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Preface

There should be more math.
This could be mathier.

B.A. Summers

This book is a revised version of my PhD Thesis [5], supervised by Gabriel
Minian and defended in March 2009 at the Mathematics Department of the
Facultad de Ciencias Exactas y Naturales of the Universidad de Buenos Aires.
Some small changes can be found here, following the suggestions of the ref-
erees and the editors of the LNM.

Gabriel proposed that we work together in the homotopy theory of finite
spaces at the beginning of 2005, claiming that the topic had great potential
and could be rich in applications. Very soon I became convinced of this as well.
A series of notes by Peter May [51–53] and McCord and Stong’s foundational
papers [55, 76] were the starting point of our research. May’s notes contain
very interesting questions and open problems, which motivated the first part
of our work.

This presentation of the theory of finite topological spaces includes the
most fundamental ideas and results previous to our work and, mainly, our
contributions over the last years. It is intended for topologists and combina-
torialists, but since it is a self-contained exposition, it is also recommended
for advanced undergraduate students and graduate students with a modest
knowledge of Algebraic Topology.

The revisions of this book were made during a postdoc at Kungliga
Tekniska högskolan, in Stockholm.
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Introduction

Most of the spaces studied in Algebraic Topology, such as CW-complexes
or manifolds, are Hausdorff spaces. In contrast, finite topological spaces are
rarely Hausdorff. A topological space with finitely many points, each of which
is closed, must be discrete. In some sense, finite spaces are more natural than
CW-complexes. They can be described and handled in a combinatorial way
because of their strong relationship with finite partially ordered sets, but
it is the interaction between their combinatorial and topological structures
that makes them important mathematical objects. At first glance, one could
think that such non Hausdorff spaces with just a finite number of points are
uninteresting, but we will see that the theory of finite spaces can be used to
investigate deep well-known problems in Topology, Algebra and Geometry.

In 1937, Alexandroff [1] showed that finite spaces and finite partially
ordered sets (posets) are essentially the same objects considered from different
points of view. However, it was not until 1966 that strong and deep results on
the homotopy theory of finite spaces appeared, shaped in the two foundational
and independent papers [76] and [55]. Stong [76] used the combinatorics of
finite spaces to explain their homotopy types. This astounding article would
have probably gone unnoticed if in the same year, McCord had not discovered
the relationship between finite spaces and compact polyhedra. Given a finite
topological space X , there exists an associated simplicial complex K(X) (the
order complex) which has the same weak homotopy type as X , and, for each
finite simplicial complex K, there is a finite space X (K) (the face poset)
weak homotopy equivalent to K. Therefore, in contrast to what one could
have expected at first sight, weak homotopy types of finite spaces coincide
with homotopy types of finite CW-complexes. In this way, Stong and McCord
put finite spaces in the game, showing implicitly that the interplay between
their combinatorics and topology can be used to study homotopy invariants
of well-known Hausdorff spaces.

Despite the importance of those papers, finite spaces remained in the shad-
ows for many more years. During that time, the relationship between finite
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xii Introduction

posets and finite simplicial complexes was exploited, but in most cases with-
out knowing or neglecting the intrinsic topology of the posets. A clear example
of this is the 1978 article of Quillen [70], who investigated the connection bet-
ween algebraic properties of a finite group G and homotopy properties of the
simplicial complex associated to the poset Sp(G) of p-subgroups of G. In that
beautiful article, Quillen left a challenging conjecture which remains open
until this day. Quillen stated the conjecture in terms of the topology of the
simplicial complex associated to Sp(G). We will see that the finite space point
of view adds a completely new dimension to his conjecture and allows one
to attack the problem with new topological and combinatorial tools. We will
show that the Whitehead Theorem does not hold for finite spaces: there are
weak homotopy equivalent finite spaces with different homotopy types. This
distinction between weak homotopy types and homotopy types is lost when
we look into the associated polyhedra (because of the Whitehead Theorem)
and, in fact, the essence of Quillen’s conjecture lies precisely in the distinction
between weak homotopy types and homotopy types of finite spaces.

In the last decades, a few interesting papers on finite spaces appeared
[35,65,77], but the subject certainly did not receive the attention it required.
In 2003, Peter May wrote a series of unpublished notes [51–53] in which he
synthesized the most important ideas on finite spaces known until that time.
In these articles, May also formulated some natural and interesting questions
and conjectures which arose from his own research. May was one of the first
to note that Stong’s combinatorial point of view and the bridge constructed
by McCord could be used together to attack problems in Algebraic Topology
using finite spaces. My advisor, Gabriel Minian, chose May’s notes, jointly
with Stong’s and McCord’s papers, to be the starting point of our research on
the Algebraic Topology of Finite Topological Spaces and Applications. This
work, based on my PhD Dissertation defended at the Universidad de Buenos
Aires in March 2009, is the first detailed exposition on the subject. In these
notes I will try to set the basis of the theory of finite spaces, recalling the
developments previous to ours, and I will exhibit the most important results
of our work in the last years. The concepts and methods that we present
in these notes are already being applied by many mathematicians to study
problems in different areas.

Many results presented in this work are new and original. Various of them
are part of my joint work with Gabriel Minian and appeared in our publi-
cations [7–11]. The results on finite spaces previous to ours appear in Chap. 1
and in a few other parts of the book where it is explicitly stated. Chapter 8, on
equivariant simple homotopy types and Quillen’s conjecture, and Chap. 11,
on the Andrews-Curtis conjecture, contain some of the strongest results of
these notes. These results are still unpublished.

New homotopical approaches to finite spaces that will not be treated in
this book appeared for example in [22, 60] and more categorically oriented
in [40, 73]. Applications of our methods and results to graph theory can be
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found in [19]. A relationship of finite spaces with toric varieties is discussed
in [12].

In the first chapter we recall the correspondence between finite spaces and
finite posets, the combinatorial description of homotopy types by Stong and
the relationship between weak homotopy types of finite spaces and homotopy
types of compact polyhedra found by McCord.

In Chap. 2 we give short basic proofs of many interesting original results.
These include: the relationship between homotopy of maps between finite
spaces and the discrete notion of homotopy for simplicial maps; an extension
of Stong’s ideas for pairs of finite spaces; the manifestation of finite homotopy
types in the Hausdorff setting; a description of the fundamental group of a
finite space; the realization of a finite group as the automorphism group of a
finite space and classical constructions in the finite context, including a finite
version of the mapping cylinder.

McCord found in [55] a finite model of the n-sphere Sn (i.e. a finite space
weak homotopy equivalent to Sn) with only 2n+ 2 points. May conjectured
in his notes that this space is, in our language, a minimal finite model of Sn,
that is to say a finite model with minimum cardinality. In Chap. 3 we prove
that May’s conjecture is true. Moreover, the minimal finite model of Sn is
unique up to homeomorphism (see Theorem 3.2.2). In this chapter we also
study minimal finite models of finite graphs (CW-complexes of dimension 1)
and give a full description of them in Theorem 3.3.7. In this case the
uniqueness of the minimal finite models depends on the graph. The reason
for studying finite models of spaces instead of finite spaces with the same
homotopy type is that homotopy types of finite complexes rarely occur in
the setting of finite spaces (see Corollary 2.3.4).

Given a finite space X , there exists a homotopy equivalent finite space X0

which is T0. That means that for any two points of X0 there exists an open
set which contains only one of them. Therefore, when studying homotopy
types of finite spaces, we can restrict our attention to T0-spaces.

In [76] Stong defined the notion of linear and colinear points of finite
T0-spaces, which we call up beat and down beat points following May’s termi-
nology. Stong proved that removing a beat point from a finite space does not
affect its homotopy type. Moreover, two finite spaces are homotopy equivalent
if and only if it is possible to obtain one from the other just by adding and
removing beat points. On the other hand, McCord’s results suggest that
it is more important to study weak homotopy types of finite spaces than
homotopy types. In this direction, we generalize Stong’s definition of beat
points introducing the notion of weak point (see Definition 4.2.2). If one
removes a weak point x from a finite space X , the resulting space need
not be homotopy equivalent to X , however we prove that in this case the
inclusion X � {x} ↪→ X is a weak homotopy equivalence. As an application
of this result, we exhibit an example (Example 4.2.1) of a finite space which
is homotopically trivial, i.e. weak homotopy equivalent to a point, but which
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is not contractible. This shows that the Whitehead Theorem does not hold
for finite spaces, not even for homotopically trivial spaces.

Osaki proved in [65] that if x is a beat point of a finite space X , there
is a simplicial collapse from the associated complex K(X) to K(X � {x}).
In particular, if two finite spaces are homotopy equivalent, their associated
complexes have the same simple homotopy type. However, we noticed that
the converse is not true. There are easy examples of non-homotopy equiv-
alent finite spaces with simple homotopy equivalent associated complexes.
The removing of beat points is a fundamental move in finite spaces, which
gives rise to homotopy types. We asked whether there exists another kind of
fundamental move in finite spaces, which corresponds exactly to the simple
homotopy types of complexes. We proved that the answer to this question
lies exactly in the notion of weak point. We say that there is a collapse from a
finite space X to a subspace Y if we can obtain Y from X by removing weak
points, and we say that two finite spaces have the same simple homotopy type
if we can obtain one from the other by adding and removing weak points.
We denote the first case with X ↘ Y and the second case with X�↘ Y .
The following result, which appears in Chap. 4, says that simple homotopy
types of finite spaces correspond precisely to simple homotopy types of the
associated complexes.

Theorem 4.2.11.

(a) Let X and Y be finite T0-spaces. Then, X and Y are simple homotopy
equivalent if and only if K(X) and K(Y ) have the same simple homotopy
type. Moreover, if X ↘ Y then K(X)↘ K(Y ).

(b) Let K and L be finite simplicial complexes. Then, K and L are simple
homotopy equivalent if and only if X (K) and X (L) have the same simple
homotopy type. Moreover, if K ↘ L then X (K)↘ X (L).

This result allows one to use finite spaces to study problems of classical
simple homotopy theory. Indeed, we will use it to study the Andrews-Curtis
conjecture and we will use an equivariant version to investigate Quillen’s
conjecture on the poset of p-subgroups of a finite group.

It is relatively easy to know whether two finite spaces are homotopy
equivalent using Stong’s ideas, however it is very difficult (algorithmically
undecidable in fact) to distinguish if two finite spaces have the same weak
homotopy type. Note that this is as hard as recognizing if the associated
polyhedra have the same homotopy type. Our results on simple homotopy
types provide a first approach in this direction. If two finite spaces have
trivial Whitehead group, then they are weak homotopy equivalent if and
only if they are simple homotopy equivalent. In particular, a finite space
X is homotopically trivial if and only if it is possible to add and remove
weak points from X to obtain the singleton ∗. The importance of recognizing
homotopically trivial spaces will be evident when we study the conjecture of
Quillen. Note that the fundamental move in finite spaces induced by weak
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points is easier to handle and describe than the simplicial one because it
consists of removing just one single point of the space.

In the fourth section of Chap. 4 we study an analogue of Theorem 4.2.11
for simple homotopy equivalences. We give a description of the maps between
finite spaces which correspond to simple homotopy equivalences at the level
of complexes. The main result of this section is Theorem 4.4.12. In contrast
to the classical situation where simple homotopy equivalences are particular
cases of homotopy equivalences, homotopy equivalences between finite spaces
are a special kind of simple homotopy equivalences.

As an interesting application of our methods on simple homotopy types,
we will prove the following simple homotopy version of Quillen’s famous
Theorem A.

Theorem 4.5.2. Let ϕ : K → L be a simplicial map between finite simplicial
complexes. If ϕ−1(σ) is collapsible for every simplex σ of L, then |ϕ| is a
simple homotopy equivalence.

In Chap. 5 we study the relationship between homotopy equivalent finite
spaces and the associated complexes. The concept of contiguity classes of
simplicial maps leads to the notion of strong homotopy equivalence (Definition
5.1.4) and strong homotopy types of simplicial complexes. This equivalence
relation is generated by strong collapses which are more restrictive than the
usual simplicial collapses. We prove the following result.

Theorem 5.2.1.

(a) If two finite T0-spaces are homotopy equivalent, their associated com-
plexes have the same strong homotopy type.

(b) If two finite complexes have the same strong homotopy type, the associ-
ated finite spaces are homotopy equivalent.

The notion of strong collapsibility is used to study the relationship between
the contractibility of a finite space and that of its barycentric subdivision.
This concept can be characterized using the nerve of a complex.

The fundamental moves described by beat or weak points are what we
call methods of reduction. A reduction method is a technique that allows one
to change a finite space to obtain a smaller one, preserving some topological
properties, such as homotopy type, simple homotopy type, weak homotopy
type or the homology groups. In [65], Osaki introduced two methods of this
kind which preserve the weak homotopy type, and he asked whether these
moves are effective in the following sense: given a finite space X , is it always
possible to obtain a minimal finite model of X by applying repeatedly these
methods? In Chap. 6 we give an example to show that the answer to this
question is negative. In fact, it is a very difficult problem to find minimal
finite models of spaces since this question is directly related to the problem
of distinguishing weak homotopy equivalent spaces. Moreover, we prove that
Osaki’s methods of reduction preserve the simple homotopy type. In this



xvi Introduction

chapter we also study one-point reduction methods which consist of removing
just one point of the space. For instance, beat points and weak points lead
to one-point methods of reduction. In the second section of that chapter,
we define the notion of γ-point which generalizes the concept of weak point
and provides a more applicable method which preserves the weak homotopy
type. The importance of this new method is that it is almost the most general
possible one-point reduction method. More specifically, we prove the following
result.

Theorem 6.2.5. Let X be a finite T0-space, and x ∈ X a point which is
neither maximal nor minimal and such that X�{x} ↪→ X is a weak homotopy
equivalence. Then x is a γ-point.

In some sense, one-point methods are not sufficient to describe weak ho-
motopy types of finite spaces. Concretely, if x ∈ X is such that the inclusion
X � {x} ↪→ X is a weak homotopy equivalence, then X � {x}�↘X (see
Theorem 6.2.8). Therefore, these methods cannot be used to obtain weak
homotopy equivalent spaces which are not simple homotopy equivalent.

Another of the problems originally stated by May in [52] consists in ex-
tending McCord’s ideas in order to model, with finite spaces, not only
simplicial complexes, but general CW-complexes. We give an approach to this
question in Chap. 7, where the notion of h-regular CW-complex is defined. It
was already known that regular CW-complexes could be modeled by their
face posets. The class of h-regular complexes extends considerably the class of
regular complexes and we explicitly construct for each h-regular complexK, a
weak homotopy equivalence K → X (K). Our results on h-regular complexes
allow the construction of new interesting examples of finite models. We also
apply these results to investigate quotients of finite spaces and derive a long
exact sequence of reduced homology for finite spaces.

Given a finite groupG and a prime integer p, we denote by Sp(G) the poset
of nontrivial p-subgroups of G. In [70], Quillen proved that if G has a non-
trivial normal p-subgroup, then K(Sp(G)) is contractible and he conjectured
the converse: if the complex K(Sp(G)) is contractible, G has a nontrivial
p-subgroup. Quillen himself proved the conjecture for the case of solvable
groups, but the general problem still remains open. Some important advances
were achieved in [3]. As we said above, Quillen never considered Sp(G) as a
topological space. In 1984, Stong [77] published a second article on finite
spaces. He proved some results on the equivariant homotopy theory of finite
spaces, which he used to attack Quillen’s conjecture. He showed that G has a
nontrivial normal p-subgroup if and only if Sp(G) is a contractible finite space.
Therefore, the conjecture can be restated in terms of finite spaces as follows:
Sp(G) is contractible if and only if it is homotopically trivial. In Chap. 8 we
study an equivariant version of simple homotopy types of simplicial complexes
and finite spaces and we prove an analogue of Theorem 4.2.11 in this case.
Using this result we obtain some new formulations of the conjecture, which
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are exclusively written in terms of simplicial complexes. One of these versions
states that K(Sp(G)) is contractible if and only if it has trivial equivariant
simple homotopy type. We also obtain formulations of the conjecture in
terms of the polyhedron associated to the much smaller poset Ap(G) of the
elementary abelian p-subgroups.

In Chap. 9 we describe homotopy properties of the so called reduced
lattices, which are finite lattices with their top and bottom elements removed.
We also introduce the L construction, which associates a new simplicial
complex to a given finite space. This application, which is closed related to
the nerve of a complex, was not included originally in my Dissertation [5]. We
compare the homotopy type of a finite T0-space X and the strong homotopy
type of L(X). At the end of the chapter, another restatement of Quillen’s
conjecture is given using the complex Lp(G) = L(Sp(G)). This version of the
conjecture is closely related to the so called Evasiveness conjecture.

Chapter 10 is devoted to the study of fixed point sets of maps. We study the
relationship between the fixed points of a simplicial automorphism and the
fixed points of the associated map between finite spaces. We use this result to
prove a stronger version of Lefschetz Theorem for simplicial automorphisms.

In the last chapter of these notes we exhibit some advances concerning the
Andrews-Curtis conjecture. The geometric Andrews-Curtis conjecture states
that if K is a contractible complex of dimension 2, then it 3-deforms to a
point, i.e. it can be deformed into a point by a sequence of collapses and
expansions which involve complexes of dimension not greater than 3. This
long standing problem stated in the sixties, is closely related to Zeeman’s
conjecture and hence, to the famous Poincaré conjecture. With the proof of
the Poincaré conjecture by Perelman, and by [30], we know now that the
geometric Andrews-Curtis conjecture is true for standard spines (see [72]),
but it still remains open for general 2-complexes. Inspired by our results on
simple homotopy theory of finite spaces and simplicial complexes, we define
the notion of quasi constructible 2-complexes which generalizes the concept
of constructible complexes. Using techniques of finite spaces we prove that
contractible quasi constructible 2-complexes 3-deform to a point. In this way
we substantially enlarge the class of complexes which are known to satisfy
the conjecture.

Throughout the book, basic results of Algebraic Topology will be assumed
to be known by the reader. Nevertheless, we have included an appendix at
the end of the notes, where we recall some basic concepts, ideas and classical
results on simplicial complexes and CW-complexes that might be useful to
the non-specialist.
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Chapter 1

Preliminaries

In this chapter we will state some of the most important results on finite
spaces which are previous to our work. These results can be summarized by
the following three items:

1. The correspondence between finite topological spaces and finite partially
ordered sets, first considered by Alexandroff in [1] in 1937.

2. The combinatorial description of homotopy types of finite spaces, discov-
ered by Stong in his beautiful article [76] of 1966.

3. The connection between finite spaces and polyhedra, found by McCord
[55] also in 1966.

A very nice exposition of the theory of finite spaces developed in the twen-
tieth century can also be found in May’s series of unpublished notes [51–53].

We will present Alexandroff and Stong’s approaches to describe finite
spaces, continuous maps, homotopies and connected components combina-
torially. Then, we will compare weak homotopy types of finite spaces with
homotopy types of compact polyhedra using McCord’s results. Homotopy
types of finite spaces were definitively characterized by Stong and homotopy
equivalences between finite spaces are also well-understood. However, it is
much more difficult to characterize weak homotopy equivalences. One of the
most important tools to identify weak homotopy equivalences is the Theorem
of McCord 1.4.2. However, we will see in following chapters that in some sense
this result is not sufficient to describe all weak equivalences. The problem of
distinguishing weak homotopy equivalences between finite spaces is directly
related to the problem of recognizing homotopy equivalences between poly-
hedra.

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and
Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6 1, © Springer-Verlag Berlin Heidelberg 2011
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2 1 Preliminaries

1.1 Finite Spaces and Posets

A finite topological space is a topological space with finitely many points and
a finite preordered set is a finite set with a transitive and reflexive relation.
We will see that finite spaces and finite preordered sets are basically the
same objects considered from different perspectives. Given a finite topological
space X , we define for every point x ∈ X the minimal open set Ux as the
intersection of all the open sets which contain x. These sets are again open.
In fact arbitrary intersections of open sets in finite spaces are open. It is easy
to see that the minimal open sets constitute a basis for the topology of X .
Indeed, any open set U of X is the union of the sets Ux with x ∈ U . This
basis is called the minimal basis of X . Note that any other basis of X must
contain the minimal basis, since if Ux is a union of open sets, one of them
must contain x and then it coincides with Ux. We define a preorder on X by
x ≤ y if x ∈ Uy.

If X is now a finite preordered set, one can define a topology on X given
by the basis {y ∈ X | y ≤ x}x∈X . Note that if y ≤ x, then y is contained
in every basic set containing x, and therefore y ∈ Ux. Conversely, if y ∈ Ux,
then y ∈ {z ∈ X | z ≤ x}. Therefore y ≤ x if and only if y ∈ Ux. This shows
that these two applications, relating topologies and preorders on a finite set,
are mutually inverse. This simple remark, made in first place by Alexandroff
[1], allows us to study finite spaces by combining Algebraic Topology with
the combinatorics arising from their intrinsic preorder structures.

The antisymmetry of a finite preorder corresponds exactly to the T0 sep-
aration axiom. Recall that a topological space X is said to be T0 if for any
pair of points in X there exists an open set containing one and only one of
them. Therefore finite T0-spaces are in correspondence with finite partially
ordered sets (posets).

Example 1.1.1. Let X = {a, b, c, d} be a finite space whose open sets are
∅, {a, b, c, d} {b, d}, {c}, {d}, {b, c, d} and {c, d}. This space is T0, and
therefore it is a poset. The first figure (Fig. 1.1) is a scheme of X with its
open sets represented by the interiors of the closed curves. A more useful
way to represent finite T0-spaces is with their Hasse diagrams. The Hasse
diagram of a poset X is a digraph whose vertices are the points of X and
whose edges are the ordered pairs (x, y) such that x < y and there exists
no z ∈ X such that x < z < y. In the graphical representation of a Hasse
diagram we will not write an arrow from x to y, but a segment with y over
x (see Fig. 1.2).

If (x, y) is an edge of the Hasse diagram of a finite poset X , we say that y
covers x and write x ≺ y.

An element x in a poset X is said to be maximal if y ≥ x implies y = x,
and it is a maximum if y ≤ x for every y ∈ X . A finite poset has a maximum
if and only if there is a unique maximal element. The notions of minimal
element and minimum are dually defined. A chain in a poset is a subset of
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Fig. 1.1 Open sets of X
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d•

Fig. 1.2 Hasse diagram of X

elements which are pairwise comparable. An antichain is a subset of elements
pairwise non-comparable.

Open sets of finite spaces correspond to down-sets and closed sets to up-
sets. A subset U of a preordered set X is a down-set if for every x ∈ U and
y ≤ x, it holds that y ∈ U . The notion of up-set is dually defined. If X is T0,
the open sets of X are in bijection with its antichains.

If x is a point of a finite space X , Fx denotes the closure of the set {x}
in X . Note that a point y is in Fx if and only if x ∈ Uy. Therefore, Fx = {y ∈
X | y ≥ x}. If a point x belongs to finite spaces X and Y , we write UXx , UYx ,
FXx and FYx so as to distinguish whether the minimal open sets and closures
are considered in X or in Y .

Note that the set of closed subspaces of a finite space X is also a topology
on the underlying set of X . The finite space with this topology is the opposite
of X (or dual) and it is denoted by Xop. The order of Xop is the inverse order
of X . If x ∈ X , then UX

op

x = FXx .
If A is a subspace of a topological space X , the open sets of A are the

intersections of open sets of X with A. In particular, if X is finite and a ∈ A,
UAa = UXa ∩A. If X and Y are two topological spaces, a basis for the product
topology in the cartesian product X × Y is given by products U × V with
U an open subset of X and V open in Y . Then, if X and Y are finite and
(x, y) ∈ X × Y , U(x,y) = Ux × Uy. Therefore, we have the following
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Remark 1.1.2.

(a) Let A be a subspace of a finite space X and let a, a′ ∈ A. Then a ≤A a′
if and only if a ≤X a′. Here ≤A denotes the preorder corresponding to
the subspace topology of A and ≤X the corresponding to the topology
of X .

(b) Let X and Y be two finite spaces and let (x, y), (x′, y′) be two points in
the cartesian product X×Y considered with the product topology. Then
(x, y) ≤ (x′, y′) if and only if x ≤ x′ and y ≤ y′.

1.2 Maps, Homotopies and Connectedness

We will see that the notions of morphisms in finite spaces and in finite pre-
ordered sets are exactly the same. Moreover, the connected components of
a finite space coincide with its path connected components and with the
connected components of the corresponding finite preordered set. This result
will be used to give a combinatorial description of homotopies.

A function f : X → Y between two preordered sets is order preserving if
x ≤ x′ implies f(x) ≤ f(x′) for every x, x′ ∈ X .

Proposition 1.2.1. A function f : X → Y between finite spaces is continu-
ous if and only if it is order preserving.

Proof. Suppose f is continuous and x ≤ x′ in X . Then f−1(Uf(x′)) ⊆ X is
open and since x′ ∈ f−1(Uf(x′)), x ∈ Ux′ ⊆ f−1(Uf(x′)). Therefore f(x) ≤
f(x′).

Now assume that f is order preserving. To prove that f is continuous
it suffices to show that f−1(Uy) is open for every set Uy of the minimal
basis of Y . Let x ∈ f−1(Uy) and let x′ ≤ x. Then f(x′) ≤ f(x) ≤ y and
x′ ∈ f−1(Uy). This proves that f−1(Uy) is a down-set. 
�

If f : X → Y is a function between finite spaces, the map f op : Xop → Y op

is the map which coincides with f in the underlying sets. It easy to see that
f is continuous if and only if fop is continuous.

Remark 1.2.2. If X is a finite space, a one-to-one continuous map f : X → X
is a homeomorphism. In fact, since f is a permutation of the set X , there
exists n ∈ N = Z≥1 such that fn = 1X .

Lemma 1.2.3. Let x, y be two comparable points of a finite space X. Then
there exists a path from x to y in X, i.e. a map α from the unit interval I to
X such that α(0) = x and α(1) = y.

Proof. Assume x ≤ y and define α : I → X , α(t) = x if 0 ≤ t < 1, α(1) = y.
If U ⊆ X is open and contains y, then it contains x also. Therefore α−1(U)
is one of the following sets, ∅, I or [0, 1), which are all open in I. Thus, α is
a path from x to y. 
�
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Let X be a finite preordered set. A fence in X is a sequence x0, x1, . . . , xn
of points such that any two consecutive are comparable.X is order-connected
if for any two points x, y ∈ X there exists a fence starting in x and ending
in y.

Proposition 1.2.4. Let X be a finite space. Then the following are equiva-
lent:

1. X is a connected topological space.
2. X is an order-connected preorder.
3. X is a path-connected topological space.

Proof. If X is order-connected, it is path-connected by Lemma 1.2.3. We only
have to prove that connectedness implies order-connectedness. Suppose X is
connected and let x ∈ X . Let A = {y ∈ X | there is a fence from x to y}. If
y ∈ A and z ≤ y, then z ∈ A. Therefore A is a down-set. Analogously, it is
an up-set and then, A = X . 
�

Recall that if X and Y are two topological spaces, the compact-open topol-
ogy in the set Y X of maps from X to Y is the topology whose subbase is
given by the sets S(K,W ) = {f ∈ Y X | f(K) ⊆ W} where K is a compact
subset of X and W is an open subset of Y .

If X and Y are finite spaces we can consider the finite set Y X of continuous
maps from X to Y with the pointwise order: f ≤ g if f(x) ≤ g(x) for every
x ∈ X .

Proposition 1.2.5. Let X and Y be two finite spaces. Then pointwise order
on Y X corresponds to the compact-open topology.

Proof. Let S(K,W ) = {f ∈ Y X | f(K) ⊆W} be a set of the subbase of the
compact-open topology, where K is a (compact) subset of X and W an open
set of Y . If g ≤ f and f ∈ S(K,W ), then g(x) ≤ f(x) ∈ W for every x ∈ K
and therefore, g ∈ S(K,W ). Thus, S(K,W ) is a down-set in Y X . Conversely,
if f ∈ Y X , {g ∈ Y X | g ≤ f} =

⋂

x∈X
S({x}, Uf(x)). Therefore both topologies

coincide. 
�
The exponential law for sets claims that if X,Y and Z are three sets,

there is a natural bijection φ between the set of functions f : X × Z → Y
and the set of functions Z → Y X which is given by φ(f)(z)(x) = f(x, z). If
X,Y and Z are now topological spaces and Y X is given the compact-open
topology, the continuity of a function f : X × Z → Y implies the continuity
of φ(f) : Z → Y X . However, the converse is not true in general. If X is a
locally compact Hausdorff space, φ does define a bijection between the set
of continuous maps X × Z → Y and the set of continuous maps Z → Y X .
More generally, it is enough that every point x of X has a basis of compact
neighborhoods, or in other words, that for every open set U containing x there
exists a compact neighborhood of x contained in U (see [27] or [62, Theorems
46.10 and 46.11]). If X is a finite space, every subspace of X is compact and
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this condition is trivially satisfied. In particular, if X is a finite space and Y
is any topological space, there is a natural correspondence between the set of
homotopies {H : X × I → Y } and the set of paths {α : I → Y X}. From now
on we consider the map spaces Y X with the compact-open topology, unless
we say otherwise.

Given two maps f, g : X → Y between topological spaces, we will write
f � g if they are homotopic. Moreover, if they are homotopic relative to a
subspace A ⊆ X , we will write f � g rel A.

Corollary 1.2.6. Let f, g : X → Y be two maps between finite spaces. Then
f � g if and only if there is a fence f = f0 ≤ f1 ≥ f2 ≤ . . . fn = g.
Moreover, if A ⊆ X, then f � g rel A if and only if there exists a fence
f = f0 ≤ f1 ≥ f2 ≤ . . . fn = g such that fi|A = f |A for every 0 ≤ i ≤ n.
Proof. There exists a homotopy H : f � g rel A if and only if there is a path
α : I → Y X from f to g such that α(t)|A = f |A for every 0 ≤ t ≤ 1. This is
equivalent to saying that there is a path α : I → M from f to g where M
is the subspace of Y X of maps which coincide with f in A. By Proposition
1.2.4 this means that there is a fence from f to g in M . The order of M is the
one induced by Y X , which is the pointwise order by Proposition 1.2.5. 
�
Corollary 1.2.7. Let f, g : X → Y be two maps between finite spaces. Then
f � g if and only if fop � gop. In particular, f is a homotopy equivalence if
and only if fop : Xop → Y op is a homotopy equivalence and two finite spaces
are homotopy equivalent if and only if their duals are homotopy equivalent.

Remark 1.2.8. Any finite spaceX with maximum or minimum is contractible
since, in that case, the identity map 1X is comparable with a constant map
c and therefore 1X � c.

For example, the space of Fig. 1.2 has a maximum and therefore it is
contractible.

Note that if X and Y are finite spaces and Y is T0, then Y X is T0 since
f ≤ g, g ≤ f implies f(x) = g(x) for every x ∈ X .

1.3 Homotopy Types

In this section we will recall the beautiful ideas of Stong [76] about ho-
motopy types of finite spaces. Stong introduced the notion of linear and
colinear points, which we will call up beat and down beat points following
May’s nomenclature [51]. Removing such points from a finite space does not
affect its homotopy type. Therefore any finite space is homotopy equivalent
to a space without beat points, which is called a minimal finite space. The
Classification Theorem will follow from this remarkable result: two minimal
finite spaces are homotopy equivalent only if they are homeomorphic.
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The next result essentially shows that, when studying homotopy types of
finite spaces, we can restrict ourselves to T0-spaces. Recall that if ∼ is a
relation on a topological space X , then the quotient topology on X/ ∼ is
the final topology with respect to the quotient map q : X → X/ ∼. In other
words, U ⊆ X/ ∼ is open if and only if q−1(U) is open in X . The quotient
topology satisfies the following property: a function f from X/ ∼ to any
topological space Y is continuous if and only if the composition fq : X → Y
is continuous.

Proposition 1.3.1. Let X be a finite space. Let X0 be the quotient X/ ∼
where x ∼ y if x ≤ y and y ≤ x. Then X0 is T0 and the quotient map
q : X → X0 is a homotopy equivalence.

Proof. Take any section i : X0 → X , i.e. qi = 1X0 . The composition iq is
order preserving and therefore i is continuous. Moreover, since iq ≤ 1X , i is
a homotopy inverse of q.

Let x, y ∈ X0 such that q(x) ≤ q(y), then x ≤ iq(x) ≤ iq(y) ≤ y. If in
addition q(y) ≤ q(x), y ≤ x and then q(x) = q(y). Therefore the preorder of
X0 is antisymmetric. 
�
Remark 1.3.2. Note that the map i : X0 → X of the previous proof is a
subspace map since qi = 1X0 . Moreover, since iq ≤ 1X and the maps iq and
1X coincide on X0, then by Corollary 1.2.6, iq � 1X rel X0. Therefore X0 is
a strong deformation retract of X .

Definition 1.3.3. A point x in a finite T0-space X is a down beat point if
x covers one and only one element of X . This is equivalent to saying that
the set Ûx = Ux � {x} has a maximum. Dually, x ∈ X is an up beat point
if x is covered by a unique element or equivalently if F̂x = Fx � {x} has a
minimum. In any of these cases we say that x is a beat point of X .

It is easy to recognize beat points looking into the Hasse diagram of the
space. A point x ∈ X is a down beat point if and only if its indegree in the
digraph is 1 (there is one and just one edge with x at its top). It is an up beat
point if and only if its outdegree is 1 (there is one and only one edge with x
at the bottom). In the example of Fig. 1.2 in page 3, a is not a beat point: it
is not a down beat point because there are two segments with a at the top
and it is not an up beat point either because there is no segment with a at
the bottom. The point b is both a down and an up beat point, and c is an
up beat point but not a down beat point.

If X is a finite T0-space, and x ∈ X , then x is a down beat point of X if
and only if it is an up beat point of Xop. In particular x is a beat point of X
if and only if it is a beat point of Xop.

Proposition 1.3.4. Let X be a finite T0-space and let x ∈ X be a beat point.
Then X � {x} is a strong deformation retract of X.

Proof. Assume that x is a down beat point and let y be the maximum
of Ûx. Define the retraction r : X → X � {x} by r(x) = y. Clearly, r is
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order-preserving. Moreover if i : X � {x} ↪→ X denotes the canonical
inclusion, ir ≤ 1X . By Corollary 1.2.6, ir � 1X rel X � {x}. If x is an
up beat point the proof is similar. 
�
Definition 1.3.5. A finite T0-space is a minimal finite space if it has no
beat points. A core of a finite space X is a strong deformation retract which
is a minimal finite space.

By Remark 1.3.2 and Proposition 1.3.4 we deduce that every finite space
has a core. Given a finite space X , one can find a T0-strong deformation
retract X0 ⊆ X and then remove beat points one by one to obtain a minimal
finite space. The notable property about this construction is that in fact the
core of a finite space is unique up to homeomorphism, moreover: two finite
spaces are homotopy equivalent if and only if their cores are homeomorphic.

Theorem 1.3.6. Let X be a minimal finite space. A map f : X → X is
homotopic to the identity if and only if f = 1X .

Proof. By Corollary 1.2.6 we may suppose that f ≤ 1X or f ≥ 1X . Assume
f ≤ 1X . Let x ∈ X and suppose by induction that f |Ûx

= 1Ûx
. If f(x) �= x,

then f(x) ∈ Ûx and for every y < x, y = f(y) ≤ f(x). Therefore, f(x) is the
maximum of Ûx which is a contradiction since X has no down beat points.
Then f(x) = x. The case f ≥ 1X is similar. 
�
Corollary 1.3.7 (Classification Theorem). A homotopy equivalence be-
tween minimal finite spaces is a homeomorphism. In particular the core of a
finite space is unique up to homeomorphism and two finite spaces are homo-
topy equivalent if and only if they have homeomorphic cores.

Proof. Let f : X → Y be a homotopy equivalence between finite spaces and
let g : Y → X be a homotopy inverse. Then gf = 1X and fg = 1Y by
Theorem 1.3.6. Thus, f is a homeomorphism. If X0 and X1 are two cores of
a finite space X , then they are homotopy equivalent minimal finite spaces,
and therefore, homeomorphic. Two finite spaces X and Y have the same
homotopy type if and only if their cores are homotopy equivalent, but this is
the case only if they are homeomorphic. 
�
Example 1.3.8. Let X and Y be the following finite T0-spaces:

X a•
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e• •f •g
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The following sequence of figures, shows how to obtain the core of X
removing beat points. Note that b is an up beat point of X , c is an up beat
point ofX�{b} and e an up beat point ofX�{b, c}. The subspaceX�{b, c, e}
obtained in this way is a minimal finite space and then it is the core of X .
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f• •g

On the other hand, a is a beat point of Y and Y �{a} is minimal. Therefore
the cores of X and Y are not homeomorphic, so X and Y are not homotopy
equivalent.

By the Classification Theorem, a finite space is contractible if and only if
its core is a point. Therefore any contractible finite space has a point which
is a strong deformation retract. This property is false in general for non-finite
spaces (see [38, Exercise 6(b), p. 18]). It is not true either that every point
in a contractible finite space X is a strong deformation retract of X (see
Example 2.2.6).

Note that the core Xc of a finite space X is the smallest space homotopy
equivalent to X . If Y is another finite space homotopy equivalent to X , then
the core of Y must be homeomorphic to Xc and it has at most as many points
as Y .

In [76] Stong also gives a homeomorphism classification result considering
matrix representations of finite spaces. A similar approach can be found also
in the survey [43].

To finish this section, we exhibit the following characterization of minimal
finite spaces which appears in [11].
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Proposition 1.3.9. Let X be a finite T0-space. Then X is a minimal finite
space if and only if for all x, y ∈ X, if every z ∈ X comparable with x is
comparable with y, then x = y.

Proof. If X is not minimal, there exists a beat point x. Without loss of
generality assume that x is a down beat point. Let y be the maximum of Ûx.
Then if z ≥ x, z ≥ y and if z < x, z ≤ y.

Conversely, suppose that there exist x �= y such that every element
comparable with x is also comparable with y. In particular x is comparable
with y. We may assume that x > y. Let A = {z ∈ X | z > y and for every
w ∈ X comparable with z, w is comparable with y}. This set is nonempty
since x ∈ A. Let x′ be a minimal element of A. We show that x′ is a down
beat point with y = max(Ûx′). Let z < x′, then z is comparable with y since
x′ ∈ A. Suppose z > y. Let w ∈ X . If w ≤ z, then w ≤ x′ and so, w is
comparable with y. If w ≥ z, w ≥ y. Therefore z ∈ A, contradicting the
minimality of x′. Then z ≤ y. Therefore y is the maximum of Ûx′ . 
�

1.4 Weak Homotopy Types: The Theory of McCord

In the previous section we have studied homotopy types of finite spaces. On
the other hand we will see in the next chapter, that Hausdorff spaces do
not have in general the homotopy type of any finite space. However finite
CW-complexes do have the same weak homotopy types as finite spaces. In
1966 McCord proved that every compact polyhedron has an associated finite
space with the same weak homotopy type and every finite space has a weak
equivalent associated polyhedron.

Recall that a continuous map f : X → Y between topological spaces is
said to be a weak homotopy equivalence if it induces isomorphisms in all
homotopy groups, i.e. if f∗ : π0(X)→ π0(Y ) is a bijection and the maps

f∗ : πn(X,x0)→ πn(Y, f(x0))

are isomorphisms for every n ≥ 1 and every base point x0 ∈ X . Homotopy
equivalences are weak homotopy equivalences, and the Whitehead Theorem
[38, Theorem 4.5] claims that any weak homotopy equivalence between CW-
complexes is a homotopy equivalence. However, in general, these two concepts
differ. We will show examples of weak homotopy equivalences between two
finite spaces and between a polyhedron and a finite space which are not
homotopy equivalences.

Weak homotopy equivalences satisfy the so called 2-out-of-3 property.
That means that if f and g are two composable maps and 2 of the 3 maps
f, g, gf are weak homotopy equivalences, then so is the third. Moreover if
f and g are two homotopic maps and one is a weak homotopy equivalence,
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then so is the other. Any weak homotopy equivalence f : X → Y between
topological spaces induces isomorphisms f∗ : Hn(X ;G)→ Hn(Y ;G) between
the homology groups, for every n ≥ 0 and every coefficient group G [38,
Proposition 4.21]. The singular homology groups with integer coefficients of
a space X will be denoted as usual by Hn(X).

The Theorem of McCord 1.4.2 plays an essential role in the homotopy
theory of finite spaces. This result basically says that if a continuous map is
locally a weak homotopy equivalence, then it is a weak homotopy equivalence
itself. The original proof by McCord can be found in [55, Theorem 6] and it
is based on an analogous result for quasifibrations by Dold and Thom. An
alternative proof for finite covers can also be obtained from [38, Corollary
4K.2].

Definition 1.4.1. Let X be a topological space. An open cover U of X is
called a basis like open cover if U is a basis for a topology in the underlying
set of X (perhaps different from the original topology). This is equivalent to
saying that for any U1, U2 ∈ U and x ∈ U1 ∩ U2, there exists U3 ∈ U such
that x ∈ U3 ⊆ U1 ∩ U2.

For instance, if X is a finite space, the minimal basis {Ux}x∈X is a basis
like open cover of X .

Theorem 1.4.2 (McCord). Let X and Y be topological spaces and let f :
X → Y be a continuous map. Suppose that there exists a basis like open cover
U of Y such that each restriction

f |f−1(U) : f−1(U)→ U

is a weak homotopy equivalence for every U ∈ U . Then f : X → Y is a weak
homotopy equivalence.

Example 1.4.3. Consider the following map between finite spaces

a1•

									
a2•















��
��

��
��

� •b

��
��

��
��

�

a3• c• •d
f

��

a•







•b

��
��

��
��

c• •d

defined by f(a1) = f(a2) = f(a3) = a, f(b) = b, f(c) = c, f(d) = d. It is
order preserving and therefore continuous. Moreover, the preimage of each
minimal open set Uy, is contractible, and then the restrictions f |f−1(Uy) :
f−1(Uy)→ Uy are (weak) homotopy equivalences. Since the minimal basis is
a basis like open cover, by Theorem 1.4.2, f is a weak homotopy equivalence.
However, f is not a homotopy equivalence since its source and target are non
homeomorphic minimal spaces.
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Definition 1.4.4. Let X be a finite T0-space. The simplicial complex K(X)
associated to X (also called the order complex ) is the simplicial complex
whose simplices are the nonempty chains of X (see Fig. 1.3). Moreover, if
f : X → Y is a continuous map between finite T0-spaces, the associated
simplicial map K(f) : K(X)→ K(Y ) is defined by K(f)(x) = f(x).

Note that if f : X → Y is a continuous map between finite T0-spaces, the
vertex map K(f) : K(X)→ K(Y ) is simplicial since f is order preserving and
maps chains to chains.

a•

b•

��
��

��
��

•c

��
��

��
��

d• •e

a

b

c

d

e

Fig. 1.3 A finite space and its associated simplicial complex

If X is a finite T0-space, K(X)=K(Xop). Moreover, if f : X → Y is a
continuous map between finite T0-spaces, K(f) = K(f op).

Let X be a finite T0-space. A point α in the geometric realization |K(X)|
of K(X) is a convex combination α = t1x1+t2x2 + . . .+trxr where

r∑

i=1

ti = 1,

ti > 0 for every 1 ≤ i ≤ r and x1 < x2 < . . . < xr is a chain of X . The
support or carrier of α is the set support(α) = {x1, x2, . . . , xr}. We will see
that the map α �→ x1 plays a fundamental role in this theory.

Definition 1.4.5. Let X be a finite T0-space. Define the K-McCord map
μX : |K(X)| → X by μX(α) = min(support(α)).

The reader who is not familiar with some of the basic concepts about
simplicial complexes that appear in the following proof, is suggested to see
Appendix A.1.

Theorem 1.4.6. The K-McCord map μX is a weak homotopy equivalence
for every finite T0-space X.

Proof. Notice that the minimal open sets Ux are contractible because they
have maximum. We will prove that for each x ∈ X , μ−1

X (Ux) is open and
contractible. This will show that μX is continuous and that the restrictions
μX |μ−1

X (Ux) : μ−1
X (Ux) → Ux are weak homotopy equivalences. Therefore, by

Theorem 1.4.2, μX is a weak homotopy equivalence.
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Let x ∈ X and let L = K(X � Ux) ⊆ K(X). In other words, L is the
full subcomplex of K (possibly empty) spanned by the vertices which are not
in Ux. We claim that

μ−1
X (Ux) = |K(X)|� |L|.

If α ∈ μ−1
X (Ux), then min(support(α)) ∈ Ux. In particular, the support of

α contains a vertex of Ux and then α /∈ |L|. Conversely, if α /∈ |L|, there
exists y ∈ support(α) such that y ∈ Ux. Then min(support(α)) ≤ y ≤ x and
therefore μX(α) ∈ Ux. Since |L| ⊆ |K(X)| is closed, μ−1

X (Ux) is open.
Now we show that |K(Ux)| is a strong deformation retract of |K(X)|� |L|.

This is a particular case of a more general fact. Let i : |K(Ux)| ↪→ |K(X)|�|L|
be the inclusion. If α ∈ |K(X)|� |L|, α = tβ+ (1− t)γ for some β ∈ |K(Ux)|,
γ ∈ |L| and 0 < t ≤ 1. Define r : |K(X)| � |L| → |K(Ux)| by r(α) = β.
Note that r is continuous since r|(|K(X)|�|L|)∩σ : (|K(X)| � |L|) ∩ σ → σ is
continuous for every σ ∈ K(X). Here, σ ⊆ |K(X)| denotes the closed simplex.
Now, letH : (|K(X)|�|L|)×I → |K(X)|�|L| be the linear homotopy between
1|K(X)|�|L| and ri, i.e.

H(α, s) = (1 − s)α+ sβ.

Then H is well defined and is continuous since each restriction

H |((|K(X)|�|L|)∩σ)×I : ((|K(X)|� |L|) ∩ σ)× I → σ

is continuous for every simplex σ of K(X). To prove the continuity of r and
of H we use that |K(X)| � |L| has the final topology with respect to the
subspaces (|K(X)| � |L|) ∩ σ for σ ∈ K(X). We could also argue that since
the complexes involved are finite, the polyhedra have the metric topology
and both r and H are continuous with respect to these metrics (see
Appendix A.1).

Since every element of Ux is comparable with x, K(Ux) is a simplicial cone
with apex x, that is, if σ is a simplex of K(Ux), then so is σ∪{x}. In particular
|K(Ux)| is contractible and then, so is μ−1

X (Ux) = |K(X)|� |L|. 
�
Remark 1.4.7. If f : X → Y is a continuous map between finite T0-spaces,
the following diagram commutes

|K(X)|
μX

��

|K(f)|
�� |K(Y )|

μY

��
X

f
�� Y

since, for α ∈ |K(X)|,
fμX(α) = f(min(support(α))) = min(f(support(α)))

= min(support(|K(f)|(α))) = μY |K(f)|(α).
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Corollary 1.4.8. Let f : X → Y be a map between finite T0-spaces. Then
f is a weak homotopy equivalence if and only if |K(f)| : |K(X)| → |K(Y )| is
a homotopy equivalence.

Proof. Since μY is a weak homotopy equivalence, by the 2-out-of-3 property,
|K(f)| is a weak homotopy equivalence if and only if μY |K(f)| = fμX is a
weak homotopy equivalence. Since μX is a weak homotopy equivalence, this
is equivalent to saying that f is a weak homotopy equivalence. 
�
Corollary 1.4.9. Let f : X → Y be a map between finite T0-spaces. Then
f is a weak homotopy equivalence if and only if f op is a weak homotopy
equivalence.

