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Introduction
IT is well known that, if the singular homology groups of a simply-
oonnected space are torsion groups in dimensions greater than 1, then
so are the homotopy groups. In fact, the orders of the elements of the
gth homotopy group will be bounded if the orders of the homology
classes in dimensions not exceeding q are bounded: various conjectures
have been made about the relation between the bounds. In this paper
a crude upper limit for the bound of the orders of homotopy classes
will be found, with more reasonable results for suspensions. It suffices
to consider only CW complexes since any space may be replaced by its
singular complex (12) for these purposes.

Particular interest attaches to spaces with one non-trivial homology
group of positive dimension (Moore spaces) since these are the bricks
with which a complex of given homotopy type can be constructed from
the homology groups, and certain invariants (akin to the Postnikov
invariants). These can be represented as suspensions in such a way
that the homotopy class of the identity map has finite order under track
addition (1).

A complex A will be said to have characteristic p (^ oo) if the
homotopy class of the identity map of its suspension has order p under
track addition. The homology characteristic of a space will mean the
least common multiple of the orders of the (singular) homology classes
of positive dimension. Thus the real projective plane has homology
characteristic 2 and characteristic 4 [(1) Part II]. A connected complex
of finite (homological) dimension will be shown to have finite charac-
teristic if and only if it has finite homology characteristic; the latter
divides the former, and the former a power of the latter.

A simply-connected complex of finite homology characteristic has the
homotopy type of a wedge, or, equally, a direct product, of spaces of
mutually prime prime-power homology characteristics; in examining
the gth homotopy group it suffices to consider a complex with the same
homology groups in dimension up to q+1, and no others. Therefore
it is sufficient to consider complexes of prime-power characteristic.
Quart. J. Math. Oxford (2), 11 (1960), 134-36.
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Let p be & prime, and suppose that A is of characteristic pm, and
(»—1)-connected (n ^ 1); let E denote suspension. We have the pro-
position :

PROPOSITION. p^-n^EA) — Oifq^. 2*71. If A is itself a suspension,
then pm+kiTg(EA) = 0 if q

The last result may be best-possible: nlo(EA) is cyclic of order 8 when
A is the 3-fold suspension of the real projective plane. Various crude
results can be deduced: for example, if prHi(A) = 0 for 1 < t ^ q, then
a space B can be found of characteristic at most pT<-q+1\ with ng(EA)
as a homomorphic image of TTQ(EB). Again, if A is at least simply
connected in the proposition, the first result yields a bound of the order
of p*"* for TTg(A) if q ^ 2k(n— 1); for q < 2(n—1), A can be replaced by
a suspension, and a sharper result can be obtained.

Though spaces of any odd characteristic can be constructed, no space
of characteristic 2 is known at present, and it is reasonable to conjecture
that none exist. An existence problem of a different kind is this: is
there a oompactum of finite (covering) dimension and finite homology
characteristic which has infinitely many non-zero singular homology
groups ? Such spaces are known (3) with infinite homology charac-
teristic.

1. Characteristic and homology characteristic
The first propositions relate the two types of characteristic; here

'spaces' mean CW complexes with base points, E denotes suspension,
and nf(x) the track group of base-point preserving homotopy classes
of maps EA ->• X (as defined in the Appendix). The homotopy class
of the identity map EA -> EA is written 1A. We have the lemmas:

LEMMA 1.1. If \ Ahas order p < co,thenA is connected, and pH^A) = 0
(all q > 0).

For, if a, £: EA-+X, the track-sum a+£: EA -> X is defined by
composing a map p: EA -»- EAv EA with a map (aV/3): EA\J EA ->• X
(see Appendix); p pinches a middle section A c EA to a point. It is
easily verified that

(«+£), = oct+p<: Hg(EA) -y HQ(X), for q > 0.

Hence, if z e Hg(EA),

Also, Hg(EA) « Hg_x{A) (q > 1),

and HQ(A) « H1(EA)+Z must be free abelian.
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LEMMA 1.2. If A is connected, and has homology characteristic p, the
characteristic of A divides the product of the maximum of the orders of
the elements of the cohomology groups Ha(A; Zp) (q = 1,2,...).

