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Abstract

Let G be a torsion-free hyperbolic group and let n ≥ 6 be an
integer. We prove that G is the fundamental group of a closed
aspherical manifold if the boundary of G is homeomorphic to an
(n− 1)-dimensional sphere.

Introduction

If G is the fundamental group of an n-dimensional closed Riemannian
manifold with negative sectional curvature, then G is a hyperbolic group
in the sense of Gromov (see for instance [6, 7, 21, 22]). Moreover, such a
group is torsion-free and its boundary ∂G is homeomorphic to a sphere.
This leads to the natural question whether a torsion-free hyperbolic
group with a sphere as boundary occurs as a fundamental group of a
closed aspherical manifold (see Gromov [23, page 192]). We settle this
question if the dimension of the sphere is at least 5.

Theorem A. Let G be a torsion-free hyperbolic group and let n be
an integer ≥ 6. The following statements are equivalent:

(i) The boundary ∂G is homeomorphic to Sn−1.
(ii) There is a closed aspherical topological manifold M such that G ∼=

π1(M), its universal covering M̃ is homeomorphic to R
n and the

compactification of M̃ by ∂G is homeomorphic to Dn.

The aspherical manifold M appearing in our result is unique up to
homeomorphism. This is a consequence of the validity of the Borel
Conjecture for hyperbolic groups [2]; see also Section 3.

The proof depends on the surgery theory for homology ANR-manifolds
due to Bryant, Ferry, Mio, and Weinberger [9] and the validity of the
K- and L-theoretic Farrell-Jones Conjecture for hyperbolic groups due
to Bartels, Reich, and Lück [4] and Bartels-Lück [2]. It seems likely
that this result holds also if n = 5. Our methods can be extended to
this case if the surgery theory from [9] can be extended to the case of
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5-dimensional homology ANR-manifolds—such an extension has been
announced by Ferry and Johnston. We also hope to give a treatment
elsewhere by more algebraic methods.

We do not get information in dimensions n ≤ 4 for the usual prob-
lems about surgery. For instance, our methods give no information in
the case where the boundary is homeomorphic to S3, since virtually
cyclic groups are the only hyperbolic groups which are known to be
good in the sense of Friedman [19]. In the case n = 3 there is the
conjecture of Cannon [11] that a group G acts properly, isometrically,
and cocompactly on the 3-dimensional hyperbolic plane H

3 if and only
if it is a hyperbolic group whose boundary is homeomorphic to S2. Pro-
vided that the infinite hyperbolic group G occurs as the fundamental
group of a closed irreducible 3-manifold, Bestvina and Mess [5, The-
orem 4.1] have shown that its universal cover is homeomorphic to R

3

and its compactification by ∂G is homeomorphic to D3, and the Ge-
ometrization Conjecture of Thurston implies that M is hyperbolic and
G satisfies Cannon’s conjecture. The problem is solved in the case n = 2,
essentially as a consequence of Eckmann’s theorem that 2-dimensional
Poincare duality groups are surface groups (see [16]). Namely, for a hy-
perbolic group G, its boundary ∂G is homeomorphic to S1 if and only
if G is a Fuchsian group (see [12, 18, 20]).

In general, the boundary of a hyperbolic group is not locally a Eu-
clidean space but has a fractal behavior. If the boundary ∂G of an
infinite hyperbolic group G contains an open subset homeomorphic to
Euclidean n-space, then it is homeomorphic to Sn. This is proved in [25,
Theorem 4.4], where more information about the boundaries of hyper-
bolic groups can be found.

We also prove the following result.

Theorem B. Let G and H be torsion-free hyperbolic groups such
that ∂G ∼= ∂H. Then G can be realized as the fundamental group of a
closed aspherical manifold of dimension at least 6 if and only if H can
be realized as the fundamental group of such a manifold.

Moreover, even in case that neither can be realized by a closed as-
pherical manifold, they can both be realized by closed aspherical homol-
ogy ANR-manifolds, which both have the same Quinn obstruction [30]
(see Theorem 1.3 for a review of this notion) provided that ∂G has the
integral Čech cohomology of Sn−1 for n ≥ 6.

