
TOTAL CENTRAL CURVATURE OF CURVES

BY THOMAS F. BANCHOFF

Total central curvature refers to the measure of curvedness of a space curve
contained in a ball (bounded by a sphere) obtained by averaging the total
absolute curvatures of the image curves under central projection from all points
on the sphere. The major object of this paper is to show that this total curvature
coincides with the classical total absolute curvature of the original space curve.
This result generalizes immediately to curves in n-space. As a corollary we
show that a curve on S in E with total absolute curvature 4 in E can be
unknotted in S3.
We begin by studying, from an elementary standpoint, the specialization of

this theorem to plane curves, and illustrate at the same time the methods toe
be used in the general case.

1. Total central curvature of plane curves. Let f: S --, E be a continuous
map of the circle S into the plane. A local support line to ] at x is a line con-
taining x and bounding a closed half-plane which contains the image of a neigh-
borhood of x in S1. Let r(]) be the number of local support lines to ] passing
through the point p of E.

?

The curvature of ] with respect to a circle C re(I) is defined to be the verge
value of r(]) for points p on C, i.e.

re(I) l(C) c
(]) dsc

where dsc denotes the element of arc of C so that f dsc l(C) circumference
of the circle C.
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The value of re(f) does depend on the position of C relative to the image of f.
For example, if f embeds S as a convex curve, then re(f) 2 if C D f (i.e. if
the image of f is contained in the region bounded by C) and re(f) 0 if f D C.
As the main result of this section we shall show that, for an arbitrary f, the value
re(f) is independent of the position of C if C D f.
We first consider the case where f is a polygon. A polygon

.continuous mapping determined by a finite number of vertex points
,on S, with the condition that f be linear on each interval (v,, v/). We further
assume that f(v) f(v) if i , and we follow the convention that
ifi mandv_i v.,ifi 1.

THEOREM 1. I] ] is a polygon and C ], then

1
re(I) 2

1
exterior angle o]] at v,

Proo]. Let r(vi) 1 if the line through p and ](v) is a local support line
to ] at v, and let r(v) 0 otherwise. If p does not lie on any line connecting
the images of two distinct vertices, then r(]) 7-1 r(v,). Since there are
only finitely many lines determined in this way, this formula for r(f) will hold
for all but a finite number of points p on any circle C. Therefore

1 f r(f) ds(f)- (c) ,o

1
r(v,) dsl(C) ,o

1 f v(v,)dsc.

The expression 1/l(C) .c .(v,) dsc just indicates the proportion of the
,circumference of C covered by suppor lines o he angle of
theorem of Euclid, his number is 1/2. 2 [exterior angle of

This completes the proof of the theorem.
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Remark. We have in fact shown that rc(]), for C , coincides with the
classically defined total absolute curvature r(]) of a polygon (up to a normaliza-
tion constant 1/2), as given by Fry [2] and Milnor [3]. The total curvature
r(J) for any continuous curve may be defined by

1 f
where d01 is the element of arc on the unit circle, o ] 81 -- E is the map
x .](x) given by the ordinary inner product of ](x) with the vector , and
r( o 1) number of local maxima or minima of o ] on S1. For a differentiable
immersion with continuously defined curvature k(s), the value r(]) coincides
with 1/2r fc Ik(s)l ds, which explains the name "total absolute curvature."
A very complete treatment of the concept of total absolute curvature for

continuous curves is given by Van Rooij [4], who shows explicitly that for any
which is not constant on any interval, we have limn r(]n) -- r(]), where {n}
is any sequence of polygons inscribed in ] with mesh approaching zero. In
precisely the same way we may show that limn re(f.) -- re(I), and since
re(In) r(]) for planar polygons with all vertex images distinct, we may
approximate ] by a sequence of such polygons and we obtain the general result
that re(I) r(]) for plane curves. The convergence results are also true for
curves in E (or in E), so we shall present proofs of subsequent theorems just
for polygons, and the general results follow immediately.

Remark. In a sense the classical total absolute curvature r(]) may be con-
sidered as the total central curvature re(]) with respect to an "infinitely large
circle," so that the family of support lines through a point p of C corresponds
to local support lines perpendicular to a given direction .

EIf C D ], we may view the function r(]) as r( o ) where %" T -- Eis the central projection from p to the line EI through the center of C parallel
to the tangent line T to C at p, since we get a maximum or minimum of the
projection function precisely whenever there is a local support line to through p.
It is this notion that we use in generalizing Theorem 1 to curves in higher-
dimensional Euclidean spaces.
We may lso view r(]) as r(O o ]) where 0 E {p} S is the angular

coordinate in a polar coordinate system with center p. The singularities of the
radial coordinate function p E -- E are studied in [1].

