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Abstract. This paper establishes an Atiyah-type characteristic class formula for both the twist-
ed signature and the twistedL-classes of a singular space. The result, in its present form, applies
to coefficient systems that satisfy a transversality condition near the singularities. This condition
is frequently automatically satisfied, e.g. on supernormal spaces or for local systems arising in
certain geometric mapping situations. We obtain applications to stratified maps by combining
our formula with the Cappell-Shaneson signature formula.
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1. Introduction

Let X be a closed oriented Whitney stratified normal Witt space of even dimen-
sion, for example a compact normal complex algebraic variety. Let � denote the
singular set of X and suppose S is a local coefficient system (locally constant
sheaf) on the top stratum X − � equipped with a nondegenerate bilinear (sym-
metric or anti-symmetric) pairing φ : S × S → RX−� (with RX−� the constant
sheaf with stalk R on X−�). If S is strongly transverse to � (definition 3) then
it possesses a K-theory signature [S]K in the K-theory of X (corollary 2) and our
central result (theorem 1) asserts that the twisted signature σ(X;S) of X with
coefficients in S can be computed as

σ(X;S) = ε∗(c̃h([S]K) ∩ L(X)), (1)

M. Banagl
Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA.
(e-mail: banagl@math.wisc.edu)

S.E. Cappell
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA.
(e-mail: cappell@cims.nyu.edu)

J.L. Shaneson
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA.
(e-mail: shaneson@math.upenn.edu)

All authors supported in part by NSF grants.



590 M. Banagl et al.

where c̃h is a modified Chern-character and L(X) the Goresky-MacPherson
L-class of X. More generally, we prove in theorem 3 that the twisted L-class
L(X;S) can be calculated as

L(X;S) = c̃h([S]K) ∩ L(X) (2)

We discuss a corollary for supernormal spaces, and apply the characteristic
class formula to stratified maps. This is done by combining (1) with the Capp-
ell-Shaneson signature formula, reviewed in section 1.3, yielding an expression
for the signature of the source of a stratified map in terms of the L-classes of the
closed strata of the target and the Chern classes of the various local systems as-
sociated to the map (theorem 4). We provide illustrative examples by considering
situations such as fiber bundle projections to a singular base — the terms arising
from the singular strata will be seen to vanish in this situation (theorem 5) —
and stratified maps (with changing fiber) to manifolds (proposition 5). In a future
paper, we will verify that large classes of orbit spaces of smooth group actions
are supernormal, so that strong transversality is satisfied by any local system and
the formulae presented here can be applied to compute invariants.

The paper is organized as follows: Section 1.1 reviews Atiyah’s classical for-
mula for the signature of the total space of a nonsingular fiber bundle. This is
supplemented in section 1.2 by a brief discussion of Werner Meyer’s abstract ver-
sion of that formula which applies to any given local system, not necessarily of
geometric origin. Section 1.3 serves to describe some key results of [CS91], in
particular the version of the singular signature formula that will be used in this
paper. Section 2 discusses the homology L-classes of a Witt space with boundary
and clarifies their relation to the classes of the boundary. Section 3 reviews that
at odd primes, Witt bordism classes are representable by smooth manifolds. Sec-
tion 4 defines the notion of “local system with duality” that we require (Poincaré
local systems, 4.1), recalls how such systems give rise to a signature invariant via
intersection homology, and introduces a transversality condition stated in terms
of the representation of a local system by the monodromy functor it induces on
the fundamental groupoid (4.2). Furthermore we show that a transverse Poincaré
local system has a global K-theory signature. Section 5 contains a statement and
proof of the twisted signature formula (1) and section 6 discusses the L-class for-
mula (2). Finally, section 7 gives various applications (notably to stratified maps
and singularities of maps), and in section 8 calculations for a concrete example
are carried out.

1.1. Atiyah’s formula

Let E be an oriented closed smooth manifold, the total space of a fiber bundle
F → E → B. It is a classical result of Chern, Hirzebruch and Serre [CHS57]
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that if B is simply connected (or the fundamental group of B acts trivially on the
cohomology of F ), then the signatures satisfy the multiplicative formula

σ(E) = σ(B)σ(F ).
Kodaira [Kod67], Atiyah [Ati69] and Hirzebruch [Hir69] constructed various ex-
amples of fiber bundles in which π1(B) acts nontrivially on H ∗(F ;R) and the
signature is not multiplicative. In the case where both B and F are even-dimen-
sional, the Hirzebruch signature theorem and the Atiyah-Singer index theorem
were used by Atiyah [Ati69] to obtain a characteristic class formula for σ(E) in-
volving a contribution from the π1(B)-action onH ∗(F ): Let k = dim(F )/2. The
flat (symmetric if k even, anti-symmetric if k odd) bundle S over B with fibers
Hk(Fx;R) (x ∈ B), has a real (resp. complex) K-theory signature [S]K ∈ KO(B)
for k even (resp. KU(B) for k odd) and the twisted signature theorem is

σ(E) = 〈ch([S]K) ∪ �̃(B), [B]〉
with �̃ the modification of the Hirzebruch �-genus defined by

�̃(B) =
r∏

i=1

yi

tanh yi/2
∈ H 4∗(B;Q)

and y1, . . . , yr notional elements of degree 2 such that the i-th Pontrjagin class of
the tangent bundle of B is the i-th elementary symmetric function in y2

1 , . . . , y
2
r .

1.2. Meyer’s generalization

For a complex vector bundle ξ over a base space B, let

c̃h(ξ) ∈ H 2∗(B;Q)
denote the modified Chern character c̃h = ch ◦ψ2 obtained by composition with
the second Adams operation ψ2, that is, if ξ has total Chern class

c(ξ) = (1+ y1) · · · (1+ yr)
(r = rankξ ), then

ch(ξ) =
r∑

i=1

eyi ∈ H 2∗(B;Q)

and ψ2(ξ) is a bundle with

ch(ψ2(ξ)) =
r∑

i=1

e2yi .
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Hence,

c̃h(ξ)2k = 2k ch(ξ)2k ∈ H 2k(B;Q).
(see [HBJ92]).

Now W. Meyer [Mey72] considers a locally constant sheaf S, not necessarily
arising from a fiber bundle projection, over a closed oriented smooth manifold
B of even dimension such that the stalks Sx (x ∈ B) are nondegenerate (anti-)
symmetric bilinear forms over R. The twisted signature σ(B;S) ∈ Z is defined
to be the signature of the nondegenerate form on the sheaf cohomology group
H dim(B)/2(B;S). The twisted signature formula of [Mey72] is

σ(B;S) = 〈c̃h([S]K) ∪ �(B), [B]〉,
where � is the original Hirzebruch �-genus.

1.3. The Cappell-Shaneson signature formula

The previously discussed formulae apply to fiber bundle projections between
manifolds. The invariants associated to general stratified maps between stratified
singular spaces were investigated by Cappell and Shaneson in [CS91]. The fi-
ber is, in particular, allowed to vary and one is interested in describing the error
introduced by the singular contributions in the known formulae for nonsingular
maps. We shall review some of the results obtained in [CS91].

Let f : Ym −→ Xn be a stratified map of compact oriented Whitney strati-
fied spaces with only even-codimensional strata, m − n even. Let � denote the
singular set of X and let X denote the set of components of pure strata of X of
codimension at least 2. For z ∈ Z ∈ X , let N(z) denote the normal slice to Z at
z and Lk(z) = ∂N(z) be the link. Define Ez to be the stratified pseudomanifold
obtained by taking the pre-image under f of the normal slice at z and collapsing
the boundary to a point, that is,

Ez = f −1N(z) ∪f−1Lk(z) c(f
−1Lk(z))

(cA denotes the cone on a spaceA, c the cone-point). The spaceEz is of dimension
(m− n)+ codimZ = 2d(Z) and has only strata of even codimension.

Now assume we are given a self-dual complex of sheaves S• ∈ Db(Y ), where
Db(Y ) denotes the constructible bounded derived category. On Ez, we consider
the sheaf

S•(z) = τ {c}≤−d(Z)−1Riz∗j
!
zS
•,
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where

Ez
iz←↩ Ez − {c}

jz
↪→ Y

are inclusions and τ {c}≤−d(Z)−1 is truncation over the cone-point. The self-duality of
S• induces self-duality for S•(z) and we have a nondegenerate bilinear pairing on
middle-dimensional hypercohomology

φz : H−d(Ez;S•(z))×H−d(Ez;S•(z))→ R.

Letting z vary over Z, we thus have a local system SZf over Z with stalk

(SZf )z = H−d(Ez;S•(z))
and pairing φz on each stalk (SZf )z. Let IC•m̄(Z;SZf ) denote the lower-middle

perversity intersection chain complex on the closure Z of Z with coefficients in
the local system SZf . Over the top stratum X −�, a local system SX−�f is given
by considering the stalks (z ∈ X −�)

(SX−�f )z = H− 1
2 (m−n)(f −1(z); j !

zS
•),

jz : f −1(z) ↪→ Y, together with the appropriate nondegenerate pairings.
Now a principal result of [CS91] asserts that the self-dual sheaf

f∗S•[− 1
2 (m− n)]

is cobordant to

IC•m̄(X;SX−�f )⊕
∑

Z∈X
IC•m̄(Z;SZf )X[ 1

2 codimZ]

(for a sheaf A• on Z ⊂ X, (A•)X denotes extension by zero to X).