In particular, if G is hyperbolic and realized as the fundamental group
of a closed aspherical manifold of dimension at least 6, then any torsion-
free group H that is quasi-isometric to G can also be realized as the
fundamental group of such a manifold. This follows from Theorem B,
because the homeomorphism type of the boundary of a hyperbolic group
is invariant under quasi-isometry (and so is the property of being hy-
perbolic). The attentative reader will realize that most of the content
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of Theorem A can also be deduced from Theorem B, as every sphere
appears as the boundary of the fundamental group of some closed hy-
perbolic manifold.
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1. Homology manifolds

A topological space X is called an absolute neighborhood retract, or
ANR, if it is normal and for every normal space Z, every closed subset
Y ⊆ Z and every (continuous) map f : Y → X there exists an open
neighborhood U of Y in Z together with an extension F : U → X of f
to U .

Definition 1.1 (Homology ANR-manifold). An n-dimensional ho-
mology ANR-manifold X is an absolute neighborhood retract satisfying:

• X has a countable base for its topology;
• the topological dimension of X is finite;
• X is locally compact;
• for every x ∈ X the ith singular homology group Hi(X,X − {x})
is trivial for i 6= n and infinite cyclic for i = n.

Notice that a normal space with a countable basis for its topology is
metrizable by the Urysohn Metrization Theorem (see [29, Theorem 4.1
in Chapter 4-4 on page 217]) and is separable, i.e., contains a countable
dense subset [29, Theorem 4.1]. Notice furthermore that every metric
space is normal (see [29, Theorem 2.3 in Chapter 4-4 on page 198]),
and has a countable basis for its topology if and only if it is separable
(see [29, Theorem 1.3 in Chapter 4-1 on page 191 and Exercise 7 in
Chapter 4-1 on page 194]). Hence a homology ANR-manifold in the
sense of Definition 1.1 is the same as a generalized manifold in the sense
of Daverman [14, page 191]. A closed n-dimensional topological man-
ifold is an example of a closed n-dimensional homology ANR-manifold
(see [14, Corollary 1A in V.26, page 191]). A homology ANR-manifold
M is said to have the disjoint disk property (DDP), if for any ε > 0
and maps f, g : D2 → M , there are maps f ′, g′ : D2 → M so that f ′

is ε-close to f , g′ is ε-close to g, and f ′(D2) ∩ g′(D2) = ∅; see for ex-
ample [9, page 435]. We recall that a Poincaré duality group G is a
finitely presented group satisfying the following two conditions: first,
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the ZG-module Z (with the trivial G-action) admits a resolution of fi-
nite length by finitely generated projective ZG-modules; second, there
is n such that H i(G;ZG) = 0 for n 6= i and Hn(G;ZG) ∼= Z. In this
case n is the formal dimension of the Poincaré duality group G.

Theorem 1.2. Let G be a torsion-free group.

(i) Assume that
• the (non-connective) K-theory assembly map

Hi

(
BG;KZ

)
→ Ki(ZG)

is an isomorphism for i ≤ 0 and surjective for i = 1;
• the (non-connective) L-theory assembly map

Hi

(
BG;w L

〈−∞〉
Z

)
→ L

〈−∞〉
i (ZG,w)

is bijective for every i ∈ Z and every orientation homomor-
phism w : G → {±1}.

Then for n ≥ 6 the following are equivalent:
a) G is a Poincaré duality group of formal dimension n;
b) there exists a closed ANR-homology manifold M homotopy equiv-

alent to BG. In particular, M is aspherical and π1(M) ∼= G;
(ii) If the statements in assertion (i) hold, then the homology ANR-

manifold M appearing there can be arranged to have the DDP.
(iii) If the statements in assertion (i) hold, then the homology ANR-

manifold M appearing there is unique up to s-cobordism of ANR-
homology manifolds.

Proof. (i) The assumption on the K-theory assembly map implies

that Wh(G) = 0, K̃0(ZG) = 0, and Ki(ZG) = 0 for i < 0; compare [27,
Conjecture 1.3 on page 653 and Remark 2.5 on page 679]. This implies
that we can change the decoration in the above L-theory assembly map
from 〈−∞〉 to s (see [27, Proposition 1.5 on page 664]). Thus the assem-
bly map A in the algebraic surgery exact sequence [31, Definition 14.6]
(for R = Z and K = BG) is an isomorphism. This implies in particular
that the quadratic structure groups Si(Z, BG) are trivial for all i ∈ Z.

