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§0. Introduction

0.1, Let A be a subspace of a path connected space B. Let * ¢ B
be a base point and denote by nl(B,A,*) the set of homotopy classes of

paths ¢ : [0,1] - B with c(l) = *, c(0) ¢ A, Then w,(B,*) acts on

l(
ﬂl(B,A,*) on the right with orbit space nO(A). Thus the problem of cal-

culating nO(A) may be divided into two stages:

I Calculate nl(B,A,*)

II Calculate the action of nl(B,*) on nl(B,A,*)

0.2, 1If M@, N are differentiable manifolds, the space Imm(M,N) of
immersions of M in N 1is a subspace of the space NM of all maps M to N

(with the compact open topology). For fixed f ¢ NM, let N?f] denote its path

component. Applying 0.1 we have that nO(N?f] N Imm(M,N)) (the set of regular
homotopy classes of immersions homotopic to £, which we will denote by
[Mp— N][f]) is the orbit space of ﬂl(NM,Imm,f) (the set of regular homotopy

classes of immersions with a homotopy to f given, denoted by [M4—— N]f)

under an action of nl(NM,f).

This work is an investigation into the second stage of the classification
procedure. We were motivated to look closer at step two as we had observed
in the literature several misstated results due to a failure to consider this

step.

In §1 we recall the notion of affine structure and affine action.
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In many situations, the sets encountered come equipped with an affine structure
and the group actions are affine. This additional algebraic structure

facilitates the expression of the final results.

In §2 we discuss general properties of = actions in lifting problems.

1
Here we give the general homotopy theoretic framework which is then applied

in §3 to the lifting problem associated to the classification of mono-
morphisms of vector bundles., 1In §4 we give examples of trivial and non—-trivial

affine actions of immersion theory. In the appendix we give some calculations

of nl(YX,f).

§1., Affine Structures

Definition 1,.1. A set X 1s said to be affine (over a group G)

if there is a map p:X x X - G satisfying
a) LL(x:Y) * H(Y’Z) = M(xsz)

b) for all x € X, u(x,*) : X > G is a bijection

Remark 1.1.1. p determines (and is determined by) a simply transitive action

r : Xx G-+ X by the equation r(x,u(x,y)) = y.
Definition 1,2. An affine map is a pair (f,f) making the diagram

"

XXX —ma—m—+r G
f x f l f commute,

X' % X"——"? G'

Definition 1,3, The group of affine transformations of X (over G,

w.r.t, p) will be denoted by Aut(X,G,u) (or just Aut(X)).

Remark 1,3.1. There is a split exact sequence

1+6-> Aut(X,G,u)-Esi Aut(G) - 1, where res : Aut(X) - Aut(G) 1is given by
(£,f) > £. The action of G as automorphisms (on the left) of X 1s called

translation,
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§2. " actions in lifting problems

2.1, "y actions on fibers

E
Given a (Serre) fibration + with B path connected and fiber F, one
B

has a right action of nl(B) on nO(F) given by taking the end point of

lifts of paths. The orbit space of this operation is nO(E).

The above situation is equivalent to that of 0.1, since if the inclusion
E
A € B is replaced by a fibration + then nl(B,A) o nO(F) and this
B

bijection is compatible with the action of nl(B).

2.1.1. Naturality

If E' - E is a pullback (in the homotopy category)
¥ ¥
B' - B

then the action of nl(B') factors through nl(B).

2.2. Maps into fibrations

E

Let + be a (Serre) fibration and X a complex. (These assumptions
B

will be made throughout, although this is more restrictive than necessary).
EX

The map p+ is a Serre fibration. For f ¢ BX, the fiber T

BX

£ over f

(possibly empty) is the space of lifts over f. By 2.1 nl(BX,f) acts on
no(Ff) with orbit space ﬂo(p_lB?f]) (denoted respectively by [X,E]f and
[X,E][f].) Thus the homotopy classification of liftings and of liftings

"up to homotopy" differ by an action of =

1

2.,2.1., Naturality

If E' - E is a pullback, so is ARSI so, by 2.1.1, the action
¥ ¥ ¥ ¥
B' &3 p'¥ ., 8%

of nl(B'X,f) factors through nl(BX, gof).
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2.3. Two stage lifting problems

E B B
Suppose + and + are fibrations. Let T +)C BX denote the space of
B X X
sections.
E X
The diagram Y|CE is a pullback.