Proof. Follows immediately from the previous result since K(f) = K(fop).

�

Definition 1.4.10. Let K be a finite simplicial complex. The finite T0-space
X (K) associated toK (also called the face poset ofK) is the poset of simplices
of K ordered by inclusion. If ϕ : K → L is a simplicial map between finite
simplicial complexes, there is a continuous map X (ϕ) : X (K)→ X (L) defined
by X (ϕ)(σ) = ϕ(σ) for every simplex σ of K.

Example 1.4.11. If K is the 2-simplex, the associated finite space is the
following

•
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•
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�

• • •
If K is a finite complex, K(X (K)) is the first barycentric subdivision K ′

of K and if ϕ : K → L is a simplicial map, K(X (ϕ)) = ϕ′ : K ′ → L′ is the
map induced in the barycentric subdivisions.

Let sK : |K ′| → |K| be the linear homeomorphism defined by sK(σ) = b(σ)
for every simplex σ of K. Here, b(σ) ∈ |K| denotes the barycenter of σ. Define
the X -McCord map μK = μX (K)s

−1
K : |K| → X (K)

From 1.4.6 we deduce immediately the following result.

Theorem 1.4.12. The X -McCord map μK is a weak homotopy equivalence
for every finite simplicial complex K.

Proposition 1.4.13. Let ϕ : K → L be a simplicial map between finite
simplicial complexes. Then the following diagram commutes up to homotopy
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|K|
μK

��

|ϕ|
�� |L|

μL

��
X (K)

X (ϕ)
�� X (L).

Proof. Let S = {σ1, σ2, . . . , σr} be a simplex of K ′, where σ1 � σ2 � . . . �

σr is a chain of simplices of K. Let α be a point in the closed simplex S.
Then sK(α) ∈ σr ⊆ |K| and |ϕ|sK(α) ∈ ϕ(σr) ⊆ |L|. On the other hand,
|ϕ′|(α) ∈ {ϕ(σ1), ϕ(σ2), . . . , ϕ(σr)} and then sL|ϕ′|(α) ∈ ϕ(σr). Therefore,
the linear homotopy H : |K ′|× I → |L|, (α, t) �→ (1− t)|ϕ|sK(α)+ tsL|ϕ′|(α)
is well defined and continuous. Then |ϕ|sK � sL|ϕ′| and, by Remark 1.4.7,

μL|ϕ| = μX (L)s
−1
L |ϕ| � μX (L)|ϕ′|s−1

K

= X (ϕ)μX (K)s
−1
K = X (ϕ)μK .


�
Remark 1.4.14. An explicit homotopy between μL|ϕ| and X (ϕ)μK is H̃ =
μLH(s−1

K × 1I). If K1 ⊆ K and L1 ⊆ L are subcomplexes and ϕ(K1) ⊆ L1

then H̃(|K1| × I) ⊆ X (L1) ⊆ X (L).

From the 2-out-of-3 property and the fact that a map homotopic to a weak
homotopy equivalence is also a weak homotopy equivalence, one deduces the
following

Corollary 1.4.15. Let ϕ : K → L be a simplicial map between finite
simplicial complexes. Then |ϕ| is a homotopy equivalence if and only if
X (ϕ) : X (K)→ X (L) is a weak homotopy equivalence.

From now on we will call McCord maps to both K-McCord maps and X -
McCord maps, and it will be clear from the context which we are referring
to.

Remark 1.4.16. As McCord explained in [55], the results of this section hold
more generally for non-finite simplicial complexes andA-spaces . A topological
space X is an A-space if arbitrary intersections of open subsets of X are
again open. Finite spaces and moreover, locally finite spaces, are examples
of A-spaces. If x is a point in an A-space X , the set Ux defined as above
is also open. The correspondence between finite spaces and finite preordered
sets trivially extends to a correspondence between A-spaces and preordered
sets. If X is a T0-A-space, the associated complex K(X) of finite chains is a
well defined simplicial complex and the same proof of Theorem 1.4.6 shows
that there is a weak homotopy equivalence |K(X)| → X . Conversely, given
a simplicial complex K, the face poset X (K) is a locally finite space and
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there is a weak homotopy equivalence |K| → X (K). Many of the results of
this book can be stated in fact for A-spaces and general simplicial complexes.
However, similarly to McCord’s approach, we will focus our attention on the
finite case. The first reason is that the deepest ideas and the complexity of
the theory of A-spaces are already present in the finite setting. The second
reason is that the most important applications of this theory, such as the
study of minimal finite models (Chap. 3), simple homotopy types (Chap. 4),
strong homotopy types (Chap. 5), Quillen’s conjecture (Chap. 8) and the
Andrews-Curtis conjecture (Chap. 11), can be analyzed or formulated only
in the finite case.

Two topological spacesX and Y , not necessarily finite, are weak homotopy
equivalent (or they are said to have the same weak homotopy type) if there
exists a sequence of spaces X = X0, X1, . . . , Xn = Y such that there are weak
homotopy equivalences Xi → Xi+1 or Xi+1 → Xi for every 0 ≤ i ≤ n − 1.
Clearly this defines an equivalence relation. If two topological spaces X and
Y are weak homotopy equivalent, we write X

we≈ Y . If X and Y are homotopy

equivalent we write X
he� Y or just X � Y .

If two topological spaces X and Y are weak homotopy equivalent,
there exists a CW-complex Z (CW-approximation) and weak homotopy
equivalences Z → X and Z → Y [38, Proposition 4.13, Corollary 4.19].
Two CW-complexes are weak homotopy equivalent if and only if they are
homotopy equivalent. As we have seen, for finite spaces, weak homotopy
equivalences are not in general homotopy equivalences. Moreover, there exist
weak homotopy equivalent finite spaces such that there is no weak homotopy
equivalence between them. However, if X and Y are two finite spaces which
are weak homotopy equivalent, there exists a third finite space Z and weak
homotopy equivalences X ← Z → Y (see Proposition 4.6.7).

Example 1.4.17. The non-Hausdorff suspension S(D3) (see the paragraph
below Definition 2.7.1) of the discrete space with three elements and its
opposite S(D3)op have the same weak homotopy type, because there exist
weak homotopy equivalences

S(D3)← |K(S(D3))| = |K(S(D3)op)| → S(D3)op.

•
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S(D3)

• • •
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S(D3)op

However there is no weak homotopy equivalence between S(D3) and
S(D3)op. In fact one can check that every map S(D3) → S(D3)op factors
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through its image, which is a subspace of S(D3)op with trivial fundamental
group or isomorphic to Z. We exhibit a more elegant proof in Remark 3.4.9.

From Theorems 1.4.6 and 1.4.12 we immediately deduce the following re-
sult.

Corollary 1.4.18.

(a) Let X and Y be finite T0-spaces. Then, X
we≈ Y if and only if |K(X)| he�

|K(Y )|.
(b) Let K and L be finite simplicial complexes. Then, |K| he� |L| if and only

if X (K)
we≈ X (L).

McCord’s Theorem 1.4.2 is one of the most useful tools to distinguish weak
homotopy equivalences. Most of the times, we will apply this result to maps
f : X → Y with Y finite, using the open cover given by the minimal basis
of Y . Theorem 1.4.2 is closely related to the celebrated Quillen’s Theorem A,
which gives a sufficient condition for a functor between two categories to be
a homotopy equivalence at the level of classifying spaces [69]. The so called
Quillen’s fiber Lemma [70, Proposition 1.6] is just Theorem A applied to the
case in which both categories are finite posets and follows immediately from
Theorem 1.4.2 also. It can be stated as follows.

Theorem 1.4.19 (McCord, Quillen). Let f : X → Y be an order
preserving map between finite posets such that |K(f−1(Uy))| is contractible
for every y ∈ Y . Then |K(f)| : |K(X)| → |K(Y )| is a homotopy equivalence.

Remark 1.4.20. In Quillen’s paper [70] and in many other articles ([17, 18,
79, 80] for instance), posets are studied from a topological viewpoint only
through their associated simplicial complexes. In some of those papers, when
it is said that a finite poset is contractible it is meant that the associated
polyhedron is contractible, and when an order preserving map is claimed to
be a homotopy equivalence, this is regarded as the simplicial map between
the associated complexes. In this book instead, finite posets are considered
as topological spaces with an intrinsic topology. Although McCord’s theory
shows that a finite T0-space and its order complex are closely related, it is
not the same to say that a finite T0-space X is contractible and that |K(X)|
is contractible. A topological space X is said to be homotopically trivial or
weakly contractible if all its homotopy groups are trivial. This is equivalent
to saying that the map X → ∗ is a weak homotopy equivalence. Since a finite
T0-space X and |K(X)| are weak homotopy equivalent, by the Whitehead
Theorem it is equivalent to saying that X is homotopically trivial and that
|K(X)| is contractible. However, the Whitehead Theorem does not hold for
finite spaces and we will show explicit examples of homotopically trivial finite
spaces which are not contractible (see Example 4.2.1). The contractibility of
a finite T0-space is equivalent to the combinatorial notion of dismantlability
for posets [71]. The simplicial notion corresponding to the contractibility of
a finite space is called strong collapsibility (see Corollary 5.2.8).
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If f : X → Y is an order preserving map, then |K(f)| : |K(X)| → |K(Y )|
is a homotopy equivalence if and only if f is a weak homotopy equivalence
between the finite spaces X and Y (Corollary 1.4.8). As we have seen, this is
strictly weaker than f being a homotopy equivalence.

Some of the results which appear in this work could be restated in terms
of the associated complexes, however our approach is inspired and motivated
by McCord, Stong and May’s topological viewpoint, which consists in con-
sidering finite topological spaces instead of posets and complexes.

We show now that Quillen’s fiber Lemma follows from McCord’s Theorem.
The contractibility of |K(f−1(Uy))| is equivalent to the fact that f−1(Uy) is
homotopically trivial. Since Uy is contractible f |f−1(Uy) : f−1(Uy)→ Uy is a
weak homotopy equivalence and then Theorem 1.4.2 says that f : X → Y is a
weak homotopy equivalence. Therefore, |K(f)| is a homotopy equivalence by
Corollary 1.4.8. Theorem 1.4.19 has simpler proofs than McCord’s Theorem
or Quillen’s Theorem A. One, due to Walker [80], uses a homotopy version
of the Acyclic carrier Theorem, and the other [6] was motivated by the ideas
developed in this work. However, for our purposes Theorem 1.4.19 is not
strong enough and McCord’s Theorem will be needed in its general version.

The simplicial version of Quillen’s Theorem A follows from the fiber
Lemma and it states that if ϕ : K → L is a simplicial map and |ϕ|−1(σ)
is contractible for every closed simplex σ ∈ |L|, then |ϕ| is a homotopy
equivalence (see [69], p. 93).

Using this result, we prove a similar result to Theorem 1.4.2.

Proposition 1.4.21. Let f : X → Y be a map between finite T0-spaces such
that f−1(c) ⊆ X is homotopically trivial for every chain c of Y . Then f is a
weak homotopy equivalence.

Proof. If c is a chain of Y or, equivalently, a simplex ofK(Y ), then |K(f)|−1(c)
= |K(f−1(c))|, which is contractible since f−1(c) is homotopically trivial. By
Theorem A, |K(f)| is a homotopy equivalence and then f is a weak homotopy
equivalence. 
�

In fact, if the hypothesis of Proposition 1.4.21 holds, then f−1(Uy) is
homotopically trivial for every y ∈ Y and, by McCord Theorem, f is a weak
homotopy equivalence. Therefore the proof of Proposition 1.4.21 is apparently
superfluous. However, the proof of the first fact is a bit twisted, because it uses
the very Proposition 1.4.21. If f : X → Y is such that f−1(c) is homotopically
trivial for every chain c of Y , then each restriction f |f−1(Uy) : f−1(Uy)→ Uy
satisfies the same hypothesis. Therefore, by Proposition 1.4.21, f |f−1(Uy) is a
weak homotopy equivalence and then f−1(Uy) is homotopically trivial.

In Sect. 4.4 we will prove, as an application of the simple homotopy theory
of finite spaces, a simple homotopy version of Quillen’s Theorem A for
simplicial complexes.



Chapter 2

Basic Topological Properties
of Finite Spaces

In this chapter we present some results concerning elementary topological
aspects of finite spaces. The proofs use basic elements of Algebraic Topology
and have a strong combinatorial flavour. We study further homotopical prop-
erties including classical homotopy invariants and finite analogues of well-
known topological constructions.

2.1 Homotopy and Contiguity

Recall that two simplicial maps ϕ, ψ : K → L are said to be contiguous
if for every simplex σ ∈ K, ϕ(σ) ∪ ψ(σ) is a simplex of L. Two simplicial
maps ϕ, ψ : K → L lie in the same contiguity class if there exists a sequence
ϕ = ϕ0, ϕ1, . . . , ϕn = ψ such that ϕi and ϕi+1 are contiguous for every
0 ≤ i < n.

If ϕ, ψ : K → L lie in the same contiguity class, the induced maps in the
geometric realizations |ϕ|, |ψ| : |K| → |L| are homotopic (see Corollary A.1.3
of the appendix).

In this section we study the relationship between contiguity classes of
simplicial maps and homotopy classes of the associated maps between finite
spaces. These results appear in [11].

Lemma 2.1.1. Let f, g : X → Y be two homotopic maps between finite T0-
spaces. Then there exists a sequence f = f0, f1, . . . , fn = g such that for every
0 ≤ i < n there is a point xi ∈ X with the following properties:

1. fi and fi+1 coincide in X � {xi}, and
2. fi(xi) ≺ fi+1(xi) or fi+1(xi) ≺ fi(xi).
Proof. Without loss of generality, we may assume that f = f0 ≤ g by
Corollary 1.2.6. Let A = {x ∈ X | f(x) �= g(x)}. If A = ∅, f = g and
there is nothing to prove. Suppose A �= ∅ and let x = x0 be a maximal point

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and
Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6 2, © Springer-Verlag Berlin Heidelberg 2011
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of A. Let y ∈ Y be such that f(x) ≺ y ≤ g(x) and define f1 : X → Y by
f1|X�{x} = f |X�{x} and f1(x) = y. Then f1 is continuous for if x′ > x,
x′ /∈ A and therefore

f1(x′) = f(x′) = g(x′) ≥ g(x) ≥ y = f1(x).

Repeating this construction for fi and g, we define fi+1. By finiteness of
X and Y this process ends. 
�
Proposition 2.1.2. Let f, g : X → Y be two homotopic maps between finite
T0-spaces. Then the simplicial maps K(f),K(g) : K(X) → K(Y ) lie in the
same contiguity class.

Proof. By the previous lemma, we can assume that there exists x ∈ X such
that f(y) = g(y) for every y �= x and f(x) ≺ g(x). Therefore, if C is a chain
in X , f(C)∪ g(C) is a chain on Y . In other words, if σ ∈ K(X) is a simplex,
K(f)(σ) ∪ K(g)(σ) is a simplex in K(Y ). 
�
Proposition 2.1.3. Let ϕ, ψ : K → L be simplicial maps which lie in the
same contiguity class. Then X (ϕ) � X (ψ).

Proof. Assume that ϕ and ψ are contiguous. Then the map f : X (K) →
X (L), defined by f(σ) = ϕ(σ)∪ψ(σ) is well-defined and continuous. Moreover
X (ϕ) ≤ f ≥ X (ψ), and then X (ϕ) � X (ψ). 
�

2.2 Minimal Pairs

In this section we generalize Stong’s ideas on homotopy types to the case of
pairs (X,A) of finite spaces (i.e. a finite space X and a subspace A ⊆ X).
As a consequence, we will deduce that every core of a finite T0-space can be
obtained by removing beat points from X . Here we introduce the notion of
strong collapse which plays a central role in Chap. 5. Most of the results of
this section appear in [11].

Definition 2.2.1. A pair (X,A) of finite T0-spaces is a minimal pair if all
the beat points of X are in A.

The next result generalizes the result of Stong (the case A = ∅) studied in
Sect. 1.3 and its proof is very similar to the original one.

Proposition 2.2.2. Let (X,A) be a minimal pair and let f : X → X be a
map such that f � 1X rel A. Then f = 1X .

Proof. Suppose that f ≤ 1X and f |A = 1A. Let x ∈ X . If x ∈ X is minimal,
f(x) = x. In general, suppose we have proved that f |Ûx

= 1|Ûx
. If x ∈ A,

f(x) = x. If x /∈ A, x is not a down beat point of X . However y < x implies
y = f(y) ≤ f(x) ≤ x. Therefore f(x) = x. The case f ≥ 1X is similar, and
the general case follows from Corollary 1.2.6. 
�
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Corollary 2.2.3. Let (X,A) and (Y,B) be minimal pairs, f : X → Y ,
g : Y → X such that gf � 1X rel A, gf � 1Y rel B. Then f and g are
homeomorphisms.

Definition 2.2.4. If x is a beat point of a finite T0-space X , we say that
there is an elementary strong collapse fromX to X�x and writeX ↘↘e X�x.
There is a strong collapse X ↘↘ Y (or a strong expansion Y ↗↗ X) if there
is a sequence of elementary strong collapses starting in X and ending in Y .

Stong’s results show that two finite T0-spaces are homotopy equivalent if
and only if there exists a sequence of strong collapses and strong expansions
from X to Y (since the later is true for homeomorphic spaces).

Corollary 2.2.5. Let X be a finite T0-space and let A ⊆ X. Then, X ↘↘ A
if and only if A is a strong deformation retract of X.

Proof. If X ↘↘ A, A ⊆ X is a strong deformation retract. This was already
proved by Stong (see Sect. 1.3). Conversely, suppose A ⊆ X is a strong
deformation retract. Perform arbitrary elementary strong collapses removing
beat points which are not in A. Suppose X ↘↘ Y ⊇ A and that all the beat
points of Y lie in A. Then (Y,A) is a minimal pair. Since A and Y are strong
deformation retracts of X , the minimal pairs (A,A) and (Y,A) are in the
hypothesis of Corollary 2.2.3. Therefore A and Y are homeomorphic and so,
X ↘↘ Y = A. 
�
Example 2.2.6. The space X
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is contractible, but the point x is not a strong deformation retract of X ,
because (X, {x}) is a minimal pair.

Corollary 2.2.7. Let (X,A) be a minimal pair such that A is a minimal
finite space and f � 1(X,A) : (X,A)→ (X,A). Then f = 1X.

If X and Y are homotopy equivalent finite T0-spaces, the associated poly-
hedra |K(X)| and |K(Y )| also have the same homotopy type. However the
converse is obviously false, since the associated polyhedra are homotopy
equivalent if and only if the finite spaces are weak homotopy equivalent.

In Chap. 5 we will study the notion of strong homotopy types of simplicial
complexes which have a very simple description and corresponds exactly to
the concept of homotopy types of the associated finite spaces.
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2.3 T1-Spaces

We will prove that Hausdorff spaces do not have in general the homotopy
type of any finite space. Recall that a topological space X satisfies the T1-
separation axiom if for any two distinct points x, y ∈ X there exist open sets
U and V such that x ∈ U , y ∈ V , y /∈ U , x /∈ V . This is equivalent to saying
that the points are closed in X . All Hausdorff spaces are T1, but the converse
is false.

If a finite space is T1, then every subset is closed and so, X is discrete.
Since the core Xc of a finite space X is the disjoint union of the cores of

its connected components, we can deduce the following

Lemma 2.3.1. Let X be a finite space such that Xc is discrete. Then X is
a disjoint union of contractible spaces.

Theorem 2.3.2. Let X be a finite space and let Y be a T1-space homotopy
equivalent to X. Then X is a disjoint union of contractible spaces.

Proof. Since X � Y , Xc � Y . Let f : Xc → Y be a homotopy equivalence
with homotopy inverse g. Then gf = 1Xc by Theorem 1.3.6. Since f is a one
to one map from Xc to a T1-space, it follows that Xc is also T1 and therefore
discrete. Now the result follows from the previous lemma. 
�
Remark 2.3.3. The proof of the previous theorem can be done without using
Theorem 1.3.6, showing that any map f : X → Y from a finite space to a
T1-space must be locally constant.

Corollary 2.3.4. Let Y be a connected and non contractible T1-space. Then
Y does not have the same homotopy type as any finite space.

Proof. Follows immediately from Theorem 2.3.2. 
�
For example, for any n ≥ 1, the n-dimensional sphere Sn does not have

the homotopy type of any finite space. However, Sn does have, as any finite
polyhedron, the same weak homotopy type as some finite space.

2.4 Loops in the Hasse Diagram and the Fundamental
Group

In this section we give a full description of the fundamental group of a finite
T0-space in terms of its Hasse diagram. This characterization is induced from
the well known description of the fundamental group of a simplicial complex.
The Hasse diagram of a finite T0-spaceX will be denotedH(X), and E(H(X))
will denote the set of edges of the digraph H(X).
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Recall that an edge-path in a simplicial complex K, is a sequence (v0, v1),
(v1, v2), . . . , (vr−1, vr) of ordered pairs of vertices in which {vi, vi+1} is a
simplex for every i. If an edge-path contains two consecutive pairs (vi, vi+1),
(vi+1, vi+2) where {vi, vi+1, vi+2} is a simplex, we can replace the two pairs
by a unique pair (vi, vi+2) to obtain an equivalent edge-path. The equivalence
classes of edge-paths are the morphisms of a groupoid called the edge-path
groupoid of K, which is denoted by E(K). The full subcategory of edge-paths
with origin and end v0 is the edge-path group E(K, v0) which is isomorphic
to the fundamental group π1(|K|, v0) (see [75, Sect. 3.6] for more details).

Definition 2.4.1. Let (X,x0) be a finite pointed T0-space. An ordered pair
of points e = (x, y) is called an H-edge of X if (x, y) ∈ E(H(X)) or (y, x) ∈
E(H(X)). The point x is called the origin of e and denoted x = o(e), the
point y is called the end of e and denoted y = e(e). The inverse of an H-edge
e = (x, y) is the H-edge e−1 = (y, x).

An H-path in (X,x0) is a finite sequence (possibly empty) of H-edges
ξ = e1e2 . . . en such that e(ei) = o(ei+1) for all 1 ≤ i ≤ n − 1. The origin of
a non empty H-path ξ is o(ξ) = o(e1) and its end is e(ξ) = e(en). The origin
and the end of the empty H-path is o(∅) = e(∅) = x0. If ξ = e1e2 . . . en,
we define ξ = e−1

n e−1
n−1 . . . e

−1
1 . If ξ, ξ′ are H-paths such that e(ξ) = o(ξ′), we

define the productH-path ξξ′ as the concatenation of the sequence ξ followed
by the sequence ξ′.

An H-path ξ = e1e2 . . . en is said to be monotonic if ei ∈ E(H(X)) for all
1 ≤ i ≤ n or e−1

i ∈ E(H(X)) for all 1 ≤ i ≤ n.
A loop at x0 is an H-path that starts and ends in x0. Given two loops ξ, ξ′

at x0, we say that they are close if there exist H-paths ξ1, ξ2, ξ3, ξ4 such that
ξ2 and ξ3 are monotonic and the set {ξ, ξ′} coincides with {ξ1ξ2ξ3ξ4, ξ1ξ4}.

We say that two loops ξ, ξ′ at x0 are H-equivalent if there exists a finite
sequence of loops ξ = ξ1, ξ2, . . . , ξn = ξ′ such that any two consecutive are
close. We denote by 〈ξ〉 the H-equivalence class of a loop ξ and H (X,x0)
the set of these classes.

Theorem 2.4.2. Let (X,x0) be a pointed finite T0-space. Then the product
〈ξ〉〈ξ′〉 = 〈ξξ′〉 is well defined and induces a group structure on H (X,x0).

Proof. It is easy to check that the product is well defined, associative and
that 〈∅〉 is the identity. In order to prove that the inverse of 〈e1e2 . . . en〉 is
〈e−1
n e−1

n−1 . . . e
−1
1 〉 we need to show that for any composableH-paths ξ, ξ′ such

that o(ξ) = e(ξ′) = x0 and for any H-edge e, composable with ξ, one has that
〈ξee−1ξ′〉 = 〈ξξ′〉. But this follows immediately from the definition of close
loops since e and e−1 are monotonic. 
�
Theorem 2.4.3. Let (X,x0) be a pointed finite T0-space. Then the edge-path
group E(K(X), x0) of K(X) with base vertex x0 is isomorphic to H (X,x0).
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Proof. Let us define

ϕ : H (X,x0) −→ E(K(X), x0),

〈e1e2 . . . en〉 �−→ [e1e2 . . . en],

〈∅〉 �−→ [(x0, x0)],

where [ξ] denotes the class of ξ in E(K(X), x0).
To prove that ϕ is well defined, let us suppose that the loops ξ1ξ2ξ3ξ4

and ξ1ξ4 are close, where ξ2 = e1e2 . . . en, ξ3 = e′1e
′
2 . . . e

′
m are monotonic

H-paths. By induction, it can be proved that

[ξ1ξ2ξ3ξ4] = [ξ1e1e2 . . . en−j(o(en−j+1), e(en))ξ3ξ4]

for 1 ≤ j ≤ n. In particular [ξ1ξ2ξ3ξ4] = [ξ1(e(ξ1), e(en))ξ3ξ4].
Analogously,

[ξ1(e(ξ1), e(en))ξ3ξ4] = [ξ1(e(ξ1), e(en))(o(e′1), o(ξ4))ξ4]

and then
[ξ1ξ2ξ3ξ4] = [ξ1(e(ξ1), e(en))(o(e′1), o(ξ4))ξ4]

= [ξ1(e(ξ1), e(en))(e(en), e(ξ1))ξ4] = [ξ1(e(ξ1), e(ξ1))ξ4] = [ξ1ξ4].

If ξ = (x0, x1)(x1, x2) . . . (xn−1, xn) is an edge-path in K(X) with xn = x0,
then xi−1 and xi are comparable for all 1 ≤ i ≤ n. In this case, we can find
monotonic H-paths ξ1, ξ2, . . . , ξn such that o(ξi) = xi−1, e(ξi) = xi for all
1 ≤ i ≤ n. Let us define

ψ : E(K(X), x0) −→H (X,x0),

[ξ] �−→ 〈ξ1ξ2 . . . ξn〉.

This definition does not depend on the choice of the H-paths ξi since if
two choices differ only for i = k then ξ1 . . . ξk . . . ξn and ξ1 . . . ξ

′
k . . . ξn are

H-equivalent because both of them are close to ξ1 . . . ξkξ−1
k ξ′k . . . ξn.

The definition of ψ does not depend on the representative. Suppose that
ξ′(x, y)(y, z)ξ′′ and ξ′(x, z)ξ′′ are simply equivalent edge-paths in K(X) that
start and end in x0, where ξ and ξ′ are edge-paths and x, y, z are comparable.
In the case that y lies between x and z, we can choose the monotonic H-path
corresponding to (x, z) to be the juxtaposition of the corresponding to (x, y)
and (y, z), and so ψ is equally defined in both edge-paths. In the case that
z ≤ x ≤ y we can choose monotonicH-paths α, β from x to y and from z to x,
and then α will be the correspondingH-path to (x, y), αβ that corresponding
to (y, z) and β to (x, z). It only remains to prove that 〈γ′ααβγ′′〉 = 〈γ′βγ′′〉
for H-paths γ′ and γ′′, which is trivial. The other cases are analogous to the
last one.

It is clear that ϕ and ψ are mutually inverse. 
�
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Since E(K(X), x0) is isomorphic to π1(|K(X)|, x0) (cf. [75, Corollary
3.6.17]), we obtain the following result.

Corollary 2.4.4. Let (X,x0) be a pointed finite T0-space, then H (X,x0) =
π1(X,x0).

Remark 2.4.5. Since every finite space is homotopy equivalent to a finite T0-
space, this computation of the fundamental group can be applied to any finite
space.

2.5 Euler Characteristic

If the homology (with integer coefficients) of a topological space X is finitely
generated as a graded abelian group, the Euler characteristic of X is de-
fined by χ(X) =

∑

n≥0

(−1)nrank(Hn(X)). If Z is a compact CW-complex,

its homology is finitely generated and χ(Z) =
∑

n≥0

(−1)nαn where αn is the

number of n-cells of Z. A weak homotopy equivalence induces isomorphisms
in homology groups and therefore weak homotopy equivalent spaces have the
same Euler characteristic.

Since any finite T0-space X is weak homotopy equivalent to the geometric
realization of K(X), whose simplices are the non empty chains of X , the
Euler characteristic of X is

χ(X) =
∑

C∈C(X)

(−1)#C+1, (2.1)

where C(X) is the set of nonempty chains of X and #C is the cardinality
of C.

We will give a basic combinatorial proof of the fact that the Euler charac-
teristic is a homotopy invariant in the setting of finite spaces, using only the
formula 2.1 as definition.

Theorem 2.5.1. Let X and Y be finite T0-spaces with the same homotopy
type. Then χ(X) = χ(Y ).

Proof. Let Xc and Yc be cores of X and Y . Then there exist two sequences
of finite T0-spaces X = X0 ⊇ . . . ⊇ Xn = Xc and Y = Y0 ⊇ . . . ⊇ Ym = Yc,
where Xi+1 is constructed from Xi by removing a beat point and Yi+1 is
constructed from Yi, similarly. Since X and Y are homotopy equivalent, Xc

and Yc are homeomorphic. Thus, χ(Xc) = χ(Yc).
It suffices to show that the Euler characteristic does not change when a

beat point is removed. Let P be a finite poset and let p ∈ P be a beat
point. Then there exists q ∈ P such that if r is comparable with p then r is
comparable with q.
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Hence we have a bijection

ϕ : {C ∈ C(P ) | p ∈ C, q /∈ C} −→ {C ∈ C(P ) | p ∈ C, q ∈ C},
C �−→ C ∪ {q}.

Therefore

χ(P )−χ(P � {p}) =
∑

p∈C∈CP
(−1)#C+1 =

∑

q/∈C�p
(−1)#C+1 +

∑

q∈C�p
(−1)#C+1

=
∑

q/∈C�p
(−1)#C+1+

∑

q/∈C�p
(−1)#ϕ(C)+1 =

∑

q/∈C�p
(−1)#C+1+

∑

q/∈C�p
(−1)#C =0.


�
The Euler characteristic of finite T0-spaces is intimately related to the

Möbius function of posets, which is a generalization of the classical Möbius
function of number theory. We will say just a few words about this. For proofs
and applications we refer the reader to [29].

Given a finite poset P , we define the incidence algebra A(P ) of P as the
set of functions P × P → R such that f(x, y) = 0 if x � y with the usual
structure of R-vector space and the product given by

fg(x, y) =
∑

z∈P
f(x, z)g(z, y).

The element ζP ∈ A(P ) defined by ζP (x, y) = 1 if x ≤ y and 0 in other
case, is invertible in A(P ). The Möbius fuction μP ∈ A(P ) is the inverse
of ζP .

The Theorem of Hall states that if P is a finite poset and x, y ∈ P , then
μP (x, y) =

∑

n≥0

(−1)n+1cn, where cn is the number of chains of n-elements

which start in x and end in y.
Given a finite poset P , P̂ = P ∪ {0, 1} denotes the poset obtained when

adjoining a minimum 0 and a maximum 1 to P . In particular, (2.1) and the
Theorem of Hall, give the following

Corollary 2.5.2. Let P be a finite poset. Then

χ̃(P ) = μP̂ (0, 1),

where χ̃(P ) = χ(P )− 1 denotes the reduced Euler characteristic of the finite
space P .

One of the motivations of the Möbius function is the following inversion
formula.
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Theorem 2.5.3 (Möbius inversion formula). Let P be a finite poset
and let f, g : P → R. Then

g(x) =
∑

y≤x
f(y) if and only if f(x) =

∑

y≤x
μP (y, x)g(y).

Analogously,

g(x) =
∑

y≥x
f(y) if and only if f(x) =

∑

y≥x
μP (y, x)g(y).

Beautiful applications of these formulae are: (1) the Möbius inversion
of number theory which is obtained when applying Theorem 2.5.3 to the
order given by divisibility of the integer numbers; (2) the inclusion–exclusion
formula obtained from the power set of a set ordered by inclusion.

2.6 Automorphism Groups of Finite Posets

It is well known that any finite group G can be realized as the automorphism
group of a finite poset. In 1946 Birkhoff [13] proved that if the order of G is
n, G can be realized as the automorphisms of a poset with n(n+1) points. In
1972 Thornton [78] improved slightly Birkhoff’s result: He obtained a poset
of n(2r + 1) points, when the group is generated by r elements.

We present here a result which appears in [10]. Following Birkhoff’s and
Thornton’s ideas, we exhibit a simple proof of the following fact which im-
proves their results

Theorem 2.6.1. Given a group G of finite order n with r generators, there
exists a poset X with n(r + 2) points such that Aut(X) � G.

Recall first that the height ht(X) of a finite poset X is one less than the
maximum number of elements in a chain of X . The height of a point x in a
finite poset X is ht(x) = ht(Ux).

Proof. Let {h1, h2, . . . , hr} be a set of r generators of G. We define the poset
X = G× {−1, 0, . . . , r} with the following order

• (g, i) ≤ (g, j) if −1 ≤ i ≤ j ≤ r
• (ghi,−1) ≤ (g, j) if 1 ≤ i ≤ j ≤ r

Define φ : G → Aut(X) by φ(g)(h, i) = (gh, i). It is easy to see that
φ(g) : X → X is order preserving and that it is an automorphism with
inverse φ(g−1). Therefore φ is a well defined homomorphism. Clearly φ is a
monomorphism since φ(g) = 1 implies (g,−1) = φ(g)(e,−1) = (e,−1).
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Fig. 2.1 U(g,r)

It remains to show that φ is an epimorphism. Let f : X → X be an
automorphism. Since (e,−1) is minimal in X , so is f(e,−1) and therefore
f(e,−1) = (g,−1) for some g ∈ G. We will prove that f = φ(g).

Let Y = {x ∈ X | f(x) = φ(g)(x)}. Y is nonempty since (e,−1) ∈ Y . We
prove first that Y is an open subspace of X . Suppose x = (h, i) ∈ Y . Then
the restrictions

f |Ux , φ(g)|Ux : Ux → Uf(x)

are isomorphisms. On the other hand, there exists a unique automorphism
Ux → Ux since the unique chain of i + 2 elements must be fixed by any
such automorphism. Thus, f |−1

Ux
φ(g)|Ux = 1Ux , and then f |Ux = φ(g)|Ux ,

which proves that Ux ⊆ Y . Similarly we see that Y ⊆ X is closed. Assume
x = (h, i) /∈ Y . Since f ∈ Aut(X), it preserves the height of any point. In
particular ht(f(x)) = ht(x) = i+ 1 and therefore f(x) = (k, i) = φ(kh−1)(x)
for some k ∈ G. Moreover k �= gh since x /∈ Y . As above, f |Ux = φ(kh−1)|Ux ,
and since kh−1 �= g we conclude that Ux ∩ Y = ∅.

We prove now that X is connected. It suffices to prove that any two
minimal elements ofX are in the same connected component. Given h, k ∈ G,
we have h = khi1hi2 . . . him for some 1 ≤ i1, i2 . . . im ≤ r. On the
other hand, (khi1hi2 . . . his ,−1) and (khi1hi2 . . . his+1 ,−1) are connected
via (khi1hi2 . . . his ,−1) < (khi1hi2 . . . his , r) > (khi1hi2 . . . his+1 ,−1). This
implies that (k,−1) and (h,−1) are in the same connected component.

Finally, since X is connected and Y is closed, open and nonempty, Y = X ,
i.e. f = φ(g). Therefore φ is an epimorphism, and then G � Aut(X). 
�
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If the generators h1, h2, . . . , hr are non-trivial, the open sets U(g,r) are as in
Fig. 2.1. In that case it is not hard to prove that the finite spaceX constructed
above is weak homotopy equivalent to a wedge of n(r − 1) + 1 circles, or in
other words, that the order complex of X is homotopy equivalent to a wedge
of n(r − 1) + 1 circles. The space X deformation retracts to the subspace
Y = G × {−1, r} of its minimal and maximal points. A retraction is given
by the map f : X → Y , defined as f(g, i) = (g, r) if i ≥ 0 and f(g,−1) =
(g,−1). Now the order complex K(Y ) of Y is a connected simplicial complex
of dimension 1, so its homotopy type is completely determined by its Euler
Characteristic. This complex has 2n vertices and n(r+1) edges, which means
that it has the homotopy type of a wedge of 1−χ(K(Y )) = n(r−1)+1 circles.

On the other hand, note that in general the automorphism group of a finite
space, does not say much about its homotopy type as we see in the following

Proposition 2.6.2. Given a finite group G and a finite space X, there exists
a finite space Y which is homotopy equivalent to X and such that Aut(Y )�G.

Proof. We make this construction in two steps. First, we find a finite T0-space
X̃ homotopy equivalent to X and such that Aut(X̃) = 0. To do this, assume
that X is T0 and consider a linear extension x1, x2, . . . , xn of the poset X (i.e.
X = {x1, x2, . . . , xn} and xi ≤ xj implies i ≤ j). Now, for each 1 ≤ k ≤ n
attach a chain of length kn to X with minimum xn−k+1. The resulting space
X̃ deformation retracts to X and every automorphism f : X̃ → X̃ must fix
the unique chain C1 of length n2 (with minimum x1). Therefore f restricts
to a homeomorphism X̃ �C1 → X̃ �C1 which must fix the unique chain C2

of length n(n − 1) of X̃ � C1 (with minimum x2). Applying this reasoning
repeatedly, we conclude that f fixes every point of X̃. On the other hand, we
know that there exists a finite T0-space Z such that Aut(Z) = G.

Now the space Y is constructed as follows. It contains one copy of X̃ and
one of Z, and the additional relations z ≤ x for every z ∈ Z and x ≥ x1 in X̃ .
So, all the elements of Z are smaller than x1 ∈ X̃. Clearly Y deformation
retracts to X̃. Moreover, if f : Y → Y is an automorphism, f(x1) /∈ Z
since f(x1) cannot be comparable with x1 and distinct from it (cf. Lemma
8.1.1). Since there is only one chain of n2 elements in X̃, it must be fixed
by f . In particular f(x1) = x1, and then f |Z : Z → Z. Thus f restricts to
automorphisms of X̃ and of Z and therefore Aut(Y ) � Aut(Z) � G. 
�

2.7 Joins, Products, Quotients and Wedges

In this section we will study some basic constructions in the settings of finite
spaces, simplicial complexes and general topological spaces. We will relate
these constructions to each other and analyze them from the homotopical
point of view.
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Recall that the simplicial join K∗L (also denoted byKL) of two simplicial
complexes K and L (with disjoint vertex sets) is the complex

K ∗ L = K ∪ L ∪ {σ ∪ τ | σ ∈ K, τ ∈ L}.

The simplicial cone aK with base K is the join of K with a vertex a /∈ K.
It is well known that for finite simplicial complexes K and L, the geometric
realization |K ∗ L| is homeomorphic to the topological join |K| ∗ |L|. If K
is the 0-complex with two vertices, |K ∗ L| = |K| ∗ |L| = S0 ∗ |L| = Σ|L|
is the suspension of |L|. Here, S0 denotes the discrete space on two points
(0-sphere).

There is an analogous construction for finite spaces.

Definition 2.7.1. The (non-Hausdorff) join (also called the ordinal sum)
X � Y of two finite T0-spaces X and Y is the disjoint union X � Y keeping
the given ordering within X and Y and setting x ≤ y for every x ∈ X and
y ∈ Y .

Note that the join is associative and in general X � Y �= Y � X . Special
cases of joins are the non-Hausdorff cone C(X) = X � D0 and the non-
Hausdorff suspension S(X) = X � S0 of any finite T0-space X . Here D0 = ∗
denotes the singleton (0-cell).

Remark 2.7.2. K(X � Y ) = K(X) ∗ K(Y ).

Given a point x in a finite T0-space X , the star Cx of x consists of the
points which are comparable with x, i.e. Cx = Ux∪Fx. Note that Cx is always
contractible since 1Cx

≤ f ≥ g where f : Cx → Cx is the map which is the
identity on Fx and the constant map x on Ux, and g is the constant map x.
The link of x is the subspace Ĉx = Cx � {x}. In case we need to specify the
ambient space X , we will write ĈXx . Note that Ĉx = Ûx � F̂x.

Proposition 2.7.3. Let X and Y be finite T0-spaces. Then X � Y is con-
tractible if and only if X or Y is contractible.

Proof. Assume X is contractible. Then there exists a sequence of spaces

X = Xn � Xn−1 � . . . � X1 = {x1}

with Xi = {x1, x2, . . . , xi} and such that xi is a beat point of Xi for every
2 ≤ i ≤ n. Then xi is a beat point of Xi�Y for each 2 ≤ i ≤ n and therefore,
X � Y deformation retracts to {x1}� Y which is contractible. Analogously,
if Y is contractible, so is X � Y .

Now suppose X � Y is contractible. Then there exists a sequence

X � Y = Xn � Yn � Xn−1 � Yn−1 � . . . � X1 � Y1 = {z1}

with Xi ⊆ X , Yi ⊆ Y , Xi � Yi = {z1, z2 . . . , zi} such that zi is a beat point
of Xi � Yi for i ≥ 2.
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Let i ≥ 2. If zi ∈ Xi, zi is a beat point of Xi unless it is a maximal point
of Xi and Yi has a minimum. In the same way, if zi ∈ Yi, zi is a beat point
of Yi or Xi has a maximum. Therefore, for each 2 ≤ i ≤ n, either Xi−1 ⊆ Xi

and Yi−1 ⊆ Yi are deformation retracts (in fact, one inclusion is an identity
and the other inclusion is strict), or one of them, Xi or Yi, is contractible.
This proves that X or Y is contractible. 
�

In Proposition 4.3.4 we will prove a result which is the analogue of
Proposition 2.7.3 for collapsible finite spaces.

If X and Y are finite spaces, the preorder corresponding to the topological
product X × Y is the product of the preorders of X and Y (Remark 1.1.2),
i.e. (x, y) ≤ (x′, y′) if and only if x ≤ x′ and y ≤ y′. If X and Y are two
topological spaces, not necessarily finite, and A is strong deformation retract
of a X , then A× Y is a strong deformation retract of X × Y .

Proposition 2.7.4. Let Xc and Yc be cores of finite spaces X and Y . Then
Xc × Yc is a core of X × Y .

Proof. Since Xc ⊆ X is a strong deformation retract, so is Xc × Y ⊆ X × Y .
Analogously Xc×Yc is a strong deformation retract of Xc×Y and then, so is
Xc×Yc ⊆ X×Y . We have to prove that the product of minimal finite spaces
is also minimal. Let (x, y) ∈ Xc × Yc. If there exists x′ ∈ Xc with x′ ≺ x and
y′ ∈ Yc with y′ ≺ y, (x, y) covers at least two elements (x′, y) and (x, y′). If x
is minimal in Xc, Û(x,y) is homeomorphic to Ûy. Analogously if y is minimal.
Therefore, (x, y) is not a down beat point. Similarly, Xc × Yc does not have
up beat points. Thus, it is a minimal finite space. 
�

In particular X × Y is contractible if and only if each space X and Y
is contractible. In fact this result holds in general, when X and Y are not
necessarily finite.

Recall that the product of two nonempty spaces is T0 if and only if each
space is.

Proposition 2.7.5. Let X and Y be finite T0-spaces. Then |K(X × Y )| is
homeomorphic to |K(X)| × |K(Y )|.
Proof. Let pX : X×Y → X and pY : X×Y → Y be the canonical projections.
Define f : |K(X×Y )| → |K(X)|× |K(Y )| by f = |K(pX)|× |K(pY )|. In other

words, if α =
k∑

i=0

ti(xi, yi) ∈ |K(X × Y )| where (x0, y0) < (x1, y1) < . . . <

(xk, yk) is a chain in X × Y , f(α) = (
k∑

i=0

tixi,
k∑

i=0

tiyi).

Since |K(pX )| and |K(pY )| are continuous, so is f . |K(X × Y )| is compact
and |K(X)|×|K(Y )| is Hausdorff, so we only need to show that f is a bijection.
Details will be left to the reader. An explicit formula for g = f−1 is given by

g(
k∑

i=0

uixi,

l∑

i=0

viyi) =
∑

i,j

tij(xi, yj),
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where tij = max{0,min{u0 + u1 + . . . + ui, v0 + v1 + . . . vj} − max{u0+
u1 + . . . + ui−1, v0 + v1 + . . . vj−1}}. The idea is very simple. Consider the
segments U0, U1, . . . , Uk ⊆ I = [0, 1], each Ui of length ui, Ui = [u0+u1+. . .+
ui−1, u0 + u1 + . . .+ ui]. Analogously, define Vj = [v0 + v1 + . . .+ vj−1, v0 +
v1 + . . . + vj ] ⊆ I for 0 ≤ j ≤ l. Then tij is the length of the segment
Ui ∩ Vj . It is not hard to see that g : |K(X)| × |K(Y )| → |K(X × Y )| is well
defined since support(

∑

i,j
tij(xi, yj)) is a chain and

∑
tij =

∑

i,j
length(Ui∩

Vj) =
∑

i

length(Ui) = 1. Moreover, the compositions gf and fg are the

corresponding identities. 
�
A similar proof of the last result can be found in [81, Proposition 4.1].
If X is a finite T0-space, and A ⊆ X is a subspace, the quotient X/A need

not be T0. For example, if X is the chain of three elements 0 < 1 < 2 and
A = {0, 2}, X/A is the indiscrete space of two elements. We will exhibit a
necessary and sufficient condition for X/A to be T0.

Let X be a finite space and A ⊆ X a subspace. We will denote by q : X →
X/A the quotient map and by qx the class in the quotient of an element
x ∈ X . Recall that A = {x ∈ X | ∃ a ∈ A with x ≥ a} denotes the closure of
A. We will denote by A = {x ∈ X | ∃ a ∈ A with x ≤ a} =

⋃

a∈A
Ua ⊆ X , the

open hull of A.

Lemma 2.7.6. Let x ∈ X. If x ∈ A, Uqx = q(Ux ∪ A). If x /∈ A, Uqx =
q(Ux).

Proof. Suppose x ∈ A. A subset U of X/A is open if and only if q−1(U) is
open in X . Since q−1(q(Ux ∪A)) = Ux ∪A ⊆ X is open, q(Ux ∪A) ⊆ X/A is
an open set containing qx. Therefore Uqx ⊆ q(Ux ∪ A). The other inclusion
follows from the continuity of q since x ∈ A: if y ∈ A, there exist a, b ∈ A
such that y ≤ a and b ≤ x and therefore qy ≤ qa = qb ≤ qx.

If x /∈ A, q−1(q(Ux)) = Ux, so q(Ux) is open and therefore Uqx ⊆ q(Ux).
The other inclusion is trivial. 
�
Proposition 2.7.7. Let X be a finite space and A ⊆ X a subspace. Let
x, y ∈ X, then qx ≤ qy in the quotient X/A if and only if x ≤ y or there
exist a, b ∈ A such that x ≤ a and b ≤ y.
Proof. Assume qx ≤ qy. If y ∈ A, there exists b ∈ A with b ≤ y and by the
previous lemma qx ∈ Uqy = q(Uy ∪A). Therefore x ∈ Uy ∪A and then x ≤ y
or x ≤ a for some a ∈ A. If y /∈ A, qx ∈ Uqy = q(Uy). Hence, x ∈ Uy.

