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Abstract. In previous joint work with Cappell and Shaneson, we have
established an Atiyah-Lusztig-Meyer-type multiplicative characteristic
class formula for the twisted signature and, more generally, the twisted
L-class, of a stratified Witt space. The present paper shows that these
formulae hold even when the stratified space does not satisfy the Witt
condition. It constitutes one of the first applications of signature ho-
mology.
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1. Introduction

LetXn be a closed, oriented, Whitney stratified pseudomanifold. It is said
to be a Witt space, if the middle-dimensional, middle-perversity intersection
homology of the link of every stratum of odd codimension vanishes. In this
case, intersection homology methods together with the Thom-Pontrjagin
construction yield a homology L-class L(X) ∈ H∗(X; Q), [GM80], [GM83],
[Sie83]. If X is nonsingular, then L(X) is the Poincaré-dual of the Hirze-
bruch L-class. Let S be a local coefficient system on X, equipped with a
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nondegenerate, symmetric, bilinear form S ⊗ S → RX . Using intersection
chain sheaves twisted by S, one constructs a twisted L-class L(X;S). In
[BCS03], we prove that for Witt spaces X,

L(X;S) = c̃h[S]K ∩ L(X),

where [S]K ∈ KO(X) is the K-theory signature of S and c̃h = ch ◦ψ2 is a
modified Chern character given by precomposing with the second Adams
operation ψ2.

The present paper removes the Witt hypothesis on X. We show that
the above formula continues to hold for an arbitrary Whitney stratified
pseudomanifold X, as long as it still possesses an L-class:

Theorem. Let Xn be a closed, oriented, Whitney stratified pseudomanifold
and let S be a nondegenerate, symmetric local system on X. If L(X) ∈
H∗(X; Q) is defined, then

(1) L(X;S) = c̃h[S]K ∩ L(X).

(See section 7.) For the special case of the twisted signature σ(X;S) =
L0(X;S), one has therefore

(2) σ(X;S) = 〈c̃h[S]K , L(X)〉.

If X is not a Witt space, then the middle-perversity intersection chain sheaf
IC•

m̄(X) ceases to be Verdier-self-dual, and consequently an alternate con-
struction of L(X) is required. The obstruction theory of [Ban02] in terms
of Lagrangian structures along strata of odd codimension can be used to
decide which spaces X have an L-class. The construction of a well-defined
L-class for spaces with vanishing obstructions is carried out in [Ban04]. Part
of section 3 is devoted to a brief review of this theory.

For the situation where X is a smooth manifold, the signature formula
(2) is the formula of [Mey72]. If in addition the local system is of geometric
origin, that is, S is the higher direct image S = R2kπ∗RE for a smooth

fiber bundle F 4k −→ E
π
−→ X, then (2) computes the signature of the total

space, as σ(E) = σ(X;S), and thus becomes the signature formula of [Ati69].
When π1(X) acts trivially on H2k(F ; R), and thus S is constant, we have

(c̃h[S]K)0 = σ(F ) and all higher Chern character components vanish. The
resulting relation is σ(E) = σ(F )σ(X), due to [CHS57]. Further information
on the signature of nonsingular fiber bundles can be found in [Lus71] and
[LR92].

Similarly, twisted characteristic classes arise in geometric mapping situ-
ations involving singular spaces. In [CS91] it is shown that the signature
σ(Y ) of the domain of a stratified map f : Y m → Xn, m− n even, between
Whitney stratified spaces with only even-codimensional strata is given by
the twisted signature of X with coefficients in the middle cohomology of
the “general fiber” (the fiber over the top stratum of X), plus a sum of
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twisted signatures which ranges over the components of the pure strata in
the singular set of X. Analogous results for other characteristic classes are
provided as well. If, on the other hand, X has only singular strata of odd
codimension, then we prove in [Ban03] that

(3) f∗L(Y ) = L(X;S),

where S is given on the top stratum of X by the middle cohomology of the
“general fiber”. Thus the singular strata of odd codimension do not con-
tribute terms.

From the discussion of the above geometric situations we see in partic-
ular that the local system S is typically only given on the top stratum. If
it extends, as a local system, over the entire space, then (1) can be used
to compute the twisted L-classes. A necessary, and on normal spaces also
sufficient, condition for the existence of a unique extension is that S has
constant restrictions on all links. This holds automatically on the class of
supernormal spaces, for which there exists a well understood classification
theory, [CW91]. Our requirement that the local system be defined on the
entire space cannot be eliminated without substitute, because formulae (1)
and (2) will become false in general: One can construct examples of four-
dimensional orbifolds with isolated singularities, together with local systems
on their top stratum, such that these systems do not extend to the entire
space, and the difference between the left and right hand side of (2) is given
by a non-vanishing rho-invariant. These examples are particularly striking,
since the underlying spaces have rather weak singularities, being rational
homology manifolds.

Let us provide a compact outline of our strategy for proving the twisted
L-class formula (1). By the Thom-Pontrjagin construction, the primary ob-
jective is to establish (2). To accomplish this, we use signature homology
S∗(−) introduced by Minatta [Min04] and Kreck. This homology theory has
coefficients S4k(pt) ∼= Z, given by the signature, and zero otherwise. The
coefficient groups were already introduced in [Ban02]. In [Min04], signature
homology is constructed as the bordism theory of topological stratifolds
([Kre]) equipped with self-dual sheaf-complexes satisfying intersection ho-
mology type axioms as introduced in [Ban02]. The pertinent feature for us
is that the canonical map ΩSO

∗ (X)→ S∗(X) is at odd primes surjective, al-
lowing us to pull back signature calculations to smooth manifolds, starting
with the identity map in S∗(X). The following problem arises: If a strati-
fied non-Witt space X carries perverse self-dual sheaves extending constant
coefficients on the top stratum, then it is not automatically clear that it
also carries perverse self-dual sheaves extending a non-constant local system
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S on the top stratum1. We avoid these monodromy difficulties altogether
by constructing a piecewise linear version SPL∗ (−) of topological signature
homology. As pointed out in, among other places, [Sul04] (section 2), the
simplicial stratification of a PL space has the virtue of rendering all link
bundles trivial. After defining the functor SPL∗ (−), it must be verified that
it is indeed a homology theory. This rather technical verification is relegated
to the appendix, where it is carried out in complete detail.

The sections of this paper are organized as follows: Section 2 sets up
terminology surrounding local coefficient systems and discusses prolonga-
tion questions for top stratum local systems. Section 3 reviews the results
of [Ban02] and [Ban04], as well as the construction of the L-class of a non-
Witt space with boundary. Proposition 3.1, which relates that L-class to the
L-class of the boundary, is used in the proof of the twisted signature formula,
theorem 6.1. Lemma 3.2 and lemma 3.3 are ingredients needed for the proof
of the twisted L-class formula, theorem 7.1. Section 4 describes topological
stratifolds and, using these as the geometric basis, the construction of topo-
logical signature homology as carried out in [Min04]. The coefficient groups
are computed and the relation at odd primes to smooth oriented bordism,
Witt space bordism, and KO-homology is summarized. In section 5, we con-
struct PL signature homology as the bordism theory of compact, oriented
PL-pseudomanifolds together with a triangulation from the PL-structure
and a self-dual perverse sheaf constructible with respect to the simplicial
stratification induced by the triangulation. In proving transitivity of the
bordism relation, gluing is treated carefully (lemma 5.3). We show that the
signature of a PL non-Witt space is a PL-invariant, and prove that topolog-
ical and PL signature homology are isomorphic. Sections 6 and 7 establish
the signature and L-class formula, respectively. An illustrative example in-
volving non-Witt orbit spaces of Lie group actions is provided in section
8. The appendix, section 9, contains the proof that SPL∗ (−) is a homology
theory. The core of that proof is the construction of a Mayer-Vietoris se-
quence for PL signature homology, which uses simplicial codimension one
transversality.

2. Local Coefficient Systems: Conventions and Terminology

Let (Xn, ∂X) be a pseudomanifold with (possibly empty) boundary and
filtration

Xn = Xn ⊃ Xn−2 ⊃ Xn−3 ⊃ . . . ⊃ X0 ⊃ ∅,

where the strata are indexed by dimension, the Xi ∩ ∂X stratify ∂X, and
the Xi − ∂X stratify X − ∂X; Σ = Xn−2 is the singular set.

1If X has only strata of even codimension, then this is true: The Deligne formula for the
middle perversity yields a self-dual extension, both when applied to constant coefficients
and when applied to S.
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Definition 2.1. A Poincaré local system on X is a locally constant sheaf S

on X together with a nondegenerate, symmetric, bilinear pairing φ : S×S→
RX . If X is disconnected, then we assume that both the rank of Sx and the
signature of φx, x ∈ X, are constant functions on X.

Let (S, φ) be a Poincaré local system on X − Σ (the top stratum of X).
The pairing φ, being nondegenerate, induces an isomorphism

φ : Hom(S,RX−Σ)
≃
−→ S

Now assume ∂X = ∅. As X − Σ is a manifold,

DS[−n] = Hom(S,RX−Σ)⊗ OX−Σ,

where OX−Σ is the orientation sheaf on X − Σ and D the Borel-Moore-
Verdier dualizing functor. Thus φ induces an isomorphism

φ : DS[−n] ∼= S⊗ OX−Σ.

An orientation for X is an isomorphism OX−Σ
∼= RX−Σ. Assuming X to be

oriented, it follows that φ : S×S→ RX−Σ induces a self-duality isomorphism

(4) φ : DS[−n] ∼= S

Let (S, φ) be a Poincaré local system of stalk dimension m on the space
Xn and let Π1(X) denote the fundamental groupoid of X. By Vectm denote
the category whose objects are pairs (V,ψ), with V an m-dimensional real
vector space and ψ : V × V → R a nondegenerate, symmetric, bilinear
pairing whose morphisms are linear maps preserving the pairings:

HomVectm((V1, ψ1), (V2, ψ2)) =

{A : V1 → V2 linear | ψ2(Av,Aw) = ψ1(v,w), v, w ∈ V1}.

The system (S, φ) induces a covariant functor

µ(S) : Π1(X) −→ Vectm

as follows: For x ∈ X, let

µ(S)(x) = (Sx, φx)

and for a path class [ω] ∈ π1(X,x1, x2) = HomΠ1(X)(x2, x1), ω : I → X,
ω(0) = x1, ω(1) = x2, define the linear operator

µ(S)[ω] : µ(S)(x2) −→ µ(S)(x1)

to be the composition

µ(S)(x2) = Sω(1)
∼= (ω∗

S)1
≃
←

restr
Γ(I, ω∗

S)
≃
→

restr
(ω∗

S)0 ∼= Sω(0) = µ(S)(x1).

If we choose a base-point x ∈ X, then restricting µ(S) to the fundamental
group π1(X,x) = HomΠ1(X)(x, x) gives an assignment of a linear automor-
phism on the stalk Sx,

µ(S)x(g) : Sx −→ Sx,
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preserving the pairing φx : Sx × Sx → R, to each g ∈ π1(X,x). Thus one
obtains the monodromy representation

µ(S)x : π1(X,x) −→ O(p, q; R)

(p+ q = m is the rank of Sx, p− q the signature of φx). Conversely, a given
functor µ : Π1(X)→ Vectm determines a Poincaré local system: Let X0 be a
path component of X, and x0 ∈ X0. Then π1(X0, x0) acts on µ(x0) = (V, φ)
by the restriction µx0

and we have the associated local system

S|X0
= X̃0 ×π1(X0,x0) V

over X0 with an induced pairing φ, where X̃0 denotes the universal cover of
X0.

Definition 2.2. Let X be a stratified pseudomanifold with singular set Σ
and let X denote the set of components of open strata of X of codimension
at least 2. Each Z ∈ X has a link Lk(Z). Call a Poincaré local system S on
X − Σ strongly transverse to Σ if the composite functor

Π1(Lk(Z)− Σ)
incl∗−→ Π1(X − Σ)

µ(S)
−→ Vectm

is isomorphic to the trivial functor for all Z ∈ X.

On normal spaces, strong transversality of local systems characterizes
those systems that extend as local systems over the whole space:

Proposition 2.1. Let Xn be normal. A Poincaré local system S on X −Σ
is strongly transverse to Σ if and only if it extends as a Poincaré local system
over all of X. Such an extension is unique.

The normality assumption is not necessary for the “if”-direction. Simple
examples show that the normality assumption can not be omitted in the
“only if”-direction and in the uniqueness statement. Proposition 2.1 allows
us to state yet another useful characterization of strongly transverse local
systems:

Corollary 2.1. Let Xn be normal. A Poincaré local system S on X −Σ is
strongly transverse to Σ if and only if its monodromy functor µ(S) : Π1(X−
Σ)→ Vectm factors (up to isomorphism of functors) through Π1(X):

Π1(X −Σ)
incl∗- Π1(X)

@
@

@
@

@
µ(S)

R
Vectm

?

Corollary 2.2. Let Xn be normal. A Poincaré local system (S, φ) on Xn−Σ
strongly transverse to Σ has a K-theory signature

[S]K ∈ KO(X).
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3. L-Classes of Non-Witt Spaces

LetX be a stratified, oriented, topological pseudomanifold without bound-
ary. IfX has only strata of even codimension, then IC•

m̄(X), the intersection
chain sheaf with respect to the lower middle perversity m̄, is Verdier-self-
dual, since IC•

m̄(X) = IC•
n̄(X), the intersection chain sheaf with respect

to the upper middle perversity n̄. More generally, IC•
m̄(X) is still self-dual

on X if X is a Witt space. If X is not a Witt space, then the canonical
morphism IC•

m̄(X) → IC•
n̄(X) is not an isomorphism and IC•

m̄(X) is not
self-dual.

We will briefly review some relevant results of [Ban02], where a theory of
intersection homology type invariants for non-Witt spaces is developed. Let
Xn be an n-dimensional pseudomanifold with a fixed stratification

X = Xn ⊃ Xn−2 ⊃ Xn−3 ⊃ . . . ⊃ X0 ⊃ X−1 = ∅

such that Xj is closed in X and every non-empty Xj − Xj−1 is an open
manifold of dimension j. Set Uk = X − Xn−k. Throughout this paper we
will work with real coefficients and we will follow the indexing conventions
of [GM83]. Thus self-duality will be understood with respect to D[n], rather
than with respect to D.

As shown in [Ban02], intersection homology type invariants on non-Witt
spaces are given by objects of a certain full subcategory SD(X) ⊂ D(X),
where D(X) denotes the bounded, constructible derived category. The ob-
jects of SD(X) satisfy two properties: On the one hand, they are self-dual,
on the other hand, they are as close to the middle perversity intersection
chain sheaves as possible, that is, they interpolate between IC•

m̄(X) and
IC•

n̄(X). The precise definition is as follows:

Definition 3.1. Let SD(X) be the full subcategory of D(X) whose objects
S• satisfy the following axioms:

(SD1): Top stratum: S•|U2
∼= H−n(S•)[n]|U2

(SD2): Lower bound: Hi(S•) = 0, for i < −n.
(SD3): Stalk condition for the upper middle perversity n̄ :

Hi(S•|Uk+1
) = 0, for i > n̄(k) − n, k ≥ 2.

