inije plohe f odgovaraju time izotropnim linijama glavnih zakrivljenosti plohe F
| obratno zzotropmim linijama glavnih zakrivljenosti od f odgovaraju asimptotske
inije od F.

Kao primjer uzmimo sludaj izotropnih rotacijskih ploha =z = f(x - ) Kojima
pri Eulerovim transformacijama odgovaraju konoidi Z = F(X/Y) i obrauto.
Napose rotacijskoj kvadrici z = 2 ]/1 — xy ili 4xy + 22 = 4 odgovara konoid
Z=X|Y+Y|X ili XYZ = X?+ Y? dakle kubna pravcasta ploha sa Z-osi
kao dvostrukom ravnalicom. Izotropne linije glavnih zakrivljenosti rotacijske plohe
su njene paralele z = const. i meridijani X|Y = const., kojima na konoidu kao
asimptotskim linjjama odgovaraju izvodnice, i jedan sustav asimptotskih linija
(koji nisu pravci). Te su krivulje nulkrivulje u nulsistemima koji odgovaraju si-
metrijama na izotropnim meridijanskim ravninama.

Kod kubne pravéaste plohe te su asimptotske linije racionalne krivulje 4. reda
s infleksijskim to¢kama u kuspidalnim totkama plohe. Njene izotropne linije glav-
nih zakrivljenosti su zzotropne krusnice, koje leze u dva sveska ravnina, Cije su
osi torzalni pravci plohe. Kako kvadrika ima dva sustava pravastih izvodnica,
to je kubna pravéasta ploha omotaljka dvaju sustava izorropnih kugala, Cije su ka-
rakteristike - izotropne kruZnice i predstavljaju izotropne linije glavnih zakrlvlje—
nosti kubne pravcaste plohe.

Primljeno u I1. razredu

4. 4. 1981,
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FRENET FRAMES AND THEOREMS OF JACOBI AND MILNOR FOR
SPACE POLYGONS (GLOBAL GEOMETRY OF POLYGONS. III)

Thomas F. Banchoff, Providence, USA

In this paper we shall develop polygonal analogues of the tangent, normal,
and binormal indicatrix curves for smooth space curves and we shall establish
analogues of theorems involving the lengths of these curves and the areas they
enclose. In particular, we shall prove an analogue of Facobi’s theorem which says
that if the normal indicatrix of a space curve is simple, then it divides the sphere
into two regions of equal area, and weé prove a polygonal analogue of a theorem
of Milnor [6] involving total absolute torsion of closed space curves. We finish
by constructing analogues of Frener Frames and tangent developables for space
polygons.

1. Construction of the Indicatrix Polygons

For a smooth curve X (2), a <t <b with X' (t) X X" (¥) + 0 for every i,
X' @
X O]

of the tangent line at each point and a binormal indicatrix B (£) = |

describing the direction

X' x X"
1 X' () X X" (0|

we may define a tangent indicarrix curve T (f) =

.describing the position of the osculating plane at each point. We obtaln a normal

indicatrix by defining N (t) = B (r) X T (&).

We now consider a space polygon X determined by a cycle of vertices
Xo» X150 Xpy_1)sso Xisacurve X(@), a=1, <ty < ... <lpo1 <tw =25
with X; = X (¢,) and X (¢) linear in any. subinterval ; < z < tivy. We will assume
that the space polygon X is gemeral, i. e. that no four consecutive vertices X;_,
Xy X115 Xy are coplanar. (For a closed polygon with X, = X, we consider
all subscripts to be reduced modulo #). This condition allows us to define the

X, — X
unit tangent vector T; = "Ti—-Xi—lw at each edge of X', where the polygon
i i~1
has a well-defined tangent line and a unit binormal vector B; = T X Tivy at
| Ty X Ty Il

every vertex, where the polygon has a well-defined osculating plane.

The condition that X is a general space polygon guarantees that the spherical
polygon T = (T, Ty, ..., Tpy—1) is a general spherical polygon, so that T;,, will
not lie on a great circle are from T; through T;_;. This polygon is the tangent indi-
catrix polygon of the curve X. Similarly the spherical polygon B = (By, By, ...

B,,.1) is a general polygon, the binormal indicatrix of X.
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: We now may define a normal indicatrix polygon N with 2m vertices N,; =
=Bi X Ti, N2i+1 =Bi+1 X Ti’ for ¢ = 0, 1,...,m — 1.

Fig. 1.

* Remark. The definition used here is‘related to the one in- {7], but there are

some differences. The reader will find many references to related articles in the

blbhography of [7]
To illustrate these definitions and justify them to some extent, We Now prove
some polygonal analogues of two classical theorems for smooth curves.

