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PREFACE

This book is based on a course | gave at Columbia University in 1966-67.
Its writing was greatly facilitated by the notes for that course which were
taken by Tsit-Yuen Lam, M. Pavaman Murthy, and Charles Small. | am
extremely grateful to them for their assistance and criticism.

| had originally hoped to make the exposition here more or less
self-contained, modulo a first year algebra course. Because of the variety
of techniques employed, however, this ambition threatened to lead to
an infinite regress. Thus, Part 1 on preliminaries still contains, despite its
length, a few results which are merely quoted without proof.

Time prevented me from includinghere a treatment of the “K-theory
of symplectic modules,” which I hope to publish in the near future. For
the theory of “quadratic modules” there is so far only a discussion of
the formalism (construction of the classical invariants) in my Tata lec-
tures [4], and only partial results are known at present in the way of
general stability theorems. It is worth noting, however, that the discus-
sion in Chapter VIl has been deliberately arranged so that it can be
applied directly to a variety of contexts. Thus, for example, one has
Mayer-Vietoris sequences and excision isomorphisms for the theories of
symplectic, quadratic, and Hermitian forms, for the Brauer group, and
for various other theories (roughly speaking, for those based on projec-
tive modules supplied with some type of tensor).

An important feature of algebraic K-theory, and one which has led
to genuinely new insights in pure algebra, is its ability to exploit the
techniques of a highly developed branch of topology—the homotopy
theory of vector bundles. In turn, and for entirely different reasons,
which go back to J.H.C. Whitehead'’s theory of simple homotopy types,
the topologists are active patrons of the subject, providing an abundant
supply of interesting and difficult questions with which the theory can
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viii PREFACE

be tested and expanded.

Under these circumstances it seemed worthwhile to make available
a reasonably comprehensive and systematic treatment of the main ideas
of the subject, as so far developed. | have written these notes with that
intention. | hope they may be useful, as a reference to topologists, and
as an invitation to an area of new techniques and problems to algebraists.
Finally, I have tried to organize the notes so that they might serve as the
basis for a second-year graduate algebra course, such as the one from
which they originated.

HYMAN BASS

New York, New York
October 1967
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INTRODUCTION

The “algebraic K-theory’” presented here is, essentially, a part of general
linear algebra. It is concerned with the structure theory of projective
modules, and of their automorphism groups. Thus, it is a generalization,
in the most naive sense, of the theorem asserting the existence and
uniqueness of bases for vector spaces, and of the group theory of the
general linear group over a field. One witnesses here the evolution of
these theorems as the base ring becomes more general than a field.
There is a satisfactory “stable form” in which the above theorems
survive (Part 2). In a stricter sense these theorems fail in the general case,
and the Grothendieck groups (Ko) and Whitehead groups (K1) which
we study can be viewed as providing a measure of thejr failure.

A topologist can similarly seek such a generalization of the structure
theorems of linear algebra. He views a vector space as a special case of
a vector bundle. The homotopy theory of vector bundles, and topolo-
gical K-theory, then provide a completely satisfactory framework within
which to treat such questions. It is remarkable that there exists, in
algebra, nothing of remotely comparable depth or generality, even
though many of these questions are algebraic in character.

The techniques used here are, therefore, topologically inspired.
They are based on the philosophy, supported by theorems of Swan
(Chapter XIV) and Serre (cf. Chapter V), that a projective module should
be thought of as the module of sections of a vector bundle. This dictates
the choice of projective modules (rather than some wider class of
modaules) as the objects of the theory. This point of view further exhibits
the stability theorems (Part 2) as direct imitations of their topological
precursors (cf. Chapter XIV). It was Serre [1] who originated the tech-
niques for proving such stability theorems in a purely algebraic setting.

The formalism of K-theory originated with Grothendieck’s proof of
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Xiv INTRODUCTION

the generalized Riemann—Roch theorem. The ideas were then quickly
developed in topology by Atiyah and Hirzebruch, who made the Groth-
endieck groups, K(X), part of a generalized cohomology theory, using
the suspension functor. While our point of view leads to an obvious
translation of K(X), there is no clear algebraic counterpart for suspen-
sion. As a result our algebraic K-theory in Part 3 is far from complete,
and the treatment here should be regarded as a provisional one, albeit
sufficient for a number of applications in later chapters.

The development in Part 3 is axiomatic so that the results can be
usefully applied to many categories other than those of projective
modules. The exposition there is substantially influenced by ideas of
Milnor. It was he who first called attention to the existence and im-
portance of the Mayer—Vietoris sequence of a Cartesian square, and this
has become a cornerstone of the whole theory. In particular, it [eads to
a very general analog of the excision isomorphisms. Otherwise the re-
sults of Part 3 are taken largely from a paper of Heller [1]. The latter
contains another major tool of the theory, the exact sequence of a
localizing functor, which does not seem to have any familiar topological
counterpart. Chapter VIII also contains a striking new theorem of Leslie
Roberts, with which he has computed K; for nonsingular projective
algebraic varieties.

There has been some recent progress in finding satisfactory
definitions of higher algebraic K’s. For example, Milnor has defined a
Kz, on which some work has been done by Gersten [2]. From a quite
different point of view, A. No6bile and O. Villamayor [1] have con-
structed an algebraic K-theory with functors K. for all n = 0. Other
(unpublished) definitions have been proposed as well. However, in none
of these cases are the new functors yet very well understood. It there-
fore seemed premature to attempt an excursion in that direction in
these notes.

In Part 4 the general results of Parts 2 and 3 are assembled and
applied to the computation of Grothendieck groups Ko(A) and White-
head groups Ky (A) for a variety of rings A. Special emphasis is given to
the case of group rings A = Z& because of the interest of the groups
K:i(Zw) to topologists. In particular, the long Chapter X! is devoted to a
new exposition of techniques, developed by Swan and Lam, which are
based on the theory of induced representations for finite groups.

There are two unanticipated, and mathematically interesting, high
points in the theory. The first is the fact that when A is a Dedekind ring,
the group theory of SLa(A), as formulated in terms of Ky, is intimately
connected with certain “reciprocity lfaws” in A. The latter include the
classical power reciprocity laws in totally imaginary number fields as
well as certain geometric reciprocity laws on algebraic curves. This
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phenomenon was first witnessed in the recent papers of C. Moore [1]
and of Bass—Milnor—Serre [1]. The discussion of this in Chapter VI is an
axiomatization, based the latter reference. | am further indebted here
to T.-Y. Lam for a number of suggestions. The upshot of this theory is
that known reciprocity laws can be used to compute K;. Conversely,
using the machinery developed in later chapters, we can sometimes
compute Ky directly, and in turn use these calculations to exhibit new
reciprocity laws. Examples of both of these procedures occur in the
text (cf. Chapters VI and XII).

The other surprise is the “Fundamental Theorem” in Chapter XII,
§7, which computes Ki(A[t, t71]). Its principal feature is that Ko(A)
appears as a natural direct summand of Ky (A[t, t1]). This is surprising
because, at least algebraically, Ko and Ky look like rather different kinds
of animals. The surprise disappears, however, if one interprets the
theorem topologically, whereupon it is seen to be an algebraic analog
of Bott’'s complex periodicity theorem (cf. Chapter XiV, §6). This theorem
first appeared (in a less precise form) in the paper of Bass—Heller-Swan
[1]. A new feature, which emerged only at the end of the writing of these
notes, is that the fundamental theorem has a built-in iteration procedure,
which can be used to manufacture a whole sequence of functors K.
{n = 0) with which to extend the (K;, K¢)—exact sequence to the right.
They help to clarify some calculations made in Bass—Murthy [1], but their
significance is otherwise still unclear (to me).






LOGICAL DEPENDENCE OF CHAPTERS

The following diagram is a rough indication of the logical interdepend-
ence of the chapters. If Chapter B depends logically on Chapter A then
A is placed above B; the converse is not necessarily true. In some cases
this dependence is rather peripheral, so a line joining A and B appears
only when the contents of A are an essential prerequisite for the read-
ing of B.
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SOME GENERAL NOTATION

Let A be a ring. We write
mod-A and A-mod

for the categories of right and left A-modules, respectively. We have
the full subcategories

P(A)C H(A) C M(A)C mod-A
defined as follows: M e M(A)<=>M is a finitely generated A-module, and
M e P(A)<=>M is also projective. Finally, M ¢ H(A)<=>M has a finite
resolution by objects of P(A) (see Chapter IlI, §6).

Let R be a commutative ring and suppose A is an R-algebra. Let S
be a multiplicative set in R and let C be a subcategory of mod-A. Then
Cs denotes the full subcategory of all M ¢ C such that St M = 0.

" The ring of n by n matrices over A is denoted Ma(A), and its in-
vertible elements constitute the group GLa(A). We often identify Ma(A)
with the A-endomorphisms of the right A-module A®*. When n = 1
we write
U(A) = GL1{A)
so that GLa(A) = U(Ma(A)).
If C is any category we write
= s
for the category of pairs (M, a) (M e C, a € Autg (M)) (see Chapter VII,
§1), i.e., the category of automorphisms of objects of C,

Xix
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Chapter |
SOME CATEGORICAL ALGEBRA

This chapter introduces some of the basic language
of categories and functors. It should be used mainly for
reference, rather than being read outright. The first
sections lead up to the notion of an Abelian category, in
§4, In §55-6 we assemble some basic facts about homology
and projective resolutions which will be used extensively
in the following sections. In §8 we prepare some less
standard results on direct limits, which are needed in
Chapter VII.

Essentially all of the material of this chapter can
be found in the books of MacLane [1] and Mitchell [1].

§1. CATEGORIES AND FUNCTORS

Recall that a category A consists of objects, ob A,

a set of morphisms, A(A, B), for each A, B ¢ ob A, and a
composition B -
A(B, C) x A(A, B)

> A(A, ©), (a, b) —> ab

The latter is associative, and there are identities

lA € é(A, A) with the usual properties. The dual category éo
has the same objects, éO(A, B) = é(B, A), and composition

is reversed. The dual of a statement about categories is the
same statement but interpreted in éo. In this sense, general

theorems about categories have duals, and the latter are
also theorems.



2 PRELIMINARIES

The notion of subcategory is obvious. Similarly, we
can form the Cartesian product of categories, in a naive
way, to obtain new categories.

We shall often confuse A with ob A, and write A € A

in place of A ¢ ob A. The class of all morphisms in A is
denoted mor A. -

a: A > B means a e é(A, B)

as usual. We call g an isomorphism if there exists b ¢

A(B, A) such that gb = lB and bg = lA’ i.e. if a is

invertible. We call a a monomorphism (resp., epimorphism)
if ab = gc => b = ¢ (resp., ba = ca => b = c¢), whenever
the indicated compositions are defined. Note that an
isomorphism is both a monomorphism and an epimorphism. The
converse fails in general. For example, in the category of
topological groups and continuous homomorphisms, an in-
clusion of a dense subgroup is an epimorphism and a
monomorphism.

We shall commonly use the following alternative
notations:

HomA(A, B) = é(A, B)

End () A(A, A)

AutA(A) the group of automorphisms of A (in A).

it

A functor T: A > B consists of a map on objects,

A > TA, and maps on morphisms
A, g): A(A, B)

which preserve composition and identities. T is called
faithful (resp., full) if TA B is injective (resp.,
3

surjective) for all A, B € A. Note that a faithful functor

T (=T > B(TA, TB)

might carry nonismorphic objects to ismorphic ones (e.g.,

the functor (topological groups) ignore the> (groups) )
topology

but this cannot happen if it is also full. A contravariant

functor A > B is a functor AV > B. Functors of several

variables are just functors on product categories.