The lemma has content only when all but a finite number of the
cohomology groups are 0. It is shown in (5) and [(1) Part II] that there
is a sequence of groups

0 = Qo, &,..., Qr,..., Qx = irt(X),
such that Qr is a central extension of a subgroup of Qr_± by a factor
group of Hr(A; TTT+1(X)) for each r ^ 1; Qx is the inverse limit of the
system of groups Qr and projections Qr -*• Qr-V The universal-coefficient
theorem and the conditions imply that the maximum order of elements
of Hr(A; TTr+1(X)) divides that of W{A; Zp).-\ The lemma follows by
induction on r.

For simply-connected complexes of finite dimension, (1.1) and (1.2)
imply that finite characteristic and finite homology characteristic are
equivalent properties.

LEMMA 1.3. If A is 1-connected and has homology characteristic p,
then for any q > 1, P*TT9(A) = 0 for some power s (depending on q).

This follows from Serre's C-theory form of the Hurewicz theorem
since the abelian groups whose elements have bounded orders dividing
powers of p form a class (10).

THEOREM 1.4. If A is 1-connected and of homology characteristic
p = Pi-.-Pk, where plt..., pk are powers of distinct primes, then there
are complexes Alt..., Ak of homology characteristics plt..., pk, respectively,
such that A, \/ At, Y\ -^-t have the same homotopy type.

This is a special case of a theorem concerning spaces whose homology
groups are torsion groups. IS. A, B are 1-connected and of mutually
prime homology characteristics, the inclusion Av B c AxB induces
an homology isomorphism, and hence (by a theorem of J. H. C. White-
head's) is a homotopy equivalence. Therefore V At and JJ At must
have the same homotopy type.

f Let M(Q) denote the maximum order of the elements of Q. If pQ = 0,
both Hom(C O) and ~Ext(Q, O) are Zv modules in an obvious way, and it is easily
proved that the maximum orders of their elements divide M(Q), and are M(Q)
when Q = Zv. Since

HT(A; G) X Hom{BT(A),G) + 'Ext(Hr_l{A), G),
it follows that M(HT(A; G)) divides M(HT(A; Zv)) for all G when A has finite
homology characteristic p.
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An equivalence A = JT A-t can be constructed by considering the
Postnikov system of A; the dual method, described in (9), is to construct
a sequence of spaces B^ c B2 c ... c BT c ... c Bw, and maps fr: BT -*• A
such that

(i) Bt = point,

(iii) / n ,
(iv) Ht(Bn) = 0 (i>n).

Bn is obtained from Bn_! by attaching a cone on a Moore space Yn by
means of a map Yn ->• Bn_v where the only non-trivial homology groups
of Yn are ^ ( F J = z fl^-ifo) = H^A).

Assume, as an inductive hypothesis, that

Bn-1 = VBn_u (l<«<fc),
where the homology characteristic of Bn_u divides pt. We can also
choose Yn in similar form \ / Ynj. By the remark above,

"*(£»-i) = ^ ( V B«-u) « wa(IT -B»-w) = 2 «a(B»-u)-
By (1.3), all maps Yn^ ->- £„_! can be deformed into Bn_u (1 < t < fc).J
Therefore i?n can be constructed so as to be a similar wedge \J Bn^.
Since Bt is a point, by the principle of induction

1<«

This completes the proof.

2. Theorems on suspensions
We first prove the lemma:
LEMMA 2.1. If A has characteristic p, then

pE7Tg(A) = 0 (E: ng(A) - • *t

Proof. The track-group functor TT^(X) is contravariant in A; a
homotopy class <f>: A -v B induces a homomorphism <f>*: irf(X) -> Trf(X)
by <f>*(d) = 6 o E<$>. Now vf(X) can be identified with ITQ+1(X), SO that
^*(1^) = E<f> if <f>e TTQ(A). Therefore pE<f> = (plA) o E<f> = 0, which
proves the lemma.

t The epimorphism when i = n in (9) can be replaced by an isomorphism.
X Let C( be the class of torsion groups whose orders are prime to pt. Then

1, BH_hl) are in C& and so therefore are 7r(7(Bm_j, Bn_ui). The inclusion
-5. therefore induces an isomorphism between HT{Tnit,7T^.Bn_ut)) and

,TT<^Bn_1)), and therefore between the homotopy classes of maps of Ynt
into these spaces.
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Information about the kernel of E can be obtained from the exact
couple of the suspension, described in (2), and the following theorems
(p denotes an arbitrary prime):

THEOBBM 2.2. If A is (n—l)-connected and has characteristicpm, then

P^TT^EA) = 0forq^2kn (n ^ 1).

