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1. Introduction

It is well known that the Novikov conjecture on the homotopy invariance of higher
signatures is equivalent to rational injectivity of the assembly map H∗(B�;
L(Z)) → L∗(Z�). However, there are also other important assembly maps, e.g.
in algebraic K-theory and the Baum–Connes map for topological K-theory. A tech-
nique that has been very successful in studying these assembly maps is controlled
topology. Yu [Yu98] used a C∗-algebra version of this technique to prove
the Novikov conjecture for groups of finite asymptotic dimension (cf. Section 6)
admitting a finite classifying space. In fact, he proved injectivity of the
Baum–Connes map for this class of groups, which also implies the Novikov con-
jecture. The purpose of this paper is to give a proof of the corresponding result in
algebraic K-theory.

THEOREM 1.1. Let R be an associative ring with unit and � be a group of finite
asymptotic dimension admitting a finite B�. Then the assembly map

H∗(B�; K
−∞R)→ K∗(R�)

is split injective.

In fact, the result holds for coefficients in any additive category (see 6.5). This
is very much in the spirit of [CP95] and there is also an L-theory version (7.2).
For more information on groups of finite asymptotic dimension see, for example,
[DJ99] and [BD01].

Very roughly, Yu proceeds as follows to prove his result. Controlled construc-
tions are used to set up an obstruction group to the injectivity of the Baum–Connes
map. This obstruction group comes with the additional notion of control, i.e.
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elements are r-controlled for some r > 0. The crucial step is then to prove that
there is some ε > 0 such that all r-controlled elements with r < ε in the obstruc-
tion group vanish. Such a result is often referred to as a squeezing result. Finite
asymptotic dimension is then used to prove that every element in the obstruction
group is arbitrarily small controlled.

Our proof of 1.1 is parallel to Yu’s approach. The main difference is that, while
there are squeezing theorems for K1 (cf. [Qui82]), there is a-priori no obvious ana-
logue for higher K-theory. The main contribution of this paper is the formulation
of a somewhat different result (4.1) that works for higher K-theory and can be used
similarly to squeezing (cf. 4.3) to prove vanishing results.

It should be noted that Yu proved the Novikov conjecture in [Yu00] for the class
of groups admitting a uniform embedding into Hilbert space and a finite B�. Here
a version of Bott periodicity is used and it is at present not clear if this result can
also be carried over to algebraic K-theory. Groups of finite asymptotic dimension
admit such a uniform embedding by [HR00]. Later on the Novikov conjecture
was established for groups of finite asymptotic dimension ([Hig00]) and groups
admitting a uniform embedding ([STY02]), irrespective of finiteness or otherwise
of B�. Thus it seems to be an important question whether the finite-B� hypothesis
can be removed from 1.1. Without any geometric assumptions rational injectivity
of the algebraic K-theory assembly map for the ring Z is known under the rather
weak finiteness assumption that the homology of � is finitely generated in every
degree by [BHM93]. The referee informed me that the recent PhD thesis of Wright
[Wri02] contains another proof of Yu’s result along lines similar to those of this
paper.

This paper is organized as follows. Section 2 briefly recalls the properties of
K-theory needed in this paper. Section 3 reviews controlled algebra. We collect
various results from the literature and slightly expand some of them. Using the
abstract language of coarse structures from [HPR97] will be useful in formulating
and proving the squeezing result in Section 4. In Section 5 we recall the descent
principle from [CP95]. This identifies K∗A(Jb(E�)) as the obstruction group in
question. Section 6 contains the proof of our main result. The paper concludes
with a very brief discussion of L-theory.

2. KKK-Theory

We will use the nonconnected K-theory functor K−∞ from (small) additive cate-
gories to spectra. Applied to the category of finitely generated free R-modules its
homotopy groups give the higher K-theory K∗R of Quillen in positive degrees and
Bass’ negative K-theory in negative degrees. This functor has been constructed by
Pedersen and Weibel in [PW85]. A crucial property of this functor is its behavior
with respect to Karoubi filtrations ([Kar70, 1.5]). For a proof of the following result
see for example [CP97].
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THEOREM 2.1. If A is a Karoubi filtration of the category B, then there is a
fibration sequence of spectra

K
−∞A → K

−∞B → K
−∞A/B.

We will mostly be interested in the homotopy groups of K−∞. We state further
well-known properties of K-theory used in this paper.

THEOREM 2.2.

(i) Eilenberg swindle. If A is flasque, i.e. there is an additive functor S: A → A
together with a natural equivalence id ⊕S ∼= S, then K∗A = 0.

(ii) Equivalence of categories. Naturally equivalent functors induce the same maps
of K-groups.

(iii) Colimits. If A is the union of subcategories A1 ⊂ A2 ⊂ . . . then K∗(A) =
colimK∗(Ai).

3. Controlled Algebra

We will use the concept of a coarse structure from [HPR97].