In practice a category will often be specified by
naming only its objects. Such license will be allowed when
either the morphisms and composition are clear from the
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context, or, if there is some ambiguity, it is of no conse-
quence for the discussion at hand. Similarly, we shall often
define functors by specifying their effect on objects when
their effect on morphisms is then clear from the context.
The functors from A to B are themselves the objects

A . .
of a category, denoted B=. The morphisms are sometimes

called natural transformations, so we write

Nat. Tran.(T, S) = §é(T, S)

A natural transformation a: T > § is a family,
a = (a,) , of B - morphisms o, : TA > SA such
A A e A = A

that Sf uA = g Tf whenever £ : A

innocent assumptions on A and B will guarantee that

> B in A. (Rather

Eé(T, S) is a set; this will always be so in the examples

we treat.) Composition is defined in the obvious way.
Suppose we are given functors
Ty
A 5 > B > C Y >
= T r——— -
Ty

nz

and a morphism o: T;——> T,. Then we have the composite

functors, TiS, UTi’ etc., and we also have morphisms

aS ¢ T8 ——> T,S (aS)A = g, (A ¢ é)
and

Uo ¢ UT; —> UT, (Uoc)B = U(aB) (B ¢ E)
If sl: él > A and Ul: D > 21 are functors, and if
al: Ty > T4 1s a morphism of functors then we have the
following easily verified rules:

2(8S1) = (aS)s! s (Ulha = Ul (Ua)

1.8 =1

S =

Ti Ti ’ v lTi lUTi

(ala)S = (al8) (aS) , Uale) = (Ual) (Ua)
The latter show that composition with S and U defines
functors +S : gg > gé and U- : QE > QE,

respectively.
A functor T : é

> B is an isomorphism if there

is a functor S : E > A such that TS = 1y and ST = lA.
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A more natural notion is that of an equivalence; for an

equivalence we require only that TS = 1B and ST ~ 1,. An

>

equivalence preserves all of the properties of interest to
us in a category except size. In particular an equivalence
is full and faithful, so it is bijective on isomorphism
classes of objects.

We shall have frequent occasion to use the following:

(1.1) PROPOSITION. (Criterion for equivalence). A
functor T : A > B 1is an equivalence if and only if:

(a) T is full and faithful; and (b) every object of B is

isomorphic to TA for some A ¢ A.

Clearly (a) and (b) are necessary for an equivalence.
We prove sufficiency and construct S : B > A by

choosing, for each B ¢ E, an SB ¢ é together with an

isomorphism BB : B > TSB. Then the cummutative triangle
SB B~
B(B, B) ’ > A(SB, SB")
-1
(kg > 8g-) Tsp, sB-

B(TSB, TSB~)

gives the effect of S on morphisms. It is easily seen then
that S is a functor and that B = (BB) 01 > TS is an

(]

isomorphism of functors. Since B : TA > TSTA is an

TA
isomorphism it follows from (a) that BTA = T(uA) for a

unique isomorphism GA : A > STA. It is easily checked
now that o = (dA) : lA > ST is an isomorphism of
functors.

We shall close this section with some basic examples
of categories, and the notation to be used for them.

(1.2) CATEGORIES OF MODULES. Let A be a ring. We
shall write
mod-A (resp., A-mod)
for the category of right (resp., left) A-modules and
A-linear maps. If A° is the opposite ring of A there is a
canonical isomorphism A-mod > mod-A°. We shall deal
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extensively with the following heirarchy of full sub-
categories:
1=>(A) - I;I(A) - b=4(A) C mod-A

Here M ¢ M(A) <= M is finitely generated, M ¢ P(4) <= M
is also a projective A-module. Finally M ¢ E(A) <= M has
a finite resolution by objects in P(A) (see §6 below).
(1.3) CATEGORIES OF ENDOMORPHISMS AND AUTOMORPHISMS.
A monoid G(e.g., a group) can be viewed as (the morphisms

of) a category with a single object. As such a functor
from G to a category A 1s just a monoid homomorphism

r: G

> EndA(A) for some object A e A. These are the
1

. . G . .
"representations" of G in A, and A" is like a category of

"G~modules in é.” For if r* : G > EndA(A’) then a

morphism £ : r

f: A

> ¢~ of functors is just an A-morphism

> A7 such that fr(x) = r"(x)f for all x ¢ G.
Thus, if A = A-mod, for example, then éG is just the

category of G-representations on A-modules, i.e., it is the
category A[G]-mod, where A[G] is the monoid ring of G
over A (see Chapter IX).

We shall apply this construction now to the monoids

N and Z, freely generated as monoid and as group, respec-—
tively, by 1 ¢ N. If A is a category, a monoid homomorphism

r: N

> EndA(A) is completely determined by a = r(1l),

which can be arbitrary. Moreover r extends to a homomorphism
Z > EndA(A) if and only if g ¢ AutA(A). If we identify

r with the pair (A, a) then we see that the category QE is

isomorphic to the category whose objects are pairs (A, a)
(Aeh,ace EndA(A) ) and in which a morphism (A, @) to

(B, b) is an A-morphism f : A > B such that fa = bf.
For example, (A,a) ~ (A, ¢”) if and only if there is an

f ¢ AutA(A) such that g~ = f_laf. We shall refer to ég,

as the category of endomorphisms in A. We can identify éé
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with the full subcategory whose objects are those (A, a)
for which a ¢ AutA(A). This is called the 'category of

automorphisms” in A. The latter will be studied in great

detail in subsequent chapters (e.g., Chapters VII and VIII),
where we shall use the alternative notation

ZA:éé

(1.4) SOME DIAGRAM CATEGORIES. Let D be a partially
ordered set. We regard D as the set of objects of a
category, also denoted D, in which D(a, b) has one element
if a < b and is otherwise empty. Composition is then forced,

and it is definable because < is transitive. (We do not
really need to know that ¢ < b and b < a = a = b.)

As examples we have the sets An = {0, 1,..., n} with

their natural orderings. Thus Ay is the trivial category.

For any category A we can identify A canonically with

AR0. A functor F : A

> B i1s called a constant functor

if it factors through Ayj. The category A, has a single

nonidentity arrow, and éAl is called the category of

morphisms in A. A functor A, > A can be identified with

a morphism a : A > Ay If b ¢ By > By is another

then a morphism ¢ > b in éAl is a pair of morphisms

£, ¢ A,
1

i
particular it makes sense to say that '"two morphisms are
isomorphic'.

Note that the category of endomorphisms in A [see
(1.3)] is a subcategory of the category of morphisms, but
it is not a full subcategory. For if a and b above are

> Bi (i = 0, 1) such that f;g = bfy. In

endomorphisms then the morphisms (f,, £1) : «a > b in
éE are those for which f, = f;.

The category éAZ is the category of commutative

triangles,
/////Al\\\\

Ag———> Ay,
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with an evident notion of morphism.

More generally, the diagrams of a fixed type in A
can be viewed as functors from the "diagram category" of
the given type. As such we can speak of morphisms of
diagrams.

Exercise. Let Tn(A) be the ring of triangular

matrices (aij)lji, j<n , aij =0 if 1 < j, over a ring A.

Establish an equivalence
(A—mod)An —— Tn(A)—mod

(First do the case n = 2.)

§2. REPRESENTABLE FUNCTORS

There is a general type of identity which says that
by fixing a variable, we can view functions of two variables
as functions of one variable whose values are functions of
the remaining variable. Applied to functors, this becomes

A
g(é x B) _ (g:)E

where A, B, and C are categories. For any category A we

have the basic '"morphism functor"

AC ) : A0xa

> Sets

By the formalism above this corresponds to a functor

Al ——— gets ; Al
= a !

>
>

e

QI

called the representation functor. Explicitly,

A(B) = A(A, B) and A(b) = A(A, b) : c |
> A’then g : A > A° is defined by

ZzB : A(B) ———— A°(B) s a. (b) = ba

(2.1) PROPOSITION (Yoneda). Let A e

> ¢b

Ifa: A

o]

and F ¢ Setsé.

>

Define

¢ : Nat. Tran.(A, F) > F(A)
by ¢(a) = uA(lA). Then ¢ is bijective.

Proof. If a ¢ F(A) define ¢ : A

> F by
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aé(h) = (Fh){(a) for h : A > B. Then ¢(a”) = (a’)A(lA)
= (FlA)(a) = q. Thus ¢ is surjective. Moreover, for o as
above, ¢>(Ot)1;(lA) = (FlA) (¢(a)) = ¢(a) = OLA(lA)- Therefore

a and B = ¢(a)” agree on lA. In general, if h : A > B,
then the commutivity of
o
- A
A(A) ——2—> F(A)
A(h) F(h)
A(B) T—> F(B)

B
ay (A(h) (1))

8 () (1,))

shows that aB(h)
= F()(8) (1))

bijective, q.e.d.

F(h) (2, (1,))
BB(h). Thus ¢ is

]
[

(2.2) COROLLARY. The representation functor

80— sered

is faithful and full, In particular any functor isomorphism
Aca, ) > A(B, *) is induced by a isomorphism A > B.

Proof. The map

B(A) = éO(A, B) repr. functor

is just the map a%——> a” constructed above.
A functor F : A > Sets 1s called representable

> F

> Nat. Trans(A, B)

if it is isomorphic to A for some A ¢ A. If a: A

is such an isomorphism then the pair (A, o) is determined
up to a unique isomorphism, according to the results above.
Thus an object is completely known by its morphisms into
other objects. Analogous conclusions for the functors

A(+, A) can be deduced by replacing A by éo.

We shall now define several types of objects in
categories by designating the functors they are to represent
0f course this leaves open the question of their existence.

An initial object represents the functor A ] > {A},

i.e., it has a unique morphism into any object. Dually, a
final object admits a unique morphism from any object. An

object which is both initial and final is called a zero

object. The symbol 0 will always be used to denote a zero
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object. In its presence there is a unique morphism in
A(A, B) which factors as A > 0 > B, and we denote

this morphism also by 0! Evidently Og = 0 and a0 = 0 for all
morphisms «.

f1 f2
Suppose X3 > X7 < X, is a pair of set maps.

Then we define

Xlﬂ)—(,Xz = {(XI’ x2)€X] x Xp ] fi1(x1) = f2(X2)}.

£ £
Given a diagram A, > A7 < Ay in a category A we

define the fiber product, AlﬂA,AZ, by

AGB, A7, Ap) = A(B, Ap)T AGB, Ap) (B c A)

é(B, A’)"
Explicitly, AlﬂA,Az comes equipped with "projections'
P1, p2 making
b2
AlﬂA,AZ _— A2
P o
A ———> AT
1 ) A
commutative. Moreover, given another commutative square
hp
B > A,
hy £5
Al f2 > A
there is a unique morphism t : B > AlﬁA,AQ such that

hi = Pit(i = 1, 2). A square of the type (1) above will be
said to be Cartesian. It is also sometimes called a

pullback diagram.

The dual notion associates with a diagram



10 PRELIMINARIES

f1 f2
Ay < A7 > Ap 'a co-Cartesian (or pushout diagram)
Ay, Ay ?2
A < A7

i.e., one which is initial in the category of all such
commutative squares. This defines the fiber coproduct of the
given diagram.

Let @ ¢+ A ——> B be a morphism in a category A

with a zero object. Then we define

Ker(a) AwBO

and

Coker (a) Ou,B

A
We shall use capital letters for the objects here and small
letters for the corresponding morphisms:

Ker(a) ker (@) > A —Z > B coker(a) >Coker{(a)
Given a” : A~ > A such that aa” = 0 there is a unique
a 3 A" ———> Ker(a) such that a” = ker(a)a. A similar

property characterizes the cokernel. We further define

Im(a) = Ker{(coker(a))

and
Coim(a) = Coker(ker(a))

It is easily checked that there is a canonical morphism
i : Coim(a) —> Im(a)

such that the diagram

Ker(a) Coker(g)
¥ 4
A _ B
¥ i 4
Coim(q)—— Im(a)

commutes.
Next we introduce the notion of the limit (and
colimit) of a functor. Let L and A be categories. For each

A ¢ A we have the constant functor

c(a) = L

> A L |
£ |

> A (L ¢ obg)

> 1A (f ¢ morg)
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> B defines an evident natural trans-
> c(B), so we have a functor

A morphism g : A
formation c(a) : c(4)

e A—— a

which is evidently full and faithful. Now if F

e

is any functor we define its limit,

F=1imF e A

- =

by

A, B) = AK(c(), B) (A c )
Dually, the colimit of F,

F = colim F ¢
-

I

is defined by

AGE, &) = aE(F, c)  a e )

If limits always exist it is easy to see that they define
a functor

lim : AF —— 4

and similarly for colimits.

Further remarks about limits will be made in §8. For
the moment we shall discuss only the following case: Let L
be a set and let L be the category with ob L =1 and

with only identities as morphisms. A functor F : L > A

is then simply a family (F(i))i . of objects of A indexed

L
by L. In this case the limit of F is called the product of

(F(:L))i e L* and it is denoted
L LF)
The colimit is called the coproduct and is denoted

I .
ice LF(l)

If all of the F(i) are equal to the same object A (i.e., if
F = c(A) ) then we write

Al ana A
for the product and coproduct, respectively. In particular,

if L ={1,..., n}, we shall often write

P {n factors)
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and

(n)

A = AL e+ LA (n factors)
Exercise. Let L be the category with objects

{0, 1, 2} and with only two nonidentity morphisms, 1 —— 0
and 2 > 0. Let F : L > A be a functor. Interpret

lim F and colim F.

