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Theoret ica l  B a c k g r o u n d  

The procedure bisect is designed to replace the procedures tridibi I and 2 
given in ES]. All three procedures are based essentially on the following theorem. 

Given a symmetric tridiagonal matrix with diagonal elements q to cn and 
off-diagonal elements b, to b, (with b 1 set equal to zero for completeness) and 
b i 4=0, then for any number 2 let the sequence Po (2) . . . . .  p~ (2) be defined b y  

p0(a) = t ,  PiCa) = c t -  a, (t) 

~, (a) = (q - a) Pi-1 (2) - b~p~_~ (a) (i = 2 . . . . .  n). (2) 

Then, in general, the number, a (2), of disagreements in sign between consecutive 
numbers of the sequence is equal to the number of eigenvalues smaller than 2. 

When carried out in floating-point arithmetic, this method is extremely stable 
but  unfortunately, even for matrices of quite modest order, it  is common for the 
later p~ (2) to pass outside the range of permissible numbers. In practice both 
underflow and overflow occur and it is almost impossible to scale the matrix to 
avoid this. The difficulty is particularly acute when there are a number of very 
close eigenvalues since p ,  (2) =--//(2 -- 2i) is then very small for any 2 in their 
neighbourhood. The zeros of each p,  (2) separate those of P,+I (a) and accordingly 
quite a number of the Pi (2) other than ~b n (2) may also be very small and give 
rise to underflow. 

The difficulty is avoided by replacing the sequence of Pi (2) by  a sequence 

of qi(2) defined by qi(a) = p i ( a ) / p i _ l ( 2  ) (i = 1 . . . . .  n) (3) 

a (2) is now given by  the number of negative qi (2). The qi (2) satisfy the relations 

ql (2) ---- cx - -  2 ,  (4) 

q,(2) = (c~- a) - b~/q,_l(a) (i = 2 . . . . .  ~). (S) 

* Editor's note. In this fascicle, prepublication of algorithms from the Linear 
Algebra series of the Handbook for Automatic Computation is continued. Algorithms 
are published in ALGOL 60 reference language as approved by the IFIP. Contributions 
in this series should by styled after the most recently published ones. Inquiries are 
to be directed to the editor. F .L.  BAUER, Munich 
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At first sight these relations look very dangerous, since it is possible for 
q~-1(2) to be zero for some i; but  in such cases it is merely necessary to replace 
the zero qi-1 (2) by  a suitably small quantity and the error analysis for the p~(~) 
sequence [4, 6] applies almost unaltered to the q~(2). The q~(2) do not suffer 
from the problems of underflow and overflow associated with the Pi (2). Comparing 
the computation of qi(2) with that  of ~bi(~ ) we observe that two multiplications 
have been replaced by one division; further we have only to detect the sign of 
each qi(2) instead of comparing the signs of Pi- l(2)  and Pi(2). I t  is easy to see 
that when working with the qi (2) the condition b~ # 0 can be omitted. 

In the earlier paper [g] each eigenvalue was found independently by bisection. 
This is inefficient since, as observed by GIVENS in his original paper [2], some 
of the information obtained when determining one eigenvalue is, in general, of 
significance in the determination of other eigenvalues. In bisect full advantage 
is taken of all relevant information and this results in a very substantial saving 
of time when the matrix has a number of close or coincident eigenvalues. 

Applicability 

bisect may be used to find the eigenvalues 2,,1, 2,~1+i . . . . .  2,~ (2~+1>--,~i) of 
a symmetric tridiagonal matrix of order n. Unsymmetric tridiagonal matrices A 
with ai, ~+1 = / i  and ai+l, i=g i  may be treated provided/~ g~>-- 0 (i = t . . . . .  n - -  l) 
by taking b~+l=/ig~. 