Let us specialize to S• = IC•m̄(Y ). Then

S•(z) = IC•m̄(Ez)

and

(SZf )z = H−d(Ez;S•(z)) = IHm̄
d (Ez).

Taking signatures, we get the signature formula

σ(Y ) = σ(X;SX−�f )+
∑

X
σ(Z;SZf ) (3)

(see definition 2 for the twisted signature σ(−;−)). Thus the sum over X repre-
sents correction terms contributed by the singularities of the map. In section 7.2
of the present paper, we apply our characteristic class formula for the twisted sig-
nature of singular spaces (theorem 1) to formula (3) to calculate the terms on the
right hand side for maps f whose coefficient systems Sf are strongly transverse
to the singularities of X.
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2. L-Classes for singular spaces with boundary

The present section reviews the construction of homology L-classes of stratified
spaces with boundary as well as their relation to theL-classes of the boundary. We
adopt the Thom-Pontrjagin construction approach using global transversality as
employed by Goresky and MacPherson [GM80], although more refined methods
exist:According to [CSW91], see also [CS91], every self-dual complex of sheaves
S• ∈ Db(X) on a closed oriented pseudomanifold X of dimension n has a set of
L-classes

Li(S•) ∈ Hi(X;Q),
uniquely determined by the requirementsL0(S•) = σ(S•) ∈ H0(X) ∼= Z (X con-
nected, σ the signature of S•) and Li−n+m(j !S•) = j !Li(S•) for j : Ym ↪→ Xn

a normally nonsingular inclusion with trivial normal bundle, j ! : Hi(X;Q) →
Hi−n+m(Y ;Q) the map given by intersection of cycles with Y (see section 6, note
that j !S• is a self-dual sheaf on Y ). The intersection chain sheaf S• = IC•m̄(X) is
self-dual for X a Witt space and we obtain L-classes

Li(X) = Li(IC•m̄(X)) ∈ Hi(X;Q)
for Witt spaces X. If n− i is odd, then Li = 0.

Let (Mn, ∂M) be a compact oriented smooth manifold with boundary. The
Hirzebruch L-classes �i of M are the L-classes of the tangent bundle TM of M
in cohomology

�i(M) = �i(TM) ∈ H 4i (M;Q).
By Poincaré duality H 4i (M) ∼= Hn−4i (M, ∂M), and we have dual homology
L-classes

Li(M) ∈ Hi(M, ∂M;Q),
so that Ln−4i = �i ∩ [M], where [M] ∈ Hn(M, ∂M) is the fundamental class.
This illustrates that the correct address for L-classes of singular spaces X with
boundary is relative homology H∗(X, ∂X).

Now let (Xn, ∂X) be a compact oriented Whitney stratified Witt space with
boundary and Sk be a k-sphere with base-point p ∈ Sk. The cohomotopy set
πk(X, ∂X) = [(X, ∂X), (Sk, p)] is a group for 2k > n+ 1 and in that range the
Hurewicz map is rationally an isomorphism

πk(X, ∂X)⊗Q ∼= Hk(X, ∂X;Q) (4)

Fix a point q ∈ Sk, q �= p. A given continuous map f : (X, ∂X) → (Sk, p) is
homotopic rel ∂X to a map f̃ , the restriction of a smooth map on an open neighbor-
hood ofX in the ambient manifold implicit in the Whitney stratification, such that



Computing twisted signatures and L-classes of stratified spaces 595

f̃ is transverse regular to q and f̃ −1(q) ⊂ intX is transverse to each stratum ofX
(in fact the modification off takes place only inf −1(Uq) ⊂ intX,whereUq ⊂ Sk
is a small open neighborhood of q). Transversality implies that f̃ −1(q) is a Witt
space. Thus the intersection chain sheaf IC•m̄(f̃

−1(q)) is self-dual and f̃ −1(q) has
a well defined signature σ(f̃ −1(q)). Alternatively, observe that as transversality
implies the normal nonsingularity of the inclusion i : f̃ −1(q) ↪→ X, the restriction
i!IC•m̄(X) is a self-dual complex of sheaves on f̃ −1(q) and hence has a signature.
If f, g : (X, ∂X)→ (Sk, p) are homotopic transverse maps, then the pre-image
H−1(q) ⊂ intX under a transverse homotopy rel ∂X,H : X × [0, 1]→ Sk is a
Witt cobordism between f −1(q) and g−1(q), so that the map

λk(X) : πk(X, ∂X)→ Z

[f ] �→ σ(f̃ −1(q))

is a well defined homomorphism. Under the identification (4), λk(X) induces a
map

λk(X)⊗Q : Hk(X, ∂X;Q) −→ Q

defining an element Lk(X) ∈ Hk(X, ∂X;Q) ∼= Hom(Hk(X, ∂X;Q),Q), the
L-class of the Witt space (X, ∂X). The restriction 2k > n + 1 is removed by
considering products of (X, ∂X) with spheres.

The main purpose of this section is to establish a relation between the L-class
of X and the L-class of the boundary ∂X. What we will prove is that Lk+1(X)

hitsLk(∂X) under the boundary homomorphism on homology. Consequently, the
pushforward of the L-class of the boundary into H∗(X) vanishes.

Proposition 1. Let (X, ∂X) be a compact oriented Whitney stratified Witt space
with boundary, Lk+1(X) its (k + 1)-th L-class and Lk(∂X) the k-th L-class of
the boundary. With ∂∗ : Hk+1(X, ∂X;Q)→ Hk(∂X;Q) the homology boundary
operator, we have

∂∗Lk+1(X) = Lk(∂X).
Proof. Given f : ∂X → Sk transverse to p ∈ Sk. We shall describe how the
cohomotopy coboundary operator

δ∗ : πk(∂X) −→ πk+1(X, ∂X)

acts on [f ].
Write c∂X for the cone on ∂X and view Dk+1 ∼= cSk. Then f extends over the
cones as

cf : c∂X −→ cSk ∼= Dk+1.
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Let q = (p, 1
2 ) ∈ cSk andN be an open collar neighborhood of ∂X inX.Consider

the collapse maps

X −→ X/(X −N) ∼= c∂X
and

Dk+1 −→ Dk+1/Sk ∼= Sk+1.

Denote the images of p and q under the latter collapse again by p, q ∈ Sk+1.

Then δ∗[f ] is represented by the composition

g : (X, ∂X)→ (c∂X, ∂X)
cf→ (Dk+1, Sk)→ (Sk+1, p).

Observe that g is transverse to q, since in fact g−1(q) = f −1(p) × { 12 } when
regarded as a subvariety of the collar N ∼= ∂X × [0, 1). If

λk(∂X) : πk(∂X) −→ Z

is the L-class of ∂X and

λk+1(X) : πk+1(X, ∂X) −→ Z

is the L-class of X, then

λk+1(X)(δ
∗[f ]) = λk+1(X)[g] = σ(g−1(q)) = σ(f −1(p)) = λk(∂X)[f ]

and so

λk+1(X) ◦ δ∗ = λk(∂X).
The commutative diagram

πk(∂X)⊗Q
δ∗⊗Q−−−→ πk+1(X, ∂X)⊗Q

∼=


�



�∼=

Hk(∂X;Q) −−−→
δ∗H

Hk+1(X, ∂X;Q)

shows

(λk+1(X)⊗Q) ◦ δ∗H = λk(∂X)⊗Q.

In other words, if Lk+1(X) ∈ Hom(Hk+1(X, ∂X),Q) is the element defined
by λk+1(X) ⊗ Q and Lk(∂X) ∈ Hom(Hk(∂X),Q) is the element defined by
λk(∂X)⊗Q, then

Hom(δ∗H ,Q)(Lk+1(X)) = Lk(∂X)
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and the commutative square

Hom(Hk+1(X, ∂X),Q)
Hom(δ∗H ,Q)−−−−−−→ Hom(Hk(∂X),Q)

∼=
�



�

∼=

Hk+1(X, ∂X;Q) −−−→
∂∗

Hk(∂X;Q)

implies

∂∗Lk+1(X) = Lk(∂X).
��

3. Representability of Witt spaces

We show that results of Sullivan and Siegel imply that at odd primes, Witt bordism
is representable by smooth oriented bordism. This fact will be used subsequently
to pull back calculations on singular spaces to calculations on smooth spaces.

Let �SO∗ (X,A) denote bordism of smooth oriented manifolds and let
�Witt∗ (X,A) denote Witt space bordism.

Proposition 2. For compact PL-pairs (X,A), the natural map

�SO∗ (X,A)⊗ Z[ 1
2 ] −→ �Witt∗ (X,A)⊗ Z[ 1

2 ]

is surjective.