§3., ADDITIVE CATEGORIES

An additive category is a category A satisfying

axioms Ad Cat 1(0 < i < 3) below. We want the morphisms
é(A, B) to be an Abelian group. It is a remarkable fact

that this structure is built into the rather primitive
looking axioms that follow:

Ad Cat O. A has a zero object, O.

Ad Cat 1. The product and coproduct of any two
objects in A exist.

Before stating the next axiom we shall introduce
matrix notation. Reference to the following commutative

diagram in A will facilitate its explanation.

E
(bse)
b2e
(l) > BITTBz
P,
J
timts
(alsl,azsz) (tlbl
tyby
i Pj
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Here the g's and p's are the structure morphisms for the
indicated coproducts and products, respectively.
For given morphisms @ and b as above, we write
b1)
a = (a1, ap), where ai = aqi(i =1, 2), and b =<b2 , where
bj = pjb(j =1, 2). The rules for composition in this
notation are then illustrated in the diagram. The formulas

are:

dan, @) = @, da), (pl)e = (122)

boe
(2)
(a1, as)(s1us2) = (ais1, assy) ,
)= e
(tlﬂtz)(bz tybs
Now é(AIUAZ: B1mB,) = il é(A,, B.)

1<i, j<2 i J

> B1mB, by a

so we can represent a morphism g: Ajud,

matrix
ay; a
a = < 11 12) . =p.aq..
a1 Qo2 1] 7]
Here ai, s A, > Bi’ (note the reverse!). Viewing a as a

morphism from a coproduct and to a product respectively, we
can compare this notation with that introduced above, as

follows:
an, [F12)\ = [F11 %12 (ayy, ayy)
az Ao Ari  Ago (Gp1, agy)

In the diagram (1), we can now write the composite

by (@1, ap) = bya;  byay
b b2a1 b2a2

Moreover, we have the formula

t ) a1 G12 ’ ) tia1¢81 t1a1,8;
7t s, lLs =
1727 \ay1 as; 12 tras181 trasrs,

From this it follows that
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lA 0
= = . 1 —
o} ¢A, B 0 lB : A B > ATB

is a'natural transformation from the coproduct to the
product.

Ad Cat 2. ¢ is an isomorphism.

In the presence of this axiom we can use ¢ to
identify A L B and AnB, which we then sometimes denote by
A ® B and call the direct sum of A and B. Note that we

have the 'diagonal morphism"

- 1). - -
AA-<1.A > ATA = A @ A

and the "sum morphism"

ZB=(1,1):B1LB=BQ)B > B
With these we shall introduce an addition, a + b, in A(A, B)

by the commutivity of the diagram

a+b

\\\\zé @ B)////
ATA = A% A = AL A
AL

(5) [ lamf l

BB B® B = B

B

The fact that (anb)(i) (a) and (1, D(arb) = (a, b)

b
comes from (2) above. Moreover, the formulas d{(a, b) =

(da, db) and (a)e = (ae> in (2) show that we have
b be
(3) d(a + b) = da + db and (a + b)e = ae + be

(3.1) PROPOSITION. The addition + defined above
endows each é(A, B) with the structure of a commutative

monoid whose neutral element is the zero morphism. Moreover
composition in A is + - bilinear.

Proof. We have just verified the last assertion. To

prove that a + 0 = a we first write (a + 0) = a(lA + 0),
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using (3). To show now that lA + 0 = lA we must verify that

the square

A Py 0

AmA AL A
%A, A

is commutative. We do this by showing that each triangle
commutes:

plA = pl(l, l) =]

A

ity -2 (9) - ()

Replacing (é) and Py by (2) and p,, respectively, we see

that 0 + a = a as well.
Now let a, b, c, d € A(A, B) and consider the

composite
a b
. . ;
A—A L aea e Y e B g

We can identify the middle with ((a’ b)> and with «a), (b>
(c, d) c .

The two resulting interpretations of the composite give
us the formula

(@a+b)y+(c+d) =(a+c)+ (b+4d)
letting d = 0, we obtain, thanks to the first part of the
proof,

(@+b)+c =(g+¢c)+b

The case g = 0 shows now that + is commutative. Therefore
we can rewrite the last equation as:

c+ (a+b) =(c+a) +b, i.e., + is associative.

c, d,
Given C = Ai = > D (1 =1, 2) we

see from the commutative diagram

g.e.d.
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(e
Cz) (dy, dp)
C ———> A §_ A, ———> D
A
C Cle Co dl@ dz ZD
&
c® ¢ FRTu S A D& D

that
C1
(d1, d2) ( >= dicy; + doep
c2
From this we deduce the usual rule for matrix multiplication
(a b) <a’ b’) _ (aa’+bc’)<ab’+bd’)
c d/ \e@ a7/ " \ea” + dc”/ \cb” + dd”
whenever we have

(a’ b~ a b)
A1@A2~C--d—> BI(BBZ-*C——(—i-—

\

C14 Co

Suppose we are given a e A(A, B). Consider

lA 0
o = : A B—> A H B
a lB

(c
c—<? . agp{ddDd g

If

then a(c,)= < ¢ > and  (d, d)o = (d+ d7a, d7)

c ac + ¢

Visibly, then, o is both a monomorphism and an epimorphism.
. . s . . w

Suppose it were an isomorphism say, with inverse ( x).

z
Then the equation

1 _ <l O) - (l O><w x) _ < w X
A® B 0 1 a 1/\y =z aw +y ax + z)
shows that w = 1 and hence 0 = aw + y = ¢ + y. Thus an
inverse for o yields a + - inverse for a. This proves that

axiom Ad Cat 3 below is automatic if we know that a morphism
in A which is both a monomorphism and an epimorphism must

be an isomorphism.

Ad Cat 3. The operation + makes each A(A, B) an
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Abelian group.

An alternative definition of additive category
postulates (i) a zero object, (ii) existence of products,
and (iii) an additive group structure on each A(A, B) so

that composition i1s bilinear. Then if P; ° AymA, > Ai
are the projections we can define
q; = <é) : Al > Al’TTA2 and
— O .
2 = \y) ¢+ A2 > A1TAp
and we have piqi = lAi and piqj =0 if i j. Therefore,

s = qip; + q,p, satisfies p,s =p, = pi-l (i =1, 2) and
so s = 1. We can now show that (A;mA;, q7, q2) is the

coproduct of A; and A,. For given bi : Ai > B (1 = 1,2)
define b = (b, by) : AmA, > B by (by, by) = bip; +
bsps. The formulas above show that bqi = bi(i =1, 2). If
b” : AjmA, > B also satisfies bqi = bi(i =1, 2) then

cq; = 0(i = 1, 2), where ¢ = b - b”. Hence 0 = ¢cqip1 + cqop2

= ¢l = c. From this construction of the coproduct one can
easily deduce the equivalence of this definition of additive
category with the one presented above. Dually, one can
obtain a definition by assuming the existence of coproducts
instead of products in (ii).

The reasoning above shows that if we have a diagram

q1 P2
NS > A _ > A,
P1 q2
such that pid, = lA (i =1, 2), piqj =0 if 1 # j, and
i

lA = q1p1 *+ qop2, then A = A} & Ay. More precisely,

(A, P1, P2) = A1TAy and (A, q1, q2) = A1 uAp.

(3.2) PROPOSITION. Let
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(4) b1 ao

BT

be a square in an additive category A, and consider

b= (D1
(‘bz) a = (a1, ap)
A———— A1 B A, > A”

(1) The square (4) is commutative if and only if ba = O.

(ii) It is Cartesian if and only if b = ker(a).

(1ii) It is co-Cartesian if and only if a = coker(b).

Proof. Exercise.

A functor T : A > B between additive categories

is called an additive functor if the maps

TA, B : é(A, B) —m— g(TA, TB)
are all group homomorphisms. The discussion above shows
that such a T must preserve products and coproducts.
Conversely a functor T which preserves products or co-
products must be additive.

We shall close this section now with a proof of the
"Krull-Schmidt Theorem', which asserts the uniqueness up
to isomorphism of direct sum decompositims. We fix an
additive category A.

(3.3) LEMMA. Let

¢ 7 \ca
A B—-S5%Y 5 copoD

If o and a are both isomorphisms then B = D.

Proof. If ¢ = 0 then the lower right coordinate of

o ! is an inverse for d. In general we replace a by
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10 a b
(&
-— (X =

(-cal 1D> (o d‘>

and reduce to the first case.

We shall say that an idempotent e ¢ EndA(A) splits

if there exists a diagram B —3— A —P— B such that
pq = 1 and qp = e. We assume henceforth that all idempotents

in A split.

(3.4) LEMMA. Given a diagram A 4 - 3 P a
such that p“q is_an automorphism of A, there exists a
q1 + A > B such that (B; q, ql) represents B as_

A® Ap.

Proof. Let p = (p’q)_lp’. Then pg = 1 s0 e = qp 1is

idempotent. By assumption, therefore, we can find A, —_—1

P1
B ——> A such that pjq; = 1 and qip; = l-e. Then the
data (B; q, p3 ql, pl) satisfy the required identities for
& .
A A1

A ring R is called local if a sum of two nonunits in

R is a nonunit. The nonunits then constitute the unique
maximal ideal of R. An object A ¢ A is called indecomposable

if A+ 0Oand if A=B@®#C= B =0 or C=0. This is
equivalent to the condition that EndA(A) contains precisely

R

two idempotents, O and 1. This is clearly the case if
End A(A) is a local ring (30).

(3.5) LEMMA. Suppose A @ B = Cf&--'Q Cn, and assume

R = End ,(A) is a local ring. Then there is an i such that

D

C,=C ®C " where C;” ~AandB=C'g 2.
i i i i i J*ﬁ-j
Proof. Let (qA, pA), (qB’ PB), and (qi’ Pi)(lfifp)

be the morphisms associated with the two direct sum
decompositions. Then in R we have 1 = Pyd) = pA(Zqipi)qA =
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ZpAqipiqA. Since R is local one of the pAqipiqA must be a

unit. Relabeling, if necessary, we can assume (pAql)(plqA)

is an antomorphism of A. According to (3. 4) there is a
- - ) .

] Cl Cl such that (Cl’ P1d,s ql) represents Cl

as A & Ci. Using this to refine the decomposition

ClQ--'QCn toA® C & C2$'°'$ Cn’ we obtain an isomorphism

1
of the latter with A & B such that the composite
q .
A—2 > A aB=-4p CI8Cy0 0 Cnl—St—E-r—oj-'—>Ais

an isomorphism. It follows therefore from (3. 3) that

B=C 8C, 8 8C .

(3.6) THEOREM (Krull-Schmidt). Let A be an additive

category in which all idempotents split. Let Ai € é(lj_i:_n)

be nonzero objects with local endomorphism rings, and put
A = Alﬂ)...Q) An.

(a) Any direct sum decomposition of A can be refined
to one with indecomposable summands.
(b) If A = Bl Be--p Bm with each Bi indecomposable

then m = n and there is a permutation o of {1,...,n}

such that Bi e (1 <41 <mn).

A .
a(i)
Proof. Induction on n; the case n = 1 is clear, so

suppose n > 1.
If A = Cl LR Cr then (3. 5) implies that for

some i, say, i = 1, we can write C, = A.1 & Ci, so that

1

A2 B B An = Cl 4 C2 BB Cr. By induction we can

refine the latter to an undecomposable decomposition. If the
C, are undecomposable to begin with, then we must have

[N

i = 0 and the uniqueness now follows also by induction.

§4. ABELIAN CATEGORIES

An Abelian category is a category A satisfying:
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Ab Cat 0. A is additive (see §3);
Ab Cat 1. Every morphism ¢ in A has a kernel and

a cokernel; and
Ab Cat 2. ("First isomorphism theorem') The

canonical morphism
Coim (q) ——— Im(a)

is an isomorphism for each morphism ¢ in A.