Assume now that G is a Poincaré duality group of dimension n ≥
3. We conclude from Johnson and Wall [24, Theorem 1] that BG is
a finitely dominated n-dimensional Poincaré complex in the sense of
Wall [35]. Because K̃0(ZG) = 0, the finiteness obstruction vanishes
and hence BG can be realized as a finite n-dimensional simplicial com-
plex (see [34, Theorem F]). We will now use Ranicki’s (4-periodic) total
surgery obstruction s(BG) ∈ Sn(BG) of the Poincaré complex BG;
see [31, Definition 25.6]. The main result of [9] asserts that this ob-
struction vanishes if and only if there is a closed n-dimensional homol-
ogy ANR-manifold M homotopy equivalent to BG. The groups Sk(BG)
arise in a 0-connected version of the algebraic surgery sequence [31, Def-
inition 15.10]. It is a consequence of [31, Proposition 15.11(iii)] (and the
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fact that L−1(Z) = 0) that Sn(BG) = Sn(Z, BG). Since Sn(Z, BG) = 0,
we conclude s(BG) = 0. This shows that (i)a implies (i)b. (In this ar-
gument we ignored that the orientation homomorphism w : G → {±1}
may be non-trivial. The argument however extends to this case; com-
pare [31, Appendix A].) Homology manifolds satisfy Poincaré duality
and therefore (i)b implies (i)a.

(ii) It is explained in [9, Section 8] that this homology manifold M
appearing above can be arranged to have the DDP. (Alternatively, we
could appeal to [10] and resolveM by an n-dimensional homology ANR-
manifold with the DDP.)

(iii) The uniqueness statement follows from Theorem 3.1(ii). q.e.d.

In order to replace homology ANR-manifolds by topological manifolds
we will later use the following result that combines work of Edwards and
Quinn; see [14, Theorems 3 and 4 on page 288], [30]).

Theorem 1.3. There is an invariant ι(M) ∈ 1 + 8Z (known as
the Quinn obstruction) for connected homology ANR-manifolds with the
following properties:

(i) If U ⊂ M is an open subset, then ι(U) = ι(M).
(ii) Let M be a homology ANR-manifold of dimension ≥ 5. Then the

following are equivalent:
• M has the DDP and ι(M) = 1;
• M is a topological manifold.

Definition 1.4. An n-dimensional homology ANR-manifold M with
boundary ∂M is an absolute neighborhood retract which is a disjoint
union M = intM ∪ ∂M , where

• intM is an n-dimensional homology ANR-manifold;
• ∂M is an (n− 1)-dimensional homology ANR-manifold;
• for every z ∈ ∂M the singular homology group Hi(M,M \ {z})
vanishes for all i.

Lemma 1.5. If M is an n-dimensional homology ANR-manifold with

boundary, then M̂ := M ∪∂M ∂M×[0, 1) is an n-dimensional homology
ANR-manifold.

Proof. Suppose that Y is the union of two closed subsets Y1 and Y2

and set Y0 := Y1 ∩ Y2. If Y0, Y1, and Y2 are ANRs, then Y is an ANR;
see [14, Theorem 7 on page 117]. If Y1 and Y2 have countable bases
U1 and U2 of the topology, then sets U1 \ Y2 with U1 ∈ U1, U2 \ Y1

with U2 ∈ U2 and (U1 ∪U2)
◦ with Ui ∈ Ui form a countable basis of the

topology of Y . (Here ( )◦ is the operation of taking the interior in Y .) If
Y1 and Y2 are both finite dimensional, then Y is finite dimensional [29,
Theorem 9.2 on page 303]. If Y1 and Y2 are both locally compact, then
Y is locally compact.
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Thus the only non-trivial requirement is that for x = (z, 0) ∈ M̂ with

z ∈ ∂M , we have Hi(M̂ , M̂ \ {x}) = 0 if i 6= n and ∼= Z if i = n. Let
Iz := {z}×[0, 1/2). Because of homotopy invariance we can replace {x}

by Iz. Let U1 := M ∪∂M ∂M×[0, 1/2) ⊂ M̂ and U2 := ∂M×(0, 1) ⊂ M̂ .
Then Hi(U1, U1 \ Iz) ∼= Hi(M,M \ {z}) = 0 and Hi(U2, U2 \ Iz) = 0.
Because U1 and U2 are both open, we can use a Mayer-Vietoris sequence
to deduce

