

T g
−1

(hC)

Now define
Φ : HC → hC ⊗ ℓ2(V ℓ,1,2)

18



by setting

Φ(f) = T g(f) ⊗ δξ−1(g) for g ∈ B(P, 1), f ∈ T g
−1

(hC).

This is clearly an isomorphism of von Neumann right-modules, and it is now
simple to check thatQ|HC

= Φ−1 ◦ (idhC ⊗Qℓ,1,2) ◦Φ: indeed, iff ∈ T g
−1

(hC),
soMCP,R,ψ(T gf) = T gf , then using Lemma 3.10 and equation (1) we have

Qf = (Q ◦ T g−1
)(T gf) = (Q ◦ T g−1

)(MCP,R,ψ(T gf))

= (Q ◦ T g−1 ◦MCP,R,ψ)(T gf)

=
∑

s∈S

(φ(g, gs) + φ(gs, g)) · T s−1g−1 ◦MCP,R,ψ(T gf)

=
∑

s∈S

(φ(g, gs) + φ(gs, g)) · T s−1g−1
(T gf)

=
∑

s∈S

T s
−1g−1

(qℓ,1,2
ξ−1(g),ξ−1(gs)

(T gf))

= Φ−1
(
T gf ⊗

(∑

s∈S

qℓ,1,2
ξ−1(g),ξ−1(gs)

δξ−1(gs)

))

= Φ−1(T gf ⊗ (Qℓ,1,2(δξ−1(g)))) = (Φ−1 ◦ (idhC ⊗Qℓ,1,2) ◦ Φ)(f),

as required. �

4 Computation of an eigenspace

We now specialize to a particular selection of an eigenvalueof interest to us: the
value4. We will find (in Corollary 4.3 below) that we can describe theeigenspace
ker(Q − 4 · id) rather explicitly. The choice of4 here is important: it originates
in a particular quadratic equation that arises from a two-step linear recursion that
will appear repeatedly below in the description of the associated eigenspaces. For
which value we can obtain a proof of the non-existence of sucheigenspaces for
some of the restrictionsQ|HC

or Q|Ha,∞ , and an explicit construction of these
eigenspaces for others.

We will find that (in much the same way as for the simple lamplighter group as
described in Dicks and Schick [5]) we can arrange a ‘pileup’ of infinitely many
eigenspaces corresponding to this eigenvalue, each of themadmitting a relatively
simple description, and it is this that will ultimately giveus the control over von
Neumann dimensions required for Theorem 1.1.
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Lemma 4.1 The value4 is not an eigenvalue ofQ|HC
for anyC ∈ Ω1,2/ ∼ or

C ∈ Ω2,2/ ∼.

Proof We give the proof forC ∈ Ω1,2/ ∼, the other case being exactly similar.
By Proposition 3.12 it will suffice to show that if(P,R,ψ) ∈ C with |P | = ℓ then

for x ∈ ℓ2(V ℓ,1,2), Qℓ,1,2x = 4x ⇒ x = 0.

To this end, enumerate the central length-ℓ path ofV ℓ,1,2 asV0 = {v1, v2, . . . , vℓ},
and observe that each pair of neighbours in this path is joined by an edge of weight
2, that each vertex in this path is joined to exactly two non-members of this path
by edges of weight2, and that one of the end-points is additionally joined to a
non-member of this path by an edge of weight101

100 . These are all the positive-
weight edges in the graph. For eachi ∈ {1, 2, . . . , ℓ − 1} let vi,j for j = 1, 2 be
the two neighbours ofvi in V ℓ,1,2 \ V0, and also letvℓ,1 andvℓ,2 be the two outer
neighbours ofvℓ joined to it by a weight of2, andv′ℓ the neighbour ofvℓ joined to
it by the weight101100 . Finally let

ω :=
1 +

√
−3

2
,

so that{1, ω, ω2,−1, ω̄2, ω̄} are the sixth roots of unity.