The intention of these axioms is to make available,
in any Abelian category, all of the elementary arguments
and constructions (involving only a finite amount of data)
which one performs in categories of modules. The achievement
of this aim is testified to by the "Embedding Theorem,"
which we quote below. In view of that theorem one might
protest that the notion of Abelian category is superfluous;
why not speak of subcategories of categories of modules
instead. This is roughly analogous to asking that we only
speak of wvector spaces with fixed coordinate systems, or
that we speak only of groups of permutations (after all,
every group is one). There are many reasons beyond
lingiustic simplification that make the notion of Abelian
category natural and useful. The most obvious one derives
from the fact that the axioms are self-dual, so that the
dual of a theorem about Abelian categories is again one.
Only rarely does the dual of a category of modules have a
natural representation as a category of modules. Further-
more, there is the important notion of quotient category
(see Chapter VIII, §5) which would be awkward, to say the
least, to formalize using only categories of modules. Of
greatest importance, perhaps, is the fact that, with respect
to certain infinite constructions (e.g. limits) categories
of modules betray certain definite idiosyncracies.

Let A be an Abelian category. A sequence «-- > A
b

CARE > C >see ig called exact at B if

ker(b) = im(a). A functor T : A > B between Abelian

categories is called exact if it is additive, and if

TA Ia > TB b > TC is exact whenever A SN B b > C
is exact. An exact sequence of the form O > A 2> B
b

> C > 0 is called a short exact sequence.The exactness
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of this sequence just means that a = ker(b) and b = coker(a).
It is easily shown that an additive functor T is exact if
and only if it carries short exact sequences into short
exact sequences, or, equivalently, that it preserves kernels
and cokernels.

If A ¢ é then the functors

é(A, D)o A > Z-mod and

> Z -mod

are both kernel-preserving. Therefore they are exact if and
only if they preserve epimorphisms. An object P e A is
called projective if é(P, .) is exact, i.e., if it pre-

serves epimorphisms. Explicitly, given an epimorphism
b
B

> C in A, then it is required that every morphism

p: P > C factor through B: p = bg for some q: P > B.
In case C =P and p = 1P this implies that every epimorphism

B ——P—~> P has a right inverse, and hence that B ~ Ker(b)#P.

(4.1) EMBEDDING THEOREM (Freyd, Grothendieck, Lubkin).

Let A be an Abelian category with only a set of objects.

Then there is an exact functor E: A > Z -mod which is

injective on both objects and morphisms.

The first published proof of this is Lubkin's. An
elegant proof by Freyd can be found in Freyd [1l] or in
Mitchell [1]. Mitchell has also a useful strengthening of
the theorem. He obtains a functor E: A > R -mod, for a

suitable ring R, which has all the properties of the E
above and which is moreover full. Thus the maps é(A, B)

>
HamR(EA, EB) in Mitchell's theorem are isomorphisms, not
just monomorphisms.

We shall adopt embedding theorem without proof. It
will be used only in the verification of certain properties
of finite diagrams in Abelian categories. The theorem
permits us to view them as diagrams of modules and module
homomorphisms. Typical properties of the functor E which
are used are the following: E preserves kernels, cokernels,
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images, ... ; a sequence,S in A is exact <= ES is exact; a
square S in A is Cartesian (or co-Cartesian) <= ES is. The

set theoretical restriction in the embedding theorem is
quite innocent because any finite set of data can be em-
bedded in a full Abelian subcategory of A to which the

theorem applies.

For the rest of this section we shall work in a
fixed Abelian category A.

We shall often abbreviate a monomorphism g: A —> B
by writing A C B, and we then call the (undenoted) a the
inclusion. We further write B/A for Coker(a). If Al’ AZCI B
then

Ker (B

Alﬁ A, > (B/Al) & (B/Az))

Al + A2

[

Im(AIQ A > B)

2

We then have the usual "first and second isomorphisms
theorems:"

1. If AC BC C then C/B

isomorphism; and
2. If A, B CC then A/(ANB)

isomorphism.

> (C/A)/(B/A) is an

> (A + B)/B is an

A sequence 0 = AO(: A1CZ---C: An = A is called a

finite filtration (of length n) of the object A. If

0= B0 C B]‘C--- C Bm = A is another it is called a re-

finement of the first if there is a strictly increasing

> {0,...,m} such that a(0) = O,
Ai (0< i< n). We call the two

function ao: {0,...,n}
a(n) = m, and Ba(i) =

filtrations J-H-equivalent (J-H = Jordan-Holder) if there is

> {0,...,m}(so n = m) such that
(1 <i<mn).

a bijection B: {0,...,n}
A/Ai1 ® Beay/Beay-1

From the first and second isomorphism theorems one
can deduce (see any algebra book) Proposition (4.2).

(4.2) PROPOSITION (Zassenhaus Lemma). Any two finite
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filtrations of an object A have J-H-equivalent refinements.

An object A is called simple if it has precisely

two subobjects (0 and A). A Jordan-Holder series of an

object A is a finite filtration 0 = Aj C A C -++-C An = A
such that Ai/Ai—l is simple (1 < i < mn). When A possesses
one it is said to be of finite length. That its length, n,

is well defined follows from the Jordan-Holder theorem
below. The latter is a rapid consequence of the Zassenhaus
Lemma.

(4.3) THEOREM (Jordan-Holder). Let A be an object
of finite length, and let 0 = Aj C Al(:'--CZAn = A be a

filtration such that Ai/Ai—l +0 (1 <1 < n). Then this

filtration can be refined to a Jordan-Holder series. More-

over any two Jordan-Holder series of A are J-H-equivalent.

We shall close this section now with some basic
lemmas on certain types of diagrams.

(4.4) PROPOSITION ("5-Lemma'). Consider a commutative

diagram
ay 2%} as ay
Ay > Ay > Ag > Ay > Ag
C1 Co Cj3 Cy Cg
By——> B > B > B > B
1 by 2 by 3 bs L by, 5

whose rows are exact.

(1) 1If ¢y is an epimorphism and if <, and ¢, are
monomorphisms then c3 is a monomorphism.
(2) lj_cS is a monomorphism and if ¢, and c, are

epimorphisms then c, is an epimorphism.

3
(3) lﬁ_ci(i + 3) are isomorphisms then so also is cy

Proof. Part (3) follows from (1) and (2), and (2) is
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the dual of one. To prove (1) it suffices, by the embedding
theorem, to do so in the category Z-mod, where it can be

done by "diagram chasing'. We leave the details as an
exercise.

(4.5) PROPOSITION. Given morphisms A —%—> B —2

there exist unique morphisms which make the diagram

> C

> Coker(a)

~_,”

A > C > Coker (ba)
Coker(b)

commute, and the resulting outer perimeter sequence is exact.

Proof. The existence and uniqueness of the commu-

tative diagram is trivial to check. For exactness we can
assume it is a diagram in Z-mod. The details are left as

an exercise.
(4.6) PROPOSITION. Let

b,
A—> A,

b ar

Mg A
1

be a Cartesian square in which q; is an epimorphism. Then

b, is also an epimorphism, and the induced morphism

Ker(b,)

> Ker(a;) is an isomorphism.

Proof. It suffices to check this in Z-mod, where it

is a simple matter. Alternatively, apply (4.5) to the
commutative triangle
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A @ A,

a; & 1 (1, -ay)

Ay & A > A”
! 2 (al) _32)

Since a; is an epimorphism so also are all morphisms
in the triangle. Therefore, since A = Ker(a;, -a»), we have

an exact sequence

0

> Ker(a; & 1) o> A—L Ker(l, -a;)—> 0

The projection A~ ®4A,
Ker(1l, -a,)

> A, induces an isomorphism
2 P

> A,, whose composite with j is b,. Therefore
by is an epimorphism and ker(b,) = i. But manifestly the

projection A; & A,
Ker(a; & 1)

> A; induces an isomorphism

> Ker(a;). q.e.d.

(4.7) PROPOSITION (''Snake Lemma'). Given a commu-—
tative diagram

a1 ai
(0 —> ) A7 > Ay > A7 ——> 0
d- d 4”-
az as
0—> A > Ay > AS7 (> 0)

with exact rows, there is a natural morphism 3 which makes
the sequence

(0—>)Ker (d*)——>Ker (d)—>Ker (d~ ") —

>Coker (d) >Coker(d” ") (

>Coker(d”)
>(0)

exagt. (The data in parentheses are understood to occur in
the conclusion if their counterparts are accepted in the
hypothesis.)

Proof. We shall prove the existence of 3. Its

naturality with respect to morphisms of diagrams of the
above type will be clear from the construction. The proof of
exactness, which can be done in the category Z -mod, will

be left as an exercise (see Bourbaki [3], §1).
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Form the fiber product

p —2—s Ker(d~")

aj
A——> A{”
Since ai is an epimorphism it follows from (4.6) that we

have a commutative diagram with exact rows

0 > Ker(p) > P —2 Ker(d~”") > 0
(=) q
ai
0 > Ker(ayi) > Aj > A{” > 0
Since ker(aj) = im(q;) we obtain an epimorphism
r: Af ———> Ker(p) so that the following diagram is
commutative:
0 0
+ 1 ¥
0 —> Ker(p) >P  —E 5 ger(d””) > 0
r 719 |
a},/ al
A) -,
1 7 > Al > 1 >
i;/ h d d”-
0 > A2 o, A2 Tz A2
s

Coker(d)
¥
0
We shall now construct h so that the diagram remains

commutative. Since aj3dq = d""ajq = d"7jp = Op = 0 it

follows that there is a unique h: P > A5 = Ker(aj) such

that dq = azh.
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We shall obtain 3 as the morphism induced by sh. In
order to establish that there is a 3 which factors sh

through Ker(d”~”) = Coker(i) we must check that shi = 0.
Since r is an epimorphism it suffices to show that shir = 0.

Since sd” = 0 it suffices to show that hir = d”. Since a; is
a monomorphism this will follow once we show that a,hir =

a»d”. But aohir = dqir = da; = a,d”. q.e.d.

REMARK. 1In a special case there is a much more

direct construction of 3. Namely, suppose there is a

morphism b: A7~ > Ay splitting aj, i.e. such that gib =

lAi,. Then db: A7

is easily seen that this induces 3.

> A, induces Ker(d~~)

> Ap, and it

§5. COMPLEXES, HOMOLOGY, MAPPING CONE

We fix an Abelian category A. A graded object of A

is a sequence C = (Cn)n e 7 of objects Cn e A. A sequence

a = (a_) of morphisms a_: C~
n n n

> Cn is a morphism

c- > C of graded objects. We define the graded object
C(h) by C(h)n = Cn + R A morphism C~ > C(h) is some-

times called a "morphism of degree h'" from C” to C. When
Cn =0 for n < 0, C is called positive. If C(h) is positive

for some h then C is said to be bounded below. It is called

finite if Cn = 0 for all but finitely many n.

A complex in consists of a graded object C together

A
C

with a morphism d: > C of degree -1 such that d%z = 0.

More explicitly, d = (d_), where d_: C > C and
n n n n—j

> (C, d) of

d d = 0 for each n. A morphism (C”, d7)
n-1n

complexes is a morphism g: C~

> C, of graded objects,

such that ad” = da. We shall often suppress d when denoting
a complex (C, d). For example, C(h) will denote the complex

(cmy, -1ay.
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Associated with a complex C are three graded objects:

) dn+l

B = B(C) : Bn = Im(Cn L1 Cn) ("boundaries™)

Z = Z(C) : Zn = Ker(Cn dn Cn—l) ("cycles™)

H = H(C) : Hn = Zn/Bn ("homology')
When H(C) = 0, i.e., when the sequence

T 7 Cn +1 g Cn 7 Cn -1 Co

is exact, the complex C is said to be acyclic. A morphism
a: C7 > C of complexes evidently induces morphisms

z(cn > Z{C) and B(C”)
homology morphism H(a) : H(C")

> B(C), and therefore also a

> H(C). Two morphisms

a, b+ C” > C are called homotopic, denoted a = b, if
there is a morphism s : C~ > C(1) of graded objects

such that ¢ -~ b = ds + sd”. When evaluating H(a - b), the
term sd” restricts to zero on Z(C”), and the image of ds is
in B(C); thus H(a - b) =0, i.e., H(a) = H(), if a ~ b.
A complex C is said to be contractible if lC = 0, i.e., if

1l = ds + sd for some s : C > C(1) as above. In this

C
case we have 0 = H(0) = H(lc) = 1H(C)’ so a contractible

complex is acyclic.

(5.1) PROPOSITION ('The Long Homology Sequence').
Let © > C” > C > ¢77 > 0 be an exact sequence
of complexes. Then there is a morphism 3 : H(C™7) >
H(C") of degree -1 which is natural with respect to
morphisms of exact sequences as above, and such that the
sequence

cer — H (C) —> H_(C) —> H (C"7) &= H_(C)
n n n n
—> H (C) —> e
n
is exact.

