
TRACK GROUPS (I)

By M. G. BARRATT

[Received 6 August 1952.—Read 20 November 1952]

Introduction
A Track Group (P, Q)m(X, xQ; x0) is, for a large class of spaces, the mth
homotopy group of the function space F of maps of P into X which carry
the closed (possibly empty) subset Q to x0, a point of X; the base point is,
in general, the trivial map x0, such that xo(P) = xQ. These homotopy
groups of function spaces have been studied by S. T. Hu (13) and by
S. Wylie.

Following S. Wylie, to whom the concept of a track group is due, we
define the group directly by means of maps of P X Im into X, which carry
(Qxlm U Pxlm) to x0. Though (P, Q)m depends only on the homotopy
type of the pair [P, Q] (that is, not on the particular pair [P, Q] chosen)
it is not true in general that it depends only on the homotopy type of
[P*5 Q*], where P*, Q* are the m-fold suspensions of P, Q, respectively.

If P D Q D R, and P, Q, X satisfy certain conditions, there is an exact
sequence

... -> (P, Q)m -> (P, R)™ -> (Q, R)m -> (P, Q)™-1 - • . . . -> (Q, R)\

where the space X is the same throughout; the last homomorphism maps
intof&JR)1.

We use this exact sequence to determine the elements of various track
groups; in particular, we obtain an alternative proof of Fox's theorem on
the isomorphic embedding of homotopy groups in the Torus homotopy
groups. We then apply these methods to the determination of the elements
of track groups of CW complexes. These have already been shown to
be solvable by S. T. Hu (13). If KQ is the g-skeleton of a complex K, we
determine the elements of (Kn+1, Kn-2)m in terms of the cohomology groups
of K, and the Steenrod squares, and the homotopy groups of X. We also
show that (Kn+1,Kn-1)m(X,x0;x0) is a central extension of

by Hn{KnJrl,Kn-1\TTm+n), where irq = TTQ(X,X0), except when n = 0, when
it is a split extension.
Proc. London Math. Soc. (3) 5 (1955)
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In a subsequent paper we shall determine these group extensions when
the complex is finite, and extend the results to normal spaces that are
compact or paracompact.

I am extremely grateful to Professor J. H. C. Whitehead for his advice
and criticism, and am indebted to R. L. Taylor for his help in connexion
with the exact sequence.

CHAPTER I

GENERAL TRACK GROUPS

1.1. Basic notations
Let [Px], [Xx] be two sets of spaces indexed by the same set A; no two

spaces need be disjoint. A map / : [Px] -+ [Xx] is a set of continuous maps
fx'. P\ ->• Xx, such that for all A, JU, e A, /A and / agree on the intersection
Px n P . Notice that, if Px c Po and XA c Xo for all A, then a map /0: Po ->• Xo

such that fo(Px) c Xx for all A induces a map / : [Px] ->• [Xx].
If T, S are arbitrary spaces, and / : [Px\ -> [Xx], we shall write

for the map defined by f\{p, t) = (fx(p), t) for all p in PA, and for all t in T
and all t in S.

I™ shall be the ra-cube, consisting of all points {y1}...,ym) in Euclidean
w-space such that 0 < yi < 1 for each i. We embed Euclidean m-space
in Euchdean w-space for every n > m, in the obvious way. Im is the
boundary of Im, consisting of all points (y1,...,ym) such that y^ = 0, or 1,
for some j . Since Im~x has been embedded in Im as the subset ym = 0, we
have a closed (m—l)-cell Jm~1, defined as the closure of /m—I™-1; this
clearly meets I™-1 in lm~1. We shall often write / for the unit interval I1.

1.2. Homotopy type

Two maps /0, fx: [Px] -*• [Xx] are homotopic if there is a map

such that, for all A, all p E PX, and for t = 0, 1, î (:P5 0 = ft^P)- We use
this last formula to define//A, and so //; for every t e I. We write f0 c^fv

and call indifFerently the map F or the family of maps ft a homotopy. I t
is easily seen tha t / ~ g defines an equivalence relation between maps, and
we shall use curly brackets to denote the homotopy class {/} of a map/, and
write (iA)°(ZA) for the set of homotopy classes of maps [Px] -> [Xx].

Let 1 stand for the identity maps [Px] -> [Px], [Q\] -+ [Qx]- Then, the
composite of maps fog being defined in the obvious way, two maps
/ : [Px]^[Qxl 9- [Qx]^[Px] s u c h t h a t fog~l,gof~l,are ca l led
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homotopy equivalences, and each is said to be a (left and right) homotopy
inverse to the other. We wr i te / : [PA] = [Qx], g: [Qx] = [PA], and [PA], [Qx]
are said to be of the same homotopy type. Fox's theorem (8), tha t a map
with a left and a right homotopy inverse is a homotopy equivalence, applies
to these maps.

1.3. Factor spaces
Let Q be a closed subspace of P . The factor space P/Q ('Zerlegensraum'

(2,4)) is defined as follows. If Q is the empty set, written Q = 0, then
P/Q = P, and <f>: P -> P/Q is the identity map. If Q is not empty, take
a point g not in P— Q, and let P/Q be the point set (P—Q)Uq;\et(f>: P -> P/Q
be the identity map on P— Q, and map Q to the point q. PjQ is then given
the identification topology under <f> (see (23, 4)), so tha t a set V c P/Q is
open if and only if ^ ( F ) is open. I t is well known that , if/: P -»• X, then
f(f>~x: P/Q -> X is continuous if and only if it is single-valued, i.e. if f(Q) is
a single point.

2.1. Track groups
We now define what we call a track group, and write (Px)

m(Xx;xQ). For
a large class of spaces,

where F is the funption space of maps of [Px] to [Xx], and xQ is the trivial
map given by xo(Px)

 = ^o f ° r a ^ ^- Here F is given the compact-open
topology, that is, a sub-base for the open sets consists of the sets of maps
which carry a compact set Qx c Px into an open set Ux c Xx, for all choices
of A, Qx, and Ux.

Let x0 be a point in every Xx, and define xx = x0 for every A; then an
element of (Px)

m(Xx;x0) is a homotopy class of maps

so that there is a natural 1-1 correspondence between the elements of
(PA)-(XA; x0) and of (PA X Im, Px X /«)°(ZA> *A).

We shall write the track group additively, although it is not necessarily
abelian if m — 1, and define the addition of two classes {/}, {g} by

where the map f-\-g is given by

j/l> y%>-'Vm) i i 0 < Vl < 4>v v ) - (

for all p e PA, all A. Formally, except for the presence of p, this is the same
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definition as that of the operation of addition in homotopy groups, using
cubes as antecedent spaces (see (10, 11)), and we find at first a close
parallelism.

It may be verified by the usual means that f-\-g is a map in the sense
defined, that its homotopy class is independent of the choices of/ and g in
their homotopy classes, and so defines an addition of homotopy classes.
Similarly, we may verify that the addition is associative, commutative if
m > 1, and that the class of the trivial map x0 is the identity element.
Also, each class {/} has a unique inverse, — {/}, which is the class containing
the map/~ given by

Thus this definition of addition turns (Px)m{Xx, x0) into a group.

2.2. Induced homomorphisms
We define certain natural homomorphisms, and deduce that the track

groups are invariants of the homotopy types of the sets of spaces involved
in their definition.

Let <j>: [PA] -+ [Qx]', then <f> induces a map

^: [PA x P\ PA X Im] -> [Qx X Im, Qx X /»]

defined in (1.1), and it follows at once from the definition of addition that
if we set <f>*{f} = {/ o ft], we have a homomorphism

which is independent of the choice of / or of ^ in their homotopy classes.
Likewise, if «/r: [Xx, x0] -> [Yx, y0], where y0 is a point in every T ,̂ we

define a homomorphism

defined by ^+{/} = {ip of); this depends only on the homotopy class of tp.

THEOREM 2.21. <f>*, i/j^ depend only on the homotopy classes of the maps <j>, tp.
The identity map induces the identity homomorphism, and, if <j>x, <f>% or tfj1, $2

are successive maps, then

(<f>2 ° <f>i)* = # L ° <!>*> <£* ° <A* = "A* ° «^*3
 and (<A2 ° "A1)* = 'A* ° <A*-

This follows from the fact that composition of maps is associative. We
deduce at once that (P^)m(XA; x0) depends only on the homotopy type of
[Px\. For suppose/: [PA] = [Qx]', this homotopy equivalence has a two-sided
homotopy inverse g, and both g*of*,f*og* are isomorphisms onto, so
t h a t / * is an isomorphism onto.
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Let X'x be the path-component of x0 in X^. Then we show that (Px)m{Xx, x0)
depends only on the homotopy type of [X'y, XQ\. For ^ *: [-̂A> xo] -> [-̂A> ^o]
be the identity map: we must show that i%: (P^)m(X'x; x0) ->• (Px)m{Xy, xQ) is
an isomorphism onto. Now the factor space PxXlmIP\Xim is path-
connected, so that the image of P^ X Im in Xx is path-connected, and hence
lies in X'x- Therefore i% is onto. Similarly, the image of P^X Imxl hes in
X\ for any homotopy, so that i% is an isomorphism. By an argument
analogous to that in the preceding paragraph, we see that (Px)m(X'y, x0)
depends only on the homotopy type of [X'x, x0].

3. Base-point in variance
Let Xo be the intersection of all the spaces Xx, and let X'o be the path-

component of x0 in Xo. We prove that the track groups (P^)m(X^;^), for
all xi in X'Q, form a system of local groups in X'o (see (17)).

Let x0, x± be points of X'Q, so that there is a path a: [I,0,1] -» [X'o, x0, a^];
we use a to define a homomorphism

Take polar coordinates (5, 9) in Im, where 9 is a point of lm, and (s, 9) is a
point on the segment joining 9 to the centre (I,..., ^) of Im, and dividing it
in the ratio (1—s):s, so that (1,0) = 6, {0,6) = (£,...,-!). Define a map a/by

for all p e Px, all A, where {/} e (Px)m(Xx, x^). This is a single-valued trans-
formation, and so continuous since piece-wise continuous over the closed
sets defined b y O < s ^ £ , | < 5 < 1 . Now define a*{/} = {0/}: this is
obviously a transformation of the required sort, is independent of the
choice of a in its homotopy class, and, if x0 is the trivial path, then x* is
the identical transformation.