Conversely if x ≤ y or there are some a, b ∈ A such that x ≤ a and b ≤ y,
then qx ≤ qy or qx ≤ qa = qb ≤ qy. 
�
Proposition 2.7.8. Let X be a finite T0-space and A ⊆ X. The quotient
X/A is not T0 if and only if there exists a triple a < x < b with a, b ∈ A and
x /∈ A.
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Proof. Suppose there is not such triple and that qx ≤ qy, qy ≤ qx. Then
x ≤ y or there exist a, b ∈ A with x ≤ a, b ≤ y, and, on the other hand,
y ≤ x or there are some a′, b′ ∈ A such that y ≤ a′, b′ ≤ x. If x ≤ y and
y ≤ x, then x = y. In other case, both x and y are in A. Therefore, qx = qy.
This proves that X/A is T0. Conversely, if there exists a triple a < x < b as
above, qa ≤ qx ≤ qb = qa, but qa �= qx. Therefore, X/A is not T0. 
�

The non-existence of a triple as above is equivalent to saying that A =
A ∩A, i.e.

X/A is T0 if and only if A = A ∩A.
For example open or closed subsets satisfy this condition.

Now we want to study how the functors X and K behave with respect
to quotients. Recall that K(X (K)) is the barycentric subdivision K′ of K.
Following [80] and [35], the barycentric subdivision of a finite T0-space X is
defined by X ′ = X (K(X)). Explicitly, X ′ consists of the nonempty chains of
X ordered by inclusion. This notion will be important in the development of
the simple homotopy theory for finite spaces studied in Chap. 4.

Example 2.7.9. Let X = CD2 = {x, a, b} and let A= {a, b} be the subspace
of minimal elements.

x•

		
		
		
	












a• •b
Then X/A is the Sierpinski space S (the finite T0-space with two points
0 < 1) and |K(X)|/|K(A)| is homeomorphic to S1. Therefore |K(X)|/|K(A)|
and |K(X/A)| are not homotopy equivalent. However X ′/A′ = S0 � S0 and
then |K(X ′)|/|K(A′)| and |K(X ′/A′)| are both homeomorphic to a circle. The
application K does not preserve quotients in general. In Corollary 7.2.2 we
prove that if A is a subspace of a finite T0-space X , |K(X ′)|/|K(A′)| and
|K(X ′/A′)| are homotopy equivalent.

A particular case of a quotient X/A is the one-point union or wedge. If
X and Y are topological spaces with base points x0 ∈ X , y0 ∈ Y , then the
wedge X ∨ Y is the quotient X � Y/A with A = {x0, y0}. Clearly, if X and
Y are finite T0-spaces, A = {x0, y0} ⊆ X � Y satisfies A = A ∩ A and then
X ∨Y is also T0. Moreover, if x, x′ ∈ X , then x covers x′ in X if and only if x
covers x′ in X ∨Y . The same holds for Y , and if x ∈ X� {x0}, y ∈ Y � {y0}
then x does not cover y in X ∨ Y and y does not cover x. Thus, the Hasse
diagram of X ∨Y is the union of the Hasse diagrams of X and Y , identifying
x0 and y0.

If X ∨ Y is contractible, then X and Y are contractible. This holds for
general topological spaces. Let i : X → X ∨Y denote the canonical inclusion
and r : X ∨ Y → X the retraction which sends all of Y to x0. If H :
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(X ∨ Y ) × I → X ∨ Y is a homotopy between the identity and a constant,
then rH(i × 1I) : X × I → X shows that X is contractible. The following
example shows that the converse is not true for finite spaces.

Example 2.7.10. The space X of Example 2.2.6 is contractible, but the
union at x of two copies of X is a minimal finite space, and in particular it
is not contractible.
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However, from Corollary 4.3.11 we will deduce that X∨X is homotopically
trivial, or in other words, it is weak homotopy equivalent to a point. This is
the first example we exhibit of a finite space which is homotopically trivial
but which is not contractible. These spaces play a fundamental role in the
theory of finite spaces.

In Proposition 4.3.10 we will prove that if X and Y are finite T0-spaces,
there is a weak homotopy equivalence |K(X)| ∨ |K(Y )| → X ∨ Y .

2.8 A Finite Analogue of the Mapping Cylinder

The mapping cylinder of a map f : X → Y between topological spaces is the
space Zf obtained from (X × I)� Y by identifying each point (x, 1) ∈ X × I
with f(x) ∈ Y . Both X and Y are subspaces of Zf . We denote by j : Y ↪→ Zf
and i : X ↪→ Zf the canonical inclusions where i is defined by i(x) = (x, 0).
The space Y is in fact a strong deformation retract of Zf . Moreover, there
exists a retraction r : Zf → Y with jr � 1Zf

rel Zf which satisfies that
ri = f [75, Theorem 1.4.12].

We introduce a finite analogue of the classical mapping cylinder which will
become important in Chap. 4. This construction was first studied in [8].

Definition 2.8.1. Let f : X → Y be a map between finite T0-spaces. We
define the non-Hausdorff mapping cylinder B(f) as the following finite T0-
space. The underlying set is the disjoint union X � Y . We keep the given
ordering within X and Y and for x ∈ X , y ∈ Y we set x ≤ y in B(f) if
f(x) ≤ y in Y .



2.8 A Finite Analogue of the Mapping Cylinder 35

It can be proved that B(f) is isomorphic to (X ×S)� Y/(x,1)∼f(x) where
S denotes the Sierpinski space. However, we will omit the proof because this
fact will not be used in the applications.

We will denote by i : X ↪→ B(f) and j : Y ↪→ B(f) the canonical inclusions
of X and Y into the non-Hausdorff mapping cylinder.

Lemma 2.8.2. Let f : X → Y be a map between finite T0-spaces. Then Y
is a strong deformation retract of B(f).

Proof. Define the retraction r : B(f) → Y of j by r(x) = f(x) for every
x ∈ X . Clearly r is order preserving. Moreover, jr ≥ 1B(f) and then jr �
1B(f) rel Y . 
�

By Corollary 2.2.5, for any map f : X → Y there is a strong collapse
B(f) ↘↘ Y .

Since ri = f , any map between finite T0-spaces can be factorized as a
composition of an inclusion and a homotopy equivalence.

B(f)
r

����
��

��
��

�

X
� �

i
����������� f

�� Y

As in the classical setting, the non-Hausdorff mapping cylinder can be used
to reduce many proofs concerning general maps to the case of inclusions. For
example, f satisfies one of the following properties if and only if the inclusion
i does: being a homotopy equivalence, a weak homotopy equivalence or a
nullhomotopic map.

If X and Y are any two homotopy equivalent spaces there exists a third
space Z containing both X and Y as strong deformation retracts. This space
can be taken as the mapping cylinder of any homotopy equivalence X → Y
(see [38, Corollary 0.21]). If f : X → Y is now a homotopy equivalence
between finite T0-spaces, Y is a strong deformation retract of B(f) but X in
general is just a (weak) deformation retract. Consider the space X and the
point x ∈ X of Example 2.2.6. The map f : ∗ → Xop that maps ∗ into x is a
homotopy equivalence. However ∗ is not a strong deformation retract of B(f)
by Corollary 2.2.5 because (B(f), ∗) is a minimal pair. Although X is not
in general a strong deformation retract of B(f) for a homotopy equivalence
f : X → Y , we will see that if two finite T0-spaces are homotopy equivalent,
there exists a third finite T0-space containing both as strong deformation
retracts. This is stated in Proposition 4.6.6.



•



Chapter 3

Minimal Finite Models

In Sect. 2.3 we proved that in general, if K is a finite simplicial complex, there
is no finite space with the homotopy type of |K|. However, by Theorem 1.4.12
any compact polyhedron is weak homotopy equivalent to a finite space. In
this chapter we will study finite models of polyhedra in this sense and we will
describe the minimal finite models of some well-known (Hausdorff) spaces,
i.e. weak homotopy equivalent finite spaces of minimum cardinality. The main
results of this chapter appear in [7].

3.1 A Finite Space Approximation

Definition 3.1.1. Let X be a space. We say that a finite space Y is a finite
model of X if it is weak homotopy equivalent to X . We say that Y is a
minimal finite model if it is a finite model of minimum cardinality.

For example, the singleton is the unique minimal finite model of every
contractible space. Moreover, it is the unique minimal finite model of every
homotopically trivial space, i.e. with trivial homotopy groups.

Since every finite space is homotopy equivalent to its core, which is a
smaller space, we have the following

Remark 3.1.2. Every minimal finite model is a minimal finite space.

Since K(X) = K(Xop), if X is a minimal finite model of a space Y , then
so is Xop.

Example 3.1.3. The 5-point T0-space X , whose Hasse diagram is
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has an associated polyhedron |K(X)|, which is homotopy equivalent to
S1 ∨S1. Therefore, X is a finite model of S1 ∨ S1. In fact, it is a minimal
finite model since every space with less than 5 points is either contractible,
or non connected or weak homotopy equivalent to S1. However, this minimal
finite model is not unique since Xop is another minimal finite model not
homeomorphic to X .

We will generalize this result later, when we characterize the minimal finite
models of graphs.

The idea of modeling spaces with ones which are easier to describe and to
work with is standard in Algebraic Topology. For instance, any topological
space X can be approximated by a CW-complex, in the sense that there
exists a CW-complex weak homotopy equivalent to X . Moreover, two such
CW-approximations are homotopy equivalent [38, Proposition 4.13, Corollary
4.19]. In these notes, we use finite spaces to model general spaces. Note that,
as the previous example shows, two finite models of a space may not be
homotopy equivalent. The uniqueness of CW-approximations up to homotopy
implies that if X is a finite model of a polyhedron Y , then Y is homotopy
equivalent to |K(X)|.

Generalizing the definition made in Sect. 2.7, we define the non-Hausdorff
suspension S(X) of a topological space X as the space X ∪ {+,−} whose
open sets are those of X together with X ∪ {+}, X ∪ {−} and X ∪ {+,−}.
If X is a finite space, the non-Hausdorff suspension of X is the join S(X) =
X � S0. The non-Hausdorff suspension of order n is defined recursively by
S

n(X) = S(Sn−1(X)). For convenience we define S
0(X) = X .

The following result is due to McCord [55].

Proposition 3.1.4. The finite space S
n(S0) is a finite model of the n-

dimensional sphere Sn for every n ≥ 0.

Proof. By Remark 2.7.2, |K(Sn(S0))| = |K(S0 � S0 � . . .� S0)| = |K(S0)| ∗
|K(S0)| ∗ . . . ∗ |K(S0)| = S0 ∗ S0 ∗ . . . ∗ S0 = Sn. ��
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In [52] May conjectured that S
n(S0) is a minimal finite model of Sn.

We will show that this conjecture is true. In fact, we prove a stronger result.
Namely, we will see that any space with the same homotopy groups as Sn
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has at least 2n + 2 points. Moreover, if it has exactly 2n + 2 points then it
has to be homeomorphic to S

nS0.

3.2 Minimal Finite Models of the Spheres

Recall again that the height ht(X) of a finite poset X is one less than the
maximum cardinality of a chain of X . Therefore ht(X) coincides with the
dimension of the associated complex K(X).

Theorem 3.2.1. Let X �= ∗ be a minimal finite space. Then X has at least
2ht(X) + 2 points. Moreover, if X has exactly 2ht(X) + 2 points, then it is
homeomorphic to S

ht(X)(S0).

Proof. Let x0 < x1 < . . . < xh be a chain in X of length h = ht(X). Since
X is a minimal finite space, xi is not an up beat point for any 0 ≤ i < h.
Then, for every 0 ≤ i < h there exists yi+1 ∈ X such that yi+1 > xi and
yi+1 � xi+1. We assert that the points yi (for 0 < i ≤ h) are all distinct from
each other and also different from the xj (0 ≤ j ≤ h).

Since yi+1 > xi, it follows that yi+1 �= xj for all j ≤ i. But yi+1 �= xj for
all j > i because yi+1 � xi+1.

If yi+1 = yj+1 for some i < j, then yi+1 = yj+1 ≥ xj ≥ xi+1, which is a
contradiction.

Since finite spaces with minimum or maximum are contractible and X �= ∗
is a minimal finite space, it cannot have a minimum. Then there exists y0 ∈ X
such that y0 � x0. Therefore, y0 must be distinct from the other 2h+1 points
and #X ≥ 2h+ 2.

Let us suppose now that X has exactly 2h+ 2 points, i.e.

X = {x0, x1, . . . , xh, y0, y1, . . . , yh}.

Because of the maximality of the chain x0 < . . . < xh, we get that xi and
yi are incomparable for all i.

We show that yi < xj and yi < yj for all i < j by induction in j.
For j = 0 there is nothing to prove. Let 0 ≤ k < h and assume the

statement holds for j = k. As xk+1 is not a down beat point, there exists
z ∈ X such that z < xk+1, and z � xk. Since xk+1 and yk+1 are incomparable,
it follows that z �= yk+1. By induction we know that every point in X , with
the exception of yk and yk+1, is greater than xk+1 or less than xk. Then
z = yk and so, yk < xk+1. Analogously, yk+1 is not a down beat point and
there exists w ∈ X such that w < yk+1 and w � xk. Again by induction,
and because yk+1 � xk+1, we deduce that w must be yk and then yk < yk+1.
Furthermore, if i < k, then yi < xk < xk+1 and yi < xk < yk+1.

We proved that, for any i < j, we have that yi < xj , yi < yj , xi < xj and
xi < yj. Moreover, for any 0 ≤ i ≤ h, xi and yi are incomparable.



40 3 Minimal Finite Models

This is exactly the order of S
h(S0). Therefore X is homeomorphic to

S
h(S0). ��

Theorem 3.2.2. Any space with the same homotopy groups as Sn has at
least 2n+ 2 points. Moreover, S

n(S0) is the unique space with 2n+ 2 points
with this property.

Proof. The case n = 1 is trivial. In the other cases, let us suppose that X is
a finite space with minimum cardinality such that πk(X,x) = πk(Sn, s) for
all k ≥ 0. Then X must be a minimal finite space and so is T0.

By the Hurewicz Theorem [38, Theorem 4.32], Hn(|K(X)|) = πn(|K(X)|)
= πn(Sn) �= 0. This implies that the dimension of the simplicial complex
K(X) must be at least n, which means that the height of X is at least n. The
result now follows immediately from the previous theorem. ��
Corollary 3.2.3. The n-sphere has a unique minimal finite model and it
has 2n+ 2 points.

Remark 3.2.4. These results regarding the minimal finite models of the
spheres were obtained in [7]. However, there is an article of McCord [54] with
a result without proof [54, Theorem 2], from which the first part of Theorem
3.2.2 could be deduced. McCord’s result can be easily deduced from the
stronger Theorem 3.2.1 (which also implies the uniqueness of these minimal
models).

Furthermore, the proof of Theorem 3.2.1 itself is interesting because it
relates the combinatorial methods of Stong’s theory with McCord’s point of
view.

3.3 Minimal Finite Models of Graphs

Remark 3.3.1. If X is a connected finite T0-space of height one, |K(X)| is a
connected graph, i.e. a CW-complex of dimension one. Therefore, the weak
homotopy type of X is completely determined by its Euler characteristic.
More precisely, if

χ(X) = #X −#E(H(X)) = n,

then X is a finite model of
1−n∨

i=1
S1. Recall that E(H(X)) denotes the set of

edges of the Hasse diagram of X .

Proposition 3.3.2. Let X be a connected finite T0-space and let x0, x ∈
X, x0 �= x such that x is neither maximal nor minimal in X. Then the
inclusion map of the associated simplicial complexes K(X � {x}) ⊆ K(X)
induces an epimorphism
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i∗ : E(K(X � {x}), x0)→ E(K(X), x0)

between their edge-path groups.

Proof. We have to check that every closed edge-path in K(X) with base
point x0 is equivalent to another edge-path that does not go through x. Let
us suppose that y ≤ x and (y, x)(x, z) is an edge-path in K(X). If x ≤ z then
(y, x)(x, z) ≡ (y, z). In the case that z < x, since x is not maximal in X , there
exists w > x. Therefore (y, x)(x, z) ≡ (y, x)(x,w)(w, x)(x, z) ≡ (y, w)(w, z).
The case y ≥ x is analogous.

In this way, one can eliminate x from the writing of any closed edge-path
with base point x0. ��

Note that the space X�{x} of the previous proposition is also connected.
An alternative proof of the previous proposition is given by the van Kampen
Theorem. Let Cx = Ux ∪ Fx be the star of x. Since x is not maximal or
minimal, the link Ĉx = Cx � {x} is connected. Then van Kampen gives
an epimorphism π1(|K(X � x)|) ∗ π1(|K(Cx)|) → π1(|K(X)|). But K(Cx) =
xK(Ĉx) is a cone, and then π1(|K(Cx)|) = 0. Therefore, i∗ : π1(|K(X�x)|)→
π1(|K(X)|) is an epimorphism.

The result above shows one of the advantages of using finite spaces instead
of simplicial complexes. The conditions of maximality or minimality of points
in a finite space are hard to express in terms of simplicial complexes.

Remark 3.3.3. If X is a finite T0-space, then ht(X) ≤ 1 if and only if every
point in X is maximal or minimal.

Corollary 3.3.4. Let X be a connected finite space. Then there exists a con-
nected T0-subspace Y ⊆ X of height at most one such that the fundamental
group of X is a quotient of the fundamental group of Y .

Proof. We can assume that X is T0 because X has a core. Now, the result
follows immediately from the previous proposition. ��
Remark 3.3.5. Note that the fundamental group of a connected finite T0-
space of height at most one is finitely generated by Remark 3.3.1. Therefore,
path-connected spaces whose fundamental group does not have a finite set of
generators do not admit finite models.

Corollary 3.3.6. Let n ∈ N. If X is a minimal finite model of
n∨

i=1
S1, then

ht(X) = 1.

Proof. Let X be a minimal finite model of
n∨

i=1

S1. Then there exists a con-

nected T0-subspace Y ⊆ X of height one, x ∈ Y and an epimorphism from
π1(Y, x) to π1(X,x) =

n∗
i=1

Z.
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Since ht(Y ) = 1, Y is a model of a graph, thus π1(Y, x) =
m∗

i=1
Z for some

integer m. Note that m ≥ n.
There are m edges of H(Y ) which are not in a maximal tree of the

underlying non directed graph of H(Y ) (i.e. K(Y )). Therefore, we can remove
m−n edges from H(Y ) in such a way that it remains connected and the new

space Z obtained in this way is a model of
n∨

i=1
S1.

Note that #Z = #Y ≤ #X , but since X is a minimal finite model,
#X ≤ #Z and then X = Y has height one. ��

If X is a minimal finite model of
n∨

i=1

S1 and we call i = #{y ∈ X | y is

maximal}, j = #{y ∈ X | y is minimal}, then #X = i+j and #E(H(X))≤ ij.
Since χ(X) = 1− n, we have that n ≤ ij − (i+ j) + 1 = (i− 1)(j − 1).

We can now state the main result of this section.

Theorem 3.3.7. Let n ∈ N. A finite T0-space X is a minimal finite model

of
n∨

i=1
S1 if and only if ht(X) = 1, #X = min{i+ j | (i− 1)(j − 1) ≥ n} and

#E(H(X)) = #X + n− 1.

Proof. We have already proved that if X is a minimal finite model of
n∨

i=1

S1,

then ht(X) = 1 and #X ≥ min{i+ j | (i− 1)(j− 1) ≥ n}. If i and j are such
that n ≤ (i−1)(j−1), we can consider Y = {x1, x2, . . . , xi, y1, y2, . . . yj} with

the order yk ≤ xl for all k, l, which is a model of
(i−1)(j−1)∨

k=1

S1. Then we can

remove (i − 1)(j − 1) − n edges from H(X) to obtain a connected space of

cardinality i+j which is a finite model of
n∨

k=1

S1. Therefore #X ≤ #Y = i+j.

This is true for any i, j with n ≤ (i− 1)(j − 1), then #X = min{i+ j | (i−
1)(j − 1) ≥ n}. Moreover, #E(H(X)) = #X + n− 1 because χ(X) = 1− n.

In order to show the converse of the theorem we only need to prove that
the conditions ht(X) = 1, #X = min{i + j | (i − 1)(j − 1) ≥ n} and
#E(H(X)) = #X+n−1 imply that X is connected, because in this case, by
Remark 3.3.1, the first and third conditions would say that X is a model of
n∨

i=1

S1, and the second condition would say that it has the right cardinality.

Suppose X satisfies the conditions of above and let Xl, 1 ≤ l ≤ k, be
the connected components of X . Let us denote by Ml the set of maximal

elements of Xl and let ml = Xl � Ml. Let i =
k∑

r=1
#Ml, j =

k∑

r=1
#ml. Since

i+j = #X = min{s+t | (s−1)(t−1) ≥ n}, it follows that (i−2)(j−1) < n =
#E(H(X))−#X+1 = #E(H(X))−(i+j)+1. Hence ij−#E(H(X)) < j−1.
This means that K(X) differs from the complete bipartite graph (∪ml,∪Ml)
in less than j − 1 edges. Since there are no edges from mr to Ml if r �= l,
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j − 1 >
k∑

l=1

#Ml(j −#ml) ≥
k∑

l=1

(j −#ml) = (k − 1)j.

Therefore k = 1 and the proof is complete. ��
For a real number r, we denote by �r� = min{m ∈ Z | m ≥ r} the ceiling

of r.

Corollary 3.3.8. The cardinality of a minimal finite model of
n∨

i=1

S1 is

min{2�√n+ 1�, 2
⌈

1 +
√

1 + 4n
2

⌉

+ 1}.

Proof. The minimumm = min{i+j | (i−1)(j−1) ≥ n} is attained for i = j or
i = j+1 since i(j−2) > (i−1)(j−1) if j ≥ i+2 . Thereforem is the minimum
between min{2i | (i− 1)2 ≥ n} = 2�√n+1� and min{2i+1 | i(i− 1) ≥ n} =
2� 1+

√
1+4n
2 �+ 1. ��

Note that a space may admit many minimal finite models as we can see
in the following example.

Example 3.3.9. Any minimal finite model of
3∨

i=1

S1 has 6 points and 8 edges.

So, they are, up to homeomorphism
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In fact, using our characterization, we prove the following

Proposition 3.3.10.
n∨

k=1

S1 has a unique minimal finite model if and only

if n is a square.

Proof. Assume that n = m2 is a square. In this case the cardinality of a
minimal finite model X is 2m+ 2 and the numbers i and j of maximal and
minimal elements have to be equal to m+1 in order to satisfy (i−1)(j−1) ≥
m2. The number of edges in the Hasse diagram is #E(H(X)) = #X + n −
1 = 2m + 2 + m2 − 1 = (m + 1)2, and therefore every maximal element
in X is greater than any minimal element. Thus, X is the non-Hausdorff
join of two discrete spaces of m + 1 points. Conversely, suppose that n is

not a square and let X be a minimal finite model of
n∨

k=1

S1. If Xop is not
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homeomorphic to X , we have found a different minimal finite model of
n∨

k=1

S1.

Assume then thatX andXop are homeomorphic and, in particular,X has the
same number i of maximal and minimal elements. Since n is not a square,
#E(H(X)) = #X + n − 1 = 2i + n − 1 �= i2. Then we construct a new
space Y of height 1, with i − 1 maximal elements, i + 1 minimal and with
exactly #E(H(Y )) = #E(H(X)) edges in the Hasse diagram. This can be
done because (i − 1)(i + 1) = i2 − 1 ≥ E(H(X)). By Theorem 3.3.7, Y is a

minimal finite model of
n∨

k=1

S1 which is different from X . ��

Recall that an Eilenberg-MacLane space K(G,n) is a space with a unique
non-trivial homotopy group πn(K(G,n)) = G. The homotopy type of a
CW-complexK(G,n) is uniquely determined byG and n (see [38, Proposition
4.30] for example). Note that since any graph is a K(G, 1), the minimal finite
models of a graph X are, in fact, the smallest spaces with the same homotopy
groups as X .

The 2-dimensional torus S1 × S1 = K(Z⊕ Z, 1) is another example of an
Eilenberg-MacLane space. The difficulty of finding minimal finite models of
spaces can be already encountered in this particular case. The product of
two minimal finite models of S1 has 16 points, it is a finite model of S1× S1

and it is a minimal finite space. However it is still unknown whether this is
a minimal finite model or not.

3.4 The f∞(X)

Stong proved that any homotopy equivalence between minimal finite spaces
is a homeomorphism (Corollary 1.3.7). In this section we introduce the
construction f∞(X) and we exhibit some of its properties. One interesting
application is an analogue of Stong’s result for weak homotopy equivalences
and minimal finite models.

Definition 3.4.1. Let X be a finite T0-space and f : X → X a continuous
map. We define f∞(X) =

⋂

i≥1

f i(X) ⊆ X .

Remark 3.4.2. Given f : X → X , there exists n0 ∈ N such that n ≥ n0

implies fn(X) = f∞(X). Let k ∈ N be the order of f |f∞(X) in the finite group
Aut(f∞(X)). If n ≥ n0 and k divides n, fn(X) = f∞(X) and fn|f∞(X) =
1f∞(X). In this case we will say that n ∈ N is suitable for f .

Remark 3.4.3. f∞(X) = {x ∈ X | ∃ n ∈ N such that fn(x) = x}.
Proposition 3.4.4. Let X be a finite T0-space and let f, g : X → X be two
homotopic maps. Then f∞(X) is homotopy equivalent to g∞(X).
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Proof. We can assume that g ≤ f . By Remark 3.4.2, there exists n ∈ N which
is suitable for f and g simultaneously. Then one can consider fn|g∞(X) :
g∞(X)→ f∞(X) and gn|f∞(X) : f∞(X)→ g∞(X). Since

fn|g∞(X)g
n|f∞(X) ≤ f2n|f∞(X) = 1f∞(X),

fn|g∞(X)g
n|f∞(X) � 1f∞(X). Analogously, gn|f∞(X)f

n|g∞(X) � 1g∞(X). ��
Proposition 3.4.5. Let X be a finite T0-space and let Y ⊆ X be a subspace.
Then there exists a continuous map f : X → X such that f∞(X) = Y if and
only if Y is a retract of X.

Proof. If Y = f∞(X) for some f , choose n ∈ N suitable for f . Then fn :
X → Y is a retraction. Conversely, if r : X → Y is a retraction, r∞(X) = Y .

��
Example 3.4.6. Let X be the following finite T0-space
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Define f : X → X such that 5 and 6 are fixed, f(1) = f(2) = f(3) = 2,
f(4) = 3. Since X is contractible and f(X) is a finite model of S1, f(X) is
not a retract of X . However, f∞(X) = {2, 5, 6} is a retract of X .

Theorem 3.4.7. Let X be a finite T0-space and let f : X → X be a weak
homotopy equivalence. Then the inclusion i : f∞(X) ↪→ X is a weak ho-
motopy equivalence. In particular, if X is a minimal finite model, f is a
homeomorphism.

Proof. Let n ∈ N be suitable for f . Then fn : X → f∞(X), and the compo-
sitions fni = 1f∞(X), ifn = fn : X → X are weak homotopy equivalences.
Therefore i is a weak homotopy equivalence.

IfX is a minimal finite model, f∞(X) ⊆ X cannot have less points thanX ,
then f∞(X) = X and f : X → X is onto. Therefore, it is a homeomorphism.

��
Observe that with the same proof of the last theorem, one can prove that

if f : X → X is a homotopy equivalence, then i : f∞(X) ↪→ X is a homotopy
equivalence. In particular, if X is a representative of minimum cardinality
of its homotopy type (ie, a minimal finite space), f is a homeomorphism.
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This proves part of Stong’s Classification Theorem 1.3.7 without using beat
points.

Corollary 3.4.8. Let X and Y be minimal finite models. Suppose there exist
weak homotopy equivalences f : X → Y and g : Y → X. Then f and g are
homeomorphisms.

Proof. The composition gf : X → X is a weak homotopy equivalence and
then a homeomorphism by Theorem 3.4.7. Analogously gf is a homeomor-
phism. Then the result follows. ��
Open problem: Is every weak homotopy equivalence between minimal finite
models a homeomorphism?

Remark 3.4.9. In Example 1.4.17 we proved that there is no weak homotopy
equivalence S(D3) → S(D3)op. We give here an alternative proof using the
previous result and our description of the minimal finite models of graphs.

Suppose there exists a weak homotopy equivalence f : S(D3)→ S(D3)op.
Then fop is also a weak homotopy equivalence. Since S(D3) is a minimal
finite model (see Sect. 3.3), so is S(D3)op. By Corollary 3.4.8, S(D3) is
homeomorphic to its opposite, which is clearly absurd.

Proposition 3.4.10. Let X be a finite T0-space and f, g : X → X two
maps. Then (gf)∞(X) and (fg)∞(X) are homeomorphic.

Proof. Let x ∈ (gf)∞(X), then there exists n ∈ N such that (gf)n(x) = x.
Therefore (fg)n(f(x)) = f(x), and f(x) ∈ (fg)∞(X). Then f |(gf)∞(X) :
(gf)∞(X) → (fg)∞(X). Analogously g|(fg)∞(X) : (fg)∞(X) → (gf)∞(X).
The compositions of these two maps are homeomorphisms, and therefore,
they are also homeomorphisms. ��
Remark 3.4.11. Let X be a finite T0-space, and f : X → X a map. Then
(f ′)∞(X ′) = f∞(X)′. Here f ′ : X ′ → X ′ denotes the map X (K(f)). A chain
x1 < x2 < . . . < xk is in (f ′)∞(X ′) if and only if there exists n such that
(f ′)n({x1, x2, . . . , xk}) = {x1, x2, . . . , xk}. This is equivalent to saying that
there exists n such that fn(xi) = xi for every 1 ≤ i ≤ k or in other words,
that {x1, x2, . . . , xk} ⊆ f∞(X).

To finish this chapter, we introduce a nice generalization of the construc-
tion of f∞(X) for the case of composable maps not necessarily equal nor
with the same domain or codomain.

Suppose X0
f0→ X1

f1→ . . . is a sequence of maps between finite spaces.
Define Yn = fn−1fn−2 . . . f0(X0) ⊆ Xn the image of the composition of the
first n maps of the sequence.

Proposition 3.4.12. There exists n0 ∈ N such that Yn is homeomorphic to
Yn0 for every n ≥ n0.
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Proof. Since (#Yn)n∈N is a decreasing sequence, there exists n1 ∈ N such
that #Yn is constant for n ≥ n1. Therefore fn : Yn → Yn+1 is a bijection for
n ≥ n1.

Let Cn = {(x, x′) ∈ Yn×Yn | x ≤ x′}. The map fn : Yn → Yn+1 induces a
one-to-one function Fn : Cn → Cn+1, Fn(x, x′) = (fn(x), fn(x′)) for n ≥ n1.
Therefore (#Cn)n≥n1 is increasing and bounded by (#Yn1)2. Hence, there
exists n0 ≥ n1 such that Fn is a bijection and then fn : Yn → Yn+1 a
homeomorphism for n ≥ n0. ��

The space Yn0 constructed above is well defined up to homeomorphism
and it is denoted by (fn)∞n∈N

(X0). We show that in the case that all the
spaces Xn are equal, i.e. Xn = X for every n ≥ 0, (fn)∞n∈N

(X) is a retract of
X , as in the original case. Since X is finite, there exists a subspace Y ⊆ X
and an increasing sequence (ni)i∈N of positive integers such that Yni = Y for
every i ∈ N. Let gi = fni−1fni−2 . . . fn1 |Yn1

: Yn1 → Yni . These maps are
permutations of the finite set Y , therefore there are two equal, say gi = gj

with i < j. Then fnj−1fnj−2 . . . fni |Yni
= 1Y , so Y is a retract of X .



•



Chapter 4

Simple Homotopy Types and Finite Spaces

Whitehead’s theory of simple homotopy types is inspired by Tietze’s theorem
in combinatorial group theory, which states that any finite presentation of a
group could be deformed into any other by a finite sequence of elementary
moves, which are now called Tietze transformations. Whitehead translated
these algebraic moves into the well-known geometric moves of elementary
collapses and expansions of finite simplicial complexes. His beautiful theory
turned out to be fundamental for the development of piecewise-linear topol-
ogy: The s-cobordism theorem, Zeeman’s conjecture [87], the applications
of the theory in surgery, Milnor’s classical paper on Whitehead Torsion [58]
and the topological invariance of torsion represent some of its major uses and
advances.

In this chapter we show how to use finite topological spaces to study simple
homotopy types using the relationship between finite spaces and simplicial
complexes.

We have seen that if two finite T0-spaces X,Y are homotopy equivalent,
their associated simplicial complexes K(X),K(Y ) are also homotopy equiv-
alent. Furthermore, Osaki [65] showed that in this case, the latter have the
same simple homotopy type. Nevertheless, we noticed that the converse of this
result is not true in general: There are finite spaces with different homotopy
types whose associated simplicial complexes have the same simple homotopy
type. Starting from this point, we looked for the relation thatX and Y should
satisfy for their associated complexes to be simple homotopy equivalent. More
specifically, we wanted to find an elementary move in the setting of finite
spaces (if it existed) which corresponds exactly to a simplicial collapse of the
associated polyhedra.

We discovered this elementary move when we were looking for a homotopi-
cally trivial finite space (i.e. weak homotopy equivalent to a point) which was
non-contractible. In order to construct such a space, we developed a method
of reduction, i.e. a method that allows us to reduce a finite space to a smaller
weak homotopy equivalent space. This method of reduction together with

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and
Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6 4, © Springer-Verlag Berlin Heidelberg 2011
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the homotopically trivial and non-contractible space (of 11 points) that we
found are exhibited in Sect. 4.2. Surprisingly, this method, which consists of
removing a weak point of the space (see Definition 4.2.2), turned out to be the
key to solve the problem of translating simplicial collapses into this setting.

In Sect. 4.2 we introduce the notions of collapse and simple homotopy type
in the context of finite spaces. Theorem 4.2.11 establishes the relationship
between these concepts and their simplicial analogues.

We are now able to study finite spaces using all the machinery of White-
head’s simple homotopy theory for CW-complexes. But also, what is more
important, we can use finite spaces to strengthen the classical theory. The
elementary move in this setting is much simpler to handle and describe
because it consists of adding or removing just one single point. Applications
of this theorem will appear constantly in the following chapters.

In the fourth section of this chapter we investigate the class of maps be-
tween finite spaces which induce simple homotopy equivalences between
their associated simplicial complexes. To this end, we introduce the notion
of a distinguished map. Similarly to the classical case, the class of simple
homotopy equivalences between finite spaces can be generated, in a certain
way, by expansions and a kind of formal homotopy inverse of expansions.
Remarkably this class, denoted by S, is also generated by the distinguished
maps.

Many of the results of this chapter were originally published in [8], but we
exhibit here more applications and, in some cases, shorter proofs.

4.1 Whitehead’s Simple Homotopy Types

At the end of the 1930s Whitehead started to investigate a combinatorial app-
roach to homotopy theory of polyhedra introducing the notions of simplicial
collapse and expansion. These moves preserve the homotopy type of the com-
plex and therefore it is natural to ask whether any two homotopy equivalent
complexes can be connected by a chain of expansions and collapses. In gen-
eral, this is not true. There exists an obstruction called the Whitehead group
which can be defined in a geometrical or in an algebraic way. If the Whitehead
group Wh(K) of the simplicial complex K is trivial, then any complex homo-
topy equivalent toK is also simple homotopy equivalent to K, meaning that L
can be obtained from K by a sequence of expansions and collapses. A simple
homotopy equivalence is a map which is obtained from simplicial expansions
by allowing one to take compositions, homotopic maps and homotopy
inverses. Given a finite simplicial complex K, every homotopy equivalence
f : |K| → |L| is a simple homotopy equivalence if and only if Wh(K) = 0.

Although the motivating questions were raised in the setting of simplicial
complexes, the development of the theory of CW-complexes allowed the
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simple homotopy theory to reach its maturity in Whitehead’s article of
1950 [86].

In this section we will recall some basic notions on simplicial complexes and
simple homotopy theory for complexes and we will fix the notations that will
be used henceforth. The standard references are Whitehead’s papers [84–86],
Milnor’s article [58] and Cohen’s book [23].

If K is a simplicial complex and v is a vertex of K, the (simplicial) star of
v in K is the subcomplex st(v) ⊆ K of simplices σ ∈ K such that σ∪{v} ∈ K.
The link of v in K is the subcomplex lk(v) ⊆ st(v) of the simplices which do
not contain v.

v

A complex K and a vertex v ∈ K

v

The star st(v) of v

o

The link lk(v) of v

More generally, if σ is a simplex of K, its star st(σ) is the subcomplex of
K whose simplices are the simplices τ ∈ K such that σ ∪ τ ∈ K. The link
lk(σ) is the subcomplex of st(σ) of the simplices which are disjoint from σ.

If σ is a simplex of K, σ̇ denotes its boundary and σc denotes the subcom-
plex of K of the simplices which do not contain σ. The stellar subdivision of
K at the simplex σ is the complex aσ̇lk(σ) + σc where a is a vertex which is
not in K. The first barycentric subdivision K ′ of K can be obtained from K
by performing a sequence of stellar subdivisions (see [31]).

A complex K and a simplex
σ ∈ K.

The stellar subdivision of K
at σ.

Let L be a subcomplex of a finite simplicial complex K. There is an ele-
mentary simplicial collapse from K to L if there is a simplex σ of K and
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a vertex a of K not in σ such that K = L ∪ aσ and L ∩ aσ = aσ̇. This is
equivalent to saying that there are only two simplices σ, τ of K which are
not in L and such that τ is the unique simplex containing σ properly. In this
case we say that σ is a free face of τ . Elementary collapses will be denoted,
as usual, K ↘e L.

e e

Fig. 4.1 A complex which collapses to the boundary of a 2-simplex

We say that K (simplicially) collapses to L (or that L expands to K) if
there exists a sequenceK = K1,K2, . . . ,Kn = L of finite simplicial complexes
such thatKi ↘e Ki+1 for all i (see Fig. 4.1). This is denoted byK ↘ L or L↗
K. Two complexes K and L have the same simple homotopy type (or they are
simple homotopy equivalent) if there is a sequence K = K1,K2, . . . ,Kn = L
such that Ki ↘ Ki+1 or Ki ↗ Ki+1 for all i. Following Cohen’s notation, we
denote this by K�↘L.

Note that if there is an elementary collapse K ↘e L where K = L∪aσ
and L ∩ aσ = aσ̇, then the inclusion L ∩ aσ ↪→ aσ is trivially a homotopy
equivalence. By the gluing theorem A.2.5 the inclusion L ↪→ K is a homo-
topy equivalence. Therefore simple homotopy equivalent complexes are in
particular homotopy equivalent.

A simplicial complex is collapsible if it collapses to one of its vertices. For
instance, any simplicial cone aK is collapsible. If σ is a maximal simplex ofK,
then σ is a free face of aσ in aK. Therefore, aK ↘ aK�{σ, aσ} = a(K�{σ}).
By induction a(K � {σ}) is collapsible and then so is aK.

Lemma 4.1.1. Let aK be a simplicial cone of a finite complex K. Then, K
is collapsible if and only if aK ↘ K.

Proof. We can prove by induction that for any subcomplex L ⊆ K, K ↘ L
if and only if aK ↘ aL∪K. Note that σ is a free face of τ in L if and only if
aσ is a free face of aτ in aL∪K. In particular K collapses to a vertex v if and
only if aK ↘ av ∪K. Since a is a free face of av in av ∪K, av ∪K ↘ K. 	

Lemma 4.1.2. Suppose that a finite simplicial complex K collapses to a
subcomplex L and let M be another finite simplicial complex. Then K ∗M ↘
L ∗M .

Proof. Let τ1 be a maximal simplex of M1 = M . Since K ↘ L, it is easy to
see that K ∗M ↘ N1 = (K ∗M) � {στ1 | σ ∈ K � L}. If τ2 is a maximal
simplex of M2 = M1 � {τ1}, then N1 ↘ N2 = N1 � {στ2 | σ ∈ K � L}.
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In general we take τi a maximal simplex in Mi = Mi−1 � {τi−1} and then
Ni−1 ↘ Ni = Ni−1�{στi | σ ∈ K�L}. WhenMr is just a vertex,Nr = L∗M
and therefore K ∗M ↘ L ∗M . 	

Proposition 4.1.3. If K and L are subcomplexes of a finite simplicial com-
plex, K ∪ L↘ K if and only if L↘ K ∩ L.

Proof. In both cases the simplices removed are those of L which are not in K.
It is easy to verify that the elementary collapses can be performed in the same
order. 	

Proposition 4.1.4. If K is a finite simplicial complex, then K�↘K ′. In
fact we can perform all the collapses and expansions involving complexes of
dimension at most n+1 where n is the dimension of K. (In this case we say
that K (n+ 1)-deforms to K ′).

Proof. We show that something stronger holds, this is true not only for the
barycentric subdivision, but for any stellar subdivision αK of K. Suppose σ
is a simplex of K and a is a vertex which is not in K. Then aσ̇ ↗e aσ ↘ σ
(by Lemma 4.1.1). Therefore aσ̇lk(σ) ↗ aσlk(σ) ↘ σlk(σ) by Lemma 4.1.2
and then, by Proposition 4.1.3,

αK = aσ̇lk(σ) + σc ↗ aσlk(σ) + σc ↘ σlk(σ) + σc = K

where αK is the stellar subdivision at the simplex σ. 	

The notion of simple homotopy types was extended to CW-complexes,

which constitute a more appropriate setting for this theory. The Whitehead
groupWh(G) of a groupG is a quotient of the firstK-theory groupK1(Z(G))
(see [23]). The Whitehead group Wh(K) of a connected CW-complex K is
the Whitehead group of its fundamental group Wh(π1(K)), and in the non-
connected case, it is the direct sum of the Whitehead groups of its connected
components. There is a geometric equivalent definition of Wh(K) in which
the underlying set is a quotient of the set of CW-pairs (L,K) such that K is
a strong deformation retract of L. If two homotopy equivalent CW-complexes
have trivial Whitehead group, then they are simple homotopy equivalent.

For example, if G is a free group, Wh(G) = 0. In particular, contractible
CW-complexes are simple homotopy equivalent to a point.

4.2 Simple Homotopy Types: The First Main Theorem

The first mathematician who investigated the relationship between finite
spaces and simple homotopy types of polyhedra was Osaki [65]. He showed
that if x ∈ X is a beat point, K(X) collapses to K(X � {x}). In particular,
if two finite T0-spaces, X and Y are homotopy equivalent, their associated
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simplicial complexes, K(X) and K(Y ), have the same simple homotopy type.
However, there exist finite spaces which are not homotopy equivalent but
whose associated complexes have the same simple homotopy type. Consider,
for instance, the spaces with the following Hasse diagrams.
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They are not homotopy equivalent because they are non-homeomorphic min-
imal finite spaces. However their associated complexes are triangulations of
S1 and therefore, have the same simple homotopy type.

A more interesting example is the following.

Example 4.2.1 (The Wallet). Let W be a finite T0-space, whose Hasse
diagram is the one of Fig. 4.2 below.
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Fig. 4.2 W

This finite space is not contractible since it does not have beat points, but
it is not hard to see that |K(W )| is contractible and therefore, it has the same
simple homotopy type as a point. In fact we will deduce from Proposition 4.2.4
thatW is a homotopically trivial space, i.e. all its homotopy groups are trivial.
This example also shows that the Whitehead Theorem does not hold in the
context of finite spaces, not even for homotopically trivial spaces.

We introduce now the notion of a weak beat point which generalizes Stong’s
definition of beat points.

Definition 4.2.2. Let X be a finite T0-space. We will say that x ∈ X is a
weak beat point of X (or a weak point, for short) if either Ûx is contractible
or F̂x is contractible. In the first case we say that x is a down weak point and
in the second, that x is an up weak point .
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Note that beat points are in particular weak points since spaces with
maximum or minimum are contractible. Since the link Ĉx = Ûx � F̂x is a
join, we conclude from Proposition 2.7.3 the following

Remark 4.2.3. A point x is a weak point if and only if Ĉx is contractible.

When x is a beat point of X , we have seen that the inclusion i : X�{x} ↪→
X is a homotopy equivalence. This is not the case if x is just a weak point.
However, a slightly weaker result holds.

Proposition 4.2.4. Let x be a weak point of a finite T0-space X. Then the
inclusion map i : X � {x} ↪→ X is a weak homotopy equivalence.

Proof. We may suppose that x is a down weak point since the other case
follows immediately from this one, considering Xop instead of X . Note that
K(Xop) = K(X).

Given y ∈ X , the set i−1(Uy) = Uy � {x} has a maximum if y �= x and is
contractible if y = x. Therefore i|i−1(Uy) : i−1(Uy)→ Uy is a weak homotopy
equivalence for every y ∈ X . Now the result follows from Theorem 1.4.2
applied to the basis like cover given by the minimal basis of X . 	


As an application of the last proposition, we verify that the space W de-
fined above, is a non-contractible homotopically trivial space. As we pointed
out in Example 4.2.1, W is not contractible since it is a minimal finite
space with more than one point. However, it contains a weak point x
(see Fig. 4.2), since Ûx is contractible (see Fig. 4.3). Therefore W is weak
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Fig. 4.3 Ûx

homotopy equivalent to W �{x} (see Fig. 4.4). Now it is easy to see that this
subspace is contractible, because it does have beat points, and one can get
rid of them one by one.

Definition 4.2.5. Let X be a finite T0-space and let Y � X . We say that
X collapses to Y by an elementary collapse (or that Y expands to X by
an elementary expansion) if Y is obtained from X by removing a weak
point. We denote X ↘e Y or Y ↗e X . In general, given two finite T0-spaces
X and Y , we say that X collapses to Y (or Y expands to X) if there is
a sequence X = X1, X2, . . . , Xn = Y of finite T0-spaces such that for each
1 ≤ i < n, Xi ↘e Xi+1. In this case we write X ↘ Y or Y ↗ X . Two finite
T0-spaces X and Y are simple homotopy equivalent if there is a sequence
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Fig. 4.4 W � {x}

X = X1, X2, . . . , Xn = Y of finite T0-spaces such that for each 1 ≤ i < n,
Xi ↘ Xi+1 or Xi ↗ Xi+1. We denote in this case X�↘ Y , following the
same notation that we adopted for simplicial complexes.

Strong collapses studied in Sect. 2.2 are particular cases of collapses.
In contrast with the classical situation, where a simple homotopy equiva-

lence is a special kind of homotopy equivalence, we will see that homotopy
equivalent finite spaces are simple homotopy equivalent. In fact this follows
almost immediately from the fact that beat points are weak points.

It follows from Proposition 4.2.4 that simple homotopy equivalent finite
spaces are weak homotopy equivalent.

In order to prove Theorem 4.2.11, we need some preliminary results. The
first one concerns the homotopy type of the associated finite space X (K) of a
simplicial cone K. Suppose K = aL is a cone, i.e. K is the join of a simplicial
complex L with a vertex a /∈ L. Since |K| is contractible, it is clear that
X (K) is homotopically trivial. The following lemma shows that X (K) is in
fact contractible (compare with [70]).

Lemma 4.2.6. Let K = aL be a finite cone. Then X (K) is contractible.

Proof. Define f : X (K)→ X (K) by f(σ) = σ ∪ {a}. This function is order-
preserving and therefore continuous.

If we consider the constant map g : X (K) → X (K) that takes all X (K)
into {a}, we have that 1X (K) ≤ f ≥ g. This proves that the identity is
homotopic to a constant map. 	