(SD4): Self-Duality: S• has an associated isomorphism

d : DS•[n]
∼=
→ S• such that Dd[n] = ±d.

Here, Hi(S•) denotes the cohomology sheaf of the complex S•. Depending
on X, the category SD(X) may or may not be empty. If S• ∈ SD(X),

then there exist morphisms IC•
m̄(X;S)

α
−→ S• β

−→ IC•
n̄(X;S), where S is
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the self-dual local coefficient system S = H−n(S•)|U2
, such that

IC•
m̄(X;S)

α - S•

DIC•
n̄(X;S)[n]

≃

6

Dβ[n]- DS•[n]

≃ d

6

(where d is given by (SD4)) commutes, which clarifies the relation between
intersection chain sheaves and objects of SD(X). The main structure theo-
rem on SD(X) is a description as a Postnikov system with fibers given by
categories of Lagrangian structures along the strata of odd codimension:

Theorem 3.1. Let n = dimX be even. There is an equivalence of categories

SD(X) ≃ Lag(Un−Un−1)⋊Lag(Un−2−Un−3)⋊. . .⋊Lag(U4−U3)⋊Coeff(U2).

(Similarly for n odd.)

Assume k is odd and A• ∈ SD(Uk). Note that n̄(k) = m̄(k)+1. We shall
use the shorthand notation m̄A• = τ≤m̄(k)−nRik∗A

•, n̄A• = τ≤n̄(k)−nRik∗A
•,

and s = n̄(k) − n. The reason why m̄A• need not be self-dual is that the
obstruction-sheaf

O(A•) = Hs(Rik∗A
•)[−s] ∈ D(Uk+1)

need not be trivial. Its support is Uk+1 − Uk, and it is isomorphic to
the algebraic mapping cone of the canonical morphism m̄A• → n̄A•. The
obstruction-sheaf O(A•) possesses an induced self-duality DO(A•)[n+ 1] ∼=
O(A•). A Lagrangian structure (along Uk+1 − Uk) is a morphism L −→
O(A•), L ∈ D(Uk+1), which induces injections on stalks and has the prop-
erty that some distinguished triangle on L −→ O(A•) is an algebraic null-
cobordism (in the sense of [CS91]) for O(A•). If B• ∈ SD(Uk) and LA →
O(A•), LB → O(B•) are two Lagrangian structures, then a morphism of
Lagrangian structures is a commutative square in D(Uk+1):

LA
- O(A•)

LB

?
- O(B•)

O(f)

?

where f ∈ HomD(Uk)(A
•,B•) and O(f) = Hs(Rik∗f)[−s]. Thus Lagrangian

structures form a category Lag(Uk+1−Uk). The expression Lag(Uk+1−Uk)⋊
SD(Uk) denotes the twisted product of categories whose objects are pairs

(L
λ
−→ O(A•),A•), A• ∈ SD(Uk), λ ∈ Lag(Uk+1 − Uk), and whose mor-

phisms are pairs with first component a morphism f ∈ HomD(Uk)(A
•,B•)

and second component a commutative square as above. One direction of the
equivalence of categories in theorem 3.1 is induced by a covariant functor
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⊞ : Lag(Uk+1 − Uk) ⋊ SD(Uk) −→ SD(Uk+1),
(λ,A•) 7→ λ⊞ A•,

that is, a Lagrangian structure along Uk+1−Uk naturally gives rise to a self-
dual sheaf on Uk+1. For more details, we ask the reader to consult [Ban02].
Given a local coefficient system S ∈ Coeff(U2), we will write SD(X;S) ⊂
SD(X) for the full subcategory of objects S• such that S•|U2

∼= S[n].

Example 3.1. Let X6 be the product of a circle with the (unreduced)
suspension of complex projective space, X6 = S1×ΣCP 2. This space has a
stratum of odd codimension 5 consisting of the disjoint union of two circles.
The link of this stratum is CP 2 and there is no Lagrangian subspace in the
middle cohomology H2(CP 2) (e.g. the signature σ(CP 2) = 1 6= 0). Then
the structure theorem implies SD(X6) = ∅, so that there is no meaningful
way to define intersection homology type invariants on X6.

Let X4 be the product of a circle with the suspension of a torus, X4 =
S1 × ΣT 2. The stratum of odd codimension 3 consists again of the disjoint
union of two circles, but with link T 2. There are many Lagrangian subspaces
L in the middle cohomology H1(T 2), and the structure theorem implies
SD(X4) 6= ∅. In fact, the functor ⊞ constructs a self-dual sheaf on X4 for
every choice of L.

The following lemma will be used in section 6.

Lemma 3.1. Let Xn be a closed, topological, stratified, oriented pseudoman-
ifold with singular set Σ. Let (S, φ) and (T, ψ) be Poincaré local systems on
X − Σ, and let γ : S→ T be an isomorphism such that the diagram

(5)

S⊗ S
φ - RX−Σ

�
�

�
�

�

ψ

�

T ⊗ T

γ⊗γ ∼=

?

commutes. If there exists an extension (S•, dS) ∈ SD(X;S) of (S, φ), dS :

DS
•[n]

≃
−→ S

•, then (T, ψ) also extends to (T•, dT ) ∈ SD(X;T), dT :

DT
•[n]

≃
−→ T

•. Moreover,

σ(X;S) = σ(X;T).

Proof. We shall construct (T•, dT ) ∈ SD(X;T), together with an isomor-

phism γ : S• ≃
−→ T•, in stages by induction on k. Set T•

2 = T[n], dT,2 = ψ,
γ2 = γ[n], on U2 = X−Σ. Here, we are reinterpreting ψ as a Verdier duality
isomorphism

ψ : DT•
2[n] = (Hom(T,RX−Σ)⊗ OX−Σ)[n]

≃
−→ (T ⊗ OX−Σ)[n] ∼= T•

2,

where OX−Σ denotes the orientation sheaf and the last isomorphism uses
the orientation of X − Σ. Inductively, we will construct T•

k ∈ SD(Uk;T),
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dT,k : DT•
k[n]

≃
−→ T•

k, and γk : S•
k = S•|Uk

≃
−→ T•

k so that T• = T•
n+1 ∈

SD(X;T), dT = dT,n+1, γ = γn+1, X = Un+1. Assume (T•
k, dT,k) ∈

SD(Uk;T) and γk have been constructed. If k is even, then Uk+1 − Uk is
a stratum of even codimension, and thus the Goresky-MacPherson-Deligne
extension

T•
k+1 = τ≤m̄(k)−nRik∗T

•
k

is a self-dual sheaf in SD(Uk+1;T). We set γk+1 = τ≤m̄(k)−nRik∗γk. Let k
be odd. According to theorem 3.1, there is an equivalence of categories

(6) SD(Uk+1;T) ≃ Lag(Uk+1 − Uk) ⋊ SD(Uk;T).

Since S•
k+1 ∈ SD(Uk), it has an associated Lagrangian structure

L
λS−→ O(S•

k).

The isomorphism γk : S•
k → T•

k induces an isomorphism

O(γk) : O(S•
k)

≃
−→ O(T•

k).

The composition

λT = O(γk) ◦ λS : L −→ O(T•
k)

is a Lagrangian structure for T•
k. The pair (λT ,T

•
k) is thus an object in

Lag(Uk+1 − Uk) ⋊ SD(Uk;T). An application of the functor

⊞ : Lag(Uk+1 − Uk) ⋊ SD(Uk) −→ SD(Uk+1)

produces an object T•
k+1 ∈ SD(Uk+1) such that T•

k+1|Uk
= T•

k, dT,k+1|Uk
=

dT,k. Application of ⊞ to the isomorphism



L
λS - O(S•

k)

L

wwwwwwwwww
λT - O(T•

k)

≃ O(γk)

?

, S•
k

≃

γk

- T•
k




∈ HomLag(Uk+1−Uk)⋊SD(Uk)((λS ,S
•
k), (λT ,T

•
k))

yields an isomorphism

γk+1 : S•
k+1 = λS ⊞ S•

k
≃
−→ λT ⊞ T•

k = T•
k+1

such that γk+1|Uk
= γk. Summarizing, we have constructed

T• = T•
n+1 ∈ SD(X),

dT = dT,n+1 : DT•[n] ∼= T•, and

γ = γn+1 : S• ≃
−→ T•

such that

T•|X−Σ = T, γ|X−Σ = γ[n], dT |X−Σ = ψ.
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We claim that the diagram

(7)

DS•[n]
≃

dS

- S•

DT•[n]

Dγ[n] ≃

6

≃

dT

- T•

≃ γ

?

commutes. Indeed, over X − Σ this diagram is

DS
≃

φ
- S[n]

DT

Dγ ≃

6

≃

ψ
- T[n]

≃ γ[n]

?

i.e. (after removing the shift)

Hom(S,RX−Σ)
≃

φ
- S

Hom(T,RX−Σ)

Hom(γ,RX−Σ) ≃

6

≃

ψ
- T

≃ γ

?

whose commutativity is provided by the commutativity of (5). Now by
lemma 2.2 of [Ban02], restriction of morphisms induces an injection

HomD(X)(DT•[n],T•) →֒ HomD(X−Σ)(DT•[n]|X−Σ,T
•|X−Σ),

whence diagram (7) commutes. If n = 2m, then applying hypercohomology
to diagram (7), and using the compactness of X, yields the commutative
square

Hom(H−m(X;S•),R)
≃- H

−m(X;S•)

Hom(H−m(X;T•),R)

≃

6

≃- H
−m(X;T•)

≃

?
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Rewriting this in terms of tensor products, we obtain the commutative dia-
gram of bilinear forms

H
−m(X;S•)⊗H

−m(X;S•)
H(dS)- R

�
�

�
�

�

H(dT )

�

H
−m(X;T•)⊗H

−m(X;T•)

H(γ)⊗H(γ) ≃

?

which implies equality of the signatures,

σ(X;S) = σ(H(dS)) = σ(H(dT )) = σ(X;T).

Next, we review the construction of homology L-classes of stratified spaces
with boundary, as well as their relation to the L-classes of the bound-
ary. We adopt the Thom-Pontrjagin construction approach using global
transversality as employed by Goresky-MacPherson [GM80] and Cappell-
Shaneson [CS91]. Let (Xn, ∂X) be a compact, oriented, Whitney strat-
ified pseudomanifold-with-boundary endowed with a self-dual sheaf S• ∈
SD(intX). Let Sk be the k-sphere with base-point p ∈ Sk. The cohomo-
topy set πk(X,∂X) = [(X,∂X), (Sk , p)] is a group for 2k > n + 1 and in
that range the Hurewicz map is rationally an isomorphism

(8) πk(X,∂X) ⊗Q ∼= Hk(X,∂X; Q)

Fix a point q ∈ Sk, q 6= p. A given continuous map f : (X,∂X)→ (Sk, p) is

homotopic rel ∂X to a map f̃ , the restriction of a smooth map on an open
neighborhood of X in the ambient manifold implicit in the Whitney stratifi-
cation, such that f̃ is transverse regular to q and f̃−1(q) ⊂ intX is transverse
to each stratum of X. Transversality implies the normal nonsingularity of
the inclusion if : f̃−1(q) →֒ intX, so that the restriction i!fS

• is a self-

dual complex of sheaves, i!fS
• ∈ SD(f̃−1(q)). If f, g : (X,∂X) → (Sk, p)

are homotopic transverse maps, then the preimage H−1(q) ⊂ intX un-
der a transverse homotopy rel ∂X, H : X × [0, 1] → Sk, together with
i!HS• ∈ SD(intH−1(q)), iH : intH−1(q) →֒ intX, is a bordism between

(f−1(q), i!fS
•) and (g−1(q), i!gS

•), so that the map

λk(S
•) : πk(X,∂X) → Z

[f ] 7→ σ(i!fS
•)

is a well-defined homomorphism. Here σ(i!fS
•) denotes the signature of the

form induced by self-duality on the middle-dimensional hypercohomology of
f−1(q) with coefficients in i!fS

•. Under the identification (8), λk(S
•) induces

a map

λk(S
•)⊗Q : Hk(X,∂X; Q) −→ Q
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defining an element Lk(S
•) ∈ Hk(X,∂X; Q) ∼= Hom(Hk(X,∂X; Q),Q),

the L-class of the space (X,∂X) with coefficients in S•. The restriction
2k > n+ 1 is removed by considering products of (X,∂X) with spheres.

The main result of [Ban04] is:

Theorem 3.2. Let Xn be a closed, oriented, Whitney stratified pseudomani-
fold and S a Poincaré local system on the top stratum of X. If SD(X;S) 6= ∅,
then the L-classes Li(X;S) = Li(IC

•
L
(X;S)) ∈ Hi(X; Q), IC

•
L
(X;S) ∈

SD(X;S), are independent of the choice of Lagrangian structure L.

Thus a non-Witt space has a well-defined L-class L(X), provided SD(X; R) 6=
∅.

Proposition 3.1. Let (X,∂X) be a Whitney stratified, compact, oriented
pseudomanifold with boundary such that SD(intX; R) 6= ∅. Then

∂∗Lk+1(X) = Lk(∂X),

where ∂∗ is the connecting homomorphism ∂∗ : Hk+1(X,∂X) → Hk(∂X).

Proof. Given f : ∂X → Sk transverse to p ∈ Sk, we shall describe how the
cohomotopy coboundary operator

δ∗ : πk(∂X) −→ πk+1(X,∂X)

acts on [f ].
Write c∂X for the cone on ∂X and view Dk+1 ∼= cSk. Then f extends over
the cones as

cf : c∂X −→ cSk ∼= Dk+1.

Let q = (p, 1
2) ∈ cSk and N be an open collar neighborhood of ∂X in X.

Consider the collapse maps

X −→ X/(X −N) ∼= c∂X

and
Dk+1 −→ Dk+1/Sk ∼= Sk+1.

Denote the images of p and q under the latter collapse again by p, q ∈ Sk+1.
Then δ∗[f ] is represented by the composition

g : (X,∂X)→ (c∂X, ∂X)
cf
→ (Dk+1, Sk)→ (Sk+1, p).