LEMMA 3.1. a* is a homomorphism.

The proof is akin to the proof of the corresponding assertion that a path
in X'Q determines a homomorphism of the relative homotopy group
7rm(Z0, X'Q, XJ) to 7Tm(X0, X'Q, XQ). A proof using an explicitly defined homo-
topy is given in an appendix.

It follows quickly that the Fundamental Groupoidf of X'Q is a groupoid
of operators on the track groups based at points of X'o, and hence

THEOREM 3.2. The groups (PA)m(XA; x0) form a system of local groups in X'o;
in particular, they are all isomorphic, and admit the fundamental group of X'o
as a group of operators.

t The fundamental groupoid is the multiplicative groupoid of homotopy classes
rel I of maps of I into X, defined in a way similar to the fundamental group.
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The correspondence between track groups and homotopy groups is
developed in a different way in § 6, where it is proved that, under certain
conditions, (Px)m(Xy,xQ) is isomorphic to 7rm(F,x0), where F is as defined
in (2.1). Assuming this, we have an alternative proof of Theorem 3.2, for
it is known that the homotopy groups form a system of local groups (11).
In particular, if Y c F is the set of all trivial maps xi} for all points xi of X'Q,
the homotopy groups 7Tm(F, xj form a system of local groups in the path-
components of Y. We show that Y is homeomorphic to X'Q.

Letp: Y -> X'o be such that p{x?) = xf thisis clearly a 1-1 correspondence.
If px is a point of Px, then px is compact; if U is an open set of X'o, then
p~1( U) is open in Y by definition, being the set of all maps in Y which carry
the compact set px into U. Therefore p is continuous. Also, the sets p~\ U)
for all open U in X'o form a sub-base for Y, and their images under p = (p"""1)"1

are open. Therefore p~x is also continuous, and hence p is a homeomorphism
onto.

4. The excision and factor theorems
First, suppose that X^ = x0 for some [x, and that, for all A,

ScUcUcPx,
where U is open in each i^.

THEOREM 4.1. The inclusion mapping j : [PA—$] -»[Px] induces an
isomorphism onto

j * : (Px)m(Xx;xQ) -* (Px-SnXx;x0).
We know th&tj* is a homomorphism, and proceed to construct a two-

sided inverse, k*. Take any map/ e {/} G (PA—*S)m(ZA; #0), and extend/to
/ ' over [Px] by mapping 8 X Im to x0 for every A. We must show that each
map/^ is continuous; since U c P^,/^(U X Im) = x0, and so f'x{Ux Im) = x0

for every A; since fx is continuous, and agrees with/^ on (P^—S)xlm,
fx | {Px~ U) X Im is continuous. Therefore/^ is continuous over each of the
closed subspaces (PA— U) x Im, U x /"* of PA X Im, and so, being single-
valued, is continuous over the whole. Therefore, if we define &*{/} to be
the homotopy class of/', we can easily verify that k* is a two-sided inverse
toj*.

We now suppose that X^ = xQ as before, and that F is a closed subset
of Px for all A.

THEOREM 4.2. The identification mapping <f>\ [Px] -> [Px/F] induces an
isomorphism onto

Since X^ = xQ, all maps carry Fxlm to x0. Therefore, from (1.3), we see
that 0"1 determines a homomorphism which is clearly a two-sided inverse
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CHAPTER II

THE EXACT SEQUENCE

5. The exact sequence
For simplicity, we shall confine ourselves for the majority of this paper

to pairs of spaces [P, Q], where Q is a sub-space of P, and write (P, Q)m for
the group (P, Q)m(X, cc0; x0), where the space X and the point x0 wall be the
same throughout. Then, if R c Q c P, we shall prove, with certain restric-
tions on P, Q, and X, that there is an exact sequencef

- -* (P, Q)m -> (P, R)m -> (Q, R)m -> (P, Q)™-1 ->. . . •

5.1. Homotopy extension
We shall say that a set of spaces [T, S; X] satisfies the homotopy exten-

sion theorem if S c T, and if, for any maps/0: T -> X, g0 = fQ \ S: S -> X,
and any homotopy gt: S -> X, there is also a homotopy/^ T -> X such that
9t = ft I &' Various conditions on T, S, X ensure this property:

(a) X is a compact ANR, S closed in T, T metric separable (Borsuk (3)).
(b) X is a compact ANR, S closed in. T, T normal and paracompact

(Dowker (5)).
(c) X arbitrary, S, T compact ANR's (Whitehead (23)).
(d) X arbitrary, T a CW complex, S a closed subcomplex of T (White-

head (24)).
Since we require a slightly stronger condition on [T,S\X] than that it

satisfies the homotopy extension theorem, we shall not use (b) at first, and
shall call any [T, S;X] satisfying (a), (c), or (d) an HE triple. In a later
paper we shall be able to include triples satisfying (6). The importance of
this restriction is explained by Lemma 5.12 below, but first we require

LEMMA 5.11. / / A = Ax u A2, B = A1 n A2, and if Alt A2, and B are

compact ANR's, then so is A.

From any covering of A we may pick a finite number of sets whose
intersections with Ai cover Ai} for * = 1,2. Therefore A is compact. Let
<f>: [Av B] -> [̂ 4,̂ 42]

 De *n e identity map, so that <j> is a homeomorphism
of Ax—B onto A—A2, and Av A2 are compact ANR's. Then, by a theorem
of Whitehead's (23), since A is compact and B is a compact ANR, A is a
compact ANR. We can now prove

LEMMA 5.12. If [P, Q;X] is an HE triple, so are the triples
[PxIm,QxIm;X], [PxIm,QxImu Px Jm~\X]

and [PxIm,QxImu PxIm;X].
In particular, all satisfy the homotopy extension theorem.

f I am indebted to R. L. Taylor, who first showed how the exact sequence can
be extended to general spaces. .
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Under condition (a), Px Im is a separable metric space, and the various
sub-spaces are closed in it. Under condition (c), the spaces P X Im, Q X Im,
P X lm, Qxlm,Px J™-1, Q X J™-1 are all compact ANR's, so that the listed
sub-spaces are compact ANR's by the previous lemma. Finally, we may
turn Im into a locally finite CW complex so that I111-1, Jm~x, and lm are
closed subcomplexes; then, under condition (d), we may turn Pxlm

into a CW complex in a natural way so that the listed sub-spaces are
closed sub-complexes (see Proposition H on p. 227 of (24)). The result
then follows from the known theorems.

5.2. The injection homomorphisms
Let Re Qc P, where R, Q are closed subspaces of P, and R may be

empty. The inclusion maps

induce homomorphisms

(P,Q)m$(P,R)m$(Q,R)m

with the obvious property that j*i*(P, Q)m = 0. We shall write j * o i* = 0,
the trivial homomorphism.

LEMMA 5.21. If[P, Q; X] is an HE triple, i* = j*~1(0), that is, the above
sequence is exact at (P, R)m.

I f / : [PxIm, RXIm U P x l m ] -+ [X,x0] i s s u c h t h a t f\QxIm i s i n -
essential rel R X Im U Qx tm, we extend a homotopy between

f\[QxIm,RxImuQxim]

and the constant map x0 over the space Q X Im U P X lm by mapping Pxlm

constantly to xQ\ as in (4.1), this is a continuous map. By Lemma 5.12 this
homotopy can be extended over P x Im to give a map

g: [PxIm,RxIm U PxPn] -> [X,z0]

which is homotopic to/ , and has the property that g(Q x Im) = x0. Clearly
g also defines a map in a class in (P, Q)m, and {g} £ i*(P, Q)m. Thus
j * - 1 ^ ) c i*(P, Q)m, and hence, since i*{P,Q)m cj*-1^) for all triples,
j*-1(0) = i*(P, Q)m in these circumstances.

5.3. The boundary homomorphism
We define a homomorphism 8*: (Q, J?)m-> {P,Q)m~x whenever m > 1

and [P, Q; X] is an HE triple, by extending a map

/ : [QxIm,RxImU Qxim]->[X,x0]

to a map / ' : [Px I m , QX tm U RxIm U P x Jm~x] -> [X,x0], and con-
sidering the homotopy class of / ' | [PX I"1"1, PX I™-1 U^xI™'1}. 8*{/}
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measures, in fact, the obstruction to the extension o f / to a map/"repre-
senting an element of (P, R)m. However, the discussion is simplified by
turning the homotopy classes of these intermediate maps / ' into a group.
We define this group without restriction on P, Q, X.

Let SmcPx Im be the sub-space i ? x ! m u Q x / m u P x J""1"1, and con-
sider the set of homotopy classes (P x Im, Sm)°(X, xQ)\ when P = Q, this is
the track group (Q, R)m, but the addition denned in (2.1) turns this set
into a group when m > 1, for all P. We call this group (P, R | Q)m during
this section: its elements are the homotopy classes of maps

/ : [P xIm,Rx Im, Qxlm,Px J™-1] -> [X, x0, xQ, x0],

and the unit of the group is the class of the constant map x0.
Now define three natural homomorphisms: the identity map

0: [ P X Im, 8m] -» [ P X Im, R X Im U P X Pn]

defines 0*: (P, R)m -> (P, 221 Q)m;

the identity map d: [ P x J m - \ Q X I™'1 U P x Z™"1] -> [ P X / m , # J defines

and the identity map h: [QxIm,RxImV QxIm] -> [PX 7m,^Sw] defines

A*: </>, 121 Q)« -• (Q, JS)«.

Thus h*. d* are obtained by restricting the maps of (P, R | Q)m to the sub-
spaces QxIm,Px I™-1, respectively, while 0* results from allowing P x I™'1

to be mapped other than to xQ.
We have the following scheme of homomorphisms:

...(P, QT $ (P, R)m *(P,R\ Q)m " (P, Q)m~x $ (P, R)711-1-

LEMMA 5.31. The above diagram is commutative, that is, j * = h* o 0*.
It is exact at (P, Q)m~x, so that d* = •i*-1(0), and at (P, RIQ)'""1 in the sense
that 0* = cZ*-1(O).

Notice that this lemma does not require restrictions on P, Q, or X. The
naturality follows at once from the definitions, since j * , h*, 0* are induced
by injections.