Hi(M̂ , M̂ \ Iz) ∼= Hi−1(U1 ∩ U2, U1 ∩ U2 \ Iz) ∼= Hi−1(∂M, ∂M \ {z}).

The result follows as ∂M is an (n − 1)-dimensional homology ANR-
manifold. q.e.d.

Corollary 1.6. Let M be an homology ANR-manifold with boundary
∂M . If ∂M is a manifold, then ι(intM) = 1.

Proof. We use M̂ from Lemma 1.5. If ∂M is a manifold, then so is
∂M×(0, 1). The result follows now from Theorem 1.3. q.e.d.

2. Hyperbolic groups and aspherical manifolds

For a hyperbolic group we write G := G∪∂G for the compactification
of G by its boundary; compare [7, III.H.3.12], [5]. Left multiplication of
G on G extends to a natural action of G on G. We will use the following
properties of the topology on G.

Proposition 2.1. Let G be a hyperbolic group. Then

(i) G is compact;
(ii) G is finite dimensional;
(iii) ∂G has empty interior in G;
(iv) the action of G on G is small at infinity: if z ∈ ∂G, K ⊂ G

is finite and U ⊂ G is a neighborhood of z, then there exists a
neighborhood V ⊆ G of z with V ⊆ U such that for any g ∈ G with
gK ∩ V 6= ∅ we have gK ⊆ U ;

(v) if z ∈ ∂G and U is an open neighborhood of z in G, then for every
finite subset K ⊆ G there is an open neighborhood V of z in G
such that V ⊆ U and (V ∩G) ·K ⊆ U ∩G.

Proof. (i) see for instance [7, III.H.3.7(4)].
(ii) see for instance [3, 9.3.(ii)].
(iii) is obvious from the definition of the topology in [5].
(iv) see for instance [32, page 531].
(v) follows from (iv): We may assume 1G ∈ K. Pick V as in (iv). If
g ∈ V ∩ G and k ∈ K, then g ∈ gK ∩ V . Thus gK ⊆ U . Therefore
gK ∈ U ∩G. q.e.d.

Let X be a locally compact space with a cocompact and proper action
of a hyperbolic group G. Then we equip X := X∪∂G with the topology
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OX for which a typical open neighborhood of x ∈ X is an open subset
of X and a typical (not necessarily open) neighborhood of z ∈ ∂G is of
the form

(U ∩ ∂G) ∪ (U ∩G) ·K

where U is an open neighborhood of z in G and K is a compact subset
of X such that G · K = X. We observe that we could fix the choice
of K in the definition of OX : Let U , z, and K be as above and let K ′

be a further compact subset of X such that G · K ′ = X. Because the
G-action is proper, there is a finite subset L of G such that K ′ ⊆ L ·K.
By Proposition 2.1(v) there is an open neighborhood V ⊆ U of z ∈ G
such that (V ∩G) · L ⊆ U ∩G. Thus

(V ∩∂G)∪(V ∩G)·K ′ ⊆ (U∩∂G)∪(V ∩G)·L·K ⊆ (U∩∂G)∪(U∩G)·K.

If f : X → Y is a G-equivariant continuous map where Y is also a
locally compact space with a cocompact proper G-action, then we define
f : X → Y by f |X := f and f |∂G := id∂G.

Lemma 2.2. Let G be a hyperbolic group and X be a locally compact
space with a cocompact and proper G-action.

(i) X is compact;
(ii) ∂G is closed in X and its interior in X is empty;
(iii) if dimX is finite, then dimX is also finite;
(iv) if f : X → Y is a G-equivariant continuous map where Y is also

a locally compact space with a cocompact proper G-action, then f
is continuous.