Observe that g is transverse to q, since in fact g−1(q) = f−1(p)× {1
2} when

regarded as a subvariety of the collar N ∼= ∂X × [0, 1). Choose an object
S• ∈ SD(intX; R), so that L(X) = L(S•). Using the inclusions

intX ⊂
i - X � j

⊃ ∂X,

we produce the self-dual sheaf j!i!S
• ∈ SD(∂X), and therefore L(∂X) =

L(j!i!S
•). If

λk(j
!i!S

•) : πk(∂X) −→ Z
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is the L-class of j!i!S
• and

λk+1(S
•) : πk+1(X,∂X) −→ Z

is the L-class of S•, then

λk+1(S
•)(δ∗[f ]) = λk+1(S

•)[g]
= σ(g−1(q); i!gS

•)

= σ(f−1(p); i!f j
!i!S

•)

= λk(j
!i!S

•)[f ],

where ig : g−1(q) →֒ intX, if : f−1(p) →֒ ∂X, and so

λk+1(S
•) ◦ δ∗ = λk(j

!i!S
•).

Under the Hurewicz map and the universal coefficient isomorphism, this
translates to

∂∗Lk+1(X) = ∂∗Lk+1(S
•) = Lk(j

!i!S
•) = Lk(∂X).

Let Xn be a closed, oriented, stratified pseudomanifold and let

i : Y m →֒ Xn

be a normally nonsingular inclusion of an oriented, stratified pseudomanifold
Y m. (Example: i = if : f−1(p) →֒ X, where X is Whitney stratified and
f : X → Sn−m is transverse regular to p ∈ Sn−m.) Consider an open
neighborhood E ⊂ X of Y, the total space of an Rn−m- vector bundle over
Y, and put E0 = E − Y, the total space with the zero-section removed.
Let τ ∈ Hn−m(E,E0) denote the Thom class. If π : E → Y denotes the
projection, then the composition

Hk(X)
j∗
→ Hk(X,X − Y )

e∗←
∼=
Hk(E,E0)

τ∩−
→
∼=

Hk−n+m(E)
π∗→
∼=
Hk−n+m(Y )

defines a map

i! : Hk(X) −→ Hk−n+m(Y ).

In the following, let u ∈ Hn−m(Sn−m) denote the generator such that
〈u, [Sn−m]〉 = 1.

Lemma 3.2. Let Xn be a closed, oriented, Whitney stratified pseudomani-
fold, and let f : X → Sn−m be transverse regular to p ∈ Sn−m. Then

f∗(u) ∩ x = if∗i
!
f (x)

for any x ∈ H∗(X), where if : f−1(p) →֒ X.

Proof. Set F = f−1(p), let x ∈ Hk(X), and put τ ′ = (e∗)−1(τ), where

e∗ : Hn−m(X,X − F )
∼=
−→ Hn−m(E,E0) is the excision isomorphism. The
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commutative square

Hn−m(X,X − F )⊗Hk(X,X − F )
e∗⊗e−1

∗- Hn−m(E,E0)⊗Hk(E,E0)

Hk−n+m(X)

∩

?
� if∗

Hk−n+m(F )

∩

?

yields the relation

τ ′ ∩ j∗(x) = if∗(τ ∩ e
−1
∗ j∗(x)) = if∗i

!
f (x).

Viewing u as a class in Hn−m(Sn−m, Sn−m − p), we can interpret it as the
Thom class of {p} →֒ Sn−m. Thus, by naturality of the Thom class,

j∗(τ ′) = f∗(u).

The commutativity of

Hn−m(X,X − F )⊗Hk(X)
1⊗j∗- Hn−m(X,X − F )⊗Hk(X,X − F )

Hn−m(X)⊗Hk(X)

j∗⊗1

?
∩ - Hk−n+m(X)

∩

?

implies

τ ′ ∩ j∗(x) = j∗(τ ′) ∩ x = f∗(u) ∩ x.

Lemma 3.3. Let X and f be as in lemma 3.2. If L(X) is defined, then

f∗(u) ∩ Lk(X) = if∗Lk−n+m(f−1(p)).

Proof. We have

Lk−n+m(f−1(p)) = Lk−n+m(i!fS
•) = i!fLk(S

•) = i!fLk(X),

S• ∈ SD(X), cf. [CS91]. The statement follows from lemma 3.2.

4. Topological Signature Homology

We give a brief overview of signature homology, introduced by Augusto
Minatta in his thesis [Min04].

The construction of signature homology is, on the geometric side, based on
stratifolds. These are stratified topological objects introduced by Matthias
Kreck in 1998, [Kre03], [Kre]. One of the motivations in introducing these
objects was to create a reservoir of spaces generalizing manifolds by incorpo-
rating singularities which lends itself to the formation of homology theories
whose cycles are given by suitably selected subclasses of stratifolds. In par-
ticular, the technical aspects of the definition of stratifolds are designed so
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as to make gluing along boundaries easy, as well as to entail codimension
one transversality results.

In this paper, the term “stratifold” is used in the same way as in [Min04].
We recall the definitions that are relevant for us. Let X be a topolog-
ical space. An i-dimensional strat for X is a pair ((W,∂W ), f), where
(W,∂W ) is a collared, topological, i-dimensional manifold-with-boundary
and f : W → X a proper, continuous map whose restriction to the interior
of W is a homeomorphism onto its image. An n-dimensional (topological)
stratifold is a topological space X equipped with strats ((W0, ∂W0), f0), . . . ,
((Wn, ∂Wn), fn) satisfying the conditions:

1. the fi(intWi) are disjoint and
⋃
i fi(intWi) = X,

2. dimWi = i,
3. fi(∂Wi) ⊂

⋃
j≤i−1 fj(Wj) =: Σi−1

4. a subset U ⊂ X is open if and only if f−1
i (U) is open in Wi, for all i.

The subspaceXi = Σi−Σi−1 is called the i-th pure stratum of X (it is home-
omorphic to the interior of Wi and thus an i-manifold). An isomorphism of
stratifolds is a homeomorphism φ : X → X ′ together with homeomorphisms
φi : Wi → W ′

i respecting collars and such that φfi = f ′iφi. The stratifold
X is orientable if Xn−1 is empty and the top stratum Xn is orientable. An
orientation of X is an orientation of the top stratum. The collars of the
Wi define retractions πi : Vi → Xi from an open neighborhood Vi of the
pure stratum Xi in X to Xi. Let M be a manifold. A continuous map
g : X →M is a morphism if every composition gfi : Wi →M is constant on
every {x}× [0, 1), where x ∈ ∂Wi and we identify ∂Wi× [0, 1) with a neigh-
borhood of ∂Wi in Wi using the collar. (Every continuous map X → M is
homotopic to a morphism.) A morphism g : X → M is a stratifold bundle
if there is a stratifold F so that g is a locally trivial fiber bundle projec-
tion with fiber F and structure group given by all stratifold isomorphisms
F → F . A stratifold X is locally trivial if each retraction πi : Vi → Xi is a
stratifold bundle; X is locally conelike if X is locally trivial and the fiber of
πi is the open cone on some compact stratifold.

An n-dimensional stratifold-with-boundary is a pair (X,∂X) with X a
topological space, ∂X ⊂ X a closed subset, such that X−∂X is a stratifold
of dimension n, ∂X is a stratifold of dimension n− 1, and ∂X has a collar
in X. By collar we mean here the usual homeomorphism which now should
be an isomorphism of stratifolds when restricted to the interior. The defi-
nition of a stratifold-with-boundary is designed so that gluing (X,∂X) and
(X ′, ∂X ′) along the boundary is straightforward, given an isomorphism of
stratifolds ∂X ∼= ∂X ′. (The gluing is described in more detail in [Min04],
see also lemma 5.2 of the present paper.)

In [Ban02, chapter 4], we introduced the bordism groups ΩSD
∗ as fol-

lows: An element in ΩSD
n is represented by a triple (Xn,A•, d), where

Xn is an n-dimensional, closed, oriented, topological pseudomanifold and
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(A•, d) ∈ SD(X) is a self-dual sheaf on X. The admissible nullbordisms are
triples (Y n+1,B•, δ) where Y n+1 is an (n+1)-dimensional, compact, oriented

pseudomanifold-with-boundary, (B•, δ) ∈ SD(intY ), δ : DB•[n+1]
∼=
−→ B•.

Let i, j denote the inclusions i : intY →֒ Y, j : ∂Y →֒ Y. An application of
the functor j∗Ri∗ produces an induced isomorphism

j∗Ri∗(δ) : j∗Ri∗DB•[n+ 1]
∼=
−→ j∗Ri∗B

•.

We have the canonical isomorphisms

j∗Ri∗DB•[n+ 1] ∼= D(j!Ri!B
•)[n+ 1]

and
j∗Ri∗B

• ∼= j!Ri!B
•[1].

Hence δ induces a self-duality isomorphism d for j!Ri!B
• :

d : D(j!Ri!B
•)[n]

∼=
−→ j!Ri!B

•

We call d the boundary of δ and write (∂Y, j!Ri!B
•, d) = ∂(Y,B•, δ). The

resulting bordism group is denoted by ΩSD
n . The signature homomorphism

σ : ΩSD
4k −→ Z

is onto, since e.g. (CP 2k,RCP 2k [4k], d = orient) ∈ ΩSD
4k . However, contrary

for example to Witt bordism, σ is also injective: Suppose σ(X,A•, d) = 0.
Let Y 4k+1 be the closed cone on X. Define a self-dual sheaf on the interior
of the punctured cone by pulling back A• from X under the projection
from the interior of the punctured cone, X × (0, 1), to X. According to
the Postnikov system of theorem 3.1, the self-dual sheaf on the interior
of the punctured cone will have a self-dual extension in SD(intY ) if and
only if there exists a Lagrangian structure at the cone point (which has
odd codimension 4k + 1 in Y ). That Lagrangian structure exists because
σ(X,A•, d) = 0. Let (B•, δ) ∈ SD(intY ) be any self-dual extension given
by a choice of Lagrangian structure. Then ∂(Y,B•, δ) = (X,A•, d) and thus
[(X,A•, d)] = 0 ∈ ΩSD

4k . Clearly, ΩSD
n = 0 for n 6≡ 0(4). In summary, then,

one has

ΩSD
n
∼=

{
Z, n ≡ 0(4),

0, n 6≡ 0(4).

Minatta [Min04] takes this as his starting point and constructs a bordism
theory S∗(−), called signature homology, whose coefficients are

Sn(pt) ∼= ΩSD
n
∼=

{
Z, n ≡ 0(4)

0, n 6≡ 0(4)

which explains the nomenclature. Let us describe the construction of S∗(−).
Let X be a topological space. Elements of Sn(X) are represented by quadru-
ples

(S,S•, d, S
f
−→ X),

where
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• S is an n-dimensional, closed, oriented, locally conelike stratifold with
dense top stratum and Sn−1 = ∅ (i.e. no pure stratum of codimension
1),
• S• ∈ SD(S) is a constructible complex of sheaves on S with self-duality

isomorphism d : DS•[n] ∼= S•, and
• f : S → X is a continuous map.

Two such quadruples (S1,S
•
1, d1, f1) and (S2,S

•
2, d2, f2) are bordant if there

exists a quadruple

(T,T•, δ, T
F
−→ X),

where

• T is an (n+1)-dimensional, compact, oriented, locally conelike stratifold-
with-boundary whose interior has dense top stratum and (intT )n−1 =
∅,
• T• ∈ SD(intT ) is a constructible complex of sheaves on intT with

self-duality isomorphism δ : DT•[n+ 1] ∼= T•,
• F : T → X is a continuous map,
• ∂(T,T•, δ) ∼= (S1,S

•
1, d1) ⊔ (S2,S

•
2,−d2),

• near ∂T , T• is equipped with an isomorphism to the pullback of S•
1⊔S

•
2

under the retraction determined by the collar of ∂T in T .
• F |∂T = f1 ⊔ f2.

Let us describe signature homology at odd primes. Regard Z[12 ][t] as a
graded ring with deg(t) = 4, i.e.

(Z[12 ][t])n =

{
Z[12 ]〈tk〉, if n = 4k

0, if n 6≡ 0(4).

Let ΩSO
∗ (−) denote bordism of smooth, oriented manifolds. By ⊗ΩSO

∗
(pt)

we mean tensor product in the category of ΩSO
∗ (pt)-modules. The ring

homomorphism

τ : ΩSO
∗ (pt) −→ Z[12 ][t]
[M4k] 7→ σ(M)tk

induces an ΩSO
∗ (pt)-module structure on Z[12 ][t]. This homomorphism fac-

tors as

φ : ΩSO
∗ (pt) −→ S∗(pt)⊗Z Z[12 ]
[M ] 7→ [(M,RM [dimM ], orient,M → pt)]⊗ 1

followed by

η : S∗(pt)⊗Z Z[12 ] −→ Z[12 ][t]
[(S4k,S•, d, S → pt)]⊗ x 7→ xσ(S,S•, d)tk.

As explained above, η is an isomorphism (already integrally). Tensoring
with ΩSO

∗ (X) over ΩSO
∗ (pt), η induces an isomorphism

(9) η(X) : ΩSO
∗ (X)⊗ΩSO

∗
(pt) S∗(pt)⊗Z Z[12 ]

∼=
−→ ΩSO

∗ (X)⊗ΩSO
∗

(pt) Z[12 ][t].
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Here, we consider S∗(pt) ⊗Z Z[12 ] as an ΩSO
∗ (pt)-module via φ. Define a

natural homomorphism

ψ(X) : ΩSO
∗ (X)⊗ΩSO

∗ (pt) S∗(pt) −→ S∗(X)

by

[M
f
→ X]⊗ [(S,S•, d, S → pt)] 7→ [(M × S, π!

2S
•, π!

2d,M × S
f◦π1
−→ X)].

By the Landweber exact functor theorem (cf. [Lan76], example 3.4),

X 7→ ΩSO
∗ (X)⊗ΩSO

∗
(pt) Z[12 ][t]

is a homology theory. Thus (9) implies that

X 7→ ΩSO
∗ (X)⊗ΩSO

∗ (pt) S∗(pt)⊗Z Z[12 ]

is a homology theory. It follows that

ψ(X) ⊗ Z[12 ] : ΩSO
∗ (X)⊗ΩSO

∗
(pt) S∗(pt)⊗Z Z[12 ] −→ S∗(X)⊗Z Z[12 ]

is a natural transformation of homology theories. As ψ(pt) ⊗ Z[12 ] is an

isomorphism, ψ⊗Z[12 ] is an isomorphism of homology theories. Composing

the inverse of η(X) with ψ ⊗ Z[12 ] yields an isomorphism

ΩSO
∗ (−)⊗ΩSO

∗ (pt) Z[12 ][t]
∼=
−→ S∗(−)⊗Z Z[12 ].