We now prove that 0* = cZ*~1(O). If z — d*y, then z contains a map
/ : PxIm^X such that f(P x Pn) = x0; therefore /1 P X I"1"1 is the con-
stant map, and d*6*y = 0. Conversely, if d*z = 0, then, for any / in z,
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/1 P X I111-1 is inessential rel Q x Z771"1 U P x Z77*-1. Let i*1: P x Z771"1 -> X be
such a homotopy, and define a deformation ft of/ by the equations

if 0
if

It may be seen that /< is a homotopy rel Sm = R X Im U Q x / m U ? x J771"1.
Then/0 == / , and/x maps P x Z771 to z0, so that {/J = z is in 0*(P, i2)77i.

Finally, we prove that d* = i*-1(0). If w; = d*z, choose a map / in z so
that g =f\PxI™'1 represents the class w. Then, using the natural
identification P x I711'1 X Z = P X /m, the map/actually defines a homotopy
rel P x Z771"1 U J? x Im between g and the constant map, so that i*w = 0.
Conversely, if i*w = 0, a homotopy between a representative map and the
constant map defines an element of (P, R | Q)m, whose image under d* is w.

LEMMA 5.32. When [P, Q\ X] is an HE triple, h* is an isomorphism onto.

We must show that a map of Q x Im to X can be extended to P X Im in
such a way that Sm = R X Im U Q x lm U P x J7'1"1 is mapped to z0; and
also that any two such extensions are homotopic.

Firstly, then, h* is onto: for J™-1 is a deformation retract of Im,
and any such deformation retraction induces a deformation retraction
at: P x Im -> PX Im of PxIm onto PX J771"1, where CT0 is the identity map,
ff^Px/™) cPx J™'1, and a J P x J 7 " " 1 is the identity map for every t.
Let o't be CT^ restricted to Q x Zm, so that a't is a similar deformation retraction.

Now let / : [Q x Zm, i2 x Zm U Q x Zm] -> [X, #0], and consider the induced
map / : Qxlm ^- X; then / = / o a'o c^foa'1} where / o a'x is the constant
map x0. We extend this last m a p / o a[ over P x Zm, and extend the homo-
topy / o a[ ~ f o a0 over Q X Zm U P X J771"1, by mapping (P— Q) X J771"1

constantly to x0 throughout the homotopy. By Lemma 5.12,

[P x Im, Q X Zm U P x J™-1; X]

is an HE triple, so that we can extend this homotopy farther over P X Zm.
Let gt be this extension, so that, by construction, gt is a homotopy rel P X J"1"1

between the constant map and an extension of/: Qxlm -> X over P x Im.
Then ĝ  defines an element of (P,R\Q)m which projects onto the class of
/ under h*.

Secondly, h* is an isomorphism; suppose h*{g} = 0, so that g \ Q X Im is
homotopic rel R X Im U Qxtm to the constant map. Extend this homotopy
over Q x Zm U P x Jm~x by mapping P x J771"1 to x0 throughout the homo-
topy; by Lemma 5.12 this homotopy has an extension over Pxlm, rel$m,
to gt, where g0 = g, and gx(Q x Im) = xQ. Therefore we can define a homo-
topy between gx = gx o a0 and the constant map x0 = gx o ax, since gx o at

maps ^m to x0. Hence {g} = 0, and h* is an isomorphism.
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5.4. The exact sequence of [P, Q, R]
Suppose P D Q D R, and that [P, Q; X] is an HE triple; identify (Q, R)m

and (P, R | Q)m by means of h*, and define S* = d* o (ft*)"1. Then Lemmas
5.21, 5.31, 5.32 imply

THEOREM 5.41. When [P, Q; X] is an HE triple, there is an exact sequence,
terminating with a homomorphism into,

s sequence ivill be called the sequence of [P, Q, J?].

The sequence is natural: for, if <f>: [P, Q, R] -> [P'} Q', R'], j> induces maps
(f)-. [A, B] -» [A', B'] for every ordered pair A, B from P, Q, R, and we may
easily prove

THEOREM 5.42. The map (/>: [P, Q, R] -> [P1, Q', R'] induces a homo-
morphism of the exact sequence of [Pr, Q', JS'] into that of [P, Q, K\, in the
sense that the following diagram is commutative:

.-+ (Pf, Q')m 4- (P', R')m ^ (Q', R')m % {P'3 Q')m~x ->
\4>* \4>* \4>* i<t>*

-»(P,Qr i (P,R)m $ (Q,R)m £ (P.Qr-1^.

6. Function spaces
The set of maps of [P^\ into [X^] can be turned into a topological space

by the compact-open topology (9), as indicated in (2.1). Recall that a
sub-base F(A, ̂ , U^), where .4^ is a compact set in PA, U^ an open set in Xx,
and the set V(X, Ax, Ux) consists of all maps/: [Px] -> [Xx] that map Ax into
Ux, defines open sets as the union of finite intersections of the F's. We write
[XX][PA] for the function space. Then, for any T, there is an obvious con-
tinuous map g. ry-KPAXTJ _+ [[Xx}PM]T]

a theorem of Fox's (9) may be stated in these circumstances as proving
that 8 is a homeomorphism onto if either (i) the spaces Px are regular and
locally compact, or (ii) if T = I, and the spaces JF̂  satisfy the first axiom
of countability. We may quickly deduce that, if Xx = x0 for all A5

^ O F " ' * " ' a n d [^A^A][PAX

are homeomorphic. Let xQ be the constant map that maps each Px to x0.

THEOREM 6.1. If F — [X][PA], and each Px is regular and locally compact
or satisfies the first axiom of countability, there is a natural isomorphism

5388.3.5
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Embed the two function spaces in the obvious way in [[-X^][PAl]/m and
in [-XA][PAX/mj respectively, and notice that the map 6 above with T = Im

maps the one homeomorphically on the other, and so induces a natural
1-1 correspondence between their path-components, which are the elements
of the two groups in the theorem. Inspection of the definitions of additions
((2.1) and (10)) shows that this 1-1 transformation is a homomorphism,
and so an isomorphism onto.

We now confine ourselves to pairs of spaces [P, Q] such that Q c P. Let
G be the subspace of the function space F = [X, xo]

[P>R] which is [X, xo]
[P>Q]

after both these have been embedded in Xp, where Re Qc P. Then we
can prove by the same means

THEOBEM 6.2. If P D Q D R, where P is regular and locally compact or
satisfies the first axiom of countability, then

7rJF,G,xo)^(P,R\Qr(X,xQ).

The exact homotopy sequence of the triple [F, O,x0] (11) immediately
gives an exact sequence involving the groups (P, Q)m, (P, R)m, and
(P, R | Q)m, in the notation of § 5. It may be verified that the maps i*, 9*, d*
in § 5 are the analogues of the homomorphisms of the homotopy sequence.

COROLLARY 6.21. Under the above conditions, there is an exact sequence,
terminating with a homomorphism into (P, R)1,

-> (P, Qr -5- (P, R)m ^(P,R\ Q)m * (P, Q)™-1 - • .

We can use Lemma 5.21 to extend the exact sequence down to (Q, R)1.

6.3. Fibre spaces
The map j : [Q, R] -> [P, R] induces a map f: [X,xJp^ -> [X,xQ}QM

such that^ ' ( / ) = f\[Q,R]. It is clear that j ' is continuous, since these
spaces have the compact-open topology. If now j ' is a fibre mapping of
[X, xo]

[P'R] into [X, xo]
[Q>R] that carries the component of the trivial map

onto the component of the trivial map, we at once obtain (see (14, 22)) that
(P, R | Q)m « (Q, R)m, m > 1, on using the previous theorem and corollary.
Therefore, in these circumstances, we obtain the exact sequence of [P, Q, R]
as a'consequence of Theorem 6.1 (and Lemma 5.21 for the last homo-
morphism).

When [P, Q; X] is an HE triple, the path-component of the trivial map
in Xp is mapped onto the path-component of the trivial map in XQ, and
a similar statement is true for [X, xo]

[P'R] and [X, xo]
[Q>R]. When I is a

compact ANR, and P is a separable metric space, j ' is a fibre mapping:
Fox (7) observes that Borsuk's homotopy extension theorem (see 5.1 {a))



TRACK GROUPS 83

implies that Xp is a fibre space over j'Xp c XQ, with fibre [X, x0J
p'Q\ and

this leads us to a similar conclusion for [X, xo)
[P>R] over [X, xQ][Q>R].

However, R. L. Taylor pointed out that our isomorphism

(P,R\Q)mtt(Q,R)m

needs only the existence of the covering homotopy theorem for a fibre
space, and that this can be demonstrated when [P, Q; X] is an HE triple.
We now give his proof of this fact.

Let f: A-+B,f: T -> B be given. Then a map /* : T -> A such that
j'f* = /is called a covering map for / ; likewise, if F.TxI-> Bisa, homotopy,
we call a covering map for F a covering homotopy. Further, we say that
[T; A, B;j'] satisfy the covering homotopy theorem if, given any map/0: T^-B
which possesses a covering map/*,, and any homotopy ft of/0, there is a
covering homotopy /*.

Let F, G be as in Theorem 6.2, and let F' = [X,xo}Q'R\

LEMMA 6.31. If P is regular and locally compact, or satisfies the first axiom
of countability, and if [P, Q;X] is an HE triple, then [Im; F, F';j'] satisfy
the covering homotopy theorem.

Under conditions (a), (c) of (5.1), P satisfies the first axiom of counta-
bility, and so does any locally finite CW complex.

Any map / : Im -> F' may be regarded as a map '/: Q x Im -> X such that
rf(RxIm) = xQ. Similarly, a covering map /* : Im-+F for / may be
regarded as a map 'f*:PxIm->X, which is an extension of'/over P X Im.
The lemma is then a consequence of the known theorems on homotopy
extension, translated into theorems on covering maps.

LEMMA 6.32. Under the hypotheses of the previous lemma, any map
f: Im -> F' withf(im) = xQ, the trivial map, has a covering mapf*: Im -> F
such thatf*(Jm-x) = x0, andf*{Im~x) c G.

