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The L-class of non-Witt spaces

By Markus Banagl*

Abstract

Characteristic classes for oriented pseudomanifolds can be defined using
appropriate self-dual complexes of sheaves. On non-Witt spaces, self-dual
complexes compatible to intersection homology are determined by choices of
Lagrangian structures at the strata of odd codimension. We prove that the
associated signature and L-classes are independent of the choice of Lagrangian
structures, so that singular spaces with odd codimensional strata, such as
e.g. certain compactifications of locally symmetric spaces, have well-defined
L-classes, provided Lagrangian structures exist. We illustrate the general
results with the example of the reductive Borel-Serre compactification of a
Hilbert modular surface.

Contents
1. Introduction
2. The Postnikov system of Lagrangian structures
3. The bordism group ΩSD

∗
4. The signature of non-Witt spaces
5. The L-class of non-Witt spaces
6. An example
References

1. Introduction

Finding natural settings for defining characteristic classes has been, and
continues to be, an important theme in geometry. The notion of multiplicative
sequences allowed Hirzebruch [Hir56] the definition of L-classes in rational
cohomology as certain polynomials in the Pontrjagin classes, leading to his
beautiful formula stating equality of the signature and L-genus of a smooth
oriented manifold. Using this result together with the principle of representing
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cohomology classes by transverse maps to spheres, Thom [Tho58] constructed
L-classes for triangulated manifolds which are piecewise linear invariants.

To define L-classes for singular spaces, various approaches have been suc-
cessful in various settings. In [GM80], Goresky and MacPherson introduce
intersection homology theory as a method to recover generalized Poincaré
duality for stratified pseudomanifolds. Using the middle perversity groups,
one obtains a signature for oriented pseudomanifolds with only even codi-
mensional strata and thus, following the Thom-Pontrjagin-Milnor program,
homology L-classes for such spaces. Completely independently, Cheeger dis-
covered from an analytic viewpoint that Poincaré duality can be restored in
the context of pseudomanifolds by working on spaces with locally conical met-
rics and considering the L2 deRham complex on the incomplete manifold ob-
tained by removing the singular set. The action of the ∗-operator on har-
monic forms induces the Poincaré duality. Cheeger [Che83] obtains a version
of the Atiyah-Patodi-Singer index theorem and, as a main application, a lo-
cal formula for the L-class as a sum over all simplices of a given dimension,
with coefficients given by the η-invariants of the links. More generally, both
Cheeger’s and Goresky-MacPherson’s approaches yield characteristic classes
for Witt spaces; see [Sie83], [Che83], [GM83]. A stratified pseudomanifold is
Witt, if the lower middle perversity middle-dimensional intersection homology
of all links of strata of odd codimension vanishes. In [GM83], an elegant for-
mulation of intersection homology theory is presented employing differential
complexes of sheaves in the derived category, and it is shown that for a Witt
space X Poincaré duality is induced by the Verdier-self-duality of the sheaf
IC•

m̄(X) of middle perversity intersection chains.
Cappell, Shaneson and Weinberger [CSW91] construct a functor from self-

dual sheaves to controlled visible algebraic Poincaré complexes. As some re-
markable consequences, one can deduce that any self-dual sheaf has a sym-
metric signature, and indeed defines a characteristic class in homology with
coefficients in visible L-theory whose image under assembly is the symmetric
signature. Moreover, the Pontrjagin character of the associated K-homology
class equals the L-class of the self-dual sheaf. The latter class is discussed in
[CS91], where L-class formulae for stratified maps are obtained.

It is the goal of this paper to define an L-class for oriented compact pseudo-
manifolds that have odd codimensional strata, but do not satisfy the Witt space
condition. Certain compactifications of locally symmetric varieties constitute
an interesting class of examples of non-Witt spaces. Concretely, the reductive
Borel-Serre compactification — see [Zuc82] or [GHM94] — of a Hilbert mod-
ular surface is a real four-dimensional space whose one-dimensional strata are
circles (one for each Γ-conjugacy class of parabolic Q-subgroups) with toroidal
links and hence not a Witt space (together with R. Kulkarni we provide a
detailed treatment of self-dual sheaves on such compactifications in [BK04]).
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Our approach to defining characteristic classes is via Verdier-self-dual com-
plexes of sheaves compatible to intersection homology. On a non-Witt space X,
IC•

m̄(X) is not self-dual, since the canonical morphism IC•
m̄(X) −→ IC•

n̄(X)
from lower middle perversity (m̄) to upper middle perversity (n̄) intersection
chains is not an isomorphism (in the derived category). A theory of self-dual
sheaves on non-Witt spaces has been developed in [Ban02]; a brief summary
is given in Section 2. It is convenient to organize sheaf complexes on a non-
Witt space which satisfy intersection homology type stalk conditions and are
self-dual into a category SD(X). This category may be empty (Example: a
space having strata with links a complex projective space CP2k). If it is not
empty, then an object S• ∈ SD(X) defines a signature σ(S•) ∈ Z and by work
of Cappell, Shaneson and Weinberger [CSW91], as well as [CS91], homology
L-classes

Lk(S•) ∈ Hk(X; Q).

The main result of [Ban02] is that SD(X) can be described by a Postnikov
system whose fibers are categories of Lagrangian structures along the strata
of odd codimension. Thus a choice of an object S• ∈ SD(X) is equivalent
to choices of Lagrangian structures. The idea of employing Lagrangian sub-
spaces in order to obtain self-duality is present in an L2-cohomology setting as
J. Cheeger’s “∗-invariant boundary conditions;” see [Che79], [Che80] and
[Che83], and is also invoked in unpublished work of J. Morgan on the charac-
teristic variety theorem. From the point of view of characteristic classes, the
question arises: Do different choices yield the same L-classes? In the present
paper, we give a positive answer to this question. We show (Theorem 5.2 in
Section 5):

Theorem. Let Xn be a closed oriented pseudomanifold. If SD(X) �= ∅,

then the L-classes

Lk(X) = Lk(IC•
L) ∈ Hk(X; Q),

IC•
L ∈ SD(X), are independent of the choice of Lagrangian structure L.

Thus a non-Witt space has a well-defined L-class L(X), provided SD(X)
�= ∅.

