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Preface

There should be more math.
This could be mathier.

B.A. Summers

This book is a revised version of my PhD Thesis [5], supervised by Gabriel
Minian and defended in March 2009 at the Mathematics Department of the
Facultad de Ciencias Exactas y Naturales of the Universidad de Buenos Aires.
Some small changes can be found here, following the suggestions of the ref-
erees and the editors of the LNM.

Gabriel proposed that we work together in the homotopy theory of finite
spaces at the beginning of 2005, claiming that the topic had great potential
and could be rich in applications. Very soon I became convinced of this as well.
A series of notes by Peter May [51-53] and McCord and Stong’s foundational
papers [55, 76] were the starting point of our research. May’s notes contain
very interesting questions and open problems, which motivated the first part
of our work.

This presentation of the theory of finite topological spaces includes the
most fundamental ideas and results previous to our work and, mainly, our
contributions over the last years. It is intended for topologists and combina-
torialists, but since it is a self-contained exposition, it is also recommended
for advanced undergraduate students and graduate students with a modest
knowledge of Algebraic Topology.

The revisions of this book were made during a postdoc at Kungliga
Tekniska hogskolan, in Stockholm.
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Introduction

Most of the spaces studied in Algebraic Topology, such as CW-complexes
or manifolds, are Hausdorff spaces. In contrast, finite topological spaces are
rarely Hausdorff. A topological space with finitely many points, each of which
is closed, must be discrete. In some sense, finite spaces are more natural than
CW-complexes. They can be described and handled in a combinatorial way
because of their strong relationship with finite partially ordered sets, but
it is the interaction between their combinatorial and topological structures
that makes them important mathematical objects. At first glance, one could
think that such non Hausdorff spaces with just a finite number of points are
uninteresting, but we will see that the theory of finite spaces can be used to
investigate deep well-known problems in Topology, Algebra and Geometry.

In 1937, Alexandroff [1] showed that finite spaces and finite partially
ordered sets (posets) are essentially the same objects considered from different
points of view. However, it was not until 1966 that strong and deep results on
the homotopy theory of finite spaces appeared, shaped in the two foundational
and independent papers [76] and [55]. Stong [76] used the combinatorics of
finite spaces to explain their homotopy types. This astounding article would
have probably gone unnoticed if in the same year, McCord had not discovered
the relationship between finite spaces and compact polyhedra. Given a finite
topological space X, there exists an associated simplicial complex IC(X) (the
order complex) which has the same weak homotopy type as X, and, for each
finite simplicial complex K, there is a finite space X (K) (the face poset)
weak homotopy equivalent to K. Therefore, in contrast to what one could
have expected at first sight, weak homotopy types of finite spaces coincide
with homotopy types of finite CW-complexes. In this way, Stong and McCord
put finite spaces in the game, showing implicitly that the interplay between
their combinatorics and topology can be used to study homotopy invariants
of well-known Hausdorff spaces.

Despite the importance of those papers, finite spaces remained in the shad-
ows for many more years. During that time, the relationship between finite
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xii Introduction

posets and finite simplicial complexes was exploited, but in most cases with-
out knowing or neglecting the intrinsic topology of the posets. A clear example
of this is the 1978 article of Quillen [70], who investigated the connection bet-
ween algebraic properties of a finite group G and homotopy properties of the
simplicial complex associated to the poset Sp,(G) of p-subgroups of G. In that
beautiful article, Quillen left a challenging conjecture which remains open
until this day. Quillen stated the conjecture in terms of the topology of the
simplicial complex associated to S, (G). We will see that the finite space point
of view adds a completely new dimension to his conjecture and allows one
to attack the problem with new topological and combinatorial tools. We will
show that the Whitehead Theorem does not hold for finite spaces: there are
weak homotopy equivalent finite spaces with different homotopy types. This
distinction between weak homotopy types and homotopy types is lost when
we look into the associated polyhedra (because of the Whitehead Theorem)
and, in fact, the essence of Quillen’s conjecture lies precisely in the distinction
between weak homotopy types and homotopy types of finite spaces.

In the last decades, a few interesting papers on finite spaces appeared
[35,65,77], but the subject certainly did not receive the attention it required.
In 2003, Peter May wrote a series of unpublished notes [51-53] in which he
synthesized the most important ideas on finite spaces known until that time.
In these articles, May also formulated some natural and interesting questions
and conjectures which arose from his own research. May was one of the first
to note that Stong’s combinatorial point of view and the bridge constructed
by McCord could be used together to attack problems in Algebraic Topology
using finite spaces. My advisor, Gabriel Minian, chose May’s notes, jointly
with Stong’s and McCord’s papers, to be the starting point of our research on
the Algebraic Topology of Finite Topological Spaces and Applications. This
work, based on my PhD Dissertation defended at the Universidad de Buenos
Aires in March 2009, is the first detailed exposition on the subject. In these
notes I will try to set the basis of the theory of finite spaces, recalling the
developments previous to ours, and I will exhibit the most important results
of our work in the last years. The concepts and methods that we present
in these notes are already being applied by many mathematicians to study
problems in different areas.

Many results presented in this work are new and original. Various of them
are part of my joint work with Gabriel Minian and appeared in our publi-
cations [7—11]. The results on finite spaces previous to ours appear in Chap. 1
and in a few other parts of the book where it is explicitly stated. Chapter 8, on
equivariant simple homotopy types and Quillen’s conjecture, and Chap. 11,
on the Andrews-Curtis conjecture, contain some of the strongest results of
these notes. These results are still unpublished.

New homotopical approaches to finite spaces that will not be treated in
this book appeared for example in [22,60] and more categorically oriented
in [40,73]. Applications of our methods and results to graph theory can be



Introduction xiii

found in [19]. A relationship of finite spaces with toric varieties is discussed
in [12].

In the first chapter we recall the correspondence between finite spaces and
finite posets, the combinatorial description of homotopy types by Stong and
the relationship between weak homotopy types of finite spaces and homotopy
types of compact polyhedra found by McCord.

In Chap.2 we give short basic proofs of many interesting original results.
These include: the relationship between homotopy of maps between finite
spaces and the discrete notion of homotopy for simplicial maps; an extension
of Stong’s ideas for pairs of finite spaces; the manifestation of finite homotopy
types in the Hausdorff setting; a description of the fundamental group of a
finite space; the realization of a finite group as the automorphism group of a
finite space and classical constructions in the finite context, including a finite
version of the mapping cylinder.

McCord found in [55] a finite model of the n-sphere S™ (i.e. a finite space
weak homotopy equivalent to S™) with only 2n + 2 points. May conjectured
in his notes that this space is, in our language, a minimal finite model of S™,
that is to say a finite model with minimum cardinality. In Chap.3 we prove
that May’s conjecture is true. Moreover, the minimal finite model of S is
unique up to homeomorphism (see Theorem 3.2.2). In this chapter we also
study minimal finite models of finite graphs (CW-complexes of dimension 1)
and give a full description of them in Theorem 3.3.7. In this case the
uniqueness of the minimal finite models depends on the graph. The reason
for studying finite models of spaces instead of finite spaces with the same
homotopy type is that homotopy types of finite complexes rarely occur in
the setting of finite spaces (see Corollary 2.3.4).

Given a finite space X, there exists a homotopy equivalent finite space X
which is Ty. That means that for any two points of X there exists an open
set which contains only one of them. Therefore, when studying homotopy
types of finite spaces, we can restrict our attention to Ty-spaces.

In [76] Stong defined the notion of linear and colinear points of finite
Ty-spaces, which we call up beat and down beat points following May’s termi-
nology. Stong proved that removing a beat point from a finite space does not
affect its homotopy type. Moreover, two finite spaces are homotopy equivalent
if and only if it is possible to obtain one from the other just by adding and
removing beat points. On the other hand, McCord’s results suggest that
it is more important to study weak homotopy types of finite spaces than
homotopy types. In this direction, we generalize Stong’s definition of beat
points introducing the notion of weak point (see Definition 4.2.2). If one
removes a weak point x from a finite space X, the resulting space need
not be homotopy equivalent to X, however we prove that in this case the
inclusion X \ {z} — X is a weak homotopy equivalence. As an application
of this result, we exhibit an example (Example 4.2.1) of a finite space which
is homotopically trivial, i.e. weak homotopy equivalent to a point, but which
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is not contractible. This shows that the Whitehead Theorem does not hold
for finite spaces, not even for homotopically trivial spaces.

Osaki proved in [65] that if = is a beat point of a finite space X, there
is a simplicial collapse from the associated complex K(X) to K(X ~ {z}).
In particular, if two finite spaces are homotopy equivalent, their associated
complexes have the same simple homotopy type. However, we noticed that
the converse is not true. There are easy examples of non-homotopy equiv-
alent finite spaces with simple homotopy equivalent associated complexes.
The removing of beat points is a fundamental move in finite spaces, which
gives rise to homotopy types. We asked whether there exists another kind of
fundamental move in finite spaces, which corresponds exactly to the simple
homotopy types of complexes. We proved that the answer to this question
lies exactly in the notion of weak point. We say that there is a collapse from a
finite space X to a subspace Y if we can obtain Y from X by removing weak
points, and we say that two finite spaces have the same simple homotopy type
if we can obtain one from the other by adding and removing weak points.
We denote the first case with X \, Y and the second case with X "\ Y.
The following result, which appears in Chap.4, says that simple homotopy
types of finite spaces correspond precisely to simple homotopy types of the
associated complexes.

Theorem 4.2.11.

(a) Let X and Y be finite Ty-spaces. Then, X and Y are simple homotopy
equivalent if and only if KK(X) and K(Y') have the same simple homotopy
type. Moreover, if X \|'Y then K(X)\, L(Y).

(b) Let K and L be finite simplicial complexes. Then, K and L are simple
homotopy equivalent if and only if X(K) and X (L) have the same simple
homotopy type. Moreover, if K\, L then X(K) \, X(L).

This result allows one to use finite spaces to study problems of classical
simple homotopy theory. Indeed, we will use it to study the Andrews-Curtis
conjecture and we will use an equivariant version to investigate Quillen’s
conjecture on the poset of p-subgroups of a finite group.

It is relatively easy to know whether two finite spaces are homotopy
equivalent using Stong’s ideas, however it is very difficult (algorithmically
undecidable in fact) to distinguish if two finite spaces have the same weak
homotopy type. Note that this is as hard as recognizing if the associated
polyhedra have the same homotopy type. Our results on simple homotopy
types provide a first approach in this direction. If two finite spaces have
trivial Whitehead group, then they are weak homotopy equivalent if and
only if they are simple homotopy equivalent. In particular, a finite space
X is homotopically trivial if and only if it is possible to add and remove
weak points from X to obtain the singleton *. The importance of recognizing
homotopically trivial spaces will be evident when we study the conjecture of
Quillen. Note that the fundamental move in finite spaces induced by weak
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points is easier to handle and describe than the simplicial one because it
consists of removing just one single point of the space.

In the fourth section of Chap.4 we study an analogue of Theorem 4.2.11
for simple homotopy equivalences. We give a description of the maps between
finite spaces which correspond to simple homotopy equivalences at the level
of complexes. The main result of this section is Theorem 4.4.12. In contrast
to the classical situation where simple homotopy equivalences are particular
cases of homotopy equivalences, homotopy equivalences between finite spaces
are a special kind of simple homotopy equivalences.

As an interesting application of our methods on simple homotopy types,
we will prove the following simple homotopy version of Quillen’s famous
Theorem A.

Theorem 4.5.2. Let ¢ : K — L be a simplicial map between finite simplicial
complezes. If ¢~1(o) is collapsible for every simplex o of L, then |p| is a
simple homotopy equivalence.

In Chap.5 we study the relationship between homotopy equivalent finite
spaces and the associated complexes. The concept of contiguity classes of
simplicial maps leads to the notion of strong homotopy equivalence (Definition
5.1.4) and strong homotopy types of simplicial complexes. This equivalence
relation is generated by strong collapses which are more restrictive than the
usual simplicial collapses. We prove the following result.

Theorem 5.2.1.

(a) If two finite To-spaces are homotopy equivalent, their associated com-
plexes have the same strong homotopy type.

(b) If two finite complexes have the same strong homotopy type, the associ-
ated finite spaces are homotopy equivalent.

The notion of strong collapsibility is used to study the relationship between
the contractibility of a finite space and that of its barycentric subdivision.
This concept can be characterized using the nerve of a complex.

The fundamental moves described by beat or weak points are what we
call methods of reduction. A reduction method is a technique that allows one
to change a finite space to obtain a smaller one, preserving some topological
properties, such as homotopy type, simple homotopy type, weak homotopy
type or the homology groups. In [65], Osaki introduced two methods of this
kind which preserve the weak homotopy type, and he asked whether these
moves are effective in the following sense: given a finite space X, is it always
possible to obtain a minimal finite model of X by applying repeatedly these
methods? In Chap.6 we give an example to show that the answer to this
question is negative. In fact, it is a very difficult problem to find minimal
finite models of spaces since this question is directly related to the problem
of distinguishing weak homotopy equivalent spaces. Moreover, we prove that
Osaki’s methods of reduction preserve the simple homotopy type. In this
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chapter we also study one-point reduction methods which consist of removing
just one point of the space. For instance, beat points and weak points lead
to one-point methods of reduction. In the second section of that chapter,
we define the notion of y-point which generalizes the concept of weak point
and provides a more applicable method which preserves the weak homotopy
type. The importance of this new method is that it is almost the most general
possible one-point reduction method. More specifically, we prove the following
result.

Theorem 6.2.5. Let X be a finite Ty-space, and x € X a point which is
neither mazimal nor minimal and such that X ~{x} — X is a weak homotopy
equivalence. Then x is a y-point.

In some sense, one-point methods are not sufficient to describe weak ho-
motopy types of finite spaces. Concretely, if x € X is such that the inclusion
X {2z} — X is a weak homotopy equivalence, then X ~ {z}, N\, X (see
Theorem 6.2.8). Therefore, these methods cannot be used to obtain weak
homotopy equivalent spaces which are not simple homotopy equivalent.

Another of the problems originally stated by May in [52] consists in ex-
tending McCord’s ideas in order to model, with finite spaces, not only
simplicial complexes, but general CW-complexes. We give an approach to this
question in Chap. 7, where the notion of h-reqular CW-complex is defined. It
was already known that regular CW-complexes could be modeled by their
face posets. The class of h-regular complexes extends considerably the class of
regular complexes and we explicitly construct for each h-regular complex K, a
weak homotopy equivalence K — X (K). Our results on h-regular complexes
allow the construction of new interesting examples of finite models. We also
apply these results to investigate quotients of finite spaces and derive a long
exact sequence of reduced homology for finite spaces.

Given a finite group G and a prime integer p, we denote by S,(G) the poset
of nontrivial p-subgroups of G. In [70], Quillen proved that if G has a non-
trivial normal p-subgroup, then K(S,(G)) is contractible and he conjectured
the converse: if the complex K(S,(G)) is contractible, G has a nontrivial
p-subgroup. Quillen himself proved the conjecture for the case of solvable
groups, but the general problem still remains open. Some important advances
were achieved in [3]. As we said above, Quillen never considered S,(G) as a
topological space. In 1984, Stong [77] published a second article on finite
spaces. He proved some results on the equivariant homotopy theory of finite
spaces, which he used to attack Quillen’s conjecture. He showed that G has a
nontrivial normal p-subgroup if and only if S, (G) is a contractible finite space.
Therefore, the conjecture can be restated in terms of finite spaces as follows:
Sp(G) is contractible if and only if it is homotopically trivial. In Chap. 8 we
study an equivariant version of simple homotopy types of simplicial complexes
and finite spaces and we prove an analogue of Theorem 4.2.11 in this case.
Using this result we obtain some new formulations of the conjecture, which
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are exclusively written in terms of simplicial complexes. One of these versions
states that K(S,(G)) is contractible if and only if it has trivial equivariant
simple homotopy type. We also obtain formulations of the conjecture in
terms of the polyhedron associated to the much smaller poset A,(G) of the
elementary abelian p-subgroups.

In Chap.9 we describe homotopy properties of the so called reduced
lattices, which are finite lattices with their top and bottom elements removed.
We also introduce the £ construction, which associates a new simplicial
complex to a given finite space. This application, which is closed related to
the nerve of a complex, was not included originally in my Dissertation [5]. We
compare the homotopy type of a finite Tp-space X and the strong homotopy
type of £L(X). At the end of the chapter, another restatement of Quillen’s
conjecture is given using the complex L,(G) = L£(S,(G)). This version of the
conjecture is closely related to the so called Evasiveness conjecture.

Chapter 10 is devoted to the study of fixed point sets of maps. We study the
relationship between the fixed points of a simplicial automorphism and the
fixed points of the associated map between finite spaces. We use this result to
prove a stronger version of Lefschetz Theorem for simplicial automorphisms.

In the last chapter of these notes we exhibit some advances concerning the
Andrews-Curtis conjecture. The geometric Andrews-Curtis conjecture states
that if K is a contractible complex of dimension 2, then it 3-deforms to a
point, i.e. it can be deformed into a point by a sequence of collapses and
expansions which involve complexes of dimension not greater than 3. This
long standing problem stated in the sixties, is closely related to Zeeman’s
conjecture and hence, to the famous Poincaré conjecture. With the proof of
the Poincaré conjecture by Perelman, and by [30], we know now that the
geometric Andrews-Curtis conjecture is true for standard spines (see [72]),
but it still remains open for general 2-complexes. Inspired by our results on
simple homotopy theory of finite spaces and simplicial complexes, we define
the notion of quasi constructible 2-complexres which generalizes the concept
of constructible complexes. Using techniques of finite spaces we prove that
contractible quasi constructible 2-complexes 3-deform to a point. In this way
we substantially enlarge the class of complexes which are known to satisfy
the conjecture.

Throughout the book, basic results of Algebraic Topology will be assumed
to be known by the reader. Nevertheless, we have included an appendix at
the end of the notes, where we recall some basic concepts, ideas and classical
results on simplicial complexes and CW-complexes that might be useful to
the non-specialist.






Chapter 1
Preliminaries

In this chapter we will state some of the most important results on finite
spaces which are previous to our work. These results can be summarized by
the following three items:

1. The correspondence between finite topological spaces and finite partially
ordered sets, first considered by Alexandroff in [1] in 1937.

2. The combinatorial description of homotopy types of finite spaces, discov-
ered by Stong in his beautiful article [76] of 1966.

3. The connection between finite spaces and polyhedra, found by McCord
[55] also in 1966.

A very nice exposition of the theory of finite spaces developed in the twen-
tieth century can also be found in May’s series of unpublished notes [51-53].

We will present Alexandroff and Stong’s approaches to describe finite
spaces, continuous maps, homotopies and connected components combina-
torially. Then, we will compare weak homotopy types of finite spaces with
homotopy types of compact polyhedra using McCord’s results. Homotopy
types of finite spaces were definitively characterized by Stong and homotopy
equivalences between finite spaces are also well-understood. However, it is
much more difficult to characterize weak homotopy equivalences. One of the
most important tools to identify weak homotopy equivalences is the Theorem
of McCord 1.4.2. However, we will see in following chapters that in some sense
this result is not sufficient to describe all weak equivalences. The problem of
distinguishing weak homotopy equivalences between finite spaces is directly
related to the problem of recognizing homotopy equivalences between poly-
hedra.

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and 1
Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6_1, © Springer-Verlag Berlin Heidelberg 2011



2 1 Preliminaries
1.1 Finite Spaces and Posets

A finite topological space is a topological space with finitely many points and
a finite preordered set is a finite set with a transitive and reflexive relation.
We will see that finite spaces and finite preordered sets are basically the
same objects considered from different perspectives. Given a finite topological
space X, we define for every point x € X the minimal open set U, as the
intersection of all the open sets which contain x. These sets are again open.
In fact arbitrary intersections of open sets in finite spaces are open. It is easy
to see that the minimal open sets constitute a basis for the topology of X.
Indeed, any open set U of X is the union of the sets U, with x € U. This
basis is called the minimal basis of X. Note that any other basis of X must
contain the minimal basis, since if U, is a union of open sets, one of them
must contain x and then it coincides with U,. We define a preorder on X by
x<yifzelU,.

If X is now a finite preordered set, one can define a topology on X given
by the basis {y € X | y < 2}sex. Note that if y < x, then y is contained
in every basic set containing x, and therefore y € U,. Conversely, if y € U,,
then y € {z € X | z < z}. Therefore y < z if and only if y € U,. This shows
that these two applications, relating topologies and preorders on a finite set,
are mutually inverse. This simple remark, made in first place by Alexandroff
[1], allows us to study finite spaces by combining Algebraic Topology with
the combinatorics arising from their intrinsic preorder structures.

The antisymmetry of a finite preorder corresponds exactly to the Ty sep-
aration axiom. Recall that a topological space X is said to be Ty if for any
pair of points in X there exists an open set containing one and only one of
them. Therefore finite Ty-spaces are in correspondence with finite partially
ordered sets (posets).

Example 1.1.1. Let X ={a,b,c¢,d} be a finite space whose open sets are
0, {a,b,c,d} {b,d}, {c}, {d}, {b,c,d} and {c,d}. This space is Tp, and
therefore it is a poset. The first figure (Fig.1.1) is a scheme of X with its
open sets represented by the interiors of the closed curves. A more useful
way to represent finite Ty-spaces is with their Hasse diagrams. The Hasse
diagram of a poset X is a digraph whose vertices are the points of X and
whose edges are the ordered pairs (x,y) such that x < y and there exists
no z € X such that r < z < y. In the graphical representation of a Hasse
diagram we will not write an arrow from z to y, but a segment with y over
x (see Fig. 1.2).

If (z,y) is an edge of the Hasse diagram of a finite poset X, we say that y
covers x and write z < y.

An element = in a poset X is said to be mazximal if y > x implies y = =,
and it is a mazimum if y < x for every y € X. A finite poset has a maximum
if and only if there is a unique maximal element. The notions of minimal
element and minimum are dually defined. A chain in a poset is a subset of
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Fig. 1.1 Open sets of X

A

Fig. 1.2 Hasse diagram of X

elements which are pairwise comparable. An antichain is a subset of elements
pairwise non-comparable.

Open sets of finite spaces correspond to down-sets and closed sets to up-
sets. A subset U of a preordered set X is a down-set if for every z € U and
y < x, it holds that y € U. The notion of up-set is dually defined. If X is T,
the open sets of X are in bijection with its antichains.

If = is a point of a finite space X, F, denotes the closure of the set {z}
in X. Note that a point y is in F}, if and only if 2 € U,. Therefore, F,, = {y €
X |y > a}. If a point  belongs to finite spaces X and Y, we write UX, UY
FX and FY so as to distinguish whether the minimal open sets and closures
are considered in X or in Y.

Note that the set of closed subspaces of a finite space X is also a topology
on the underlying set of X. The finite space with this topology is the opposite
of X (or dual) and it is denoted by X °P. The order of X°? is the inverse order
of X. If z € X, then UX" = FX.

If A is a subspace of a topological space X, the open sets of A are the
intersections of open sets of X with A. In particular, if X is finite and a € A,
UA=UXNA.If X and Y are two topological spaces, a basis for the product
topology in the cartesian product X x Y is given by products U x V with
U an open subset of X and V open in Y. Then, if X and Y are finite and
(z,y) € X XY, U,y = Uy x Uy. Therefore, we have the following



4 1 Preliminaries

Remark 1.1.2.

(a) Let A be a subspace of a finite space X and let a,a’ € A. Then a <4 o
if and only if a <x a/. Here <4 denotes the preorder corresponding to
the subspace topology of A and <x the corresponding to the topology
of X.

(b) Let X and Y be two finite spaces and let (z,y), (', y’) be two points in
the cartesian product X x Y considered with the product topology. Then
(x,y) < («/,y') if and only if x < 2’ and y < y/'.

1.2 Maps, Homotopies and Connectedness

We will see that the notions of morphisms in finite spaces and in finite pre-
ordered sets are exactly the same. Moreover, the connected components of
a finite space coincide with its path connected components and with the
connected components of the corresponding finite preordered set. This result
will be used to give a combinatorial description of homotopies.

A function f : X — Y between two preordered sets is order preserving if
z <z implies f(x) < f(a') for every x, 2’ € X.

Proposition 1.2.1. A function f : X — Y between finite spaces is continu-
ous if and only if it is order preserving.

Proof. Suppose f is continuous and z < 2’ in X. Then f~'(Up)) C X is
open and since ' € f~H(Upp), @ € Uy C f~H(Up(ary). Therefore f(z) <
f@&@).

Now assume that f is order preserving. To prove that f is continuous
it suffices to show that f~!(U,) is open for every set U, of the minimal
basis of Y. Let = € f~!(U,) and let 2/ < x. Then f(2') < f(z) < y and
2’ € f~Y(U,). This proves that f~!(U,) is a down-set. 0

If f: X — Y is a function between finite spaces, the map f°P : X°P — Y°P
is the map which coincides with f in the underlying sets. It easy to see that
f is continuous if and only if f°P is continuous.

Remark 1.2.2. If X is a finite space, a one-to-one continuous map f : X — X
is a homeomorphism. In fact, since f is a permutation of the set X, there
exists n € N = Z>1 such that f” = 1x.

Lemma 1.2.3. Let x,y be two comparable points of a finite space X. Then
there exists a path from x toy in X, i.e. a map « from the unit interval I to
X such that a(0) = x and (1) = y.

Proof. Assume x <y and definea: ] — X, a(t) =zif0<t <1, a(l) =y.
If U C X is open and contains y, then it contains - also. Therefore a~*(U)
is one of the following sets, @), I or [0,1), which are all open in I. Thus, « is
a path from x to y. O
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Let X be a finite preordered set. A fence in X is a sequence xg, x1, ..., Ty
of points such that any two consecutive are comparable. X is order-connected
if for any two points =,y € X there exists a fence starting in z and ending
in y.

Proposition 1.2.4. Let X be a finite space. Then the following are equiva-
lent:

1. X is a connected topological space.
2. X is an order-connected preorder.
3. X is a path-connected topological space.

Proof. If X is order-connected, it is path-connected by Lemma 1.2.3. We only
have to prove that connectedness implies order-connectedness. Suppose X is
connected and let z € X. Let A = {y € X | there is a fence from z to y}. If
y € A and z <y, then z € A. Therefore A is a down-set. Analogously, it is
an up-set and then, A = X. O

Recall that if X and Y are two topological spaces, the compact-open topol-
ogy in the set YX of maps from X to Y is the topology whose subbase is
given by the sets S(K,W) = {f € YX | f(K) C W} where K is a compact
subset of X and W is an open subset of Y.

If X and Y are finite spaces we can consider the finite set YX of continuous
maps from X to Y with the pointwise order: f < g if f(z) < g(z) for every
r e X.

Proposition 1.2.5. Let X andY be two finite spaces. Then pointwise order
on YX corresponds to the compact-open topology.

Proof. Let S(K,W) ={f €YX | f(K) C W} be a set of the subbase of the

compact-open topology, where K is a (compact) subset of X and W an open

set of Y. If g < f and f € S(K,W), then g(z) < f(x) € W for every z € K

and therefore, g € S(K, W). Thus, S(K, W) is a down-set in YX. Conversely,

if feY® {geYX|g<ft= N S{z},Uswu))- Therefore both topologies
zeX

coincide. O

The exponential law for sets claims that if XY and Z are three sets,
there is a natural bijection ¢ between the set of functions f : X x Z — Y
and the set of functions Z — YX which is given by &(f)(2)(x) = f(z,z). If
X,Y and Z are now topological spaces and Y¥ is given the compact-open
topology, the continuity of a function f: X x Z — Y implies the continuity
of ¢(f) : Z — YX. However, the converse is not true in general. If X is a
locally compact Hausdorff space, ¢ does define a bijection between the set
of continuous maps X x Z — Y and the set of continuous maps Z — YX.
More generally, it is enough that every point = of X has a basis of compact
neighborhoods, or in other words, that for every open set U containing x there
exists a compact neighborhood of x contained in U (see [27] or [62, Theorems
46.10 and 46.11]). If X is a finite space, every subspace of X is compact and



6 1 Preliminaries

this condition is trivially satisfied. In particular, if X is a finite space and Y’
is any topological space, there is a natural correspondence between the set of
homotopies {H : X x I — Y} and the set of paths {a : I — Y*}. From now
on we consider the map spaces Y with the compact-open topology, unless
we say otherwise.

Given two maps f,g : X — Y between topological spaces, we will write
f =~ g if they are homotopic. Moreover, if they are homotopic relative to a
subspace A C X, we will write f ~ g rel A.

Corollary 1.2.6. Let f,g: X — Y be two maps between finite spaces. Then
f =~ g if and only if there is a fence f = fo < f1 > fo < ... fn = g.
Moreover, if A C X, then f ~ g rel A if and only if there exists a fence
f=fo<fi>fa<...fn=g such that fila = f|a for every 0 <i <n.

Proof. There exists a homotopy H : f ~ g rel A if and only if there is a path
a: I —YX from f to g such that a(t)|a = f|a for every 0 < ¢ < 1. This is
equivalent to saying that there is a path a : I — M from f to g where M
is the subspace of YX of maps which coincide with f in A. By Proposition
1.2.4 this means that there is a fence from f to g in M. The order of M is the
one induced by Y, which is the pointwise order by Proposition 1.2.5. a

Corollary 1.2.7. Let f,g: X — Y be two maps between finite spaces. Then
f =~ g if and only if f°P ~ ¢°P. In particular, f is a homotopy equivalence if
and only if foP : X°P — Y °P is a homotopy equivalence and two finite spaces
are homotopy equivalent if and only if their duals are homotopy equivalent.

Remark 1.2.8. Any finite space X with maximum or minimum is contractible
since, in that case, the identity map 1x is comparable with a constant map
¢ and therefore 1x ~ c.

For example, the space of Fig.1.2 has a maximum and therefore it is
contractible.

Note that if X and Y are finite spaces and Y is Ty, then Y¥ is Ty since
f<g,g9<fimplies f(z) = g(x) for every z € X.

1.3 Homotopy Types

In this section we will recall the beautiful ideas of Stong [76] about ho-
motopy types of finite spaces. Stong introduced the notion of linear and
colinear points, which we will call up beat and down beat points following
May’s nomenclature [51]. Removing such points from a finite space does not
affect its homotopy type. Therefore any finite space is homotopy equivalent
to a space without beat points, which is called a minimal finite space. The
Classification Theorem will follow from this remarkable result: two minimal
finite spaces are homotopy equivalent only if they are homeomorphic.
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The next result essentially shows that, when studying homotopy types of
finite spaces, we can restrict ourselves to Ty-spaces. Recall that if ~ is a
relation on a topological space X, then the quotient topology on X/ ~ is
the final topology with respect to the quotient map ¢ : X — X/ ~. In other
words, U C X/ ~ is open if and only if ¢1(U) is open in X. The quotient
topology satisfies the following property: a function f from X/ ~ to any
topological space Y is continuous if and only if the composition fqg: X — Y
is continuous.

Proposition 1.3.1. Let X be a finite space. Let Xo be the quotient X/ ~
where x ~ y if © < y and y < x. Then Xy is Ty and the quotient map
q: X — Xo is a homotopy equivalence.

Proof. Take any section ¢ : Xg — X, i.e. ¢i = 1x,. The composition iq is
order preserving and therefore i is continuous. Moreover, since iqg < 1x, 7 is
a homotopy inverse of q.

Let z,y € Xo such that ¢(z) < q(y), then & < ig(z) < ig(y) < y. If in
addition ¢(y) < ¢q(z), y < x and then ¢(x) = ¢(y). Therefore the preorder of
Xo is antisymmetric. O

Remark 1.3.2. Note that the map ¢ : X9 — X of the previous proof is a
subspace map since ¢i = 1x,. Moreover, since iq¢ < 1x and the maps iq and
1x coincide on Xy, then by Corollary 1.2.6, i1q ~ 1x rel Xy. Therefore Xy is
a strong deformation retract of X.

Definition 1.3.3. A point z in a finite Tp-space X is a down beat point if
x covers one and only one element of X. This is equivalent to saying that
the set U, = U, ~ {z} has a maximum. Dually, x € X is an up beat point
if z is covered by a unique element or equivalently if F, = Fj ~ {z} has a
minimum. In any of these cases we say that x is a beat point of X.

It is easy to recognize beat points looking into the Hasse diagram of the
space. A point x € X is a down beat point if and only if its indegree in the
digraph is 1 (there is one and just one edge with x at its top). It is an up beat
point if and only if its outdegree is 1 (there is one and only one edge with z
at the bottom). In the example of Fig. 1.2 in page 3, a is not a beat point: it
is not a down beat point because there are two segments with a at the top
and it is not an up beat point either because there is no segment with a at
the bottom. The point b is both a down and an up beat point, and c is an
up beat point but not a down beat point.

If X is a finite Tp-space, and x € X, then z is a down beat point of X if
and only if it is an up beat point of X°P. In particular x is a beat point of X
if and only if it is a beat point of X°P.

Proposition 1.3.4. Let X be a finite Ty-space and let x € X be a beat point.
Then X ~\ {z} is a strong deformation retract of X.

Proof. Assume that z is a down beat point and let y be the maximum
of U,. Define the retraction r : X — X ~ {z} by r(z) = y. Clearly, r is
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order-preserving. Moreover if ¢ : X \ {2} < X denotes the canonical
inclusion, ir < 1x. By Corollary 1.2.6, ir ~ 1x rel X \ {a}. If z is an
up beat point the proof is similar. a

Definition 1.3.5. A finite Ty-space is a minimal finite space if it has no
beat points. A core of a finite space X is a strong deformation retract which
is a minimal finite space.

By Remark 1.3.2 and Proposition 1.3.4 we deduce that every finite space
has a core. Given a finite space X, one can find a Ty-strong deformation
retract Xy C X and then remove beat points one by one to obtain a minimal
finite space. The notable property about this construction is that in fact the
core of a finite space is unique up to homeomorphism, moreover: two finite
spaces are homotopy equivalent if and only if their cores are homeomorphic.

Theorem 1.3.6. Let X be a minimal finite space. A map f : X — X is
homotopic to the identity if and only if f = 1x.

Proof. By Corollary 1.2.6 we may suppose that f < 1x or f > 1x. Assume
f <1x.Let € X and suppose by induction that f|; =15 . 1If f(z) # =,

then f(z) € U'ZC and for every y < z, y = f(y) < f(x). Therefore, f(x) is the
maximum of U, which is a contradiction since X has no down beat points.
Then f(x) = x. The case f > 1x is similar. O

Corollary 1.3.7 (Classification Theorem). A homotopy equivalence be-
tween minimal finite spaces is a homeomorphism. In particular the core of a
finite space is unique up to homeomorphism and two finite spaces are homo-
topy equivalent if and only if they have homeomorphic cores.

Proof. Let f: X — Y be a homotopy equivalence between finite spaces and
let g : Y — X be a homotopy inverse. Then ¢gf = 1x and fg = 1y by
Theorem 1.3.6. Thus, f is a homeomorphism. If Xy and X; are two cores of
a finite space X, then they are homotopy equivalent minimal finite spaces,
and therefore, homeomorphic. Two finite spaces X and Y have the same
homotopy type if and only if their cores are homotopy equivalent, but this is
the case only if they are homeomorphic. a

Example 1.3.8. Let X and Y be the following finite Ty-spaces:

X ‘e Y ‘o
b. o .d b. o .d
c® ’f .g c® .f 'g
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The following sequence of figures, shows how to obtain the core of X
removing beat points. Note that b is an up beat point of X, ¢ is an up beat
point of X \{b} and e an up beat point of X \{b, c}. The subspace X~ {b, ¢, e}
obtained in this way is a minimal finite space and then it is the core of X.

AN NN

be oC ol N\ oC ol N\
e® of oy c® of oy
\\< od N ‘o ol
c® .f Og f. .9

On the other hand, a is a beat point of Y and Y\ {a} is minimal. Therefore
the cores of X and Y are not homeomorphic, so X and Y are not homotopy
equivalent.

By the Classification Theorem, a finite space is contractible if and only if
its core is a point. Therefore any contractible finite space has a point which
is a strong deformation retract. This property is false in general for non-finite
spaces (see [38, Exercise 6(b), p.18]). It is not true either that every point
in a contractible finite space X is a strong deformation retract of X (see
Example 2.2.6).

Note that the core X, of a finite space X is the smallest space homotopy
equivalent to X. If Y is another finite space homotopy equivalent to X, then
the core of Y must be homeomorphic to X, and it has at most as many points
as Y.

In [76] Stong also gives a homeomorphism classification result considering
matrix representations of finite spaces. A similar approach can be found also
in the survey [43].

To finish this section, we exhibit the following characterization of minimal
finite spaces which appears in [11].
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Proposition 1.3.9. Let X be a finite Ty-space. Then X is a minimal finite
space if and only if for all x,y € X, if every z € X comparable with x is
comparable with y, then © = y.

Proof. If X is not minimal, there exists a beat point x. Without loss of
generality assume that x is a down beat point. Let y be the maximum of U,.
Thenif z >z, z>yandif z <z, z < y.

Conversely, suppose that there exist x # y such that every element
comparable with x is also comparable with y. In particular  is comparable
with y. We may assume that @ > y. Let A = {z € X | 2 > y and for every
w € X comparable with z, w is comparable with y}. This set is nonempty
since x € A. Let 2’ be a minimal element of A. We show that z’ is a down
beat point with y = max(f]m/). Let z < 2/, then z is comparable with y since
z' € A. Suppose z > y. Let w € X. If w < z, then w < 2’ and so, w is
comparable with y. If w > 2z, w > y. Therefore z € A, contradicting the
minimality of #’. Then z < y. Therefore y is the maximum of Uy . O

1.4 Weak Homotopy Types: The Theory of McCord

In the previous section we have studied homotopy types of finite spaces. On
the other hand we will see in the next chapter, that Hausdorff spaces do
not have in general the homotopy type of any finite space. However finite
CW-complexes do have the same weak homotopy types as finite spaces. In
1966 McCord proved that every compact polyhedron has an associated finite
space with the same weak homotopy type and every finite space has a weak
equivalent associated polyhedron.

Recall that a continuous map f : X — Y between topological spaces is
said to be a weak homotopy equivalence if it induces isomorphisms in all
homotopy groups, i.e. if f, : mo(X) — m(Y) is a bijection and the maps

fo:mn (X, 0) — mn (Y, f(0))

are isomorphisms for every n > 1 and every base point xg € X. Homotopy
equivalences are weak homotopy equivalences, and the Whitehead Theorem
[38, Theorem 4.5] claims that any weak homotopy equivalence between CW-
complexes is a homotopy equivalence. However, in general, these two concepts
differ. We will show examples of weak homotopy equivalences between two
finite spaces and between a polyhedron and a finite space which are not
homotopy equivalences.

Weak homotopy equivalences satisfy the so called 2-out-of-3 property.
That means that if f and g are two composable maps and 2 of the 3 maps
f, g, gf are weak homotopy equivalences, then so is the third. Moreover if
f and g are two homotopic maps and one is a weak homotopy equivalence,
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then so is the other. Any weak homotopy equivalence f : X — Y between
topological spaces induces isomorphisms f, : H,(X;G) — H,(Y; G) between
the homology groups, for every n > 0 and every coefficient group G [38,
Proposition 4.21]. The singular homology groups with integer coefficients of
a space X will be denoted as usual by H,(X).

The Theorem of McCord 1.4.2 plays an essential role in the homotopy
theory of finite spaces. This result basically says that if a continuous map is
locally a weak homotopy equivalence, then it is a weak homotopy equivalence
itself. The original proof by McCord can be found in [55, Theorem 6] and it
is based on an analogous result for quasifibrations by Dold and Thom. An
alternative proof for finite covers can also be obtained from [38, Corollary
4K.2].

Definition 1.4.1. Let X be a topological space. An open cover U of X is
called a basis like open cover if U is a basis for a topology in the underlying
set of X (perhaps different from the original topology). This is equivalent to
saying that for any Uy,Us € U and = € Uy N Us, there exists Us € U such
that x € U3 C U; N Us.

For instance, if X is a finite space, the minimal basis {U,},cx is a basis
like open cover of X.

Theorem 1.4.2 (McCord). Let X and Y be topological spaces and let f :
X =Y be a continuous map. Suppose that there exists a basis like open cover
U of Y such that each restriction

flivoy : [N U) = U

is a weak homotopy equivalence for every U € U. Then f: X — Y is a weak
homotopy equivalence.

Example 1.4.3. Consider the following map between finite spaces
az °
c®
defined by f(a1) = f(az) = flas) = a, f(b) = b, f(c) = ¢, f(d) = d. Tt i
order preserving and therefore continuous. Moreover, the preimage of each
minimal open set Uy, is contractible, and then the restrictions f| iy G
f~1(U,) — U, are (weak) homotopy equivalences. Since the minimal basis is
a basis like open cover, by Theorem 1.4.2, f is a weak homotopy equivalence.

However, f is not a homotopy equivalence since its source and target are non
homeomorphic minimal spaces.

aj .b
—_—
a3 ® ®q c® L2}
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Definition 1.4.4. Let X be a finite Ty-space. The simplicial complex K(X)
associated to X (also called the order complex) is the simplicial complex
whose simplices are the nonempty chains of X (see Fig.1.3). Moreover, if
f X — Y is a continuous map between finite Ty-spaces, the associated
simplicial map K(f) : K(X) — K(Y) is defined by K(f)(z) = f(z).

Note that if f: X — Y is a continuous map between finite Ty-spaces, the
vertex map K(f) : K(X) — K(Y) is simplicial since f is order preserving and
maps chains to chains.

a
d a
d
be oC
>< c
de o, e

Fig. 1.3 A finite space and its associated simplicial complex

If X is a finite Typ-space, K(X)=K(X°P). Moreover, if f : X — Y is a
continuous map between finite Tp-spaces, K(f) = KC(f°P).
Let X be a finite Tp-space. A point « in the geometric realization [K(X)]

of K(X) is a convex combination o = ty &1 +taxa+...+t,.2, where > t; = 1,

=1
t; > 0 forevery 1 <i<randz; < zg < ... < z is a chain of X. The
support or carrier of « is the set support(a) = {x1,x2,...,2,}. We will see
that the map « — x1 plays a fundamental role in this theory.

Definition 1.4.5. Let X be a finite Ty-space. Define the K-McCord map
px | K(X)| = X by px(a) = min(support(a)).

The reader who is not familiar with some of the basic concepts about
simplicial complexes that appear in the following proof, is suggested to see
Appendix A.1.

Theorem 1.4.6. The K-McCord map pux is a weak homotopy equivalence
for every finite Ty-space X .

Proof. Notice that the minimal open sets U, are contractible because they
have maximum. We will prove that for each x € X, ,u;(l(Ux) is open and
contractible. This will show that px is continuous and that the restrictions
x| pZ (U) ,u;(l(Ux) — U, are weak homotopy equivalences. Therefore, by
Theorem 1.4.2, ux is a weak homotopy equivalence.
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Let x € X and let L = K(X \U,) C K(X). In other words, L is the
full subcomplex of K (possibly empty) spanned by the vertices which are not
in U,. We claim that

px' (Us) = IK(X)| N L.