2. Total central curvature of curves in E3. Let f: S --+ E be a continuous
1 1 map of the circle S and let S be a sphere such that S (i.e. such that

.3lies in the closed ball bounded by the sphere S) Let r {T} -- E be
the central projection (where T is the tangent plane to S at p and E is the plane
parallel to T through the center of S), so for any x not in T, r(x) is defined
by the condition that (x) is in E and r(x) is collinear with x and p. (Note
that r restricted to S p gives stereographic projection.)
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For each p on S we obtain a number r(r o l) which we average to obtain
the total central curvature of I with respect to

1 f r(’, o1) dVs(- v() ,
where dVn is the element of area of S so that V(S) f,s dVs
Tnnon 2. Let ] be a polygon emSedded in E and let S ]. Then (]) (1).

Pro@

(I)- v(z)
1

2 exg. angleof,oJa,ov dV

=2 1 1
s ex.angleof,oJag,ov dVs

Ig remains go show gha ghe expression in parenghesis represengs 1/2
angle of Jag v, and we separage ghis off as ghe basic averaging lemma, which
will also be used in ghe higher dimensional ease.

Before proceeding go he proof of ghis lemma, we shall discuss he classical
analogue (used by ry [2] in his proof of ghe knog gheorem) and esgablish

some noagion for he eengral curvature ease.
or a vector ( S, leg P N N denote (orhogonal) proeeion ingo

plane orghogonal o (, so ha an angle Z vw of a polygon is proceeded into an
angle Z P()P(v)P() whenever ( is hog parallel o either of ghe infinite
rays v or vw. (Here Z vw sgands for ghe measure of ghe non-obguse angle
degermined by ghe ordered griple of vergiees.)

1
Z P()P(v)P(w) de,A( Z uvw)

s,

the average value of the projections of he angle into all planes through he
origin. Since the integral A (Z uvw) remains unchanged under all rigid motions
of Ea, the value A(Z uvw) depends only on the magnitude uvw. Moreover the
function is additive in the following senseif the vertex w’ lies in a convex

plane region bounded by the rays vu and vw, then Z uvw’ + Z w’vw Z uvw
and for every ( not parallel to vu, vw or vw, we have Z P,(u)P(v)P(w’)
Z P(w’)P(v)P(w) Z P(u)P(v)P(w), so A(Zuvw’) + A A w’vw)
A(Zuvw). Also if Zuvw is a straight angle, then so is Z P(u)P(v)P(w) for
Mmost all , so A (Z uvw) Z uvw in this ease. By additivity, 2A (Z uvw’)
A Z uvw’) + A A w’vw) A Z uvw) Z uvw 2 Z uvw’ if Zuvw’ /2,
and similarly A (Z uvw) A uvw if Z uvw r/2 for any integer r. By addi-
tivity, and the continuity of the function A, we have A (Z uvw) Z uvw for
every angle A uvw.
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Note that we cannot use such direct argumentation in the case of central
projection, since it is not clear a priori that the average value depends only on
the magnitude of the angle. Set

1 f / ’,(u)r(v)-(w) dVsA( uvw) V()

This integral is invariant under rigid motions which keep the sphere fixed, but
the group of such motions is not transitive on the sets of angles contained within
S. The fact that As ( A uvw) A uvw will follow however from the basic lemma.

AV:ERAGIN L:EMMA. Let u, v, and w be distinct points contained within a
sphere S and let C be a circle on S parallel to a plane containing u, v, and w. Let

1 f A ’(u)r(v)r(w) dscAc( Z uvw) l(C) c

Then Ac(A uvw) A uvw.

Proo]. The proof proceeds in several steps, guided by an outline of the proof
of the theorem of Euclid mentioned in Theorem 1.
The lemma is immediate if Z uvw 0 or r, so we assume that u, v, and w

are not collinear.

a) If v lies on a diameter of S orthogonal to the plane of u, v, and w, then
the value of A c(A uvw) depends only on the magnitude of A uvw, since any
two such angles of equal magnitude in the same plane are congruent by a rota-
tion of S about the diameter orthogonal to the plane. As in the classical case,
we then show that Ac(A uvw) A uvw.

b) If u, v, and w are on the surface of S and if the ray vu passes through
the center o of the circle cut out on S by the plane of u, v, and w, we consider
the reflection of S which fixes o and interchanges v and w $o show Sha A c( A ovw)
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Ac(Z owv). By part a), Z uow Ac(Z uow) so

2A (/ovw) A c( / ovw) + Ac( owv) A c(/uow) uow

Zovw-t- Zowv 2Zovw,

so Z uvw Z ovw Ac( / ovw) Ac( Z uvw).

e) If u, v, and w are on S and if neither vu nor vw passes through o, we may
introduce the auxiliary line vo and deduce Ac(A uvw) Z uvw from the cor-
responding equalities for Z uvo and Z ovw.

d) If u, v, and w are anywhere in S, extend uv to cut S in ul and --*vu to cut
S in u2 and obtain the points wl and w2 similarly. Then Ac(Zuvw)
Ac(Z vwlu. + / vuwl) A(/vwu) + Ac(/vuw) Z vwu2 + Zvuw
Z uvw. This concludes the proof of the averaging lemma.

