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It is shown that the Hurwitz determinants associated with a real polynomial of degree
n can be obtained from minors of matrices having orders n/2 or (n—1)/2 according as
n is even or odd. The method used is based on forming companion matrices of appro-
priate polynomials, and is extended to calculation of Routh arrays, Sturm sequences
and to complex polynomials, thus providing a new formulation of a number of classical
theorems. ’

1. Introduction
For A poLYNOMIAL

a(d) = A"+ A"+ L tay, n
with real or complex coefficients, important qualitative problems are to determine the
nature and location of the zeros of a(l) without explicit calculation of these zeros.
For two or more polynomials a related problem is to find their greatest common
divisor (g.c.d.). Such topics have been of interest for a considerable time and, of
course, occur in a wide variety of situations arising in a number of branches of applied
mathematics. However, it is worth mentioning that the motivation for most of the
results to be presented below derived from applications to linear control theory,
which in both older and more recent treatments (Rosenbrock, 1970) relies heavily
on the theory of polynomials. ‘

One powerful tool for dealing with qualitative problems is provided by Sturm’s
theorem, which gives the number of distinct real zeros of a real polynomial within
a given interval. It is also related to many other well-known results, such as the neces-
sary and sufficient conditions due to Routh and Hurwitz for a real polynomial to be
stable (i.e., for all its zeros to have negative real parts). The first general solution of
the problem of location of zeros of a complex polynomial in a complex half-plane
was in fact derived by Hermite in 1854 using reduction to a sum of squares, and a
similar approach by Schur and Cohn evaluated the number of zeros inside the unit
circle. Full details and proofs of many location theorems can be found in the book
by Marden (1966), and Parks (1963) has given an admirable survey of stability
criteria. It is also possible to derive results in this area using resultants and sub-
resultants, and relationships between this approach and others are clearly set out by
Householder (1968, 1970).

Yet another way of investigating the properties of the polynomial (1) is by using
its companion matrix

0 1 0 .. 0
0 0 1 .o 0
C=1| . . . .. s 2
1
-, —Ou_q —%m_2 - - —Oy,
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whose characteristic polynomial is «(2). For example, it is easy to see (as pointed out
by MacDuffee (1950)) that if (%) is a second polynomial then det (C) constitutes a
resultant of a(4) and p(A)—that is, B(C) is non-singular if and only if «(4) and B(1) are
relatively prime. It can be assumed without loss of generality that f(1) has degree at
most m—1 so that

B(A) = BoA™ 1+, A"+ ... + By 3
Then not only does B(C) have dimensions about half those of Sylvester’s resultant,
but it is also easy to establish that rows 1, 2, ..., m of

B(C) = BoC™ '+ B,C™ %+ ... +Bpilms @
where I, is the unit matrix of order m, are respectively
X = [ﬁm—la Bm—Zs esvy ﬁls ﬁO]s xcy xCZ’ erey xCM—-l. (5)

This formulation is interesting because the degree of the g.c.d. of «(d) and B(4)
(MacDuffee, 1950) and indeed the g.c.d. itself (Barnett, 19704) can be found from
B(C) in (4) with less effort than is required in the classical case. A siraightforward
extension holds for the g.c.d. of any number of polynomials (Barnett, 19715), which is
directly related to the controllability matrix of a linear multivariable control system,
and for which there is no direct classical equivalent. Moreover, the companion matrix
approach has produced a simpler reformulation of several other theorems involving
or based on resultants, including those on the number of distinct zeros of a polynomial
(MacDuffee, 1950), the number of distinct real zeros (Barnett, 1970c), Hermite’s
theorem (Barnett, 1971a) and the Schur-Cohn result (Barnett, 19705). It is the purpose
of this paper to present further developments of this method, in particular to the cal-
culation of Hurwitz determinants, Routh arrays and Sturm sequences.