This proves

Theorem 4.1. (Minatta.) There is an isomorphism of homology theories

ΩSO
∗ (−)⊗ΩSO

∗ (pt) Z[12 ][t]
∼=
−→ S∗(−)⊗Z Z[12 ]

Corollary 4.1. The natural map

κ(X) : ΩSO
∗ (X) ⊗Z Z[12 ][t] −→ S∗(X) ⊗Z Z[12 ]

[M
f
→ X]⊗ atl 7→ [(N,RN [d], orient, N →M

f
→ X)] ⊗ a,

where Nd = M × CP 2l, is surjective. Moreover, given an element x ⊗ a ∈
Sn(X) ⊗Z Z[12 ], there exists an element of the form

[Mn f
→ X]⊗

1

2K
∈ ΩSO

∗ (X) ⊗Z Z[12 ][t]

whose image under κ(X) is x⊗ a.

Proof. The stated map κ(X) makes the diagram

ΩSO
∗ (X)⊗Z Z[12 ][t]

κ(X)- S∗(X)⊗Z Z[12 ]

�
�

�
�

�

≃

�

ΩSO
∗ (X) ⊗ΩSO

∗
(pt) Z[12 ][t]

quotient

??
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commutative, since for [M
f
→ X]⊗ atl ∈ ΩSO

∗ (X) ⊗Z Z[12 ][t],

η(X)−1([f ]⊗ atl) = η(X)−1([f ]⊗ aσ(CP 2l)tl) = [f ]⊗ [CP 2l]⊗ a,

and

(ψ(X) ⊗ Z[12 ])([f ]⊗ [CP 2l]⊗ a) = [(N,RN [d], orient, N →M
f
→ X)]⊗ a

with N = M ×CP 2l. The surjectivity of κ follows. Given x⊗a ∈ Sn(X)⊗Z

Z[12 ], there exists an element

y =
∑

i

[Nki

i

gi
→ X]⊗ bit

li , bi ∈ Z[12 ], ki + 4li = n,

such that κ(X)(y) = x⊗ a. Setting Mn
i = Nki

i ×CP 2li , we have

κ(X)(
∑

i

[Mn
i → Nki

i

gi
→ X]⊗ bi) = κ(X)(y).

There exists a K ∈ Z such that bi = ai/2
K , ai ∈ Z, for all i. Then

∑

i

[Mn
i → X]⊗ bi = (

∑

i

ai[M
n
i → X]) ⊗

1

2K
.

This fact will be central to our proof of the twisted signature formula, as
it will allow us to pull back calculations on singular spaces to calculations
on nonsingular ones. The situation at odd primes is summarized in the
following commutative diagram:

ΩSO
∗ (X)⊗ΩSO

∗ (pt) Z[12 ][t]
≃

Sullivan,
Conner–Floyd

- ko∗(X) ⊗Z Z[12 ]

@
@

@
@

@

≃
Minatta

R �
�

�
�

�
≃

�

S∗(X)⊗Z Z[12 ]

�
�

�
�

�

natural

�� I@
@

@
@

@

≃

ΩSO
∗ (X) ⊗Z Z[12 ][t]

66

natural
-- ΩWitt

∗ (X)⊗Z Z[12 ]

Siegel ≃

6

5. Piecewise Linear Signature Homology

Definition 5.1. Let X be an n-dimensional PL-pseudomanifold triangu-
lated by a simplicial complex K. The simplicial stratification on X induced
by K is given by the filtration

|Kn| = X ⊃ |Kn−2| ⊃ · · · ⊃ |K0|,

where |Ki| is the underlying polyhedron of the i-skeleton of K, i.e. the union
of all i-dimensional simplices of K. The notation XK will make explicit that
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we wish to consider X as equipped with the simplicial stratification induced
by K. Thus the top stratum X − |Kn−2| is the union of the interiors of all
n- and (n− 1)-simplices of K. More generally, the stratification XK can be
defined similarly if K is only a cell complex (in the sense of [RS72], chapter
2; a cell is by definition a compact, convex polyhedron). In this paper, all
simplicial complexes will be understood to be locally finite.

Lemma 5.1. If Xn is a PL-pseudomanifold which is the underlying poly-
hedron of a cell complex K, then SD(XK) ⊂ SD(XK ′) for any cellular
subdivision K ′ of K (that is, each cell of K ′ is contained in a cell of K).

Proof. Let S• ∈ SD(XK). We have to check that S• is constructible with
respect to the stratification XK ′ and that it satisfies (SD1) – (SD4) of
definition 3.1 with respect to XK ′ . Set

Di = |Ki| − |Ki−1|, Uk = |K| − |Kn−k|,
D′
i = |K ′

i| − |K
′
i−1|, U ′

k = |K ′| − |K ′
n−k|.

As for constructibility, we have to show that the cohomology sheaves
H∗(S•)|D′

i
are locally constant. Since D′

i is a disjoint union of interiors of i-
cells, it suffices to show that the cohomology sheaves are locally constant on
such an interior intC ′, with C ′ an i-cell ofK ′. There exists a cell C ∈ K such
that intC ′ ⊂ intC. As S• is constructible with respect to K, we know that
H∗(S•)|intC is locally constant (hence constant since intC is contractible).
In particular, H∗(S•)|intC′ is constant as the restriction of a constant sheaf.

(SD1): Let x be a point in the top stratum U ′
2 = D′

n ∪ D
′
n−1 of X ′

K .
Then x lies in the interior of an n- or (n − 1)-cell of K ′. That interior is
contained in the interior of some n- or (n−1)-cell of K. Thus x ∈ Dn∪Dn−1,
which is the top stratum U2 of XK . The axiom (SD1) for XK furnishes an
isomorphism

S•|U2
∼= H−n(S•)[n]|U2

which yields the desired isomorphism by restriction from U2 to U ′
2.

(SD2): The statement Hj(S•) = 0 for j < −n is independent of any
choice of stratification.

(SD3): We must demonstrate that

Hj(S•|U ′

k+1
) = 0, if j > n̄(k)− n,

for all k ≥ 1 (where we set n̄(1) = 0). We proceed by induction on k. For
k = 1, the statement on U ′

2 follows from (SD1). Suppose we know that

Hj(S•|U ′

k
) = 0, if j > n̄(k − 1)− n.

Let x ∈ U ′
k+1 = U ′

k∪D
′
n−k. If x ∈ U

′
k then Hj(S•)x = 0 for j > n̄(k−1)−n by

our induction hypothesis, so in particular the stalk vanishes for j > n̄(k)−n,
since n̄(k−1) ≤ n̄(k). Assume x ∈ D′

n−k, say x ∈ intC ′
n−k ⊂ intCn−c, where

C ′
n−k is an (n − k)-cell of K ′ and Cn−c is an (n − c)-cell of K, c ≤ k. It

follows that x ∈ |K|−|Kn−c−1| = Uc+1, so that Hj(S•)x = 0 for j > n̄(c)−n
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by (SD3) for XK . In particular Hj(S•)x = 0 for j > n̄(k) − n, as c ≤ k
implies n̄(c) ≤ n̄(k).

(SD4): If Y is any topological pseudomanifold, then the dualizing com-
plex D•

Y is constructible with respect to any topological stratification of Y .
Thus D•

X is constructible with respect to XK as well as XK ′ . Consequently,
the dual

DS• = RHom•(S•,D•
X)

is constructible with respect to both XK and XK ′ , and the isomorphism
DS•[n] ∼= S• in SD(XK) given by axiom (SD4) may be regarded as an
isomorphism in SD(XK ′).

Corollary 5.1. The signature is a PL-invariant for PL-pseudomanifolds
X such that SD(XK) 6= ∅ for some triangulating complex K in the PL-
structure of X.

Proof. Suppose Y is a PL-pseudomanifold and f : X
∼=
−→ Y is a PL-

homeomorphism. As Y is PL, there exists a simplicial complex L with
Y = |L|. Then there exist subdivisions K ′, L′ of K,L, respectively, such
that f : |K ′| → |L′| is simplicial. Choose a self-dual sheaf X• ∈ SD(XK).
By lemma 5.1, X• ∈ SD(XK ′). Since f is a simplicial isomorphism, we
have Rf∗X

• ∈ SD(YL′). This shows that if σ(X) is defined and X is PL-
homeomorphic to Y , then σ(Y ) is defined also. Now let Y• ∈ SD(YL)
be any sheaf; we have to show that σ(X•) = σ(Y•). Again using lemma
5.1, Y• ∈ SD(YL′), so that both Rf∗X

• and Y• are self-dual sheaves con-
structible with respect to the same stratification of Y . Theorem 3.2 asserts
that

σ(X•) = σ(f∗X
•) = σ(Y•).

The following is lemma 3.30 of [Min04], where a detailed proof can be
found.

Lemma 5.2. (Gluing Lemma.) Let X be a topological stratified pseudo-
manifold, and let U, V ⊂ X be open subsets with X = U ∪ V and W =
U ∩ V 6= ∅. Given sheaves U

• ∈ SD(U), V
• ∈ SD(V ) and an isomor-

phism φ : U
•|W

∼=
−→ V

•|W , there exists, uniquely up to isomorphism,

a sheaf X
• ∈ SD(X) together with isomorphisms ψU : X

•|U
∼=
−→ U

•,

ψV : X•|V
∼=
−→ V

•, such that the diagram

X
•|W

	�
�

�
�

�
ψU |W

@
@

@
@

@

ψV |W

R
U

•|W
φ - V

•|W

commutes.
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Let X be a topological space. In order to define PL signature homology
SPLn (X), we describe first the class of objects that will represent elements
in this theory.

Definition 5.2. An admissible PL-representative is a quadruple

(S,K,S•, S
f
−→ X),

where:

• S is an n-dimensional, closed, oriented PL pseudomanifold.
• K is a simplicial complex triangulating S.
• S• ∈ SD(SK) is a self-dual complex of sheaves on S (the self-duality

isomorphism will be suppressed in the notation), constructible with
respect to the simplicial stratification on S induced by K.
• f : S → X is a continuous map.

Definition 5.3. An admissible PL-nullbordism for an admissible PL-repre-
sentative (S,K,S•, f) is a quadruple

(T,L,T•, T
F
−→ X),

subject to the following requirements:

• T is a compact polyhedron containing S as a subpolyhedron.
• L is a simplicial complex triangulating T .
• K ⊂ L is a subcomplex triangulating S.
• The complement T −S is an oriented, (n+1)-dimensional pseudoman-

ifold.
• S is collared in T , i.e. there exists a closed, polyhedral neighborhood
N of S in T and an orientation preserving PL isomorphism

c : S × I
∼=
−→ N

such that c(s, 0) = s for all s ∈ S. We will use the notation ∂T = S,
intT = T − S.
• T• ∈ SD(intTL), i.e. T• is a self-dual sheaf on the interior of T ,

constructible with respect to the simplicial stratification induced on
intT by L.
• Let U be the open subset U = c(S × (0, 1)) ⊂ T and let c| denote the

restriction c| : S × (0, 1)
∼=
−→ U ⊂ intT . The simplicial stratification

on T induces by restriction a stratification of U . The simplicial strat-
ification on S induces the product stratification on S × (0, 1). Then c|
is in general not stratum preserving. We require:
1. c|∗(T•|U ) is constructible on S× (0, 1) with respect to the product

stratification, and
2. there is an isomorphism

c|∗(T•|U ) ∼= π!S•,

where π : S × (0, 1) → S is the projection.
• F : T → X is a continuous map such that F |S = f .
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Two admissible PL-representatives (S1,K1,S
•
1, f1) and (S2,K2,S

•
2, f2) are

bordant if there exists an admissible PL-nullbordism for (S1,K1,S
•
1, f1) ⊔

(−S2,K2,S
•
2, f2). To see that this relation of bordism is an equivalence

relation, we need only elaborate on transitivity.

Lemma 5.3. The bordism relation on admissible PL-representatives is tran-
sitive.

Proof. It suffices to describe how one can glue two admissible PL-nullbordisms

for the same admissible PL-representative. Thus let (Ti, Li,T
•
i , Ti

Fi−→
X), i = 1, 2, be two admissible PL-nullbordisms for the admissible PL-

representative (S,K,S•, S
f
−→ X). Throughout this argument, the symbol

π will always denote projection to S. Let ci : S × I
∼=
−→ Ni, ci(s, 0) = s, be

the associated collars such that

(10) c1|
∗(T•

1|U1
) ∼= π!S•,

(11) c2|
∗(T•

2|U2
) ∼= π!S•,

where the ci| are the restrictions ci| : S × (0, 1)
∼=
−→ Ui = ci(S × (0, 1)). On

the disjoint union T1 ⊔ S × [−1, 1], let ∼1 denote the identification (s, t) ∼1

c1(s,−t) for t ∈ [−1, 0]. Similarly, ∼2 on S× [−1, 1]⊔T2 is the identification
(s, t) ∼2 c2(s, t) for t ∈ [0, 1]. Using these identifications, we form the
polyhedron

W = T1 ∪∼1
S × [−1, 1] ∪∼2

T2,

which is triangulated by the simplicial complex L1 ∪K L2. From T•
1 ∈

SD(intT1) and T•
2 ∈ SD(intT2), we shall construct a sheaf W• ∈ SD(W )

by applying the gluing lemma 5.2 twice. Let U, V ⊂W be the open subsets
U = intT1, V = S × (−1, 1), so that U ∩ V = S × (−1, 0) ⊂ W . If we
take U• = T•

1 ∈ SD(U) and V• = π!S• ∈ SD(V ), then (10) induces an
isomorphism U•|U∩V

∼= V•|U∩V and the gluing lemma implies that there
exists a unique sheaf W•

<1 ∈ SD(U ∪ V ), U ∪ V = T1 ∪∼1
S × (−1, 1), such

that W•
<1|intT1

∼= T•
1, W•

<1|S×(−1,1)
∼= π!S•. Now consider the following

open cover of W : U = T1 ∪∼1
S × (−1, 1), V = intT2, so that U ∩ V =

S × (0, 1) ⊂ W . Taking U• = W•
<1 ∈ SD(U) and V• = T•

2 ∈ SD(V ), (11)

induces an isomorphism V•|U∩V
∼= π!S• ∼= W•

<1|U∩V and the gluing lemma
implies that there exists a unique sheaf W• ∈ SD(U ∪V ), U ∪V = W , such
that W•|U ∼= W•

<1, W
•|V ∼= T•

2. Let F : W → X be the map

F (w) =

{
F1(w), w ∈ T1,

F2(w), w ∈ T2.

(If w ∈ T1 ∩ T2 = S, then F1(w) = f(w) = F2(w).) The quadruple
(W,L1 ∪K L2,W

•, F ) is an admissible PL-representative obtained by glu-

ing the (Ti, Li,T
•
i , Ti

Fi−→ X), i = 1, 2, along their common boundary

(S,K,S•, S
f
−→ X).
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Definition 5.4. Piecewise linear signature homology SPLn (X) is the set of
equivalence classes

SPLn (X) = {[(S,K,S•, f)] | (S,K,S•, f) admissible PL-representative}

under the bordism relation2. Disjoint union defines an abelian group struc-
ture on SPLn (X).

