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THE STABLE SUSPENSION OF AN EILENBERG- 
MACLANE SPACE 

BY 

W. D. BARCUS 

Introduction. In Part I of this paper we set up a spectral sequence for 
the stable homotopy groups of a countable CW complex X, using the suspen- 
sion triad sequences for the iterated suspensions SrX. If X is (n-1)-con- 
nected, we calculate the differential operator dl for the first n -1 nontrivial 
dimensions in terms of the automorphism T* of 7rm(XXX) induced by the 
map which interchanges factors. 

In Part II we continue the study of the behavior of Eilenberg-MacLane 
spaces under suspension, initiated in [2]. For K(7r, n), 7r finitely generated, 
we calculate the automorphism T* on the p-primary component (p $2) for 
a range of dimensions. The p-primary component (p $2) of the first n -1 non- 
trivial stable homotopy groups can then be read off from the spectral se- 
quence. The corresponding Postnikov invariants are zero, in contrast to those 
of the single suspension SK(w, n); however, this is not true of the 2-primary 
component. 

PART I. THE SPECTRAL SEQUENCE 

1. The suspension couple. All spaces considered throughout Part I are 
to be 1-connected countable CW complexes with fixed base points. Let X 
be such. The suspension triad sequences for iterated suspensions SrX (cf. 
[7] for definitions) 

A E 
*7rq(SrX; C+, C_) - 7rq2(Sr 1X) -> 7rq._(SrX) . . . 

give rise to an exact couple 

E 
A - A 

A/I 

where 

9rs+2r(SrX; C+, C_), r 1 

Cr8 78{r(X), r = 0 

O, r<0 
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A {r:+2r(?), r ? 0 

ioX < O 

and we define j*= identity: Ao,8 =7rn8(X)--+r8(X)=Co,,. Let llm(X) denote the 
stable group 7rm+(SqX), q large, and E,.: r.m(X)->*llm(X) the iterated suspen- 
sion. 

(1.1) PROPOSITION. The spectral sequence associated with the above exact 
couple [8, ?6] converges, and Cr- -Br,s/Bri,s+i, where Br,s is the image of 
E,o: r,+2r(SrX) ls?r(X) (if r < O, Brs = 0). 

The proof is of a standard type. 
2. The operator d'. We first give some definitions. 
1. r: XXI ->SX identifies XXI fU xoXI to a point, where xo is the base 

point. C+ and C_ denote the images under r of XX [1/2, 1] and XX [0, 1/2] 
respectively. 

2. 0: (SX, C+, U)->(S1XVS2X, S1X, S2X) is defined by 

(s) = (x, 2s) E S2X for 0 < s < 1/2, x E X, 

(x, 2s -1) E S1X for 1/2 ? s < 1 

where the subscripts merely distinguish between the two copies of SX. 
3. p is the reflection of SX in the equator, p(x, s) = (x, 1 -s). 
4. X X Y = X X Y/X V Y and 0: X X Y-*X X Y is the identification- map. 
5. T maps XXX onto itself by T(x, x') = (x', x). 
6. q: S2(XX Y)-+SXXSYis the homeomorphism defined by ((x, y), s, t) 

= ((x, s), (y, t)), for xeX, ye Y, and s, tEI. 
7. The composition i*d: 7rm+i(XX Y,XvY Y)->rm(XV Y) )7Tm(XV Y;X, Y) 

is an isomorphism for m _ 2 [3, Corollary 8.3]; Q is the inverse. 
Toda [11] defined a generalized Hopf homomorphism for spheres; the 

analogue for general spaces is 
8. H: lrm(SrX; C+, C) )-rm+i(SrXXSrX) is the composition H=G*Q4*. 
Now the operator dl: Cr,+i,,,-Cr,8 in the spectral sequence is given by 

d' =j*X for r > 1. Consider the diagram 

d 1 
7rm+l(Sr+1X; C+1 C_) 7rm-1 (SrX; C+, C_) 

\ | ~~~H 

H 7rm(SrX X SrX) 

1y*E2 

7rm+2(Sr+lX X Sr+1X). 

