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Introduction
IN a previous paper ((1), hereafter referred to as I) we defined the Track
Groups (P, Q)m{X, x0; x0) of a pair [P, Q], where Q is closed in P, and x0 is
a point of X, for ra ^ 1. If K is an (w+l)-dimensional CW-complex with
but one vertex, and Kn~x is its (n—l)th skeleton, we showed that the
group (K,Kn-x)m{X,XQ,xQ), written (n-\-l,n— l)m, is a central extension
of J^+Vm+n+i) by H"(7Tm+n), where H*{G) = H*{K,Z«-i; 0), and

for any space X. Here we mean by an extension of G by Q, a group E
with subgroup G such that E/G = Q. In the first part of this paper
(Chapter 5) we calculate this extension for a finite complex K, deducing
the results (except for the commutators when m — n = 1) from the special
cases K = Sn, K = Sn U en+1. It is found that the extension is non-trivial
in general; for example, if K is the (n— l)th, X the (m-\-n— l)th, suspension
of the real protective plane, then (n-\-l,n—l)m is cyclic (of order four) if
m-\-n > 2. When m = n = 1, the groups may not be abelian: we show
that the commutators are determined by the cup-products in K and the
Whitehead Products in the homotopy groups of X. The method of finding
the extensions is a geometric one, using Whitney's Tube Systems (13).

The second part of the paper (Chapter 6) deals with the Cech theory of
Track Groups (following Spanier (7)), and extends the scope of the exact
sequence of a triple [P, Q, R] (see I, § 5) when the image space X is a
compact ANR or a locally finite simplicial complex (with the weak
topology).

In an appendix we obtain some results on group extensions which are
required in Chapter 5. We study central extensions of an arbitrary abelian
group G by a weak direct sum Q of abelian groups Qa. We show that the
group of extensions, H2(Q, G), is the strong sum of the groups H2(Qa, G) and
a certain subgroup of Hom(Q® Q, G), generalizing a theorem of Lyndon
(6). This enables us to give the structure of (n-\-1, n— l)m in a convenient
way, without imposing restrictions on the space X.

I am deeply grateful to Professor J. H. C. Whitehead for his advice and
assistance.
Proc. London Math. Soc. (3) 5 (1955)
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CHAPTER 5

STRUCTURE OF TRACK GROUPS

10. The groups {Kn+1,Kn-1)m(X,x0;x0)
Let K be a finite CW-complex with only one vertex e°, let Kp «e its

^-skeleton, and let (p,q)m = {&, K*)m(X, x0; x0) for all q < p. Then we
have seen (I, § 5) that there is an exact sequence

8*
-+(n,n— l)"^1-*- (n+l,n)m

,n—\)m^> (n,n—l)m-+ (n

and have shown (in (I, § 9)) that there is an isomorphism

B: (k,k-ir-

such that S* = +0 - 1 o 8 o 6, where 8 is the coboundary operator in the
cochain sequence of the complex K, and so also (with a natural identifica-
tion of Ck{K) and Ck(Kn+1, K71-1) for k = n, w+1) in the cochain sequence
of the pair [Zn + 1 ,Zn-1] . Thus, if Hk{G) is the jfcth cohomology group of
the pair [Zn+1,Zn-1] with coefficients in G, i*{n+l,n)m « Hn+1(irm+n+1),
and j*(n+l,n— l)m « Sn(rrm+n) (identified with a subgroup of Cn{7Tm+n)).
Let 6 be the first isomorphism, and use 6 for d \j*(n-\-l,n— 1) for the
second. Then in (I, § 9) it was shown that (n+1, n— 1 )m is a central extension
of ̂ -1firn+1(7rm+n+1) by d-xHn{irm+1^. We proceed to determine this extension.

10.1. Description of a central extension
Let E be a central extensionf of an abelian group G by a weak direct

sum Q of abelian groups QK. This corresponds to a unique element of the
abstract cohomology group H2(Q, G) (see (4), or Appendix), in defining
which the operations of Q on G are trivial. Now we show in the Appendix
that JS2(Q, G) has as a direct summand the strong sum S* H2(Qa, G),
embedded in a natural way, and that the other summand is mapped
isomorphically into Hom($ ® Q, G) by a certain homomorphism defined
from the commutators of E. To specify E, it suffices to determine the
subgroups which are extensions of G by each Qa in turn, and to determine
the commutators of E.

If Qa is cyclic, of order q, the extension of G by Qa is necessarily abelian;
if Qa is generated by qa of order p, we may select a representative qa of qa

in E, that is, an element mapping onto ga in the projection E -» Q, and
calculate pqa e G. Then the coset pqa+pG depends only on the extension E
and the choice of qa e Qa. The determination of this coset is exactly equiva-
lent to determining the extension.

f That is, 0 is a subgroup in the centre of E, and E/O = Q.
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The extension of G by Qa is called trivial if it determines the zero element
of H2(Qa, G). In this case the extension contains a subgroup isomorphic
to Qa, and which projects isomorphically onto Qa under the projection
E -+ Q. Thus the extension of G by Qa is isomorphic to the direct sum
G+Qa in a natural way.

In our case, we have essentially a central extension of Hn+1(7Tm+n+1) by
Hn(TTm+n). The latter group has a decomposition

where Hk is the kth integral group of the pair [Kn+1, Kn~x] and + denotes
direct summation.

More explicitly, we can take 7Tk(K
k, Kk~x) for the integral cochain group

Ck, k> 2 (if k = 2, 1, we must 'kill' the operations of TT^K1), as in (11)).
Then Cn~x = 0, and Cn, Cn+1 are finitely generated free abelian groups.
As in (5), we can choose bases for Cn, Cn+X such that Cn has a basis con-
sisting of cocycles ui} and cochains bj such that 8b j = pj Zj, for some integers
Pp and some members zi of a basis for Cn+1. Then Hn(-7Tm+n) can be identified
with the kernel of 8: Cn <g> 7Tm+n -> Cn+1 ® irm+n) where S(c ® g) = {8c) <g> g.
Hence Hn(7Tm+n) is the direct sum of groups^ ® irm+n « 7rm+?l5 and of groups
bj <S) ftTTm+n* where we denote by pG the subgroup of G of all elements of
orders dividing p. By a theorem due to Priifer, such groups pG are always
the weak direct sum of cyclic groups; therefore we can express Hn(7rm+n)
as a weak direct sum of cyclic groups, generated by classes of the type
bj <S> gj (where p^g^ = 0), and of isomorphs of 7rm+n. We shall determine
the extensions by each of these summands, and find the commutators. In
(10.5) we shall give a system of generators and relations for the extension.

10.2. Commutators of (n+ l,n—l)m

We have seen that (n-\-1, n— l)m is abelian if m > 1; it is also abelian if
m = 1 and n > 1.

LEMMA 10.21. (n-\-l,n— l)m is abelian if m-\-n > 2.

By the Factor Theorem (I, 4.2), {Kn+*,Kn-x)x « (Zn+1/^n~1, e0)1, where
K^-^IK11-1 is the complex obtained by shrinking Kn~x to a vertex e°. Let
K' = Kn+1/Kn~x, and suppose that K' is of the same homotopy type as the
suspension (L) of a complex L. Then we will show (12.1) that there is a
vertex e of (L) such that [K', e°] is of the homotopy type of [(L), e]; there-
fore (K', e°)x « {(L), e)x. But there is a vertex e' of L such that e e <e'> c (L),
and <e'> is contractible, and it follows from theorems in (I, 7.3) and (I, 8.2)
t h a t (K' °)i >, e)i « ((L), (e'))x « (L, e'f,

and so these groups are abelian.



288 M. G. BARRATT

Now K' is (n—1)-connected, and of dimension less than n+2, and it
follows from Chang's results on ^4^-polyhedra (2) that if n > 2 K' is of the
homotopy type of a union of Elementary A^-polyhedra, and, in particular,
of spheres Sn, Sn+1, and spaces Yn+1 formed by attaching an (w-fl)-cell to
a sphere. These spaces are clearly each of the homotopy type of the suspen-
sion of a similar space of one less dimension, and so therefore is their union.
This is also true when n = 2.

In fact, J. H. C. Whitehead has proved that if K is an (r—l)-connected
complex of dimension not exceeding 2r— 1, then K is of the homotopy type
of the suspension of a complex L of less dimension than K (an unpublished
result). We can prove, assuming this theorem, that {n-\-k, n— I)1 is abelian
if k < n.

The only group which may not be abelian is thus (2,0)1, a central exten-
sion of H2(TT3) by -flri(7r2). We pair TT2 with itself to TT3 by the Whitehead
Product (a commutative pairing in this dimension) and so define the cup-
product pairing

written U (u ® v) = u U v = — (v U u), for u, v e H\TT^). Recall that
6>j*: (2, 0)1 -+ H1(TT2) has kernel d^H2^); pick elements u, v such that
dj*u = u, 6j*v = v (we say u, v are representatives of u, v), so that

u-\-v—u—v

is an element of ^-1^2(TT3) which depends only onu, v.

THEOREM 10.22. In (2,0)1 let u, v represent u, v e H1^). Then

u-\-v—u—v = 6~x{v U u) = — d~\u u v),

where the cup-product is defined using the Whitehead Product to pair TT2 with
itself to 7TZ.

The proof will be given in § 11.4.

10.3. The extension by Hn <g> -nm+n

We shall show that, except for the non-commutative nature of (2, 0)1, the
extension of Hn+1(7rm+n+1) by Hn <g> 7Tm+n is trivial. Since Hn is free abelian
and finitely generated, we can choose a basis ui} so that any element u has
a unique expression as a sum ^ ^ ^ (the t's being integers). Then any
element of Hn <g> /nm+n has a unique expression as a sum

2 Ui ® 9i> 9i £ ^m+n-

Now a cohomology class u e Hn determines a homotopy class of maps
Kn -> Sn (in which Kn~x is mapped to a point w) which can be extended
over Kn+1. Let u\\ [Kn+1, K71-1] -> [8n,w] be a map, such that if sn is a
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chosen generator ofHn(8n), ^*(sn) = ut e Hn, and consider the commuta-
tive diagram:

{Sn,w)mX {n+l,n-l)m£> (n,n-l)m

Cn(Sn-ir ) u* Cn(Kn-7T )

in which the homomorphisms 0 are isomorphisms onto. Then

Therefore, if we define (ui}g) — u'i*6-1(sn <g> g), {uiyg) is a representative
for ut (g) g, is linear in g e 7Tm+n (since u* and 6 are homomorphisms) and
defines an isomorphism . .

g->(Ui,g)
of 7Tm+n into (TO+1,W—l) m .

THEOREM 10.31. / / m-\-n > 2, (?&-}-l,?i—l)w Aas a summand which is
mapped isomorphically on Hn ® tTm+n by 6 o j * , and hence the extension of
^n+1(7Tm+n+i) ^ this summand of Hn(7rm+n) is trivial. Also (2,0)1 has sub-
groups mapped isomorphically on each summand ut ® 7Tm+n of Hn <S> ^m+n

by 6 o j * .

This gives (n-\-l,n—l)m if Kn+1/Kn-1 is torsion-free, except for the
commutators of (2,0)1.

10.4. The extension by Hn+1*7Tm+n

Since K is a finite complex, Hn+1 is finitely generated, and we can
decompose the summand of elements of finite order into a direct sum of
cyclic subgroups. Let (w+l)-cocycles zi be such that their cohomology
classes are of order p^ and generate these cyclic summands, so that there
are fi-cochains 63- such that 863- = Pj zr Let pirm+n be the subgroup of irm+n

of elements whose orders divide p; then (see Appendix; also (14)), pTrm+n

is the weak direct sum of cyclic groups of orders qv dividing p; let j8v be
chosen generating these cyclic subgroups. Then any element of Hn(iTm+n)
can be expressed as a sum of ui <S> gi and of multiples of the cohomology
classes of bj <g) j83>. Let curly brackets { } denote the cohomology classes
of the contained cocycles; then, having chosen the ui} bp PJiV, any element u
has a unique expression as a sum

u = 2 Ui <g> g< + J tjAbi ® ft,v}>
i j,v

where gi e Trm+n and 0 < tjv < qjv, the order of fii)V. Since we have calcu-
lated the commutators of (n-\-l, n— l ) m and the extensions of Hn+1(7Tm+n+1)
by the groups ui <g) 7rm+w, it remains only to calculate the extensions by the
cyclic groups of orders qjv generated by {6̂ - (g) f}iiV}.

5388.3.5 U
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THEOBEM 10.41. Let {&,- <g> ftv} be as above, so that ^>v is of order qjv

dividing pj} and hbj = PjZ^ Then we can choose (6J}j3;>) e (n-\-l,n— l)m

such that 9j*(bp ft>v) = {b} <g> ft-„}, and

where A^+n is given in Table 1, and y*fij>v = jfyjV o ym+n
} if y2 e TT3(S

2) is the
class of the Hopf map and yk is the non-zero element of TTk+1{Sk).