Lole

B
r<+ c 8%

B B
For f €T} ¢+ denote by I+ the path component of f. By 2.1
: X X/<f>

B
"l(r<; , f) acts on nO(Ff) ( = [X,E]f, see 2.2) with orbit space
~1

B

no(p ¥ ) (denoted by [X,E] 3. Thus classification of liftings of a
X/<f> <t

two stage fibration involves calculating an action of .
B X

Remark. By 2.1.1, the action of nl(F +]) factors through nl(B ) so little
X

generality iu lost by considering only the situation of 2.2.

2.4. Affine Structures

Proposition 2.4.1.

[ kS
Let + be a local coefficient system with fiber G and let + be a
B B

covering space with fiber F. Suppose we are given a fiberwise action
~ ~ T . s s +
B x G>B such that for x € F, r(x,+) : G > F 1is a bijection, i.e., so that

F 1is affine over G. Then the action of nl(B) on F 1is affine.

Proof: Let a € nl(B) and let fa : F>F, g, * G - G be the maps given

by path lifting. Then 8, ~ Ea € Aut(G).

Example 2.4.2.

E T
Suppose + , + are fibrations with fibers Fb,gb and suppose that the
B B

Qb are groups (H-spaces) and that we are given a fiberwise (H-space) action

Ex T~E such that for x € F r(x,+) : & > F 1isa (homotopy) equivalence.
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Then no(ﬁb) is a local coefficient system over B acting on the covering

nO(Fb), so 2.4.1. applies.

Example 2.4.3.

E
Let + be a fibration with fiber F. Let (SX,%*) be a reduced suspension.
B
* *
Then the product (B,*)(SX’ ) x (F,*)(SX’ ) acts fiberwise on the fibration
(SX, %) . . .
(E,*) as in 2.4.2. We get that [(SX,%*), (E,*)]f is affine

¥
(B’*)(SX,*)
. . (SX, %)
over the group [(SX,*), (F,%)]. Moreover the affine action of nl((B,*) )

is via translations (since path lifting in products is trivial, see proof of

2.4.1).

Example 2.4.4.

Let E , T be as in 2.4.2.
¥ ¥
B B
X X . -1 .
Then E T are also as in 2.4.2 (except that p (f) may possibly be
P ¥ ¥
BX BX

empty). Applying 2.4.1 and 2.4.2 we get that [X,E]f is affine over [X,T]f

and the action of n](BX,f) is affine.

2.5. Affine structures for lifting problems in the stable range

2.5.1. Notatiomr. For spaces we have the functor Z, the unreduced

suspension with distinguished points S and N, the south and north poles.
For spaces with a base point, *, we have the functor {,, loops at *, and P,

paths ending at *. For spaces with two base points * and *.,, we have the

0 1
functor P*o’*l of paths beginning at *0 and ending at *l. R, acts on P,
from the right. Q*l acts on P*o’*l from the right and for ¢ ¢ P*o’*l x),

r(c,+) : Ry x) - P, (X) 1is a homotopy equivalence.
1 ¢’
E

If + 1is a fibration (with section s, or sections so,sl) then
B
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ZEB,QSEB, PSEB, Pso’leB denote the fiberwise application of the functors

Ze S, Py Py o
0’1
Theorem 2.5.2. (Becker [Be]).

E
Let + be a fibration with n-1 connected fiber F. Let X be a 2n-1
B
coconnected complex and f : X - B a map. Then [X,E]f is affine. Moreover,

the action of nl(BX,f) on [X,E]f is affine.

Lemma 2.5.3. For X n-1 connected, the inclusion X —» PS ZX 1is 2n-1

N
connected.
E—+ E'
Lemma 2.5.4. Let + 1q ¥ be a map of fibrations such that the map of
B= B

fibers F -+ F' is m connected. Then if X 1is m coconnected,

[X,E]f - [X’E']f is 1«1 and onto.

E

Proof of 2.5.2. By 2.5.3 and 2.5.4 we may replace + by P E,. Now apply

2.4.4 fib i .
to the fibrations PS,N z EB’ QN Z EB

¥ ¥

B B

2.6. Affine structures for lifting problems with fiber an Eilenberg MacLane space

Theorem 2.6.1.

E
Let + be a fibration with fiber F a K(G,n), n> 1. Then the set
B
[X,E]f has an affine structure y with group Hn(X;Ef) (where Gf is the

local coefficient system on X induced by f from the local coefficient system

nn(Fb)). The action of nl(BX,f) on [X,E]f is affine.