(2. 1) PROPOSITION. (p X 1)*mg*E2Hd'- (1- T*)H for r ? 1. 
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Note that if X is (n- 1)-connected, then 4* and 0* are isomorphisms at 
least for m<3n+3r-2 and epimorphisms for m=3n+3r-2 [9, Corollary 
3.3, Corollary 3.5 ], and hence so is H. E2 is an isomorphism for m < 4n +4r-2, 
while (pXl)* and q* are always such. Hence for m<3n+3r-2, d' is given 
up to isomorphism by the endomorphism 1- T* of 7rm+2(Sr+lXXSr?lX). 

If X = Sq-r-1, then using the facts that T* = (- 1)"L2qo and (p X 1)* = - 2,0 
the proposition reduces to Theorem 3.7 of [11]. Proposition (2.1) can be 
proved by generalizing Toda's methods. Rather than give the proof, which is 
geometric, we shall prove an equivalent proposition ((2.8) below) for r >2 
which is simpler and more enlightening. 

The following shows that, since we remain in a range where E2 is an 
isomorphism, we need only calculate T* in the homotopy groups of XXX. 

(2.2) PROPOSITION. 

T**E 2 = - yi*E2T*: rm(SrX X SrX) -> ,rm+2(Sr+lX X Sr+1X). 

The proof follows at once from the definitions. 
In order to apply the results of [71, we shall assume for the remainder of 

this section that X is an (n-1)-connected countable CW complex, n> 2, 
with only a single vertex xo. Consider the diagram 

A i 
(Srm(s+lX; C+} C_) - -rm-1(r) m-(SrX;C) C_) 

(2.3) ?i*p* {. q*Q' { Q4* 

7,n(SrX. X SrX, SrX V SrX) 7m(SrX X SrX, SrX V SrX) 

where the homomorphisms are defined as follows: 0': rmi_(SrX) 

--47*rm_(SrXVSrX) is induced by (. Q' is the projection of irm_-(SrXVSrX) 
onto a direct summand, obtained by injection into the triad group followed 
by Q. Thus the right-hand triangle in (2.3) is commutative. The left-hand 
vertical homomorphisms are 

vm(SrX X SrX, SrX V SrX) * im((SrX? S rX) 7rm((SrX)X, SrX) 

'+lSr+lX; C+, C_). 

Here (SrX)q denotes the qth space in the reduced product complex [6]; in 
particular, (SrX)2 is obtained from SrX X SrX by identifying (x, xo) = (xo, x) 
for all xCSrX, and p is the identification map. p': SrXVSrX- i->SrX is the 
restriction of p, i is the inclusion, and X is the isomorphism denoted by 4 in 
[7]. According to (10.1) of [7], AX=O; hence the left-hand triangle in (2.3) 
is also commutative. Now X and Q are isomorphisms for all m, 4* for m <3n 
+3r -2, and i*, p* for m <3n+3r -1, the latter by simple connectivity argu- 
ments. Hence in order to calculate dl=j*A for m<3n+3r-2 we need only 
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find Q'p*'p0'. To do this we use the generalized Whitehead products of 
[5]; we recall briefly their properties. 

The join A * B of two countable CW complexes A, B, each with a single 
vertex, is defined to be the space obtained from A XIXB by making the 
identifications (a, 0, b) = (a, 0, b'), (a, 1, b) = (a', 1, b), (ao, t, bo) = (ao, 1/2, bo) 
for all a, a'C-A, b, b'CB, tE3I. 

The set of homotopy classes of mappings X-*Y, preserving base points, 
will be denoted by {X, Y}. If X is a suspension, this set is in a well-known 
way a group, Abelian if X is a double suspension. 

If ALC { SP+1A, Y}, VC Sq+'B, Y} are represented by maps f, g respec- 
tively, then the Whitehead product [,u, v] < {SPA * SqB, Y} is represented by 
the composition 

SPA*S"B-*SP+1AVS+S+1B - Y YV Y-* Y 

where 

w(a,s,b) = (b, 1 - 2s) for s ? -a aCSPA, b CSqB 

=(a, 2s-1) for s >- 
2 

1. The product is natural: if f: Y-*Y', then f*[,u, v]= [f*i', f*v]. 
Let A * 'B denote the usual join, obtained from A XIXB by identifying 