THEOKBM 2.3. If A in (2.2) is itsdf a suspension, then

pm+kTTq(EA) = Oforq^ pk+hi.

The proofs will be given in § 5 and § 7 respectively.

3. Collapsed products and Whitehead products

The collapsed product A %. B of two spaces A, B with base points is
the result of identifying i v 5 in i x 5 with the base point. This is
a functor: maps a: A -v A', £: B -> B' determine a%fi: Ai&B -+ A'j&B'.
Notice that ĉ is associative, and distributive over V ; S° acts as a two-
sided unit, and the suspension EA can be denned as A •%. S1. The i-fold
collapsed product A™ is defined inductively by

A<® = S°, AM = A, AV+v = A%AM.

We consider the lemmas:

LEMMA 3.1. The characteristic of A%.B divides the characteristics of
A and B.

In particular, A •% B has finite characteristic if either A or B has.
This will be deduced from the next lemma, which is proved in the
Appendix. Let iA: A-*-A denote the identity map or its homotopy
class indifferently. Then every map (or homotopy class) /?:
determines i ^ j S : A^.EB = E{A^B) -* A^X.

LEMMA 3.2. The transformation /? -»• i^^/J is a homomorphism

Proof of Lemma 3.1. 1A = Ei
A,

By the lemma, P^A^-^B) = '

this completes the proof.
It is convenient to define the Whitehead produot

by means of commutators [cf. (1) § 8.2], generalizing Fox's charac-
terization (7), rather than by Cohen's method (4); the definitions are
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equivalent for suspensions. The natural maps of Ax B to A%B, A, B
induce monomorphisms by which the groups

*i*B[X), Trf(X), nf(X)

can be embedded in TT^XB(X). It is shown in (1) (loc. cit.) that there is
a short exact sequence

where i* is induced by the inclusion A v B c A X B. Then, if

aenf(X), Pe*

the product [a, ̂ 3] is to be the commutator

in TT^XB(X); it lies in the subgroup nf XB{X) = Ker(t*).
Remark. Jfd:X^T, then 6 o [a,p] = [6 o a, d o £].
This product has the important property that, if 6: X -> Y is a bundle

mapping of a principal fibre bundle with group 0, and

is the transgression homomorphism (always defined), then
A[a,/J] = <«,/?>,

where <a,/3> is the Samelson product in TT£*B(G): for both products
are (or can be) defined as commutators. This leads to the statement
of the Mnnor-Hilton theorem given in § 4.

Another property that will be used in the proof of (2.3) is that of
the lemma:

LEMMA 3.3. If A is a suspension, so is A^B, and
are abelian, while \TT^ (X), 7rf (X)] is linear in TT£(X). An analogous result
applies if B is a suspension.

The first part is obvious: to prove the linearity, observe that it
guffices to show that the subgroup Q c ir-f*B(X) generated by

is abelian since

Let £: AxB-* Y be the identification map pinching B to a point;
then £*: nY(X) « Q c nf*B(X), and so irf (X) is to be proved abelian.
This will follow if Y is shown to have the homotopy type of some
suspension.

M86.2.11 K



130 M. G. BARRATT

Now T, A, As&B are 1-connected, and the last two are suspensions:
it suffices to construct a map rj: T ->• Av A%c.B that induces a homo-
logy isomorphism. Let p: A -»- A V A be the canonical pinch as defined
in the Appendix: p induces pXl: AxB ^- (Av A)xB, and so

/>': Y^YvY.

The maps AxB -*- A, A^&B pinch B to a point, and so induce maps
Y -> A, A%B, and hence a map A: YvY -+Av A%.B; it is easily
verified that 77 = Ao p: Y -*• Av Ai&B is a suitable map.