Moreover let ¥: B - K(nl(B),l) = K be a map-inducing the isomorphism

m(B) = m (K). Then the composite nl(BX,f) > Aut([X,E],, Hn(X,?;'f),p.) > Aut (0" (X,80))

coincides with the composite

X X ef 5.1.3 ~ N

7, (BT, £) + w (K, ¥f) —— Autf G \»> Aut(H (X,G.)).
1 1 +f f

X
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Proof: The affine structure is classical obstruction theory. Let ¢ denote
an operation of w on G (or a local coefficient system over K = K(w,l).
Let K denote the universal cover), Let Z be a pointed K(G,n+l) with
based m action inducing T on nn(Z) = G. Set L(E,n+l) =K X Z,

a K(G,n+l) fibration over K = K(w,1) with section u and projection p,
Consider E = PuL(E,n+l)K (see 2.5.1), The map E , given by

~+
L(G,n+l)

evaluating a path at its origin, is the universal (see [Ba], page 298)

K(G,n) fibration. (The fiber over x € Z C L(E,n+l) is Px %Zs @ K(G,n).)
3

By naturality, it will be enough to prove 2.6.1 in the universal case.

Note that the fibers over u(K) are H-spaces (the fiber over * ¢ Z C L(E,n+l)

* * %
is ®Z) and u'E = szuL(E,n+1)K. The fibrations E and p u E
+ +
L{&,nt+1) L(C,n+1)

. . , * % _ ~
satisfy 2.4.4. So [X,E]; 1is affine over [X,p u E]f = [X,QuL(G,n+l)K]pof.
This latter is isomorphic to Hn(X,Ef) as groups. By 2.4.2 and 2.1.1, the
action of nl(BX,f) is affine. Moreover, by the proof of 2.4.1, the map
nl(L(a;n+l)X,f) - Aut(Hn(X,a})) is given by path lifting in the fibration
(QuL(E,n+l)K)X (more precisely, by 2.4.2, by path lifting in the associated

¥
KX
. X . . n
local coefficient system over K with fiber [X,szuL(E,n+l)K]pof =} (X,Ef).)

This is easily seen to be given hy the coefficient automorphism.

Corollary 2.6.2.

<]

Let X have dimension n and let + be a fibration with n~1 connected

=

fiber F. Then [X,E]f is affine over H = #7(X, ni(p)). The map

nl(BX,f) -+ Aut H factors through Aut(ni(F)).

E E
Proof: Let +" be the first stage of a Postnikov tower for ¢ with fiber
B B

K(ﬂn(F),n). Then by 2.5.4 [X,E]f -+ [X’En]f is a bijection. Apply 2.6.1 to

&« =
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Proposition 2.6,3.

E
Let X = Sn, the n-sphere, and let + be a fibration with simply connected
B
fiber F. Then [X,E]f has an affine structure with group nn(F). The

n
composite nl(BS ) - Aut((nn(F)) factors through nl(B). Furthermore, the

n
cf 5.3 S . i
map nn+l(B)<———» ker(nl(B ,£) - nl(B)) -+ translation group of [X,E]f = nn(F),

is the boundary homomorphism.

Proof: Let - E —sr Ek_l——+ be a Postnikov decomposition for E where
¥

pkﬁ\nf/ B

E
lk has fiber an Eilenberg MacLane Space, K(nk(F),k). The fibers of
Ep1
ESrl
1 are connected and simply connected for k < n-1, hence by induction
n
Fe1
s" n ~
En—l,f = {? : 5 - En_l,pn_lof = f} 1is connected and simply connected and thus
s” n
En—l,[f] = {g: 8 - E 15, 108 € [f]} 1is connected and
" . " ~ oD .
"l(En—l,[f]’f) -+ nl(B ,f) is an isomorphism, where f : S - En-l lifts f.

It follows that [Sn,E]? - [Sn,E]f is a bijection and one can apply 2.6.2.

The last assertion is an elementary verification.