Formal Parameter List 

Input  to procedure bisect 

c an n × l array giving the diagonal elements of a tridiagonal matrix. 

b an n × t  array giving the sub-diagonal elements, b i l l  may be arbitrary 
but  is replaced by zero in the procedure. 

beta an n × t  array giving the squares of the sub-diagonal elements, befall] 
may be arbitrary but  is replaced by zero in the procedure. Both b [i] 
and beta [i] are given since the squares may be the primary data. If storage 
economy is important then one of these can be dispensed with in an ob- 
vious way. 

n the order of the tridiagonal matrix. 

ml, m2 the eigenvalues 2,a, 2m1+1 . . . . .  $~,~ are calculated (~ is the smallest eigen- 
value), m l ~  m2 must hold otherwise no eigenvalues are computed. 

epsl a quanti ty affecting the precision to which the eigenvalues are computed 
(see "Discussion of numerical properties"). 

rel/eh the smallest number for which t +rel]eh> t on the computer. 

Output of procedure bisect 

eps2 gives information concerning the accuracy of the results (see "Discussion 
of numerical properties"). 

z total number of bisections to find all required eigenvaiues. 

x array x [ml:m2] contains the computed eigenvalues. 
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ALGOL Programs 

procedure bisect (c, b, beta, n, ml ,  m2, epsl, rel/eh) res: (eps2, z, x); 
value n, ml ,  m2, epsl,  relfeh ; 
real  epsl,  eps2, rd/eh; i n t e g e r  n, m l ,  m2, z; a r r a y  c, b, x, beta; 
c o m m e n t  e is the diagonal, b the sub-diagonal and beta the squared subdiagonal 

of a symmetric tridiagonal matr ix  of order n. The eigenvalues 
lambda[ml] . . . . .  tambdaEm2], where m2 is not less than m l  and 
lambda [i + t] is not less than lambda [i], are calculated by  the method 
of bisection and stored in the vector x. Bisection is continued until the 
upper and lower bounds for an eigenvalue differ by  less than epsl, 
unless at  some earlier stage, the upper and lower bounds differ only 
in the least significant digits, eps2 gives an extreme upper  bound for 
the error in any eigenvalue, but  for certain types of matrices the small 
eigenvalues are determined to a very much higher accuracy. In  this 
case, elbsl should be set equal to the error to be tolerated in the smallest 
eigenvalue. I t  must  not be set equal to zero; 

begin real h, xmin,  ×max; integer i; 
c o m m e n t  Calculation of xmin, ×max; 
beta[t] : =  b[1] : =  0; 
xmin : =  e [n] - -  abs (b [n]) ; 
×max : = e [n] + abs (b En]) ; 
f o r i : = n - - t  s t e p - - ]  unt i l i  do 
begin  h : :  abs (b [i]) + abs (b [i + t l ) ;  

if  c [i] + h > xmax then  xmax  : ~ c [i] + h ; 
if c [i] - -  h <  xmin then  xmin  : = c [i] - -  h; 

end i; 
eps2 : :  rel/eh × ( i f×rain+ xrnax > 0 then xrnax else - -  xmin) ; 
if epsl<--<_ 0 then ribs1 : =  eps2; 
eps2 : =  0.5 × e p s l +  7×eps2;  
c o m m e n t  Inner block; 
begin integer a, k; r e a l  q, x l ,  xu, xO ; array wu [ml : m2] ; 

xO : = ×max, 
for i : =  m l  step t until m2 do 
begin  x [ ~  : =  xmax;  wu[i] : =  xmin  
end i; 
z : = 0 ;  
c o m m e n t  Loop for the k-th eigenvalue; 
for k : =  m2 step -- 1 until ~nl do 
begin xu : :  xmin  ; 

for  i : =  k step --  l unti l  rnl  do 
begin if x u <  wu Ei~ then 

begin  xu  : =  wu [i]; g o  to  contin 
end 

end i; 
contin: i f  xO>xEk]  then x O : =  x[k];  

for  x l  : = (xu + xO)/2 whi le  xO--  xu > 2 × rel/eh × 
(abs ( xu) + abs ( xO) ) + epsl  do 
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end bisect; 

end k 
end inner block 

b e g i n z : =  z + t ;  
c o m m e n t  Sturms sequence; 
a : = 0 ;  q : = t ;  
for  i : =  I step t until n do 
begin 

q : =  c[i] - -  x l - -  (ifq ~=0 t h e n  beta[i]/q 
else abs (b [i])/rel/eh) ; 