In view of the alternatives which have been derived for theorems associated with
resultants it is not surprising that a direct relationship between S(C) and the Sylvester
matrix of «(1) and B(4) has been discovered (Barnett, 1971b). It will be convenient for
the subsequent development to restate this relationship here, but for the case when
B(%) in (2) is replaced by a polynomial having the same degree as a(4):

P(A) = YA +9, A"+ L .
The rows of y(C) are .
Y = [Ym—V0%ms -5 Y2 —Yo%2, V1 —Yo%1); yC, yC?, ..., yCc™t (6)
and the Sylvester matrix of a(4) and y(1) is

1 oy oy . . oy o, O
0 1 Ay .. Ope Ly Oy
o 0o . . . 1 oy Uy . . Oy
S, y) = )

0 0 0 . . % 1Yz - - Vm
0 %% Y - + VYme2 Ym-1 Im
Yo Y1 Y2 - o Yme Ym O
m m :

_ IS Sz]m

- _S3 S4 m
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It has been shown (Barnett, 19715) that

Im 0 - Sl(a’y) Sz(aa )’)
[JmK 1".]3(“’ " ‘[ 0 HCM, ] ®

where J,, = [e,,; €,,_1, .--, €,], €, being the jith column of I, and K is an upper triangular
matrix whose precise form is of no importance in what follows. The expression (8)
establishes a link between the g.c.d. algorithm referred to earlier (Barnett, 1970a)
and a method (Laidacker, 1969) for finding the g.c.d. based on reducing (7) to echelon
form. Much more important, however, is the fact that (8) provides the key to the
derivation of simpler expressions for the Hurwitz determinants associated with a real
polynomial a(4) of degree n. In an earlier paper (Barnett, 1971¢c) expressions were
obtained for the odd Hurwitz determinants when 7 is even and the even determinants
when » is odd, involving minors of a matrix of order nf2 or (n—1)/2 respectively.
These were applied to a particular form of the Liénard—Chipart stability criterion
rediscovered by Fuller (1957). In Section 2 below the extension to calculation of all
the Hurwitz determinants for any real polynomial is given, thus allowing a simplified
formulation of the general Liénard-Chipart theorem. Section 3 presents the application
of these expressions for the Hurwitz minors to calculation of Routh arrays. It is well
known that the Routh stability criterion is equivalent to that of Hurwitz, and it is in
fact easy to relate all the elements in a Routh array to (non-principal) minors of the
corresponding Hurwitz matrix. By a further application of (8) simplified expressions
for these minors are derived, again in terms of matrices of order not more than nf2.
It does not seem to be widely known that Routh arrays can be used to obtain Sturm
sequences, although the demonstration of this was first published over 70 years ago
(Van Vleck, 1899). Fryer (1959) rediscovered this theorem and applied it to find the
g.c.d. of two polynomials, and the relationship between this and a companion matrix
method (Barnett, 1970a) is explored in Section 4. This is followed by a further applica-
tion of the results of Section 3 which expresses a Sturm sequence in terms of minors
of a single matrix. Finally, in Section 5 the problem of location of zeros of a complex
polynomial in a half-plane is considered. It is shown that the theorem of Bilharz (see,
e.g. Marden, 1966: 179) reduces to precisely the same form as was found (Barnett,
19714) when similar methods were applied to Hermite’s theorem, thus establishing
a new demonstration of the known equivalence of these two results.

2. Hurwitz Determinants
Let
a(d) = Ar+a A"+ .. +a, ®
be a polynomial of degree n having real coefficients. Associated with (9) is the Hurwitz
matrix of order # which is defined as

fa, as; as . . . Qypy]
1 a, a, . . . ay_,
0 a a3y . . . a3

H = 0 1 az . . . a2"_4 (10)
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wherea, = 0,7 > n,and let H;;, i = 1, 2, ..., n denote the leading principal minors of
H (the so-called Hurwitz determinants); this notation for leading principal minors
will be used generally. The Hurwitz criterion for a(2) to be stable is that all the H;; be
positive, and a practical disadvantage is that these minors are not easy to evaluate
expect for small values of n. However, the labour involved is reduced by the following:

THEOREM 1. Define the two polynomials
F) = a,+a, i+a,_ A%+ ... n
g = a,_+a, sA+a, A+ ... (12)

(i) when n is even, let F be the companion matrix in the form (2) of f (1), which is monic
and has degree n|2, and write LV = g(F)J,;, and L® = FLY, Then

Hjioy0i-1 = LY, i=12,..,n/2 (13)

Hy 5 = (_l)iLgiz), i=12..,(n/2)-1 (14)

(ii) when n is odd, let G be the companion matrix in the form (2) of g(2), which is monic
and has degree (n—1)/2, and write M'" = f(G)J 12 Then

H2i—l,2i—1 = MEiZ)s i= 1’ 2: RARE ] (n_l)/z (15)
Hjyip = (_l)ngil’) i=12,..,0m-1)2 (16)
where
a, as a,
0
M@= | MY 0 a7
0
Remarks

(1) Multiplication of a matrix on the right by J of appropriate order simply reverses
the order of its columns. If J is removed from the statements (13)-(16), then each
ith order minor is formed from the last i columns of the appropriate matrix and is
multiplied by a factor det J; = (~1){4-*/2 (this form was adopted in previous
papers, e.g. Barnett (1971a,c)).