A continuous map g : X → X ′ induces a map

SPLn (g) : SPLn (X) −→ SPLn (X ′)

by

SPLn (g)[(S,K,S•, f)] = [(S,K,S•, gf)].

Clearly SPLn (1X) = 1SPL
n (X) and SPLn (hg) = SPLn (h)SPLn (g).

Let TOP denote the category of topological spaces and continuous maps.
Let AB denote the category of abelian groups and homomorphisms. Thus
SPL∗ is a functor SPL∗ : TOP → AB. The technical appendix (section 9)
establishes that SPL∗ is a homology theory on compact PL pairs.

Proposition 5.1. The coefficients of piecewise linear signature homology
are

SPLn (pt) ∼=

{
Z, n ≡ 0(4)

0, n 6≡ 0(4)

Proof. The argument given in section 4 can readily be restated in the PL
category: The generators CP 2k have a PL structure, and the cone construc-
tion works piecewise linearly as well.

Theorem 5.1. There is a natural isomorphism

Θ : SPL∗ (X,A)
∼=
−→ S∗(X,A)

for compact, triangulable pairs (X,A).

Proof. Define a coefficient homomorphism

Θ : SPLn (pt) −→ Sn(pt)

by

Θ[(S,K,S•, S → pt)] = [(SK ,S
•, d, SK → pt)]

(recall that SK denotes the space S stratified by the skeleta of K, cf. def-
inition 5.1). This assignment is well defined, since SK is indeed a locally
conelike topological stratifold: as the i-dimensional strats we may take the
closed i-simplices of K together with their attaching maps into S. When n

2As is done in [Min04], the construction of a small subclass SD0(SK) ⊂ SD(SK) shows
that S

PL
n (X) is indeed a set.
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is not divisible by 4, both SPLn (pt) and Sn(pt) are the trivial group, and Θ
is an isomorphism. When n = 4k, the diagram

SPLn (pt)
Θ - Sn(pt)

@
@

@
@

@

∼=
σ

R 	�
�

�
�

�
∼=
σ

Z

commutes, whence Θ is an isomorphism for all n. By the Eilenberg-Steenrod
uniqueness theorem, Θ has a unique extension to a natural isomorphism

Θ : SPL∗ (X,A)
∼=
−→ S∗(X,A).

This extension is of course explicitly given by

Θ[(S,K,S•, S → X ∪ cA)] = [(SK ,S
•, d, SK → X ∪ cA)].

Let us define a natural surjective map

κPL(X) : ΩSO
∗ (X) ⊗Z Z[12 ][t] −→ SPL∗ (X) ⊗Z Z[12 ].

Given an element [M
f
→ X]⊗ atl ∈ ΩSO

∗ (X)⊗Z Z[12 ][t], set Nd = M ×CP 2l.
By J. H. C. Whitehead [Whi40], N can be smoothly triangulated by a
simplicial complex K. Define

κPL(X)([M
f
→ X]⊗ atl) = [(N,K,RN [d], N →M

f
→ X)]⊗ a.

To see that κPL(X) is well-defined, let K ′ be another simplicial complex
smoothly triangulating N . Then the uniqueness result of [Whi40] asserts
that the two triangulations are combinatorially equivalent, i.e. K has a
subdivisionK∗ andK ′ has a subdivisionK ′

∗ such thatK∗ andK ′
∗ are linearly

isomorphic. The cylinder N × [0, 1] has a triangulation by a complex K+

which restricts to K on N×{1} and K∗ on N×{0}. The cylinder N×[−1, 0]
has a triangulation by a complex K− which restricts to K ′ on N × {−1}
and K ′

∗ on N × {0}. Then

N × [−1, 1] = (N × [−1, 0],K−) ∪(N×{0},K∗
∼=K ′

∗
) (N × [0, 1],K+),

together with the self-dual sheaf RN×(−1,1)[d+ 1] and the composition N ×
[−1, 1]→ N → X, is an admissible PL-bordism from (N,K,RN [d], N → X)
to (N,K ′,RN [d], N → X), and κPL(X) is well-defined. The diagram

ΩSO
∗ (X)⊗Z Z[12 ][t]

κ(X)-- S∗(X)⊗Z Z[12 ]

@
@

@
@

@
κPL(X)

R
SPL∗ (X) ⊗Z Z[12 ]

∼= Θ⊗Z[
1
2 ]

6
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commutes, since in topological signature homology, N regarded as a strat-
ifold with one stratum is bordant to N regarded as a stratifold with the
simplicial stratification induced by a triangulation. Consequently, κPL(X)
is onto.

6. The Twisted Signature Formula

We start out by proving a very special case of the general twisted signature
formula:

Lemma 6.1. Let Xn be a closed, oriented, topological, stratified pseudo-
manifold such that SD(X; R) 6= ∅. Let (Rr

X , φ) be an untwisted Poincaré
local system with pairing φ : Rr

X ⊗ Rr
X → RX . Then

σ(X; (Rr
X , φ)) = σ(φpt)σ(X).

Proof. The symmetric, bilinear, nondegenerate form φ can be diagonalized,
i.e. there exists a linear isomorphism γ : Rr

X → Rr
X such that the composi-

tion ψ,

Rr
X ⊗ Rr

X

ψ- RX

�
�

�
�

�

φ

�

Rr
X ⊗ Rr

X

γ⊗γ ∼=

?

is given at any point by the matrix




+1

. . .

+1
−1

. . .

−1




in the standard basis of Rr. In other words,

(Rr
X , ψ) =

P⊕
(RX , 1) ⊕

N⊕
(RX ,−1),

where P is the number of positive entries, N the number of negative entries,
and 1 : RX ⊗ RX → RX denotes the form v ⊗ w 7→ vw. By assump-
tion, SD(X; (R, 1)) is not empty and we can choose an object (S•

0, d0) ∈
SD(X; (R, 1)). Then the sheaf

(S•, dS) =

P⊕
(S•

0, d0)⊕

N⊕
(S•

0,−d0) ∈ SD(X; (Rr
X , ψ))
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is a self-dual extension of (Rr
X , ψ). By lemma 3.1, there exists a self-dual

extension (T•, dT ) ∈ SD(X; (Rr
X , φ)) of (Rr

X , φ) and

σ(X; (Rr
X , φ)) = σ(X; (Rr

X , ψ))
= σ(S•, dS)

=
∑P σ(S•

0, d0)−
∑N σ(S•

0, d0)
= (P −N)σ(S•

0, d0)
= σ(φpt)σ(X).

Proposition 6.1. Let Xn be a triangulated, oriented pseudomanifold with-
out boundary equipped with the simplicial stratification3. Let (S, φ) be a
Poincaré local system on X−Σ, strongly transverse to Σ. If SD(X; R) 6= ∅,
then SD(X;S) 6= ∅.

Proof. Choose any self-dual sheaf T• ∈ SD(X; R) with constant coefficients
on X − Σ. The idea of the proof is to use the Lagrangian structures com-
ing from T• (theorem 3.1) to build Lagrangian structures for an object
S• ∈ SD(X;S). The two central provisions that will make this work are
that S is constant on links, and that the Lagrangian sheaves are constant
as well, as they are locally constant sheaves over contractible spaces (open
simplices). Indeed, this is the very reason for our introduction of PL signa-
ture homology in this paper. If one attempts to use topological signature
homology, then monodromy issues for the existence of Lagrangian structures
will arise, whose discussion we can avoid completely by using PL signature
homology.

Let Uk = X − Xn−k, ik : Uk →֒ Uk+1, k ≥ 2, where Xn ⊃ Xn−2 ⊃
Xn−3 ⊃ . . . ⊃ X0 ⊃ X−1 = ∅ is the simplicial stratification of X. The pure
strata Xn−k − Xn−k−1 = Uk+1 − Uk are a disjoint union of open (n − k)-
simplices. We shall construct S• ∈ SD(X;S) in stages by induction on k. Set
S•

2 = S[n] on U2 = X −Σ. Inductively, we will construct S•
k ∈ SD(Uk;S) so

that S• = S•
n+1 ∈ SD(X;S), X = Un+1. Assume S•

k ∈ SD(Uk;S) has been
constructed. If k is even, then Uk+1 −Uk is a stratum of even codimension,
and thus the Goresky-MacPherson-Deligne extension

S•
k+1 = τ≤m̄(k)−nRik∗S

•
k

is a self-dual sheaf in SD(Uk+1;S). Let k be odd. According to theorem 3.1,
there is an equivalence of categories

(12) SD(Uk+1;S) ≃ Lag(Uk+1 − Uk) ⋊ SD(Uk;S).

Consequently, we must construct an object in Lag(Uk+1 − Uk). Let
◦
∆ ⊂

Uk+1 − Uk be an open (n − k)-simplex, and let x ∈
◦
∆. We denote the

3If X is noncompact, then this is to be interpreted as follows: X is the interior of a
compact, triangulated, oriented pseudomanifold-with-boundary Y and the stratification
of X is the restriction of the simplicial stratification of Y .
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inclusion of the link of
◦
∆ at x into Uk by j : Lk(x) →֒ Uk. As S is strongly

transverse to Σ, we have

S•
k|Lk(x)−Σ

∼= (S, φ)[n]|Lk(x)−Σ
∼= (Rr

Lk(x)−Σ[n], φ|),

where r is the rank of S. The signature σ(Lk(x);S) can be evaluated with
the help of lemma 6.1:

σ(Lk(x);S) = σ(Lk(x); (Rr
Lk(x)−Σ, φ|))

= σ(φpt)σ(Lk(x); R)
= σ(φpt)σ(j!T•)
= σ(φpt) · 0
= 0.

The term σ(j!T•) vanishes, because T• possesses a Lagrangian structure
along Uk+1 − Uk. Letting H denote the derived sheaf

H = Hn̄(k)−n(Rik∗S
•
k),

we conclude that there exists a Lagrangian subspace in the stalk Hx (which
is isomorphic to the middle dimensional hypercohomology of Lk(x) with

coefficients in S•
k). Since the restriction of H to

◦
∆ is constant, the La-

grangian subspace extends uniquely to a Lagrangian subsheaf of H|
◦
∆. Car-

rying this out for every connected component
◦
∆ of Uk+1 − Uk produces an

object in Lag(Uk+1 − Uk), which in turn, by (12), determines an object
S•
k+1 ∈ SD(Uk+1).

Theorem 6.1. Let Xn be a closed, oriented, Whitney stratified, normal
pseudomanifold of even dimension with singular set Σ, and let (S, φ) be
a Poincaré local system on X − Σ, strongly transverse to Σ. Assume that
L(X) ∈ H2∗(X; Q) is defined. Then

σ(X;S) = 〈c̃h[S]K , L(X)〉.

Proof. First of all, the hypotheses of the theorem imply that the left hand
side, σ(X;S), is indeed defined: By Goresky [Gor78], X can be triangulated
by a simplicial complex K such that the Whitney strata are triangulated by
subcomplexes and the Whitney filtration of X defines a PL stratification of
X. If XWhitney denotes X equipped with the given Whitney stratification
and XK denotes X equipped with the simplicial stratification induced by
K, then, by an obvious variant of lemma 5.1, we have SD(XWhitney) ⊂
SD(XK). The L-class L(X) is the L-class of some self-dual sheaf S• ∈
SD(XWhitney; R), L(X) = L(S•). Regarding this sheaf as an object S• ∈
SD(XK ; R), we can invoke proposition 6.1 to see that SD(XK ;S) 6= ∅.
Choose a sheaf S•

twist ∈ SD(XK ;S). Then

σ(X;S) = σ(S•
twist),

and this is independent of the choice of S•
twist by theorem 3.2. As S is

strongly transverse to Σ, there exists a unique extension S of S to all of X
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(proposition 2.1).

The argument that we will use to establish the equation σ(X;S) = 〈c̃h[S]K ,
L(X)〉 consists of the following three steps:

1. The verification that assigning to a quadruple (S,C,S•, S
f
−→ X) (rep-

resenting an element of SPLn (X); in particular C is a simplicial complex
triangulating S) the integer

〈c̃h[f∗S]K , L(S)〉

is a bordism invariant on the bordism group SPLn (X).

2. The verification that assigning to a quadruple (S,C,S•, S
f
−→ X) the

signature

σ(S; f∗S)

is a bordism invariant on SPLn (X). Again, σ(S; f∗S) is defined as the
signature of any complex of sheaves in SD(S; f∗S), which is nonempty
since S• ∈ SD(S; R), using proposition 6.1.

3. The facts that PL signature homology and topological signature homol-
ogy are isomorphic (theorem 5.1) and that at odd primes, by corollary
4.1, every element of topological signature homology can be repre-
sented by a smooth manifold will allow us to pull the calculation back
to manifolds, where the formula holds according to Atiyah [Ati69] and
W. Meyer [Mey72].

Let us carry these steps out:

1. Let (T n+1, L,T•, T
F
−→ X) be an admissible PL-nullbordism for (S, C,

S•, S
f
−→ X), ∂T = S, T• ∈ SD(intTL; R), S• ∈ SD(SC ; R), F |∂T = f.

Let j : ∂T →֒ T be the inclusion, so that F ◦ j = f . Using naturality of the
Chern classes, we have

〈c̃h[f∗S]K , L(S)〉 = 〈c̃h[j∗F ∗S]K , L(S)〉

= 〈j∗c̃h[F ∗S]K , L(S)〉

= 〈c̃h[F ∗S]K , j∗L(∂T )〉

= 〈c̃h[F ∗S]K , j∗∂∗L(T )〉
= 0.

Here, ∂∗ is the connecting homomorphism in the long exact homology se-
quence of the pair (T, ∂T ). The identity ∂∗L(T ) = L(∂T ) was established
in proposition 3.1.

2. Suppose again that ∂(T n+1, L,T•, T
F
−→ X) = (S,C,S•, S

f
−→ X).

By proposition 6.1, SD(intTL; (F ∗S)|intT ) 6= ∅, since T• ∈ SD(intTL; R).
Choose a sheaf T•

twist ∈ SD(intTL; (F ∗S)intT ). Setting

S•
twist = j!Ri!T

•
twist
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j : ∂T →֒ T, i : intT →֒ T, defines an object in SD(S; f∗S). By theorem
3.2, this object can be used to calculate the twisted signature,

σ(S; f∗S) = σ(S•
twist).

But
σ(S•

twist) = σ(∂T•
twist) = 0

by [Ban02], corollary 4.1.

3. Consider the element

[(X,K,S•,X
id
−→ X)] ⊗ 1 ∈ SPLn (X)⊗ Z[12 ],

where K is the simplicial complex provided by [Gor78]. In section 5, we
constructed a surjection

κPL(X) : ΩSO
∗ (X)⊗Z Z[12 ][t] -- SPL∗ (X)⊗Z Z[12 ].

