TOTAL CENTRAL CURVATURE OF CURVES

By Taomas F. BANCHOFF

Total central curvature refers to the measure of curvedness of a space curve
contained in a ball (bounded by a sphere) obtained by averaging the total
absolute curvatures of the image curves under central projection from all points
on the sphere. The major object of this paper is to show that this total curvature
coincides with the classical total absolute curvature of the original space curve.
This result generalizes immediately to curves in n-space. As a corollary we
show that a curve on S° in E* with total absolute curvature < 4 in E* can be
unknotted in S°.

We begin by studying, from an elementary standpoint, the specialization of
this theorem to plane curves, and illustrate at the same time the methods to
be used in the general case.

1. Total central curvature of plane curves. Let f: S' — E® be a continuous
map of the circle S* into the plane. A local support line to f at z is a line con-
taining « and bounding a closed half-plane which contains the image of a neigh-
borhood of z in S'. Let 7,(f) be the number of local support lines to f passing
through the point p of E°.

The curvature of f with respect to a circle C = 7+(f) is defined to be the average
value of 7,(f) for points p on C, i.e.

rolf) = ﬁ f D dse

where ds¢ denotes the element of arc of C so that [ ds¢ = I(C) = circumference
of the circle C.
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The value of 7¢(f) does depend on the position of C relative to the image of f.
For example, if f embeds S* as a convex curve, then 7(f) = 2if C D f (i.e. if
the image of f is contained in the region bounded by C) and r.(f) = 0if f D C.
As the main result of this section we shall show that, for an arbitrary f, the value
7¢(f) is independent of the position of C if C' D f.

We first consider the case where f is a polygon. A polygon f : 8' — E*is a
continuous mapping determined by a finite number of vertex points vy , vy, * -+ , 0,
on S, with the condition that f be linear on each interval (v; , v;.,). We further
assume that f(v;) = f(v;) if ¢ £ j, and we follow the convention that v;., = v,
if 2 =mand v,y = v,if¢ = 1.

TueoreM 1. If f is a polygon and C D f, then

rol) = 2 35

i=1

exterior angle of f atv,| .

Proof. Let 7,(v;) = 1 if the line through p and f(»;) is a local support line
to f at v; , and let 7,(v;) = O otherwise. If p does not lie on any line connecting
the images of two distinct vertices, then 7,(f) = D>.™, 7,(v;). Since there are
only finitely many lines determined in this way, this formula for =,(f) will hold
for all but a finite number of points p on any circle C. Therefore

ol = g5 [, D dse

1 m
B l(C) peC ;; Tn(v‘) dsc
— 1

=2 10 )., ™0 dse -

i=1
The expression 1/1(C) [,.¢c 75(v:) ds¢ just indicates the proportion of the

circumference of C covered by support lines to the angle of f at v; , and, by a
theorem of Euclid, this number is 1/27-2 |exterior angle of f at v;].

This completes the proof of the theorem.
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Remark. We have in fact shown that 7¢(f), for C D f, coincides with the
classically defined total absolute curvature 7(f) of a polygon (up to a normaliza-
tion constant 1/2x), as given by Fary [2] and Milnor [3]. The total curvature
7(f) for any continuous curve may be defined by

) = %,ﬁ (& o f) den

where dw, is the element of arc on the unit circle, £ o f : S' — E' is the map
x — £-f(x) given by the ordinary inner product of f(x) with the vector &, and
7( of) = number of local maxima or minima of £ o f on 8*. For a differentiable
immersion f with continuously defined curvature k(s), the value =(f) coincides
with 1/27 [¢ |k(s)| ds, which explains the name ‘“total absolute curvature.”

A very complete treatment of the concept of total absolute curvature for
continuous curves is given by Van Rooij [4], who shows explicitly that for any f
which is not constant on any interval, we have lim,_.. r(f,) — 7(f), where {f,}
is any sequence of polygons inscribed in f with mesh approaching zero. In
precisely the same way we may show that lim,.. 7¢(f.) — 7¢({f), and since
1¢(fa) = 7(f.) for planar polygons with all vertex images distinct, we may
approximate f by a sequence of such polygons and we obtain the general result
that 7¢(f) = 7(f) for plane curves. The convergence results are also true for
curves in E® (or in E"), so we shall present proofs of subsequent theorems just
for polygons, and the general results follow immediately.