(2) Construction of g(F)and f (G) is very easy using (5) and (6) respectively. Further-
more in (14), because F is a companion form matrix, the first (#/2)—1 rows of
L? are rows 2, 3, ..., nf2 of LD,

(3) In both cases H,, = a,H,_; ,;.

Proof. This follows along similar lines to the proof of the main theorem in (Barnett,

1971¢), where the expressions (13) and (16) were derived.

(i) when n is even, f(4) in (11) has degree n/2 and g(4) in (12) degree (n/2)—1. To
obtain (14), consider S(f, Ag), where S is defined in (7). If the rows of H in (10) are
numbered 1, 2, ..., nthen it is easy to see that S(f, Ag) is composed of these rows in the
order 2,4,6, ...,nm,n—1,n-3, ..., 3, 1, so that

ZH = S(f,’9) (18)
where
ZT = [e,, €45 «-vs €y €y_yy <.y €35 €1) (19)

16
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The ith subresultant of f(1) and ig(%) is defined by

1 a, a . . a4,
0 1 a . . a4
R{f. %) = , i=12..,nf2 (20)
0 a, a3 . . au4
a, as ds . . Q4i

where there are / rows of each type and as before a, = 0, r > n. Thus R/(f, Ag) is the
determinant of the submatrix of S(f; Ag) formed by deleting rows and columns
numbered 1,2,3, ..., (n/2)—i, (n/2)+i+1,..,n, so in particular R,;,(f, Ag9) =
det S(f, Ag). Inspection of (18) and (20) then readily establishes that det Z,,H,; ,; =
R(f, Ag) and from (19) it easily follows that det Z,; = (—1)’. Next, set a(1) = (1),
y(A) = Ag(2) and m = n/2 in (8) to obtain

Iz 0 _ Si(f, 29) Sif, i9)
[J,,,zK In,z]sg’ 2 ‘[ 0 Fg(F)Jn,z]' @)

Finally, bearing in mind the triangular form of S, displayed in (7), application of the
Binet-Cauchy theorem to (21) shows that R,(f; 1g) is equal to the ith leading principal
minor of Fg(F)J,,,, which completes the proof.

(ii) when 7 is odd, the derivation of (15) differs from the foregoing only in minor
details. The polynomials (11) and (12) now both have degree (n—1)/2 and the appro-
priate Sylvester matrix is S(4g, ). A similar argument using slightly modified versions
of (7) and (8) shows that H,, , ,;_, is equal to the ith leading principal minor of
F(G )W ni1y2 = MP, where G, is the companion matrix of Ag(4) so that

010 .0
0
Gi=} ¢
0
Substitution of the coefficients of /(1) into (5) gives as the first two rows of f(G,)
r = la, an_s; ..., al, r,=rG, =[0,a,—ma,_,, ..., ay—a,a,).

By applying (6) with a(1) = g(2) and y(4) = f(2) it can then be seen that r, is just
the first row (z, say) of f(G) preceded by a zero element. The remaining rows
r,Gy, r,G3, ... of £(G,) are therefore, by virtue of (22), zG, zG?, ... each preceded by
a zero element, and since these are the rows of f(G) this verifies (17).

For (9) to represent a stable polynomial a necessary condition is that all the a;
be positive, and if this is indeed the case then the Liénard-Chipart stability criterion
requires calculation of only about half the H;;. Specifically (see Gantmacher, 1959:
221), define the sequences

Ql = {am Qp_3> Ap—as }3 Q2 = {am a,-15 Ap_3, }’

0; = {qu Hjs, Hss,---}: Qs = {sz, Hgs, Hee, }
Then a necessary and sufficient condition for a(2) to be stable is that all the members of
one of Q,, @, and one of Q3, Q, be positive. Clearly Theorem 1 provides a simplifica-
tion of this result in that Q3 and Q, can be found using (13), (15), (14), or (16) which-
ever is appropriate so that the order of the largest determinant to be evaluated is

22)
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n/2 or (n—1)/2 according as n is even or odd. This is the generalization of a result
given in a previous paper (Barnett, 1971¢) in which (13) and (16) were applied to a
particular case of the Liénard—Chipart criterion rediscovered by Fuller (1957).