DEFINITION 3.1 (Coarse structure). By a coarse structure on a topological space
X we mean a collection E of subsets ofX × X satisfying the following conditions:

(i) For E,E′ ∈ E their union E ∪ E′ is contained in some E′′ ∈ E.
(ii) For E,E′ ∈ E their composition (as relations) E ◦ E′ is contained in some

E′′ ∈ E.
(iii) For E ∈ E its inverse Eop := {(x, y) | (y, x) ∈ E} is contained in some

E′ ∈ E.
(iv) For E ∈ E and K ⊂ X compact the closure of

{x | (k, x) or (x, k) ∈ E for some k ∈ K}
is also compact.

The sets E are called entourages in [HPR97].

DEFINITION 3.2. Let S be a collection of subsets of a topological spaceX that is
closed under finite unions. Let E be a coarse structure onX. Let p1, p2: X × X →
X denote the projections onto the first and second factor. Let �: X → X × X

denote the diagonal embedding.

(i) We define the domain of E as

dom(E) := {F ⊂ X | �(F) is contained in some E ∈ E}.
E is called unital if X ∈ dom(E).
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(ii) The restriction of E to S is defined by

ES := {E | E ⊂ E′, p1(E), p2(E) ⊂ F for some E′ ∈ E, F ∈ S}.
It is again a coarse structure.

(iii) We define the E-enlargement of S by

〈S〉E := {p1(E ◦�(F)) | E ∈ E, F ∈ S}.

DEFINITION 3.3 (Coarse map). Let EX and EY be coarse structures on topolog-
ical spaces X and Y . A map f : X → Y is said to be coarse (w.r.t. EX,EY ) if the
following two conditions are satisfied.

(i) For every EX ∈ EX there is EY ∈ EY such that f (EX) ⊂ EY .
(ii) For F ∈ S(EX) and K ⊂ Y compact, the closure of F ∩ f −1(K) is

compact.

Geometric modules are a useful tool from controlled topology. In our case the
control conditions will come from a coarse structure as in [HPR97].

DEFINITION 3.4 (Geometric modules and morphisms over X). Let A be
a small additive category and X be a topological space. Let E be a coarse structure
on X.

(i) A geometric A-module over X consists of a collection of objects Mx ∈ A for
x ∈ X, such that the support

supp(M) := {x | Mx �= 0}
is a locally finite subset of X.

(ii) A morphism φ: M → N between geometric A-modules over X is given by a
collection of morphisms φx,y : My → Nx such that for fixed x (resp. fixed y)
φx,y �= 0 for only a finite number of y (resp. x). Define

supp(φ) := {(x, y) | φx,y �= 0} ⊂ X × X.

Composition is matrix multiplication, i.e.

(φ ◦ ψ)x,y =
∑
z

φx,z ◦ ψz,y.

(iii) The category A(E) has as objects geometric modules M with supp(M) con-
tained in some F ∈ S(E). Morphisms in A(E) are required to have support
contained in some E ∈ E.

Remark 3.5 (Functoriality). Let f : X → Y be a coarse map (w.r.t. coarse
structures EX,EY ). This induces a functor f∗: A(EX) → A(EY ) as follows. Given



SQUEEZING AND HIGHER ALGEBRAIC K-THEORY 23

a module M in A(EX), we define the module f∗M by (f∗M)y := ⊕x∈f−1(y)Mx .
Note that this sum is finite by 3.3 (ii). Given a morphism φ in A(EX), the morphism
f∗φ is defined by φy,y ′ = ⊕φx,x ′ where we sum over all (x, x′) ∈ (f × f )−1(y, y′).

This defines the functor f∗ only up natural equivalence (cf. [CP95, 1.16]).
Following Weiss [Wei, Section 2], the problem can be solved by equipping every
module over a space by choices of all these finite sums, i.e. a module is then a
functor defined on the category of finite subsets of the space. We will simply ignore
this matter to simplify the presentation.

Karoubi filtrations appear very naturally with geometric modules, cf. [CP95,
1.29]. Here they will relate A(E) and A(ES). The proof of the following lemma is
immediate from the definitions.

LEMMA 3.6. Let E be a coarse structure on X. Let S be a family of subsets of X
that is closed under finite unions. Denote 〈S〉E by S .

(i) We can consider A(ES) in an obvious way as a subcategory of A(E). This is
a Karoubi filtration. We denote the quotient by A(E)/S .

(ii) The canonical inclusion A(ES) → A(ES) is an equivalence of categories.

Remark 3.7. Let us describe the quotient category A(E)/S . It has the same set
of objects as A(E). LetM and N be geometric modules in A(E). Then HomA(E)/S
(M,N) is the quotient of HomA(E)(M,N) by the following equivalence relation:
morphisms φ,ψ : M → N are identified whenever their difference factors over an
object in A(E〈S〉E). Equivalently, supp(φ − ψ) is contained in F × F for some
F ∈ 〈S〉E.

Remark 3.8. In the situation of 3.6 the sequence

A(ES) → A(E)→ A(E)/S
induces a long exact sequence of K-groups (using 2.1 and 2.2(ii)). We will call such
a sequence a Karoubi sequence.

Next we define the coarse structures that will be relevant in this paper.