(a, 0, b)=(a, 0, b'), (a, 1, b) = (a', 1, b) for all a, a't A, b, b'CEB. Then 'the 
(nonreduced) suspension is defined by SoA =A * 'SO, where SI is a zero- 
sphere, and inductively by SPOA = (So-'A) * 'SI. There is a homeomorphism 
S0+1(A * 'B) ->SA * 'S3B, obtained by permuting B with the first p copies of 
SO. Taking identification spaces, we obtain a homotopy equivalence 
SP+q(A * B) -SPA * SUB. Using this, we may suppose that the Whitehead 
product is represented by a map of a suspension. Then 

2. The product is bilinear for p, q > 1. 
Let tiG { SrX, SrXVSrX } be the class of the inclusion onto the ith factor, 

i=1, 2. 

(2.4) LEMMA. The image of 

0: irm(S,X X SrX, SrX V SrX) > 7rm_4(SrX V SrX), r > 1, m < 3n + 3r - 1, 

consists of the elements [ll, L2] o a, aGirm_i(Sr-lX * Sr-lX). 

Proof. That [ll, ?2] o a CE Image 0 is shown in Theorem 7.13 of [5]I, where 
it is also shown that there is an isomorphism 

t: 7rm(S(S7'X * S1'X)) > 7rn,(SrX X SrX) 

such that if a is as above, then there exists 3erm(SrXX SrX, SrXVSrX) with 
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CIO = [Li, ?21 o a and *0: = tEa. Now if 0* and E are isomorphisms, then given 
any element i' there exists a such that 0*03'= Ea. If : is an element cor- 
responding to a as above, then since d* is an isomorphism, f3'=1, and there- 
fore (91' has the desired form. Since 0* and E are isomorphisms for m<3n 
+3r-1, this proves (2.4). 

To calculate Q'44p*o: Let r> 1, and let y = [l, l2] 0o a be an element of 
Imaged9. If m<4n+4r-2, then a is a suspension and composition is dis- 
tributive. Since p'y= [I, L] o a, 

c* p* '= [?[LI + 2, 1 + t20oa 
= [ti1, ?10 a + [Ll, ?210 a 2 + [l2, l11O a + [l2, ?210 a 

- [L1, l2]o a + [?2, l1o a mod ker Q'. 

Hence c5'p*: Image a-rmi_(SrXVSrX)/ker Q' is given by 1+ T*. Since T* 
commutes with cl and Q', Q'c/p*a =1+ T*, and 

(2.5) Qc*d'Xi*p* = (1 + T*) for r > 1, m < 4n + 4r - 2. 

In order to express this result in a better form, we introduce the Hopf 
homomorphism [7, ?15] 

h: 7rm+?(Sr+lX; C+, C_) 7rm+i(SrX * o SrX) 

(here A * o B denotes the join parametrized as S(A XB)). A short calculation 
using the definition of h shows that 

(2.6) h = EO*(Xi*p*)-l form < 3n + 3r- 1. 

If we use T* to denote the automorphism of 7rm+i(SrX * oSrX) induced by the 
homeomorphism T of SrXXSrX, then (2.5) becomes 

(2.7) EO*Qo*dl = (1 + T*)h. 

Recalling that H=-*Qo*, we have 

(2.8) PROPOSITION. 

EHdl = (1 + T*)h: irm+,(Sr+lX; C+, C) -+ im?+(SrX * 0 SrX), 

for r> 1, m <3n + 3r -1. 

Within this range E and h are isomorphisms, while H is such for mn <3n 
+3r -2, so that d' is again expressed in terms of T*, but with the loss of the 
case r=1. 

As a corollary to the above calculations, we have a generalization of 
G. W. Whitehead's EHP sequence [12]: 

(2.9) PROPOSITION. Let X be (n-l)-connected, n>2. Then there is an 
exact sequence for r > 1 
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E E E2 H 
7n+3r-2(S'rX) * **37rM(SrX) --> r+l(Sr+'X) 

p 
rmi1(Srl1X * Sr 1X) -7 rm_i(SrX) > 

Here H' = hj* is James' generalized Hopf invariant [7, ?15], P(a) 
- [t, l] o a, and we denote by E-2 the inverse of the composition EKE: 
7rml(Sr lX * Sr lX)__*1rm+i(SrX * oSrX). 