Although we have only considered explicitly the independence of L-classes
under change of Lagrangian structures, our methods imply topological invari-
ance as well. Firstly, stratification independence can be seen by controlling all
the choices for all stratifications in terms of those available to the homologically
intrinsic stratification. Then topological invariance is a direct consequence of
the uniqueness of the object of SD(X) regarded as a cobordism class (although,
not as an object of the derived category) and the connection between cobor-
dism classes of self-dual sheaves and characteristic classes [CSW91]. Doing
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this actually gives a more refined conclusion: a topologically invariant defini-
tion of a characteristic class in H∗(X;L(Q)). (Compare, in addition [Sie83].)
Although we have not explicitly dealt with the issue in this paper, it is also pos-
sible to show that the existence of a Lagrangian structure is also topologically
invariant.

If Xn is stratified as Xn = Xn ⊃ Xn−2 ⊃ Xn−3 ⊃ . . . ⊃ X0 (strata
are indexed by their dimension), then it is rather clear that the L-class is
well-defined in the relative groups H∗(X, Xs), where s is maximal so that
n − s is odd. We can for instance argue as follows: If S•

0,S
•
1 ∈ SD(X), we

wish to see i∗Lk(S•
0) = i∗Lk(S•

1), where i∗ : Hk(X) −→ Hk(X, Xs). Here
k > 0 since the information on the signatures σ(S•

0), σ(S•
1) is a priori lost

in H0(X, Xs) = 0. Let Y be the quotient space Y n = X/Xs and f be the
collapse map f : (X, Xs) → (Y, c). The space Y inherits a pseudomanifold
stratification from X with respect to which f is a stratified map. The key
point is that Y has only strata of even codimension (assuming n is even; if
not, cross X with a circle first and adapt the argument accordingly). Since

i∗ is the composition Hk(X)
f∗−→ Hk(X/Xs) ∼= Hk(X, Xs), it suffices to verify

f∗Lk(S•
0) = f∗Lk(S•

1). The axioms for SD(X) (see Definition 2.1) imply that
S•

0|X−Xs
∼= IC•

m̄(X − Xs) ∼= S•
1|X−Xs

. Using the Cappell-Shaneson L-class
formula [CS91], we calculate (i = 0, 1):

f∗Lk(S•
i ) = Lk(Y ) + Lk({c};S{c}

f (S•
i )) +

∑
Z

Lk(Z;SZ
f (S•

i )),

where the first term on the right-hand side is the Goresky-MacPherson L-class
of Y (with constant coefficients), the second term is associated to the point
singularity c and vanishes as k > 0, the summation ranges over all components
Z of strata of Y of dimension > s and < n, and Lk(Z;SZ

f (S•
i )) denotes the

L-class of the closure Z of Z with coefficient system SZ
f (S•

i ), which however
depends only on S•

i |X−Xs
so that SZ

f (S•
0) = SZ

f (S•
1). Therefore,

f∗Lk(S•
0) =Lk(Y ) +

∑
Z

Lk(Z;SZ
f (S•

0))

= Lk(Y ) +
∑
Z

Lk(Z;SZ
f (S•

1)) = f∗Lk(S•
1).

This and related arguments seem to be insufficient to yield the full state-
ment of Theorem 5.2. To prove the latter, we use the following strategy: Let
us illustrate the ideas for the basic case of a two strata space Xn ⊃ Σs, X −Σ
is an n-dimensional manifold and Σs an s-dimensional manifold, n even, s odd.
Given IC•

L0
, IC•

L1
∈ SD(X), determined by Lagrangian structures L0,L1, re-

spectively, along Σ, the central problem is to prove equality of the signatures
σ(IC•

L0
) = σ(IC•

L1
), since then the result on L-classes will follow from the

fact that they are determined uniquely by the collection of signatures of sub-
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varieties with normally nonsingular embedding and trivial normal bundle; see
Section 5. To prove equality of the signatures, we use bordism theory: We
construct a geometric bordism Y n+1 from X to −X and cover its interior
with a self-dual sheaf complex S•, which, when pushed to the boundary, re-
stricts to IC•

L0
on X, and restricts to IC•

L1
on −X. A topologically trivial

h-cobordism Y n+1 = X × [0, 1] already works, but of course not with the nat-
ural stratification. Our idea is to “cut” the odd-codimensional stratum at 1

2 ,
which enables us to “decouple” Lagrangian structures because the stratum of
odd codimension then consists of two disjoint connected components. This
forces the introduction of a new stratum at 1

2 , but its codimension is even and
presents no problem. The stratification of Y with cuts at 1

2 is thus defined by
the filtration Y n+1 ⊃ Ys+1 ⊃ Ys, where Ys+1 − Ys = Σs × [0, 1

2) � Σs × (1
2 , 1]

and Ys = Σs × {1
2}. The sheaf S• will be constructible with respect to this

stratification. On Y − Ys+1, S• is RY −Ys+1 [n + 1], the constant real sheaf in
degree −n−1 (indexing conventions after [GM83]). To extend to Ys+1−Ys, we
use the Postnikov system 2.1, and the Lagrangian structure whose restriction
to Σs × [0, 1

2) is the pull-back of L0 under the first factor projection and whose
restriction to Σs × (1

2 , 1] is the pull-back of L1 under the first factor projec-
tion. Finally, we extend to Ys by the Deligne-step (pushforward and middle
perversity truncation), which produces a self-dual sheaf S•, since Ys is of even
codimension.

The paper is organized as follows: Section 2 provides a summary of the
definitions and results of [Ban02]. It contains the definition of the category
SD(X) of self-dual sheaves, the definition of the notion of a Lagrangian struc-
ture, and some information on the Postnikov system of Lagrangian structures
(Theorem 2.1). Section 3 reviews relevant facts about the bordism groups ΩSD

∗
whose elements are represented by pseudomanifolds carrying a self-dual sheaf.
In Section 4, we define the stratification with cuts at 1

2 , and, after some sheaf-
theoretic preparation, state and prove our result on the signature of non-Witt
spaces (Theorem 4.1). In Section 5, we recall the existence and uniqueness
result on L-classes of self-dual sheaves from [CS91] and state and prove the
main theorem of this paper on the L-class of non-Witt spaces (Theorem 5.2).
We conclude with an illustration of our results for the case of the reductive
Borel-Serre compactification of a Hilbert modular surface in Section 6.