DEFINITION 3.9. Let X be a topological space and Z be a proper metric space.

(i) Continuous control. A subset E of (X × [0, 1))× 2 is said to be continuously
controlled if for every x ∈ X and every neighborhood U of (x, 1) inX× [0, 1]
there is a neighborhood V such that (X × [0, 1] − U) × V and V × (X ×
[0, 1] − U) do not intersect E. The set of all continuously controlled E that
satisfy also 3.1 (iv) form the continuously controlled coarse structure J(X) on
X × [0, 1).

(ii) Bounded control. Let B(Z) consist of all subsets E ⊂ Z × Z satisfying the
following: there is R = R(E) such that d(x, y) < R whenever (x, y) ∈ E.



24 ARTHUR C. BARTELS

(iii) Continuous control with bounded control in Z-direction. The coarse structure
Jb(Z) (on Z × [0, 1)) consists of all E ∈ J(Z) that satisfy in addition the fol-
lowing: there is R = R(E) such that d(x, y) < R whenever ((x, t), (y, s)) ∈
E.

Continuous control was introduced in [ACFP94] to study homology with coef-
ficients in the K-theory spectrum of A (cf. 3.12). Bounded control only captures
large scale properties of Z. In particular, A(B(Z)) is equivalent to A whenever
Z is compact. The mixture of continuous control with bounded control in (iii) is
particular suited for non-compact Z. Let us note the functorial behavior of our
different notions of control.

Remark 3.10 (Functoriality). Each example in 3.9 describes a functor from
an appropriate category of topological or metric spaces to the category of coarse
spaces. We fix first some terminology. We will call a map f : X → Y proper if the
closure of f −1(K) in X is compact for any compact subset K of Y . (Here proper
maps are not necessary continuous.) A metric space is proper if any closed ball of
finite radius is compact. A proper map f : X → Y between metric spaces will be
called metrically coarse if it satisfies the following growth condition: for all R > 0
there is S > 0 such that

dX(x, y) < R =⇒ dY (f (x), f (y)) < S.

Using this terminology, the construction 3.9(i) is functorial on the category whose
objects are locally compact Hausdorff spaces and whose morphisms are proper,
continuous maps; construction 3.9(ii) is functorial on the category whose objects
are proper metric spaces and whose morphisms are metrically coarse maps; con-
struction 3.9(iii) is functorial on the category whose objects are proper metric
spaces and whose morphisms are metrically coarse, continuous maps.

In order to obtain a homology theory from the category A(J(X)) we have to
introduce the germ category.

NOTATION 3.11. For a topological space X we abbreviate

A(J(X))∞ = A(J(X))/〈{(X × {0})}〉J(X).

This category can be thought of as obtained from A(J(X)) by taking germs at
X × {1}. Similar, for a metric space Z, we abbreviate

A(Jb(Z))∞ = A(Jb(Z))/〈{(Z × {0})}〉Jb(Z).

The first version of the following result is [PW89, 3.1]. In this form it is proven
in [Wei, 3.1, 4.2].

THEOREM 3.12. The functor X �→ K∗A(J(X))∞ is a generalized locally finite
homology theory on the category of second countable, locally compact Hausdorff
spaces.
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In particular, the functor X �→ K∗A(J(X))∞ is homotopy invariant. Next we
study corresponding invariance results for B(X) and Jb(X).

Remark 3.13. Let f, g: X → Y be metrically coarse maps between proper
metric spaces. If

∃C > 0 such that d(f (x), g(x)) < C ∀x ∈ X (3.14)

then it is not hard to see that the functors f∗, g∗: A(B(X)) → A(B(Y )) are na-
tural equivalent and induce the same map on K-theory. Maps satisfying (3.14) are
called bornotopic in [HR95]. A bornotopy equivalence f : X → Y is a metrically
coarse map that is invertible up to bornotopy. Clearly, such a bornotopy equivalence
induces an isomorphism K∗A(B(X))→ K∗A(B(Y )).

We will mostly use the category A(Jb(X)) not A(J(X)). However, by the next
lemma the germ categories agree.

LEMMA 3.15. Let X be a proper metric space. The canonical inclusion
A(Jb(X)) → A(J(X)) induces an isomorphism of categories

A(Jb(X))∞ ∼= A(J(X))∞.

In particular, with respect to the equivalence relation that defines the quotient
category A(J(X))∞, every morphism in A(J(X)) is equivalent to a morphism in
A(Jb(X)).

Proof. We only prove the second statement. The isomorphism follows easily
from this. Let φ be a morphism in A(J(X)). Let

W = {(x, t) | ∃(y, s) such that d(x, y) > 1,×
×φ(x,t),(y,s) �= 0 or φ(y,s),(x,t) �= 0}.

Let ψ be defined by

ψ(x,t),(y,s) =
{
φ(x,t),(y,s), for (x, t) �∈ W,
0, otherwise.