Remark. In a sense the classical total absolute curvature (f) may be con-
sidered as the total central curvature 7¢(f) with respect to an “infinitely large
circle,” so that the family of support lines through a point p of C corresponds
to local support lines perpendicular to a given direction .

If C D f, we may view the function 7,(f) as 7(r, o f) where m, : E* — {T,} — E>
is the central projection from p to the line E} through the center of C' parallel
to the tangent line T, to C at p, since we get a maximum or minimum of the
projection function precisely whenever there is a local support line to f through p.
It is this notion that we use in generalizing Theorem 1 to curves in higher-
dimensional Euclidean spaces.

We may also view 7,(f) as 7(6, o f) where 6, : E* — {p} — S" is the angular
coordinate in a polar coordinate system with center p. The singularities of the
radial coordinate function p, : E* — E' are studied in [1].

2. Total central curvature of curves in E°>. Let f: ' — E® be a continuous
1 — 1 map of the circle S* and let S be a sphere such that S D f (i.e. such that f
lies in the closed ball bounded by the sphere S). Let =, : E* — {T,} — EZ be
the central projection (where T, is the tangent plane to S at p and E? is the plane
parallel to T, through the center of S), so for any z not in T, , m,(x) is defined
by the condition that m,(z) is in E2 and =,(z) is collinear with z and p. (Note
that =, restricted to S — {p} gives stereographic projection.)



284 THOMAS F. BANCHOFF

For each p on S we obtain a number r(w, o f) which we average to obtain
the total central curvature of f with respect to S,

rsf) = T,%-S—)f rw, o f) Vs ,

where dV g is the element of area of S so that V(S) = [,.s dVs .
THEOREM 2. Let f be a polygon embedded in E° and let S D f. Then 5(f) =1(f).
Proof.

1
() = V(g)- » 7(mr, o f) dVg

1 o o= 1
=7 ). 2 ’_; 5. ext. angle of m, o fat m, ov; | dVg
m 1 1
=2 .;: (V(S) o 2n ext. angle of m, o f at 7, o v, st) .

It remains to show that the expression in parenthesis represents 1/2r |ext.
angle of f at v,], and we separate this off as the basic averaging lemma, which
will also be used in the higher dimensional case.

Before proceeding to the proof of this lemma, we shall discuss the classical
analogue (used by Fary [2] in his proof of the knot theorem) and establish
some notation for the central curvature case.

For a vector £ ¢ %, let P; : E* — Ej denote (orthogonal) projection into the
plane orthogonal to &, so that an angle Zuvw of a polygon is projected into an
angle ZP;(u)P;(v)P;(w) whenever ¢ is not parallel to either of the infinite
rays W or . (Here Zwuwvw stands for the measure of the non-obtuse angle
determined by the ordered triple of vertices.) Set

AL wow) = 21? fe £ PP () don ,

the average value of the projections of the angle into all planes through the
origin. Since the integral A (Zwvw) remains unchanged under all rigid motions
of E°, the value A(Zwww) depends only on the magnitude uvw. Moreover the
function is additive in the following sense—if the vertex w’ lies in a convex
plane region bounded by the rays w and pw, then Zuww' + Zwvw = Zuvw
and for every ¢ not parallel to ", o' or ﬁ), we have Z P (u)P:0)P,(w’") +
LP;(w)P;(w)Pe(w) = ZLPe(w)P;(0)P:(w), so A(Lwww') + A(Lw'ww) =
A(ZLuvw). Also if Zuww is a straight angle, then so is Z Py (u)P:(v)P;(w) for
almost all £, so A(Zuvw) = Zwuww in this case. By additivity, 24 (Lwww') =
A(Lww') + A(Lw'vw) = A(Lww) = Luvw = 2Luvw’ if Luvw’' = w/2,
and similarly A(Zwww) = Zuvw if Zuwvw = 7/2" for any integer r. By addi-
tivity, and the continuity of the function 4, we have A(Zwww) = Zuvw for
every angle Zwuvw.
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Note that we cannot use such direct argumentation in the case of central
projection, since it is not clear a priors that the average value depends only on
the magnitude of the angle. Set

As( £ ww) = Tf?ls_) f £ mmm@) aVs .