This proof is a modification of Taylor's. There is a homeomorphism
h: Im->Im such that ^(/m-1x 1) = Jm~x, while (of course) h{tm) = tm.
Let / : Im -+ F' carry lm to x0, and define a homotopy gt: I

m~x -> F' by

Then g1 = x0, and has the covering map gf = x0: / '"-1 -> F, and hence gt

has a covering homotopy gf. We now reverse this construction to provide
a covering map for/; define/*,/** b y / * =f**h~x, where

f**(yi,-,ym) = 9tm(yi>~',ym-i)-

Then f*(Jm-1)=f*h(Im-1xl) =f**{Im-1xl) = gfil™-1) = x0, and
/ = j ' o /*. Then/* is the required covering map.



84 M. G. BARRATT

We deduce

THEOREM 6.33. When [P,Q;X] is an HE triple, and P is regular and
locally compact, or satisfies the first axiom of countability, then

(P,Q\Br&(Q,RF.

The isomorphism is that induced by the isomorphisms of Theorems
6.1, 6.2, and that induced by the map j ' ,

fc. irm(F,G,x0) & 7rm(F',x0).

For the previous lemma shows that j * is onto; we show that Lemma 6.31
implies that j'% is an isomorphism. Suppose that ji{/*} = 0, so that, if
f — j'of*} there is a homotopy between / and the constant map which
possesses a covering homotopy between/* and a map of Im into G. There-
fore {/*} = 0.

6.4. /x-based track groups
Let fj,: [P, Q] -> [X, x0]. Then, by analogy with irm{F, fx), where F is the

function space [X,x0J
p>Q], we can define a group (P, Q)m(X,xQ;fx), whose

elements are homotopy classes of maps

such that, for each map, and throughout each homotopy,

f(P,Vi>->ym) = f*(p), f o r a11 P> all (Vi,...,ym) e tm.

Thus, if /a is the constant map x0, the group is (P, Q)m(X, xQ; x0) as defined
above.

Let R c Q c P, and suppose that /A: [P, Q] -> [X,x0]. Let /x define also
fx: [P, R] -> [X, XQ], the map with the same values. Then, under appropriate
conditions, we obtain as before an exact sequence

3i (Q, *
where (P, Q)™ stands for (P, Q)m(X,xQ;[x), and similarly with Q replaced
by R; (Q, R)m is (Q, R)^(X,xo;xo) as before.

In general, (P, J?)™ is not isomorphic to (P, R)m. G. W. Whitehead has
shown (19) that, if w is a point of Sn, then the path-components of [X, a;0]

[S"'wl

are of the same homotopy type; the proof uses addition of maps of Sn to
introduce an operation into the function space. In the same way, we can
show that the path components of [X,xo]

[PxSn>Pxw] have all the same
homotopy type, using Sn to introduce the operation into the function
space instead of In as before (it is easy to see that it is unnecessary to use
the metric topology for the function space).
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Then we may deduce, by the methods of this section,

THEOREM 6.41. / / P is regular and locally compact, or satisfies the first
axiom of countability, and [PxSn,P;X] is an HE triple, then, for all
fj>: [P x Sn, P] ->• [X, XQ\ and all m ^ 1, there is an isomorphism

(P X S>\ Py»(X, x0; p) « . (P X S\ P)m(X, x0; x0).

However, if R is a proper subspace of P or the empty set, (P x Sn, R)™
and (P X Sn, R)m are not necessarily isomorphic. G. W. Whitehead, in (19),
gives an example which, -translated into our notation, furnishes a counter-
example when m = n = 2, P is a point, and R is empty. In fact, it can be
shown that, if m > 1, (Sn, 0)m is the direct sum of 7Tn+m(X) and77m(Z), while
{Sn, w)m is isomorphic to nn+m(X); the homomorphism S*: (w)m+1 -> {Sn, w)m

is that in which a £ (w)m+1 = 7Tm+1(X) goes to the Whitehead product
±:[u, {/x}] G TTm+n(X), where {/x} is the homotopy class of [x. Therefore (Sn)™
is an extension of a factor group of rrn+m(X) by a subgroup of 7Tm(X), which
groups are determined by {ju,}.

CHAPTER 3

RETRACT THEOREMS

7.1. The retract theorem
We make some applications of the exact sequence, and so suppose

throughout this chapter that Q, R are closed subspaces of P, where
PD QD R, and, unless it is explicitly stated to be unnecessary, that
[P,#;X]isanHE triple.

Let j be the injection in

[Q,R]^[P,R]^[Q,R];

we say that Q is a retract of P if a o j = 1, the identity map, and, more
generally, that [Q, R] is a homotopy retract of [P, R] if a oj ~ 1.

THEOREM 7.1. If Q is a retract of P, orif[Q, R] is a homotopy retract of
[P, R], then, for m > 1,

and (P, R)1 is a split extension of (P, Q)1 by (Q, R)1.

By an extension E of G by Q, we mean that there is an exact sequence

0 -> G X E -4 Q -> 0,

and by a split extension we mean an extension in which j has a right inverse,
so that an abelian split extension is the direct sum, written G-\-Q. The
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theorem follows from the fact that, in the exact sequence of [P, Q, R],
j * has a right inverse a*; therefore j * is onto, 8* is trivial, and i* is an
isomorphism into. Hence (P, R)m is a split extension of (P, Q)m « i*(P, Q)m

by (Q, R)m, which is the direct sum when abelian, and so when m > 1.
If there is a homotopy j ^ : [Q, R] -> [P, R] such that j0 = j , the identity

map. while ̂ (Q) c R, we say that [Q, R] is contractible into R in [P, R].

LEMMA 7.21. Under these circumstances, {P,Q)m is an extension of
(Q^r*1 by (P,R)m.

For j * = j * is a trivial homomorphism in the exact sequence of [P, Q, R].
For a large class of spaces, the extension of the lemma is a direct sum if

ra > 1: for example, under conditions (c), (d) of (5.1). Under condition (a),
however, it seems that we must suppose that P itself is a compact ANR.

THEOREM 7.22. / / [Q, R] is contractible into R in [P, R], and if [P, Q; P]
satisfy the homotopy extension theorem, then, if m > 1,

while (P, Q)1 is a split extension of (Q, R)2 by (P, R)1.

For under these conditions we can extend the homotopy^ to a homotopy
ht: [P, R] -» [P , R], where h0 is the identity map, and hx(Q) c R. Therefore
h1 can be factored into hoi = hx, where i is the identity map [P, R] -»• [P , Q\.
Therefore h* is a right inverse for i*, so that j * is trivial, 8* an isomorphism
into, and (P, Q)m is a split extension, and so the direct sum when m > 1.

If now [P, Q] is contractible into Q in [P, Q], we call Q a weak deformation
retract of P: then there is a homotopy <f>t: [P , Q] -» [P , Q] such that <£0 is
the identity map and ^ ( P ) c Q. If fa is constant over Q, we call Q a
deformation retract of P .

LEMMA 7.31. If Q is a weak deformation retract of P, then

(P, Q)m(X, x0; x0) = 0 for all triples [P, Q;X].

For, since <£* = <£*, the identity automorphism is also the trivial homo-
morphism; this does not require [P, Q;X] to be an HE triple.

THEOREM 7.32. / / [P, Q; X] is an HE triple, then, if Q is a weak deforma-
tion retract of P, (Q, R)m « (P, R)m; if R is a weak deformation retract of P,
(Q, R)m+1 « (P, Q)m; while if R is a weak deformation retract of Q,

(P, Q)m « (P, R)m.

The only difficulty is to show that when Q is a weak deformation retract
of P, then j * : (P, R)1 -> (Q, R)1 is onto; the other results are trivial conse-
quences of the exact sequence and the previous lemma. The most con-
venient way of getting round the difficulty is perhaps to extend the exact
sequence by a set-map 8*: (Q, R)1 -> (P, Q)°(X,x0), the set of homotopy
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classes of maps of [P, Q] to [X, z0]. Then it can be shown that the elements
of &*(Q, R)1 are in natural correspondence with the cosets of

j*(P,R?c(Q,R)\

In the particular case considered, an extension of Lemma 7.31 to the case
m — 0 shows that j * is onto, and hence an isomorphism onto.

We give one more application of the exact sequence. Suppose

PDSDQDR,

where S is such that R is a weak deformation retract of S. Then clearly
[Q, R] is contractible into R in [S, R], and so in [P, 22]; under certain
conditions, Theorem 7.22 asserts that (P, Q)m is a split extension of (Q, B)m+1

by (P, R)m. We now show that this is the direct sum.

LEMMA 7.33. Let[P,S;X], [P, Q;X] be HE triples, and let [P,Q;P]
satisfy the homotopy 'extension theorem. Then, if R is a weak deformation
retract of S (P D S D QD R), (P, Q)m « (P, R)m+{Q, 22)™+*, all m > 1.

From the exact sequences of [P, Q, 22], [P, S, R], and [P, S, Q] we have
the commutative diagram:

(P, S)m-
\

*//

i*/ \

/ •
(Q,R)m+1 (S,QY

in which (by Theorem 7.32) i% is an isomorphism onto, so that k* can be
defined as i* o {i*)-1. The image of k* is therefore the kernel of j * , which
is invariant in (P, Q)m. k* is a right inverse for i*, so that (P, Q)m is a
split extension of (Q, R)m+1 « B*(Q, R)m+l by k*(P, R)m, and so the direct
sum.

As an example of the use of this lemma, take R = r, a point of P,

Q = q U r,

two distinct points of P that are contained in a set S that is contractible
in itself (e.g. two vertices of a connected CW complex). Then, using the
Excision Theorem (4.1), we see

(P,gUr)«« (P,r)m+(q)m+\
Of course, in the lemma, (P, R)m « (P, £)m and (#, R)m+1 « (£, Q)m.

The lemma can then be stated in the following useful form (on changing the
notation slightly):
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COROLLARY 7.34. Let P D QD RD S, where S is a weak deformation
retract of Q, and [P, Q;X], [P, R;X] are HE triples and [P, R; P] satisfy
the homotopy extension theorem. Then (P, R)m « (P, Q)m+(Q, R)m, m > 1.

7.4. The cluster theorem
We call P = [J Px a cluster of spaces PA (A e A) if, for every A =£ \x,

PA n P = p, a point common to all PA, and if P has the 'weak' topology,
in the sense that a set F c P is closed if and only if F n PA is closed for
every A. We suppose also that p is a closed set in every PA. Then a map
/ : P -> X is continuous if /1PA is continuous for every A, and similarly for
maps of P X Im.

THEOREM 7.41. {P,p)m « 2 (P\>P)m> ^ie strong sum, all m > 1.