Recall the construction of the non-Hausdorff mapping cylinder B(f) of a
map f : X → Y between finite T0-spaces introduced in Sect. 2.8. Denote as
before i : X → B(f) and j : Y → B(f) the canonical inclusions. It was
proved in Lemma 2.8.2 that there is a strong collapse B(f) ↘↘ Y for any
map f . We will show now that under some assumptions on the map f , there
is a collapse B(f)↘ X .

Lemma 4.2.7. Let f : X → Y be a map between finite T0-spaces such that
f−1(Uy) is contractible for every y ∈ Y . Then B(f) collapses to X.
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Proof. Order the elements y1, y2, . . . , ym of Y in such a way that yr ≤ ys
implies r ≤ s and define Xr = X ∪ {yr+1, yr+2, . . . , ym} ⊆ B(f) for every
0 ≤ r ≤ m. Then

ÛXr−1
yr

= {x | f(x) ≤ yr}
is homeomorphic to f−1(UYyr

), which is contractible by hypothesis. Thus
Xr−1 ↘e Xr for 1 ≤ r ≤ m and therefore B(f) = X0 collapses to X = Xm.

	

Notice that in Definition 4.2.5 it is not explicit that homeomorphic finite

T0-spaces are simple homotopy equivalent. One could have added that to the
definition, but it is not needed since it can be deduced from it. If X and Y are
disjoint homeomorphic finite T0-spaces, then we can take a homeomorphism
f : X → Y and the underlying set of B(f) as the union of the disjoint sets X
and Y . Then by Lemmas 2.8.2 and 4.2.7, X ↗ B(f) ↘ Y . In the case that
X and Y are non-disjoint, one can choose a third space Z homeomorphic to
X and Y and disjoint from both of them. Therefore X�↘Z�↘ Y .

Now we can deduce the following

Lemma 4.2.8. Homotopy equivalent finite T0-spaces are simple homotopy
equivalent.

Proof. Suppose X
he� Y and that Xc and Yc are cores of X and Y . Since beat

points are weak points, X ↘ Xc and Y ↘ Yc. On the other hand, Xc and Yc
are homeomorphic and therefore, Xc�↘ Yc. 	


As it was observed in Proposition 4.1.4, any finite simplicial complex K
has the same simple homotopy type as its barycentric subdivision K ′. We
prove next an analogous result for finite spaces. Recall that X ′ = X (K(X))
denotes the barycentric subdivision of a finite T0-space X . It is the poset of
nonempty chains of X ordered by inclusion. It is shown in [80] and in [35]
that there is a weak homotopy equivalence h : X ′ → X which takes each
chain C to its maximum max(C). This can be deduced from the proof of the
next result.

Proposition 4.2.9. Let X be a finite T0-space. Then X and X ′ are simple
homotopy equivalent.

Proof. Since B(h) ↘ X by Lemma 2.8.2, it suffices to show that the map
h : X ′ → X satisfies the hypothesis of Lemma 4.2.7. This is clear since
h−1(Ux) = {C | max(C) ≤ x} = (Ux)′ = X (xK(Ûx)) is contractible by
Lemma 4.2.6 (in fact, if a finite T0-space Y is contractible, so is Y ′ (see
Corollary 5.2.4)). 	


The proof of Proposition 4.2.9 shows that h is a weak homotopy equiva-
lence. Moreover, any map in the hypothesis of Lemma 4.2.7 is a weak homo-
topy equivalence by Theorem 1.4.2.
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Lemma 4.2.10. Let v be a vertex of a finite simplicial complex K. Then,
lk(v) is collapsible if and only if K ↘ K � v.

Proof. By Lemma 4.1.1, lk(v) is collapsible if and only if st(v) = vlk(v) ↘
lk(v) = st(v) ∩ (K � v), and this is equivalent to saying that K = st(v) ∪
(K � v)↘ K � v by Proposition 4.1.3. 	

Theorem 4.2.11.

(a) Let X and Y be finite T0-spaces. Then, X and Y are simple homotopy
equivalent if and only if K(X) and K(Y ) have the same simple homotopy
type. Moreover, if X ↘ Y then K(X)↘ K(Y ).

(b) Let K and L be finite simplicial complexes. Then, K and L are simple
homotopy equivalent if and only if X (K) and X (L) have the same simple
homotopy type. Moreover, if K ↘ L then X (K)↘ X (L).

Proof. Let X be a finite T0-space and assume first that x ∈ X is a beat
point. Then there exists x′ ∈ X and subspaces Y, Z ⊆ X such that Ĉx =
Y � {x′} � Z. The link lk(x) of the vertex x in K(X) is collapsible, since
lk(x) = K(Ĉx) = x′K(Y �Z) is a simplicial cone. By Lemma 4.2.10, K(X)↘
K(X � {x}). In particular, if X is contractible, K(X) is collapsible.

Now suppose x ∈ X is a weak point. Then Ĉx is contractible and therefore
lk(x) = K(Ĉx) is collapsible. Again, by Lemma 4.2.10, K(X)↘ K(X � {x}).
We have then proved that X ↘ Y implies K(X) ↘ K(Y ). In particular,
X�↘ Y implies K(X)�↘K(Y ).

Suppose now that K and L are finite simplicial complexes such that
K ↘e L. Then there exist σ ∈ K and a vertex a of K not in σ such that
aσ ∈ K, K = L ∪ {σ, aσ} and aσ ∩ L = aσ̇. It follows that σ is an up
beat point of X (K), and since ÛX (K)�{σ}

aσ = X (aσ̇), by Lemma 4.2.6, aσ
is a down weak point of X (K) � {σ}. Therefore X (K) ↘e X (K) � {σ} ↘e
X (K) � {σ, aσ} = X (L). This proves the first part of (b) and the “moreover”
part.

Let X , Y be finite T0-spaces such that K(X)�↘K(Y ). Then X ′ =
X (K(X))�↘ X (K(Y )) = Y ′ and by Proposition 4.2.9, X�↘ Y . Finally,
if K, L are finite simplicial complexes such that X (K)�↘X (L), K ′ =
K(X (K))�↘K(X (L)) = L′ and therefore K�↘ L by Proposition 4.1.4.
This completes the proof. 	

Corollary 4.2.12. The functors K, X induce a one-to-one correspondence
between simple homotopy types of finite spaces and simple homotopy types of
finite simplicial complexes

{Finite T0 − Spaces}/
�↘

K
�� {Finite Simplicial Complexes}/

�↘X
��

The following diagrams illustrate the whole situation.
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X
he�Y �� X �↘ Y ��

��

��

X
we≈ Y
��

��

K(X)�↘K(Y ) �� |K(X)| we≈ |K(Y )| �� �� |K(X)| he� |K(Y )|

X (K)
he� X (L) �� X (K)�↘X (L) ��

��

��

X (K)
we≈ X (L)
��

��

K�↘ L �� |K| we≈ |L| �� �� |K| he� |L|

The Wallet W satisfies W ↘ ∗, however W
he

�/ ∗. Therefore X�↘ Y ⇒/
X

he� Y . Since |K| he� |L| ⇒/ K�↘L, X
we≈ Y ⇒/ X�↘ Y . The Whitehead

group Wh(X) of a finite T0-space X is Wh(π1(X)) if X is connected,
and the direct sum of the Whitehead groups of its connected components
in general. Therefore Wh(X) = Wh(|K(X)|). Note that, if X

we≈ Y and
their Whitehead group Wh(X) is trivial, then |K(X)| and |K(Y )| are simple
homotopy equivalent CW-complexes. It follows from Theorem 4.2.11 that
X�↘ Y . Thus, we have proved.

Corollary 4.2.13. Let X, Y be weak homotopy equivalent finite T0-spaces
with trivial Whitehead group. Then X�↘ Y .

Beat points defined by Stong provide an effective way of deciding whether
two finite spaces are homotopy equivalent. The problem becomes much harder
when one deals with weak homotopy types instead. There is no easy way
to decide whether two finite spaces are weak homotopy equivalent or not.
However if two finite T0-spaces have trivial Whitehead group, then they are
weak homotopy equivalent if and only we can obtain one from the other just
by adding and removing weak points.

Another immediate consequence of Theorem 4.2.11 is the following

Corollary 4.2.14. Let X, Y be finite T0-spaces. If X ↘ Y , then X ′ ↘ Y ′.

Note that from Theorem 4.2.11 one also deduces the following well-known
fact: If K and L are finite simplicial complexes such that K ↘ L, then
K ′ ↘ L′.
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4.3 Joins, Products, Wedges and Collapsibility

The notion of collapsibility for finite spaces is closely related to the analogous
notion for simplicial complexes: We say that a finite T0-space is collapsible
if it collapses to a point. Observe that every contractible finite T0-space
is collapsible, however the converse is not true. The Wallet W introduced
in Example 4.2.1 is collapsible and non-contractible. Note that if a finite
T0-space X is collapsible, its associated simplicial complex K(X) is also
collapsible. Moreover, ifK is a collapsible complex, then X (K) is a collapsible
finite space. Therefore, if X is a collapsible finite space, its subdivision X ′ is
also collapsible.

Remark 4.3.1. Note that if the link Ĉx of a point x ∈ X is collapsible, K(Ĉx)
is also collapsible and one has that K(X)↘ K(X � {x}) by Lemma 4.2.10.

Example 4.3.2. Let W be the Wallet, and C(W ) its non-Hausdorff cone.
By Remark 4.3.1, K(C(W ))↘ K(W ) but C(W ) does not collapse to W .

Let us consider now a compact contractible polyhedron X with the prop-
erty that any triangulation of X is non-collapsible. One such a space is the
Dunce Hat [87]. The Dunce Hat is the space obtained from a triangle by
identifying the edges as it is shown in Fig. 4.5.

Fig. 4.5 The Dunce hat

This space has a CW-structure with only one 0-cell, one 1-cell and one
2-cell. One way to see that it is contractible is by observing that the attaching
map of the 2-cell is a homotopy equivalence S1 → S1 and then an easy
application of the gluing theorem A.2.5 gives a homotopy equivalence from
the 2-dimensional disk to the Dunce Hat. Any triangulation of the Dunce
Hat is non-collapsible since each 1-simplex is contained in two or three
2-simplices. Let K be any triangulation of X . The associated finite space
X (K) is homotopically trivial because X is contractible. However, X (K) is
not collapsible since K ′ is not collapsible. The number of points of the finite
space X (K) constructed in this way is the same as the number of simplices of
K. In Chap. 7 we will develop methods for constructing smaller finite models
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of CW-complexes. In Fig. 7.3 we show a finite space of only 15 points which
is homotopically trivial and non-collapsible.

We have therefore the following strict implications in the context of finite
spaces:

contractible⇒ collapsible⇒ homotopically trivial.

Example 4.3.3. The following space X is another example of a collapsible
space which is not contractible. It was first considered in [71, Fig. 2].
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The space X ∪ {a} below is contractible and collapses to X . Therefore
contractibility is not invariant under collapses.
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It is known that if K and L are finite simplicial complexes and one of them
is collapsible, then K ∗ L is also collapsible (see Lemma 4.1.2). As far as we
know the converse of this result is an open problem (see [83, (4.1)]). In the
setting of finite spaces, the analogous result and its converse hold.

Proposition 4.3.4. Let X and Y be finite T0-spaces. Then X � Y is col-
lapsible if and only if X or Y is collapsible.

Proof. We proceed as in Proposition 2.7.3, replacing beat points by weak
points and deformation retractions by collapses. Note that if xi is a weak
point of Xi, then xi is also a weak point of Xi � Y , since ĈXi�Y

xi
= ĈXi

xi
� Y

is contractible by Proposition 2.7.3.
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On the other hand, if zi is a weak point of Xi � Yi and zi ∈ Xi, then by
Proposition 2.7.3, zi is a weak point of Xi or Yi is contractible. 	


By the proof of Proposition 4.3.4 one also has the following

Proposition 4.3.5. Let X1, X2, Y1, Y2 be finite T0-spaces. If X1�↘X2 and
Y1�↘ Y2, X1 � Y1�↘X2 � Y2.

These are a similar results for products.

Lemma 4.3.6. Let X and Y be finite T0-spaces. If X ↘ A, X×Y ↘ A×Y .

Proof. It suffices to show that if x ∈ X is a weak point of X , X × Y ↘
(X � {x}) × Y . Suppose without loss of generality that x is a down weak
point. If y ∈ Y ,

Û(x,y) = Ûx × Uy ∪ {x} × Ûy.
Let y0 ∈ Y be a minimal point. Then Û(x,y0) = Ûx × Uy0 is contractible
since each factor is contractible. Therefore, (x, y0) is a down weak point
of X × Y . Now, let y1 be minimal in Y � {y0}. Then Û

X×Y�{(x,y0)}
(x,y1)

=

Ûx×UYy1∪{x}×ÛYy1 �{(x, y0)} = Ûx×UYy1∪{x}×ÛY�{y0}
y1 = Ûx×UYy1 which

again is contractible. Therefore (x, y1) is a weak point in X × Y � {(x, y0)}.
Following this reasoning we remove from X × Y all the points of the form
(x, y) with y ∈ Y . 	


In particular we deduce the following two results.

Proposition 4.3.7. Let X1, X2, Y1, Y2 be finite T0-spaces. If X1�↘X2 and
Y1�↘ Y2, X1 × Y1�↘X2 × Y2.

Proposition 4.3.8. Let X and Y be collapsible finite T0-spaces. Then X×Y
is collapsible.

There is an analogous result to Proposition 4.3.8 for the associated com-
plexes, which relates the collapsibility of K(X × Y ) with the collapsibility of
K(X) and K(Y ) (see [83]).

The following lemma, was used in the original proof of Theorem 4.2.11
in [8]. The shorter proof we exhibit here does not use this result, but we will
need it for the proof of Proposition 4.3.10.

Lemma 4.3.9. Let L be a subcomplex of a finite simplicial complex K. Let
T be a set of simplices of K which are not in L, and let a be a vertex of K
which is contained in no simplex of T , but such that aσ is a simplex of K
for every σ ∈ T . Finally, suppose that K = L∪ ⋃

σ∈T
{σ, aσ} (i.e. the simplices

of K are those of L together with the simplices σ and aσ for every σ in T ).
Then L↗ K.

Proof. Number the elements σ1, σ2, . . . , σn of T in such a way that for every
i, j with i ≤ j, #σi ≤ #σj . Here #σk denotes the cardinality of σk. Define
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Ki = L ∪
i⋃

j=1

{σj , aσj} for 0 ≤ i ≤ n. Let σ � σi. If σ ∈ T , then σ, aσ ∈
Ki−1, since #σ < #σi. If σ /∈ T , then σ, aσ ∈ L ⊆ Ki−1. This proves that
aσi ∩Ki−1 = aσ̇i.

By induction, Ki is a simplicial complex for every i, and Ki−1 ↗e Ki.
Therefore L = K0 ↗ Kn = K. 	

Proposition 4.3.10. Let (X,x0) and (Y, y0) be finite T0-pointed spaces.
Then there exists a weak homotopy equivalence |K(X)| ∨ |K(Y )| → X ∨ Y .

Proof. Let K(X)∨K(Y ) ⊆ K(X ∨ Y ) be the simplicial complex which is the
union of the complexes K(X) and K(Y ) identifying the vertices x0 and y0.
Then |K(X)| ∨ |K(Y )| is homeomorphic to |K(X)∨K(Y )|. The McCord map
μX∨Y : |K(X ∨ Y )| → X ∨ Y induces a map f = μX∨Y i : |K(X)| ∨ |K(Y )| →
X ∨ Y , where i : |K(X)| ∨ |K(Y )| ↪→ |K(X ∨ Y )| is the canonical inclusion.
In order to prove that f is a weak homotopy equivalence, we only need to
prove that i is a homotopy equivalence. We show something stronger: there
is a simplicial expansion from K(X) ∨K(Y ) to K(X ∨ Y ).

Take K = K(X ∨ Y ) and L = K(X) ∨ K(Y ). Let a = x0 = y0 and let
T = {σ ∈ K | σ /∈ L and a /∈ σ}. If σ ∈ T , then every point of σ is comparable
with a, and therefore aσ ∈ K. By Lemma 4.3.9, L↗ K. 	

Corollary 4.3.11. Let X and Y be finite T0-spaces. Then X ∨ Y is homo-
topically trivial if and only if both X and Y are.

Proof. If X and Y are homotopically trivial, the polyhedra |K(X)| and
|K(Y )| are contractible and therefore |K(X)| ∨ |K(Y )| is contractible. Thus,
X ∨ Y is homotopically trivial by Proposition 4.3.10. Conversely, if X ∨Y is
homotopically trivial, |K(X)| ∨ |K(Y )| is contractible and then |K(X)| and
|K(Y )| are contractible. Therefore, X and Y are homotopically trivial. 	


Suppose thatX and Y are finite T0-spaces and x0 ∈ X , y0 ∈ Y are minimal
points. If X ∨Y is collapsible it can be proved by induction that both X and
Y are collapsible. If z ∈ X ∨ Y is a weak point, z �= x0 (the class of x0 in
X ∨Y ) unless X = ∗ or Y = ∗. But the distinguished point x0 ∈ X ∨Y could
be a weak point with X �= ∗ �= Y if x0 ∈ X or y0 ∈ Y is not minimal. It is
not known in the general case whether X ∨ Y collapsible implies that X and
Y are collapsible. However, the converse is false as the next example shows.

Example 4.3.12. The simplicial complex K of Example 11.2.9 is collapsi-
ble, and therefore, X (K) is collapsible. The space X (K) has a unique weak
point σ corresponding to the unique free face of K. Then the union X =
X (K) ∨ X (K) of two copies of X (K) at x0 = σ is homotopically trivial, but
it has no weak points and then it is not collapsible. If x ∈ X (K) is distinct
from x0, ĈXx deformation retracts into ĈX (K)

x which is not contractible. The
point x0 ∈ X is not a weak point either, since its link ĈXx0

is a join of non-
connected spaces.
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4.4 Simple Homotopy Equivalences: The Second Main
Theorem

In this section we prove the second main result of the chapter, which relates
simple homotopy equivalences of complexes with simple homotopy equiva-
lences between finite spaces. As in the classical setting, the class of simple
homotopy equivalences is generated by the elementary expansions. However,
in the context of finite spaces this class is also generated by the distinguished
maps, which play a key role in this theory.

Recall that a homotopy equivalence f : |K| → |L| between compact
polyhedra is a simple homotopy equivalence if it is homotopic to a composition
of a finite sequence of maps |K| → |K1| → . . . → |Kn| → |L|, each of them
an expansion or a homotopy inverse of one [23, 74].

We prove first that homotopy equivalences between finite spaces induce
simple homotopy equivalences between the associated polyhedra.

Theorem 4.4.1. If f : X → Y is a homotopy equivalence between finite
T0-spaces, then |K(f)| : |K(X)| → |K(Y )| is a simple homotopy equivalence.

Proof. Let Xc and Yc be cores of X and Y . Let iX : Xc → X and iY : Yc → Y
be the inclusions and rX : X → Xc, rY : Y → Yc retractions of iX and iY
such that iXrX � 1X and iY rY � 1Y .

Since rY fiX : Xc → Yc is a homotopy equivalence between minimal finite
spaces, it is a homeomorphism. Therefore K(rY fiX) : K(Xc) → K(Yc) is an
isomorphism and then |K(rY fiX)| is a simple homotopy equivalence. Since
K(X) ↘ K(Xc), |K(iX )| is a simple homotopy equivalence, and then the
homotopy inverse |K(rX )| is also a simple homotopy equivalence. Analogously
|K(iY )| is a simple homotopy equivalence.

Finally, since f � iY rY fiXrX , it follows that

|K(f)| � |K(iY )||K(rY fiX)||K(rX)|

is a simple homotopy equivalence. 	

In order to describe the class of simple homotopy equivalences between

finite spaces, we will use a kind of map that was already studied in Lemma
4.2.7.

Definition 4.4.2. A map f : X → Y between finite T0-spaces is distin-
guished if f−1(Uy) is contractible for each y ∈ Y . We denote by D the class
of distinguished maps.

Note that by the Theorem of McCord 1.4.2, every distinguished map is
a weak homotopy equivalence and therefore induces a homotopy equivalence
between the associated complexes. We will prove in Theorem 4.4.4 that in
fact the induced map is a simple homotopy equivalence. From the proof of
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Proposition 4.2.4, it is clear that if x ∈ X is a down weak point, the inclusion
X � {x} ↪→ X is distinguished.

Remark 4.4.3. The map h : X ′ → X defined by h(C) = max(C), is distin-
guished by the proof of Proposition 4.2.9.

Clearly, homeomorphisms are distinguished. However it is not difficult to
show that homotopy equivalences are not distinguished in general.

Theorem 4.4.4. Every distinguished map induces a simple homotopy equiv-
alence.

Proof. Suppose f : X → Y is distinguished. Consider the non-Hausdorff
mapping cylinder B(f) and the canonical inclusions i : X ↪→ B(f), j : Y ↪→
B(f). Recall that there is a retraction r : B(f)→ Y defined by r(x) = f(x)
for every x ∈ X and that r is a homotopy equivalence (see Sect. 2.8). Then
|K(f)| = |K(r)||K(i)|. By Lemma 4.2.7 and Theorem 4.2.11, |K(i)| is an
expansion and by Theorem 4.4.1, |K(r)| is a simple homotopy equivalence.
Therefore |K(f)| is also a simple homotopy equivalence. 	


In Proposition 6.2.10 we will prove that Theorem 4.4.4 also holds for a
weaker notion of distinguished map: if f : X → Y is a map between finite
T0 spaces such that f−1(Uy) is homotopically trivial for every y ∈ Y , then f
induces a simple homotopy equivalence.

We have already shown that expansions, homotopy equivalences and dis-
tinguished maps induce simple homotopy equivalences at the level of com-
plexes. Note that if f, g, h are three maps between finite T0-spaces such that
fg � h and two of them induce simple homotopy equivalences, then so does
the third.

Definition 4.4.5. Let C be a class of continuous maps between topological
spaces. We say that C is closed if it satisfies the following homotopy 2-out-of-3
property: For any f, g, h with fg � h, if two of the three maps are in C, then
so is the third.

Definition 4.4.6. Let C be a class of continuous maps. The class C generated
by C is the smallest closed class containing C.

It is clear that C is always closed under composition and homotopy. The
class of simple homotopy equivalences between CW-complexes is closed and
it is generated by the elementary expansions. Note that every map in the
class E of elementary expansions between finite spaces induces a simple
homotopy equivalence at the level of complexes and therefore the same holds
for the maps of E . Contrary to the case of CW-complexes, a map between
finite spaces which induces a simple homotopy equivalence need not have a
homotopy inverse. This is the reason why the definition of E is not as simple
as in the setting of complexes. We will prove that E = D, the class generated
by the distinguished maps.
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A map f : X → Y such that f−1(Fy) is contractible for every y need
not be distinguished. However we will show that f ∈ D. We denote by fop :
Xop → Y op the map that coincides with f in the underlying sets, and let
Dop = {f | fop ∈ D}.
Lemma 4.4.7. Dop = D.

Proof. Suppose that f : X → Y lies in Dop. Consider the following
commutative diagram

X ��
hX

f

��

X ′ = (Xop)′
hXop

��

f ′

��

Xop

fop

��
Y ��

hY

Y ′ = (Y op)′
hY op

�� Y op.

Here, f ′ denotes the map X (K(f)). Since D satisfies the 2-out-of-3 property
and hXop , hY op , fop are distinguished by Remark 4.4.3, f ′ ∈ D. And since
hX , hY are distinguished, f ∈ D. This proves that Dop ⊆ D. The other
inclusion follows analogously from the opposite diagram. 	

Proposition 4.4.8. E = D, and this class contains all homotopy equiva-
lences between finite T0-spaces.

Proof. Every expansion of finite spaces is in E because it is a composition of
maps in E .

Let f : X → Y be distinguished. Using the non-Hausdorff mapping
cylinder B(f), we deduce that there exist expansions (eventually composed
with homeomorphisms) i, j, such that i � jf . Therefore f ∈ E .

If x ∈ X is a down weak point, the inclusionX�{x} ↪→ X is distinguished.
If x is an up weak point, X � {x} ↪→ X lies in D by the previous lemma and
therefore E ⊆ D.

Suppose now that f : X → Y is a homotopy equivalence. From the proof
of Theorem 4.4.1, fiX � iY rY fiX where iX , iY are expansions and rY fiX
is a homeomorphism. This implies that f ∈ E = D. 	


We denote by S = E = D the class of simple homotopy equivalences
between finite spaces. In the rest of the section we study the relationship
between simple homotopy equivalences of finite spaces and simple homotopy
equivalences of polyhedra.

Given n ∈ N we denote by K(n) the nth barycentric subdivision of K.

Lemma 4.4.9. Let λ : K(n) → K be a simplicial approximation to the iden-
tity. Then X (λ) ∈ S.
Proof. Since any approximation K(n) → K to the identity is contiguous
to a composition of approximations K(i+1) → K(i) for 0 ≤ i < n (see
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Proposition A.1.6), by Lemma 2.1.3 it suffices to prove the case n = 1.
Suppose λ : K ′ → K is a simplicial approximation of 1|K|. Then X (λ) :
X (K)′ → X (K) is homotopic to hX (K), for if σ1 � σ2 � . . . � σm is a chain of
simplices of K, then X (λ)({σ1, σ2, . . . , σm}) = {λ(σ1), λ(σ2), . . . , λ(σm)} ⊆
σm = hX (K)({σ1, σ2, . . . , σm}). By Remark 4.4.3, it follows that X (λ) ∈ S.

	

Lemma 4.4.10. Let ϕ, ψ : K → L be simplicial maps such that |ϕ| � |ψ|.
If X (ϕ) ∈ S, then X (ψ) also lies in S.
Proof. There exists an approximation to the identity λ : K(n) → K for some
n ≥ 1, such that ϕλ and ψλ lie in the same contiguity class (see Proposition
A.1.6 and Theorem A.1.7). By Proposition 2.1.3, X (ϕ)X (λ) = X (ϕλ) �
X (ψλ) = X (ψ)X (λ). By Lemma 4.4.9, X (λ) ∈ S and since X (ϕ) ∈ S, it
follows that X (ψ) ∈ S. 	

Theorem 4.4.11. Let K0,K1, . . . ,Kn be finite simplicial complexes and let

|K0|
f0

�� |K1|
f1

�� . . .
fn−1

�� |Kn|

be a sequence of continuous maps such that for each 0 ≤ i < n either

(1) fi = |ϕi| where ϕi : Ki → Ki+1 is a simplicial map such that X (ϕi) ∈ S
or

(2) fi is a homotopy inverse of a map |ϕi| with ϕi : Ki+1 → Ki a simplicial
map such that X (ϕi) ∈ S.

If ϕ : K0 → Kn is a simplicial map such that |ϕ| � fn−1fn−2 . . . f0, then
X (ϕ) ∈ S.
Proof. We may assume that f0 satisfies condition (1). Otherwise we define
K̃0 = K0, f̃0 = |1K0 | : |K̃0| → |K0| and then |ϕ| � fn−1fn−2 . . . f0f̃0.

We proceed by induction on n. If n = 1, |ϕ| � |ϕ0| where X (ϕ0) ∈ S
and the result follows from Lemma 4.4.10. Suppose now that n ≥ 1 and let
K0,K1, . . . ,Kn,Kn+1 be finite simplicial complexes and fi : |Ki| → |Ki+1|
maps satisfying conditions (1) or (2), f0 satisfying condition (1). Let ϕ :
K0 → Kn+1 be a simplicial map such that |ϕ| � fnfn−1 . . . f0. We consider
two cases: fn satisfies condition (1) or fn satisfies condition (2).

In the first case we define g : |K0| → |Kn| by g = fn−1fn−2 . . . f0. Let
g̃ : K(m)

0 →Kn be a simplicial approximation to g and let λ : K(m)
0 →

K0 be a simplicial approximation to the identity. Then |g̃| � g|λ| =
fn−1fn−2 . . . f1(f0|λ|) where f0|λ| = |ϕ0λ| and X (ϕ0λ) = X (ϕ0)X (λ) ∈ S
by Lemma 4.4.9. By induction, X (g̃) ∈ S, and then X (ϕng̃) ∈ S. Since
|ϕλ| � fng|λ| � fn|g̃| = |ϕng̃|, by Lemma 4.4.10, X (ϕλ) lies in S. Therefore
X (ϕ) ∈ S.

In the other case, |ϕnϕ| � fn−1fn−2 . . . f0 and by induction, X (ϕnϕ) ∈ S.
Therefore X (ϕ) also lies in S. 	
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Theorem 4.4.12.

(a) Let f : X → Y be a map between finite T0-spaces. Then f is a simple
homotopy equivalence if and only if |K(f)| : |K(X)| → |K(Y )| is a simple
homotopy equivalence.

(b) Let ϕ : K → L be a simplicial map between finite simplicial complexes.
Then |ϕ| is a simple homotopy equivalence if and only if X (ϕ) is a simple
homotopy equivalence.

Proof. By definition, if f ∈ S, |K(f)| is a simple homotopy equivalence.
Let ϕ : K → L be a simplicial map such that |ϕ| is a simple homotopy

equivalence. Then there exist finite complexes K = K0,K1, . . . ,Kn = L
and maps fi : |Ki| → |Ki+1|, which are simplicial expansions or homotopy
inverses of simplicial expansions, and such that |ϕ| � fn−1fn−2 . . . f0. By
Theorem 4.2.11, simplicial expansions between complexes induce expansions
between the associated finite spaces and therefore, by Theorem 4.4.11,
X (ϕ) ∈ S.

Suppose now that f : X → Y is a map such that |K(f)| is a simple
homotopy equivalence. Then f ′ = X (K(f)) : X ′ → Y ′ lies in S. Since fhX =
hY f

′, f ∈ S.
Finally, if ϕ : K → L is a simplicial map such that X (ϕ) ∈ S, |ϕ′| :

|K ′| → |L′| is a simple homotopy equivalence. Here ϕ′ = K(X (ϕ)) is the
barycentric subdivision of ϕ. Let λK : K ′ → K and λL : L′ → L be simplicial
approximations to the identities. Then λLϕ

′ and ϕλK are contiguous. In
particular |λL||ϕ′| � |ϕ||λK | and then |ϕ| is a simple homotopy equivalence.

	

In the setting of finite spaces one has the following strict inclusions

{homotopy equivalences} � S � {weak equivalences}.

Clearly, if f : X → Y is a weak homotopy equivalence between finite
T0-spaces with trivial Whitehead group, f ∈ S.

4.5 A Simple Homotopy Version of Quillen’s Theorem A

Results which carry local information to global information appear frequently
in Algebraic Topology. The Theorem of McCord 1.4.2 roughly states that if
a map is locally a weak homotopy equivalence, then it is a weak homotopy
equivalence (globally). In the following we prove a result of this kind for
simplicial maps and simple homotopy equivalences.

Let K and L be finite simplicial complexes and let ϕ : K → L be
a simplicial map. Given a simplex σ ∈ L, we denote by ϕ−1(σ) the full
subcomplex of K spanned by the vertices v ∈ K such that ϕ(v) ∈ σ.
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Recall that the simplicial version of Quillen’s Theorem A states that if
ϕ : K → L is a simplicial map and |ϕ|−1(σ) is contractible for every simplex
σ ∈ L, then |ϕ| is a homotopy equivalence (see [69, p. 93]). This result can be
deduced from Quillen’s Theorem A or from McCord’s Theorem (see the proof
of Theorem 4.5.2 below). Note that |ϕ−1(σ)| = |ϕ|−1(σ). In particular, if
ϕ−1(σ) is collapsible for every σ ∈ L, |ϕ| is a homotopy equivalence. We prove
that under this hypothesis, |ϕ| is a simple homotopy equivalence. Theorem
4.5.2 is stated as it appears in the author’s Thesis [5]. However, a stronger
result holds (see the discussion at the end of the section).

First, we need to state a stronger version of Lemma 4.2.7. We keep the
notation we used there.

Lemma 4.5.1. Let f : X → Y be a map between finite T0-spaces such that
f−1(Uy) is collapsible for every y ∈ Y . Then K(B(f))↘ K(X).

Proof. We follow the proof and notation of Lemma 4.2.7. The set ÛXr−1
yr =

{x | f(x) ≤ yr} is homeomorphic to f−1(UYyr
), which is collapsible by

hypothesis. Therefore, ĈXr−1
yr is collapsible by Proposition 4.3.4 and, from

Remark 4.3.1, K(Xr−1) ↘ K(Xr). Thus, K(B(f)) = K(X0) collapses to
K(X) = K(Xm). 	

Theorem 4.5.2. Let ϕ : K → L be a simplicial map between finite simplicial
complexes. If ϕ−1(σ) is collapsible for every simplex σ of L, then |ϕ| is a
simple homotopy equivalence.

Proof. Let σ ∈ L. We show first that X (ϕ)−1(Uσ) = X (ϕ−1(σ)). Let τ ∈ K.
Then, τ ∈ X (ϕ−1(σ)) if and only if τ is a simplex of ϕ−1(σ). But this is
equivalent to saying that for every vertex v of τ , ϕ(v) ∈ σ or, in other
words, that ϕ(τ) ⊆ σ which means that X (ϕ)(τ) ≤ σ. By Theorem 4.2.11,
X (ϕ)−1(Uσ) is collapsible.

By Lemma 4.5.1, |K(i)| : |K ′| → |K(B(X (ϕ)))| is a simple homotopy
equivalence, and so is |K(j)| : |L′| → |K(B(X (ϕ)))|, where i : X (K) ↪→
B(X (ϕ)) and j : X (L) ↪→ B(X (ϕ)) are the inclusions. Since |K(i)| �
|K(j)||ϕ′|, |ϕ′| is a simple homotopy equivalence and then, so is |ϕ|. 	


Surprisingly, the stronger hypothesis in the theorem is not needed (see [6]).
Quillen’s fiber Lemma 1.4.19 claims that an order preserving map f : X → Y
between finite posets such that |K(f−1(Uy))| is contractible for every y ∈ Y ,
induces a homotopy equivalence |K(f)| : |K(X)| → |K(Y )|. Elementary
proofs of this result are given in [80] and in [6]. The advantage of the second
proof is that it can be easily modified to obtain a simple homotopy version
which can in turn be used to obtain stronger versions of several results, like
Dowker’s Theorem, the Nerve Lemma and the simplicial version of Quillen’s
Theorem A. In particular, this last claims that if ϕ : K → L is a simplicial
map and |ϕ|−1(σ) is contractible for every σ ∈ L, then |ϕ| is a simple
homotopy equivalence.
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4.6 Simple, Strong and Weak Homotopy in Two Steps

It is easy to prove that if K1 and K2 are simple homotopy equivalent finite
CW-complexes, there exists a third complex L such that K1 ↗ L↘ K2 (just
perform all the expansions at the beginning and then do the collapses in the
order they appear in the formal deformation, [23, Exercise 4.D]). This result
says that the formal deformation between K1 and K2 can be made in two
steps, with one expansion first and a collapse after. When CW-complexes
are replaced by simplicial complexes or finite spaces, the structure becomes
much more rigid, and the result is not so trivial. If K1 and K2 are simple
homotopy equivalent finite simplicial complexes, there exists a third complex
that collapses to K1 and to a complex K̃2 obtained from K2 by performing
a sequence of stellar subdivisions [84, Theorem 5]. In this section we will
prove that if X and Y are finite T0-spaces, there exists a finite T0-space Z
which collapses to both of them. One such space is obtained by considering
the multiple non-Hausdorff mapping cylinder which is a generalization of
the non-Hausdorff mapping cylinder defined in Definition 2.8.1. We will use
this construction to prove a similar result for homotopy types and strong
collapses. In the same direction we will prove a result about weak homotopy
types at the end of the section.

Definition 4.6.1. Let X0, X1, . . . , Xn be a sequence of finite T0-spaces and
let f0, f1, . . . , fn−1 be a sequence of maps such that fi : Xi → Xi+1 or
fi : Xi+1 → Xi. If fi : Xi → Xi+1 we say that fi goes right, and in other
case we say that it goes left. We define the multiple non-Hausdorff mapping
cylinder B(f0, f1, . . . , fn−1;X0, X1, . . . , Xn) as follows. The underlying set is

the disjoint union
n⊔

i=0

Xi. We keep the given ordering in each copy Xi and for

x and y in different copies, we set x < y in either of the following cases:

• If x ∈ X2i, y ∈ X2i+1 and f2i(x) ≤ y or x ≤ f2i(y).
• If x ∈ X2i, y ∈ X2i−1 and f2i−1(x) ≤ y or x ≤ f2i−1(y).

Note that the multiple non-Hausdorff mapping cylinder coincides with the
ordinary non-Hausdorff mapping cylinder (Definition 2.8.1) when n = 1 and
the unique map goes right.

Lemma 4.6.2. Let B = B(f0, f1, . . . , fn−1, X0, X1, . . . , Xn). If f0 goes right
or if f0 goes left and it lies in Dop, then B ↘ B �X0.

Proof. If f0 goes right, B(f0) strongly collapses to X1 by Lemma 2.8.2. Since
the points of X0 are not comparable with the points of X2, X3, . . .Xn, the
same elementary collapses can be performed in B. Then B ↘ B �X0.

Now, if f0 goes left and fop0 ∈ D, then B(fop0 ) ↘ Xop
1 by Lemma 4.2.7.

Thus, B(f op0 )op ↘ X1. On the other hand, B(fop0 ) = B(fop0 ;Xop
1 , Xop

0 ) =
B(f0;X0, X1)op and then B(f0;X0, X1) ↘ X1. By the same argument as
before, B ↘ B �X0. 	
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The following remark is an easy consequence of the definition.

Remark 4.6.3.

B(f1, f2, . . . , fn−1;X1, X2, . . . , Xn)op

= B(fop0 , fop1 , . . . , fopn−1;X
op
0 , Xop

1 , . . .Xop
n ) �Xop

0 .

Lemma 4.6.4. Let B = B(f0, f1, . . . , fn−1, X0, X1, . . . , Xn). Suppose that
f2i ∈ D if f2i goes right.
f2i ∈ Dop if f2i goes left.
f2i+1 ∈ Dop if f2i+1 goes right.
f2i+1 ∈ D if f2i+1 goes left.
Then B ↘ Xn. If in addition n is even, B ↘ X0.

Proof. By Lemma 4.6.2, B ↘ B �X0. By the previous remark,

B �X0 = B(fop1 , fop2 , . . . , fopn−1;X
op
1 , Xop

2 , . . . , Xop
n )op.

By induction B(fop1 , fop2 , . . . , fopn−1;X
op
1 , Xop

2 , Xop
n )↘ Xop

n . Therefore B ↘
B �X0 ↘ Xn.

If n is even, B = B(fn−1, fn−2, . . . , f0;Xn, Xn−1, . . . , X0)↘ X0. 	

Theorem 4.6.5. Let X and Y be simple homotopy equivalent finite T0-
spaces. Then there exists a finite T0-space Z that collapses to both X and
(a copy of) Y .

Proof. If X�↘ Y , there exists a sequence of elementary expansions and
collapses from X to Y . An elementary expansion Xi ↗e Xi+1 induces an
inclusion map Xi ↪→ Xi+1 which lies in D or Dop depending on if the weak
point removed is a down weak point or an up weak point. In particular, there
exists a sequence X = X0, X1, X2, . . . , Xn = Y of finite T0-spaces and a
sequence f0, f1, . . . , fn−1 of maps such that fi : Xi → Xi+1 or fi : Xi+1 → Xi

and fi ∈ D∪Dop for every 0 ≤ i ≤ n− 1. Adding identities if needed, we can
assume that the maps are in the hypothesis of Lemma 4.6.4, and the result
follows. 	

Proposition 4.6.6. Let X and Y be homotopy equivalent finite T0-spaces.
Then there exists a finite T0-space Z that contains both X and (a copy of) Y
as strong deformations retracts.

Proof. The idea is essentially to repeat the proof made for simple homotopy
types. We can say that a map f : X → Y between finite T0-spaces is strongly
distinguished if f−1(Uy) has a maximum for every y ∈ Y . Following the proof
of Lemma 4.2.7 it is easy to see that if f : X → Y is strongly distinguished,
B(f) ↘↘ X . Now we just replace in Lemmas 4.6.2 and 4.6.4 the class D by
the class of strongly distinguished maps and the collapses by strong collapses.
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With these versions of the lemmas, the proof of the proposition is similar to
that of Theorem 4.6.5. 	


This result mirrors that for general spaces using the classical mapping
cylinder (see [38, Corollary 0.21]). Of course for finite spaces an additional
property holds: if X and Y are two homotopy equivalent finite T0-spaces,
there exists a third space Z which is a strong deformation retract of both X
and (a copy of) Y . This space Z can be taken to be the core of X .

We have mentioned in previous chapters that if X and Y are two weak
homotopy equivalent topological spaces, there exists a third space Z and
weak homotopy equivalences X ← Z → Y . The following is a version of that
result for finite spaces.

Proposition 4.6.7. Let X and Y be two weak homotopy equivalent finite
spaces. Then there exists a third finite space Z and weak homotopy equiva-
lences X ← Z → Y .

Proof. We may assume that X and Y are T0. Let f : |K(X)| → |K(Y )|
be a homotopy equivalence and let ϕ : K(X)(n) → K(Y ) be a simplicial
approximation to f . Then |ϕ| is also a homotopy equivalence an therefore
X (ϕ) : X(n+1) → Y ′ is a weak homotopy equivalence. Here X(n+1) = (X(n))′

denotes the (n + 1)th barycentric subdivision of X . Since there are weak
homotopy equivalences Y ′ → Y and X(m+1) → Xm for every 0 ≤ m ≤ n,
there exist weak homotopy equivalences X ← X (n+1) → Y . 	


The idea of considering iterated barycentric subdivisions of finite spaces
together with the simplicial approximation theorem appears in a paper of
Hardie and Vermeulen [35] (see also [52, Theorem 8.4]). Similar ideas are
later used to construct finite analogues of the complex number multiplication
S1 × S1 → S1 and the Hopf map S3 → S2 in [36] (other examples can be
found in [34, 37]).



Chapter 5

Strong Homotopy Types

The notion of collapse of finite spaces is directly connected with the concept
of simplicial collapse. In Chap. 2 we studied the notion of elementary strong
collapse which is the fundamental move that describes homotopy types of
finite spaces. In this chapter we will define the notion of strong collapse of
simplicial complexes which leads to strong homotopy types of complexes. This
notion corresponds to the homotopy types of the associated finite spaces, but
we shall see that it also arises naturally from the concept of contiguity classes.

Strong homotopy types of simplicial complexes have a beautiful character-
ization which is similar to the description of homotopy types of finite spaces
given by Stong.

Most of the results of this chapter are included in the article [11]. However,
the paper contains many more motivations and applications. The reader in-
terested in a more complete exposition of the theory of strong homotopy
types is encouraged to consult [11].

5.1 A Simplicial Notion of Homotopy

Given a vertex v in a simplicial complex K, we denote by K � v the full
subcomplex of K spanned by the vertices different from v. This is often
called the deletion of v. Recall that the link lk(v) is the subcomplex of K� v
whose simplices are those σ ∈ K � v such that σ ∪ {v} ∈ K.

If we want to study how the homotopy type of K changes when we remove
a vertex v, it is very useful to analyze the subcomplex lk(v). For instance, if
|lk(v)| is contractible, then |K| and |K � v| have the same homotopy type.
This easily follows from the gluing theorem A.2.5 (see Proposition A.2.6 for a
proof). If lk(v) is collapsible, st(v) = v(lk(v))↘ lk(v) = st(v)∩ (K � v) and
therefore K = st(v) ∪ (K � v)↘ K � v. The notion of non-evasive complex
(see [11,41] for example) is also connected with the relationship among lk(v),
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K and K�v. The following definition, motivated by the notion of beat point,
is related to these ideas.

Definition 5.1.1. Let K be a finite simplicial complex and let v ∈ K be a
vertex. We say that there is an elementary strong collapse from K to K � v
if lk(v) is a simplicial cone v′L. In this case we say that v is dominated (by
v′) and we write K ↘↘e K � v (Fig. 5.1). There is a strong collapse from a
complex K to a subcomplex L if there exists a sequence of elementary strong
collapses that starts in K and ends in L. In this case we write K ↘↘ L. The
inverse of a strong collapse is a strong expansion and two finite complexes K
and L have the same strong homotopy type if there is a sequence of strong
collapses and strong expansions that starts in K and ends in L.

Fig. 5.1 An elementary strong collapse. The vertex v is dominated by v′

Remark 5.1.2. Isomorphic complexes have the same strong homotopy type.
Let K be a finite simplicial complex and let v ∈ K be a vertex. Let v′ be
a vertex which is not in K and consider the complex L = K + v′stK(v) =
K�v+v′vlkK(v). Since lkL(v′) = vlkK(v), L ↘↘ K. Moreover, by symmetry
L ↘↘ L� v = K̃. Clearly, there is an isomorphism K → K̃ which sends v to
v′ and fixes the other vertices. Thus, if K1 and K2 are isomorphic simplicial
complexes, we can obtain a third complex K3 whose vertices are different
from the vertices of K1 and K2 and such that Ki and K3 have the same
strong homotopy type for i = 1, 2.

If v ∈ K is dominated, lk(v) is collapsible and in particular K collapses to
K � v. Thus, the usual notion of collapse is weaker than the notion of strong
collapse.

Remark 5.1.3. A vertex v is dominated by a vertex v′ �= v if and only if every
maximal simplex that contains v also contains v′.

We will prove that this notion of collapse corresponds exactly to the notion
of strong collapse of finite spaces (i.e. strong deformation retracts).

If two simplicial maps ϕ, ψ : K → L lie in the same contiguity class, we
will write ϕ ∼ ψ. It is easy to see that if ϕ1, ϕ2 : K → L, ψ1, ψ2 : L→M are
simplicial maps such that ϕ1 ∼ ϕ2 and ψ1 ∼ ψ2, then ψ1ϕ1 ∼ ψ2ϕ2.
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Definition 5.1.4. A simplicial map ϕ : K → L is a strong equivalence if
there exists ψ : L→ K such that ψϕ ∼ 1K and ϕψ ∼ 1L. If there is a strong
equivalence ϕ : K → L we write K ∼ L.

The relation ∼ is clearly an equivalence relation.

Definition 5.1.5. A finite simplicial complex K is a minimal complex if it
has no dominated vertices.

Proposition 5.1.6. Let K be a minimal complex and let ϕ : K → K be
simplicial map which lies in the same contiguity class as the identity. Then
ϕ is the identity.

Proof. We may assume that ϕ is contiguous to 1K. Let v ∈ K and let σ ∈ K
be a maximal simplex such that v ∈ σ. Then ϕ(σ) ∪ σ is a simplex, and by
the maximality of σ, ϕ(v) ∈ ϕ(σ)∪σ = σ. Therefore, every maximal simplex
which contains v, also contains ϕ(v). Hence, ϕ(v) = v, since K is minimal.

	

Corollary 5.1.7. A strong equivalence between minimal complexes is an iso-
morphism.

Proposition 5.1.8. Let K be a finite simplicial complex and v ∈ K a vertex
dominated by v′. Then the inclusion i : K � v ↪→ K is a strong equivalence.
In particular, if two complexes K and L have the same strong homotopy type,
then K ∼ L.

Proof. Define a vertex map r : K → K � v which is the identity on K � v
and such that r(v) = v′. If σ ∈ K is a simplex with v ∈ σ, consider σ′ ⊇ σ
a maximal simplex. Therefore v′ ∈ σ′ and r(σ) = σ ∪ {v′} � {v} ⊆ σ′ is a
simplex of K � v. Moreover ir(σ)∪σ = σ∪ {v′} ⊆ σ′ is a simplex of K. This
proves that r is simplicial and that ir is contiguous to 1K . Therefore, i is a
strong equivalence. 	