This integral is invariant under rigid motions which keep the sphere fixed, but
the group of such motions is not transitive on the sets of angles contained within
S. The fact that As(Zuvw) = Zwuwvw will follow however from the basic lemma.

AvERAGING LEMMA. Let u, v, and w be distinct points contained within a
sphere S and let C be a circle on S parallel to a plane containing u, v, and w. Let

1
Ao L ww) = 375 f L m@mOm) dso .
Then Ac(Luvw) = Luvw.

Proof. 'The proof proceeds in several steps, guided by an outline of the proof
of the theorem of Euclid mentioned in Theorem 1.

The lemma is immediate if Zuvw = 0 or w, so we assume that «, v, and w
are not collinear.

a) If v lies on a diameter of S orthogonal to the plane of %, », and w, then
the value of A¢(Zuvw) depends only on the magnitude of Zwuwvw, since any
two such angles of equal magnitude in the same plane are congruent by a rota-
tion of S about the diameter orthogonal to the plane. As in the classical case,
we then show that A.(ZLwww) = Zuvw.

b) If u, v, and w are on the surface of S and if the ray e passes through
the center o of the circle cut out on S by the plane of u, », and w, we consider
the reflection of S which fixes 0 and interchanges v and w to show that A ¢( £ ovw)

(D N

Fijure for b) Figure for (d)
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= A¢(ZLowv). By part a), Zuow = Ac(£Luow) so
24.(Lovw) = Ac(Lovw) + Ac(Loww) = Ac(Luow) = Luow
= Lovw + ZLowv = 2 Lovw,

80 Luvw = Lovw = As(Lovw) = c(éuvw)

¢) If , v, and w are on S and if neither pu nor yw passes through o, we may
introduce the auxiliary line 20 and deduce A¢(Zwww) = Zuvw from the cor-
responding equalities for Zwuvo and Zovw.

d) If u, v, and w are anywhere in S, extend w to cut S in u, and 7 to cut
S in u, and obtain the points w;, and w, similarly. Then A (Zuww) =
Ac(Lovwwus + Lousw,) = Ac(Lvwuz) + Ac(Lvuw,) = Lowu, + Lovuaw, =
Zwww. This concludes the proof of the averaging lemma.

Remark. If the circle C lies in the plane of %, v, and w, then this lemma reduces
to Theorem 1.

We now use this lemma to show that As(Zuvw) = Zwww, by arguing that
since the average value of £ m,(u)m,(v)m,(w) over all p in a circle C parallel to the
plane of u, v, and w is Zuwvw, then the average over the whole sphere S must
also be Zuww. Specifically, we choose a spherical coordinate system on S
such that the circle in the plane of , v, and w is given by ¢ = constant, and
let f(8, ¢, Zuvw) = Lw,(u)r,(v)T,(w) where the coordinates of p are (6, ¢).
For a circle C, given by ¢ = ¢, , we have ds¢, = r, df and

27
UCy) = 27ry 50 A, (£ ww) = 2—;_.[ 106, ¢ , £ wow) dd = £ uww
[}
by the averaging lemma. Therefore

As(Z umm) = —oe £ mOm @ Vs
V(S)

/2

27
f (6, ¢, £ uwww)r® cos ¢ d6 do

47"7' —-x/2
1 /2 1 27
== [——f (0, ¢, £ uow) do] cos ¢ do
2 —-x/2 2 0
1 /2
== £ uvw cos ¢ do
2 -7/2
= £ uww .

Returning to the final step in the proof of Theorem 2, we have

1

l
VS) J,us 2 dVsg = 5= [ext angle of f at v;|

ext angle of m, o f at m, oo,

so the theorem is proved.



TOTAL CENTRAL CURVATURE OF CURVES 287

3. Total central curvature of curves in E". For a polygon f: S' — E* con-
tained in the region bounded by a hypersphere S we may again consider central
projection , : E* — T, — E»~* and define

1
rs(f) = 7S L. m(m, 0f) dVs

where dVg is the element of volume of S so V(8) = [,.s dVs .
TrEOREM 3. 75(f) = 2 D™, 1/2x |ext. angle of f at v,].