i f q < O  t hen  a : =  a +  
end i;  
if a <  k then 
begin if a < m l  then 

x u  : =  w u  [ m l ]  : = x l  

else 
begin xu : =  wuEa + t ] : =  x l ;  

i f  x [a] > x l  then x Ia] : = x l  
end 

end 
else xO : =  x l  

end x l  ; 
x[k] : =  (xO + xu)/2 

Organisational and Notational Details 

The value of rel/eh is machine dependent and is directly related to the precision 
of the arithmetic which is used. On a computer with a t digit binary mantissa 
rel/eh is of the order of 2-' .  Errors in c, and b, of up to [¢,[ rel[eh and I b,] rel/eh 
in absolute magnitude may be introduced by the digital representation. 

From GERSCHGORINS' theorem the eigenvalues are all contained in the union 
of the n intervals c, 4-(i b,] + Ib,+1 l) with bl----b.+z----0. Hence xmax and x ~nin 
defined by  

xm~,x = max. {c, 4- ([ b,I + [b,+d)} 
x m i n  m~n (6) 

i = ~ , 2  . . . . .  n 

can be used as initial upper and lower bounds for the eigenvalues. 

When computing a typical eigenvalue A~ two quantities xO and xu which are 
current upper and lower bounds for ;t~ are stored. Bisection is continued as long as 

x O -  xu > 2rel/eh([xu] + Ix0[) + elhsl (7) 

where eps 1 is a preassigned tolerance. The significance of this criterion is dis- 
cussed in the next  section. When (7) is no longer satisfied ½ (xO+ xu) gives the 
current eigenvalue ~k. 

If at  any stage in the computation of a Sturm sequence q~-I (~) is zero then 
(5) is replaced by  

q~(~) = (c~ - ~) - I b~llrdl eh" (S) 
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This means in effect that  qi-1 (4) is replaced by  I b~: rel]eh (note tha t  this is positive; 
this is essential because the zero qi-1 (4) is t reated as positive) and this is equi- 
valent to replacing c~_ 1 by  c i _ l +  t b d rel]eh. 

The eigenvalues are found in the order ~m~, 2 ~ - 1  . . . . .  2~1. Two arrays 
wu [ml:m2] and x [ml:rn2: are used to store relevant information on the lower 
and upper bounds of the required eigenvalues. Initially we have xu = wu Ii] ==xmin, 
x O = x [ i ] = x m a x  ( i = m l  . . . . .  m2). In  practice it is not necessary to keep all 
the wu [i] and x [i] fully updated provided it is possible to determine the current 
best upper and lower bounds for any  eigenvalue when required. This is achieved 
as follows. 

If, during the calculation of ~k corresponding to an argument x l ,  we have 
a (xl) >>- k, the only useful deduction is xO : = x l .  If, however, a (xl) < k, then x l  
is an upper bound for ~tml, ;t~l ~1 . . . . .  ;t a and a lower bound for 2a+:, ~+~ . . . .  , ~ .  
Hence in any  case xu : =  xl .  If  a < m l  then wu[ml]  : =  x l ;  otherwise wu[a+t~  
: =  x l  and x [a] : =  x l  if this is an improved upper bound. 

To find the initial values of xO and xu when computing 2k we take xu to be 
the largest of xmin and wu [i] ( i = m l  . . . . .  k), and xO to be the smaller of xO 
and x [k]. No superfluous information is stored and the total number of bisections 
required when there are multiple or close eigenvalues is significantly less than 
when the eigenvalues are well separated. 

Discussion of Numerical Properties 
To understand the criterion for the termination of the bisection process it  is 

necessary to consider the limitations on the accuracy obtainable by  the bisection 
method. In  general, using floating point computation with a t digit mantissa, 
errors of the order of magnitude 2 - '  max~[xmax I, lxmin[~ are inevitable ~ in all 
eigenvalues and they cannot be reduced by  increasing the number  of bisection 
steps. This means that,  in general, the relative error in the smaller eigenvalues is 
higher than in larger ones. 