Definition 5.1.9. A core of a finite simplicial complex K is a minimal
subcomplex K0 ⊆ K such that K ↘↘ K0.

Theorem 5.1.10. Every complex has a core and it is unique up to isomor-
phism. Two finite simplicial complexes have the same strong homotopy type
if and only if their cores are isomorphic.

Proof. A core of a complex can be obtained removing dominated points one
by one. If K1 and K2 are two cores of K, they have the same strong homotopy
type and by Proposition 5.1.8,K1 ∼ K2. Since they are minimal, by Corollary
5.1.7 they are isomorphic.

Let K, L be two finite complexes. If they have the same strong homotopy
type, then also their cores K0 and L0 do. As above, we conclude that K0 and
L0 are isomorphic.

Conversely, If K0 and L0 are isomorphic, they have the same strong
homotopy type by Remark 5.1.2 and then K and L have the same strong
homotopy type. 	
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The uniqueness of cores is a fundamental property that distinguishes
strong homotopy types from simple homotopy types. A simplicial complex
can collapse to non-isomorphic subcomplexes, each of them without any free
face. However if a complex strongly collapses to two minimal complexes, they
must be isomorphic. The uniqueness of cores is also proved in [48] where the
notion of strong collapse appears with the name of LC-reduction. That paper
is exclusively devoted to prove that result from a combinatorial viewpoint.
In contrast, Theorem 5.1.10 is motivated by Stong’s topological ideas.

If K and L are two complexes such that K ∼ L and K0 ⊆ K, L0 ⊆ L are
their cores, then K0 ∼ L0 and therefore K0 and L0 are isomorphic. Hence,
we deduce the following

Corollary 5.1.11. Two finite simplicial complexes K and L have the same
strong homotopy type if and only if K ∼ L.

Example 5.1.12. The following homogeneous 2-complex is collapsible
(moreover it is non-evasive [83]). However, it is a minimal complex and
therefore it does not have the strong homotopy type of a point.

Example 5.1.13. In contrast to the case of simple homotopy types, a
complex and its barycentric subdivision need not have the same strong
homotopy type. The boundary of a 2-simplex and its barycentric subdivision
are minimal non-isomorphic complexes, therefore they do not have the same
strong homotopy type.

Proposition 5.1.14. Strong equivalences are simple homotopy equivalences.

Proof. Let ϕ : K → L be a strong equivalence. Let K0 be a core of K and
L0 a core of L. Then the inclusion i : K0 ↪→ K is a strong equivalence and
there exists a strong equivalence r : L → L0 which is a homotopy inverse of
the inclusion L0 ↪→ L. Since K0 and L0 are minimal complexes, the strong
equivalence rϕi is an isomorphism. Therefore, |i|, |r| and |rϕi| are simple
homotopy equivalences, and then so is |ϕ|. 	

Definition 5.1.15. A complex is said to be strong collapsible if it strong
collapses to a point or equivalently if it has the strong homotopy type of a
point.

Recall that it is not known whether K ∗ L is collapsible only if one of K
or L is, but the analogous result is true for strong collapsibility.
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Proposition 5.1.16. Let K and L be two finite simplicial complexes. Then,
K ∗ L is strong collapsible if and only if K or L is strong collapsible.

Proof. Suppose v is a dominated vertex of K. Then lkK(v) is a cone and
therefore lkK∗L(v) = lkK(v) ∗ L is a cone. Therefore v is also dominated in
K ∗ L. Thus, if K strong collapses to a vertex v0, K ∗ L ↘↘ v0L ↘↘ v0.

Conversely, assumeK∗L is strong collapsible. Let v ∈ K∗L be a dominated
point and suppose without loss of generality that v ∈ K. Then lkK∗L(v) =
lkK(v) ∗L is a cone. Therefore lkK(v) is a cone or L is a cone. If L is a cone,
it is strong collapsible and we are done. Suppose then that lkK(v) is a cone.
Since (K� v)∗L = (K ∗L)� v is strong collapsible, by induction K� v or L
is strong collapsible and since K ↘↘ K � v, K or L is strong collapsible. 	


5.2 Relationship with Finite Spaces and Barycentric
Subdivisions

In this section we will study the relationship between strong homotopy types
of simplicial complexes and homotopy types of finite spaces. After the first
result it will be clear that if a finite space is contractible, then so is its bary-
centric subdivision. The converse of this result, however, is not trivial. We
will prove an analogous statement for strong collapsibility of complexes and
then we will use it to prove the finite space version.

The following result is a direct consequence of Propositions 2.1.2 and 2.1.3.

Theorem 5.2.1.

(a) If two finite T0-spaces are homotopy equivalent, their associated complexes
have the same strong homotopy type.

(b) If two finite complexes have the same strong homotopy type, the associated
finite spaces are homotopy equivalent.

Proof. Suppose f : X → Y is a homotopy equivalence between finite T0-
spaces with homotopy inverse g : Y → X . Then by Proposition 2.1.2,
K(g)K(f) ∼ 1K(X) and K(f)K(g) ∼ 1K(Y ). Thus, K(X) ∼ K(Y ).

If K and L are complexes with the same strong homotopy type, there
exist ϕ : K → L and ψ : L → K such that ψϕ ∼ 1K and ϕψ ∼ 1L. By
Proposition 2.1.3, X (ϕ) : X (K) → X (L) is a homotopy equivalence with
homotopy inverse X (ψ). 	


In fact, we will give a more precise result:

Theorem 5.2.2.

(a) Let X be a finite T0-space and let Y ⊆ X. If X ↘↘ Y , K(X) ↘↘ K(Y ).
(b) Let K be a finite simplicial complex and let L ⊆ K. If K ↘↘ L,
X (K) ↘↘ X (K).
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Proof. If x ∈ X is a beat point, there exists a point x′ ∈ X and subspaces
A,B such that Ĉx = A � {x′} �B. Then lk(x) = K(Ĉx) = x′K(A � B) is a
simplicial cone. Therefore, K(X) ↘↘ K(X) � x = K(X � {x}).

If K is a finite complex and v ∈ K is such that lk(v) = aL is a simplicial
cone, we define r : X (K)→ X (K � v) as follows:

r(σ) =
{
aσ � {v} if v ∈ σ
σ if v /∈ σ

Clearly r is a well defined order preserving map. Denote i : X (K�v) ↪→ X (K)
the inclusion and define f : X (K)→ X (K),

f(σ) =
{
aσ if v ∈ σ
σ if v /∈ σ

Then ir ≤ f ≥ 1X (K) and both ir and f are the identity on X (K � v).
Therefore ir � 1X (K) rel X (K�v) and then X (K) ↘↘ X (K�v) by Corollary
2.2.5. 	

Example 5.2.3. The complex K(W ) associated to the Wallet (see Fig. 5.2)
is a triangulation of the 2-dimensional disk D2 which is collapsible because W
is collapsible, but which is not strong collapsible since W ′ is not contractible.

Fig. 5.2 The geometric realization of K(W )

Corollary 5.2.4. If X is a contractible finite T0-space, so is X ′.

Proof. If X is contractible, X ↘↘ ∗, then K(X) ↘↘ ∗ and therefore X ′ =
X (K(X)) ↘↘ ∗. 	


In general, for a finite T0-space X , X and X ′ do not have the same
homotopy type. Nevertheless, we will prove the converse of Corollary 5.2.4,
which implies that X is contractible if and only if its barycentric subdivision
X ′ is contractible. In particular, not only W ′ is non-contractible, but all the
iterated barycentric subdivisions of W .

It is not true that if X is a minimal finite space, then so is X ′. The bar-
ycentric subdivision W ′ of the Wallet is not a minimal finite space, although
W is.
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Proposition 5.2.5. Let X be a finite T0-space. Then X is a minimal finite
space if and only if K(X) is a minimal simplicial complex.

Proof. If X is not minimal, it has a beat point x and then K(X) ↘↘ K(X �

{x}) by Theorem 5.2.2. Therefore K(X) is not minimal.
Conversely, suppose K(X) is not minimal. Then it has a dominated ver-

tex x. Suppose lk(x) = x′L for some x′ ∈ X , L ⊆ K(X). In particular, if
y ∈ X is comparable with x, y ∈ lk(x) and then yx′ ∈ lk(x). Thus, any point
comparable with x is also comparable with x′. By Proposition 1.3.9, X is not
minimal. 	

Theorem 5.2.6. Let K be a finite simplicial complex. Then K is strong
collapsible if and only if K ′ is strong collapsible.

Proof. If K ↘↘ ∗, then X (K) ↘↘ ∗ and K ′ = K(X (K)) ↘↘ ∗ by Theorem
5.2.2. Suppose now that K is a complex and that K′ ↘↘ ∗. Let L be a core of
K. Then K ↘↘ L and by Theorem 5.2.2, K ′ ↘↘ L′. Therefore L is minimal
and L′ is strong collapsible. Let L0 = L′, L1, L2, ..., Ln = ∗ be a sequence of
subcomplexes of L′ such that there is an elementary strong collapse from Li
to Li+1 for every 0 ≤ i < n. We will prove by induction in i that Li ⊆ L′

contains as vertices all the barycenters of the 0-simplices and of the maximal
simplices of L.

Let σ = {v0, v1, . . . , vk} be a maximal simplex of L. By induction, the
barycenter b(σ) of σ is a vertex of Li. We claim that lkLib(σ) is not a cone. If
σ is a 0-simplex, that link is empty, so we assume σ has positive dimension.
Since b(vj)b(σ) is a simplex of L, b(vj) ∈ Li by induction and Li is a full
subcomplex of L, then b(vj) ∈ lkLib(σ) for every 0 ≤ j ≤ k. Suppose lkLib(σ)
is a cone. In particular, there exists σ′ ∈ L such that b(σ′) ∈ lkLib(σ) and
moreover b(σ′)b(vj) ∈ lkLib(σ) for every j. Since σ is a maximal simplex,
σ′

� σ and vj ∈ σ′ for every j. Then σ ⊆ σ′, which is a contradiction. Hence,
b(σ) is not a dominated vertex of Li and therefore, b(σ) ∈ Li+1.

Let v ∈ L be a vertex. By induction, b(v) ∈ Li. As above, if v is a maximal
simplex of L, lkLib(v) = ∅. Suppose v is not a maximal simplex of L. Let
σ0, σ1, . . . , σk be the maximal simplices of L which contain v. By induction
b(σj) ∈ Li for every 0 ≤ j ≤ k, and since Li ⊆ L is full, b(σj) ∈ lkLib(v).
Suppose that lkLib(v) is cone. Then there exists σ ∈ K such that b(σ) ∈
lkLib(v) and moreover, b(σ)b(σj) ∈ lkLib(v) for every j. In particular, v � σ
and σ ⊆ σj for every j. Let v′ ∈ σ, v′ �= v. Then v′ is contained in every
maximal simplex which contains v. This contradicts the minimality of L.
Therefore b(v) is not dominated in Li, which proves that b(v) ∈ Li+1.

Finally, Ln = ∗ contains all the barycenters of the vertices of L. Thus,
L = ∗ and K is strong collapsible. 	

Corollary 5.2.7. Let X be a finite T0-space. Then X is contractible if and
only if X ′ is contractible.
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Proof. By Corollary 5.2.4, it only remains to show that if X ′ is contractible,
so is X . Let Y ⊆ X be a core of X . Then by Theorem 5.2.2, X ′ ↘↘ Y ′. If X ′

is contractible, so is Y ′. Again by Theorem 5.2.2, K(Y ′) = K(Y )′ is strong
collapsible. By Theorem 5.2.6, K(Y ) is strong collapsible. By Proposition
5.2.5, K(Y ) is a minimal complex and therefore K(Y ) = ∗. Then Y is just a
point, so X is contractible. 	

Corollary 5.2.8.

1. A finite T0-space X is contractible if and only if K(X) is strong collapsible.
2. A finite simplicial complex K is strong collapsible if and only if X (K) is

contractible.

5.3 Nerves of Covers and the Nerve of a Complex

We introduce an application which transforms a simplicial complex into an-
other complex with the same homotopy type. This construction was previ-
ously considered by Grünbaum in [32] (see also [47]) but we arrived to it
independently when studying the Čech cohomology of finite spaces. We will
prove that this application can be used to obtain the core of a simplicial
complex.

Recall that if U = {Ui}i∈I is a cover of a set X , the nerve of U is the
simplicial complex N(U) whose simplices are the finite subsets I ′ ⊆ I such
that

⋂

i∈I′
Ui is nonempty.

The following result of McCord relates nerves of coverings and weak ho-
motopy equivalences.

Theorem 5.3.1 (McCord). Let X be a topological space and let U be an
open cover of X such that any point of X is contained in finitely many
elements of U . If any intersection of elements of U is empty or homotopically
trivial, there exists a weak homotopy equivalence |N(U)| → X.

The proof of this result uses Theorem 1.4.2 and can be found in [56,
Theorem 2]. This result is closely related to the so called Nerve Lemma [16,
Theorem 10.6]. The Nerve Lemma claims that if a finite simplicial complex K
is covered by a finite collection of subcomplexes V such that any intersection
of members of V is empty or contractible, then |N(V)| � |K|. The Nerve
Lemma follows immediately from Theorem 5.3.1 by considering the space
X (K) and the cover U = {X (L) | L ∈ V}.

If V = {Vj}j∈J is a refinement of a cover U = {Ui}i∈I of a set X (i.e.
every member of V is contained in some element of U), there is a simplicial
map N(V)→ N(U) which is uniquely determined up to homotopy, and sends
any vertex j ∈ N(V) to a vertex i ∈ N(U) such that Vj ⊆ Ui. In fact any
two such maps ϕ, ψ are contiguous. If J ′ ⊆ J is a simplex of N(V), then the
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intersection
⋂

i∈ϕ(J′)∪ψ(J′)
Ui contains

⋂

j∈J ′
Vj which is nonempty, and therefore

ϕ(J ′)∪ψ(J ′) is a simplex of N(U). We call a map ϕ : N(V)→ N(U) as above
a refinement map.

Proposition 5.3.2. If U = {Ui}i∈I and V = {Vj}j∈J are two finite covers of
a set that refine each other, N(U) and N(V) have the same strong homotopy
type.

Proof. Let ϕ : N(U) → N(V) and ψ : N(V) → N(U) be two refinement
maps. Then ψϕ and 1N(U) are two refinements maps and therefore they
are contiguous. Analogously ϕψ ∼ 1N(V). Thus, ϕ is a strong homotopy
equivalence. 	


The Čech cohomology of a topological space X is the direct limit

Ȟn(X) = colim Hn(N(U))

taken over the family of open covers of X preordered by refinement.
It is well known that if X has the homotopy type of a CW-complex, the

Čech cohomology coincides with the singular cohomology of X . But this is
not true in general. Given a finite space X , we denote by U0 the open cover
given by the minimal open sets of the maximal points of X . Note that U0

refines every open cover of X . Therefore Ȟn(X) = Hn(|N(U0)|).
Example 5.3.3. If X = S(S0) is the minimal finite model of S1, N(U0)
is a 1-simplex and therefore Ȟ1(X) = 0. On the other hand H1(X) =
H1(S1)= Z.

If K is a finite simplicial complex, the cover U0 of X (K) satisfies that
arbitrary intersections of its elements is empty or homotopically trivial.
Indeed, if σ1, σ2, . . . , σr are maximal simplices of K, then ∩Uσi is empty
or it is U∩σi . By Theorem 5.3.1, there is a weak homotopy equivalence
|N(U0)| → X (K). Therefore Ȟn(X (K)) = Hn(|N(U0)|) = Hn(X (K)), so
we have proved

Proposition 5.3.4. LetK be a finite simplicial complex. Then Ȟn(X (K)) =
Hn(X (K)) for every n ≥ 0.

Another proof of the last result can be given invoking a theorem of
Dowker [25]. Let V be the set of vertices of K and S the set of its maximal
simplices. Define the relation R ⊆ V ×S by vRσ if v ∈ σ. Dowker considered
two simplicial complexes. The simplices of the first complex are the finite
subsets of V which are related with a same element of S. This is the
original complex K. The simplices of the second complex are the finite
subsets of S which are related with a same element of V . This complex
is isomorphic to N(X (U0)). The Theorem of Dowker concludes that |K| and
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|N(X (U0))| are homotopy equivalent. Therefore Hn(X (K)) = Hn(|K|) =
Hn(|N(X (U0))|) = Ȟn(X (K)).

Both the Nerve lemma and Dowker’s Theorem claim the certain complexes
have the same homotopy type. These results can be improved showing that
in fact those complexes have the same simple homotopy type. Those versions
appear in [6] and follow from a stronger version of Theorem 1.4.19.

We now put the Čech cohomology aside to center our attention in the
construction which transforms K in the complex N(X (U0)).

Definition 5.3.5. Let K be a finite simplicial complex. The nerve of K
is the complex N (K) = N(X (U0)). This is the nerve of the cover of |K|
given by the maximal simplices. In other words, the vertices of N (K) are the
maximal simplices of K and the simplices of N (K) are the sets of maximal
simplices ofK with nonempty intersection. Given n ≥ 2, we define recursively
Nn(K) = N (Nn−1(K)).

By the arguments above, ifK is a finite simplicial complex, |K| and |N (K)|
have the same homotopy type.

Example 5.3.6. Let K be the following simplicial complex

Since K has four maximal simplices, N (K) has four vertices, and it looks
as follows

For n ≥ 2, the complex Nn(K) is the boundary of a 2-simplex.

If N r(K) = ∗ for some r ≥ 1, then |K| is contractible. But there are
contractible complexes such that N r(K) is not a point for every r. For
instance, if K is the complex of Example 5.1.12, N (K) has more vertices
than K, but N 2(K) is isomorphic to K. Therefore N r(K) �= ∗ for every r,
although |K| is contractible.

We will see that in fact, there is a strong collapse from K to a complex
isomorphic to N 2(K) and that there exists r such that N r(K) = ∗ if and
only if K is strong collapsible.
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Lemma 5.3.7. Let L be a full subcomplex of a finite simplicial complex K
such that every vertex of K which is not in L is dominated by some vertex
in L. Then K ↘↘ L.

Proof. Let v be a vertex ofK which is not in L. By hypothesis, v is dominated
and then K ↘↘ K � v. Now suppose w is a vertex of K � v which is not in
L. Then the link lkK(w) in K is a simplicial cone aM with a ∈ L. Therefore,
the link lkK�v(w) in K � v is a(M � v). By induction K � v ↘↘ L and then
K ↘↘ L. 	

Proposition 5.3.8. Let K be a finite simplicial complex. Then there exists
a complex L isomorphic to N 2(K) such that K ↘↘ L.

Proof. A vertex of N 2(K) is a maximal family Σ = {σ0, σ1, . . . , σr} of
maximal simplices of K with nonempty intersection. Consider a vertex map

ϕ : N 2(K) → K such that ϕ(Σ) ∈
r⋂

i=0

σi. This is a simplicial map for

if Σ0, Σ1, . . . , Σr constitute a simplex of N 2(K), then there is a common
element σ in all of them, which is a maximal simplex of K. Therefore
ϕ(Σi) ∈ σ for every 0 ≤ i ≤ r and then {ϕ(Σ1), ϕ(Σ2), . . . , ϕ(Σr)} is a
simplex of K.

The vertex map ϕ is injective. If ϕ(Σ1) = v = ϕ(Σ2) for Σ1 =
{σ0, σ1, . . . , σr}, Σ2 = {τ0, τ1, . . . , τt}, then v ∈ σi for every 0 ≤ i ≤ r
and v ∈ τi for every 0 ≤ i ≤ t. Therefore Σ1 ∪ Σ2 is a family of maximal
simplices of K with nonempty intersection. By the maximality of Σ1 and Σ2,
Σ1 = Σ1 ∪Σ2 = Σ2.

Suppose Σ0, Σ1, . . . , Σr are vertices of N 2(K) such that v0 = ϕ(Σ0), v1 =
ϕ(Σ1), . . . , vr = ϕ(Σr) constitute a simplex ofK. Let σ be a maximal simplex
of K which contains v0, v1, . . . , vr. Then, by the maximality of the families
Σi, σ ∈ Σi for every i and therefore {Σ0, Σ1, . . . , Σr} is a simplex of N 2(K).

This proves that L = ϕ(N 2(K)) is a full subcomplex of K which is
isomorphic to N 2(K).

Now, suppose v is a vertex of K which is not in L. Let Σ be the set of
maximal simplices of K which contain v. The intersection of the elements of
Σ is nonempty, but Σ could be not maximal. Let Σ′ ⊇ Σ be a maximal family
of maximal simplices of K with nonempty intersection. Then v′ = ϕ(Σ′) ∈ L
and if σ is a maximal simplex of K which contains v, then σ ∈ Σ ⊆ Σ ′.
Hence, v′ ∈ σ. Therefore v is dominated by v′. By Lemma 5.3.7, K ↘↘ L.

	

Lemma 5.3.9. A finite simplicial complex K is minimal if and only if
N 2(K) is isomorphic to K.

Proof. By Proposition 5.3.8, there exists a complex L isomorphic to N 2(K)
such that K ↘↘ L. Therefore, if K is minimal, L = K.

If K is not minimal, there exists a vertex v dominated by other vertex v′.
If v is contained in each element of a maximal family Σ of maximal simplices
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of K with nonempty intersection, then the same occur with v′. Therefore,
we can define the map ϕ of the proof of Proposition 5.3.8 so that v is not
in its image. Therefore, L = ϕ(N 2(K)) is isomorphic to N 2(K) and has less
vertices than K. Thus, N 2(K) and K cannot be isomorphic. 	


The sequence K,N 2(K),N 4(K),N 6(K), . . . is a decreasing sequence of
subcomplexes of K (up to isomorphism). Therefore, there exists n ≥ 1 such
that N 2n(K) and N 2n+2(K) are isomorphic. Then K strongly collapses to a
subcomplex L which is isomorphic to N 2n(K) and which is minimal. Thus,
we have proved the following

Proposition 5.3.10. Given a finite simplicial complex K, there exists n ≥ 1
such that Nn(K) is isomorphic to the core of K.

Theorem 5.3.11. Let K be a finite simplicial complex. Then, K is strong
collapsible if and only if there exists n ≥ 1 such that Nn(K) is a point.

Proof. If K is strong collapsible, its core is a point and then, there exists n
such that N n(K) = ∗ by the previous proposition. If Nn(K) = ∗ for some n,
then Nn+1(K) is also a point. Therefore there exists an even positive integer
r such that N r(K) = ∗, and K ↘↘ ∗ by Proposition 5.3.8. 	

Example 5.3.12. The following complex K is strong collapsible since
N 3(K) = ∗.

K
N (K)

N 2(K)

o

N 3(K)



Chapter 6

Methods of Reduction

A method of reduction of finite spaces is a technique that allows one to reduce
the number of points of a finite topological space preserving some properties
of the space.

An important example of a reduction method is described by beat points
and was introduced by Stong (see Chap. 1). In that case, the property that is
preserved is the homotopy type. Stong’s method is effective in the sense that
for any finite T0-space X , one can obtain a space homotopy equivalent to X
of minimum cardinality, by applying repeatedly the method of removing beat
points.

One of the most important methods of reduction studied in this work is
the one described by weak points (see Chap. 4). A removal of a weak point
preserves the simple homotopy type. The existence of non-collapsible homo-
topically trivial finite spaces shows that this method is not an effective way
of obtaining minimal finite models. However, a simple homotopy equivalent
finite space can always be reached by removing and adding weak points. In
some sense this is the best result that can be obtained since there exists
no effective reduction method for the weak homotopy type and the simple
homotopy type. This is a consequence of the following fact: there is no
algorithm which decides whether a finite simplicial complex is contractible
or not. This follows in turn from Novikov’s result on the undecidability of
recognition of spheres (see [49] for instance).

6.1 Osaki’s Reduction Methods

Some examples of reduction methods were introduced by Osaki in [65]. In
these cases, Osaki presents two methods that allow one to find a quotient of a
given finite space such that the quotient map is a weak homotopy equivalence.

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and
Applications, Lecture Notes in Mathematics 2032,
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86 6 Methods of Reduction

Theorem 6.1.1. (Osaki) Let X be a finite T0-space. Suppose there exists
x ∈ X such that Ux∩Uy is either empty or homotopically trivial for all y ∈ X.
Then the quotient map q : X → X/Ux is a weak homotopy equivalence.

Proof. Let y ∈ X . If Ux ∩ Uy = ∅, q−1(Uqy) = Uy. In other case, q−1(Uqy) =
Ux∪Uy (see Lemma 2.7.6). In order to apply McCord’s Theorem 1.4.2 to the
minimal basis of X/Ux, we only have to prove that if Ux∩Uy is homotopically
trivial, then so is Ux ∪ Uy. If Ux ∩ Uy is homotopically trivial, since Ux and
Uy are contractible, we obtain from the Mayer-Vietoris sequence for reduced
homology that H̃n(Ux ∪ Uy) = 0 for every n ≥ 0 and from the Theorem of
van Kampen that Ux ∪ Uy is simply connected. By Hurewicz’s Theorem, it
is homotopically trivial. Therefore, Theorem 1.4.2 applies, and q is a weak
homotopy equivalence. �	

The process of obtaining X/Ux from X is called an open reduction. There
is an analogous result for the minimal closed sets Fx, i.e. the closures of the
one point spaces {x}. This result follows from the previous one applied to
the opposite Xop.

Theorem 6.1.2. (Osaki) Let X be a finite T0-space. Suppose there exists
x ∈ X such that Fx∩Fy is either empty or homotopically trivial for all y ∈ X.
Then the quotient map q : X → X/Fx is a weak homotopy equivalence.

The process of obtaining X/Fx from X is called a closed reduction.
Osaki asserts in [65] that he does not know whether by a sequence of

reductions, each finite T0-space can be reduced to the smallest space with
the same homotopy groups.

We show with the following example that the answer to this question is
negative.

Let X = {a1, b, a2, c, d, e} be the 6-point T0-space with the following order:
c, d < a1; c, d, e < b and d, e < a2. Let D3 = {c, d, e} be the 3-point discrete
space and Y = SD3 = {a, b, c, d, e} the non-Hausdorff suspension of D3.

X a1•
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b•
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��
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��

��
�

•a2
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c• •d •e

Y a•

��
��

��

��
��

��
�

��������������� •b

���������������

��
��

��

		
		

		

c• •d •e

The function f : X → Y defined by f(a1) = f(a2) = a, f(b) = b, f(c) = c,
f(d) = d and f(e) = e is continuous because it preserves the order.

In order to prove that f is a weak homotopy equivalence we use the
Theorem of McCord 1.4.2. The sets Uy form a basis like cover of Y . It is easy
to verify that f−1(Uy) is contractible for each y ∈ Y and, since Uy is also
contractible, the map f |f−1(Uy) : f−1(Uy) → Uy is a weak homotopy equiv-
alence for each y ∈ Y . Applying Theorem 1.4.2, one proves that f is a weak
homotopy equivalence. Therefore X and Y have the same homotopy groups.
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Another way to show that X and Y are weak homotopy equivalent is
considering the associated polyhedra |K(X)| and |K(Y )| which are homotopy
equivalent to S1 ∨ S1.

On the other hand, it is easy to see that Osaki’s reduction methods cannot
be applied to the space X . Therefore his methods are not effective in this
case since we cannot obtain, by a sequence of reductions, the smallest space
with the same homotopy groups as X .

6.2 γ-Points and One-Point Reduction Methods

In this section we delve deeper into the study of one-point reductions of
finite spaces, i.e. reduction methods which consist of removing just one point
of the space. Beat points and weak points provide two important examples
of one-point reductions. The results of this section are essentially contained
in [9].

Recall that x ∈ X is a weak point if and only if Ĉx is contractible (Remark
4.2.3). This motivates the following definition.

Definition 6.2.1. A point x of a finite T0-space X is a γ-point if Ĉx is
homotopically trivial.

Note that weak points are γ-points. It is not difficult to see that both
notions coincide in spaces of height less than or equal to 2. This is because
any space of height 1 is contractible if and only if it is homotopically trivial.
However, this is false for spaces of height greater than 2.

Let x be a γ-point of a finite T0-space X . We will show that the inclusion
X � {x} ↪→ X is a weak homotopy equivalence. Note that since Ûx and F̂x
need not be homotopically trivial, we cannot proceed as we did in Proposition
4.2.4. However, in this case, one has the following pushout

|K(Ĉx)| ��

��

|K(Cx)|

��

|K(X � {x})| �� |K(X)|

Where |K(Ĉx)| → |K(Cx)| is a homotopy equivalence and |K(Ĉx)| → |K(X�

{x})| is a closed cofibration. Therefore |K(X�{x})| → |K(X)| is a homotopy
equivalence (for more details about this argument see Appendix A.2). This
proves the following.

Proposition 6.2.2. If x ∈ X is a γ-point, the inclusion i : X � {x} ↪→ X
is a weak homotopy equivalence.
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This result improves an old result which appears for example in Walker’s
Thesis [81, Proposition 5.8], which asserts, in the language of finite spaces,
that X � {x} ↪→ X is a weak homotopy equivalence provided Ûx or F̂x is
homotopically trivial. By Proposition 6.2.12 below, it is clear that a point x
is a γ-point if Ûx or F̂x is homotopically trivial, but the converse is false.

We will show that the converse of Proposition 6.2.2 is true in most cases.
First, we need some results.

Proposition 6.2.3. Let x be a point of a finite T0-space X. The inclusion
i : X � {x} ↪→ X induces isomorphisms in all homology groups if and only if
the subspace Ĉx is acyclic.

Proof. Apply the Mayer-Vietoris sequence to the triple (K(X);K(Cx),K(X�

{x})). �	
Lemma 6.2.4. If X and Y are nonempty finite T0-spaces with n and m
connected components respectively, the fundamental group π1(X � Y ) is a
free product of (n− 1)(m − 1) copies of Z. In particular if x ∈ X is neither
maximal nor minimal, the fundamental group of Ĉx = Ûx�F̂x is a free group.

Proof. It suffices to show that if K and L are finite simplicial complexes
with n and m connected components respectively, then π1(|K ∗ L|) is a free
group of rank (n − 1)(m − 1). Take a vertex vi in each component Ki of
K (1 ≤ i ≤ n) and a vertex wj in each component Lj of L (1 ≤ j ≤ m).
Let M be the full subcomplex of K ∗ L spanned by the the vertices vi and
wj . Then M is a graph, and an easy computation of its Euler characteristic
shows that π1(|M |) is a free group of the desired rank. Let q : K ∗L→M be
the simplicial map that maps Ki to vi and Lj to wj and let i : M → K ∗ L
be the inclusion. Since qi = 1M , q∗i∗ = 1E(M,v1) : E(M, v1) → E(M, v1). It
remains to show that i∗q∗ = 1E(K∗L,v1), but this follows easily from the next
two assertions: any edge-path in K ∗ L with origin and end v1 is equivalent
to an edge-path containing only ordered pairs (u, u′) with one vertex in K
and the other in L, and an edge-path (v, w), (w, v′) with v, v′ ∈ K, w ∈ L is
equivalent to (v, wj), (wj , v′) if w ∈ Lj. �	
Theorem 6.2.5. Let X be a finite T0-space, and x ∈ X a point which is
neither maximal nor minimal and such that X�{x} ↪→ X is a weak homotopy
equivalence. Then x is a γ-point.

Proof. If X � {x} ↪→ X is a weak homotopy equivalence, Ĉx is acyclic by
Proposition 6.2.3. Then π1(Ĉx) is a perfect group and therefore trivial, by
Lemma 6.2.4. Now the result follows from the Hurewicz Theorem. �	

The theorem fails if x is maximal or minimal, as the next example shows.

Example 6.2.6. Let X be an acyclic finite T0-space with nontrivial funda-
mental group. Let S(X) = X∪{−1, 1} be its non-Hausdorff suspension. Then
S(X) is also acyclic and π1(S(X)) = 0. Therefore it is homotopically trivial.
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Hence, X ∪{1} ↪→ S(X) is a weak homotopy equivalence. However −1 is not
a γ-point of S(X).

An alternative proof of Theorem 6.2.5 without using Lemma 6.2.4
explicitly can be made by arguing that H1(Ûx � F̂x) is a free abelian group
of rank (n − 1)(m − 1) if the spaces Ûx and F̂x have n and m connected
components. This follows from [57, Lemma 2.1] and implies that either Ûx or
F̂x is connected. By [57, Lemma 2.2], Ĉx is simply connected.

Using the relativity principle of simple homotopy theory [23, (5.3)] one can
prove that if x is a γ-point, |K(X � {x})| ↪→ |K(X)| is a simple homotopy
equivalence. We will see that in fact this holds whenever X � {x} ↪→ X is a
weak homotopy equivalence.

We will need the following key result ([86, Lemma 10], [23, (20.1)]).

Lemma 6.2.7 (Whitehead). Let (K,L) be a finite CW-pair such that L is
a strong deformation retract of K and such that each connected component of
K � L is simply connected. Then L ↪→ K is a simple homotopy equivalence.

Theorem 6.2.8. Let X be a finite T0-space and let x ∈ X. If the inclusion i :
X� {x} ↪→ X is a weak homotopy equivalence, it induces a simple homotopy
equivalence |K(X � {x})| → |K(X)|. In particular X � {x}�↘X.

Proof. Since |K(X � {x})| is a strong deformation retract of |K(X)| and the
open star of x,

◦
st(x) = |K(X)|� |K(X � {x})|

is contractible, then by Lemma 6.2.7, |K(X � {x})| ↪→ |K(X)| is a simple
homotopy equivalence. �	

This result essentially shows that one-point reductions are not sufficient to
describe all weak homotopy types of finite spaces. They are sufficient, though,
to reach all finite models of spaces with trivial Whitehead group by Corollary
4.2.13.

On the other hand, note that the fact that X � {x} and X have the same
weak homotopy type does not imply that the inclusion X � {x} ↪→ X is a
weak homotopy equivalence.

Definition 6.2.9. If x ∈ X is a γ-point, we say that there is an elementary
γ-collapse fromX toX�{x}. A finite T0-spaceX γ-collapses to Y if there is a
sequence of elementary γ-collapses that starts in X and ends in Y . We denote
this by X ↘γ Y . If X γ-collapses to a point, we say that it is γ-collapsible.

In contrast to collapses, a γ-collapse does not induce in general a collapse
between the associated simplicial complexes. For example, if K is any
triangulation of the Dunce Hat (see Fig. 4.5 in page 60), C(X (K)) ↘γ X (K),
but aK ′ /↘ K ′ since K ′ is not collapsible (see Lemma 4.1.1). However, if
X ↘γ Y , then X�↘ Y by Theorem 6.2.8 and then K(X) has the same simple
homotopy type as K(Y ).
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Recall that f : X → Y is said to be distinguished if f−1(Uy) is contractible
for every y ∈ Y . Distinguished maps are simple homotopy equivalences (see
Sect. 4.4). The following result generalizes that fact.

Proposition 6.2.10. Let f : X → Y be a map between finite T0-spaces such
that f−1(Uy) is homotopically trivial for every y ∈ Y . Then f is a simple
homotopy equivalence.

Proof. Consider the non-Hausdorff mapping cylinder B(f) with the inclu-
sions i : X ↪→ B(f), j : Y ↪→ B(f). Using the same proof of Lemma 4.2.7,
one can show that B(f) ↘γ X , while B(f) ↘↘ Y by Lemma 2.8.2. Then i
and j are simple homotopy equivalences by Theorem 6.2.8, and since jf � i,
so is f . �	

Note that in the hypothesis of the last proposition, every space Z with
f(X) ⊆ Z ⊆ Y has the simple homotopy type of Y , because in this case
f : X → Z also satisfies the hypothesis of above.

Remark 6.2.11. The quotient maps of Theorems 6.1.1 and 6.1.2 are simple
homotopy equivalences.

We finish this section analyzing the relationship between γ-collapsibility
and joins.

Proposition 6.2.12. Let X and Y be finite T0-spaces. Then

(i) X � Y is homotopically trivial if X or Y is homotopically trivial.
(ii) X � Y is γ-collapsible if X or Y is γ-collapsible.

Proof. IfX or Y is homotopically trivial, |K(X)| or |K(Y )| is contractible and
then so is |K(X)| ∗ |K(Y )| = |K(X � Y )|. Therefore X � Y is homotopically
trivial.

The proof of (ii) follows as in Proposition 2.7.3. If xi ∈ Xi is a γ-point,
ĈXi�Y
xi

= ĈXi
xi

� Y is homotopically trivial by item (i) and then xi is a
γ-point of Xi � Y . �	

There is an analogous result for acyclic spaces that follows from the
Künneth formula for joins [57].

Note that the converse of these results are false. To see this, consider two
finite simply connected simplicial complexes K, L such that H2(|K|) = Z2

is the cyclic group of two elements, H2(|L|) = Z3 is the cyclic group of three
elements and Hn(|K|) = Hn(|L|) = 0 for every n ≥ 3. Then X (K) and X (L)
are not acyclic, but X (K) � X (L), which is weak homotopy equivalent to
|K| ∗ |L|, is acyclic by the Künneth formula and, since it is simply connected
(see [57] or Lemma 6.2.4), it is homotopically trivial.

A counterexample for the converse of item (ii) is the following.

Example 6.2.13. Let K be a triangulation of the Dunce Hat. Then X (K) is
a homotopically trivial finite space of height 2. The non-Hausdorff suspension
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S(X (K)) = X (K) � S0 = X (K) ∪ {−1, 1} is γ-collapsible. The point 1 is a
γ-point of S(X (K)) since Ĉ1 = X (K) is homotopically trivial. The subspace
S(X (K))�{1} has maximum and in particular it is contractible, and therefore
γ-collapsible. However X (K) is not collapsible since K ′ is not collapsible, and
then S(X (K)) is not collapsible by Proposition 4.3.4. Furthermore, X (K)
and S0 are not γ-collapsible either because they are non-collapsible spaces
of height less than or equal to 2. Therefore S(X (K)) is a γ-collapsible space
which is the join of two non γ-collapsible spaces. Moreover, it is a γ-collapsible
space which is not collapsible.



•



Chapter 7

h-Regular Complexes and Quotients

The results of McCord show that each compact polyhedron |K| can be mode-
led, up to weak homotopy, by a finite space X (K). It is not hard to prove
that this result can be extended to the so called regular CW-complexes. In
this chapter we introduce a new class of complexes, generalizing the notion
of simplicial complex and of regular complex, and we prove that they also
can be modeled by their face posets. This can be used to find smaller models
of well-known spaces. The relationship with collapsibility is also studied. The
ideas developed in the first section are then used to obtain an exact sequence
of homology groups for finite spaces.

The results of this chapter are partially contained in [9]. This is probably
the most technical part of the book and requires some familiarity with the
theory of CW-complexes. The reader who is not an expert in CW-complexes
is invited to consult [28, 38]. Some basic definitions and properties can be
found in Appendix A.2.

7.1 h-Regular CW-Complexes and Their Associated
Finite Spaces

A CW-complex K is said to be regular if for each (open) cell en, the char-
acteristic map Dn → en is a homeomorphism, or equivalently, the attaching
map Sn−1 → K is a homeomorphism onto its image ėn, the boundary of en.
In this case, it can be proved that the closure en of each cell is a subcomplex,
which is equivalent to saying that ėn is a subcomplex (see [28, Theorem
1.4.10]).

A cell e of a regular complex K is a face of a cell e′ if e ⊆ e′. This
will be denoted by e ≤ e′. The barycentric subdivision K ′ is the simplicial
complex whose vertices are the cells of K and whose simplices are the

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and
Applications, Lecture Notes in Mathematics 2032,
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94 7 h-Regular Complexes and Quotients

sets {e1, e2, . . . , en} such that ei is a face of ei+1. The polyhedron |K ′| is
homeomorphic to K (see [45, Theorem 1.7] for instance).

We can define, as in the case of simplicial complexes, the face poset X (K)
of a regular complex K, which is the set of cells ordered by ≤. Note that
K(X (K)) = K ′ and therefore X (K) is a finite model of K, i.e. it has the
same weak homotopy type as K.

Example 7.1.1. The following figure (Fig. 7.1) shows a regular structure for
the real projective plane RP 2. The edges are identified in the way indicated
by the arrows. It has three 0-cells, six 1-cells and four 3-cells. Therefore its
face poset has 13 points (Fig. 7.2). It is unknown to the author whether
this is a minimal finite model of RP 2. This finite space appears also in [36,
Proposition 4.1] obtained by a different method.

a
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b a

Fig. 7.1 RP 2
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Fig. 7.2 A finite model of RP 2

We introduce now the concept of h-regular complex, generalizing the notion
of regular complex. Given an h-regular complex K, one can define X (K) as
before. In general,K and K(X (K)) are not homeomorphic. However we prove
that X (K) is a finite model of K.

Definition 7.1.2. A CW-complex K is h-regular if the attaching map of
each cell is a homotopy equivalence with its image and the closed cells en are
subcomplexes of K.
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In particular, regular complexes are h-regular.

Proposition 7.1.3. Let K = L ∪ en be a CW-complex such that ėn is a
subcomplex of L. Then en is contractible if and only if the attaching map
ϕ : Sn−1 → ėn of the cell en is a homotopy equivalence.

Proof. Suppose ϕ : Sn−1 → ėn is a homotopy equivalence. Since Sn−1 ↪→ Dn

is a closed cofibration, the characteristic map ψ : Dn → en is also a homotopy
equivalence by the gluing theorem A.2.5.

Suppose now that en is contractible. The map ψ : Dn/Sn−1 → en/ėn is
a homeomorphism and therefore it induces isomorphisms in homology and,
since en is contractible, by the long exact sequence of homology it follows
that ϕ∗ : Hk(Sn−1)→ Hk(ėn) is an isomorphism for every k.

If n ≥ 3, π1(ėn) = π1(en) = 0 and by a theorem of Whitehead ([38,
Corollary 4.33]), ϕ is a homotopy equivalence. If n = 2, ėn is just a graph
and since ϕ∗ : H1(S1) → H1(ėn) is an isomorphism, the attaching map ϕ is
a homotopy equivalence. Finally, if n = 1, since the cell is contractible, ϕ is
one-to-one and therefore a homeomorphism. ��
Corollary 7.1.4. A CW-complex is h-regular if and only if the closed cells
are contractible subcomplexes.

Example 7.1.5. The following are four different h-regular structures for the
Dunce Hat (Fig. 4.5) which are not regular structures. In each example the
edges are identified in the way indicated by the arrows.
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For an h-regular complex K, we also define the associated finite space (or
face poset) X (K) as the poset of cells of K ordered by the face relation ≤,
as in the regular case. Note that since closed cells are subcomplexes, e ≤ e′

if and only if e ⊆ e′.
The proof of the following lemma is standard.

Lemma 7.1.6. Let K ∪ e be a CW-complex, let ψ : Dn → e be the
characteristic map of the cell e and let A be a subspace of ė. We denote
Ce(A) = {ψ(x) | x ∈ Dn

� {0}, ψ( x
‖x‖ ) ∈ A} ⊆ e. Then

1. If A ⊆ ė is open, Ce(A) ⊆ e is open.
2. A ⊆ Ce(A) is a strong deformation retract.

Theorem 7.1.7. If K is a finite h-regular complex, X (K) is a finite model
of K.

Proof. We define recursively a weak homotopy equivalence fK : K → X (K).
Assume fKn−1 : Kn−1 → X (Kn−1) ⊆ X (K) is already defined and let

x = ψ(a) be a point in an n-cell en with characteristic map ψ : Dn → en. If
a = 0 ∈ Dn, define fK(x) = en. Otherwise, define fK(x) = fKn−1(ψ( a

‖a‖)).
In particular note that if e0 ∈ K is a 0-cell, fK(e0) = e0 ∈ X (K). Notice

also that if L is a subcomplex of K, fL = fK |L.
We will show by induction on the number of cells of K, that for every

cell e ∈ K, f−1
K (Ue) is open and contractible. This will prove that fK is

continuous and, by McCord’s Theorem 1.4.2, a weak homotopy equivalence.
Let e be a cell of K. Suppose first that there exists a cell of K which is not

contained in e. Take a maximal cell e′ (with respect to the face relation ≤)
with this property. Then L = K � e′ is a subcomplex and by induction,
f−1
L (Ue) is open in L. It follows that f−1

L (Ue) ∩ ė′ ⊆ ė′ is open and by the
previous lemma, Ce′(f−1

L (Ue) ∩ ė′) ⊆ e′ is open. Therefore,

f−1
K (Ue) = f−1

L (Ue) ∪ Ce′(f−1
L (Ue) ∩ ė′)

is open in K.
Moreover, since f−1

L (Ue) ∩ ė′ ⊆ Ce′(f−1
L (Ue) ∩ ė′) is a strong deformation

retract, so is f−1
L (Ue) ⊆ f−1

K (Ue). By induction, f−1
K (Ue) is contractible.

In the case that every cell of K is contained in e, f−1
K (Ue) = e = K, which

is open and contractible. ��
As an application we deduce that the finite spaces associated to the h-

regular structures of the Dunce Hat considered in Example 7.1.5 are all
homotopically trivial. The first one is a contractible space of 5 points, the
second one is a collapsible and non-contractible space of 13 points and the
last two are non-collapsible spaces of 15 points since they do not have weak
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points. In Fig. 7.3 we exhibit the Hasse diagram of the space associated to
the third h-regular structure of the Dunce Hat.
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Fig. 7.3 A homotopically trivial non-collapsible space of 15 points

Example 7.1.8. Let K be the space which is obtained from a square by
identifying all its edges as indicated.

We verify that K is homotopy equivalent to S2 using techniques of finite
spaces. Consider the following h-regular structure of K

a b

b

c

a
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which consists of three 0-cells, three 1-cells and two 2-cells. The Hasse
diagram of the associated finite space X (K) is

•

��
��

��
��

�

���
���

���
���

�� •

��
��
��
��
�

��
��

��
�

•

��
��
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�
•

��
��
��
��
�

•ab

��
��
��
�

��
��

��
�

c• •a •b

The 0-cell b is an up beat point of X (K) and the 1-cell ab is a down beat point
of X (K) � {b}. Therefore K is weak homotopy equivalent to X (K) � {b, ab}
which is a (minimal) finite model of S2 (see Chap. 3). In fact X (K)�{b, ab} =
S0 � S0 � S0 is weak homotopy equivalent to S0 ∗ S0 ∗ S0 = S2.

In [14, Proposition 3.1], Björner gives a characterization of the posets
which are face posets of finite regular CW-complexes. They are the finite
T0-spaces X such that |K(Ûx)| is homeomorphic to a sphere for every x ∈ X .
The analogous result for h-regular complexes is an open problem. It is easy
to prove that if X is the finite space associated to a finite h-regular complex,
then Ûx is a finite model of a sphere of dimension ht(x)−1 = ht(Ûx). However
it is unknown whether this is a sufficient condition for being the face poset
of an h-regular complex.

In Chap. 4 we proved that a collapse K ↘ L of finite simplicial complexes
induces a collapse X (K) ↘ X (L) between the associated finite spaces. This
is not true when K and L are regular complexes. Consider L = K(W ) the
simplicial complex associated to the Wallet W (see Fig. 4.2 in page 54), and
K the CW-complex obtained from L by attaching a regular 2-cell e2 with
boundary K({a, b, c, d}) and a regular 3-cell e3 with boundary L ∪ e2.

Note that the complex K is regular and collapses to L, but X (K) =
X (L)∪{e2, e3} does not collapse to X (L) because ÛX (K)�{e2}

e3 = X (L) = W ′

is not contractible. However, one can prove that a collapse K ↘ L between
h-regular CW-complexes induces a γ-collapse X (K) ↘γ X (L).