If a € uy'(Us.), then min(support(a)) € U,. In particular, the support of
a contains a vertex of U, and then o ¢ |L|. Conversely, if o ¢ |L|, there
exists y € support(a) such that y € U,. Then min(support(a)) <y < z and
therefore px () € U,. Since |L| C [K(X)] is closed, uy' (Us) is open.

Now we show that |KC(U,)| is a strong deformation retract of [K(X)|\ |L].
This is a particular case of a more general fact. Let i : [K(U,)| — |K(X)|\|L]
be the inclusion. If a € |[K(X)| N |L|, « = t8+ (1 —t)y for some § € |K(Us)],
v € |L| and 0 < ¢t < 1. Define r : |K(X)| ~ |L] — |[K(U)| by r(a) = S.
Note that r is continuous since 7|(x (x|~ |z * (IK(X)| N |L])NT — T is
continuous for every o € KC(X). Here, & C |[IC(X)| denotes the closed simplex.
Now, let H : (J]C(X)|\|L])xI — |[K(X)|~\|L| be the linear homotopy between
1\IC(X)\\\L\ and Ti, i.e.

H(a,s) = (1—s)a+ sp.
Then H is well defined and is continuous since each restriction
H|((|IC(X)|\|L|)OE)><I : ((I’C(X)| AN ILI) ﬂﬁ) xI—7

is continuous for every simplex o of (X). To prove the continuity of r and
of H we use that |[/C(X)| \ |L| has the final topology with respect to the
subspaces (|]C(X)| ~\ |L|) N7 for o € K(X). We could also argue that since
the complexes involved are finite, the polyhedra have the metric topology
and both r and H are continuous with respect to these metrics (see
Appendix A.1).

Since every element of U, is comparable with z, KC(U,,) is a simplicial cone
with apex x, that is, if o is a simplex of K(U,), then so is cU{z}. In particular
|K(U,)| is contractible and then, so is pu5" (Uy) = |[K(X)| ~ |L|. |

Remark 1.4.7. If f : X — Y is a continuous map between finite Ty-spaces,
the following diagram commutes

()
KX — [K(Y)

\
-
f

X —Y
since, for a € [K(X)|,

fux (o) = f(min(support(c))) = min(f(support(a)))
= min(support(|K(f)|(a))) = py [K(f)[().
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Corollary 1.4.8. Let f : X — Y be a map between finite Ty-spaces. Then
f is a weak homotopy equivalence if and only if |KK(f)| : [KK(X)| — |[K(Y)]| is
a homotopy equivalence.

Proof. Since puy is a weak homotopy equivalence, by the 2-out-of-3 property,
[K(f)] is a weak homotopy equivalence if and only if uy |K(f)] = fux is a
weak homotopy equivalence. Since ux is a weak homotopy equivalence, this
is equivalent to saying that f is a weak homotopy equivalence. O

Corollary 1.4.9. Let f : X — Y be a map between finite Ty-spaces. Then
[ is a weak homotopy equivalence if and only if f°P is a weak homotopy
equivalence.

Proof. Follows immediately from the previous result since IC(f) = K(f°P).
O

Definition 1.4.10. Let K be a finite simplicial complex. The finite Tp-space
X (K) associated to K (also called the face poset of K) is the poset of simplices
of K ordered by inclusion. If ¢ : K — L is a simplicial map between finite
simplicial complexes, there is a continuous map X (¢) : X(K) — X(L) defined
by X(¢)(c) = p(0) for every simplex o of K.

Example 1.4.11. If K is the 2-simplex, the associated finite space is the

following
[ ] [} [ ]

If K is a finite complex, K(X(K)) is the first barycentric subdivision K’
of K and if ¢ : K — L is a simplicial map, K(X(p)) = ¢’ : K’ — L' is the
map induced in the barycentric subdivisions.

Let sk : |K'| — | K| be the linear homeomorphism defined by sx (o) = b(0)
for every simplex o of K. Here, b(0) € |K| denotes the barycenter of . Define
the X-McCord map prx = MX(K)S;{I K| — X(K)

From 1.4.6 we deduce immediately the following result.

Theorem 1.4.12. The X-McCord map pux is a weak homotopy equivalence
for every finite simplicial compler K.

Proposition 1.4.13. Let ¢ : K — L be a simplicial map between finite
simplicial complexes. Then the following diagram commutes up to homotopy
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o
K| — [L]

l MK l 1237
X ()

X(K) —= X(L).

Proof. Let S = {o1,09,...,0.} be a simplex of K’, where 01 C 09 C ... C
o, is a chain of simplices of K. Let a be a point in the closed simplex S.
Then sk (a) € o, C |K| and |p|sk(a) € ¢(0,) C |L|. On the other hand,
lo'|(e) € {p(o1),p(02),...,¢0(0.)} and then sp|¢’|(a) € (o). Therefore,
the linear homotopy H : |K'| x I — |L|, (o, t) — (1 —1)|p|sk () +tsp|¢’| (@)
is well defined and continuous. Then |p|skx =~ sp|¢’| and, by Remark 1.4.7,

prlel = parysy el = px )¢ sk

= X(Q)nx(x)sx = X(P)ux-
O

Remark 1.4.14. An explicit homotopy between pp|o| and X(p)ux is H =
uLH(sj}l x 17). If K3 C K and Ly C L are subcomplexes and ¢(K71) C Ly
then H(|K1| x I) C X(L1) C X(L).

From the 2-out-of-3 property and the fact that a map homotopic to a weak
homotopy equivalence is also a weak homotopy equivalence, one deduces the
following

Corollary 1.4.15. Let ¢ : K — L be a simplicial map between finite
simplicial complexes. Then |¢| is a homotopy equivalence if and only if
X(p) : X(K) — X(L) is a weak homotopy equivalence.

From now on we will call McCord maps to both K-McCord maps and X-
McCord maps, and it will be clear from the context which we are referring
to.

Remark 1.4.16. As McCord explained in [55], the results of this section hold
more generally for non-finite simplicial complexes and A-spaces. A topological
space X is an A-space if arbitrary intersections of open subsets of X are
again open. Finite spaces and moreover, locally finite spaces, are examples
of A-spaces. If x is a point in an A-space X, the set U, defined as above
is also open. The correspondence between finite spaces and finite preordered
sets trivially extends to a correspondence between A-spaces and preordered
sets. If X is a Tp-A-space, the associated complex K(X) of finite chains is a
well defined simplicial complex and the same proof of Theorem 1.4.6 shows
that there is a weak homotopy equivalence [IC(X)| — X. Conversely, given
a simplicial complex K, the face poset X(K) is a locally finite space and
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there is a weak homotopy equivalence |K| — X(K). Many of the results of
this book can be stated in fact for A-spaces and general simplicial complexes.
However, similarly to McCord’s approach, we will focus our attention on the
finite case. The first reason is that the deepest ideas and the complexity of
the theory of A-spaces are already present in the finite setting. The second
reason is that the most important applications of this theory, such as the
study of minimal finite models (Chap. 3), simple homotopy types (Chap.4),
strong homotopy types (Chap.5), Quillen’s conjecture (Chap.8) and the
Andrews-Curtis conjecture (Chap.11), can be analyzed or formulated only
in the finite case.

Two topological spaces X and Y, not necessarily finite, are weak homotopy
equivalent (or they are said to have the same weak homotopy type) if there
exists a sequence of spaces X = X, X1,...,X,, =Y such that there are weak
homotopy equivalences X; — X;11 or X;41 — X; for every 0 < i < n — 1.
Clearly this defines an equivalence relation. If two topological spaces X and
Y are weak homotopy equivalent, we write X LY.IfX and Y are homotopy

equivalent we write X ke Y or just X ~Y.

If two topological spaces X and Y are weak homotopy equivalent,
there exists a CW-complex Z (CW-approximation) and weak homotopy
equivalences 7 — X and Z — Y [38, Proposition 4.13, Corollary 4.19].
Two CW-complexes are weak homotopy equivalent if and only if they are
homotopy equivalent. As we have seen, for finite spaces, weak homotopy
equivalences are not in general homotopy equivalences. Moreover, there exist
weak homotopy equivalent finite spaces such that there is no weak homotopy
equivalence between them. However, if X and Y are two finite spaces which
are weak homotopy equivalent, there exists a third finite space Z and weak
homotopy equivalences X «— Z — Y (see Proposition 4.6.7).

Example 1.4.17. The non-Hausdorff suspension S(D3) (see the paragraph
below Definition 2.7.1) of the discrete space with three elements and its
opposite S(D3)°? have the same weak homotopy type, because there exist
weak homotopy equivalences

S(D3) — [K(S(Ds))| = [K(S(D3)?)| — S(Ds)*.
S(Ds) S(Ds)P

However there is no weak homotopy equivalence between S(Ds) and
S(D3)°P. In fact one can check that every map S(Ds) — S(D3)° factors
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through its image, which is a subspace of S(D3)° with trivial fundamental
group or isomorphic to Z. We exhibit a more elegant proof in Remark 3.4.9.

From Theorems 1.4.6 and 1.4.12 we immediately deduce the following re-
sult.

Corollary 1.4.18.

(a) Let X and Y be finite To-spaces. Then, X XY if and only if (X)) ke
IKY)I.

(b) Let K and L be finite simplicial complexes. Then, |K]| 5 |L| if and only
if X(K) =~ X(L).

McCord’s Theorem 1.4.2 is one of the most useful tools to distinguish weak
homotopy equivalences. Most of the times, we will apply this result to maps
f: X — Y with Y finite, using the open cover given by the minimal basis
of Y. Theorem 1.4.2 is closely related to the celebrated Quillen’s Theorem A,
which gives a sufficient condition for a functor between two categories to be
a homotopy equivalence at the level of classifying spaces [69]. The so called
Quillen’s fiber Lemma [70, Proposition 1.6] is just Theorem A applied to the
case in which both categories are finite posets and follows immediately from
Theorem 1.4.2 also. It can be stated as follows.

Theorem 1.4.19 (McCord, Quillen). Let f : X — Y be an order
preserving map between finite posets such that [IKC(f~1(Uy))| is contractible
for every y € Y. Then |KC(f)| : [K(X)] — |[K(Y)] is a homotopy equivalence.

Remark 1.4.20. In Quillen’s paper [70] and in many other articles ([17,18,
79, 80] for instance), posets are studied from a topological viewpoint only
through their associated simplicial complexes. In some of those papers, when
it is said that a finite poset is contractible it is meant that the associated
polyhedron is contractible, and when an order preserving map is claimed to
be a homotopy equivalence, this is regarded as the simplicial map between
the associated complexes. In this book instead, finite posets are considered
as topological spaces with an intrinsic topology. Although McCord’s theory
shows that a finite Ty-space and its order complex are closely related, it is
not the same to say that a finite Tp-space X is contractible and that [K(X)]
is contractible. A topological space X is said to be homotopically trivial or
weakly contractible if all its homotopy groups are trivial. This is equivalent
to saying that the map X — * is a weak homotopy equivalence. Since a finite
To-space X and |[K(X)| are weak homotopy equivalent, by the Whitehead
Theorem it is equivalent to saying that X is homotopically trivial and that
|K(X)| is contractible. However, the Whitehead Theorem does not hold for
finite spaces and we will show explicit examples of homotopically trivial finite
spaces which are not contractible (see Example 4.2.1). The contractibility of
a finite Ty-space is equivalent to the combinatorial notion of dismantlability
for posets [71]. The simplicial notion corresponding to the contractibility of
a finite space is called strong collapsibility (see Corollary 5.2.8).
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If f: X — Y is an order preserving map, then |[K(f)| : [K(X)| — |[K(Y)]
is a homotopy equivalence if and only if f is a weak homotopy equivalence
between the finite spaces X and Y (Corollary 1.4.8). As we have seen, this is
strictly weaker than f being a homotopy equivalence.

Some of the results which appear in this work could be restated in terms
of the associated complexes, however our approach is inspired and motivated
by McCord, Stong and May’s topological viewpoint, which consists in con-
sidering finite topological spaces instead of posets and complexes.

We show now that Quillen’s fiber Lemma follows from McCord’s Theorem.
The contractibility of |K(f~1(U,))| is equivalent to the fact that f~(U,) is
homotopically trivial. Since Uy, is contractible f|s-1(y,): f~1(Uy) — Uy is a
weak homotopy equivalence and then Theorem 1.4.2 says that f: X — Y isa
weak homotopy equivalence. Therefore, |KC(f)| is a homotopy equivalence by
Corollary 1.4.8. Theorem 1.4.19 has simpler proofs than McCord’s Theorem
or Quillen’s Theorem A. One, due to Walker [80], uses a homotopy version
of the Acyclic carrier Theorem, and the other [6] was motivated by the ideas
developed in this work. However, for our purposes Theorem 1.4.19 is not
strong enough and McCord’s Theorem will be needed in its general version.

The simplicial version of Quillen’s Theorem A follows from the fiber
Lemma and it states that if ¢ : K — L is a simplicial map and |¢|~1(7)
is contractible for every closed simplex & € |L|, then |¢| is a homotopy
equivalence (see [69], p.93).

Using this result, we prove a similar result to Theorem 1.4.2.

Proposition 1.4.21. Let f : X — Y be a map between finite Ty-spaces such
that f=1(c) C X is homotopically trivial for every chain ¢ of Y. Then f is a
weak homotopy equivalence.

Proof. If ¢is a chain of Y or, equivalently, a simplex of K(Y), then |[K(f)|~1(¢)
= [K(f~t(c))|, which is contractible since f~*(c) is homotopically trivial. By
Theorem A, [IC(f)] is a homotopy equivalence and then f is a weak homotopy
equivalence. O

In fact, if the hypothesis of Proposition 1.4.21 holds, then f~1(U,) is
homotopically trivial for every y € Y and, by McCord Theorem, f is a weak
homotopy equivalence. Therefore the proof of Proposition 1.4.21 is apparently
superfluous. However, the proof of the first fact is a bit twisted, because it uses
the very Proposition 1.4.21. If f : X — Y issuch that f~*(c) is homotopically
trivial for every chain ¢ of Y, then each restriction f|s-1 ) : f~1(U,) — U,
satisfies the same hypothesis. Therefore, by Proposition 1.4.21, f|s-1(y,) is a
weak homotopy equivalence and then f ’1(Uy) is homotopically trivial.

In Sect. 4.4 we will prove, as an application of the simple homotopy theory
of finite spaces, a simple homotopy version of Quillen’s Theorem A for
simplicial complexes.



Chapter 2
Basic Topological Properties
of Finite Spaces

In this chapter we present some results concerning elementary topological
aspects of finite spaces. The proofs use basic elements of Algebraic Topology
and have a strong combinatorial flavour. We study further homotopical prop-
erties including classical homotopy invariants and finite analogues of well-
known topological constructions.

2.1 Homotopy and Contiguity

Recall that two simplicial maps p,v : K — L are said to be contiguous
if for every simplex o € K, ¢(0) U (o) is a simplex of L. Two simplicial
maps ¢, : K — L lie in the same contiguity class if there exists a sequence
© = ©0,P1,---,pn = ¥ such that ¢; and ;11 are contiguous for every
0<i<n.

If p,7 : K — L lie in the same contiguity class, the induced maps in the
geometric realizations |¢|, [¢| : | K| — |L| are homotopic (see Corollary A.1.3
of the appendix).

In this section we study the relationship between contiguity classes of
simplicial maps and homotopy classes of the associated maps between finite
spaces. These results appear in [11].

Lemma 2.1.1. Let f,g: X — Y be two homotopic maps between finite Tj-
spaces. Then there exists a sequence [ = fo, f1, ..., fn = g such that for every
0 <i < n there is a point x; € X with the following properties:

1. fi and fi11 coincide in X \ {x;}, and
2. fi(@i) < fivr(@:) or figa(wi) < fi(ws).
Proof. Without loss of generality, we may assume that f = fo < g by

Corollary 1.2.6. Let A = {z € X | f(z) # g(x)}. If A =0, f = g and
there is nothing to prove. Suppose A # () and let x = z¢ be a maximal point

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and 19
Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6_2, © Springer-Verlag Berlin Heidelberg 2011
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of A. Let y € Y be such that f(z) < y < g(z) and define f; : X — Y by
filxqey = flxqzy and fi(z) = y. Then f; is continuous for if 2’ > ,
a’ ¢ A and therefore

Repeating this construction for f; and g, we define f;y;. By finiteness of
X and Y this process ends. a

Proposition 2.1.2. Let f,g: X — Y be two homotopic maps between finite
To-spaces. Then the simplicial maps KK(f),K(g) : K(X) — K(Y) lie in the
same contiguity class.

Proof. By the previous lemma, we can assume that there exists z € X such
that f(y) = g(y) for every y # x and f(x) < g(x). Therefore, if C' is a chain
in X, f(C)Ug(C) is a chain on Y. In other words, if o € K(X) is a simplex,
K(f)(e) UK(g)(o) is a simplex in K(Y). O

Proposition 2.1.3. Let ¢, : K — L be simplicial maps which lie in the
same contiguity class. Then X(p) ~ X ().

Proof. Assume that ¢ and ¢ are contiguous. Then the map f : X(K) —
X (L), defined by f(0) = ¢(o)Utp(o) is well-defined and continuous. Moreover
X(¢) < f > (), and then X(p) = X(). 0

2.2 Minimal Pairs

In this section we generalize Stong’s ideas on homotopy types to the case of
pairs (X, A) of finite spaces (i.e. a finite space X and a subspace A C X).
As a consequence, we will deduce that every core of a finite Ty-space can be
obtained by removing beat points from X. Here we introduce the notion of
strong collapse which plays a central role in Chap. 5. Most of the results of
this section appear in [11].

Definition 2.2.1. A pair (X, A) of finite Tp-spaces is a minimal pair if all
the beat points of X are in A.

The next result generalizes the result of Stong (the case A = ()) studied in
Sect. 1.3 and its proof is very similar to the original one.

Proposition 2.2.2. Let (X, A) be a minimal pair and let f : X — X be a
map such that f ~1x rel A. Then f=1x.

Proof. Suppose that f < 1x and f|4 =14. Let x € X. If x € X is minimal,
f(z) = z. In general, suppose we have proved that f|Um = 1|Um' If z € A,
fl@)=ua. If x ¢ A, x is not a down beat point of X. However y < x implies
y = f(y) < f(z) < x. Therefore f(x) = x. The case f > 1x is similar, and
the general case follows from Corollary 1.2.6. a
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Corollary 2.2.3. Let (X, A) and (Y, B) be minimal pairs, f : X — Y,
g :Y — X such that gf ~ 1x rel A, gf ~ 1y rel B. Then f and g are
homeomorphisms.

Definition 2.2.4. If = is a beat point of a finite Ty-space X, we say that
there is an elementary strong collapse from X to X \z and write X ¢ X \z.
There is a strong collapse X \, 'Y (or a strong expansion Y 2" X) if there
is a sequence of elementary strong collapses starting in X and ending in Y.

Stong’s results show that two finite Ty-spaces are homotopy equivalent if
and only if there exists a sequence of strong collapses and strong expansions
from X to Y (since the later is true for homeomorphic spaces).

Corollary 2.2.5. Let X be a finite Ty-space and let A C X. Then, X \, 4
if and only if A is a strong deformation retract of X.

Proof. If X \, A, A C X is a strong deformation retract. This was already
proved by Stong (see Sect.1.3). Conversely, suppose A C X is a strong
deformation retract. Perform arbitrary elementary strong collapses removing
beat points which are not in A. Suppose X N\, Y 2 A and that all the beat
points of Y lie in A. Then (Y, A) is a minimal pair. Since A and Y are strong
deformation retracts of X, the minimal pairs (A, A) and (Y, A) are in the
hypothesis of Corollary 2.2.3. Therefore A and Y are homeomorphic and so,
X\ Y =A. |

Example 2.2.6. The space X

| X
X

[ ]

[ ]

is contractible, but the point x is not a strong deformation retract of X,
because (X, {x}) is a minimal pair.

.I

Corollary 2.2.7. Let (X, A) be a minimal pair such that A is a minimal
finite space and f ~1(x ay: (X, A) = (X, A). Then f = 1x.

If X and Y are homotopy equivalent finite Ty-spaces, the associated poly-
hedra |[KC(X)| and |IC(Y')| also have the same homotopy type. However the
converse is obviously false, since the associated polyhedra are homotopy
equivalent if and only if the finite spaces are weak homotopy equivalent.

In Chap.5 we will study the notion of strong homotopy types of simplicial
complexes which have a very simple description and corresponds exactly to
the concept of homotopy types of the associated finite spaces.
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2.3 T;-Spaces

We will prove that Hausdorff spaces do not have in general the homotopy
type of any finite space. Recall that a topological space X satisfies the T;-
separation axiom if for any two distinct points x,y € X there exist open sets
U and V such that € U, y € V, y ¢ U, 2 ¢ V. This is equivalent to saying
that the points are closed in X. All Hausdorff spaces are T4, but the converse
is false.

If a finite space is 71, then every subset is closed and so, X is discrete.

Since the core X, of a finite space X is the disjoint union of the cores of
its connected components, we can deduce the following

Lemma 2.3.1. Let X be a finite space such that X. is discrete. Then X is
a disjoint union of contractible spaces.

Theorem 2.3.2. Let X be a finite space and let Y be a T1-space homotopy
equivalent to X. Then X is a disjoint union of contractible spaces.

Proof. Since X ~Y, X, ~Y. Let f: X. — Y be a homotopy equivalence
with homotopy inverse ¢g. Then gf = 1x, by Theorem 1.3.6. Since f is a one
to one map from X, to a Ti-space, it follows that X, is also T} and therefore
discrete. Now the result follows from the previous lemma. a

Remark 2.3.3. The proof of the previous theorem can be done without using
Theorem 1.3.6, showing that any map f : X — Y from a finite space to a
Ti-space must be locally constant.

Corollary 2.3.4. LetY be a connected and non contractible T -space. Then
Y does not have the same homotopy type as any finite space.

Proof. Follows immediately from Theorem 2.3.2. ad

For example, for any n > 1, the n-dimensional sphere S™ does not have
the homotopy type of any finite space. However, S™ does have, as any finite
polyhedron, the same weak homotopy type as some finite space.

2.4 Loops in the Hasse Diagram and the Fundamental
Group

In this section we give a full description of the fundamental group of a finite
Ty-space in terms of its Hasse diagram. This characterization is induced from
the well known description of the fundamental group of a simplicial complex.
The Hasse diagram of a finite Ty-space X will be denoted H(X), and E(H (X))
will denote the set of edges of the digraph H(X).
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Recall that an edge-path in a simplicial complex K, is a sequence (v, v1),
(v1,v2),..., (vp—1,v,) of ordered pairs of vertices in which {v;,v;11} is a
simplex for every 7. If an edge-path contains two consecutive pairs (v;, vit1),
(Vig1,vir2) where {v;, vi41, 042} I8 a simplex, we can replace the two pairs
by a unique pair (v;, v;+2) to obtain an equivalent edge-path. The equivalence
classes of edge-paths are the morphisms of a groupoid called the edge-path
groupoid of K, which is denoted by E(K). The full subcategory of edge-paths
with origin and end vg is the edge-path group E(K,vg) which is isomorphic
to the fundamental group m (| K|, vg) (see [75, Sect. 3.6] for more details).

Definition 2.4.1. Let (X, z) be a finite pointed Tp-space. An ordered pair
of points e = (x,y) is called an H-edge of X if (z,y) € E(H(X)) or (y,x) €
E(H(X)). The point z is called the origin of e and denoted = = o(e), the
point y is called the end of e and denoted y = ¢(e). The inverse of an H-edge
e = (z,y) is the H-edge e~ = (y,z).

An H-path in (X,z0) is a finite sequence (possibly empty) of H-edges
& =erez...e, such that e(e;) = o(e;41) for all 1 < ¢ < n — 1. The origin of
a non empty H-path £ is 0(§) = o(e1) and its end is ¢(§) = e(e,). The origin
and the end of the empty H-path is o(0)) = e(0) = zo. If £ = erea...ep,
we define € = e te; !, .. eyt If €€ are H-paths such that e(€) = o(¢), we
define the product H-path ££’ as the concatenation of the sequence & followed
by the sequence &'.

An H-path £ = ejes...e, is said to be monotonic if e; € E(H(X)) for all
1<i<nore; ' €E(H(X)) forall 1 <i<n.

A loop at x¢ is an H-path that starts and ends in zg. Given two loops &, &’
at xg, we say that they are close if there exist H-paths &1, &2, &3, &4 such that
& and &3 are monotonic and the set {&, &'} coincides with {€1828384,&184}-

We say that two loops &, ¢’ at xg are H-equivalent if there exists a finite
sequence of loops £ = &1,&s,...,&, = £ such that any two consecutive are
close. We denote by (&) the H-equivalence class of a loop & and (X, z0)
the set of these classes.

Theorem 2.4.2. Let (X, x0) be a pointed finite Ty-space. Then the product
(&)(&") = (&¢') is well defined and induces a group structure on (X, xo).

Proof. Tt is easy to check that the product is well defined, associative and
that (P) is the identity. In order to prove that the inverse of (e1ez...e,) is
(exle .. e;!) we need to show that for any composable H-paths £, ¢’ such
that 0(&) = ¢(£') = x and for any H-edge e, composable with &, one has that
(Cee™1¢') = (€¢'). But this follows immediately from the definition of close

loops since e and e~! are monotonic. O

Theorem 2.4.3. Let (X, xq) be a pointed finite To-space. Then the edge-path
group E(K(X),z¢) of K(X) with base vertex xo is isomorphic to (X, xo).
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Proof. Let us define
P %(Xa 1'0) S E(IC(X)’IO)a
(e1€2...€,) — le1€2. .. €4],
(0) — [(zo0,z0)],

where [¢] denotes the class of £ in E(K(X), zo).

To prove that ¢ is well defined, let us suppose that the loops &1€2€3€4
and £& are close, where & = ejeq...e,, &3 = €leh...e/ are monotonic
‘H-paths. By induction, it can be proved that

[£1628384]) = [C1e1e2 ... en_j(0(en—jt1), e(en))Ea84]

for 1 < j < n. In particular [£1£2£384] = [£1(e(61), e(en))E384]-
Analogously,

[€1(e(€1), e(en))éa€a] = [E1(e(&1), een))(0(€]), 0(€a))E4]

and then

[€182€38a] = [€1(e(&1), e(en))(0(€]), 0(84))E4]
= [§1(e(&1), e(en))(e(en), e(1))8a] = [€1(e(£2), e(§1))€a] = [£284]-

If £ = (o, 21)(x1,22) . .. (Tp—1, %) is an edge-path in K£(X) with z,, = zo,
then x;_1 and x; are comparable for all 1 < ¢ < n. In this case, we can find
monotonic H-paths &1,&, ..., &, such that o(&;) = x;—1, e(§) = x; for all
1 < i < n. Let us define

Y BE(K(X),z0) — (X, 0),
(] — (12 ... &n)-

This definition does not depend on the choice of the H-paths &; since if
two choices differ only for i = k then & ...&;...&, and & ...&, ... &, are
‘H-equivalent because both of them are close to &; ... gkg,;lg,; I

The definition of 1 does not depend on the representative. Suppose that
& (x,y)(y, 2)&" and &' (x, 2)¢” are simply equivalent edge-paths in K(X) that
start and end in g, where £ and £’ are edge-paths and z, y, z are comparable.
In the case that y lies between z and z, we can choose the monotonic H-path
corresponding to (z, z) to be the juxtaposition of the corresponding to (x,y)
and (y, z), and so 1 is equally defined in both edge-paths. In the case that
z < x < y we can choose monotonic H-paths «, 8 from z to y and from z to z,
and then « will be the corresponding H-path to (x,y), @f that corresponding
to (y,z) and B to (z,2). It only remains to prove that (y'aaf~y") = (v'3v")
for H-paths v' and ~”, which is trivial. The other cases are analogous to the
last one.

It is clear that ¢ and ¥ are mutually inverse. O
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Since FE(K(X),x0) is isomorphic to w1 (|[K(X)],zo) (cf. [75, Corollary
3.6.17]), we obtain the following result.

Corollary 2.4.4. Let (X,x0) be a pointed finite To-space, then J(X,xg) =
1 (X, xo).

Remark 2.4.5. Since every finite space is homotopy equivalent to a finite Tp-
space, this computation of the fundamental group can be applied to any finite
space.

2.5 Euler Characteristic

If the homology (with integer coefficients) of a topological space X is finitely
generated as a graded abelian group, the Euler characteristic of X is de-
fined by x(X) = > (—=1)"rank(H,(X)). If Z is a compact CW-complex,
n>0
its homology is finitely generated and x(Z) = Y (—1)"«,, where a, is the
n>0

number of n-cells of Z. A weak homotopy equivalence induces isomorphisms
in homology groups and therefore weak homotopy equivalent spaces have the
same Euler characteristic.

Since any finite Ty-space X is weak homotopy equivalent to the geometric
realization of IC(X), whose simplices are the non empty chains of X, the
Euler characteristic of X is

X(X)= Y (-pF (2.1)

cec(X)

where C(X) is the set of nonempty chains of X and #C' is the cardinality
of C.

We will give a basic combinatorial proof of the fact that the Euler charac-
teristic is a homotopy invariant in the setting of finite spaces, using only the
formula 2.1 as definition.

Theorem 2.5.1. Let X and Y be finite Ty-spaces with the same homotopy
type. Then x(X) = x(Y).

Proof. Let X. and Y. be cores of X and Y. Then there exist two sequences
of finite Th-spaces X = Xg 2 ... 2 X, =X,and Y =Yy 2 ... DY, =Y,
where X;;1 is constructed from X; by removing a beat point and Y;y; is
constructed from Y;, similarly. Since X and Y are homotopy equivalent, X,
and Y. are homeomorphic. Thus, x(X.) = x(Yz).

It suffices to show that the Euler characteristic does not change when a
beat point is removed. Let P be a finite poset and let p € P be a beat
point. Then there exists ¢ € P such that if r is comparable with p then r is
comparable with q.
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Hence we have a bijection

p:{CeC(P)|pel, q¢ C —{CEeC(P)|pel, qeCl,

C+— CU{q}.
Therefore
X(P)=x(P~{ph = D (DFTH = 3T (pFOt 3 (cpFe
peCeCP q¢C>p qeC>p
— Z (_1)#C+1+ Z (_1)#@(0)4-1: Z (_1)#C+1_|_ Z (_1)#020.
q¢C>p qZC>p q¢C>p q¢Csp

O

The Euler characteristic of finite Ty-spaces is intimately related to the
Mobius function of posets, which is a generalization of the classical M&bius
function of number theory. We will say just a few words about this. For proofs
and applications we refer the reader to [29].

Given a finite poset P, we define the incidence algebra 2A(P) of P as the
set of functions P x P — R such that f(z,y) = 0 if 2 £ y with the usual
structure of R-vector space and the product given by

folw,y) =Y fx,2)9(2,).

zeP

The element (p € A(P) defined by (p(z,y) = 1 if x < y and 0 in other
case, is invertible in 2A(P). The Mdbius fuction pp € A(P) is the inverse
of Cp.

The Theorem of Hall states that if P is a finite poset and z,y € P, then

pp(z,y) = > (=1)"Tl¢,, where ¢, is the number of chains of n-elements
n>0

which start in  and end in y.

Given a finite poset P, P = PU {0,1} denotes the poset obtained when
adjoining a minimum 0 and a maximum 1 to P. In particular, (2.1) and the
Theorem of Hall, give the following

Corollary 2.5.2. Let P be a finite poset. Then

%(P) = /*1’13(03 1)7
where X(P) = x(P) — 1 denotes the reduced Euler characteristic of the finite
space P.

One of the motivations of the Mébius function is the following inversion
formula.
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Theorem 2.5.3 (Mdbius inversion formula). Let P be a finite poset
and let f,g: P — R. Then

g(x) = f(y) if and only if f(z) = pr(y, 2)g(y).

y<z y<z

Analogously,

g9(z) = f(y) if and only if f(x) = pp(y,2)g(y).

y>x y>z

Beautiful applications of these formulae are: (1) the Mobius inversion
of number theory which is obtained when applying Theorem 2.5.3 to the
order given by divisibility of the integer numbers; (2) the inclusion—exclusion
formula obtained from the power set of a set ordered by inclusion.

2.6 Automorphism Groups of Finite Posets

It is well known that any finite group G can be realized as the automorphism
group of a finite poset. In 1946 Birkhoff [13] proved that if the order of G is
n, G can be realized as the automorphisms of a poset with n(n+ 1) points. In
1972 Thornton [78] improved slightly Birkhoff’s result: He obtained a poset
of n(2r + 1) points, when the group is generated by r elements.

We present here a result which appears in [10]. Following Birkhoff’s and
Thornton’s ideas, we exhibit a simple proof of the following fact which im-
proves their results

Theorem 2.6.1. Given a group G of finite order n with r generators, there
exists a poset X with n(r + 2) points such that Aut(X) ~G.

Recall first that the height ht(X) of a finite poset X is one less than the
maximum number of elements in a chain of X. The height of a point = in a
finite poset X is ht(x) = ht(Us).

Proof. Let {h1,ha,...,h.} be a set of r generators of G. We define the poset
X =G x{-1,0,...,r} with the following order

* (9,i)<(g,g)if -1<i<j<r
* (ghi,—1)<(g,j)if1<i<j<r

Define ¢ : G — Aut(X) by o(g)(h,i) = (gh,i). It is easy to see that
¢(g9) + X — X is order preserving and that it is an automorphism with
inverse ¢(g~!). Therefore ¢ is a well defined homomorphism. Clearly ¢ is a
monomorphism since ¢(g) = 1 implies (g, —1) = ¢(g)(e, —1) = (e, —1).
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(9:1) g

(9,0) 9

(g,-1) (ghi,-1) (gha,-1) (ghy—1,-1) (gh,,-1)
Fig. 2.1 Uy .y

It remains to show that ¢ is an epimorphism. Let f : X — X be an
automorphism. Since (e, —1) is minimal in X, so is f(e,—1) and therefore
fle,—1) = (g, —1) for some g € G. We will prove that f = ¢(g).

Let Y ={z € X | f(x) = ¢(g)(z)}. Y is nonempty since (e, —1) € Y. We
prove first that Y is an open subspace of X. Suppose z = (h,i) € Y. Then
the restrictions

flo., o9, : Uz — U

are isomorphisms. On the other hand, there exists a unique automorphism
U, — U, since the unique chain of i + 2 elements must be fixed by any
such automorphism. Thus, f|5i¢(g)|UT = 1ly,, and then fly, = ¢(9)|v,,
which proves that U, C Y. Simﬂarly we see that Y C X is closed. Assume
x = (h,i) ¢ Y. Since f € Aut(X), it preserves the height of any point. In
particular ht(f(x)) = ht(z) = i + 1 and therefore f(z) = (k,i) = ¢(kh~1)(x)
for some k € G. Moreover k # gh since x ¢ Y. As above, fly, = ¢(kh™1)|u,,
and since kh~! # g we conclude that U, NY = (.

We prove now that X is connected. It suffices to prove that any two
minimal elements of X are in the same connected component. Given h, k € G,
we have h = khi hi,...h;, for some 1 < 41, d2...%, < r. On the
other hand, (khi hi,...hi,,—1) and (khi hi, ... hs,,,,—1) are connected
via (kh“ h7;2 . hi57 —1) < (k’h“hw - his7T) > (kh“hl2 .. .hiSJrl, —1). This
implies that (k, —1) and (h,—1) are in the same connected component.

Finally, since X is connected and Y is closed, open and nonempty, ¥ = X,
i.e. f = ¢(g). Therefore ¢ is an epimorphism, and then G ~ Aut(X). O
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If the generators hy, ha, ..., h, are non-trivial, the open sets Uy, ,) are as in
Fig.2.1. In that case it is not hard to prove that the finite space X constructed
above is weak homotopy equivalent to a wedge of n(r — 1) 4+ 1 circles, or in
other words, that the order complex of X is homotopy equivalent to a wedge
of n(r — 1) + 1 circles. The space X deformation retracts to the subspace
Y = G x {—1,r} of its minimal and maximal points. A retraction is given
by the map f : X — Y, defined as f(g,i) = (g,7) if ¢ > 0 and f(g,—1) =
(g,—1). Now the order complex (Y') of Y is a connected simplicial complex
of dimension 1, so its homotopy type is completely determined by its Euler
Characteristic. This complex has 2n vertices and n(r+1) edges, which means
that it has the homotopy type of a wedge of 1—x(K(Y)) = n(r—1)+1 circles.

On the other hand, note that in general the automorphism group of a finite
space, does not say much about its homotopy type as we see in the following

Proposition 2.6.2. Given a finite group G and a finite space X, there exists
a finite space Y which is homotopy equivalent to X and such that Aut(Y) ~G.

Proof. We make this construction in two steps. First, we find a finite Tp-space
X homotopy equivalent to X and such that Aut(X ) = 0. To do this, assume
that X is Ty and consider a linear extension x1, 3, . . ., T, of the poset X (i.e.

= {z1,22,..., 2y} and x; < x; implies ¢ < j). Now, for each 1 < k < n
attach a chain of length kn to X with minimum x,,_g1. The resulting space
X deformation retracts to X and every automorphism f : X — X must fix
the unique chain C of length n? (with minimum ;). Therefore f restricts
to a homeomorphism X~ Oy — X ~ O which must fix the unique chain Cy
of length n(n — 1) of X \ ¢} (with minimum z5). Applying this reasoning
repeatedly, we conclude that f fixes every point of X. On the other hand, we
know that there exists a finite Ty-space Z such that Aut(Z) = G.

Now the space Y is constructed as follows. It contains one copy of X and
one of Z, and the additional relations z < x for every z € Z and x > x; in X.
So, all the elements of Z are smaller than z; € X. Clearly Y deformation
retracts to X. Moreover, if f : ¥ — Y is an automorphism, f(z) ¢ Z
since f(x1) cannot be comparable with z; and distinct from it (cf. Lemma
8.1.1). Since there is only one chain of n? elements in X, it must be fixed
by f. In particular f(z1) = 21, and then f|z : Z — Z. Thus f restricts to
automorphisms of X and of Z and therefore Aut(Y) ~ Aut(Z) ~ G. O

2.7 Joins, Products, Quotients and Wedges

In this section we will study some basic constructions in the settings of finite
spaces, simplicial complexes and general topological spaces. We will relate
these constructions to each other and analyze them from the homotopical
point of view.
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Recall that the simplicial join K*L (also denoted by K L) of two simplicial
complexes K and L (with disjoint vertex sets) is the complex

K«xL=KULU{ocUT|oe€K,reL}.

The simplicial cone a K with base K is the join of K with a vertex a ¢ K.
It is well known that for finite simplicial complexes K and L, the geometric
realization |K * L| is homeomorphic to the topological join |K| * |L|. If K
is the 0-complex with two vertices, |K * L| = |K|* |L| = S * |L| = Y|L]
is the suspension of |L|. Here, S° denotes the discrete space on two points
(0-sphere).

There is an analogous construction for finite spaces.

Definition 2.7.1. The (non-Hausdorff) join (also called the ordinal sum)
X ®Y of two finite Typ-spaces X and Y is the disjoint union X UY keeping
the given ordering within X and Y and setting x < y for every x € X and
yey.

Note that the join is associative and in general X ® Y # Y ® X. Special
cases of joins are the non-Hausdorff cone C(X) = X ® D° and the non-
Hausdorff suspension S(X) = X ® S° of any finite Ty-space X. Here D° = x
denotes the singleton (0-cell).

Remark 2.7.2. K(X®Y) =K(X) = K(Y).

Given a point z in a finite Ty-space X, the star C, of x consists of the
points which are comparable with x, i.e. C;, = U, UF,. Note that C,, is always
contractible since 1¢, < f > g where f : C;, — C, is the map which is the
identity on F), and the constant map x on U,, and g is the constant map z.
The link of z is the subspace C, = Cy ~ {z}. In case we need to specify the
ambient space X, we will write C’X Note that C, = U, ® E.

Proposition 2.7.3. Let X and Y be finite Ty-spaces. Then X ® Y is con-
tractible if and only if X orY is contractible.

Proof. Assume X is contractible. Then there exists a sequence of spaces
X:Xn QXn—l 2 2X1 :{xl}

with X; = {x1,22,...,2;} and such that z; is a beat point of X, for every
2 < i < n. Then x; is a beat point of X;®Y for each 2 < i < n and therefore,
X ®Y deformation retracts to {1} ® Y which is contractible. Analogously,
if Y is contractible, so is X ® Y.

Now suppose X ® Y is contractible. Then there exists a sequence

X®Y = X ®Yn2Xn 1®Yn 1D 2X1®Y1:{Zl}

with X; CX,Y; CY, X;®Y; ={21,22..., 2} such that z; is a beat point
of X;®Y; for i > 2.
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Let i > 2. If z; € X, z; is a beat point of X; unless it is a maximal point
of X; and Y; has a minimum. In the same way, if z; € Y;, z; is a beat point
of Y; or X; has a maximum. Therefore, for each 2 < i < n, either X;_; C X
and Y;_1 CY; are deformation retracts (in fact, one inclusion is an identity
and the other inclusion is strict), or one of them, X; or Y;, is contractible.
This proves that X or Y is contractible. a

In Proposition 4.3.4 we will prove a result which is the analogue of
Proposition 2.7.3 for collapsible finite spaces.

If X and Y are finite spaces, the preorder corresponding to the topological
product X x Y is the product of the preorders of X and Y (Remark 1.1.2),
ie. (z,y) < (2/,y) if and only if z < 2/ and y < /. If X and YV are two
topological spaces, not necessarily finite, and A is strong deformation retract
of a X, then A XY is a strong deformation retract of X x Y.

Proposition 2.7.4. Let X. and Y, be cores of finite spaces X and Y . Then
X.x Y, is acore of X X Y.

Proof. Since X, C X is a strong deformation retract, sois X, xY C X xY.
Analogously X, x Y, is a strong deformation retract of X, x Y and then, so is
X:xY, C X xY. We have to prove that the product of minimal finite spaces
is also minimal. Let (z,y) € X, x Y. If there exists 2’ € X, with 2’ < z and

"€ Y. withy' <y, (z,y) covers at least two elements (2',y) and (z,y'). If
is mlmmal in X, U(w y) is homeomorphic to U Analogously if y is minimal.
Therefore, (z,y) is not a down beat point. Sumlarly, X, x Y. does not have
up beat points. Thus, it is a minimal finite space. a

In particular X x Y is contractible if and only if each space X and Y
is contractible. In fact this result holds in general, when X and Y are not
necessarily finite.

Recall that the product of two nonempty spaces is Tj if and only if each
space is.

Proposition 2.7.5. Let X and Y be finite Ty-spaces. Then |[K(X x Y)| is
homeomorphic to |IKC(X)| x |KK(Y)].