Proof. Let E denote the given short exact sequence.
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Then (d”, d, 4d°7) :+ E > E(-1) is a morphism of short
exact sequences. Taking its kernel and cokernel, respec-
tively, we deduce from the Snake lemma that the rows of

C”/B(C) > C/B(C) > C77/B(C"")—>0
¥ ¥+ ¥
0 > z(C7) > 7(C) > z(C™7)

are exact. The vertical maps here are those induced by

(d°, d, 4°7). Again applying the Snake lemma, we deduce an
exact sequence of kernels and cokernels,

H(C”) —> H(C) —> H(C"*) —2 H(C") —> H(C)
—> H(C"7")

where 3 has degree -1. q.e.d.

(5.2) COROLLARY. If two of the complexes C°, C, C*~
above are acyclic then so also is the third.

(5.3) COROLLARY (9-Lemma). Let

0 0 0
¥ ¥ v

0 — CJ > Cy > €57 > 0
¥ ¥ ¥

0 — C{ > Cq > C{~ > 0
¥ ¥ ¥

0 —> Cj > Cy > Cq” > 0
¥ ¥ ¥
0 0 0

be a commutative diagram with exact rows, and assume the
composite Co > C1 > Cgp is zero. Then if two of the

columns are exact so also is the third.

Proof. The hypotheses permit us to view the colummns

as complexes, zero except in degrees 0, 1, 2, so we can
apply the last corollary.

The mapping cone of a morphism a: C~ > C of

complexes is a complex, MC(a), defined as follows:

MC(a)n = Cn @ Cn -1
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a

ntl n
@ ;= <0 _d): C 4 #C—>cC &C_
n

Since d2 = 0, d°2 = 0, and ad” = da it follows that d(a)? =
0. Moreover the direct sum decomposition of MC(a) yields an
exact sequence of complexes,

(1) v

> C

> MC{(a)

> C7(-1)

> 0

Since Hn(C’(—l)) = Hn_l(C’) we can write the long homology

sequence of (1) in the form
L0
S+ +H_(C)—H_(MC(a))—>H__ (€)=K, (0)—>
H MC(a))...
n-1

To compute 3 we consider the diagram

0— ¢ > MC(a) ~ —> C~ 4 > 0
l d d(a) 1 d-
0—cC 4 > MC(a) _q > C o > 0

Since the rows are split 9 is induced by the composite,

0 d(a)n = (d a)
c” I, MC(a) =C & C~ 0_-d
n-1 n n-1
Cn—l

(cf. the remark after the Snake lemma (4.7)). Since

d @OV (@) its restriction toz _1(€7) induces “\,
0 -af\1 -4~ i 0

3 is i : - .
and hence 3 is induced by a zn_l(C ) > Cn—l In other

words, 3 = H(a). We have now proved:

(5.4) PROPOSITION. Let a: C~
of complexes, and let

> C be a morphism
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0 > C > MC{(q) > C7(-1) > 0

be the exact sequence (1) above. Then its long homology
sequence is isomorphic to

Hn—l(a)
.o -Hn(C)—>Hn(MC(a) )-—>Hn_l(C ’)——~—-—>Hn_l(C)-——>

B (MC(a))...

Hence MC(a) is acyclic if and only if H(ag) is an isomorphism

§6. RESOLUTIONS: PROJECTIVE DIMENSTION

We shall work in a fixed Abelian category A. A
resolution of A ¢ é could be defined to be an exact

sequence

eesC Cy == A 0
n
For technical purposes it is convenient, instead, to inter-
pret these data as follows: view the sequence down to Cy as

a positive complex, C, identify A with the complex having
only one nonzero term, A, concentrated in degree zero, and
view €: C > A as a morphism of complexes inducing an
isomorphism H(e): H(C) > H(A) = A. We shall often use
this to identify H(C) with A. The length of the resolution

is the least n > -1 such that Cm =0 for all m > n. If €
€

is a full subcategory of A we say that C > A is a C-
resolution of A if all Cn € g, and we define the sub-

categories
Res_(C) D Res(C) D Resn(g) (n>0)

to be the full subcategory of objects having C-resolutions,
finite C-resolutions, and C-resolutions of length < n,

respectively. Thus we have Res (C) = C, Resn(g)CZRes ),
0= = = =

n+1l
and Res(g) = m\J Resn(g).

>n>o

To construct resolutions and morphisms between them
we shall use the following condition on a subcategory C:
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(1) If 0 — A" —> A —> A" —> (0 is exact and if
A, A”" € C, then A" € c.

It follows easily by induction from (1) that:

1" If 0 —> Arl —> eee —> A} —> Ay —> 0 is exact with
Ai e C (0<i<n) then An € g.

(6.1) PROPOSITION. Let CoC C be full additive sub-

categories of A satisfying (1) above, and suppose each

object of C is a quotient of ome in ;. Then C C Res_(Cq).

Moreover, if f: A~

es C

> A i1s a morphism in C and if

> A is a Cp-resolution, then there is a Cp-reso-

lution €”: C~ > A" and a morphism F: C~ > C covering
f, i.e. such that H(F) = f. If C is finite, and if CC o

Res(go), then we can choose C” to be finite also.

Proof. If A ¢ C we can find an exact sequence

0

implies B ¢ C. Hence we can continue with B, etc., and

> B > Cg > A > 0 with Cp € Cp, and then (1)

construct a Cyg-resolution of A.

Suppose next that we are given f: A~ > A and a

Co-resolution e: C > A as above. Let B, =

Ker(Cy & A~ ——£§4~:£l—~—> A), be the fibre product of

Cg € > A< £ A”. Since e is an epimorphism (e, -f) is

alsc, and hence (1) implies B ¢ C. Therefore we can find

an epimorphism Cj > B with Cj € Co. We now define Fg and

-

e” by the commutative diagram

Cg > A7
{57
CO > A

Since e is surjective, B > A7 is also (see (4.6)) so e”
is also. Suppose now, by induction, that we have constructed
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a commutative diagram

- n-1 e’ 7
Cn—l cee >C g >A >0
Fn—l Fy f
d
e >Cn-l__.n___:_l'.>.o. >C0 e >A >0

with exact rows and with each C{ e Co. It follows from (1)

above that Z~ = Ker(d” ,) and Z
n- n-1 n

1

Hence we can apply the construction above to find a com-
mutative diagram

=

= Ker(dn_l) are in Cp.

. d” .
Cn > zn—l > 0
T .F’
n
R ] >0

with exact rows, where F”, and d are induced by Fn and

-1
dn’ respectively. With dn equal to the composite

c” d > 77 c C
n n-1 n

1 we have extended the resolution

c’and F: ¢~ > C one more step. In case C is finite and
C C Res(Cy) then, when we reach an n such that Cm =0 for

allm > n, we can complete C” with a finite Cy-resolution
of Zn-l'
Exercise. Show that if f is an epimorphism then the

F constructed above is also an epimorphism.

(6.2) PROPOSITION. Let Cq be a full additive sub-
category of A satisfy (1). Let

c-
e” l
A”

F

>

"
> —-—— )
o
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a commutative diagram in which the verticals are Cy-reso-

lutions, of lengths d” and d, of A" and A, respectively. If

f is a monomorphism then MC(F) is a go—resolution of

Coker (f) of length sup(d, d” + 1). If f is an epimorphism

then Ker(f) has a Cyp-resolution of length sup(d-1, d7).

Proof. We have the exact sequence of complexes

> C

(*) 0 > MC(F) > C7(-1) > 0

(see (5.4)) which splits as a sequence of graded objects.
The nonzero terms of C occur in degrees 0 to d and those of
C”(-1) in degrees 1 to d” + 1. Hence MC(F) is a positive

complex in Cg of length sup(d, d” + 1). Since C and C~ are

resolutions they have homology only in degree zero, and
there the homology sequence of (*) becomes

#+ +0—>H) (MC(F) )—>Hy (C7)—>Hg (C)—>Ho (MC (F) )~>0-*
|| [
f

A~ > A

Thus, if f is a monomorphism, the only homology of MC(F) is
Ho(MC(F)) = Coker(f), so MC(F) is a resolution of Coker(f).

If f is an epimorphism its only homology is

Hy MC(F)) Ker(f). It follows that we have exact sequences
0 > 71 (MC(F)) > MC(F), > MC(F) g > 0
and
MC(F) o > 21 (MC(F)) > Ker(f) > 0

extracted from MC(F). The first shows that Z; (MC(F)) € C,.

The second and the vanishing of the higher homology of MC(F)
shows that

"'MC(F)n——>‘"——>MC(F)2——>Z1(MC(F))——>Ker(f)——>O

defines a resolution of Ker(f) whose length is sup(d, d“+ 1)
-1 = sup(d-1, d7). q.e.d.

We shall now record some of the special features of
projective resolutions.
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(6.3) PROPOSITION. (Schanuel's Lemma). Let O > P

-

€>A E>A

> 0 and O

> P > P > Py > 0
be exact sequences in A with P, and P projective. Then

P& P{ =P;®P,.

Proof. The fiber product of (g, €7) yields a commu-

tative diagram (see (4.6))

=\
[
=

> 0

]

>0

o
v
3]
—
v
O 1 <« O <« W o<+~ O
()
v v
O « P " <« " o<« O
O

with exact rows and columns. Since Py is projective the

epimorphism Q > Py splits, so Q =Py & P{. Similarly,

since Pj is projective, Q = Pj & P;. g.e.d

€>A

e

(6.4) COROLLARY. If O > Pn > Pg

-

N

> 0 and O

> P; > Py > (0 are exact

sequences in A with Pi projective (0<i<n) then
Py®P{®P,®ees = P;HP, &P +-°

Proof. The case n = 1 is (6.3). For n > 1 we consider

the exact sequences 0 > Pn s > P, > P1 & Pj
4 . .
4 l>ZO$P6 >0 and O > P’ o> P
- T 1 .
> P18 Py > 7258 Po > 0, where 7, = Ker(e),

Z4 = Ker(e”), and where d and 4” are induced by the original
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sequences. According to (6.3) we have Z, & Pj = Zj # Py and
hence the corollary follows by inductionm.

Let P be a full additive subcategory of A which
satisfies (1) and all of whose objects are projective (in é%

In this case condition (1) reduces to the apparently weaker
condition: P € P and P $ Q€ P =>Q e P. If A ¢ A has a

P -resolution then we define the P -dimension of A to be
the minimal length (possibly infinite) of a P -resolution
of Ay it will be denoted Ed(A). Thus gd(A) =<1 <=> A =0
and Pd(a) < 0 <=> A e P. It follows immediately from the

last corollary that, if Pd(A) < n, so there is a P -reso-

lution P

P

> A of length < n, then for any P -resolution

> A we have Zm(p’) € P for all m > n-1. This implies

that no matter how we start off a P -resolution of A, we

can terminate it at the nth term, Ker(Pé_l —_— Pé_z), and
be assured (by (6.4)) that the latter is in P.
(6.5) PROPOSITION. Let P £ > A and P~ £ > A7 be

projective resolutions and let f: A~
a morphism F: P~
are homotopic.

> A. Then there is
> P covering f, and any two such F's

Proof. Since Pj is projective and € is an epimorphism

we can find Fy to make

ps —E s a-

Py £

Py ————> A

commute. This Fy induces fg: Zg(P7) > 7Z9(P), and since

P, > 70(P) is an epimorphism we can find F; making
Py > Z5(P7)
le £o
Py > 7 (P)



38 PRELIMINARIES

commute., Etc...

If G: P~ > P alsocovers f then F - G covers the
morphism 0 = £ - £: A~ > A. Therefore the last assertion
follows if we show that F is homotopic to zero when f = 0.

: S — > = -,
We need s, Pn Pn +1 (n > 0) so that F ds + sd

For n = 0 this reads Fy = djsp, since dg = 0. Since P§ is

projective this follows from the commutivity of

-

Py

A
/
SO /
/ FO 0
/
/ A

Pl > PO >

-

>

and the exactness of the bottom row. Suppose s; (i < n) have

been constructed, and consider the diagram

Pn-l
l Fn—l
P

Pn+l

The bottom row is exact andI’; is projective, so we can

solve dn+lsn = Fn - Sn—ldn—l provided we verify that
dn(Fn - Sn-ldn-l) = 0. But dnSn—l = Fn—l - Sn-Zdn—Z’ S0

d (F - s d”- ) =dF - (F

n n n-1 n-1 nn n-1 n 2 n- Z)d = ann -

-1
F da- = 0, because d”2 = 0 and dF = Fd~.
n-1 n-1

Remark. The proof uses only the facts that P~ 1is

projective and that the complex p is acyclic in degrees >0.