We can evaluate the equationQℓ,1,2x = 4x atvi for 2 ≤ i ≤ ℓ− 1 and also atvi,j
for suchi, and find that

atvi,j : 4x(vi,j) = 2x(vi) ⇒ x(vi,j) =
1

2
x(vi)

atvi : 4x(vi) = 2x(vi−1) + 2x(vi+1) + 2x(vi,1) + 2x(vi,2)

⇒ x(vi) = x(vi−1) + x(vi+1),

and so re-arranging we obtain

x(vi+1) = x(vi) − x(vi−1) ∀i = 2, 2, . . . , ℓ− 1,

and hence by solving this quadratic recursion that there area, b ∈ C such that
x(vi) = aωi + bω̄i; and we also obtain similarly thatx(vi,j) = 1

2x(vi) for all
i ∈ {1, 2, . . . , ℓ} and j = 1, 2. Similarly, evaluating atv′ℓ gives thatx(v′ℓ) =
101
400x(vℓ), and now evaluating atvℓ gives

4x(vℓ) = 2x(vℓ−1) + 2(x(vℓ,1) + x(vℓ,2)) +
1012

4 · 1002
x(vℓ)

= 2x(vℓ−1) + 2x(vℓ) +
1012

4 · 1002
x(vℓ)

⇒
(
1 − 1012

8 · 1002

)
(aωℓ + bω̄ℓ) = aωℓ−1 + bω̄ℓ−1.
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It follows that eitherx = 0 or at least one ofa, b is non-zero. Let us suppose it is
b and derive a contradiction, the casea 6= 0 being similar. In this case the above
conclusion can be re-arranged to give

((
1 − 1012

8 · 1002

)
ωℓ − ωℓ−1

)a
b

= ω̄ℓ−1 −
(
1 − 1012

8 · 1002

)
ω̄ℓ,

and now evaluating the eigenvector equation atv1 (the only vertex where we have
not yet checked it) gives similarly

aω + bω̄ = x(v1) = x(v2) = aω2 + bω̄2 ⇒ (ω − ω2)
a

b
= ω̄2 − ω̄.

It can now be verified directly that no valueab can simultaneously satisfy both
of the above equations (bearing in mind that the sequence(ωℓ)ℓ≥1 takes only six
values). This gives the desired contradiction, and so completes the proof. �

Lemma 4.2 The value4 is an eigenvalue ofQℓ,1,1 with multiplicity 1 whenever
ℓ ≡ −1 mod 6, and hence also ofQ|HC

for anyC ∈ Ω1,1/ ∼ such that(P,ψ) ∈
C has|P | ≡ −1 mod 6 andhC 6= {0}.

Proof If hC 6= {0} then the conclusion forQ|HC
follows directly from that for

Qℓ,1,1 using Proposition 3.12, so we focus on the latter. We explicitly exhibit a
suitable eigenvector, and then the argument of the preceding lemma shows that it
is the only one up to scalar multiples. LetV0 = {v1, v2, . . . , vℓ}, vi,j for j = 1, 2
andω ∈ C be as in the preceding lemma, and now definex ∈ ℓ2(V ℓ,1,1) by

x(vi) := ωi + ω̄3+i and x(vi,j) :=
1

2
(ωi + ω̄3+i)

for vi, vi,j ∈ V ℓ,1,1.

It is now a simple check thatQℓ,1,1x = 4x:

• At vi for 2 ≤ i ≤ ℓ− 1 we have

(Qℓ,1,1x)(vi) = 2x(vi−1) + 2x(vi+1) + 2x(vi,1) + 2x(vi,2)

= 2(ωi−1 + ω̄i−1 + ωi+1 + ω̄i+1 + ωi + ω̄i)

= 2
(
(ωi + ω̄i) + (ωi + ω̄i)

)

= 4(ωi + ω̄i) = 4x(vi),

sinceω + ω̄ = 1.
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• At v1 we havex(v1) = ω + ω̄4 = ω + ω2, and

(Qℓ,1,1x)(v1) = 2x(v2) + 2x(v1,1) + 2x(v2,2)

= 2
(
ω2 + ω̄5 + 2 · 1

2
(ω + ω2)

)
= 4(ω + ω2) = 4x(v1),

using now that̄ω5 = ω, and similarly sinceℓ ≡ −1 mod 6 we have

(Qℓ,1,1x)(vℓ) = 2x(vℓ−1) + 2x(vℓ,1) + 2x(vℓ,2)

= 2
(
ωℓ−1 + ω̄ℓ+2 + 2 · 1

2
(ωℓ + ω̄3+ℓ)

)
= 4(ω−1 + ω̄2) = 4x(vℓ)

(notice, however, that more general linear combinations ofωi andω̄i would
not work here);

• Finally, at at leafvi,j we need2x(vi) = 4x(vi,j), and this is obvious. �

Combining the above calculations now gives the following.