Proof. Considering the signature as a map σ : �SO∗ (pt) → Z[ 1
2 ] makes Z[ 1

2 ]
into an �SO∗ (pt)-module and we can form the homology theory

�SO∗ (X,A)⊗�SO∗ (pt) Z[ 1
2 ].

Let ko∗(X,A) denote connected KO homology. Sullivan [Sul70] constructs a
natural isomorphism of homology theories

�SO∗ (X,A)⊗�SO∗ (pt) Z[ 1
2 ]

�−→ ko∗(X,A)⊗ Z[ 1
2 ]

(for compact PL-pairs). Siegel [Sie83] shows that Witt spaces provide a geometric
description of connected KO homology at odd primes: He constructs a natural
isomorphism of homology theories

�Witt∗ (X,A)⊗ Z[ 1
2 ]

�−→ ko∗(X,A)⊗ Z[ 1
2 ].

Now �SO∗ (X,A) ⊗�SO∗ (pt) Z[ 1
2 ] being a quotient of �SO∗ (X,A) ⊗ Z[ 1

2 ] yields a
natural surjection

�SO∗ (X,A)⊗ Z[ 1
2 ] −→ �SO∗ (X,A)⊗�SO∗ (pt) Z[ 1

2 ].
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The statement follows from the commutative diagram

�SO∗ (X,A)⊗�SO∗ (pt) Z[ 1
2 ]

�−−−→ ko∗(X,A)⊗ Z[ 1
2 ]

�



�

∼=

�SO∗ (X,A)⊗ Z[ 1
2 ] −−−→ �Witt∗ (X,A)⊗ Z[ 1

2 ]

��

4. The twisted signature

4.1. Poincaré Local Systems

Let (Xn, ∂X) be a pseudomanifold with (possibly empty) boundary and filtration

Xn = Xn ⊃ Xn−2 ⊃ Xn−3 ⊃ . . . ⊃ X0 ⊃ ∅,

where the strata are indexed by dimension, the Xi ∩ ∂X stratify ∂X, and the
Xi− ∂X stratifyX− ∂X;� = Xn−2 is the singular set. If ∂X = ∅,we assume n
even, if ∂X �= ∅, we assume n odd. Let RX denote the constant sheaf with stalk
R on X.

Definition 1. A Poincaré local system on X is a locally constant sheaf S on X
together with a nondegenerate bilinear pairing φ : S × S → RX. In the case
∂X = ∅, the pairing is required to be symmetric if n ≡ 0(mod 4) and anti-sym-
metric if n ≡ 2(mod 4).When ∂X �= ∅, the pairing is required to be symmetric
if n ≡ 1(mod 4) and anti-symmetric if n ≡ 3(mod 4).

Let (S, φ) be a Poincaré local system on X − � (the top stratum of X). The
pairing φ, being nondegenerate, induces an isomorphism

φ : Hom(S,RX−�)
�−→ S

Now assume ∂X = ∅.As X −� is a manifold,

DS[−n] = Hom(S,RX−�)⊗OX−�,

where OX−� is the orientation sheaf on X − � and D the Borel-Moore-Verdier
dualizing functor. Thus φ induces an isomorphism

φ : DS[−n] ∼= S ⊗OX−�.

An orientation for X is an isomorphism OX−� ∼= RX−�. Assuming X to be
oriented, it follows that φ : S × S → RX−� induces a self-duality isomorphism

φ : DS[−n] ∼= S (5)
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Let

IC•m̄(X;S) = τ≤m̄(n)−nRin∗ . . . τ≤m̄(2)−nRi2∗S[n]

be the Goresky-MacPherson-Deligne extension of S to all of X, i.e. the intersec-
tion chain complex ofXwith coefficients in S (here ik : X−Xn−k ↪→ X−Xn−k−1

is the inclusion). For certain classes of spaces, the self-duality isomorphism (5)
will extend to a self-duality isomorphism for IC•m̄(X;S). Consider the case of a
space X with only even-codimensional strata. Then φ induces

φ̄ : DIC•m̄(X;S)[n] ∼= IC•m̄(X;S)
without any further obstruction; φ̄ will be symmetric (Dφ̄[n] = φ̄) if φ is, and
anti-symmetric (Dφ̄[n] = −φ̄) if φ is. The case ofX being a Witt space is slightly
more subtle: φ will extend if and only if

IHm̄
k (Lk(x);S) = 0,

for all x ∈ Xn−2k−1 −Xn−2k−2, k ≥ 1. This condition is satisfied if, for instance,
S is constant on links of odd-codimensional strata.

Now assume X to be closed.

Definition 2. Let (S, φ) be a Poincaré local system onX−� such that a self-dual
extension (IC•m̄(X;S), φ̄) exists. The twisted signature σ(X;S) ofX with coeffi-
cients in S is the signature of the pairing induced by φ̄ on the middle dimensional
hypercohomology of IC•m̄(X;S) :

σ(X;S) = σ(IC•m̄(X;S), φ̄).

4.2. Strongly Transverse Poincaré Local Systems

Let (S, φ) be a Poincaré local system of stalk dimension m on the space Xn and
let �1(X) denote the fundamental groupoid of X. By Vectm denote the category
whose objects are pairs (V ,ψ), with V an m-dimensional real vector space and
ψ : V × V → R a nondegenerate bilinear pairing (symmetric if n ≡ 0(4) and
anti-symmetric if n ≡ 2(4)), and whose morphisms are linear maps preserving
the pairings:

HomVectm((V1, ψ1), (V2, ψ2)) =
{A : V1 → V2 linear |ψ2(Av,Aw) = ψ1(v,w), v,w ∈ V1}.

The system (S, φ) induces a covariant functor

µ(S) : �1(X) −→ Vectm
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as follows: For x ∈ X, let

µ(S)(x) = (Sx, φx)
and for a path class [ω] ∈ π1(X, x1, x2) = Hom�1(X)(x2, x1), ω : I → X,

ω(0) = x1, ω(1) = x2, define the linear operator

µ(S)[ω] : µ(S)(x2) −→ µ(S)(x1)

to be the composition

µ(S)(x2) = Sω(1) ∼= (ω∗S)1 �←
restr

�(I, ω∗S) �→
restr

(ω∗S)0 ∼= Sω(0) = µ(S)(x1).

If we choose a base-point x ∈ X, then restricting µ(S) to the fundamental group
π1(X, x) = Hom�1(X)(x, x) gives an assignment of a linear automorphism on the
stalk Sx,

µ(S)x(g) : Sx −→ Sx,

preserving the pairing φx : Sx×Sx → R, to each g ∈ π1(X, x).Thus one obtains
the monodromy representation

µ(S)x : π1(X, x) −→ O(p, q;R)
when n ≡ 0(4) (p + q = m is the rank of S, p − q the signature of φx), and

µ(S)x : π1(X, x) −→ Sp(2r;R)
when n ≡ 2(4) (m = 2r is the rank of S). Conversely, a given functor µ :
�1(X)→ Vectm determines a Poincaré local system: Let X0 be a path compo-
nent ofX, and x0 ∈ X0.Then π(X0, x0) acts onµ(x0) = (V , φ) by the restriction
µx0 and we have the associated local system

S|X0 = X̃0 ×π1(X0,x0) V

over X0 with an induced pairing φ, where X̃0 denotes the universal cover of X0.

Definition 3. Let X be a stratified pseudomanifold with singular set � and let X
denote the set of components of open strata of X of codimension at least 2. Each
Z ∈ X has a link Lk(Z). Call a Poincaré local system S on X − � strongly
transverse to � if the composite functor

�1(Lk(Z)−�) incl∗−→ �1(X −�) µ(S)−→ Vectm

is isomorphic to the trivial functor for all Z ∈ X .

The following two auxiliary lemmata have the same sheaf-theoretic identity as
a conclusion, but apply in different geometric contexts (Sh(A) denotes the abelian
category of sheaves on a space A).
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Lemma 1. LetX be a topological space and U1, U2 ⊂ X open subsets. Consider
the diagram of open inclusions

U1
j |←−−− U1 ∩ U2

i



�



�i|

X ←−−−
j

U2

If A ∈ Sh(U1), then

j∗i∗A ∼= i|∗j |∗A.

Proof. We show that the two sheaves have isomorphic canonical presheaves. Let
V ⊂ U2 be open in U2.As V is then open in X as well, we have

�(V, j∗i∗A) = �(V, i∗A) = �(V ∩ U1,A)

As V ∩ U1 is open in U1, we obtain on the other hand

�(V, i|∗j |∗A) = �(V ∩ U1, j |∗A) = �(V ∩ U1,A).

��

Lemma 2. Let X, Y be pseudomanifolds, U ⊂ X open, and j : Y ↪→ X a nor-
mally nonsingular inclusion with trivial normal bundle. Consider the diagram of
inclusions

U
j |←−−− U ∩ Y

i



�



�i|

X ←−−−
j

Y

(6)

If A ∈ Sh(U) is locally constant, then

j ∗i∗A ∼= i|∗j |∗A.