TABLE 1

A m + n

p == 0 mod 4
p = q == 2 mod 4
q odd

m-f-n = 2

0
g/2
0

m-\-n > 2

0
1
0

In this table, notice that q divides p\ therefore, if q is not odd, either
p = q = 2 mod 4, or else p = 0 mod 4, and hence all cases are covered.

When m-\-n > 2, we can express this result in terms of Steenrod Squares.
In these cases, y*(jS) is of order two if it is not zero; following J. H. C.
Whitehead (12), we define a pairing of irm+n with itself to 7rMl+n+1: let
^: TTm+n -*• ™m+n> *n e group reduced mod 2, be the natural map, and choose
a basis gp for the vector space nm+n. Map

which is easily verified to be a single-valued homomorphism, and precede
this with the map

k ® k: irm+n (g)

This is the required pairing: it is shown in (12) that it does not depend on
the choice of the basis gp. In particular, it maps /J <g) jS to y*(/J). With this
pairing, form Sqn_v which we write as s1: Hn(irm+n) -> Hn+1{-nm+n+1)-

COROLLARY 10.42. / / (bjtpjiV) is as in Theorem 10.41, then

For the actual value of s1^- <g) jS^J is \Pj{Pj—l){Zj <8> y*fylV}, which is
zero if pi is odd (since {zj} is of order p^) ©r iipj is divisible by 4 (since y*(Pjv)
is of order two) or if qjv is odd (since y*(f3jtV) is zero); in the remaining cases,

To prove Theorem 10.41, it is sufficient to consider only the universal
example, Y%+1 = Sn U en+1, a CW-complex formed by attachingf an (n+1)-
cell to an n-sphere by a map of degree p > 0; this plays the part of Sn in

t See (9), § 8, p. 235.
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10.3. Let b, z be generators of Cn(Y%+1), Cn+1{Y^+1) respectively, such that
86 = pz. Consider the integral cochain bi in Cn = Cn(K)\ this determines
a class of maps Kn -> Sn such that Kn-1 is mapped to a point w, and the
obstruction cocycle to the extension over Kn+1 is Bbj. Now embed 8n in
7£+1 (where p = pj); the obstruction to the extension vanishes, and we
can take a cellular map

which induces chain mappings 6'*: Ck{Y%+1) -> Ck = Ck{K) {k = n, n+l)
such that 6'*(6) = bj} b'*(z) = z,. (This last follows from the fact that 6'*
is a chain mapping, and so b'*(pz) = 6'*(S6) = Bb'*{b) = 86;- = ^z,-, so that
in the free abelian group Cn+1, p{Zj—b'*(z)) = 0, and hence zJ—b'*{z) is
itself zero.)

I t follows from an argument similar to that in (10.3), that Theorem 10.41
is true for any complex K if it is true for the complex 7£+1. Now suppose
P E 7rn+m(-̂ ) is °f order q dividing p. Then j8 is represented by a map
jS': 8n+m-*X which has an extension over Y%+m+1 to X; let t& generate
7Tk(S

k) for all A;, i* generate 7Tk(Y
k+1), the image of ik under the injection

8k->Y*+1. ThenwehaveamapjS":7^+TO+1->Xsuchthatj8*(^+m+1) = j8;
consider the homomorphism

if Theorem 10.41 is true with i™+n+1 instead of fa v {q = qj>v), it is also true
for fiiiV itself. We have proved:

LEMMA 10.43. Theorem 10.41 is true if and only if it is true in the special
case K = r*J+1, X = Y%+m+1, where q divides p.

Now let

Since Y%+1 is of the homotopy type of the suspension <F"), it follows from
the argument in the proof of Lemma 10.21 that

and hence by an inductive argument that for all m > 1, n ^ 1,

We showed in I (§ 8.1) that there was a homomorphism

where the group on the right is obtained by replacing P, Q, X by their
suspensions, and rc0 by a point x% in the suspension of x0. Take P = 7£+1,
Q = e°: then Q* is contractible, and (by I, § 7.3) the group on the right
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is isomorphic to (Y™+2, e°)m(X*,x*;x*). Therefore we have a homo-
morphism, which we shall also write S*,

o*. Qn+m _̂ _ Q.n+m+1

Fix the integers £>, q (where q divides p), and set UN = vk(Y
N). Then the

suspension 8* is a homomorphism
g*. rpv _̂  pjiv+i

regarding the homotopy group as the Track Group of a sphere. Let

I/J: Hn-*(K; G) -> ^-^{(K); G)

be the suspension isomorphism, where (K) is the suspension of K, and
define, for i = 0, 1,

where S% is the homomorphism induced by S* on the coefficient group.
Then we have a diagram which is easily verified to be commutative:

0 -* H»(Y»; n»+J) ^ G;q °X* H»-i(Y*; U^1) •+ 0

Notice that the horizontal sequences are exact at GpQ (N = n-\-\, n), that
0-1 is an isomorphism into, and 6 o j * is onto.

Now TL^T_1 is cyclic of order q, generated by i^'1; therefore

is always an isomorphism onto, and, since ip is always an isomorphism
onto, so is E*. Next, II$ is zero if g is odd, and cyclic of order two other-
wise, if N > 3, generated by y*{iqT~1), so that S* and hence JE/J ^S a n

isomorphism onto if n > 2 in the diagram. By the 5-lemma $*: Gp>q-> G1^1

is an isomorphism onto if n > 2. Also ITf is generated by iq o y = y*(ig)
(where y is now the class of the Hopf map), so that 8*: IT̂  -> Ylf is onto.
The kernel of this homomorphism is generated by 2y*(i%). Therefore we
have proved

LEMMA 10.44. S*: G%q -» G^1 is an isomorphism onto if n > 2, and, if

n = 2, is onto with kernel in d^H^Y^; Yl\) generated by the class ofz<g> 2y*(^).

I t follows from this lemma that if the first column of Table 1 is correct
(i.e. A£ q is as listed), then the second column is also correct. The effect
of the last two lemmas is to reduce the verification of Theorem 10.41 to
the finding of the structure of G\q. We now reduce this further, to the
case q = p.
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LEMMA 10.45. We can deduce the structure of G™+n from the structure of
Gl>r (all r). That is, if A£r in Theorem 10.41 is zero or \r according as r is not
or is congruent to 2 mod 4, then A^gn is given by Table 1.

Let b, z generate the integral groups Ck(Yp) for k = 1, 2 respectively,
and be such that 86 = pz; let b', z' be the corresponding generators of
Ck(Yp), k = 1, 2, so that 86' = qz'. Assume q divides p, and let r = p/q.
Then there is a map Jc:[Y2, eoj ^ [72} eo]

such that k maps 81 c YP homeomorphically on S1 c Y*, and the 2-cell of
Yp with degree r on that of Y*. Then & is a cellular map, inducing homo-
morphisms k*: Ck{YD -> Ck{Yp) such that 8 o k* = k* o 8, and k*(b') = 6,
and hence k*(z') = rz.,

k also induces a homomorphism of the exact sequence of [Y%, S1, e°] into
that of [Y%, S1, e°] (see (I, § 5)), and clearly

0 o k* = k* o 0: (S1, e0)1 ̂  Cx(rj; TT2),

Suppose that (6',i|) 6 ^|>9 has been found such that

Aj*(6', tj) = {6' ® ij}, g(6', »|) = AJ)30-i{
T h e n dj* k*(b', »§) = &*{6' ® »»} = {6 ®

therefore, if we take k*(b', i^) as a representative for {6 ® i^}, we have, if q
is odd or divisible by 4, qk*(b', i\) = 0, as asserted in Table 1 (which gives
A^g = 0 if q is odd orp is divisible by 4). Suppose q = 2 mod 4; then there
is an integer 5 such that (^3/2+^5) is 0 or q/2 according as p = 0 or 2 mod 4.
Consider the element

where s is to be zero if q is not congruent to 2 mod 4; this is another repre-
sentative for {6 (8) i%} (i.e. is mapped on this by 6 o j * ) , and

which is the assertion of Theorem 10.41 (using Table 1) in this case. This
proves the lemma.

It only remains to compute GpP for all p: this will be done in the next
section (§ 11).
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10.5. (n+l,n— l)m given by generators and relations
Since K is a finite complex, the integral cohomology group

is finitely generated, and can be decomposed into the direct sum of a free
abelian group and a finite number of cyclic groups. Let a set of generators
wk, Zj of cyclic summands be chosen, where the wk's are of infinite order,
and Zj of order pp j = 1,..., the coefficients of torsion. Let the free abelian
group H^K71*1,^-1) have a basis uP For eachj choose a decomposition
of PjTTm+n into cyclic summands (the weak direct sum), where pO means
the same as in (10.1), and let fav, of order qjv, be a typical generator of
one summand.

We denote by g, g',... elements of 7Tm+n+1, <x, a,... arbitrary elements
of TTm+n. Choose an tt-cochain 63- such that (l/p^Bbj is in the class Zp Then
any element of ^ w + 1 ( Z n + 1

J ^ - 1 ; 7 r m + n + 1 ) = Hn+1 <g) 7rm+B+1 has an expres-
sion as a sum ^ ^

where the gk's are unique, and the cosets of Pj Trm+n+1 containing g'j are
unique. Also any element of Hn(Kn+1, K71'1; 7Tm+n) has an expression as a
weak sum ~ « o

i j,v

where zjv * ^ j v is the class containing bjv ® pi>v, 0 < tjv < qjv, and the
a /s , tjv's are unique.

We construct a group isomorphic to (n-\-l,n—l)m. Let w be as above,
and take new symbols (ui} c^), (z3-, j83>). Let u be given by

u = 2 K . ai) + 2 hAzP Pi,v)>

whenever u = 2 ^i ® «i + 2 ,̂v z? * î j.v *s a n element of

Hn(Kn+1 Kn~x-7T )

When m-\-n = 2, we lay down a fixed order in which the sum u is to be
taken: for it follows from our definition that there are only a finite number
of non-zero terms. Then our group is to be generated by these elements
w, u, subject to the following relations:

1. The subgroup generated by the w's is abelian, and isomorphic to
#n+1(Z™+1,Z*l-1;7rrn+n+1) in the obvious way.

2. For all u, w, u-\-w = w-\-u.
3. If u is as above, u = 0 if and only if ĉ  = 0, ti>v = 0, for each *, (j, v).
4 (a). (m-\-n > 2): If u is as above and

*' = 2 K> a'i) + 2 tiAzj>Pi,v)>
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then u-\-u' = u"-\-w, where

295

li.v = h,v-\-$,v o r —<li,v> according as titV+t'jiV < qj>v or not,

4(6). (m = n = 1) If u, u' are as in 4 (a), then
where w", ^ are as before, and

u 2
>'X

u2 {
(3>'X'3»

where ci is a cochain in the class ui3 [̂ , ry] is the Whitehead
Product, and brackets { } denote cohomology class.

This group is an extension of Hn+1(7Tm+n+1) by Hn(irm+n) if we define a
projection onto the latter such that u^>u, w -> 0. That the group is
equivalent to the extension (n-\-l,n— l)m follows from Theorems 10.22,
10.31, 10.41, and the discussion in the Appendix.

10.6. Some special cases

We tabulate the Track Groups (n-\-l,n—l)m in certain simple cases,
particularly the cases when X = Sk, a sphere. Let Zp be a cyclic group
of order p, and Zw an infinite cyclic group. The generators of the summands
are not described explicitly; in most cases they are easy to recognize (see
the previous section).

10.61. Gg+m= (r£+1,e°)m(7£+m+1,e0;e°).

Let p = 2ap0, q = 2bqQ, where p0, qQ are odd, and let d = GCD(p,q).
Then d = 2cd0, where d0 is odd and c = Min(a, 6).

TABLE 2

Gla

k = 2

k > 2

a > b = c
a = b = c
c — a < b

a > b = c
a = b = c
c = a < b

c = 0

Zd+Zd
Zd+Zd
Zd + Zd

Zd
zdzd

c = 1

Z<Ld + Zd
Zzd+Zid
Zd+Zd

Z2 + Zd

Z2d

z2+zd

c > 2

Z%d+Zd
Zd+Zd
Zd + Zd
z*+zd
zz+zd
Z^ + Zt
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10.62. S{k\n-\-m\p) = (Y%+1,e0)m(Sk,e°;e0), k
We suppose k > 1: all these groups are trivial for k = 1.

TABLE 3

S(k;n-\-m;p)
k = n+ra+1 > 2
A; = n-\-m > 3
k = n-\-m = 2
A; = n+wi— 1 ^ 3
A; = n+m— 1 = 2

odd s= 2 mod 4

z

j» = 0 mod 4

z,

10.63. Other A^-polyhedra, n ^ 3
An ^-polyhedron is an (%— l)-connected finite CW-complex of dimen-

sion not exceeding n-\-2. According to Chang (2), if n ^ 3, an ^^-poly-
hedron is of the same homotopy type as a cluster (that is, a union of spaces
with a single common point) of elementary A^-polyhedra. These are the
spaces 8n, 8n+\ Sn+2, Y%+1, Y%+2 (p a power of a prime), and spaces of the
four varieties:

B^ = Sn U en+2,

BG(s) = Sn u 8n+1 u en+2, s = 2«,

5 (j- 5) = -Sfifs) U en+1 /" = 2p 5 = 2a.