Theorem 7.1.9. Let L be a subcomplex of an h-regular complexK. IfK ↘ L,
then X (K) ↘γ X (L).

Proof. Assume K = L ∪ en ∪ en+1. Then en is an up beat point of X (K).
Since K ↘ L, en+1 ↘ L ∩ en+1 = ėn+1

� en. In particular ėn+1
� en is

contractible and then

Ĉ
X (K)�{en}
en+1 = X (ėn+1

� en)
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is homotopically trivial. Therefore

X (K) ↘e X (K) � {en} ↘γ X (L).
��

We study the relationship between the weak homotopy equivalence fK :
|K| → X (K) defined in Theorem 7.1.7 and the McCord map μK :
|K| → X (K). We will prove that both maps coincide if we take convenient
characteristic maps for the cells of the polyhedron |K|.

Let σ be an n-simplex of the simplicial complex K. Let ϕ : Sn−1 → σ̇ be a
homeomorphism. Define the characteristic map ϕ : Dn → σ of the cell σ by

ϕ(x) =

{
(1− ‖ x ‖)b(σ)+ ‖ x ‖ ϕ( x

‖x‖) if x �= 0
b(σ) if x = 0

Here b(σ) ∈ σ denotes the barycenter of σ. Clearly ϕ is continuous and
bijective and therefore a homeomorphism.

Definition 7.1.10. We say that the polyhedron |K| has a convenient cell
structure (as a CW-complex) if the characteristic maps of the cells are defined
as above.

Proposition 7.1.11. Let K be a finite simplicial complex. Consider a
convenient cell structure for |K|. Then fK and μK coincide.

Proof. Let x ∈ |K|, contained in an open n-simplex σ. Let ϕ : Sn−1 → |K|
be the attaching map of the cell σ, and ϕ : Dn → σ its characteristic map.
If x is the barycenter of σ, fK(x) = fK(ϕ(0)) = σ ∈ X (K) and μK(x) =
μX (K)s

−1
K (b(σ)) = μX (K)(σ) = σ. Assume then that x = ϕ(y) with y �= 0.

Thus, fK(x) = fK(ϕ( y
‖y‖)). Then, by an inductive argument,

fK(x) = μK(ϕ(
y

‖ y ‖ )) = μX (K)(s−1
K ϕ(

y

‖ y ‖ )).

On the other hand,

μK(x) = μX (K)s
−1
K (ϕ(y)) = μX (K)s

−1
K ((1− ‖ y ‖)b(σ)+ ‖ y ‖ ϕ(

y

‖ y ‖ ))

= μX (K)((1− ‖ y ‖)σ+ ‖ y ‖ s−1
K ϕ(

y

‖ y ‖ )).

Finally, s−1
K ϕ( y

‖y‖ ) ∈ |(σ̇)′| and then,

μX (K)((1− ‖ y ‖)σ+ ‖ y ‖ s−1
K ϕ(

y

‖ y ‖ ))

= min(support((1− ‖ y ‖)σ+ ‖ y ‖ s−1
K ϕ(

y

‖ y ‖)))
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= min({σ} ∪ support(s−1
K ϕ(

y

‖ y ‖)))

= min(support(s−1
K ϕ(

y

‖ y ‖))) = μX (K)(s−1
K ϕ(

y

‖ y ‖ )).

Thus, fK(x) = μK(X). ��

7.2 Quotients of Finite Spaces: An Exact Sequence
for Homology Groups

For CW-pairs (Z,W ), there exists a long exact sequence of reduced homology
groups

. . . �� H̃n(W ) �� H̃n(Z) �� H̃n(Z/W ) �� H̃n−1(W ) �� . . .

More generally, this holds for any good pair (Z,W ); i.e. a topological pair
such that W is closed in Z and is a deformation retract of some neighborhood
in Z [38, Theorem 2.13]. When W is an arbitrary subspace of a finite space
Z, one does not have such a sequence in general. For a pair of finite spaces
(X,A), Hn(X,A) and H̃n(X/A) need not be isomorphic (see Example 2.7.9).
However, we will prove that if A is a subspace of a finite T0-space X , there
is a long exact sequence

. . . �� H̃n(A′) �� H̃n(X ′) �� H̃n(X ′/A′) �� H̃n−1(A′) �� . . .

of the reduced homology groups of the subdivisions of X and A and their
quotient. In fact, in this case we will prove that H̃n(X ′/A′) = Hn(X,A) =
Hn(X ′, A′).

Recall that ifW is a subcomplex of a CW-complex Z, Z/W is CW-complex
with one n-cell for every n-cell of Z which is not a cell of W and an extra
0-cell. The n-squeleton (Z/W )n is the quotient Zn/Wn. If en is a closed n-cell
of Z which is not in W , there is a corresponding closed n-cell q(en) in Z/W
where q : Z → Z/W is the quotient map. If ϕ : Sn−1 → Zn−1 is the attaching
map of en and ϕ : Dn → en its characteristic map, qϕ : Sn−1 → Zn−1/Wn−1

and qϕ : Dn → q(en) are respectively, the attaching and characteristic maps
of the corresponding cell ẽn in Z/W .

Theorem 7.2.1. Let K be a finite simplicial complex and let L ⊆ K be a
full subcomplex. Then |K|/|L| is an h-regular CW-complex and X (|K|/|L|)
is homeomorphic to X (K)/X (L).
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Proof. Let σ be an n-simplex of K which is not a simplex of L. If σ intersects
L, then σ ∩ L = τ is a proper face of σ. In particular τ is contractible and
therefore the corresponding closed cell q(σ) = σ/τ ⊆ |K|/|L| is homotopy
equivalent to σ which is contractible (see Proposition A.2.7). Thus, closed
cells of |K|/|L| are contractible subcomplexes. By Corollary 7.1.4, |K|/|L| is
h-regular.

Now, if τ and σ are simplices of K which are not in L, then τ̃ ≤ σ̃ in
X (|K|/|L|) if and only if q(τ ) = τ̃ ⊆ σ̃ = q(σ) if and only if τ is a face of
σ in K if and only if τ ≤ σ in X (K)/X (L). Finally, if τ ∈ L and σ /∈ L,
τ̃ < σ̃ in X (|K|/|L|) if and only if q(τ ) ⊂ q(σ) if and only if σ ∩ L �= ∅ if
and only if τ < σ in X (K)/X (L). Therefore, X (|K|/|L|) and X (K)/X (L)
are homeomorphic. ��
Corollary 7.2.2. Let X be a finite T0-space and A ⊆ X a subspace. Then
X (|K(X)|/|K(A)|) is homeomorphic to X ′/A′. In particular |K(X)|/|K(A)|
and |K(X ′/A′)| are homotopy equivalent.

Proof. Apply Theorem 7.2.1 to K = K(X) and the full subcomplex L =
K(A). ��
Corollary 7.2.3. If A is a subspace of a finite T0-space X, Hn(X,A) =
H̃n(X ′/A′) for every n ≥ 0.

Proof. By the naturality of the long exact sequence of homology, the McCord
map μX : |K(X)| → X induces isomorphisms Hn(|K(X)|, |K(A)|) →
Hn(X,A). Thus, Hn(X,A) = Hn(|K(X)|, |K(A)|) = H̃n(|K(X)|/|K(A)|) =
H̃n(|K(X ′/A′)|) = H̃n(X ′/A′). ��

Example 2.7.9 shows that Hn(X,A) is not isomorphic to H̃n(X/A) in
general.

Proposition 7.2.4. Let L be a full subcomplex of a finite simplicial com-
plex K. Let fK : |K| → X (K), fK/L : |K|/|L| → X (|K|/|L|) be the weak
homotopy equivalences constructed in Theorem 7.1.7 (for some characteristic
maps of the cells of |K|). Let q : |K| → |K|/|L| and q̃ : X (K) →
X (K)/X (L) be the quotient maps and let h : X (|K|/|L|) → X (K)/X (L)
be the homeomorphism defined by h(σ̃) = q̃(σ). Then the following diagram
commutes

|K|

fK

��

q
�� |K|/|L|

hfK/L

��
X (K)

q̃
�� X (K)/X (L).
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Proof. Let x ∈ |K|, x ∈ en, an open n-simplex. We prove that q̃fK(x) =
hfK/Lq(x) by induction in n. Note that this is clear if x ∈ |L|, so we suppose
x /∈ |L|. If n = 0, hfK/Lq(e0) = hfK/L(ẽ0) = h(ẽ0) = q̃(e0) = q̃fK(e0).
Assume then that n > 0, x ∈ en. Let ϕ : Sn−1 → |K| and ϕ : Dn → en

be the attaching and characteristic maps of en. Since en is not a simplex
of L, en is a cell of |K|/|L| with attaching map qϕ : Sn−1 → |K|/|L| and
characteristic map qϕ : Dn → q(en). Let y in the interior of the disk Dn such
that x = ϕ(y). By definition of fK/L,

fK/L(q(x)) = fK/L((qϕ)(y))) =

{
fK/L((qϕ)( y

‖y‖ )) if y �= 0
ẽn if y = 0

If y �= 0, hfK/L(q(x)) = hfK/Lq(ϕ( y
‖y‖)) = q̃fK(ϕ( y

‖y‖)) = q̃fK(x) by
induction. If y = 0, hfK/L(x) = h(ẽn) = q̃(en) = q̃fK(x). This proves that
q̃fK(x) = hfK/Lq(x). ��

Let ∂ : H̃n(|K|/|L|) → H̃n−1(|L|) be the connecting homomorphism of
the long exact sequence of reduced homology. Define ∂̃ = fL∗∂((hfK/L)∗)−1 :
H̃n(X (K)/X (L)) → H̃n(X (L)). By the previous results, there exists a long
exact sequence

→ H̃n(X (L))
i∗

�� H̃n(X (K))
q̃∗

�� H̃n(X (K)/X (L))
∂̃

�� H̃n−1(X (L))→
(7.1)

Corollary 7.2.5. Let A be a subspace of a finite T0-space X. There exists a
long exact sequence

. . . �� H̃n(A′)
i∗

�� H̃n(X ′)
q̃∗

�� H̃n(X ′/A′)
∂̃

�� H̃n−1(A′) �� . . .

(7.2)
which is natural in the following sense: if g : (X,A) → (Y,B) is a map of
pairs, there is a commutative diagram

. . . �� H̃n(A′)
i∗

��

g′∗
��

H̃n(X ′)
q̃∗

��

g′∗
��

H̃n(X ′/A′)
∂̃

��

g′∗
��

H̃n−1(A′) ��

g′∗
��

. . .

. . . �� H̃n(B′)
i∗

�� H̃n(Y ′)
q̃∗

�� H̃n(Y ′/B′)
∂̃

�� H̃n−1(B′) �� . . .

(7.3)
where g′ = X (K(g)) is the induced map in the subdivisions.
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Proof. Consider a convenient cell structure for |K(X)|. Taking K = K(X)
and L = K(A) in (7.1) one obtains the long exact sequence (7.2) with the
connecting morphism ∂̃ defined as above for the maps fK and fK/L induced
by the cell structure of |K(X)|.

The first two squares of (7.3) commute before taking homology. We only
have to prove the commutativity of the third square.

Consider the following cube,

H̃n(|K(X)|/|K(A)|)
∂

��

hfK(X)/K(A)∗

��  
   

   
   

|K(g)|∗

��

H̃n−1(|K(A)|)

|K(g)|∗
��

fK(A)∗

��!!
!!!

!!!
!!

H̃n(X ′/A′)
∂̃

��

g′∗

��

H̃n−1(A′)

g′∗

��

H̃n(|K(Y )|/|K(B)|)
∂

��

hfK(Y )/K(B)∗

��  
   

   
   

H̃n−1(|K(B)|)
fK(B)∗

��!!
!!!

!!!
!!

H̃n(Y ′/B′)
∂̃

�� H̃n−1(B′)

(7.4)

The top and bottom faces of the cube commute by definition of ∂̃. The
back face commute by the naturality of the long exact sequence for
CW-complexes. Therefore, to prove that the front face commutes, we only
have to check that the left and right faces do. To achieve this, we prove that
these two squares commute up to homotopy:

|K(A)|
fK(A)

��

|K(g)|
��

A′

g′

��
|K(B)|

fK(B)
�� B′

|K(X)|/|K(A)|
hfK(X)/K(A)

��

|K(g)|
��

X ′/A′

g′

��
|K(Y )|/|K(B)|

hfK(Y )/K(B)
�� Y ′/B′

For the first square this is clear, since the convenient cell structures for
|K(X)| and |K(Y )| induce convenient cell structures for the subcomplexes
|K(A)| and |K(B)| and in this case fK(A) = μK(A) and fK(B) = μK(B) by
Proposition 7.1.11. For the second square we just have to remember that there
exists a homotopy H : μK(Y )|K(g)| � g′μK(X) such that H(|K(A)| × I) ⊆ B′

by Remark 1.4.14 and this induces a homotopy H : |K(X)|/|K(A)| × I →
Y ′/B′ which is the homotopy between hfK(Y )/K(B)|K(g)| and g′hfK(X)/K(A)

by Proposition 7.1.11 and Proposition 7.2.4. ��
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Remark 7.2.6. There is an alternative, and perhaps simpler, way to prove the
existence of the sequence (7.1) and Corollary 7.2.5 which does not use the
fact that X (K)/X (L) is a finite model of |K|/|L| when L is a full subcomplex
of K. Nevertheless we chose the proof of above because it provides an explicit
formula for the weak homotopy equivalence |K|/|L| → X (K)/X (L).

The idea of the alternative proof is as follows: if L is a full subcomplex
of K, X (L)op is a closed subspace of X (K)op which is a deformation
retract of its open hull X (L)op ⊆ X (K)op. Therefore, there is a long exact
sequence as in Proposition 7.1 but for the opposite spaces X (L)op,X (K)op

and X (K)op/X (L)op. Using the associated complexes of these spaces we
obtain the long exact sequence of Proposition 7.1 and the naturality of
Corollary 7.2.5 follows from the naturality of the sequence for the opposite
spaces.



Chapter 8

Group Actions and a Conjecture of Quillen

In his seminal article [70], Daniel Quillen studied algebraic properties of a
finite group by means of homotopy properties of a certain complex K(Sp(G))
associated to the group. Given a finite group G and a prime integer p dividing
the order of G, let Sp(G) denote the poset of nontrivial p-subgroups of G
ordered by inclusion. The poset Sp(G), or more concretely, its associated
simplicial complex K(Sp(G)), was first investigated by Brown. In his 1975
paper [20], Brown proved a very interesting variation of Sylow’s Theorems
for the Euler characteristic. In [70] Quillen delved deeper into the topological
properties of K(Sp(G)) and their relationship with the algebraic properties
of G. He showed, for instance, that if G has a nontrivial normal p-subgroup,
|K(Sp(G))| is contractible. He proved that the converse of this statement is
true for solvable groups and conjectured that it is true for all finite groups.
Important advances were made in [3] but a complete answer to Quillen’s
question is still unknown.

Apparently, Brown and Quillen were not aware of the theory of finite
spaces at that time. They worked with the associated complex K(Sp(G))
without considering the intrinsic topology of the poset Sp(G). Stong was the
first mathematician who studied Quillen’s conjecture from the viewpoint of
finite spaces. In [77], he developed the equivariant homotopy theory of finite
spaces and studied its relationship with the conjecture. Stong showed that
the group G has a nontrivial p-subgroup if and only if Sp(G) is a contractible
finite space. In view of this result, the conjecture can be restated as:

Sp(G) is contractible if and only if it is homotopically trivial.

In this chapter we will recall Stong’s equivariant homotopy theory for finite
spaces and its connection with Quillen’s conjecture. Then we will develop an
equivariant simple homotopy theory for complexes and finite spaces that
allows one to study the conjecture from a new point of view.

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and
Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6 8, © Springer-Verlag Berlin Heidelberg 2011
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8.1 Equivariant Homotopy Theory for Finite Spaces

Let G be a group. By a G-space we will mean a topological space X with
an action of G such that the maps mg : X → X defined by mg(x) = gx
are continuous for every g ∈ G. A G-map (or equivariant map) between
G-spaces X and Y is a continuous map f : X → Y such that f(gx) = gf(x)
for every g ∈ G and x ∈ X . A homotopy H : X× I → Y is a G-homotopy (or
equivariant homotopy) if H(gx, t) = gH(x, t) for every g ∈ G, x ∈ X, t ∈ I.
A G-map f : X → Y is a G-homotopy equivalence if there exists a G-map
h : Y → X and G-homotopies between hf and 1X and between fh and 1Y .
A subspace A of a G-space X is said to be G-invariant if ga ∈ A for every
g ∈ G, a ∈ A. A G-invariant subspace A ⊆ X is an equivariant strong
deformation retract if there is an equivariant retraction r : X → A such
that ir is homotopic to 1X via a G-homotopy which is stationary at A.

If x is a point of a G-space X , Gx = {gx}g∈G denotes the orbit of x. The
set of points fixed by the action is denoted byXG = {x ∈ X | gx = x ∀g ∈ G}.

A finite T0-space which is a G-space will be called a finite T0-G-space.
The following is a general result about automorphisms of posets but we

will need it only in the context of finite T0-G-spaces.

Lemma 8.1.1. Let X be a finite T0-space, x ∈ X and let f : X → X be
an automorphism. If x and f(x) are comparable, x = f(x). Moreover, if
f1, f2 : X → X are two automorphisms and f1(x) is comparable with f2(x),
then f1(x) = f2(x).

Proof. Assume without loss of generality that x ≤ f(x). Then f i(x) ≤
f i+1(x) for every i ≥ 0. By the finiteness of X , the equality must hold for
some i and since f is a homeomorphism x = f(x). The second part of the
lemma follows from the first by considering the automorphism f−1

2 f1. �	
Lemma 8.1.2. Let X be a finite T0-G-space. Then there exists a core of X
which is G-invariant and an equivariant strong deformation retract of X.

Proof. Suppose X is not minimal. Then there exists a beat point x ∈ X .
Without loss of generality suppose x is a down beat point that covers a
point y. The orbit of x and the orbit of y are disjoint. If gx = hy, then
gx = hy < hx, which contradicts Lemma 8.1.1. Moreover, if gx = hx, then
h−1gy < h−1gx = x and therefore h−1gy ≤ y. By Lemma 8.1.1, h−1gy = y
and then gy = hy. Therefore, the retraction r : X → X � Gx defined by
r(gx) = gy is a well defined continuous G-map. The homotopy X × I → X
corresponding to the path α : I → XX given by α(t) = ir if 0 ≤ t < 1
and α(1) = 1X is a G-homotopy between ir and 1X relative to X � Gx.
Therefore X � Gx is an equivariant strong deformation retract of X . The
proof is concluded by an inductive argument. �	
Proposition 8.1.3. A contractible finite T0-G-space has a point which is
fixed by the action of G.
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Proof. By Lemma 8.1.2 there is a core, i.e. a point, which is G-invariant. �	
Example 8.1.4. Let G be a finite group and suppose there exists a proper
subgroup H � G such that for every nontrivial subgroup S of G, S ∩H is
nontrivial. Then G is not a simple group.

Although at first sight this result does not seem to be related to finite
spaces, we will give a proof using Proposition 8.1.3. Since H is a proper
subgroup ofG, G is nontrivial and thereforeH = G∩H is nontrivial. Consider
the poset S(G) of nontrivial proper subgroups of G. Let cH : S(G) → S(G)
be the constant map H and define f : S(G) → S(G) by f(S) = S ∩H . The
map f is well defined by hypothesis and it is clearly continuous. Moreover,
1S(G) ≥ f ≤ cH and then S(G) is contractible. On the other hand, G acts on
S(G) by conjugation. Then, by Proposition 8.1.3, G has a nontrivial proper
normal subgroup.

For instance, let Q = {1,−1, i,−i, j,−j, k,−k} be the quaternion group,
where (−1)2 = 1, (−1)i = i(−1) = −i, (−1)j = j(−1) = −j, (−1)k =
k(−1) = −k, i2 = j2 = k2 = ijk = −1. Let H = {1,−1}. Then H is
in the hypothesis of the statement since −1 is a power of every nontrivial
element of Q. Therefore, Q is not simple.

There are also purely algebraic (and simple) proofs of this result. In fact is
easy to see that in the hypothesis of above,

⋂

g∈G
gHg−1 is a nontrivial normal

subgroup of G.

Proposition 8.1.3 cannot be generalized to non-finite spaces. The analogous
statement for simplicial complexes is not true. If K is a contractible finite
simplicial complex with a simplicial action of a finite group G, then it may
be the case that there is no point fixed by the induced action in |K|.
Moreover, Oliver [64] gave a description of the groups G for which there
exists a simplicial fixed point free action on a contractible simplicial complex.
However we can prove that every simplicial action on a strong collapsible
complex has a fixed point. The following result appears in [11].

Theorem 8.1.5. Let K be a strong collapsible simplicial complex and let G
be a group acting simplicially on K. Then there is a point in |K| which is
fixed by the action induced in the geometric realization.

Proof. The action on K induces and action on X (K), which is contractible
by Theorem 5.2.2. By Proposition 8.1.3, there is a point of X (K) fixed by
the action. This is a G-invariant simplex of K, and therefore its barycenter
is a fixed point of the corresponding action on |K|. �	
Proposition 8.1.6. Let X and Y be finite T0-G-spaces and let f : X → Y be
a G-map which is a homotopy equivalence. Then f is an equivariant homotopy
equivalence.

Proof. Let Xc and Yc be cores of X and Y which are equivariant strong
deformation retracts. Denote iX , iY and rX , rY the inclusions and equivariant
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strong deformation retractions. Since f is a homotopy equivalence and a
G-map, so is rY fiX : Xc → Yc. Therefore, rY fiX is a G-isomorphism. Define
the G-map g = iX(rY fiX)−1rY : Y → X , then

fg = fiX(rY fiX)−1rY � iY rY fiX(rY fiX)−1rY = iY rY � 1Y ,

gf = iX(rY fiX)−1rY f � iX(rY fiX)−1rY fiXrX = iXrX � 1X .

All the homotopies being equivariant. Therefore f is an equivariant homotopy
equivalence with homotopy inverse g. �	
Remark 8.1.7. Two finite T0-G-spaces which are homotopy equivalent, need
not have the same equivariant homotopy type. Let X = S(S0). The group of
automorphisms Aut(X) acts on X in the usual way by f · x = f(x) and in
the trivial way by f ◦ x = x. Denote by X0 the Aut(X)-space with the first
action and by X1, the second. Suppose there exists an equivariant homotopy
equivalence g : X0 → X1. Since X is minimal, g is a homeomorphism. Let
f : X → X be an automorphism distinct from the identity. Then gf(x) =
g(f · x) = f ◦ g(x) = g(x) for every x ∈ X . Thus, f = 1X , which is a
contradiction.

8.2 The Poset of Nontrivial p-Subgroups and the
Conjecture of Quillen

In this section, we recall Quillen’s basic results on the poset Sp(G) and the
poset Ap(G) of elementary abelian p-subgroups. We will recall also Stong’s
reformulation of the conjecture for finite spaces and we will exhibit an
alternative proof of K. Brown’s result on the Euler characteristic of Sp(G).

In the following, G will denote a finite group and p a prime integer dividing
the order ofG. The elements of the poset Sp(G) are the nontrivial p-subgroups
ofG, namely the subgroups different from the trivial subgroup of one element,
whose order is a power of p. Note that the maximal elements of Sp(G) are
the Sylow p-subgroups of G and the minimal elements correspond to the
subgroups of order p.

Example 8.2.1. For G = D6 = 〈s, r | s2 = r6 = srsr = 1〉, the dihedral
group of order 12, and p = 2, the poset S2(D6) looks as follows

〈r3, s〉
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��
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������������
〈r3, sr〉

��
��

��
�

��
��

��
�

〈r3, sr2〉

��
��

��
�

�������������

〈s〉 〈sr3〉 〈sr〉 〈r3〉 〈sr4〉 〈sr2〉 〈sr5〉
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Quillen proved in [70] that ifG has a nontrivial normal p-subgroup then the
polyhedron |K(Sp(G))| is contractible. But with his proof it can be deduced
that Sp(G) is a contractible finite space, which a priori is stronger.

Theorem 8.2.2 (Quillen). If G has a nontrivial normal p-subgroup, Sp(G)
is contractible.

Proof. Suppose N is a nontrivial normal p-subgroup ofG. Define f : Sp(G)→
Sp(G) by f(H) = NH = {nh | n ∈ N, h ∈ H}. NH is a subgroup of G
since N � G. Moreover, NH is a quotient of the semidirect product N �H ,
where (n1, h1)(n2, h2) = (n1h1n2h

−1
1 , h1h2). Since N and H are p-groups, so

is NH . Therefore, f is well defined. Clearly f is order preserving, and if cN
denotes the constant map N , cN ≤ f ≥ 1Sp(G). Thus 1Sp(G) is homotopic to
a constant and then, Sp(G) is contractible. �	
Corollary 8.2.3. If G has a nontrivial normal p-subgroup, |K(Sp(G))| is
contractible.

The conjecture of Quillen is the converse of this result.

Conjecture 8.2.4 (Quillen). If |K(Sp(G))| is contractible, G has a non-
trivial normal p-subgroup.

Following Stong [77], we will use the results of the previous section to give
a restatement of the conjecture in the setting of finite spaces.

Theorem 8.2.5 (Stong). Let G be a finite group and let p be a prime
integer. Then Sp(G) is contractible if and only if G has a nontrivial normal
p-subgroup.

Proof. In view of Theorem 8.2.2 we only need to prove the existence of a
nontrivial normal p-subgroup provided that Sp(G) is contractible. The poset
Sp(G) is a G-space with the action given by conjugation, g ·H = gHg−1. If
Sp(G) is contractible, by Proposition 8.1.3, there exists N ∈ Sp(G) such that
gNg−1 = N for every g ∈ G, i.e. N is a normal subgroup of G. �	

In light of Theorem 8.2.5, the conjecture may be restated as follows:

Restatement of Quillen’s conjecture (Stong): If Sp(G) is homotopically
trivial, it is contractible.

In [70], Quillen shows that his conjecture 8.2.4 is true for solvable groups.
To do this, Quillen works with another poset Ap(G) which is weak homotopy
equivalent to Sp(G), and proves that if G does not have nontrivial normal
p-subgroups, then Ap(G) has a nonvanishing homology group. The finite
space Ap(G) is the subspace of Sp(G) consisting of the elementary abelian
p-subgroups, i.e. abelian subgroups whose elements have all order 1 or p.

Proposition 8.2.6. The inclusion Ap(G) ↪→ Sp(G) is a weak homotopy
equivalence.
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Proof. By Theorem 1.4.2, it suffices to show that i−1(UH) = Ap(H) is
contractible for every H ∈ Sp(G). Since H is a nontrivial p-subgroup, its
center Z is not trivial. Let N ⊆ Z be the subgroup of elements of order 1
or p. If T ∈ Ap(H), TN ∈ Ap(H) and T ≤ TN ≥ N . Therefore, Ap(H) is
contractible. �	

In [77], Stong shows that in general Ap(G) and Sp(G) are not homotopy
equivalent, however, if Ap(G) is contractible, there is a point fixed by the
action of G and then Sp(G) is contractible. Apparently it is unknown whether
the converse of this result holds.

Example 8.2.7. Let Σ5 be the symmetric group on five letters. We give an
alternative proof of the well known fact that Σ5 has no nontrivial normal
2-subgroups.

The subgroup 〈(1234), (13)〉 ⊆ Σ5 has order 8 and it is not abelian. All
the other subgroups of order 8 are isomorphic to this Sylow 2-subgroup and
therefore, Σ5 has no elementary abelian subgroups of order 8. Thus, the
height of the poset A2(Σ5) is at most one.

On the other hand, there is a subspace of A2(Σ5) with the following Hasse
diagram

〈(12), (34)〉

���������
〈(12), (45)〉

		
							

������
���
〈(15), (34)〉

					
				

���
������
〈(23), (45)〉

								
	

��������
�

〈(15), (23)〉

			
						

〈(12)〉 〈(34)〉 〈(45)〉 〈(15)〉 〈(23)〉

Then the graph K(A2(Σ5)) has a cycle and therefore it is not contractible.
Hence, A2(Σ5) is not homotopically trivial and then neither is S2(Σ5). In
particular, S2(Σ5) is not contractible and then Σ5 does not have normal
2-subgroups which are nontrivial.

Now we exhibit an alternative proof of K. Brown’s result on Euler
characteristic [20]. If H is a subgroup of G, then it also acts on Sp(G) by
conjugation and Sp(G)H denotes then the fixed point set of this action.

Proposition 8.2.8. Let H be a nontrivial p-subgroup of G. Then Sp(G)H

is contractible.

Proof. If T ∈ Sp(G)H , TH ∈ Sp(G)H . Since T ≤ TH ≥ H , the constant
map cH : Sp(G)H → Sp(G)H is homotopic to the identity. �	

Note that if X is a finite T0-G-space, the subdivision X ′ is also a G-space
with the action given by g · {x0, x1, . . . , xn} = {gx0, gx1, . . . , gxn}.

Let P be a Sylow p-subgroup of G. The action of P on Sp(G) by con-
jugation induces an action of P on Sp(G)′. Given c ∈ Sp(G)′, let Pc =
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{g ∈ P | gc = c} denote the isotropy group (or stabilizer) of c. Define
Y = {c ∈ Sp(G)′ | Pc �= 0}.
Lemma 8.2.9. χ(Sp(G)′, Y ) ≡ 0 mod(#P ).

Proof. Let C = {c0 < c1 < . . . < cn} ∈ Sp(G)′′ be a chain of Sp(G)′ which is
not a chain of Y . Then there exists 0 ≤ i ≤ n such that ci /∈ Y . Therefore, if
g and h are two different elements of P , gci �= hci. In other words, the orbit
of ci under the action of P has #P elements. Thus, the orbit of C also has
#P elements. In particular, #P divides χ(Sp(G)′, Y ) =

∑

i≥0

(−1)iαi, where

αi is the number of chains of (i+ 1)-elements of Sp(G)′ which are not chains
of Y . �	
Lemma 8.2.10. Y is homotopically trivial.

Proof. Let f : Y → Sp(P )op defined by f(c) = Pc, the isotropy group of c. By
definition of Y , Pc is a nontrivial subgroup of P and then f is a well defined
function. If c0 ≤ c1, Pc0 ⊇ Pc1 . Thus, f is continuous. If 0 �= H ⊆ P ,
f−1(UH) = {c ∈ Y | H ⊆ Pc} = (Sp(G)H)′, which is contractible by
Proposition 8.2.8. From Theorem 1.4.2 we deduce that f is a weak homotopy
equivalence. Since Sp(P )op has minimum, Y is homotopically trivial. �	

In [70], Quillen proves that Y is homotopically trivial finding a third space
Z which is weak homotopy equivalent to Y and Sp(P ). Our proof is somewhat
more direct.

Theorem 8.2.11 (Brown). χ(Sp(G)) ≡ 1 mod(#P ).

Proof. Since χ(Y ) = 1 by Lemma 8.2.10, χ(Sp(G)) = χ(Sp(G)′) = χ(Y ) +
χ(Sp(G)′, Y ) ≡ 1 mod(#P ). �	

8.3 Equivariant Simple Homotopy Types

To prove Quillen’s conjecture, one would need to show that if Sp(G) is
homotopically trivial, then the action of G by conjugation has a fixed point.
However there exist homotopically trivial finite T0-G-spaces without fixed
points. To construct such an example it is enough to take a contractible
finite simplicial complex with a fixed point free action [64] and consider the
associated finite space.

The proof of Proposition 8.1.3 and the previous results suggest that the
hypothesis of contractibility can be replaced by a weaker notion. Combining
these ideas with the simple homotopy theory of finite spaces, we introduce
the notion of G-collapse of finite spaces and of simplicial complexes. These
two concepts are strongly related, similarly to the non-equivariant case.
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Equivariant simple homotopy types of finite spaces allow us to attack
the conjecture of Quillen and to deepen our understanding of equivariant
homotopy theory of finite spaces originally studied by Stong. In this section
we will only develop the simple and strong equivariant homotopy theory for
finite spaces and complexes. Applications to the poset of p-subgroups appear
in the next section.

As in the previous section, G will denote a finite group.
Recall that there is a strong collapse from a finite T0-spaceX to a subspace

Y if the second one is obtained from the first by removing beat points. By our
results on minimal pairs (Sect. 2.2), this is equivalent to saying that Y ⊆ X
is a strong deformation retract. We denote this situation by X ↘↘ Y .

If x is a beat point of a finite T0-G-spaceX , gx ∈ X is a beat point for every
g ∈ G. In this case we say that there is an elementary strong G-collapse from
X to X �Gx. Note that elementary strong G-collapses are strong collapses.
A sequence of elementary strong G-collapses is called a strong G-collapse and
it is denoted by X ↘↘G Y . Strong G-expansions are dually defined.

Proposition 8.3.1. Let X be a finite T0-G-space and Y ⊆ X a G-invariant
subspace. The following are equivalent:

i. X ↘↘G Y .
ii. Y ⊆ X is an equivariant strong deformation retract.
iii. Y ⊆ X is a strong deformation retract.

Proof. If there is an elementary strong G-collapse from X to Y , then by the
proof of Lemma 8.1.2, Y is an equivariant strong deformation retract of X .

If Y ⊆ X is a strong deformation retract and x ∈ X � Y is a beat point
of X , X ↘↘G X � Gx = X1. In particular X1 ⊆ X is a strong deformation
retract, and then, so is Y ⊆ X1. By induction, X1 ↘↘G Y and then X ↘↘G Y .

�	
Let X be a finite T0-G-space. A core of X which is G-invariant is called

a G-core. From Stong’s results (Lemma 8.1.2), it follows that every finite
T0-G-space has a G-core.

Definition 8.3.2. Let X be a finite T0-G-space. If x ∈ X is a weak point,
gx ∈ X is also a weak point for every g ∈ G and we say that there is an
elementary G-collapse from X to X�Gx. This is denoted by X ↘Ge X�Gx.
Note that the resulting subspace X � Gx is G-invariant. A sequence of
elementary G-collapses is called a G-collapse and it is denoted X ↘G Y .
G-expansions are defined dually. X is G-collapsible if it G-collapses to a
point.

Note that strong G-collapses are G-collapses and that G-collapses are
collapses. If the action is trivial, G-collapses and collapses coincide.

A finite T0-G-space is strong collapsible if and only if it is G-strong
collapsible. However, this is not true for collapsibility and G-collapsibility
as the next example shows.
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Example 8.3.3. Let X be the following finite space (cf. Fig. 7.3 in page 97)
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Consider the action of the two-element group Z2 over X that permutes 0 and
1 and fixes every other element. The unique weak points of X are 0 and 1.
X�{0} is collapsible but X�{0, 1} is not. Therefore X is a collapsible finite
space which is not G-collapsible.

The notion of G-collapse can be studied also in the setting of simplicial
complexes. Suppose K is a finite G-simplicial complex and σ ∈ K is a free
face of σ′ ∈ K. Then for every g ∈ G, gσ is a free face of gσ′, however it is
not necessarily true that K collapses to K �

⋃

g∈G
{gσ, gσ′}.

Example 8.3.4. Let σ′ be a 2-simplex and σ � σ′ a 1-face of σ. Consider
the action of Z3 by rotation over K = σ′. Then σ is a free face of σ′, but
σ′ does not collapse to σ′

�

⋃

g∈Z3

{gσ, gσ′} which is the discrete complex with

3 vertices.

If σ is a free face of σ′ in the G-complex K, and g ∈ G is such that gσ = σ,
then σ � gσ′ and therefore gσ′ = σ′. In other words, the isotropy group Gσ
of σ is contained in the isotropy group Gσ′ of σ′. The other inclusion does
not hold in general as the previous example shows.

Definition 8.3.5. Let K be a finite G-simplicial complex and let σ ∈ K be
a free face of σ′ ∈ K (σ � σ′ is a collapsible pair). Consider the G-invariant
subcomplex L = K �

⋃

g∈G
{gσ, gσ′}. We say that there is an elementary

G-collapse K ↘Ge L from K to L, or that σ � σ′ is a G-collapsible pair ,
if Gσ = Gσ′ . A sequence of elementary G-collapses is called a G-collapse and
denoted by K ↘G L. A G-complex K is G-collapsible if it G-collapses to a
vertex.
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Proposition 8.3.6. Let K be a finite G-simplicial complex and let σ � σ′

be a collapsible pair. The following are equivalent:

1. σ � σ′ is a G-collapsible pair.
2. K ↘ L = K �

⋃

g∈G
{gσ, gσ′}.

Proof. Suppose σ is an n-simplex and that K ↘ L. Then the set
⋃

g∈G
{gσ, gσ′}

contains as many n-simplices as (n+1)-simplices, i.e. the sets G·σ = {gσ}g∈G
and G · σ′ = {gσ′}g∈G have the same cardinality. Therefore

#Gσ = #G/#G · σ = #G/#G · σ′ = #Gσ′ .

Since Gσ ⊆ Gσ′ , the equality holds.
Conversely, suppose σ � σ′ is a G-collapsible pair. Then the pairs gσ � gσ′

can be collapsed one by one. �	
Therefore, G-collapses are collapses. The following is an extension of the

classical result of Whitehead, Proposition 4.1.3, which says that ifK1,K2⊆K
are finite simplicial complexes, then K1 ∪ K2 ↘ K1 if and only if K2 ↘
K1 ∩K2 (with the same sequence of collapses). The proof is straightforward.

Remark 8.3.7. Let K be a finite G-simplicial complex and let K1,K2 ⊆ K
be two G-invariant subcomplexes such that K1 ∪K2 = K. Then, K ↘G K1

if and only if K2 ↘G K1 ∩K2.

Remark 8.3.8. Let X be a finite T0-G-space. If X is G-collapsible, it collapses
to a G-invariant one-point subspace. In particular, the fixed point set XG is
nonempty.

Now we will study the relationship between G-collapses of finite spaces
and simplicial G-collapses.

If X is a finite T0-G-space, there is a natural induced action on K(X). If
we consider G both as a discrete topological group and a discrete simplicial
complex, there is a natural isomorphism K(G×X) = G×K(X) and an action
θ : G × X → X induces an action K(θ) : G × K(X) = K(G × X) → K(X)
Analogously, an action θ : G × K → K over a finite simplicial complex K
induces an action X (θ) : G×X (K) = X (G×K)→ X (K).

Unless we say the opposite, if X is a finite T0-G-space and K a finite
G-simplicial complex, we will assume the actions over K(X) and X (K) are
the induced ones.

The main aim of this section is to prove the equivariant version of Theorem
4.2.11. The proof will be similar to the proof of the non-equivariant case.

Lemma 8.3.9. Let aK be a finite simplicial cone and suppose G acts on
aK fixing the vertex a. Then aK ↘G a.
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Proof. Let σ be a maximal simplex of K. Then σ � aσ is a G-collapsible pair
since g · aσ = aσ implies gσ = σ. Therefore aK ↘G aK �

⋃

g∈G
{gσ, g · aσ} =

a(K �

⋃

g∈G
{gσ}). The lemma follows from an inductive argument. �	

Lemma 8.3.10. Let X be a finite T0-G-space and let x ∈ X. The stabilizer
Gx of x acts on Ĉx and then on K(Ĉx). If K(Ĉx) is Gx-collapsible,
K(X) ↘G K(X �Gx).

Proof. If σ � σ′ is a Gx-collapsible pair in K(Ĉx), xσ � xσ′ is Gx-collapsible
in xK(Ĉx). In this way, copying the elementary Gx-collapses of K(Ĉx) ↘Gx ∗,
one obtains that K(Cx) = xK(Ĉx) ↘Gx K(Ĉx)∪ {x, x∗} ↘Gx K(Ĉx). Now we
will show that since K(Cx) ↘Gx K(Ĉx),

⋃

g∈G
gK(Cx) ↘G

⋃

g∈G
gK(Ĉx). (8.1)

Suppose K(Cx) = K0 ↘Gxe K1 ↘Gxe K2 ↘Gxe . . . ↘Gxe Kr = K(Ĉx).
Notice that all the simplices removed in these collapses contain the vertex
x. If σ � σ′ is the Gx-collapsible pair collapsed in Ki ↘Gxe Ki+1 (along
with the other simplices in the orbits of σ and σ′), we claim that σ � σ′ is
G-collapsible in

⋃

g∈G
gKi. Suppose σ � gσ̃ with g ∈ G, σ̃ ∈ Ki. Since

x ∈ σ � gσ̃, g−1x ∈ σ̃ and then x and g−1x are comparable. By Lemma
8.1.1 x = g−1x and therefore g ∈ Gx. Since Ki is Gx-invariant and σ is a free
face of σ′ in Ki, gσ̃ = σ′. Therefore, σ � σ′ is a collapsible pair in

⋃

g∈G
gKi.

Let g ∈ G be such that gσ′ = σ′. By the same argument as above, x,
gx ∈ σ′ and then g ∈ Gx. Since σ � σ′ is Gx-collapsible in Ki, gσ = σ, which
proves that it is also G-collapsible in

⋃

g∈G
gKi. Thus,

⋃

g∈G
gKi ↘Ge

⋃

g∈G
gKi �

⋃

g∈G
{gσ, gσ′} =

⋃

g∈G
(gKi �

⋃

h∈G
{ghσ, ghσ′})

=
⋃

g∈G
g(Ki �

⋃

h∈G
{hσ, hσ′}).

But hσ and hσ′ are simplices of Ki if and only if h ∈ Gx, then

⋃

g∈G
g(Ki �

⋃

h∈G
{hσ, hσ′}) =

⋃

g∈G
g(Ki �

⋃

h∈Gx

{hσ, hσ′}) =
⋃

g∈G
gKi+1.

So (8.1) is proved, i.e.
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⋃

g∈G
gK(Cx) ↘G

⋃

g∈G
gK(Ĉx) = (

⋃

g∈G
gK(Cx)) ∩ K(X �Gx).

By Remark 8.3.7,

K(X) = (
⋃

g∈G
gK(Cx)) ∪K(X �Gx) ↘G K(X �Gx).

�	
Theorem 8.3.11.

(a) Let X be a finite T0-G-space and Y ⊆ X a G-invariant subspace. If
X ↘G Y , K(X) ↘G K(Y ).

(b) Let K be a finite G-simplicial complex and L ⊆ K a G-invariant
subcomplex. If K ↘G L, X (K) ↘G X (K).

Proof. Suppose first that x ∈ X is a beat point. Then there exists y ∈ X ,
y �= x such that Cx ⊆ Cy. Therefore Gx ⊆ Gy by Lemma 8.1.1 and K(Ĉx) =
yK(Ĉx�{y}). The stabilizer Gx of x acts on Ĉx, and therefore on K(Ĉx), and
fixes y. By Lemma 8.3.9, K(Ĉx) ↘Gx y. By Lemma 8.3.10, K(X) ↘G K(X �

Gx). In particular if X is contractible, this says that K(X) is G-collapsible.
Suppose now that x ∈ X is a weak point. Then Cx is contractible

and K(Cx) is Gx-collapsible. Again from Lemma 8.3.10, we obtain that
K(X) ↘G K(X�Gx). This proves the first part of the theorem for elementary
G-collapses. The general case follows immediately from this one.

To prove the second part of the theorem we can suppose thatK elementary
G-collapses to L. Let σ � σ′ be a G-collapsible pair in K such that
L = K � {gσ, gσ′}g∈G. Then, σ ∈ X (K) is an up beat point and therefore
X (K) ↘Ge X (K) � {gσ}g∈G. Now, σ′ ∈ X (K) � {gS}g∈G is a down weak
point since σ′

� {σ, σ′} is a simplicial cone and then Û
X (K)�{gσ}g∈G

σ′ =
Û

X (K)�{σ}
σ′ = X (σ′

� {σ, σ′}) is contractible by Lemma 4.2.6. Therefore,
X (K) � {gσ}g∈G ↘Ge X (K) � {gσ, gσ′}g∈G = X (L) and X (K) ↘G X (L).

�	
The equivalence classes of the equivalence relations �↘G generated by

the G-collapses are called equivariant simple homotopy types in the setting of
finite spaces and of simplicial complexes. An easy modification of Proposition
4.2.9 shows that if X is a finite T0-G-space, X and X ′ are equivariantly
simple homotopy equivalent (see Proposition 8.3.21). Therefore, we have the
following Corollary of Theorem 8.3.11.

Corollary 8.3.12. Let X and Y be finite T0-G-spaces. Then X and Y have
the same equivariant simple homotopy type if and only if K(X) and K(Y )
have the same equivariant simple homotopy type.

However, the analogous result for the functor X is not true (see Example
8.3.20).
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Remark 8.3.13. Let X be a finite G-space. Then y ≤ x in the quotient space
X/G if and only if there exists g ∈ G such that y ≤ gx. In particular if X is
T0, so is X/G.

The quotient map q : X → X/G is open, moreover q−1(q(Ux)) =⋃

g∈G
gUx =

⋃

g∈G
Ugx. Since q(Ux) � x is an open set, Ux ⊆ q(Ux). The other

inclusion follows from the continuity of q. Therefore Ux = q(Ux). Now, y ≤ x
if and only if y ∈ q−1(Ux) =

⋃

g∈G
Ugx if and only if there exists g ∈ G with

y ≤ gx.
Suppose X is T0, y ≤ x and x ≤ y. Then there exist g, h ∈ G such that

y ≤ gx and x ≤ hy. Hence, y ≤ gx ≤ ghy. By Lemma 8.1.1, y = gx = ghy
and then y = x.

Proposition 8.3.14. Let X be a finite T0-G-space which strongly G-
collapses to an invariant subspace Y . Then X/G strongly collapses to Y/G
and XG strongly collapses to Y G. In particular, if X is contractible, so are
X/G and XG.

Proof. We can assume there is an elementary strong G-collapse from X to
Y = X � Gx where x ∈ X is a beat point. Suppose x ∈ X is a down beat
point and let y ≺ x. Then y < x in X/G and if z < x there exists g such that
gz < x. Therefore gz ≤ y and z ≤ y. This proves that x ∈ X/G is a down
beat point and X/G strongly collapses to X/G� {x} = Y/G.

If x is not fixed by G, Y G = XG. If x ∈ XG, and g ∈ G, then gy < gx = x
and therefore gy ≤ y. Thus, gy = y. This proves that y is also fixed by G
and then x is a down beat point of XG. In particular, XG ↘↘ Y G.

If in addition X is contractible, X strongly G-collapses to a G-core which
is a point and then X/G and XG are contractible. �	

In fact, the first part of the previous result holds for general spaces. If X
is a G-topological space and Y ⊆ X is an equivariant strong deformation
retract, Y/G is a strong deformation retract of X/G and so is Y G ⊆ XG.
However if X is a G-topological space which is contractible, XG need not
be contractible. Oliver [64] proved that there are groups which act on disks
without fixed points.

Proposition 8.3.15. Let X be a finite T0-G-space which G-collapses to Y .
Then XG collapses to Y G. In particular, if X is G-collapsible, XG is
collapsible.

Proof. Suppose X ↘Ge Y = X � Gx. If x /∈ XG, Y G = XG. If x ∈ XG,
ĈXx is G-invariant and contractible. By Proposition 8.3.14, ĈX

G

x = (ĈXx )G is
contractible and then x is a weak point of XG, which means that XG ↘ Y G.