The surjectivity, together with the normal form of corollary 4.1, implies
that there exists a smoothly triangulated manifold Mn, a continuous map
f : M → X, and a nonzero integer k such that

k · [(X,K,S•,X
id
−→ X)] = [(M,L,RM [n],M

f
−→ X)] ∈ SPLn (X).

Thus

kσ(X;S) = σ(M ; f∗S) (bordism invariance, step 2.)

= 〈c̃h[f∗S̄]K , L(M)〉 (by Atiyah/Meyer)

= k〈c̃h[S]K , L(X)〉 (bordism invariance, step 1.)

7. The Twisted L-Class Formula

Theorem 7.1. Let Xn be a closed, oriented, Whitney stratified, normal
pseudomanifold of even dimension with singular set Σ, and let (S, φ) be
a Poincaré local system on X − Σ, strongly transverse to Σ. Assume that
L(X) ∈ H2∗(X; Q) is defined. Then

L(X;S) = c̃h[S]K ∩ L(X).

Proof. As in the proof of theorem 6.1, we see that L(X;S) is in fact defined:
L(X;S) = L(S•

twist), S•
twist ∈ SD(XK ;S), where K is a simplicial complex

triangulating X compatibly with the Whitney stratification. By the Thom-
Pontrjagin construction of the L-class, reviewed in section 3, it suffices to
show that

〈f∗(u), Lk(X;S)〉 = 〈f∗(u), (c̃h[S]K ∩ L(X))k〉,

for any map f : X → Sk transverse regular to p ∈ Sk, where u ∈ Hk(Sk) is
the generator such that 〈u, [Sk]〉 = 1. Set F = f−1(p) and let if : F →֒ X
be the normally nonsingular inclusion. The following calculation establishes
the claim:
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〈f∗(u), (c̃h[S]K ∩ L(X))k〉 =
∑

l≥0〈f
∗(u), c̃h2l[S]K ∩ L2l+k(X)〉

=
∑
〈c̃h2l[S]K , f

∗(u) ∩ L2l+k(X)〉

=
∑
〈c̃h2l[S]K , if∗L2l(F )〉 (by lemma 3.3)

=
∑
〈c̃h2l[S|F ]K , L2l(F )〉 (naturality of c̃h)

= σ(F ;S) (by theorem 6.1)
= σ(i!fS

•
twist) (by definition)

= 〈f∗(u), Lk(X;S)〉 (by construction of L(X;S)).

8. An Example

We illustrate the use of theorem 6.1 with a simple example from the area
of transformation groups. The space Y to be discussed will exhibit the
following features:

• Y is a closed, oriented, Whitney stratified pseudomanifold which has
only strata of even codimension.
• A compact Lie group G acts on Y .
• The action is compatible with the stratification in the sense that the

orbit bundles coincide with the pure strata of Y . The action restricted
to the pure strata is smooth.
• The orbit space X = Y/G is a closed, oriented, Whitney stratified

pseudomanifold which is not a Witt space.

Our goal is to calculate the signature σ(Y ) from data on the orbit space X.
Let N be an even-dimensional, compact, oriented manifold whose boundary
∂N = E fibers over an odd-dimensional manifold K with simply connected
manifold fiber L, whose middle-dimensional cohomology is nontrivial but
σ(L) = 0. Let πE : E → K be the projection. Let G be a compact Lie group

whose dimension is divisible by 4 and which fibers as G1 −→ G
πG−→ G2,

where G1, G2 are compact Lie groups, both odd dimensional, and πG is
a group homomorphism. For instance, one could take S3 ∼= SU(2) −→

U(2)
det
−→ S1. Let M be the total space of a principal G-bundle p : M → N

whose restriction to the boundary is a product, ∂M = E×G. The manifold
M has even dimension and its boundary ∂M = E ×G fibers over K ×G2

with projection πE × πG. Setting

Y = M ∪∂M cyl(πE × πG),

where cyl(−) denotes the mapping cylinder, we obtain a Whitney stratified
pseudomanifold with two strata and singular set ΣY = K × G2 of even
dimension. The group G acts on Y as follows: The action on M is specified
by the principal bundle structure. Restricted to ∂M , this action is g·(n, h) =
(n, gh), g ∈ G. On ΣY let g act by g · (k, h2) = (k, πG(g)h2). Then G acts
on the cylinder ∂M × I by g · (x, t) = (g · x, t) and this defines an action
on the mapping cylinder, since πE ×πG is a G-equivariant map. The action
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has precisely two orbit types. The orbit space is

X = Y/G = N ∪∂N=E cyl(πE),

a closed, oriented, Whitney stratified pseudomanifold of even dimension
which is not a Witt space, since the singular stratum ΣX = K has odd
codimension in X, and the link L has nonvanishing middle cohomology.
For the characteristic class formulae to be applicable to the orbit space,
it must possess (generalized) Poincaré duality, i.e. we need SD(X) 6= ∅.
According to theorem 3.1, this is the case precisely when there exists a
Lagrangian subspace in the middle-dimensional cohomology of L which is
invariant under the monodromy action of π1(K) induced by πE . Assume
then that such an invariant Lagrangian subspace exists; this is of course
automatic if K is simply connected, or more generally, if the monodromy
action is trivial. Consequently, L(X) is defined. The orbit projection f :
Y → X is a stratified map. By the results of [Ban03], cf. equation (3) of
the introduction,

f∗L(Y ) = L(X;S),

where the Poincaré local system S is given on the top stratum of X and has
as stalks the middle-dimensional cohomology of G. In particular σ(Y ) =
σ(X;S). Since the link L of ΣX is simply connected, S is strongly transverse
to ΣX . Thus theorem 6.1 applies to yield

σ(Y ) = 〈c̃h[S]K , L(X)〉.

As G is a parallelizable manifold, we have c̃h0[S]K = σ(G) = 0 by the
Hirzebruch signature theorem. Hence,

σ(Y ) = 〈c̃h2[S]K , L2(X)〉 + 〈c̃h4[S]K , L4(X)〉 + . . . .

If the principal bundle p : M → N is trivial, then all Chern components
vanish and it follows that σ(Y ) = 0. In fact σ(Y ) = 0 even if this principal
bundle is not trivial, provided G is connected. Indeed, let γ : N → BG be
the classifying map so that we have the pullback square

M
Γ - EG

N

p

?
γ - BG

q

?

For any complex of sheaves A• ∈ D(EG), the identity

Rp∗Γ
∗A• ∼= γ∗Rq∗A

•

holds. The local system S can be written as the higher direct image S =
Hm(Rp∗RM ), where 2m = dimG. Thus S is the pullback of a local system
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over BG:
S = Hm(Rp∗RM)

= Hm(Rp∗Γ
∗REG)

∼= Hm(γ∗Rq∗REG)
∼= γ∗Hm(Rq∗REG).

If G is connected, then BG is simply connected. Hence the local system
Hm(Rq∗REG) over BG is constant. Consequently S is constant as the pull-

back of a constant coefficient system, and all c̃hi[S]K vanish.

9. Appendix: The Eilenberg-Steenrod Axioms for SPL∗

We will show that SPL
∗ is a homology theory on compact PL pairs, proceeding as

follows: First, we verify that it is a homotopy functor (i.e. it satisfies the Eilenberg-
Steenrod homotopy axiom), second, we construct a Mayer-Vietoris sequence (for
certain triads), third, we prove that any homotopy functor with Mayer-Vietoris
sequences is a homology theory. The interesting aspect is the construction of the
Mayer-Vietoris boundary operator, where we have been guided by [Kre03]. Our
proof of theorem 9.1 below is not only a piecewise linear version of the smooth
constructions and arguments of [Kre03], but in addition we have to ensure that all
constructions can be covered by constructible, self-dual complexes of sheaves. Thus
the sheaf data is tracked rather carefully during the course of the proof.

Let h∗ : TOP→ AB be a functor. This is the formulation of the Mayer-Vietoris
sequence that we will work with:

Axiom (MV). Let X be a space triangulated by a simplicial complex K. Let
U, V ⊂ X be open subsets which are both complements of subcomplexes of K and
such that U ∪ V = X . Then there exists a boundary operator

∂∗ : h∗(X) −→ h∗−1(U ∩ V )

which is natural with respect to simplicial maps respecting the open covers and
such that the sequence

· · · → hi(U ∩ V )
i∗⊕j∗
−→ hi(U)⊕ hi(V )

k∗−l∗−→ hi(X)
∂∗−→ hi−1(U ∩ V )→ · · ·

is exact, where

U ∩ V
i - U

V

j

?
l - X

k

?

are the inclusions.

Lemma 9.1. (Cylinder lemma.) Let K and L be simplicial complexes such that

1. |L| = |K| × [0, 1],
2. L ∩ (|K| × {0}) = K = L ∩ (|K| × {1}),
3. L has no vertices in |K| × (0, 1), and
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4. if {v1, . . . , vk} spans a simplex in L, then {proj(v1), . . . ,proj(vk)} spans a
simplex in K, where proj : |K| × [0, 1]→ |K| is the first factor projection.

Suppose ρ : L → [−1, 1] is a simplicial map (where [−1, 1] has been triangulated
arbitrarily) such that ρ(v, 0) = ρ(v, 1) for all vertices v ∈ K. Then ρ−1(0) is a
cylinder, i.e.

ρ−1(0) = ρ−1
0 (0)× [0, 1],

where ρ0 = ρ| : K = K × {0} → [−1, 1].

Proof. A point p ∈ |L| is of the form p = (x, t), x ∈ |K|, t ∈ [0, 1]. There exists
a unique simplex ∆ ∈ L such that p ∈ int∆. That simplex is spanned by vertices
(v1, 0), . . . , (vk, 0), (vk+1, 1), . . . , (vl, 1), where v1, . . . , vk, vk+1, . . . , vl are vertices of
K. With respect to ∆, p can be expressed as a linear combination

p =

k∑

i=1

λi(vi, 0) +

l∑

j=k+1

λj(vj , 1).

Consequently,

x =

k∑

i=1

λivi +

l∑

j=k+1

λjvj , t =

l∑

j=k+1

λj .

By hypothesis, {v1, . . . , vk, vk+1, . . . , vl} spans a simplex of K. Thus ρ0 behaves
linearly over that span,

ρ0(x) =
∑

λiρ0(vi) +
∑

λjρ0(vj).

The calculation
ρ(p) =

∑
λiρ(vi, 0) +

∑
λjρ(vj , 1)

=
∑
λiρ(vi, 0) +

∑
λjρ(vj , 0)

=
∑
λiρ0(vi) +

∑
λjρ0(vj)

= ρ0(x)

shows that ρ(p) = 0 if and only if ρ0(x) = 0.

Lemma 9.2. (Shield lemma.) Let K and L be locally finite simplicial complexes,
C ⊂ K and A ⊂ L subcomplexes with |C| compact, and f : |K| → |L| a continuous
map such that f(|C|) ⊂ |L| − |A|. Then there exist simplicial subdivisions K ′ of
K and L′ of L, and a simplicial approximation g : K ′ → L′ to f , such that still
g(|C|) ⊂ |L| − |A|.

Proof. Fix a metric d on |L|. Since |A| is closed in |L|, d(y,A) > 0 for every
y ∈ |L| − |A|. By compactness of |C|, the continuous function h : |C| → (0,∞),
h(x) = d(f(x), A) has a minimum at, say, xmin. With ǫ = h(xmin) > 0, we conclude
that d(f(x), A) ≥ ǫ for all x ∈ |C|. Let D ⊂ L be the subcomplex generated by
{∆ ∈ L | f(|C|) ∩ ∆ 6= ∅}. As f(|C|) is compact and L is locally finite, D is a
finite complex. Then there exists a subdivision D′ of D so that every simplex of
D′ has diameter ≤ ǫ

2 . Let L′ be any extension of D′ to a subdivision of L, and let
K ′ be any subdivision of K so that f : |K| → |L′| has a simplicial approximation
g : K ′ → L′. Given x ∈ C, there exists a simplex ∆ ∈ D′ such that both f(x) ∈ ∆
and g(x) in ∆. Thus for any a ∈ A,

ǫ ≤ d(f(x), a) ≤ d(f(x), g(x)) + d(g(x), a) ≤
ǫ

2
+ d(g(x), a),

so that d(g(x), a) ≥ ǫ
2 . It follows that g(x) 6∈ A for any x ∈ |C|.
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Theorem 9.1. SPL
∗ : TOP→ AB is a homotopy functor satisfying axiom (MV).

Proof. To show that two homotopic maps g, h : X → Y induce equal maps g∗ =
h∗ : SPL

∗ (X) → SPL
∗ (Y ), one uses a verbatim reproduction of the usual proof of

composing with a homotopy X × I → Y to obtain a bordism between gf and hf ,
f : S → X .

As for the Mayer-Vietoris boundary operator ∂∗ : SPL
n (X) −→ SPL

n−1(U ∩ V ):

The PL space X is triangulated by a simplicial complex K. Let (S,L,S•, S
f
−→ X)

be a quadruple representing an element in SPL
n (X). (So L is a simplicial complex

which triangulates the PL pseudomanifold S.) Write U = X − |A|, V = X − |B|,
where A and B are subcomplexes of K. By the simplicial approximation theorem,
f is homotopic to |g|, with g : L0 → K simplicial for some subdivision L0 of L. The
inverse images P = g−1(A) and Q = g−1(B) are subcomplexes of L0. Separate P
and Q by a simplicial map ρ as follows: The sets |P | and |Q| are disjoint closed
subsets of S, so we can set ρ(v) = −1 for all vertices v ∈ P and ρ(v) = +1 for
all vertices v ∈ Q. To all other vertices (those in L0 − (P ∪ Q)) assign either
−1 or +1 at will. Triangulate the interval [−1, 1] with vertices −1 and +1. By
abuse of notation, we shall denote both this complex and its underlying topological
space by [−1, 1]. The vertex map ρ induces a simplicial map ρ : L0 → [−1, 1].
Consider the inverse image T = ρ−1(0). Triangulate the set T as follows: Subdivide
[−1, 1] so that 0 becomes a vertex. Then T is triangulated by a subcomplex of the
corresponding subdivision L1 of L0. An open neighborhood of T in S is given
by ρ−1(−1, 1) ∼= T × (−1, 1). Thus T is bicollared and has the structure of an
(n − 1)-dimensional, closed, triangulated pseudomanifold which is orientable. We
assign a canonical orientation to T as follows: The space ρ−1[−1, 0] is a compact
PL-pseudomanifold-with-boundary, whose orientation is induced by the orientation
of S. Then the orientation of ρ−1[−1, 0] induces an orientation of its boundary
∂ρ−1[−1, 0] = T. The quadruple (T, L1 ∩ T, j

!(S•|T×(−1,1)), |g||T ) represents an

element in SPL
n−1(U ∩ V ), where j : T = T × {0} →֒ T × (−1, 1). We define

∂∗ : SPL
n (X) −→ SPL

n−1(U ∩ V )

[(S,L,S•, S
f
−→ X)] 7→ [(T, L1 ∩ T, j

!(S•|T×(−1,1)), |g||T )].