Proof. Let E(ν) be an open tubular neighborhood of Y in X, the total space of
the normal bundle ν of j. Choose a stratum preserving trivialization φ of ν,

φ : E(ν)
�−→ Y × R

k

(where k is the codimension of j ) such that there is a commutative diagram



602 M. Banagl et al.

E(ν)
�→
φ

Y × R
k

i0 ↖ ↗i|×1
Rk

U ∩ E(ν) �→
φ|

(U ∩ Y )× R
k

j1 ↑ j1| ↑ ↑1U∩Y×0 ↑1Y×0

U ∩ Y �→
1U∩Y

(U ∩ Y )× {0}
i| ↙ ↘i|×0

Y
�→
1Y

Y × {0}

(all vertical and diagonal maps are inclusions, all horizontal maps are homeomor-
phisms.)
The argument is based on the following factorization of diagram (6):

U
j2|← U ∩ E(ν) j1|← U ∩ Y

φ| ↘� ↙1U∩Y×0

(U ∩ Y )× R
k

i ↓ i0 ↓ i|×1 ↓ ↓i|
Y × R

k

φ ↗� ↖1Y×0

X
j2← E(ν)

j1← Y

(all maps are inclusions, except φ, φ|.)
Suppose B is a locally constant sheaf on (U ∩ Y ) × R

k. Then B ∼= ((1U∩Y ×
0)∗B)×R

k and (i|×1)∗((1U∩Y ×0)∗B×R
k) ∼= (i|∗(1U∩Y ×0)∗B)×R

k, so that
(1Y × 0)∗(i| × 1)∗B ∼= (1Y × 0)∗((i|∗(1U∩Y × 0)∗B)×R

k) = i|∗(1U∩Y × 0)∗B.
By commutativity, we have φ∗i0∗ = (i| × 1)∗φ|∗. Since φ and φ| are homeomor-
phisms, φ∗ ∼= (φ−1)∗ and φ|∗ ∼= (φ|−1)∗, and thus

(φ−1)∗i0∗ ∼= (i| × 1)∗(φ|−1)∗.

By lemma 1, j ∗2 i∗A ∼= i0∗j2|∗A (as all these inclusions are open). Putting
B = (φ|−1)∗j2|∗A, (which is locally constant), we calculate

j∗i∗A ∼= j∗1 j∗2 i∗A ∼= j∗1 i0∗j2|∗A ∼= (1Y × 0)∗(φ−1)∗i0∗j2|∗A∼= (1Y × 0)∗(i| × 1)∗(φ|−1)∗j2|∗A = (1Y × 0)∗(i| × 1)∗B∼= i|∗(1U∩Y × 0)∗B ∼= i|∗(1U∩Y × 0)∗(φ|−1)∗j2|∗A ∼= i|∗j1|∗j2|∗A∼= i|∗j |∗A.
��

Lemma 3. If (X, ∂X) is a connected normal pseudomanifold with singular set
�, then X −� is connected.
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Proof. Let Z ∈ X be a component of the bottom stratum of X. Then Z is a
manifold with (possibly empty) boundary and has a closed neighborhood NZ in
X such that

Y = cl(∂NZ − ∂X)

is the total space of a fiber bundle over Z:

Lk(Z)→ Y

↓
Z

Now the link Lk(Z) is connected by normality, thus Y is connected. Let
x ∈ cl(X − NZ) and connect x to some point in Z by a path ω : I → X using
X connected. There exists a t0 ∈ I with ω(t0) ∈ Y, for example

t0 = inf{t ∈ I |ω(t) ∈ NZ}.

Thus every point of cl(X−NZ) is in the same component as Y and so cl(X−NZ)
is connected, since Y is connected.
Now apply the same argumentation to the connected normal pseudomanifold
X′ = cl(X − NZ), cutting out a neighborhood of a component Z′ of the bottom
stratum of X′.After having removed neighborhoods of all singular strata, we end
up with the connected nonsingular space

cl(X −N�),

where N� is a closed neighborhood of � in X. The statement follows as X −�
is homotopy equivalent to cl(X −N�). ��

Lemma 4. If X is a normal pseudomanifold, then i∗Rm
X−� ∼= R

m
X, where i :

X −� ↪→ X is the inclusion.

Proof. We show that the canonical presheaf of i∗Rm
X−� is isomorphic to the trivial

presheaf. Let V ⊂ U be two connected open subsets of X. The nonsingular parts
U −� and V −� are non-empty sinceX−� is dense inX. By lemma 3,U −�
andV−� are connected. Thus�(U−�,Rm

X−�) = R
m, �(V−�,Rm

X−�) = R
m,

and the diagram

�(U −�,Rm
X−�) R

m

restr



�



�1Rm

�(V −�,Rm
X−�) R

m

(7)
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commutes. By definition of the pushforward, we have a commutative diagram

�(U, i∗Rm
X−�) �(U −�,Rm

X−�)

restr



�



�restr

�(V, i∗Rm
X−�) �(V −�,Rm

X−�)

(8)

Concatenating (7) and (8), we see that i∗Rm
X−� is the constant sheaf with stalk R

m

on X. ��
On normal spaces, strong transversality of local systems characterizes those

systems that extend as local systems over the whole space:

Proposition 3. LetXn be normal. A Poincaré local system S onX−� is strongly
transverse to � if and only if it extends as a Poincaré local system over all of X.
Such an extension is unique.

Proof. Suppose (S, φ) is a given strongly transverse Poincaré local system of
rank m on X − �, we will construct its extension to X. By X i denote the i-
dimensional elements of X . Let Z ∈ X be an open stratum. As X is normal,
Lk(Z) is connected and itself normal. By lemma 3, Lk(Z)−� is connected. By
assumption

ν : �1(Lk(Z)−�) −→ �1(X −�) µ(S)−→ Vectm

is trivial. Now of course ν = µ(S|Lk(Z)−�), hence in particular the monodr-
omy representation µ(S|Lk(Z)−�)z of π1(Lk(Z) − �, z) is trivial (for any z ∈
Lk(Z)−�) and the restriction

S|Lk(Z)−� ∼= R
m
Lk(Z)−� (9)

is constant. Set Uk = X − Xn−k and ik : Uk ↪→ Uk+1 be the inclusion. We will
produce the extension by induction on the codimension k of strata. Let

S2 = S, φ2 = φ
on U2 = X − �. Then S2 is locally constant on U2 and S2|Lk(Zn−2) is constant,
for every Zn−2 ∈ X n−2, using (9) above (Lk(Zn−2) = Lk(Zn−2) − �). Assume
inductively that (Sk, φk) is a Poincaré local system on Uk extending all previous
extensions, that is, (Sk, φk)|Uk−1

∼= (Sk−1, φk−1), . . . , (Sk, φk)|U2
∼= (S2, φ2),

and such that

Sk|Lk(Zn−k) ∼= R
m
Lk(Zn−k) (10)

is constant, all Zn−k ∈ X n−k (note Lk(Zn−k) ⊂ Uk). Put

Sk+1 = ik∗Sk, φk+1 = ik∗φk.
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The key issue is to prove that Sk+1 is locally constant on Uk+1 and that

Sk+1|Lk(Zn−k−1)

is constant for everyZn−k−1 ∈ X n−k−1.We show locally constant first. LetZn−k ∈
X n−k. It is enough to find, for each x ∈ Zn−k, an open neighborhood Vx ⊂ Uk+1

such that Sk+1|Vx ∼= R
m
Vx
. Let Vx be a distinguished neighborhood of x, i.e. there

is a homeomorphism

ψ : Vx
�−→ R

n−k × c◦Lk(Zn−k)
(c◦Lk(Zn−k) = [0, 1)×Lk(Zn−k)/(0, x) ∼ (0, y) is the open cone onLk(Zn−k))
and a commutative diagram

Uk ∩ Vx �−−−→
ψ |

R
n−k × (0, 1)× Lk(Zn−k)

ik |


�



�1×ι

Vx
�−−−→
ψ

R
n−k × c◦Lk(Zn−k)

(ι is the inclusion of the punctured cone into the cone). Applying lemma 1 to the
diagram of open inclusions

Uk ←−−−
j |

Uk ∩ Vx

ik



�



�ik |

Uk+1 ←−−−
j

Vx

we obtain j∗ik∗Sk ∼= ik|∗j |∗Sk. As ψ | is a homeomorphism and Sk is locally
constant, the direct image ψ |∗j |∗Sk is locally constant. Thus

ψ |∗j |∗Sk ∼= R
n−k × (0, 1)× Sk|Lk(Zn−k)

According to our induction hypothesis (10),Sk|Lk(Zn−k) is constant. Soψ |∗j |∗Sk
is constant on R

n−k × (0, 1)×Lk(Zn−k) and consequently, using that Lk(Zn−k)
is connected, (1× ι)∗ψ |∗j |∗Sk is constant on R

n−k × c◦Lk(Zn−k) (at this point
normality is crucial, for if Uk ∩ Vx had several components, then the stalks over
R
n−k × {c} of the pushforward under 1 × ι would be a direct sum of copies of

R
m, one summand for each connected component). Then

ψ−1
∗ (1× ι)∗ψ |∗j |∗Sk ∼= R

m
Vx

and

Sk+1|Vx = (ik∗Sk)|Vx = j ∗ik∗Sk ∼= ik|∗j |∗Sk ∼= ψ−1
∗ ψ∗ik|∗j |∗Sk∼= ψ−1

∗ (1× ι)∗ψ |∗j |∗Sk ∼= R
m
Vx
.
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Next, we prove that Sk+1|Lk(Zn−k−1) is constant, whereZn−k−1 ∈ X n−k−1.Let i
be the inclusion i : X−� = U2 ↪→ Uk+1, that is, i = ikik−1 · · · i2. The inclusion
j : Lk(Zn−k−1) ↪→ Uk+1 is normally nonsingular with trivial normal bundle, so
that lemma 2 applies to S2 and the diagram

X −� j |←−−− (X −�) ∩ Lk(Zn−k−1) = Lk(Zn−k−1)−�
i



�



�i|

Uk+1
j←−−− Lk(Zn−k−1)

yielding

j ∗i∗S2
∼= i|∗j |∗S2.

