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GLOBAL GEOMETRY OF POLYGONS. I:

THE THEOREM OF FABRICIUS-BJERRE

THOMAS F.BANCHOFF

ABSTRACT.     Deformation methods provide a direct proof of a polygonal

analogue of a theorem proved by Fabricius-Bjerre and by Halpern relating

the numbers of crossings, pairs of inflections, and lines of double tangency

for smooth closed plane curves.

Let   X: \m, b] —> F    describe a closed curve with a finite number  C of

crossings, a finite number  F  of inflection points   (or inflection intervals),

and a finite number of double support lines (i.e. lines containing two points

of the curve each with a neighborhood lying to one side of the line,  I    being

the number for which the neighborhoods lie on opposite sides of the line and

II   being the number with both neighborhoods to the same side).   For a con-

vex curve all these numbers are zero.   Examination of a few examples leads

to the conjecture that  C + ViF + I   - II   = 0,  and in [2] Halpern announced a

proof of this result for smooth curves satisfying certain regularity conditions.

The proof described there uses techniques of critical points for vector fields

and winding numbers and requires that the curve be of differentiability class

C .   The result was discovered by Fabricius-Bjerre [3], but again the proof

made use of regularity slightly stronger than   C .

In this note we present an elementary proof of this result for polygonal

curves in the plane.   As in [2], this result generalizes to the case of mappings

of an arbitrary 1-manifold into the plane (Theorem 1 ).

The techniques developed in this paper will be used in subsequent inves-

tigations of polygonal analogues of a number of other global theorems on

plane and space curves.   There is also a sense in which these techniques

fit in with the polyhedral analogue of catastrophe theory as developed in [l].

Definition.   By a polygon we mean a mapping  X: [a, b] —> E    of a closed

interval into the Euclidean plane such that for some finite subdivision,  a =

¿0 < Zj < • • • < t    = b,  the mapping  X restricted to the interval  t. < í < £.+ .
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is linear, so in this interval

í., , - /                   t - t.

Xit)=A±l-xit.) +-L_X(i.xl).
',,,-i,      '      t.,,-t_. !+  1'

! +  1 i 'i +  1

The points X(z\) are abbreviated X. and are called the vertices of the poly-

gon.    If Xn = X   ,  then  X  is a closed m-gon and in this case we consider

all indices to be reduced modulo m.

A polygon is said to be general if the vertices   iX.|z' = 0, • • • , wz — 1} are

in general position, so no three vertices are collinear.

For a general polygon X,  we may make precise the four indices referred

to in the introduction: Let  C(X)  be the number of crossings, i.e. pairs of

indices  (i, j)  with 0 < i < j < m — 1   such that the edge  [X., X.+ .] meets th

edge  [X ., X.+ .].   Let  F(X) be the number of inflection edges, i.e. edges

[X., X+.]  such that  X.+ .   lies on one side of the line containing the edge

and  X.+ 7   lies on the other.   By a double support line we mean a pair of in-

dices {i, j) with 0 < i < f < m - 1   such that  X .   ,   and X .+.  lie on the same

side of the line through X. and X. and so do X.   ,  and X.,,.   Let IIX) denote
°^      i j 7—1 ; + l t

the number of double support lines with X.       and X       on opposite sides of the

line through X. and X. and let II,(X) denote the number with X.       and X.,, on
0        i ; t i-1 7 + 1

the same side.   We define the function

e

Mx) = c(x) + y2 Fix) + iix) - n,(x)

the main result:

Theorem 1.   // X  is general, then H{X) = 0

r —    ~v ■-

We may now state the main result:

This theorem is clearly true for a convex polygon, for which all indices

are zero.   We shall prove the theorem by deforming the given polygon  X in a

certain way into a convex m-gon and by showing that the combination of in-

dices remains unchanged throughout the deformation.

Definition.   By an elementary deformation of a general polygon  X deter-

mined by a cycle of vertices   iX.|z' = 0, • • • , m - 1 j we mean a   1-parameter

family  Xiu) = \X i.u)\i = 0, • • ■ , m - 1 j,  u,<u < «t + ],  of polygons such that

for some index  / and some point  X ., X (u) = X . for all  u  if  i' f: j and

x.iu),h^-%.+ (JL:lt\x'..
\uk+i-uk) ' \uk+i-ukj '

This elementary deformation is said to be in general position if  X(u)  is gene-

ral for all but a finite number of the parameter values  u,<u< "¿ + 1,  and if

for these exceptional values, there is exactly one triple of collinear vertices.