This is a morphism in A(Jb(X)).
For z ∈ X let Uz be the product of the open ball with radius 1 around z with

[0, 1]. Then there is an open subset Vz ⊂ X × [0, 1] containing (z, 1) such that
φ(x,t),(y,s) = 0 whenever (x, t) ∈ Vz and (y, s) �∈ Uz. In particular, W ∩ Vz = ∅.
We can choose a locally finite set Z ⊂ X such that

X × {1} ⊂
⋃
z∈Z
Vz.

Then

E = {((x, t), (x, 0)) | (x, t) �∈ Vz ∀z ∈ Z}
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is an entourage in J(X). Now {((x, t), (x, 0)) | (x, t) ∈ W } ⊂ E and therefore
W ⊂ p1(E ◦�(X × {0})). This implies that φ and ψ define the same morphism
in A(J(X))∞.

In order to get invariance results for the functor X �→ K∗A(Jb(X)) the notion
of homotopy has to strengthened to continuous Lipschitz homotopy as follows.

DEFINITION 3.16. Let X and Y be proper metric spaces. Let f, g: X → Y

be two metrically coarse maps. A metrically coarse map H : X × [0,∞) → Y is
called a Lipschitz homotopy (from f to g), if the following conditions are satisfied.

(i) H(x, 0) = f (x).
(ii) For every compact K ⊂ X there is tK such that H(k, t) = g(k) for k ∈ K,

t > tK .
(iii) If K ⊂ Y is compact, then the set {x | H(x, t) ∈ K for some t} is also

compact.

If f, g and H are continuous maps, then we call H a continuous Lipschitz
homotopy.

The following result is from [HPR97, 11.3].

PROPOSITION 3.17. Let X be a proper path-length metric space. Lipschitz
homotopic maps induce the same maps

K∗A(B(X))→ K∗A(B(Y )).

Remark 3.18. In [HPR97], this result is stated for a weaker notion of Lipschitz
homotopy. However, this is incorrect, and the proof given in [HPR97] in fact only
works for the stronger notion formulated above. (Condition (iii) is formulated
weaker, to the effect that the identity and the absolute value map R → R are
Lipschitz homotopic. But A(B(−)) applied to the absolute value map is trivial in
K-theory.)

COROLLARY 3.19. Let X be a proper geodesic space. Continuously Lipschitz
homotopic maps induce the same maps

K∗A(Jb(X)) → K∗A(Jb(Y )).

Proof. First assume that f is a continuous Lipschitz homotopy equivalence (in
the obvious sense). Consider the Karoubi sequence

A(B(−))→ A(Jb(−)) → A(Jb(−))∞
for − = X,Y . The functor f∗ induces an isomorphism on the K-theory of the first
term by 3.17 and on the third term by 3.12 and 3.15. Now the long exact sequence
3.8 and the 5-Lemma imply that f∗ induces an isomorphism on K∗A(Jb(−)).
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For the general case we use the notation from 3.16. Let ϕ: X → [0,∞) be a
continuous map such that ϕ(x) > tK for x ∈ K. Let

X0 = X × {0},
X1 = {(x, ϕ(x)) | x ∈ X},
Z = {(x, t) | x ∈ X, 0 � t �ϕ(x)}

be equipped with the induced path-length metric from X × [0,∞). Consider the
following commutative diagrams (cf. [HPR97, 11.2]).

X0
i0 ��

id ���
��

��
��

� Z

p

��

X1
i1��

q

����
��

��
��

X0

id
��

i0 �� Z

H |Z
��

X1
i1��

q

��
X X

f
�� Y Xg

��

Observe now that i0 and i1 are both continuous Lipschitz homotopy equivalences.
The general case follows, since p∗ is the inverse of (i0)∗.

It is often easy to see that categories of geometric modules are flasque. We
review a well known example.

Remark 3.20. Let ∗ denote the one point space. Let f : [0, 1) → [0, 1) be
defined by

f (t) = t + (1 − t)/2.
Then f induces a functor Sh: A(J(∗)) → A(J(∗)). Clearly Sh is naturally
equivalent to id. Moreover, the functor S = ⊕∞

i=1 Shi is well defined and S is
natural equivalent to S ⊕ id. Therefore, A(J(∗)) has trivial K-theory.
Cf. 2.2 (i).

4. Squeezing

The metric spaces we will consider are usually simplicial complexes with the
spherical metric. Let us review the definition of this metric, cf. [HR95, 3.1]. We
consider the standard n-simplex�n as the set of points of Sn ⊂ Rn+1 with nonnega-
tive coordinates. The Riemannian metric on Sn induces the standard spherical
metric on �n. The spherical metric dQ on a simplicial complex Q is the path
metric whose restriction to each simplex is the standard spherical metric. (Thus,
the distance between points in different path components is defined to be ∞.) Let
us agree that all simplicial complexes in this section are assumed to be locally
finite.

The main result of this section is the following proposition. We will discuss its
relation to squeezing later on.
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PROPOSITION 4.1. Let Qn be a sequence of simplicial complexes of uniformly
bounded dimension. Let Y be the disjoint union

Q1 �Q2 �Q3 � . . . .