3. Routh Arrays
Given two real row vectors
¢o = [Co1, €025 Co3s ]} 23
¢1 = [e11, €12, €13, -] @3
with ¢o; # 0, ¢;; # 0, the Routh array R{c,, ¢,} is the name given to the set of rows
Cos €15 C2, C3, ... defined by

¢ = [i1s €i2s €135 -] i=012,..
where ‘ 2

/Ci_l’l, i= 2, 3, e

__|Gi-2,1 Ci-2,5+1

i Ci—1,1 Ci-1,j+1
It will be assumed throughout the rest of this paper that any Routh array under
consideration is regular, i.e., ¢;; # 0, all i. A detailed treatment of non-regular cases
can be found in (Gantmacher, 1959: 181). In this section the Routh array associated
with a(2) in (9) is defined by taking the vectors in (23) to be the second and first rows of
(10) respectively, i.e.

é0 = [l’ a;, as, '“]9 él = [al’ as, as, "'], (25)
and the number of zeros of a() in the right half-plane is equal to the number of

changes in sign in the first column of R{&,, &}. It is convenient to write R{&, ¢,}
(omitting the first row) in the form of a triangular matrix

Ciy €12 €13 - - . Cyy
0 €21 C22
T= 0 0 C31

0 0 0 . . . ¢

and it is easy to show (Gantmacher, 1959: 191) that
AH =T, (26)

where H is given by (10) and A is lower-triangular with all the elements on its principal
diagonal unity. Generalizing the notation used in Section 2 for leading principal
minors, let X;; stand for the minor formed from rows 1,2, ...,i—1, i and columns
1,2, ...,i—1,j of any matrix X (j > i). By considering the first / rows in (26) the
triangular forms of A and T imply

Hi; = ¢11€31 ... Cim1,1C1j—i41> J=5i+l, ..., n . 27
In particular taking j = i in (27) gives

€11 = Hyy,¢11621 = Hya, o5 €112y von €ig 161 = Hy
so that

¢ = HylHiq,i-1, i=23..,n (28)
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Substitution of (28) into (27) gives
Cijmirr = Hy[Hi_y,4 i=23,..,n (29)
J=ii+l,..,n

Equation (28) demonstrates the equivalence of the Hurwitz and Routh stability
criteria (the latter being ¢;; > 0, all i) and is well-known, but the more general result
(29) relating all the coefficients in R{&y, &,} to minors of the Hurwitz matrix, whilst
equally easy to derive, is not widely recorded. Notice that (28) and (29) show that any
row of R{¢,, &,} can be found individually from minors of a single matrix of order n
instead of through repeated application of (24), and that regularity of R{&,, &,}
implies all H;; # 0.

The application of Routh arrays to computation of Sturm sequences will be de-
veloped in the next section, but before this is done a generalization of Theorem 1 to
cover all the minors H;; in (29) is presented:

THEOREM 2. For the polynomial a(2) in (9)
(i) when n is even

Hyy ;=LY iy, i=12,...,n2,j=2i—-1 (30)
Hy ;= (=DLE., i=1, 2, S h2,§ = 2i @31
(ii) when n is odd
Hyy ;=M% iy, i=12,..,(n+1)2,j=2i—-1 (32)
Hy ;= (—1D)'MY i=12..,0=-102,j=2i (33)

where LV, L@, MW M® gre defined in Theorem 1.

Proof. This proceeds along very similar lines to the proof of Theorem 1. For example,
using the same case which was dealt with in detail there, take n even and consider
again equation (18). It follows that det Z,,H,; ; = R(f, Ag) where Rj(f, /g) is formed
from (20) by replacing the last column by elements from the same rows in column
(n/2)+j—i of S(f, 2g). Again applying the Binet-Cauchy theorem, (21) leads to
Ri(f, Ag) = L{?-,and this establishes (31).

The other cases in Theorem 2 are obtained by similar modifications of the corres-
ponding situations in Theorem 1.

Using equations (30)-(33) with (29) shows that not only the first column but all the
elements in R{¢, &,} can be obtained in terms of minors of order not more than »/2.
The following particular case of this will be useful in the next section.

Corollary. For n even, the elements in R{¢,, &,} are given by
Cri—1,r = (_1)i_1L(1;-)Jr; 1/L$j)1 i-1 (4)
Crip = (_1)'Lfr)+; 1/L( )
where L™ and L® are defined in Theorem 1.