Proof. Let px : XxXY — X and py : X XY — Y be the canonical projections.
Define f : [K(X x Y)| = [K(X)| x [K(Y)| by £ = [K(px)| x [K(py)- In other
k

words, if o = > ti(z4,9:) € |[K(X xY)| where (zo,90) < (z1,11) < ... <
i=0

k k
(zk,yx) is a chain in X XY, f(a) = (3 tizi, > tiyi)-
~ ,

= =0
Since |K(px)| and |[K(py)| are continuous, so is f. [K(X x Y| is compact
and |IC(X)|x|K(Y)] is Hausdorff, so we only need to show that f is a bijection.
Details will be left to the reader. An explicit formula for ¢ = f~" is given by

k !
Q(Z Wiy, Z viYi) = Ztij (@i, ¥5),
i=0 i=0 i,j
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where ¢;; = max{0,min{ug + w1 + ... + u;,vo + v1 + ...v;} — max{uo+
U1 + ...+ ui—1,v0 + v1 + ...vj_1}}. The idea is very simple. Consider the
segments Uy, Uy, ...,Ur C I =[0,1], each U; of length u;, U; = [ug+ui+...+
Ui—1, U0 + U1 + ... + u;]. Analogously, define V; = [vg +v1 + ...+ vj_1,v0 +
v1 +...4+v;] CTIfor 0 < j <. Then t; is the length of the segment
U; N'Vj;. It is not hard to see that g : [I(X)| x |[K(Y)] — |[K(X x Y| is well
defined since support(>_ ti;(xi,y;)) is a chain and Y t;; = > length(U;N
1, ,J

J

Vj) = > length(U;) = 1. Moreover, the compositions ¢gf and fg are the
i

corresponding identities. a

A similar proof of the last result can be found in [81, Proposition 4.1].

If X is a finite Ty-space, and A C X is a subspace, the quotient X /A need
not be Ty. For example, if X is the chain of three elements 0 < 1 < 2 and
A = {0,2}, X/A is the indiscrete space of two elements. We will exhibit a
necessary and sufficient condition for X/A to be Tp.

Let X be a finite space and A C X a subspace. We will denote by ¢ : X —
X/A the quotient map and by gz the class in the quotient of an element
2 € X. Recall that A = {z € X | 3 a € A with x > a} denotes the closure of
A. We will denote by A={z € X |Jac Awithz<a}= |J U, C X, the

a€A
open hull of A.

Lemma 2.7.6. Let v € X. Ifv € A, Uy = qU, UA). Ifz ¢ A, Uy, =
q(Uz).

Proof. Suppose x € A. A subset U of X/A is open if and only if ¢~ (U) is
open in X. Since ¢~ (q(U, UA)) =U,UA C X is open, q(U, UA) C X/A is
an open set containing gx. Therefore Uy, C ¢(U, U A). The other inclusion
follows from the continuity of ¢ since z € A: if y € A, there exist a,b € A
such that y < a and b < z and therefore qy < qa = gb < qx.

Ifx ¢ A q Y (q(Uy,)) = Uy, so q(Uy) is open and therefore Uy, C q(U.,).
The other inclusion is trivial. O

Proposition 2.7.7. Let X be a finite space and A C X a subspace. Let
z,y € X, then qv < qy in the quotient X /A if and only if x < y or there
exist a,b € A such that x < a and b < y.

Proof. Assume qx < qy. If y € A, there exists b € A with b < y and by the
previous lemma gz € Uy, = ¢(U, U A). Therefore x € U, U A and then <y
or z < a for some a € A. If y ¢ A, gz € Uy, = q(U,). Hence, x € U,.
Conversely if x < y or there are some a,b € A such that x < a and b < y,
then gx < qy or qx < ga = qb < qy. a

Proposition 2.7.8. Let X be a finite Ty-space and A C X. The quotient
X/A is not Ty if and only if there exists a triple a < x < b with a,b € A and
x ¢ A
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Proof. Suppose there is not such triple and that gz < qy, qy < qz. Then
x < y or there exist a,b € A with x < a, b < y, and, on the other hand,
y < x or there are some a’,’ € A such that y < a/, 0/ < z. If x < y and
y < x, then = = y. In other case, both z and y are in A. Therefore, gz = qy.
This proves that X/A is Ty. Conversely, if there exists a triple a < z < b as
above, qa < qr < gb = qa, but qa # qx. Therefore, X/A is not Tp. a

__ The non-existence of a triple as above is equivalent to saying that A =
ANA, ie. .
X/Ais Ty if and only if A = AN A.

For example open or closed subsets satisfy this condition.

Now we want to study how the functors X and K behave with respect
to quotients. Recall that (X (K)) is the barycentric subdivision K’ of K.
Following [80] and [35], the barycentric subdivision of a finite Tp-space X is
defined by X’ = X(K(X)). Explicitly, X’ consists of the nonempty chains of
X ordered by inclusion. This notion will be important in the development of
the simple homotopy theory for finite spaces studied in Chap. 4.

Example 2.7.9. Let X =CDs ={x,a,b} and let A={a, b} be the subspace

of minimal elements.
To
a® ®

Then X/A is the Sierpinski space & (the finite Tp-space with two points
0 < 1) and |K(X)|/|K(A)| is homeomorphic to S!. Therefore [K(X)|/|K(A)]|
and |K(X/A)| are not homotopy equivalent. However X’/A’ = S ® S° and
then [IC(X7)|/|IC(A”)] and |K(X'/A”)| are both homeomorphic to a circle. The
application I does not preserve quotients in general. In Corollary 7.2.2 we
prove that if A is a subspace of a finite Ty-space X, |K(X')|/|IC(A”)] and
[I(X’/A")| are homotopy equivalent.

A particular case of a quotient X/A is the one-point union or wedge. If
X and Y are topological spaces with base points zg € X, yg € Y, then the
wedge X VY is the quotient X UY/A with A = {xg,yo}. Clearly, if X and
Y are finite Ty-spaces, A = {xo,y0} € X UY satisfies A = AN A and then
X VY is also Ty. Moreover, if z, 2’ € X, then x covers 2’ in X if and only if x
covers 2/ in X VY. The same holds for Y, and if x € X ~ {20}, v € Y ~ {yo}
then = does not cover y in X VY and y does not cover x. Thus, the Hasse
diagram of X VY is the union of the Hasse diagrams of X and Y, identifying
zo and yo.

If X VY is contractible, then X and Y are contractible. This holds for
general topological spaces. Let ¢ : X — X VY denote the canonical inclusion
and r : X VY — X the retraction which sends all of Y to zo. If H :



34 3 Basic Topological Properties of Finite Spaces

(XVY)xI— X VY is a homotopy between the identity and a constant,
then rH(i x 17) : X x I — X shows that X is contractible. The following
example shows that the converse is not true for finite spaces.

Example 2.7.10. The space X of Example 2.2.6 is contractible, but the
union at x of two copies of X is a minimal finite space, and in particular it
is not, contractible.

P2E7ZSNN

However, from Corollary 4.3.11 we will deduce that X VX is homotopically
trivial, or in other words, it is weak homotopy equivalent to a point. This is
the first example we exhibit of a finite space which is homotopically trivial
but which is not contractible. These spaces play a fundamental role in the
theory of finite spaces.

In Proposition 4.3.10 we will prove that if X and Y are finite Ty-spaces,
there is a weak homotopy equivalence |[(X)| V |K(Y)| - X VY.

2.8 A Finite Analogue of the Mapping Cylinder

The mapping cylinder of a map f : X — Y between topological spaces is the
space Z5 obtained from (X x I) UY by identifying each point (z,1) € X x I
with f(z) € Y. Both X and Y are subspaces of Zy. We denote by j : Y — Z;
and ¢ : X — Zy the canonical inclusions where 7 is defined by i(x) = («,0).
The space Y is in fact a strong deformation retract of Zy. Moreover, there
exists a retraction r : Zy — Y with jr ~ 1z, rel Zy which satisfies that

= f [75, Theorem 1.4.12].

We introduce a finite analogue of the classical mapping cylinder which will
become important in Chap. 4. This construction was first studied in [8].

Definition 2.8.1. Let f: X — Y be a map between finite Ty-spaces. We
define the non-Hausdorff mapping cylinder B(f) as the following finite T-
space. The underlying set is the disjoint union X U'Y. We keep the given
ordering within X and Y and for z € X, y € Y we set © < y in B(f) if

fl@)<yinY.
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It can be proved that B(f) is isomorphic to (X x &) LUY/ (4 1)~f(2) Where
S denotes the Sierpinski space. However, we will omit the proof because this
fact will not be used in the applications.

We will denote by i : X < B(f) and j : Y < B(f) the canonical inclusions
of X and Y into the non-Hausdorff mapping cylinder.

Lemma 2.8.2. Let f: X — Y be a map between finite Ty-spaces. Then Y
is a strong deformation retract of B(f).

Proof. Define the retraction r : B(f) — Y of j by r(x) = f(z) for every
xr € X. Clearly r is order preserving. Moreover, jr > 1p(s) and then jr ~
1B(f) rel Y. O

By Corollary 2.2.5, for any map f : X — Y there is a strong collapse
B(f) Y.

Since ri = f, any map between finite Ty-spaces can be factorized as a
composition of an inclusion and a homotopy equivalence.

As in the classical setting, the non-Hausdorff mapping cylinder can be used
to reduce many proofs concerning general maps to the case of inclusions. For
example, f satisfies one of the following properties if and only if the inclusion
1 does: being a homotopy equivalence, a weak homotopy equivalence or a
nullhomotopic map.

If X and Y are any two homotopy equivalent spaces there exists a third
space Z containing both X and Y as strong deformation retracts. This space
can be taken as the mapping cylinder of any homotopy equivalence X — Y
(see [38, Corollary 0.21]). If f : X — Y is now a homotopy equivalence
between finite Ty-spaces, Y is a strong deformation retract of B(f) but X in
general is just a (weak) deformation retract. Consider the space X and the
point x € X of Example 2.2.6. The map f : * — X°P that maps * into x is a
homotopy equivalence. However # is not a strong deformation retract of B(f)
by Corollary 2.2.5 because (B(f),*) is a minimal pair. Although X is not
in general a strong deformation retract of B(f) for a homotopy equivalence
f: X =Y, we will see that if two finite Ty-spaces are homotopy equivalent,
there exists a third finite Ty-space containing both as strong deformation
retracts. This is stated in Proposition 4.6.6.






Chapter 3
Minimal Finite Models

In Sect. 2.3 we proved that in general, if K is a finite simplicial complex, there
is no finite space with the homotopy type of | K|. However, by Theorem 1.4.12
any compact polyhedron is weak homotopy equivalent to a finite space. In
this chapter we will study finite models of polyhedra in this sense and we will
describe the minimal finite models of some well-known (Hausdorff) spaces,
i.e. weak homotopy equivalent finite spaces of minimum cardinality. The main
results of this chapter appear in [7].

3.1 A Finite Space Approximation

Definition 3.1.1. Let X be a space. We say that a finite space Y is a finite
model of X if it is weak homotopy equivalent to X. We say that Y is a
minimal finite model if it is a finite model of minimum cardinality.

For example, the singleton is the unique minimal finite model of every
contractible space. Moreover, it is the unique minimal finite model of every
homotopically trivial space, i.e. with trivial homotopy groups.

Since every finite space is homotopy equivalent to its core, which is a
smaller space, we have the following

Remark 3.1.2. Every minimal finite model is a minimal finite space.

Since K(X) = KC(X°P), if X is a minimal finite model of a space Y, then
so is XP.

Example 3.1.3. The 5-point Tp-space X, whose Hasse diagram is
° °
° ° °
J.A. Barmak, Algebraic Topology of Finite Topological Spaces and 37

Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6_3, © Springer-Verlag Berlin Heidelberg 2011
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has an associated polyhedron |K(X)|, which is homotopy equivalent to
S1v S Therefore, X is a finite model of S' v S'. In fact, it is a minimal
finite model since every space with less than 5 points is either contractible,
or non connected or weak homotopy equivalent to S'. However, this minimal
finite model is not unique since X°P is another minimal finite model not
homeomorphic to X.

We will generalize this result later, when we characterize the minimal finite
models of graphs.

The idea of modeling spaces with ones which are easier to describe and to
work with is standard in Algebraic Topology. For instance, any topological
space X can be approximated by a CW-complex, in the sense that there
exists a CW-complex weak homotopy equivalent to X. Moreover, two such
CW-approximations are homotopy equivalent [38, Proposition 4.13, Corollary
4.19]. In these notes, we use finite spaces to model general spaces. Note that,
as the previous example shows, two finite models of a space may not be
homotopy equivalent. The uniqueness of CW-approximations up to homotopy
implies that if X is a finite model of a polyhedron Y, then Y is homotopy
equivalent to [K(X)].

Generalizing the definition made in Sect. 2.7, we define the non-Hausdorff
suspension S(X) of a topological space X as the space X U {+,—} whose
open sets are those of X together with X U {+}, X U{-} and X U {+,—}.
If X is a finite space, the non-Hausdorff suspension of X is the join S(X) =
X ® S°. The non-Hausdorff suspension of order n is defined recursively by
S*(X) = S(S*1(X)). For convenience we define S*(X) = X.

The following result is due to McCord [55].

Proposition 3.1.4. The finite space S™(S°) is a finite model of the n-
dimensional sphere S™ for every n > 0.

Proof. By Remark 2.7.2, |K(S"(S5Y))| = |[K(S°® S°® ... ® S%)| = [K(S?)] «

IC(SO)] 5. |KC(SO)| = S0 S0 % ... % SO = §m. 0
0><0
X[ X

SO S(SO) S2(SO)

In [52] May conjectured that S”(S°) is a minimal finite model of S™.
We will show that this conjecture is true. In fact, we prove a stronger result.
Namely, we will see that any space with the same homotopy groups as S™
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has at least 2n + 2 points. Moreover, if it has exactly 2n 4+ 2 points then it
has to be homeomorphic to S*S°.

3.2 Minimal Finite Models of the Spheres

Recall again that the height ht(X) of a finite poset X is one less than the
maximum cardinality of a chain of X. Therefore ht(X) coincides with the
dimension of the associated complex K(X).

Theorem 3.2.1. Let X # % be a minimal finite space. Then X has at least
2ht(X) + 2 points. Moreover, if X has exactly 2ht(X) + 2 points, then it is
homeomorphic to SP(X)(S9).

Proof. Let g < x1 < ... < xp be a chain in X of length h = ht(X). Since
X is a minimal finite space, x; is not an up beat point for any 0 < i < h.
Then, for every 0 < i < h there exists y;11 € X such that y;41 > x; and
Yit1 z x;41. We assert that the points y; (for 0 < ¢ < h) are all distinet from
each other and also different from the z; (0 < j < h).

Since Y41 > x;, it follows that y;41 # x; for all j <. But y;41 # a; for
all j > i because y;41 Z Tiy1.

If yi41 = yj41 for some ¢ < j, then y; 41 = yj11 > =; > 241, which is a
contradiction.

Since finite spaces with minimum or maximum are contractible and X # x
is a minimal finite space, it cannot have a minimum. Then there exists yg € X
such that yo # xo. Therefore, yo must be distinct from the other 2h+1 points
and #X > 2h + 2.

Let us suppose now that X has exactly 2h + 2 points, i.e.

X = {55075517-~-;$h7y07917~-~ayh}~

Because of the maximality of the chain zg < ... < zp, we get that x; and
y; are incomparable for all 7.

We show that y; < x; and y; < y; for all i < j by induction in j.

For j = 0 there is nothing to prove. Let 0 < k < h and assume the
statement holds for j = k. As xyy1 is not a down beat point, there exists
z € X such that z < z41,and z ﬁ Zk. Since x41 and Y41 are incomparable,
it follows that z # yi41. By induction we know that every point in X, with
the exception of y; and yiy1, is greater than zp4q or less than xy. Then
z =y and so, yr < Tr4+1. Analogously, yr41 is not a down beat point and
there exists w € X such that w < yp41 and w £ 2. Again by induction,
and because yi11 7 Tr41, we deduce that w must be yj and then yx < ypi1.
Furthermore, if ¢ < k, then y; < o < 41 and y; < T < Yrt1-

We proved that, for any ¢ < j, we have that y; < z;, ¥; <y;, x; < z; and
x; < yj. Moreover, for any 0 < ¢ < h, ; and y; are incomparable.
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This is exactly the order of S"(S?). Therefore X is homeomorphic to
S"(89). O

Theorem 3.2.2. Any space with the same homotopy groups as S™ has at
least 2n + 2 points. Moreover, S*(S°) is the unique space with 2n + 2 points
with this property.

Proof. The case n =1 is trivial. In the other cases, let us suppose that X is
a finite space with minimum cardinality such that 7 (X, ) = m(S™, s) for
all £ > 0. Then X must be a minimal finite space and so is Tj.

By the Hurewicz Theorem [38, Theorem 4.32], H, (|K(X)|) = m. (|(X)])
= m,(S™) # 0. This implies that the dimension of the simplicial complex
K(X) must be at least n, which means that the height of X is at least n. The
result now follows immediately from the previous theorem. ad

Corollary 3.2.3. The n-sphere has a unique minimal finite model and it
has 2n + 2 points.

Remark 3.2.4. These results regarding the minimal finite models of the
spheres were obtained in [7]. However, there is an article of McCord [54] with
a result without proof [54, Theorem 2], from which the first part of Theorem
3.2.2 could be deduced. McCord’s result can be easily deduced from the
stronger Theorem 3.2.1 (which also implies the uniqueness of these minimal
models).

Furthermore, the proof of Theorem 3.2.1 itself is interesting because it
relates the combinatorial methods of Stong’s theory with McCord’s point of
view.

3.3 Minimal Finite Models of Graphs

Remark 3.3.1. If X is a connected finite Tp-space of height one, [K(X)| is a
connected graph, i.e. a CW-complex of dimension one. Therefore, the weak
homotopy type of X is completely determined by its Euler characteristic.
More precisely, if

X(X) = #X — #E(H(X)) =n,

1-n
then X is a finite model of \/ S*. Recall that E(H(X)) denotes the set of
i=1
edges of the Hasse diagram of X.
Proposition 3.3.2. Let X be a connected finite Ty-space and let xg,x €
X, xg # x such that x is neither maximal nor minimal in X. Then the
inclusion map of the associated simplicial complezes K(X ~ {z}) C K(X)
induces an epimorphism
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iv s BE(K(X N A{a}),x0) = E(K(X),20)

between their edge-path groups.

Proof. We have to check that every closed edge-path in K(X) with base
point x¢ is equivalent to another edge-path that does not go through z. Let
us suppose that y < x and (y, z)(z, z) is an edge-path in (X). If 2 < z then
(y,z)(z,z) = (y, 2). In the case that z < z, since x is not maximal in X, there
exists w > x. Therefore (y,x)(z,z) = (y,z)(x,w)(w, x)(z, z) = (y, w)(w, 2).
The case y > z is analogous.

In this way, one can eliminate x from the writing of any closed edge-path
with base point xg. m]

Note that the space X \ {z} of the previous proposition is also connected.
An alternative proof of the previous proposition is given by the van Kampen
Theorem. Let C, = U, U F, be the star of z. Since x is not maximal or
minimal, the link C, = C, ~ {z} is connected. Then van Kampen gives
am epimorphism my (K(X . o)]) * 7 (K(Co)]) — m(K(X)]). But K(C,) =
2K (C,) is a cone, and then 7, (|K(C,)|) = 0. Therefore, i, : m (|K(X ~z)|) —
m1(|)C(X)|) is an epimorphism.

The result above shows one of the advantages of using finite spaces instead
of simplicial complexes. The conditions of maximality or minimality of points
in a finite space are hard to express in terms of simplicial complexes.

Remark 3.3.3. If X is a finite Ty-space, then ht(X) < 1 if and only if every
point in X is maximal or minimal.

Corollary 3.3.4. Let X be a connected finite space. Then there exists a con-
nected Ty-subspace Y C X of height at most one such that the fundamental
group of X is a quotient of the fundamental group of Y.

Proof. We can assume that X is T because X has a core. Now, the result
follows immediately from the previous proposition. a

Remark 3.3.5. Note that the fundamental group of a connected finite Ty-
space of height at most one is finitely generated by Remark 3.3.1. Therefore,
path-connected spaces whose fundamental group does not have a finite set of
generators do not admit finite models.

n
Corollary 3.3.6. Let n € N. If X is a minimal finite model of \/ S*, then

i=1
ht(X)=1.

Proof. Let X be a minimal finite model of \/ S1. Then there exists a con-

nected Tp-subspace Y C X of height one, x G Y and an epimorphism from
m (Y, z) to m(X,z) = _LZ.
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Since ht(Y) = 1, Y is a model of a graph, thus 71 (Y, z) = f Z for some
integer m. Note that m > n.

There are m edges of H(Y) which are not in a maximal tree of the
underlying non directed graph of H(Y) (i.e. K(Y")). Therefore, we can remove

m —n edges from H(Y') in such a way that it remains connected and the new
n
space Z obtained in this way is a model of \/ S*.

=1
Note that #Z = #Y < #X, but since X is a minimal finite model,
#X < #Z and then X =Y has height one. a

If X is a minimal finite model of \/ S* and we call i = #{y € X | y is

i=1
maximal}, j = #{y € X | y is minimal}, then #X = i+j and #E(H(X)) <ij.
Since x(X)=1—mn, we have that n <ij — (1 +j)+1= (i —1)(j — 1).
We can now state the main result of this section.

Theorem 3.3.7. Let n € N. A finite Ty-space X is a minimal finite model

of \/ St if and only if ht(X) =1, #X =min{i+j | (i—1)(j —1) > n} and
i=1

HE(H(X)) = #X +n — L.

Proof. We have already proved that if X is a minimal finite model of \n/ St
then ht(X) =1and #X >min{i+j| (i—1)(j—1) > n}. Ifiand j arzezéuch
that n < (i—1)(j—1), we can consider Y = {x1, 22, ..., 2, Y1, Y2, ... y; } with
the order yi < x; for all k, [, which is a model of (Ziliyil) S1. Then we can
remove (i — 1)(j — 1) — n edges from H( ) to obtaiknzg connected space of

cardinality ¢4j which is a finite model of \/ S1. Therefore #X < #Y = i+j.
=1
This is true for any 4, j with n < (i — 1)(] — 1), then #X =min{i+j | (i —

1)(j — 1) > n}. Moreover, #E(H (X)) = #X +n — 1 because x(X) =1—n.

In order to show the converse of the theorem we only need to prove that
the conditions ht(X) = 1, #X = min{i +j | (: — 1)(j — 1) > n} and
#E(H(X)) = #X +n—1 imply that X is connected, because in this case, by
Remark 3.3.1, the first and third conditions would say that X is a model of
\/ S1, and the second condition would say that it has the right cardinality.
i=1

Suppose X satisfies the conditions of above and let X;, 1 < [ < k, be
the connected components of X. Let us denote by M the bet of maximal

elements of X; and let m; = X; ~ M. Let ¢ = Z H#M,;, j = Z #m,. Since
r=1 r=1
i+j=#X = min{s+t| (s—1)(t—1) > n}, it follows that (i—2)(j—1) < n =

HE(H(X)) = #X+1 = #E(H(X)) — (i+7) +1. Hence ij — #E(H(X)) < j—1.
This means that /C(X) differs from the complete bipartite graph (Umy, UM;)
in less than j — 1 edges. Since there are no edges from m,. to M if r # [,
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k k
G 1> Y H#HM(G—Hm) =Y (G — #mu) = (k—1)j.
=1

=1
Therefore £k = 1 and the proof is complete. a

For a real number r, we denote by [r] = min{m € Z | m > r} the ceiling
of r.

Corollary 3.3.8. The cardinality of a minimal finite model of \/ S* is

=1

1+v1+4+4
min{2[v/n + 17,2 {%W +
Proof. The minimum m = min{i+j | (i—1)(j—1) > n} is attained for i = j or
i=j+1sincei(j—2) > (i—1)(j—1)if j > i+2. Therefore m is the minimum
between min{2i | (i —1)? > n} = 2[\/n+1] and min{2i+1 | i(i —1) > n} =
o[itn] 4. O

Note that a space may admit many minimal finite models as we can see
in the following example.

3
Example 3.3.9. Any minimal finite model of \/ S* has 6 points and 8 edges.
i=1

So, they are, up to homeomorphism

In fact, using our characterization, we prove the following

n

Proposition 3.3.10. \/ S! has a unique minimal finite model if and only
k=1

if n is a square.

Proof. Assume that n = m? is a square. In this case the cardinality of a

minimal finite model X is 2m + 2 and the numbers i and j of maximal and
minimal elements have to be equal to m+1 in order to satisfy (i —1)(j—1) >
m?2. The number of edges in the Hasse diagram is #E(H (X)) = #X +n —
1 =2m+2+m?—1= (m+ 1)% and therefore every maximal element
in X is greater than any minimal element. Thus, X is the non-Hausdorff
join of two discrete spaces of m + 1 points. Conversely, suppose that n is

n
not a square and let X be a minimal finite model of \/ S'. If X°P is not
k=1
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homeomorphic to X, we have found a different minimal finite model of \/ S?.

Assume then that X and X °P are homeomorphic and, in particular, X ﬁa; the
same number ¢ of maximal and minimal elements. Since n is not a square,
#E(H(X)) = #X +n—1 = 2i+n — 1 # i%. Then we construct a new
space Y of height 1, with ¢ — 1 maximal elements, ¢ + 1 minimal and with
exactly #E(H(Y)) = #E(H(X)) edges in the Hasse diagram. This can be
done because (i — 1)(i + 1) = i — 1 > E(H(X)). By Theorem 3.3.7, Y is a
n
minimal finite model of \/ S! which is different from X. O
k=1

Recall that an Eilenberg-MacLane space K (G, n) is a space with a unique
non-trivial homotopy group m,(K(G,n)) = G. The homotopy type of a
CW-complex K (G, n) is uniquely determined by G and n (see [38, Proposition
4.30] for example). Note that since any graph is a K (G, 1), the minimal finite
models of a graph X are, in fact, the smallest spaces with the same homotopy
groups as X.

The 2-dimensional torus S! x S! = K(Z @ Z, 1) is another example of an
Eilenberg-MacLane space. The difficulty of finding minimal finite models of
spaces can be already encountered in this particular case. The product of
two minimal finite models of S! has 16 points, it is a finite model of S x S!
and it is a minimal finite space. However it is still unknown whether this is
a minimal finite model or not.

3.4 The f(X)

Stong proved that any homotopy equivalence between minimal finite spaces
is a homeomorphism (Corollary 1.3.7). In this section we introduce the
construction f°°(X) and we exhibit some of its properties. One interesting
application is an analogue of Stong’s result for weak homotopy equivalences
and minimal finite models.

Definition 3.4.1. Let X be a finite Ty-space and f : X — X a continuous
map. We define f>°(X) = N f4(X) C X.

i>1
Remark 3.4.2. Given f : X — X, there exists ng € N such that n > ng
implies f"(X) = f>°(X). Let & € N be the order of f| - (x) in the finite group
Aut(f>*(X)). If n > ng and k divides n, f"(X) = f>*(X) and f"|f~(x) =
1feo(x)- In this case we will say that n € N is suitable for f.

Remark 3.4.3. f*°(X)={x € X | 3 n € Nsuch that f"(z) = z}.

Proposition 3.4.4. Let X be a finite Ty-space and let f,g: X — X be two
homotopic maps. Then f*°(X) is homotopy equivalent to g*(X).
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Proof. We can assume that g < f. By Remark 3.4.2, there exists n € N which
is suitable for f and g simultaneously. Then one can consider f"[s(x) :
9%°(X) = f>(X) and g"[pe(x) : f*(X) — ¢°(X). Since

Flg= 09" [ f ) < 2o (x) = Lo (x)

fn|goo(X)gn|foo(X) >~ 1foo(X). Analogously, gn|ft>c(X)fn|goo(X) ~ 1goo(X). O

Proposition 3.4.5. Let X be a finite Ty-space and let Y C X be a subspace.
Then there exists a continuous map f : X — X such that f*(X) =Y if and
only if Y is a retract of X.

Proof. 'Y = f*°(X) for some f, choose n € N suitable for f. Then f™ :
X — Y is a retraction. Conversely, if r : X — Y is a retraction, r>°(X) =Y.
O

Example 3.4.6. Let X be the following finite Tp-space

Define f : X — X such that 5 and 6 are fixed, f(1) = f(2) = f(3) = 2,
f(4) = 3. Since X is contractible and f(X) is a finite model of S*, f(X) is
not a retract of X. However, f>°(X) = {2,5,6} is a retract of X.

Theorem 3.4.7. Let X be a finite Ty-space and let f : X — X be a weak
homotopy equivalence. Then the inclusion i : f*°(X) — X is a weak ho-
motopy equivalence. In particular, if X is a minimal finite model, f is a
homeomorphism.

Proof. Let n € N be suitable for f. Then f™: X — f*°(X), and the compo-
sitions f"i = 1y (x), if" = f": X — X are weak homotopy equivalences.

Therefore 7 is a weak homotopy equivalence.
If X is a minimal finite model, f°°(X) C X cannot have less points than X,
then f*°(X) = X and f: X — X is onto. Therefore, it is a homeomorphism.
O

Observe that with the same proof of the last theorem, one can prove that
if f: X — X is a homotopy equivalence, then i : f>°(X) < X is a homotopy
equivalence. In particular, if X is a representative of minimum cardinality
of its homotopy type (ie, a minimal finite space), f is a homeomorphism.
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This proves part of Stong’s Classification Theorem 1.3.7 without using beat
points.

Corollary 3.4.8. Let X andY be minimal finite models. Suppose there exist
weak homotopy equivalences f: X — Y and g:Y — X. Then f and g are
homeomorphisms.

Proof. The composition gf : X — X is a weak homotopy equivalence and
then a homeomorphism by Theorem 3.4.7. Analogously ¢gf is a homeomor-
phism. Then the result follows. a

Open problem: Is every weak homotopy equivalence between minimal finite
models a homeomorphism?

Remark 3.4.9. In Example 1.4.17 we proved that there is no weak homotopy
equivalence S(D3) — S(D3)°?. We give here an alternative proof using the
previous result and our description of the minimal finite models of graphs.

Suppose there exists a weak homotopy equivalence f : S(Ds) — S(Ds)°P.
Then f°P is also a weak homotopy equivalence. Since S(Ds) is a minimal
finite model (see Sect.3.3), so is S(D3)°?. By Corollary 3.4.8, S(D3) is
homeomorphic to its opposite, which is clearly absurd.

Proposition 3.4.10. Let X be a finite Ty-space and f,g : X — X two
maps. Then (gf)*>°(X) and (fg)*>°(X) are homeomorphic.

Proof. Let x € (gf)*°(X), then there exists n € N such that (¢f)"(z) = =.
Therefore (fg)"(f(z)) = f(x), and f(z) € (fg)(X). Then fligp~(x) :
(0£)(X) = (f9)(X). Analogously g(rg~(x) : (f9)=(X) — (g/)>(X).
The compositions of these two maps are homeomorphisms, and therefore,
they are also homeomorphisms. a

Remark 3.4.11. Let X be a finite Ty-space, and f : X — X a map. Then
(f)=(X") = f°(X)'. Here f': X’ — X’ denotes the map X (K(f)). A chain
r1 < w2 < ... < zpisin (f)*°(X’) if and only if there exists n such that
(f)"{x1,x2,...,xk}) = {x1,22,...,2}. This is equivalent to saying that
there exists n such that f"(x;) = x; for every 1 < i < k or in other words,
that {z1,22,..., 25} C f(X).

To finish this chapter, we introduce a nice generalization of the construc-
tion of f*°(X) for the case of composable maps not necessarily equal nor
with the same domain or codomain.

Suppose Xg EL X, & ... is a sequence of maps between finite spaces.
Define Y,, = frn—1fn—2... fo(Xo) C X,, the image of the composition of the
first n maps of the sequence.

Proposition 3.4.12. There exists ng € N such that Y,, is homeomorphic to
Yy, for every n > ng.
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Proof. Since (#Yr)nen is a decreasing sequence, there exists n; € N such
that #Y,, is constant for n > ny. Therefore f,, : Y,, — Y, 41 is a bijection for
n>ni.

Let C,, = {(z,2') € Y, xY,, | < 2'}. The map f,, : Y;, — Y41 induces a
one-to-one function F,, : C,, — Cpi1, Fp(x,2') = (fn(2), fu(2))) for n > ny.
Therefore (#C),)n>n, is increasing and bounded by (#V,,)?. Hence, there
exists ng > n1 such that F, is a bijection and then f, : Y, — Y,41 a
homeomorphism for n > ng. a

The space Y,,, constructed above is well defined up to homeomorphism
and it is denoted by (fn)en(Xo). We show that in the case that all the
spaces X, are equal, i.e. X,, = X for every n >0, (f,)5%y(X) is a retract of
X, as in the original case. Since X is finite, there exists a subspace ¥ C X
and an increasing sequence (n;);cn of positive integers such that Y;,, =Y for
every i € N. Let g; = fo,~1fni—2--- [nilv,,, * Yn, — Ya,. These maps are
permutations of the finite set Y, therefore there are two equal, say g; = g;
with i < j. Then fn,—1fn,—2-.. fu;lv,, = 1y, s0 Y is a retract of X.






Chapter 4
Simple Homotopy Types and Finite Spaces

Whitehead’s theory of simple homotopy types is inspired by Tietze’s theorem
in combinatorial group theory, which states that any finite presentation of a
group could be deformed into any other by a finite sequence of elementary
moves, which are now called Tietze transformations. Whitehead translated
these algebraic moves into the well-known geometric moves of elementary
collapses and expansions of finite simplicial complexes. His beautiful theory
turned out to be fundamental for the development of piecewise-linear topol-
ogy: The s-cobordism theorem, Zeeman’s conjecture [87], the applications
of the theory in surgery, Milnor’s classical paper on Whitehead Torsion [58]
and the topological invariance of torsion represent some of its major uses and
advances.

In this chapter we show how to use finite topological spaces to study simple
homotopy types using the relationship between finite spaces and simplicial
complexes.

We have seen that if two finite Ty-spaces X,Y are homotopy equivalent,
their associated simplicial complexes (X ), (Y) are also homotopy equiv-
alent. Furthermore, Osaki [65] showed that in this case, the latter have the
same simple homotopy type. Nevertheless, we noticed that the converse of this
result is not true in general: There are finite spaces with different homotopy
types whose associated simplicial complexes have the same simple homotopy
type. Starting from this point, we looked for the relation that X and Y should
satisfy for their associated complexes to be simple homotopy equivalent. More
specifically, we wanted to find an elementary move in the setting of finite
spaces (if it existed) which corresponds exactly to a simplicial collapse of the
associated polyhedra.

We discovered this elementary move when we were looking for a homotopi-
cally trivial finite space (i.e. weak homotopy equivalent to a point) which was
non-contractible. In order to construct such a space, we developed a method
of reduction, i.e. a method that allows us to reduce a finite space to a smaller
weak homotopy equivalent space. This method of reduction together with

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and 49
Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6_4, © Springer-Verlag Berlin Heidelberg 2011
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the homotopically trivial and non-contractible space (of 11 points) that we
found are exhibited in Sect.4.2. Surprisingly, this method, which consists of
removing a weak point of the space (see Definition 4.2.2), turned out to be the
key to solve the problem of translating simplicial collapses into this setting.

In Sect. 4.2 we introduce the notions of collapse and simple homotopy type
in the context of finite spaces. Theorem 4.2.11 establishes the relationship
between these concepts and their simplicial analogues.

We are now able to study finite spaces using all the machinery of White-
head’s simple homotopy theory for CW-complexes. But also, what is more
important, we can use finite spaces to strengthen the classical theory. The
elementary move in this setting is much simpler to handle and describe
because it consists of adding or removing just one single point. Applications
of this theorem will appear constantly in the following chapters.

In the fourth section of this chapter we investigate the class of maps be-
tween finite spaces which induce simple homotopy equivalences between
their associated simplicial complexes. To this end, we introduce the notion
of a distinguished map. Similarly to the classical case, the class of simple
homotopy equivalences between finite spaces can be generated, in a certain
way, by expansions and a kind of formal homotopy inverse of expansions.
Remarkably this class, denoted by S, is also generated by the distinguished
maps.

Many of the results of this chapter were originally published in [8], but we
exhibit here more applications and, in some cases, shorter proofs.

4.1 Whitehead’s Simple Homotopy Types

At the end of the 1930s Whitehead started to investigate a combinatorial app-
roach to homotopy theory of polyhedra introducing the notions of simplicial
collapse and expansion. These moves preserve the homotopy type of the com-
plex and therefore it is natural to ask whether any two homotopy equivalent
complexes can be connected by a chain of expansions and collapses. In gen-
eral, this is not true. There exists an obstruction called the Whitehead group
which can be defined in a geometrical or in an algebraic way. If the Whitehead
group Wh(K) of the simplicial complex K is trivial, then any complex homo-
topy equivalent to K is also simple homotopy equivalent to K, meaning that L
can be obtained from K by a sequence of expansions and collapses. A simple
homotopy equivalence is a map which is obtained from simplicial expansions
by allowing one to take compositions, homotopic maps and homotopy
inverses. Given a finite simplicial complex K, every homotopy equivalence
f:|K| — |L] is a simple homotopy equivalence if and only if Wh(K) = 0.
Although the motivating questions were raised in the setting of simplicial
complexes, the development of the theory of CW-complexes allowed the
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simple homotopy theory to reach its maturity in Whitehead’s article of
1950 [86].

In this section we will recall some basic notions on simplicial complexes and
simple homotopy theory for complexes and we will fix the notations that will
be used henceforth. The standard references are Whitehead’s papers [84-86],
Milnor’s article [58] and Cohen’s book [23].

If K is a simplicial complex and v is a vertex of K, the (simplicial) star of
v in K is the subcomplex st(v) C K of simplices 0 € K such that cU{v} € K.
The link of v in K is the subcomplex lk(v) C st(v) of the simplices which do
not contain v.

The star st(v) of v

A complex K and a vertex v € K

The link k(v) of v

More generally, if ¢ is a simplex of K, its star st(o) is the subcomplex of
K whose simplices are the simplices 7 € K such that c U7 € K. The link
lk(o) is the subcomplex of st(o) of the simplices which are disjoint from o.

If 0 is a simplex of K, ¢ denotes its boundary and ¢¢ denotes the subcom-
plex of K of the simplices which do not contain o. The stellar subdivision of
K at the simplex o is the complex adlk(c) 4+ o¢ where a is a vertex which is
not in K. The first barycentric subdivision K’ of K can be obtained from K
by performing a sequence of stellar subdivisions (see [31]).

The stellar subdivision of K

A lex K and a simpl
complex K and a simplex at o

ceK.
Let L be a subcomplex of a finite simplicial complex K. There is an ele-
mentary simplicial collapse from K to L if there is a simplex o of K and
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a vertex a of K not in ¢ such that K = L Uaoc and L Naoc = acd. This is
equivalent to saying that there are only two simplices 0,7 of K which are
not in L and such that 7 is the unique simplex containing ¢ properly. In this
case we say that o is a free face of 7. Elementary collapses will be denoted,
as usual, K X L.

Fig. 4.1 A complex which collapses to the boundary of a 2-simplex

We say that K (simplicially) collapses to L (or that L expands to K) if
there exists a sequence K = K1, Ko, ..., K, = L of finite simplicial complexes
such that K; ¢, K; 1 for all i (see Fig.4.1). This is denoted by K \, Lor L /
K. Two complexes K and L have the same simple homotopy type (or they are
simple homotopy equivalent) if there is a sequence K = Ky, Ks,..., K, = L
such that K; \, K;+1 or K; /" K, for all i. Following Cohen’s notation, we
denote this by K "\, L.

Note that if there is an elementary collapse K ~, L where K = LUao
and L Nao = acd, then the inclusion L Nao < ao is trivially a homotopy
equivalence. By the gluing theorem A.2.5 the inclusion L — K is a homo-
topy equivalence. Therefore simple homotopy equivalent complexes are in
particular homotopy equivalent.

A simplicial complex is collapsible if it collapses to one of its vertices. For
instance, any simplicial cone aK is collapsible. If ¢ is a maximal simplex of K,
then o is a free face of ao in aK. Therefore, a K \, aK~{0, a0} = a(K~{c}).
By induction a(K \ {o}) is collapsible and then so is a K.

Lemma 4.1.1. Let aK be a simplicial cone of a finite complex K. Then, K
is collapsible if and only if aK \, K.

Proof. We can prove by induction that for any subcomplex L C K, K \, L
if and only if a K \, aL U K. Note that o is a free face of 7 in L if and only if
ao is a free face of at in aLU K. In particular K collapses to a vertex v if and
only if aK \, avU K. Since a is a free face of av in av UK, av UK \, K. O

Lemma 4.1.2. Suppose that a finite simplicial complex K collapses to a
subcomplex L and let M be another finite simplicial complex. Then K x M \,
Lx M.

Proof. Let 7 be a maximal simplex of M7 = M. Since K \, L, it is easy to
see that K« M N\, Ny = (K« M)~ {on | 0 € K\ L}. If 75 is a maximal
simplex of My = Mj ~ {71}, then Ny \, No = Ny~ {om2 | 0 € K \ L}.
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In general we take 7; a maximal simplex in M; = M;_1 ~\ {7,_1} and then
Ni-1 \\ N; = N;_1~{o7; | 0 € K~L}. When M, is just a vertex, N, = LxM
and therefore K « M \ L * M. O

Proposition 4.1.3. If K and L are subcomplexes of a finite simplicial com-
plex, K UL\, K if and only if L\, KN L.

Proof. In both cases the simplices removed are those of L which are not in K.
It is easy to verify that the elementary collapses can be performed in the same
order. O

Proposition 4.1.4. If K is a finite simplicial complex, then K /\, K'. In
fact we can perform all the collapses and expansions involving complexes of

dimension at most n+ 1 where n is the dimension of K. (In this case we say
that K (n+ 1)-deforms to K').

Proof. We show that something stronger holds, this is true not only for the
barycentric subdivision, but for any stellar subdivision a K of K. Suppose o
is a simplex of K and a is a vertex which is not in K. Then ad " ac \, o
(by Lemma 4.1.1). Therefore adlk(o) /" aclk(o) \, olk(c) by Lemma 4.1.2
and then, by Proposition 4.1.3,

aK = aclk(o) +0¢ / aolk(c) + 0¢ \ olk(c) + ¢ =K

where aK is the stellar subdivision at the simplex o. a

The notion of simple homotopy types was extended to CW-complexes,
which constitute a more appropriate setting for this theory. The Whitehead
group Wh(G) of a group G is a quotient of the first K-theory group K1 (Z(G))
(see [23]). The Whitehead group Wh(K) of a connected CW-complex K is
the Whitehead group of its fundamental group Wh(m(K)), and in the non-
connected case, it is the direct sum of the Whitehead groups of its connected
components. There is a geometric equivalent definition of Wh(K) in which
the underlying set is a quotient of the set of CW-pairs (L, K) such that K is
a strong deformation retract of L. If two homotopy equivalent CW-complexes
have trivial Whitehead group, then they are simple homotopy equivalent.

For example, if G is a free group, Wh(G) = 0. In particular, contractible
CW-complexes are simple homotopy equivalent to a point.

4.2 Simple Homotopy Types: The First Main Theorem

The first mathematician who investigated the relationship between finite
spaces and simple homotopy types of polyhedra was Osaki [65]. He showed
that if © € X is a beat point, (X)) collapses to (X ~\ {z}). In particular,
if two finite Ty-spaces, X and Y are homotopy equivalent, their associated
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simplicial complexes, (X ) and K(Y), have the same simple homotopy type.
However, there exist finite spaces which are not homotopy equivalent but
whose associated complexes have the same simple homotopy type. Consider,
for instance, the spaces with the following Hasse diagrams.