However, there are certain types of matrices for which it is possible to deter- 
mine the lower eigenvalues with the same low relative error as the higher eigen- 
values. An example of such a matr ix  is given by  

c i = i  4, b i = i  - -  t (i = t . . . . .  30). (9) 

This matr ix  has eigenvalues which are roughly of the order of magnitude i 4 
(i = 1 . . . . .  30) and variations of the elements by  up to one part  in 2 ~ change all 
the eigenvalues by  roughly one part  in 2 t. The smaller eigenvalues are therefore 
determined by  the data  to the same relative accuracy as the larger ones. Moreover 
b y  continuing the bisection process long enough this accuracy can actually be 
attained in practice though it may  be more efficient to use the QD-algorithm [3~ 
or the symmetric QR algorithm [1]. Matrices of this type are common in theoretical 
physics where they arise by  truncating infinite tridiagonal matrices. Here it is 
the smallest eigenvalues of the infinite matr ix  which are required and by  taking 
a truncated matr ix  of sufficiently high order these can be obtained to any pre- 
scribed accuracy. 

The criterion (7) enables us to deal with matrices of the non-special or special 
types with considerable flexibility. I f  we have a non-special matrix,  then a value 
of epst approximately equal to 2 - ' m a x [ l x m a x  I, lxminl] will give the maxi-  
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mum attainable accuracy in each eigenvalues without any superfluous bisection 
steps. If a lower accuracy is adequate then this is achieved by taking a larger 
value of eps 1; for example if eigenvalues are required up to the third decimal 
place (not the third significant figure), eps I may be taken I equal to ~ t0 -~ and if 
the norm of the matrix is of order unity the term 2 rel]eh × (Ixu I + ]xO D on the 
fight hand side of (7) will be of negligible significance. 

With the special type of matrix on the other hand, when the small eigenvalues 
are required with low relative error it is the term 2 rel]eh([xu[ + Ix0[) which plays 
the dominant role. If the term epsl is omitted, then, in general, bisection would 
continue until all but  the last one or two digits of xO and xu agree. However, 
if one of the eigenvalues were zero, this condition might never be attained and 
accordingly epsl should be set equal to the error which is acceptable in the 
smaltest eigenvalue. To guard against the accidental assignment of a non-positive 
value of epsl, such values are replaced by  rel[eh×max[lxmax[, ]xmin[], thus 
avoiding the danger of indefinite cycling. 

Bounds for the errors may be obtained by  the method described in [4, 6]. 
The overall bound for the error in any eigenvalue is given by  

{ epst + 7 rel/eh × max [] x maxl, I x rain I] (t O) 

and this quanti ty is computed and output as eps 2. I t  should be appreciated that 
for the matrices of special type the errors in the smaller eigenvalues will be much 
smaller than this. 

Test Results 

The procedure bisect has been tested on a number of matrices using the 
IBM 7040 at Darmstadt and the KDF 9 at the National Physical Laboratory. 
Tests of an earlier version of the procedure were also carried out on the CDC 1604 
computer of the Swiss Federal Institute of Technology, Zurich, Switzerland. The 
following illustrate the points of interest discussed earlier. 

The first tridiagonal matrix was obtained by the Householder reduction of 
a matrix A of order 50 with aii-- t (all i, i). This matrix has the elements 

c1=I ,  q----49, c~=0 ( i = 3  . . . . .  50), 

b2=7 , bi=O (i = 3  . . . . .  50), 

and has one eigenvahie equal to 50 and the other 49 equal to zero. This matrix 
gives rise to underflow with the original procedures tridibi I and 2 [5]. The 
computed eigenvalues on KDF 9 (rel/eh=2 -39) and with epsl----t0 -a° were 

)L1, ~L2 . . . . .  /L49 = 2.27373 6754431o --  11, 250 = ~.00000 000001xo + t 

and the output value of eps2 was 7.63041o--10. A total of 73 bisections were 
needed, none being required for the eigenvalues 21 . . . . .  A48- The number of itera- 
tions needed with the earlier procedures would have been 50 × 39. 

The second matrix is of the special type and is of order 30 with the elements 

c~= iL b , = i - -  t (i = 1, 2 , . . . ,  30). 