By (9), j |∗S2 = S|Lk(Zn−k−1)−� ∼= R
m
Lk(Zn−k−1)−�. Therefore,

Sk+1|Lk(Zn−k−1) = j∗i∗S2
∼= i|∗j |∗S2

∼= i|∗Rm
Lk(Zn−k−1)−�∼= R

m
Lk(Zn−k−1)

,

where the last isomorphism is provided by lemma 4. This finishes the induction
step, the sought extension is (i∗S, i∗φ) with i : X −� ↪→ X.

For the converse direction, suppose (S, φ) is a Poincaré local system on X
and Z ∈ X . A point z ∈ Z has a distinguished neighborhood homeomorphic to
R
l × c◦Lk(Z). Since the cone c◦Lk(Z) is contractible, the restriction S|c◦Lk(Z) is

constant. In particular, S|Lk(Z)−� is constant. Therefore, the functor

�1(Lk(Z)−�) −→ �1(X −�)
µ

(
S |Lk(Z)−�

) ↘


�µ

(
S |X−�

)

Vectm

is trivial, and (S|X−�, φ|X−�) is strongly transverse to �.

As for uniqueness, given (S, φ) on X, we will show S ∼= i∗(S|X−�), i :
X − � ↪→ X. Let x ∈ � and Ux ⊂ X a small connected open neighborhood of
x. Note that Ux −� �= ∅, since X −� is dense in X, and Ux −� is connected
by lemma 3. Thus, using that S is locally constant, restriction of sections

�(Ux,S)
�−→ �(Ux −�,S) = �(Ux, i∗S|X−�)

is an isomorphism. ��
Remark 1. The normality assumption is not necessary for the “if”-direction.

The following examples show that the normality assumption can not be omitted
in the “only if”-direction and in the uniqueness statement.
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Example 1. (We suppress mentioning pairings φ.) Let X3 be the pseudomani-
fold X = S1 × S1 × R/ ∼, where (x1, y1, z1) ∼ (x2, y2, z2) iff x1 = x2 and
z1 = z2 = 0.We denote the image of (x, y, z) under the collapseS1×S1×R→ X

by (x, [y], z).X is stratified asX ⊃ � ⊃ ∅,with singular set� = S1×[S1]×{0}.
Note thatX is not normal, the link of� at the point (x, [y], 0) is the disjoint union
{x} × S1 × {−1} � {x} × S1 × {+1}. We define a local system S on X − � as
follows: Over S1×S1×(−∞, 0), let S be the constant sheaf with stalk R. Let M
denote the Möbius sheaf with stalk R over a circle. Over S1 × S1 × (0,+∞), let
S be π∗1 M, π1 : S1×S1× (0,+∞)→ S1 projection to the first coordinate. Now
as S{x}×S1×{−1}�{x}×S1×{+1} is constant for all x ∈ S1, S is strongly transverse to
�.However, an extension S̄ to all ofX does clearly not exist, as the restriction of
S̄ to say S1× {[y]} ×R would have to be of the form (S̄|S1×{[y]}×{0})×R, which
is impossible.

Example 2. Consider the projection to the first coordinate π1 : S1×S1 → S1 and
fix p ∈ S1. Let X2 be the singular space obtained from the torus by collapsing
π−1

1 (p) = {p} × S1 to a point. The projection induces a map f : X→ S1 so that

S1 × S1 coll−→ X

π1 ↘ ↙f

S1

commutes. The local system S̄ = f ∗M, with M as in the previous example, is
nontrivial on X as it has nontrivial monodromy around the generator of π1(X).

On the other hand, the restriction away from the singularity, S̄|X−� , is trivial, and
so can also be extended trivially into �. This shows that if X is not normal, then
uniqueness of extensions fails as well.

Proposition 3 allows us to state yet another useful characterization of strongly
transverse local systems:

Corollary 1. Let Xn be normal. A Poincaré local system S on X −� is strongly
transverse to� if and only if its monodromy functorµ(S) : �1(X−�)→ Vectm
factors (up to isomorphism of functors) through �1(X):

�1(X −�) incl∗−→ �1(X)

µ

(
S

) ↘


�

Vectm

Proof. Suppose (S, φ) is strongly transverse. By proposition 3, there exists a
unique extension to a Poincaré local system (S̄, φ̄) on X, which has an associ-
ated monodromy functor µ(S̄) : �1(X)→ Vectm. Since S̄|X−� = S, we have
µ(S) ∼= µ(S̄) ◦ incl∗.



608 M. Banagl et al.

Conversely, suppose µ(S) factors as µ(S) ∼= ν ◦ incl∗, ν : �1(X)→ Vectm.
Then ν determines a Poincaré local system (S̄, φ̄) on X as described in section
4.2, such that µ(S̄) ∼= ν. Hence µ(S) ∼= µ(S̄) ◦ incl∗ and (S̄, φ̄) is an extension
of (S, φ). By proposition 3, S is strongly transverse to �. ��

Remark 2. The normality assumption is not necessary for the “if”-direction.

Corollary 2. LetXn be normal. A Poincaré local system (S, φ)onXn−� strongly
transverse to � has a K-theory signature

[S]K ∈
{

KO(X), if n ≡ 0(4)

KU(X), if n ≡ 2(4)

Proof. By proposition 3, (S, φ) has a unique extension to a Poincaré local system
(S̄, φ̄) onX.We now proceed as in [Mey72]. Let Sc denote the flat vector bundle
associated to the locally constant sheaf S̄, that is

Sc|X0 = X̃0 ×π R
m

over a path component X0 of X, where R
m is given the usual topology, π =

π1(X0), and π acts on R
m by means of the monodromy µ(S̄) of S̄. A suitable

choice of Euclidean metric on Sc induces (using φ̄) a vector bundle automorphism

A : Sc −→ Sc

such that A2 = 1 (if φ̄ is symmetric) or A2 = −1 (if φ̄ is anti-symmetric). Thus
in the case n ≡ 0(4), Sc decomposes as a direct sum of vector bundles

Sc = S+ ⊕ S−

corresponding to the ±1-eigenspaces of A. Put

[S]K = [S+]− [S−] ∈ KO(X).

In the case n ≡ 2(4), A defines a complex structure on Sc and we obtain the
complex vector bundle SC and its conjugate bundle S∗C; we put

[S]K = [S∗C]− [SC] ∈ KU(X).

��
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4.3. Remarks on flatness and characteristic classes

We continue to use the notation of the proof of corollary 2. The bundle auto-
morphism A does in general not correspond to an automorphism of sheaves A :
S̄ → S̄, and the bundles S±,SC are in general not flat. Let us discuss the anti-
symmetric case. Suppose (S̄, φ̄) is a Poincaré local system for which SC and S∗C
turn out to be flat, so that the classifying map X −→ BGL(r;C) for SC factors
(up to homotopy) as

Bπ
Bµ−→ BGL(r;C)

↖ ↗
X

whereBµ is induced by a homomorphismµ : π −→ GL(r;C) andX −→ Bπ is
the classifying map of the universal cover ofX.Now Kamber and Tondeur [KT68]
prove that the rational Chern classes in positive degree of flat GL(r,C)-bundles
are trivial. Hence

c̃h[S]K = c̃h(SC)− c̃h(S∗C) = 0,

and consequently also σ(X;S) = 0, by the twisted signature formula (theorem
1). However, in general of course σ(X;S) �= 0 (cf. section 8).

The vanishing results of Kamber-Tondeur yield the following simplifications
for the Chern character of the K-theory signature of a Poincaré local system:

Proposition 4. Let (S, φ) be a Poincaré local system. If φ is symmetric, then

ch[S]K = 2 ch(S+)− rk S,

and if φ is anti-symmetric, then

ch[S]K = rk S − 2 ch(SC).