4. Sturm Sequences

For a real polynomial
b(l) = N4 b N1 . +by (35)
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a Sturm sequence {k,g,(2)}, i = 0, 1,2, ... is defined (Lehnigk, 1966: 112) by the re-
mainders, with reversed signs, obtained on successive divisions:
qi()‘) = qi+l(;‘)xi()‘)_qi+2()‘)9 i= 0’ l’ 2, } (36)
90(2) = b(A), 9.2 = b'(%)
where b'(2) is the derivative of b(1) with respect to A, and the k; are arbitrary positive
constants. Sturm’s theorem states that the number of distinct real zeros in the interval
Ay < A < Ayis equal to V(4,)— V(4,) where V(J,) is the number of variations in sign
in the sequence go(4), 4.(1)), ¢2(4), ... .

Van Vleck (1899) showed that a Sturm sequence can be obtained from alternate
rows in the Routh array formed from b(1) and b'(1) by taking as the first two rows
bo = [1, by, by, ..., byl and b, = [N, (N—1)b,, (N—2)b,,... ,by_,]. That is, the poly-
nomials po(4) = b(2), p(2) = b'(4),

PiA) = 0(Caimy 1 AN T4 Coyy AN TIT L 0oy Nmint)s i=23, .. (37
where

0 = sgn(cy; Cay €3y -o- €24-2,1) (38)
and the c;; are the elements in R{b,, b}, form a Sturm sequence for b(2). The relation-
ships (37) and (38) were rediscovered by Fryer (1959) who gives details of the pro-
cedures to be adopted when a coefficient ¢;; becomes zero so that the definition in (24)
breaks down. In particular, if 5(1) has a repeated zero then b(2) and (%) have a non-
trivial common factor, which leads to a vanishing row in R{b,, b,}. This is because
the process described by (36) is precisely the Euclidean algorithm, apart from the sign
reversals which are of no consequence in calculation of the g.c.d. Thus (37) can be
used to obtain the g.c.d. of any two polynomials, which without loss of generality
may be taken as () and B(1) defined in (1) and (3). The coefficients in their g.c.d.
d(%) are given by the last non-vanishing row in R{&, B}, where & = [1, ay, ..., «,] and
B = [Bo> B1s .--» Bm-1]. Specifically, if d(1) has degree k then

d()..) = CZI'lﬂ,k+C21,2).,k_1+ o +c2,_k+1 (39)

where | = m—k and c,, ; are the coefficients in row 2/ of R{&, f}. It is of interest to
consider the relationship between (39) and the following method for finding the g.c.d.
Denote the columns of f(C)J,,, where f(C) is defined in (4), by y,, ¥2, ..., Ym- Then it
has been shown (MacDuffee, 1950) that / = rank f(C)J,, and (Barnett, 19704) that
Y1, Vas ..., ¥, are linearly independent. Furthermore, if the remaining columns are
expressed in terms of this basis:

Y = Zl: Xii¥js i=141,..,m (40)
i=1
then the monic g.c.d. is
At xp A XA T L X (41)
To relate these two expressions for g.c.d., first apply (34) with f and g replaced by
« and f respectively to obtain the coefficients in (39) as
Cup = (_l)ng,zl?i-p—I/Lfll)s p=12 ..,k (42)
where
L® = g(CV,, L® =CLM. 43)
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Next, recalling Remark 2 following Theorem 1, Cramer’s rule applied to rows
2,3,...,1,1+1 of (40) with i = /+p—1 gives

Xjtp—10 = L}j?l-p-l/Lflz)’ p=12, ..,k (44)
Comparison of (42) and (44) then shows that
Cap = Xp4p—1,(—1DLP LD, p=12,..,k (45)

. LW and L™ being given by (43), and (45) thus demonstrates the equivalence of (39)
and (41). The modifications required when R{&, B} is not regular are not needed if
(40) and (41) are used, and this method is easily extended to deal with more than two
polynomials (Barnett, 19715). Of course in practice the coefficients x,,;, in (41)
would be obtained from (40) by a more direct method than Cramer’s rule.