XXX

They are not homotopy equivalent because they are non-homeomorphic min-
imal finite spaces. However their associated complexes are triangulations of
S and therefore, have the same simple homotopy type.

A more interesting example is the following.

Example 4.2.1 (The Wallet). Let W be a finite Ty-space, whose Hasse
diagram is the one of Fig. 4.2 below.

XXX

Fig. 4.2 W

This finite space is not contractible since it does not have beat points, but
it is not hard to see that [KC(W)| is contractible and therefore, it has the same
simple homotopy type as a point. In fact we will deduce from Proposition 4.2.4
that W is a homotopically trivial space, i.e. all its homotopy groups are trivial.
This example also shows that the Whitehead Theorem does not hold in the
context of finite spaces, not even for homotopically trivial spaces.

We introduce now the notion of a weak beat point which generalizes Stong’s
definition of beat points.

Definition 4.2.2. Let X be a finite T-space. We will say that x € X is a
weak beat point of X (or a weak point, for short) if either U, is contractible
or F, is contractible. In the first case we say that z is a down weak point and
in the second, that x is an up weak point.
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Note that beat points are in particular weak points since spaces with
maximum or minimum are contractible. Since the link C, = U, ® F, is a
join, we conclude from Proposition 2.7.3 the following

Remark 4.2.3. A point x is a weak point if and only if C, is contractible.

When z is a beat point of X, we have seen that the inclusion 7 : X \{z} —
X is a homotopy equivalence. This is not the case if = is just a weak point.
However, a slightly weaker result holds.

Proposition 4.2.4. Let x be a weak point of a finite Ty-space X. Then the
inclusion map 1 : X \ {z} — X is a weak homotopy equivalence.

Proof. We may suppose that z is a down weak point since the other case
follows immediately from this one, considering X °P instead of X. Note that
K(X°P) = K(X).

Given y € X, the set i7'(U,) = U, \ {x} has a maximum if y # x and is
contractible if y = x. Therefore i|;-1 (¢, ) : i~1(Uy) — U, is a weak homotopy
equivalence for every y € X. Now the result follows from Theorem 1.4.2
applied to the basis like cover given by the minimal basis of X. a

As an application of the last proposition, we verify that the space W de-
fined above, is a non-contractible homotopically trivial space. As we pointed
out in Example 4.2.1, W is not contractible since it is a minimal finite
space with more than one point. However, it contains a weak point x
(see Fig.4.2), since U, is contractible (see Fig.4.3). Therefore W is weak

/N7

Fig. 4.3 U,

homotopy equivalent to W~ {z} (see Fig.4.4). Now it is easy to see that this
subspace is contractible, because it does have beat points, and one can get
rid of them one by one.

Definition 4.2.5. Let X be a finite T-space and let Y C X. We say that
X collapses to Y by an elementary collapse (or that Y expands to X by
an elementary expansion) if Y is obtained from X by removing a weak
point. We denote X Y or Y ¢ X. In general, given two finite Ty-spaces
X and Y, we say that X collapses to Y (or Y expands to X) if there is
a sequence X = X1, Xs,...,X,, =Y of finite Ty-spaces such that for each
1 <i<n, X; X, X;q11. In this case we write X Y or Y / X. Two finite
Ty-spaces X and Y are simple homotopy equivalent if there is a sequence
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°
o o o
X . X

Fig. 4.4 W ~ {z}

X = X1,Xs,..., X, =Y of finite Ty-spaces such that for each 1 < i < n,
Xi \ Xiy1 or X; /7 X;41. We denote in this case X 7\ Y, following the
same notation that we adopted for simplicial complexes.

Strong collapses studied in Sect. 2.2 are particular cases of collapses.

In contrast with the classical situation, where a simple homotopy equiva-
lence is a special kind of homotopy equivalence, we will see that homotopy
equivalent finite spaces are simple homotopy equivalent. In fact this follows
almost immediately from the fact that beat points are weak points.

It follows from Proposition 4.2.4 that simple homotopy equivalent finite
spaces are weak homotopy equivalent.

In order to prove Theorem 4.2.11, we need some preliminary results. The
first one concerns the homotopy type of the associated finite space X (K) of a
simplicial cone K. Suppose K = aL is a cone, i.e. K is the join of a simplicial
complex L with a vertex a ¢ L. Since |K]| is contractible, it is clear that
X (K) is homotopically trivial. The following lemma shows that X(K) is in
fact contractible (compare with [70]).

Lemma 4.2.6. Let K = aL be a finite cone. Then X (K) is contractible.

Proof. Define f: X(K) — X(K) by f(o) = o U{a}. This function is order-
preserving and therefore continuous.

If we consider the constant map g : X(K) — X(K) that takes all X(K)
into {a}, we have that 1yx) < f > g. This proves that the identity is
homotopic to a constant map. O

Recall the construction of the non-Hausdorff mapping cylinder B(f) of a
map f: X — Y between finite Tp-spaces introduced in Sect.2.8. Denote as
before i : X — B(f) and j : Y — B(f) the canonical inclusions. It was
proved in Lemma 2.8.2 that there is a strong collapse B(f) \ Y for any
map f. We will show now that under some assumptions on the map f, there
is a collapse B(f) \, X.

Lemma 4.2.7. Let f: X — Y be a map between finite Ty-spaces such that
f~YU,) is contractible for every y € Y. Then B(f) collapses to X .
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Proof. Order the elements y1,¥y2,...,%n of Y in such a way that y, < ys
implies r < s and define X, = X U {yr41,¥r+2,---,ym} C B(f) for every
0 <r <m. Then

Upr= =1z | f(2) <y}

is homeomorphic to f_l(U;i ), which is contractible by hypothesis. Thus
X,r—1 X X, for 1 <r <m and therefore B(f) = X collapses to X = X,,,.
(]

Notice that in Definition 4.2.5 it is not explicit that homeomorphic finite
Toy-spaces are simple homotopy equivalent. One could have added that to the
definition, but it is not needed since it can be deduced from it. If X and Y are
disjoint homeomorphic finite Ty-spaces, then we can take a homeomorphism
f: X — Y and the underlying set of B(f) as the union of the disjoint sets X
and Y. Then by Lemmas 2.8.2 and 4.2.7, X / B(f) \\ Y. In the case that
X and Y are non-disjoint, one can choose a third space Z homeomorphic to
X and Y and disjoint from both of them. Therefore X "\, Z, "\, Y.

Now we can deduce the following

Lemma 4.2.8. Homotopy equivalent finite Ty-spaces are simple homotopy
equivalent.

Proof. Suppose X x Y and that X, and Y, are cores of X and Y. Since beat
points are weak points, X \, X, and Y Y\, Y.. On the other hand, X, and Y.
are homeomorphic and therefore, X. "\, Y. a

As it was observed in Proposition 4.1.4, any finite simplicial complex K
has the same simple homotopy type as its barycentric subdivision K’. We
prove next an analogous result for finite spaces. Recall that X' = X(K(X))
denotes the barycentric subdivision of a finite Ty-space X. It is the poset of
nonempty chains of X ordered by inclusion. It is shown in [80] and in [35]
that there is a weak homotopy equivalence h : X’ — X which takes each
chain C' to its maximum max(C'). This can be deduced from the proof of the
next result.

Proposition 4.2.9. Let X be a finite Ty-space. Then X and X' are simple
homotopy equivalent.

Proof. Since B(h) N\, X by Lemma 2.8.2, it suffices to show that the map
h : X’ — X satisfies the hypothesis of Lemma 4.2.7. This is clear since
h1(U,) = {C | max(C) < 2} = (U,) = X(zK(U,)) is contractible by
Lemma 4.2.6 (in fact, if a finite Tp-space Y is contractible, so is Y’ (see
Corollary 5.2.4)). O

The proof of Proposition 4.2.9 shows that h is a weak homotopy equiva-
lence. Moreover, any map in the hypothesis of Lemma 4.2.7 is a weak homo-
topy equivalence by Theorem 1.4.2.
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Lemma 4.2.10. Let v be a vertex of a finite simplicial complex K. Then,
lk(v) is collapsible if and only if K\, K \ v.

Proof. By Lemma 4.1.1, lk(v) is collapsible if and only if st(v) = vik(v) \
lk(v) = st(v) N (K ~\ v), and this is equivalent to saying that K = st(v) U
(K ~v) \, K \ v by Proposition 4.1.3. O

Theorem 4.2.11.

(a) Let X andY be finite To-spaces. Then, X and Y are simple homotopy
equivalent if and only if (X)) and K(Y') have the same simple homotopy
type. Moreover, if X \\'Y then K(X) \, L(Y).

(b) Let K and L be finite simplicial complexzes. Then, K and L are simple
homotopy equivalent if and only if X(K) and X (L) have the same simple
homotopy type. Moreover, if K \, L then X(K) \, X(L).

Proof. Let X be a finite Typ-space and assume first that z € X is a beat
point. Then there exists ' € X and subspaces Y, Z C X such that C, =
Y ® {2/} ® Z. The link lk(x) of the vertex x in K(X) is collapsible, since
lk(z) = K(Cp) = 2/K(Y ® Z) is a simplicial cone. By Lemma 4.2.10, K(X) \,
K(X ~ {z}). In particular, if X is contractible, (X)) is collapsible.

Now suppose = € X is a weak point. Then C, is contractible and therefore
lk(z) = K(Cy) is collapsible. Again, by Lemma 4.2.10, K(X) \, K(X ~ {z}).
We have then proved that X N\, Y implies £(X) N\, £(Y). In particular,
X\ Y implies £(X), N\, K(Y).

Suppose now that K and L are finite simplicial complexes such that
K ™, L. Then there exist ¢ € K and a vertex a of K not in ¢ such that
ac € K, K = LU {o,ac} and ac N L = acd. It follows that o is an up
beat point of X(K), and since AR g X(ac), by Lemma 4.2.6, ac
is a down weak point of X' (K) \ {c}. Therefore X(K) S, X(K) ~ {o} &
X(K) ~{o,ac} = X(L). This proves the first part of (b) and the “moreover”
part.

Let X, Y be finite Ty-spaces such that K(X) N\ KL(Y). Then X' =
X(K(X)), ™\ X(K(Y)) =Y’ and by Proposition 4.2.9, X Y. Finally,
if K, L are finite simplicial complexes such that X(K), ™\, X(L), K' =
K(X(K))/\K(X(L)) = L' and therefore K\, L by Proposition 4.1.4.
This completes the proof. a

Corollary 4.2.12. The functors IC, X induce a one-to-one correspondence
between simple homotopy types of finite spaces and simple homotopy types of
finite simplicial complezes

K
_—

{Finite Ty — Spaces}/ {Finite Simplicial Complexes}
/N x AN

The following diagrams illustrate the whole situation.
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XgY:X/\Y:X%Y

| ]J

KX),/ANK(Y) = [K(X)| & |K(Y)| <= [K(X)] % K]

he we

X(K) % X(L) = X(K),\ X)) = X(K) LX)

| !

we he
KL = |K| % |L| = |K|¥|L]

he
The Wallet W satisfies W\, *, however W 2 %. Therefore X Y =

X Xy, Since |[K| % |L| % KL, X XY % X\ Y. The Whitchead
group Wh(X) of a finite Ty-space X is Wh(m (X)) if X is connected,
and the direct sum of the Whitehead groups of its connected components
in general. Therefore Wh(X) = Wh(|K(X)|). Note that, if X % Y and
their Whitehead group Wh(X) is trivial, then [K(X)| and |[K(Y)| are simple
homotopy equivalent CW-complexes. It follows from Theorem 4.2.11 that
X Y. Thus, we have proved.

Corollary 4.2.13. Let X, Y be weak homotopy equivalent finite Ty-spaces
with trivial Whitehead group. Then X "\, Y .

Beat points defined by Stong provide an effective way of deciding whether
two finite spaces are homotopy equivalent. The problem becomes much harder
when one deals with weak homotopy types instead. There is no easy way
to decide whether two finite spaces are weak homotopy equivalent or not.
However if two finite Tp-spaces have trivial Whitehead group, then they are
weak homotopy equivalent if and only we can obtain one from the other just
by adding and removing weak points.

Another immediate consequence of Theorem 4.2.11 is the following

Corollary 4.2.14. Let X, Y be finite Ty-spaces. If X Y, then X'\ Y'.

Note that from Theorem 4.2.11 one also deduces the following well-known
fact: If K and L are finite simplicial complexes such that K \, L, then
K' N\ L'
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4.3 Joins, Products, Wedges and Collapsibility

The notion of collapsibility for finite spaces is closely related to the analogous
notion for simplicial complexes: We say that a finite Ty-space is collapsible
if it collapses to a point. Observe that every contractible finite Ty-space
is collapsible, however the converse is not true. The Wallet W introduced
in Example 4.2.1 is collapsible and non-contractible. Note that if a finite
To-space X is collapsible, its associated simplicial complex K(X) is also
collapsible. Moreover, if K is a collapsible complex, then X' (K) is a collapsible
finite space. Therefore, if X is a collapsible finite space, its subdivision X’ is
also collapsible.

Remark 4.3.1. Note that if the link €, of a point # € X is collapsible, IC(CA'QL)
is also collapsible and one has that K(X) \, (X ~\ {z}) by Lemma 4.2.10.

Example 4.3.2. Let W be the Wallet, and C(W) its non-Hausdorff cone.
By Remark 4.3.1, K(C(W)) \, K(W) but C(W) does not collapse to W.

Let us consider now a compact contractible polyhedron X with the prop-
erty that any triangulation of X is non-collapsible. One such a space is the
Dunce Hat [87]. The Dunce Hat is the space obtained from a triangle by
identifying the edges as it is shown in Fig.4.5.

Fig. 4.5 The Dunce hat

This space has a CW-structure with only one 0-cell, one 1-cell and one
2-cell. One way to see that it is contractible is by observing that the attaching
map of the 2-cell is a homotopy equivalence S' — S' and then an easy
application of the gluing theorem A.2.5 gives a homotopy equivalence from
the 2-dimensional disk to the Dunce Hat. Any triangulation of the Dunce
Hat is non-collapsible since each 1-simplex is contained in two or three
2-simplices. Let K be any triangulation of X. The associated finite space
X(K) is homotopically trivial because X is contractible. However, X' (K) is
not collapsible since K’ is not collapsible. The number of points of the finite
space X (K) constructed in this way is the same as the number of simplices of
K. In Chap. 7 we will develop methods for constructing smaller finite models
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of CW-complexes. In Fig. 7.3 we show a finite space of only 15 points which
is homotopically trivial and non-collapsible.
We have therefore the following strict implications in the context of finite
spaces:
contractible = collapsible = homotopically trivial.

Example 4.3.3. The following space X is another example of a collapsible
space which is not contractible. It was first considered in [71, Fig. 2].

[ ] [ [ ]
The space X U {a} below is contractible and collapses to X. Therefore
contractibility is not invariant under collapses.

/\

<X

It is known that if K and L are finite simplicial complexes and one of them
is collapsible, then K * L is also collapsible (see Lemma 4.1.2). As far as we
know the converse of this result is an open problem (see [83, (4.1)]). In the
setting of finite spaces, the analogous result and its converse hold.

Proposition 4.3.4. Let X and Y be finite Ty-spaces. Then X ® Y 1is col-
lapsible if and only if X or'Y is collapsible.

Proof. We proceed as in Proposition 2.7.3, replacing beat points by weak
points and deformation retractions by collapses. Note that if z; is a weak
point of X;, then x; is also a weak point of X; ® Y, since CX oY — C’X ®Y
is contractible by Proposition 2.7.3.
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On the other hand, if z; is a weak point of X; ® Y; and z; € X;, then by
Proposition 2.7.3, z; is a weak point of X; or Y; is contractible. O

By the proof of Proposition 4.3.4 one also has the following

Proposition 4.3.5. Let X1, X5, Y1, Y5 be finite Ty-spaces. If X1\, X2 and
i/ \NYs, Xi®Y, "\ Xo®Ys.

These are a similar results for products.
Lemma 4.3.6. Let X and Y be finite Ty-spaces. If X \ A, X XY \ AxXY.

Proof. Tt suffices to show that if x € X is a weak point of X, X x Y
(X ~{z}) x Y. Suppose without loss of generality that = is a down weak
point. If y € Y,

U(I,y) = Um x Uy U {z} x Uy

Let yo € Y be a minimal point. Then U(%yg) = U, x Uy, is contractible
since each factor is contractible. Therefore, (z,yo) is a down weak point

of X x Y. Now, let y; be minimal in Y \ {yo}. Then 0();23/)\{@,310)} =

Up x UY, U{z} x UX ~{(,90)} = U x UY, U{a} x Uy~ 08 = 0, x UY, which
again is contractible. Therefore (z,y1) is a weak point in X x Y ~ {(z,90)}
Following this reasoning we remove from X x Y all the points of the form
(z,y) withy € Y. O

In particular we deduce the following two results.

Proposition 4.3.7. Let X1, X2, Y1,Y5 be finite Ty-spaces. If X1/, X2 and
Yi/\\ Yo, X1 xY1, A\ X2 x Ys.

Proposition 4.3.8. Let X andY be collapsible finite Ty-spaces. Then X XY
1s collapsible.

There is an analogous result to Proposition 4.3.8 for the associated com-
plexes, which relates the collapsibility of (X x Y') with the collapsibility of
K(X) and K(Y) (see [83)]).

The following lemma, was used in the original proof of Theorem 4.2.11
in [8]. The shorter proof we exhibit here does not use this result, but we will
need it for the proof of Proposition 4.3.10.

Lemma 4.3.9. Let L be a subcomplex of a finite simplicial complex K. Let
T be a set of simplices of K which are not in L, and let a be a vertex of K
which is contained in no simplex of T, but such that ac is a simplex of K

for every o € T. Finally, suppose that K = LU |J {o,a0} (i.e. the simplices
oeT
of K are those of L together with the simplices o and ac for every o in T).

Then L /' K.

Proof. Number the elements 01,09, ...,0, of T in such a way that for every
i,7 with ¢ < j, #0; < #0;. Here #o0y, denotes the cardinality of oj. Define
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K; =LU U{oj,a0;} for 0 < i < n.Let 0 C 0;. If 0 € T, then 0,a0 €
j=1
K;_4, since #0 < #o0;. If 0 ¢ T, then 0,a0 € L C K;_1. This proves that
ac; N K; 1 = ao;.
By induction, K; is a simplicial complex for every i, and K; 1 ¥ K.
Therefore L = Ky /" K, = K. a

Proposition 4.3.10. Let (X,z0) and (Y,yo) be finite Ty-pointed spaces.
Then there exists a weak homotopy equivalence |KK(X)|V K(Y)] - X VY.

Proof. Let K(X)VK(Y) C K(X VY) be the simplicial complex which is the
union of the complexes IC(X) and K(Y) identifying the vertices zp and yo.
Then |K(X)| V [K(Y)] is homeomorphic to [K(X )V K(Y)|. The McCord map
pxvy KX VY)| = X VY induces a map f = puxvyi: [K(X)|VI|KY)| —
X VY, where i : [K(X)|VI|K(Y)| — |[K(X VY)| is the canonical inclusion.
In order to prove that f is a weak homotopy equivalence, we only need to
prove that 7 is a homotopy equivalence. We show something stronger: there
is a simplicial expansion from IC(X) V KL(Y) to K(X VY).

Take K = K(X VY) and L = £(X)VK(Y). Let a = xg = yo and let
T={oceK|o¢ Landa ¢ o}.If 0 €T, then every point of ¢ is comparable
with a, and therefore ac € K. By Lemma 4.3.9, L /" K. O

Corollary 4.3.11. Let X and Y be finite Ty-spaces. Then X V'Y is homo-
topically trivial if and only if both X and Y are.

Proof. f X and Y are homotopically trivial, the polyhedra |I(X)| and
|KL(Y)] are contractible and therefore |[IC(X)| V [K(Y)] is contractible. Thus,
X VY is homotopically trivial by Proposition 4.3.10. Conversely, if X VY is
homotopically trivial, |K(X)| V |[K(Y)| is contractible and then |[K(X)| and
|K(Y)| are contractible. Therefore, X and Y are homotopically trivial. O

Suppose that X and Y are finite Ty-spaces and xg € X, yg € Y are minimal
points. If X VY is collapsible it can be proved by induction that both X and
Y are collapsible. If z € X VY is a weak point, z # T (the class of zg in
X VY) unless X = * or Y = *. But the distinguished point Ty € X VY could
be a weak point with X # « #Y if xp € X or yp € Y is not minimal. It is
not known in the general case whether X VY collapsible implies that X and
Y are collapsible. However, the converse is false as the next example shows.

Example 4.3.12. The simplicial complex K of Example 11.2.9 is collapsi-
ble, and therefore, X(K) is collapsible. The space X'(K) has a unique weak
point ¢ corresponding to the unique free face of K. Then the union X =
X(K)V X(K) of two copies of X(K) at xy = o is homotopically trivial, but
it has no weak points and then it is not collapsible. If x € X(K) is distinct
from Zo, C‘f deformation retracts into C‘f (K) which is not contractible. The
point Ty € X is not a weak point either, since its link C‘% is a join of non-
connected spaces.
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4.4 Simple Homotopy Equivalences: The Second Main
Theorem

In this section we prove the second main result of the chapter, which relates
simple homotopy equivalences of complexes with simple homotopy equiva-
lences between finite spaces. As in the classical setting, the class of simple
homotopy equivalences is generated by the elementary expansions. However,
in the context of finite spaces this class is also generated by the distinguished
maps, which play a key role in this theory.

Recall that a homotopy equivalence f : |K| — |L| between compact
polyhedra is a simple homotopy equivalence if it is homotopic to a composition
of a finite sequence of maps |K| — |K;| — ... — |K,| — |L|, each of them
an expansion or a homotopy inverse of one [23,74].

We prove first that homotopy equivalences between finite spaces induce
simple homotopy equivalences between the associated polyhedra.

Theorem 4.4.1. If f : X — Y is a homotopy equivalence between finite
To-spaces, then [IC(f)] : IK(X)| — |IK(Y)| is a simple homotopy equivalence.

Proof. Let X.and Y, be coresof X and Y. Letix : X, — X andiy : Y. = Y
be the inclusions and rx : X — X, ry : Y — Y, retractions of ix and iy
such that ixrx ~ 1x and iyry ~ ly.

Since ry fix : X, — Y. is a homotopy equivalence between minimal finite
spaces, it is a homeomorphism. Therefore K(ry fix) : K(X.) — K(Y;) is an
isomorphism and then |[IC(ry fix)| is a simple homotopy equivalence. Since
K(X) \, K(X.), |K(ix)| is a simple homotopy equivalence, and then the
homotopy inverse |[K(rx )| is also a simple homotopy equivalence. Analogously
|KC(éy)| is a simple homotopy equivalence.

Finally, since f ~ iyry fixrx, it follows that

(A = 1K (i ) (ry fix)[IK(rx)]

is a simple homotopy equivalence. a

In order to describe the class of simple homotopy equivalences between
finite spaces, we will use a kind of map that was already studied in Lemma
4.2.7.

Definition 4.4.2. A map f : X — Y between finite Ty-spaces is distin-
guished if f~'(U,) is contractible for each y € Y. We denote by D the class
of distinguished maps.

Note that by the Theorem of McCord 1.4.2, every distinguished map is
a weak homotopy equivalence and therefore induces a homotopy equivalence
between the associated complexes. We will prove in Theorem 4.4.4 that in
fact the induced map is a simple homotopy equivalence. From the proof of
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Proposition 4.2.4, it is clear that if z € X is a down weak point, the inclusion
X ~{z} — X is distinguished.

Remark 4.4.3. The map h : X’ — X defined by h(C) = max(C), is distin-
guished by the proof of Proposition 4.2.9.

Clearly, homeomorphisms are distinguished. However it is not difficult to
show that homotopy equivalences are not distinguished in general.

Theorem 4.4.4. Fvery distinguished map induces a simple homotopy equiv-
alence.

Proof. Suppose f : X — Y is distinguished. Consider the non-Hausdorff
mapping cylinder B(f) and the canonical inclusions ¢ : X — B(f), j: Y —
B(f). Recall that there is a retraction r : B(f) — Y defined by r(z) = f(z)
for every x € X and that r is a homotopy equivalence (see Sect.2.8). Then
IK(f)] = IK()||K(7)]. By Lemma 4.2.7 and Theorem 4.2.11, |K(4)| is an
expansion and by Theorem 4.4.1, |[K(r)| is a simple homotopy equivalence.
Therefore |[IC(f)]| is also a simple homotopy equivalence. ]

In Proposition 6.2.10 we will prove that Theorem 4.4.4 also holds for a
weaker notion of distinguished map: if f : X — Y is a map between finite
Ty spaces such that f~!(U,) is homotopically trivial for every y € Y, then f
induces a simple homotopy equivalence.

We have already shown that expansions, homotopy equivalences and dis-
tinguished maps induce simple homotopy equivalences at the level of com-
plexes. Note that if f, g, h are three maps between finite Ty-spaces such that
fg ~ h and two of them induce simple homotopy equivalences, then so does
the third.

Definition 4.4.5. Let C be a class of continuous maps between topological
spaces. We say that C is closed if it satisfies the following homotopy 2-out-of-3
property: For any f, g, h with fg ~ h, if two of the three maps are in C, then
so is the third.

Definition 4.4.6. Let C be a class of continuous maps. The class C generated
by C is the smallest closed class containing C.

It is clear that C is always closed under composition and homotopy. The
class of simple homotopy equivalences between CW-complexes is closed and
it is generated by the elementary expansions. Note that every map in the
class £ of elementary expansions between finite spaces induces a simple
homotopy equivalence at the level of complexes and therefore the same holds
for the maps of €. Contrary to the case of CW-complexes, a map between
finite spaces which induces a simple homotopy equivalence need not have a
homotopy inverse. This is the reason why the definition of £ is not as simple
as in the setting of complexes. We will prove that £ = D, the class generated
by the distinguished maps.
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A map f: X — Y such that f~!(F,) is contractible for every y need
not be distinguished. However we will show that f € D. We denote by f°P :
X — Y°P the map that coincides with f in the underlying sets, and let
Dor ={f | f € D}.

Lemma 4.4.7. D°? = D.

Proof. Suppose that f : X — Y lies in D°. Counsider the following
commutative diagram

hx hxop
X =— X' =(X?) —— Xor

L)

Y hyop
Y —— V' =(Y) — yop,

Here, f’ denotes the map X (KC(f)). Since D satisfies the 2-out-of-3 property
and hyos, hyor, f°P are distinguished by Remark 4.4.3, f’ € D. And since
hx, hy are distinguished, f € D. This proves that D¢ C D. The other
inclusion follows analogously from the opposite diagram. ad

Proposition 4.4.8. £ = D, and this class contains all homotopy equiva-
lences between finite Ty-spaces.

Proof. Every expansion of finite spaces is in £ because it is a composition of
maps in £.

Let f : X — Y be distinguished. Using the non-Hausdorff mapping
cylinder B(f), we deduce that there exist expansions (eventually composed
with homeomorphisms) 7, j, such that i ~ j f. Therefore f € .

If 2 € X is a down weak point, the inclusion X\ {z} — X is distinguished.
If z is an up weak point, X \ {z} < X lies in D by the previous lemma and
therefore € C D.

Suppose now that f: X — Y is a homotopy equivalence. From the proof
of Theorem 4.4.1, fix ~iyry fix where iy, iy are expansions and ry fix
is a homeomorphism. This implies that f € £ =D. a

We denote by S = £ = D the class of simple homotopy equivalences
between finite spaces. In the rest of the section we study the relationship
between simple homotopy equivalences of finite spaces and simple homotopy
equivalences of polyhedra.

Given n € N we denote by K (") the nth barycentric subdivision of K.

Lemma 4.4.9. Let A : K" — K be a simplicial approzimation to the iden-
tity. Then X(\) € S.

Proof. Since any approximation K™ — K to the identity is contiguous
to a composition of approximations K+ — K@ for 0 < i < n (see
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Proposition A.1.6), by Lemma 2.1.3 it suffices to prove the case n = 1.
Suppose A : K’ — K is a simplicial approximation of 1x|. Then X(\) :
X(K)' — X(K) is homotopic to hx (), forif o1 C o2 € ... C 0y, is a chain of
simplices of K, then X(A\)({o1,02,...,0m}) = {A(01), A(02), ..., A(om)} C
om = hx(xy({o1,02,...,0m}). By Remark 4.4.3, it follows that X(\) € S.
O

Lemma 4.4.10. Let ¢,1 : K — L be simplicial maps such that |p| ~ |[].
If X(¢) € S, then X(¢) also lies in S.

Proof. There exists an approximation to the identity A : K(") — K for some
n > 1, such that @\ and ¥ lie in the same contiguity class (see Proposition
A.1.6 and Theorem A.1.7). By Proposition 2.1.3, X(p)X(\) = X(pA\) ~
X(YA) = X(Y)X(N). By Lemma 4.4.9, X(\) € S and since X(p) € S, it
follows that X' (v) € S. |

Theorem 4.4.11. Let Ky, K1, ..., K, be finite simplicial complezes and let

fo f
| Ko | K1 | K|

be a sequence of continuous maps such that for each 0 < i < n either

(1) fi =|pi| where p; : K; — K1 is a simplicial map such that X(p;) € S
or

(2) fi is a homotopy inverse of a map |@;| with v; : K;iy1 — K; a simplicial
map such that X(p;) € S.

If o : Ko — K, is a simplicial map such that |p| ~ fn—1fn—2...fo, then
X(p) €S.

Proof. We may assume that fy satisfies condition (1). Otherwise we define
KQ = KQ, fo = |1K0| : |K0| — |K0| and then |(p| ~ fn—lfn—Q .. .fofo.

We proceed by induction on n. If n = 1, |p| ~ |pg| where X(pg) € S
and the result follows from Lemma 4.4.10. Suppose now that n > 1 and let
Ko, Ky,...,K,, K41 be finite simplicial complexes and f; : |K;| — |K;t1]
maps satisfying conditions (1) or (2), fo satisfying condition (1). Let ¢ :
Ko — K, be a simplicial map such that || ~ f,,fn—1 ... fo- We consider
two cases: f,, satisfies condition (1) or f,, satisfies condition (2).

In the first case we define g : |Ko| — |Ky,| by g = fan-1fn—2... fo. Let
g : Kém) — K,, be a simplicial approximation to ¢ and let X : Kém) —
Ky be a simplicial approximation to the identity. Then |g| ~ g|\| =
Jn—1fn—2-.- f1(fo|A]) where fo[A] = [poAl and X (o)) = X(po)X(A) € S
by Lemma 4.4.9. By induction, X(g) € S, and then X(¢,g) € S. Since
|oAl 2 frg| Al = fulg|l = |ongl, by Lemma 4.4.10, X' (@A) lies in S. Therefore
X(p) €8S.

In the other case, |pnp| = frn_1fn—2-.. fo and by induction, X(pnp) € S.
Therefore X (¢) also lies in S. O
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Theorem 4.4.12.

(a) Let f : X — Y be a map between finite Ty-spaces. Then f is a simple
homotopy equivalence if and only if |IC(f)| : |K(X)| — |K(Y)] is a simple
homotopy equivalence.

(b) Let ¢ : K — L be a simplicial map between finite simplicial complezes.
Then || is a simple homotopy equivalence if and only if X () is a simple
homotopy equivalence.

Proof. By definition, if f € S, |K(f)] is a simple homotopy equivalence.

Let ¢ : K — L be a simplicial map such that |¢] is a simple homotopy
equivalence. Then there exist finite complexes K = Ko, K1,..., K, = L
and maps f; : |K;| — |Kit1|, which are simplicial expansions or homotopy
inverses of simplicial expansions, and such that |p| ~ fh_1fn—2...fo. By
Theorem 4.2.11, simplicial expansions between complexes induce expansions
between the associated finite spaces and therefore, by Theorem 4.4.11,
X(p) €S.

Suppose now that f : X — Y is a map such that [IC(f)| is a simple
homotopy equivalence. Then ' = X (K(f)): X’ — Y’ liesin S. Since fhx =
hyf', f€S.

Finally, if ¢ : K — L is a simplicial map such that X(p) € S, |¢| :
|K'| — |L'| is a simple homotopy equivalence. Here ¢’ = K(X(p)) is the
barycentric subdivision of ¢. Let A : K’ — K and A\r : L' — L be simplicial
approximations to the identities. Then Ap¢" and Ak are contiguous. In
particular [Ar|l¢’| >~ |¢|| k| and then |¢| is a simple homotopy equivalence.

O

In the setting of finite spaces one has the following strict inclusions
{homotopy equivalences} C S C {weak equivalences}.

Clearly, if f : X — Y is a weak homotopy equivalence between finite
Toy-spaces with trivial Whitehead group, f € S.

4.5 A Simple Homotopy Version of Quillen’s Theorem A

Results which carry local information to global information appear frequently
in Algebraic Topology. The Theorem of McCord 1.4.2 roughly states that if
a map is locally a weak homotopy equivalence, then it is a weak homotopy
equivalence (globally). In the following we prove a result of this kind for
simplicial maps and simple homotopy equivalences.

Let K and L be finite simplicial complexes and let ¢ : K — L be
a simplicial map. Given a simplex ¢ € L, we denote by ¢ 1(0) the full
subcomplex of K spanned by the vertices v € K such that ¢(v) € o.
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Recall that the simplicial version of Quillen’s Theorem A states that if
¢ : K — L is a simplicial map and |¢|~1(7) is contractible for every simplex
o € L, then |y| is a homotopy equivalence (see [69, p. 93]). This result can be
deduced from Quillen’s Theorem A or from McCord’s Theorem (see the proof
of Theorem 4.5.2 below). Note that |p~1(c)| = |¢|7'(F). In particular, if
¢~ (o) is collapsible for every o € L, |¢| is a homotopy equivalence. We prove
that under this hypothesis, |¢| is a simple homotopy equivalence. Theorem
4.5.2 is stated as it appears in the author’s Thesis [5]. However, a stronger
result holds (see the discussion at the end of the section).

First, we need to state a stronger version of Lemma 4.2.7. We keep the
notation we used there.

Lemma 4.5.1. Let f: X — Y be a map between finite Ty-spaces such that
f71(Uy) is collapsible for every y € Y. Then K(B(f)) \, K(X).

Proof. We follow the proof and notation of Lemma 4.2.7. The set Uy)ir’l =
{z | f(z) < y} is homeomorphic to f~(U,"), which is collapsible by
hypothesis. Therefore, C‘fo’l is collapsible by Proposition 4.3.4 and, from
Remark 4.3.1, K(X,—1) \, K(X;). Thus, K(B(f)) = K(Xo) collapses to
K(X)=K(Xn)- O

Theorem 4.5.2. Let p: K — L be a simplicial map between finite simplicial
complezes. If ¢~(o) is collapsible for every simplex o of L, then |p| is a
simple homotopy equivalence.

Proof. Let o € L. We show first that X ()~} (U,) = X (¢ 1(0)). Let 7 € K.
Then, 7 € X(p~!(0)) if and only if 7 is a simplex of ¢~!(c). But this is
equivalent to saying that for every vertex v of 7, ¢(v) € o or, in other
words, that ¢(7) C ¢ which means that X' (¢)(7) < 0. By Theorem 4.2.11,
X()~Y(U,) is collapsible.

By Lemma 4.5.1, |[K(7)| : |K'| — |[K(B(X(¢)))| is a simple homotopy
equivalence, and so is |[K(j)] : |[L'| — |[K(B(X(p)))|, where i : X(K) —
B(X(p)) and j : X(L) — B(X(p)) are the inclusions. Since |K(i)| =~
KGN, 1¢'| is a simple homotopy equivalence and then, so is |¢|. O

Surprisingly, the stronger hypothesis in the theorem is not needed (see [6]).
Quillen’s fiber Lemma 1.4.19 claims that an order preserving map f: X — Y
between finite posets such that [IC(f~1(U,))| is contractible for every y € Y,
induces a homotopy equivalence |[K(f)| : |[K(X)| — |K(Y)|. Elementary
proofs of this result are given in [80] and in [6]. The advantage of the second
proof is that it can be easily modified to obtain a simple homotopy version
which can in turn be used to obtain stronger versions of several results, like
Dowker’s Theorem, the Nerve Lemma and the simplicial version of Quillen’s
Theorem A. In particular, this last claims that if ¢ : K — L is a simplicial
map and |p|~1(F) is contractible for every o € L, then |p| is a simple
homotopy equivalence.
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4.6 Simple, Strong and Weak Homotopy in Two Steps

It is easy to prove that if K; and K are simple homotopy equivalent finite
CW-complexes, there exists a third complex L such that Ky 7 L\, K» (just
perform all the expansions at the beginning and then do the collapses in the
order they appear in the formal deformation, [23, Exercise 4.D]). This result
says that the formal deformation between K7 and K> can be made in two
steps, with one expansion first and a collapse after. When CW-complexes
are replaced by simplicial complexes or finite spaces, the structure becomes
much more rigid, and the result is not so trivial. If K; and K, are simple
homotopy equivalent finite simplicial complexes, there exists a third complex
that collapses to K7 and to a complex Ky obtained from Ky by performing
a sequence of stellar subdivisions [84, Theorem 5. In this section we will
prove that if X and Y are finite Ty-spaces, there exists a finite Ty-space Z
which collapses to both of them. One such space is obtained by considering
the multiple non-Hausdorff mapping cylinder which is a generalization of
the non-Hausdorff mapping cylinder defined in Definition 2.8.1. We will use
this construction to prove a similar result for homotopy types and strong
collapses. In the same direction we will prove a result about weak homotopy
types at the end of the section.

Definition 4.6.1. Let X, X1,..., X, be a sequence of finite Ty-spaces and

let fo, fi,..., fn—1 be a sequence of maps such that f; : X; — X;41 or

fi: Xig1 — X5 If fi + X — X1 we say that f; goes right, and in other

case we say that it goes left. We define the multiple non-Hausdorff mapping

cylinder B(fo, f1,- -+, fn-1; X0, X1, .., Xn) as follows. The underlying set is
n

the disjoint union | | X;. We keep the given ordering in each copy X; and for
i=0

z and y in different copies, we set x < y in either of the following cases:

o Ifx € Xoi, y € Xojrg and fo;(x) <y or z < fo;(y).

o Ifz e Xo;,y€ Xojg and fo;1(2) <yora < fo1(y).

Note that the multiple non-Hausdorff mapping cylinder coincides with the
ordinary non-Hausdorff mapping cylinder (Definition 2.8.1) when n = 1 and
the unique map goes right.

Lemma 4.6.2. Let B = B(fo, f1,-- - fu-1, X0, X1, -+, Xn). If fo goes right
or if fo goes left and it lies in D°P, then B \, B ~\ Xj.

Proof. If fy goes right, B(fy) strongly collapses to X; by Lemma 2.8.2. Since
the points of X are not comparable with the points of Xo, X3,...X,,, the
same elementary collapses can be performed in B. Then B \, B \ Xj.
Now, if fo goes left and fi¥ € D, then B(fy") \, X{¥ by Lemma 4.2.7.
Thus, B(f;")°? \, X1. On the other hand, B(f;?) = B(f5"; X7, X;¥) =
B(fo; X0, X1)° and then B(fo; Xo,X1) \, Xi1. By the same argument as
before, B \, B \ Xj. O
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The following remark is an easy consequence of the definition.

Remark 4.6.3.

B(flava"'vfnfl;XlaXQa"' aXn)Op

_ op rop op . yop yop op op
=B(fo", 1 s XGE, X, X)) N XE

Lemma 4.6.4. Let B = B(fo, f1,- -, fn-1,%X0,X1,...,X5). Suppose that
f2i € D if fa; goes right.
fai € DP if fa; goes left.
J2iv1 € D if foit1 goes right.

foiv1 € D if foir1 goes left.
Then B\, X,. If in addition n is even, B \, Xp.

Proof. By Lemma 4.6.2, B \, B \. Xj. By the previous remark,

B~ Xo=DB(f{P 138 P X XS X PP
By induction B(f{7, f5%, ..., [l 13 X717, X3P, X2P) N\, X2P. Therefore B ™\
B~ Xo N\, X,.
If nis even, B = B(fn—lyfn—Qu e for X, X1, - - .,X()) \ Xo- O

Theorem 4.6.5. Let X and Y be simple homotopy equivalent finite Ty-
spaces. Then there exists a finite Ty-space Z that collapses to both X and

(a copy of) Y.

Proof. It X "\|Y, there exists a sequence of elementary expansions and
collapses from X to Y. An elementary expansion X; ¢ X;;; induces an
inclusion map X; — X;;1 which lies in D or D°? depending on if the weak
point removed is a down weak point or an up weak point. In particular, there
exists a sequence X = Xy, X1, Xo,...,X,, = Y of finite Ty-spaces and a
sequence fo, f1,..., fn—1 of mapssuch that f; : X; — X;y1 or f; : X541 — X;
and f; € DUD for every 0 < i < n— 1. Adding identities if needed, we can
assume that the maps are in the hypothesis of Lemma 4.6.4, and the result
follows. ad

Proposition 4.6.6. Let X and Y be homotopy equivalent finite Ty-spaces.
Then there ezists a finite Ty-space Z that contains both X and (a copy of ) Y
as strong deformations retracts.

Proof. The idea is essentially to repeat the proof made for simple homotopy
types. We can say that a map f: X — Y between finite Ty-spaces is strongly
distinguished if f~*(U,) has a maximum for every y € Y. Following the proof
of Lemma 4.2.7 it is easy to see that if f: X — Y is strongly distinguished,
B(f) X\ X. Now we just replace in Lemmas 4.6.2 and 4.6.4 the class D by
the class of strongly distinguished maps and the collapses by strong collapses.
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With these versions of the lemmas, the proof of the proposition is similar to
that of Theorem 4.6.5. O

This result mirrors that for general spaces using the classical mapping
cylinder (see [38, Corollary 0.21]). Of course for finite spaces an additional
property holds: if X and Y are two homotopy equivalent finite Ty-spaces,
there exists a third space Z which is a strong deformation retract of both X
and (a copy of) Y. This space Z can be taken to be the core of X.

We have mentioned in previous chapters that if X and Y are two weak
homotopy equivalent topological spaces, there exists a third space Z and
weak homotopy equivalences X < Z — Y. The following is a version of that
result for finite spaces.

Proposition 4.6.7. Let X and Y be two weak homotopy equivalent finite
spaces. Then there exists a third finite space Z and weak homotopy equiva-
lences X — Z — Y.

Proof. We may assume that X and Y are Tp. Let f : |[K(X)| — |K(Y)]
be a homotopy equivalence and let ¢ : K(X)™ — K(Y) be a simplicial
approximation to f. Then || is also a homotopy equivalence an therefore
X(p) : X+ ¥ is a weak homotopy equivalence. Here X ("+1) = (X (™))’
denotes the (n + 1)th barycentric subdivision of X. Since there are weak
homotopy equivalences Y/ — Y and X (™D — X™ for every 0 < m < n,
there exist weak homotopy equivalences X « X+ vy a

The idea of considering iterated barycentric subdivisions of finite spaces
together with the simplicial approximation theorem appears in a paper of
Hardie and Vermeulen [35] (see also [52, Theorem 8.4]). Similar ideas are
later used to construct finite analogues of the complex number multiplication
St x St — S' and the Hopf map S® — S? in [36] (other examples can be
found in [34,37]).