Corollary 4.3 With Γ := (Z⊕F2
2 /V ) ⋊ F2, under the assumption thatH1,∞ =

H2,∞ = H∞,∞ = {0} we have

ker(Q− 4 · idL2(m
V⊥⊗#F2

)) =
⊕

i≥1

ker(Q|HCi
− 4 · idHCi

)

for some infinite sequenceC1, C2, . . . , inΩ1,1/ ∼, and hence

dimLΓ ker(Q− 4 · idL2(mV⊥⊗#F2
)) =

∑

i≥1

dimLΓ ker(Q|HCi
− 4 · idHCi

)

=
∑

i≥1

dimLΓ hCi .

Proof This all follows directly from the preceding lemmas upon noting that
since the value4 has multiplicity1 as an eigenvalue ofQℓ,1,1 we have

dimLΓ ker(Q|HCi
− 4 · idHCi

) = dimLΓ ker(idhCi
⊗ (Qℓ,1,1 − 4 · idℓ2(V ℓ,1,1))

= dimLΓ hCi .

�

Definition 4.4 We will refer to thoseC ∈ Ω1,1/ ∼ that contribute nontrivially to
the above sum expression fordimLΓ ker(Q − 4 · idL2(mV⊥⊗#F2

)), or also any
(P,ψ) that lies in such aC, asactive.
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5 Estimates on von Neumann dimensions

So far our results have been independent of the particular choice of the subspace
V , and in particular of the Haar measuremV ⊥ , even though it has already been
mentioned in the notation a number of times. That choice willnow become impor-
tant, as we seek to show how certain possible choices ofV give different possible
values for the von Neumann dimensions of the subspaces in Corollary 4.3.

The calculation of these dimensions will rest on the following lemma.

Lemma 5.1 Suppose thatV ≤ ZF2
2 is a subgroup,A ⊂ F2 is a finite subset and

for ψ : A→ Z2 let
C(φ) := {χ ∈ ZF2

2 : χ|A = φ}.
Then

mV ⊥(C(φ)) =

{
1

|{φ′∈ZA2 : C(φ′)∩V ⊥ 6=∅}|
if C(φ) ∩ V ⊥ 6= ∅

0 else

(that is, the measuremV ⊥ is shared equally among those cylinder setsC(φ) that
intersectV ⊥ nontrivially).

Proof Clearly mV ⊥(C(φ)) = 0 if C(φ) ∩ V ⊥ = ∅, so it suffices to prove
that everyC(φ) for which C(φ) ∩ V ⊥ 6= ∅ has equal measure undermV ⊥ . If
C(φ1), C(φ2) are two such, then we can pick someχi ∈ C(φi)∩V ⊥ for i = 1, 2,
and now inside the groupZF2

2 the translation byχ2 − χ1 ismV ⊥-preserving and
sendsC(φ1) ∩ V ⊥ toC(φ2) ∩ V ⊥, so this completes the proof. �

We now turn to the steps needed in our construction of the subgroupsVI . Our first
step is to pick an arbitrary strictly increasing sequence(l(n))n≥1 in N.

Lemma 5.2 The elementsti := s
l(i)
2 s1s

−l(i)
2 , i ≥ 1, are free inF2, and so gener-

ate a homomorphic embeddingF∞ →֒ F2.

Proof Suppose that
tk1i1 t

k2
i2
· · · tkmim = e

for some sequencesi1, i2, . . . ,im ∈ {0, 1, . . . , n} andk1, k2, . . . ,km ∈ Z \ {0}.

Then sincetki = s
l(i)
2 sk1s

−l(i)
2 for all k ∈ Z, we may reduce this evaluation to

s
l(i1)
2 sk11 s

l(i2)−l(i1)
2 sk21 s

l(i3)−l(i2)
2 · · · skm2 s

−l(im)
1 = e,

and it is now clear that this is possible only ifi1 = i2 = . . . = im andk1 + k2 +
· · · + km = 0, hence only if the original word was trivial. �
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Lemma 5.3 For anyh ∈ ΛI \ {e} the path inCay(F2, S) joining e to h passes
throughs±1

2 and not throughs±1
1 .