(6.6) COROLLARY. An acyclic projective complex which

is bounded below is contractible.

Proof. After shifting its degrees we can view such
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a complex, P, as a projective resolution of 0, whereupon
both 0 and lp cover the morphism lO. Hence 0 and lP are

homotopic, i.e., P is contractible.

(6.7) PROPOSITION, Let 0 — A" —> A —> A" —> 0

be an exact sequence in A. Let P" —> A" and p”" ——> A”" be

projective resolutions. Then there exists a differential on

the graded object P = P” & P”” so that the split exact

sequence 0 —> P —> P —> P”" —> ( is an exact sequence

of complexes resolving 0 —> A" —> A —> A" —> 0.

Proof. We begin by constructing ¢ = (¢7, h) so that

0—>Pj —> Pj & P§" —> P§" —> 0
e” € e””
o—sn” L A b, A”” > 0

.- -

commutes, i.e., so that bh = €7, This h exists because p~
is projective and b is an epimorphism.
The Snake lemma (4.7) implies ¢ is an epimorphisms

and that 0 —> Ker(e™) > Ker{(e) > Ker(e”") — 0 is
exact. We now repeat this construction, starting with the

epimorphisms P { > Ker(e”) and P{~ > Ker{(e”7), etc.

(6.8) PROPOSITION. Let P be a full additive sub-

category of projective objects in A, satisfying (1) above,

and let O > A7 f > A B A

> (0 be an exact

sequence in A. If two of A", A, A”” have P -resolutions so

does the third. Suppose this is the case, and write d~, d,
and d”” for their respective P -dimensions. Then we have

d” < sup(d, 477 -1) and d”” < sup(d” + 1, d)

Moreover, d < sup{(d”, d”7), and if this inequality is strict
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we have 477 = 47 + 1.

> A" and e: P

Proof. Say e”: P~ > A are P
-resolutions of lengths d” and d, respectively. By (6.5)

we can cover f with F: P~

> P and then (6.2) says that

MC(F) is a P -resolution of A" = Coker(f) of length

< sup(d” + 1, d).
If e”": P7°

> A”" is a P -resolution of length

d”” we use (6.5) to cover g with G: P > P”” and then
use (6.2) to obtain a P -resolution of A" = Ker(g) of length

< sup(d, 477 - 1).

On the other hand, we can use (6.7) to obtain from
P” and P”" a P -resolution P > A of length < sup(d”, d77)

This proves all but the final assertion.

Suppose 4 < sup(d”, d°7). If d < d” then we have
d”<d”” - 1and d°7 < sup(d” + 1, d) = d7 + 1; hence
d”"=d”"+ 1. If d < d°7 then d” < sup(d, d°7 -1) =47 -1
and d°7 < d” + 1; hence again d°7 = d” + 1. q.e.d.

(6.9) COROLLARY. Let E be as in (6.8). Then
Res_(P), Res(P}, and Resn(g) (n > 0) are all full additive

subcategories of A satisfying (1) above. If all but one of

the terms of a finite exact sequence

0

> A
n

> eee

> Ag > 0

lie in Resm(g) or Res(z) then so also does the remaining

term.

§7. ADJOINT FUNCTORS

Given two functors

>
\
oo
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and a natural isomorphism

(1 Y=Y A(A, SB) > B(TA, B)

A, B’
of functors éo xB —> Sets, we say that S is an adjoint of T,
and that T is a coadjoint of S. It is not difficult to see

that either functor determines (via (1)) the other up to a
unique isomorphism. We shall call (T, S) an adjoint pair.

This situation arises frequently in nature. For
example, the "forgetful" functor from groups to sets has as
coadjoint the free group functor. Similarly, the forgetful
functor from k-algebras to k-modules (k is a commutative
ring) has the tensor algebra functor as coadjoint.

(7.1) PROPOSITION. Let (T, S) be an adjoint pair of
functors as above.

(1) S preserves products, limits, final objects,

kernels,...

(2) T preserves coproducts, colimits, initial objects,

cokernels,...

Proof. (2) is the dual of (1) and (1) follows imme-

diately from the definitions and the natural identification
A(A, SB) = B(TA, B). We shall illustrate the latter by

showing that S preserves limits (of which products are a
special case, incidentally). Suppose B = 1lim F for some
functor F: L > B. Then we claim that SB = lim SF. We

must show that they represent the same functor éo > Sets.
By definition é(A, 1imSF) = éE(C(A), SF), where c: L —> A
is the constant functor with value A, and the adjointness
identity implies éE(C(A), SF) = Eé(C(TA), F) = B(TA, lim F)

= A(A, S lim F).

(7.2) COROLLARY. If A and B above are additive

categories then S and T are additive functors.

Proof. It follows from (7.1) that both functors

preserve zero objects and direct sums, and these two
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properties imply that a functor is additive.

Let (T, S) be an adjoint pair with isomorphism vy as
in (1) above. Then for A ¢ A and B ¢ B we have

= -1 .
@y =Y (lTA) : A > STA

A, TA

and

B, = (1..) : TSB

>
B~ 'SB, B "SB B

Given morphisms a: A~

> A in A and b: B

> B~ in B,

the square

¥
A(A, SB) A, 8 B(TA, B)
A(a, Sb) B(Ta, b)
A(A®, SB") ——————> B(TA", B")
= Yo", B’

commutes, because y is natural. Thus

b Yo B(c)(Ta) =Yy B,((Sb)ca) (c e A(a, SB))

3

If we apply this toa =a,: A > STA, b = lTA’ and

A
c = ISTA’ then we obtain
DYgpa, Tale)(T2) = Ipy Bpy Toy = By Toyps
and
Vp, pal(8PIed) = v, (o) = 1o,
Thus the composite
Toy Bra

TA —————> TSTA ——> TA
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is the identity on TA. Similarly it follows that the com-
posite

o SR
SB —3B __ grsp ——2 > B

is the identity on SB for B ¢ B.

(7.3) PROPOSITION. Let (T, S) be an adjoint pair of
functors between additive categories. If A ¢ A is such that

aA: A

an isomorphism for every direct summand, B, of TA.

> STA is an isomorphism, then BB: TSB > B is

Proof. Since B: TS > 1B is a natural transfor-

mation between additive functors it will suffice to show
that BTA is an isomorphism. But it follows from the

. X T - .
discussion above that BTA uA lTA’ and our hyﬁithe51s on
A implies TuA is an isomorphism; hence BTA = TaA is one
also.

(7.4) COROLLARY. Let (T, S) be an adjoint pair of
functors between additive categories such that the natural
transformation ¢: lA > ST is an isomorphism. Suppose

further that every object of B is isomorphic to a direct

summand of TA for some A ¢ A. Then B: TS

> lg is also

an isomorphism, so S and T are inverse equivalences of

categories.

§8, DIRECT LIMITS

Let G: C

> A be a functor. Then the colimit,

G = colim G, is defined by

¢

>

(G, A) = A=(G, c(A)) (A e &)

Thus, if colimits always exist then colim: As —> is a

=g
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[f@]

functor, and it is just the coadjoint of c: A >

o=

In this section we shall take A to be a category of

"sets with structure' and also impose certain conditions on
C. The properties of colimits which we then deduce will be

applied in Chapter VII.

(8.1) DEFINITION. A category C is said to be directed
if it satisfies (a) and (b) below:
(a) Given Ay, A, € C, there is a B ¢ € and morphisms

£.0 A, >B (i=1, 2)

(b) Given f.,: A > B (i =1, 2) in C there exists
l =

ag: B > C in € such that gf; = gf,.
Simple induction arguments show that (a) implies
{(a”): Any finite collection of objects map into a common
object. Moreover (b) implies (b”): Given fil’fi : Ai > B
2

> h =
C such that gfil gfi2

(1 £ i <mn) there is a g: B

(1 <1i<mn).

A colimit of a functor from a directed category will
be called a direct (or inductive) limit.

For the rest of this section A will denote one of the

following categories: groups, rings, modules over a ring,

sets,... The conclusions apply to any such category of '"sets
with structure'. In the proofs we shall give details only
for the category of groups. Similar arguments apply to the
other cases.

(8.2) PROPOSITION. Let C be a category with only a
> A be a

set of isomorphism classes, and let G: C

functor. Then G exists, and it is gemerated by,{lm(YA)},

where Yo G(A)

Condition (8.1)(a) on C implies that

> g(A e C) are the canonical morphisms.

¢ =Uln(yp (A e Q)



SOME CATEGORICAL ALGEBRA 45

Suppose C is directed. Let Aj ¢ ¢ and let a, b ¢

(b). Then there is a

G(Ap) be such that v, (a) =¥,

morphism f: Ay > B in C such that G(f)(a) = G(£)(b).

Proof. There is a full subcategory of C, which is a

set and such that every object is isomorphic to one in the
subcategory. The inclusion functor is then an equivalence
(see (1.1)) so we can assume C itself is a set.

Now g can be constructed from S = 1UGA(A ¢ g) and

the canonical morphisms y& : GA > S. Namely, we pass to

the largest quotient p: S > G of S such that the

equations py. Gf(a) = py, (a) for all f: A > B in C
4 B A =

and all a € G(A), and we set Yy = pYA.

It is clear from the construction of g as a quotient
of G(A) (A e ) that G is generated by {Im(YA) | A e cl.
Condition (8.1)-(a) implies that, for any A;, A, e C, there

is a B € C such that Im(YA )y C Im(YB) (i =1, 2). Hence

i
this condition implies that G is the (set theoretic) union
of the Im(yA).

For the last assertion we first note that the identi-
fication of a and b in G(A,), after passing to G, is the

consequences of data involving only a finite number of
objects and morphisms in C. Consequently, there is a full

subcategory €y C € having only a finite number of objects
such that a and b are identified already in Go, where Gg =
Glgo. Using condition (8.1)-(a) we can enlarge Cp, if
necessary, and arrange that Co have a final object, C, i.e.,
one into which each object of C; has a morphism. If

5A: G(A) > Go 1s the canonical morphism for A € Cp, then
GC: G(C) > C and if
a & G(A) then since GA = SCG(fl) = 6CG(f2) we have Gc(al) =
Sc(az), where a; = G(fi)(a) (i =1, 2). Let Q be the

> Go is surjective. If f,, fp: A

largest quotient of G(C) in which all such identifications
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are made. Then any morphism f: A
morphism G(A)

> C induces the same
> Q, so we see that Q = §O-

Now suppose we are given a, b ¢ G(Ap) as above so

that SAO(a) = 6A0(b) in Gp. Choose a morphism f5: Ag—> C;

then Sc(a) = 6C(B), where o = G(fy) (@) and B8 = G(fy) (b).
The identification of éc(a) and 6C(B) is the conse-

quence of a finite number of identifications, éc(yil) =

I = 3 =

C(Yiz), where Yij G(fij)(ai) (3 1, 2) for some

morphisms fil’ fiZ: Ai

follows by induction from (8.1)-(b) that there is a

morphism g: C > €7 in C such that gfil = gf12 (1< i < n)

> C and elements a; € G(Ai). It

Hence, G(g)(Yil) = G(g)(Yiz) (1 < i < n) and therefore
G(g) (o) = G(g)(B) also. Putting f = gfg: Ap
have G(f)(a) = G(£f)(b), as required. q.e.d.

> C”, we

(8.3) DEFINITION. A functor F: C

> C” is said

to be cofinal if it satisfies (a) and (b) below.

(a) Given A~ ¢ g’ there exist A ¢ ¢ and an f: A~ >
FA.
(b) Given f°: FA

f: A

> A” in C” there exists an

> B in C and a g”: A~ > FB in C~

such that g”“f” = Ff.

(8.4) PROPOSITION. Let F: ¢

> C” be a cofinal

functor between categories having each only a set of

isomorphism classes of objects. Assume that C” is directed

and that C satisfies (8.1). Then if G: ¢ > A is_any
functor the natural morphism
GF — > G
P >
is an isomorphism.
. - i cot > C
Proof. The A morphisms YEA GFA g(A € =)
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induce a unique o such that

GF ——> G
>, >
Y\ /Y'
A GFA FA
commutes for all A e C. It follows that Im(YFA) C Im(a).
If A € C” then (8.3)(a) gives us an A~

> FA for some
A e C and hence Im(YA,)(: Im(YFA) C Im(o). Since G is
generated by the Im(y&,) it follows that o is surjective.