Chapter 5
Strong Homotopy Types

The notion of collapse of finite spaces is directly connected with the concept
of simplicial collapse. In Chap. 2 we studied the notion of elementary strong
collapse which is the fundamental move that describes homotopy types of
finite spaces. In this chapter we will define the notion of strong collapse of
simplicial complexes which leads to strong homotopy types of complexes. This
notion corresponds to the homotopy types of the associated finite spaces, but
we shall see that it also arises naturally from the concept of contiguity classes.

Strong homotopy types of simplicial complexes have a beautiful character-
ization which is similar to the description of homotopy types of finite spaces
given by Stong.

Most of the results of this chapter are included in the article [11]. However,
the paper contains many more motivations and applications. The reader in-
terested in a more complete exposition of the theory of strong homotopy
types is encouraged to consult [11].

5.1 A Simplicial Notion of Homotopy

Given a vertex v in a simplicial complex K, we denote by K ~ v the full
subcomplex of K spanned by the vertices different from v. This is often
called the deletion of v. Recall that the link [k(v) is the subcomplex of K \ v
whose simplices are those o € K \ v such that o U {v} € K.

If we want to study how the homotopy type of K changes when we remove
a vertex v, it is very useful to analyze the subcomplex lk(v). For instance, if
|lk(v)| is contractible, then |K| and |K \ v| have the same homotopy type.
This easily follows from the gluing theorem A.2.5 (see Proposition A.2.6 for a
proof). If lk(v) is collapsible, st(v) = v(lk(v)) \, lk(v) = st(v) N (K \v) and
therefore K = st(v) U (K \v) \, K \ v. The notion of non-evasive complex
(see [11,41] for example) is also connected with the relationship among (k(v),

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and 73
Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6_5, © Springer-Verlag Berlin Heidelberg 2011
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K and K ~\v. The following definition, motivated by the notion of beat point,
is related to these ideas.

Definition 5.1.1. Let K be a finite simplicial complex and let v € K be a
vertex. We say that there is an elementary strong collapse from K to K \ v
if Ik(v) is a simplicial cone v’ L. In this case we say that v is dominated (by
v') and we write K ¢ K ~\ v (Fig.5.1). There is a strong collapse from a
complex K to a subcomplex L if there exists a sequence of elementary strong
collapses that starts in K and ends in L. In this case we write K N\, L. The
inverse of a strong collapse is a strong expansion and two finite complexes K
and L have the same strong homotopy type if there is a sequence of strong
collapses and strong expansions that starts in K and ends in L.

v

N\

Fig. 5.1 An elementary strong collapse. The vertex v is dominated by v’

Remark 5.1.2. Isomorphic complexes have the same strong homotopy type.
Let K be a finite simplicial complex and let v € K be a vertex. Let v’ be
a vertex which is not in K and consider the complex L = K + v'stg(v) =
K~ v+v'vlkg (v). Since Ik (v") = vlki (v), L N\, K. Moreover, by symmetry
L, L~v= K. Clearly, there is an isomorphism K — K which sends v to
v’ and fixes the other vertices. Thus, if K; and K5 are isomorphic simplicial
complexes, we can obtain a third complex K3 whose vertices are different
from the vertices of K7 and K> and such that K; and K3 have the same
strong homotopy type for i = 1, 2.

If v € K is dominated, lk(v) is collapsible and in particular K collapses to
K ~ v. Thus, the usual notion of collapse is weaker than the notion of strong
collapse.

Remark 5.1.3. A vertex v is dominated by a vertex v’ # v if and only if every
maximal simplex that contains v also contains v’.

We will prove that this notion of collapse corresponds exactly to the notion
of strong collapse of finite spaces (i.e. strong deformation retracts).

If two simplicial maps ¢, : K — L lie in the same contiguity class, we
will write ¢ ~ 1. It is easy to see that if 1,2 : K — L, ¥1,19 : L — M are
simplicial maps such that ¢; ~ g and ¥; ~ ¥, then Y101 ~ Papo.
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Definition 5.1.4. A simplicial map ¢ : K — L is a strong equivalence if
there exists ¢ : L — K such that o ~ 1 and @) ~ 1. If there is a strong
equivalence ¢ : K — L we write K ~ L.

The relation ~ is clearly an equivalence relation.

Definition 5.1.5. A finite simplicial complex K is a minimal complex if it
has no dominated vertices.

Proposition 5.1.6. Let K be a minimal complex and let ¢ : K — K be
simplicial map which lies in the same contiguity class as the identity. Then
@ is the identity.

Proof. We may assume that ¢ is contiguous to 1x. Let v € K and let 0 € K
be a maximal simplex such that v € o. Then p(0) U o is a simplex, and by
the maximality of o, p(v) € ¢(0) Uo = 0. Therefore, every maximal simplex
which contains v, also contains ¢(v). Hence, ¢(v) = v, since K is minimal.
O

Corollary 5.1.7. A strong equivalence between minimal complexes is an iso-
morphism.

Proposition 5.1.8. Let K be a finite simplicial complex and v € K a vertex
dominated by v'. Then the inclusion i : K ~ v — K is a strong equivalence.
In particular, if two complexes K and L have the same strong homotopy type,

then K ~ L.

Proof. Define a vertex map r : K — K ~ v which is the identity on K \ v
and such that r(v) = v'. If 0 € K is a simplex with v € o, consider ¢/ 2 o
a maximal simplex. Therefore v' € ¢’ and r(o) = c U {v'} N {v} C o' isa
simplex of K ~\ v. Moreover ir(c)Uo = ocU{v'} C ¢’ is a simplex of K. This
proves that r is simplicial and that ir is contiguous to 1x. Therefore, i is a
strong equivalence. a

Definition 5.1.9. A core of a finite simplicial complex K is a minimal
subcomplex Ko C K such that K \, Kp.

Theorem 5.1.10. FEvery complex has a core and it is unique up to isomor-
phism. Two finite simplicial complexes have the same strong homotopy type
if and only if their cores are isomorphic.

Proof. A core of a complex can be obtained removing dominated points one
by one. If K7 and K> are two cores of K, they have the same strong homotopy
type and by Proposition 5.1.8, K7 ~ Ks. Since they are minimal, by Corollary
5.1.7 they are isomorphic.

Let K, L be two finite complexes. If they have the same strong homotopy
type, then also their cores Ky and Lg do. As above, we conclude that K and
Lg are isomorphic.

Conversely, If Ko and Ly are isomorphic, they have the same strong
homotopy type by Remark 5.1.2 and then K and L have the same strong
homotopy type. O
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The uniqueness of cores is a fundamental property that distinguishes
strong homotopy types from simple homotopy types. A simplicial complex
can collapse to non-isomorphic subcomplexes, each of them without any free
face. However if a complex strongly collapses to two minimal complexes, they
must be isomorphic. The uniqueness of cores is also proved in [48] where the
notion of strong collapse appears with the name of LC-reduction. That paper
is exclusively devoted to prove that result from a combinatorial viewpoint.
In contrast, Theorem 5.1.10 is motivated by Stong’s topological ideas.

If K and L are two complexes such that K ~ L and Kqg C K, Lo C L are
their cores, then Ko ~ Lo and therefore Ky and Lg are isomorphic. Hence,
we deduce the following

Corollary 5.1.11. Two finite simplicial complexes K and L have the same
strong homotopy type if and only if K ~ L.

Example 5.1.12. The following homogeneous 2-complex is collapsible
(moreover it is non-evasive [83]). However, it is a minimal complex and
therefore it does not have the strong homotopy type of a point.

Example 5.1.13. In contrast to the case of simple homotopy types, a
complex and its barycentric subdivision need not have the same strong
homotopy type. The boundary of a 2-simplex and its barycentric subdivision
are minimal non-isomorphic complexes, therefore they do not have the same
strong homotopy type.

Proposition 5.1.14. Strong equivalences are simple homotopy equivalences.

Proof. Let ¢ : K — L be a strong equivalence. Let Ky be a core of K and
Lg a core of L. Then the inclusion i : Ky — K is a strong equivalence and
there exists a strong equivalence r : L — L which is a homotopy inverse of
the inclusion Ly — L. Since Ky and L are minimal complexes, the strong
equivalence ri is an isomorphism. Therefore, |i,|r| and |rei| are simple
homotopy equivalences, and then so is |¢]. a

Definition 5.1.15. A complex is said to be strong collapsible if it strong
collapses to a point or equivalently if it has the strong homotopy type of a
point.

Recall that it is not known whether K * L is collapsible only if one of K
or L is, but the analogous result is true for strong collapsibility.



5.2 Relationship with Finite Spaces and Barycentric Subdivisions 7

Proposition 5.1.16. Let K and L be two finite simplicial complexes. Then,
K x L 1s strong collapsible if and only if K or L is strong collapsible.

Proof. Suppose v is a dominated vertex of K. Then lkx(v) is a cone and
therefore lk.r(v) = lkk (v) * L is a cone. Therefore v is also dominated in
K x L. Thus, if K strong collapses to a vertex vy, K * L \, voL \, vo-
Conversely, assume KL is strong collapsible. Let v € KL be a dominated
point and suppose without loss of generality that v € K. Then lkg.r(v) =
Ik (v) % L is a cone. Therefore lkx (v) is a cone or L is a cone. If L is a cone,
it is strong collapsible and we are done. Suppose then that lkx (v) is a cone.
Since (K ~\v)* L = (K x L) \ v is strong collapsible, by induction K \ v or L
is strong collapsible and since K N\, K \ v, K or L is strong collapsible. O

5.2 Relationship with Finite Spaces and Barycentric
Subdivisions

In this section we will study the relationship between strong homotopy types
of simplicial complexes and homotopy types of finite spaces. After the first
result it will be clear that if a finite space is contractible, then so is its bary-
centric subdivision. The converse of this result, however, is not trivial. We
will prove an analogous statement for strong collapsibility of complexes and
then we will use it to prove the finite space version.

The following result is a direct consequence of Propositions 2.1.2 and 2.1.3.

Theorem 5.2.1.

(a) If two finite Ty-spaces are homotopy equivalent, their associated complexes
have the same strong homotopy type.

(b) If two finite complexes have the same strong homotopy type, the associated
finite spaces are homotopy equivalent.

Proof. Suppose f : X — Y is a homotopy equivalence between finite Tg-
spaces with homotopy inverse g : ¥ — X. Then by Proposition 2.1.2,
K(g)K(f) ~ 1k x) and K(f)K(g) ~ 1y)- Thus, K(X) ~ K(Y).

If K and L are complexes with the same strong homotopy type, there
exist ¢ : K — L and ¢ : L — K such that Yo ~ 1g and @iy ~ 15. By
Proposition 2.1.3, X(¢) : X(K) — X(L) is a homotopy equivalence with
homotopy inverse X (v)). O

In fact, we will give a more precise result:
Theorem 5.2.2.

(a) Let X be a finite Ty-space and let Y C X. If X \, Y, K(X) X\ £(Y).
(b) Let K be a finite simplicial complex and let L C
X(K) N\ X(K).
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Proof. If x € X is a beat point, there exists a point 2’ € X and subspaces
A, B such that ¢, = A® {2/} ® B. Then lk(z) = K(C,) = ’/K(A® B) is a
simplicial cone. Therefore, K(X) \, K£(X) \ z = K(X ~ {z}).

If K is a finite complex and v € K is such that lk(v) = aL is a simplicial
cone, we define r : X'(K) — X (K \ v) as follows:

o= {0

Clearly r is a well defined order preserving map. Denote i : X (K ~\v) — X(K)
the inclusion and define f : X (K) — X(K),

f(g):{aaifvea

o ifvédo

Then ir < f > 1x(k) and both ir and f are the identity on X (K \ v).
Therefore ir ~ 1y (g rel X'(K\v)and then X(K) \, X(K ) by Corollary
2.2.5. a

Example 5.2.3. The complex (W) associated to the Wallet (see Fig.5.2)
is a triangulation of the 2-dimensional disk D? which is collapsible because W
is collapsible, but which is not strong collapsible since W’ is not contractible.

=
DA

Fig. 5.2 The geometric realization of (W)

Corollary 5.2.4. If X is a contractible finite Ty-space, so is X'.

Proof. If X is contractible, X N\, #, then K(X) \ * and therefore X' =
X(K(X)) X *- O

In general, for a finite Tp-space X, X and X’ do not have the same
homotopy type. Nevertheless, we will prove the converse of Corollary 5.2.4,
which implies that X is contractible if and only if its barycentric subdivision
X' is contractible. In particular, not only W’ is non-contractible, but all the
iterated barycentric subdivisions of W.

It is not true that if X is a minimal finite space, then so is X’. The bar-
ycentric subdivision W’ of the Wallet is not a minimal finite space, although
W is.
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Proposition 5.2.5. Let X be a finite Ty-space. Then X is a minimal finite
space if and only if K(X) is a minimal simplicial complez.

Proof. If X is not minimal, it has a beat point z and then £(X) \, (X ~
{z}) by Theorem 5.2.2. Therefore K(X) is not minimal.

Conversely, suppose (X)) is not minimal. Then it has a dominated ver-
tex x. Suppose lk(x) = 'L for some 2’ € X, L C K(X). In particular, if
y € X is comparable with x, y € lk(z) and then yz’ € lk(x). Thus, any point
comparable with z is also comparable with z’. By Proposition 1.3.9, X is not
minimal. a

Theorem 5.2.6. Let K be a finite simplicial complex. Then K is strong
collapsible if and only if K' is strong collapsible.

Proof. If K N\, #, then X(K) \, * and K’ = K(X(K)) \ * by Theorem
5.2.2. Suppose now that K is a complex and that K’ N\, *. Let L be a core of
K. Then K N\, L and by Theorem 5.2.2, K’ \, I'. Therefore L is minimal
and L’ is strong collapsible. Let Lo = L', L1, Lo, ..., L, = * be a sequence of
subcomplexes of L' such that there is an elementary strong collapse from L;
to L;y1 for every 0 < i < m. We will prove by induction in 4 that L; C L’
contains as vertices all the barycenters of the O-simplices and of the maximal
simplices of L.

Let 0 = {wg,v1,...,v,} be a maximal simplex of L. By induction, the
barycenter b(c) of o is a vertex of L;. We claim that lkr,b(o) is not a cone. If
o is a O-simplex, that link is empty, so we assume o has positive dimension.
Since b(v;)b(o) is a simplex of L, b(v;) € L; by induction and L, is a full
subcomplex of L, then b(v;) € lkr,b(o) for every 0 < j < k. Suppose lkz,,b(0)
is a cone. In particular, there exists o’ € L such that b(0’) € kg, b(o) and
moreover b(c')b(v;) € lkr,b(o) for every j. Since o is a maximal simplex,
o' C o and v; € o’ for every j. Then o C ¢/, which is a contradiction. Hence,
b(c) is not a dominated vertex of L; and therefore, b(o) € L;y1.

Let v € L be a vertex. By induction, b(v) € L;. As above, if v is a maximal
simplex of L, lkr,b(v) = 0. Suppose v is not a maximal simplex of L. Let
00,01, ..,0% be the maximal simplices of L which contain v. By induction
b(oj) € L; for every 0 < j < k, and since L; C L is full, b(o;) € lkr,b(v).
Suppose that Ik, b(v) is cone. Then there exists o € K such that b(o) €
lkr,b(v) and moreover, b(o)b(o;) € lkr,b(v) for every j. In particular, v C o
and o C o; for every j. Let v/ € o, v' # v. Then ¢’ is contained in every
maximal simplex which contains v. This contradicts the minimality of L.
Therefore b(v) is not dominated in L;, which proves that b(v) € L; 1.

Finally, L,, = % contains all the barycenters of the vertices of L. Thus,
L = x and K is strong collapsible. a

Corollary 5.2.7. Let X be a finite Ty-space. Then X is contractible if and
only if X' is contractible.
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Proof. By Corollary 5.2.4, it only remains to show that if X’ is contractible,
sois X. Let Y C X be a core of X. Then by Theorem 5.2.2, X’ \, Y’. If X’
is contractible, so is Y’. Again by Theorem 5.2.2, K(Y') = K(Y) is strong
collapsible. By Theorem 5.2.6, (Y") is strong collapsible. By Proposition
5.2.5, K(Y") is a minimal complex and therefore K(Y) = x. Then Y is just a
point, so X is contractible. O

Corollary 5.2.8.

1. A finite To-space X is contractible if and only if (X)) is strong collapsible.
2. A finite simplicial complex K is strong collapsible if and only if X (K) is
contractible.

5.3 Nerves of Covers and the Nerve of a Complex

We introduce an application which transforms a simplicial complex into an-
other complex with the same homotopy type. This construction was previ-
ously considered by Griinbaum in [32] (see also [47]) but we arrived to it
independently when studying the Cech cohomology of finite spaces. We will
prove that this application can be used to obtain the core of a simplicial
complex.

Recall that if U = {U,}ier is a cover of a set X, the nerve of U is the
simplicial complex N (U) whose simplices are the finite subsets I’ C I such
that () U; is nonempty.

iel’

Thg following result of McCord relates nerves of coverings and weak ho-

motopy equivalences.

Theorem 5.3.1 (McCord). Let X be a topological space and let U be an
open cover of X such that any point of X is contained in finitely many
elements of U. If any intersection of elements of U is empty or homotopically
trivial, there exists a weak homotopy equivalence |[N(U)| — X.

The proof of this result uses Theorem 1.4.2 and can be found in [56,
Theorem 2|. This result is closely related to the so called Nerve Lemma [16,
Theorem 10.6]. The Nerve Lemma claims that if a finite simplicial complex K
is covered by a finite collection of subcomplexes V such that any intersection
of members of V is empty or contractible, then |N (V)| ~ |K|. The Nerve
Lemma follows immediately from Theorem 5.3.1 by considering the space
X(K) and the cover U = {X(L) | L € V}.

If V = {Vj},ecs is a refinement of a cover U = {U,}icr of a set X (i.e.
every member of V is contained in some element of If), there is a simplicial
map N (V) — N(U) which is uniquely determined up to homotopy, and sends
any vertex j € N(V) to a vertex ¢ € N(U) such that V; C U;. In fact any
two such maps ¢, ¢ are contiguous. If J' C J is a simplex of N(V), then the
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intersection N U; contains (1] V; which is nonempty, and therefore
i€p(J)UY(J) jeJ’

e(J)Urp(J') is a simplex of N (U). We call amap ¢ : N(V) — N(U) as above

a refinement map.

Proposition 5.3.2. IfU = {U;}icr andV = {V} }je are two finite covers of
a set that refine each other, N(U) and N (V) have the same strong homotopy
type.

Proof. Let ¢ : N{U) — N(V) and ¢ : N(V) — N(U) be two refinement
maps. Then ¢ and 1y(y) are two refinements maps and therefore they
are contiguous. Analogously ¢t ~ 1y(y). Thus, ¢ is a strong homotopy
equivalence. m|

The Cech cohomology of a topological space X is the direct limit
H™(X) = colim H™(N(U))

taken over the family of open covers of X preordered by refinement.

It is well known that if X has the homotopy type of a CW-complex, the
Cech cohomology coincides with the singular cohomology of X. But this is
not true in general. Given a finite space X, we denote by Uy the open cover
given by the minimal open sets of the maximal points of X. Note that Uy
refines every open cover of X. Therefore H"(X) = H™(|N(Up)|).

Example 5.3.3. If X = S(SO) is the minimal finite model of S*, N (U
is a 1-simplex and therefore H'(X) = 0. On the other hand H'(X) =
HY(SYH =Z.

If K is a finite simplicial complex, the cover Uy of X' (K) satisfies that
arbitrary intersections of its elements is empty or homotopically trivial.
Indeed, if 01,09,...,0, are maximal simplices of K, then NU,, is empty
or it is Uny,. By Theorem 5.3.1, there is a weak homotopy equivalence
|N(Up)| — X(K). Therefore H"(X(K)) = H™(|N(Up)|) = H"(X(K)), so
we have proved

Proposition 5.3.4. Let K be a finite simplicial complex. Then H" (X (K)) =
H™"(X(K)) for every n > 0.

Another proof of the last result can be given invoking a theorem of
Dowker [25]. Let V be the set of vertices of K and S the set of its maximal
simplices. Define the relation R C V' x S by vRo if v € 0. Dowker considered
two simplicial complexes. The simplices of the first complex are the finite
subsets of V' which are related with a same element of S. This is the
original complex K. The simplices of the second complex are the finite
subsets of S which are related with a same element of V. This complex
is isomorphic to N (X (Up)). The Theorem of Dowker concludes that | K| and
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|N(X(Up))| are homotopy equivalent. Therefore H"(X(K)) = H"(|K]|) =
HY(IN(X(Uo))]) = H" (X(K)),

Both the Nerve lemma and Dowker’s Theorem claim the certain complexes
have the same homotopy type. These results can be improved showing that
in fact those complexes have the same simple homotopy type. Those versions
appear in [6] and follow from a stronger version of Theorem 1.4.19.

We now put the Cech cohomology aside to center our attention in the
construction which transforms K in the complex N (X (Up)).

Definition 5.3.5. Let K be a finite simplicial complex. The nerve of K
is the complex N(K) = N(X(Up)). This is the nerve of the cover of |K|
given by the maximal simplices. In other words, the vertices of N'(K) are the
maximal simplices of K and the simplices of N'(K) are the sets of maximal
simplices of K with nonempty intersection. Given n > 2, we define recursively

NYK) = NN"1(K)).
By the arguments above, if K is a finite simplicial complex, | K| and [N (K)|
have the same homotopy type.

Example 5.3.6. Let K be the following simplicial complex

G3

G,
Oy
Since K has four maximal simplices, N'(K) has four vertices, and it looks
as follows
O

G2
G3

Oy
For n > 2, the complex N"*(K) is the boundary of a 2-simplex.

If N7(K) = * for some r > 1, then |K| is contractible. But there are
contractible complexes such that A" (K) is not a point for every r. For
instance, if K is the complex of Example 5.1.12, N(K) has more vertices
than K, but N?(K) is isomorphic to K. Therefore N"(K) # * for every r,
although | K| is contractible.

We will see that in fact, there is a strong collapse from K to a complex
isomorphic to N2(K) and that there exists r such that N"(K) = * if and
only if K is strong collapsible.
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Lemma 5.3.7. Let L be a full subcomplex of a finite simplicial complexr K
such that every vertex of K which is not in L is dominated by some vertex
in L. Then K \, L.

Proof. Let v be a vertex of K which is not in L. By hypothesis, v is dominated
and then K N\, K \ v. Now suppose w is a vertex of K ~\ v which is not in
L. Then the link lkx(w) in K is a simplicial cone aM with a € L. Therefore,
the link lkg,(w) in K N\ v is a(M ~\ v). By induction K \ v \, L and then

KN, L. 0

Proposition 5.3.8. Let K be a finite simplicial complex. Then there exists
a complex L isomorphic to N?(K) such that K \, L.

Proof. A vertex of N?(K) is a maximal family ¥ = {o0¢,01,...,0,.} of
maximal simplices of K with nonempty intersection. Consider a vertex map
¢ : N)(K) — K such that ¢(X) € () o;. This is a simplicial map for
i=0

if Xo,X1,..., %, constitute a simplex of N?(K), then there is a common
element o in all of them, which is a maximal simplex of K. Therefore
©(X;) € o for every 0 < i < r and then {o(X1),(X2),...,0(XZ.)} is a
simplex of K.

The vertex map ¢ is injective. If ¢(X)) = v = (X)) for X} =
{o0,01,... 00}, Xo = {70,71,...,7t}, then v € o; for every 0 < ¢ < r
and v € 7; for every 0 < i < t. Therefore X; U X5 is a family of maximal
simplices of K with nonempty intersection. By the maximality of X; and X,
Yi=X1Uly =23,

Suppose Yo, 21, ..., X, are vertices of N2(K) such that vy = ¢(Xg),v1 =
o(X1),..., v, = p(X,) constitute a simplex of K. Let o be a maximal simplex
of K which contains vg, vy, ...,v,.. Then, by the maximality of the families
Y, o € X; for every i and therefore { Xy, X1,..., 2.} is a simplex of N?(K).

This proves that L = p(N?(K)) is a full subcomplex of K which is
isomorphic to N?(K).

Now, suppose v is a vertex of K which is not in L. Let X be the set of
maximal simplices of K which contain v. The intersection of the elements of
X is nonempty, but X' could be not maximal. Let X/ O X' be a maximal family
of maximal simplices of K with nonempty intersection. Then v’ = ¢(X") € L
and if o is a maximal simplex of K which contains v, then ¢ € ¥ C X',
Hence, v' € 0. Therefore v is dominated by v’. By Lemma 5.3.7, K \, L.

O

Lemma 5.3.9. A finite simplicial complex K is minimal if and only if
N?3(K) is isomorphic to K.

Proof. By Proposition 5.3.8, there exists a complex L isomorphic to N2(K)
such that K N\, L. Therefore, if K is minimal, L = K.

If K is not minimal, there exists a vertex v dominated by other vertex v’.
If v is contained in each element of a maximal family X' of maximal simplices
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of K with nonempty intersection, then the same occur with v’. Therefore,
we can define the map ¢ of the proof of Proposition 5.3.8 so that v is not
in its image. Therefore, L = ¢(N?(K)) is isomorphic to N?(K) and has less
vertices than K. Thus, N?(K) and K cannot be isomorphic. O

The sequence K, N?(K),N*(K),N®(K),... is a decreasing sequence of
subcomplexes of K (up to isomorphism). Therefore, there exists n > 1 such
that N2"(K) and N?"*2(K) are isomorphic. Then K strongly collapses to a
subcomplex L which is isomorphic to A?"(K) and which is minimal. Thus,
we have proved the following

Proposition 5.3.10. Given a finite simplicial complex K, there exists n > 1
such that N™(K) is isomorphic to the core of K.

Theorem 5.3.11. Let K be a finite simplicial complex. Then, K is strong
collapsible if and only if there exists n > 1 such that N"(K) is a point.

Proof. If K is strong collapsible, its core is a point and then, there exists n
such that N™(K) = * by the previous proposition. If N"*(K) = x for some n,
then N1 (K) is also a point. Therefore there exists an even positive integer
r such that N"(K) = %, and K N\, * by Proposition 5.3.8. O

Example 5.3.12. The following complex K is strong collapsible since
N3(K) = x.



Chapter 6
Methods of Reduction

A method of reduction of finite spaces is a technique that allows one to reduce
the number of points of a finite topological space preserving some properties
of the space.

An important example of a reduction method is described by beat points
and was introduced by Stong (see Chap. 1). In that case, the property that is
preserved is the homotopy type. Stong’s method is effective in the sense that
for any finite Ty-space X, one can obtain a space homotopy equivalent to X
of minimum cardinality, by applying repeatedly the method of removing beat
points.

One of the most important methods of reduction studied in this work is
the one described by weak points (see Chap.4). A removal of a weak point
preserves the simple homotopy type. The existence of non-collapsible homo-
topically trivial finite spaces shows that this method is not an effective way
of obtaining minimal finite models. However, a simple homotopy equivalent
finite space can always be reached by removing and adding weak points. In
some sense this is the best result that can be obtained since there exists
no effective reduction method for the weak homotopy type and the simple
homotopy type. This is a consequence of the following fact: there is no
algorithm which decides whether a finite simplicial complex is contractible
or not. This follows in turn from Novikov’s result on the undecidability of
recognition of spheres (see [49] for instance).

6.1 Osaki’s Reduction Methods

Some examples of reduction methods were introduced by Osaki in [65]. In
these cases, Osaki presents two methods that allow one to find a quotient of a
given finite space such that the quotient map is a weak homotopy equivalence.
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Theorem 6.1.1. (Osaki) Let X be a finite Ty-space. Suppose there exists
x € X such that U,NU, is either empty or homotopically trivial for ally € X.
Then the quotient map q : X — X /U, is a weak homotopy equivalence.

Proof. Let y € X. If U, NU, =0, ¢*(Uyy) = Uy. In other case, ¢~ (Uy,) =
U, UUy, (see Lemma 2.7.6). In order to apply McCord’s Theorem 1.4.2 to the
minimal basis of X/U,, we only have to prove that if U, NU,, is homotopically
trivial, then so is U, U Uy. If U, N U, is homotopically trivial, since U, and
U, are contractible, we obtain from the Mayer-Vietoris sequence for reduced
homology that H,, (U, U Uy) = 0 for every n > 0 and from the Theorem of
van Kampen that U, U U, is simply connected. By Hurewicz’s Theorem, it
is homotopically trivial. Therefore, Theorem 1.4.2 applies, and ¢ is a weak
homotopy equivalence. a

The process of obtaining X /U, from X is called an open reduction. There
is an analogous result for the minimal closed sets F,, i.e. the closures of the
one point spaces {x}. This result follows from the previous one applied to
the opposite X°P.

Theorem 6.1.2. (Osaki) Let X be a finite Ty-space. Suppose there exists
x € X such that FyNE), is either empty or homotopically trivial for ally € X.
Then the quotient map q : X — X/F, is a weak homotopy equivalence.

The process of obtaining X/F, from X is called a closed reduction.

Osaki asserts in [65] that he does not know whether by a sequence of
reductions, each finite Ty-space can be reduced to the smallest space with
the same homotopy groups.

We show with the following example that the answer to this question is
negative.

Let X = {a1,b,az,¢,d, e} be the 6-point Tp-space with the following order:
¢,d < ay;e,dye <bandd, e < as. Let D3 = {c,d, e} be the 3-point discrete
space and Y = SD3 = {a,b,¢,d, e} the non-Hausdorff suspension of Ds.

X a1 be 002 Y ‘e o’

[XHN

° o, o,

€ (&

The function f : X — Y defined by f(a1) = f(a2) = a, f(b) =b, f(c) =c,
f(d) =d and f(e) = e is continuous because it preserves the order.

In order to prove that f is a weak homotopy equivalence we use the
Theorem of McCord 1.4.2. The sets U, form a basis like cover of Y. It is easy
to verify that f~1(U,) is contractible for each y € Y and, since U, is also
contractible, the map f|;-1 v,y : f~'(Uy) — Uy is a weak homotopy equiv-
alence for each y € Y. Applying Theorem 1.4.2, one proves that f is a weak
homotopy equivalence. Therefore X and Y have the same homotopy groups.
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Another way to show that X and Y are weak homotopy equivalent is
considering the associated polyhedra |[/C(X)| and |[K(Y")| which are homotopy
equivalent to S' v ST

On the other hand, it is easy to see that Osaki’s reduction methods cannot
be applied to the space X. Therefore his methods are not effective in this
case since we cannot obtain, by a sequence of reductions, the smallest space
with the same homotopy groups as X.

6.2 ~-Points and One-Point Reduction Methods

In this section we delve deeper into the study of one-point reductions of
finite spaces, i.e. reduction methods which consist of removing just one point
of the space. Beat points and weak points provide two important examples
of one-point reductions. The results of this section are essentially contained
in [9].

Recall that x € X is a weak point if and only if C, is contractible (Remark
4.2.3). This motivates the following definition.

Definition 6.2.1. A point z of a finite Ty-space X is a ~y-point if C, is
homotopically trivial.

Note that weak points are ~y-points. It is not difficult to see that both
notions coincide in spaces of height less than or equal to 2. This is because
any space of height 1 is contractible if and only if it is homotopically trivial.
However, this is false for spaces of height greater than 2.

Let = be a y-point of a finite Ty-space X. We will show that the inclusion
X ~{z} — X is a weak homotopy equivalence. Note that since U, and F,
need not be homotopically trivial, we cannot proceed as we did in Proposition
4.2.4. However, in this case, one has the following pushout

K(Cy) K(Ca)l
KX Az — [K(X)]

Where |K(C,)| — |K(Cy)| is a homotopy equivalence and |[K(C)| — [K(X ~
{z})|is a closed cofibration. Therefore IK(X ~{z})| — |K(X)]| is a homotopy
equivalence (for more details about this argument see Appendix A.2). This
proves the following.

Proposition 6.2.2. If z € X is a y-point, the inclusion i : X \ {z} — X
is a weak homotopy equivalence.



88 6 Methods of Reduction

This result improves an old result which appears for example in Walker’s
Thesis [81, Proposition 5.8], which asserts, in the language of finite spaces,
that X \ {z} — X is a weak homotopy equivalence provided UT or FT is
homotopically trivial. By Proposition 6.2.12 below, it is clear that a point x
is a ~y-point if UT or FT is homotopically trivial, but the converse is false.

We will show that the converse of Proposition 6.2.2 is true in most cases.
First, we need some results.

Proposition 6.2.3. Let x be a point of a finite Ty-space X . The inclusion
i X~ A{a} — X induces isomorphisms in all homology groups if and only if
the subspace C, is acyclic.

Proof. Apply the Mayer-Vietoris sequence to the triple (K(X); K(Cy), K(X ~
{z})). 0

Lemma 6.2.4. If X and Y are nonempty finite Ty-spaces with n and m
connected components respectively, the fundamental group m (X ® Y) is a
free product of (n — 1)(m — 1) copies of Z. In particular if x € X is neither
mazximal nor minimal, the fundamental group of Co =U,®F, is a free group.

Proof. Tt suffices to show that if K and L are finite simplicial complexes
with n and m connected components respectively, then 71 (| K * L|) is a free
group of rank (n — 1)(m — 1). Take a vertex v; in each component K; of
K (1 <i<mn)and a vertex w; in each component L; of L (1 < j < m).
Let M be the full subcomplex of K * L spanned by the the vertices v; and
wj. Then M is a graph, and an easy computation of its Euler characteristic
shows that m (|M]) is a free group of the desired rank. Let ¢ : K« L — M be
the simplicial map that maps K; to v; and L; to w; and let i : M — K * L
be the inclusion. Since qi = 1as, ¢uisx = g, @ E(M,v1) — E(M,vy). It
remains to show that i.q. = 1p(x«r,0,), but this follows easily from the next
two assertions: any edge-path in K * L with origin and end wv; is equivalent
to an edge-path containing only ordered pairs (u,u’) with one vertex in K
and the other in L, and an edge-path (v, w), (w,v") with v,v" € K, w € L is
equivalent to (v, w;), (w;,v") if w € L;. O

Theorem 6.2.5. Let X be a finite Ty-space, and x € X a point which is
neither mazimal nor minimal and such that X ~{x} — X is a weak homotopy
equivalence. Then x is a vy-point.

Proof. If X ~ {z} — X is a weak homotopy equivalence, C, is acyclic by

Proposition 6.2.3. Then 71 (C) is a perfect group and therefore trivial, by
Lemma 6.2.4. Now the result follows from the Hurewicz Theorem. a

The theorem fails if x is maximal or minimal, as the next example shows.

Example 6.2.6. Let X be an acyclic finite Ty-space with nontrivial funda-
mental group. Let S(X) = X U{—1, 1} be its non-Hausdorff suspension. Then
S(X) is also acyclic and 71 (S(X)) = 0. Therefore it is homotopically trivial.
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Hence, X U{1} < S(X) is a weak homotopy equivalence. However —1 is not
a ~y-point of S(X).

An alternative proof of Theorem 6.2.5 without using Lemma 6.2.4
explicitly can be made by arguing that Hl(Ux ® Z:}) is a free abelian group
of rank (n — 1)(m — 1) if the spaces U, and F, have n and m connected
components. This follows from [57, Lemma 2.1] and implies that either U, or
F, is connected. By [567, Lemma 2.2], C, is simply connected.

Using the relativity principle of simple homotopy theory [23, (5.3)] one can
prove that if x is a vy-point, (X ~\ {z})| — |[K(X)] is a simple homotopy
equivalence. We will see that in fact this holds whenever X \ {z} — X is a
weak homotopy equivalence.

We will need the following key result ([86, Lemma 10], [23, (20.1)]).

Lemma 6.2.7 (Whitehead). Let (K, L) be a finite CW-pair such that L is
a strong deformation retract of K and such that each connected component of
K ~ L is simply connected. Then L — K is a simple homotopy equivalence.

Theorem 6.2.8. Let X be a finite Ty-space and let x € X . If the inclusion i :
X ~A{z} — X is a weak homotopy equivalence, it induces a simple homotopy
equivalence |IK(X ~ {z})| — |[K(X)|. In particular X ~ {z},\, X.

Proof. Since |[IC(X ~\ {z})] is a strong deformation retract of [IC(X)| and the
open star of x,

st(z) = [K(X)] ~ [K(X ~ {2})]

is contractible, then by Lemma 6.2.7, |[C(X \ {z})] — |[K(X)]| is a simple
homotopy equivalence. a

This result essentially shows that one-point reductions are not sufficient to
describe all weak homotopy types of finite spaces. They are sufficient, though,
to reach all finite models of spaces with trivial Whitehead group by Corollary
4.2.13.

On the other hand, note that the fact that X \ {z} and X have the same
weak homotopy type does not imply that the inclusion X \ {z} — X is a
weak homotopy equivalence.

Definition 6.2.9. If z € X is a y-point, we say that there is an elementary
~-collapse from X to X~ {z}. A finite Tp-space X ~-collapses to Y if there is a
sequence of elementary y-collapses that starts in X and ends in Y. We denote
this by X N Y. If X v-collapses to a point, we say that it is y-collapsible.

In contrast to collapses, a y-collapse does not induce in general a collapse
between the associated simplicial complexes. For example, if K is any
triangulation of the Dunce Hat (see Fig. 4.5 in page 60), C(X(K)) Y, X(K),
but aK’ X, K’ since K’ is not collapsible (see Lemma 4.1.1). However, if
X N Y, then X Y by Theorem 6.2.8 and then K(X) has the same simple
homotopy type as K(Y).
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Recall that f: X — Y is said to be distinguished if f~!(U,) is contractible
for every y € Y. Distinguished maps are simple homotopy equivalences (see
Sect. 4.4). The following result generalizes that fact.

Proposition 6.2.10. Let f: X — Y be a map between finite Ty-spaces such
that f=1(Uy) is homotopically trivial for every y € Y. Then f is a simple
homotopy equivalence.

Proof. Consider the non-Hausdorff mapping cylinder B(f) with the inclu-
sions i : X — B(f), j : Y < B(f). Using the same proof of Lemma 4.2.7,
one can show that B(f) \ X, while B(f) X\, Y by Lemma 2.8.2. Then ¢
and j are simple homotopy equivalences by Theorem 6.2.8, and since jf ~ 1,
sois f. a

Note that in the hypothesis of the last proposition, every space Z with
f(X) € Z C Y has the simple homotopy type of Y, because in this case
f: X — Z also satisfies the hypothesis of above.

Remark 6.2.11. The quotient maps of Theorems 6.1.1 and 6.1.2 are simple
homotopy equivalences.

We finish this section analyzing the relationship between v-collapsibility
and joins.

Proposition 6.2.12. Let X and Y be finite Ty-spaces. Then

(i) X ®Y is homotopically trivial if X or'Y is homotopically trivial.
(it) X ®Y is y-collapsible if X orY is y-collapsible.

Proof. Tf X orY is homotopically trivial, |KC(X)| or [K(Y)| is contractible and
then so is [IK(X)| * [K(Y)| = |[K(X ® Y)|. Therefore X ® Y is homotopically
trivial.

The proof of (ii) follows as in Proposition 2.7.3. If z; € X, is a y-point,
éé@y = C'f ® Y is homotopically trivial by item (i) and then z; is a
~v-point of X; ® Y. O

There is an analogous result for acyclic spaces that follows from the
Kiinneth formula for joins [57].

Note that the converse of these results are false. To see this, consider two
finite simply connected simplicial complexes K, L such that Ha(|K|) = Zs
is the cyclic group of two elements, Ha(|L|) = Zs is the cyclic group of three
elements and H,(|K|) = H,(|L|) = 0 for every n > 3. Then X(K) and X (L)
are not acyclic, but X(K) ® X (L), which is weak homotopy equivalent to
|K|*|L|, is acyclic by the Kiinneth formula and, since it is simply connected
(see [57] or Lemma 6.2.4), it is homotopically trivial.

A counterexample for the converse of item (¢4) is the following.

Example 6.2.13. Let K be a triangulation of the Dunce Hat. Then X' (K) is
a homotopically trivial finite space of height 2. The non-Hausdorff suspension
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S(X¥(K)) = X(K)® S° = X(K)U{-1,1} is y-collapsible. The point 1 is a
y-point of S(X(K)) since C; = X(K) is homotopically trivial. The subspace
S(X(K))~{1} has maximum and in particular it is contractible, and therefore
~-collapsible. However X' (K) is not collapsible since K’ is not collapsible, and
then S(X(K)) is not collapsible by Proposition 4.3.4. Furthermore, X (K)
and S° are not y-collapsible either because they are non-collapsible spaces
of height less than or equal to 2. Therefore S(X'(K)) is a ~y-collapsible space
which is the join of two non 7-collapsible spaces. Moreover, it is a «y-collapsible
space which is not collapsible.






Chapter 7
h-Regular Complexes and Quotients

The results of McCord show that each compact polyhedron | K| can be mode-
led, up to weak homotopy, by a finite space X' (K). It is not hard to prove
that this result can be extended to the so called regular CW-complexes. In
this chapter we introduce a new class of complexes, generalizing the notion
of simplicial complex and of regular complex, and we prove that they also
can be modeled by their face posets. This can be used to find smaller models
of well-known spaces. The relationship with collapsibility is also studied. The
ideas developed in the first section are then used to obtain an exact sequence
of homology groups for finite spaces.

The results of this chapter are partially contained in [9]. This is probably
the most technical part of the book and requires some familiarity with the
theory of CW-complexes. The reader who is not an expert in CW-complexes
is invited to consult [28, 38]. Some basic definitions and properties can be
found in Appendix A.2.

7.1 h-Regular CW-Complexes and Their Associated
Finite Spaces

A CW-complex K is said to be regular if for each (open) cell €™, the char-
acteristic map D™ — e™ is a homeomorphism, or equivalently, the attaching
map S"~! — K is a homeomorphism onto its image ¢”, the boundary of ™.
In this case, it can be proved that the closure e™ of each cell is a subcomplex,
which is equivalent to saying that é™ is a subcomplex (see [28, Theorem
1.4.10]).

A cell e of a regular complex K is a face of a cell ¢ if e C ¢/. This
will be denoted by e < ¢’. The barycentric subdivision K’ is the simplicial
complex whose vertices are the cells of K and whose simplices are the
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sets {e1,ez2,...,e,} such that e; is a face of e; ;. The polyhedron |K’| is
homeomorphic to K (see [45, Theorem 1.7] for instance).

We can define, as in the case of simplicial complexes, the face poset X (K)
of a regular complex K, which is the set of cells ordered by <. Note that
K(X(K)) = K’ and therefore X(K) is a finite model of K, i.e. it has the
same weak homotopy type as K.

Example 7.1.1. The following figure (Fig. 7.1) shows a regular structure for
the real projective plane RP2. The edges are identified in the way indicated
by the arrows. It has three 0-cells, six 1-cells and four 3-cells. Therefore its
face poset has 13 points (Fig.7.2). It is unknown to the author whether
this is a minimal finite model of RP?. This finite space appears also in [36,
Proposition 4.1] obtained by a different method.

a b
C
b a
Fig. 7.1 RP?
° ° ° °
° ° ° ° ° °
a® be® o,

Fig. 7.2 A finite model of RP?