Proof. These claims are easily deduced from the observation following
the definition of the topology OX and Proposition 2.1. q.e.d.

We recall that for a hyperbolic group G equipped with a (left invari-
ant) word-metric dG and a number d > 0, the Rips complex Pd(G) is the
simplicial complex whose vertices are the elements of G, and a collection
g1, . . . , gk ∈ G spans a simplex if dG(gi, gj) ≤ d for all i, j. The action of
G on itself by left translation induces an action of G on Pd(G). Recall
that a closed subset Z in a compact ANR Y is a Z-set if for every open
set U in Y the inclusion U \ Z → U is a homotopy equivalence. An
important result of Bestvina and Mess [5] asserts that (for sufficiently

large d) Pd(G) is an ANR such that ∂G ⊂ Pd(G) is Z-set. The proof
uses the following criterion [5, Proposition 2.1]:

Proposition 2.3. Let Z be a closed subspace of the compact space
Y such that

(i) the interior of Z in Y is empty;
(ii) dimY < ∞;
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(iii) for every k = 0, . . . ,dimY , every z ∈ Z and every neighborhood U
of z, there is a neighborhood V of z such that every map α : Sk →
V \ Z extends to α̃ : Dk+1 → U \ Z;

(iv) Y \ Z is an ANR.

Then Y is an ANR and Z ⊂ Y is a Z-set.

Condition (iii) is sometimes abbreviated by saying that Z is k-LCC
in Y , where k = dimY .

Theorem 2.4. Let X be a locally compact ANR with a cocompact
and proper action of a hyperbolic group G. Assume that there is a G-
equivariant homotopy equivalence X → Pd(G). If d is sufficiently large,
then X is an ANR, ∂G is Z-set in X, and Z is k-LCC in X for all k.

Proof. Bestvina and Mess [5, page 473] show that (for sufficiently

large d) Pd(G) satisfies the assumptions of Proposition 2.3. Moreover,
they show that Z is k-LCC in X for all k. Using this, it is not hard
to show, that X satisfies these assumptions as well: Assumptions (i)
and (ii) hold because of Lemma 2.2. Assumption (iv) holds because
X is an ANR. Because f 7→ f is clearly functorial, the homotopy
equivalence X → Pd(G) induces a homotopy equivalence X → Pd(G)
that fixes ∂G. Using this homotopy equivalence, it is easy to check that
∂G is k-LCC in X , because it is k-LCC in Pd(G). Thus Assumption (iii)
holds. q.e.d.

Proposition 2.5. Let M be a finite-dimensional locally compact
ANR which is the disjoint union of an n-dimensional ANR-homology
manifold intM and an (n − 1)-dimensional ANR-homology manifold
∂M such that ∂M is a Z-set in M . Then M is an ANR-homology
manifold with boundary ∂M .

Proof. The Z-set condition implies that there exists a homotopyHt : M →
M , t ∈ [0, 1] such that H0 = idM and Ht(M) ⊆ intM for all t > 0,
see [5, page 470].

Let z ∈ ∂M . Then the restriction of H1 to M \ {z} is a homotopy
inverse for the inclusion M \ {z} → M . Thus Hi(M,M \ {z}) = 0 for
all i. q.e.d.

There is the following (harder) manifold version of Proposition 2.5
due to Ferry and Seebeck [17, Theorem 5 on page 579].

Theorem 2.6. Let M be a locally compact with a countable basis of
the topology. Assume that M is the disjoint union of an n-dimensional
manifold intM and an (n−1)-dimensional manifold ∂M such that intM
is dense in M and ∂M is (n−1)-LCC in M . Then M is an n-manifold
with boundary ∂M .

Theorem 2.7. Let G be a torsion-free word-hyperbolic group. Let
n ≥ 6.
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(i) The following statements are equivalent:
a) The boundary ∂G has the integral Čech cohomology of Sn−1.
b) G is a Poincaré duality group of formal dimension n.
c) There exists a closed ANR-homology manifold M homotopy

equivalent to BG. In particular, M is aspherical and π1(M) ∼=
G.