Proof. We discuss the symmetric case first. The Chern character of a real bundle
ξ is defined to be the Chern character ch(ξ ⊗C) of the complexification of ξ. For
Sc, the flat vector bundle associated to S, the complexification Sc ⊗ C is a flat
GL(p+q;C)-bundle and by [KT68] has trivial rational Chern classes in positive
degrees. Thus

rk S = ch(Sc) = ch(S+ ⊕ S−) = ch(S+)+ ch(S−),

and

ch[S]K = ch(S+)− ch(S−) = 2 ch(S+)− rk S.

Now the anti-symmetric case: The complex bundle SC has Sc as its underlying
real bundle. Therefore,

Sc ⊗ C ∼= SC ⊕ S∗C.
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Again, as Sc ⊗ C is flat,

rk S = ch(Sc ⊗ C) = ch(SC ⊕ S∗C) = ch(SC)+ ch(S∗C),

which implies

ch[S]K = ch(S∗C)− ch(SC) = rk S − 2 ch(SC).

��

5. The twisted signature formula

Let ε∗ : H0(X;Q)→ Q denote the augmentation homomorphism.

Theorem 1. Let Xn be a closed oriented Whitney stratified normal Witt space of
even dimension with singular set�, and let (S, φ) be a Poincaré local system on
X −�, strongly transverse to �. Then

σ(X;S) = ε∗(c̃h([S]K) ∩ L(X)) ∈ Z

where L(X) ∈ H2∗(X;Q) is the total L-class of X.

Proof. First note that σ(X;S) is indeed defined: By proposition 3, S extends as a
Poincaré local system over all ofX.Thus ifLk is the link of an odd-codimensional
stratum of X, then the restriction S|Lk−� is a constant sheaf (see also the proof
of proposition 3), and

IHm̄
k (Lk;S) = 0,

since X is a Witt space (dimLk = 2k). Therefore (as pointed out in section 4.1)

φ : DS[−n]
�−→ S

extends to a self-duality isomorphism

φ̄ : DIC•m̄(X;S)[n]
�−→ IC•m̄(X;S)

and the twisted signature σ(X;S) is defined.

Next, we show that the expression

ε∗(c̃h([S]K) ∩ L(X)) (11)

is a cobordism invariant of (Xn,S, φ) for globally defined Poincaré local sys-
tems (S, φ). Let (Y n+1, ∂Y ) be a compact oriented Witt space with boundary ∂Y,
singular set �Y , and (T , ψ) a Poincaré local system on all of Y. By naturality,

c̃h([T |∂Y ]K) = j∗c̃h([T ]K) ∈ H 2∗(∂Y ;Q)
with j : ∂Y ↪→ Y the inclusion. Thus,
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ε∗(c̃h([T |∂Y ]K) ∩ L(∂Y )) = 〈c̃h([T |∂Y ]K), L(∂Y )〉
= 〈j∗c̃h([T ]K), L(∂Y )〉
= 〈c̃h([T ]K), j∗L(∂Y )〉.

Now j∗L(∂Y ) = 0 by proposition 1 and we have

ε∗(c̃h([T |∂Y ]K) ∩ L(∂Y )) = 0,

proving (11) to be cobordism invariant.

The twisted signature σ(X;S) is a cobordism invariant as well: We prove this
using the bordism group�SD∗ as introduced in [Ban02, chapter 4]. Let (Y n+1, ∂Y ),

�Y be as above and (T , ψ) be a Poincaré local system on Y − �Y , strongly
transverse to �Y . Consider the diagram of inclusions

∂Y −�Y j |−−−→ Y −�Y i|←−−− (int Y )−�Y


�



�



�

∂Y
j−−−→ Y

i←−−− int Y

The restriction

j |∗ψ : j |∗T × j |∗T −→ R∂Y−�Y

induces a self-duality isomorphism in the derived category Db(∂Y )

ψ̄∂ : DIC•m̄(∂Y ; j |∗T )[n]
�−→ IC•m̄(∂Y ; j |∗T )

as T being strongly transverse to �Y implies that T extends as a Poincaré local
system over Y (proposition 3), so is constant on links of odd-codimensional strata,
and

σ(∂Y ; T |∂Y−�Y ) = σ(IC•m̄(∂Y ; j |∗T ), ψ̄∂).
The triple (∂Y, IC•m̄(∂Y ; j |∗T ), ψ̄∂) defines an element in�SDn .The restriction

to the interior

i|∗ψ : i|∗T × i|∗T −→ Rint Y−�Y

induces a self-duality isomorphism in Db(int Y )

ψ̄0 : DIC•m̄(int Y ; i|∗T )[n+ 1]
�−→ IC•m̄(int Y ; i|∗T ).

In the terminology of [Ban02], the triple (Y n+1, IC•m̄(int Y ; i|∗T ), ψ̄0) is an
admissible cobordism. The boundary of such an admissible cobordism is defined
to be

∂(Y n+1, IC•m̄(int Y ; i|∗T ), ψ̄0) = (∂Y, j !Ri!IC•m̄(int Y ; i|∗T ), ∂ψ̄0),
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where ∂ψ̄0 is induced by j∗Ri∗(ψ̄0) under the canonical identification

j ∗Ri∗A•
�−→ j !Ri!A•[1],

for any A• ∈ Db(int Y ), [Ban02, lemma 4.1]. Now by [Ban02, lemma 4.4],

∂(Y n+1, IC•m̄(int Y ; i|∗T ), ψ̄0) = (∂Y, IC•m̄(∂Y ; j |∗T ), ψ̄∂)

Thus [Ban02, corollary 4.1] implies

σ(∂Y ; T |∂Y−�Y ) = σ(IC•m̄(∂Y ; j |∗T ), ψ̄∂) = 0.

We return to the givenXn, (S, φ) onX−�, strongly transverse to�.Consider
the identity map

[X
1−→ X]⊗ 1 ∈ �Wittn (X)⊗ Z[ 1

2 ]

By proposition 2,

�SO∗ (X)⊗ Z[ 1
2 ] −→ �Witt∗ (X)⊗ Z[ 1

2 ]

is onto.
Hence there exists a smooth oriented manifoldMn, a continuous mapf : M → X

and r, s ∈ Z such that

[M
f−→ X]⊗ r

2s
= [X

1−→ X]⊗ 1 ∈ �Wittn (X)⊗ Z[ 1
2 ]

and we have

r[M
f−→ X] = 2s[X

1−→ X] ∈ �Wittn (X).

Let (S̄, φ̄) denote the extension of (S, φ) toX, proposition 3. OnM,we consider
the Poincaré local system (f ∗S̄, f ∗φ̄). Then

2sσ (X;S) = rσ (M; f ∗S̄) (cobordism invariance)
= rε∗(c̃h([f ∗S̄]K) ∩ L(M)) (by Atiyah/Meyer)
= 2sε∗(c̃h([S]K) ∩ L(X)) (cobordism invariance)

��
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6. The twisted L-class formula

Let Xn be a compact oriented stratified pseudomanifold and let

j : Ym ↪→ Xn

be a normally nonsingular inclusion of an oriented stratified pseudomanifold Ym.
Consider an open neighborhood E ⊂ X of Y, the total space of an R

n−m- vec-
tor bundle over Y, and put E0 = E − Y, the total space with the zero-section
removed. Let u ∈ Hn−m(E,E0) denote the Thom class. If π : E → Y denotes
the projection, then the composition

Hk(X)
i∗→ Hk(X,X − Y ) e∗←∼= Hk(E,E0)

u∩−→∼= Hk−n+m(E)
π∗→∼= Hk−n+m(Y )

defines a map

j ! : Hk(X) −→ Hk−n+m(Y ).

We recall the existence and uniqueness result onL-classes of self-dual complexes
of sheaves (alluded to in section 2):

Theorem 2 ([CS91]). Let S• ∈ Db(X) be a self-dual complex of sheaves. There
exist unique classes Lk(S•) ∈ Hk(X;Q) with the following properties:

(i) ε∗L0(S•) = σ(S•)
(ii) If j : Ym ↪→ Xn is a normally nonsingular inclusion with trivial normal

bundle, then

Lk−n+m(j !S•) = j !Lk(S•)

Now let X be a closed Witt space with singular set �, and (S, φ) a Poincaré
local system on X −� such that a self-dual extension (IC•m̄(X;S), φ̄) exists.

Definition 4. The twisted L-classes

Lk(X;S) ∈ Hk(X;Q)
ofXwith coefficients in S are theL-classes of the self-dual sheaf S• = IC•m̄(X;S)
as provided by theorem 2:

Lk(X;S) = Lk(S•).
The proof of our twistedL-class formula requires the following multiplicative

property of the Thom map j !:

Lemma 5. If x ∈ Hp(X), y ∈ Hp+k(X), then

j !(x ∩ y) = (−1)p(n−m)j∗x ∩ j !y.
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Proof. With e : (E,E0) → (X,X − Y ) the inclusion, put ξ = e∗x ∈ Hp(E).