Equip Y with the metric d that restrict to n times the spherical metric on Qn and
satisfies d(Qn,Qm) = ∞ for n �= m. Let S be the set consisting of all finite unions
Yn := Q1 × [0, 1) � · · · �Qn × [0, 1) ⊂ Y × [0, 1). Then the inclusion

A(Jb(Y )S) → A(Jb(Y ))

induces an isomorphism on K-theory.

Of course, it is crucial here, that we blow up the metric on theQn as n increases.
We discuss a special case before giving the proof of 4.1.

LEMMA 4.2. Suppose that in 4.1 eachQn is a disjoint union of j -simplices. Then
A(Jb(Y )) and A(Jb(Y )S) have vanishing K-theory.

Proof. Different simplices have infinite distance. Therefore morphisms in
A(Jb(Y )) and A(Jb(Y )S) cannot be nontrivial between different j -simplices�,�′,
i.e. for φ ∈ A(Jb(Y )) we have supp(φ)∩� × �′ = ∅. If we assume for a moment
j = 0, then A(Jb(Y )) and A(Jb(Y )S) are flasque. This can be seen by pushing
modules over Y × [0, 1) along [0, 1) towards 1, cf. 3.20.

For the general case, pick a point on each simplex and let p: Y → Y the
map that projects each simplex to this point. Then p is Lipschitz homotopic to the
identity. On the other hand, p induces the trivial map in K-theory by the case j = 0.
The claim follows now from 3.19.

Proof of 4.1. We proceed by induction over the skeleta. Let Q(j)

i denote the j -
skeleton of Qi . Let Y (j) ⊂ Y denote the disjoint union of the Q(j)

i . Let S(j) :=
{(Y (j) ∩ Yn) × [0, 1) | n ∈ N}. We abbreviate J

(j)

b := Jb(Y
(j)) and J

(j)

b,f :=
Jb(Y

(j))S(j) .
Consider first the Karoubi sequence

A(J(0)b,f ) → A(J(0)b ) → A(J(0)b )/S(0).

Note the following: for fixed R there is n such that pairs of different points in Y (0)

with distance less than R must lie in Q1 � · · · � Qn. This has the consequence
that the quotient category A(J(0)b )/S(0) remains unchanged if we replace the metric
d|Y (0) with a metric d∞ that gives different points always infinite distance, i.e we
may assume that each Qi is just a collection of points. (Use the description in
3.7 of A(J(0)b )/S(0) to see this). Thus, by 4.2 and the long exact sequence 3.8 the
isomorphism follows for j = 0.
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Now consider

A(J(j)b,f ) ��

F1

��

A(J(j+1)
b,f ) ��

F2

��

A(J(j+1)
b,f )/S(j)

F3

��

A(J(j)b ) �� A(J(j+1)
b ) �� A(J(j+1)

b )/{Y (j)}.
The two rows are Karoubi sequences. By induction we may assume that F1 gives an
isomorphism on K-theory. It will therefore suffice to show the same for F3 (using
3.8). In the two middle categories morphisms can be nontrivial between different
j+1-simplices. However, as we move towards Y × {1} this can only happen close
to the boundary of those simplices. More precisely, this can only happen over some
F ∈ 〈S(j)〉

J
(j+1)
b,f

(resp. F ∈ 〈{Y (j)}〉
J
(j+1)
b

). In the quotient categories on the right

hand side morphisms that factor over objects with support in such F are identified
with the trivial morphism (cf. 3.7). Therefore, we can assume that morphisms in the
quotient categories are trivial between different j +1-simplices. Thus, the quotient
categories remain unchanged if we replace each Qn by the disjoint union of its
j + 1 simplices. In this case the two middle terms have vanishing K-theory by 4.2.
By induction we can also in this case assume that F1 is an K-theory isomorphism
and we can conclude that the same holds for F3.

The following corollary is the squeezing result we will use in Section 6.

COROLLARY 4.3. Let Y,Qn be as in 4.1. Let F : B → A(Jb(Y )) be a functor
of additive categories. Denote by Fn: B → A(Jb(Qn)) the composition of F with
the projection A(Jb(Y )) → A(Jb(Qn)). Let a ∈ KiB. Then there is N such that
(Fn)∗(a) = 0 for all n > N .

Remark 4.4. The projection functor A(Jb(Y )) → A(Jb(Qn)) in 4.3 is not
induced by a map Y → Qi . It is given by restricting modules M over Y × [0, 1)
toQi × [0, 1). This gives indeed a well defined functor, sinceQi and Y −Qi have
infinite distance and morphism in A(Jb(Y )) are therefore always trivial between
Qi and Y −Qi .

Proof of 4.3. Observe first that A(Jb(Y )S) ∼= colim A(Jb(Q1 � · · · � Qn)).
In particular, by 4.1 there is b ∈ KiA(Jb(Q1 � · · · �QN)) for some N , that maps
to F∗(a) ∈ A(Jb(Y )). The composition

A(Jb(Q1 � · · · �QN)) → A(Jb(Y ))→ A(Jb(Qn))

is the trivial functor provided n > N and the claim follows.