Proof. Let m <3n+3r -1 throughout. It follows from the suspension triad 
sequence 

E j 
* * (X * m?(SrX) 7rm+i(Sr+lX; C+, C_) 7 irmi_(SrX) ** 

that we need only prove that PE-2h=A; i.e. that Ah-1EtE=P. According 
to Theorem 7.13 of [5 ], for a?-rmi_(Sr- X * Sr-lX), a8 a'Ea = [lt, L2] 0 a. 
Hence 

Ah-lEtEa = AXi*p*0i'E71EEEa by (2.6) 

= p*' d@*ltEa by (2.3) 

= p* [?, L2] Ia = [?, l] o a = P(a). 

This proves (2.9). 
3. An example. As a simple example of the use of the spectral sequence 

we take X=Sn, n>2. It is well-known that T*-(-1)m in 7rq(SmXSm), and 

that SmXSm is homeomorphic to S2m. Hence it follows from (2.1) that for 
s<3n+r-3, 

Cr,8 = 7r8+2r(Sn+r; C+, C_4 7r,+2,+l(S)2+2r for r > 0, 

while for r> 1 and s <3n+r-4, dt,s: Cr', Cris is given up to isomorphism 
by the endomorphism 1 -(-1)n+r of lrs+2r?1(S2fn+2r). Recall also that Co,8 

7r r8(S). 

Let C2 be the class of finite Abelian groups with order a power of 2. We 
distinguish two cases: 

1. If n is odd, then Cr2,,GC2 for r>O. dl,,: C2,8,-C,,s is a 02-epimorphism, 
and the fact that dldl = 0 implies that dl, = 0 mod e2. Therefore C2,,8 Co, 
-r,8(Sn) mod C2. 

2. If n is even, then Cr2,,8CC2 for r> 1. If s<3n-3, then we may calculate 
dl,, by noting that j*dl,.=j*A is the operator dl,82 in the spectral sequence 
for Sn-I. The latter is a e2-isomorphism, and hence dl, is a C2-monomorphism. 
Therefore C'SE C2, and C2s z Co,8/d1,8C1,8 zr.(Sn)/G mod C2, where G is 
62-isomorphic to 7rS+3(S2n+2) 7r(S2 n- ). Hence we have 

(3.1) PROPOSITION. The stable suspension E.: 7rw8(Sn) -*ls (Sn) is a C2- 
isomorphism if n is odd and s <3n -2, and a C2-epimorphism with kernel C2- 

isomorphic to 7r.(S2n-1) if n is even and s <3n -3. 
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This is a known result. The restrictions on s can be improved slightly by 
using less superficial information about H. 

PART II. THE STABLE SUSPENSION OF AN EILENBERG-MAcLANE SPACE 

4. On Postnikov systems. All spaces in this section are to have the 
homotopy type of CW complexes. 

Let E be 1-connected. Recall that a Postnikov system for E consists of 
fiberings Pn: En-*En,_ n = 3, 4, * - * , together with maps hns: E-*En such 
that hn induces homotopy isomorphisms in dimensions _ n, iri(En) =0 for 
i > n, and PEhn= hn_. Recall also that each fibering En-+E.- may be taken 
as the fibre space induced from a contractible fibre space over K(7rt,n n+1), 
rn = -t (E), by a map kn: En-1-+KK(r,, n+1) whose homotopy class is deter- 

mined by the Postnikov invariant(') knzHn+ (En-1, 1rn). If the homotopy 
groups of E are finite direct sums, inr 7 * * +nir, then we may take 
K(rn ,n+1) =Xi K(7rn, n+1), and as a contractible fibre space we may take 
the product of contractible fibre spaces (P>-K(7, n+1). One verifies im- 
mediately that, with these choices, the resulting fibering Pn En- >En-l is a 
composition 

En=En En *- * n = n_ 

in which the fibering Pn: En-*En'- is induced from ()-*K(4n n+1) by the 
map kn = n'knpl **... p7," where 7rn: Xi K(7rx, n+1)--lK(wr, n+1) is the pro- 
jection. 