In 5 4 the (w+2)-cell is attached essentially; in BG, by a map of the form
(a+6), where a is an essential map on Sn, and 6 is a map of degree 2q on
#n+i. j n jg7 the (w+l)-cell is attached to 8n by a map of degree 2».

We compute the groups (B(, e°)m(Sk, e°; e°) for A; ^ m-\-n (except for low
values of m-\-n); if A; > m-|-?i+2, the group is trivial. Let t = 4, 5, 6, or 7,
and consider the sequence:

8* i* j * 8*
—> (Bi, iSn)tn(Sk, e°; e°) —> {B,, e°)m(Sk, e°; e°) —>• ('S'"', e°)7n(S , e°; e°) —>-.

I t is easy to see that i* is onto when k > m-\-n, and also when k = m-\-n,
and£ = 5,7; when & = ra+wandtf = 4,6,j* maps onto 27rm+n(/S

fm+74) = £«,.
The groups are abelian, as Bt is of the homotopy type of the suspension
of an analogous space one dimension less (n ^ 3); therefore when k = m-\-n
and t = 4, 6, (^, e°)m(^fc

5 e°; e°) = i*(Bt, S
n)m(Sk,e°;e°)+Z00, since any

abelian extension of a group by a cyclic infinite group is isomorphic to the
direct sum. Therefore, in this range of k, it remains only to compute the
image of i*.

By the Factor Theorem (I, 4.2) (B(, S
n)m « (B(/S

n, e°)m which is given
by the Cluster Theorem (I, § 7.4) in terms of groups already computed. I t
is not difficult to find the homomorphism
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directly from the definition, and it is given in (I, § 9) in terms of Steenrod
Squares. The results are tabulated below, in which table 2*>, 2s are as in
the definitions of B(.

TABLE 4

Bt,e°)m(Sk,e°;e0)

k = m + n + 2 > 6
k = m+n+1 > 5
k = m+n > 7

t = 4 t = 5

z,

t = 6 t = 7

11.1. Tube systems in P

In § 11 we compute G%>p and the commutators of (2,0)! by purely geo-
metric means. Instead of writing down explicit homotopies (which would,
in any case, be extremely difficult) we use an illuminating but intuitive
method of Whitney's.

In (13) Hassler Whitney defines a tube in / 3 as a map T: a2xSx ->• P,
where a2 is a circular disk (the points {yx, y2) in the Euclidean plane such
that y\-\-y\ ^ 1), and where T satisfies the conditions

(i) T is orientation preserving and 1-1 into, a C2 map with non-
vanishing Jacobian,

(ii) T is linear on each cross-section a2x 6 (6 e S1),
(iii) T(a2 x S1) does not meet Jf3.

We shall vary this definition by using rectangular patches instead of
circular disks. A tube-system in P is a collection of disjoint tubes Tl3..., Tn

(we use the same letter and same name 'tube' to stand for the map T and
its image T(o2x S1). We wish to describe how two tubes are intertwined,
and how one tube is twisted: Whitney calls the circles ^ = Ti(xi X S1)
(where xi e a2) filaments, and defines LC(Ti} Tj) as LC^, Cj) for i ^ j (this
clearly does not depend on the choices of xit x^), and LC^), the twist of
the tube Tit as LC(£i} Q , for filaments of the same tube with any choice
of xi T^ x\. He shows that these are invariant definitions, and also that
there is an isotopic deformation of a tube T into a canonical tube with
the same linking coefficient. Always, when we speak of deforming a tube,
we mean deforming by an isotopy.

A tube-system mapping is defined by a system of tubes Tl5..., Tn, and n
maps ai: [a2, a2] -> [X, xQ] (i = 1,..., n) representing elements ĉ  of

The mapping <f>: [ 7 3 , 7 3 ] -> [X,x0],

representing an element of TT3(X, X0) = TT3, is defined over each T^a2 X S1) by

<f>Ti(yv y2,6) = a ^ y2), (yv y2) ea2, de S1,
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and maps the rest of / 3 to x0. This is continuous since it is continuous
over the closed sets T^a2 x S1) and over the closure of the complement of
all the tubes. We shall describe this map cf> by saying that <f> maps each
cross-section of the tube Tf by ai} the rest to x0; a cross-section is the
rectangle T^xd), for any 6 e S1. «

We notice three results of Whitney's. First, if a e TT2, and y*(a) e TTZ is
the composite a o y (y is the class of the Hopf map S3 -> S2), and cf> is a
tube system mapping defined by just one tube T with LC(T) = + 1 , and
a map a representing <x, then <f> represents y*(a).

Secondly, if <j> is the mapping defined by two tubes Tx, T2 such that
LC(T1} T2) = + 1 , but LC{TX) = 0 = LC(T2) (that is, two untwisted tubes
linking once positively), and two maps at representing ai} then <f> represents
the Whitehead Product [<x1} a2].

These are particular cases of the third and serve to explain it. Let II be
any plane in /3, with a chosen direction along its normal (giving the positive
normal) defining 'above' and 'vertical' (with respect to II) in /3. We shall
choose one or other of the faces of 73 as II. A tube system is called standard
with respect to II if each tube Tt in the system always has one filament on
top. In view of the linearity condition (ii) on Tt, this may be replaced by
the slightly stronger condition:

There is a line in a2 which is vertical under the composition of maps
a2 -> a2 X 9 -+ T^a2 X 0), for all 9.

Now select a filament ^ in each tube Ti} and let p: P -> II (the normal
projection on II) carry ^ into the curve ̂  in II. We may simultaneously
deform all the tubes of a standard system into a standard system such that
the curves p^ meet only in isolated points, and there cut each other (or
themselves) orthogonally, so that at each intersection there are only two
curves, or two parts of a curve. The orientation of S1 defines an orientation
of ti and so of p^; if z e II is a point of intersection of p^ and p^ (where
i may be equal to j), these orientations define two vectors vit vj} the positive
tangents to p^ and pt,j at z, respectively. If ^ is above £;- over z, we define
the crossing to be positive or negative according as the ordered pair (vi} Vj)
defines the positive or negative orientation of II.

Let N*j (i T^ j) denote the algebraic sum of the crossings of p^ with pt,j
at which ^ crosses above £y, and let Ntj = JV^+JV^ be the algebraic sum
of all crossings of p^ with p^. Finally, let JŶ  be the algebraic sum of all
crossings of p^ with itself. Then it is clear that iVJ- = LC(Ti} Tj) = iVj
(consider a cylinder orthogonal to II on the curve ̂ »^).

Then Whitney proves that, if a tube-system mapping <f> is defined by
means of a standard tube system Tlt..., Tn and maps ai representing ĉ ,
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THEOREM 11.11 (Whitney). <f> represents the element

which clearly is independent of the ordering of the tubes. In particular,
if arf = a for all i, and N = 2 Nt + 2 Nt p the algebraic sum of all crossings,

i %<i
this reduces to Ny*(oc), since

11.2. Open tubes and junctions
By an open tube we mean a map T: a2xI —» P satisfying the conditions

oflinearity and differentiability ((i), (ii)inll.l). IiT(y1}y2,l) = T(yx,y2,0)
for every (yv y2) in a2, and in addition the tube does not meet /3, then we
may also consider the tube to be the (closed) tube given by

(where 81 is the unit circle in the Argand Plane). In general, we shall
impose conditions upon the ends T(o2x0), T(CT2X 1), and require them to
be specified rectangles, or, as in the case above, to be the same. Also, if a
standard system is defined in the same way, we shall only use standard
systems. The direction of a tube is defined by a vector along / running
from 0 to 1, and we call T(o2x 0) the beginning, T(a2xl) the end, or say
the tube springs from the patch T(a2 X 0), and terminates on the patch
T(a2Xl).

Whitney (loc. cit.) defines positive and negative q-junctions in P: for
convenience, we modify his definition slightly. Let E.P-+P be an
orientation preserving linear map; we shall refer to the point (tx, t2, t3) of E,
meaning the point E(tv t2, t3). In the face t2 = 0 of E, take q rectangular
patches a3-: o-

2 -> E, similarly situated and arranged in a row parallel to the
edge t2 = tz = 0 so that the directions y1} y2 increasing in a2 are parallel to
the directions tx, t3 increasing of E; for example, let CT3- be the patch

ov(</i,2/2) = E((4j-3+2y1)/4q,0,(l+2yt)l4).
Now suppose that q disjoint tubes Tx,...,Ta spring from the patches a1}..., aq,
so that Tj(y1}y2,0) = Oj(yx,y2): then we shall call E a positive q-junction.
A negative q-junction is defined similarly, with an orientation reversing
linear map E: P -*• P, and with tubes terminating on the face t2 = 0 of E;
for example, we may reflect the above construction in the plane tx = \,
reparametrizing the tubes accordingly.

We now generalize our concept of tube system, to include collections of
closed tubes, junctions, and open tubes, such that every open tube begins
and ends on junctions or the face y2 = 0 of P, and no tube or junction
meets any other face of P.
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A mapping of such a tube system is defined by assigning to each tube
an element of TT2 and a map representing that element (satisfying certain
conditions). We map each cross-section of a tube in the way defined for
closed tubes, and map the exterior of all the tubes and junctions to the
point xQ. It may then be possible to extend this map over each of the
junctions in such a way that the boundaries (except for the patches on one
face) are mapped to xQ. For example, if E is a g-junction, and tubes T^..., TQ

all spring from or terminate on E, the map of the tubes can be extended
over E if and only if oc1-\-...-\-aq = 0, where Tx is mapped by means of ai

representing c .̂ We shall not consider situations in which this extension
is not possible.

Let tfj: [/3, ft] -*• [K3, K2] be the characteristic map of some 3-cell in the
complex K3, such that all faces of / 3 except the face y2 = 0 are mapped to
a vertex e°. Then a tube system in P , with the ends of open tubes on no
face except y2 = 0, defines a tube system in the 3-cell, with open tubes
terminating or beginning in K2. Then it may happen that we can map
K3 -> X so that we induce a tube system mapping of /3; in this case, we say
that we have a tube system mapping in the 3-cell.

Let E+, E_ be respectively a positive and negative q-junction in some
system. We may deform the patches on their faces so that they are both
given by the explicit formulae above (see the second paragraph of this
section). Then it may happen that in a tube system mapping <f>,

(f>E+(tvt2,t3) = ^EL(6i>*2>y>

in this case, we say that the junctions have been mapped similarly. We
now show (following Whitney) how we can deform </>rel/3 into another
tube system mapping in which the junctions E+, E_ have been eliminated,
at the expense, perhaps, of introducing closed tubes. Observe that a
deformation of the tube system induces a deformation of <f> in an obvious
way; we may deform the system so that the two junctions are back to
back, that is, w . > w . .

slightly relaxing our condition that junctions and tubes were to be disjoint.
Consider the map <f>' defined by an identical tube system, except that
opposite patches on E+ and E_ have been joined by open tubes, parallel
to the edge tx = tz = 0 of both junctions, and the tubes suitably re-para-
metrized (so that the tube terminating on ai in E_ now runs through and
is part of the tube springing from ai on E+): <f>' is to agree with <j> outside
the junctions E+, E_ and inside is to map each cross-section of the new
parts of the tubes as their ends are mapped, and the rest to xQ. Then we
say that <f> ~ <j>', the homotopy being constant outside the junctions; it is
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only necessary to define the homotopy inside the junctions, and such a
homotopy is given by

f <f>E+(tv 0, y if 0 < t2 < t,

[<l>E+{tvt2-t,t3) if« < «2 < 1,

\ <j>E_{tv 0, ts) if 0 < t2 < t,

\<f>E4h,t2-t,t3) i f « a < « < i .

This process we call eliminating the similar junctions E+, E_. In our cases,
all junctions will be paired with a similarly mapped junction of opposite
sign: we can therefore eliminate them all in turn, obtaining tube system
mappings based on closed tubes, which can be evaluated by Whitney's
formula.

11.3. On extending homotopies in a complex
We define a construction of general use; suppose f0: K

n -> X, where K
is a simplicial or a CW-complex, and /0 has an extension f'o over Kn+1.
Then it is known that a homotopy f( also has an extension f't over Kn+1;
we describe a particular way of extending ft.

First, if f'o: I™*1 -> X, and ft: I
n -> X, where / 0 = /'01 /"X 0, then we

have an extension off( to f't given by

,,, > lfu-2Vn+1)(yi>-> Vn) ^ 0 < yn+1 < \tyy l
so that /Q is the original map, and f[ is given by

,, ( ) = ffd-2vn+l)(yv-> Vn) if 0 < yn+1 < 1

l/'o(yi.-..,y»,2yn+1-l) i f | < y n + 1 < l .

Now suppose that K is a simplicial or CW-complex, L is a closed sub-
complex, and every (w-|-l)-cell or simplex has a characteristic map

Kn+1

which is a homeomorphism of In+X—/n+1 onto the interior, and maps
in+1—InXO into L. For example, let n = 1, and let L be a subcomplex
containing all the vertices: then every simplex has such a map, where
<j)(P—IxO) is a vertex, and 7x0—7x0 is mapped homeomorphically on
the rest of the boundary. Again, if K is a connected CW-complex, and L
is a vertex, we can replace K by another complex of the same homotopy
type, L by another vertex, in which the above condition is satisfied.