§3. nl actions and monomorphisms of vector bundles

3.1. The fibration Mono(Z,n) — Y~

m n
’

Let be vector bundles and let Mono(Z,n) be the space of all

M4 w
o« 3

vector bundle maps & to m which are monomorphisms on each fiber. Each such

map induced a map X -+ Y. The map Mono(Z,n) A-YX is a (Serre) fibration.
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Let E = B(&,m) be the fiber space over X x Y with fiber Mono(gx ny)
t]

v and structure group O(m) X O(n). Projecting onto X one

Mom(gx’gy) n,m

E
has the two stage fibration E . The space of sections T +) is homeo-
¥ X
X xY
¥
X X xY
morphic to the space Mono(Z,n). The space of sections ¥ is homeo-
X

morphic to the space YX. Thus, for f ¢ X = Y we have (see 2.3) nl(YX,f)
acts on WO(MOHOf(E,ﬂ)) (denoted by [g,n]f) with quotient nO(Mono[f](g,n))
(denoted by [£,n]f). (Here Monof(g,n) is the space of monomorphisms covering
f and Mono[f](g,n) is the space of monomorphisms covering maps homotopic

*
to f). We remark that Monof(g,n) is homeomorphic to Monoid(g, f M)

3.2. Naturality

Suppose T -——*—T' is a pullback of vector bundles.
Y—g—> Y'
Then the diagram
B(E,m) - B(E,m") 1is also a pullback
¥ ¥
XxY—+> XxY'

so the action of nl(YX,f) factors through nl(Y'X, gof).

Example 3.2.1.

Let V¥ : Y - BO(m) classify m.
*
The action of nl(YX,f) factors through nl(BO(m)X,wof) (= nO(Aut fMm,

see 5.1.3.)

Example 3.2.2.

Let dimension X = r and suppose M 1is trivial on the r+l skeleton

; X . N
Yr+l of Y. Then the action of nl(Y ,f) 1is trivial,

. X
1° The action of nl(Yr+l,f)

since it factors through the trivial group nl(ptx). But since

Proof: We may suppose f : X - Yr+ is trivial



302

n (YX

1 r+l,f) -+ nl(YX,f) is surjective, nl(YX,f) also acts trivially.

3.3. Codimension zero monomorphisms

3.3.1. Theorem. Let & 7 be vector bundles of dimension n.
LR 4
X Y

Let g : Y » BO(n) classify m. Then [g,n]f is affine over ﬂl(BO(n)X,gof).

3.3.2., Corollary. [g,n][f] corresponds bijectively with the coset space
., (Bo(n)™, gof)

. X
im nl(Y ,£)

Proof of theorem. Monof(g,n) = Monoid(g, f*(n)) has Aut(f*(n)), as action

group. So [£,T]]f has nO(Aut(f*(n)) (= nl(BO(n)X, gof), see 5.1.3) as

action group.

3.4, Codimension one monomorphisms

Let be vector bundles with dim £+l = dim n = n.

Lo AN

n
¥
Y
Let « be the bundle of dimension 1 with first Stiefel Whitney class
¥
X

class Wl(m) = wl(f*(q))-wl(g). The map Mono[f](gehbn) is a 2 fold covering

¥
Mono[f](g,n)

which is split if r1 is orientable (by fixing orientations of % @ « and
1 and requiring an extension to preserve orientations). The 2-fold covering

Monof(g ® w,m) 1s split (by requiring orientations to be preserved at the base
¥

MOnOf(g ’n)

point). Monof(g,n) has commuting action groups Aut+(£ ® w), Aut+(F*(n))

where Aut+ C Aut 1is the normal subgroup of orientation perserving automorphisms.
Hence with respect to the affine structure given by the action of

nO(Aut+(aan ), "O(A“t+(f*(ﬂ)) is the translation group and the action of

*
nO(Aut(f (m)) 1is affine. We have proven:
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Theorem 3.4.1.
Let & m be vector bundles with dim &+1 = dimn = n.

¥ ¥

X Y
Let g : Y - BO(n) classify m. Then [£,n]f has an affine structure with

X

ker(nl(Be (n), gof) - nl(BO(n)) acting as the translation group, and the action
of ﬂl(BO(n)X, gof) 1is affine. If 7 1is orientable and g : Y - BSO(n)
classifies m, then [g,n]f has an affine structure with nl(BSO(n)X,gof)

acting as translation group.

Coroliary 3.4.2.

If g : Y > BSO(n) classifies m, then [g,n][f] corresponds bijectively
with the coset space
X
nl(BSO(n) ,80f)

R X
im nl(Y ,f)

3.5. The case of a sphere

m n

Let g
¥
S

be a vector bundles, m+2 = n, and let g : Y = BO(n)
k

=« 3

classify m . The fiber Vn n of B(&,m) 1is simply~connected so 2.6,3
t]

applies, Combining 2.6,3 with 3.2.1 we obtain:

Theorem 3.5.1.

k
(V. ). The action of = (YS ,f) is affine.