(ii) If the statements in assertion (i) hold, then the homology ANR-
manifold M appearing there can be arranged to have the DDP;

(iii) If the statements in assertion (i) hold, then the homology ANR-
manifold M appearing there is unique up to s-cobordism of ANR-
homology manifolds.

Proof. By [21, page 73], torsion-free hyperbolic groups admit a finite
CW -model for BG. Thus the ZG-module Z admits a resolution of finite
length of finitely generated free ZG modules. By [5, Corollary 1.3], the
(i−1)-th Čech cohomology of the boundary ∂G agrees with H i(G;ZG).
This shows that the statements (i)a and (i)b in assertion (i) are equiv-
alent.

The Farrell-Jones Conjecture inK- and L-theory holds by [2, 4]. This
implies that the assumptions of Theorem 1.2 are satisfied; compare [27,
Proposition 2.2 on page 685]. This finishes the proof of Theorem 2.7.
q.e.d.
Proof of Theorem A. (i) Let G be a torsion-free hyperbolic group. As-
sume that ∂G ∼= Sn−1 and n ≥ 6. Theorem 2.7 implies that there
is a closed n-dimensional homology ANR-manifold N homotopy equiv-
alent to BG. Moreover, we can assume that N has the DDP. The
universal cover M of N is an n-dimensional ANR-homology manifold
with a proper and cocompact action of G. The homotopy equivalence
N → BG lifts to a G-homotopy equivalence M → EG. For sufficiently
large d, Pd(G) is a model for EG (see [21, page 73]). Thus there is a
G-homotopy equivalence M → Pd(G). Theorem 2.4 implies that M is
an ANR and ∂G is a Z-set in M . We conclude from Lemma 2.2 that M
is compact and has finite dimension. Thus we can apply Proposition 2.5
and deduce that M is a homology ANR-manifold with boundary. Its
boundary is a sphere and in particular a manifold. Corollary 1.6 implies
that ι(M) = 1. By Theorem 1.3(i) this implies ι(N) = 1. Using Theo-
rem 1.3(ii) we deduce that N is a topological manifold. By Theorem 2.4
the boundary ∂G ∼= Sn−1 is k-LCC in M for all k. Therefore we can
apply Theorem 2.6 and deduce that M is a manifold with boundary
Sn−1. The Z-condition implies that M is contractible, because M is
contractible as the universal cover of the aspherical manifold N . The
h-cobordism theorem for topological manifolds implies that M ∼= Dn.
In particular, M ∼= R

n. This shows that (i) implies (ii). The converse
is obvious. q.e.d.
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3. Rigidity

The uniqueness question for the manifold appearing in our result from
the introduction is a special case of the Borel Conjecture that asserts
that aspherical manifolds are topological rigid: any isomorphism of fun-
damental groups of two closed aspherical manifolds should be realized
(up to inner automorphism) by a homeomorphism. The connection
of this rigidity question to assembly maps is well known and one of the
main motivations for the Farrell-Jones Conjecture. For homology ANR-
manifolds, the corresponding rigidity statement is (because of the lack
of an s-cobordism theorem) somewhat weaker.

Theorem 3.1. Let G be a torsion-free group. Assume that

• the (non-connective) K-theory assembly map

Hi

(
BG;KZ

)
→ Ki(ZG)

is an isomorphism for i ≤ 0 and surjective for i = 1;
• the (non-connective) L-theory assembly map

Hi

(
BG;w L

〈−∞〉
Z

)
→ L

〈−∞〉
i (ZG,w)

is bijective for every i ∈ Z and every orientation homomorphism
w : G → {±1}.

Then the following holds:

(i) Let M and N be two aspherical closed n-dimensional manifolds

together with isomorphisms φM : π1(M)
∼=
−→ G and φN : π1(N)

∼=
−→

G. Suppose n ≥ 5.
Then there exists a homeomorphism f : M → N such that π1(f)

agrees with φN ◦ φ−1

M (up to inner automorphism);
(ii) Let M and N be two aspherical closed n-dimensional homology

ANR-manifolds together with isomorphisms φM : π1(M)
∼=
−→ G and

φN : π1(N)
∼=
−→ G. Suppose n ≥ 6.