The strong sum of a system of groups 6rA is analogous to the group of
infinite cochains; an element [a;A] of the sum assigns to every A an element
£A of Gx, called a coordinate, and addition is defined by addition of co-
ordinates.

The identity maps <f>x'. Px~> P induce homomorphisms

tt:(p,pr-»(Px,pr,
and so define a homomorphism <f>*: (P,p)m -» 2 (P\>P)m such that

The natural retractions o^: P-^-P^ define homomorphisms CT*, which
are right inverses for the </>*. We shall define a*: ^ {Px,p)m -> {P,P)m

which will be a two-sided inverse for <j>*. Let [̂ A] be an element of J (̂ A= p)m,
and in each ^A choose a map /A: PA x / m ->• X such tha t .

Let / : P X Im -> X be the map which is /A on each PA X I"1; by the weak
topology of P , / is continuous, and so determines an element of (P,p)m.
This element is cr*[£A]: by construction, <f>*a*[£x] = £A> SO that 0* ^s a ^ e^
inverse for a*. I t is clear that CT*[£A] d ° e s not depend on the choices of
maps fx in the £A, and that a* is a homomorphism. Then, if £ is an element
of {P,p)m, choose a representative m a p / , and in constructing

choose /1PA X Im for the map /A. Then it is clear that cr*<£*£ = £, so that
<f>* is also a right inverse for a*, and so both are isomorphisms onto.

COROLLARY 7.42. / / P A n P =Qfor all A 7^ /x, and if P = (J PA is such
that P/Q is a cluster of spaces Px/Q, then

i^/iere JTA = X for all A, and the group on the right is the track group of the

collection [PA, Q].
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Without any restrictions on the topology of PfQ, the other conditions
imply that the track group of the collection [PA, Q], (PA, Q)m(Xx,x0;xQ), is
isomorphic to the strong sum ^ {P\, Q)m\ the proof is similar to the proof
of Theorem 7.41. The corollary is otherwise an application of this theorem
and the Factor Theorem 4.2.

The isomorphism (P, Q)m « (PA, Q)m(Xx,x0;x0) no longer exists if P/Q
has a stronger topology: it is not difficult to construct a counter-example.

Suppose now that [P, Q; X] and [PA, Q\ X] are HE triples for all A, where
Q is as in (7.42). Then we have a commutative diagram

-> (A, Q)m ^ (Px, R)m ^ (Q, R)m -5- (Px, Q)111-1 ->

-> (p, e r -̂  (p, ^)m -̂  (G, R)m -5- (-p, e r - 1 ->
in which the horizontal sequences are exact, and the a* are induced by
the retractions P/Q-^- P\jQ and the isomorphisms induced by the factor
maps P -> P/Q, P\ -» P\/Q. Obviously, if a* is defined by the CT* as in
Theorem 7.41, we have

LEMMA 7.43. In the above diagram, S*z = CT*[S*Z], for z e (Q, J?)ni+1, amZ
the image of j * is the intersection of the images of thej^.

(In order to prove the last when m = 1, we have to examine the set
transformations*: (Q, R)1 -> (P, R)°(X,x0), as in the proof of Theorem 7.32.)
This gives (P, R)m as some extension of a factor group of

(P, Q)m = 2 [Ph Q)m

by a subgroup of (Q,R)m. We might hope that a knowledge of all the
sequences of [PA, Q, R] would enable us to compute (P, R)m: we obtain this
group as an extension in a different way, and the next theorem shows that
something more is required, in general.

Now assume that P/R has the weak topology, in the sense that F c P/R
is closed if and only if F n P^/R is closed for every A. Augment the set A
by adding a new symbol o, and define Po = Q; partially order the new set
A* by the relations A > o for all A ^ o . Then the groups (PA, R)m form an
inverse system of groups indexed by A* with homomorphisms j * ; let
0 — ™ (PA, R)m be the inverse limit of the system, which is a subgroup
of the strong sum (Q, R)m -\- J (PA, R)m (the summation of ^ being over A).

Since Sf (#, R)"^1 c (PA, Q)m, we have a subgroup 2 8\{Q, R)m+1 of the
strong sum 2 (P\> R)m', this subgroup is mapped by the isomorphism a*
onto a subgroup H of (P, Q)m:
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Define a homomorphism

D*:(Q,R)m+1->H
by the equation

D*(z) = o*[S$z], aU z E (Q, R)m+\

Finally, define i'*: H -» (P,R)m by %'* = i*\H, and a homomorphism
/ * : {P, R)m ^ £ by the equation

j'*(y) = [fyJ*y] ^ye(P,Rr.
THEOREM 7.44. The sequence

(Q, i2)»»+i Q H £ • (P, R)m £ • 0 -> 0

is exact at H, (P, R)m, and G. Thus (P, R)m is an (undetermined) extension
ofH/D*(Q,R)m+1by G.

Notice that the groups H, G and the homomorphism D* are determined
by the collection of sequences [Px, Q, R]. We first prove t h a t / * is onto:
tet [yx, y0] be an element of G, so that yx e (PA> R)m and jjfyA = Vo e (Q> R)m-
Select a map/0 G yo\ ex hypothesi, this has an extension fx e yx for each A,
and these maps fit together to form a map / which defines y e (P, R)m, as
P/R has the weak topology and the identification topology as a factor
space of P. Then j'*y = [yx,yo], as required.

If j'*y = 0, for a y e (P, R)m, we see from the exact sequences that
y = i'*z for some ZE H; for j'*y = [<f>*y,j*y], s o that j'*y = 0 implies
(f>*y = 0 andj*?/ = 0, i.e. ?/ = i*z for some z in (P, Q)m. Then z is in the
subgroup H, for i*(f>*z = ^*i*z = >̂*?/ = 0, so that <f>*z = S*w(A) for
some i<;(A) in (Q, R)m+1, and so z = CT*[8*^(A)], an element of H. Therefore
i'*H contains j '* - 1 (0) . On the other hand, j'*i'*H = 0, since

Therefore the sequence is exact at [P, R)m.
Finally, it is clear that i'*D* = 0; conversely, if i*z — 0 for z e (P, Q)m,

then z = S* for some we (Q, R)m+1, and z = cr*[S*w] = D*w, an element
.of # . We have in fact shown that D*(Q, R)m+1 = i'*~1(0) = i*-](0). This
completes the proof of Theorem 7.44.

Now <f>*: (P, R)m ->- (Px, R)m can be factored through G, since it is the
composite of j ' * and the projection of G in (Px, R)m; therefore H is in the
kernel of every $*, so that the groups (PA, jR)m cannot give information
about the extension of i'*H by G.
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8.1. Suspensions and products with a sphere
Let <P denote the join of P with a point A not in P, P> the join of P

with a point B not in <(P, and <P) the union of these spaces. <P) is called
the suspension of P, and contains <(Q), the join of Q with A U B, for every
non-empty Q in P. The suspension <0> of the empty set is defined to be
A U B, and likewise (0 — A, 0) = B. Then it is easy to see that the
elements of «P>,<(2»°(X, xQ) and of (P, Q)1 are in 1-1 correspondence
(even if Q is empty), and that the Excision Theorem (4.1) and Theorem 7.32
imply, under certain conditions, that

«P>, <Q»m « «P>, <Q> u P » " « « P , <£ u P)» « (P, Q)»+i.

Let poeP, xoeX, and let 0: Pxl ^ P* = PxI/(Pxi Upoxl),
<f>: XxI->X* = XxI/{Xxi U z0 x / ) be the factor maps, and let
0(#o) = xj be chosen as base-point in XQ. Then, if / represents {/} in
(P, Q)m(X, x0; x0) where POEQCP, define Sf: P* X Im -> X* by

{Sf)((f>{p,t),yi,...,ym) = <f>(f{p,yv...,ym),t);

then {Sf} represents an element of (P*,Q*)m(X*,XQ;xQ), and it is clear
that #*{/} == {Sf} defines a homomorphism

S*: (P,Qr(X,xo;xo) -> (P*,Q*r(X*,x*;x*),

where Q* = <f>{Q X /) c P*. If h: [P, Q] -> [P', Q'], we define

^ : [P* ,g*] -^ [P '* 3 Q '* ]

in a similar way, and state:

LEMMA 8.11. S* is a natural homomorphism, such that

(Sh)* o S* = S* o h* and S* o 8* = 8* o S*.

Hence 8* maps the exact sequence of [P, Q, R] over [X, x0] into that of
[P*, Q*, R*] over [X*,XQ], if R is not empty.

We now give some results on products with spheres:

LEMMA 8.12.

(P, Q)m+n & {Pxln, Qxlnv Pxin)m « ( P x S n , Qx Sn u Pxw) m ,

where w is a point of Sn. Also, if Q is not empty, «P>, <Q»m W (P, Q)m+1;
while if Q is empty, so that (Qy = Al) B,

P,p; X] and [P,p; P] are HE triples.

These results follow from the definitions and the Factor Theorem (4.2);
the last uses also Lemma 7.33 (see the example given there) and the Retract
Theorem applied to «P>,.4)m.
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COROLLARY 8.13. / / [P, Q; X] is an HE triple, then

{PxSn,QxSn)m& {P,Q)m+n+{P,Q)m, ifm > 1,

wUle (PxSn, Q X S")1 is a split extension of {P, Q)n+l by {P, Q)1.

To prove this, we factor the spaces on the left by Q X 8n, and those on
the right by Q. Now P/Q is a retract of PxSn/Q X Sn. The result then
follows from the previous lemma, the Retract Theorem 7.1, and the
Factor Theorem 4.2.

LEMMA 8.14. If p is a point, (p)m « 7Tm(X,x0).

The lemma is obvious if we identify p X Im and Im in the obvious way;
the definitions of the two groups are then the same (cf. (10)). As a con-
sequence of this and the previous lemma we have (Sn, w)m & 7Tn+m(X,x0),
while (Sn)m is a split extension of this by 7Tm(X,x0), which is naturally the
direct sum if m > 1. It is possible to show that the operations of TTX on
TTm+1 induced by the inner automorphisms of (Sm)x by the elements of the
subgroup TTX are the usual operations. In view of Theorem 6.1, these results
may be found in (11, 13), and, as the next lemma shows, in (1, 12, 13).