[E’ﬂ]f is affine over T n,m L

Moreover the diagram

Mg (D= M (BO() —2ms i, (V) ) = T(IE]m (V) )

n,m
¥ k ¥ K ¥

M@, — B0 g0 f) —> Aut(lEnlm (7, .9
¥ ¥ ¥

W
ﬂl(Y) — nl(BO(n)) —_— Aut "k(vn,m)

is commutative, where 3 1s the boundary homomorphism of the fibration

Vo™ BO(n-m) - BO(n). u, is given by post multiplication by a non-rotation.
H)
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Corollary 3.5.2.

If m dis orientable or ., 1is trivial, then [g,n][f] is in bijection

with a coset space of w (V. ).
n,m

k(,
Corollary 3.5.3.
k
l(Y ,f) = nl(BO(n)) = Z/2Z and Hy are non—-trivial then the
k
S

action of nl(Y ,f) is non-trivial.

If w

Corollary 3.5.4.

Suppose 33 nk+l(B0(n)) - nk(Vn’m) is the zero homomorphism. The
k
action of nl(YS ,f) is trivial if 7 1is orientable and factors through

k
nl(BO(n)) = 2/22 otherwise. Suppose in addition there is a € nl(YS ,£)

with non-trivial image in nl(BO(n)) (i.e. res(a) € nl(Y) reverses orientation)
k
which fixes some element of {g,n]f. Then the action of nl(YS ,f) is trivial

if and only if . 1is trivial and [£,n][f] is in bijection with the set

of orbits of "k(vn,m) under the operation of .
Proof: Follows from 3.5.1. and 1.3.1.

Example 3.5.4. a).

If k+l + 2m< 2n, 13 =n~m and k+2 =n then 3 is zero (cf. [BM]).

If k+2 =n and k = 2,4,5 or 6 mod 8 then nk+l(B0(n)) = nk+l(B0) = 0.
Example 3.5.4. b).
Let f : Koy be homotopic to a constant map. Let £ & £' = f*(r)) and

suppose &' admits an orientation reversing automorphism (e.g. if dim &' is

1

odd or if &' admits a section). Then the map s™ x Sl st 5 Y, where c¢ is

an orientation reversing loop, fixes the monomorphism & C & @ E' ~ fx(M) > 7.

Example 3.5.4. c).

The map p, on nr(Vn k) has been calculated by James [J] to be
’ S u
N A% n-k-1 * n~k *
id-u.s, A, ~ A,8,P, where nr(Vn’k)———» nr_l(S ) —> nr(S ) —— "r(vn,k)



305

S

d v ) s"h = ny X ) i ion o
and _( s m.( — (8 — "r(vn,k p, is projection onto

base, u, the inclusion of fiber and 4, are boundary homomorphisms of the

obvious fibrations. Sy is suspension.

For example if r=k=m with n Zz m+2, then A.S

. n, _
«Ps = 0 since nm(s ) = 0.

Hence y, = id-u,S .4, =\

« (A, 1is premultiplication by a non-rotation). Since

*

2
=12 and N = uy Wwe get p, =0, if n-m is odd.

From [P] = =2, +2 if n

2 2 2 mod 4. Moreover one can check

n(VZn—Z,n
*

m-3 . . ; ; . -
A, 22 + 22 -+ nm_l(S ) = 22 is surjective, § is an isomorphism and

u, ¢ 22 > 22 + 22 is injective. Hence g = id-u*S*A* fixes two elements

and exchanges the other 2,

From [P], "8(V12,8) = 22 + 22 + 22 and one may check A 1is onto

*
n7(S3) = 22, S n7(S3) > n8(34) = 22 + 22 is injective and
u, n8(84) - n8(V12 8) is injective. Hence y, = id-u,S A, fixes 4 elements
s

and exchanges the other 4 in pairs.

One can also show the following:

If n=1 mod4 and n =5 then "n(vzn-l,n) = 22 + 22 and there are
3 orbits.

If n=3 mod4, then (v, , )= 2/42 and W, = id.

If n=1 mod 4 and n = 9, then nn(V ) = 2/122 and u,(X) = -x

2n-3,n

so there are 7 orbits.

If k = nt2 then nn(V

~ = id.
n+2,n) _.nn(SO) and d

3.6. The case of the first obstruction

m

Let and let g : Y - B0O(n) classify m.