In the remainder of this section we will discuss the relation of Proposition 4.1
and Corollary 4.3 to the classical squeezing of automorphisms of geometric
modules, cf. [Qui82, 4.5]. Let X be a proper metric space. Recall that an
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ε-automorphism φ is an automorphism in A(B(X)) such that the support of φ and
φ−1 are contained in

Eε = {(x, y) | d(x, y)� ε}.
Recall also, that elements in K1 of an additive category are equivalence classes of
automorphisms. Let us denote by K(ε)

1 A(B(X)) the subgroup

{[φ] | φ is an ε-automorphism} ⊂ K1A(B(X)).

The classical squeezing result of Quinn says that there is an ε such that every ε-
automorphism can be deformed to an δ-automorphism for every δ > 0. Let us
phrase this as follows.

THEOREM 4.5. Let Q be a finite dimensional simplicial complex. Consider the
spherical metric on Q. Then there is ε > 0 (depending only on the dimension of
Q), such that

K
(δ)

1 A(B(Q)) = K
(ε)

1 A(B(Q)),

for all 0 � δ� ε.

This is immediate from [Qui, 4.5]. See also [Ped00, 3.7]. (Both statements
in fact give more information.) Using 4.1 we can give a very simple proof of
the following analogue to 4.5. Here K(ε)

1 A(Jb(X)) is the obvious analogue to
K
(ε)

1 A(B(X)). The difference in the statements can be attributed to the fact that
K1A(Jb(∗)) vanishes, while K1A(B(∗)) is K1A.

COROLLARY 4.6. Let Q be a finite-dimensional simplicial complex. Consider
the spherical metric on Q. Then there is ε > 0 (depending only on the dimension
of Q), such that

K
(δ)

1 A(Jb(Q)) = 0,

for all 0 � δ� ε.
Proof. We proceed by contradiction and assume that there is a sequence Qn of

simplicial complexes of dimension � d and 1/n-automorphisms φn in A(Jb(Qn))

representing nontrivial elements in K1A(Jb(Qn)). Let Y = Q1 � Q2 � . . . be
equipped with the metric from 4.1. Then φ1 ⊕ φ2 ⊕ . . . can be viewed as an
automorphism in A(Jb(Y )). It is now a consequence of 4.1 that [φn] = 0 for all but
finitely many n.

Remark 4.7. It is a consequence of 4.6 that K(ε)
1 A(B(Q)) is contained in the

image of the boundary map

∂: K2A(Jb(Q)∞) → K1A(B(Q))
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associated to the Karoubi sequence (5.1). This is an analogue to a result of Pedersen
[Ped00, 3.6] and he deduces the squeezing theorem from this in [Ped00, 3.7]. Now
4.3 is a higher K-theory version of 4.6. Hence our squeezing result 4.3 can be
viewed as generalizing [Ped00, 3.6]) to higher K-theory.

5. The Descent Principle

Let X be a proper metric space. We denote the boundary map in the long exact
sequence associate to the Karoubi sequence (cf. 3.8 and 3.11)

A(B(X))→ A(Jb(X)) → A(Jb(X))∞ (5.1)

by

CA: KnA(Jb(X))∞ → Kn−1A(B(X)). (5.2)

In analogy to the coarse Baum-Connes conjecture [Roe93] we can ask for which
metric spaces CA is an isomorphism. This question is relevant for the assembly map
in algebraic K-theory, because of the following result from [CP95]. For a group �
let A[�] denote the category that has the same objects as A, but homA[�](−,−) =
homA(−,−)[�]. In particular, A[�] is equivalent to the category of finitely gen-
erated free R[�]-modules, provided A is the category of finitely generated free R
modules.

THEOREM 5.3 (Descent principle). Let � be a discrete group and let EG →
BG be a model for the universal �-bundle. Assume that B� is equipped with a
path-length metric inducing a metric on E�. If

CA: K∗A(Jb(E�))∞ → K∗−1A(B(E�))

is an isomorphism, then the assembly map

H∗(B�; K
−∞A)→ K∗A[�]

in algebraic K-theory is split injective, provided that B� is a finite CW -complex.
Sketch of proof. In [CP95, Section 2] the map CA is constructed as a �-

equivariant map of spectra with �-action S → T such that restriction to �-fix
points gives the above assembly map. The assumption implies now that S → T is
a homotopy equivalence. Thus we also get a homotopy equivalence on homotopy
fix points Sh� → T h� . Also the map S� → Sh� can be seen to be an isomorph-
ism (using that B� is finite). At this point another property of K-theory is used:
it commutes with infinite products [Car95]. In [CP95] slightly different control
conditions are used: instead of a bounded control assumption a compactification of
E� is used. This does not affect the argument. For more details see [CP95].

One way to pass from (possibly discrete) metric spaces to topology is given
by the Rips-complex. Related is the notion of an anti-Čech system, due to Roe.
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It gives a systematic way of looking at larger and larger parts of a metric space.
This will be a useful tool to study the map CA.