We shall again call the element knCHn+'(EH-', rn) determined by the 
map k' a Postnikov invariant; it is equal to the transgression of the funda- 
mental class in the fibering En-*E7'n, and is related to kn by 

8 1 s8-1* 

(4.1) kn = rn* (pn pn ) kn 

where 7rS* Hn+?(E'l, 7rn)-y-*Hn+1(E7i1, rn) 
is the coefficient homomorphism 

induced by projection. By reindexing the summands irs for each fixed n, we 
may assume that for some t = t(n) 

(4.2) kn,'***kn are $0, while kn k- =kn = O. 

We shall always assume that Postnikov systems are constructed in the 
above fashion. 

The fibre Fn of E'--+E* is a K(wx', n)-space, and the group 7rn=7rn(Fn) 
will be identified with a summand of 1rn(En) under injection. Lemma (4.2) 
of [2] generalizes to 

(1) In the classifying bundle for K(ir, n) we shall identify the groups of the fibre 7r,(K(r, n)) 
=Hn(K(7r, n)) with those of the base 7rn+l(K(r, n+1)) =Hn+i(K(7r, n+1)) under the Hurewicz 
homomorphism and the homology suspension. Then the above definition of kn is the negative 
of the usual definition (as the obstruction to a cross-section). 
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(4.3) LEMMA. k8 = 0 if and only if the Hurewicz homomorphism 3C: 7r. (E,) 
-*Hn(E,) maps irn monomorphically onto a direct summand. 

Let h' = ps+' pnhn: Eph En. 

(4.4) LEMMA. In the above Postnikov system for E, if k'+ = = =k* = 0, 
then for any m the m fold suspension maps the summand ker hn* Crn (E), which 
is isomorphic to irX' + +ir, monomorphically onto a direct summand G 
of 7rn+m(nSmE); and there is a Postnikov system for SinE 

*. -* *(SnE)n+m = (SmE)n+mf, -> (SmE)n+m . . . 

in which G = ker hj4l* and k"+m(SmE) = 0. 

The proof is straightforward, using the fact that 

En En X K( t+l + + rn n) 

5. The stable homotopy groups. Let r be a finitely generated Abelian 
group, written as 7r = Zisigm Gi, where each Gi is cyclic of prime power or in- 
finite order. Then K(7r, n) has the homotopy type of the product Xli?m Ki, 
whereKi = K(Gi, n) is a countable CW complex. According to Theorem 19 of 
[10], 

(5.1) S(XK,) VS(Kji X X Ki,), 

where there is one term in the wedge for each index set (i1, , r) such that 
1 ?i1< ... <i, < m, and r ranges from 1 to m. Hence, using iterated suspen- 
sion, we conclude that the Postnikov space 

(5.2) [Sr(XK) 3n+r-1 [VSrKi VSr(Kj X Kk)]3n+r-IX 

where 1 _ i _ m, 1 _j <k _ m. Since the stable homotopy group of a wedge of 
spaces is the direct sum of the stable homotopy groups of the spaces, 

(5.3) Ilq(K(7r, n)) ~ , Hq(K(Gi, n)) + Z llq(K(Gj, n) X K(Gk, n)) 

for q _ 3n -1 in which i, j, k have the same range as before. Now 

I[I(K(Gi, n) X K(Gj, rz)) ;- 7rq(K(Gi, n) X K(Gj, n)) --:: 1.-n(Gi, n; Gj), 

the first isomorphism because we are in the stable range, the second by 
Theorem 6.1 of [13]. Therefore in order to find ll,(K(ir, n)), q_3n-1, we 
need only find Hl,(K(Gi, n)). 

For the remainder of the paper, G is to be a cyclic group of prime-power or 
infinite order. We shall use the fibering of [2] together with the previous 
lemmas on Postnikov systems to calculate T* in the p-primary component, 
p$2, of rq(K(G, n)XK(G, n)), q_3n-1, and shall then use the spectral 
sequence to find the p-primary component of llq(K(G, n)). 