�	
The analogue for quotients is not true. There exist finite T0-G-spaces such

that X ↘G Y but X/G does not collapse to Y/G, as the next example shows.
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Example 8.3.16. Let X be the following Z2-space
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where Z2 acts by symmetry, 1 · i = i′ for every 0 ≤ i ≤ 4. Since 0 ∈ X is
a weak point, X Z2-collapses to Y = X � {0, 0′}. However X/Z2 does not
collapse to Y/Z2. Moreover, X/Z2 is contractible while Y/Z2 is the minimal
finite model of the circle.

From Proposition 8.3.15 one easily deduces the next

Corollary 8.3.17. Let X and Y be equivariantly simple homotopy equiva-
lent finite T0-G-spaces. Then XG and Y G have the same simple homotopy
type.

There is an analogous result of Proposition 8.3.15 for complexes. If K is a
G-simplicial complex, KG denotes the full subcomplex of K spanned by the
vertices fixed by the action.

Proposition 8.3.18. Let K be a finite G-simplicial complex which G-
collapses to a subcomplex L. Then KG collapses to LG. In particular, if K
is G-collapsible, KG is collapsible.

Proof. Suppose that K ↘Ge L = K �

⋃

g∈G
{gσ, gσ′}, where σ � σ′ is a G-

collapsible pair. If σ /∈ KG, LG = KG. If σ ∈ KG, then σ′ ∈ KG, because
σ is a free face of σ′. Then L = K � {σ, σ′} and LG = KG

� {σ, σ′}. Since
σ � σ′ is a collapsible pair in KG, KG ↘ LG. �	
Corollary 8.3.19. If K and L are two finite G-simplicial complexes with the
same equivariant simple homotopy type, KG and LG have the same simple
homotopy type. In particular K has a vertex which is fixed by the action of
G if and only if L has a vertex fixed by G.

Example 8.3.20. Let K be a 1-simplex with the unique nontrivial action
of Z2. The barycentric subdivision K ′ has a vertex fixed by Z2 but KZ2 = ∅
therefore K and K ′ do not have the same equivariant simple homotopy type.
On the other hand, X (K) and X (K ′) are contractible, and therefore they
have the same equivariant simple homotopy type.
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Recall that a map f : X → Y between finite spaces is called distinguished
if f−1(Uy) is contractible for every y ∈ Y . The following result will be used in
the next section to compare the equivariant simple homotopy type of Ap(G)
and Sp(G).

Proposition 8.3.21. Let f : X → Y be a G-map between finite T0-G-spaces
which is distinguished. Then X and Y have the same equivariant simple
homotopy type.

Proof. The non-Hausdorff mapping cylinder B(f) is a G-space with the
action induced by X and Y since if x < y, then f(x) ≤ y and therefore
f(gx) = gf(x) ≤ gy for every g ∈ G. Moreover, Y is a G-invariant strong
deformation retract of B(f) and then B(f) ↘↘G Y . On the other hand,
B(f) ↘G X . This follows from the proof of Lemma 4.2.7. Notice that we
can remove orbits of minimal points of Y in B(f) and collapse all B(f)
into X . �	

8.4 Applications to Quillen’s Work

Corollary 8.4.1. Ap(G) and Sp(G) have the same equivariant simple homo-
topy type.

Proof. The proof of Proposition 8.2.6 shows that the inclusion Ap(G) ↪→
Sp(G) is a distinguished map. The result then follows by Proposition 8.3.21.

�	
Corollary 8.4.2. If G has a nontrivial normal p-subgroup then it has a
nontrivial normal elementary abelian p-subgroup.

Proof. There is a simple algebraic proof of this fact, but we show a shorter
one, using the last result. Since Sp(G)�↘G Ap(G), by, Corollary 8.3.17,
Sp(G)G�↘Ap(G)G. Therefore, if Sp(G)G �= ∅, Ap(G)G is also nonempty. �	

We are now ready to state the result that allows us to study Quillen’s
conjecture from many different angles.

Theorem 8.4.3. Let G be a finite group and p a prime integer. The follow-
ing are equivalent

1. G has a nontrivial normal p-subgroup.
2. Sp(G) is a contractible finite space.
3. Sp(G) is G-collapsible.
4. Sp(G) has the equivariant simple homotopy type of a point.
5. K(Sp(G)) is G-collapsible.
6. K(Sp(G)) has the equivariant simple homotopy type of a point.
7. K(Sp(G)) is strong collapsible.
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8. Ap(G) has the equivariant simple homotopy type of a point.
9. K(Ap(G)) has the equivariant simple homotopy type of a point.

Proof. If G has a nontrivial normal p-subgroup, Sp(G) is contractible by
Theorem 8.2.2. If Sp(G) is contractible, its G-core is just a point, and
since there is a strong G-collapse from a finite T0-G-space to its G-core,
in particular Sp(G) is G-collapsible. If Sp(G) is G-collapsible, K(Sp(G)) is
G-collapsible by Theorem 8.3.11 and this implies trivially that K(Sp(G)) has
the equivariant simple homotopy type of a point. This, in turn, implies that
Sp(G) has the equivariant simple homotopy type of a point by Corollary
8.3.12. If Sp(G) has trivial equivariant simple homotopy type, so does Ap(G)
by Corollary 8.4.1, and then so does K(Ap(G)) by Theorem 8.3.11. Now, if
K(Ap(G)) has the same equivariant simple homotopy type as a point, then
by Corollary 8.3.19 has a vertex which is fixed by the action of G. This vertex
corresponds to a nontrivial normal p-subgroup of G. On the other hand, the
equivalence between the contractibility of Sp(G) and the strong collapsibility
of K(Sp(G)) follows from the main results of Sect. 5.2. �	

On the other hand, recall that the following statements are equivalent:
Sp(G) is homotopically trivial, Ap(G) is homotopically trivial, |K(Sp(G))|
is contractible, |K(Ap(G))| is contractible. So, as a consequence of these
equivalences and those given in Theorem 8.4.3, we obtain many different
formulations of Quillen’s conjecture. The theory exposed in this chapter
provides a starting point to attack the conjecture from different angles.

In the following result we will mention one last subspace of Sp(G) that is
also weak homotopy equivalent to Sp(G) and Ap(G). In fact it is homotopy
equivalent to Sp(G).

Proposition 8.4.4 (Stong). Let G be a finite group and let p be a prime
integer. Let A be the set of nontrivial intersections of Sylow p-subgroups of
G. Then A is G-invariant and it is an equivariant strong deformation retract
of Sp(G).

Proof. It is clear that A is G-invariant. Define the retraction r : Sp(G) →
A, that assigns to each subgroup H ⊆ G, the intersection of all the Sylow
p-subgroups containing H . Then r is a continuous map, and ir ≥ 1Sp(G). By
Proposition 8.3.1, A is an equivariant strong deformation retract of Sp(G).

�	
This proof motivates two new constructions that we will introduce in the

next chapter, which are used to find the core of some finite spaces called
reduced lattices. In Sect. 9.2 we will exhibit one last restatement of Quillen’s
conjecture closely related to the so called Evasiveness conjecture.



Chapter 9

Reduced Lattices

Recall that a poset P is said to be a lattice if every two-point set {a, b}
has a least upper bound a ∨ b, called join or supremum of a and b, and a
greatest lower bound a ∧ b, called meet or infimum. Any finite lattice has
a maximum (and a minimum), and in particular it is a contractible finite
space. In this chapter we will study the spaces obtained from a lattice by
removing its maximum and its minimum, which are more attractive from
a topological point of view. These spaces, here called reduced lattices, have
been considered before, for instance in [15], where it was proved that if X is
a noncomplemented lattice with maximum 1 and minimum 0, then |K(X �

{0, 1})| is contractible. We will also introduce the simplicial complex L(X)
associated to any finite space X . We will show that L(X) has the same weak
homotopy type as X when this is a reduced lattice. Connections with strong
homotopy types will also be analyzed.

9.1 The Homotopy of Reduced Lattices

Definition 9.1.1. A finite poset X is called a reduced lattice if X̂ = D0 �
X �D0 is a lattice.

For example, if G is a finite group and p is a prime integer, Sp(G) is
a reduced lattice. The finite space S(G) defined in Example 8.1.4 is also a
reduced lattice. In contrast, the minimal finite models of the spheres are not.

A subset A of a poset P is lower bounded if there exists x ∈ P such that
x ≤ a for every a ∈ A. In that case x is called a lower bound of A. If the set
of lower bounds has a maximum x, we say that x is the infimum of A. The
notions of upper bound and supremum are dually defined.

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and
Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6 9, © Springer-Verlag Berlin Heidelberg 2011
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Proposition 9.1.2. Let P be a finite poset. The following are equivalent:

1. P is a reduced lattice.
2. Every lower bounded set of P has an infimum and every upper bounded

set has a supremum.
3. Every lower bounded set {x, y} has infimum.
4. Every upper bounded set {x, y} has supremum.

Proof. Straightforward. ��
For instance, the finite space associated to a finite simplicial complex is

a reduced lattice. If K is a finite simplicial complex, and {σ, σ′} is lower
bounded in X (K), the simplex σ ∩ σ′ is the infimum of {σ, σ′}. Moreover, it
can be proved that given a finite T0-space X , there exists a finite simplicial
complex K such that X (K) = X if and only if X is a reduced lattice and
every element of X is the supremum of a unique set of minimal elements.

Proposition 9.1.3. If X is a reduced lattice and Y ⊆ X is a strong
deformation retract, Y is also a reduced lattice. In particular, if X is a reduced
lattice, so is its core.

Proof. It suffices to consider the case that Y = X � {x}, where x ∈ X is a
down beat point. Let y ≺ x and let A = {a, b} be an upper bounded subset
of Y . Then A has a supremum z in X . If x is an upper bound of A in X ,
a < x and b < x and then a ≤ y, b ≤ y. Therefore z �= x and then z is the
supremum of A in Y . By Proposition 9.1.2, Y is a reduced lattice. ��

However, the fact of being a reduced lattice is not a homotopy type
invariant. It is easy to find contractible spaces which are not reduced lattices.
Reduced lattices do not describe all homotopy types of finite spaces. For
example, since S(S0) is minimal and it is not a reduced lattice, no reduced
lattice is homotopy equivalent to S(S0). On the other hand every finite space
X has the weak homotopy type of a reduced lattice, e.g. X ′.

The following definition is motivated by Proposition 8.4.4.

Definition 9.1.4. Let X be a reduced lattice. Define the subspace i(X) ⊆
X by i(X)= {inf(A) |A is a lower bounded subset of maximal elements of X}.
Analogously, define s(X) = {sup(A) | A is an upper bounded subset of
minimal elements of X}. Here, inf(A) denotes the infimum of A and sup(A)
its supremum.

Following Stong’s proof of Proposition 8.4.4, one can prove that the
retraction r : X → i(X), which sends x to the infimum of the maximal
elements of X that are greater than x, is continuous, and that i(X) is a
strong deformation retract of X . Similarly, s(X) ⊆ X is a strong deformation
retract.
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Example 9.1.5. Let n ≥ 2 and let Pn be the poset of proper positive
divisors of n with the order given by: a ≤ b if a divides b. If n is square
free, Pn is homeomorphic to X (σ̇) where σ is a (k − 1)-simplex, k being
the number of primes dividing n. In fact, if p1, p2, . . . , pk are the prime
divisors of n, and σ = {p1, p2, . . . , pk} is a simplex, the map f : Pn → X (σ̇)
defined by f(d) = {pi | pi divides d}, is a homeomorphism. In particular,
|K(Pn)| = |(σ̇)′| is homeomorphic to the (k − 2)-dimensional sphere.

If n is not square free, we show that Pn is contractible. Note that Pn is
a reduced lattice with the infimum given by the greatest common divisor.
Since n is not square free, the product of the prime divisors of n is a proper
divisor of n and it is the maximum of s(Pn). Thus, s(Pn) is contractible and
then, so is Pn.

Proposition 9.1.6. Let X be a reduced lattice. The following are equiva-
lent

1. X is a minimal finite space.
2. i(X) = s(X) = X.

Proof. If X is minimal, the unique strong deformation retract of X is X
itself. Therefore i(X) = s(X) = X . Conversely, suppose this equality holds
and that x ∈ X is a down beat point with y ≺ x. Since x ∈ X = s(X), x is
the supremum of a set M of minimal elements of X . Since x is not minimal,
every element of M is strictly smaller than x, and therefore y is an upper
bound of M . This contradicts the fact that x = sup(M). Then X does not
have down beat points and analogously it does not have up beat points, so
it is minimal. ��

If X is a reduced lattice, i(X) is a strong deformation retract of X , which
is a reduced lattice by Proposition 9.1.3. Analogously s(i(X)) is a strong
deformation retract of X and it is a reduced lattice. The sequence

X ⊇ i(X) ⊇ si(X) ⊇ isi(X) ⊇ . . .

is well defined and it stabilizes in a space Y which is a strong deformation
retract of X and a minimal finite space by Proposition 9.1.6. Therefore, in
order to obtain the core of a reduced lattice, one can carry out alternatively
the constructions i and s, starting from any of them.

Example 9.1.7. Let K be the simplicial complex which consists of two 2-
simplices with a common 1-face. Since K is strong collapsible, so is X (K).
Another way to see this is the following: X (K) is a reduced lattice with
two maximal elements, i(X (K)) has just three points, and si(X (K)) is the
singleton.
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Although there are many reduced lattices which are minimal finite spaces,
a reduced lattice X is a minimal finite model if and only if it is discrete. If X
is not discrete, there is a point x ∈ X which is not minimal and we can apply
Osaki’s open reduction (Theorem 6.1.1) to obtain a smaller model X/Ux.

Given a finite T0-space X , we will denote by Max(X) the set of maximal
elements of X .

Proposition 9.1.8. If X and Y are two finite T0-spaces and f : X → Y is
a continuous map, there exists g : X → Y , g ≥ f , such that g(Max(X)) ⊆
Max(Y ).

Proof. Let g ≥ f be a maximal element in Y X . Suppose there exists x ∈
Max(X) such that g(x) /∈ Max(Y ). Then, there exists y > g(x), and the
map g̃ : X → Y which coincides with g in X � {x} and such that g̃(x) = y
is continuous and g̃ > g, which is a contradiction. Therefore g(Max(X)) ⊆
Max(Y ). ��
Remark 9.1.9. Let X be a finite T0-space and Y a reduced lattice. If
f, g : X → Y are two maps which coincide in Max(X), then f � g. Define
h : X→Y by h(x) =inf({f(x′) | x′ ∈ Max(X) and x′ ≥ x}). Clearly h is
continuous and h ≥ f . Analogously h ≥ g and then f � g.

We deduce then from Proposition 9.1.8 that if X is a finite T0-space and
Y is a reduced lattice, #[X,Y ] ≤ (#Max(Y ))#Max(X), where [X,Y ] denotes
the set of homotopy classes of maps X → Y .

9.2 The L Complex

Let X be a finite T0-space. The simplicial complex L(X) is defined as follows.
Its vertices are the maximal elements of X and its simplices are the subsets
of Max(X) which are lower bounded. In other words, L(X) is the nerve of
the cover U0 of X given by the minimal open sets of the maximal elements.
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In general, X is not a finite model of L(X). If X = SS0 is the minimal
finite model of S1, L(X) is a 1-dimensional simplex. However, if X is a re-
duced lattice, then each intersection of minimal open sets has a maximum or
it is empty. In particular, intersections of elements of U0 are empty or ho-
motopically trivial. By Theorem 5.3.1, |L(X)| and X are weak homotopy
equivalent. An alternative proof of the fact that |L(X)| and |K(X)| are homo-
topy equivalent is to apply the so called Crosscut Theorem [16, Theorem 10.8].

Notice that if K is a finite simplicial complex, L(X (K)) is exactly the
nerve N (K) of K. On the other hand L(X (K)op) = K.

Two reduced lattices X and Y have the same weak homotopy type if
and only if L(X) and L(Y ) are homotopy equivalent. The following results
study the relationship between homotopy types of finite spaces and strong
homotopy types of the L complexes.

In Proposition 9.1.8, we observed that given any map f : X → Y between
finite T0-spaces, there exists g ≥ f such that g(Max(X)) ⊆ Max(Y ). A map
f : X → Y satisfying f(Max(X)) ⊆ Max(Y ) will be called good . Note that
a good map f : X → Y between finite T0-spaces induces a simplicial map
L(f) : L(X) → L(Y ) given by L(f)(x) = f(x) since f maps a lower bound
of A ⊆ X to a lower bound of f(A) ⊆ Y .

Theorem 9.2.1. If X and Y are homotopy equivalent finite T0-spaces, L(X)
and L(Y ) have the same strong homotopy type.

Proof. We can assume that there is a homotopy equivalence f : X → Y which
is a good map. Let g : Y → X be a homotopy inverse of f and which is also
good. We will prove that the composition L(g)L(f) : L(X)→ L(Y ) lies in the
same contiguity class as the identity 1L(X). Symmetrically, L(f)L(g) ∼ 1L(Y )

and then L(f) is a strong equivalence. Thus, by Corollary 5.1.11, L(X) and
L(Y ) are strong homotopy equivalent.

Since gf � 1X , there exists a fence gf = h0 ≥ h1 ≤ h2 ≥ h3 ≤ . . . ≥
h2k−1 ≤ h2k = 1X . Moreover, by Proposition 9.1.8 we can assume that h2i is
good for every 0 ≤ i ≤ k. It suffices to show then that L(h2i) and L(h2i+2)
are contiguous for each 0 ≤ i < k. Let σ be a simplex of L(X). Then, there
exists a lower bound x ∈ X for all the points of σ. Then h2i+1(x) ≤ h2i(x) is
a lower bound of h2i(σ). Analogously, h2i+1(x) is a lower bound of h2i+2(σ).
Since h2i(σ)∪h2i+2(σ) has a lower bound, it is a simplex of L(X). This proves
that L(h2i) and L(h2i+2) are contiguous. ��
Corollary 9.2.2. Let K and L be two finite simplicial complexes. If X (K) �
X (L), then K and L have the same strong homotopy type.

Proof. If X (K) � X (L), X (K)op � X (L)op by Corollary 1.2.7, and by
Theorem 9.2.1 K = L(X (K)op) and L = L(X (L)op) have the same strong
homotopy type. ��
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In Corollary 5.2.7 it was proved that the contractibility of X ′ implies the
contractibility of X . That proof uses Theorem 5.2.6. We give an alternative
proof here using the last corollary. Suppose that X ′ is contractible. Let Y
be a the core of X . Since Y ′ is also contractible, X (K(Y )) = Y ′ � X (∗). By
Corollary 9.2.2, K(Y ) is strong collapsible. However, by Proposition 5.2.5,
K(Y ) is a minimal complex and therefore Y = ∗. Hence, X is contractible.

The converse of Theorem 9.2.1 is true when X and Y are reduced lattices.
First we prove the following

Lemma 9.2.3. Let X be a reduced lattice. Then X (L(X)) � Xop.

Proof. Define f : X (L(X)) → Xop by f(σ) = inf(σ), where inf(σ) is the
infimum of σ in X . Let g : Xop → X (L(X)) be defined by g(x) = {y ∈
Max(X) | y ≥X x}. Clearly f and g are order preserving. Moreover gf(σ) =
{y ∈ Max(X) | y ≥X inf(σ)} ⊇ σ. Then gf ≥ 1X (L(X)). On the other hand
fg(x) = inf({y ∈ Max(X) | y ≥X x}) ≥X x. Then fg ≤Xop 1Xop . Thus, f is
a homotopy equivalence. ��
Theorem 9.2.4. Let X and Y be two reduced lattices. Then X � Y if and
only if L(X) and L(Y ) have the same strong homotopy type.

Proof. By Theorem 9.2.1 it only remains to prove one implication. Suppose
that L(X) and L(Y ) have the same strong homotopy type. By Theorem
5.2.1, X (L(X)) � X (L(Y )) and by Lemma 9.2.3, Xop � Y op. Then by
Corollary 1.2.7, X and Y have the same homotopy type. ��

The L construction can be used to give a new restatement of Quillen’s
conjecture, different from those mentioned in Chap. 8.

Definition 9.2.5. Let G be a finite group and p a prime integer dividing
the order of G. The complex Lp(G) = L(Sp(G)) is the complex whose
vertices are the Sylow p-subgroups of G and whose simplices are sets of Sylow
p-subgroups with nontrivial intersection.

Since Sp(G) is a reduced lattice, |Lp(G)| is weak homotopy equivalent
to Sp(G). Any normal p-subgroup of G is contained in the intersection of all
the Sylow p-subgroups. Conversely, the intersection of the Sylow p-subgroups
is a normal subgroup of G. Then, G has a nontrivial normal p-subgroup if
and only if the intersection of all the Sylow p-subgroups is nontrivial, or
equivalently if Lp(G) is a simplex. Therefore, Quillen’s conjecture can be
restated as follows:

Restatement of Quillen’s conjecture: if |Lp(G)| is contractible, it is a
simplex.

The complex Lp(G) is what is called a vertex homogeneous simplicial
complex. This means that the automorphism group of Lp(G) acts transitively
on the vertices. In other words, given any two vertices v, w ∈ Lp(G), there
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exists a simplicial automorphism ϕ : Lp(G) → Lp(G) such that ϕ(v) = w.
The reason is that any two Sylow p-subgroups are conjugate and that any
automorphism of Sp(G) induces an automorphism of Lp(G). Therefore, the
conjecture claims that a particular contractible vertex homogeneous complex
must be a simplex. In general this is not true. In [47] examples are shown
of contractible vertex homogeneous complexes which are not simplices. This
problem is related to the so called Evasiveness conjecture [46]. In [11] it is
proved that a vertex homogeneous complex which is strong collapsible must
be a simplex. This is used to reduce the Evasiveness conjecture to the case
of the minimal simplicial complexes.
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Chapter 10

Fixed Points and the Lefschetz Number

In Chap. 8 we studied fixed point sets of group actions. Now we turn our
attention to fixed point sets of continuous maps between finite spaces and
their relationship with the fixed point sets of the associated simplicial maps.
We analyze well-known results on the fixed point theory of finite posets from
the perspective of finite spaces. An extensive treatment of the fixed point
theory for posets appears in Baclawski and Björner’s paper [4]. We use the
poset version of the Lefschetz Theorem to analyze fixed points of simplicial
automorphisms, providing an alternative approach to Oliver’s work [63, 64].

10.1 The Fixed Point Property for Finite Spaces

If X is a topological space and f : X → X is a continuous map, we denote
by Xf = {x ∈ X | f(x) = x} the set of fixed points of f . For a simplicial
map ϕ : K → K, Kϕ denotes the full subcomplex spanned by the vertices
fixed by ϕ.

We say that a topological space X has the fixed point property if any map
f : X → X has a fixed point. For instance, any disk has the fixed point
property by the Brouwer fixed-point Theorem.

The proof of the following result uses the construction f∞(X) studied in
Sect. 3.4 (cf. [26, Proposition 1]).

Proposition 10.1.1. A finite T0-space X has the fixed point property if and
only if all its retracts have the fixed point property with respect to automor-
phisms.

Proof. The first implication holds in general, if X is a topological space with
the fixed point property, every retract ofX also has that property. Conversely,
if f : X → X is a continuous map, then f∞(X) is a retract of X and

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and
Applications, Lecture Notes in Mathematics 2032,
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f |f∞(X) : f∞(X) → f∞(X) is an automorphism. If f |f∞(X) has a fixed
point, so does f . ��

The following is a well-known result:

Proposition 10.1.2. Let X be a finite T0-space, and let f, g : X → X be
two homotopic maps. Then f has a fixed point if and only if g has a fixed
point.

Proof. Without loss of generality, we can assume that g ≤ f . If f(x) = x,
g(x) ≤ f(x) = x. Then gi+1(x) ≤ gi(x) for every i ≥ 0 and then there exists
i such that gi+1(x) = gi(x). Therefore, gi(x) is a fixed point of g. ��

We use last proposition to prove a generalization of the fact that retracts
of finite T0-spaces with the fixed point property also have that property.

Proposition 10.1.3. Let X and Y be finite T0-spaces such that there exist
continuous maps f : X → Y and g : Y → X with fg � 1Y . Then if X has
the fixed point property, so does Y .

Proof. Let h : Y → Y be a continuous map. Then map ghf : X → X fixes
some point x ∈ X . Therefore f(x) ∈ Y is a fixed point of fgh : Y → Y . Since
h � fgh, h has a fixed point by Proposition 10.1.2. ��

Immediately one deduces the following

Corollary 10.1.4. The fixed point property is a homotopy type invariant of
finite T0-spaces.

A different proof of this result appears for example in [71, Proposition 1]
and in [81, Corollary 3.16].

Note the T0 hypothesis in the last three results is necessary. If X is an
indiscrete space of two points, then X is contractible but it does not have the
fixed point property. Both homeomorphisms X → X are homotopic but one
has fixed points while the other does not. The fixed point property is not a
homotopy invariant for non-finite spaces either, not even if we restrict to the
class of compact metric spaces. There are examples of contractible compact
metric spaces without the fixed point property (see [42]).

If X is a contractible finite T0-space, then it has the fixed point property
by Corollary 10.1.4. In [71] Rival observed that the converse is not true.
The example provided is the space X of Example 4.3.3. In [71] no method
is suggested for proving that such a space X has the fixed point property.
However we know thatX is collapsible and in particular homotopically trivial.
We will now recall the Lefschetz fixed point Theorem for compact polyhedra
and the version of this result for posets. Any of these results can be applied
directly to prove that every homotopically trivial finite T0-space has the fixed
point property.

Let M be a finitely generated Z-module, and T (M) its torsion submodule.
An endomorphism ϕ : M → M induces a morphism ϕ : M/T (M) →
M/T (M) between finite-rank free Z-modules. The trace tr(ϕ) of ϕ is the trace
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of ϕ. Namely, if {e1, e2, . . . , er} is a basis of M/T (M) and ϕ(ei) =
∑

jmijej ,

tr(ϕ) =
r∑

i=1

mii. If K is a compact polyhedron, H∗(K) is a finitely generated

graded abelian group, that is Hn(K) is finitely generated for every n ≥ 0 and
is nontrivial only for finitely many n. If f : K → K is a continuous map, the
Lefschetz number of f is defined by

λ(f) =
∑

n≥0

(−1)ntr(fn), (10.1)

where fn : Hn(K)→ Hn(K) are the induced morphisms in homology.
Notice that the Lefschetz number of the identity 1K : K → K coincides

with the Euler characteristic of K.

Theorem 10.1.5 (Lefschetz Theorem). Let K be a compact polyhedron
and let f : K → K be a continuous map. Then, if λ(f) 	= 0, f has a fixed
point.

In particular, if K is contractible, λ(f) = 1 for every map f : K → K and
then f has a fixed point. This generalizes the well-known Brouwer fixed-point
Theorem for disks. A proof of the Lefschetz Theorem can be found in [75,
Theorem 4.7.7].

If X is a finite T0-space, its homology is finitely generated as well and
therefore we can define the Lefschetz number λ(f) of a map f : X → X as
in 10.1. Note that λ(f) = λ(|K(f)|) by Remark 1.4.7.

The version of this theorem for finite spaces is the following. For details
on the proof we refer the reader to [4, Theorem 1.1] (see also [59]).

Theorem 10.1.6 (Baclawski-Björner). Let X be a finite T0-space and
f : X → X a continuous map. Then λ(f) = χ(Xf ). In particular, if λ(f) 	= 0,
Xf 	= ∅.
Corollary 10.1.7. Any homotopically trivial finite T0-space has the fixed
point property.

Moreover, finite T0-spaces with trivial rational homology groups also have
the fixed point property. We proved in Corollary 10.1.4 that the fixed point
property is a homotopy invariant. The following example shows that it is
not a weak homotopy invariant and, at the same time, that the hypothesis
of having trivial rational homology is not needed to have the fixed point
property.

Example 10.1.8 (Baclawski-Björner). The fixed point property is not a
weak homotopy invariant, nor a simple homotopy invariant. In [4, Example
2.4], Baclawski and Björner considered the regular CW-complex K which is
the boundary of a pyramid with square base (see Fig. 10.1).
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0 1

23

a

Fig. 10.1 K

The associated finite space X = X (K) is a finite model of S2. Let f :
X → X be a continuous map. If f is onto, it is an automorphism and then
the vertex of the top of the pyramid is fixed by f since it is the unique point
covered by 4 points. If f is not onto, K(f) : S2 → S2 is not onto and then
K(f) is nullhomotopic. Therefore λ(f) = λ(|K(f)|) = 1 and then Xf 	= ∅.

On the other hand, the minimal finite model of S2
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is simple homotopy equivalent to X and does not have the fixed point
property since the symmetry is fixed point free.

With a similar idea as in this example it is possible to construct finite
models of each sphere Sn, n ≥ 2, having the fixed point property.

Open problem: Which spaces have finite models with the fixed point pro-
perty?

A simple case to start studying this question seems to be the one-
dimensional sphere.

Proposition 10.1.9. Let X be a finite T0-space. If X ′ has the fixed point
property, then so does X.
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Proof. If f : X → X is continuous and X ′ has the fixed point property, f
leaves fixed a nonempty chain of X and hence, all its points. ��
Remark 10.1.10. The converse of Proposition 10.1.9 is not true. Consider
the regular CW-complex K of Example 10.1.8. Denote by 0, 1, 2, 3 ∈ Z4 the
vertices in the base of the pyramid K and by a the fifth vertex, as shown
in Fig. 10.1. A cell e of K will be identified with the set of vertices in e.
Define f : X (K)→ X (K)op as follows: f({a}) = {0, 1, 2, 3}, f({0, 1, 2, 3}) =
{a} and for every n ∈ Z4, f({n}) = {n, n + 1, a}, f({n, a}) = {n, n + 1},
f({n, n+ 1}) = {n+ 1, a}, f({n, n+ 1, a}) = {n+ 1}. It is easy to see that
f is order preserving and that f ′ : X (K)′ → X (K)′ does not have fixed
points. However, as it was shown in Example 10.1.8, X (K) has the fixed
point property.

10.2 On the Lefschetz Theorem for Simplicial
Automorphisms

Proposition 10.2.1. Let ϕ : K → K be a simplicial automorphism. Then
|K||ϕ| = |(K ′)ϕ

′ |.
Proof. Let x ∈ |K ′| = |K|. Then x =

∑
αib(σi) is a convex combination of

the barycenters of simplices σ0 � σ1 � . . . � σk of K with αi > 0 for every i.
Suppose x ∈ |(K ′)ϕ

′ |. This is equivalent to saying that each of the vertices
b(σi) in the support of x is fixed by ϕ′, or, in other words, that ϕ(σi) = σi
for every i. If we now consider x ∈ |K|,

x =
∑

αi
∑

v∈σi

v

#σi

and
|ϕ|(x) =

∑
αi

∑

v∈σi

ϕ(v)
#σi

.

Since ϕ(σi) = σi,
∑

v∈σi

ϕ(v)
#σi

=
∑

v∈σi

v
#σi

, and then |ϕ|(x) = x. This proves one

inclusion.
Before proving the other inclusion, note that if v ∈ σi�σi−1, the coordinate

of v in x =
∑
αi

∑

v∈σi

v
#σi

is

αi
#σi

+
αi+1

#σi+1
+ . . .+

αk
#σk

.

Since ϕ is an isomorphism, the coordinate of ϕ(v) in |ϕ|(x) =
∑
αi

∑

v∈σi

ϕ(v)
#σi

is also αi

#σi
+ αi+1

#σi+1
+ . . .+ αk

#σk
.
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Suppose now that x ∈ |K||ϕ|. In this case, ϕ(v) ∈ support(|ϕ|(x)) =
support(x) and therefore ϕ(v) ∈ σk. If ϕ(v) ∈ σj � σj−1, the coordinate of
ϕ(v) in x is αj

#σj
+ αj+1

#σj+1
+ . . .+ αk

#σk
. Since |ϕ|(x) = x,

αi
#σi

+
αi+1

#σi+1
+ . . .+

αk
#σk

=
αj

#σj
+

αj+1

#σj+1
+ . . .+

αk
#σk

and then i = j. This proves that ϕ(σi � σi−1) ⊆ σi � σi−1. Thus, ϕ(σi) ⊆ σi
and then ϕ(σi) = σi for every i. Therefore x ∈ |(K ′)ϕ

′ |, which proves the
other inclusion. ��

Since Xf ⊆ X , K(Xf ) is the full subcomplex of K(X) spanned by the
vertices fixed by f . By definition, this subcomplex is K(X)K(f). Therefore we
have,

Remark 10.2.2. LetX be a finite T0-space and let f : X → X be a continuous
map. Then K(Xf ) = K(X)K(f).

Corollary 10.2.3. Let K be a finite simplicial complex and ϕ : K → K a
simplicial automorphism. Then X (K)X (ϕ) is a finite model of |K||ϕ|.
Proof. By Proposition 10.2.1, |K||ϕ| = |(K ′)ϕ

′ | = |K(X (K))K(X (ϕ))| and by
Remark 10.2.2, this coincides with |K(X (K)X (ϕ))| which is weak homotopy
equivalent to X (K)X (ϕ). ��

The following is a stronger version of Lefschetz Theorem 10.1.5 for sim-
plicial automorphisms. A different proof can be found in [63] (see also [39,
Theorem 1.8]).

Corollary 10.2.4. Let K be a finite simplicial complex and let ϕ : K → K
be a simplicial automorphism. Then χ(|K||ϕ|) = λ(|ϕ|).
Proof. The diagram

|K|
μK

��

|ϕ|
�� |K|

μK

��
X (K)

X (ϕ)
�� X (K)

commutes up to homotopy and (μK∗)n : Hn(|K|) → Hn(X (K)) is an
isomorphism for every n ≥ 0. Then |ϕ|∗ = (μK∗)−1X (ϕ)∗μK∗ : Hn(|K|) →
Hn(|K|) and tr((|ϕ|∗)n) = tr((X (ϕ)∗)n). Therefore λ(|ϕ|) = λ(X (ϕ)). By
Corollary 10.2.3 and the finite space version of the Lefschetz Theorem 10.1.6,
χ(|K||ϕ|) = χ(X (K)X (ϕ)) = λ(X (ϕ)) = λ(|ϕ|). ��

From this corollary we obtain an alternative proof of a result of R. Oliver
[64, Lemma 1].
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Proposition 10.2.5 (Oliver). Assume that Zn acts on a Q-acyclic finite
simplicial complex K. Then χ(|K|Zn) = 1.

Proof. Let g be a generator of Zn and ϕ : K → K the multiplication by g.
Then χ(|K|Zn) = χ(|K||ϕ|) = λ(|ϕ|) = 1, since K is Q-acyclic. ��

We conclude this chapter with a result on the trace of the morphism
induced by a map between finite spaces.

Suppose that X is a finite model of the circle and that f : X → X is a
map. Then f∗ : H1(X)→ H1(X) is a map Z→ Z. However, the only possible
morphisms that can appear in this way are 0, 1Z and −1Z. We prove this and
a more general fact in the following result.

Proposition 10.2.6. Let f : X → X be an endomorphism of a finite T0-
space X and let n ≥ 0. Let fn : Hn(X ; Q) → Hn(X ; Q) be the induced map
in homology. If dimQHn(X ; Q) = r, fn is a matrix of order r with rational
entries well defined up to similarity. Suppose that λ ∈ C is an eigenvalue of
fn considered as a complex matrix. Then λ = 0 or λ is a root of unity.

Proof. Since X is finite, there exist s 	= t ∈ N such that fs = f t. Then
f sn = f tn and λs = λt. ��
Corollary 10.2.7. Under the hypothesis of the previous proposition, −r ≤
tr(fn) ≤ r. In particular, since fn has integer entries, tr(fn) ∈ {−r,−r +
1, . . . , r − 1, r}.
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Chapter 11

The Andrews–Curtis Conjecture

The Poincaré conjecture is one of the most important problems in the history
of Mathematics. The generalized versions of the conjecture for dimensions
greater than 3 were proved between 1961 and 1982 by Smale, Stallings,
Zeeman and Freedman. However, the original problem remained open for a
century until Perelman finally proved it some years ago [66–68]. His proof is
based on Hamilton’s theory of Ricci flow. An alternative combinatorial proof
of the Poincaré conjecture would be a great achievement.

The Zeeman conjecture and the Andrews–Curtis conjecture are closely
related to the original Poincaré conjecture. Moreover, with the proof of the
Poincaré conjecture it is now known that both conjectures are true for a class
of complexes called standard spines . However both conjectures are still open.

In this chapter we will introduce the class of quasi constructible com-
plexes which are built recursively by attaching smaller quasi constructible
complexes. Using techniques of finite spaces we will prove that contractible
quasi constructible complexes satisfy the Andrews–Curtis conjecture. Quasi
constructible complexes generalize the notion of constructible complexes
which was deeply studied by Hachimori in [33].

11.1 n-Deformations and Statements of the Conjectures

The Poincaré conjecture, originally formulated in 1904, can be stated as
follows:

Poincaré conjecture: Every simply connected closed 3-manifold is homeo-
morphic to S3.

Zeeman proved the 5-dimensional version of the Poincaré conjecture, but
he also studied the original problem. In [87] he showed that, although no
triangulation of the Dunce Hat D is collapsible, the cylinder D × I is
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polyhedrally collapsible. A polyhedral collapse is somewhat less rigid than
a simplicial collapse and is more suitable when working in the category of
polyhedra and piecewise linear maps. An elementary polyhedral collapse from
a polyhedron K to a subpolyhedron L consists of the removal of an n-ball Bn

of K which intersects L in an (n−1)-ball contained in the boundary of Bn. If
there is a polyhedral collapse from K to L, then there exist triangulationsK0,
L0 of K and L such that K0 ↘ L0. For more details see [31, 50, 87]. Zeeman
conjectured that this property holds more generally for any contractible
2-complex:

Zeeman conjecture: If K is a contractible compact polyhedron, then K×I
is polyhedrally collapsible.

Zeeman proved in [87] that his conjecture implies the Poincaré conjecture.
In [30] Gillman and Rolfsen proved that the Poincaré conjecture is equivalent
to the Zeeman conjecture when restricted to standard spines (see also [72]).
Zeeman’s conjecture is still not proved nor disproved. In these notes we will
not work with the polyhedral version of collapse.

A balanced presentation of a group G is a presentation 〈x1, x2, . . . , xn |
r1, r2, . . . rn〉 with the same number of generators than relators. Given a
presentation 〈x1, x2, . . . , xn | r1, r2, . . . rm〉 of G, we consider the following
four operations which modify this one to obtain a new presentation of G.

(1) Replace a relator ri by r−1
i .

(2) Replace a relator ri by rirj where j �= i.
(3) Replace a relator ri by grig−1 where g is any element in the free group

generated by x1, x2, . . . , xn.
(4) Add a generator xn+1 and a relator rm+1 = xn+1.

Andrews–Curtis conjecture: Any balanced presentation of the trivial
group can be transformed into the trivial presentation by performing
repeatedly the operations (1)–(4) and the inverse of operation (4).

We are particularly interested in a topological version of this conjecture.

Definition 11.1.1. Let n ≥ 1. We say that a complex K n-deforms to
another complex L if we can obtain L from K by a sequence of collapses and
expansions in such a way that all the complexes involved in the deformation
have dimension less than or equal to n.

Geometric Andrews–Curtis conjecture: Any contractible compact
2-polyhedron 3-deforms to a point.

The Geometric Andrews–Curtis conjecture is equivalent to the Andrews–
Curtis conjecture. It is clear that Zeeman’s conjecture implies the Andrews–
Curtis conjecture. However, the later is also an open problem. For more
references see [2, 50, 72].



11.2 Quasi Constructible Complexes 139

The analogous version of the Andrews–Curtis conjecture for higher dimen-
sions is known to be true. More specifically, Wall proved in [82, Theorem 1]
the following result which is an improvement of a result of Whitehead.

Theorem 11.1.2 (Whitehead-Wall). Let n ≥ 3. If K and L are simple
homotopy equivalent compact polyhedra of dimension less than or equal to n,
then K (n+ 1)-deforms to L.

In contrast, M.M. Cohen showed that Zeeman’s conjecture is false for
dimensions greater than 2 [24].

To finish the section we will show that it is possible to restate the Andrews–
Curtis conjecture in the context of finite spaces using Theorem 4.2.11.

Definition 11.1.3. Let X and Y be two finite T0-spaces. We say that X n-
deforms to Y if the later can be obtained from X by performing expansions
and collapses in such a way that all the spaces involved are of height at
most n.

Conjecture 11.1.4. Let X be a homotopically trivial finite T0-space of hei-
ght 2. Then X 3-deforms to a point.

Theorem 11.1.5. Conjecture 11.1.4 is equivalent to the Andrews–Curtis
conjecture.

Proof. Assume Conjecture 11.1.4 is true and let K be a contractible 2-
complex. Then X (K) is a homotopically trivial finite T0-space of height 2
and therefore it 3-deforms to a point. By Theorem 4.2.11, K ′ 3-deforms to a
point and then by Proposition 4.1.4, K 3-deforms to a point.

The converse follows similarly. We only have to show that X ′ 3-deforms
to X for a finite T0-space X of height 2. By the proof of Proposition 4.2.9, it
suffices to observe that the non-Hausdorff mapping cylinder B(h) of the map
h : X ′ → X which maps a chain to its maximum, has height at most 3. �	

11.2 Quasi Constructible Complexes

The content of this section is in part motivated by the following example
studied in Chap. 7.
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This space is the face poset of an h-regular structure of the Dunce Hat and
it has no weak points. However, there are two maximal points a, b such that
Ua ∪ Ub is contractible, and therefore X ↗e Y = X ∪ {c} where a < c > b.
Now, Y ↘ Y � {a, b}. Thus K(X) 3-deforms to K(Y � {a, b}) which has one
point less than X .

In order to study the Andrews–Curtis conjecture we will be interested in
complexes K whose associated finite space X (K) has two maximal elements
a, b such that Ua ∪ Ub is contractible. Moreover, we will consider those
complexes K such that, starting from X (K), one can perform repeatedly
the move described above, to obtain a space with maximum, and therefore
collapsible.

Let X be a finite T0-space of height at most 2 and let a, b be two maximal
elements of X such that Ua ∪ Ub is contractible. Then we say that there is
a qc-reduction from X to Y � {a, b} where Y = X ∪ {c} with a < c > b.
We say that X is qc-reducible if we can obtain a space with a maximum by
performing qc-reductions starting from X .

Note that a, b and c are all weak points of Y . Since spaces with maximum
are collapsible, qc-reducible finite spaces are simple homotopy equivalent to
a point. Furthermore, if X is qc-reducible, all the spaces involved in the
deformation X�↘∗ are of height less than or equal to 3. Therefore we have
the following

Remark 11.2.1. If X is qc-reducible, it 3-deforms to a point.

Example 11.2.2. The following space is collapsible but not qc-reducible. In
fact we cannot perform any qc-reduction starting from X .
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Proposition 11.2.3. Let X be a finite T0-space of height at most 2 and such
that H2(X) = 0. Let a, b be two maximal elements of X. Then the following
are equivalent:

1. Ua ∪ Ub is contractible.
2. Ua ∩ Ub is nonempty and connected.
3. Ua ∩ Ub is contractible.

Proof. The non-Hausdorff suspension S(Ua∩Ub) = (Ua∩Ub)∪{a, b} is a strong
deformation retract of Ua∪Ub. A retraction is given by r : Ua∪Ub → S(Ua∩Ub)



11.2 Quasi Constructible Complexes 141

with r(x) = a for every x ∈ Ua�Ub and r(x) = b for x ∈ Ub�Ua. Therefore, by
Proposition 2.7.3, Ua∪Ub is contractible if and only if Ua∩Ub is contractible.

Since K(X) has dimension at most 2, H3(K(X),K(S(Ua ∩ Ub)))= 0.
By the long exact sequence of homology, H2(K(S(Ua ∩ Ub))) = 0 and then
H1(Ua∩Ub) = 0. Thus, if Ua∩Ub is nonempty and connected, it is contractible
since ht(Ua ∩ Ub) ≤ 1. �	
Remark 11.2.4. If X is a contractible finite T0-space of height at most 2, it
can be proved by induction in #X that there exist two maximal elements a, b
such that Ua∪Ub is contractible. However when a qc-reduction is performed,
the resulting space might be not contractible.

Definition 11.2.5. A finite simplicial complex K of dimension at most 2 is
said to be quasi constructible if K is a simplex or, recursively, if it can be
written as K = K1 ∪K2 in such a way that

• K1 and K2 are quasi constructible,
• K1 ∩K2 is nonempty and connected, and
• No maximal simplex of K1 is in K2 and no maximal simplex of K2 is in
K1.

The name of these complexes is suggested by the particular case of con-
structible complexes studied in [33].

Definition 11.2.6. A homogeneous finite simplicial complex K of dimen-
sion n is n-constructible if n = 0, if K is a simplex or if K = K1 ∪K2 where
K1 and K2 are n-constructible and K1 ∩K2 is (n− 1)-constructible.

A homogeneous 1-complex is 1-constructible if and only if it is connected.
Therefore, 2-constructible complexes are quasi constructible. A wedge of two
2-simplices is quasi constructible but not 2-constructible. This example also
shows that collapsible 2-complexes need not be 2-constructible. However we
will prove below that collapsible 2-complexes are quasi constructible.

Lemma 11.2.7. Let K be a finite simplicial complex and let K1, K2 be two
subcomplexes such that K1 ∩K2 is a vertex v (i.e. K = K1

∨

v
K2). Then K

is collapsible if and only if K1 and K2 are collapsible.

Proof. Suppose K1 �= v �= K2. If K is collapsible and σ ⊆ σ′ is a collapsible
pair of K such that K � {σ, σ′} is collapsible, then σ � σ′ is a collapsible
pair of K1 or K2. Without loss of generality assume the first holds. Then
(K1 � {σ, σ′})∨

v
K2 = K � {σ, σ′} is collapsible. By induction K1 � {σ, σ′}

and K2 are collapsible.
If K1 and K2 are collapsible, they collapse to any of their vertices. In

particular K1 ↘ v and K2 ↘ v. The collapses of K1 and K2 together show
that K ↘ v. �	
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Theorem 11.2.8. Let K be a finite simplicial complex of dimension less
than or equal to 2. If K is collapsible, then it is quasi constructible.

Proof. If K is collapsible and not a point, there exists a collapsible pair
σ � aσ such that L = K � {σ, aσ} is collapsible. By induction L is quasi
constructible. K = L ∪ aσ and L ∩ aσ = aσ̇ is connected. If no maximal
simplex of L is a face of aσ, K is quasi constructible as we want to prove.
However this might not be the case.

If aσ is a 1-simplex and a is a maximal simplex of L, L = a and then K
is a 1-simplex which is quasi constructible.

Assume aσ is a 2-simplex and let b, c be the vertices of σ.
Consider this first case: ab is a maximal simplex of L but ac is not (see

Fig. 11.1). We claim that L�{ab} has two connected components. Certainly,
since L is contractible, from the Mayer-Vietoris sequence,

H̃1(L)→ H̃0(a ∪ b)→ H̃0(ab)⊕ H̃0(L� {ab})→ H̃0(L)

we deduce that H̃0(L�{ab}) = Z. Therefore, there exist subcomplexes L1 � a
and L2 � b of L such that L = L1

∨

a
ab

∨

b

L2.

By Lemma 11.2.7, L1 and L2 are collapsible and therefore quasi con-
structible.

a

b

c

L1 L2

Fig. 11.1 L

Now, L1 and aσ are quasi constructible, L1 ∩ aσ = ac is connected and
{ac} is not maximal in L1 nor in aσ. Thus L1 ∪ aσ is quasi constructible.
If L2 is just the point b, K = L1 ∪ aσ is quasi constructible. If L2 is not a
point, {b} is not a maximal simplex of L2 and then K = (L1 ∪ aσ) ∪ L2 is
quasi constructible since (L1 ∪ aσ) ∩ L2 = b is connected.