DEFINITION 5.4. (i) ([Roe93, 3.13]) An anti-Čech system for a metric space
X is a sequence U1,U2, . . . of open covers of X such that there is a sequence of
numbers Rn tending to infinity with the property that the diameter of every set in
Un is bounded by Rn and the Lebesgue number of Un is at least Rn−1. The nerve
|Un| of Un is the simplicial complex with a vertex for each U ∈ Un and a p-simplex
for every p+ 1-tuple U0, . . . , Up ∈ Un having nonempty intersection. For each set
U in Un we can choose a set in Un+1 containing U . These choices are part of the
structure of an anti-Čech system and determine maps

|U1| i1 �� |U2| i2 �� |U3| i3 �� . . . .

(ii) ([HR95, Section 3]) Given a locally finite homology theory h∗, the associated
functor hx∗ on metric spaces (a ‘coarse homology theory) is given by

hx∗(X) := colim h∗(|Un|),
where the limit is taken over an anti-Čech system for X. A partition of unity subor-
dinate to the cover U1 determines a map f : X → |U1| and therefore a coarsening
map

c: h∗(X) → hx∗(X).

Note that the map f is by construction metrically coarse.

We recall a result of Higson and Roe, that will be used in Section 6.

PROPOSITION 5.5 ([HR95, 3.9]). Assume that X is a uniformly contractible,
bounded geometry complex. Then the coarsening map c: h∗(X) → hx∗(X) is an
isomorphism.

Remark 5.6. For the definition of uniformly contractible, bounded geometry
complex see [HR95, Section 3]. Let Q be simplicial complex endowed with the
spherical metric. Assume that Q = E� for some discrete group � such that Q/�
is a finite complex. Then it is not hard to see that Q is a uniformly contractible,
bounded geometry complex.

6. Finite Asymptotic Dimension

Let X be a proper geodesic space. Let us abbreviate

h∗(X) = K∗A(Jb(X))∞.

Recall from 3.12 that h∗ is a locally finite homology theory. We have the coarsening
map c: h∗(X) → hx∗(X) from 5.4 (ii). The main goal of this section is the proof
of the following result.
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THEOREM 6.1. Suppose that X is a proper geodesic space of finite asymptotic
dimension m. Then CA from (5.2) is an isomorphism, provided the coarsening map
c is an isomorphism.

Recall from [Gro93, p. 28] that the asymptotic dimension of X is the smallest
integer n such that for any R > 0, there exists a cover U of X with the property
that the diameter of members in U is uniformly bounded and every ball of radius
R in X intersects at most n+ 1 members of U .

A key ingredient in Yu’s proof of the coarse Baum-Connes version of 6.1 is
[Yu98, Lemma 6.3]. We will need the following reformulation of Yu’s lemma.

LEMMA 6.2. Let X be a proper metric space of asymptotic dimension m. Then
there is an anti-Čech system Un for X and maps Gn: |U1| → |Un| such that the
following holds

(i) Gn is metrically coarse, proper and continuous.
(ii) Gn is properly homotopic to i1 ◦ · · · ◦ in−1, where the ij come from the anti-

Čech system Un (cf. 5.4 (i)).
(iii) For all S > 0 there is T = T (S) > 0 such that for x, y ∈ |U1| with

d(x, y)� S we have d(Gn(x),Gn(y)) < T/n.
(iv) The dimension of the |Un| is uniformly bounded by m.

Proof. It follows easily from [Yu98, 6.3] that there are U ′
n,G

′
n satisfying (i),

(ii), (iv) and the following version of (iii).

For R > 0 there is K = K(R) such that for x, y ∈ |U ′
1| with d(x, y)�R we

have d(G′
n(x),G

′
n(y)) < 1/R if n > K(R).

Let now j1, j2, . . . be a strictly increasing sequence of integers such that jR >
K(R) for all R. Then Un = U ′

jn
and Gn = G′

jn
satisfy our claim.

Lemma 6.2 allows us to use the squeezing result 4.3 to prove the following
vanishing result for elements in algebraic K-theory. This will be the decisive point
in the proof of 6.1.

PROPOSITION 6.3. Let Um,Gm be as in 6.2. For a ∈ K∗A(Jb(|U1|)) there is N
such that

(Gn)∗(a) = 0 ∈ K∗A(Jb(|Un|))
for all n�N .

Proof. Let

Y = Q1 �Q2 �Q3 � . . .
whereQn = |Un|. We use the path metric on Y that restricts to n times the spherical
metric on Qn. By 6.2 (iii) the functors (Gn)∗ : A(Jb(Q1)) → A(Jb(Qn)) can
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be assembled to a functor F : A(Jb(Q1)) → A(Jb(Y )) such that (Gn)∗ is the
composition of F with the projection A(Jb(Y ))→ A(Jb(Qn)). The claim follows
now from 4.3.

Proof of 6.1. We use the anti-Čech system Um for X and the maps Gn from
6.2. Let f1 : X → |U1| induce the coarsening map and set fm = im−1 ◦ · · · ◦ i1 ◦f1.
Compare the following long exact sequences, cf. (5.1).