2. The Postnikov system of Lagrangian structures

Let X be a stratified oriented topological pseudomanifold without bound-
ary. If X has only strata of even codimension, then IC•

m̄(X), the intersection
chain sheaf with respect to the lower middle perversity m̄, is Verdier self-dual,
since IC•

m̄(X) = IC•
n̄(X), the intersection chain sheaf with respect to the up-

per middle perversity n̄. More generally, IC•
m̄(X) is still self-dual on X if
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X is a Witt space. If X is not a Witt space, then the canonical morphism
IC•

m̄(X) → IC•
n̄(X) is not an isomorphism and IC•

m̄(X) is not self-dual.
The present section reviews results of [Ban02], where a theory of intersec-

tion homology type invariants for non-Witt spaces is developed.
Let Xn be an n-dimensional pseudomanifold with a fixed stratification

X = Xn ⊃ Xn−2 ⊃ Xn−3 ⊃ . . . ⊃ X0 ⊃ X−1 = ∅(1)

such that Xj is closed in X and Xj −Xj−1 is an open manifold of dimension j.

Set Uk = X −Xn−k and let ik : Uk ↪→ Uk+1, jk : Uk+1−Uk ↪→ Uk+1 denote the
inclusions. Let m̄, n̄ be the lower and upper middle perversities, respectively.
Throughout this paper we will work with real coefficients.

The intersection chain sheaf IC•
p̄(X) on X for perversity p̄ and constant

coefficients is characterized by the following axioms:

(AX0): IC•
p̄ is constructible with respect to stratification (1).

(AX1): Normalization: IC•
p̄|U2

∼= RU2 [n].

(AX2): Lower bound: Hi(IC•
p̄) = 0 for i < −n.

(AX3): Stalk vanishing conditions: Hi(IC•
p̄|Uk+1) = 0 for i > p̄(k) − n, k ≥ 2.

(AX4): Costalk vanishing conditions: Hi(j∗kIC
•
p̄|Uk+1) = 0 for i ≤ p̄(k) −

n + 1, k ≥ 2.

We shall denote the derived category of bounded differential complexes of
sheaves constructible with respect to (1) by Db(X). Let us define the cate-
gory of complexes of sheaves suitable for studying intersection homology type
invariants on non-Witt spaces. The objects of this category should satisfy two
properties: On the one hand, they should be self-dual, on the other hand,
they should be as close to the middle perversity intersection chain sheaves
as possible, that is, interpolate between IC•

m̄(X) and IC•
n̄(X). Given these

specifications, we adopt the following definition:

Definition 2.1. Let SD(X) be the full subcategory of Db(X) whose objects
S• satisfy the following axioms:

(SD1): Normalization: S• has an associated isomorphism ν : RU2 [n]
∼=→ S•|U2 .

(SD2): Lower bound: Hi(S•) = 0, for i < −n.

(SD3): Stalk condition for the upper middle perversity n̄ : Hi(S•|Uk+1) = 0,

for i > n̄(k) − n, k ≥ 2.
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(SD4): Self-Duality: S• has an associated isomorphism d : DS•[n]
∼=→ S•

(where D denotes the Verdier dualizing functor) such that Dd[n] = d

and d|U2 is compatible with the orientation under normalization so that

RU2 [n] ν−−−→
�

S•|U2

orient

�� �
�d|U2

D•
U2

Dν−1[n]−−−−−→
�

DS•|U2 [n]

commutes.

Depending on X, the category SD(X) may or may not be empty. One can
show (cf. Theorem 2.2 in [Ban02]) that if S• ∈ SD(X), there exist morphisms

IC•
m̄(X) α−→ S• β−→ IC•

n̄(X) uniquely determined by α|U2 = ν : RU2 [n] �−→
S•|U2 and β|U2 = ν−1 : S•|U2

�−→ RU2 [n], such that the following diagram is
commutative:

IC•
m̄(X) α−−−→ S•

�
� �

�d

DIC•
n̄(X)[n]

Dβ[n]−−−−→ DS•[n]

(where d is given by (SD4)), which clarifies the relation between intersection
chain sheaves and objects of SD(X).

To understand the structure of SD(X) (e.g. how can one construct objects
in SD(X)?), one introduces the notion of a Lagrangian structure. Assume k is
odd and A• ∈ SD(Uk). Note that n̄(k) = m̄(k)+1. We shall use the shorthand
notation m̄A• = τ≤m̄(k)−nRik∗A•, n̄A• = τ≤n̄(k)−nRik∗A•, and s = n̄(k) − n.

The reason why m̄A• need not be self-dual is that the “obstruction-sheaf”

O(A•) = Hs(Rik∗A•)[−s] ∈ Db(Uk+1)

need not be trivial. Its support is Uk+1 − Uk, and it is isomorphic to the
algebraic mapping cone of the canonical morphism m̄A• → n̄A•: We have a
distinguished triangle

(2)

m̄A• n̄A•

O(A•)

[1]

→

→

→

.

Dualizing (2), one sees that O(A•) is self-dual, DO(A•)[n + 1] ∼= O(A•) (the
duality-dimension is one off).
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Definition 2.2. A Lagrangian structure (along Uk+1 − Uk) is a morphism
L −→ O(A•), L ∈ Db(Uk+1), which induces injections on stalks and has the
property that some distinguished triangle on L −→ O(A•) is an algebraic
nullcobordism (in the sense of [CS91]) for O(A•).

This means the following: Some distinguished triangle on φ : L −→ O(A•)
has to be of the form

O(A•)

[1]

→

→

→L φ

DL[n + 1]

γ

and we require Dγ[n + 1] = γ[−1].
Equivalently, every stalk Lx, x ∈ Uk+1−Uk, is a Lagrangian (i.e. maximally

isotropic) subspace of O(A•)x with respect to the pairing O(A•)x ⊗ O(A•)x

→ R induced by the self-duality of O(A•). If B• ∈ SD(Uk) and LA → O(A•),
LB → O(B•) are two Lagrangian structures, then a morphism of Lagrangian
structures is a commutative square in Db(Uk+1):

LA −−−→ O(A•)� �O(f)

LB −−−→ O(B•)

where f ∈ HomDb(Uk)(A•,B•) and O(f) = Hs(Rik∗f)[−s]. Thus Lagrangian
structures form a category Lag(Uk+1 − Uk). The relevance of Lag(Uk+1 − Uk)
vis-à-vis SD(X) is explained as follows:

1. Extracting Lagrangian structures from self-dual sheaves: There exists
a covariant functor

Λ : SD(Uk+1) −→ Lag(Uk+1 − Uk).

This means that every self-dual perverse sheaf has naturally associated La-
grangian structures.

2. Lagrangian structures as building blocks for self-dual sheaves: Let

SD(Uk) � Lag(Uk+1 − Uk)

denote the twisted product of categories whose objects are pairs (A•,L φ−→
O(A•)), A• ∈ SD(Uk), φ ∈ Lag(Uk+1 − Uk), and whose morphisms are pairs
with first component a morphism f ∈ HomDb(Uk)(A•,B•) and second compo-
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nent a commutative square

LA
φA−−−→ O(A•)� �O(f)

LB
φB−−−→ O(B•).