Now let g'o: [K^1 U L, L] -> [X, x0], and let gt: [Kn U L, L] -> [X, x0] be
a homotopy rel L of g0 = g'o | \Kn U L,L]. Let
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and letf't be as above, for each cell of Kn+1; then we can define g\, an exten-
sion of gt, as the unique map such that g't o cf> = f't, for each cell of Kn+1.
We shall describe this operation as taking up the homotopy gt. Clearly g'x is
given over Kn U L by gt, and over each cell of Kn+1—L by the equations
for f[ above, with f'x, / '0 replaced by g'x o <£, g'o o ̂ , / , by & o (<£ | 7?l x 0).

11.4. The commutators of (2,0)!
If K = K2 is a finite, connected CW-complex, we can suppose without

loss of generality that K is a finite, connected simplicial complex with the
weak topology, also of dimension 2 ((9) Theorem 13). In this simplicial
complex, give the vertices a simple order: then a simplex is uniquely
described by its vertices in this order. Also there is a tree T in the
1-skeleton which contains all the vertices of K (see (8), p. 322), and, since
T is contractible to a vertex, we have seen (I, § 7.3) that

(K,TnX,xo;xo)tt(2,O)\

Any cocycle u e C^K, T; TT2), which is unique in its cohomology class,
determines a homotopy class of maps [K1 x I, T x 7 U K1 x 7] -» [X, x0]
which have extensions over K2Xl carrying K2X 7 to x0; let/: K2xl -> X
be such an extension, and let g be similarly defined from a cocycle v. We
construct/, g, and the commutator f-\-g—/—g in a certain way, and prove
Theorem 10.22.

Let J 1 be the closure of P—7x0, and select a map

I/J: [ 7 2 , 7 X 0 , J1] -> [ABC, dABC,A]

which maps the interior of I2 homeomorphically on the interior of the
2-simplex ABC, and 7x0—7x0 homeomorphically on

dABC-A = (AB u BC u AC)-A,

where A is the first vertex of ABC. For convenience in the diagrams, we
shall illustrate all constructions and homotopies on ABC X 7 with diagrams
referring to Px7: these are to be mapped to ABCxI by the map ^ x 1
(1 being the identity map 7-» 7). The face 72x0 will be known as the
bottom, and the face (7xO)x7 as the front; notwithstanding this con-
vention, let the plane II of (11.1) be (0 X 7) x 7, the left face of the cube:
we construct tube systems in P x 7 which are standard with respect to II.

Take a positive 3-junction E in P x 7, the face t2 = 0 to the front, the
face tx = 0 to the left, nearest II; this is projected by </r X 1 into a junction
in ABCxI. In each ABxI, select a patch a, with edges parallel to
ABxO and Ax I, and (if tp is a suitable homeomorphism) select corre-
sponding patches

ax C (0X I^ABX I), a2 C (I(JX l^BCx I), a3 C (</rX l
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which project homeomorphically onto the patches on the faces of the
prism ABCxI. In Pxl, take three open tubes springing from the
junction E and terminating on these patches: we may arrange the situation
so that these run parallel to IT and to the bottom of the cube: these, pro-
jected into ABCxI define open tubes running from the junction to the
rectangular faces of the prism (see Diagram 1).

E

a a •i

Side Top
DIAGRAM 1

Axl Bxl Cxi Axl
Front

We choose a patch a in each ABxI (all 1-cells of K), choose a \p for
each 2-simplex of K so that it is linear on each ip-^ABxI), a junction
in each ABCxI, and carry out the above construction for each prism.
Each simplex is to be oriented by the ordering of the vertices: each patch
a is to be oriented consistently with the rectangle ABxI; then the open
tubes above determine orientations of the patches ax, o-2, oz which are the
same for ax, a2, but the opposite orientation for <r3 (for the orientation of
I2 X 0 determines an orientation of ABxI, BCxI, CA X /, and the latter
is the opposite orientation to the one chosen).

Now the cochain u e CX{K, T]7T2) determines an element u(AB) of TT2

for each simplex AB, which is zero if AB c T; if u is a cocycle, then for
every simplex ABC,

u(AB)+u(BC)-u(AC) = 0.

Select a map^5: [a, d] -» [X, x0] which represents u(AB) for each 1-simplex
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AB, choosing the constant map xQ if u(AB) = 0. Extend fAB over ABxI
for every simplex, by mapping the rest of ABxI to xQ. Then this is a
map KxxI->X such that {K1 X I) U T x I is mapped to x0. Extend this
map over the tubes in ABCxI, by mapping each cross-section of each
tube by the same map as on its end patch; these are maps representing
u(AB), u(BC), and • -u(AC), and since u is a cocycle this can be extended
over the interiors of each junction. We map the rest of K2 XI to x0, and

obtain f:[KxI,KxiuTxI]-+[X, x0],

which is uniquely defined, in its homotopy class, over K1 x I by u. Clearly,
we have a large number of different extensions, one for each set of choices
of the extensions over the junctions.

Now let g be similarly defined, using a cocycle v. Then let h = f-\-g—f—g
be given by

U(pAt) i f o < * < i

. g{pA-U) iff < « < 1.

Then h is also a tube system mapping, defined as follows (see Diagram 2 a).
Divide Kxl into four homeomorphic copies, separated by Kx\, Kx\,
Kx%, and take one of the above tube systems in each; map the first
tube system by /, the second by g, and the third and fourth by /, g after
reflecting in the surfaces i£x§, Kx%. This gives in each ABxI four
patches a+, a'+, a_, </_ vertically above each other with a+ at the bottom
and o'_ at the top (nearest ABx 1). In ABCxI we have, in order from
ABCX 0, E+, E'+, E_, E'_, the first two being positive 3-junctions, and the
second two negative 3-junctions. Each of these are joined by open tubes
to three patches, so that E+ is joined to a1+, a2+, a3>+, and E'_ to o'x_, CT'2)_,

CT'3 _. Moreover, in the map h, E+ and E_, and also E'+, E'_ are mapped
similarly.

This map h represents the commutator, an element of i*(K2, K1)1. We
must therefore deform h into a map carrying K1 XI to x0. In doing this,
notice that any deformation of the tube systems defines a homotopy in
the obvious way. First, on each ABxI, slide the patches a+, o-_ towards
the first edge Ax I, and the other two, a'+, a'_, towards the second edge
Bxl. Now take up this homotopy (in the sense of (11.3)): the effect is to
bend the various tubes in ABCxI slightly (Diagram 26).

We now define a homotopy over Kxxl: identify AB XI with AB XIX 0
in A B X I2 in the obvious way, and let the patches a+, a_ and the patches
a'+, a'_ be joined by open tubes T, T' respectively, so that each runs into



TRACK GROUPS (II) 305

ABxP parallel to ABxOxI and A x P, turns up and runs parallel to
ABxIxO and A X P, then turns back towards A B XIX 0 and terminates
on the upper patch (Diagram 3). Map each cross-section of each tube in

EA

a

•

| a

$0/
r
irM

0"

1
1

a

0

Axl Bxl Cxi Axl
Side Front

(a)

DIAGRAM 2

Side
4xZ 5 x / 0x7 Axl

Front

the same way as its ends, and map the rest of ABx P to x0; do this for
every simplex AB c K1. The effect of taking up this homotopy in ABC XI
is to connect the tubes running from E+ to the tubes running to E_, and the
tubes running from E'+ to the tubes terminating on E'_, and not meeting
(dABC) XI (Diagram 3).

Side
(from

Front

ABxP Side

DIAGRAM 3

Axl Bxl Cxi Axl.
Front

ABCxl

Before going further we must name the tubes; this we do in the obvious
way so that T1} T2, T3 spring from E+ and run to E_, and contain respec-
tively the tubes that used to terminate on a1+, a2+, a3+, and also those
that used to run from ax _, a2 _, cr3 _; T'x, T'2, T'z are the similar tubes running
from E\ to E'_.

Now eliminate the junctions E+, E_, which are similarly mapped, in the
following way. Pull both back (towards Ixlxl in I2xl) until they are
behind the other junctions, turn the lower up and the upper down, and
so oppose them (back to back). Now eliminate the junctions as described
in (11.2), replacing the tubes Tx by closed tubes, each describing a simple
loop parallel to the plane II = (Ox /) X / (Diagram 4a).

5388.3.5
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In this situation the tube Tx does not link anything; moving it slightly
to the left to clear it from E'+ we can contract the tube into a small loop
(still parallel to II) at the bottom of the cube. Similarly, T3 may be moved

Side Front Side Front
(Before eliminating E_, E+) (After eliminating E+, EJ)

(a) (6)
DlAGBAM 4

slightly to the right, contracted, and moved to the bottom. T2 encircles
E'+ and cannot be removed from the remaining tubes; however,, if we tilt
its plane slightly, it can be brought over the end of E'+ and contracted into
a loop encircling T'x joining E'+ to E'_ (Diagram 46). Obviously, this may
be done so that the tubes are still standard. There is now no impediment

Side
(o)

DlAGBAM 5

Side
(b)

to eliminating the remaining junctions in the same way, turning E'+ up
and E'_ down, opposing them, and eliminating the junctions as in (11.2),
obtaining closed tubes T[. Clearly T'2, T'3 link no other tubes, and may
be contracted and pushed to the bottom as were Tx, T3 (Diagram 5).

We now have a tube system mapping in every prism ABC XI in. which
the boundary is mapped to a point; this represents an element of TT3 which
may be determined by Whitney's formula. The tubes Tx, Tz, T'2, T'3 have
no crossings with any tube, seen from II (the left), whereas T2 and T'x cross
twice, the lower crossing with T2 nearer II, the higher with T[ nearer II.
Both these are positive crossings, and T2 carries a map representing u{BC),
T'x a map representing v{AB). Therefore the whole represents the White-
head Product [u{BC), v(AB)] = [v{AB),u{BC)\
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Now AB U BC = ABC (considering these as integral cochains) and
vUu has value [v(AB),u(BC)] on ABC. This cochain in C2{K,T\TT3)

represents a class of maps in (K, T)2 which contains the map constructed
above. Therefore Theorem 10.22 is proved.

11.5. Structure of G%>p

We now investigate the homotopy classes of maps

[7* x / , 7* X / U e ° x / ] ^ [ r ^ -
Construct Yp = S1 U e2 as follows: in the face 7x 0 c 72 select p 'windows'
£v~, £p, where (yv 0) lies in ^ if and only if 4j—3 < 4pyx < 4j— 1. Let <f>
map each window with degree + 1 on S1, the rest of 7 X 0 and of 72 to
e° G S1. Let Yp be the identification space S1 U 72 with the identifications
defined by <f> on 72, and extend <f> over the interior of 72 to form a charac-
teristic map of the 2-cell e2.

In Y2xl select a rectangular patch a in S1xl—e°xl; this defines p
rectangular patches o^,..., o-p in 7 x 0 X 7, each of which is in some window
gj and is mapped homeomorphically on a by <f> X 1. For the moment, we
take II = 72 x 0 as the bottom of 72 X I, and the face (7 X 0) x 7 with the
patches in as the front; in this way, the direction yx increasing (where
(y1} y2,2/3) is a point in 72 X 7) defines left to right.

Take a positive ̂ -junction E in 72 X 7 so that the face t2 = 0 of E faces
the front, and the face t3 = 0 is underneath (and tx increases from left to
right). Take p open tubes Tx,..., Tp running from the junction parallel to
the bottom and the left face, terminating on the patches ô . This may be
done so that the system is standard with respect to II, the bottom. The
map <f> x 1 maps this into Y2, and defines a tube system in e2 X (I—I), with
p tubes running from a junction in the set, and terminating in its closure
on the one patch a in S1 X 7. This tube system has the advantage that a
tube system mapping in 7 2 x7 defines a map of 7^x7 which carries
7 2 x 7 U e ° x 7 t o a point.

Now let/: [a, a] -> [7 | , e°] represent the generator i2, of the cyclic group
of order p, TT2(Y^). Extend/ over the rest of S1 X 7, mapping the rest to xQ,
and over the rest of Y2 X 7 outside the junction, by mapping the cross-
sections of the tubes by / (as the ends are already mapped) and the rest
to x0. This map can be extended over the junction, since pi2 = 0; we choose
a definite extension. The resulting m a p / ' represents the element (b,i%)
of Theorem 10.41; we must compute

Let g be the map given by

9(V,t) =f(q,pt-j) if qeY2
p,j
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Then g represents p(b, ip), and is defined as a tube system mapping by
taking p copies of the above tube system, inserting them in the various
layers of Y%Xl separated by Ylx(j/p) {j = 1,..., p—l), and mapping
them all similarly. We need to name the junctions and tubes in this new

Side Front Bottom
DIAGRAM 6

system. Let p rectangular patches a1,..., av be taken, vertically above each
other, in S1 X / , so that cr1 is nearest S1 X 0, av nearest S1 X 1, and the others
lie between in the natural order. Take similarly p positive p-junctions
E\,..., E\ in Px / , and map these to junctions in F | x / by <f>x 1. Each
CT? defines£> patches a{,..., aj

p on the face / X 0 X / of P, which we may suppose
are level with the junction E\. Join E\ by open tubes T{ to the patches a{,
the tubes running parallel to PX0 and Oxlxl, and so named that the
subscript increases from left to right. Map this tube system into Y^xl;
this is the tube system on which g is a tube system mapping.