KjA(Jb(X)) ��

(fn)∗
��

KjA(Jb(X))∞ CA ��

(fn)∗
��

Kj−1A(B(X))

(fn)∗
��

KjA(Jb(|Un|)) �� KjA(Jb(|Un|))∞ CA �� Kj−1A(B(|Un|))

Now take the colimit over the maps im in the second row. Then the second and
third vertical arrows become isomorphisms: The second one is the coarsening map
c and an isomorphism by assumption. For the third arrow observe that f1 and the im
are bornotopy equivalences (see 3.13) and are therefore isomorphisms. The colimit
preserves exactness and using the 5-Lemma we get an isomorphism

colim(fn)∗ : KjA(Jb(X)) ∼= colim KjA(Jb(|Un|)). (6.4)

On the other hand, by 3.19 and 6.2 (ii) we have

(in)∗ = (Gn)∗ : KjA(Jb(|U1|)) → KjA(Jb(|Un|)).
Therefore 6.3 implies that the map in (6.4) is the trivial map. This can only happen
if KjA(Jb(X)) vanishes and CA is an isomorphism as claimed.

The above argument depends on the assumption that X is geodesic: it has been
pointed out by Wright [Wri02] that f1 may not be coarse for general X.

We can now prove our main result. If we take for A the category of finitely
generated free R-modules we obtain Theorem 1.1 from the introduction.

THEOREM 6.5. Let � be a group that is equipped with a word length metric of
finite asymptotic dimension. Assume moreover, that B� can be realized as finite
CW -complex. Then the assembly map

H∗(B�; K
−∞A)→ K∗A[�]

in algebraic K-theory is split injective.
Proof. Let B� be realized as a finite simplicial complex. Then the universal

cover E� of B� is quasi-isometric to � equipped with any word length metric. In
particular E� has finite asymptotic dimension. Now 5.5 allows us to apply 6.1 and
our claim becomes a consequence of the descent principle 5.3.
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7. L-Theory

Results in algebraic K-theory have very often analogues in L-theory. This is also
the case for the results of this paper. For an additive category A with involution
Ranicki [Ran92] defines an L-theory spectrum with various decorations. Section 4
of [CP95] contains a review of L-theory that is sufficient for our purposes here.
In this sections all additive categories will have an involution, even if this is not
specifically mentioned. We will mostly be interested in the functor L−∞ from
additive categories (with involutions) to spectra, cf. [Cp95, 4.16]. This functor has
properties completely analogous to the properties of K-theory stated in Section 2.
For the fibration sequence associated to a Karoubi filtration see [CP95, 4.2]. This
allows the extension of results from the previous sections to L-theory. Given an
involution on A it is not hard to construct an involution on A(E), cf. [CP95, Section
5]. We will denote the homotopy groups of L−∞A by L−∞∗ (A). The squeezing
result 4.3 has the following L-theory analogue. The proof is completely parallel to
the K-theory case.

PROPOSITION 7.1. Let Y,Qn,B, F, Fn be as in 4.3. Let a ∈ L−∞
i (B). Then

there is N such that (Fn)∗(a) = 0 for all n > N .

This in turn can be used to prove the following analogue of 6.5. Note that this
is a corollary to Yu’s result [Yu98] if A is the category of finitely generated free
modules over Z. The assumption on vanishing of lower K-theory guarantees the
analogue of [Car95] for L-theory, that is needed for the descent principle 5.3.

THEOREM 7.2. Let � be a group that is equipped with a word length metric of
finite asymptotic dimension. Assume, moreover, that B� can be realized as finite
CW -complex and that K−jA = 0 for all sufficiently large j . Then the assembly
map

H∗(B�; L
−∞A) → L−∞

∗ A[�]

in L-theory is split injective.

It is explained in [CP95, Section 5] how this can in certain cases be used to
derive splitting results with other decorations than −∞.

There is also an analogue to 4.6. Recall that LhnA can be defined as the bordism
classes of n-dimensional quadratic Poincaré complexes over A, cf. [Ran89]. We
will say that such a Poincaré complex (C,ψ) over A(Jb(X)) is ε-controlled if all
involved morphism (in particular the homotopy that proves Poincaré duality) have
support contained in

{((x, t), (y, s)) | d(x, y)� ε}.

PROPOSITION 7.3. Let Q be a finite dimensional simplicial complex equipped
with the spherical metric. Then there is ε > 0 (depending only on the dimension of
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Q), such that every ε-controlled n-dimensional quadratic Poincaré complex over
A(Jb(X)) represents an element in the kernel of

LhnA(Jb(X))→ L−∞
n A(Jb(X)).

Remark 7.4. There are two slightly different definitions of n-dimensional quad-
ratic Poincaré complexes (C,ψ) in the literature. In Ranicki’s original definition it
was required that the chain complex C is concentrated between dimensions 0 and n.
This was given up in later definitions. However, above we have to use the original
definition: in the proof of 4.6 we viewed an infinite direct sum of automorphisms
φn as an automorphism. The corresponding construction for Poincaré complexes
works only if chain complexes involved are concentrated in uniformly bounded
dimensions.
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