Remark. If the circle C lies in the plane of u, v, and w, then this lemma reduces
to Theorem 1.
We now use this lemma to show that As(Z uvw) Z uvw, by arguing that

since the average value of Z r(u)(v)r(w) over all p in a circle C parallel to the
plane of u, v, and w is Z uvw, then the average over the whole sphere S must
also be Z uvw. Specifically, we choose a spherical coordinate system on S
such that the circle in the plane of u, v, and w is given by constant, and
let ](0, , Z uvw) Z r(u)r(v)r(w) where the coordinates of p are (0, b).
For a circle Co given by o, we have dsco ro dO and

l(Co) 2o so ACo(Z uvw) : 1(0,4)o, Z uvw) dO Z uvw

by the averaging lemma. Therefore

L uvw.

Returning to the final step in the proof of Theorem 2, we have

ext. angle of r ] at r o v,
1

dVs [ext. angle of

so the theorem is proved.
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3. Total central curvature of curves in E". For a polygon f: S -- E" con-
tained in the region bounded by a hypersphere S we may again consider central
projection r E T -- E$-1 and define

1 f r(r o dVs

where dVs is the element of volume of S so V(S) fs dVs

TEOaE 3. rs(]) 2 7-, 1/2 [ext. angle

Proo]. As in the proof of Theorem 2, we use the averaging lemma to show
that Ac(X uvw) A uvw for any C cut out on S by a translate of the plane
of u, v, and w, and deduce from this that the average value of A (u)(v)(w)
over all of S is A uvw.
To mke this explicit, we may purametrize the sphere S"- by (sin

cos 0 sin 0, cos 0x cos 0 sin 0, cos 0 cos
cos 0 cos 0._ cos 0_1) where the plane of u, v, and w is parallel to the plane

spanned by x._ and x.. The element of volume is then

d"- (sin )’-’ (sin 8)"- (s
and

V(S--’) J

fo" for’’" fo" (fo2" (sin 01)’-’ (sin 0.-2)d0.-1)dO,,-2 dO2dO1

fo" fo"’" fo" 2(sin 01)’-’ ..-(sin 0.-2) dO._.. dO, dO1.

If p is given by coordinates p, 0,, 02, 0._2,0_1, we set F(p, 0,, 0.,
0._3,0._,, 1) r(ro o l). Then by the averaging lemma, for a given choice of
0 0 0._3, we have

"
O._, 1") dO._ 2rrle(o, o,, o, o,_,.,

Therefore

1 f r(r,, of) dVsV(S) ,

r.-1V(S.-1) F(o, 01 0._,

(sin 0,)"- (sin O._)r"-’ dO._, dO._ dO,
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V(S_I) 2rr(f)(sin 01),‘-,.

(sin 0,‘_,.) dO,,_,..., dO, r(f)

and the theorem is proved.

COIOLIAIY 4. If f: S S C E and r(f) < 4 (as a curve in E), then f
can be unknotted in S, i.e. there is a homeomorphism h of S such that h o f maps
S to a circle on S.

Proof. By Theorem 3, r(f) 1/V(S) fs r(z o f) dVs so if r(f) < 4,
then there is an open set U in S such that r(z o f) < 4 for ll p in U. It
follows from the results of Milnor [3] tht there is homeomorphism g of E
such that g o z o ]: S E sends S to circle, nd moreover such that g is
the identity outside compact set containing the image of z o f. The composed
mp h z; o g o is then homeomorphism nd h o f sends S to the circle

--1 (g o o f(S)) (the image of a circle under inverse stereogrphie projection).

Remark. Although the previous results hve been global in character, it is
possible to obtain local version of Theorem 3 by using the global resulk
Specificilly, if f: S hs image contained in the region bounded by
hypersphere S nd if f hs continuously defined curwture If" (x)] in neighbor-
hood of Xo e S, then ]f"(Xo)[ equals the verge of the curwtures [( o f)"(Xo))]
of the curves z o f. For e > 0 is ny sufficiently smll number, the mp f: [Xo-e,
Xo + e] E hs continuous curvature on the interior nd well-defined tngent
t ech endpoint. We my then define closed piecewise differentible cue
f, by going long f from f(Xo e) to f(xo + e) nd then bck long f to f(Xo e).
By Theorem 3,

&,

where the constant 1 corresponds to the two zero ngles t the singular points
of f and

Since this is correct for any > O, it follows that

if.II"(xo) v(8)
o l)"(Xo l dV,.
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A similar local result has been obtained by other methods for smooth curves
on the 2-sphere by P. Dombrowski (unpublished).
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