There exists a covariant functor

� : SD(Uk) � Lag(Uk+1 − Uk) −→ SD(Uk+1),
(A•,L) �→ A• � L;

that is, a Lagrangian structure along Uk+1 − Uk naturally gives rise to a self-
dual sheaf on Uk+1.

It is shown in [Ban02] that

SD(Uk) � Lag(Uk+1 − Uk)
�−→←−

(i∗k,Λ)
SD(Uk+1)

induces an equivalence of categories. Summarizing, one obtains a Postnikov-
type decomposition of the category SD(X):

Theorem 2.1. Let n = dimX be even. There is an equivalence of cate-
gories

SD(X)
Lag(Un − Un−1) � Lag(Un−2 − Un−3)

� . . . � Lag(U4 − U3) � Const(U2).

Here, Const(U2) denotes the category whose single object is the constant
sheaf RU2 on U2 and whose morphisms are sheaf maps RU2 → RU2 . The theorem
is phrased for even-dimensional spaces owing to the choice of sign in axiom
(SD4) of Definition 2.1. The appropriate category SDo(X) for odd-dimensional
X is obtained by changing (SD4) to Dd[n] = −d, and the analog of Theorem
2.1 for SDo(X) holds.

3. The bordism group ΩSD
∗

We briefly review the construction of the bordism group ΩSD
∗ ; more de-

tails can be found in [Ban02, Ch. 4]. Elements of ΩSD
∗ are represented by

closed pseudomanifolds supporting a self-dual sheaf with stalk conditions. An
appropriate notion of cobordism and boundary operator will be defined. A
pair (pseudomanifold, self-dual sheaf) has a tautological signature associated
to it, namely the signature of the quadratic form on hypercohomology in the
middle dimension, induced by the self-duality isomorphism. This signature is
a cobordism invariant.
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Define Cn (the closed objects) to be the collection of triples Cn =
{(Xn,A•, d)}, where Xn is an n-dimensional closed oriented pseudomani-
fold, A• ∈ SD(X) and d : DA•[n] ∼= A•. Disjoint union defines an oper-
ation Cn × Cn +−→ Cn. Given (X2k,A•, d), d induces a nonsingular pairing
on hypercohomology H−k(X;A•) ⊗ H−k(X;A•) −→ R. Let σ(X,A•, d) de-
note the signature of this pairing and set σ(Xn,A•, d) = 0 for n odd. This
defines a map σ : Cn −→ Z. Define Cobn+1 (the admissible cobordisms)
to be the collection of triples Cobn+1 = {(Y n+1,B•, δ)}, where Y n+1 is an
(n+1)-dimensional compact oriented pseudomanifold with boundary, (B•, δ) ∈
SD(intY ), δ : DB•[n + 1] �−→ B•. Again, disjoint sum defines an operation
Cobn+1 × Cobn+1 +−→ Cobn+1. Suppose we are given (Y n+1,B•, δ) ∈ Cobn+1,

δ : DB•[n+1] �−→ B•. Then δ induces a self-duality isomorphism d for j!Ri!B•

(with intY
i

↪→ Y
j←↩ ∂Y the inclusions):

d : D(j!Ri!B•)[n] �−→ j!Ri!B•.

We call d the boundary of δ and write d = ∂δ. In this fashion one defines a
boundary map

∂ : Cobn+1 −→Cn

(Y n+1,B•, δ) ∂�→ (∂Y, j!Ri!B•, ∂δ).

We have ∂((Y1,B•
1, δ1) + (Y2,B•

2, δ2)) = ∂(Y1,B•
1, δ1) + ∂(Y2,B•

2, δ2).

Definition 3.1. Two triples (X1,A•
1, d1), (X2,A•

2, d2) ∈ Cn are cobordant
if there exist (Y1,B•

1, δ1), (Y2,B•
2, δ2) ∈ Cobn+1 such that

(X1,A•
1, d1) + ∂(Y1,B•

1, δ1) ∼= (X2,A•
2, d2) + ∂(Y2,B•

2, δ2).

Write [(X,A•, d)] for the cobordism class of (X,A•, d) ∈ Cn, define

ΩSD
n = {[(X,A•, d)] : (X,A•, d) ∈ Cn}

and

[(X1,A•
1, d1)] + [(X2,A•

2, d2)] = [(X1,A•
1, d1) + (X2,A•

2, d2)].

This is well defined and [(X,A•, d)] + [(X,A•,−d)] = 0, whence ΩSD
∗ is an

abelian group. In [Ban02, Ch. 4], we prove:

Theorem 3.1 (Cobordism Invariance of the Signature). If (Xi,A•
i , di)

∈ Cn, i = 1, 2, such that [(X1,A•
1, d1)] = [(X2,A•

2, d2)] ∈ ΩSD
n , then

σ(X1,A•
1, d1) = σ(X2,A•

2, d2).

This fact will be used to prove our central Theorem 4.1.
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4. The signature of non-Witt spaces

Let Xn be an even-dimensional topological pseudomanifold with stratifi-
cation

Xn = Xn ⊃ Xn−1 = Xn−2 ⊃ Xn−3 ⊃ . . . ⊃ X0 ⊃ X−1 = ∅,

where strata are indexed by their dimension. We denote the pure strata by
Vi = Xi − Xi−1, i = 0, . . . , n, and set V−1 = ∅. Consider the open cylinder

Y n+1 = X × (0, 1).

The natural stratification of Y is obtained by taking Yi = Xi−1 × (0, 1). The
crucial idea in the proof of Theorem 4.1 below is to work with the following
refinement of the natural stratification: We say that Y is stratified with cuts
at 1

2 , if it is filtered as

Y n+1 = Yn+1 ⊃ Yn−1 ⊃ Yn−2 ⊃ . . . ⊃ Y0 ⊃ Y−1 = ∅,

where

Yi =
i⋃

j=0

Wj

and

Wn+1 = Vn × (0, 1),

Wn = ∅,

Wn−1 = Vn−2 × (0, 1),

Wn−2 = Vn−3 × (0, 1
2) � Vn−3 × (1

2 , 1),

Wj = Vj × {1
2} � Vj−1 × (0, 1

2) � Vj−1 × (1
2 , 1), 0 ≤ j ≤ n − 3.

We continue with a sequence of sheaf-theoretic lemmas (Lemmas 4.1 through
4.6), which prepare the proof of Theorem 4.1.