Then there exists an s-cobordism of homology ANR-manifolds
W = (W,∂0W,∂1W ), homeomorphisms u0 : M0 → ∂0W , and
u1 : M1 → ∂1W and an isomorphism φW : π1(W ) → G such that
φW ◦ π1(i0 ◦ u0) and φW ◦ π1(i1 ◦ u1) agree (up to inner automor-
phism), where ik : ∂kW → W is the inclusion for k = 0, 1.

Proof. (i) As discussed in the proof of Theorem 1.2, the assumptions
imply that Wh(G) = 0. Therefore it suffices to show that the structure
set STOP (M) (see [31, Definition 18.1]) in the Sullivan-Wall geometric
surgery exact sequence consists of precisely one element. This struc-
ture set is identified with the quadratic structure group Sn+1(M) =
Sn+1(BG) in [31, Theorem 18.5]. A discussion similar to the one in
the proof of Theorem 1.2 shows that our assumptions imply that the
quadratic structure group is trivial.
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(ii) This follows from a similar argument that uses the surgery exact
sequences for homology ANR-manifolds due to Bryant, Ferry, Mio, and
Weinberger [9, Main Theorem on page 439]. q.e.d.

4. The Quinn obstruction depends only on the boundary

Let G be a torsion-free hyperbolic group. Assume that ∂G has the
integral Čech cohomology of a sphere Sn−1 with n ≥ 6. By Theo-
rem 2.7 there is a closed aspherical ANR-homology manifold N whose
fundamental group is G.

Proposition 4.1. In the above situation, the Quinn obstruction (see
Theorem 1.3) ι(N) depends only on ∂G.

Proof. Let H be a further torsion-free hyperbolic group such that
∂H ∼= ∂G. Let N ′ be a closed aspherical ANR-homology manifold
whose fundamental group is H. Then both the universal covers M of N
and M ′ of N ′ can be compactified to M and M ′ such that ∂G ∼= ∂H is
a Z-set in both; see Theorem 2.4. Now set X := M ∪∂G M ′. We claim
that X is a connected ANR-homology manifold. Thus

ι(N) = ι(M) = ι(X) = ι(M ′) = ι(N ′)

by Theorem 1.3(i). To prove the claim we refer to [1], in particular pages
1270–1271. Both, M andM ′ are homology manifolds in the sense of this
reference. By fact 6 of this reference, X is also a homology manifold.
It remains to show that X is an ANR. This follows from an argument
given during the proof of Theorem 9 of this reference. q.e.d.

Proof of Theorem B. Let G and H be torsion-free hyperbolic groups,
such that ∂G ∼= ∂H. Assume thatG is the fundamental group of a closed
aspherical manifold of dimension at least 6. Theorem 2.7(i) implies
that ∂G ∼= ∂H has the integral Čech cohomology of a sphere Sn−1

with n ≥ 6 and that H is the fundamental group of a closed aspherical
ANR-homology manifold M of dimension n. Because of Theorem 2.7(ii)
this ANR-homology manifold can be arranged to have the DDP. Now
by Proposition 4.1 (and Theorem 1.3(ii)) we have ι(M) = 1. Using
Theorem 1.3(ii) again, it follows that M is a manifold.

A similar argument works if G is the fundamental group of a closed
aspherical homology ANR-manifold that is not necessarily a closed man-
ifold. q.e.d.

5. Exotic examples

In light of the results of this paper one might be tempted to wonder if
for a torsion-free hyperbolic group G, the condition ∂G ∼= Sn is equiva-
lent to the existence of a closed aspherical manifold whose fundamental
group is G. This is however not correct: Davis and Januszkiewicz, and
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Charney and Davis constructed closed aspherical manifolds whose fun-
damental group is hyperbolic with boundary not homeomorphic to a
sphere. We review these examples below.

Example 5.1. (i) For every n ≥ 5 there exists an example of an
aspherical closed topological manifold M of dimension n which is
a piecewise flat, non-positively curved polyhedron such that the

universal covering M̃ is not homeomorphic to Euclidean space
(see [15, Theorem 5b.1 on page 383]). There is a variation of this
construction that uses the strict hyperbolization of Charney and
Davis [13] and produces closed aspherical manifolds whose uni-
versal cover is not homeomorphic to Euclidean space and whose
fundamental group is hyperbolic.