P4+ U
o~ 3

Suppose n-m = dimension of X = k. The fiber Vn m of B(Z,m) is k-1 connected
s

so 2.6.5. applies. Let nk(vn m) be the local coefficient system over X
s

x 2 is the
twisted by nl(X) - 22 X 22 -+ Aut "k(vn,m) where nl(X) -+ 22 9
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orientation homomorphism of & and 7 , and z, x 2, > Aut ﬁk(Vn m) is induced
s

by pre and post composition with non-rotations.

Proposition 3.6,1.

k NS
In the above [g,n]f is affine over H (X, nk(Vn m)) = H. The map
b4

W (YX,f) -+ Aut(H) factors through w. (BO(n)) = Z ——”iAut(n w__»n.
1 1 k* n,m

2

Corollary 3.6.2.

X . - -
If nl(Y ,£) =+ nl(BO(n)) =2, is non-trivial and the coefficient auto-
A A i . k TN
morphism tty induces a non-trivial automorphism of H (X’"k(vn,m)’ then the

action of nl(YX,f) is non-trivial.

§4. Applications to Immersion Theory

4.1. Smale Hirsch Theorem

Let Mm, ¥ be dif ferentiable manifolds their respective tangent

T, "N

bundles., One has a map Imm(},N) - Mono('rM TN) given by taking the differential.
b4

Smale-Hirsch theory says that this map is a weak homotopy equivalence provided

either m<n or (if m=n) M has no closed components.

One may think of this theorem as saying that the inclusion Imm(M,N) < NM
(see 0.1) may be replaced by the fibration MOnO(TM TN) - NM (see 2,1). Thus
t]
the sets [M 9> N]f and [M ¢~a-N][f] are equal to the sets [TM’TN]f,

respectively [TM,TN][f]'

4,2. Immersions of surfaces in orientable 3 manifolds (cf [Lil])

Let 22 be any surface and N3 any orientable 3-manifold. If f is

any map, then [J s— N][f] is in bijection with Hl(Z, 22).

Proof: Any map M sz_l is homotopic to an immersion (cf [LP]). N3

orientable implies N3 parallelizable (since n2(80(3)) = 0) so by 3.2.2.
. z . . 2 3 -
the action of nl(N ,f) is trivial. Hence [Z 39— N ][f] [TZ,TN]f. The

fiber of B(TZ,TN) over X xN 1is V . Since "1(V3,2) = 2/22,

3,2
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. R 1
"2(V3,2) = (0 the set [TZ,TN]f has an affine structure with group H (2,22)

4.3, Periodic Isotopy

A periodic isotopy is a map Sl X N =+ N which is the identify for

t=%*¢ Sl and an embedding for all t € Sl. It is easy to see the following.

Proposition 4.3.1.

Let a € nl(NM,f) be induced by a periodic isotopy on N. Then a acts

trivially on [Mg—> N]f.

Example 4.3.2.

Let Lin_l denote a lens space. Then each element of nl(L) = 2/mZ

is induced by a periodic isotopy. If dim M = 2n-3, then nl(LM,f) - nl(L)

is an isomorphism (see 5.2.3). Hence by 4.3.1, nl(LM,f) acts trivially.

4.4, Immersions of disks

Let M=D", If m<n then [Dm7>~+ Nn] has one element. If m=n

then [D" 9 Nm]f is affine over Z/2Z and the action of nl(ND,f) is

trivial if and only if N 1is orientable.

4.5. Tmmersions of M™ in S™71 (cf [Li 2])

Proposition 4.5.1. [Dﬁl?-—» Sm+l] is in bijection with [M,SO], provided

[BP‘}——» Sm+l] in non empty.

Proof: Let SO(m+l) - SO(m+2) — Sm‘*-l be the natural fibration. Then

SO (m+2) is the principal bundle associated to the tangent bundle (cf. [H]).

¥
Sm+l

In particular, in the fibration Sm+l -+ BSO(m+l) - BSO(m+2), the inclusion of

the fiber classifies the tangent bundle of Sm+l. By 3.4.1, [TM Ts]f is
t]

affine over nl(BSO(m+l)M) and by corollary 3.4.2, [TM TS][f] is in bijection
s

nl(BSO(nH-l)M)

vith ——— —— = nl(BSO(m+2)M) - nl(BSOM) = [M,S0] (cf.5.1.5).
) mHl
im nl(S )
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Example 4.5.2.