LEMMA 8.15. For all m ^ 1, and all n > r ^ 0, the abhomotopy group

Let S'1 be the empty set. The Abhomotopy Group KJ.1 (1, 12) is defined
as (Sn, Sr)°(X,x0), for r > 0, and it is easily verified that the definitions
of addition in the abhomotopy group and the track group are equivalent.
The lemma may be proved by induction on r, using the previous lemma
and the homotopy equivalence [Sn, Sr] = [{/S^"1), <^r~1>]; it is obviously
true when r = — 1.

8.2. Track groups of product spaces
If E is a split extension of A by B, write E — A © B; if Ex = Ax © A2,

and En = En_x ® An+X, write En = J * At (an ordered 'sum'); we call
2 * Ai a repeated split extension. Then E = 2 * ^-inas subgroups Ai} and
is generated by the elements of these subgroups; the structure of E is
completely determined by these subgroups Ai and the commutators of E.

Let c£ (p = 0,1,..., k) denote a subset ix,...,ip of the integers 1,..., 1c in their
natural order; for fixed k, the c£ have an obvious partial ordering by
inclusion. We write the product space P^x ...xP{p = P(Cp), and embed
it in P — Pxx...xPk in a natural way: choose points zie.Pi for each
i, and let (pil,---,pip) be identified with {q1,..-,qic) where ĝ  = pi if i is in
the subset c£, and zi otherwise. Then it is clear that P(c%) is a retract of
P = P(cjt) for every c£. For convenience, define c£ to be the empty set,
a n d P{c%) t o be t h e po in t (zx,...,zk).
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Let Q(CQ) be the empty set, and let Q{c%) be the union of spaces P{c!f)
for which c* is properly contained in c£; then Q{Cp) is a subset of P{c*).
For example, P{c\) is the product PxxP^, and Q(c\) consists of the 'axes'

We wish to decompose the group (P)m into the direct sum (or, if m = 1,
into a repeated split extension) of the groups (P(c*j), Q(c*j))m, by means of
the retract theorem. For this we need various HE triples: we say that
[P ;̂ X] has the HE property if all the spaces P̂  are locally finite CW com-
plexes, or are all compact "ANR's, or are all separable metric spaces while
X is a compact ANR.

THEOREM 8.2. / / P = Px x... X Pk, and [P{, X] has the HE property, then
(P)m « 2 (?(<%)> Q(ci))m> a direct sum, if m > 1, while (P)1 is a repeated
split extension ]f * (P(c%), Qic*))1. Here c% assumes all possible 2k values.

We deduce this theorem from the next, more general, theorem; however,
it can be proved directly from the.Retract Theorem 7.1, by induction onk.

Suppose now that a space R contains a number of closed sub-spaces R€

containing a common point r0. Let 8i = (J R(, the union of the first i sub-
t<i

spaces, and let ^ : R -> RjSf be the factor map which squeezes S{ to appoint;
for convenience we let </>0: R -> R be the identity map.

THEOREM 8.3. // , for each s > 0, [cf)sR,<f>sRs+l;X] is an HE triple in
ivhich <f>sRs+1 is a retract of <j>sR, then when m > 1,

(<f>s Ba+V 0S B9r+(fa R , <f>k Rk
+1

and ivhen m = 1, (R)m is a repeated split extension of these groups, in reverse
order.

If k = 0, this is exactly the retract theorem. Assume that the theorem
has been proved true for k = n-^l, so that {R)m has a direct summand
0£H.-I ^ <f>n-i Bn)

m, or, when m = 1, {R)m is a repeated split extension of
this group by other groups. Then by the Retract Theorem 7.1 and the
Factor Theorem 4.2,

«(</>,„ R, K Rn+1)
m 0 tfn JRn+1> <f>n Rn)m,

where the split extension is the direct sum if m > 1. Hence the theorem
is true also for k = n, and so, by the principle of finite induction, for all
finite k.

Notice, in the above notation, that if fa Rn is a retract of <j>r R, then also
(f>s Rn is a retract of cf>s R for all s ^ r.
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To apply Theorem 8.3 to the proof of Theorem 8.2, give the c| any simple
ordering consistent with their partial order, so that eft" is the first, and cjj: the
2Hh element. Take R = P, R{ = P{c^), where cj is the ith element in the
simple order. Then, when Ri = P(c%), Q{c%) is contained in the union of
the first (i— 1) subspaces Rt, since it consists of the union of the P(c^) for
which c* precede c* in the natural partial order; conversely, the intersection
of Ri and Rt for t < i is contained in Q(c%). Hence ^_x Ri = P{c*)/Q{c%),
while Rx = P(4) = P(4)IQ{4). Therefore if we replace k in Theorem 8.3
by 2k, the groups of Theorem 8.3 are those of Theorem 8.2 after an applica-
tion of the Factor Theorem 4.2, together with the trivial group.

Though we shall not determine the commutators of (P)1 in Theorem 8.2,
we can prove

LEMMA 8.4. / / a e (P(cJ), Q(cJ))1, 6 e (P(cJ), Q(cJ))1, the commutator
a-\-b—a—b is in (P{c^), Q(cr))\ where c* = c* U c£, the set of integers in
either c* or c% or both.

If E = A © B, B can be identified with a subgroup of E, while A is
already an invariant subgroup. Let c* be the ith. element in the chosen
simple ordering of the c's; an examination of the proof of Theorem 8.3
shows that (P)1 contains an invariant subgroup generated by all the
groups (P(cf), Qitf))1 for which c\ (including c£ itself) do not precede cf}

in the chosen order. Therefore, the commutator a-\-b—a—b is generated
by these elements; similarly, it is generated by elements from groups
defined by c*'s which do not precede c* in this simple order, and so which
do not precede either c£ or c£.

On the other hand, the simple ordering may be chosen in any way that
is consistent with the natural partial order. By considering all possible
simple orderings of this type, we see that the cf's above can be made to
satisfy the condition that they do not precede c£, the least element greater
than both c*j and c*. But P(c^) is a retract of P, so that

(Pm(P,P(c?))i@(P(c?))K
The second group is a subgroup of (P)1 containing both a and 6, and so
a-\-b—a—6; however, the only elements of the above type are in

(P(cO,Q(ct))\
which completes the proof of the lemma.

In the special case when each P̂  is a sphere #n<, the group

where N = m-{-nil-\-...-\-nip if c£ = i1}..., ip. This can be readily seen by
expressing P as a product complex, when P{c^)jQ(c^) appears as a sphere
SN~m; alternatively, this result will follow directly from the Retract
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Theorem 7.1, Lemma 8.12, and Lemma 8.14. This other method shows
that the commutator a-\-b—a—b of Lemma 8.4 is zero if c* and c* have
a common integer. The commutators in this case can be determined by the
methods of § 10 in the next paper, or may be deduced by Fox's theorem (10)
on the structure of Torus homotopy groups. It is clear that the Torus
homotopy group rn is (S\x... X #n-i)1: Fox has shown that in this case
a-\-b—a—b is it[a, 6], the Whitehead product, where the sign is deter-
mined by Cp~\ c™"1. If nx-\-...-\-nk = n—\, let

cf>: £ ix . . .x£i_ 1 ->£ W l X. . .x£ ? l *

be the identification map which maps the product of the first nx circles on
Sni, the next n2 on $na, and so on, mapping the cells (ASJ—Zĵ ) X ... X {S^—z^),
etc., with degree + 1 on the cells (Sni—zx), etc. Then it is possible to show
that the induced homomorphism (f>* is an isomorphism into, and so that
the commutators of (Sni X ... X &"*)1 are determined by Whitehead products;
in this case, the determination of the sign is more complex, and the integers
nv...,nk enter into it as weighting factors.

CHAPTER 4

CW COMPLEXES

9. Track groups of CW complexes
Let K be a path-connected CW complex, as defined in (24); let Kn be

the n-skeleton of K (the union of cells of dimension not exceeding n) and
let K-1 be the empty set. If L is any closed sub complex, we may turn K/L
into a complex in a natural way, such that Kn/(L n Kn) is the n-skeleton
of KjL. Then there is a tree T in K/L which contains all the vertices, i.e.
K°/(L nK°)cTc K1/^ n K1) (for proof, see (20), p. 322). We define
K = (K/L)IT, so that we first shrink L to a point, then T, obtaining a
complex such that K° is a point.

Define (n+r,n)m = (E^+r,Kn)m for all m, r > 0, n > — 1, and call the
exact sequence of [Kn+r, Kn, Kn~s] the exact sequence of \n-\-r,n,n—s\.

LEMMA 9.11. If n > 0, then {Kn+r U L, Kn u L)m « (n+r,n)m.

This lemma follows immediately from the Factor Theorem 4.2.
Now select a vertex e° of K, choosing e° in L if L is not empty; let e° be

the vertices of K—{L U e°).

LEMMA 9.12. (r, 0)m « (Kr U L, e° U L)m, while, if 2 ™ the strong sum,

{Kr UL)Z«U L)m «• {r, 0)m + J (
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The first statement is a consequence of the Factor Theorem 4.2, and
Theorem 7.32, since e° is a deformation retract of T. Also, by the Factor
Theorem, (Kr U L,K° U L)m « ((K/L)r, {K/L)°)m; let e°, ej be the vertices
of K/L corresponding to the vertices e°, ej( of K, and apply Lemma 7.33
with S=T, P= {K/LY, Q = (K/L)°, R = e°, obtaining

((K/L)r, eQ)m+((K/L)<>, e°)m+\

To this last group, apply the Cluster Theorem 7.41, treating (K/L)° as a
cluster of spaces (e° U ety with e° as a common point, and finally excise e°
by the Excision Theorem 4.1. This proves the lemma.

The group (r— 1,— l)m can be obtained from the retract theorem
when m ^ 1; when m = 1, it is a split extension of (r— 1,0)1 by 77-1(X,o;o).
The particular case (1, —I)1 can be obtained from Theorem 7.44 and our
knowledge (see Theorem 8.2, Lemma 8.4) of {S1)1; however, the nature of
(2, —I)1 is not known in general (for example, if K is the real projective
plane).

In future, we shall deal only with the groups {n-\-r, n); thus we shall only
have to consider complexes K such that K° = e°, a single point.

The group of n— #-cochains over K we take as H71^1,^-1; G); any
rule associating an element of G with each ?i-cell of K uniquely determines
such a cochain. The Factor and Cluster Theorems then immediately imply

LEMMA 9.13. For all m-\-n > 1, there is a natural isomorphism

where 7Tm+n = 7Tm+n(X,x0).