This tube system is inconvenient to draw in P x I, especially if we want
views from the top. Therefore we make the junctions rather small, and
displace them sideways to the right, the top farthest, so that their projec-
tions on P x 0 = II do not overlap, and occur in natural order from left
to right (Diagram 6).

Seen from the top, there is still ambiguity in the ends of the tubes T{,
which, for fixed i, he above each other. Therefore we stagger the patches
a1,..., av in the same way, so that when projected on P x 0 the corresponding
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patches a{ lie in p groups of p, in each group i is the same and the index j
increases from 1 to p from left to right; in this projection, the patches are
arranged in lexicographic order of (i, j) (Diagram 7).

Now slide the patches a1,..., ap parallel to e°xl until they He in a line
parallel to S1 X 0. When this homotopy is taken up in Y% X / , the various

X
Top {&-e°)xI

DIAGRAM 7

tubes are no longer parallel to the bottom, but incline in various directions.
This can be arranged so that the tube system is standard with respect to II;
it does not alter the first picture in Diagram 7. Notice that no twisting
of the tubes has occurred, and that T) only crosses above T% if a < i and
6 > j , and under T% if these inequalities are reversed; in other cases, T] and
T% do not cross in the projection on II = I2 X 0.

The map on S1 X / is inessential (rel S1 X / u e° X / ) ; we define a particular
homotopy of this to the constant map. In 81xlxl take a positive p-
junction E, with the face t2 = 0 towards S1 X / X 0, which we identify in
the obvious way with S1 X / , and the face t3 = 0 nearest S1 X 0 X / . Join
this by open tubes to the patches a1,..., av\ map each cross-section of each
tube by/, and extend over the junction by the extension previously chosen,
mapping the rest to xQ. The tubes are supposed parallel to and standard with
respect to ^ x O x / ; when this homotopy is taken up in Y^xl by the
method of (11.3), we have an equivalent homotopy in Pxl.

The effect of this construction is to introduce p negative p-junctions into
I2 X / , in such a way that T{ all terminate on the negative junction Et

for fixed i (Diagram 8 a). Each negative junction is similarly mapped to
each positive junction, and the tube T\ runs from Ej

+ to Ei _, and the scheme
of crossings of their projections is the same as before, so that T{ crosses
over Tb

a if and only if 6 < j and a > i.
We now eliminate the junctions in pairs: it is clear that this can be done

without introducing further crossings. For we can compress the system
into the left half of the cube (Diagram 86), and, keeping parallel to the
bottom, bring in turn the pairs E3

+, Ej_, towards the right, and oppose
them (back to back) (Diagram 8 c). Then, when all have been eliminated,
there remains a number of closed tubes, all mapped by the same map,
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forming a standard system with respect to IT. This map represents an
element of TT3 which is given by Whitney's formula; in this case, as the
tubes are all mapped in the same way, all we have to do is to compute the
total number of crossings (having regard to sign). The crossings are all of
the same sign (it will appear that the actual sign is immaterial), and there
are precisely p2{p—l)2/4. For there is a crossing for every two pairs of

Top
(o)

Top

(b)

DIAGRAM 8

Top

(c)

Top

(d)

integers (i, j), (a, b) for which a > i and b <j; this is defined by two ordered
pairs (i,a), {b,j), and there are obviously lp(p—l) such ordered pairs.
Therefore, by Whitney's formula the map represents p2(p—l)2/4.y*(^);
if p is odd or a multiple of 4, this is a multiple of py*{iD', otherwise, it
differs from \py*(ip) by a multiple of py*(ip). But in Theorem 10.41 the
cocycle pz is a coboundary, and, passing to cohomology classes, we may
neglect multiples of py*(ip). This completes the proof of Theorem 10.41.

CHAPTER 6

NORMAL SPACES

12. Direct limit theorems
In proving the exactness of the sequence of [P, Q, R] in (I, § 5), we were

obliged to confine ourselves to the category of HE triples (I, 5.1), and
exclude the cases where Dowker's Homotopy Extension Theorem ((3)
Theorem 10.2) can be proved. We now wish to remedy this, and consider,
in Theorem 12.21, triples [P, Q; X], where P contains a closed subspace Q,
is normal and paracompact (i.e. every covering of P has a locally finite
refinement), and X is a compact ANR. We use a method analogous to
Cech cohomology theory, following Spanier (7) who applied this to the
cohomotopy groups of compact spaces P.

In § 12.1 we show that we may confine ourselves to spaces X that are
simph'cial complexes. Next, we consider the set (P, Q)° of homotopy
classes of maps of [P, Q] to [X, x0], and in § 12.3 replace (P, #)° by the
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direct limit of sets (N, L)°, where N is the nerve of a covering of P and
L is the subcomplex corresponding to Q. This is an application of a funda-
mental lemma of Spanier's (Lemma 12.31), and extends his results from
compact to normal paracompact spaces (without using a group structure).
Finally, in § 12.4, we replace (P, Q)° by (P, Q)m, and show we can replace
the previous direct limit by the direct limit of the groups (N, L)m, where
N is still a nerve of a covering of P.

12.1. Spaces of the homotopy type of a simplicial complex
By a simplicial complex, we mean (unless otherwise stated) a locally

finite simplicial complex; among the spaces that are of the homotopy type
of such complexes, we find the CW-complexes with a countable number
of cells ((9) Theorem 13), and the spaces dominated by such complexes
((11) Theorem 24). This last class of spaces includes the path-components
of a compact ANR. It is shown in ((9), p. 223) that a locally finite simplicial
complex with the metric topology necessarily has the weak topology (in
which a set F is closed if and only if its intersection with each closed simplex
is closed); on the other hand, a simplicial complex which is not locally finite
may have a metric topology other than the weak topology ((9), p. 224, Ex. 3).

Let I b e a path-connected ANR, Y a locally finite simplicial complex,
of the homotopy type of X; we wish to show that there are points xoe X,
y0 e Y such that [X, x0], [Y, y0] are of the same homotopy type.

THEOREM 12.11. If X,Y are of the same homotopy type, and are each CW-
complexes, polyhedra, or compact ANR's, then, given x0 e X, there is a
yoeY such that [X, x0] and [Y, y0] are of the same homotopy type.

The conditions o n l , 7 are sufficient to justify the various homotopy
extensions that are involved (see I (5.1) for references to these theorems,
and the subsequent lemmas).

We are given a map fQ: X ->Y and a two-sided homotopy inverse
g0: Y ->- X. Let 1: X ->• X, 1': Y -*• Y, be the identity maps, and definef
y0 =yo(xo), xx — go(yo). We first replace g0 by a homotopic map gx such
that gxiyo) = x0. Since X is path-connected, there is a path

a: [1,0, l]^[X,xo,x1];
define ^(y0) = a(l—t), so that go(yQ) has the extension g0 over Y, and
extend this homotopy to gt: Y -» X. Then gx is also a homotopy inverse

Since gx o/0 c± 1, there is a map F: X X /-»-X" such that F(x, 0) = gifo(x),
F(x, 1) = x, all x e X. Let -q(t) = F{x0, t), a loop -q: [I, I] -> [X, x0]. We
use this to define a g'o homotopic to g\ = gx such that g'o o/0 ^ 1 relx0.

f Since X is path-connected, so is Y; then we can deform /„ so that/(x0) is an
assigned point y0.
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Let g't(y0) = rj(l—t), so that g^ has the extension g[ over Y, and extend
this homotopy to g't: Y -» X. Let F': XX / ->• X be given by

so that .F' is a homotopy between ^ o / 0 and 1. We deform this into a
homotopy rel#0. Let £(£) = F'(xo,t), a loop given by

f£(2—2«) i f O < £ < i ,

which is clearly inessential r e l / ; let £0 = £, and let £s: [I, I] -+ [X,x0] be
a nul-homotopy such that ^(t) = x0 for all t. Let J" = F'o, and define i^.
over XxIUxoxI SO that #;(z0,t) = Cs(0, ^ | (XX/) = i1' | ( Z X / ) .
Then this homotopy can be extended over Xxl, giving F'x, a homotopy
rela;0 between g'o o / 0 and 1.

Now g'o is a left homotopy inverse of /„: [X,a;0] -> [F,2/o] and a right
homotopy inverse of /„: X -> Y. By the preceding argument, with X, Y
interchanged, g'o instead of f0, and /0 instead of g0, we construct a map
f'o: [X,x0] -> [y,2/0] which is homotopic t o / 0 and such that

Then we say that g'o: [Y, y0] ->• [X, a;0] is a homotopy equivalence of the
pairs, for it has a left inverse f'o and a right inverse/0: therefore the map
f"0 = f'o o g'o o / 0 is a two-sided homotopy inverse for g'o, as is shown by the
following homotopies rel#0, yQ:

9o ° /o = 9o °/'o ° ô °/o - 9o ° !' °/o = 9o o / 0 ^ 1,

/o ° 9o = f'o °g'oof0ogr
0~f0olo g'o = f0 o g'o ^ 1'.

This proves the theorem.

12.2. Coverings and direct limits
A covering of P is called locally finite if every point of P has a neighbour-

hood which meets at most a finite number of the sets of the covering; we
shall only be concerned with locally finite coverings of P by open sets,
which form a system £ which can be directed (in the sense of (5), p. 4) by
refinement. If 2 is a covering in £ consisting of sets Ua, the nerve of S is
to be realized as a simplicial complex (which is not necessarily locally
finite) with the weak topology,f whose vertices A" are in 1-1 correspon-
dence with the sets of 2, and where vertices span a simplex if and only if
the corresponding sets have non-empty intersection. The system £ has a

f We take the weak topology for the nerve, to ensure that a simplicial mapping
is continuous.
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subsystem £ $ which consists of all coverings whose nerves have the
property that the star of every vertex is of finite dimension. Dowker ((3),
Lemma 3.3) proves that if P is normal, then £ $ is cofinal in £. The system
£g itself contains the system g of all finite coverings: clearly if P is com-
pact, 5 is cofinal in £ and in £g. Hereafter all spaces will be normal, all
coverings in £$ .

Let Q be a closed subspace of P; then a covering of P induces a covering
of Q (by intersection), and the nerve of this may be embedded in a natural
way in the nerve of the covering of P. If 2^ is a covering of P, let Nx be
its nerve, Lx the subcomplex of Nx defined by Q. Then it is well knownf
that if 2A refines 2^ there are simplicial mappings [Nx, Lx] -> [N^, L^] whose
homotopy class is uniquely defined by SA, 2^. These induce the same
homomorphisms

(Np, L^X, x0; x0) -> (Nx, Lx)
m(X, x0; x0),

and so define a direct limit lim(iV ,̂ Lx)
m over any system in £ 5 (including

). Also, as P is normal, Dowker ((3), p. 202) shows that there is a unique
homotopy class of natural mapsj [P, Q] -> [Nx, Lx], and these induce a
homomorphism lim(i^, Lx)

m -> (P, Q)m (where, for convenience, we omit

reference to the space X).
A paracompact space is, according to Dowker, a space in which every

covering has a locally finite refinement. We shall prove:

THEOREM 12.21. If P is normal and paracompact, X is a compact ANR,
locally finite simplicial complex or countable CW-complex, there is an iso-
morphismmto, l|m(^, iA)»-, (P, «)»,

where the direct limit is over the system £ ^ (or £). If P is also compact, or if
P is countably compact and X is a countable simplicial complex, we may
replace £ 5 by g.

(A countably compact space is one in which each countable covering
has a finite sub-covering.)

Let P D QD R, where Q, R are closed in P. Then, as the direct limit of
exact sequences is exact, we deduce from the previous theorem and the
results of I (§ 5)

f The proof (see (5)) for coverings in g applies to coverings in £$, if the nerves
have the weak topology.

% Theorem 1.1 in (3) demonstrates the existence of canonical maps if the nerve
has the metric topology. This implies our assertion, as is shown in § 12.3 below.
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THEOREM 12.22. Under the above conditions, there is an exact sequence,
terminating at (Q, R)1,

... -> (Q, R)™*1 -> (P, Q)m -> (P, R)m -> (Q, R)m -> ...

as in I (§ 5).

If we take the dimension of a space as that based on the order of its
coverings (Lebesgue, (5)), it does not matter which of £ $ or $f we use,
since P is normal (Dowker (3)). Let the cohomology groups be the Cech
groups based on £ 5 or ^ according to circumstances; then Theorem 12.21
and the results of I (§9) imply

THEOREM 12.23. Under the conditions of Theorem 12.21, if dim(P),
dim(P— Q), or dim(P/Q) = k, where Q is not empty, then

(k = 2), (P, Q)m is a central extension ofH2(P, Q; 7rm+2) by HX(P, Q',TTm+1),
(k = 3), (P,Q)m is a central extension of H3(P,Q;TTm+3) by a central

extension of H2(P,Q\-nm+2) by the subgroup of H\P, Q\TTm+1)
consisting of all elements whose Postnikov Square is zero.