This was solved on KDF 9 using epsl=tO -8, 10 -1°, and t0 -1~ respectively. The 
results obtained are given in Table t. 
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Table t 

eps l = 10 -0 eps l = t 0 -l° eps l = 10 -1. 
eigenvalues eigenvalues eigenvalues 

9.3340 7085 678~o-- t 
1.6005 0653 72210+ 1 
8.10t0 t005 468~o+ t 
2.5600 8066 89210 + 2 
6.2500 6t 02 3761o+ 2 
1.2960 0467 8581o+ 3 
2.4010 0367 061 lo+ 3 
4.0960 0294 5O71o+ 3 
6.56t 0 0241 O131o+ 3 
1.0000 0020 063~o+ 4 
t.464t 001694710+4 
2.0736 OOt 4 49810+ 4 
2.8561 0012 54O1o+4 
3.8416001094%0+4 
5.0625 0009 64410 + 4 

6.5536 0008 5571o+4 
8.3521 0007 64110+4 
t .0497 6000 68710+ 5 
1.30321000 62010+ 5 
1.6000 0000 56310+ 5 
1.9448 1000 5t41o+5 
2.3425 6000 4701o+ 5 
2.7984 1000 4311o+ 5 
3.3177 6000 39%0+ 5 
3.9o62 500o 36910+ 5 
4.5697 6000 3421o+ 5 
5.3t44 100031%0+5 
6.t465 6000 29610+ 5 
7.07281000 2781o+ 5 
8.1 ooo 0008 t 881o + 5 

9.3340 7084 82510-- 1 9.3340 7084 86%0-- 1 
t.6005 0653 70410+ t 1.60o5 0653 70310+ 1 
8 . t0 t0  I005 45610+ 1 The remaining 
2.5600 8066 8931o+2 values as for 
6.2500 6 t 02 372~0 + 2 epsl = ! 0 -1° 
t .2960 0467 8581o+ 3 
2.4010 0367 0621o+ 3 
The remaining values 
as for epsl = t 0 -s 

eps2=I.031%o--5 eps2=1.03141o--5 eps2=1.03t41o--5 

W i t h  a va lue  of epsl  of t 0  -13 all  e igenvalues  were given cor rec t ly  to  wi th in  five 
uni t s  in the  l as t  s ignif icant  f igure;  this  represents  a far  smal ler  er ror  t han  eps2 

in the  smal ler  eigenvalues.  

The  f inal  m a t r i x  is def ined b y  

¢ ~ = t t 0 - - t 0 i  ( i = 1  . . . . .  1 t ) ,  c i = 1 0 / - -  t t 0  ( i = t 2  . . . . .  2 t ) ,  

b~ = 1 (i = 2 . . . . .  2 t ) .  

This  matr ix  has a number of ex treme ly  close (but not  coincident) eigenvalues.  
I t  was  solved on K D F  9 using epsl = 10 -~ and the results are given in Table 2. 

Table 2 

- -  t .9709 29_29 38%0-- t 
9.9004 9425 5591o+ 0 
1.0096 5954 70310+ t 
1.9999 5066 t 651o+ t 
2.0000 4966 ft. 1 t l o +  t 
2.9999 999t ~ % o +  t 
3.0000 0008_2561o+ t 
3.9999 9999 5951o + 1 
3.9999 9999.59510+ t 
4.9999 9999_5671o+ t 
4.9999 9999_5671o+ t 

5.9999 9999 ~3%o+ t 
5.9999 9999 53910+ t 
7.0000 0000 ~70x0+ 1 
7.0000 0000 47010+ 1 
8.oooo ooo8 ~_161o+ t 
8.0000 0008 !16xo+ t 
9.0000 4933_9OOto+ 1 
9.0000 4933 _90010+ 1 
t.00099505 75110+2 
t.0009 9505 7-5tlo+ 2 
eps2= 1.0128to-- 7 

The  error  in  each c o m p u t e d  va lues  is a few uni t s  in  t he  under l ined  f igure and  is 
in each  case less t h a n  ] t 0  -~ in  abso lu te  magn i tude .  The  t o t a l  n u m b e r  of i t e ra t ion  
was 345 an  average  of t6 .4  pe r  e igenvalue.  I t  should  be  app rec i a t ed  t h a t  b y  
us ing a smal le r  va lue  of epsl  t h e  resul ts  can  be  ob t a ined  correct  to  work ing  

accuracy. 
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