Lemma 1.   For almost all choices of the vertex X. the elementary defor-
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motion described above is in general position.

Proof.   Consider the finitely many lines containing distinct vertex pairs

of the general polygon  X.   The only way that the elementary deformation can

fail to be in general position is if a line containing  X . and  X. contains a

point of intersection of two lines from this collection, so we get an elemen-

tary deformation in general position by choosing  X. in the complement of the

finite set of lines from  X . to these intersection points.

By a piecewise elementary deformation of a general polygon  X we mean

a 1-parameter family  X(zz)  of polygons such that for some finite subdivision

uQ < u. < • • • < u    of the parameter space,   X(zz.) = X and each family  X(u),

u,<u< u,+l,  is an elementary deformation.   Such a deformation is said to

be in general position if each  X(zz.)  is general and if each elementary defor-

mation is in general position.

Lemma 2.   // X  is general then there is a piecewise elementary defor-

mation X(zz),   u    <u <u  , in general position such that X(u ) is a convex

m-gon.

Proof.   Begin with a regular  772-gon   Y and proceed inductively to move

the vertices  X . of X to vertices  X . near the vertices   Y . of  Y  so that each
7 ; 7

successive elementary deformation is in general position and so that at each

stage the polygon with vertices  X^, Xj, • • • , X'., ^+1, • • • , Y   _ ,   is con-

vex.

We now need only show that for an elementary deformation in general

position, the changes   AC, AF, AL,   and - All; add up to 0   as we pass any

collineation.   This we show simply by exhibiting these differences explicitly

for the basic collineations which can occur, and by observing that for each

of these

AH = AC + M}/2)F + Ai  - All  = 0.
£ Í

We consider five different types of collineations:

(a) If no two of the three collinear vertices lie in an edge of  X,  then

none of the indices involving crossings or inflections are affected at all and

double tangency indices stay the same.

(b) If precisely two of the three vertices lie in an edge of  X but the

adjacent vertices of the third vertex are on opposite sides of the collineation

line, then if the vertex does not pass through the edge we have no change of

indices, and if it does, then one crossing edge is lost and one is gained so

the change in each index is zero.

(c) If precisely two of the three vertices lie on an edge and the adjacent

vertices of the third vertex are on the same side of the collineation line, then
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we have eight possibilities, which we list schematically, together with the

changes in the four indices, as cases 1 through 8 in the table.

(d) If the three vertices are consecutive but the polygon is not a triangle,

then we have four possibilities, cases 9 through 12 in the table.

(e) If the polygon is a triangle, then all indices are zero before and after

the deformation.

If X is a mapping of a compact 1-manifold (not necessarily connected)

into the plane, then the definition in the connected case may be extended to

yield indices   C(X),   F(X), I (X),   and II((X).   A polygonal mapping  X of a

1-manifold into the plane corresponds to a finite collection of  m.-gocxs  X ,

I = 0, •••,«— 1,  and  X  is said to be general if the collection of all vertices

of all of the polygons   X    is in general position.

BEFORE AFTER AC   ^AF Al( All,

1. 0

3.

V-

/   "\"

-Z     0

0      0       0      0

0     0      1      v

ooii

7. -1    \

7.

10.

It.

1Z.

-¿0      1       -1

0      10       1

0      0     0      0

10     0      1

-110     0
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Theorem 1 .   As before, for a general polygonal mapping of a compact

I-manifold   X, H(X) = C(X) + ^F(X) + I/X) - II/X) = 0.

Proof.   Let  Y be a nested collection of disjoint convex 77z;-gons  Y ,

/ = 0, 1, >••,« — 1,  such that each polygon   Y    is contained in the open re-

gion bounded by   Y      ,  and such that the collection of all vertices of poly-

gons in  Y is in general position.   Then  C(Y) = 0 = F(Y) = I (Y) = llfY) so

H(Y) = 0,  and the theorem follows as in the case of Theorem 1 by finding a

piecewise elementary deformation in general position from  X to be a general

polygonal mapping  X    with vertices near those of  Y.
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