We introduce now the concept of h-regular complex, generalizing the notion
of regular complex. Given an h-regular complex K, one can define X' (K) as
before. In general, K and (X (K)) are not homeomorphic. However we prove
that X' (K) is a finite model of K.

Definition 7.1.2. A CW-complex K is h-regular if the attaching map of
each cell is a homotopy equivalence with its image and the closed cells e™ are
subcomplexes of K.
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In particular, regular complexes are h-regular.

Proposition 7.1.3. Let K = LUe" be a CW-complex such that €" is a
subcomplex of L. Then €™ is contractible if and only if the attaching map
@ : S"7L — €7 of the cell e™ is a homotopy equivalence.

Proof. Suppose ¢ : S*"~1 — ¢" is a homotopy equivalence. Since S?~! < D"
is a closed cofibration, the characteristic map ¢ : D™ — €™ is also a homotopy
equivalence by the gluing theorem A.2.5.

Suppose now that e is contractible. The map ) : D"/S"~1 — e/é" is
a homeomorphism and therefore it induces isomorphisms in homology and,
since €™ is contractible, by the long exact sequence of homology it follows
that ¢, : Hi(S" 1) — Hg(é") is an isomorphism for every k.

If n > 3, m(¢") = m(e”) = 0 and by a theorem of Whitehead ([38,
Corollary 4.33]), ¢ is a homotopy equivalence. If n = 2, é™ is just a graph
and since @, : H1(S') — H;p(¢é") is an isomorphism, the attaching map ¢ is
a homotopy equivalence. Finally, if n = 1, since the cell is contractible, ¢ is
one-to-one and therefore a homeomorphism. |

Corollary 7.1.4. A CW-complex is h-reqular if and only if the closed cells
are contractible subcomplexes.

Example 7.1.5. The following are four different h-regular structures for the
Dunce Hat (Fig.4.5) which are not regular structures. In each example the
edges are identified in the way indicated by the arrows.
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For an h-regular complex K, we also define the associated finite space (or
face poset) X(K) as the poset of cells of K ordered by the face relation <,
as in the regular case. Note that since closed cells are subcomplexes, e < €’
if and only if € C /.

The proof of the following lemma is standard.

Lemma 7.1.6. Let K Ue be a CW-complex, let v : D™ — € be the
characteristic map of the cell e and let A be a subspace of é. We denote
Ce(A) ={¢(x) | v € D™ {0}, w(Hi—H) € A} Ce. Then

1. If ACé is open, C.(A) C € is open.
2. ACC.(A) is a strong deformation retract.

Theorem 7.1.7. If K is a finite h-reqular complez, X(K) is a finite model
of K.

Proof. We define recursively a weak homotopy equivalence fx : K — X(K).

Assume fgn1 @ K"71 — X(K"71) C X(K) is already defined and let
x = (a) be a point in an n-cell e™ with characteristic map ¢ : D™ — em. If
a=0¢€ D", define fix(x) = e™. Otherwise, define fx(z) = fKn_l(w(H‘fTH)).

In particular note that if e € K is a 0-cell, fx(e?) = ¢ € X(K). Notice
also that if L is a subcomplex of K, fr = fk|r-

We will show by induction on the number of cells of K, that for every
cell e € K, flzl(Ue) is open and contractible. This will prove that fx is
continuous and, by McCord’s Theorem 1.4.2; a weak homotopy equivalence.

Let e be a cell of K. Suppose first that there exists a cell of K which is not
contained in e. Take a maximal cell ¢’ (with respect to the face relation <)
with this property. Then L = K ~\ ¢’ is a subcomplex and by induction,
f71(U.) is open in L. It follows that f; *(U.) N ¢ C ¢’ is open and by the
previous lemma, Cy/(f; *(U.) N¢') C ¢’ is open. Therefore,

f}}l(Ue) = fL_l(UE) U Ce’(fL_l(Ue) n é/)

is open in K.

Moreover, since f; *(Ue) Né' C Cu(f; ' (Ue) Né') is a strong deformation
retract, so is f; '(Ue) C fr'(Ue). By induction, f5'(U.) is contractible.

In the case that every cell of K is contained in €, flzl(Ue) =¢ = K, which
is open and contractible. a

As an application we deduce that the finite spaces associated to the h-
regular structures of the Dunce Hat considered in Example 7.1.5 are all
homotopically trivial. The first one is a contractible space of 5 points, the
second one is a collapsible and non-contractible space of 13 points and the
last two are non-collapsible spaces of 15 points since they do not have weak
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points. In Fig.7.3 we exhibit the Hasse diagram of the space associated to
the third h-regular structure of the Dunce Hat.

° ° ° ° ° ° °
be® L oc
Fig. 7.3 A homotopically trivial non-collapsible space of 15 points

Example 7.1.8. Let K be the space which is obtained from a square by
identifying all its edges as indicated.

We verify that K is homotopy equivalent to S? using techniques of finite
spaces. Consider the following h-regular structure of K

a b
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which consists of three 0-cells, three 1-cells and two 2-cells. The Hasse
diagram of the associated finite space X (K) is

R,
>< .a/ \ .

The 0-cell b is an up beat point of X' (K) and the 1-cell ab is a down beat point
of X(K) ~\ {b}. Therefore K is weak homotopy equivalent to X'(K) ~\ {b, ab}
which is a (minimal) finite model of S? (see Chap. 3). In fact X (K )~ {b,ab} =
S0 ® 8% @ SV is weak homotopy equivalent to S° x SO x SO = §2.

c®

In [14, Proposition 3.1], Bjorner gives a characterization of the posets
which are face posets of finite regular CW-complexes. They are the finite
Ty-spaces X such that |K(U,)| is homeomorphic to a sphere for every z € X.
The analogous result for h-regular complexes is an open problem. It is easy
to prove that if X is the finite space associated to a finite h-regular complex,
then U, is a finite model of a sphere of dimension ht(z)—1 = ht(U,). However
it is unknown whether this is a sufficient condition for being the face poset
of an h-regular complex.

In Chap. 4 we proved that a collapse K \, L of finite simplicial complexes
induces a collapse X (K) N\, X' (L) between the associated finite spaces. This
is not true when K and L are regular complexes. Consider L = IC(W) the
simplicial complex associated to the Wallet W (see Fig. 4.2 in page 54), and
K the CW-complex obtained from L by attaching a regular 2-cell ¢? with
boundary K({a,b,c,d}) and a regular 3-cell e® with boundary L U e2.

Note that the complex K is regular and collapses to L, but X(K) =
X(L)u{e?, e} does not collapse to X' (L) because U:g(K)\{GQ} =X(L)=WwW'
is not contractible. However, one can prove that a collapse K \, L between
h-regular CW-complexes induces a y-collapse X' (K) \, X(L).

Theorem 7.1.9. Let L be a subcomplex of an h-regular complex K. If K ™\, L,
then X(K) \, X(L).

Proof. Assume K = L Ue™ U et Then e” is an up beat point of X (K).
Since K \, L, entl N\, L Nentl = ¢ntl e”. In particular é"t! < e” is
contractible and then

GRS _ et o)
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is homotopically trivial. Therefore

A (K) N X(K) N {e"} X X(L),
O

We study the relationship between the weak homotopy equivalence fx :
|[K| — X(K) defined in Theorem 7.1.7 and the McCord map px
|K| — X(K). We will prove that both maps coincide if we take convenient
characteristic maps for the cells of the polyhedron |K]|.

Let o be an n-simplex of the simplicial complex K. Let ¢ : S"~! — & be a
homeomorphism. Define the characteristic map @ : D™ — @ of the cell o by

b(o) ifx=0

Here b(0) € @ denotes the barycenter of o. Clearly ¥ is continuous and
bijective and therefore a homeomorphism.

Definition 7.1.10. We say that the polyhedron |K| has a convenient cell
structure (as a CW-complex) if the characteristic maps of the cells are defined
as above.

Proposition 7.1.11. Let K be a finite simplicial complex. Consider a
convenient cell structure for |K|. Then fx and px coincide.

Proof. Let x € |K|, contained in an open n-simplex o. Let ¢ : S~ — |K]|
be the attaching map of the cell o, and ¥ : D™ — G its characteristic map.
If = is the barycenter of o, fx(x) = fx(®(0)) = 0 € X(K) and ux(x) =
xS (b(0)) = px(r)(0) = 0. Assume then that z = P(y) with y # 0.
Thus, fx(z) = fK(go(WyLH)) Then, by an inductive argument,

Jie(w) = prc () = v (5 o))

On the other hand,
1 _ Y
1 (2) = pa)si (BY) = mrao)se (= y Do)+ [ v | w(m))

= px) (A= 1y Do+l y |l S;{ldﬁ))'

Finally, s;(lgo(ﬁ) € |(¢)'| and then,

i (= Ly Do+ [l v | s;éso<ﬁ>>

= min(support((1— || y |)o+ || v || S;{ltp(ﬁ)))



100 7 h-Regular Complexes and Quotients

= min({o} U support syl ¢(21)
= min(support(s}lgo(ﬁ))) = ﬂX(K)(S}1W(ﬁ))'
Thus, f(x) = jxc(X): .

7.2 Quotients of Finite Spaces: An Exact Sequence
for Homology Groups

For CW-pairs (Z, W), there exists a long exact sequence of reduced homology
groups

- — H,(W) — H,(2) — ﬁn(Z/W) — ~n71(W) I

More generally, this holds for any good pair (Z, W); i.e. a topological pair
such that W is closed in Z and is a deformation retract of some neighborhood
in Z [38, Theorem 2.13]. When W is an arbitrary subspace of a finite space
Z, one does not have such a sequence in general. For a pair of finite spaces
(X,A), H,(X,A) and H,,(X/A) need not be isomorphic (see Example 2.7.9).
However, we will prove that if A is a subspace of a finite Ty-space X, there
is a long exact sequence

= Ho(A') —> Hy(X') —> Ho(X'JA) —= H,_1(A) —= -

of the reduced homology groups of the subdivisions of X and A and their
quotient. In fact, in this case we will prove that H,(X'/A") = H,(X,A) =
H (X', A).

Recall that if W is a subcomplex of a CW-complex Z, Z/W is CW-complex
with one n-cell for every n-cell of Z which is not a cell of W and an extra
0O-cell. The n-squeleton (Z/W)™ is the quotient Z™/W™. If e™ is a closed n-cell
of Z which is not in W, there is a corresponding closed n-cell ¢(e™) in Z/W
where ¢ : Z — Z/W is the quotient map. If ¢ : S"~1 — Z"~!is the attaching
map of e and p : D™ — €™ its characteristic map, gp : S"~! — Zn=1/Wwn-1
and ¢p : D™ — q(e™) are respectively, the attaching and characteristic maps
of the corresponding cell € in Z/W.

Theorem 7.2.1. Let K be a finite simplicial complex and let L C K be a
full subcomplex. Then |K|/|L| is an h-regular CW-complex and X (|K|/|L|)
is homeomorphic to X(K)/X(L).
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Proof. Let o be an n-simplex of K which is not a simplex of L. If o intersects
L, then o N L = 7 is a proper face of ¢. In particular 7 is contractible and
therefore the corresponding closed cell ¢(7) = @/7 C |K|/|L| is homotopy
equivalent to @ which is contractible (see Proposition A.2.7). Thus, closed
cells of |K|/|L| are contractible subcomplexes. By Corollary 7.1.4, |K|/|L| is
h-regular.

Now, if 7 and o are simplices of K which are not in L, then 7 < ¢ in
X(|K|/|L|) if and only if ¢(F) = 7 C & = ¢(7) if and only if 7 is a face of
o in K if and only if 7 < ¢ in X(K)/X(L). Finally, if 7 € L and ¢ ¢ L,
T < o in X(|K|/|L]) if and only if ¢(T) C ¢q(7) if and only if 6 N L # 0 if
and only if 7 < ¢ in X(K)/X(L). Therefore, X(|K|/|L|) and X (K)/X(L)
are homeomorphic. O

Corollary 7.2.2. Let X be a finite Ty-space and A C X a subspace. Then
X(IK(X)|/IK(A)|) is homeomorphic to X'/A'. In particular |IC(X)|/|IC(A)]|
and |K(X'/A")| are homotopy equivalent.

Proof. Apply Theorem 7.2.1 to K = K(X) and the full subcomplex L =
K(A). O
Corollary 7.2.3. If A is a subspace of a finite To-space X, H,(X,A) =
H,(X'/A") for every n > 0.

Proof. By the naturality of the long exact sequence of homology, the McCord
map px : |[K(X)[ — X induces isomorphisms H,(|/K(X),[K(4)[) —
Hn(X, A). Thus, H,(X,A) = H,(|[K(X)[,[K(A)]) = H.([K(X)|/IK(A)]) =
Hn(|K(X7/AT)]) = Hn(X'/A"). O

Example 2.7.9 shows that H, (X, A) is not isomorphic to H,(X/A) in
general.

Proposition 7.2.4. Let L be a full subcomplex of a finite simplicial com-
plez K. Let fic : |K| — X(K), fiesr, : [KI/|L| — X{/K|/|L]) be the weak
homotopy equivalences constructed in Theorem 7.1.7 (for some characteristic
maps of the cells of |K|). Let ¢ : |K| — |K|/|L] and ¢ : X(K) —
X(K)/X(L) be the quotient maps and let h : X(|K|/|L]) — X(K)/X(L)
be the homeomorphism defined by h(c) = q(o). Then the following diagram
commutes

q
|K| ——— [K|/|L]

l fr L hfk/L

X(K) — X(K)/X(L).
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Proof. Let © € |K|, € €™, an open n-simplex. We prove that ¢fx(z) =
hfk/rq(x) by induction in n. Note that this is clear if x € |L|, so we suppose
v ¢ |L]. If n =0, th/LQ(eO) = th/L(EO) = h(€) = q(e°) = qfx(e").
Assume then that n > 0, z € e™. Let p : "1 — |K| and % : D" — "
be the attaching and characteristic maps of e™. Since e” is not a simplex
of L, e" is a cell of |K|/|L| with attaching map qp : S"~' — |K|/|L| and
characteristic map ¢ : D™ — q(e™). Let y in the interior of the disk D™ such
that = = @(y). By definition of fx 1,

Fryn (@) = Fe/n(@))) = {ff/L((q“‘”('“yL'” T

e

Ity # 0, hfx/le(x) = hfgale(yn)) = afx(e(py) = @fx(x) by
induction. If y = 0, hfg/r(v) = h(e") = q(e") = qfx(z). This proves that
qfK(x) = hfg/pa(z). 0

Let 8 : H,(|K|/|L|) — H,_1(|L|) be the connecting homomorphism of

the long exact sequence of reduced homology. Define 0 = fr.0((hfr/r)«)"" :

H,(X(K)/X(L)) — H,(X(L)). By the previous results, there exists a long
exact sequence

is G o

— Hy(X(L)) —= H,(X(K)) —= Hu(X(K)/X(L)) —> H, 1(X(L))—
(7.1)

Corollary 7.2.5. Let A be a subspace of a finite Ty-space X . There exists a
long exact sequence

- Q*

e — ﬁn(A’)—) f[n(X/) s H (X'/A") — ~n—1(A/) .

(7.2)
which is natural in the following sense: if g : (X, A) — (Y, B) is a map of
pairs, there is a commutative diagram

s ——H,(A) — H,(X') —> H,(X'/A) — H,_(A) —=

l : l : L 4 l :
g. g. g . g
' a

T q*

> ﬁn(B’) — H,(Y) —> H, Y'/B") — Hn,l(B’) —

(7.3)
where g = X (K(g)) 1is the induced map in the subdivisions.
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Proof. Consider a convenient cell structure for [/C(X)|. Taking K = K(X)
and L = K(A) in (7.1) one obtains the long exact sequence (7.2) with the
connecting morphism 9 defined as above for the maps fx and fg, induced
by the cell structure of |}C(X)].

The first two squares of (7.3) commute before taking homology. We only
have to prove the commutativity of the third square.

Consider the following cube,

~ 12} ~
Hy ([K(X)]/IK(A)]) Hy, 1 (|K(A)])
_ a _
R, Ho (XA o1 (A)
IK(g)l-
~ 1} ~
H,(IK(Y)|/IK(B)|) H,1(|K(B)]) gL
Wﬁw“ 7. %
_ a _
H,(Y'/B) Hy1(B)

(7.4)

The top and bottom faces of the cube commute by definition of d. The
back face commute by the naturality of the long exact sequence for
CW-complexes. Therefore, to prove that the front face commutes, we only
have to check that the left and right faces do. To achieve this, we prove that
these two squares commute up to homotopy:

frecay hfrxy/cca)
IK(A)| A IK(X)|/IK(A)| X'/A
L [K(g)] j g’ l [K(g)l L g
fx(B) hfiyvy/cB) o
IK(B)| —— B KY)|/IKB)| ——— Y'/B

For the first square this is clear, since the convenient cell structures for
[K(X)| and |K(Y)| induce convenient cell structures for the subcomplexes
[IC(A)| and [IC(B)| and in this case fica) = pic(a) and fx(p)y = px(s) by
Proposition 7.1.11. For the second square we just have to remember that there
exists a homotopy H : pic(y)|KC(9)] ~ ¢'pic(x) such that H(|K(A)| x I) € B’

by Remark 1.4.14 and this induces a homotopy H : |[K(X)|/|K(A)| x I —

Y’ /B’ which is the homotopy between hfi(yvy/x(p)|K(g)| and Eth(X)/,C(A)
by Proposition 7.1.11 and Proposition 7.2.4. O
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Remark 7.2.6. There is an alternative, and perhaps simpler, way to prove the
existence of the sequence (7.1) and Corollary 7.2.5 which does not use the
fact that X' (K)/X (L) is a finite model of |K|/|L| when L is a full subcomplex
of K. Nevertheless we chose the proof of above because it provides an explicit
formula for the weak homotopy equivalence |K|/|L| — X(K)/X(L).

The idea of the alternative proof is as follows: if L is a full subcomplex
of K, X(L)°? is a closed subspace of X(K)° which is a deformation
retract of its open hull X(L)°? C X(K)°P. Therefore, there is a long exact
sequence as in Proposition 7.1 but for the opposite spaces X (L)°P, X (K)°P
and X(K)°P/X(L)°P. Using the associated complexes of these spaces we
obtain the long exact sequence of Proposition 7.1 and the naturality of
Corollary 7.2.5 follows from the naturality of the sequence for the opposite
spaces.




Chapter 8
Group Actions and a Conjecture of Quillen

In his seminal article [70], Daniel Quillen studied algebraic properties of a
finite group by means of homotopy properties of a certain complex K(5,(G))
associated to the group. Given a finite group G and a prime integer p dividing
the order of G, let S,(G) denote the poset of nontrivial p-subgroups of G
ordered by inclusion. The poset S,(G), or more concretely, its associated
simplicial complex K(S,(G)), was first investigated by Brown. In his 1975
paper [20], Brown proved a very interesting variation of Sylow’s Theorems
for the Euler characteristic. In [70] Quillen delved deeper into the topological
properties of K(S,(G)) and their relationship with the algebraic properties
of G. He showed, for instance, that if G has a nontrivial normal p-subgroup,
|IC(Sp(G))]| is contractible. He proved that the converse of this statement is
true for solvable groups and conjectured that it is true for all finite groups.
Important advances were made in [3] but a complete answer to Quillen’s
question is still unknown.

Apparently, Brown and Quillen were not aware of the theory of finite
spaces at that time. They worked with the associated complex K(S,(G))
without considering the intrinsic topology of the poset S,(G). Stong was the
first mathematician who studied Quillen’s conjecture from the viewpoint of
finite spaces. In [77], he developed the equivariant homotopy theory of finite
spaces and studied its relationship with the conjecture. Stong showed that
the group G has a nontrivial p-subgroup if and only if S,(G) is a contractible
finite space. In view of this result, the conjecture can be restated as:

Sp(G) is contractible if and only if it is homotopically trivial.

In this chapter we will recall Stong’s equivariant homotopy theory for finite
spaces and its connection with Quillen’s conjecture. Then we will develop an
equivariant simple homotopy theory for complexes and finite spaces that
allows one to study the conjecture from a new point of view.

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and 105
Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6_8, © Springer-Verlag Berlin Heidelberg 2011
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8.1 Equivariant Homotopy Theory for Finite Spaces

Let G be a group. By a G-space we will mean a topological space X with
an action of G such that the maps my; : X — X defined by mgy(z) = gz
are continuous for every g € G. A G-map (or equivariant map) between
G-spaces X and Y is a continuous map f : X — Y such that f(gx) = gf(x)
for every g € G and z € X. A homotopy H : X x I — Y is a G-homotopy (or
equivariant homotopy) if H(gx,t) = gH(x,t) for every g € G,z € X,t € I.
A G-map f: X — Y is a G-homotopy equivalence if there exists a G-map
h:Y — X and G-homotopies between hf and 1x and between fh and ly.
A subspace A of a G-space X is said to be G-invariant if ga € A for every
g € G,a € A. A G-invariant subspace A C X is an equivariant strong
deformation retract if there is an equivariant retraction r : X — A such
that ir is homotopic to 1x via a G-homotopy which is stationary at A.

If z is a point of a G-space X, Gz = {gz}4ec denotes the orbit of . The
set of points fixed by the action is denoted by X¢ = {x € X | gv = 2 Vg € G}.
A finite Tp-space which is a G-space will be called a finite Ty-G-space.

The following is a general result about automorphisms of posets but we
will need it only in the context of finite Ty-G-spaces.

Lemma 8.1.1. Let X be a finite Ty-space, x € X and let f : X — X be
an automorphism. If x and f(x) are comparable, x = f(x). Moreover, if
fi, fo : X — X are two automorphisms and fi(x) is comparable with fo(x),

then fi(z) = fa(x).

Proof. Assume without loss of generality that @ < f(z). Then fi(z) <
fiTY(z) for every i > 0. By the finiteness of X, the equality must hold for
some ¢ and since f is a homeomorphism x = f(z). The second part of the
lemma follows from the first by considering the automorphism f5 Lr. O

Lemma 8.1.2. Let X be a finite To-G-space. Then there exists a core of X
which is G-invariant and an equivariant strong deformation retract of X.

Proof. Suppose X is not minimal. Then there exists a beat point z € X.
Without loss of generality suppose z is a down beat point that covers a
point y. The orbit of x and the orbit of y are disjoint. If gr = hy, then
gx = hy < hx, which contradicts Lemma 8.1.1. Moreover, if gr = hz, then
h~lgy < h~lgx = 2 and therefore h~'gy < y. By Lemma 8.1.1, h gy = y
and then gy = hy. Therefore, the retraction r : X — X \ Gz defined by
r(gx) = gy is a well defined continuous G-map. The homotopy X x I — X
corresponding to the path a : I — XX given by a(t) = ir if 0 < t < 1
and a(l) = 1x is a G-homotopy between ir and 1x relative to X ~\ Gz.
Therefore X \ Gz is an equivariant strong deformation retract of X. The
proof is concluded by an inductive argument. a

Proposition 8.1.3. A contractible finite Ty-G-space has a point which is
fized by the action of G.
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Proof. By Lemma 8.1.2 there is a core, i.e. a point, which is G-invariant. O

Example 8.1.4. Let GG be a finite group and suppose there exists a proper
subgroup H C G such that for every nontrivial subgroup S of G, S N H is
nontrivial. Then G is not a simple group.

Although at first sight this result does not seem to be related to finite
spaces, we will give a proof using Proposition 8.1.3. Since H is a proper
subgroup of G, G is nontrivial and therefore H = GNH is nontrivial. Consider
the poset S(G) of nontrivial proper subgroups of G. Let ¢y : S(G) — S(G)
be the constant map H and define f : S(G) — S(G) by f(S) =SSN H. The
map f is well defined by hypothesis and it is clearly continuous. Moreover,
ls(@) = f < cu and then S(Q) is contractible. On the other hand, G acts on
S(G) by conjugation. Then, by Proposition 8.1.3, G has a nontrivial proper
normal subgroup.

For instance, let Q = {1, -1,4,—1,j,—j, k, —k} be the quaternion group,
where (—1)2 = 1,(=1)i = i(-1) = —i,(=1)j = j(-1) = —j,(-1)k =
k(-1) = —k,i? = j2 = k? = ijk = —1. Let H = {1,—1}. Then H is
in the hypothesis of the statement since —1 is a power of every nontrivial
element of Q. Therefore, Q is not simple.

There are also purely algebraic (and simple) proofs of this result. In fact is

easy to see that in the hypothesis of above, (| gHg *
geG

is a nontrivial normal

subgroup of G.

Proposition 8.1.3 cannot be generalized to non-finite spaces. The analogous
statement for simplicial complexes is not true. If K is a contractible finite
simplicial complex with a simplicial action of a finite group G, then it may
be the case that there is no point fixed by the induced action in |K|.
Moreover, Oliver [64] gave a description of the groups G for which there
exists a simplicial fixed point free action on a contractible simplicial complex.
However we can prove that every simplicial action on a strong collapsible
complex has a fixed point. The following result appears in [11].

Theorem 8.1.5. Let K be a strong collapsible simplicial complex and let G
be a group acting simplicially on K. Then there is a point in |K| which is
fixed by the action induced in the geometric realization.

Proof. The action on K induces and action on X (K), which is contractible
by Theorem 5.2.2. By Proposition 8.1.3, there is a point of X(K) fixed by
the action. This is a G-invariant simplex of K, and therefore its barycenter
is a fixed point of the corresponding action on |K|. a

Proposition 8.1.6. Let X andY be finite To-G-spaces and let f : X — 'Y be
a G-map which is a homotopy equivalence. Then f is an equivariant homotopy
equivalence.

Proof. Let X, and Y. be cores of X and Y which are equivariant strong
deformation retracts. Denote i x, iy and rx, ry the inclusions and equivariant
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strong deformation retractions. Since f is a homotopy equivalence and a
G-map, sois ry fix : X. — Y.. Therefore, ry fix is a G-isomorphism. Define
the G-map g = ix(ry fix) 'ry : Y — X, then

fg= f’ix(’l“yfix)il’ry ~ Z'y’l“yfix(’l“yfix)ilry =iyry ~ ly,

gf =ix(ry fix) 'ry f ~ix(ry fix) 'ry fixrx =ixrx ~ lx.

All the homotopies being equivariant. Therefore f is an equivariant homotopy
equivalence with homotopy inverse g. a

Remark 8.1.7. Two finite To-G-spaces which are homotopy equivalent, need
not have the same equivariant homotopy type. Let X = S(SY). The group of
automorphisms Aut(X) acts on X in the usual way by f -z = f(x) and in
the trivial way by foa = x. Denote by Xy the Aut(X)-space with the first
action and by X7, the second. Suppose there exists an equivariant homotopy
equivalence g : Xo — Xj. Since X is minimal, g is a homeomorphism. Let
f X — X be an automorphism distinct from the identity. Then gf(x) =
g(f - x) = fog(x) = g(x) for every x € X. Thus, f = lx, which is a
contradiction.

8.2 The Poset of Nontrivial p-Subgroups and the
Conjecture of Quillen

In this section, we recall Quillen’s basic results on the poset S,(G) and the
poset A,(G) of elementary abelian p-subgroups. We will recall also Stong’s
reformulation of the conjecture for finite spaces and we will exhibit an
alternative proof of K. Brown’s result on the Euler characteristic of S,(G).

In the following, G will denote a finite group and p a prime integer dividing
the order of G. The elements of the poset S, (G) are the nontrivial p-subgroups
of G, namely the subgroups different from the trivial subgroup of one element,
whose order is a power of p. Note that the maximal elements of S,(G) are
the Sylow p-subgroups of G and the minimal elements correspond to the
subgroups of order p.

Example 8.2.1. For G = Dg = (s,r | s> = r® = srsr = 1), the dihedral
group of order 12, and p = 2, the poset S3(Dg) looks as follows
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Quillen proved in [70] that if G has a nontrivial normal p-subgroup then the
polyhedron |[K(S,(G))| is contractible. But with his proof it can be deduced
that S,(G) is a contractible finite space, which a priori is stronger.

Theorem 8.2.2 (Quillen). IfG has a nontrivial normal p-subgroup, Sp(G)
is contractible.

Proof. Suppose N is a nontrivial normal p-subgroup of G. Define f : S,(G) —
Sp(G) by f(H) = NH ={nh | n € N, h € H}. NH is a subgroup of G
since N <1 G. Moreover, N H is a quotient of the semidirect product N x H,
where (n1, h1)(ne, ha) = (nlhlnghl_l, hihz). Since N and H are p-groups, so
is NH. Therefore, f is well defined. Clearly f is order preserving, and if cy
denotes the constant map N, cxy < f > 1g,(@). Thus 1g, () is homotopic to
a constant and then, S,(G) is contractible. O

Corollary 8.2.3. If G has a nontrivial normal p-subgroup, |KC(S,(G))| is
contractible.

The conjecture of Quillen is the converse of this result.

Conjecture 8.2.4 (Quillen). If |[K(S,(G))| is contractible, G has a non-
trivial normal p-subgroup.

Following Stong [77], we will use the results of the previous section to give
a restatement of the conjecture in the setting of finite spaces.

Theorem 8.2.5 (Stong). Let G be a finite group and let p be a prime
integer. Then Sp(G) is contractible if and only if G has a nontrivial normal
p-subgroup.

Proof. In view of Theorem 8.2.2 we only need to prove the existence of a
nontrivial normal p-subgroup provided that S,(G) is contractible. The poset
Sp(G) is a G-space with the action given by conjugation, g - H = gHg™'. If
Sp(G) is contractible, by Proposition 8.1.3, there exists N € S,(G) such that

gNg~—' = N for every g € G, i.e. N is a normal subgroup of G. O

In light of Theorem 8.2.5, the conjecture may be restated as follows:

Restatement of Quillen’s conjecture (Stong): If S, (G) is homotopically
trivial, it is contractible.

In [70], Quillen shows that his conjecture 8.2.4 is true for solvable groups.
To do this, Quillen works with another poset A,(G) which is weak homotopy
equivalent to S,(G), and proves that if G does not have nontrivial normal
p-subgroups, then A,(G) has a nonvanishing homology group. The finite
space A,(G) is the subspace of S,(G) consisting of the elementary abelian
p-subgroups, i.e. abelian subgroups whose elements have all order 1 or p.

Proposition 8.2.6. The inclusion A,(G) — Sp(G) is a weak homotopy
equivalence.
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Proof. By Theorem 1.4.2; it suffices to show that i~ '(Uy) = A,(H) is
contractible for every H € S,(G). Since H is a nontrivial p-subgroup, its
center Z is not trivial. Let N C Z be the subgroup of elements of order 1
orp. IfT € Ay(H), TN € Ap(H) and T < TN > N. Therefore, A,(H) is
contractible. O

n [77], Stong shows that in general A,(G) and S,(G) are not homotopy
equivalent, however, if A,(G) is contractible, there is a point fixed by the
action of G and then S,(G) is contractible. Apparently it is unknown whether
the converse of this result holds.

Example 8.2.7. Let X5 be the symmetric group on five letters. We give an
alternative proof of the well known fact that Y5 has no nontrivial normal
2-subgroups.

The subgroup ((1234), (13)) C X5 has order 8 and it is not abelian. All
the other subgroups of order 8 are isomorphic to this Sylow 2-subgroup and
therefore, X5 has no elementary abelian subgroups of order 8. Thus, the
height of the poset As(X5) is at most one.

On the other hand, there is a subspace of A3(Xs5) with the following Hasse
diagram

15),(23))

5)
|
(2

3))

((12),(34))  ((12),(45))  ((15),(34))  ((23),(45))  ((
((12)) ((34)) ((45)) ((15))
Then the graph K(A2(X5)) has a cycle and therefore it is not contractible.
Hence, As(X5) is not homotopically trivial and then neither is S3(X5). In

particular, S5(X5) is not contractible and then X5 does not have normal
2-subgroups which are nontrivial.

Now we exhibit an alternative proof of K. Brown’s result on KEuler
characteristic [20]. If H is a subgroup of G, then it also acts on S,(G) by
conjugation and S,(G) denotes then the fixed point set of this action.

Proposition 8.2.8. Let H be a nontrivial p-subgroup of G. Then S,(G)?
is contractible.

Proof. If T € S,(G), TH € S,(G)". Since T < TH > H, the constant
map cp : Sp(G) — S,(G)M is homotopic to the identity. O

Note that if X is a finite To-G-space, the subdivision X’ is also a G-space
with the action given by g - {zg,z1,..., 2.} = {920,9%1,...,9Tn}

Let P be a Sylow p-subgroup of G. The action of P on S,(G) by con-
jugation induces an action of P on S,(G)". Given ¢ € S,(G)’, let P, =
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{g € P | gc = ¢} denote the isotropy group (or stabilizer) of c. Define
Y ={ce S,(G) | P. #0}.

Lemma 8.2.9. x(S,(G),Y) =0 mod(#P).

Proof. Let C = {co < c1 <...<ep} € Sp(G)” be a chain of S,(G)’ which is
not a chain of Y. Then there exists 0 < ¢ < n such that ¢; ¢ Y. Therefore, if
g and h are two different elements of P, gc; # hc;. In other words, the orbit
of ¢; under the action of P has #P elements. Thus, the orbit of C' also has
#P elements. In particular, #P divides x(S,(G),Y) = > (—1)’a;, where
i>0
«; is the number of chains of (i 4 1)-elements of S,(G)" which are not chains
of Y. O

Lemma 8.2.10. Y is homotopically trivial.

Proof. Let f : Y — S,(P)°P defined by f(c) = P, the isotropy group of ¢. By
definition of Y, P, is a nontrivial subgroup of P and then f is a well defined
function. If ¢ < ¢, P,y 2 P.,. Thus, f is continuous. If 0 # H C P,
f7YUp) = {c € Y | HC P} = (S,(G)), which is contractible by
Proposition 8.2.8. From Theorem 1.4.2 we deduce that f is a weak homotopy
equivalence. Since S, (P)°P has minimum, Y is homotopically trivial. O

In [70], Quillen proves that Y is homotopically trivial finding a third space
Z which is weak homotopy equivalent to Y and S, (P). Our proof is somewhat
more direct.

Theorem 8.2.11 (Brown). x(S,(G)) =1 mod(#P).

Proof. Since x(Y) = 1 by Lemma 8.2.10, x(S5,(G)) = x(Sp(G)’) = x(Y) +
X(Sp(G),Y) =1 mod(#P). O

8.3 Equivariant Simple Homotopy Types

To prove Quillen’s conjecture, one would need to show that if S,(G) is
homotopically trivial, then the action of G by conjugation has a fixed point.
However there exist homotopically trivial finite Tp-G-spaces without fixed
points. To construct such an example it is enough to take a contractible
finite simplicial complex with a fixed point free action [64] and consider the
associated finite space.

The proof of Proposition 8.1.3 and the previous results suggest that the
hypothesis of contractibility can be replaced by a weaker notion. Combining
these ideas with the simple homotopy theory of finite spaces, we introduce
the notion of G-collapse of finite spaces and of simplicial complexes. These
two concepts are strongly related, similarly to the non-equivariant case.
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Equivariant simple homotopy types of finite spaces allow us to attack
the conjecture of Quillen and to deepen our understanding of equivariant
homotopy theory of finite spaces originally studied by Stong. In this section
we will only develop the simple and strong equivariant homotopy theory for
finite spaces and complexes. Applications to the poset of p-subgroups appear
in the next section.

As in the previous section, G will denote a finite group.

Recall that there is a strong collapse from a finite Ty-space X to a subspace
Y if the second one is obtained from the first by removing beat points. By our
results on minimal pairs (Sect.2.2), this is equivalent to saying that ¥ C X
is a strong deformation retract. We denote this situation by X N\, Y.

If x is a beat point of a finite Ty-G-space X, gx € X is a beat point for every
g € G. In this case we say that there is an elementary strong G-collapse from
X to X \ Gzx. Note that elementary strong G-collapses are strong collapses.
A sequence of elementary strong G-collapses is called a strong G-collapse and
it is denoted by X \& Y. Strong G-expansions are dually defined.

Proposition 8.3.1. Let X be a finite Ty-G-space and Y C X a G-invariant
subspace. The following are equivalent:

i XNTY.
1. Y C X is an equivariant strong deformation retract.
wi. Y C X is a strong deformation retract.

Proof. If there is an elementary strong G-collapse from X to Y, then by the
proof of Lemma 8.1.2, Y is an equivariant strong deformation retract of X.
If Y C X is a strong deformation retract and x € X \ Y is a beat point
of X, X \\G X N Gz = X;. In particular X; C X is a strong deformation
retract, and then, so is Y C X;. By induction, X; \& Y and then X \¢ Y.
O

Let X be a finite Tp-G-space. A core of X which is G-invariant is called
a G-core. From Stong’s results (Lemma 8.1.2), it follows that every finite
Ty-G-space has a G-core.

Definition 8.3.2. Let X be a finite Ty-G-space. If x € X is a weak point,
gr € X is also a weak point for every g € G and we say that there is an
elementary G-collapse from X to X ~\ Gz. This is denoted by X \&¢ X <\ Gz.
Note that the resulting subspace X ~ Gz is G-invariant. A sequence of
elementary G-collapses is called a G-collapse and it is denoted X \& Y.
G-expansions are defined dually. X is G-collapsible if it G-collapses to a
point.

Note that strong G-collapses are G-collapses and that G-collapses are
collapses. If the action is trivial, G-collapses and collapses coincide.

A finite Ty-G-space is strong collapsible if and only if it is G-strong
collapsible. However, this is not true for collapsibility and G-collapsibility
as the next example shows.
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Example 8.3.3. Let X be the following finite space (cf. Fig. 7.3 in page 97)

X

[ ] [ ] [} [ ] L] L] °
L] [ ] L]
Consider the action of the two-element group Zs over X that permutes 0 and
1 and fixes every other element. The unique weak points of X are 0 and 1.

X ~ {0} is collapsible but X ~. {0, 1} is not. Therefore X is a collapsible finite
space which is not G-collapsible.

The notion of G-collapse can be studied also in the setting of simplicial
complexes. Suppose K is a finite G-simplicial complex and ¢ € K is a free
face of o’ € K. Then for every g € G, go is a free face of go’, however it is
not necessarily true that K collapses to K ~ |J {go, go’}.

geqG
Example 8.3.4. Let o’ be a 2-simplex and o C ¢’ a 1-face of o. Consider
the action of Zsz by rotation over K = ¢’/. Then o is a free face of ¢/, but

o’ does not collapse to o/ ~ |J {go, go’} which is the discrete complex with
gEZL3
3 vertices.

If o is a free face of ¢’ in the G-complex K, and g € G is such that go = o,
then o C go’ and therefore go’ = ¢’. In other words, the isotropy group G,
of o is contained in the isotropy group G, of ¢’. The other inclusion does
not hold in general as the previous example shows.

Definition 8.3.5. Let K be a finite G-simplicial complex and let o € K be
a free face of ¢/ € K (0 C o’ is a collapsible pair). Consider the G-invariant

subcomplex L = K ~ | {g0,90’}. We say that there is an elementary
geG

G-collapse K N\&¢ L from K to L, or that o C o' is a G-collapsible pair,
if G, = G4s. A sequence of elementary G-collapses is called a G-collapse and
denoted by K \& L. A G-complex K is G-collapsible if it G-collapses to a

vertex.
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Proposition 8.3.6. Let K be a finite G-simplicial complex and let o C o’
be a collapsible pair. The following are equivalent:

1. o C o’ is a G-collapsible pair.
2. KNL=K~ U {go,90'}.
geG

Proof. Suppose o is an n-simplex and that K \, L. Then the set |J {go, go’}
geG
contains as many n-simplices as (n+1)-simplices, i.e. the sets G-0 = {go}4eca

and G - 0’ = {go’}4e have the same cardinality. Therefore

#Go = #G/#G -0 = #G/#G -0’ = #G,.

Since G, C G, the equality holds.
Conversely, suppose o C ¢’ is a G-collapsible pair. Then the pairs go C go’
can be collapsed one by one. O

Therefore, G-collapses are collapses. The following is an extension of the
classical result of Whitehead, Proposition 4.1.3, which says that if K7, Ko C K
are finite simplicial complexes, then K; U Ko \, K; if and only if Ko X\
K1 N Ky (with the same sequence of collapses). The proof is straightforward.

Remark 8.3.7. Let K be a finite G-simplicial complex and let K, Ko C K
be two G-invariant subcomplexes such that K; U Ky = K. Then, K \& K;
if and only if Ky NG KN K.

Remark 8.3.8. Let X be a finite Tp-G-space. If X is G-collapsible, it collapses
to a G-invariant one-point subspace. In particular, the fixed point set X is
nonempty.

Now we will study the relationship between G-collapses of finite spaces
and simplicial G-collapses.

If X is a finite Tp-G-space, there is a natural induced action on K(X). If
we consider G both as a discrete topological group and a discrete simplicial
complex, there is a natural isomorphism (G x X) = G x K(X) and an action
0: G x X — X induces an action () : G x K(X) = K(G x X) — K(X)
Analogously, an action 0 : G x K — K over a finite simplicial complex K
induces an action X(0) : G x X(K) = X(G x K) — X(K).

Unless we say the opposite, if X is a finite Ty-G-space and K a finite
G-simplicial complex, we will assume the actions over K(X) and X (K) are
the induced ones.

The main aim of this section is to prove the equivariant version of Theorem
4.2.11. The proof will be similar to the proof of the non-equivariant case.

Lemma 8.3.9. Let aK be a finite simplicial cone and suppose G acts on
aK fizing the vertex a. Then aK \& a.
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Proof. Let o be a maximal simplex of K. Then o C ac is a G-collapsible pair

since g - ac = ac implies go = o. Therefore aK & aK ~ |J {go,g-ac} =
geG

a(K ~ U {go}). The lemma follows from an inductive argument. O

Lemma 8.3.10. Let X be a finite To-G-space and let x € X. The stabilizer
Go of x acts on Cp and then on K(Cy). If K(Cy) is Gau-collapsible,
K(X) N K(X N Ga).

Proof. If ¢ C o’ is a Ga-collapsible pair in K(C,), zo C zo” is G, -collapsible
in a:IC(C ). In this way, copying the elementary G';-collapses of IC( S IANCER
one obtains that K(C,) = 2K(Cy) \* K(Cy) U {z, 2} \F* K(C,). Now we
will show that since K(C,) N+ K(C.,),

U 9K(Ca) \& | 9K(Co). (8.1)

geG geG

Suppose K(Cp) = Ko \Gr¢ k) \Gee [, \Cze  \Cee K, = K(C,).
Notice that all the simplices removed in these collapses contain the vertex
z. If 0 C o' is the Gy-collapsible pair collapsed in K; \¢+¢ K;,; (along
with the other simplices in the orbits of o and ¢’), we claim that ¢ C ¢’ is
G-collapsible in | J ¢gK;. Suppose ¢ C go with ¢ € G, ¢ € K,. Since

geG
x € 0 C go, g 'z € 7 and then x and g~'x are comparable. By Lemma
8.1.1 x = g~ 2 and therefore g € G,. Since K; is G -invariant and ¢ is a free
face of 0’ in K;, go = o’. Therefore, o C ¢’ is a collapsible pair in | ¢gKj;.
geG

Let g € G be such that go’ = ¢’. By the same argument as above, z,

gr € ¢’ and then g € G,. Since o C ¢’ is G,-collapsible in K;, go = o, which

proves that it is also G-collapsible in |J gKj;. Thus,
geG

1

U oK~ U 9K~ ({90,909} = | (9K ~ | {gho, gho'})

geG geG geG geG heG

= U g(K; ~ U {ha, ha'}).

geG heG

But ho and ho' are simplices of K; if and only if h € G, then

U g(K; ~ U {ho,ha'}) = U g(K; ~ U {ho,ho'}) = U 9K,

geG heG geG heG, gelG

So (8.1) is proved, i.e.
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geG geG geG

By Remark 8.3.7,

K(X) = (| 9K(Cr)) UK(X \ Gz) \& K(X N Go).

geqG

Theorem 8.3.11.