When Q is empty the group is a split extension of the above groups by irm,
which is the direct sum when m > 1.

Here the Postnikov Square is to be computed in each nerve, and the
direct limit taken; the pairing of TTTO+1 with itself to 7rm+2 is denned in (12)
or I (§ 9).

For under the conditions, we can find a cofinal system of coverings in
the appropriate system, the nerves of whose coverings have the property
that Nx/Lx is of dimension k; the groups (2V̂ , Lx)m are given in I (§ 9) in
terms of cohomology groups; passing to the limit and using Theorem 12.21,
we obtain the above results. When P is compact the extension in the case
k = 2 is given by the formulae in 10.22, 10.31, and 10.41. It can be shown
that when Q is empty, the split extension oiHx{P; TT2) by TTX is determined
by the operations of TTX on the cohomology group acting through the usual
operations on the coefficient group (cf. I, § 8). When Q is empty and
dim P = 2, the split extension is unknown.

12.3. Spanier's lemma
The rest of § 12 is devoted to a proof of Theorem 12.21. When P is

compact, the result is an easy extension of the corresponding theorem in
cohomotopy groups in (7); and we shall show that the proof that the
homomorphism is onto is a direct application of a fundamental lemma
due to Spanier (7).
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Let 2^ be a covering of P by sets U%; if p is a point of P there are only
a finite number of sets containing p, and if these are U^,..., U%, let a(p) be
the simplex of Nx whose vertices are A^,..., A™. Then a canonical map
hy. [P, Q] -»• [Nx, Lx] is a map such that hx(p) e o-(#>) for allp; Dowker proves
in (3) that if P is normal, such a map exists")* provided S^ is in £$f> a n d
the nerve is given the metric topology. Let N'x be the nerve with the weak
topology, f: Nx^>- N'^ the natural transformation. Then / is simplicial on
each simplex, and so continuous on every finite sub-complex of Nx', hence,
by Lemma 1.2 of (3), the composition/ o hy- P -> N'x is continuous. There-
fore, every normal space P has a canonical map into the nerve of a covering
in £ ^ with, the weak topology. It is clear that any two canonical maps are
homotopic, since if hx, h'x are two canonical maps, hx(p) and h'x(p) are in
the same closed simplex, and so therefore is the segment joining them; if
the points stand for their position vectors in the simplex we have a homo-
topy defined by ht(p) = (l—t)hx(p)-\-th'x(p). Therefore the homotopy class
of canonical maps hy. [P, Q] ->• [Nx, Lx] is unique.

LEMMA 12.31 (Spanier). / / hx'. [P, Q] -> [Nx, Lx] is canonical, given any
mapf: [P, Q] -> [X, xQ] there is a <p{: [Nx, Lx] ->• [X, xQ] such thatf ~<p{o hx.
Here X is a simplicial complex.

According to Theorem 12.1, we may replace X by a compact ANR.
cp̂  is constructed as follows: let x0 = i?0 be a vertex of X, and let the other
vertices be Bj. Cover P by/~1(St Bj), where St Bj is the open star of the
vertex; then we can find a 2^ in £ $ refining both this covering and S^.
According to (5) there is a mapj ^ : [Nx, Lx] -> [N^, L^] whose homotopy
class is uniquely defined by 2^, 2M, which maps each A" to an A^ such
that U" c U^, and is a simplicial map on each simplex. Construct

by the following method, and define cp<C = cp£ o TA/X for some choice of T^.
We can choose 2^ so that if U^ meets Q, Ufr c/~1St(a;0), for if 2W refines
2^ and the covering of P by/~1(St Bj), we can cover P by the sets

For each Aj, G N^, select a vertex Bj{ such that U^ c/~1(St Bj{), choosing
x0 if Uj, meets Q. If A^.^A^ is a simplex of N^, the sets C/J,..., U™ inter-
sect, and therefore so do the sets /-^(Stl?^),..., /~x(StBjJ. Therefore
Bjo,..., Bin are among the vertices of a simplex of X, and the map ̂ (A^) = Bii

can be extended to a simplicial map qfc.Np-* X, which clearly carries L^
to x0. The proof that / ~ <p£ o h^ is in (7).

t See note $, p. 313. $ See note f. P- 313.
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If (P, Q)° is the set of homotopy classes of maps of [P, Q] to [X, #0],
the maps TXfl induce transformations T^: (N^, L^)0 ->• (Nx, Lx)° where the
compositions T^ T*v = T*y, and so define Km(iVA, Lx)°; the canonical maps

hx: [P,Q]-+[NX,LX] induce/**: (Nx, LA)<>-> (P, £)°; since TX/M o hx is a canoni-
cal map, h* o T*^ = h*, and we obtain a transformation

h*:]im(Nx,Lx)<>->(P,Q)<>.

Then Lemma 12.31 at once implies that h* is onto if P is paracompact or
X is locally finite; or, using the system $, if P is compact.

h* is an isomorphism if h*x = h*y implies x = y. Spanier (7) also proves
that h* is an isomorphism if P is compact, the limit set being a group.
His proof can be modified to prove that h* is an isomorphism if P is para-
compact, without using the group property; however, this requires a dis-
cussion of coverings of the cylinder Pxl. We shall give the proof of the
next theorem in (12.5).

THEOREM 12.32 (Spanier). / / P is normal, paracompact, and X is a com-
pact ANR, or locally finite simplicial complex, then, over the system £ $ ,
h*: lim(iVA, Lx)° -» (P, Q)° is an isomorphism onto. If P is compact, or count-
ably compact, and X a countable simplicial complex, we can replace Q'ft by $.

In order to apply this to Track Groups, we investigate the relations
between coverings of P and coverings of P X Im.

12.4. Coverings of product spaces
We investigate the coverings oi PxT, where T will be specialized to Im.

We first deal with product coverings oiPxT, that is, a covering by product
sets UxV, for all U in S, a covering of P, all V in S', a covering of T.

LEMMA 12.41 (Dowker). / / P is compact or countably compact, and T is
compact and satisfies the first axiom of countability, then any countable covering
of PxT has a refinement by a (finite) product covering.

The proof is in (3).
Let 2 be a covering of P, S' a covering of T, S X 2/ the product covering;

let Q c P, S c T, and let N, N' be the nerves of S, S'; L, L' the sub-
complexes corresponding to Q, S; let N* be the nerve of Ex 2 ' and L*
the subcomplex corresponding to QxTuPxS.

THEOREM 12.42. There is a homeomorphism into,

d:[NxN',NxL'uLxN']^[N*,L*],

whose image is a deformation retract of [N*, L*].

That is, there is a homotopy rel 6{N xN'),ot:[N*, L*] -»- [N*, L*], such
that a0 is the identity map, o^N*) c 6(N X N'), ax{L*) cd(NxL'U Lx Nf).
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Let U*, V1 be sets of E, S', A1, Bj the corresponding vertices of JV, N',
and Ai>j the vertex of N* corresponding to U1 X F7. If | is a simplex of N
with vertices A0,..., Am, £' a simplex of N' with vertices B0,..., Bn, the
corresponding sets all intersect, so that A0'0,..., Am>n are the vertices of a
simplex £ of N*. Take barycentric coordinates in each simplex, and define
d{A* X &) = A^, and, if a\tj is the product a^,

0(K,...,aJx(V--A)) = Ko.--.4J.
where (ao,...,am), (bo,...,bn), (a*)0,...,a*in) are the barycentric coordinates
of points in £, £', £ respectively. This clearly defines a continuous map of
| X £' into £ which is in fact a homeomorphism into. If 6 is similarly defined
over every, product of simplices in N X N', these maps fit together to form
a homeomorphism of NxN' into N*, which may be verified as mapping
LxN'uNxL' into L*.

Let <f>: N* -> N, 0: N* -> N' be simplicial maps defined by </>(A^) = A*,
iJj(Ai>'>) = B\ and extending these barycentrically over each simplex of N*.
This is always possible, for every simplex of N* is either of the type
A0'0,..., Am>n = £ (where A™ and Aa>b both occur if Al<b and A™ occur),
or else is a face of such a simplex. Over these simplices £, <f>, I{J may be
defined on the point with barycentric coordinates ( ^ o ^ ^ n ) by setting
ai = a*o+-+a*n» a n d bj = < j + -+«m,j5 and

Then clearly </> o 6, tp o 9 are the projections N x N' ^- N, N x N' ^ N'.
Let £ be a simplex of iV* of the above type; then 6(cf)(z),ijj(z)) is in £ for

every z in £. Define a(: N* -> N* by

where we use the symbol for a point to stand for the position vector of the
point in the simplex. Then it may be verified that at is a homotopy of the
required type, retracting N* on 8(NxN')re\6(NxN'), moving L* over
itself.

We have proved more than we need, for we have shown that 6 is a
homotopy equivalence (it has as inverse 6~x o ax, the map z -> <f>(z) X if*(z)).
In fact, we only use the fact that 6 has a left inverse in our application.

Now let P be paracompact. It is no longer possible to confine ourselves
to product coverings of Px T. By a P'-product covering (see (3), p. 218)
of P X T we mean a covering of P by sets U" e SA, and, for each a a
covering of T by sets V\ e Sa, and the covering of P X T by the product
sets C/"xFj. Thus, in general, the covering does not contain 17" X Vi



318 M. G. BARRATT

(a 7^ jS). Moreover, S^ is to be a locally finite covering of P, and S a a
finite covering of T.

LEMMA 12.43. If P is paracompact, and T is compact, then every covering
of PxT has a P-product refinement. In particular, PxT is paracompact.

This is proved in (3) for the case T = I. Notice that we do not require
that P is normal; if the first part is true, we have exhibited a locally finite
covering of P X T refining an arbitrary covering, so the second part is true.

For all open U in P, all open V in T, the sets U X V form a sub-base
for PxT, so that every covering has a refinement by product sets. Let
p be a point of T; since T is compact, p x T is compact, and we can choose
a finite number of these product sets which cover PxT: let these be
TJ\p)xV\p),..., f / ^ x F ^ , . Let U(p) be the intersection of the XJ\p), so that
the collection of all U(p) for all p cover P and the collection of all U(p) X V\p)

cover PxT. Then we may choose a locally finite refinement 2^ of this
covering of P; in each U% in Xx choose a point p, and define the covering
Sa of T as the collection of sets V\p) constructed above. Then the totality
of sets U" X F* (F£ e Sa) covers PxT and is a P-product covering refining
the given covering. This proves the lemma.

If the above P-product covering of P X T is said to be based on SA, we
can use this covering to construct a P-product covering based on any
locally finite SM refining SA. For if U^ G E^, we can choose Sp to be the
covering Sa of T for any a such that U^ c U". The new covering clearly
is a refinement of the old. We may also refine each finite covering of T
with similar effect. In particular, if T is a simplicial complex we may
choose Sa so that its nerve is homeomorphic to T for each a (for every
finite covering of a finite polyhedron has a refinement by the (open) stars
of the vertices of some subdivision, whose nerve is an isomorph of the
complex).

It follows that if T = Im we may use Dowker's Lemma 12.41 and
refine each Sa (a covering of Im) by a finite product covering 2* x ... X S£l

such that the nerve of 2£ is a homeomorph of / (the sets of E£, are open
segments).

COROLLARY 12.44. / / P is paracompact, any covering of Pxlm has a
P-product refinement S* whose sets are U" X V^ix X ... X V™>im, for all U% e SA,
all F ^ £ 2«, where 2£ is a finite covering of I by open segments, whose nerve
is a homeomorph of I.

Let N* be the nerve of such a covering E*, and let L* be the subcomplex
corresponding to QxImV Px tm, where Q is closed in P. Let N\ be the
nerve of EA, L^ the subcomplex corresponding to Q, and set

i u Lxxlm.
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THEOREM 12.45. There is a homeomorphism into,

with a left inverse a: [N*,L*] -> [NxXlm,Mx]. NxXlm can be given a
simplicial subdivision and 9 can be a simplicial map.

It is only necessary to prove this theorem in the case ra = 1; for suppose
it is true for m replaced by (m—1), m > 1. Let Pxlm~x be covered by
the sets in Corollary 12.44 with V™>im omitted, let N** be the nerve of
this covering, L** the corresponding subcomplex. This defines a (P XI7'1"1)-
product covering of P x Im, and, applying the theorem in the case ra = 1,
we may find a simplicial subdivision of N** x / and a simplicial map
6*: [iV**x/,iV**x/U L**xI]^[N*} L*] with a left inverse a*, and
also a simplicial subdivision of Nx X i™-1 and a simplicial map

with left inverse a'. Let 9', a' define in the obvious way

9":[NxXlm-1xI,LxXlm-1xIuNxxim]^[N**xI,L**xIuN**xi]

with left inverse a". Then 9 = 9* o 9" is a map of the required sort, with
left inverse a" o cr*, and it follows from the argument in the case m = 1
that 9" is simplicial with respect to some subdivision.