: 2 Jacobi’s Theorem for Polygons )
A general spherical polygon P determined by a cycle of vertices (Py, Py, ...
,

P,_,) is said to be simple if no two.distinct geodesic arcs P, P, ; and P; P,
intersect. A simple spherical polygon P separates the unit sphere into two regions
R; and R,, with R; lying to the left of the oriented polygon P. The Gauss-Bonnet
Theorem for spherical regions states that & (R,) = 2z — X'(P), where X (P)
denotes the sum of the exterior angles of P. (The proof of this result may be e-
stablished in an elementary way by 1nduct10n on the number of edges of the po-
lygon P.)

Facobi's theorem states that if the normal indicatrix is a simple curve, then
it bounds two regions on the sphere, each with area 27z. See for example [8],p.
407. To establish the polygonal analogue of this theorem, we need only show that
the exterior angle sum for the polygon N is zero. :

To prove this, we compute the exterior angles at N,; and Ny, .4.- The tangent
vectors to the polygon N at Ny, are T;and eB;, and at N, ; the tangents are £B; ., and
T;, .where ¢ = 4 1. Thus' the exterior angles are both right angles and the al-
gebraic signs -are opposite. Specifically, (T; X €B;) + Ny; = (T; X &eB;) - (B X
X T) = —¢ and (8B1+1 X Ti) N2i+1 = (EBl+1 X Ti) (Bl+1 X T,) =g It
follows that the sum of the exterior angles is zero and that the normal indicatrix
polygon divides the sphere into regions of equal area. (Figure 1)

3. Total Curvature and Total Torsion for Polygons' ,

The total. curwture of a space ‘curve' X (2, a<t<bis the length of the tan-
gent mdlcatrlx, f [T (z) | de = f x@) [ X' (@) || dt, where % (¢) | X' @)=
= X' ) X X" (t) [I- For a general polygon, the length of the tangent indicatrix
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is the sum of the exterior angles ©,, where @, is the angle from T;_; to T3, 0 <
<0, < m.
The total absolute torszon of a space curve is the Iength of the b1norma1 indi-

catrix j | B (@) dr = j l7(2) |] X' (@] de. For a general polygon, the length

of the b1n0rma1 1nd1catrrx is the sum of the absolute values of the angles ¢, where
@; is the angle from B, to B, ., — @ < ¢; < & The angle ¢, is the dihedral angle
between the »osculating planes« at the vertices X; and XHI

In [5], Milnor established the 1nequahty % (X) = .2 0, > 2 for any closed

i=0 -
polygon, with equality only if the polygon is a convex (planar) polygon, and » (X) >
> 4z if X is a knotted polygon. In [4], Fdry showed that (X) is the average of
% (PsL (X)), where Pel : E3 — E2 (£L) is the orthogonal projection to the plane
perpendicular to the unit vector &. In this section we prove a polyhedral analogue
of a result of Milnor ([6], p. 290)

THEOREM. The total torsion 7 (X) of a curve is m times the average num-~
ber of inflections of the curve PgL (X) as & varies over the unit sphere.

Fig. 2.

Proof. The edge P:t (X, X;,,) will be an inflection edge if and only if the .
projection vector £ lies in the sector of the sphere centered at %(Xi + X, cut

out by the half planes at X; X, ,, containing X;_ ; and X;,, respectively. But
the measure of this dihedral angle is | ¢; |, the absolute value of the angle between
the binormal vectors of the two half-planes at X, Xit1 (Figures 2 and 3).

Remark. The concept of inflection edge of a polygon is a key idea in the Theo-
rem of Fabricius-Bjerre [1] and in the theory of Self-Linking, as in [2].

4. Frenet Frame Polygons for Space Polygons

For a smooth space curve X (), a < t < b, with X' (¢) x X" (t) + 0 at each
point, we define an orthonormal frame Fy (¢) = (T (r), N (z), B(2)) called the
Frenet frame: This gives a curve Fy (2), a < t < b, in SO(3), the space of ortho-
normal 3-frames with determinant -1, and the properties of this Frenet frame
curve describe the geometry of the original curve up to a translation, i. e. if Fy (¢) =
= Fy (z) for all , then Y (t) = X () + C for some constant vector C.
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Fig. 4.

We may now define a polygonal analogué for the Frenet frame curve by de-
fining a polygon F (Figure 4) with 2m vertices in the space or orthonormal frames
with determinant 1, defined by

Fy; = (T}, Nai By,
Faip1 = (Tis Naiv1> Bis)s (=01,..,m—1).