Let us now return to the Sturm sequence (36) associated with the polynomial b(1)
in (35). This can be dealt with in a similar fashion to the foregoing, a(4), f(4) and m
being replaced by b(4), b'(2) and N respectively so that the matrix involved is L =
b’(B)Jy where Bisthe companion matrix of 5(1). The coefficients in the Sturm functions
(37) are given by (34) as

0Cri1, = 5(—l)i_lLi,r+i—1/Ei—l.i—l (46)
where L= BL, and using (38), (28) and (14),
6 =sgn (Hy;_3,2i-2)
= sgn (— l)i-lr‘i—l.i—l
which on substitution into (46) gives _
0Cyi-q,, = Li,r+i—1/|f‘i—1,i—1|’ r=12 .. ,N—i+l 47
The positive denominators in (47) can be ignored, so that:

THEOREM 3. The polynomials ro(1) = b(2), ri(1) = b'(2),
rAy = LyAN 34 L, ;AN 4 L Ly, i=23,..
where L = b'(B)Jy, form a Sturm sequence for b(2) in (35).

Theorem 3 shows that a Sturm sequence for (1) can be obtained in terms of minors
of a single matrix L, of order N, which is half the order of the matrix used by Van
Vleck to derive (37). Notice that b'(B) is easily constructed using a relation of the form
(5). It has been shown elsewhere (MacDuffee, 1950) that the rank ¢ of L is equal to the
number of real zeros of b(1) and that the number of distinct real zeros is t—2V,,
where V, is the number of variations in sign in the sequence 1,L,,, L,,, ..., L,
(Barnett, 1970¢). In fact the second of these results can be deduced easily from Theorem
3 and Sturm’s theorem, since the number of distinct real zeros is ¥(— 00)— V(c0) and
V(—o0) = t— V(0), V(o) = V,. Similarly, the number of distinct positive real zeros
is V(0)—V(o0) = V53— ¥, where V; is the number of variations in sign in the sequence
by, Lin, Loy, ---» Liy. This corresponds to a recent result of Siljak (1970) expressed
in terms of R{b, b,}. If ¢ < n, multiplicities of real zeros can be found in the usual
way (Lehnigk, 1966: 114).

5. Complex Polynomials
Let the polynomial in (9) now have complex coefficients and write

a(d) = (@, +iaDA" "+ ... +(a,+ia] (48)
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where the @} and a7} are real. Following Marden (1966: 179) define the (2n—1) x (2n—1)
matrix

[a} —a; —a3 af a5 . . (=1)""lay,,]
’ +1
1 —-a] -a, ay a, . . (—=1)"a,_,
’ r ’ ” +1
0 ay, —a; =—ay a; . . (—1)""a} _,
P=1|0 1 —af —ay a3 . . (=1)"*"'a3,_, (49)
o o . . . .. .

where a, = 0, r > n. Then provided a(2) has no purely imaginary zeros, the number
of zeros of a(4) having positive real parts is equal to the number of variations in sign
in the sequence :

1’P119 P33, °ety P2n-—1.2n—1 (50)

provided no member of (50) is zero. Several different but equivalent forms of (49)
have been given, and for the case when all the terms in (50) are positive the result is
due to Bilharz. It is easy to see that P in (49) has the same form as the Hurwitz matrix
(10), the associated Routh array being R{p,, p,} where p, and p, are the first two
rows of (49), so that the sequence (50) can be calculated using (27). However, the
method of Section 2 is also immediately applicable by forming polynomials

W) = AM—alA  —ay " L W) = @ AT =l

from p, and p,. Equation (13) then shows that the P;; in (50) are just the leading
principal minors of w(¥)J,, where V is the companion matrix of v(41). Thus again the
minors to be evaluated are reduced in order by about half, and w(¥') can be calculated
using (5). It is interesting to know that this is precisely the result obtained in an earlier
paper (Barnett, 1971a) when the companion matrix method was applied to Hermite’s
theorem, thus establishing by yet another route the known equivalence of the Hermite
and Bilharz criteria (Parks, 1969).

6. Concluding Remarks

It has been shown that the companion matrix approach provides aframework which
embraces Hurwitz determinants, Routh arrays and Sturm sequences. This is an
extension of previous work and continues the simplified reformulation of a number
of classical theorems in the qualitative analysis of polynomials. In particular the orders
of any determinants which have to be evaluated can be reduced by about half, so the
advantage for hand calculation is obvious. In addition, it is hoped that the new resuits
may lead to improvements over classical algorithms when developed into numerical
procedures, and this is currently under investigation. It also seems likely that further
relationships involving classical theorems remain to be discovered.
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