Proof If
h = tk1i1 t

k2
i2

· · · tkmim
for somei1, i2, . . . , im ∈ {1, 2, . . . , n} with consecutive members distinct and
somek1, k2, . . . ,km ∈ Z \ {0}, then as before we can write this out as

s
l(i1)
2 sk11 s

l(i2)−l(i1)
2 sk21 s

l(i3)−l(i2)
2 · · · skm2 s

−l(im)
1 ,

and this is now the reduced word form ofh. Since the path in question is just the
sequence of initial segments of this word, we can see that thefirst step must be
s±1
2 , as required. �

Now, adopting the convention that0 6∈ N, for I ⊆ N we define

VI := spanZ2

{ 10∑

i=−10

(δgsi1
− δgtnsi1

) : g ∈ F2, n ∈ I
}
,

so that

V ⊥
I :=

{
χ ∈ ZF2

2 :

10∑

i=−10

χ(gsi1) =

10∑

i=−10

χ(gtns
i
1) ∀g ∈ F2, n ∈ I

}
.

Let us also writeΓI := (Z⊕F2
2 /VI)⋊F2 and letQI be the operator inQΓI defined

as in Section 3. Finally, let

ΛI := 〈tn : n ∈ I〉 ≤ F2,

and for any subsetA ⊆ F2 let

A/ΛI := {A ∩ gΛ : g ∈ A},

the partition ofA induced by the partition ofF2 into left-cosets ofΛ.

Lemma 5.4 Let C1, C2, . . .∈ Ω1,1/ ∼ be the active equivalence classes, and for
eachi ∈ N let (Pi, ψi) ∈ Ci be a representative for whichhCi = HPi,ψi . Then for
anyI ⊆ N we have

dimLΓI ker(QI − 4) =
∑

i≥1

mV ⊥
I

(CPi,ψi) (2)

=
∑

i≥1

1{CPi,ψi∩V
⊥
I

6=∅}

|{φ ∈ Z
B(Pi,10)
2 : C(φ) ∩ V ⊥

I 6= ∅}|
. (3)
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Proof This follows simply from evaluating the individual terms inthe right-
hand side of Corollary 4.3 and observing directly from the formula for the trace
onL∞(mbU ) ⋊ F2 that

dimLΓI hCi = trLΓI MCPi,ψi
= mV ⊥(CPi,ψi).

The second line now follows from Lemma 5.1. �

Next we need a criterion for deciding whetherC(φ) ∩ V ⊥
I = ∅.

Lemma 5.5 (Extensibility lemma) If A ⊆ F2 is connected in theCay(F2, S)
andφ : A→ Z2 is such that

10∑

i=−10

φ(gsi1) =

10∑

i=−10

φ(ghsi1) (4)

wheneverg ∈ F2 and h ∈ ΛI are such thatgs−10
1 , gs−9

1 , . . . , gs101 , ghs−10
1 ,

ghs−9
1 , . . . andghs101 all lie in A, thenφ admits an extensionχ ∈ C(φ) ∩ V ⊥

I .

Remark Both the connectedness assumption onA and the fact that the removal
of any vertex fromCay(F2, S) disconnects this graph are crucial to this proof.⊳

Proof Given χ ∈ C(φ), it is a member ofV ⊥
I if and only if for some (and

hence any) upwards directed family of subsetsB ⊆ F2 that covers all ofF2 and
for each of which we have that condition (4) holds whenevergs−10

1 , gs−9
1 , . . . ,

gs101 , ghs−10
1 , ghs−9

1 , . . . andghs101 all lie in B. Now let

A0 = A ⊂ A1 ⊂ A2 ⊂ . . . ⊂ F2

be an exhaustion ofF2 in which eachAn+1 is obtained fromAn by the inclusion
of a single new point fromB(An, 1) \ An (clearly such an exhaustion exists). If
we show how to construct recursively a sequence of functionsχn : An → Z2 for
n ≥ 0 such that

• χ0 := φ,

• χn+1|An = χn for all n ≥ 0 and

• condition (4) is satisfied byχn whenevergs−10
1 , . . . ,gs101 , ghs−10

1 , . . . and
ghs101 all lie in An,

then it follows that(∪n≥1χn) ∈ C(φ) ∩ V ⊥ is the desired point.

25



Moreover, having setχ0 := φ, it suffices to give the construction forχ1, since
then simply repeating this construction withAn in place ofA at every step com-
pletes the proof.