Lemma 4.1. Let Z be a pseudomanifold and A ⊂ Z a subspace. Given a
commutative square

A × (0, 1) i−−−→ Z × (0, 1)

p0

� p

�
A

ι−−−→ Z

(i, ι inclusions, p, p0 projections to the first factor), there exist isomorphisms
of functors

(i) p!Rι∗ ∼= Ri∗p!
0,

(ii) p!τ≤sRι∗ ∼= τ≤s−1Ri∗p!
0.
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Proof. Note that

p! ∼= p∗[1], p!
0
∼= p∗0[1],

since the fiber (0, 1) is nonsingular. Thus (i) follows from the fiber square
identity §1.13, (13) of [GM83]. Isomorphism (ii) is obtained from (i) by

τ≤s−1(Ri∗p
!
0)∼= τ≤s−1(p!Rι∗)
∼= τ≤s−1(p∗Rι∗[1])
∼=(τ≤s(p∗Rι∗))[1]
∼= p∗(τ≤sRι∗)[1]
∼= p!(τ≤sRι∗).

Lemma 4.2. Let X be a pseudomanifold, i : U ↪→ X an open inclusion,
A ⊂ U a subset closed in X. If A ∈ Sh(U) with supp(A) ⊂ A, then i∗A = i!A.

Proof. If j : A → U denotes the inclusion of A in U, then A = j∗j∗A,

since A ⊂ X closed implies A ⊂ U closed. Thus

i∗A = (ij)∗j∗A,

and as ij : A ↪→ X is closed, we have (ij)∗ = (ij)!. Hence

i∗A = i!j!j
∗A = i!j∗j

∗A = i!A,

since j is closed.

Lemma 4.3. Let X be a topological space and U1, U2 ⊂ X open subsets.
Consider the diagram of open inclusions

U1
j|←−−− U1 ∩ U2

i

� �i|

X
j←−−− U2.

If A ∈ Sh(U1), then

j∗i∗A ∼= i|∗j|∗A.

Proof. We show that the two sheaves have isomorphic canonical presheaves.
Let V ⊂ U2 be open in U2. As V is then open in X as well, we have

Γ(V, j∗i∗A) = Γ(V, i∗A) = Γ(V ∩ U1,A).

As V ∩ U1 is open in U1, we obtain on the other hand

Γ(V, i|∗j|∗A) = Γ(V ∩ U1, j|∗A) = Γ(V ∩ U1,A).
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Lemma 4.4. Let Xn be a pseudomanifold with bottom stratum Σ, as-
sumed to be of odd codimension k. Consider X × (0, 1), its open subset Y =
(X×(0, 1))−(Σ×{1

2}) and the following diagram of inclusions and projections:

Y

i<
1/

2
i
>
1/2

X × (0, 1
2 ) X × ( 1

2 , 1)

p
<
1/2 p>

1/
2

X
←←

←←

Y is a pseudomanifold whose bottom stratum is the disjoint union Σ× (0, 1
2)�

Σ × (1
2 , 1). Suppose S•

0,S
•
1 ∈ SD(X − Σ) and

L0 −→O(S•
0),

L1 −→O(S•
1)

are Lagrangian structures for S•
0 and S•

1, respectively, at Σ. Let

S• ∈ SD((X − Σ) × (0, 1))

be such that

S•|(X−Σ)×(0, 1
2
)
∼= p̂!

<1/2S
•
0,

S•|(X−Σ)×( 1
2
,1)

∼= p̂!
>1/2S

•
1,

where p̂<1/2 : (X −Σ)× (0, 1
2) → X −Σ, p̂>1/2 : (X −Σ)× (1

2 , 1) → X −Σ are
projections to the first factor.

In this situation:

(i) O(S•) ∼= i<1/2!p
!
<1/2O(S•

0) ⊕ i>1/2!p
!
>1/2O(S•

1), and

(ii) i<1/2!p
!
<1/2L0 ⊕ i>1/2!p

!
>1/2L1 → i<1/2!p

!
<1/2O(S•

0) ⊕ i>1/2!p
!
>1/2O(S•

1) is
a Lagrangian structure for S• at Σ × (0, 1

2) � Σ × (1
2 , 1).
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Proof. We shall work with the following diagram of inclusion- and projection-
maps:

(X − Σ) × (0, 1) i−−→ Y

ı̂<1/2 i<1/2

(X − Σ) × (0, 1
2 )

ı̄<1/2−−→ X × (0, 1
2 )

p̂<1/2
p<1/2

−⊂

⊂−

X − Σ ι −→ X−−⊂

�

⊂

�

⊂

�


�


−−−−−−

and its counterpart for (1
2 , 1):

(X − Σ) × (0, 1) i Y

ı̂>1/2 i>1/2

(X − Σ) × (1
2 , 1)

ı̄>1/2−−−→ X × ( 1
2 , 1)

p̂>1/2 p>1/2

X − Σ ι −−−→X.

�

⊂

−− →−⊂ −− �
⊂

⊂

−⊂

�
 �


−−−−−−

Let us discuss statement (i). Set s = n̄(k)−n so that O(S•
0) = Hs(Rι∗S•

0)[−s]
∈ Db(X). Its pull-back with compact supports to X × (0, 1

2) is

p!
<1/2O(S•

0)∼= p∗<1/2H
s(Rι∗S•

0)[−s][1]

∼=Hs−1(p∗<1/2Rι∗S•
0[1])[1 − s]

∼=Hs−1(p!
<1/2Rι∗S•

0)[1 − s]

∼=Hs−1(Rı̄<1/2∗p̂
!
<1/2S

•
0)[1 − s] (by Lemma 4.1, (i))

=O(p̂!
<1/2S

•
0)

and

i<1/2!p
!
<1/2O(S•

0) ∼= i<1/2!O(p̂!
<1/2S

•
0).(3)
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Further,

O(p̂!
<1/2S

•
0) =Hs−1(Rı̄<1/2∗ı̂

∗
<1/2S

•)[1 − s]
∼=Hs−1(i∗<1/2Ri∗S•)[1 − s] (by Lemma 4.3)
∼= i∗<1/2H

s−1(Ri∗S•)[1 − s]

= i∗<1/2O(S•),

so that by (3),

i<1/2!p
!
<1/2O(S•

0) ∼= i<1/2!i
∗
<1/2O(S•)(4)

and analogously (by the diagram for (1
2 , 1))

i>1/2!p
!
>1/2O(S•

1) ∼= i>1/2!i
∗
>1/2O(S•).(5)

Consider the adjunction morphisms

i<1/2!i
∗
<1/2O(S•)−→O(S•),

i>1/2!i
∗
>1/2O(S•)−→O(S•)

and their sum

i<1/2!i
∗
<1/2O(S•) ⊕ i>1/2!i

∗
>1/2O(S•) −→ O(S•).(6)

Now using suppO(S•) = Σ× (0, 1
2)�Σ× (1

2 , 1), supp(i∗<1/2O(S•)) = Σ× (0, 1
2),

supp(i∗>1/2O(S•)) = Σ × (1
2 , 1), and that i<1/2! and i>1/2! are extension by

zero, we see by looking at stalks that (6) is an isomorphism. Thus statement
(i) follows in view of (4) and (5).