Suppose a(x) = a(y). Condition (8.1)-(a) for ¢
implies (see (8.2)) that GE is the (directed) union of the
Im(YA), so we can find A € ¢ and a, b € GF(A) such that
x = YA(a) and y = YA(b). Since g’ is directed and Y%A(a) =
YiA(b) it follows from (8.2) above that there is a morphism
f7: FA > A7 in g’ such that Gf“(a¢) = Gf“(b). Thanks to

(8.3)-(b) we can, after replacing £~ by g“f”, if necessary,

assume that A = FB and £~ = Ff for some f: A > B in C.
Therefore Gf”~ = GFf and so YA(a) = YA(b) already in GE,
i.e., x =y, so a is injective. q.e.d.

We shall now discuss a special type of direct limit
which will be encountered in Chapter VII, §2.

Let M be an additive monoid. Then the "translation
category', Tran(M), has M as its objects, and morphisms,
for a, b ¢ M,

Tran(M)(a, b) = {c e M | a+c=b}

composition of morphisms is just +.

We claim that Tran(M) is a directed category.

al
Condition (8.1)-(a) is seen from the diagram q; —> aj +
a1
a, < a,. For condition (8.1)-(b) we are given
€1 c2

a > b < a, i.e., a+ cy; =b =a + cy,. Then
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b > b + a satisfies the requirement, @ + c; + @ =
a+ co +a, of (8.1)-(b).

A homomorphism f: M
will be called cofinal if

> M~ of commutative monoids

¢D) Given a” € M”, we can solve a” + b” = f(a) for a e M

and b~ & M”.

(8.5) PROPOSITION. The translation category Tran(M)

of a commutative monoid M is directed. Moreover a cofinal

homomorphism f: M
functor (in the sense of (8.3)) Tran(f): Tran(M) ———>

> M” of monoids induces a cofinal

Tran(M”). Therefore, if G: Tran(M") —> A is any functor,

GoTran(f)> —_— g is an isomorphism.

Proof. The last assertion follows from the first and

Proposition (8.4), and we have already noted above that
Tran(M) is directed.

To prove that Tran(f) is cofinal we must verify
(8.3)-(a), which is precisely condition (1) above, and
(8.3)-(b): given the top arrow of a commutative diagram

-

-

f(a)

> a

-

C

£(d) £(c)

we must complete it. This amounts to solving b” + ¢ = £(d),

which we can do thanks to (1). For then ¢ = a + d fills the
diagram as indicated.

The following refinement of this proposition will
also be used.

(8.6) PROPOSITION. Let ap = 0, @1, Gp,--+5a »-+. be
a sequence in a commutative monoid M. Write a = a
n, m n+ 1
teeet g if n < m (g =0) and s = «a .
- = n, n n 0, n

Assume that:



SOME CATEGORICAL ALGEBRA 49

(2) Given ¢ ¢ M and n > O, there is abe Mand anm > n

such that a + b

a .
n, m

Let C C Tran(M) be the subcategory whose objects are the s,

and whose only morphisms are the an o Then C is directed
. =

and the inclusion functor is cofinal. Therefore, if

G: Tran(M)

> A is any functor we can compute G as the

direct limit of the G(sn) with respect to the morphisms

G(an, m)

G(sn) > G(Sm).

Proof. Clearly € is directed. For the rest it

suffices, by virtue of (8.4), to establish cofinality.
Condition (8.3)-(b) of cofinality requires that we complete
a commutative diagram

given the top arrow. But thanks to (2) we can solve b + ¢ =

a o for ¢ and m > n, as required. Condition (8.3)-(a)
b4

follows from (2) also, in the special case n = 0. q.e.d.






Chapter Il
CATEGORIES OF MODULES

AND THEIR EQUIVALENCES

In §1 we show that an Abelian category with arbitrary
coproducts, and with a "faithfully projective" object, is
equivalent to a category of modules. As a preliminary to
classifying equivalences, mod-A > mod-B, we show that all
colimit-preserving functors are of the form QAP, P a bimodule.

We could equally well have studied limit-preserving functors,
which are of the form HomA(P, *), since equivalences do

both. However tensor products are more convenient for
discussing composition of functors.

In 83 we analyze the structure of an equivalence
mod-A > mod-B. A number of common features of A and B
are deduced from its existence. In §4 we show how to
construct an equivalence from a faithfully projective module,
Indeed, §3 implies they are all obtained by such a con-
struction.

The autoequivalences of mod-A, for an R-algebra A,
lead to a group, PicR(A), which we study in §5. In partic-

ular, the group of "outer automorphisms" of A as an
R-algebra is a subgroup of PicR(A).

§1. CHARACTERIZATION OF CATEGORIES OF MODULES

A functor between Abelian categories will be called
faithfully exact if it is faithful and exact and if, further,

51
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it preserves arbitrary coproducts. It follows that such a
functor preserves colimits.

Let A be an Abelian category and let P ¢ A represent

the functor h = A(F, +): A

> Z-mod. Recall that P is

projective if h is exact. P is said to be a generator of é
if h is faithful. We shall call P faithfully projective if

h is faithfully exact. Note that this requires more than
that P be a projective generator, because it is not true in
general that functors of the form A(P, +) preserve co-

products. We shall see that this condition is related to
the condition of finite generation for modules. If A is a
ring, A is faithfully projective in mod-A.

(1.1)PROPOSITION. Let A be an Abelian category with

arbitrary coproducts.

(a) P e A is a generator of A if and only if every

(D

object of A is a quotient of P for some set I.

(b) Let C be a class of objects in é such that (i) C

contains a generator of A, (ii) arbitrary coproducts of

objects in C are in C, and (iii) cokernels of morphisms
between objects in C are also in C. Then C = obA.

Proof. (a) Suppose P generates A and A ¢ A. Then
AR 5 =

s
(1

H = é(P, A) defines a morphism a: P > A, which we

claim to be an epimorphism. Let b: A > B be its cokernel.
If p € H = h(A), where h = AP, ), then h(b)(p) = bp.

Since Im(p) € Im(a) and ba

0, it follows that bp = 0, and

hence h(b) = 0. But h is faithful, so b = 0, i.e., a is an
epimorphism.

Conversely, if there is an epimorphism (pi)i 1
P(I) > HomZ(hA, hB)

> A then we will show that é(A, B)

> B is

such that h(b) = 0, then h(b)(py) = bp; = 0 for all i e I

is a monomorphism for all B ¢ A. For if b: A

and hence b(p;) = 0. But (pi). is an epimorphism, so

iel
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this equation implies b = 0.
(b) If P ¢ C is a generator of A then it follows
from part (a) that every object A in A fits into an exact

@ __, @

sequence P —

> A > (. Hence conditions (i),

(ii), and (iii) imply C = obé. qg.e.d.

(1.2) PROPOSITION. Let A be a ring and let P ¢ mod-A.

(a) P is finitely generated and projective if and

(n)

only if P is a direct summand of A for some n > 0.

(b) P is a generator of mod~-A if and only if A is a

(n)

direct summand of P for some n > O.

(c) P is faithfully projective if and only if P is
a finitely generated projective generator of mod-A.

Proof. (a) HomA(A, +) is isomorphic to the identity

n
functor so A is projective, and hence likewise for A( ) and
its direct summands. If P is finitely generated there is an

(n) > P

epimorphism A , and the latter splits if P is

projective.

(b) Every module is a quotient of A(I) for some I
so A generates mod-A. If A is a direct summand of

P(n), therefore, P clearly also generates. Conversely, if

P generates then A is a quotient, and hence direct summand
of a coproduct of copies of P. Since A is finitely generated
a finite coproduct already suffices.

(¢) By definition, HomA(P, +) is faithful and exact

if and only if P is a projective generator. Hence it will
suffice to show, for a projective module P, that P is
finitely generated if and only if h = HomA(P, -) preserves

coproducts. The latter condition, that HomA(P, I Mi) =

1 HomA(P, Mi), just means that any f: P > I Mi has its

image in the submodule generated by a finite number of the
Mi's. Clearly any finitely generated module P has this

property. Conversely, if P is projective, there is a split

— s 2D

monomorphism f: P for some I. The above condition
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()

then implies that P =~ f(p) is a direct summand of A
some finite JC I, so P is finitely generated.

for

Exercise. (a) Show that a module P is finitely

generated if and only if the union of a totally ordered
family of proper submodules of P is a proper submodule.

(b) Show that HomA(P, +) preserves coproducts if and

only if the union of every (countable) chain of proper
submodules is a proper submodule.

(c) Show that the conditions in (a) and (b) are not
equivalent. (Examples are not easy to find.)

In the category mod-A the module A seems to play a
somewhat distinguished role. This is not entirely true;
any other faithfully projective module can play the same
role, and fixing A in mod-A has some of the same arbitrary
features as fixing a basis in a vector space. Moreover, this
principle can be played backward: General theorems about
faithfully projective modules need sometimes only be
proved for A (cf. (5.3) below, for example).

(1.3) THEOREM (Gabriel, Mitchell). Let A be an
Abelian category with arbitrary coproducts and with a
faithfully projective object P. Put A = A(P, P).

Then the functor

h =A@, *): A———> mod-A

is an equivalence of categories, and h(P) = A is the free
module on one generator.

Proof. Using criterion (I, 1.1) for an equivalence

we need only establish (a) and (b) below:

(a) h : AKX, D

X, ¥ > HomA(hX, hY) is an

isomorphism for all X, Y ¢ A; and
(b) Every M £ mod-A is isomorphic to some hX.

Fix a Y ¢ A and view hX y @ @ natural trans-
- H

formation g, : TX

X > SX, where T and S are the indicated

functors Al > Z-mod.
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We shall prove (a) by showing that the class C of
objects X for which QX is an isomorphism (i) contains a
generator, (ii) is stable under coproducts, and (iii) is

"stable under cokernels.'" For then it follows from (1.1(b))
that C = obé.

Since h is faithful P is a generator. Moreover
¢P: é(P, Y) > HomA(hP, hY) = HomA(A, é(P, Y)) is easily

seen to be the standard isomorphism, and this proves (i).

Condition (ii) follows from the fact that both S and
T convert coproducts into products. For T this is clear and
for § it is a consequence of our hypothesis that h preserves
coproducts.

Condition (iii) means that if X —> Y — Z —> 0 is

exact in A, then X, Y ¢ C =Z ¢ C. Now T is left exact, and,

since h is exact, S is also left exact. Hence we have a
commutative diagram with exact rows,

0 > TZ > TY > TX
OLZ OLY OLX
0 > SZ > SY > SX

and the desired conclusion follows by the 5-lemma (I, 4.4).

(1) _£ (I

To prove (b), write M = Coker(A A ).

Then

(1)

£ & Hom, ((b?) @y - HomA(h(P(I)), ne )

(D (I

so £ = h(g) for some g: P > P , thanks to part (a).

By exactness, M = Coker (f) = Coker (h{(g)) = h(Coker g).
q.e.d.

Exercise (Lam). Let A be an Abelian category in which

all objects are noetherian (= ascending chain condition on
subobjects). Assume A has a projective generator P, and

put A = A(P, P). Show that A is a right noetherian ring and
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that é(P, +) defines an equivalence from A to the category

of finitely generated right A-modules.

§2. R-CATEGORIES: RIGHT CONTINUOUS FUNCTORS

If ¢ lies in the center of a ring A then the
endomorphisms, x |—> xc, on A-modules comnstitute an
endomorphism, h(c), of the identity functor on mod-A. There
are no others; more precisely:

(2.1) PROPOSITION. The "homothetie" ma
P

h: center A ——> End(Idm )

od-A

is an isomorphism of commutative rings.

Proof. Since h(c)A(l) = lec = ¢ it follows that h is

injective. It is clearly a ring homomorphism. Finally,
suppose t € End(Idmod_A). Let ¢ = tA(l). Given x € M £ mod-A

define f: A > M by f(a) = xc. By naturality of t,

commutes, SO tM(x) = tM(f(l)) = £(t, (1)) = £(c) = xc
= h(c)M(x). Thus t

h(c), and h is therefore surjective.