Let X be a countable CW complex which is a K(G, n+1)-space, and let 
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K = -X, the space of loops on X. Then the fibering F->E--*X described in 
[21 is such that there are homotopy equivalences q: E--3SK, h: K *KF, 
and the following diagram commutes [2 , (4.4) ]: 

7ri(F) 
i* 

7r> (E) 

~~~Jc~~~~~~c 
Hi(F) Hi(E) 

p 

Hi_1(K X K, K V K; Zp) ---> Hi-1(K, Zp) 

'4~~~~M 
Hi-n(K, Zp) 0 Hn(K, Zp) 

+/ 

Hn(K, Zp) 0 Hi-n_l(K, Zp) 

Here 3C, 3C' are Hurewicz homomorphisms; Xp, X' denote reduction mod p; 
X is a projection onto a direct summand; and m* is induced by multiplication 
in K. v = E-lq*, y is the composition 

Hi(F) Hi(K * K)- Hi(S(K X K)) --* Hi(S(K X K), S(K V K)) 

E1 
-) Hi-(K X K, K V K) 

and 4* and p are defined in [2]. Of these homomorphisms we need only the 
following information: for 2n+2 <i<3n, the p-primary component 7rs(F)p is 
a Zp-module which is mapped monomorphically by X'=cAX,u5C, the image of 
X' is invariant under T* and i* is an isomorphism for i > n + 1. For the re- 
mainder of this section let 2n +2 <i _ 3n and let p be an odd prime. Let 5C'p 

=XpU: 7r(E)--Hi(E, Zp). We shall use (5.4) to prove: 
(5.5) LEMMA. A basis gi, * * *, g. for 7rw(E)p can be chosen such that 

gl * ** g, is a basis for ker 3C, and X(gj) has the form b0 7-y ?7y b for 
j-1, * * *, s, where X=X'i 1 and bEHn(K, Zp) is a generator. 

Proof. Suppose that we have chosen gi, , gq satisfying the lemma. 
Let g be an element which is not in the subgroup [gi, * * *, gq] spanned by 
gi, * **,gq, with the further restriction that gEker 3' provided ker 3C; 

?[gl, ***gq]. Then X(g) =b?'y1+'y2Ob for some y, 'Y2. Since T*x(g) 
=(-1)ni(b072+'Y1?b), by invariance of x(7ri(E)) under T*, there exists 
g'Cxir(E) p such that X(g') = b0DY2 +'Y1 Ob. Then 
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x(g + g') = b 0 (71 + 72) + (71 + 72) 0 b, 

x(g - g') = b 0 (71 - 72) - (Y1 - 72) 0 b. 

Also, it cannot be the case that both g+g' and g-g' lie in [gi, , gqJ; for 
then their sum 2gC [gi, * *, gj] and since p#2, g also lies in this subgroup, 
which violates the hypothesis. Hence we have found at least one new basis 
element with the desired image under X, and it only remains to show that if 
gGker aC,, then so are g+g' and g-g'. But if gCker 3C,, then 

(5.6) X pv3C'(g') = m*x(g') = ? m*x(g) = + X>VJC'(g) = 0. 

Hence 3C,(g') =0, and both g+g' and g-g' lie in ker 3CJ. 
We have thus shown that the partial basis gi, , gq can be extended to 

satisfy the conditions of the lemma. Since ri(E)p is finitely generated, this 
proves (5.5). 

Let gCrw(E)p be one of the generators in Lemma (5.5), with X(g) =b07 
+ (-1) qy ( b. If g E ker 3C', then 

0 = XpvJC'(g) = m*x(g) = b*7 + (-1)qzy*b = (1 + (-1) +ni)b*7y. 

Now b y 50 [4, Theorem 3 ], so ()q = ) X. Thus 

T*x(g) (Il)ni(y 0 b - (-1)ni(b 0 y)) = -x(g). 

On the other hand, if g Eker 3C', then 

0 # SXIVC'(g) = m*x(g) (1 + (-1)q+ni)b.y, 

so (-1) = (- 1)ni. Then T*x(g) -X(g). 
We may express the condition gGker aCp in another way by considering 

a Postnikov system in the sense of ?4 for SK, up to the term E3n, in which the 
groups 7rS are cyclic of prime order (recall that 2n +2 < i ? 3n), and k' #0 for 
s_t, k=0 for t<s?r. Suppose that 7r=Zp for some q?t. Then by (4.3), 
since k14 0, ': 7rf-Hi(E') is not a monomorphism onto a direct summand, 
and hence aeCp maps riq to zero. 