To show that ∂∗ is well-defined, we must discuss why the resulting bordism class
is independent of the choice of simplicial approximation g to f , of the choice of ρ,
and of the choice of representative (S,L,S•, f) in [(S,L,S•, f)]. Suppose that f is
homotopic to |g′|, with g′ : L′

0 → K simplicial for some subdivision L′
0 of L. Set

P ′ = g′−1(A) and Q′ = g′−1(B). Let ρ′ : L′
0 → [−1, 1] be a simplicial map such

that ρ′(v) = −1 for all vertices v ∈ P ′, ρ′(v) = +1 for all vertices v ∈ Q′, and
ρ′(v) ∈ {±1} for v ∈ L′

0 − (P ′ ∪Q′). The polyhedral pseudomanifold T ′ = ρ′−1(0)
is triangulated by a complex L′

1∩T
′, where L′

1 is a subdivision of L′
0. We will show

that (T ′, L′
1 ∩ T

′, j′!(S•|T ′×(−1,1)), |g
′||T ′) and (T, L1 ∩ T, j

!(S•|T×(−1,1)), |g||T ) are
bordant. A continuous homotopy S × [−1, 1] → X from g to g′ has a simplicial
approximation H : L× → K rel boundary, where L× is a simplicial complex such
that
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(i) |L×| = S × [−1, 1],
(ii) L× is a subdivision of the cell complex L× [−1, 1],
(iii) the subcomplex of L× which triangulates S × {+1} equals L0,
(iv) the subcomplex of L× which triangulates S × {−1} equals L′

0,
(v) H |S×{+1} = g,
(vi) H |S×{−1} = g′.

Set P× = H−1(A), Q× = H−1(B). Extend ρ and ρ′ to a simplicial map ρ× : L× →
[−1, 1] such that ρ×(v) = −1 for all vertices v ∈ P×, ρ×(v) = +1 for all vertices
v ∈ Q×. Now consider the polyhedron S × [−2, 2] and triangulate it as follows:
Triangulate the subspace S× [−1, 1] using L×. Thus S×{+1} is triangulated by L0

(cf. (iii) above). Triangulate S×{+2} by L0 as well, and extend that triangulation
of S × {1, 2} to S × [1, 2] without introducing any new vertices (use the standard
algorithm for triangulating a prism). Similarly S × {−1} is triangulated by L′

0 (cf.
(iv) above). Triangulate S × {−2} by L′

0 as well, and extend that triangulation
of S × {−2,−1} to S × [−2,−1] without introducing any new vertices. Define a
simplicial map ρ : S × [−2, 2]→ [−1, 1] by

ρ(v, 2) = ρ(v), for vertices (v, 2) ∈ L0 × {2},
ρ(v) = ρ×(v), for vertices v ∈ L×, and
ρ(v,−2) = ρ′(v), for vertices (v,−2) ∈ L′

0 × {−2},

Set W = ρ−1(0). Then W is transverse to the simplicial stratification of S× [−2, 2]
(an open neighborhood of W in S × [−2, 2] is given by ρ−1(−1, 1) ∼= W × (−1, 1)),
W is bicollared and has the structure of an n-dimensional, compact, oriented PL
pseudomanifold-with-boundary, which is triangulated by the subcomplex R∩W of
the subdivision R of the triangulation of S×[−2, 2] which correponds to subdividing
[−1, 1] so that 0 becomes a vertex. Note that the boundary of W is contained in the
boundary of S×[−2, 2], and in fact ∂W = W∩(S×{±2}) = T⊔−T ′, R∩∂W = (L1∩
T )⊔(L′

1∩T
′). Furthermore, ∂W is collared in W : the required closed neighborhood

N of ∂W in definition 5.3 may be taken to be W ∩ (S× [1, 2])⊔W ∩ (S× [−2,−1]).
Next, we shall cover W with a self-dual sheaf W• ∈ SD(WR∩W ). The sheaf S• on
S is constructible with respect to the simplicial stratification induced by L. The
pullback π!S• under the projection π : S × (−2, 2)→ S is self-dual on S × (−2, 2)
and constructible with respect to the product stratification whose i-dimensional
closed stratum is Li × (−2, 2), with Li the i-skeleton of L. The sheaf

W• = j!Wπ!S•,

jW : intW →֒ S × (−2, 2), is self-dual, since jW can be factored as the normally
nonsingular inclusion into the bicollar, intW = intW × {0} →֒ intW × (−1, 1),
followed by the open inclusion intW × (−1, 1) ∼= ρ−1(−1, 1) − (∂W × (−1, 1)) →֒
S×(−2, 2). The cell complex Z = L0× [1, 2]∪L×∪L′

0× [−2,−1] is a subdivision of
the cell complex L×[−2, 2], and R is a subdivision of Z, whence W• is constructible
with respect to R∩W by lemma 5.1. By construction, W• is collared compatibly to
j!(S•|T×(−1,1)) and j′!(S•|T ′×(−1,1)), in the sense of definition 5.3. Finally, letting

H : S × [−2, 2]→ X be the extension of H given by

H(s, t) =





g(s), 1 ≤ t ≤ 2

H(s, t), −1 ≤ t ≤ 1

g′(s), −2 ≤ t ≤ −1
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we have H |T = |g||T , H |T ′ = |g′||T ′ , and H(W ) ⊂ U ∩ V . Consequently,

(W,R ∩W,W•, H|W )

is an admissible PL-nullbordism for

(T, L1 ∩ T, j
!(S•|T×(−1,1)), |g||T ) ⊔ (−T ′, L′

1 ∩ T
′, j′!(S•|T ′×(−1,1)), |g

′||T ′).

Our next goal is to show that the bordism class of ∂∗(S,L,S
•, f) depends only on

the bordism class of (S,L,S•, f). Suppose then that (W,R,W•,W
F
−→ X) is an ad-

missible PL-nullbordism for the admissible PL-representative (S,L,S•, f). We will
produce an admissible PL-nullbordism for ∂∗(S,L,S

•, f) = (T, L1 ∩ T,T
•, |g||T ),

where T• = j!(S•|T×(−1,1)). Let G : R0 → K be a simplicial approximation rel
boundary to F , i.e. R0 is a subdivision of R such that R0 ∩ S = L0 and G|L0

= g.
We set PW = G−1(A), QW = G−1(B) and note that PW ∩ S = P , QW ∩ S = Q.
Along the boundary S of W , let us attach a cylinder S × [1, 2] to obtain the poly-
hedron

W = W ∪S=S×{1} S × [1, 2].

Triangulate W in the following manner: On W use R0. Triangulate S × {2} by L0

and extend the triangulation to S× [1, 2] without introducing any new vertices and
so that the resulting simplicial complex C, |C| = S × [1, 2], satisfies the condition:
if a set of vertives {v1, . . . , vk} spans a simplex in C, then {proj(v1), . . . ,proj(vk)}
(which is a set of vertices of L0) spans a simplex in L0, with proj : S × [1, 2]→ S.
Call the complex thus obtained R0 = R0∪L0=L0×{1}C, |R0| = W . Next, extend the

simplicial map ρ : L0 → [−1, 1] to a simplicial map ρ : R0 → [−1, 1] by requiring

ρ(v, i) = ρ(v), for vertices (v, i) ∈ L0 × {i}, i = 1, 2,
ρ(v) = −1, for vertices v ∈ PW ,
ρ(v) = +1, for vertices v ∈ QW , and
ρ(v) ∈ {±1}, for vertices v ∈ R0 − (L0 × {1} ∪ PW ∪QW ).

Set T = ρ−1(0). Then T is transverse to the simplicial stratification of W induced
by R0, has a neighborhood in W homeomorphic to T × (−1, 1), and thus is a
compact, oriented, PL-pseudomanifold with boundary ∂T = T ∩S×{2} = T ×{2}.
The triangulation of T is given by the simplicial complex R1 ∩ T , where R1 is
a simplicial subdivision of R0 corresponding to regarding ρ as a simplicial map
into [−1, 1] with 0 ∈ [−1, 1] a vertex. Note that R1 can be constructed so that
R1 ∩ S × {2} = L1. Define a simplicial map G : R0 → K on vertices v ∈ R0 by

G(v) =

{
G(v), v ∈ R0

g(v), v ∈ L0 × {2}

Then G(T ) ⊂ U ∩ V and G|T×{2} = g|T .

Lastly, we shall construct a self-dual sheaf T
•
∈ SD(TR1∩T ). Let c : S × [0, 1]

∼=
−→

N ⊂W be a collar for S in W , with N a closed neighborhood of S inW . We assume
here that this collar has been parametrized so that c(s, 1) = s for all s ∈ S. With

c| the restriction c| : S × (0, 1)
∼=
−→ intN and π01 : S × (0, 1) → S the projection,

we have an isomorphism

(13) c|∗(W•|int N ) ∼= π!
01S

•
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(definition 5.3). We will apply the gluing lemma 5.2 to construct a self-dual sheaf

W
•

on the interior of W . With

U = int(N ∪S=S×{1} S × [1, 2]),
V = intW,

we have U ∩ V = intN, U ∪ V = intW . Define

cU : S × (0, 2)
∼=
−→ U

by

cU (s, t) =

{
c(s, t), t < 1,

(s, t), t ≥ 1,

and let
U• = (c−1

U )∗π!
02S

•, π02 : S × (0, 2)→ S,
V• = W•,

U• ∈ SD(U), V• ∈ SD(V ). In order to verify U•|U∩V
∼= V•

U∩V , consider the
diagram

S × (0, 2)
∼=

cU

- U

	�
�

�
�

π02

S

I@
@

@
@

π01

S × (0, 1)

i12

∪

6

∼=

c|
- intN = U ∩ V

i

∪

6

which commutes by construction of cU . We calculate, using (13),

c|∗(V•|U∩V ) = c|∗(W•|int N ) ∼= π!
01S

• ∼= i∗12π
!
02S

•

= c|∗i∗(c−1
U )∗π!

02S
• = c|∗i∗U•

= c|∗(U•|U∩V ).

This isomorphism induces an isomorphism U•|U∩V
∼= V•

U∩V , since c| is a PL-

homeomorphism. By the gluing lemma, there exists a unique W
•
∈ SD(intW )

such that W
•
|U ∼= (c−1

U )∗π!
02S

•, W
•
|int W

∼= W•. The sheaf W
•

is constructible

with respect to the simplicial stratification on intW induced by R0 − L0 × {2}.
Using the inclusions

intT = int ρ−1(0) ⊂
̄- ρ−1(−1, 1) ∩ intW∼= intT × (−1, 1)

intW

ι

?

∩

we define

T
•

= ̄!ι∗W
•
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on intT . The self-duality of T
•

follows from the facts that ι is an open inclusion and
̄ is a normally nonsingular inclusion. The interior of W is simplicially stratified by
R0−L0×{2}. The open inclusion ι induces a stratification on ρ−1(−1, 1)∩ intW ,
which induces a stratification on intT × (−1, 1). This stratification agrees with
the product stratification on intT × (−1, 1) where intT is simplicially stratified by

R1 ∩ intT . Hence T
•

is constructible with respect to R1 ∩ intT . In summary,

T
•
∈ SD(intTR1∩int T ). It remains to be shown that (T,T•) is collared in (T ,T

•
)

(in the sense of definition 5.3). The cylinder lemma 9.1 implies that T ∩S× [1, 2] =
T × [1, 2]. The set N = T ∩ S × [1, 2] is a closed neighborhood of T = T × {2} in
T . Define a PL-homeomorphism

cT : T × [0, 1]
∼=
−→ T × [1, 2] = N ⊂ T

by

cT (x, y) = (x, y + 1), x ∈ T, y ∈ [0, 1].

We claim that

cT |
∗(T

•
|int N ) ∼= π!T•,

where cT | : T × (0, 1)
∼=
−→ intN is the restriction of cT and π : T × (0, 1) → T is

the projection. To establish this claim, consider the commutative diagram

intN =T × (1, 2) ⊂
β- S × (1, 2) ⊂

α- S × (0, 2)
π02 - S

T × (0, 1)

cT | ∼=

6

π- T = T × {0} ⊂
j - T × (−1, 1)

i−11

∪

6

(with α, β the obvious inclusions), which shows that

(14)
cT |

∗β!α∗π!
02S

• ∼= cT |
!β!α!π!

02S
•

= π!j!i!−11S
•

∼= π!j!(S•|T×(−1,1)).

The diagram

intW � δ
⊃ U

S × (1, 2)

γ

∪

6

⊂
α- S × (0, 2)

cU
∼=

6

commutes, as cU (s, t) = (s, t) for t > 1 (γ and δ are again the obvious inclusions).
Thus

(15)
γ∗W

• ∼= α∗c∗Uδ
∗W

•
= α∗c∗U (W

•
|U )

∼= α∗c∗U (c−1
U )∗π!

02S
•

∼= α∗π!
02S

•.
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Employing the commutative diagram

intT × (−1, 1)∼= ρ−1(−1, 1) ∩ intW ⊂
ι - intW

intT = intT × {0}

̄

∪

6

intN

κ

∪

6

= T × (1, 2) ⊂
β - S × (1, 2)

γ

∪

6

we see that

(16)
β!γ∗W

• ∼= β!γ!W
• ∼= κ! ̄!ι!W

•

∼= κ∗ ̄!ι∗W
•
.

Combining (14), (15) and (16) yields the desired isomorphism:

cT |
∗(T

•
|int N ) = cT |

∗κ∗T
•

= cT |
∗κ∗ ̄!ι∗W

•

∼= cT |
∗β!γ∗W

• ∼= cT |
∗β!α∗π!

02S
•

∼= π!j!(S•|T×(−1,1))
= π!T•.

We have shown that (T ,R1 ∩ T ,T
•
, |G||T ) is an admissible PL-nullbordism for

(T, L1 ∩ T,T
•, |g||T ). This concludes the proof that ∂∗ is well-defined.