(ii) For every n ≥ 5 there exists a strictly negative curved polyhedron
of dimension n whose fundamental group G is hyperbolic, which is
homeomorphic to a closed aspherical smooth manifold and whose
universal covering is homeomorphic to R

n, but the boundary ∂G
is not homeomorphic to Sn−1; see [15, Theorem 5c.1 on page 384
and Remark on page 386].

On the other hand, one might wonder if assertion (ii) in Theorem A
can be strengthed to the existence of more structure on the aspherical
manifold. Strict hyperbolization [13] can be used to show that in general
there may be no smooth closed aspherical manifold in this situation.

Example 5.2. Let M be a closed oriented triangulated PL-manifold.
It follows from [13, Theorem 7.6] that there is a hyperbolization H(M)
of M has the following properties:

(i) H(M) is a closed oriented PL-manifold. (This uses properties (2)
and (4) from [13, page 333].)

(ii) There is a degree 1-map H(M) → M under which the rational
Pontrjagin classes of M pull back to those of H(M). In particular,
the Pontrjagin numbers ofM andH(M) conincide. (See properties
(5) and (6′) from [13, page 333].)

(iii) H(M) is a negatively curved piece-wise hyperbolic polyhedra. In
particular, G := π1(H(M)) is hyperbolic. Moreover, by [15, page
348] the boundary of ∂G is a sphere.

Suppose that some Pontrjagin number of H(M) is not an integer. Then
the same is true for H(M). In particular, H(M) does not carry the
structure of a smooth manifold. If in addition dimH(M) = dimM ≥ 5,
then by Theorem 3.1 (i) any other closed aspherical manifold N with
π1(N) = G is homeomorphic to H(M) and does not carry a smooth
structure either. Such manifolds M exist in all dimensions 4k, k ≥ 2;
see Lemma 5.3. This shows that there are for all k ≥ 2 torsion-free
hyperbolic groups G with ∂G ∼= S4k−1 that are not fundamental groups
of smooth closed aspherical manifolds. In particular, such a G is not
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the fundamental group of a closed Riemannian manifolds of non-positive
curvature.

In the previous example we needed PL-manifolds that do not carry
a smooth structure. Such manifolds are classically contructed using
Hirzebruch’s Signature Theorem.

Lemma 5.3. Let k ≥ 2. There is an oriented closed 4k-dimensional
PL-manifold M4k whose top Pontrjagin number 〈pk(M

4k) | [M4k]〉 is
not an integer.

Proof. For all k ≥ 2 there are smooth framed compact manifolds
N4k whose signature is 8 and whose boundary is a (4k − 1)-homotopy
sphere; see [8] and [26, Theorem 3.4]. By [33], this homotopy sphere
is PL-isomorphic to a sphere. We can now cone off the boundary and
obtain a PL-manifold M4k (often called the Milnor manifold) whose
only non-trivial Pontrjagin class is pk and whose signature σ(M2k) is 8.
Hirzebruch’s Signature Theorem implies that

8 = σ(M4k) =
22k(22k−1 − 1)Bk

2k!
〈pk(M

4k) | [M4k]〉

where Bk is the kth Bernoulli number; see [26, page 75]. For k = 2, 3
we have then

8 =
7

45
〈p2(M

8) | [M8]〉 =
62

945
〈p3(M

12) | [M12]〉;

compare [28, page 225]. This yields examples for k = 2, 3. Taking
products of these examples, we obtain examples for all k ≥ 2. q.e.d.

6. Open questions

We conclude this paper with two open questions.

(i) Can the boundary of a hyperbolic group be an ANR-homology
sphere that is not a sphere?

(ii) Can one give an example of a hyperbolic group (with torsion)
whose boundary is a sphere, such that the group does not act
properly discontinuously on some contractible manifold?
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[21] É. Ghys & P. de la Harpe, editors, Sur les groupes hyperboliques d’après Mikhael
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