We now prove the theorem with m = 1. Let L(V), R(V) be, respectively,
the lower and upper bounds of an open segment F of / . Then we can order
the sets F°,..., F£ of Sa so that their lower bounds form a monotonic
increasing sequence. Naturally, no three consecutive sets will intersect
(the nerve of Sa is a homeomorph of I and contains no 2-simplices), and
the upper bound of any set is greater than the lower bound of the next
succeeding set.

We assume that we may give the vertices of Nx a partial order such that
the vertices of any simplex (which has finite dimension) are in simple order.
For each vertex A A of Nx we realize the nerve of Sa on A^ x / , and then
turn NxXl into a simplicial complex. If Sa has sets F£,..., F£ in order,
take B% = A^xO, B% = A^x 1, and arrange B^ between, in order. The
correspondence between the sets F£ and points 2% establishes an iso-
morphism between A^xl (a simplicial complex in the obvious way with
vertices B^) and the nerve of Sa.

Let a = A^,..., A\* be any simplex of Nx, the vertices in the chosen order.
Construct an ordered set of simplices 7T(CT, m) on a x / with vertices among
the B{ as follows.

TT(CT, 1) = B% J B ? . . . ^ B\ where the set V\ cA\xIis such that
(i) L{V\) < L(Vj) for aU t = 0,...,n;

(ii) if L{V\) = L(Vj), then i ^ t.
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Suppose we have constructed Tr(a,m— 1) with vertices -B^""1, Bft,..., B% for
some p , so that A^xlis the only edge of the prism axl with two vertices
of 7r(a,m— 1) on it (except possibly edges on o-xO, CTX 1). We construct
TT(O,m) with a face BQ0,..., B% in common with 7r(cr, ra— 1).

7r(a,m) = Bh,..., Btn, Bq«
+1 where Vtg+1 is such that

(i) L(V^+1) < L(V*+1) for all i = 0,..., n,

(ii) # is the least of 0,..., n such that Vq
9+1 has this property.

Then every 7r(a,m) has two faces which project onto a in the natural
projection of axl onto a, each is of dimension (n-\-l), and has a n « -
dimensional face in common with the immediately preceding and suc-
ceeding simplices (if any). Moreover, the construction is uniquely defined
by the coverings 2 a and the ordering of the vertices of a (which is given
by the partial ordering of the vertices of N^). Therefore, if a' is a face of a,
the simphces o n c ' x / are faces of the simplices on a x / , and hence N^xl
is a simplicial complex with these simplices and their faces as its simplices.
Notice that if we were to change the partial order of the vertices of N\, we
should obtain a different simplicial decomposition.

In order to show that we can find a simplicial map of N\ X / into N* we
must show that the sets of / corresponding to the vertices of any -n(a, m)
or its faces all intersect. Let a = A^,..., A%, 7r(a,m) = B^0,..., B%, Bq

9+1.
By construction, L{V%+1) < L(V^+1) < R(V^)ioraMi = 0,...,n,soL{V^+1)
is less than min(J?(F'')). If m = 1, all the sets V\ intersect (they all con-
tain 0) so that in this case their intersection meets V\. Suppose we have
shown that all the sets of 7r(o-,m—1) == JB^"1, Bft,..., B%, all intersect; in
particular the sets Vty,..., V% all intersect, so that max(i(F^)) < min(JR(F'<)),
and so max(L{V^)) < R(Vl

q
9+1) since the nerve of Sa is a homeomorph of / .

Therefore the intersection of these sets meets F£«+1, and hence the sets of
TT(CT, m) all meet. Since the sets U0,..., Un all intersect, the sets U% X F(,0,...,
Un X V%, Uq x Vq

Q+1 all intersect, and so the corresponding vertices A°'to,...,
An'(n, AQ'l<>+1 of N* are the vertices of a simplex. We call this simplex of JV*
the simplex corresponding to TT(CT, m).

Now let 6 be the map of Nx X / into N* which maps each TT(CT, m) simpli-
cially onto its corresponding simplex in N*, and maps each B{ onto A™
in N*. This is clearly a simplicial map with respect to the chosen simplicial
decomposition of N^X I, and is a homeomorphism into.

We now construct a left inverse a to 9. Since 2* (the covering of P X /)
is locally finite, every simplex of N* has a finite number of vertices; since
no three sets of a Sa intersect, no more than two vertices of such a simplex
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can have the same first index. Therefore, if we allow some vertices to be
repeated, every simplex of iV* has the form

£ = .A0'?'0,..., An'1n, .A0>fcv.., An'kn,

where'either ks = js or ks= js-{~l. If a point of this simplex has bary-
centric coordinates «,-„,...,<*,,<&0,...,a*ffe,) where a*tkt = 0 if hs = j s

(these spurious coordinates arise from our allowing duplication), we can
consider the point as being given in terms of position vectors in the simplex t

To* , As>i< + ya*kA
s'k».

X-• S,Ji I ^ 8, Kg
S S

Let a(As>1) = Bl: then the image of the vertices of £ lie in (A°,...,An) X / ,
and, considering the Bl as position vectors in the prism, we make a map
the above point tof

defining a linear map of the simplex into the prism. If Jcs = j s for all but
at most one value of s, the vertices B\ span a simplex in the prism, though
not necessarily one of the chosen ones of the simplicial decomposition;
nevertheless, a is a simplicial map in this case onto the new simplex in JV̂  X / .

If a is constructed in this way over every simplex of N*, it gives a single-
valued and therefore continuous map of N* into N^xl, which can be seen
to map L* into iV^x / U L^X I, and be such that a o B is the identity map.
If we were to re-order the vertices of N\, we should alter 6 but not alter a,
which would have the same properties with respect to the new 6. This
proves the theorem in the case m = 1, and so completes its proof.

12.5. Proof of Theorem 12.32
We shall prove Theorem 12.32 in the case when P is paracompact; the

other cases follow by similar but simpler arguments, where Dowker's
Lemma (12.41) is used instead of our Lemma 12.43. The proof is modelled
on the argument used by Spanier in (7), to prove the similar theorem in
cohomotopy groups (P compact, (N^, ^ ) ° a group).

Let x\ e (Nx, Lx)°, and let [«A] be the corresponding element of the direct
limit, so that [x^] is the set of all x^ such that for some ]£„ refining both
2J\ and 2J.,, m* m*

A M T * T t x
Then the canonical maps hx induce AJ: (Nx, JDA)° -* {P, Qf, and the corre-
sponding transformation on the direct limit is defined by

f In these expressions, 2 means the sum over s, and not the covering defined by Us

s

5388.3.5 Y
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If/: [P, Q] -»• [X,x0], {/} its homotopy class, define for some suitable A,
xx = {cpj[}, the class of the map constructed in Spanier's Lemma 12.31.
Then h*xx =.{/}, according to that lemma, so that h*[xx~\ = {/}, and hence
h* is onto.

Now suppose that h*[xx] = ^*[y/x]. Since SA and L^ have a common
refinement, we can suppose without loss of generality that A = fx. Now
we want a condition on 1,x akin to irreducibility: a normal covering is one
that has a canonical map hx: P -> Nx such that A^1(St Af) = U^ for the
open star of each vertex ^4" of Nx, and also hx satisfies a condition that we
do not require, that it is essential in each closed simplex of Nx in the sense
of (3), p. 209, bottom.

Then Dowker has shown ((3), Lemma 3.4) that the locally finite normal
coverings of a normal P are cofinal in £$, a n d the finite normal coverings
are cofinal in $. We therefore suppose that all coverings are normal.

We are given xx, yx such that h*xx = h*yx; by the simplicial approxi-
mation theorem we can suppose that there are representative simplicial
maps / e xx, g e yx, and, choosing a normal canonical map

hx:[P,Q]^[Nx,Lx],
suppose given a homotopy F: [P X / , Q X / ] -» [X, x0] such that

F(p, 0) = fhx(p), F(p, 1) = ghx(p).

Cover P X / by the sets P~1(St Bj) where Bj is a vertex of the simplicial
complex X, and St Bj is its open star. We can suppose that x0 is one of
these vertices. Refine this covering by a P-product covering based on a
locally finite covering S^ of P, which we may suppose refines 2>x (cf. the
remarks leading to Corollary 12.44) and has the property of £M in the
construction of cpj[ in Lemma 12.31, that if a set meets Q its product with /
is in _F-1(Sta;0). We then refine each covering Ea of I, preserving the
property that its nerve is a homeomorph of I ; for the moment we suppose
only that the second set does not contain 0, nor the penultimate 1, but
later we shall demand that the first and the last are sufficiently small, by
a criterion given below.

We define/', g': [N^, L J -• [X,x0] such t h a t / ' e T*xxx, g' e T*xyx, and
/ ' ~ g'. For each vertex A& in Zy, choose the vertex x0 in X; for any other,
choose a vertex B1 = f{AVi, where A? e Nx is such that 27? D U?,. Then
/-^•(StB1) DSt.4^, and, since 2,x is a normal covering, we can choose a
normal canonical map hx such that ^ 1 /~ 1 (S t5 J ) contains Ux and so U^.
Therefore, if A^,..., A^ are vertices of a simplex of N^, the corresponding
vertices of X are vertices of a simplex; we can define a simplicial map
f'-.N^^X such that f'(A$) = BK The choice of U% D U? in this con-
struction at the same time defines a simplicial map T^y. N^-* Nx such
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that / ' = / o T^. Similarly we may construct g'-.N^^-X and a map
TX(l: N^ -* Nx such that g' = g o T;x.

We now use F: Pxl-+ X to construct a homotopy between/' and g'.
Let V^ be the first set of 2^, the covering of I defined by the P-product
covering of P X / and the set £/£, and suppose that it and Ufa are sufficiently
small that U&X V% c F-^&tB*), where f'{A^) = B*; we can always choose
the refinement E^ of SA and then refine E^ so that this is true. Similarly
we require that the last set Vp is such that UfrxV^c F~1(StBk), where
Bk = g\A%). Let N* be the nerve of the covering S* of P x / , and con-
struct cp£ as in 12.31 so that (p$(L*) = x0 (L* being the subcomplex corre-
sponding to Q X / ) , rf(ilfto) = # = f{A^ <pf (4A«) = 5* = flF'(^Lg), and,
for any other vertex ^ cp£(4fc«) = # where ^ ( S t # ) D E/£x F£ and
cpijT is a simplicial mapping. Then if 6 is the homeomorphism of Theorem
12.45, <p$ o 6 is a homotopy, r e lZ^x / , between/' and g'', which proves
that [zj = [yj, and so that ^* is an isomorphism, as required. This
completes the proof of the theorem when P is normal and paracompact.

12.6. Application to Track Groups; Proof of Theorem 12.21
According to Lemmas 12.41, 12.43, the product or P-product coverings

of P X Im are cofinal in the system of 5 or £ 5 coverings of this space. We
shall discuss the latter case only; the former are covered by similar argu-
ments with a suitable change of wording.

Let N* be the nerve of the covering L* of Theorem 12.45, N\ the nerve
of the covering E^ of P, L*, Lx the subcomplexes there defined. The
homeomorphism 6 and its left inverse a induce transformations

e*
{N*,L*)°^ (NxxIm,LxxImuNxxim)°

a*

such that 6* is onto, a* an isomorphism into. We therefore have similar
transformations of the direct limits

. e*
]im(N*,L*)°^:]im(Nx,Lx)

m,

where the limit on the left is the direct limit over the fig coverings of
P X Im, and on the right over the £g coverings of P. In this case also 6*
is onto, a* is an isomorphism into. The canonical maps hx: [P, Q] -> [Nx, Lx],
h*: [PxIm, QxImU Pxim] ->• [N*, L*] induce homomorphisms h*, h**
respectively of the direct limits such that h* o 0* = h**, h** o a* = h*.
According to 12.32, h** is an isomorphism onto, so that h* is onto by the
first relation, and an isomorphism into by the second. Therefore h* is also
an isomorphism onto, which proves Theorem 12.21. Theorem 12.22 follows
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at once, for if P D Q D R, and a covering 2 of P has nerve N with sub-
complexes M, L corresponding respectively to Q, R, we have an exact
sequence

-> (N, M)m -> {N, L)m -> (M, L)m -> {N, M)™-1 -+ ... -> (N, M)\

whose maps all commute with the homomorphisms T*~ therefore, on
passing to the direct limit and applying the isomorphisms h* we have
the exact sequence of Theorem 12.22.

APPENDIX: CENTRAL EXTENSIONS

If 0, E, Q are groups, written additively, and

is exact (that is, y~1(0) = i{G), j is onto, i-1(0) = 0), we say that E is an extension
°f G by Q. If E' is another extension, and in the commutative diagram

/ E \i

\i Q -> 0

/

<f>: E w E', we say that E, E' are equivalent extensions; this is an equivalence relation,
and we write {E} for the equivalence class of E. Notice that this depends on the
homomorphisms •£, j , as well as the group E. We shall always suppose that G is
abelian, and eventually that Q is abelian.