We prove statement (ii): As L0 → O(S•
0), L1 → O(S•

1) are Lagrangian
structures, they come with distinguished triangles in Db(X):

[1]

→

→

→L0 O(S•
0)

DL0[n + 1] ,

L1 O(S•
1)

DL1[n + 1] .

[1]

→

→

→

These induce distinguished triangles

[1]

→

→i<1/2!p
!
<1/2L0 i<1/2!p

!
<1/2O(S•

0)

i<1/2!p
!
<1/2DL0[n + 1]

→
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and

[1]

→

→

i>1/2!p
!
>1/2L1 i>1/2!p

!
>1/2O(S•

1)

i>1/2!p
!
>1/2DL1[n + 1]

→

.

We obtain for the duals

i<1/2!p
!
<1/2DL0[n + 1] ∼= i<1/2!D(p∗<1/2L0)[n + 1]

∼= i<1/2!D(p!
<1/2L0[−1])[n + 1]

∼= i<1/2!D(p!
<1/2L0)[n + 2]

∼= D(Ri<1/2∗p
!
<1/2L0)[n + 2]

∼= D(i<1/2!p
!
<1/2L0)[n + 2], using Lemma 4.2

(observing that
Σ × (0, 1

2) is
closed in Y )

and similarly

i>1/2!p
!
>1/2DL1[n + 1] ∼= D(i>1/2!p

!
>1/2L1)[n + 2].

Taking direct sums yields the distinguished triangle

i<1/2!p
!
<1/2L0 ⊕ i>1/2!p

!
>1/2L1 − → i<1/2!p

!
<1/2O(S•

0) ⊕ i>1/2!p
!
>1/2O(S•

1)

[1]

D(i<1/2!p!
<1/2L0)[n + 2] ⊕ D(i>1/2!p

!
>1/2L1)[n + 2].

→−−−−
−−−−−

−−−−−
−−−−−

−−−−−
−−−−

→−−−−−−−−−−−−−−−−−−−−−

−

Now, D is an additive functor and applying statement (i) of the lemma, we get
the distinguished triangle

i<1/2!p
!
<1/2L0 ⊕ i>1/2!p

!
>1/2L1 O(S•)

D(i<1/2!p
!
<1/2L0 ⊕ i>1/2!p

!
>1/2L1)[n + 2]

[1]

→−−−−−−−−−−−−−−−− →−−
−−−

−−−
−−−

−−−
−→−−−−−−−−−−−

which exhibits i<1/2!p
!
<1/2L0 ⊕ i>1/2!p

!
>1/2L1 as a Lagrangian structure for S•

along Σ × (0, 1
2) � Σ × (1

2 , 1).
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Lemma 4.5. Let X be a pseudomanifold, A• ∈ Db(X), p : X×(0, 1) → X

the projection to the first factor and i, j the inclusions

X × (0, 1)
i

↪→ X × (0, 1]
j←↩ X × {1}.

Then

j!Ri!p
!A• ∼= A•.

Proof. Given a diagram

X × (0, 1) i X × (0, 1]

p q

X

−− →−⊂ −−
−

−→

−
−−

−
−→

−
−−

we have the identity

Ri∗p
∗A• ∼= q∗A•;

see e.g. [B+84, V, 10.22 (4)]. This implies

j∗Ri∗p
∗A• ∼= (qj)∗A• ∼= A•,

since qj = 1X . Using p∗[1] ∼= p! and j∗Ri∗ ∼= j!Ri![1] we obtain the result.

Lemma 4.6. Let X be a stratified pseudomanifold, Y ⊂ X a closed union
of components of strata such that Y is an m-dimensional manifold, i : X − Y

↪→ X and p, q integers with p+q = −m. If A•,B• ∈ Db(X−Y ) and DA• ∼= B•,
then there is an induced isomorphism

D(τY
≤p−1Ri∗A•) ∼= τY

≤q−1Ri∗B•.

Proof. See [GM83, §9].

Theorem 4.1. Let Xn be an even-dimensional closed oriented pseudo-
manifold. If SD(X) �= ∅, then the signature

σ(X) = σ(IC•
L),

IC•
L ∈ SD(X), is independent of the choice of Lagrangian structure L.

Proof. Let IC•
L0

, IC•
L1

∈ SD(X) be self-dual complexes of sheaves deter-
mined by the Lagrangian structures

L0 = (L1
0,L3

0, . . . ,Ln−3
0 ) ∈ Lag(V1) � Lag(V3) � . . . � Lag(Vn−3) � Const(Vn)

and

L1 = (L1
1,L3

1, . . . ,Ln−3
1 ) ∈ Lag(V1) � Lag(V3) � . . . � Lag(Vn−3) � Const(Vn),
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respectively. We have to show that

σ(IC•
L0

) = σ(IC•
L1

).

This will be done by showing that the elements [(X, IC•
L0

)] and [(X, IC•
L1

)]
in the bordism group ΩSD

n are equal, invoking Theorem 3.1. Let Y n+1 be the
open cylinder

Y = X × (0, 1).

Its compactification Y = X × [0, 1] will provide the underlying geometric bor-
dism from X to itself. This bordism is, of course, topologically trivial, but its
stratification will not be taken to be a product, and it will be covered with a
non-trivial sheaf. Thus let Y be stratified with cuts at 1

2 . We shall inductively
construct a self-dual sheaf S• ∈ SD(Y ). Set Tk = X − Xn−k,

U2 =Wn+1,

U3 =U2 ∪ Wn−1,

and for 3 ≤ k ≤ n,

Uk+1 =

{
Uk ∪ (Vn−k × (0, 1

2) � Vn−k × (1
2 , 1)), k odd

Uk ∪ (Vn−k+1 × {1
2} ∪ Vn−k × (0, 1)), k even

so that in closed form (k ≥ 3)

Uk =

{
Tk × (0, 1), k odd
Tk−1 × (0, 1) ∪ (Vn−k+1 × (0, 1

2) � Vn−k+1 × (1
2 , 1)), k even,

and let ik : Uk ↪→ Uk+1 be inclusions. For each k, Uk contains both Tk × (0, 1
2)

and Tk × (1
2 , 1) as subsets. Define

S•
2 = RU2 [n + 1] ∈ SD(U2).