Example. Take X = EA; then [1^, 1̂ ] e ̂ '"(.£4), and

CPIA) O [U, 1 J
When 4 is a suspension, this is

4. The Milnor-Hilton theorem
In (8) Milnor generalized to the loop space of a wedge of suspensions

of connected complexes Hilton's theorem (6) on the loop space of a
wedge of simply-connected spheres. Since the statement of the theorem
is not readily available, it is stated here in the form in which it will
be used. Milnor's construction is more explicit and can yield more
information than the hare statement below.

The theorem concerns the homotopy groups of a wedge of suspensions
X = EA-±v ... V EAB, of connected complexes Ax,..., Aa. A countable
set {At} (t = 1,2,...) of complexes, together with homotopy classes of
maps ut: EAt -»- X will be constructed so that the following theorem
is true:

THE MUJTOB-HILTON THBOEEM. v,iif: Trg(EAt)->• ng(X) ia a mono-
morph\8m for each t ^ 1, and

In fact, TTq can be replaced by the track group -n^ of a suspension B.

Construction of At, Uj. Construct first symbolic basic products tu^ tu2,...
in symbols 1,..., s; each a>t will be a certain number wt > 0 (called
the weight of tot) of symbols, bracketed in some way, and will have a
non-negative integer c, (called the class of mt) associated with it. The
construction is not unique, and proceeds inductively.

There are to be s symbolic basio products wt = t (t < s) of weight 1;
all have class 0. Assume that the symbolic basic products of weight
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less than m have been denned and are a^,..,, a>n, such that

(i) r < t implies wr < wt, (ii) c, < t.

Take all symbols [wp, cjq] such that

(i) wp+wq = m, (ii) cq < p < q;

order these arbitrarily and label them con+1, <un+2, These are to be
the symbolic basic products of weight m; the class of [a>p, to9] is to be p.

Define At = a}t(Ar,...,A^ by induction, so that

if t < 8, At = A,; iftot= [wp, wQ], At = Ap^Aq.

Define maps u, = <o,(lAl,..., 1^) by

if t < s, ut = 1^ ; if a>, = [iup, a>J, Uf = [up, uq\

In general, if o^: EAt -+ X (1 ̂  t ^ s) are homotopy classes of maps,
co^O},..., a,) can be similarly defined as a repeated WMtehead product.

The theorem leads to the following generalization of a construction
of Hilton's (6). Let A = A1 = ... = A,, and X = V EA, as before.

Construct homotopy classes of maps

EA -^> X -!U EA,

so that pt is the track-sum u1-\-ut-\-...-\-uB of the 8 identity maps
EA-+EAt, and p\EAt is also the identity map EAt->EA. Thus
fi o pt = (slA). Let p+ be the homomorphism induced by p,, i.e.

Pif: ng(EA) -> nq(X) = 2 U^-nq{EA,\

By composing p+ with the natural projections, natural homomorphisms
Mt are obtained:

1%: ira{EA)-+nQ(EAt) (t=l,2,...) (4.1)

such that p+(<f>) = 2 w(*-^((^)> a n <i hence

(«1^) o <̂  = PtPttf) = 2 f t o « , o i*i(<£). (4.2)

Notice that, when t ^. s,

5. Proof of Theorem 2.2
In (4.2), take s = pm; for any <£ £ irq(EA),

Op"

Now, for f > pm, At is at least a 2-fold collapsed product of A, and so
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at least (2n— 1)-connected and, by Lemma 3.1, of characteristic
dividing pm. Assume the theorem true for all spaces of all prime-power
characteristics, all connectivities n, and all q ^ 2k~hi. Then, if q

= 0 for all t > pm. Thus

0 = J3m*^+ y y.outo

Therefore the theorem is also true for q ^L 2*ro; it is trivially true for
q < n, and so always true. This proves the theorem.

This procedure will be used later, and called 'induction on k\ The
next lemma will also be used:

T.TTMMA 5.1. If A is a suspension of characteristic pm, then for each

1 ^ r ^ m, (p ' l ^ ) o (pm~r<f>) = 0 for any <f> in irq{EA) and all q.