The second case: ac is maximal in L but ab is not, is analogous to the first.
The third case is: ab and ac are maximal simplices of L. As above L �

{ab} and L � {ac} have two connected components. Therefore, there exist
subcomplexes L1, L2 and L3 of L such that a ∈ L1, b ∈ L2, c ∈ L3 and
L = L2

∨

b

ab
∨

a
L1

∨

a
ac

∨

c
L3. Since L is collapsible, by Lemma 11.2.7, Li are

also collapsible and by induction, quasi constructible. If L1 �= a, L2 �= b and
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L2 �= c, we prove that K is quasi constructible as follows: aσ ∪ L1 is quasi
constructible since aσ ∩ L1 = a is connected and {a} is not maximal in aσ
nor in L1. Then (aσ∪L1)∪L2 is quasi constructible since (aσ∪L1)∩L2 = b
is connected and {b} is maximal in none of them. Similarly, K = (aσ ∪ L1 ∪
L2) ∪ L3 is quasi constructible. If some of the complexes Li are just single
points, this simplifies the proof since we can remove those from the writing
of K = aσ ∪ L1 ∪ L2 ∪ L3. �	

On the other hand, contractible 2-constructible complexes need not be
collapsible as the next example shows.

Example 11.2.9. The following example of a contractible 2-constructible
and non-collapsible complex is a slight modification of one defined by Hachi-
mori (see [33], Sect. 5.4). Let K be the 2-homogeneous simplicial complex of
Fig. 11.2.

4

5

6

7

2

3

2

1

1

2

3

Fig. 11.2 K

This complex is 2-constructible (in fact it is shellable (see below)). For
instance, one can construct it adjoining 2-simplices in the following order:
567, 457, 347, 237, 127, 167, 126, 236, 356, 235, 125, 145, 134. In each adjunc-
tion both the complex and the 2-simplex are 2-constructible and their
intersection is 1-constructible. Moreover, K is collapsible.

Now take two copies K1 and K2 of K and identify the 1-simplex 13 of
both copies. The resulting complex L is contractible since K1 and K2 are
contractible. Moreover, K1 and K2 are 2-constructible and their intersection
is 1-constructible, therefore L is 2-constructible. On the other hand, L is not
collapsible since it does not have free faces.

We will see in Corollary 11.2.11 that quasi constructible complexes 3-
deform to a point. In particular this is true for this complex.

The notion of constructibility is in turn a generalization of the concept
of shellability (see [16]), and shellable complexes are collapsible. We will not
work explicitly with shellings in these notes. For more details on shellable
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complexes we refer the reader to [16] (see also [44] for an alternative definition
of shellability in the context of manifolds).

Theorem 11.2.10. Let K be a finite simplicial complex of dimension less
than or equal to 2. Then the following are equivalent:

1. K is quasi constructible and H2(|K|) = 0,
2. X (K) is qc-reducible,
3. K is quasi constructible and contractible.

Proof. Let K be quasi constructible and suppose H2(|K|) = 0. If K is a
simplex, X (K) has maximum and it is qc-reducible. Otherwise, K = K1∪K2

where K1 and K2 are quasi constructible and K1 ∩ K2 is connected and
nonempty. Moreover the maximal simplices of K1 are not in K2 and vice
versa. Since H3(|K|, |Ki|) = 0, H2(|Ki|) = 0 and by an inductive argument,
X (Ki) is qc-reducible for i = 1, 2. Carrying out the same qc-reductions
in X (K) we obtain a space Y with two maximal elements a1 and a2 such
that Ua1 ∩ Ua2 = X (K1 ∩K2) which is connected and nonempty. Moreover,
H2(Y ) = H2(X (K)) = 0 and therefore, by Proposition 11.2.3, a last qc-
reduction transforms Y in a space with maximum.

Now suppose that K is such that X (K) is qc-reducible. Then we can
make qc-reductions to obtain a space with maximum. If X (K) does not
have maximum, in the last step, before the last qc-reduction, one has a
contractible space Y with two maximal elements a1 and a2. Consider the
simplicial complex K1 generated by all the maximal simplices of K that
were eventually replaced by a1 when performing the qc-reductions. Define
K2 similarly. Then, X (K1) and X (K2) are qc-reducible and by induction
K1 and K2 are quasi constructible. Moreover X (K1 ∩ K2) = Ua1 ∩ Ua2 is
connected and nonempty by Proposition 11.2.3 and then so is K1∩K2. Hence
K is quasi constructible. On the other hand, since X (K) is qc-reducible, it
is homotopically trivial and therefore |K| is contractible. �	

In fact, the equivalence between 1 and 3 can be proved easily without
going through 2 (see Remark 11.2.12).

Corollary 11.2.11. If K is quasi constructible and contractible, it 3-
deforms to a point, i.e. contractible quasi constructible complexes satisfy the
Geometric Andrews–Curtis conjecture.

Proof. If K is quasi constructible and contractible, X (K) is qc-reducible by
Theorem 11.2.10. By Remark 11.2.1, X (K) 3-deforms to a point. By Theorem
4.2.11, K ′ 3-deforms to a point and then by Proposition 4.1.4, so does K. �	
Remark 11.2.12. By the van Kampen Theorem, quasi constructible com-
plexes are simply connected. In particular, their reduced Euler characteristic
is non-negative since their dimension is less than or equal to 2.

In the next we adapt an argument of Hachimori to show that there are
many contractible 2-complexes which are not quasi constructible. The results
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and their proofs are essentially the same as in [33]. A vertex v of a finite
complex K is a bridge if K � v has more connected components than K.
Following Hachimori we say that a vertex v of a finite 2-simplicial complex
K is splittable if the graph lk(v) has a bridge.

Remark 11.2.13. Suppose K = K1∪K2 is a 2-complex such that no maximal
simplex of K1 is in K2 and vice versa. In this case K1∩K2 is a graph. Assume
that there exists a vertex v which is a leaf of K1 ∩K2, i.e. lkK1∩K2(v) = v′ is
a point. We prove that v is splittable in K. Since vv′ ∈ K1 ∩K2, vv′ is not
maximal in either of the subcomplexes K1 and K2. Let vi ∈ Ki such that
vv′vi ∈ Ki for i = 1, 2. The vertices v1 and v2 are connected in lkK(v) via v′.
Suppose that they are also connected in lkK(v) � v′. Then, there exists w ∈
lkK(v) � v′ such that vw is a simplex of K1 and K2 simultaneously. This
contradicts the fact that lkK1∩K2(v) = v′. Therefore v′ is a bridge of lkK(v).

Proposition 11.2.14. Let K be a contractible finite 2-simplicial complex
with no bridges and with at most one splittable point. If K is not a 2-simplex,
then it is not quasi constructible.

Proof. Suppose that K is quasi constructible. Then there exist quasi
constructible subcomplexes K1 and K2 as in Definition 11.2.5. K1 ∩K2 is a
connected graph with more than one vertex, provided that K has no bridges.
By the previous remark, it has at most one leaf and therefore it is not a tree.
In particular χ̃(K1 ∩K2) < 0. Since K is contractible, by Remark 11.2.12 we
have that

0 = χ̃(K) = χ̃(K1) + χ̃(K2)− χ̃(K1 ∩K2) > 0,

which is a contradiction. �	
In particular we deduce that any triangulation of the Dunce Hat is not

quasi constructible, since it has just one splittable point.

Remark 11.2.15. Recall that the Andrews–Curtis conjecture is known to be
true for standard spines (see [72]). It is easy to see that standard spines have
no bridges nor splittable points and therefore they are not quasi constructible.
Therefore our result enlarges the class of 2-complexes for which the conjecture
is known to be valid.

Any triangulation of the Dunce Hat is not quasi constructible and it is
easy to see that it is not a standard spine either since it has a splittable
point.

11.3 The Dual Notion of Quasi Constructibility

It seems very natural to consider the dual notion of qc-reducibility in order to
obtain a larger class of complexes satisfying the Andrews–Curtis conjecture.
However we will see that if K is such that X (K)op is qc-reducible, then K is
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collapsible. Let X be a finite T0-space of height at most 2 with two minimal
elements a, b such that Fa ∪ Fb is contractible. Then we say that there is a
qcop-reduction from X to Y � {a, b} where Y = X ∪ {c} with a > c < b.
We say that X is qcop-reducible if we can obtain a space with a minimum by
carrying out qcop-reductions beginning from X , or, in other words, if Xop is
qc-reducible.

If K is a finite simplicial complex and V is a subset of vertices of K, we
will denote by st(V ) ⊆ |K| the union of the open stars of the vertices in V ,
i.e.

st(V ) = (
⋃

v∈V

◦
st(v)),

where
◦
st(v) = |K|� |K � v| = ⋃

σ�v
◦
σ ⊆ |K|.

We introduce the dual notion of quasi constructibility which is the follow-
ing.

Definition 11.3.1. Let K = (VK , SK) be a finite simplicial complex of
dimension at most 2. We say that a subset V ⊆ VK of vertices is quasiop

constructible in K if #V = 1 or if, recursively, V = V1 ∪ V2 with Vi quasiop

constructible in K for i = 1, 2, V1 ∩V2 = ∅ and st(V1)∩ st(V2) is a connected
nonempty subspace of the geometric realization |K|.

The complex K is said to be quasiop constructible if VK is quasiop

constructible in K.

In order to understand the topology of st(V1) ∩ st(V2), we will generalize
the result that says that X (K) is a finite model of K, giving an alternative
proof of this fact.

Theorem 11.3.2. Let K be a finite simplicial complex and let Y ⊆ SK be a
subset of simplices of K. Let X =

⋃

σ∈Y

◦
σ ⊆ |K| and let f : X → Y ⊆ X (K)op

be the map defined by f(x) = σ if x ∈ ◦
σ. Then, f is a weak homotopy

equivalence.

Proof. We first note that f is continuous. If σ ∈ Y ,

f−1(Uσ) =
⋃

σ⊆τ∈Y

◦
τ = (

⋃

σ⊆τ∈SK

◦
τ) ∩X = X � |σc|

is open in X since σc is a subcomplex of K. To prove that f is a weak
homotopy equivalence we use the Theorem of McCord 1.4.2. We only have to
show that f−1(Uσ) is contractible. In fact,

◦
σ is a strong deformation retract

of f−1(Uσ). Let x ∈ ◦
τ with σ ⊆ τ ∈ Y , x = tα+ (1− t)β for some 0 < t ≤ 1,

α ∈ ◦
σ and β ∈ (τ � σ)◦. Define r : f−1(Uσ) → ◦

σ by r(x) = α. Then r is a
retraction and H : f−1(Uσ)×I → f−1(Uσ), given by H(x, s) = (1−s)x+sα,
defines a homotopy between 1f−1(Uσ) and ir. �	
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Proposition 11.3.3. Let K be a finite T0-space of height at most 2. Then K
is quasiop constructible and contractible if and only if X (K) is qcop-reducible.

Proof. Suppose |K| is contractible. We prove that if V ⊆ VK is quasiop

constructible in K, then
⋃

v∈V
F{v} ⊆ X (K) is qcop-reducible. If #V = 1,

⋃

v∈V
F{v} has minimum and there is nothing to do. Assume that V = V1 ∪ V2

where V1 and V2 are disjoint and quasiop constructible in K, and st(V1) ∩
st(V2) is connected and nonempty. By induction

⋃

v∈V1

F{v} and
⋃

v∈V2

F{v} are

qcop-reducible. Then
⋃

v∈V
F{v} qcop-reduces to a space X with two minimal

elements a1 and a2. Moreover, Fa1 ∩ Fa2 = {σ ∈ SK | there exist v1 ∈ V1

and v2 ∈ V2 with v1, v2 ∈ σ} is weak homotopy equivalent to st(V1) ∩ st(V2)
by Theorem 11.3.2. In particular, Fa1 ∩Fa2 is connected and nonempty, and
since X (K) is homotopically trivial, by Proposition 11.2.3, X is contractible.
Therefore a last qcop-reductions transforms X into a space with minimum, so⋃

v∈V
F{v} is qcop-reducible. Now, if in addition K is quasiop-constructible, VK

is quasiop constructible in K and then X (K) =
⋃

v∈VK

F{v} is qcop-reducible.

Conversely, let V ∈ VK be a subset of vertices of K. We will prove that
if

⋃

v∈V
F{v} ⊆ X (K) is qcop-reducible, then V is quasiop constructible in K.

If #V = 1 there is nothing to prove. In other case, before the last step we
will have reduced

⋃

v∈V
F{v} into a contractible space X with two minimal

points a1 and a2. Let Vi be the subset of V of vertices that were eventually
replaced by ai for i = 1, 2. Then

⋃

v∈Vi

F{v} is qcop-reducible and by induction

Vi is quasiop constructible for i = 1, 2. By Theorem 11.3.2, st(V1) ∩ st(V2) is
weak homotopy equivalent to Fa1 ∩Fa2 which is connected and nonempty by
Proposition 11.2.3. Then V is quasiop constructible in K.

Finally, applying this result to V = VK we deduce that if X (K) is qcop-
reducible, then K is quasiop constructible. In this case X (K) is homotopically
trivial and then |K| is contractible. �	

In particular, we deduce that ifK is quasiop constructible and contractible,
it 3-deforms to a point. Unfortunately, this does not enlarge the class of com-
plexes satisfying the Andrews–Curtis conjecture, since quasiop constructible
complexes are collapsible as we will see.

Lemma 11.3.4. Let K be a finite simplicial complex of dimension less than
or equal to 2. If V ⊆ VK is quasiop constructible in K, then χ̃(st(V )) ≥ 0.

Proof. If #V = 1, st(V ) is contractible and then χ̃(st(V )) = 0. Suppose that
V = V1 ∪ V2 where V1 and V2 are disjoint, quasiop constructible in K and
such that st(V1) ∩ st(V2) is connected and nonempty. By induction,

χ̃(st(V )) = χ̃(st(V1)) + χ̃(st(V2))− χ̃(st(V1)∩ st(V2)) ≥ −χ̃(st(V1)∩ st(V2)).
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By Theorem 11.3.2, st(V1) ∩ st(V2) is weak homotopy equivalent to V 1 ∩
V 2 ⊆ X (K) which is a finite T0-space of height at most 1. Since it is connected
and nonempty, χ̃(st(V1) ∩ st(V2)) = χ̃(V 1 ∩ V 2) ≤ 0 and then χ̃(st(V )) ≥ 0.

�	
Theorem 11.3.5. Let K be a contractible quasiop constructible simplicial
complex. Then K is collapsible.

Proof. IfK = ∗, there is nothing to do. Suppose VK = V1∪V2 with V1∩V2 = ∅,
V1 and V2 quasiop constructible in K and st(V1) ∩ st(V2) nonempty and
connected. Since |K| is contractible,

0 = χ̃(|K|) = χ̃(st(V1)) + χ̃(st(V2))− χ̃(st(V1) ∩ st(V2)).

By Lemma 11.3.4, χ̃(st(Vi)) ≥ 0 for i = 1, 2 and then χ̃(V 1 ∩ V 2) =
χ̃(st(V1) ∩ st(V2)) ≥ 0. Moreover, V 1 ∩ V 2 ⊆ X (K) is nonempty, connected
and its height is less than or equal to 1. Therefore, it is contractible. In
particular, there exists a simplex σ ∈ K which is a leaf (maybe the unique
vertex) of the graph K(V 1∩V 2). We claim that σ is not a 2-simplex, because
if that was the case, it would have two of its vertices a, b in Vi and the third
c in Vj for i �= j. Then {a, c} and {b, c} would be covered by σ in V 1 ∩ V 2

contradicting the fact that σ is a leaf of K(V 1 ∩ V 2). Thus σ is a 1-simplex.
Let a ∈ V1 and b ∈ V2 be the vertices of σ. Since σ is a leaf of K(V 1∩V 2),

we consider two different cases:

(1) V 1 ∩ V 2 = {σ} or
(2) σ ∈ K is a free face of a simplex σ′ = {a, b, c} ∈ K.

We study first the case (1). For i = 1, 2, let Ki be the full subcomplex of K
spanned by the vertices of Vi. Then K = K1∪K2∪{σ} = K1

∨

a
σ

∨

b

K2. Since

K is contractible, K1 and K2 are contractible as well. Moreover, since Vi is
quasiop constructible in K, it is also quasiop constructible in Ki. Note that
if V and V ′ are subsets of Vi, then stKi(V ) ∩ stKi(V ′) = stK(V ) ∩ stK(V ′).
Thus, K1 and K2 are contractible and quasiop constructible. By induction,
they are collapsible. Therefore K = K1

∨

a
σ

∨

b

K2 is also collapsible.

Now we consider the second case (2). Let L = K � {σ, σ′}. By hypothesis
K ↘e L. We claim that L is quasiop constructible. To prove that, we will show
first that V1 and V2 are quasiop constructible in L. We prove by induction that
if V ⊆ V1 is quasiop constructible in K, then it also is in L. If #V = 1 this is
trivial. Suppose V = V ′ ∪ V ′′ with V ′ and V ′′ disjoint, quasiop constructible
in K and such that stK(V ′)∩stK(V ′′)

we≈ V ′X (K)∩V ′′X (K)
is nonempty and

connected. By induction V ′ and V ′′ are quasiop constructible in L. We have
to show that V ′X (L) ∩ V ′′X (L)

= (V ′X (K) ∩ V ′′X (K)
) � {σ, σ′} is nonempty

and connected.
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Since σ has only one vertex in V1, it cannot have a vertex in V ′ and
other in V ′′. Therefore, σ /∈ V ′X (K) ∩ V ′′X (K)

. If σ′ /∈ V ′X (K) ∩ V ′′X (K)
,

then V ′X (L) ∩ V ′′X (L)
= (V ′X (K) ∩ V ′′X (K)

) is nonempty and connected. If
σ′ ∈ V ′X (K)∩V ′′X (K)

, then c ∈ V1 and σ′ covers just one element of V ′X (K)∩
V ′′X (K)

, which is {a, c}. Hence, σ′ is a down beat point of V ′X (K) ∩ V ′′X (K)

and in particular V ′X (L)∩V ′′X (L)
is homotopy equivalent to V ′X (K)∩V ′′X (K)

.
Then, it is nonempty and connected and therefore V is quasiop constructible
in L.

Since V1 is quasiop constructible in K it follows that it is quasiop

constructible in L. Analogously, V2 is quasiop constructible in L.
Now, by assumption stK(V1) ∩ stK(V2)

we≈ V1
X (K) ∩ V2

X (K)
is nonempty

and connected. Since σ is a free face of K, it is an up beat point of V1
X (K)∩

V2
X (K)

. On the other hand, σ′ is a down beat point of V1
X (K)∩V2

X (K)
�{σ}

since there is a 1-face of σ′ with both vertices in V1 or in V2. Hence, V1
X (L)∩

V2
X (L)

= V1
X (K)∩V2

X (K)
�{σ, σ′} is a strong deformation retract of V1

X (K)∩
V2

X (K)
, and then it is connected and nonempty. Thus, VL = V1∪V2 is quasiop

constructible in L, or in other words, L is quasiop constructible.
Since K ↘e L, L is contractible and quasiop constructible. By induction L

is collapsible and therefore, so is K. �	
The converse of this result is false as we prove in the next example.

Example 11.3.6. The complex K studied in Example 11.2.9 is a collapsible
homogeneous 2-complex with a unique free face. We prove that a complex
satisfying these hypotheses cannot be quasiop constructible.

Suppose thatK is quasiop constructible. SinceK has more than one vertex,
VK can be written as a disjoint union of quasiop constructible subsets V1

and V2 in K such that V 1 ∪ V 2 is contractible. The case (1) of the proof of
Theorem 11.3.5 cannot occur since K is homogeneous. Therefore, K(V 1∩V 2)
has dimension exactly 1 and it is a tree. Then, it has at least two leaves, which
must be 1-simplices and free faces of K. However this is absurd since K has
only one free face.

The qc and qcop-reductions studied in this chapter conclude the list of
reduction methods introduced in this work. The last example of this book
is a homotopically trivial finite space X which cannot be reduced via any
of these methods. Its aim is to motivate the development of new methods
of reduction. Although this example is not directly related to the Andrews–
Curtis conjecture, it is connected to the methods studied in this chapter and
to several ideas developed throughout these notes.

Example 11.3.7. Consider the following pentagon whose edges are identi-
fied as indicated by the arrows.
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This CW-complex is contractible since the attaching map of the 2-cell is
a homotopy equivalence S1 → S1. We endow this space with an h-regular
structure K as follows

a a

a

a

a

b

b

bb

b

c

Since K is contractible, X (K) is a homotopically trivial finite space of 21
points by Theorem 7.1.7. It is easy to check that X (K) has no weak points,
and therefore it does not have γ-points either since its height is 2. In fact
no h-regular CW-complex has down weak points and it is not hard to see
that the 0-cells of this example are not up weak points. We only have to
show that F̂a, F̂b and F̂c are not contractible, but this is clear since their
associated graphs contain a cycle.

It is not possible to make a qc-reduction on X (K), since for any 2-cells e, e′

of K, e∩e′ ⊆ K is not connected. It can also be proved that no qcop-reduction
can be made in X (K) since the subspaces Fa ∩ Fb, Fa ∩ Fc, Fb ∩ Fc ⊆ X (K)
are nonconnected.

Osaki’s reduction methods 6.1.1 and 6.1.2 are not applicable either.
On the other hand we know that it is possible to obtain the singleton

starting from X (K) and performing expansions and collapses.



Chapter 12

Appendix

This appendix is intended to recall some of the basic notions and properties
of simplicial complexes and CW-complexes which are used but not explicitly
explained in the main text. The reader not familiar with concepts such as
simplicial approximations and adjunction spaces, could find this appendix
useful. However, more complete expositions on these subjects can be found
in Spanier’s book [75, Chap. 3] and in Munkres’ [61, Chaps. 1 and 2]. Standard
references for CW-complexes are also [28, 38, 45].

A.1 Simplicial Complexes

A simplicial complex K consists of a set VK , called the set of vertices, and a
set SK of finite nonempty subsets of VK , which is called the set of simplices,
satisfying that any subset of V of cardinality one is a simplex and any
nonempty subset of a simplex is a simplex. By abuse of notation we will
write v ∈ K and σ ∈ K if v ∈ VK and σ ∈ SK . Many times, as it is the
custom, we will identify a simplicial complex with its set of simplices.

If a simplex σ is contained in another simplex τ , it is called a face of τ , and
it is a proper face if in addition σ �= τ . A simplex with n+1 vertices is called
an n-simplex , and we say that its dimension is n. Note that the vertices of
K correspond to the 0-simplices. The dimension of K is the supremum of
the dimensions of its simplices. If K is empty, its dimension is −1 and if K
contains simplices of arbitrary large dimension, its dimension is infinite. An
n-complex is a simplicial complex of dimension n. The maximal simplices
(those which are not proper faces of any other simplex) are sometimes called
facets . A finite dimensional simplicial complex is called homogeneous (or
pure) if all its maximal simplices have the same dimension. A subcomplex of
a simplicial complex K is a simplicial complex L such that VL ⊆ VK and
SL ⊆ SK . A subcomplex L ⊆ K is said to be full if any simplex of K with

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and
Applications, Lecture Notes in Mathematics 2032,
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all its vertices in L is also a simplex of L. In this case we say that L is the
full subcomplex of K spanned by the vertices v ∈ VL.

Given a simplex σ = {v0, v1, . . . , vn} of dimension n, the closed simplex

σ is the set of formal convex combinations
n∑

i=0

αivi with αi ≥ 0 for every

0 ≤ i ≤ n and
∑
αi = 1. A closed simplex is a metric space with the metric

d given by

d(
n∑

i=0

αivi,

n∑

i=0

βivi) =

√
√
√
√

n∑

i=0

(αi − βi)2.

The geometric realization |K| of a simplicial complex K is the set of formal
convex combinations

∑

v∈K
αvv such that {v | αv > 0} is a simplex of K.

Therefore, |K| can be regarded as the union of the closed simplices σ with
σ ∈ K. The topology of |K| is the final (coherent) topology with respect to
the closed simplices. In other words, a set U ⊆ |K| is open (resp. closed) if
and only if U ∩σ is open (resp. closed) in the metric space σ for every σ ∈ K.

The support (or carrier) of a point x =
∑

v∈K
αvv ∈ |K| is the simplex

support(x) = {v | αv > 0}. If σ is a simplex, the open simplex
◦
σ is the subset

of σ of points whose support is exactly σ. Note that if two points x, y ∈ |K|
lie in the same closed simplex, then the convex combination tx + (1 − t)y is
a well defined element in |K|. If L ⊆ K, |L| is a closed subspace of |K|. It is
not hard to prove that the topology of the set σ as a subspace of |K| is the
original metric topology on σ. Moreover, if K is a finite simplicial complex
(i.e. with a finite number of vertices), the topology of |K| coincides with the
metric topology defined as before

d(
∑

v∈K
αvv,

∑

v∈K
βvv) =

√∑

v∈K
(αv − βv)2.

Moreover, in this case |K| can be imbedded in R
n for some n ∈ N.

It is easy to prove that if U is an open subspace of |K|, then it has the
final topology with respect to the subspaces U ∩ σ ⊆ σ.

A polyhedron is the geometric realization of a simplicial complex and a
triangulation of a polyhedron X is a simplicial complex K whose geometric
realization is homeomorphic to X . Any polyhedron is a Hausdorff space.

Since |K| has the final topology with respect to its closed simplices, a map
f from |K| to a topological space X is continuous if and only if each of the
restrictions f |σ : σ → X is continuous. Moreover, by the exponential law,
it can be shown that a map H : |K| × I → X is continuous if and only if
H |σ×I : σ × I → X is continuous for each σ ∈ K.

A simplicial map ϕ : K → L between two simplicial complexes K and L is
a vertex map VK → VL that sends simplices into simplices. A simplicial map
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ϕ : K → L induces a well defined continuous map |ϕ| : |K| → |L| between
the geometric realizations defined by |ϕ|( ∑

v∈K
αvv) =

∑

v∈K
αvϕ(v).

Lemma A.1.1. Let K be a simplicial complex and let F be a compact subset
of |K|. Then there exists a finite subcomplex L of K such that F ⊆ |L|.
Proof. Take one point in F ∩ ◦

σ for every open simplex intersecting F . Denote
by D the set of all these points. Let A ⊆ D. Since the intersection of A
with each closed simplex is finite, it is closed, and then A is closed in |K|.
Therefore D is discrete and compact, and, in particular, finite. Thus, F
intersects only finitely many open simplices. The complex L generated by
(i.e. the smallest complex containing) the simplices σ such that

◦
σ intersects

F is a finite subcomplex of K which satisfies the required property. 	

Proposition A.1.2. Let K and L be two simplicial complexes and let f, g :
|K| → |L| be two continuous maps such that for every x ∈ |K| there exists
σ ∈ L with f(x), g(x) ∈ σ. Then f and g are homotopic.

Proof. The map H : |K| × I → |L| given by H(x, t) = tg(x) + (1− t)f(x) is
well defined because g(x) and f(x) lie in a same closed simplex. In order to
prove that H is continuous it suffices to show that it is continuous in σ × I
for every σ ∈ K. If σ ∈ K, σ is compact and therefore f(σ) and g(σ) are
compact. By Lemma A.1.1, f(σ) is contained in the geometric realization
of a finite subcomplex L1 and g(σ) ⊆ |L2| for a finite subcomplex L2 ⊆ L.
Therefore, H(σ × I) is contained in the realization of a finite subcomplex
M of L, namely the full subcomplex spanned by the vertices of L1 and L2.
We have to show then that H |σ×I : σ × I → |M | is continuous, where M is
a finite simplicial complex. But this is clear since both σ and |M | have the
metric topology.

d(H(x, t), H(y, s)) ≤ d(tg(x) + (1− t)f(x), sg(x) + (1− s)f(x))

+d(sg(x) + (1 − s)f(x), sg(y) + (1− s)f(y))

≤ 2|t− s|+ d(f(x), f(y)) + d(g(x), g(y)).

Therefore, the continuity of H follows from that of f and g. 	

The homotopy H used in the proof of Proposition A.1.2 is called the linear

homotopy from f to g.
Two simplicial maps ϕ, ψ : K → L are said to be contiguous if for every

σ ∈ K, ϕ(σ) ∪ ψ(σ) is a simplex of L. In this case, |ϕ| and |ψ| satisfy the
hypothesis of Proposition A.1.2, since if x ∈ σ, both |ϕ|(x) and |ψ|(x) lie in
ϕ(σ) ∪ ψ(σ). Therefore we deduce the following

Corollary A.1.3. If ϕ and ψ are two contiguous maps, |ϕ| and |ψ| are
homotopic.



154 12 Appendix

A simplicial cone with apex v is a simplicial complex K with a vertex v
satisfying that for every simplex σ of K, σ ∪ {v} is also a simplex.

Corollary A.1.4. If K is a simplicial cone, |K| is contractible.

Proof. Let v be the (an) apex of K. The simplicial map that sends every
vertex to v is contiguous to the identity by definition of cone. Therefore, by
Corollary A.1.3, the identity of |K| is homotopic to a constant. 	


Given a simplicial complex K, its barycentric subdivision K ′ is the
following simplicial complex. The vertices of K ′ are the simplices of K, and
a simplex of K ′ is a chain of simplices of K, i.e. a set {σ0, σ1, . . . , σn} of
simplices of K such that σ0 � σ1 � . . . � σn. The barycenter of a simplex
σ ∈ K is the point b(σ) =

∑

v∈σ
v

#σ ∈ |K|. The linear map sK : |K ′| → |K|
defined by sK(σ) = b(σ) is a homeomorphism. By linear we mean a map that
preserves convex combinations. The spaces |K ′| and |K| are usually identified
by means of the map sK in such a way that sK becomes the identity map.

A simplicial map ϕ : K → L is said to be a simplicial approximation of
a continuous map f : |K| → |L| if f(x) ∈ σ implies |ϕ|(x) ∈ σ for every
x ∈ |K|. Note that in this situation f and |ϕ| are homotopic by Proposition
A.1.2.

Proposition A.1.5. A vertex map ϕ : K ′ → K is a simplicial approxi-
mation to the identity sK : |K ′| → |K| if and only if ϕ(σ) ∈ σ for every
σ ∈ K.

Proof. Suppose that ϕ is a simplicial approximation to the identity. If σ is a
vertex of K ′, sK(σ) = b(σ) ∈ σ, then |ϕ|(σ) must be contained in σ as well.
Therefore ϕ(σ) is a vertex of σ.

Conversely, suppose ϕ : K ′ → K is a vertex map in the hypothesis of
the proposition. If σ0 � σ1 � . . . � σn is a chain of simplices of K, then
ϕ({σ0, σ1, . . . , σn}) ⊆ σn. Therefore ϕ is a simplicial map. Moreover if

x =
n∑

i=0

αiσi,

with αi > 0 for every i, then

sK(x) =
n∑

i=0

αi
∑

v∈σi

v

#σi
∈ ◦
σn.

On the other hand, |ϕ|(x) =
n∑

i=0
αiϕ(σi) ∈ σn. Thus, ϕ is a simplicial ap-

proximation of sK . 	
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As an immediate consequence we deduce that there exist simplicial ap-
proximations to the identity.

The n-th barycentric subdivision of K is defined recursively K(n) =
(K(n−1))′. A simplicial approximation to the identity 1|K| : |K(n)| → |K|
is in this case a simplicial approximation of the map sKsK′ . . . sK(n−1) :
|K(n)| → |K|. If f : |K| → |L| is a continuous map, a simplicial map ϕ :
K(n) → L is called an approximation of f if it is a simplicial approximation
of fsKsK′ . . . sK(n−1) .

The proof of the following result on simplicial approximations can be found
in [75, Corollary 3.4.5, Lemma 3.5.4].

Proposition A.1.6.

1. The composition of simplicial approximations of two maps is a simplicial
approximation of the composition of those maps.

2. Two simplicial approximations to the same map are contiguous.

Two simplicial maps ϕ, ψ : K → L are said to be in the same contiguity
class if there is a sequence of simplicial maps ϕ = ϕ0, ϕ1, . . . , ϕk = ψ from
K to L, such that ϕi and ϕi+1 are contiguous for every 0 ≤ i < k.

The following result is known as the Simplicial Approximation Theorem.
Its proof can be found in [75, Theorems 3.4.8 and 3.5.6].

Theorem A.1.7. Let K be a finite simplicial complex and L a simplicial
complex. Given any continuous map f : |K| → |L| there exist n ∈ N and a
simplicial approximation ϕ : K(n) → L to f . Moreover, if f, g : |K| → |L| are
homotopic, there exist n ∈ N and simplicial approximations ϕ, ψ : K(n) → L
to f and g in the same contiguity class.

A.2 CW-Complexes and a Gluing Theorem

If X , Y and Z are three topological spaces, and f : X → Y , g : X → Z are
continuous maps, the pushout of the diagram

X
f

��

g

��

Y

Z

is a space P together with maps f : Z → P and g : Y → P such that
fg = gf and with the following universal property: for any space Q and
maps f̃ : Z → Q and g̃ : Y → Q such that f̃ g = g̃f , there exists a unique
map h : P → Q such that hf = f̃ and hg = g̃.
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X
f

��

g

��

Y

g

��
g̃

��

Z
f

��

f̃ ��

P

h

���
�

�
�

Q

It is not hard to see that the space P is unique up to homeomorphism and
in fact it can be characterized as the space P = (Z 
 Y )/ ∼, where ∼ is the
relation that identifies f(x) with g(x) for every x ∈ X . The maps f and g
are the canonical inclusions into the disjoint union Z 
 Y composed with the
quotient map.

For example, if A is a subspace of a space X , the quotient X/A is the
pushout of the diagram

A
� � ��

��

X

∗
If A and B are two closed (or two open) subspaces of a space X and

X = A ∪B, then X is the pushout of A←↩ A ∩B ↪→ B.
A topological pair is an ordered pair of spaces (X,A) with A a subspace

of X . In the next definition the inclusions A ↪→ A× I and X ↪→ X × I of the
spaces A and X in the bases of their cylinders will be denoted by i0 and j0
respectively.

Definition A.2.1. A topological pair (X,A) is said to have the homotopy
extension property if for any space Y and maps H : A× I → Y , f : X → Y
such that Hi0 = f |A, there exists a map H : X × I → Y such that Hj0 = f
and H |A×I = H .

A
� �

i0
��

� �

��

A× I
� �

��
H

��

X
� �

j0
��

f ��

X × I
H

		�
�

�
�

Y
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If A is a subspace of a space X , the inclusion A ↪→ X is said to be a
closed cofibration if A is closed in X and (X,A) has the homotopy extension
property.

Definition A.2.2. If A ⊆ X , and the inclusion A ↪→ X is a closed
cofibration, the pushout Z of a diagram

A
f

��
� �

��

Y

X

is called the adjunction space of X to Y by f . In this case, it can be proved
that Y is a closed subspace of Z (see [21]).

When X = Dn is a disk and A = Sn−1 is its boundary, we say that Z is
constructed from Y by adjoining an n-cell. More generally, if X =

⊔

α∈Λ
Dn is a

union of n-dimensional disks indexed by an arbitrary set Λ and A =
⊔

α∈Λ
Sn−1,

we say that Z is obtained from Y by adjoining n-cells.

Definition A.2.3. A CW-structure for a topological space X is a filtration
of X by subspaces X0 ⊆ X1 ⊆ . . ., where X0 is a discrete space, Xn is
constructed from Xn−1 by adjoining n-cells and X is the union of the spaces
Xn, n ≥ 0, with the final (coherent) topology. The subspace Xn is called the
n-skeleton of X .

A CW-complex is a space X endowed with a CW-structure. Note that,
since Xn is obtained from Xn−1 by adjoining n-cells, there is a pushout

⊔

α∈Λn

Sn−1

⊔

α∈Λn

ϕα

��
� �

��

Xn−1
� �

��⊔

α∈Λn

Dn

⊔

α∈Λn

ψα

�� Xn

The image of the map ψα : Dn → X is called the closed cell enα. The
image of ϕα : Sn−1 → X is the boundary ėnα of the cell and the (open) cell
enα is concretely the subspace enα = enα � ėnα, which is homeomorphic to the
interior of the disk Dn. The maps ϕα and ψα are called the attaching map
and the characteristic map of the cell enα, respectively. For us, the attaching
and characteristic maps will be part of the structure of the CW-complex.
For some authors, though, the CW-structure consists only of the filtration
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by skeleta. In that case the characteristic maps are not part of the structure,
only their existence is required.

A cell enα is called an n-cell or cell of dimension n. The dimension of a
CW-complex X is −1 if it is empty, n if Xn �= Xn−1 and Xm = Xn for every
m ≥ n, and infinite if Xn �= X for every n.

Simplicial complexes are CW-complexes. Their cells are the open simplices.
Many properties of polyhedra hold in fact for CW-complexes. For instance,
any CW-complex has the final topology with respect to its closed cells and
every CW-complex is a Hausdorff space.

A subcomplex of a CW-complex X is a closed subspace of X which is a
union of cells of X . The following is a basic result about CW-complexes. A
proof can be found in [75, 7.6.12] or [28, Corollary 1.4.7].

Theorem A.2.4. If A is a subcomplex of a CW-complex X, the inclusion
A ↪→ X is a closed cofibration.

The following gluing theorem appears for instance in [21, 7.5.7, Corol-
lary 2].

Theorem A.2.5. Suppose that the following diagram is a pushout of topo-
logical spaces

A
f

��
� �

��

Y

��
X

f
�� Z

in which A ↪→ X is a closed cofibration and f : A → Y is a homotopy
equivalence. Then f : X → Z is a homotopy equivalence.

The following are two applications that show how to use the gluing theorem
together with Theorem A.2.4 to study the homotopy type of CW-complexes
and polyhedra.

Proposition A.2.6. Let K be a simplicial complex and let v be a vertex
of K. If the link |lk(v)| is contractible, |K| and |K � v| are homotopy
equivalent.

Proof. Consider the following diagram

|lk(v)| � � ��
� �

��

|st(v)|
� �

��
|K � v| � � �� |K|.
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It is a pushout because |st(v)| ∪ |K � v| = |K|, |st(v)| ∩ |K � v| = |lk(v)|
and both |st(v)| and |K�v| are closed subspaces of |K|. Moreover, |lk(v)| ↪→
|K � v| is a cofibration by Theorem A.2.4 and, since |lk(v)| ↪→ |st(v)| is a
homotopy equivalence because st(v) is a cone, |K � v| ↪→ |K| is a homotopy
equivalence by Theorem A.2.5. 	

Proposition A.2.7. If Y is a contractible subcomplex of a CW-complex X,
the quotient map X → X/Y is a homotopy equivalence.

Proof. Since Y → ∗ is a homotopy equivalence, by the gluing theorem so is
X → X/Y . 	




•
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49. J. Matoušek, M. Tancer and U. Wagner. Hardness of embedding simplicial
complexes in R

d. J. Eur. Math. Soc. 13 (2011), 259–295.
50. S. Matveev. Algorithmic topology and classification of 3-manifolds. Second

edition, Springer (2007).
51. J.P. May. Finite topological spaces. Notes for REU (2003). Available at http://

www.math.uchicago.edu/∼may/MISCMaster.html
52. J.P. May. Finite spaces and simplicial complexes. Notes for REU (2003). Available

at http://www.math.uchicago.edu/∼may/MISCMaster.html
53. J.P. May. Finite groups and finite spaces. Notes for REU (2003). Available at

http://www.math.uchicago.edu/∼may/MISCMaster.html
54. M.C. McCord. Singular homology and homotopy groups of finite spaces. Notices

Amer. Math. Soc., vol. 12 (1965), p. 622.
55. M.C. McCord. Singular homology groups and homotopy groups of finite topolog-

ical spaces. Duke Math. J. 33 (1966), 465–474.
56. M.C. McCord. Homotopy type comparison of a space with complexes associated

with its open covers. Proc. Amer. Math. Soc. 18 (1967), 705–708.
57. J. Milnor. Construction of universal bundles, II. Ann. of Math. 63 (1956), 430–

436.
58. J. Milnor. Whitehead Torsion. Bull. Amer. Math. Soc. 72 (1966), 358–426.
59. E.G. Minian. Teorema de punto fijo de Lefschetz: Versión topológica y ver-

siones combinatorias. Unpublished notes. Available at http://mate.dm.uba.ar/∼
gminian/lefschetzfinal.pdf

60. E.G. Minian. Some remarks on Morse theory for posets, homological Morse theory
and finite manifolds. arXiv:1007.1930

61. J.R. Munkres. Elements of Algebraic topology. Addison-Wesley (1984).
62. J.R. Munkres. Topology, Second Edition. Prentice Hall (2000).
63. R. Oliver. Smooth fixed point free actions of compact Lie groups on disks. Thesis,

Princeton University (1974).
64. R. Oliver. Fixed-Point Sets of Group Actions on Finite Acyclic Complexes.

Comm. Math. Helvetici 50 (1975), 155–177.
65. T. Osaki. Reduction of finite topological spaces. Interdiscip. Inform. Sci. 5 (1999),

149–155.
66. G. Perelman. The entropy formula for the Ricci flow and its geometric applica-

tions. arXiv:math/0211159v1
67. G. Perelman. Ricci flow with surgery on three-manifolds. arXiv:math/0303109v1
68. G. Perelman. Finite extinction time for the solutions to the Ricci flow on certain

three-manifolds. arXiv:math/0307245v1
69. D. Quillen. Higher algebraic K-theory, I: Higher K-theories. Lect. Notes in Math.

341 (1972), 85–147.
70. D. Quillen. Homotopy properties of the poset of nontrivial p-subgroups of a group.

Adv. Math. 28 (1978), 101–128.
71. I. Rival. A fixed point theorem for finite partially ordered sets. J. Combin. Theory

A 21 (1976), 309–318.
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Poincaré conjecture, 137
pointwise order, 5
polyhedral collapse, 138
polyhedron, 152
preorder, 2
product, 31, 62

topology, 4
pushout, 155

qcop-
reducible, 146
reduction, 146

qc-
reducible, 140
reduction, 140

quasi constructible complex, 141
Quillen’s conjecture, 109, 119, 126
Quillen’s Theorem A, 17

simple version, 69
simplicial version, 18, 69

quotient, 32, 100
topology, 7

real projective plane, 94
reduced lattice, 121
refinement map, 81
regular CW-complex, 93
relative homotopy, 6

shellable complex, 143
Sierpinski space, 33
simple homotopy equivalence

of finite spaces, 66
of polyhedra, 64

simple homotopy type
of finite spaces, 55
simplicial, 52

simplicial approximation, 154
simplicial complex, 151
simplicial complex associated to a finite

space, 12
simplicial map, 152
splittable vertex, 145
standard spines, 137, 138, 145
star

in a finite space, 30
simplicial, 51

stellar subdivision, 51, 53
strong collapse

of finite spaces, 21
simplicial, 74

strong collapsible complex, 76, 84
strong equivalence, 75
strong expansion

simplicial, 74
strong G-collapse of finite spaces, 112
strong homotopy type, 74, 126
subcomplex

of a CW-complex, 158
of a simplicial complex, 151

subspace topology, 4



170 Index

suitable number for an endomorphism,
44

support, 12, 152
supremum, 121
suspension, 30

non-Hausdorff, 30
Sylow subgroup, 108

T0-separation axiom, 2
T1-separation axiom, 22
trace, 130
triangulation, 152

up-set, 3

vertex homogeneous complex, 126

Wallet, 54, 98
weak homotopy equivalence, 10
weak homotopy type, 16
weak point, 54

down weak point, 54
up weak point, 54

weakly contractible, see homotopically
trivial

wedge, 33, 63
Whitehead group, 50, 53, 59
Whitehead Theorem, 10, 17

X -McCord map, 14, 99

Zeeman’s conjecture, 138



LECTURE NOTES IN MATHEMATICS 123
Edited by J.-M. Morel, B. Teissier; P.K. Maini

Editorial Policy (for the publication of monographs)

1. Lecture Notes aim to report new developments in all areas of mathematics and their
applications - quickly, informally and at a high level. Mathematical texts analysing new
developments in modelling and numerical simulation are welcome.
Monograph manuscripts should be reasonably self-contained and rounded off. Thus they
may, and often will, present not only results of the author but also related work by other
people. They may be based on specialised lecture courses. Furthermore, the manuscripts
should provide sufficient motivation, examples and applications. This clearly distinguishes
Lecture Notes from journal articles or technical reports which normally are very concise.
Articles intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes” character. For similar reasons it is unusual for doctoral theses to
be accepted for the Lecture Notes series, though habilitation theses may be appropriate.

2. Manuscripts should be submitted either online at www.editorialmanager.com/lnm to
Springer’s mathematics editorial in Heidelberg, or to one of the series editors. In general,
manuscripts will be sent out to 2 external referees for evaluation. If a decision cannot yet
be reached on the basis of the first 2 reports, further referees may be contacted: The author
will be informed of this. A final decision to publish can be made only on the basis of the
complete manuscript, however a refereeing process leading to a preliminary decision can
be based on a pre-final or incomplete manuscript. The strict minimum amount of material
that will be considered should include a detailed outline describing the planned contents
of each chapter, a bibliography and several sample chapters.
Authors should be aware that incomplete or insufficiently close to final manuscripts almost
always result in longer refereeing times and nevertheless unclear referees’ recommenda-
tions, making further refereeing of a final draft necessary.
Authors should also be aware that parallel submission of their manuscript to another
publisher while under consideration for LNM will in general lead to immediate rejection.

3. Manuscripts should in general be submitted in English. Final manuscripts should contain
at least 100 pages of mathematical text and should always include

– a table of contents;
– an informative introduction, with adequate motivation and perhaps some historical

remarks: it should be accessible to a reader not intimately familiar with the topic
treated;

– a subject index: as a rule this is genuinely helpful for the reader.

For evaluation purposes, manuscripts may be submitted in print or electronic form (print
form is still preferred by most referees), in the latter case preferably as pdf- or zipped
psfiles. Lecture Notes volumes are, as a rule, printed digitally from the authors’ files.
To ensure best results, authors are asked to use the LaTeX2e style files available from
Springer’s web-server at:

ftp://ftp.springer.de/pub/tex/latex/svmonot1/ (for monographs) and
ftp://ftp.springer.de/pub/tex/latex/svmultt1/ (for summer schools/tutorials).



Additional technical instructions, if necessary, are available on request from
lnm@springer.com.

4. Careful preparation of the manuscripts will help keep production time short besides
ensuring satisfactory appearance of the finished book in print and online. After acceptance
of the manuscript authors will be asked to prepare the final LaTeX source files and
also the corresponding dvi-, pdf- or zipped ps-file. The LaTeX source files are essential
for producing the full-text online version of the book (see http://www.springerlink.
com/openurl.asp?genre=journal&issn=0075-8434 for the existing online volumes of
LNM). The actual production of a Lecture Notes volume takes approximately 12 weeks.

5. Authors receive a total of 50 free copies of their volume, but no royalties. They are entitled
to a discount of 33.3 % on the price of Springer books purchased for their personal use, if
ordering directly from Springer.

6. Commitment to publish is made by letter of intent rather than by signing a formal contract.
Springer-Verlag secures the copyright for each volume. Authors are free to reuse material
contained in their LNM volumes in later publications: a brief written (or e-mail) request
for formal permission is sufficient.

Addresses:
Professor J.-M. Morel, CMLA,
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