Let η ∈ Hp+k(E,E0) be the unique element such that e∗η = i∗y. Let ι : Y → E

be the inclusion as the zero section so that π∗ι∗ξ = ξ.We have

π∗(u ∩ (ξ ∩ η)) = π∗((u ∪ ξ) ∩ η)
= π∗(((−1)p(n−m)ξ ∪ u) ∩ η)
= (−1)p(n−m)π∗(ξ ∩ (u ∩ η))
= (−1)p(n−m)ι∗ξ ∩ π∗(u ∩ η)
= (−1)p(n−m)j∗x ∩ π∗(u ∩ η).

Now π∗(u ∩ η) = j !y as e∗η = i∗y.Also

e∗(ξ ∩ η) = e∗(e∗x ∩ η) = x ∩ e∗η = x ∩ i∗y = i∗(x ∩ y),
so that π∗(u ∩ (ξ ∩ η)) = j !(x ∩ y). ��
Theorem 3. LetXn be a closed oriented Whitney stratified normal Witt space with
singular set �, and let (S, φ) be a Poincaré local system on X − �, strongly
transverse to �. Then

L(X;S) = c̃h([S]K) ∩ L(X).
Proof. For S• = IC•m̄(X;S) define a set of homology classes by

L∩k (S
•) = (c̃h[S]K ∩ L(X))k.

We shall verify that the L∩k satisfy (i) and (ii) of theorem 2. Firstly,

ε∗L∩0 (S
•) = ε∗(c̃h[S]K ∩ L(X)) = σ(X;S) = σ(S•)

by the twisted signature formula, theorem 1. Now let j : Ym ↪→ Xn be a normally
nonsingular inclusion with trivial normal bundle. Then

j !S• = j !IC•m̄(X;S) ∼= IC•m̄(Y ;S|Y )
and

L∩k−n+m(j
!S•) = L∩k−n+m(IC•m̄(Y ;S|Y ))
= (c̃h[S|Y ]K ∩ L(Y ))k−n+m
=

∑

p≥0

(c̃h[S|Y ]K)2p ∩ L2p+k−n+m(Y )

=
∑

p≥0

j∗(c̃h[S]K)2p ∩ j !L2p+k(X)

=
∑

p≥0

j !((c̃h[S]K)2p ∩ L2p+k(X))

= j !(c̃h[S]K ∩ L(X))k
= j !L∩k (S

•),
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confirming (ii) for L∩. The uniqueness statement of theorem 2 implies

L(X;S) = L(S•) = L∩(S•).
��

7. Applications

7.1. Supernormal Spaces

Recall the

Definition 5. Xn is supernormal, if for any components Z,Z′ of open strata with
dimZ′ > dimZ ≤ n− 2, the link Lk(Z) ∩ Z′ is simply connected.

Theorem 1 implies

Corollary 3. If Xn is supernormal, then for any Poincaré local system (S, φ) on
X −�

σ(X;S) = ε∗(c̃h([S]K) ∩ L(X)).
Proof. Let Z ∈ X be a pure stratum and let X0 be the component of X which
contains Lk(Z). By lemma 3, X0 − � is connected. Thus by supernormality
Lk(Z) ∩ (X0 −�) = Lk(Z)−� is simply connected. It follows that

�1(Lk(Z)−�) −→ �1(X −�)
µ

(
S

)

−→ Vectm

is isomorphic to the trivial functor and (S, φ) is strongly transverse to �. Now
apply theorem 1. ��
Remark 3. To obtain the conclusion of the corollary, less than supernormality is
actually needed. Indeed it is sufficient to require that X be normal and that the
image of π1(Lk(Z)−�) in π1(X −�) vanish for all Z ∈ X .

7.2. Stratified Maps

A synthesis of our characteristic class formula (theorem 1) and the Cappell-Shane-
son signature formula (3), section 1.3, yields the following result. We use the
notation introduced in section 1.3.

Theorem 4. Let f : Ym −→ Xn be a stratified map of oriented compact Whitney
stratified spaces with only even-codimensional strata,X normal andm− n even.
Assume that for all components Z of strata of X, the Poincaré local system SZf is

strongly transverse to the singularities of Z. Then

σ(Y ) = ε∗(c̃h([SX−�f ]K) ∩ L(X))+
∑

Z∈X
ε∗(c̃h([SZf ]K) ∩ L(Z)). (12)
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We formulate the corresponding corollary for supernormal targets of stratified
maps.

Corollary 4. Let f : Ym −→ Xn be a stratified map of oriented compact Whitney
stratified spaces with only even-codimensional strata, X supernormal andm− n
even. Then

σ(Y ) = ε∗(c̃h([SX−�f ]K) ∩ L(X))+
∑

Z∈X
ε∗(c̃h([SZf ]K) ∩ L(Z)).

Proof. By its very definition, supernormality is a property that is inherited by all
Z, Z ∈ X . ��

As a special case of theorem 4, let us discuss a locally trivial fiber bundle

F → Y
f→ X. Rather than deriving the result from theorem 4, we adapt part of

the proof of theorem 1. Comparing formula (13) below to the general formula
(12), it is interesting to observe that for fiber bundles, the singular contributions
of (12) vanish.

Theorem 5. Let Xn, Ym be oriented compact Whitney stratified Witt spaces of
even dimension. If f : Y → X is a fiber bundle projection with Witt space fiber
F 2d, then

σ(Y ) = ε∗(c̃h([SXf ]K) ∩ L(X)), (13)

where the Poincaré local system SXf has stalks IHm̄
d (Fx), x ∈ X.

Proof. Let G be the structure group of the fiber bundle f and EG → BG the
universal principal G-bundle. Let g : X → BG be the classifying map for
the principal G-bundle associated to f, so that Y ∼= g∗(EG ×G F). Consider

[X
g→ BG] ⊗ 1 ∈ �Wittn (BG) ⊗ Z[ 1

2 ]. By proposition 2, there exists a smooth
oriented manifold Mn, h : M → BG and r, s ∈ Z such that

r[M
h−→ BG] = 2s[X

g−→ BG] ∈ �Wittn (BG).

Then, as in the proof of theorem 1,

2sσ (Y ) = 2sσ (g∗(EG×G F))
= rσ (h∗(EG×G F))
= rε∗(c̃h([SMπ ]K) ∩ L(M)) (by Atiyah)
= 2sε∗(c̃h([SXf ]K) ∩ L(X))

where π : h∗(EG×G F)→ M is the projection. ��
Our next example is concerned with a map to a manifold which is a bundle

except over a set of codimension at least 3, where the fiber is allowed to change.
We will be able to calculate the top term.
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Proposition 5. LetMn be an oriented compact manifold and Ym an oriented com-
pact Whitney stratified space with only even-codimensional strata,m− n even. If
f : Ym→ Mn is a stratified map with respect to a Whitney stratification ofM of
the form M ⊃ � = Xn−4 ⊃ Xn−6 ⊃ . . . ⊃ X0 ⊃ ∅ (only even-codimensional
strata), then

σ(Y ) = ε∗(c̃h([SM−�f ]K) ∩ L(M))+
∑

Z∈X
σ(Z;SZf ).

Proof. We have to show that SM−�f is strongly transverse to �. Since � is of
codimension ≥ 3 in M ,

�1(M −�) �−→ �1(M)

is an equivalence of categories, by general position in M. Thus the monodromy
functor µ(SM−�f ) factors, up to isomorphism of functors, as

�1(M −�) �−→ �1(M)

µ(SM−�
f )
↘



�

Vect

and SM−�f is strongly transverse by corollary 1 (and remark 2). ��

8. An example

We shall discuss the example of a space X having one isolated singularity. The
space will be obtained by collapsing a submanifold of a nonsingular space.
It will come equipped with a local coefficient system S on the top stratum which
is constant on the link of the singularity.

Let Mm and Nn be closed, connected, oriented, even-dimensional manifolds
and let T be a Poincaré local system onM . (Below we will consider in detail the
case M = �2, a surface of genus 2, and N = P

2, complex projective space.)
Define Y = M ×N. If s ∈ M is the base-point, let

X = Y/({s} ×N)
be the pseudomanifold obtained from Y by collapsing {s} × N to a point. The
spaceX has a singular stratumX0 = f ({s}×N) containing a single point, where
f : Y → X denotes the collapse map. With Dm ⊂ M a small disc about s, the
link of X0 in X is given by

Lk(X0) = ∂(Dm ×N) = Sm−1 ×N.
Next, we equip the top stratumX−X0 with a Poincaré local system S which will be
strongly transverse to X0. On Y , we consider the pull-back π∗1 T
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under the first factor projection π1 : Y → M. With f | denoting the restriction
f | : f −1(X −X0)→ X −X0 (a homeomorphism), set

S = f |∗(π∗1 T )|f−1(X−X0).

The goal is to calculate L(X;S) and in particular σ(X;S).