[s™ ¢— R™1)
1

while [s® g g™ = m_(50).

nm(SO(m+l))

4.6, Immersions of spheres in manifolds

Applying 3.5.1, 3.5.2, 3.5.3, for n = m+2 we have

Proposition 4.6.1.

m
MS ,f) is

m n R . :
[S§ $—r N ]f is affine over "m(vn,m) and the action of nl(

affine. If ¢ : nl(M) - 2 is the orientation homomorphism and

2
My * 22 -+ Aut nn(vm n) is given by postmultiplication by a non-rotation, then
b4
Sm
nl(N L) - Aut(nm(Vn’m)) is the composite |, osores where

m

res : nl(NS L) » nl(N) is the restriction.

Corollary 4.6.2.

If p, or gsores 1is trivial then [Sm9—~+ Nn][f] is a coset space of

Sm

nn(V ). If gores and y, are non—trivial, the action of nl(N , £)

is non-trivial.

Theorem 4.6.3. (m+2 = n)

P 9 .
a) Suppose the compositie nm+l(N) - nm+l(B0(n)) > "m(vn,m) is zero.
The set of regular homotopy classes of immersion of s™ in N" which are
homotopic to a constant is in bijection with nm(Vn m) if N 1is orientable

s

and with the set of orbits of the operation of {hy O nm(Vn m) if N 1is
b4

non-orientable,

9 . .
;) Suppose the map nm+l(B0(n)) > "m(vn,m) is zero. The action of

nl(NS ,f) on [Sm‘%—» Nn]f is trivial if N is orientable and factors

through 2/22 if N 1is non-orientable. If there is a € [8"19——» Nn]f

m
which is fixed by h € nl(NS ,f) having non-zero image in nl(BO(m)) = 2/22,

then [sm7__+ Nﬂ][f] corresponds bijectively with the set of orbits of the

operation of . on nm(Vn m).
t]
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Proof: b) follows from 4.6.1 and 1.3.1.
a) follows from 3.5.4 b) and 5.2.1.

4.7. TImmersions of M 1in sz

Applying 3.6.1 and 3.6.2 we obtain

Proposition 4.7.1.

M 59— N*™]_ is affine over H™(M,2/22) if m is odd and H®(M,2)

f

if m is even (2 1is the integers twisted by f*wl(N) - wl(M)). For m

odd and f*wl(N) =0, 4y, induces multiplication by -1 on Hn(M,§3 = 2, hence
1.

W (11_)>

if nl(NM,f)res» nl(N) 2/22 is non-trivial, the action of nl(NM,f)

is non-trivial.

Remark.,

One can show [Lil] that the action is trivial if [PP‘}—A—sz] ~ 2/22

f
. MR 2m
and factors through 2/22 if [M ¢— N ]f ~ 2. Note that 2/2Z can act
on 2, up to isomorphism, either by x -+ -x (one fixed point) or by x - l-x

(no fixed points).

§5. Appendix. Some calculations of nl(YX,f)

5.1, The universal case

Let M be a vector bundle of dimension n (or a local coefficient system
¥
Y
or other object) satisfying the following universal property: let & be a

¥
X

n-dimensional vector bundle, A C X and £|A -7 a bundle map which is an
isomorphism on each fiber. Then there is an extension to a bundle map & - mn ,
which is an isomorphism on each fiber. (Technically, A 1is assumed to be a

subcomplex of the complex X).

Let Iso(£,m) be the space of all bundle maps which are isomorphisms

on each fiber,
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Lemma 5.5.1.

If 1 1is universal, then Iso(¥,n) 1is contractible.

Proof: A map of the cone C Iso(,m) - Iso(E,n) extending the identity of
Iso(Z,n) 1is produced as follows: Let p : C Iso(&,m) x X + X denote the

. . s N * =
projection and define f : p £|Iso(£,n) X X Iso(E,m) x & = 1 by

*
(a,v) - a(v). By universality, f may be extended to all of p & = C Iso(&,mn) x E&.

If 1 1is universal and F € Iso({,n), themap f : X - Y induced by F
¥

Y

is said to classify E.

Proposition 5.1.2.

Let 7 be universal and let f : X -+ Y classify &,

¥ ¥
Y X
Then ¥ =8 Aut (&)
[£f] *
Proof: Follows from 5.1,1 since Aut(£) acts effectively on the left of

Iso(£,m) with orbit space YTf].

Corollary 5.1.3. nl(YX,f) = nO(Aut(g)).
Example 5.1.4.

If f : X -+ BO(n) is homotopically trivial then nl(BO(n)X,f) = [X,0(n)].

Example 5.1.5.

Let X ble a finite complex. The space BOX is an H-space, so

nl(BOX,f) = nl(BOX,f) where ¢ : X » BO 1is the constant map. So

R

nl(BOX,f) ~ [X,0].