Now let p: E'-*E' be the projection, with fibre F, and let g: E-*E' be a 
cross-section. Then 

7ri(E) =g*rir(E') + i*ri(F). 

According to the above, aC ' is zero on 7rq for q<t, and hence on the p- 
primary component g*7r(Ef)p. On the other hand, the Postnikov invariant 
of the fibering E >-+E is zero, and hence by (4.3) V3' is a monomorphism of 
ker p* = i*ri(F)p onto a direct summand, and therefore so is 3Cp. 

Thus di, which is the dimension of ker 3C, in ri(E)1, or equivalently the 
dimension of ker 3C' in wr(ED)p, is equal to the number of cyclic invariants 
k 00 mod p. 
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From the value of T* on the image of X we can obtain that of T* on 
7rti-(KXK), by noting that the image of the monomorphism 

7ri_i(K X K)p > I_J1(K X K, Zp)- Hi1(K X K, K V K; Zp) 

followed by X is equal to the image of X, and that T* commutes with this 
composition. The above calculations yield: 

(5.7) PROPOSITION. Let K=K(G, n), G cyclic of prime power or infinite 
order. Then ri-i1(K XK) ,, 2n +2 <i < 3n, admits a cyclic decomposition such 
that T* = -1 on a submodule of dimension di and T* = 1 on a supplementary 
submodule. Here di = dim ker 3C: iri(SK) p-Hi(SK, Zp), which is also equal to the 
number of (cyclic) Postnikov invariants 14(SK) X 0 mod p. 

For the lowest two dimensions, St: W2n+q(K XK)->H2n+q(KXK) is an iso- 
morphism, q = 0, 1; elementary calculation in the homology groups gives: 

(5.8) ADDENDUM. T*=(-1)n+q in r2in+?(KXK), q=0, 1. 

(5.9) PROPOSITION. The stable suspension in the p-primary component 
E.: ir,(SK)p-*Ii_i(K)v is an epimorphism for i_3n, p an odd prime. If in 
addition i> 2n +2, then ker E. has dimension di. If i = 2n + 2, then ker E = 0 
if n is odd, and lI_1(K)p=O if n is even. If i=2n+1, then ker E.,,=O if n is 
even, and Hl-1(K)p=O if n is odd. 

Using (2.1) and the above values for T*, the result for i <3n can be read 
off from the spectral sequence. For i = 3n, note that 

7r3n(SK; C+, C) 1r3 n(SK) $ 7r3n(K * K) i 7r3n+l(SK X SK), 

the first two isomorphisms coming from the suspension triad sequence and the 
fibering of [2] respectively. Hence H:73n(SK; C+, CQ)-*3n+1(SKXSK) is 
an epimorphism of a finite group onto an isomorphic copy, and is therefore 
an isomorphism. This allows (2.1) to be applied in one higher dimension 
than would otherwise be possible. 

We shall use a Postnikov system for SK(G, n) as in ?4, with E,+, 
=K(G, n+1), in order to determine which cyclic invariants are nonzero 
mod p. Recall from [2 ] that the invariants are known in the form 14E= P-_*k 
where k'GHi+1(K(G, n+1), r') and As-: Es'-*K(G, n+1) is the composite 
fibering. There are two cases: 1. If G=Zf then ?r2n+l = Zpf=7r2+2, where 
ri=xri(SK(G, n)), while the higher homotopy groups within the range we 
consider are Z.-modules. The classes k2n+i and k2n+2 mod p are b b and 
b,B(pf)b respectively, where bEH"+'(K(G, n+1), Zp) is the basic class 
mod p, and f(pf) is the fth order Bockstein. The k1 for 2n+2 <i<3n are of 
the form b -O', where O runs through a basis for Hi-(K(G, n+1), Zp). 2. If G 
= Z, then 7r2n+i = Z and 'T2n+2 = 0 while the higher homotopy groups within the 
range we consider are finite, with p-primary components which are Zp-modules. 
k2n+1 mod p is equal to b.b, while the k' mod p for 2n+2<i<3n are of the 
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form b -Stb, where Stfb runs through those elements of the Cartan basis 