(a) Let X be a finite To-G-space and Y C X a G-invariant subspace. If
X NG Y, LX) \G K(Y).

(b) Let K be a finite G-simplicial complex and L C K a G-invariant
subcomplex. If K \& L, X(K) \¢ X(K).

Proof. Suppose first that € X is a beat point. Then there exists y € X,

y # x such that C, C Cy. Therefore G C G by Lemma 8.1.1 and IC(C’I) =

yK(Cp~{y}). The stabilizer G, of = acts on Cy, and therefore on K(C, ), and

fixes y. By Lemma 8.3.9, K(C,) \&= y. By Lemma 8.3.10, K(X) \& K(X ~

Gz). In particular if X is contractible, this says that K(X) is G-collapsible.

Suppose now that x € X is a weak point. Then C, is contractible
and K(C,) is Gy-collapsible. Again from Lemma 8.3.10, we obtain that
K(X) N\ (X \Gx). This proves the first part of the theorem for elementary
G-collapses. The general case follows immediately from this one.

To prove the second part of the theorem we can suppose that K elementary
G-collapses to L. Let ¢ C o’ be a G-collapsible pair in K such that
L = K ~{go,90'}4ec. Then, 0 € X(K) is an up beat point and therefore
X(K) NS¢ X(K) \ {g0}4ec- Now, o' € X(K) ~ {gS}sec is a down weak
point since o’/ \ {o,0'} is a simplicial cone and then Uj(K)\{gg}geG =
U;f(K)\{”} = X(o’ ~ {0,0'}) is contractible by Lemma 4.2.6. Therefore,
X(K) ~A{gotgec ¢ X(K) N {g0,90"}jec = X(L) and X (K) \& X(L).

O

The equivalence classes of the equivalence relations /\& generated by
the G-collapses are called equivariant simple homotopy types in the setting of
finite spaces and of simplicial complexes. An easy modification of Proposition
4.2.9 shows that if X is a finite Ty-G-space, X and X’ are equivariantly
simple homotopy equivalent (see Proposition 8.3.21). Therefore, we have the
following Corollary of Theorem 8.3.11.

Corollary 8.3.12. Let X andY be finite To-G-spaces. Then X andY have
the same equivariant simple homotopy type if and only if K(X) and K(Y)
have the same equivariant simple homotopy type.

However, the analogous result for the functor X is not true (see Example
8.3.20).
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Remark 8.3.13. Let X be a finite G-space. Then 3 < T in the quotient space
X/@G if and only if there exists g € G such that y < gx. In particular if X is
Ty, so is X/G.

The quotient map ¢ : X — X/G is open, moreover ¢ (q(U,)) =
U gUz = U Uge. Since ¢(U;) 3 T is an open set, Uz C ¢(U,). The other
geG geG
inclusion follows from the continuity of ¢q. Therefore Uz = q(U,). Now, 5 < T
if and only if y € ¢7'(Uz) = U Uy if and only if there exists g € G with

eG

y < gz ’

Suppose X is Ty, ¥ < T and T < 7. Then there exist g, h € G such that
y < gxr and = < hy. Hence, y < gz < ghy. By Lemma 8.1.1, y = gz = ghy
and then 7 = 7.

Proposition 8.3.14. Let X be a finite To-G-space which strongly G-
collapses to an invariant subspace Y. Then X/G strongly collapses to Y/G

and X strongly collapses to Y. In particular, if X is contractible, so are
X/G and XC.

Proof. We can assume there is an elementary strong G-collapse from X to
Y = X \ Gz where x € X is a beat point. Suppose x € X is a down beat
point and let y < . Then § < T in X/G and if Z < T there exists g such that
gz < x. Therefore gz < y and z < g. This proves that T € X/G is a down
beat point and X/G strongly collapses to X/G ~\ {zZ} = Y/G.

If  is not fixed by G, Y¢ = X@ . If € X% and g € G, then gy < gz = x
and therefore gy < y. Thus, gy = y. This proves that y is also fixed by G
and then z is a down beat point of X¢. In particular, X& N\, Y©.

If in addition X is contractible, X strongly G-collapses to a G-core which
is a point and then X/G and X are contractible. ad

In fact, the first part of the previous result holds for general spaces. If X
is a G-topological space and Y C X is an equivariant strong deformation
retract, Y/G is a strong deformation retract of X/G and so is Y& C X©.
However if X is a G-topological space which is contractible, X“ need not
be contractible. Oliver [64] proved that there are groups which act on disks
without fixed points.

Proposition 8.3.15. Let X be a finite Ty-G-space which G-collapses to'Y .
Then X collapses to Y. In particular, if X is G-collapsible, XC is
collapsible.

Proof. Suppose X NFey = XN Gr. Ifr ¢ X9 Y9 = )A(Gé If v € X6,
C¥X is G-invariant and contractible. By Proposition 8.3.14, CX~ = (CX)% is
contractible and then z is a weak point of X, which means that X \ Y.

O

The analogue for quotients is not true. There exist finite Ty-G-spaces such
that X N\ Y but X/G does not collapse to Y/G, as the next example shows.



118 8 Group Actions and a Conjecture of Quillen

Example 8.3.16. Let X be the following Zs-space
Oe o’
1. 2. .2/ 1/
919 LYY
where Zy acts by symmetry, 1 -4 = ¢ for every 0 < ¢ < 4. Since 0 € X is
a weak point, X Zs-collapses to Y = X ~ {0,0'}. However X/Zsy does not

collapse to Y/Zs. Moreover, X/Zs is contractible while Y/Zs is the minimal
finite model of the circle.

30 L RY

From Proposition 8.3.15 one easily deduces the next

Corollary 8.3.17. Let X and Y be equivariantly simple homotopy equiva-
lent finite Ty-G-spaces. Then X& and Y have the same simple homotopy

type.

There is an analogous result of Proposition 8.3.15 for complexes. If K is a
G-simplicial complex, K¢ denotes the full subcomplex of K spanned by the
vertices fixed by the action.

Proposition 8.3.18. Let K be a finite G-simplicial complex which G-
collapses to a subcomplex L. Then K< collapses to LE. In particular, if K
is G-collapsible, K is collapsible.

Proof. Suppose that K \&¢ L = K ~ | {g0,90'}, where ¢ C ¢’ is a G-

geG

collapsible pair. If 0 ¢ K¢, L¢ = K% If 0 € K9, then ¢’ € K, because
o is a free face of o’. Then L = K ~ {0,0'} and L = K \ {0,0'}. Since
o C o’ is a collapsible pair in K¢, K¢ N\ LC. O

Corollary 8.3.19. If K and L are two finite G-simplicial complezes with the
same equivariant simple homotopy type, K& and LE have the same simple
homotopy type. In particular K has a vertex which is fixed by the action of
G if and only if L has a vertex fized by G.

Example 8.3.20. Let K be a 1-simplex with the unique nontrivial action
of Zy. The barycentric subdivision K’ has a vertex fixed by Zs but K?2 = ()
therefore K and K’ do not have the same equivariant simple homotopy type.
On the other hand, X (K) and X (K’) are contractible, and therefore they
have the same equivariant simple homotopy type.



8.4 Applications to Quillen’s Work 119

Recall that a map f : X — Y between finite spaces is called distinguished
if f~1(U,) is contractible for every y € Y. The following result will be used in
the next section to compare the equivariant simple homotopy type of A,(G)
and Sy, (G).

Proposition 8.3.21. Let f : X — Y be a G-map between finite Ty-G-spaces
which is distinguished. Then X and Y have the same equivariant simple
homotopy type.

Proof. The non-Hausdorff mapping cylinder B(f) is a G-space with the
action induced by X and Y since if z < y, then f(z) < y and therefore
flgz) = gf(x) < gy for every g € G. Moreover, Y is a G-invariant strong
deformation retract of B(f) and then B(f) \¢ Y. On the other hand,
B(f) \¢ X. This follows from the proof of Lemma 4.2.7. Notice that we
can remove orbits of minimal points of Y in B(f) and collapse all B(f)
into X. a

8.4 Applications to Quillen’s Work

Corollary 8.4.1. A,(G) and S,(G) have the same equivariant simple homo-
topy type.

Proof. The proof of Proposition 8.2.6 shows that the inclusion A,(G) —
Sp(G) is a distinguished map. The result then follows by Proposition 8.3.21.
O

Corollary 8.4.2. If G has a nontrivial normal p-subgroup then it has a
nontrivial normal elementary abelian p-subgroup.

Proof. There is a simple algebraic proof of this fact, but we show a shorter
one, using the last result. Since S,(G), N A,(G), by, Corollary 8.3.17,
S, (@)Y A\ Ap(G)C. Therefore, if S,(G)Y # 0, A,(G)€ is also nonempty. O

We are now ready to state the result that allows us to study Quillen’s
conjecture from many different angles.

Theorem 8.4.3. Let G be a finite group and p a prime integer. The follow-
g are equivalent

~

. G has a nontrivial normal p-subgroup.
Sp(G) is a contractible finite space.

G) is G-collapsible.

S,

|95)

»(G)

»(G) has the equivariant simple homotopy type of a point.
(Sp(GQ)) is G-collapsible.

(Sp(G)) has the equivariant simple homotopy type of a point.
(Sp(G)) is strong collapsible.

NS G S0 e

[aagany
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8. A,(Q) has the equivariant simple homotopy type of a point.
9. K(A,(Q)) has the equivariant simple homotopy type of a point.

Proof. If G has a nontrivial normal p-subgroup, S,(G) is contractible by
Theorem 8.2.2. If S,(G) is contractible, its G-core is just a point, and
since there is a strong G-collapse from a finite Ty-G-space to its G-core,
in particular S,(G) is G-collapsible. If S,(G) is G-collapsible, K(S,(G)) is
G-collapsible by Theorem 8.3.11 and this implies trivially that /C(S,(G)) has
the equivariant simple homotopy type of a point. This, in turn, implies that
Sp(G) has the equivariant simple homotopy type of a point by Corollary
8.3.12. If S,(G) has trivial equivariant simple homotopy type, so does A,(G)
by Corollary 8.4.1, and then so does K(A,(G)) by Theorem 8.3.11. Now, if
K(A,(G)) has the same equivariant simple homotopy type as a point, then
by Corollary 8.3.19 has a vertex which is fixed by the action of G. This vertex
corresponds to a nontrivial normal p-subgroup of GG. On the other hand, the
equivalence between the contractibility of S,(G) and the strong collapsibility
of K(S,(G)) follows from the main results of Sect.5.2. O

On the other hand, recall that the following statements are equivalent:
Sp(G) is homotopically trivial, A,(G) is homotopically trivial, |K(S,(G))|
is contractible, |[K(A,(G))| is contractible. So, as a consequence of these
equivalences and those given in Theorem 8.4.3, we obtain many different
formulations of Quillen’s conjecture. The theory exposed in this chapter
provides a starting point to attack the conjecture from different angles.

In the following result we will mention one last subspace of S,(G) that is
also weak homotopy equivalent to S,(G) and A4,(G). In fact it is homotopy
equivalent to S,(G).

Proposition 8.4.4 (Stong). Let G be a finite group and let p be a prime
integer. Let A be the set of nontrivial intersections of Sylow p-subgroups of
G. Then A is G-invariant and it is an equivariant strong deformation retract

of Sp(G)-

Proof. It is clear that A is G-invariant. Define the retraction r : Sp(G) —
A, that assigns to each subgroup H C G, the intersection of all the Sylow
p-subgroups containing H. Then 7 is a continuous map, and ir > 1g (). By
Proposition 8.3.1, A is an equivariant strong deformation retract of S,(G).
(]

This proof motivates two new constructions that we will introduce in the
next chapter, which are used to find the core of some finite spaces called
reduced lattices. In Sect. 9.2 we will exhibit one last restatement of Quillen’s
conjecture closely related to the so called Evasiveness conjecture.



Chapter 9
Reduced Lattices

Recall that a poset P is said to be a lattice if every two-point set {a,b}
has a least upper bound a V b, called join or supremum of a and b, and a
greatest lower bound a A b, called meet or infimum. Any finite lattice has
a maximum (and a minimum), and in particular it is a contractible finite
space. In this chapter we will study the spaces obtained from a lattice by
removing its maximum and its minimum, which are more attractive from
a topological point of view. These spaces, here called reduced lattices, have
been considered before, for instance in [15], where it was proved that if X is
a noncomplemented lattice with maximum 1 and minimum 0, then [K(X ~
{0,1})| is contractible. We will also introduce the simplicial complex £(X)
associated to any finite space X. We will show that £(X) has the same weak
homotopy type as X when this is a reduced lattice. Connections with strong
homotopy types will also be analyzed.

9.1 The Homotopy of Reduced Lattices

Definition 9.1.1. A finite poset X is called a reduced lattice if X = D° &
X ® DO is a lattice.

For example, if G is a finite group and p is a prime integer, S,(G) is
a reduced lattice. The finite space S(G) defined in Example 8.1.4 is also a
reduced lattice. In contrast, the minimal finite models of the spheres are not.

A subset A of a poset P is lower bounded if there exists x € P such that
x < a for every a € A. In that case x is called a lower bound of A. If the set
of lower bounds has a maximum x, we say that x is the infimum of A. The
notions of upper bound and supremum are dually defined.

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and 121
Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6_9, © Springer-Verlag Berlin Heidelberg 2011
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Proposition 9.1.2. Let P be a finite poset. The following are equivalent:

1. P is a reduced lattice.

2. FEvery lower bounded set of P has an infimum and every upper bounded
set has a supremum.

3. Ewvery lower bounded set {x,y} has infimum.

4. Every upper bounded set {x,y} has supremum.

Proof. Straightforward. O

For instance, the finite space associated to a finite simplicial complex is
a reduced lattice. If K is a finite simplicial complex, and {o,c'} is lower
bounded in X (K), the simplex o N ¢’ is the infimum of {o, ¢’}. Moreover, it
can be proved that given a finite Th-space X, there exists a finite simplicial
complex K such that X(K) = X if and only if X is a reduced lattice and
every element of X is the supremum of a unique set of minimal elements.

Proposition 9.1.3. If X is a reduced lattice and Y C X is a strong
deformation retract, Y is also a reduced lattice. In particular, if X is a reduced
lattice, so is its core.

Proof. Tt suffices to consider the case that Y = X \ {z}, where z € X is a
down beat point. Let y < = and let A = {a, b} be an upper bounded subset
of Y. Then A has a supremum z in X. If z is an upper bound of A in X,
a <z and b < x and then a <y, b < y. Therefore z # = and then z is the
supremum of A in Y. By Proposition 9.1.2, Y is a reduced lattice. O

However, the fact of being a reduced lattice is not a homotopy type
invariant. It is easy to find contractible spaces which are not reduced lattices.
Reduced lattices do not describe all homotopy types of finite spaces. For
example, since S(SY) is minimal and it is not a reduced lattice, no reduced
lattice is homotopy equivalent to S(SY). On the other hand every finite space
X has the weak homotopy type of a reduced lattice, e.g. X'.

The following definition is motivated by Proposition 8.4.4.

Definition 9.1.4. Let X be a reduced lattice. Define the subspace i(X) C
Xbyi(X)={inf(A)| A is a lower bounded subset of maximal elements of X }.
Analogously, define s(X) = {sup(4) | A is an upper bounded subset of
minimal elements of X }. Here, inf(A) denotes the infimum of A and sup(A)
its supremum.

Following Stong’s proof of Proposition 8.4.4, one can prove that the
retraction r : X — i(X), which sends z to the infimum of the maximal
elements of X that are greater than x, is continuous, and that i(X) is a
strong deformation retract of X . Similarly, s(X) C X is a strong deformation
retract.
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Example 9.1.5. Let n > 2 and let P, be the poset of proper positive
divisors of n with the order given by: a < b if a divides b. If n is square
free, P, is homeomorphic to X' (&) where o is a (k — 1)-simplex, k being
the number of primes dividing n. In fact, if p1,po,...,pr are the prime
divisors of n, and o = {p1,p2,...,pr} is a simplex, the map f: P, — X(5)
defined by f(d) = {p; | p; divides d}, is a homeomorphism. In particular,
|K(Py)| = |(6)'] is homeomorphic to the (k — 2)-dimensional sphere.

If n is not square free, we show that P, is contractible. Note that P, is
a reduced lattice with the infimum given by the greatest common divisor.
Since n is not square free, the product of the prime divisors of n is a proper
divisor of n and it is the maximum of s(P,). Thus, s(P,) is contractible and
then, so is P,.

Proposition 9.1.6. Let X be a reduced lattice. The following are equiva-
lent

1. X is a minimal finite space.
2. i(X)=s5(X)=X.

Proof. If X is minimal, the unique strong deformation retract of X is X
itself. Therefore i(X) = s(X) = X. Conversely, suppose this equality holds
and that x € X is a down beat point with y < z. Since z € X = s(X), x is
the supremum of a set M of minimal elements of X. Since x is not minimal,
every element of M is strictly smaller than x, and therefore y is an upper
bound of M. This contradicts the fact that @ = sup(M). Then X does not
have down beat points and analogously it does not have up beat points, so
it is minimal. O

If X is a reduced lattice, i(X) is a strong deformation retract of X, which
is a reduced lattice by Proposition 9.1.3. Analogously s(i(X)) is a strong
deformation retract of X and it is a reduced lattice. The sequence

X Di(X) D si(X) Disi(X) D ...

is well defined and it stabilizes in a space Y which is a strong deformation
retract of X and a minimal finite space by Proposition 9.1.6. Therefore, in
order to obtain the core of a reduced lattice, one can carry out alternatively
the constructions i and s, starting from any of them.

Example 9.1.7. Let K be the simplicial complex which consists of two 2-
simplices with a common 1-face. Since K is strong collapsible, so is X (K).
Another way to see this is the following: X(K) is a reduced lattice with
two maximal elements, i(X(K)) has just three points, and si(X(K)) is the
singleton.
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X(K) (X (K))

Although there are many reduced lattices which are minimal finite spaces,
a reduced lattice X is a minimal finite model if and only if it is discrete. If X
is not discrete, there is a point € X which is not minimal and we can apply
Osaki’s open reduction (Theorem 6.1.1) to obtain a smaller model X/U,.

Given a finite Tp-space X, we will denote by Max(X) the set of maximal
elements of X.

Proposition 9.1.8. If X and Y are two finite Ty-spaces and f: X —Y 1is
a continuous map, there exists g : X — 'Y, g > f, such that g(Max(X)) C
Max(Y).

Proof. Let g > f be a maximal element in Y. Suppose there exists = €
Max(X) such that g(x) ¢ Max(Y). Then, there exists y > g(z), and the
map g : X — Y which coincides with g in X ~\ {z} and such that g(z) =y
is continuous and g > g, which is a contradiction. Therefore g(Max(X)) C
Max(Y). O

Remark 9.1.9. Let X be a finite Ty-space and Y a reduced lattice. If
fig: X — Y are two maps which coincide in Max(X), then f ~ g. Define
h: X—=Y by h(z) =inf({f(2’) | 2’ € Max(X) and 2’ > z}). Clearly h is
continuous and h > f. Analogously i > g and then f ~ g

We deduce then from Proposition 9.1.8 that if X is a finite Tp-space and
Y is a reduced lattice, #[X, Y] < (#Max(Y))#M2x(X) where [X, Y] denotes
the set of homotopy classes of maps X — Y.

9.2 The £ Complex

Let X be a finite Tp-space. The simplicial complex £(X) is defined as follows.
Its vertices are the maximal elements of X and its simplices are the subsets
of Max(X) which are lower bounded. In other words, £(X) is the nerve of
the cover Uy of X given by the minimal open sets of the maximal elements.
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In general, X is not a finite model of £(X). If X = SS° is the minimal
finite model of S!, £(X) is a 1-dimensional simplex. However, if X is a re-
duced lattice, then each intersection of minimal open sets has a maximum or
it is empty. In particular, intersections of elements of U, are empty or ho-
motopically trivial. By Theorem 5.3.1, |£(X)| and X are weak homotopy
equivalent. An alternative proof of the fact that |£(X)| and |K(X)| are homo-
topy equivalent is to apply the so called Crosscut Theorem [16, Theorem 10.8].

Notice that if K is a finite simplicial complex, £(X(K)) is exactly the
nerve N (K) of K. On the other hand L(X(K)°P) = K.

Two reduced lattices X and Y have the same weak homotopy type if
and only if £(X) and L£(Y) are homotopy equivalent. The following results
study the relationship between homotopy types of finite spaces and strong
homotopy types of the £ complexes.

In Proposition 9.1.8, we observed that given any map f : X — Y between
finite Tp-spaces, there exists g > f such that g(Max(X)) C Max(Y). A map
f X — Y satisfying f(Max(X)) € Max(Y") will be called good. Note that
a good map f : X — Y between finite Tp-spaces induces a simplicial map
L(f): L(X) — L(Y) given by L(f)(z) = f(x) since f maps a lower bound
of A C X to a lower bound of f(A) CY.

Theorem 9.2.1. If X andY are homotopy equivalent finite Ty-spaces, L(X)
and L(Y) have the same strong homotopy type.

Proof. We can assume that there is a homotopy equivalence f : X — Y which
is a good map. Let g : Y — X be a homotopy inverse of f and which is also
good. We will prove that the composition £(g)L(f) : L(X) — L(Y) lies in the
same contiguity class as the identity 1.(x). Symmetrically, L(f)L(g) ~ 12y)
and then L£(f) is a strong equivalence. Thus, by Corollary 5.1.11, £(X) and
L(Y) are strong homotopy equivalent.

Since gf ~ 1x, there exists a fence gf = hg > hy < hy > hy < ... >
hor—1 < hop = 1x. Moreover, by Proposition 9.1.8 we can assume that ho; is
good for every 0 < ¢ < k. It suffices to show then that L£(hg;) and L(hgit2)
are contiguous for each 0 < i < k. Let o be a simplex of £(X). Then, there
exists a lower bound z € X for all the points of o. Then ho;y1(x) < hoi(z) is
a lower bound of ha;(0). Analogously, ho;11(z) is a lower bound of ha;12(0).
Since hg;(0)Uhgit2(0) has a lower bound, it is a simplex of £(X'). This proves
that L(he;) and L(ha;42) are contiguous. m|

Corollary 9.2.2. Let K and L be two finite simplicial complezes. If X (K) ~
X(L), then K and L have the same strong homotopy type.

Proof. If X(K) ~ X(L), X(K)°° ~ X(L)°° by Corollary 1.2.7, and by
Theorem 9.2.1 K = L(X(K)°P) and L = L(X(L)°P) have the same strong
homotopy type. a
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In Corollary 5.2.7 it was proved that the contractibility of X’ implies the
contractibility of X. That proof uses Theorem 5.2.6. We give an alternative
proof here using the last corollary. Suppose that X’ is contractible. Let Y
be a the core of X. Since Y is also contractible, X (K(Y)) =Y’ ~ X(x). By
Corollary 9.2.2, K(Y)) is strong collapsible. However, by Proposition 5.2.5,
K(Y) is a minimal complex and therefore Y = *. Hence, X is contractible.

The converse of Theorem 9.2.1 is true when X and Y are reduced lattices.
First we prove the following

Lemma 9.2.3. Let X be a reduced lattice. Then X(L(X)) ~ X°P.

Proof. Define f : X(L(X)) — X° by f(o) = inf(o), where inf(o) is the
infimum of o in X. Let g : X°? — X(L(X)) be defined by g(z) = {y €
Max(X) | y >x z}. Clearly f and g are order preserving. Moreover gf (o) =
{y € Max(X) | y >xinf(0)} D 0. Then gf > 1x(£(x)). On the other hand
fg(z) = inf({y € Max(X) | y >x x}) >x x. Then fg <xor 1xor. Thus, f is
a homotopy equivalence. O

Theorem 9.2.4. Let X and Y be two reduced lattices. Then X ~Y if and
only if L(X) and L(Y') have the same strong homotopy type.

Proof. By Theorem 9.2.1 it only remains to prove one implication. Suppose
that £(X) and L£(Y) have the same strong homotopy type. By Theorem
5.2.1, X(L(X)) ~ X(L(Y)) and by Lemma 9.2.3, X°°? ~ Y°P. Then by
Corollary 1.2.7, X and Y have the same homotopy type. a

The £ construction can be used to give a new restatement of Quillen’s
conjecture, different from those mentioned in Chap.8.

Definition 9.2.5. Let G be a finite group and p a prime integer dividing
the order of G. The complex L,(G) = L(S,(G)) is the complex whose
vertices are the Sylow p-subgroups of G and whose simplices are sets of Sylow
p-subgroups with nontrivial intersection.

Since S,(G) is a reduced lattice, |L,(G)| is weak homotopy equivalent
to Sp(G). Any normal p-subgroup of G is contained in the intersection of all
the Sylow p-subgroups. Conversely, the intersection of the Sylow p-subgroups
is a normal subgroup of G. Then, G has a nontrivial normal p-subgroup if
and only if the intersection of all the Sylow p-subgroups is nontrivial, or
equivalently if L,(G) is a simplex. Therefore, Quillen’s conjecture can be
restated as follows:

Restatement of Quillen’s conjecture: if |L,(G)| is contractible, it is a
simplex.

The complex L,(G) is what is called a vertex homogeneous simplicial
complex. This means that the automorphism group of L,(G) acts transitively
on the vertices. In other words, given any two vertices v,w € L,(G), there
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exists a simplicial automorphism ¢ : L,(G) — L,(G) such that ¢(v) = w.
The reason is that any two Sylow p-subgroups are conjugate and that any
automorphism of S,(G) induces an automorphism of L,(G). Therefore, the
conjecture claims that a particular contractible vertex homogeneous complex
must be a simplex. In general this is not true. In [47] examples are shown
of contractible vertex homogeneous complexes which are not simplices. This
problem is related to the so called Evasiveness conjecture [46]. In [11] it is
proved that a vertex homogeneous complex which is strong collapsible must
be a simplex. This is used to reduce the Evasiveness conjecture to the case
of the minimal simplicial complexes.






Chapter 10
Fixed Points and the Lefschetz Number

In Chap.8 we studied fixed point sets of group actions. Now we turn our
attention to fixed point sets of continuous maps between finite spaces and
their relationship with the fixed point sets of the associated simplicial maps.
We analyze well-known results on the fixed point theory of finite posets from
the perspective of finite spaces. An extensive treatment of the fixed point
theory for posets appears in Baclawski and Bjorner’s paper [4]. We use the
poset version of the Lefschetz Theorem to analyze fixed points of simplicial
automorphisms, providing an alternative approach to Oliver’s work [63, 64].

10.1 The Fixed Point Property for Finite Spaces

If X is a topological space and f : X — X is a continuous map, we denote
by X/ = {z € X | f(x) = z} the set of fixed points of f. For a simplicial
map ¢ : K — K, K¥ denotes the full subcomplex spanned by the vertices
fixed by ¢.

We say that a topological space X has the fized point property if any map
f : X — X has a fixed point. For instance, any disk has the fixed point
property by the Brouwer fixed-point Theorem.

The proof of the following result uses the construction f*°(X) studied in
Sect. 3.4 (cf. [26, Proposition 1]).

Proposition 10.1.1. A finite Ty-space X has the fized point property if and
only if all its retracts have the fized point property with respect to automor-
phisms.

Proof. The first implication holds in general, if X is a topological space with
the fixed point property, every retract of X also has that property. Conversely,
if f: X — X is a continuous map, then f*°(X) is a retract of X and

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and 129
Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6_10, © Springer-Verlag Berlin Heidelberg 2011
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flyexy + f(X) — f(X) is an automorphism. If f|se(x) has a fixed
point, so does f. O

The following is a well-known result:

Proposition 10.1.2. Let X be a finite Ty-space, and let f,g : X — X be
two homotopic maps. Then f has a fized point if and only if g has a fized
point.

Proof. Without loss of generality, we can assume that g < f. If f () = z,
g9(z) < f(z) = z. Then ¢"**(x) < g'(x) for every i > 0 and then there exists
i such that ¢"*1(x) = g'(x). Therefore, ¢g*(z) is a fixed point of g. |

We use last proposition to prove a generalization of the fact that retracts
of finite Ty-spaces with the fixed point property also have that property.

Proposition 10.1.3. Let X and Y be finite Ty-spaces such that there exist
continuous maps f : X — Y and g: Y — X with fg ~ 1y. Then if X has
the fixed point property, so does Y .

Proof. Let h : Y — Y be a continuous map. Then map ghf : X — X fixes
some point € X. Therefore f(z) € Y is a fixed point of fgh: Y — Y. Since
h ~ fgh, h has a fixed point by Proposition 10.1.2. a

Immediately one deduces the following

Corollary 10.1.4. The fized point property is a homotopy type invariant of
finite Ty-spaces.

A different proof of this result appears for example in [71, Proposition 1]
and in [81, Corollary 3.16].

Note the Tj hypothesis in the last three results is necessary. If X is an
indiscrete space of two points, then X is contractible but it does not have the
fixed point property. Both homeomorphisms X — X are homotopic but one
has fixed points while the other does not. The fixed point property is not a
homotopy invariant for non-finite spaces either, not even if we restrict to the
class of compact metric spaces. There are examples of contractible compact
metric spaces without the fixed point property (see [42]).

If X is a contractible finite Tj-space, then it has the fixed point property
by Corollary 10.1.4. In [71] Rival observed that the converse is not true.
The example provided is the space X of Example 4.3.3. In [71] no method
is suggested for proving that such a space X has the fixed point property.
However we know that X is collapsible and in particular homotopically trivial.
We will now recall the Lefschetz fixed point Theorem for compact polyhedra
and the version of this result for posets. Any of these results can be applied
directly to prove that every homotopically trivial finite Tp-space has the fixed
point property.

Let M be a finitely generated Z-module, and T (M) its torsion submodule.
An endomorphism ¢ : M — M induces a morphism ¥ : M/T(M) —
M /T (M) between finite-rank free Z-modules. The trace tr(p) of ¢ is the trace
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of 3. Namely, if {e1, e2,..., €, } is a basis of M/T'(M) and p(e;) = >_; myje;,

tr(¢) = > my. If K is a compact polyhedron, H.(K) is a finitely generated
i=1
graded abelian group, that is H,,(K) is finitely generated for every n > 0 and

is nontrivial only for finitely many n. If f : K — K is a continuous map, the
Lefschetz number of f is defined by

M) =D (=1 (f), (10.1)

n>0

where f,, : H,(K) — H,(K) are the induced morphisms in homology.
Notice that the Lefschetz number of the identity 1x : K — K coincides
with the Euler characteristic of K.

Theorem 10.1.5 (Lefschetz Theorem). Let K be a compact polyhedron
and let f : K — K be a continuous map. Then, if A(f) # 0, f has a fized
point.

In particular, if K is contractible, A(f) = 1 for every map f : K — K and
then f has a fixed point. This generalizes the well-known Brouwer fixed-point
Theorem for disks. A proof of the Lefschetz Theorem can be found in [75,
Theorem 4.7.7].

If X is a finite Ty-space, its homology is finitely generated as well and
therefore we can define the Lefschetz number A(f) of a map f: X — X as
in 10.1. Note that A(f) = A\(|K(f)|) by Remark 1.4.7.

The version of this theorem for finite spaces is the following. For details
on the proof we refer the reader to [4, Theorem 1.1] (see also [59]).

Theorem 10.1.6 (Baclawski-Bjorner). Let X be a finite Ty-space and
f: X — X a continuous map. Then \(f) = x(X1). In particular, if \(f)#0,
XF £,

Corollary 10.1.7. Any homotopically trivial finite Ty-space has the fized
point property.

Moreover, finite Ty-spaces with trivial rational homology groups also have
the fixed point property. We proved in Corollary 10.1.4 that the fixed point
property is a homotopy invariant. The following example shows that it is
not a weak homotopy invariant and, at the same time, that the hypothesis
of having trivial rational homology is not needed to have the fixed point
property.

Example 10.1.8 (Baclawski-Bjorner). The fixed point property is not a
weak homotopy invariant, nor a simple homotopy invariant. In [4, Example
2.4], Baclawski and Bjorner considered the regular CW-complex K which is
the boundary of a pyramid with square base (see Fig.10.1).
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Fig. 10.1 K

The associated finite space X = X(K) is a finite model of S?. Let f :
X — X be a continuous map. If f is onto, it is an automorphism and then
the vertex of the top of the pyramid is fixed by f since it is the unique point
covered by 4 points. If f is not onto, K(f) : S? — S? is not onto and then
K(f) is nullhomotopic. Therefore A(f) = A(|K(f)|) = 1 and then X/ # ().

On the other hand, the minimal finite model of S?

is simple homotopy equivalent to X and does not have the fixed point
property since the symmetry is fixed point free.

With a similar idea as in this example it is possible to construct finite
models of each sphere S™, n > 2, having the fixed point property.

Open problem: Which spaces have finite models with the fixed point pro-
perty?

A simple case to start studying this question seems to be the one-
dimensional sphere.

Proposition 10.1.9. Let X be a finite To-space. If X' has the fized point
property, then so does X .
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Proof. If f : X — X is continuous and X’ has the fixed point property, f
leaves fixed a nonempty chain of X and hence, all its points. ]

Remark 10.1.10. The converse of Proposition 10.1.9 is not true. Consider
the regular CW-complex K of Example 10.1.8. Denote by 0,1,2,3 € Z4 the
vertices in the base of the pyramid K and by a the fifth vertex, as shown
in Fig.10.1. A cell e of K will be identified with the set of vertices in e.
Define f : X(K) — X(K)°? as follows: f({a})=1{0,1,2,3}, f({0,1,2,3}) =
{a} and for every n € Z4, f({n}) = {n,n+ 1,a}, f({n,a}) = {n,n + 1},
f{n,n+1}) ={n+1,a}, f({n,n+1,a}) = {n+ 1}. It is easy to see that
f is order preserving and that f' : X(K) — X(K) does not have fixed
points. However, as it was shown in Example 10.1.8, X(K) has the fixed
point property.

10.2 On the Lefschetz Theorem for Simplicial
Automorphisms

Proposition 10.2.1. Let ¢ : K — K be a simplicial automorphism. Then
K[ = |(K")#.

Proof. Let x € |K'| = |K|. Then z = ) a;b(0;) is a convex combination of
the barycenters of simplices o9 C 01 € ... C oy, of K with «; > 0 for every i.
Suppose z € |(K’)¢'|. This is equivalent to saying that each of the vertices
b(o;) in the support of z is fixed by ¢’, or, in other words, that ¢(c;) = o;
for every i. If we now consider z € |K]|,

and (v)
(v
lol(z) =) i Y T
vEo; #Ui
Since p(0;) =04, > % = > 75, and then [¢[(z) = z. This proves one
VEOT; ‘ vEOoT; ‘
inclusion.

Before proving the other inclusion, note that if v € o;~\0;_1, the coordinate
ofvinz=> a; Y, F=is

vET; #o
Q' Aj41 A
+ 4. .
#oi  FHoin #ok
Since ¢ is an isomorphism, the coordinate of ¢(v) in |p|(z) = > a; > i(;})

VEOT;

. ; Qg1 (]
is also & + AL 4 Sk
#oi + #oit1 + + #0ok
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Suppose now that z € |K|I#l. In this case, ¢(v) € support(|e|(z)) =
support(z) and therefore ¢(v) € oy. If p(v) € 0 \ 0j_1, the coordinate of
o(v) in z is ;;] + g+ #4. Since |g|(z) = =,

#Oj4+1
; Qg1 o o it o
— oy = SRR ST L
#oi  H#Hoi #or  #Ho; #0541 #oy,

and then i = j. This proves that ¢(o; \ 0;,-1) C 0; \ 0;—1. Thus, ¢(0;) C 0;
and then ¢(0;) = o; for every i. Therefore z € |(K’)? |, which proves the
other inclusion. a

Since X7 C X, K(X7) is the full subcomplex of K(X) spanned by the
vertices fixed by f. By definition, this subcomplex is K(X)*(/). Therefore we
have,

Remark 10.2.2. Let X be a finite Ty-space and let f : X — X be a continuous
map. Then K(X7) = K(X)*),

Corollary 10.2.3. Let K be a finite simplicial complex and ¢ : K — K a
simplicial automorphism. Then X (K)*®) is a finite model of |K|!¥l.

Proof. By Proposition 10.2.1, |[K|1¢l = |(K')?'| = |[K(X(K))CX@)] and by
Remark 10.2.2, this coincides with |[KC(X(K)¥(#))| which is weak homotopy
equivalent to X (K)* (), O

The following is a stronger version of Lefschetz Theorem 10.1.5 for sim-
plicial automorphisms. A different proof can be found in [63] (see also [39,
Theorem 1.8]).

Corollary 10.2.4. Let K be a finite simplicial complex and let p : K — K
be a simplicial automorphism. Then x(|K|I#!) = A(|¢|).

Proof. The diagram

]
|K| —— |K]|

BN
X ()

X(K) — X(K)

commutes up to homotopy and (us)n : Hn(|K|) — Hn(X(K)) is an
isomorphism for every n > 0. Then |p|. = (tx«) X (Q)spircs + Ho(|K|) —
Hy(|K]) and tr((J¢l«)n) = tr((X()«)n). Therefore A(¢]) = A(X(g)). By
Corollary 10.2.3 and the finite space version of the Lefschetz Theorem 10.1.6,
X(E[1#) = x (X (E)¥ ) = MX(p)) = A(|#]). O

From this corollary we obtain an alternative proof of a result of R. Oliver
[64, Lemma 1].
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Proposition 10.2.5 (Oliver). Assume that Z, acts on a Q-acyclic finite
simplicial complex K. Then x(|K[?") = 1.

Proof. Let g be a generator of Z, and ¢ : K — K the multiplication by g.
Then x(|K|%") = x(|K|'¥1) = A(Jp|) = 1, since K is Q-acyclic. O

We conclude this chapter with a result on the trace of the morphism
induced by a map between finite spaces.

Suppose that X is a finite model of the circle and that f : X — X is a
map. Then f. : H;(X) — Hi(X) is amap Z — Z. However, the only possible
morphisms that can appear in this way are 0, 17 and —17. We prove this and
a more general fact in the following result.

Proposition 10.2.6. Let f : X — X be an endomorphism of a finite Ty-
space X and let n > 0. Let f, : Ho(X;Q) — Hp(X;Q) be the induced map
in homology. If dimgH, (X;Q) = r, fn is a matriz of order r with rational
entries well defined up to similarity. Suppose that A € C is an eigenvalue of
fn considered as a complexr matriz. Then A =0 or X is a root of unity.

Proof. Since X is finite, there exist s # t € N such that f* = f! Then
5= fLand A¥ = A" O

Corollary 10.2.7. Under the hypothesis of the previous proposition, —r <
tr(fn) < r. In particular, since f, has integer entries, tr(f,) € {—r,—r +
1,...,r=1,r}.






Chapter 11
The Andrews—Curtis Conjecture

The Poincaré conjecture is one of the most important problems in the history
of Mathematics. The generalized versions of the conjecture for dimensions
greater than 3 were proved between 1961 and 1982 by Smale, Stallings,
Zeeman and Freedman. However, the original problem remained open for a
century until Perelman finally proved it some years ago [66-68]. His proof is
based on Hamilton’s theory of Ricci flow. An alternative combinatorial proof
of the Poincaré conjecture would be a great achievement.

The Zeeman conjecture and the Andrews—Curtis conjecture are closely
related to the original Poincaré conjecture. Moreover, with the proof of the
Poincaré conjecture it is now known that both conjectures are true for a class
of complexes called standard spines. However both conjectures are still open.

In this chapter we will introduce the class of quasi constructible com-
plexes which are built recursively by attaching smaller quasi constructible
complexes. Using techniques of finite spaces we will prove that contractible
quasi constructible complexes satisfy the Andrews—Curtis conjecture. Quasi
constructible complexes generalize the notion of constructible complexes
which was deeply studied by Hachimori in [33].

11.1 n-Deformations and Statements of the Conjectures

The Poincaré conjecture, originally formulated in 1904, can be stated as
follows:

Poincaré conjecture: Every simply connected closed 3-manifold is homeo-
morphic to S3.

Zeeman proved the 5-dimensional version of the Poincaré conjecture, but
he also studied the original problem. In [87] he showed that, although no
triangulation of the Dunce Hat D is collapsible, the cylinder D x I is
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polyhedrally collapsible. A polyhedral collapse is somewhat less rigid than
a simplicial collapse and is more suitable when working in the category of
polyhedra and piecewise linear maps. An elementary polyhedral collapse from
a polyhedron K to a subpolyhedron L consists of the removal of an n-ball B™
of K which intersects L in an (n— 1)-ball contained in the boundary of B™. If
there is a polyhedral collapse from K to L, then there exist triangulations Ky,
Lo of K and L such that Ky \, Lg. For more details see [31,50,87]. Zeeman
conjectured that this property holds more generally for any contractible
2-complex:

Zeeman conjecture: If K is a contractible compact polyhedron, then K x I
is polyhedrally collapsible.

Zeeman proved in [87] that his conjecture implies the Poincaré conjecture.
In [30] Gillman and Rolfsen proved that the Poincaré conjecture is equivalent
to the Zeeman conjecture when restricted to standard spines (see also [72]).
Zeeman’s conjecture is still not proved nor disproved. In these notes we will
not work with the polyhedral version of collapse.

A balanced presentation of a group G is a presentation (x1,xa,..., T, |
r1, ro,...7rn,) with the same number of generators than relators. Given a
presentation (xq,xo,..., oy | r1, r2,...7m) of G, we consider the following
four operations which modify this one to obtain a new presentation of G.

(1) Replace a relator r; by r; '

(2) Replace a relator r; by r;r; where j # i.

(3) Replace a relator r; by gr;g~* where g is any element in the free group
generated by x1,2o,...,Ty.

(4) Add a generator x,11 and a relator 7,11 = Tp41.

Andrews—Curtis conjecture: Any balanced presentation of the trivial
group can be transformed into the trivial presentation by performing
repeatedly the operations (1)—(4) and the inverse of operation (4).

We are particularly interested in a topological version of this conjecture.

Definition 11.1.1. Let n > 1. We say that a complex K n-deforms to
another complex L if we can obtain L from K by a sequence of collapses and
expansions in such a way that all the complexes involved in the deformation
have dimension less than or equal to n.

Geometric Andrews—Curtis conjecture: Any contractible compact
2-polyhedron 3-deforms to a point.