For if n > 0, Kn\Kn~x is a cluster of spheres S\ in 1-1 correspondence
with the cells e\ oiK. By Theorems 4.2 and 7.41, (n, n-lf1 « 2 ( ^ eT>
and, by (8.12, 8.14), (tfjf, e0)"1«irm+n. Let this isomorphism make
z e (n,n— l)m correspond to [zj, where zA e irm+n, and define 6z{e%) = ẑ ,
so that 8z is a cochain in Cn(K; 7rm+n). When n = 0, a similar, easier, proof
exists.

9 is natural in the sense that a cellular map g: K->• K* induces

as well as a homomorphism g* of the track group, and

dog* = g*od.
Similarly, a map if*: [X, x0] -> [Y, y0] induces homomorphisms xp* such that
8 o ifj* = ijj* o 9.

9.2. The obstruction homomorphism
We now relate the homomorphism S*: {n,n—s)m-+{n-\-\,n)m to the

concept of obstruction cocycle (cf. (6)).
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Let I = 0 U 1 U e1 be an expression of the unit interval as a CW com-
plex, and let the product Ax I (where A is any CW complex) be the CW
complex with cells exO, e x ^ e x e 1 (all cells e c .4), as described on p. 227
of (24). Treat Im as the product of I m times with itself, and define
Kn+1 x / m = Pffl as a CW complex. For convenience, we name various
subcomplexes of Pm:

pm = Kn+1 x Im, Pm_i = iCn+1 X Z"1"1 X 0 = K^1 x I™"1;
Qm = Kn X Im, Qm_x = Kn x Im~x X 0 = Kn X I™-1;

#* = (Z» x Jm) u (Z»+i x / m ) ,
<9m-i = (-K71 X I7""1 X 0) U (Zn+1 X I"1"1 X 0);

JB*j, = (Z n - S x Jm) u {Kn+1 x / m ) ,

JR** = (Kn~s x Jm) u (Z» x im),

Sm = (Kn~s x Im) u (Z71 x im) u (Zn+1 x J711"1).

Then Q*̂  is the (m+7i)-skeleton of the (m-\-n-\-l)-dimensional complex Pm,
whose m+^+1-cells are the products e"+1Xem, where em — Im—im

} and
e£+1 are the cells of Kn+1—Kn.

Let <f>x: I
n+X •+ Z ^ 1 be a characteristic map for the cell e£+1 (cf. (24), p. 221),

a homeomorphism of In+1—in+1 onto e™+1. Since Kn+1 has but one vertex,
without loss of generality we may suppose that ^»A(^°)

 = e°5 *ni s require-
ment can always be met by some choice of a complex in the homotopy
type of [Kn+1, Kn, Kn~s, e°] (see Lemma 3, p. 239, of (24)). Then

as defined in (1.1), is a characteristic map for e^+1xem, and

define (j>\ = <f>\ \ jm+n+i. jm+n+i _j. Q*IJ the attaching map of the cell e^+1 X em,

and let the same letter stand for the same map of the pair
[/«+»+!, JO] ^ [Q^eOx JO].

Now l e t / : [Q^, Sm]-> [X, x0]; the obstruction cocycle (6) c(f) to the
extension of/ over [Pm,Sm] to [X,z0] is the cocycle in Cm+n+1{Pm;irm+n)
with the value { /o^} on the cell e"+1Xem. Clearly, such an extension
exists if and only if c(/) = 0.

Now iet / : [Pm, Sm] -> [X, x0], not necessarily mapping Kn+1 x lm to xQ.
We define three associated maps

foJi>U[Qt,Sm]^[X,xo];
/ 0 will be /1 [Ql, Sm]; /x wUl be the extension of/1 [Qm, R%] obtained by
mapping Kn+1 xlmcSmU Pm_1 c Q^ to the point x0; f2 will map Qm U ^m

to x0, and on Pm - 1 will agree with / . Thus /0, fx agree on Qm, /0, /2 agree on
Pm_i; notice that % = Qm U £m U Pm_x.

5388.3.5 H
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Consider^: /*»+»+i -» Q^; it maps J^+ixJ"1"1 to Sm, Jn+1xlm'1 to
Pm^v and / n + 1 x / m to #m. Then, if J™-1 is properly oriented, and as

jm+n+l _ jfn+lx/m-}-( ]\m+n+ljn+l ^ / w - l J . / | \n+ljn+l v Jm~l

we have, for every A,

{/o o </>$ = {A o $ } + { / , o $ } 6 Wm+tt(X, *0).

Therefore c(/0) - c(/1)+c(/2) in ^+«+1(Pm;7rm+n); however, / 0 has the
extension / , so that c(/0) = 0 and we have proved

LEMMA 9.21. / / / : [Pm, Sm] -> [X, xQ] defines / l3/2: [%, £TO] -> [X, o;o] as
^e obstruction cocycles to the extensions of fv f2 over Pm satisfy

Now a - ^ + M ^ i ^ n + J is denned as Hm+^(Pnv QIITT^J; consider the
relative chain groups Cm+k(Pm, R^; G) = Hm+k(P%+k,
and define ^. ^ ^ . ^ JJ* . Q) a ^*(^»+if ^nn». 0

as the map (0c)(ej) = c(ejxew). Then, as Ctel+n+1(i^l; wm+n) and

are defined as the same groups, we have in particular

0. O+n+l(P;,rm+B) « C»+i(Z«+l, JP—; 7r,n+J.

Then 0-1 is a type of suspension isomorphism, so that if S' is the coboundary
operator in the cochain sequence of [Pm, R^\, and 8 is the corresponding
operator in the cochain sequence [Kn+1, Kn~s], tjj o 8' = 8 o t/t. Also, if/1}/2

are as in the previous lemma, so t h a t / ' = f\[Pm-x, Qm-i] represents an
element of (n+l^n)™-1, we have

where 6 is the isomorphism of Lemma 9.13, and d* is the homomorphism
defined in (5.3), with P = Kn+1, Q = Kn, R = Kn~s. (The correct value
for the sign may be obtained from the formula for im+n+1 given above.)

With these conventions, the previous lemma implies

LEMMA 9.22. Let g: [Qm, R**] -> [X, x]0, representing an element

{g} e (n, n-s)m,

define gx: [Q^, R^] -> [X,x0], the extension of g which maps Kn+1 X Im to x0.
Then, if c(gx) is the obstruction to the extension of g1 over Pm, and

loeliave ijjc{gx) = (— l)n+m68*{g}.
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For we have seen (Lemmai 5.32) that there is a map/: [Pm, Sm] -» [X, xQ]
such that g =f\ [Qm, jRJf]. Then gx = fx as defined above, and

d*{f) = if] = **M-
But 6{f'} = ( — l)m+*+1tl>c(f2), so, by the previous lemma,

This lemma enables us to apply our knowledge of the first and second
obstructions to the calculation of the elements of (n-\-l,ri—l)m and
(n+l,w—2)m respectively (though this does not determine the group
structure, leaving an extension problem).

9.3. Central extensions
An extension E of G by Q (where Q = E/G) is called central if G is in the

centre of E; clearly, an abelian extension is a central extension.
Consider (n-\-l,n)m -^ (n-\-l,n—s)m -^ (n,n—s)m in the exact sequence

of [n-\-l,n,n—s]: from the exactness, {n-\-\,n—s)m is an extension of
i*(n+l,n)m by j*(n+l,n—s)m.

THEOREM 9.3. (n-\-\,n—s)m is a central extension of i*(n-\-l,n)m by
j*(n-\-l,n—s)m c (n, n—s)m, for all m ^ 1, and all n ^ s.

The theorem is trivial if m > 1, as the groups are all abelian. When
in = 1, and Px, Q*, etc., are as in (9.2), we can represent any element
a e i*(n-\-lsn)x by a map / : [Pv i2*] such that f(Q*) = x0. Let b be any
element of (n-\- l,n—s), represented by a map g: [Pl5 B*] -> [X, x0], and
define a map h representing the commutator a-\-b—a—6 by the equations:

= ^ , 4 - 4 ^ ) if | < y i < 1.

Define h' by the same equations, with / replaced by the constant map x0.
Then h' represents 0+6—0—6 = 0; we show that h en. h'relQ*, so that
also a-\-b—a—b = 0.

Turn Px into a CW complex in two ways: let P[ be the complex pre-
viously considered, with cells exO, e x l , exe1, for all cells e of Kn+1.
Now let / be another complex, with five vertices 0, £, ^, f, 1, and four
1-celis /]>..., /4, the open intervals )0, J(,..., )f, 1(. This gives a product
complex Pi' = Kn+1xl, consisting of cells ex(^/4), exls, for all integers-
t, s, such that 0 < £ < 4 , l ^ 5 ^ 4 .
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Let A, /A be the identity maps in
•pi n -pit A p f.g.xp.h.h' -tr
JT1 —> rx - > rx -> A.

so that JU, is a cellular map. As f(Q*) = xQ, the maps / o A o fx, X0 O A O /M,
agree on the (n-|-1)-skeleton Q* of P'x, and so therefore h o X o fx, h' o X o fx,
agree on this skeleton. Since f(Kn+1 X / ) = g(Kn+1 x / ) = x0, a point, it
follows also that 7i o A, h' o A, agree on the (u+l)-skeleton of P{, which is
Q* u U {Kn+1x£t). Therefore we have separation cochains

d = d(f o A o n, x0 o A o fi) e C«+2(P;; *rn+2),

'i,Wn+a),

these are related by the equations

d' = ju.*eT,

x) = (-ly-Hie**1 X e1), » = 1, 2,

= 0 , i = l , 2 .

The last relation follows from the fact that h, h' are the same on Kn+1 X yx,
if y1 e I2l. The last two equations imply that

0 = /x*d" = d',

and hence h o A o fx c^. h' o A o /x, rel Q*. Therefore {/i} = {̂ '} = 0, as was
to be proved.

9.4. The elements of {n+l,n— l)m

If k is an integer and c a cochain, define (&S)c = fc(Sc). Then there is a
diagram

(n, n—l)m > (n-\-1, n)m~x

\9 \B

LEMMA 9.41. The above diagram is commutative, i.e. 6 o 8* = (—l)m+n8 o 6
if n-\-m > 1.