In the smooth case we often deal with the pair consisting of the point on the
curve and the frame at that point, (X (¢), Fx (2)), (giving a curve in E* X SO (3)).
The corresponding geometric object in the polygonal case is a 4m-gon defined by

G4i = (Xi> in)
Gaizr = (Xi’ th)
,G4i+2 = (Xia in+1)

G4L+3 = (Xi+1> F21+1)
where X, = %(Xi + Xou )

This polygon G, with 4m vertices, may be described by a parafneter u with
"0 < u<4m such that G(j) =G, for j = 0,1,...,4m — 1. We haVe;

G ) = (X )y T W)y N (w), B@) = (u — 4) X, + (4i + 1 — uw) X, Fo)),
M<u<M+1
| (Xi, T,, cos ((u — (4 + 1) —“2—) N + sin ((u ~ @i 1) %) B,
di+1l<u<di+2
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— sin ((4z' F2—) g) N, -+ cos ((4i 2 — ) %) B)

(u— G +2) X+ @ +3—w) Xiprr Fappr)y 4+2<u<di+3
(X cos (u — (4 + s»i;) T, + sin ((u — (4 + 3)) »’g—) Naisis
$+3<u<d+4

—sin ((4i,+ 4— u) %) T, + cos ((4i T A— ) %) Noioss Bisy)

As in the smooth case, any Frener frame curve F (£), a < t < b with weights
(¢) at each vertex corresponds to a unique curve X7 () in E? such that
L(X% , X" = w (), and the Frener frame field for XF is given by F (7). In ge-
neral such a curve X (¢) will not be closed, and the closure condition is precisely

“that Z'w (¢;) T, = 0.

5. Tangent Developables and Related Surfaces

In the case of a smooth curve X (£), the tangent developable is the surface
Y (¢, 0) = X (&) + 9T (¢). This surface is regular for all values v = 0, so the
surface Y (¢, v), v > 0 is a regular surface called the forward tangent developable,
which fits together with the backward tangent developable (with v < 0) along the
curve X (¢) which is called the edge of regression.

For a general polygon X, we may again define Y (v, v) = X () + 0T (w)
as defined in the p evious section. The forward tangent developable may then
be described as a union of infinite planar wedges spanned by pairs of rays from X,
in the directions T; and T;,, for7=0,1,...,m — 1.

This union of planar wedges may be cut along a ray X, in the direction of
To and then developed into the plane of the first wedge inductively, one wedge
at a time, to get a possible multiple covering of portions of the plane. The image
of X under this development will be a locally convex polygon in the sense that .
the line through any edge bounds a half plane containing both adjacent edges.

‘The total curvature of the developed curve, given by the sum of angles §;, will

be preserved under the deformation since these are precisely the angles between
the rays of the wedges.

In a similar way we may define the backward tangent developable for the ge-
neral polygon X, and the forward and backward developables then fit together
along X to form the tangent developable surface of X, When the full tangent sur-
face is developed into the plane, the image of X appears as the fold curve.

Similarly we may define the normal surface and binormal surface of a general
polygon by Yy (#,v) = X (u) + oN () and Yy (4, 9) = X (u) 4 vB (u).

We conclude this paper by giving the polygonal analogue of the classifica-
tion of the forms of the tangential developable to a smooth space curve at:points

105

—



case, at a point of X (z) where % (¢) # 0 and 7 (¢) % 0, the local form of the tan-
gential developable is given by (¢, v) — (¢, 92, ©*). In particular this is locally 1—1
with a cuspidal edge. In the case where x (¢) == 0 but 7 (¢,) = 0 and 7’ (¢,) + 0,
the local form is given by (s, v) — (¢, 9%, t03), given implicitly by 2* = 33 x2.
This surface has a singularity at 7, and the two sheets of the tangential develo-
pable intersect to produce a double curve -emanating from the point. Topolo-
gically the singularity is a Whimey »pinch pointé or »umbrella points, so that a
spherlcal nelghborhood of the point in 3-space meet the tangential developable
in a set which is topologically a cone over a figure eight:

The same thing happens in, the polygonal case, i. e. there are two possible
forms for the polyhedral tangential developable in the neighborhood of a vertex
X of a general polygon. Since no four consecutive vertices are coplanar, the vertices
X;_; and X;,, either lie on different sides of the plane through X;_,, X; and
X, 1 or they lic on the same side. In the first case (Figure 5), the torsion angles
@i-1 and @; have the same algebraic sign and in the second they are different.It
is' in the sense that we say that the second 51tuat10n represents a torszon sign change
(Flgure 6).

If we position the vertices so that X; ;, X;, and X, lie in the horizontal
plane, then two of the infinite wedges will lie in the plane. If X, , is above this
" plane the second wedge at X; X, ., lies above this plane. In the case where X;_,
lies below the plane, the second wedge lies below the plane and the entire confi-
guration is embedded in a neighborhood of X;. If X;_, and X;, , both lie on the
same side of the plane, the two wedges also lie on that same side of the plane and

the configuration has a double line beginning at X; where these two wedges inter- -

sect. Thus the two possible forms in the case of a general space polygon correspond
prec1se1y to the two cases for a general smooth space curve. ,

Remark. The developable surfaces associated with an embedded polygon
figure in an essential way in the analysis of self-linking of space polygons, espe-
cially in [2], p. 1184.

Remark. This paper is labelled »Global Geérnetry of Polygons IIl« since the
paper »Self- Lmkmg Numbers of Space Polygons« [2] should be considered as
the second paper in this series.
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