The Geometric Andrews—Curtis conjecture is equivalent to the Andrews—
Curtis conjecture. It is clear that Zeeman’s conjecture implies the Andrews—
Curtis conjecture. However, the later is also an open problem. For more
references see [2,50,72].
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The analogous version of the Andrews—Curtis conjecture for higher dimen-
sions is known to be true. More specifically, Wall proved in [82, Theorem 1]
the following result which is an improvement of a result of Whitehead.

Theorem 11.1.2 (Whitehead-Wall). Let n > 3. If K and L are simple
homotopy equivalent compact polyhedra of dimension less than or equal to n,
then K (n+ 1)-deforms to L.

In contrast, M.M. Cohen showed that Zeeman’s conjecture is false for
dimensions greater than 2 [24].

To finish the section we will show that it is possible to restate the Andrews—
Curtis conjecture in the context of finite spaces using Theorem 4.2.11.

Definition 11.1.3. Let X and Y be two finite Ty-spaces. We say that X n-
deforms to Y if the later can be obtained from X by performing expansions
and collapses in such a way that all the spaces involved are of height at
most n.

Conjecture 11.1.4. Let X be a homotopically trivial finite Ty-space of hei-
ght 2. Then X 3-deforms to a point.

Theorem 11.1.5. Conjecture 11.1.4 is equivalent to the Andrews—Curtis
conjecture.

Proof. Assume Conjecture 11.1.4 is true and let K be a contractible 2-
complex. Then X(K) is a homotopically trivial finite Tp-space of height 2
and therefore it 3-deforms to a point. By Theorem 4.2.11, K’ 3-deforms to a
point and then by Proposition 4.1.4, K 3-deforms to a point.

The converse follows similarly. We only have to show that X’ 3-deforms
to X for a finite Ty-space X of height 2. By the proof of Proposition 4.2.9, it
suffices to observe that the non-Hausdorff mapping cylinder B(h) of the map
h : X’ — X which maps a chain to its maximum, has height at most 3. 0O

11.2 Quasi Constructible Complexes

The content of this section is in part motivated by the following example
studied in Chap. 7.

° ° ° e .b

At
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This space is the face poset of an h-regular structure of the Dunce Hat and
it has no weak points. However, there are two maximal points a, b such that
U, U Uy is contractible, and therefore X 'Y = X U {c} where a < ¢ > b.
Now, Y \\ Y ~ {a,b}. Thus K£(X) 3-deforms to (Y ~\ {a,b}) which has one
point less than X.

In order to study the Andrews—Curtis conjecture we will be interested in
complexes K whose associated finite space X'(K) has two maximal elements
a,b such that U, U U, is contractible. Moreover, we will consider those
complexes K such that, starting from X (K), one can perform repeatedly
the move described above, to obtain a space with maximum, and therefore
collapsible.

Let X be a finite Ty-space of height at most 2 and let a, b be two maximal
elements of X such that U, U U, is contractible. Then we say that there is
a ge-reduction from X to Y \ {a,b} where Y = X U {c} with a < ¢ > b.
We say that X is gc-reducible if we can obtain a space with a maximum by
performing qc-reductions starting from X.

Note that a, b and ¢ are all weak points of Y. Since spaces with maximum
are collapsible, qc-reducible finite spaces are simple homotopy equivalent to
a point. Furthermore, if X is qc-reducible, all the spaces involved in the
deformation X 7\, * are of height less than or equal to 3. Therefore we have
the following

Remark 11.2.1. If X is qc-reducible, it 3-deforms to a point.

Example 11.2.2. The following space is collapsible but not qc-reducible. In
fact we cannot perform any qc-reduction starting from X.

o><o><
AN

Proposition 11.2.3. Let X be a finite Ty-space of height at most 2 and such
that Ho(X) = 0. Let a,b be two mazimal elements of X. Then the following
are equivalent:

1. U, U U, is contractible.
2. U, NUyp is nonempty and connected.
3. U, NUy is contractible.

Proof. The non-Hausdorff suspension S(U,NU,) = (U,NUp)U{a, b} is a strong
deformation retract of U,UU,. A retraction is given by r : U,UU, — S(U,NUp)
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with r(z) = a for every « € U,~\Up and r(z) = b for « € U,\U,. Therefore, by
Proposition 2.7.3, U, UUy is contractible if and only if U, NU, is contractible.

Since K(X) has dimension at most 2, H3(K(X),K(S(U, N Up)))=0.
By the long exact sequence of homology, Ha(K(S(U, NUp))) = 0 and then
Hy(U,NUp) = 0. Thus, if U,NU} is nonempty and connected, it is contractible
since ht(U, NU) < 1. |

Remark 11.2.4. If X is a contractible finite Tj-space of height at most 2, it
can be proved by induction in #X that there exist two maximal elements a, b
such that U, UUj is contractible. However when a qc-reduction is performed,
the resulting space might be not contractible.

Definition 11.2.5. A finite simplicial complex K of dimension at most 2 is
said to be quasi constructible if K is a simplex or, recursively, if it can be
written as K = K7 U K5 in such a way that

e Kj and K, are quasi constructible,

e Kj N Kj is nonempty and connected, and

¢ No maximal simplex of K7 is in K5 and no maximal simplex of K5 is in
K.

The name of these complexes is suggested by the particular case of con-
structible complexes studied in [33].

Definition 11.2.6. A homogeneous finite simplicial complex K of dimen-
sion n is n-constructible if n = 0, if K is a simplex or if K = K; U Ky where
K7 and K5 are n-constructible and K7 N K5 is (n — 1)-constructible.

A homogeneous 1-complex is 1-constructible if and only if it is connected.
Therefore, 2-constructible complexes are quasi constructible. A wedge of two
2-simplices is quasi constructible but not 2-constructible. This example also
shows that collapsible 2-complexes need not be 2-constructible. However we
will prove below that collapsible 2-complexes are quasi constructible.

Lemma 11.2.7. Let K be a finite simplicial complex and let K1, Ko be two
subcomplezes such that K1 N Ka is a vertex v (i.e. K = K1\/ K3). Then K

is collapsible if and only if K1 and Ko are collapsible.

Proof. Suppose K1 # v # Ky. If K is collapsible and o C ¢’ is a collapsible
pair of K such that K \ {c,0’} is collapsible, then ¢ C ¢’ is a collapsible
pair of K7 or Ky. Without loss of generality assume the first holds. Then
(K1~ {0,0'})V Ky = K \ {0,0} is collapsible. By induction K; \ {o,0’}

and K5 are collapsible.

If K; and K, are collapsible, they collapse to any of their vertices. In
particular K7 \, v and K5 \, v. The collapses of K; and K5 together show
that K\ v. |
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Theorem 11.2.8. Let K be a finite simplicial compler of dimension less
than or equal to 2. If K is collapsible, then it is quasi constructible.

Proof. If K is collapsible and not a point, there exists a collapsible pair
o € ao such that L = K \ {0,ac} is collapsible. By induction L is quasi
constructible. K = L Uac and L Naoc = ac is connected. If no maximal
simplex of L is a face of ao, K is quasi constructible as we want to prove.
However this might not be the case.

If ao is a 1-simplex and a is a maximal simplex of L, L = a and then K
is a 1-simplex which is quasi constructible.

Assume ao is a 2-simplex and let b, ¢ be the vertices of .

Consider this first case: ab is a maximal simplex of L but ac is not (see
Fig.11.1). We claim that L\ {ab} has two connected components. Certainly,
since L is contractible, from the Mayer-Vietoris sequence,

Hy (L) — Hy(aUb) — Hy(ab) & Ho(L ~ {ab}) — Hy(L)

we deduce that Ho(L~{ab}) = Z. Therefore, there exist subcomplexes L1 3 a
and Ls 3 b of L such that L = Ly \/ab\/ L.

a b
By Lemma 11.2.7, L1 and Lo are collapsible and therefore quasi con-
structible.

Fig. 11.1 L

Now, L; and ao are quasi constructible, L1 N aoc = ac is connected and
{ac} is not maximal in Ly nor in ac. Thus Ly U ac is quasi constructible.
If Ly is just the point b, K = Ly U ao is quasi constructible. If Ly is not a
point, {b} is not a maximal simplex of Ly and then K = (Ly Uao)U Lg is
quasi constructible since (L Uao) N Ly = b is connected.

The second case: ac is maximal in L but ab is not, is analogous to the first.

The third case is: ab and ac are maximal simplices of L. As above L ~\
{ab} and L \ {ac} have two connected components. Therefore, there exist
subcomplexes Li, Lo and Lsg of L such that a € Ly, b € Lo, ¢ € L3z and
L=1Ls\ab\/ L1\ ac\ Ls. Since L is collapsible, by Lemma 11.2.7, L; are

b a a c
also collapsible and by induction, quasi constructible. If Ly # a, Lo # b and
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Lo # ¢, we prove that K is quasi constructible as follows: ac U L1 is quasi
constructible since ac N L1 = a is connected and {a} is not maximal in ac
nor in L. Then (aoc U L1)U Ls is quasi constructible since (acUL1)N Ly =b
is connected and {b} is maximal in none of them. Similarly, K = (ac U L1 U
Ly) U L3 is quasi constructible. If some of the complexes L; are just single
points, this simplifies the proof since we can remove those from the writing
of K=a0c ULy ULyU Ls. O

On the other hand, contractible 2-constructible complexes need not be
collapsible as the next example shows.

Example 11.2.9. The following example of a contractible 2-constructible
and non-collapsible complex is a slight modification of one defined by Hachi-
mori (see [33], Sect.5.4). Let K be the 2-homogeneous simplicial complex of
Fig. 11.2.

3 2 1
6
2 2
5 7
4
1 3

Fig. 11.2 K

This complex is 2-constructible (in fact it is shellable (see below)). For
instance, one can construct it adjoining 2-simplices in the following order:
567,457,347,237,127,167, 126,236, 356,235,125,145,134. In each adjunc-
tion both the complex and the 2-simplex are 2-constructible and their
intersection is 1-constructible. Moreover, K is collapsible.

Now take two copies K; and K5 of K and identify the 1-simplex 13 of
both copies. The resulting complex L is contractible since K; and Ko are
contractible. Moreover, K1 and Ko are 2-constructible and their intersection
is 1-constructible, therefore L is 2-constructible. On the other hand, L is not
collapsible since it does not have free faces.

We will see in Corollary 11.2.11 that quasi constructible complexes 3-
deform to a point. In particular this is true for this complex.

The notion of constructibility is in turn a generalization of the concept
of shellability (see [16]), and shellable complexes are collapsible. We will not
work explicitly with shellings in these notes. For more details on shellable
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complexes we refer the reader to [16] (see also [44] for an alternative definition
of shellability in the context of manifolds).

Theorem 11.2.10. Let K be a finite simplicial complex of dimension less
than or equal to 2. Then the following are equivalent:

1. K is quasi constructible and H2(|K|) =0,
2. X(K) is gc-reducible,
3. K is quasi constructible and contractible.

Proof. Let K be quasi constructible and suppose Hz(|K|) = 0. If K is a
simplex, X' (K) has maximum and it is qe-reducible. Otherwise, K = K1 UK
where K71 and Ky are quasi constructible and K; N Ky is connected and
nonempty. Moreover the maximal simplices of K are not in K5 and vice
versa. Since Hs(|K|,|K;|) = 0, H2(]K;|) = 0 and by an inductive argument,
X(K;) is qcreducible for ¢ = 1,2. Carrying out the same qc-reductions
in X(K) we obtain a space Y with two maximal elements a1 and ag such
that Ug, NU,, = X(K1 N K3) which is connected and nonempty. Moreover,
Hy(Y) = Hy(X(K)) = 0 and therefore, by Proposition 11.2.3, a last qc-
reduction transforms Y in a space with maximum.

Now suppose that K is such that X (K) is qc-reducible. Then we can
make qc-reductions to obtain a space with maximum. If X(K) does not
have maximum, in the last step, before the last qc-reduction, one has a
contractible space Y with two maximal elements a; and as. Consider the
simplicial complex K; generated by all the maximal simplices of K that
were eventually replaced by a; when performing the qc-reductions. Define
K similarly. Then, X(K;) and X (K>) are gc-reducible and by induction
K; and K5 are quasi constructible. Moreover X (K1 N K3) = U,, NU,, is
connected and nonempty by Proposition 11.2.3 and then so is K1 N Ks. Hence
K is quasi constructible. On the other hand, since X(K) is qc-reducible, it
is homotopically trivial and therefore |K| is contractible. O

In fact, the equivalence between 1 and 3 can be proved easily without
going through 2 (see Remark 11.2.12).

Corollary 11.2.11. If K is quasi constructible and contractible, it 3-
deforms to a point, i.e. contractible quasi constructible complexes satisfy the
Geometric Andrews—Curtis conjecture.

Proof. If K is quasi constructible and contractible, X'(K) is qc-reducible by
Theorem 11.2.10. By Remark 11.2.1, X(K) 3-deforms to a point. By Theorem
4.2.11, K’ 3-deforms to a point and then by Proposition 4.1.4, so does K. O

Remark 11.2.12. By the van Kampen Theorem, quasi constructible com-
plexes are simply connected. In particular, their reduced Euler characteristic
is non-negative since their dimension is less than or equal to 2.

In the next we adapt an argument of Hachimori to show that there are
many contractible 2-complexes which are not quasi constructible. The results
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and their proofs are essentially the same as in [33]. A vertex v of a finite
complex K is a bridge if K ~ v has more connected components than K.
Following Hachimori we say that a vertex v of a finite 2-simplicial complex
K is splittable if the graph (k(v) has a bridge.

Remark 11.2.13. Suppose K = K1 UK is a 2-complex such that no maximal
simplex of K7 is in K5 and vice versa. In this case K1 N K5 is a graph. Assume
that there exists a vertex v which is a leaf of K1 N Ka, i.e. lkg,nk,(v) =0 is
a point. We prove that v is splittable in K. Since vv’ € K; N Ko, vv’ is not
maximal in either of the subcomplexes K1 and K. Let v; € K; such that
vv'v; € K; for i = 1,2. The vertices v1 and vy are connected in kg (v) via v'.
Suppose that they are also connected in lkg (v) \ v’. Then, there exists w €
lki(v) ~ v’ such that vw is a simplex of K; and K3 simultaneously. This
contradicts the fact that lkx,nk,(v) = v’. Therefore v’ is a bridge of lkx (v).

Proposition 11.2.14. Let K be a contractible finite 2-simplicial complex
with no bridges and with at most one splittable point. If K is not a 2-simple,
then it is not quasi constructible.

Proof. Suppose that K is quasi constructible. Then there exist quasi
constructible subcomplexes K7 and K5 as in Definition 11.2.5. K1 N K5 is a
connected graph with more than one vertex, provided that K has no bridges.
By the previous remark, it has at most one leaf and therefore it is not a tree.
In particular ¥(K1 NK>) < 0. Since K is contractible, by Remark 11.2.12 we
have that

0= X(K) = X(K1) + X(K2) = X(K1 N K3) >0,

which is a contradiction. O

In particular we deduce that any triangulation of the Dunce Hat is not
quasi constructible, since it has just one splittable point.

Remark 11.2.15. Recall that the Andrews—Curtis conjecture is known to be
true for standard spines (see [72]). It is easy to see that standard spines have
no bridges nor splittable points and therefore they are not quasi constructible.
Therefore our result enlarges the class of 2-complexes for which the conjecture
is known to be valid.

Any triangulation of the Dunce Hat is not quasi constructible and it is
easy to see that it is not a standard spine either since it has a splittable
point.

11.3 The Dual Notion of Quasi Constructibility

It seems very natural to consider the dual notion of qc-reducibility in order to
obtain a larger class of complexes satisfying the Andrews—Curtis conjecture.
However we will see that if K is such that X'(K)° is qc-reducible, then K is
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collapsible. Let X be a finite Ty-space of height at most 2 with two minimal
elements a, b such that F, U F} is contractible. Then we say that there is a
qc®P-reduction from X to Y \ {a,b} where Y = X U {c} with a > ¢ < b.
We say that X is gc°P-reducible if we can obtain a space with a minimum by
carrying out qc®P-reductions beginning from X, or, in other words, if X°P is
qc-reducible.

If K is a finite simplicial complex and V is a subset of vertices of K, we
will denote by st(V) C |K| the union of the open stars of the vertices in V,
i.e. N

st(V) = (| st(v)),

veV
where sot(v): K|~ |K ~v|= U oC K|
ooV

We introduce the dual notion of quasi constructibility which is the follow-
ing.
Definition 11.3.1. Let K = (Vk,Sk) be a finite simplicial complex of
dimension at most 2. We say that a subset V' C Vi of vertices is quasi®?
constructible in K if #V =1 or if, recursively, V =V} U Vo with V; quasi®”?
constructible in K for i = 1,2, V1 NVa = 0 and st(V1) Nst(Va) is a connected
nonempty subspace of the geometric realization |K|.

The complex K is said to be quasi®® constructible if Vi is quasi‘?
constructible in K.

In order to understand the topology of st(V1) N st(Vz), we will generalize
the result that says that X'(K) is a finite model of K, giving an alternative
proof of this fact.

Theorem 11.3.2. Let K be a finite simplicial complex and let Y C Sk be a

subset of simplices of K. Let X = |J 0 C |K| and let f : X — Y C X(K)°P
oY

be the map defined by f(x) = o if # € o. Then, f is a weak homotopy
equivalence.

Proof. We first note that f is continuous. If 0 € Y,

U= | 7= I nnx=x~10"

oCTeYy ocCTESK

is open in X since o¢ is a subcomplex of K. To prove that f is a weak
homotopy equivalence we use the Theorem of McCord 1.4.2. We only have to

show that f~1(U,) is contractible. In fact, ¢ is a strong deformation retract
of f=Y(U,). Let z € 7 witho C 7 €Y, 2 = tar+ (1 —t)3 for some 0 < ¢ < 1,
a€gand § € (7~ 0)°. Define r: f~1(U,) — & by r(z) = a. Then r is a
retraction and H : f~Y(U,)x I — f~1(U,), given by H(x,s) = (1—s)x+ sa,
defines a homotopy between 1;-1(; ) and ir. a
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Proposition 11.3.3. Let K be a finite Ty-space of height at most 2. Then K
is quasi®? constructible and contractible if and only if X(K) is qc°P-reducible.

Proof. Suppose |K| is contractible. We prove that if V' C Vg is quasi®?

constructible in K, then (J Fp,; € &X(K) is qcP-reducible. If #V = 1,
veV

U Fyvy has minimum and there is nothing to do. Assume that V' = V; U V5

veV

where V7 and Vs are disjoint and quasi®? constructible in K, and st(V1) N

st(Va) is connected and nonempty. By induction |J Fy,) and |J Fy,y are
veV; veVs
qc®P-reducible. Then |J F{,) qcP-reduces to a space X with two minimal
veV
elements a; and as. Moreover, F,, N F,, = {oc € Sk | there exist v; € V}

and vy € V2 with vy, v2 € o} is weak homotopy equivalent to st(Vy) N st(Vz)
by Theorem 11.3.2. In particular, Fj,, N Fy,, is connected and nonempty, and
since X'(K) is homotopically trivial, by Proposition 11.2.3, X is contractible.
Therefore a last qc°P-reductions transforms X into a space with minimum, so

U F{uy is qc®P-reducible. Now, if in addition K is quasi’-constructible, Vi
veV
is quasi®? constructible in K and then X(K) = |J Fy,y is qc®P-reducible.
veVEK
Conversely, let V € Vi be a subset of vertices of K. We will prove that

it U Fp,y € X(K) is qc®P-reducible, then V' is quasi®” constructible in K.
veV
If #V = 1 there is nothing to prove. In other case, before the last step we

will have reduced [J Fy,} into a contractible space X with two minimal
veV
points a1 and aq. Let V; be the subset of V' of vertices that were eventually

replaced by a; for ¢ = 1,2. Then |J F(yy is qc®P-reducible and by induction
veV;

Vi is quasi®? constructible for ¢ = 1,2. By Theorem 11.3.2, st(V1) N st(V2) is
weak homotopy equivalent to Fy, N Fy, which is connected and nonempty by
Proposition 11.2.3. Then V is quasi®? constructible in K.

Finally, applying this result to V = Vi we deduce that if X (K) is qcP-
reducible, then K is quasi®? constructible. In this case X' (K') is homotopically
trivial and then |K| is contractible. O

In particular, we deduce that if K is quasi®”? constructible and contractible,
it 3-deforms to a point. Unfortunately, this does not enlarge the class of com-
plexes satisfying the Andrews—Curtis conjecture, since quasi®? constructible
complexes are collapsible as we will see.

Lemma 11.3.4. Let K be a finite simplicial complezx of dimension less than
or equal to 2. If V. C Vi is quasi®® constructible in K, then x(st(V)) > 0.

Proof. If #V =1, st(V) is contractible and then x(st(V')) = 0. Suppose that
V = Vi1 UVs where V7 and Vs are disjoint, quasi? constructible in K and
such that st(V7) N st(V2) is connected and nonempty. By induction,

X(st(V)) = X(st(V1)) + X (st(V2)) — X(st(V1) N st(V2)) = —X(st(V1) N 5t(V2)).
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__ By Theorem 11.3.2, st(V1) N st(V2) is weak homotopy equivalent to Vin
Vo C X(K) which is a finite To-space of height at most 1. Since it is connected
and nonempty, x(st(Vi) Nst(Va)) = x(V1NVy) <0 and then x(st(V)) > 0.

O

Theorem 11.3.5. Let K be a contractible quasi®? constructible simplicial
complex. Then K 1is collapsible.

Proof. If K = %, there is nothing to do. Suppose Vi = ViUV, with V1NV, =),
Vi and V2 quasi®? constructible in K and st(V1) N st(V2) nonempty and
connected. Since |K| is contractible,

= X(IK]) = x(st(V1)) + X(st(V2)) — X(st(V1) N 5t(V2)).

By Lemma 11.3.4, Y(st(V;)) > 0 for i = 1,2 and then Y (V; NVs) =
X(st(V1) Nst(Va)) > 0. Moreover, V1 NV, C X(K) is nonempty, connected
and its height is less than or equal to 1. Therefore, it is contractible. In
particular, there exists a simplex o € K which is a leaf (maybe the unique
vertex) of the graph IC(V;NV5). We claim that ¢ is not a 2-simplex, because
if that was the case, it would have two of its vertices a, b in V; and the third
cin V; for i # j. Then {a,c} and {b,c} would be covered by o in V1 N Vs
contradicting the fact that o is a leaf of IC(Vl N 72). Thus o is a 1-simplex.

Let a € Vi and b € V5 be the vertices of . Since o is a leaf of IC(Vl 072)7
we consider two different cases:

(1) VinVy={c}or
(2) o € K is a free face of a simplex ¢/ = {a,b,c} € K.

We study first the case (1). For i = 1,2, let K; be the full subcomplex of K
spanned by the vertices of V;. Then K = K1 UKyU{c} = K;\/ 0\ K3. Since
b

a
K is contractible, K1 and K> are contractible as well. Moreover, since V; is
quasi®? constructible in K, it is also quasi®? constructible in K;. Note that
if V and V' are subsets of V;, then stx, (V) Nstg, (V') = st (V) N stx (V).
Thus, K7 and K> are contractible and quasi®? constructible. By induction,
they are collapsible. Therefore K = K1 \/ o\/ K3 is also collapsible.

a b

Now we consider the second case (2). Let L = K \ {0, 0’}. By hypothesis
K ~{, L. We claim that L is quasi®? constructible. To prove that, we will show
first that V7 and V5 are quasi®P constructible in L. We prove by induction that
if V. C Vj is quasi®? constructible in K, then it also is in L. If #V = 1 this is
trivial. Suppose V = V' U V" with V' and V" disjoint, quasi®? constructible
in K and such that sty (V”) ﬂstK(V”) By Ayt g nonempty and
connected. By induction V/ and V" are quasi®? constructible in L. We have
to show that V7" q 77¥ ") = (V’X(K) 2
and connected.

)\ {o,0’} is nonempty
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Since o has only one vertex in Vi, it cannot have a vertex in V'’ and
X (K) n V,/X(K) o ¢ V/X(K) n V/,X(K)

other in V”. Therefore, o ¢ V'
then V’X(L) V”X(L) (V’X(K) g (K)) is nonempty and connected. If
X(K)

o' e V’ V” then c € Vi and ¢’ covers just one element of V7’ N
WX(K) T ) g )

and in particular V/ is homotopy equivalent to V7 *(K) NV’ * (K )
Then, it is nonempty and connected and therefore V' is quasi®? constructlble
in L.

Since Vj is quasi®’? constructible in K it follows that it is quasi’?
constructible in L. Analogously, V5 is quasi®? constructible in L.

Now, by assumption stx (V1) N stx(Va) =~ S le(K) N Vs 1A is nonempty
X(K)

N

which is {a, c} Hence, ¢’ is a down beat point of V'
X (L) V,,X( )

and connected. Since ¢ is a free face of K, it is an up beat point of Vi
T X (K) N X(K)
2

since there is a 1-face of ¢ with both vertices in V; or in V5. Hence, i
—X(L) _V —X(K) AT —X(K)
2

Va
Vo , and then it is connected and nonempty. Thus, V;, = V1 UV; is quasi®?
constructible in L, or in other words, L is quasi®? constructible.

Since K ¢, L, L is contractible and quasi®? constructible. By induction L

is collapsible and therefore, so is K. a

On the other hand, ¢’ is a down beat point of V|
( )A

~{o, 0’} is a strong deformation retract of V; (K)ﬂ
X(K)

The converse of this result is false as we prove in the next example.

Example 11.3.6. The complex K studied in Example 11.2.9 is a collapsible
homogeneous 2-complex with a unique free face. We prove that a complex
satisfying these hypotheses cannot be quasi®? constructible.

Suppose that K is quasi®? constructible. Since K has more than one vertex,
Vi can be written as a disjoint union of quasi®”? constructible subsets V;
and V5 in K such that V1 UV is contractible. The case (1) of the proof of
Theorem 11.3.5 cannot occur since K is homogeneous. Therefore, K(V1NV3)
has dimension exactly 1 and it is a tree. Then, it has at least two leaves, which
must be 1-simplices and free faces of K. However this is absurd since K has
only one free face.

The qc and qcP-reductions studied in this chapter conclude the list of
reduction methods introduced in this work. The last example of this book
is a homotopically trivial finite space X which cannot be reduced via any
of these methods. Its aim is to motivate the development of new methods
of reduction. Although this example is not directly related to the Andrews—
Curtis conjecture, it is connected to the methods studied in this chapter and
to several ideas developed throughout these notes.

Example 11.3.7. Consider the following pentagon whose edges are identi-
fied as indicated by the arrows.
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This CW-complex is contractible since the attaching map of the 2-cell is
a homotopy equivalence S' — S'. We endow this space with an h-regular
structure K as follows

Since K is contractible, X'(K) is a homotopically trivial finite space of 21
points by Theorem 7.1.7. It is easy to check that X'(K) has no weak points,
and therefore it does not have y-points either since its height is 2. In fact
no h-regular CW-complex has down weak points and it is not hard to see
that the O-cells of this example are not up weak points. We only have to
show that Fa, Fb and F are not contractible, but this is clear since their
associated graphs contain a cycle.

Tt is not possible to make a qe-reduction on X (K), since for any 2-cells e, ¢’
of K,eNe’ C K is not connected. It can also be proved that no qc°P-reduction
can be made in X'(K) since the subspaces F, N Fy,, F, N F, i, N F, C X(K)
are nonconnected.

Osaki’s reduction methods 6.1.1 and 6.1.2 are not applicable either.

On the other hand we know that it is possible to obtain the singleton
starting from X (K) and performing expansions and collapses.



Chapter 12
Appendix

This appendix is intended to recall some of the basic notions and properties
of simplicial complexes and CW-complexes which are used but not explicitly
explained in the main text. The reader not familiar with concepts such as
simplicial approximations and adjunction spaces, could find this appendix
useful. However, more complete expositions on these subjects can be found
in Spanier’s book [75, Chap. 3] and in Munkres’ [61, Chaps. 1 and 2]. Standard
references for CW-complexes are also [28,38,45].

A.1 Simplicial Complexes

A simplicial complex K consists of a set Vi, called the set of vertices, and a
set Sk of finite nonempty subsets of Vi, which is called the set of simplices,
satisfying that any subset of V' of cardinality one is a simplex and any
nonempty subset of a simplex is a simplex. By abuse of notation we will
write v € K and 0 € K if v € Vg and 0 € Sk. Many times, as it is the
custom, we will identify a simplicial complex with its set of simplices.

If a simplex o is contained in another simplex 7, it is called a face of 7, and
it is a proper face if in addition o # 7. A simplex with n + 1 vertices is called
an n-simplex, and we say that its dimension is n. Note that the vertices of
K correspond to the O-simplices. The dimension of K is the supremum of
the dimensions of its simplices. If K is empty, its dimension is —1 and if K
contains simplices of arbitrary large dimension, its dimension is infinite. An
n-complex is a simplicial complex of dimension n. The maximal simplices
(those which are not proper faces of any other simplex) are sometimes called
facets. A finite dimensional simplicial complex is called homogeneous (or
pure) if all its maximal simplices have the same dimension. A subcomplez of
a simplicial complex K is a simplicial complex L such that V; C Vix and
St € Sk. A subcomplex L C K is said to be full if any simplex of K with

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and 151
Applications, Lecture Notes in Mathematics 2032,
DOI 10.1007/978-3-642-22003-6, © Springer-Verlag Berlin Heidelberg 2011
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all its vertices in L is also a simplex of L. In this case we say that L is the
full subcomplex of K spanned by the vertices v € V..
Given a simplex o = {vg,v1,...,v,} of dimension n, the closed simplex

n

7 is the set of formal convex combinations > «,;v; with «; > 0 for every
i=0

0<i<nand ) a; =1. A closed simplex is a metric space with the metric

d given by

The geometric realization |K | of a simplicial complex K is the set of formal

convex combinations Y «,v such that {v | «, > 0} is a simplex of K.
veK
Therefore, |K| can be regarded as the union of the closed simplices T with

o € K. The topology of |K| is the final (coherent) topology with respect to
the closed simplices. In other words, a set U C |K| is open (resp. closed) if
and only if U N is open (resp. closed) in the metric space 7 for every o € K.
The support (or carrier) of a point ¢ = Y a,v € |K]| is the simplex
veEK
support(z) = {v | ay, > 0}. If ¢ is a simplex, the open simplex o is the subset
of 7 of points whose support is exactly o. Note that if two points z,y € |K]|
lie in the same closed simplex, then the convex combination tx + (1 — t)y is
a well defined element in |K|. If L C K, |L]| is a closed subspace of |K]|. Tt is
not hard to prove that the topology of the set & as a subspace of |K]| is the
original metric topology on &. Moreover, if K is a finite simplicial complex
(i.e. with a finite number of vertices), the topology of | K| coincides with the
metric topology defined as before

d(z Qyv, Z ﬂvv) = Z (av - 51})2‘

veEK veEK veEK

Moreover, in this case | K| can be imbedded in R™ for some n € N.

It is easy to prove that if U is an open subspace of |K]|, then it has the
final topology with respect to the subspaces U NG C G.

A polyhedron is the geometric realization of a simplicial complex and a
triangulation of a polyhedron X is a simplicial complex K whose geometric
realization is homeomorphic to X. Any polyhedron is a Hausdorff space.

Since | K| has the final topology with respect to its closed simplices, a map
f from |K| to a topological space X is continuous if and only if each of the
restrictions f|z : @ — X is continuous. Moreover, by the exponential law,
it can be shown that a map H : |K| x I — X is continuous if and only if
H|sxs:7 x I — X is continuous for each o € K.

A simplicial map ¢ : K — L between two simplicial complexes K and L is
a vertex map Vx — Vg that sends simplices into simplices. A simplicial map
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¢ : K — L induces a well defined continuous map |p| : |[K| — |L| between
the geometric realizations defined by |p|( Y. ayv) = > ayp(v).

veK veK
Lemma A.1.1. Let K be a simplicial complex and let F' be a compact subset
of |K|. Then there exists a finite subcomplex L of K such that F C |L|.

Proof. Take one point in F'N & for every open simplex intersecting F'. Denote
by D the set of all these points. Let A C D. Since the intersection of A
with each closed simplex is finite, it is closed, and then A is closed in |K]|.
Therefore D is discrete and compact, and, in particular, finite. Thus, F
intersects only finitely many open simplices. The complex L generated by
(i.e. the smallest complex containing) the simplices o such that o intersects
F is a finite subcomplex of K which satisfies the required property. O

Proposition A.1.2. Let K and L be two simplicial complexes and let f, g :
|K| — |L| be two continuous maps such that for every x € |K| there exists
o € L with f(x),g(x) € 7. Then [ and g are homotopic.

Proof. The map H : |K| x I — |L| given by H(x,t) = tg(z) + (1 — t) f(x) is
well defined because g(x) and f(z) lie in a same closed simplex. In order to
prove that H is continuous it suffices to show that it is continuous in @ x I
for every 0 € K. If 0 € K, 7 is compact and therefore f(7) and ¢g(o) are
compact. By Lemma A.1.1, f(7) is contained in the geometric realization
of a finite subcomplex L; and ¢(7) C |Lo| for a finite subcomplex Ly C L.
Therefore, H(Z x I) is contained in the realization of a finite subcomplex
M of L, namely the full subcomplex spanned by the vertices of Ly and Ls.
We have to show then that Hl|zx; : @ x I — |M| is continuous, where M is
a finite simplicial complex. But this is clear since both @ and |M| have the
metric topology.

d(H(z,t), H(y,s)) < d(tg(z) + (1 —t)f(x),s9(x) + (1 — s)f(z))
+d(sg(z) + (1 —s)f(x),s9(y) + (1 —5)f(y))
<20t —s[+d(f(x), f(y)) +d(g(x),9(y))-

Therefore, the continuity of H follows from that of f and g. O

The homotopy H used in the proof of Proposition A.1.2 is called the linear
homotopy from f to g.

Two simplicial maps ¢, : K — L are said to be contiguous if for every
o € K, ¢(o) Ut(o) is a simplex of L. In this case, |¢| and |¢| satisfy the
hypothesis of Proposition A.1.2, since if z € 7, both |p|(x) and [¢|(x) lie in
() U(o). Therefore we deduce the following

Corollary A.1.3. If ¢ and ¢ are two contiguous maps, |¢| and || are
homotopic.
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A simplicial cone with apex v is a simplicial complex K with a vertex v
satisfying that for every simplex o of K, o U {v} is also a simplex.

Corollary A.1.4. If K is a simplicial cone, |K| is contractible.

Proof. Let v be the (an) apex of K. The simplicial map that sends every
vertex to v is contiguous to the identity by definition of cone. Therefore, by
Corollary A.1.3, the identity of |K| is homotopic to a constant. |

Given a simplicial complex K, its barycentric subdivision K' is the
following simplicial complex. The vertices of K’ are the simplices of K, and
a simplex of K’ is a chain of simplices of K, i.e. a set {09,01,...,0,} of
simplices of K such that o9 C 01 € ... € o,. The barycenter of a simplex
o € K is the point b(o) = %: %5 € |K|. The linear map sk : |K'| — |K|

veo
defined by sk (o) = b(o) is a homeomorphism. By linear we mean a map that

preserves convex combinations. The spaces |K’| and | K| are usually identified
by means of the map sy in such a way that sx becomes the identity map.

A simplicial map ¢ : K — L is said to be a simplicial approximation of
a continuous map f : |K| — |L| if f(z) € @ implies |p|(z) € T for every
x € |K|. Note that in this situation f and |¢| are homotopic by Proposition
A1.2.

Proposition A.1.5. A vertex map ¢ : K' — K is a simplicial approzi-
mation to the identity sx : |K'| — |K| if and only if (o) € o for every
ceK.

Proof. Suppose that ¢ is a simplicial approximation to the identity. If o is a
vertex of K', sk (o) = b(o) € 7, then |p|(0) must be contained in & as well.
Therefore p(0) is a vertex of o.

Conversely, suppose ¢ : K/ — K is a vertex map in the hypothesis of
the proposition. If o9 C 01 C ... € 0, is a chain of simplices of K, then
o({og,01,...,04n}) C . Therefore ¢ is a simplicial map. Moreover if

n
r = E 05,
i=0

with «; > 0 for every i, then

" (% o
sr(x) =) oy Z €0y
vET;

i=0 #0i

n
On the other hand, |p|(x) = > a;p(0;) € Tp,. Thus, ¢ is a simplicial ap-
i=0
proximation of sk. a



A.2 CW-Complexes and a Gluing Theorem 155

As an immediate consequence we deduce that there exist simplicial ap-
proximations to the identity.

The n-th barycentric subdivision of K is defined recursively K™ =
(K(=1) A simplicial approximation to the identity Lk - |IK™| — |K|
is in this case a simplicial approximation of the map Sksk/...Sgm-1)
KM | — |K|. If f : |K| — |L| is a continuous map, a simplicial map ¢ :
K™ — L is called an approximation of f if it is a simplicial approximation
of fSKSK/ o SK(n-1).

The proof of the following result on simplicial approximations can be found
in [75, Corollary 3.4.5, Lemma 3.5.4].

Proposition A.1.6.

1. The composition of simplicial approximations of two maps is a simplicial
approzimation of the composition of those maps.
2. Two simplicial approzimations to the same map are contiguous.

Two simplicial maps ¢, : K — L are said to be in the same contiguity
class if there is a sequence of simplicial maps ¢ = ¢g, @1, ..., = ¢ from
K to L, such that ¢; and ¢;41 are contiguous for every 0 < i < k.

The following result is known as the Simplicial Approximation Theorem.
Its proof can be found in [75, Theorems 3.4.8 and 3.5.6].

Theorem A.1.7. Let K be a finite simplicial complex and L a simplicial
complez. Given any continuous map f : |K| — |L| there exist n € N and a
simplicial approzimation ¢ : K™ — L to f. Moreover, if f,g: |K| — |L| are
homotopic, there exist n € N and simplicial approximations o, : K\") — L
to f and g in the same contiguity class.

A.2 CW-Complexes and a Gluing Theorem

If X, Y and Z are three topological spaces, and f: X — Y, g: X — Z are
continuous maps, the pushout of the diagram

is a space P together with maps f : Z — P and g : Y — P such that
fg = gf and with the following universal property: for any space @ and
maps f: Z — Q and g : Y — @ such that fg = gf, there exists a unique
map h: P — Q such that hf = f and hg = g.
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N<_—><

It is not hard to see that the space P is unique up to homeomorphism and
in fact it can be characterized as the space P = (ZUY)/ ~, where ~ is the
relation that identifies f(z) with g(x) for every € X. The maps f and §
are the canonical inclusions into the disjoint union Z LU'Y composed with the
quotient map.

For example, if A is a subspace of a space X, the quotient X/A is the
pushout of the diagram

A— X

|

*

If A and B are two closed (or two open) subspaces of a space X and
X = AU B, then X is the pushout of A «— AN B — B.

A topological pair is an ordered pair of spaces (X, A) with A a subspace
of X. In the next definition the inclusions A < A x I and X — X x I of the
spaces A and X in the bases of their cylinders will be denoted by iy and jg
respectively.

Definition A.2.1. A topological pair (X, A) is said to have the homotopy
extension property if for any space Y and maps H : AxI —Y, f: X =Y
such that Hip = f|a, there exists a map H : X x I — Y such that Hjo = f
and H|ax; = H.

A AxT
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If A is a subspace of a space X, the inclusion A «— X is said to be a
closed cofibration if A is closed in X and (X, A) has the homotopy extension

property.

Definition A.2.2. If A C X, and the inclusion A — X is a closed
cofibration, the pushout Z of a diagram

o<

is called the adjunction space of X to Y by f. In this case, it can be proved
that Y is a closed subspace of Z (see [21]).
When X = D" is a disk and A = S~ ! is its boundary, we say that Z is

constructed from Y by adjoining an n-cell. More generally, if X = | | D™ isa
aeA
union of n-dimensional disks indexed by an arbitrary set Aand A = || S"1,
a€eA
we say that Z is obtained from Y by adjoining n-cells.

Definition A.2.3. A CW-structure for a topological space X is a filtration
of X by subspaces X° C X! C ..., where X° is a discrete space, X" is
constructed from X" ! by adjoining n-cells and X is the union of the spaces
X™, n >0, with the final (coherent) topology. The subspace X" is called the
n-skeleton of X.

A CW-complex is a space X endowed with a CW-structure. Note that,
since X" is obtained from X"~! by adjoining n-cells, there is a pushout

|_| Dn =y
aEN,

Xn

The image of the map 1, : D" — X is called the closed cell €. The
image of p, : S"7! — X is the boundary é? of the cell and the (open) cell
el is concretely the subspace e = e? ~ ¢, which is homeomorphic to the
interior of the disk D™. The maps ¢, and 9, are called the attaching map
and the characteristic map of the cell e}, respectively. For us, the attaching
and characteristic maps will be part of the structure of the CW-complex.
For some authors, though, the CW-structure consists only of the filtration
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by skeleta. In that case the characteristic maps are not part of the structure,
only their existence is required.

A cell e is called an n-cell or cell of dimension n. The dimension of a
CW-complex X is —1 if it is empty, n if X™ # X"~ and X™ = X" for every
m > n, and infinite if X" # X for every n.

Simplicial complexes are CW-complexes. Their cells are the open simplices.
Many properties of polyhedra hold in fact for CW-complexes. For instance,
any CW-complex has the final topology with respect to its closed cells and
every CW-complex is a Hausdorff space.

A subcomplex of a CW-complex X is a closed subspace of X which is a
union of cells of X. The following is a basic result about CW-complexes. A
proof can be found in [75, 7.6.12] or [28, Corollary 1.4.7].

Theorem A.2.4. If A is a subcomplex of a CW-complexr X, the inclusion
A — X is a closed cofibration.

The following gluing theorem appears for instance in [21, 7.5.7, Corol-
lary 2].

Theorem A.2.5. Suppose that the following diagram is a pushout of topo-
logical spaces

f
E——

f
—

o<

N~

in which A — X is a closed cofibration and f : A — Y is a homotopy
equivalence. Then f : X — Z is a homotopy equivalence.

The following are two applications that show how to use the gluing theorem
together with Theorem A.2.4 to study the homotopy type of CW-complexes
and polyhedra.

Proposition A.2.6. Let K be a simplicial complex and let v be a vertex
of K. If the link |lk(v)| is contractible, |K| and |K ~ v| are homotopy
equivalent.

Proof. Consider the following diagram

[k(v)] —— |st(v)]

I

|K \v| —— |K]|.
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It is a pushout because |st(v)| U |K ~ v| = |K]|, |st(v)]| N |K ~ v| = |lk(v)]
and both |st(v)| and |K \ v| are closed subspaces of |K|. Moreover, |lk(v)| —
|K ~\ v| is a cofibration by Theorem A.2.4 and, since |lk(v)| — [st(v)| is a
homotopy equivalence because st(v) is a cone, |K \ v| < |K| is a homotopy
equivalence by Theorem A.2.5. a

Proposition A.2.7. IfY is a contractible subcomplex of a CW-complex X,
the quotient map X — X/Y is a homotopy equivalence.

Proof. Since Y — % is a homotopy equivalence, by the gluing theorem so is
X - X/Y. O
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