To this end, supposeA1 = A∪ {g1}, let us writeE(A) for the set of all equations
of the form (4) for whichgs−10

1 , . . . ,gs101 , ghs−10
1 , . . . andghs101 all lie in A1, and

let us partition this as
E(A) = E0(A) ∪ E1(A),

whereE0(A) contains those equations that do not involve the value ofχ1(g) and
E1(A) contains those that do. All members ofE0(A) are satisfied by our assump-
tions onφ, whereas each member ofE1(A) prescribes a value forχ1(g) in terms
of values ofφ. If E1(A) = ∅ then we may take either value forχ1(g), so it suffices
to show that ifE1(A) 6= ∅ then all the resulting prescriptions agree. To see this,
observe that any two of these equations fromE1(A) must take the form

χ(g1) = −
∑

−10≤i≤10, gsi1 6=g1

φ(gsi1) +

10∑

i=−10

φ(ghis
i
1)

for someg ∈ A andh1, h2 ∈ ΛI . However, if

g1 ∈ {gs−10
1 , gs−9

1 , . . . , gs101 } ⊂ A1,

theng1 must be one of the end-pointsgs±10
1 , for otherwiseg1 6∈ A would separate

A into the two connected components containing these two end-points, contrary
to our assumption thatA is connected. Moreover, ifg′ ∈ A is another point such
that

g ∈ {g′s−10
1 , g′s−9

1 , . . . , g′s101 } ⊂ A1,

then we must haveg = g′, for if alternatively gs−10
1 = g1 = g′s101 then g1

disconnects the components ofA containingg and g′. Hence we may assume
without loss of generality that all of the above equations from the collectionE1(A)
havegs101 = g1. However, sinceh−1

1 h2 ∈ ΛI , we now see that the equation

10∑

i=−10

φ((gh1)s
i
1) =

10∑

i=−10

φ((gh1)h
−1
1 h2s

i
1) =

10∑

i=−10

φ(gh2s
i
1)

is a member ofE0(A) and so is satisfied by assumption; this implies that the right-
hand-sides above are equal for the equations inE1(A) corresponding toh1 and to
h2, and hence prescribe a consistent value forχ1(gs

10
1 ), as required. �
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Corollary 5.6 If P ⊂ F2 is a path andφ : B(P, 10) → Z2 thenC(φ) ∩ V ⊥
I 6= ∅

if and only the function

P → Z2 : g 7→
10∑

i=−10

φ(gsi1)

is constant on the cells ofP/ΛI .

Proof The necessity is obvious, and the sufficiency follows from the previous
lemma and the fact that

{gs−10
1 , gs−9

1 , . . . , gs101 } ⊂ B(P, 10) ⇒ g ∈ P.

This follows from the connectedness ofP , because there must be someg1, g2 ∈ P
that lie within distance10 of gs−10

1 andgs101 respectively, and wereg not itself a
member ofP then these two other members ofP would occupy distinct connected
components, giving a contradiction. �

Corollary 5.7 If P ⊂ F2 is a path with no small horizontal doglegs andφ :
B(P, 10) → Z2 takes the value0 insideP and1 onB(P, 10) \ P thenC(φ) ∩
V ⊥
I 6= ∅.

Remark It is in this proof that we will finally see the purpose of the assumption
of no small horizontal doglegs. ⊳

Proof By the previous corollary this depends only on the constancyof the values

10∑

i=−10

φ(gsi1), g ∈ P

on each cell ofP/ΛI . Forφ as described this value is just

|{gs−10
1 , gs−9

1 , . . . , gs101 } ∩ (B(P, 10) \ P )| mod 2

≡ |{gs−10
1 , gs−9

1 , . . . , gs101 } \ P | mod 2.

If g lies in a singleton cell ofP/ΛI then there is nothing to check. On the other
hand, ifg, gh ∈ P for someh ∈ ΛI \ {e}, then by applying Lemma 5.3 to the
segment ofP joining g andgh that we must havegsη2 ∈ P for someη = ±1 and
ghsη2 for someη = ±1. From this it follows thatgs±1

1 cannot both lie inP and
thatghs±1

1 cannot both lie inP . Hence the intersection

P ∩ {gs−10
1 , gs−9

1 , . . . , gs101 }
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is either just{g}, in which case

|{gs−10
1 , gs−9

1 , . . . , gs101 } \ P | = 20 ≡ 0 mod 2;

or else it contains some pointgsa1 with a 6= 0 and also somegsa
′

2 with a′ 6= 0,
so that by the assumption of no small horizontal doglegs it must in fact contain
exactly one of the whole branches

{gs−10
1 , gs−9

1 , . . . , g} or {g, gs1, . . . , gs101 },

in which case

|{gs−10
1 , gs−9

1 , . . . , gs101 } \ P | = 10 ≡ 0 mod 2.