In the notation of (9.2), where we proved 9§*{g} = {—I)m+n*l/c{g1) (here
s is specialized to s = 1), grx and the constant map x0 agree on JB^, and so
possess a separation cochain dn+m(gx,x0) e Cn+m{Pm, Rm',^n+m) s u c n *na*

S'd-^^ajo) = c(gi)-c(x0),

which is c(gx), as xQ possesses the extension x0, the constant map of i ^ to xQ.
Now it is clear from the definitions that

i,x0) = 9{g}
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(see (25), Appendix B, where the separation cochain is defined as a homo-
morphism dk: 7Tk{Kk,Kk-1) -> 7Tk{X,xQ)). Therefore, for all ra ^ 1,

8%} = W+™(gvxQ) = WW^faXt) = fc(9l) = (-l)n+mdB*{g},
which proves the lemma if m-\-n > 1.

THEOREM 9.42. For all m+n > 1, (n+l,n— l)m is a central extension

This is a consequence of the exact sequence of [n-\-l,n, n— 1], Lemma
9.41, and Theorem 9.3.

Since ** o 0-1: Cn+1(K;7Tm+n+1) -> (n+l,n—l)m has as kernel the sub-
group of coboundaries, we may factor this through the natural homo-
morphism Cn+X -» Hn+1, which assigns to every cocycle its cohomology
class. Therefore we can define #: i*{n+l,n)m -> Hn+1(Kn+1,Z71"1; wm+n+1)
as the map which sends i*u to the cohomology class of du.

9.5. Elements of {n-\-l,n—2)m

Consider the commutative diagram

4- (n— 1, n— 2)m 5- (TO+1, 7i— I)"1-1 S (n+1, n— 2)"1"1 4-

in which the horizontal sequences are the exact sequences of [n-\-1, n, n— 1],
[n-\-l,n,n—2], and [?i+l,?i— 1,TI— 2], while the vertical sequence on the
left is part of the exact sequence of [n,n—l,n—2].

Consider j*(n— \,n—2)m: Lemma 9.41 shows that the isomorphism 6
maps it onto the group of cocycles of [Kn+1, Kn~2], i.e.

y.n-\(jrn JZn-2.- \ r^j JJn-ll J?n+1 JTn-2. _ \

which we shall write as Hn~1(7Tm+n_1), the (n— l)th cohomology group of
the pair [Kn+1,Kn~2]. Then

S*e-iHn-i{7Tm+ni) = 8*j*(n,n-2r = t*8*(n,n-2)™;

but we have also seen that i%(n+l,n)m = l)-1Hn+1(Kn+1,Kn-1;iTm+n),
where 9 is an isomorphism (see the end of (9.4)), and Hn+1(Kn+1, Kn~1\irm+n)
is isomorphic (under the injection) to Hn+1(Kn+1, Kn~2;7Tm+n), which we
shall write as Hn+1(-TTm+n), the (?i+l)th cohomology group of the pair
[Kn+1, Kn~2]. We have therefore a homomorphism

r* = e o s* o 0-1 = e o i* o s* o (j*)-i o e-h ^ - M ^ + n - i ) -> H»+Hirm+n).
(9.51)
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This honiomorphism in fact determines the elements of {n-\-l,n—2)m; later
we shall show that it can be computed in finite complexes by Steenrod
squares.

THEOREM 9.52. (n-\-l,n—2)m is a central extension of

by a subgroup of (n,n—2)m which is a central extension of Hn(7Tm+n) by
T*~1(0) c Hn~1('7Tm+n_1). Here the cohomology groups are those of the pair
[Kn+1, Kn~2], with the coefficient group in the brackets.

The middle horizontal sequence in the diagram above shows that
(n-\-l,n—2)m is an extension of i*{n+l,n)m by j*(n+l,n— 2)m, which
is central by Theorem 9.3. Now i* (= i* o i%) has kernel S*(n,n—2) so
t h a t i*(n+l,n)m = it(n+l,n)mli![S*(n,n—2)m

since i* o &* — 8* o '̂*. Therefore i*(n-\-l,n)m is isomorphic with

A similar argument shows that^Q maps the kernel of 8* onto 0~1T*-1(O),

so that 8*~1(0) is a central extension of 8*~1(0) n i%(n, n—l)m by this group,
which is »J(SJ-1(O)), since 8* o i* = 8*. But {n,n-l)m = e~xCn{K\ tTn+m),
the kernel of 8* is the subgroup of cocycles in [Kn+1, Kn~2], and the kernel
of «o the subgroup of coboundaries. Therefore this subgroup of (n, n—2)m

is isomorphic with Hn(irm+n), the nth cohomology group of the pair
[Kn+1,Kn~2]. This completes the proof.

9.6. Calculation of T*
In the notation of 9.2, take s = 2, so that Pm = K1l+1 X Im,

Qfn = /v" +1 x lm u K"- x Im

as before, while

Sm = Kn+1 x Jm~x u Kn x lm u Kn~2 x Im,

B*H = Kn+1 x Pn U Kn~2x Im, etc., and let./: [Pm, Sw] -> [X,x0]. Let g be
/ restricted to Kn~x X Im, representing the element

and let gx be / restricted to Kn+1 x Pn U Kn~x x Im, an extension of g. The
first obstruction to the extension of g1 over Qfn vanishes (it has the extension
/x as defined in 9.21), and the second obstruction wgi (to the extension of
gx over Pm) is the cohomology class
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We have seen tha t *jjc{f^) = (—l)m+n8B*h*{f}, and the cohomology class
of this is {-l)m+ndi%S*h*{f}, that is, (-l)m+nT*0jJfc*{/}. Since </» is a
chain mapping, we deduce

Let y e TTn+1(S
n) be a non-zero element, containing maps of Hopf invariant

+ 1 if n = 2; the composition a. o y defines for n > 2 a homoniorphism
y*: TTJX) -»- 7rn+1(Z) such that 2y*(a) = 0 for all a e TTJX), and for w = 2,
it defines a transformation y*: 7T2(X) ->• 7r3(X) such that

y*(a+j3)-y*(cx)-y*(jS) = [a.jS],

the Whitehead product (cf. (25)). Thus y* defines homomorphisms

7rn+1(Z), 7i > 2,

where T(G) is defined in (25) for any abelian group G.
Now let <£': Qm -^ Qml^m D e * n e factor map which pinches R^ to a point,

and let <f> be <̂ ' restricted to Kn~x x / m U Z n + 1 X Im. Since ^ has the exten-
sion cj)' over Q^, its first obstruction to the extension over Pm vanishes, and
so (f> possesses a second obstruction w^ to its extension1 over Pm into Q^/RI^.
This image space is (m-\-n— 2)-connected, so that w^ is given by White-
head's formula (26)

—1 = 2) W+ = w^~wXo =

(m+n—l > 2) w± = w^—w^ =

where the separation cochain is an element of

s2 is the Steenrod square Sqm+n_3 (cf. (18, 26)), pr is the Postnikov square
(16, 26), the curly brackets indicate the cohomology class of the contained
cocycle, and i*is the homomorphism of the cohomology groups induced
by the homomorphisms i* defined above.

Now let gv fx be as at the beginning of this section, so that fx o <f)'-x is
single-valued, and so continuous (cf. (1.3)). Hence

Also, (/x o ft'1)* dm+n~1{<f>, x0) = dm+n~x{gx, x0), and (see the proof of Lemma
9.41) ifjdm+n~1{g1,x0) = 9{g}. Now ijj~x may be considered as a suspension
homomorphism, so that we have

ifj O S2 = S2 O ifj, ifj O p x = p 0 O j/r,
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where p0 is the Pontrjagin square (cf. (26), sections 5 and 8). Thus we
may rewrite the formulae for wOl in terms o

m+n>3,

Combining our two expressions for tfjwgi in terms of {g}, we have

LEMMA 9.61. / / Kn+1 is a finite complex, and u is an element of

JJn-l/J£n+l J£n-2- ^ \

then, in Hn+x{Kn+1,Kn-*\'nm+n),

(—\)™+nT*<u\ = f **s2(w)> m+n > 3>

Now,if?i = 2,s2H1{K*,e0-TTm+1) = 0 (seeTheorem 12.1 in (18)). There-
fore we may restate Theorem 9.52 in the following form:

THEOREM A. / / K3 is a finite.complex, and m > 1, then (3,0)m is an

abelian extension of H3(IP; 7rm+3) by an abelian extension of H2(K3; 7rm+2) by

Hl{K^','nm+x). Also (3.0)1 is a central extension of #3(i£3;7r4) by a central

extension of H2(K3; TT3) by the subgroup of H^K3; TT2) of elements u such that
b* vox11) = u-

THEOREM B. If n > 2, and K1l+1 is a finite complex, (n-\-l,n—2)m is a
central extension of Hn+1(7Tm+n+1)lili.5

2Hn-1(7Tm+n) by a central extension of
Hn{TTm+n) by the subgroup of Hn~1(7rm+n_1) of elements u such that i%52(u) = 0,
the cohomology groups being those of the pair [Kn+1, Kn~2].

In a later paper we shall determine the extension mentioned in Theorem
9.42, which gives the structure of the groups (n-\-1, n—\)m for all m. The
structure of the groups {n-\-\, n—2)m is not yet known in general, and an
example will be given to show that we cannot expect to deduce the structure
of this group from our knowledge of the groups (n-\-l,n—l)m, (n,n—2)m,
for all finite complexes Kn+1.

A P P E N D I X

We now prove Lemma 3.1, that a path a induces a homomorphism

where a begins at x0 and ends at xx. For convenience, we define an explicit homotopy
between crf+og and cr(f+g), for any two maps/, g, representing elements of
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where + is as defined in (2.1). Let htbe given by the equations (where p e PA),

\(ogUP,yi',y2,...,ym) if * < Vl
where

i f O < y 1 < (1+0/8,

if i < 3/i < (7-0/8,
if (7-0/8 < yx < 1.'

It is not difficult to see that ht is single-valued and continuous, as where it is defined
twice (for yx = \) the maps of, &g depend only on a, and agree.

Now h0 = af+ag, and hx = a(f+g); thus these two maps are homotopic, so that
a*{f}-\-cr*{g} = a*({/}+{gr}), and the lemma is proved.
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