Notice that this gives Theorem 2.3 whenp = 2, by induction on k: for
0 = (#1,,) o tp m -V) = pm<f>+ 2 M o ut o (2»»-iJW$);

on multiplying by pk and using the appropriate inductive hypothesis,
it follows that pm+k-n-Q(EA) = 0 for q < 2fc+17i. A more delicate argu-
ment is required for the other primes.

Proof of Lemma 5.1. The theorem is true when r = m. Notice that,
if true for any particular r, then

(pr^lA) o {pm-T4>) = 0 for all t > 0.

Assume that, for some r ^ 1 and all 1 ^ a ^ m— 1,

0 = (pr+'lA) o (pm^r-'4>) = 0.

Pu t , for convenience, i/i = pm-T-1<f>, and expand (pr+1lA) o </r by (4.2)
with a = p as follows:

o = (jnA) o (piA) o >/.

Z ( P A ) n t t 4 (5.2)
[t>p '

Now

H<p I

by Lemma 3.4 (cf. example), since A is a suspension.
By the inductive hypothesis (since wt > 1)

(pno-lA ) o ^ ( p m - - V ) = 0 (all t > p).

Therefore (5.2) reduces to 0 = (p*!^ o (pm-r<f>), and Lemma 5.1 follows
by induction on m—r.
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6. The distributive law
Following Hilton, a distributive law for composition is obtained by

taking s = 2 in (4.2); in this case, write B^ instead of Mt (conforming
with Hilton's notation). If a, j8: EA -+ Y, a. V /3: EA v EA = X -+ T v Y;
let 6: X -v Y be obtained by collapsing Y V Y on 7. Then (4.2) implies

(a+j9) o<f> = dop20(l> = oco <f>+P o <£+ £ 0 o u, o Ht{(f>). (6.1)
<2

This is the distributive law referred to; the other,

a o (<f>-\-<$>') = a o </>+a o <£'

is always true and has been used already.
The intention is to expand (slA) o <f> by the distributive law; it is

necessary to examine {(klAi) V lAl} o ut: EAt ->• EA^M EA2 when A is
a suspension.

A symbolic basic product wt of weight wt in symbols 1, 2 will be said
to be of type a if there are o l ' s and (wl—a)2's in it. Let a = k\A>
fi = lA: EA ->- EA define 6: X = EAv EA -* EA &s before. We have

LEMMA 6.2. Soti l = / ioi i Jo (ka'lA^, where wt is of type at.

This follows from the definition and Lemma 3.3 (cf. example), by
induction on t. Then (6.1) yields, with Lemma 6.2,

{(k+l)lA) o <f>-(klA) o 4>-<f> = J ,* o ^ o (4-1^) o Ht(4>). (6.3)

Sum this for 1 ^ Jc < 5 to obtain the lemma:

LEMMA 6.4. (slA) o 4>—s<j> = ^ o n ,
t2

This is the first step in the reduction of the left-hand side. On ex-
panding the terms in the braces, we obtain invariants of type HgH^),
and leave more terms to be expanded. It is convenient to extend the
notation temporarily to cover the general case.

Let T denote an ordered sequence (t^,...,tr), where tt > 2, and let T
be the set of all such sequences (r = 1,2,3,...). Define, by induction
on r, spaces AT, maps uT: EAr -> EA and homomorphisms

by setting

AT = A,, uT = p. o ut, Hr^Ht, if T = (t)

AT = {At)v, uT = U(O uv, H7 — Hv o Hlt if

Remark. These constructions are natural; u, o ur denotes a com-

• ; : ; : • , ) • -
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Repetition of Lemma 6.4 yields a formula of type

(slA) o $-8<f> = I «T o {<rv(8)HM)},

where aT(s) is an integer; it is important to know what these integers
are.

Define a(s; a1;..., ô ) for integers oclt..., a, inductively by

*(s; <x) ='f\°, .... a(5; a i ) . . . j a r)="2a(t«' ; a 5 ! ( . . . , a r) . (6.6)
f-0 1-0

If T = (tlt..., tT), and a>t is of type a,, set

aT(s) = a(s;atj,...,atr). (6.7)

LEMMA 6.8. If A is a suspension, <f> e TTJ^EA), and AT, ur, H^, aT(s)
are defined by (6.5), (6.7), then

(slA) o <£-4 = J uT o {ov^fl^)},

the summation being over aii r in T.