Proof. As in the proof of Theorem 2, we use the averaging lemma to show
that A¢(Zuvw) = Zwuww for any C cut out on S by a translate of the plane
of 4, v, and w, and deduce from this that the average value of Zm,(u)w,(®)m,(w)
over all of Sis Zuvw.

To make this explicit, we may parametrize the sphere S*™! by (sin 6, ,
cos 0, sin 0, , cos 6; cos 0, sin 6 , +-- , cos 6, cos 0, -+ €os 0,_, sin 6,_, , cos 6,
oS 0z « « - cos 0,5 cos 8,-,) where the plane of u, v, and w is parallel to the plane
spanned by z,-; and z,. The element of volume is then

dw™ = (sin 6,)** (sin 6,)" -+ (sin G.-»)

and

Vs = [ do

= fo fo f; (f: (sin 6;)** « -+ (sin 6,-,) d6 _,) A0,y -+ db, do,

- f [ f 2n(sin 6" -+ (sin O,_s) dBuos - -+ dby dO; .
0 0 0
If p is given by coordinates p, 6, , 02, *+* , 0z, 0,y , Wwe set F(p, 0, , 0, +++ ,
0n—z, 0n—1,f) = 7(m, o f). Then by the averaging lemma, for a given choice of

07,86, ---,6°,, we have

2r
f F(p,ﬁ?,ﬁg,---,0?._2,0,._1,]‘)d0_1=21r'r(f).
0

Therefore

V%SS];S 7'(7"» of)dVs

1 [ x 2x
=77.?1*17(§m5f0 fo‘/; F(p, 01, 0z, 0ny)

'(Sin 01)”—2 s (Sin 0,,—2)7' -t dﬁ,,_l do,,_g o d01
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L _[...[ n 6y ...
- V(Sn-—l) /; j; 27I'T(f)(S]l'l 01)
'(Sin en_z) dO,,_g e dol = T(f) y
and the theorem is proved.

CoroLLARY 4. If f: 8' — 8° C E* and v(J) < 4 (as a curve in E*), then f
can be unknotted in S, i.e. there is a homeomorphism h of S* such that h o f maps
S* to a circle on S°.

Proof. By Theorem 3, 7(f) = 1/V(S®) [,e5: 7(m, 0 f) dVg s0 if 7(f) < 4,
then there is an open set U in S° such that r(m, o f) < 4 for all p in U. It
follows from the results of Milnor [3] that there is a homeomorphism ¢ of E3
such that g o m, o f: 8' — E2 sends S’ to a circle, and moreover such that g is
the identity outside a compact set containing the image of 7, o f. The composed
map b = 7' og om,is then a homeomorphism and % o f sends S* to the circle
' (g o m, o f(S")) (the image of a circle under inverse stereographic projection).

Remark. Although the previous results have been global in character, it is
possible to obtain a local version of Theorem 3 by using the global result.
Specificially, if f: 8' — E" has image contained in the region bounded by a
hypersphere S and if f has continuously defined curvature |f”/(z)| in a neighbor-
hood of z, e S*, then |f"(x,)] equals the average of the curvatures |(m, o )"’ (z))]
of the curves m, of. For ¢ > 01is any sufficiently small number, the map f: [2,—e¢,
z, + ¢] — E" has continuous curvature on the interior and a well-defined tangent
at each endpoint. We may then define a closed piecewise differentiable curve
f. by going along f from f(z, — €) to f(x, + €) and then back along f to f(z, — ¢).
By Theorem 3,

rolf) = 1) = 14 5= [ il s,

ZTo—€

where the constant 1 corresponds to the two zero angles at the singular points
of f., and

w1 = gy | 70D Vs
1+ ng) fms (51; f_ Irs © )6 ds) avs

A [ (ks [ e proran) .

It

Il

Since this is correct for any e > 0, it follows that

1@l = gy | 1m0 D"l avis
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A similar local result has been obtained by other methods for smooth curves
on the 2-sphere by P. Dombrowski (unpublished).
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