Let A be the (contravariant) functor which assigns to every group X the group
of automorphisms A(X) of X, and let 60: X -> A(X) be the natural homomorphism
which assigns to x e X the inner automorphism x' ->• x-\-x'—x. Then, as G is abelian,
the composition

(where i* is induced by i) maps O to the identity automorphism, and so can be
factored through Q. Let

6 djhQ
clearly 9 is the same for equivalent extensions. Then E is a central extension if and
only if i(G) is in the centre of E, i.e. if and only if 6 is trivial.

The classes of extensions which determine the same 8 can be turned into an abelian
group (see (4)); the sum {E'}-\-{E") is defined by taking the subgroup Eo of the direct
sum E'-\-E" which consists of all pairs (e', e") such tha t /e ' = j"e", and factoring Eo

by the subgroup Go of all pairs {i'g, —i"g), g e G. Let E = JB0/G0, and let {e',e") be
the coset of (e', e"); then we may define

i(9) = {i'9,ty = {0,i"g}, and j{e',e"} = j'e' = j"e",

so that 0 ->GXEXQ->0

is exact. Notice that Go is invariant in Eo because E', E" (and hence also E) deter-
mine the same 9. {E} is the required sum.
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Let Q be abelian hereafter, let H2(Q, G) be the group of classes of central extensions
(so that 9 is trivial), and let Ext(Q, G) be the subgroup of abelian extensions. We
now describe an embedding of the factor group H2(Q, G)fExt(Q, G) in Hom(Q ® Q, G),
the group of homomorphisms of the tensor product Q 0 Q to G.

Let x: H2{Q, G) -+ Hom(Q(g) Q, G) be defined by selecting E in a class {E}, and
setting xi^} = h, where

K ^ i <8> ie2) = i~1(eiJrei — ex — e2),

and is extended by linearity to a homomorphism h: Q (§) Q ->• G. Clearly, h does not
depend on the choice of E in {E} and respects the bilinearity of the tensor product,
since 9 is trivial, and it may be verified that x is a homomorphism. x is not onto:
let K be the subgroup of homomorphisms h such that

= Q, all g e Q;

then h(q1 ® g2) = — h(q2 (g) qx) if h e K.

LEMMA A.I. The sequence

0 -> Ext(Q, G)XH*{Q,G)X Hom(Q® Q,G)0 -> Ext(Q, G)XH*{Q,G)X Hom(Q® Q,G)

is exact at the two centre groups, and xH2(Q, G) c K. Here i is the identity map.

The proof is omitted. If we identify the pairings of Q with itself to G with the
elements of Hom(Q® Q, G) in the obvious way, K is contained in the subgroup of
anti-commutative pairings, but need not coincide with it. In general, we do not know
if x is onto K.

The strong direct sum S*Qa of additive groups Qa is another name for the direct
product; its elements are all collections S*ga (qa e Qa, one for each a), and addition
is defined by 2*?o + S*^ — 2*(?a + ?a)- 9« i s called a coordinate of 2*<7O. The weak
direct sum Q of the Qa is the subgroup of T,*Qa consisting of all elements for which
all but a finite number of coordinates are zero. We embed Qa in Q in the usual way,
and may write a non-zero element 2*ga of Q as a sum Saga, taken over all the
non-zero coordinates.

Let Q be the weak direct sum of groups Qa, and let KQ c K be the subgroup of
Hom( Q 0 Q, G) of all homomorphisms h such that h(q (g) q') = 0 if q, q' are contained
in the same subgroup Qa. Let Ia: Qa -+ Q be the injection: then 7O induces a homo-
morphism i ; : ff(« O)

such that I^{E) = {Ea}, where Ea —j~x{Qa)cE. Therefore there is a homomorphism

I*:H\Q,G)^i:*H\Qa,G),

the strong sum, defined by I*{E} — 2*/*{i£}. Our principal result is

THEOREM A.2. H*(Q, G) = (f>*I.*H*(Qa, G)+\K0,

where I* o cf>* is the identical homomorphism and p A maps KQ identically on itself.
Thus <f>*, A are isomorphisms into. Also <f>* induces <f>*: 2*Ext(Qa , G) « Ext(Q, G).

We first construct <f>*. For each a, let Ea be a central extension of G by Qa, so
that there is an exact sequence

0 /~1 la 77| ?<* y-\ -

->• (r -».£/a ̂  y a -> o.
Let .E' be the weak direct sum of the Ea, and let G' be the subgroup of E' generated
by all elements ia(g)—ip(g), all g e G, all a, j8. Then (?' is in the centre of E', and
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so is invariant; let [SeJ, an element of E — E'/G', be the coset of 0' containing
Eea, ea e Ea, and define

by i(g) = [ia(g)] (any a), j[I,ea] = Eja ea e Q. Then we can verify that E is an
extension of G by Q, whose equivalence class depends only on the equivalence classes
of the extensions Ea. Moreover, I*{E} = £*{#„}. Define <f>*(I,*{Ea}) = {E}; then
we may easily verify from the definition of addition that <f>* is a homomorphism.
Since I* o <f>* is the identical isomorphism (i.e. / * has a right inverse) and H2(Q, G)
is abelian,

H\Q, G) =

the direct sum, where 0* is an isomorphism into.
Next, we show that % maps 7*~1(0) isomorphically into Ko. That x(-^*-1(0)) C Ko

is clear, for if I*{E} = 0, I*a{E} = 0 for every a, and contains the direct sum G+Qa,
which is abelian: this implies xi^} e -̂ o- Also, we see that for any Ea e /*{.#} the
projection j a : Ea ->• Qa has a right inverse, since Ea is equivalent to G+Qa.

Let Ea = y~1(Qa), where j : E -»• Q, and let TO be a right inverse for j \ Ea. Now,
if {E} e /*~1(0) n ^~1(0)» E is abelian; hence the homomorphisms ra define r: Q -»• E

such that T is a right inverse fory. Hence E is equivalent to the direct sum G-\-Q,
and {E} = 0. This proves our assertion that x niaps 7*~1(0) isomorphically.

We complete the proof of the theorem by constructing a homomorphism

A: Ko -+ I*~H0)

such that x ° A is the identical map Ko -> Hom(Q 0 Q,G).
Let h 6 Ko, and suppose the subscripts a are well ordered or, at any rate, a relation

< exists such that every finite subset is simply ordered, that is for every pair a. 7̂  j8,
either a < /S or j8 < a. Construct a free group F, written additively, with generators
the symbols (g; 2?o) for all g e G, Sga 6 Q. Let R be the least invariant subgroup
of F which contains all the expressions

(g; 2<Zo) + (gr'; Xq'a)-(g"; S ^ + O ) ,

where g" = g+g' + 2 HQcc'S) 9/9)>
j3<a

for all g, g' and all Hqa, Hq'a e Q. Notice that in the definition of g" only a finite
number of the terms h(qa ® q'$) are non-zero, and the expression is to be read with
the other terms omitted.

Let-E = F/R, and let [gr; Ega] be the coset of R containing (g; Sga). The projection
j ' : F -*• Q defined on the generators by

maps R to 0 6 Q, and so induces a homomorphism j : E ->• Q such that [g;
Then we may verify that there is an exact sequence

where i(g) = [g; 0]. We now show that E is a central extension of G by Q.

Clearly [g; Sga] + [-0+ I h(qa® qp); 2 ( -?J ] = 0,
jS<a
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where the sum in the second bracket is interpreted as that with all h(qa 0 q^) which
are zero omitted. Hence

= \g+9f-g+ 2

-<7+ 2
)3<a

since h is a homomorphism.
Define X(h) = {E}, where E is the extension constructed above. Clearly

so that I*{E) = 0, whence !*{#} = 0, and A is into /*~1(0). Also, xMh) = h, for

[91 SffJ + to'; ^ ] - [ s r ; Sgo]-fe'; Zg'J

2 *(ga®^);S(«a+3/«)l-ffl'+J7/+ 2 H

- 2 %«®Sfl);S(gaH-3a)l + f-fl'-fl'/- 2

+ 2
jS<a

2 %«® <2'e)-9-9' - 2 %l®?s
]3<a j3<a

2 M(3+O®(9fl+«i8))- 2
/3<a

= f 2 Mga0 9p)- 2
L)3<a /3<

= [ 2 Mg.®gp)+ 2

Thus A satisfies the required conditions, and

W{Q, 0) = fS*ff*(Q

Possibly the easiest way to see that cf>*, I* define isomorphisms onto between
Ext(Q, O) and S*Ext(Qo, G) is to recapitulate the argument, showing that

Ext(Q, G) = 0*S*Ext(Qa, O) + I*-H0),

and that % maps 7*~1(0) isomorphically, so that I* is also an isomorphism, <f>* onto
(since by Lemma A.I x"x(0) = Ext(Q, G)).

A useful corollary to the theorems is
CoBOiiLABY A.3. If Q is the (weak) direct sum of cyclic groups, in particular, if Q is

finitely generated, H2(Q, G) = *Eact(Q, G)+AK0.

For it follows from Lemma A.I that if Q is cyclic, iExt(Q, G) = H2(Q, G), since
K c Hom(Q 0 Q, G) is zero. Thus, if Q is the direct sum of cyclic groups Qa,

Of course, i is an isomorphism into.
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We may also deduce a theorem due to Lyndon (6).

THEOREM A.4. If Q is the direct sum of a finite number of groups Qi} then

H*(Q, G) « 2 HHQi, G) + X Hom(Qi(g) Q5, 0)
i i<j

and Ext(Q, Q) « £ Ext(Qif G).
i

Lyndon proved this when Q = Qx-\- Qs, using normalized cochains; the generaliza-
tion of his result to any finite sum is immediate. To obtain this form we examine
the group Ko c Kom(Q ® Q, 0). Since Q = £ Qt,

Therefore there is a natural projection

Hom(<2 ® Q, G) -> 2 Horne t <g> Qif G),
i<3

and it is easy to see that this maps Ko isomorphically onto.
In our application of these results in § 10 we consider an extension of Hn+1(TTm+n+1)

by Hn(7rTO+n), where the integral groups Hn+1, Hn are finitely generated. Thus
H(7Tm+n) is a finite sum of isomorphs of ?%+„ and groups „?%+„, where p ranges over
the coefficients of torsion of the complex. Now, by a theorem due to Priifer (see
below) the latter groups are weak direct sums of cyclic groups. Hence H^n^n) is
the direct sum of a finite number of isomorphs of 7rTO+n and a weak direct sum of
cyclic groups. The extension by the first is given by Theorem 10.31 (it is trivial),
and by the second in Theorem 10.41. It follows from Theorem A.2 and the definition
of x that the extension is determined by these results and the calculation of the
commutators carried out in 10.22.

We conclude by observing that Theorem A.2 can be used to give an alternative
proof of the theorem of Priifer (15) used above: consider an abelian group 0 (not
necessarily countable) such that for some integer k, JcG = 0. Then the assertion is
that O is the weak direct sum of cyclic groups. Let p be a prime divisor of k, and
let G(p) be the p-component of G, that is, the subgroup of all elements whose orders
are powers of p. If p ^ q, then G(p) and G(q) intersect only in the unit element,
and it is easy to show that G = £ G(p), the direct sum, summed over all prime
divisors of k. Therefore it is sufficient to prove the assertion when k = pn, p a prime.
Our proof proceeds by induction on n; for the result is clearly true when n — 1, as
G is then a vector space over the field of integral residues mod p.

Suppose the result true when n < m, and that pmG = 0. Then pm~xG is a vector
space, with a basis ( z j ; since xa epm~1G, xa = p^^y^ for some ya e G. Let H be
the subgroup of G generated by the ya: we say that H is the weak direct sum of
cyclic groups, generated by the ya. Let H' be the weak direct sum of cyclic groups
of orders pm generated by y'a,8: H' -+H the homomorphism onto, such that 6(y'a) = ya:
then 6 is an isomorphism onto. For if y' = Sa ta y'a (where all but a finite number of
the ta are zero) and pm~1(dy') = 0, then Sa ta xa = 0, and so each ta is divisible by p.
Therefore, if dy' = 0, y' is divisible by p, and, by applying this argument successively
to y', (l/p)y', (l/p2)?/',..., we find that y' is divisible by pm, and hence y' = 0.

Let Z = G/H, so that there is an exact sequence

where i is the injection, fi the natural map. By construction, pm~xG c H, so that
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pm-1Z = 0; by hypothesis, Z is the weak direct sum of cyclic groups of orders pl,
t < m. We show that 0 is the direct sum of H and an isomorph of Z. By the last
assertion of Theorem A.2, it is sufficient to consider a cyclic summand of Z, and we
suppose Z is cyclic of order pl, generated by z. Choose g € G such that fji(g) = z;
for some he H, p%g = h. Since pmg — 0, pm~th = 0, and since H is the weak direct
sum of cyclic groups of order pm, h = pW for some h' e H. Therefore fjb(g—h') = z,
andp^g—h') = 0. Therefore G is the direct sum, as required; hence, by the principle
of finite induction, the assertion is true for all n ^ 1.
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