For any subset A ⊂ X, let p<1/2 : A × (0, 1
2) → A and p>1/2 : A × (1

2 , 1) → A

be generic notation for the first factor projections. We note that

S•
2|T2×(0, 1

2
)
∼= p!

<1/2IC
•
L0
|T2 ,

S•
2|T2×( 1

2
,1)

∼= p!
>1/2IC

•
L1
|T2

by the normalization axiom. Assume inductively that

S•
k ∈ SD(Uk)

has been constructed such that

S•
k|Tk×(0, 1

2
)
∼= p!

<1/2IC
•
L0
|Tk

,(7)

S•
k|Tk×( 1

2
,1)

∼= p!
>1/2IC

•
L1
|Tk

(8)

hold.
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We will construct S•
k+1 ∈ SD(Uk+1): There are two cases to consider. In

the first case we assume that k is even. Then Uk+1 − Uk = Vn−k+1 × {1
2} ∪

Vn−k × (0, 1), and we will extend S•
k to Uk+1 in two steps:

S•
k ∈ SD(Uk) � SD(Uk ∪ Vn−k+1 × {1

2}) � SD(Uk+1).

Since Vn−k+1×{1
2} is a closed union of components of strata of Uk∪Vn−k+1×{1

2}
and a submanifold, Lemma 4.6 with A• = S•

k, B• = S•
k[−n−1], p = m̄(k)−n,

q = m̄(k) + 1 (thus p + q = k − n − 1) shows that

R• = τ≤m̄(k)−n−1Ri′∗S
•
k

is an object of SD(Uk ∪ Vn−k+1 × {1
2}), where i′ : Uk ↪→ Uk ∪ Vn−k+1 × {1

2}
(note τ≤m̄(k)(Ri′∗S

•
k[−n − 1]) = (τ≤m̄(k)−n−1Ri′∗S

•
k)[−n − 1]).

Now Vn−k × (0, 1) is a closed union of components of strata of Uk+1 and
a submanifold, so that an application of Lemma 4.6 with A• = R•, B• =
R•[−n − 1] and p, q as before yields that

S•
k+1 = τ≤m̄(k)−n−1Ri′′∗R

•

(i′′ : Uk ∪ Vn−k+1 × {1
2} ↪→ Uk+1) is an object of SD(Uk+1) (in particular,

S•
k+1 is constructible on Uk+1 with respect to the stratification with cuts at 1

2).
Consider the commutative diagram

Uk ∪ Vn−k+1 × {1
2}

i′′ Uk+1�
i′jk jk+1

�
Tk (0, 1

2 ) ı̂k Tk+1 × (0, 1
2 )

�p̂<1/2 p<1/2�
Tk

ιk −−−→Tk+1.−−−−−−−−−−

−−−→−−−

−−−→−−−

−−
−−

−−
−−

−−

×

−−

⊂

⊂

⊂

⊂ ⊂

We have Tk+1 = Tk ∪ Vn−k and

(Uk ∪ Vn−k+1 × {1
2}) ∩ (Tk+1 × (0, 1

2)) = Tk × (0, 1
2).

Thus by Lemma 4.3,

j∗k+1Ri′′∗ ∼= Rı̂k∗(i′jk)∗
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and we calculate (s = m̄(k) − n − 1)

S•
k+1|Tk+1×(0, 1

2
) = j∗k+1τ≤sRi′′∗τ≤sRi′∗S

•
k

∼= τ≤s(j∗k+1Ri′′∗)τ≤sRi′∗S
•
k

∼= τ≤sRı̂k∗j
∗
ki′∗τ≤sRi′∗S

•
k

∼= τ≤sRı̂k∗j
∗
k(τ≤si

′∗Ri′∗S
•
k)

∼= τ≤sRı̂k∗j
∗
k(τ≤sS•

k)
∼= τ≤sRı̂k∗j

∗
kS

•
k

∼= τ≤sRı̂k∗p
!
<1/2(IC

•
L0
|Tk

) (induction hypothesis)
∼= p!

<1/2(τ≤m̄(k)−nRιk∗(IC•
L0
|Tk

)) (Lemma 4.1, (ii))
∼= p!

<1/2(IC
•
L0
|Tk+1),

and similarly

S•
k+1|Tk+1×( 1

2
,1)

∼= p!
>1/2IC

•
L1
|Tk+1 .

In the second case we assume that k is odd, so that

Uk+1 − Uk = Vn−k × (0, 1
2) � Vn−k × (1

2 , 1)

is of odd codimension in Y . Along the bottom stratum Vn−k of Tk+1, we have
the Lagrangian structure

Ln−k
0 −→ O(IC•

L0
|Tk

)

for IC•
L0
|Tk

and

Ln−k
1 −→ O(IC•

L1
|Tk

)

for IC•
L1
|Tk

.
The bottom stratum of Uk+1 is the disjoint union Vn−k × (0, 1

2)�Vn−k × (1
2 , 1).

Thus, in view of (7), (8) and using the notation

Uk+1

i<
1/

2 i
>
1
/2

Tk+1 × (0, 1
2 ) Tk+1 × (1

2 , 1)

p
<
1
/2

p>
1/

2

Tk+1

→ →

→→
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Lemma 4.4 tells us that

L = i<1/2!p
!
<1/2Ln−k

0 ⊕ i>1/2!p
!
>1/2Ln−k

1

−→ i<1/2!p
!
<1/2O(IC•

L0
|Tk

) ⊕ i>1/2!p
!
>1/2O(IC•

L1
|Tk

)
∼= O(S•

k)

is a Lagrangian structure for S•
k along Uk+1 − Uk. Set

S•
k+1 = S•

k � L ∈ SD(Uk+1).

The Postnikov equivalence of categories 2.1 supplies us with isomorphisms

S•
k+1|Tk+1×(0, 1

2
)
∼= p!

<1/2IC
•
L0
|Tk+1 ,

S•
k+1|Tk+1×( 1

2
,1)

∼= p!
>1/2IC

•
L1
|Tk+1 .