By the L-class version of formula (3) in section 1.3 applied to the stratified
map f : Y → X,

f∗Lk(Y ) = Lk(X)+ j∗Lk(X0;−).
Here, j is the inclusion j : X0 ↪→ X and Lk(X0;−) is a potential contribution
of the singularity which vanishes for k > 0 as it lives in Hk(X0) = 0. For k = 0,
(3) asserts that the difference

σ(Y )− σ(X)
is given by a term near the singularity, σ(E), where

E = (Dm ×N) ∪Sm−1×N c(S
m−1 ×N)

(or use Novikov additivity to see this). It is rather clear that σ(E) = 0, however
we would like to point out that this follows from the stronger fact that a certain
class of singular spaces (which includes E), whose signature frequently arises as
a potential contribution from singularities in problems involving stratified maps,
actually has no middle dimensional intersection homology:

Lemma 6. LetA2a−1 andB2b be closed Witt spaces. Then the middle dimensional
intersection homology of the pseudomanifold

E2(a+b) = cA× B ∪A×B c(A× B)
vanishes:

IHm̄
a+b(E) = 0.

Proof. Throughout the proof, let IHc
∗ (−) denote middle-perversity intersection

homology with compactly supported chains. If X is of dimension 2n− 1, then

IHc
i (c
◦X) =

{

IHc
i (X), i < n

0, i ≥ n, (14)

where c◦X is the open cone on X. Consider the Mayer-Vietoris sequence

→ IHc
i (A× B)

αi→ IHc
i (c
◦A× B)⊕ IHc

i (c
◦(A× B)) βi→ IHc

i (E)
∂i→
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For i = a+ b, (14) implies IHc
a+b(c

◦(A×B)) = 0. The Künneth formula holds
for Witt spaces and middle perversity intersection homology. Thus

IHc
a+b(c

◦A× B) =
⊕

i+j=a+b
i<a

IHc
i (A)⊗ IHc

j (B),

using (14) again. We conclude that αa+b is surjective and βa+b = 0. On the other
hand, (14) shows that IHc

a+b−1(c
◦(A × B)) = IHc

a+b−1(A × B). Therefore the
second component of αa+b−1 is injective, thus αa+b−1 is injective and ∂a+b = 0.

��
The lemma applies to the present discussion with A = Sm−1 so that cA = Dm.

Consequently,

f∗L(Y ) = L(X).
It is straightforward to check that c̃h[R]K is natural in the Poincaré local

system R, that is, if g : A→ B is continuous and R is a Poincaré local system
over B, then c̃h[g∗R]K = g∗c̃h[R]K.

Using the commutative diagram

Dm ×N −−−→ Y

π1|


�



�π1

Dm −−−→ M

(the horizontal arrows are inclusions), we have

(π∗1 T )|Dm×N ∼= π1|∗(T |Dm) ∼= π1|∗(Rr
Dm) = R

r
Dm×N.

In particular, the restriction

S|Lk(X0)
∼= R

r
Sm−1×N

is constant, that is, S is strongly transverse to X0. By proposition 3, S extends
uniquely to a Poincaré local system S̄ on all of X (here this is of course p∗T ,
where Y

f→ X
p→ M factors π1) and

f ∗S̄ ∼= π∗1 T .

By theorem 1,

σ(X;S) = 〈c̃h[S̄]K,L(X)〉 = 〈c̃h[S̄]K, f∗L(Y )〉
= 〈f ∗c̃h[S̄]K,L(Y )〉 = 〈c̃h[f ∗S̄]K,L(Y )〉
= 〈c̃h[π∗1 T ]K,L(Y )〉 = 〈π∗1 c̃h[T ]K,L(Y )〉
= 〈c̃h[T ]K, π1∗L(Y )〉 = 〈c̃h[T ]K, σ (N)L(M)〉
= σ(N)〈c̃h[T ]K,L(M)〉.
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The homology L-class satisfies

Lm+n−4k(M ×N) =
∑

p+q=k
Lm−4p(M)× Ln−4q(N).

By theorem 3,

L(X;S) = c̃h[S̄]K ∩ L(X)
= c̃h[S̄]K ∩ f∗L(Y )
= f∗(π∗1 c̃h[T ]K ∩ L(Y ))
= f∗((c̃h[T ]K × 1) ∩ (L(M)× L(N)))
= f∗((c̃h[T ]K ∩ L(M))× L(N)).

Alternatively, one can compute σ(X;S) using the resolution f : Y → X and
formula (3). One observes that σ(Y ;π∗1 T ) = σ(N)σ(M; T ); (3) asserts that the
difference

σ(Y ;π∗1 T )− σ(X;S)
is given by a term near the singularity,

σ(E;π∗1 T )

(or use Novikov additivity to see this). Now

(π∗1 T )|Dm×N ∼= R
r
Dm×N

is constant, so

σ(E;π∗1 T ) = σ(E)σ(Rr
E) = 0.

Consequently, σ(X;S) = σ(N)σ(M; T ).
We specialize to the example of a 6-dimensional space X, taking M = �2, a

closed oriented surface of genus 2, and N = P
2. The total L-class of X will be

calculated and applying theorem 1 we shall see that

σ(X;S) = 4. (15)

We give a sample construction of a local system based on an example of [Mey72].
Define a Poincaré local system T on �2 by the representation

µ : π1�2 −→ Sp(2;R),

µ(a1) =
( −5 1
− 27

2
5
2

)
, µ(a2) =

( −4 −1
33 8

)
, µ(b1) =

( −4 1
−33 8

)
, µ(b2) =

( −5 −1
27
2

5
2

)
,
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where π1�2 = 〈a1, a2, b1, b2|[a1, b1][a2, b2] = 1〉. If H 2(�2) = Q〈γ 〉 with
〈γ, [�2]〉 = 1, then T has the property that the first Chern class

c1(T C) = −γ,
where [T ]K = [T ∗C]− [T C] ∈ KU(�2), [Mey72].
Y 6, X6, f, π1, and S are constructed as in the general discussion above. All

(co)homology will be taken with rational coefficients. We denote the cohomology
ring of P

2 by H ∗(P2) = Q[α]/(α3 = 0), α ∈ H 2(P2).We have

H 0(Y ) = Q〈1× 1〉,
H 2(Y ) = Q〈1× α, γ × 1〉,
H 4(Y ) = Q〈1× α2, γ × α〉,
H 6(Y ) = Q〈γ × α2〉,

and

H 0(X) = Q〈1× 1〉,
H 2(X) = Q〈γ × 1〉,
H 4(X) = Q〈γ × α〉,
H 6(X) = Q〈γ × α2〉.

The Hirzebruch L-class of P
2 is

�0(P
2) = 1 ∈ H 0(P2),

�1(P
2) = α2 ∈ H 4(P2).

Thus, using multiplicativity of the L-class and �1(�2) = 0,

�1(Y ) = 1× α2.

Taking Poincaré duals, we obtain the homology L-classes of Y :

L(Y ) = �(Y ) ∩ [Y ]

= (1× 1+ 1× α2) ∩ [�2 × P
2]

= [�2]× [P2]+ (1 ∩ [�2])× (α2 ∩ [P2])

= [�2]× [P2]+ [�2]× [∗]
(where [∗] ∈ H0(P

2) is the homology class of a point), i.e.

L2(Y ) = [�2]× [∗] ∈ H2(Y ),

L6(Y ) = [�2]× [P2] ∈ H6(Y ).

Therefore,

L2(X) = f∗L2(Y ) = [�2]× [∗] ∈ H2(X),

L6(X) = f∗L6(Y ) = [�2]× [P2] ∈ H6(X).
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We continue by calculating c̃h[T ]K on the surface. If ξ is any complex line
bundle on �2, then

c̃h(ξ) = e2c1(ξ) = 1+ 2c1(ξ).

Hence

c̃h[T ]K = c̃h([T ∗C]− [T C])

= 1+ 2c1(T ∗C)− 1− 2c1(T C)

= −2c1(T C)− 2c1(T C)

= −4c1(T C)

= 4γ

and

c̃h[π∗1 T ]K = π∗1 (4γ ) = 4(γ × 1).

As a side-remark, this shows that if R is any Poincaré local system on a surface
�g given by a representation π1(�g) → Sp(2;R), then the twisted signature
σ(�g;R) is divisible by 4. In fact, if F → E → �g is a surface bundle, then
σ(E) is divisible by 4 (and is actually 0 for g ≤ 1 or genus(F ) ≤ 2) according to
[Mey73].

By theorem 1,

σ(X;S) = 〈c̃h[S̄]K,L(X)〉
= 〈4(γ × 1), [�2]× [∗]+ [�2]× [P2]〉
= 4〈γ,�2〉
= 4.

The zero dimensional component L0(X;S) = σ(X;S)[∗] × [∗] is in fact the
only non-zero component of the total twisted L-class L(X;S): By theorem 3,

L(X;S) = c̃h[S̄]K ∩ L(X)
= f∗(4(γ × 1) ∩ ([�2]× [∗]+ [�2]× [P2]))

= f∗(4[∗]× [∗]+ 4(γ ∩ [�2])× (1 ∩ [P2]))

= 4[∗]× [∗]+ 4f∗([∗]× [P2])

= 4[∗]× [∗].
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