Proof. Assume the lemma true for n-connected suspensions, and fixed
q; suppose .4 (n—l)-connected. The lemma applies to TTt(EAt) (t > 2),
and follows for TTQ(EA) from Lemma 6.4 and the inductive hypothesis;
it is trivially true when n > q, and so true always.

Remark. Only a finite number of !!,(<(>) can be non-zero; also, AT is
a certain collapsed product of A's, and so a suspension.

LEMMA 6.9. / / T = (fj,..., tT), and p is a prime greater than the product
of the weights w^.-.w^ of the symbolic basic products wtl, ...,cot, thenp
divides aT{p).

Proof. Since the type at of wt is less than wt, it follows that it suffices
to prove that p divides a{p; a^...,^) when J J (a^+1) < p. Now

is a rational polynomial in s without a constant term, and the denomina-
tors of the coefficients are products of powers of primes not exceeding
the degree (a+1). Such a polynomial will be called stable. Assume that
a{s; a1;..., ĉ ) is a stable polynomial of degree J J (o^+l). Then the
polynomial g_!

a(«; a, a1(..., a,) = £ cr(ta; a^,..., o^)
t-o

is also stable, of degree (a+1) J J (c^+1). This proves the lemma since
a(s; a) is of degree (oc+1).
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7. Proof of Theorem 2.3
By (5.1), (plJo0 = O

if ^ = p"-hf>. By (6.8),

-p^ = _ptf, = ZuTo {aT0')flr(«A)}. (7.1)

The terms in the braces are of two kinds: if T = (fj,...,/,) andp >wll...wtr,
then # divides aT(p) by Lemma 6.9, while, if p < u;tl... u^,

and -4T is at least (pn— l)-connected. In the former case, the term in
the braces is a multiple oi p^BLJty).

The theorem is trivially true if q < n. Assume that it is true for all
q and all spaces of connectivity not less than n; suppose that A is
(n—l)-connected and multiply (7.1) by pk. The right-hand side
becomes zero, and (7.1) becomes pm+k<j> = 0. The theorem follows by
the principle of induction.

Appendix
To ensure that the product i x 5 of complexes is a complex, it is

convenient to restrict complexes and maps to the realization of CSS
complexes satisfying the extension condition; this imposes no limitation
on homotopy type in the category of CW complexes. If A, B are
CW complexes with (vertex) base points, A s& B is obtained by pinching
A v B to the base point; 8' is the unit circle in the Argand plane, and
the (reduced) suspension EA of A can be taken to be A%.S'. Define
the canonical pinching map

p: EA->EAvEA

as follows. Let pQ: 8' -*• S'w 8' be given by p{ei7rU) = eiTrU, with values
in the first circle if 0 ^ t ^ ^, and in the second if ^ ^ t < 1 (1 being
the base point of 8'). Then p = iA%.p0, where iA: A ->• A is the identity
map.

The track-sum of maps a, )3: EA -*• X is defined as the composition

EA - ^ EA v EA -^L X V X -!U X,

where ft is the folding map, the identity on each copy of X; it is easily
verified that this induces an associative addition of homotopy classes,
and that addition is commutative if A is a suspension, or has the
homotopy type of some suspension.

There is a natural one-to-one correspondence between the (base-point
preserving) homotopy classes of maps EA -*• X and of A -> OX, the loop-
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spaoe on X. DX is an ZZ-space with a homotopy associative multiplica-
tion, posseting a homotopy unit and homotopy inverses; it follows that
the homotopy classes of maps A -+CIX form a group TT£(QX). The
track-addition is such that the correspondence is a homomorphism;
thus the set -nf^X) of homotopy classes of maps EA -*• X forms a group
under track-addition.

Proof of Lemma 3.2. The naturality of the canonical pinching map p
implies that

P = <-A*P-

E(A%.B) = A%EB -+ E{A*B)\j E(A%B) = A%(EBvEB).
Similarly /x is natural:

Therefore

o (ocV p) o p) = iA*(oc+p).
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