Thus the value in question is always0 ∈ Z2 for thoseg lying in a nonsingleton
cell of P/ΛI , and so we have proved the necessary constancy on these cells. �

We will now use the preceding lemmas and corollaries to two distinct ends. We
first show that we must have

mV ⊥
I

(C1,∞) = mV ⊥
I

(C2,∞) = mV ⊥
I

(C∞,∞) = 0 ∀I ⊆ N.

Combined with Lemma 4.1, this justifies restricting our attention toQ|HC
for C ∈

Ω1,1/ ∼ when calculatingker(Q− 4 · id). We will then give that calculation, and
use it to deduce the monotonicity needed for Theorem 1.1.

Proposition 5.8 For anyI ⊆ N we have

mV ⊥
I

(C1,∞) = mV ⊥
I

(C2,∞) = mV ⊥
I

(C∞,∞) = 0.

Proof If
χ ∈ C1,∞ ∪ C2,∞ ∪ C∞,∞

then, in particular, there is someg ∈ S ∪ {e} and some singly-infinite pathP =
{g1, g2, . . .} ⊆ χ

−1{0} starting fromg1 ∈ ∂{g}, and such that for anyh ∈
B(P, 10) whose connection toP does not pass throughg we haveχ(h) = 1.
Now given anyg0 ∈ F2 andg1 ∈ g0S, letK ⊂ F2 be the set of pointsh that are
not disconnected fromg1 by g0. SinceB({e}, 2) is finite, it will suffice to prove
that for any fixed suchg0 andg1 we have

mV ⊥

{
χ : χ

−1{0} connectsg1 to∞ insideK along some pathP

andχ|(B(P,10)∩K)\P ≡ 1
}

= 0.
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This, in turn, will follow if we show thatmV ⊥(DN ) → 0 asN → ∞ where

DN :=
{
χ : χ

−1{0} connectsg1 to ∂B(g1, N) ∩K along some pathP

andχ|(B(P,10)∩B(g1 ,N)∩K)\P ≡ 1
}
.

Now for each pathP that connectsg1 to ∂B(g1, N) insideK we let

DN,P :=
{
χ : P ⊆ χ

−1{0} andχ|(B(P,10)∩B(g1 ,N)∩K)\P ≡ 1
}
,

and now we haveDN =
⋃
P DN,P . Finally, on the one hand we know that there

are at most3N such pathsP , and on the other we know thatP/ΛI has size at most
|P | = N for anyP and anyI ⊆ N, and hence Lemma 5.1 and Corollary 5.6 give

mV ⊥(DN,P ) ≤ 1

2|B(P,10)∩B(g1,N)∩K|−|P/ΛI |
≤ 2N

2(2·39)(N−10)
.

Combining these estimates gives

mV ⊥(DN ) ≤ 3N · 2N · 2−(2·39)(N−10) → 0 asN → ∞,

as required. �

Remark In fact, one can use a different argument to prove that

ν(C1,∞) = ν(C2,∞) = 0

for any left-translation-invariant Borel probability measureν on ZF2
2 . Any ele-

mentχ ∈ C1,∞ gives rise to a semi-infinite pathP (χ) ⊆ F2 that passes within
distance1 of e by selecting the connected component ofχ

−1{0} closest toe.
Based on this we may classify members ofC1,∞ according to the position ofe
relative to this path, where we record that position using some labeling of the
vertices inB(P (χ), 1) by the vertices of the infinite tree that has a semi-infinite
central path and two extra leaves adjacent to every point of that path (where just a
little care is needed so that the labeling is a Borel functionof χ). This now gives
a Borel partition ofC1,∞ into countably many cells indexed by the vertices of
this infinite tree, and these cells are now easily seen to be related one to another
by members of the full group of measure-preserving transformations of(ZF2

2 , ν)
generated by the coordinate-translation action ofF2. It follows that these count-
ably many cells must all have the same measure, and hence thatthat measure is
zero. However, this argument breaks down for doubly-infinite paths because we
have no end-point of the path to use a reference so as to define our labeling of the
members ofB(P, 1) in a Borel way; and, indeed, it is not hard to find some exam-
ples of translation invariant probabilityν under whichalmost everyχ ∈ ZF2

2 is
such thatχ−1{0} is a union of disconnected doubly-infinite paths, one of which
paths often passes close toe. In view of this it seems easier to treat all three cases
together using the more analytic argument above. �
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Corollary 5.9 For any finite pathP ⊂ F2 we have

|{φ ∈ Z
B(P,10)
2 : C(φ) ∩ V ⊥

I 6= ∅}| = 2|B(P,10)|−|P/ΛI |,

and so
dimLΓI ker(QI − 4) =

∑

i≥1

2−(|B(Pi,10)|−|Pi|+|Pi/ΛI |).