Naturality: Let X be a space triangulated by the simplicial complex K and X ′

a space triangulated by the complex K ′. Let U ∪ V = X and U ′ ∪ V ′ = X ′ be
open covers so that each of U, V, U ′, V ′ is the complement of a subcomplex. Given
a simplicial map h : K → K ′ such that |h|(U) ⊂ U ′ and |h|(V ) ⊂ V ′, we have to
show that the square

SPL
n (X)

∂∗- SPL
n−1(U ∩ V )

SPL
n (X ′)

SP L

n
(|h|)

?
∂∗- SPL

n−1(U
′ ∩ V ′)

SP L

n−1
(|h||U∩V )

?

commutes. Write U ′ = X ′ − |A′|, V ′ = X ′ − |B′|, with A′, B′ subcomplexes of
K ′. The map hg : L0 → K ′ is a simplicial approximation to |h|f . With P ′ =
(hg)−1(A′), Q′ = (hg)−1(B′), we have P ′ ⊂ P and Q′ ⊂ Q. Consequently, the very
same ρ that determines T = ρ−1(0), ∂∗[(S,L,S

•, f)] = [(T, L1 ∩ T,T
•, |g||T )], also

works for P ′, Q′, and

∂∗S
PL
n (|h|)[(S,L,S•, f)] = ∂∗[(S,L,S

•, |h|f)]
= [(T, L1 ∩ T,T

•, |hg||T )]
= SPL

n−1(|h||)[(T, L1 ∩ T,T
•, |g||T )]

= SPL
n−1(|h||)∂∗[(S,L,S

•, f)].
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Exactness of

SPL
n (U ∩ V )

i∗⊕j∗- SPL
n (U)⊕ SPL

n (V )
k∗−l∗- SPL

n (X) :

The equality ki = lj implies (k∗ − l∗) ◦ (i∗ ⊕ j∗) = 0. Suppose that

[(SU , LU ,S
•
U , SU

fU

−→ U)] ∈ SPL
n (U)

and

[(SV , LV ,S
•
V , SV

fV

−→ V )] ∈ SPL
n (V )

are elements such that

k∗[(SU , LU ,S
•
U , fU )] = l∗[(SV , LV ,S

•
V , fV )].

Let (Wn+1, C,W•,W
F
−→ X) be an admissible PL-bordism between (SU , LU , S

•
U ,

kfU ) and (SV , LV ,S
•
V , lfV ). By the shield lemma 9.2, there exists a subdivision

C0 of C, a subdivision K0 of K, and a simplicial approximation G : C0 → K0

of F such that |G|(SU ) ⊂ U and |G|(SV ) ⊂ V . The sets P = G−1(A) ∪ SV ,
Q = G−1(B) ∪ SU are disjoint. Let ρ : C0 → [−1, 1] be any simplicial map so that
ρ(v) = −1 for vertices v ∈ P and ρ(v) = +1 for vertices v ∈ Q. The preimage
W0 = ρ−1(0) is a closed, oriented, bicollared (as ρ−1(−1, 1) ∼= W0 × (−1, 1)) PL-
pseudomanifold triangulated by a complex C1 ∩W0, with C1 a suitable subdivision
of C0 as described above. The sheaf W•

0 = j!(W•|ρ−1(−1,1)) is self-dual on W0,

where j is the normally nonsingular inclusion j : ρ−1(0) →֒ ρ−1(−1, 1). Note that
|G|(W0) ⊂ U ∩ V, whence

[(W0, C1 ∩W0,W
•
0, |G||W0

)] ∈ SPL
n (U ∩ V ).

We claim that

i∗[(W0, C1 ∩W0,W
•
0, |G||W0

)] = [(SU , LU ,S
•
U , |G||SU

)] :

With W≥0 = ρ−1[0, 1], the quadruple (W≥0, C1 ∩ W≥0,W
•|int W≥0

, |G||W≥0
) is

an admissible PL-bordism between (W0, C1 ∩W0,W
•
0, |G||W0

) and (SU , LU , S•
U ,

|G||SU
), and |G|(W≥0) ⊂ U . Now (SU , LU ,S

•
U , |G||SU

) is of course bordant to
(SU , LU ,S

•
U , fU ). Using W≤0 = ρ−1[−1, 0], one sees similarly that

j∗[(W0, C1 ∩W0,W
•
0, |G||W0

)] = [(SV , LV ,S
•
V , fV )].

Exactness of

SPL
n (X)

∂∗- SPL
n−1(U ∩ V )

i∗⊕j∗- SPL
n−1(U)⊕ SPL

n−1(V ) :

To see that (i∗ ⊕ j∗) ◦ ∂∗ = 0, let [(S,L,S•, S
f
−→ X)] ∈ SPL

n (X). Then, without
repeating all the details, W≤0 = ρ−1[−1, 0] can be used to construct an admissible
PL-nullbordism for ∂∗(S,L,S

•, f) in V , and W≥0 = ρ−1[0, 1] is used for U .

Let [(T n−1, C,T•, T
h
−→ U ∩ V )] ∈ SPL

n−1(U ∩ V ) be an element such that

i∗[(T
n−1, C,T•, h)] = 0 and j∗[(T

n−1, C,T•, h)] = 0.

Let (SU , LU , S•
U , SU

fU

−→ U) be an admissible PL-nullbordism for (T n−1, C, T•,

ih), and let (SV , LV , S
•
V , SV

fV

−→ V ) be an admissible PL-nullbordism for (T n−1,
C, T•, jh). As described in the proof of transitivity of the bordism relation, lemma
5.3, these two nullbordisms can be glued along their common boundary, yielding an
admissible PL-representative. However, in order to show that this representative
has a ρ such that ρ−1(0) = T , it is technically advantageous to glue SU and SV

to the two ends of a cylinder on T . Thus triangulate T × [−1, 1] by a simplicial
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complex R so that R ∩ T × {1} = C = R ∩ T × {−1} and R has no vertices in the
interior T × (−1, 1). Then apply the gluing process of the proof of lemma 5.3 twice:
First, to glue (SU , LU ,S

•
U , fU ) and

(T × [−1, 1], R, π!T•, T × [−1, 1]
proj
−→ T

h
−→ U ∩ V ),

π : T × (−1, 1)→ T, along their common boundary ∂SU = T = T ×{+1}, and then
to glue the resulting object along T × {−1} to (SV , LV ,S

•
V , fV ). The end-product

is an admissible PL-representative (S,L,S•, S
f
−→ X) with

S = SU ∪∂SU=T×{+1} T × [−1, 1] ∪T×{−1}=∂SV
SV , L = LU ∪C R ∪C LV .

According to lemma 9.2, there exist subdivisions L0 of L and K0 of K, and a
simplicial approximation g : L0 → K0 of f such that still |g|(SU ) ⊂ U and |g|(SV ) ⊂
V . This can be done in such a way that L0∩T ×{1} = L0∩T ×{−1}— let us call
this simplicial complex C0 — and so that L0 has no vertices in T × (−1, 1). With
P = g−1(A), Q = g−1(B), we have P ⊂ intSV , Q ⊂ intSU . Define the simplicial
map ρ : L0 → [−1, 1] on vertices v by

ρ(v) =

{
+1, v ∈ SU ,

−1, v ∈ SV .

This determines ρ completely, since there are no vertices in the interior of the middle
cylinder. In particular, every vertex v ∈ C0×{+1} has ρ(v) = +1 and every vertex
v ∈ C0 × {−1} has ρ(v) = −1. Using this ρ to calculate ∂∗, we have

∂∗[(S,L,S
•, f)] = [(T,C,T•, h)].

Exactness of

SPL
n (U)⊕ SPL

n (V )
k∗−l∗- SPL

n (X)
∂∗- SPL

n−1(U ∩ V ) :

Let us first discuss ∂∗ ◦ (k∗ − l∗) = 0. Suppose [(SU , LU , S•
U , SU

fU

−→ U)] ∈

SPL
n (U) and [(SV , LV , S

•
V , SV

fV

−→ V )] ∈ SPL
n (V ). According to lemma 9.2, there

exist subdivisions LU0 of LU , LV 0 of LV , K0 of K, and simplicial approximations
gU : LU0 → K0 of fU and gV : LV 0 → K0 of fV such that still |gU |(SU ) ⊂ U
and |gV |(SV ) ⊂ V . Set P = (gU ⊔ gV )−1(A) and Q = (gU ⊔ gV )−1(B). From
g−1

U (A) = ∅ it follows that in fact P = g−1
V (A), and so P ⊂ SV . Similarly Q ⊂ SU .

Thus we can set ρ : LU0⊔LV 0 → [−1, 1] to be identically +1 on LU0 and identically
−1 on LV 0. The resulting simplicial map does not assume any value other than ±1
since SU and SV are disjoint. Hence T = ρ−1(0) = ∅ and

∂∗(k∗[(SU , LU ,S
•
U , fU )]− l∗[(SV , LV ,S

•
V , fV )]) = 0.

Suppose [(S,L,S•, S
f
−→ X)] ∈ SPL

n (X) is an element such that

∂∗[(S,L,S
•, f)] = [(T, L1 ∩ T,T

•, |g||T )] = 0 ∈ SPL
n−1(U ∩ V ),

g : L0 → K a simplicial approximation of f , T = ρ−1(0), ρ : L0 → [−1, 1] simplicial.
The spaces W≤0 = ρ−1[−1, 0] and W≥0 = ρ−1[0, 1] are compact, oriented PL-
pseudomanifolds with ∂W≤0 = T, ∂W≥0 = −T, and are triangulated by L1 ∩W≤0

and L1 ∩ W≥0, respectively. As ρ has been constructed to be identically −1 on
P = g−1(A) and identically +1 on Q = g−1(B), we have |g|(W≤0) ⊂ V and
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|g|(W≥0) ⊂ U . Let (W,R,W•,W
F
−→ U ∩ V ) be an admissible PL-nullbordism for

(T, L1 ∩ T,T
•, |g||T ). Let

(SU , LU ,S
•
U , SU

fU

−→ U) = (W≥0, L1 ∩W≥0,S
•|int W≥0

, |g||W≥0
)

∪(T,L1∩T,T•,|g||T )(W,R,W
•, F ),

(SV , LV ,S
•
V , SV

fV

−→ V ) = (−W≤0, L1 ∩W≤0,S
•|int W≤0

, |g||W≤0
)

∪(T,L1∩T,T•,|g||T )(W,R,W
•, F )

be obtained by gluing as described in the proof of lemma 5.3. We claim that

k∗[(SU , LU ,S
•
U , fU )]− l∗[(SV , LV ,S

•
V , fV )] = [(S,L1,S

•, |g|)].

As the underlying space for the bordism, we take the polyhedron

Z = (SV × [−1, 0]) ∪W×{0} (SU × [0, 1]),

whose boundary is

∂Z = SU ⊔−SV ⊔ −S.

This bordism is to be triangulated as follows: Triangulate both SV ×{−1} and SV ×
{0} by LV , and extend this to a triangulation of SV × [−1, 0] without introducing
further vertices. Similarly, triangulate both SU × {1} and SU × {0} by LU , and
extend to SU× [0, 1] without introducing further vertices. These triangulations give
rise to a triangulation C of Z, since LU ∩W = R = LV ∩W . Up to isomorphism,
there exists a unique sheaf Z• ∈ SD(intZ) such that

• Z•|SU×(0,1)
∼= π!

01S
•
U , π01 : SU × (0, 1)→ SU ,

• Z•|SV ×(−1,0)
∼= π!

−10S
•
V , π−10 : SV × (−1, 0)→ SV ,

• Z•|int W×(−1,1)
∼= π!

−11W
•, π−11 : intW × (−1, 1)→ intW

(use the gluing lemma 5.2). Define a continuous map G : Z → X by

G(x, t) =

{
fU (x), (x, t) ∈ SU × [0, 1],

fV (x), (x, t) ∈ SV × [−1, 0].

That this is well-defined follows from fU (x) = F (x) = fV (x) for (x, 0) ∈ W × {0}.
On the boundary it restricts to

G|∂Z = fU ⊔ fV ⊔ (fV |W≤0
∪ fU |W≥0

)
= fU ⊔ fV ⊔ (|g||W≤0

∪ |g||W≥0
)

= fU ⊔ fV ⊔ |g|.

Summarizing, the quadruple

(Z,C,Z•, G)

is an admissible PL-nullbordism for

(SU , LU ,S
•
U , kfU ) ⊔ (−SV , LV ,S

•
V , lfV ) ⊔ (−S,L1,S

•, |g|),

establishing the claim. Now of course [(S,L1,S
•, |g|)] = [(S,L,S•, f)] ∈ SPL

n (X).

Proposition 9.1. Any homotopy functor h∗ : TOP → AB satisfying axiom (MV)
is a homology theory on the admissible category of compact polyhedra.
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Proof. The mapX → pt induces a map hi(X)→ hi(pt).Define h̃i(X) = ker(hi(X)→
hi(pt)). For a PL pair (K,L) with L 6= ∅, we set

hi(K,L) = h̃i(K ∪L cL),

where K ∪L cL denotes the PL space obtained by attaching the cone on L to K,
along L ⊂ K. When L = ∅, set hi(K,L) = hi(K). We prove the exactness axiom.
Let U ⊂ K ∪ cL be the complement of the cone point. Then U is an open subset
homotopy equivalent to K. Let V be the complement of K, i.e. the open cone on
L. Then V is a contractible open subset and U ∪ V = K ∪ cL. The intersection
U ∩ V is homotopy equivalent to L. For i > 0, consider the diagram

hi(U ∩ V ) - hi(U)⊕ hi(V ) - hi(U ∪ V )
∂∗- hi−1(U ∩ V )

hi(L)

∼=

?
- hi(K)

∼=

?
- hi(K,L)

wwwwwwwww
∂∗ - hi−1(L)

∼=

?

whose first exact row is provided by axiom (MV). This defines the (natural) bound-
ary operator ∂∗ : hi(K,L)→ hi−1(L) and establishes the exactness of the sequence
of the pair (K,L). (We leave i = 0 to the reader.) Let us move on to the excision
axiom. Given an open subset U ⊂ |K| whose closure is contained in the interior of
|L| and which is of the form U = |K| − |P | for some subcomplex P ⊂ K, let Q ⊂ L
be the subcomplex such that |L| − U = |Q|. We have to prove that the inclusion
(P,Q)→ (K,L) induces an isomorphism

hi(P,Q)
∼=
−→ hi(K,L).

Setting

X = K ∪ cL, Y = P ∪ cQ,

it suffices, by the exact sequence of the pair (X,Y ), to show that hi(X,Y ) = h̃i(X∪
cY ) = 0. Let V ⊂ X ∪cY be an open regular neighborhood of cL (⊂ X ⊂ X ∪cY ),
so that cL is a deformation retract of V . Let W ⊂ X ∪ cY be an open regular
neighborhood of cY , so that cY is a deformation retract of W . Then

1. V is contractible, V ≃ cL ≃ pt,
2. W is contractible, W ≃ cY ≃ pt,
3. V ∩W is contractible, V ∩W ≃ cQ ≃ pt, and
4. V ∪W = X ∪ cY .

Thus axiom (MV) implies that h̃i(X ∪ cY ) = 0 for all i. Consequently, h∗ satisfies
all of the Eilenberg-Steenrod axioms for a homology theory.

By theorem 9.1, we have in particular:

Corollary 9.1. SPL
∗ (−) is a homology theory.
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