[4] for Ht-n(K(G, n+1), Z.) such that the Steenrod operation St. does not 
end with a Bockstein. Let Hi-n denote the subgroup with this basis. 

Thus in order to determine which k' are nonzero mod p, we must find the 
intersection of Hn+l Hi-n or Hn+l. Hi-n, with the kernel of 

pi-i: Hi+1(K(G, n + 1), Zp) -> Hi+1(E-1_, Zp). 

Since Pi-, = p2,+1 ... P,-, we need only compute the kernel of each pjt* in 
turn. Now the sequence 

8* 

Hq(K(4,, j), Zp) - H (Ej, Z4p) H (E8 Zp) 

is exact within the range we are considering, and if j> 2n + 2, then either 
7rf has order p, or has order prime to p, in which case we may disregard it. If 

7rj=Zp, then H*(K(rj, j), Zp) is, in the stable range, just A(bj), where A is 
the mod p Steenrod algebra and b' is the basic class. Thus 

ker p; = rA(bj) = Ar(b) = A(k;) = A(f, Ekl) = PV1*A(k#) 

For the lower dimensions there are two cases: 
1. G=Zp,. H*(K(Zpf,j), Zp) is, in the stable range, justA(bj)+A(,B(pf)bj), 

where b, is the basic class mod p (actually we need only use the subalgebra 
of A generated by those elements which do not have a Bockstein on the 
right). The kernel of p* +1 is therefore A(b b) +A(b - (pf)b) if n is odd, and 
A (b . b) if n is even. Similarly the kernel of (p2n+1p2n+2) * iS 

A(b.b) + A(b.fl(pf)b) + A3(pf)(b-#(pf)b). 

The last term has zero intersection with H1 H'H*, and may therefore be 
omitted. 

2. G = Z. Then ker p* +1 = A (b * b). 
Putting together the above calculations, we have: 

(5.10) PROPOSITION. For 2n+2 <i?3n, p an odd prime, di is the dimen- 
sion of the following Z,-module, which is a factor module of a submodule of 
Hi+1(K(G, n+ 1), Zp): 

i-n-1 
Hn+1.Hi-n/A(Hn+l. -- Hi nH1-Hi- 

n+1 

where A is the mod p Steenrod algebra, and 
1. If G=Zpf, then Hi=Hi(K(G, n+1), Z,); 
2. If G=Z, then Hi is the subgroup of Hi(K(G, n+1), Z4) with Cartan 

basis elements [4] StIb such that the Steenrod operation St, does not end with a 
Bockstein on the left. 
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The explicit calculation of di is purely mechanical. 

(5.11) EXAMPLE. For m large, the first few stable groups Hlr(K(Zp, m)) are: 

r m odd m even 

m Zp Zp 
2m 0 Zp 

2m+1 Zp 0 
2m+2(p-1) Zp 0 

2m+2(p-1) +1 Zp ZP 

(5.12) PROPOSITION. The stable Postnikov invariants ki-,+r(Sr(K(1, n))), 
i< 3n, r large, are all zero mod e2, the class of finite Abelian groups with order 
a power-of 2. 

Proof. Let 2n+2 <i_3n, and let p be an odd prime. By (4.4), those Zp- 
summands 7rt of 7ri(SK(r, n)) corresponding to zero invariants k' suspend 
monomorphically, and with a choice of Postnikov system for SrK(7r, n), the 
corresponding invariants k_I+r (SrK(7r, n)) are zero. But by (5.9), the stable 
suspension E,,: 1r1(SK(2r, n))-HII_1(K(7r, n))p maps the remaining summands 
to zero, and is an epimorphism. This proves (5.12) for i>2n+2; in the bot- 
tom dimensions the proof is essentially the same. 

The situation is no longer so simple for the 2-primary component. Firstly, 
E:o is not necessarily an epimorphism on ir,(SK(ir, n))2; for example, it can 
be seen from the spectral sequence that the cokernel of E,, acting on 
7r2n+2(SK(Z2, n)) is Z2. Secondly, the Postnikov invariants are not all zero. 
A short calculation shows that 

k2n+2(S2K(Z2, n)) = Sq'+lb (E H2n+3(K(Z2, n + 2), Z2). 

This is already in the stable range. 
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