Proof From Corollary 5.6 and the standard relation|F | · |F⊥| ≡ 2N for sub-
groupsF ≤ ZN2 we can identify

{φ ∈ Z
B(Pi,10)
2 : C(φ) ∩ V ⊥

I 6= ∅}

with the subgroup of thoseφ ∈ Z
B(Pi,10)
2 the annihilates all the vectors of the

form
10∑

i=−10

δgsi1
−

10∑

i=−10

δghsi1

such thath ∈ ΛI andg andhg both lie inPi. Clearly each cellC ∈ Pi/ΛI gives

rise to a subspace ofZ
B(Pi,10)
2 of dimension|C| − 1 spanned by these differences

with g, hg ∈ C, and so the total dimension of the resulting subspace is

∑

C∈Pi/ΛI

(|C| − 1) = |Pi| − |Pi/ΛI |.

This gives the dimension of

{φ ∈ Z
B(Pi,10)
2 : C(φ) ∩ V ⊥

I 6= ∅}

as|B(Pi, 10)| − |Pi| + |Pi/ΛI |, and so both the desired conclusions now follow
from Lemma 5.4. �

Proof of Theorem 1.1 We will show that the conclusion holds for the parame-
terized family of subgroupsVI and the operatorsQI − 4 in place ofQI provided
the sequence of lengthsl(n), n ≥ 1, appearing in the definition oftn grows suffi-
ciently fast.

Letting
ϕ(I) := dimLΓI ker(QI − 4) for I ⊆ N,

we must prove that

I <lex J ⇒ ϕ(I) < ϕ(J)
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provided that for eachn the valuesl(n′) for n′ > n are sufficiently large relative
to l(1), l(2), . . . ,l(n).

Suppose thatn ∈ N is minimal such thatn ∈ J but n 6∈ I (so by the definition
of the lexicographic ordering we must haveI ∩ [1, n − 1] = J ∩ [1, n − 1]). By
Corollary 5.9 we have

ϕ(J) − ϕ(I) =
∑

i≥1

(
2−(|B(Pi,10)|−|Pi|+|Pi/ΛJ |) − 2−(|B(Pi,10)|−|Pi|+|Pi/ΛI |)

)
.

Clearly (from the freeness of thetns) there will be some pathsPi in the above list
for whichPi/ΛJ∩[1,n] is a nontrivial coarsening ofPi/ΛJ∩[1,n−1] = Pi/ΛI∩[1,n]

(that is, the left cosets of the larger subgroupΛJ∩[1,n] intersectPi in fewer, larger
patches than those of the smaller subgroupΛJ∩[1,n−1], and so the expression

2−(|B(Pi,10)|−|Pi|+|Pi/ΛJ∩[1,n]|) − 2−(|B(Pi,10)|−|Pi|+|Pi/ΛI∩[1,n]|)

in the above sum will be strictly positive for each of thesei. LetE ⊂ N be a finite
subset ofi ∈ N for which this is so, and such that
∑

i∈E

2−(|B(Pi,10)|−|Pi|+|Pi/ΛJ∩[1,n]|) − 2−(|B(Pi,10)|−|Pi|+|Pi/ΛI∩[1,n]|) =: η > 0.

Let i0 := max E. Next we observe, using only very crude estimates at every step,
that for anyI andJ and anyL ≥ 1 we have

∑

i≥1, |Pi|≥L

(
2−(|B(Pi,10)|−|Pi|+|Pi/ΛJ |) − 2−(|B(Pi,10)|−|Pi|+|Pi/ΛI |)

)

≤ 2 ·
∑

i≥1, |Pi|≥L

2−(|B(Pi,10)|−|Pi|) = 2 ·
∑

i≥1, |Pi|≥L

2|Pi|2−|B(Pi,10)|

≤ 2 ·
∑

all pathsP in Cay(F2, S)
with e ∈ B(P, 1) and |P | ≥ L

2|P |2−|B(P,10)|

≤ 2 ·
∑

ℓ≥L

∑

all pathsP in Cay(F2, S)
with e ∈ B(P, 1) and |P | = ℓ

2ℓ2−(2+2·3+...+2·39)ℓ

≤ 2 ·
∑

ℓ≥L

(3ℓ+ 2) · 3ℓ · 2ℓ · 2−(2+2·3+...+2·39)ℓ

<∞.