This finishes case two and concludes the induction step. The sought self-dual
sheaf on Y is

S• = S•
n+1 ∈ SD(Un+1) = SD(Y ),

which satisfies by construction

S•|X×(0, 1
2
)
∼= p!

<1/2IC
•
L0

,

S•|X×( 1
2
,1)

∼= p!
>1/2IC

•
L1

.

Consider the following inclusions into the compactification Y of Y :

X × (0, 1
2)

i0
↪→ X × [0, 1

2)
j0←↩ X × {0},

X × (1
2 , 1)

i1
↪→ X × (1

2 , 1]
j1←↩ X × {1}.

By Lemma 4.5,

j!
0Ri0!p

!
<1/2IC

•
L0

∼= IC•
L0

,

j!
1Ri1!p

!
>1/2IC

•
L1

∼= IC•
L1

,

and thus

j!
0Ri0!(S•|X×(0, 1

2
))∼= IC•

L0
,

j!
1Ri1!(S•|X×( 1

2
,1))∼= IC•

L1
.

In terms of ΩSD
n this means that (Y ,S•) is an admissible cobordism such that

∂(Y ,S•) = (X, IC•
L0

) + (−X, IC•
L1

),

whence [(X, IC•
L0

)] = [(X, IC•
L1

)] ∈ ΩSD
n .
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5. The L-class of non-Witt spaces

Let us recall the existence and uniqueness result on L-classes of self-dual
sheaves as stated in [CS91]: Let Xn be a compact oriented stratified pseudo-
manifold and let

j : Y m ↪→ Xn

be a normally nonsingular inclusion of an oriented stratified pseudomanifold
Y m. Consider an open neighborhood E ⊂ X of Y, the total space of an Rn−m-
vector bundle over Y, and put E0 = E−Y, the total space with the zero-section
removed. Let u ∈ Hn−m(E, E0) denote the Thom class. If π : E → Y denotes
the projection, then the composition

Hk(X) i∗→ Hk(X, X − Y ) e∗←∼= Hk(E, E0)
u∩−→∼= Hk−n+m(E) π∗→∼= Hk−n+m(Y )

defines a map

j! : Hk(X) −→ Hk−n+m(Y ).

Theorem 5.1 ([CS91]). Let S• ∈ Db(X) be a self-dual complex of sheaves.
There exist unique classes Lk(S•) ∈ Hk(X; Q) such that if j : Y m ↪→ Xn is a
normally nonsingular inclusion with trivial normal bundle, then

j!Ln−m(S•) = σ(j!S•).

In particular IC•
L ∈ SD(X) has L-classes Lk(IC•

L) ∈ Hk(X; Q). Generalizing
Theorem 4.1 on the signature σ(IC•

L) = L0(IC•
L), we obtain

Theorem 5.2. Let Xn be a closed oriented pseudomanifold. If SD(X) �=
∅, then the L-classes

Lk(X) = Lk(IC•
L) ∈ Hk(X; Q),

IC•
L ∈ SD(X), are independent of the choice of Lagrangian structure L.

Proof. Let IC•
L0

, IC•
L1

∈ SD(X) be self-dual sheaves, determined by La-
grangian structures L0,L1, respectively. For a normally nonsingular inclusion
j : Y m ↪→ Xn with trivial normal bundle we have j!IC•

L0
, j!IC•

L1
∈ SD(Y ) by

a straightforward check of axioms (SD1)–(SD4). Thus by Theorem 4.1,

σ(j!IC•
L0

) = σ(j!IC•
L1

).

Therefore, the associated L-classes satisfy

j!Ln−m(IC•
L0

) = σ(j!IC•
L0

) = σ(j!IC•
L1

) = j!Ln−m(IC•
L1

)

and so Lk(IC•
L0

) = Lk(IC•
L1

) for all k by the uniqueness statement of Theo-
rem 5.1.
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6. An example

We illustrate the general result with the special situation of the reductive
Borel-Serre compactification of a Hilbert modular surface, following our joint
work [BK04] with Rajesh Kulkarni. Let K be a real quadratic number field
and OK the ring of algebraic integers in K. Consider the Hilbert modular
surface X = (H × H)/Γ, where H is the upper half plane and Γ = PSL2(OK)
the Hilbert modular group. This complex surface is not compact, and various
compactifications have been studied. The reductive Borel-Serre compactifica-
tion — [Zuc82] or [GHM94] — has the advantage that the Hecke operators
extend to this compactification. We represent the Hilbert modular surface as

X = Γ\G(R)/K,

with G the algebraic group G = SO◦(Q) (Q an appropriate quadratic form),
G(R) the real points of G, K the maximal compact subgroup. The reductive
Borel-Serre compactification X̄ adds a stratum XP for each Γ-conjugacy class
of parabolic subgroups P of G. It is known that every XP is topologically a
circle and the link L of XP is a 2-torus. In particular, X̄ is a real 4-dimensional
pseudomanifold which is not a Witt space. There exists a Lagrangian subspace
in H1(L). An analysis of the monodromy using the theorems of Kostant and
Nomizu-van Est shows that there exists a Lagrangian structure along the circle.
Thus (Theorem 2.1), we obtain the result that the category SD(X̄) of self-dual
sheaves on X̄ compatible with intersection chain sheaves is nonempty. Con-
sequently, Theorem 5.2 shows that the reductive Borel-Serre compactification
of any Hilbert modular surface has a well-defined L-class Li(X̄) ∈ Hi(X̄; Q).
This can be established by an alternative argument which uses the Baily-Borel-
Satake compactification, as follows: In [BK04], we moreover investigate the
relationship between cohomology theories on X̄ and on the Baily-Borel-Satake
compactification X̂ of X. Let π : X̄ −→ X̂ be the canonical (collapse) map.
Our result is:

Theorem 6.1. If IC•
L ∈ SD(X̄) and

IC•
m̄(X̄) α−→ IC•

L
β−→ IC•

n̄(X̄)

are the canonical morphisms (cf. Section 2), then

(i) Rπ∗α and Rπ∗β are isomorphisms, and

(ii) Rπ∗IC•
m̄(X̄) ∼= IC•

m̄(X̂). In particular, also Rπ∗IC•
L ∼= IC•

m̄(X̂) and
Rπ∗IC•

n̄(X̄) ∼= IC•
m̄(X̂).

This implies that

σ(IC•
L) = σ(Rπ∗IC•

L) = σ(IC•
m̄(X̂)),
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and the latter integer does not depend on L, giving an independent verification
of Theorem 4.1 for the reductive Borel-Serre compactification of a Hilbert
modular surface.
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