5.2. The map nl(YX,f) -+ nl(Y)

Let X be a space with base point *. Restriction to * vyields a

homomorphism nl(YX,f) Reg nl(Y,f(*)).
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Proposition 5.2.1,

Suppose f 1is null homotopic. Then Res 1is split.

Proof: We may assume f is the constant map, The projection X - * induces

the splitting nl(Y) -+ nl(YX,f)

Proposition 5.2.2.

Image(Res) C centralizer of f*(nl(X)).

1

Proof: nl(Sl) commutes with nl(x) in m, (S x X).

1€

As a partial converse, we have

Proposition 5.2.3.

Suppose ﬂi(Y) =0 for 2 =1 =dim X = m. There is an exact sequence

1 - Hm(X,ni+l(Y)) - nl(YX,f) -+ centralizer of f*(nl(X)) >1

where n£+l(Y) is the local coefficient system induced by f.

Proof: nl(YX,f) consists of homotopy classes of maps Sl x X rel*x X to Y.

By the assumption on ni(Y) any extension on the 2 gkeleton of Sl x X

1
(rel* x X) can be extended to all of S x X. An extension to the 2-skeleton

exists if and only if there is 6 making the diagram

7, (Y) —— 7, (Y x X x §'")
1 1

2
f* 6.

1y (K) s 1y (X X §") > = 1 (X x §")

commute (cf, [Ba] page 265)
i,e. if and only if there is ¢ making

f*
/',G
nl(X % Sl)

commute

i.e. if and only if o(t) commutes with f*nl(X) where t is the generator of
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nl(Sl) = 2. This proves exactness at centralizer of f*(nl(x)).

Now let u be the composite Sl x X »- X £—Y. ker nl(YX,f) - nl(Y)

consists of homotopy classes of maps Sl x X Y which are (rel* x X)

. 1 .
homotopic to u on S Vv X. By our assumption on ni(Y), these correspond to

homotopy classes of maps which are homotopic to u on the m skeleton of

Sl x X, By the spectral sequence (cf [Ba] page 277) these are just

m+l, 1 . .u _ f
H 7(S™ x X, * x X; ﬂn+l(Y)) = H (X, nn+l(Y)).

Example 5.2.4.

Let M be a connected manifold and Y = Sn+l.
n+lM
Then nl(S ) = Z if M is orientable and closed
Z/2z if M is non-orientable and closed
0 if M is open.
Example 5.2.5.
Let Y = RPn+l and dim X € n,
n n+l X . .
Then 1 —+H (X;Zf) e—nl(RP ,f) = 2/2Z -~ 1 1is exact where Z; 1s the
integers twisted by
£y +1 n
nl(X)—————+ nl(RPn ) = z, = <t> and t acts on Z by (-1).

5,3. The case X = §"

Proposition 5.3.1.

There is an exact sequence

d Sn Res
"2(Y) > g0 - (X ,£) — ﬂl(Y)

where d 1is the Whitehead product with [f] € "n(Y) and image(Res) = stabilizer

of [f].

Corollary 5.3.2,

If f 4is homotopic to a constant, then
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n
1~ nn+l(Y) - nl(YS ,f) e—nl(Y) -+ 1 1is a split exact sequence,

Proof of 5.3.1. Since nl(sl x §™ stabilizes nn(sl x s™

image(Res) C stabilizer of [f]. (In the following we use the decomposition

1 1 n 1

s c s vstcs x g™, If an extension of f to S v S" is given,

. R 1 n
the obstruction to extending to §° x § is just

al[f]-[f] € Hn+l(Sl x Sn, * X Sn, nn(Y)) = nn(Y) where a € nl(Y) is given
by s' sl vs® sy, So image(Res) = stabilizer of [f]. Let u be the map
Sl x g+ s" £-Y. Then ker(res) is the set of maps Sl x st o ¥ homotopic,

rel* x S* to u on S§' v S® (which is the n skeleton of S» x S™ rel* x §

n
since there are no cells of dimension less than n+l). Thus by the spectral

sequence ([Ba], page 277) we have ker(res) = nn+l(Y)/dn(n2(Y)). dn is the

Whitehead product ([Ba] page 285).
Example 5.3.3. n

1= nn+l(B0) e—nl(BOS ,f) e—nl(BO) + 1 1is exact since Whitehead products
in ﬂi(BO) are trivial, and the operation of T is trivial (BO 1is an

H-space).
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