Since for any finiteL there can be only finitely many paths amongP1, P2, . . . of
length< L, it follows that

∑

i≥i1+1

(
2−(|B(Pi,10)|−|Pi|+|Pi/ΛJ |) − 2−(|B(Pi,10)|−|Pi|+|Pi/ΛI |)

)
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tends to0 asi1 → ∞ uniformly fast inI andJ , and so we may picki1 > i0 such
that

∑

i≥i1+1

(
2−(|B(Pi,10)|−|Pi|+|Pi/ΛJ |) − 2−(|B(Pi,10)|−|Pi|+|Pi/ΛI |)

)
< η/2

irrespective of the choice ofl(n+ 1), l(n+ 2), . . . . Therefore if we simply insist
that these lengthsl(n′) for n′ > n should be so large that

Pi/ΛI = Pi/ΛI∩[1,n] ∀i ≤ i1,

we deduce that

ϕ(J) − ϕ(I) =

i1∑

i=1

(
2−(|B(Pi,10)|−|Pi|+|Pi/ΛJ∩[1,n]|) − 2−(|B(Pi,10)|−|Pi|+|Pi/ΛI∩[1,n]|)

)

+
∑

i≥i1+1

(
2−(|B(Pi,10)|−|Pi|+|Pi/ΛJ |) − 2−(|B(Pi,10)|−|Pi|+|Pi/ΛI |)

)

≥
∑

i∈E

(
2−(|B(Pi,10)|−|Pi|+|Pi/ΛJ∩[1,n]|) − 2−(|B(Pi,10)|−|Pi|+|Pi/ΛI∩[1,n]|)

)

−
∣∣∣
∑

i≥i1+1

(
2−(|B(Pi,10)|−|Pi|+|Pi/ΛJ |) − 2−(|B(Pi,10)|−|Pi|+|Pi/ΛI |)

)∣∣∣

≥ η − η/2 = η/2 > 0,

as required. �

Remark Similar arguments also prove the continuity of the mapφ for the prod-
uct topology onP(N), but we do not need this. ⊳

6 Closing remarks

As they stand, the methods of this paper are too crude to touchwhat may be
the most interesting special case of the Atiyah conjecture:that for torsion-free
groups. Even the strong version of the conjecture discussedin the introduction is
known to be true for large classes of torsion-free groups (see, for example, Reich’s
thesis [12]), among which it implies such striking consequences as Kaplansky’s
conjecture that the group ring has no nontrivial zero-divisors. In order to query
the torsion-free instance of the original Atiyah conjecture, in our setting it might
be natural to study group extensions of the form(Z⊕Λ/V ) ⋊ Λ for some torsion-
free base groupΛ and some translation-invariant subgroupV ≤ Z⊕Λ chosen so
that Z⊕Λ/V is still torsion-free. After passing through the Fourier transform,
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this converts our problem into a study of elements of the group measure space
von Neumann algebraL∞(mbU ) ⋊ Λ for someconnectedcompact subgroup̂U ≤
TΛ, where we must restrict attention to elements of the form

∑
i T

gi ◦Mφi for
φi ∈ C(Û) a trigonometric polynomial with rational coefficients. While it is not
obvious that counterexamples to the Atiyah conjecture could not be found among
such groups (and they are generally not covered by the known positive statements
such as Linnell’s Theorem [9]), most of the arguments we havebeen able to make
above relied on the ability to obtain indicator functions ofclopen subsets ofV ⊥

as trigonometic polynomials, and it is clear that considerably more sophisticated
analytic ideas would be needed to decide whether any operators such as the above
can have pure point spectrum at all.

Other natural classes of groups not to be found among our family of examples
might also be interesting to consider, such as hereditarilyfinitely-generated groups
or amenable groups. In the case of amenable groups I think it very likely that a
similar construction(Z⊕Λ

2 /V ) ⋊ Λ with a discrete amenable base groupΛ should
exist that admits an element of the rational group ring having kernel with irra-
tional von Neumann dimension, but here the absence of the simple tree structure
on Cay(Λ, S) will again mandate some much more delicate construction andes-
timates than we have used above.

It would also be interesting to know whether the semidirect product constructions
we have used, which seem to offer a great deal of flexibility, could be brought to
bear on the search for counterexamples elsewhere in geometric group theory, such
as for the conjecture that all groups have the algebraic eigenvalue property ([6]).
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