This proposition suggests that, for any category A,
we define

center A = End(IdA)

Let R be a commutative ring and let A be an Abelian

category. Then it is easy to see that giving a ring homo-
morphism R > center A is the same as giving all the

Abelian groups A(X, Y) the structure of R-modules in such
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a way that composition is R-bilinear. An A with this

additional structure will be called an R-category. A

functor T: A > B between R-categories is said to be an

R-functor if the maps A(X, Y) > B(TX, TY) are R-linear.
When R = Z we just recover the notions of Abelian category

and additive functor.

An R-algebra is a ring A and a homomorphism R > A
whose image lies in center A. It follows therefore from
Proposition (2.1) that R-algebra structures on A are

equivalent to R-category structures on mod-A.

Let A and B be R-algebras and write A-mod-B for the
category of left A-, right B - bimodules M, and their
homomorphisms. Recall that the compatibility required of
the A- and B- module structures is

(ax)b = a(xb) (ae A, xe M, b e B)

If r & R then rx and xr are both defined, but not neces-
sarily equal. Indeed, rx = xr for all x e M and r ¢ R
precisely when the bimodule structure on M makes M a left

A@RBO—module. Moreover, this is further equivalent to the

condition that@AM: mod-A > mod-B be an R-functor.

(2.2) PROPOSITION. Let A and B be R-algebras, and
let

h: (AQRBO)—mod > R-functors(mod-A, mod-B)

be the functor defined by h(M) = @AM. Then h is fully

faithful. In particular M = N as bimodules <= @AM = @AN as

functors from mod-A to mod-B.

Proof. If f: M > N is a bimodule homomorphism

then h(f) = 8Af. If h(f) = 0 then the vanishing of 29, f

implies f = 0, so h is faithful.

Suppose t: hM
and let f: M

> hN is a natural transformation,
> N be the B-~homomorphism rendering
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commutative. Left multiplications in A are right A-linear,

so tA must preserve them, by naturality. Thus tA’ as well as

the verticals, are bimodule homomorphisms, and hence like-
wise for f. We will prove that h is full by showing that

t = h(f). Let s = t-h(f) and let C denote the class of

M € mod-A such that Sy = 0. By construction C contains A.

Since both hM and hN are right exact and preserve coproducts
it follows now that C satisfies the hypothesis of (1.1(b)),
and hence C = ob{(mod-A). q.e.d.

The functors hM = @AM of Proposition (2.2) (i) are

cokernel preserving, and (ii1) they preserve arbitrary co-
products. A functor satisfying (i) and (ii) will be called
right continuous. The terminology is suggested by the fact

that such a functor must preserve all direct limits. Among
categories of modules all right continuous functors are
tensor products. More precisely:

(2.3) THEOREM (Eilenberg, Watts). Let A, B, and C be
R-algebras. The correspondence M —> hM = GAM, from left

A@RBO—modules to right continuous R-functors from mod-A to

mod-B, induces a bijection on isomorphism classes. If N is a

left B@RCO—module then h(M@BN) ~ h(N).h(M).

Remark. One is tempted to formulate this result as an
equivalence of categories, as follows. Let A and B be the

categories whose objects, in both cases, are R-algebras,
and whose morphisms are

A(a, B) {left AQRBO—modules}
and

B(4, B)

{right continuous functors,
mod-A > mod-B}
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respectively. B is a perfectly acceptable category, using
composition of functors. For A we would like to use 8 for

composition. But then we have neither identity morphisms,

nor associativity. For while A@AM and M are (canonically)

isomorphic, they are not equal; similarly for the associ-
ativity of 8. Thus we are compelled to pass to isomorphism
classes.

Proof. If X € mod-A then h(N)-h(M) (X) = h(N)(X@AM)
= (XQAM)@BN > X@A(MGBN), and the isomorphism is natural.
This proves the last assertion.

The fact that h is injective on isomorphism classes
is contained in (2.2). There remains only to be proved that
a right continuous R-functor t: mod-A > mod-B is of the
form hM. We take M = tA, which is at first only a B-module.
The R-algebra homomorphism

A= HomA(A, A) > HomB(M, M)

makes of M a left A@RB°—module.
For X & mod-A we have maps

t

X = Hom, (A, X) > Hom, (M, tX)

whose composite, fX’ is A-linear with respect to the

A-module structure on M just constructed. Under the
canonical isomorphism

HomA(X, HomB(M, tX)) = HomB(X@AM, tX)

let 8y be the element on the right corresponding to fX on

the left. Since the fX's are natural in X the gX's are

also: g: hM > t. Both hM and t are right continuous so

the class C of X for which 8x is an isomorphism is stable

under coproducts and cokernels. It follows therefore from



60 PRELIMINARIES

(1.1)-(b) that g is an isomorphism provided g, is, since

A generates mod-A. But Byt A@AM > tA = M is the

standard isomorphism.

(2.4) COROLLARY AND DEFINITION. We call a left

A@RB°—module "invertible" if it satisfies the following

conditions, which are equivalent:

(a) GAM: mod-A > mod-B is an equivalence.

(b) There is a left B@RA°—module N such that
M@BN =~ A and NQAM = B as bimodules.

> A-mod is an equivalence.

(c) M@B: B-mod

Proof. Since an equivalence is right continuous the

implications (a) <= (b) follow immediately from Theorem
(2.3). A left - right reflection of Theorem (2.3) shows
that (b) <= (c).

§3. EQUIVALENCES OF CATEGORIES OF MODULES

We fix a commutative ring R, and all of our rings,
A, B,... will be R-algebras. The fact that M is a left

A@RB°—module will sometimes be denoted by writing AMB’
following the Cartan-Eilenberg convention.

This section contains a thorough analysis of
equivalences from mod-A to mod-B. We begin by summarizing
some consequences of Theorem (2.3).

(3.1) PROPOSITION. Let A and B be R-algebras and let

mod-A :j———;£~————> mod-B
be R-functors such that ST = Idmod—A and TS =~ Idmod—B' Set
P = TA and Q = SB. Then we are in the situation (APB’ BQA),

and:
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(1) T = @AP and S = @BQ
(2) There are bimodule isomorphisms

£ P@BQ > A and g: Q@Ap > B
(3) f and g may be chosen to render the diagrams

£681
S
P 8,Q0,P > Ag P

lP 8 g o

P GBB ———~E~————» P
and
g 1
08,8 .0 — B9 Q
1.8 f

WA > Q

commutative. (Here o and B are the obvious maps, and
similarly in the other diagram.)

Proof. Everything but part (3) follows immediately

from Theorem (2.3) and the fact that an equivalence is
right-continuous. To prove (3), suppose we want the first
diagram to commute. Since all maps are bimodule isomorphisms
we at least have R(1 8 g) = uo(f 8 1) for some u ¢ AutA_B(PL

In particular u € HomB(P, P) = HomB(TA, TA) = HomA(A, A)

= A, so u is left multiplication by an element of A, which
we shall identify with u. Being also an A-homomorphism, u
must be in the center of A. Now, evidently, ua = a(u g lP),

so if we replace f by uf we have made the first square
commutative. We propose to show now that the second square
automatically commutes. In order to avoid repeating this
argument later we interrupt to make a definition which is
suggested by the proposition above.

(3.2) DEFINITION. A set of pre-equivalence data

(4, B, P, Q, f, g) consists of R-algebras A and B, bimodules
APB and BQA’ and bimodule homomorphisms f: P@BQ > A and
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g: Q@A? > B which are "associative" in the following
sense: Writing f(p 8 q) = pq and g(q ® p) = gp we require:
(1) (p)p” = plap")

(for all p, p" e P; 4, 4" € Q)
(11) (qp)q” = g(pq”)

We shall call it a set of equivalence data if f and g are

isomorphisms.

Now the proof of Proposition (3.1) is completed by:

(3.3) LEMMA. Condition (ii) in the definition of
pre—equivalence data follows from the other conditionms,

provided: d € Q and dp” = O for all p” ¢ P = d = 0. The
latter condition is satisfied if @A? is faithful.

Proof. Given q, @ ¢ Q and p ¢ P we must show that

(qp)q” = g(pq”). For any p € P we have

((gp)a™dp” = (qp)(a"p") (g is left B-linear)
= q(p(a’p™)) (g is right B-linear)
= q((pgMp”) (condition (1))
= (q(pa"))p”~ (g is A-bilinear)

Hence, if d = (qp)q” - q(pq”), then dp” = 0 for all p~ eP

b

so d = 0, by hypothesis.

To prove the last assertion let h: A > Q by
h(a) = da. Then h 8 lP: A@A P — Q@A P, followed by the

isomorphism g, is zero, so h 8 lP = 0. Therefore h = 0 if

SAP is faithful.

(3.4) THEOREM. Let (A, B, P, Q, f, g) be a set of

pre-equivalence data, and assume that f is surijective.

1. £ is an isomorphism.

2. P and Q are generators as A-modules.

3. P and Q are finitely generated and projective as
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B-modules.

4, g induces bimodule isomorphisms

P = HomB(Q, B) and Q = HomB(P, B)

5. The R-algebra homomorphisms

EndB(P) < A > EndB(Q)°

induced by the bimodule structures, are iso-

morphisms.

Proof. The hypothesis on f means that we can write

(*) 1= 3% p.g. in A
ierTtt

(1) Suppose pi 8 q3 ¢ ker f. Then using (*), we

have Ipy 8 q; = 2s, i(p. 8 qj)piqi =L, ,p;8 ((qui)qi)

] J ] Js J
= L(pr(qip.)) =3, .(pig)(p, 8 q,) = (Z, pial)
;o g(pylagpy)) 8 ay =1y s (e (py 8 a) = Oy piay
(zipi 8 qi) = 0, since ijjqj = 0.
(2) The linear functionals hi: P > A by hi(p)

¢S

= Pq; define h: > A, and (*) implies h is sur-

jective, so P generates A-mod. The argument for Q is
similar.

e (I)

(3) Define P > B
“h

by e(p) = (q;p) and h(b,)

= Zpibi. Then he(p) = Zpi(qip) = (Zpiqi)p = p. Thus P is

finitely generated and projective, and a similar argument
shows the same for Q.

(4) g induces a bimodule homomorphism h: P
Hom,(Q, B) by h(p)(q) = qp. If h(p) = O then p = z(p;q,0P
pi(qip) = 0, so h is injective. For surjectivity let

f: Q

>

63

> B be given. Then f(q) = f(Zq(piqi)) = f(Z(qpi)qi)
£(q pf(qy) = zq(p;£(q)) = h(p)(q), where p = 3-FEACTOR
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Similarly Q = HomB(P, B).

(5) We must show that h: A > EndB(P), by h(a)(p)
= ap, is an isomorphism. If h(a) = O then a = Za(piqi) =
E(api)qi = 0, so h is injective. For surjectivity let

f: P > P be given. Then f(p) = £(Z(p,q,)p) = £(p,(q,;p))

= 2f(p)(qyp) = Z(f(p)a)p = h(a)(p), where a = 2f(p,)q,.

Similarly A > EndB(Q)° is an isomorphism.
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{(3.5) THEOREM. Let (A, B, P, Q, £, g) be a set of
equivalence data (see definition (3.2)).

(1) P and Q are both invertible bimodules (see (2.4)).

(2) P and Q are each faithfully projective both as

A-modules and as B-modules.

(3) f and g induce bimodule isomorphisms of P and Q
with each other's duals with respect to A and with respect
to B.

(4) The R-algebra homomorphisms
P [+]
EndB( ) < A > EndB(Q)

and

EndA(P)°< B > EndA(Q)

induced by the bimodule structure on P and Q, are iso-
morphisms.

(5) The bimodule endomorphism rings of A, B, P, and
Q are all isomorphic (canonically) to the centers of A, B,
mod-A, and mod-B (see (2.1)).

(6) The lattice of right A-ideals is isomorphic, via
a t——> aP with the lattice of B-submodules of P, the two

sided ideals corresponding to A-B-submodules, or, equiva-
lently, to fully invariant B-submodules. Similar conclusions
apply with appropriate permutations of (left, right), (A, B),
and (P, Q). In particular, by symmetry, A and B have

isomorphic lattices of two sided ideals.

(7) The functor T = HomA(P, ) = QBA-: A-mod

B-mod is an equivalence of categories. If M ¢ A-mod then
M is finitely generated (over A) <= TM is finitely
generated (over B). Moreover the two sided ideals annA(M) in

A and annB(TM) in B correspond under the lattice isomorphism

in (6). In particular M is faithful (over A) <= TM is
faithful (over B).
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Proof. (1) follows immediately from the hypothesis
and definition (2.4).

(2), (3), and (4) follow immediately from (2), (3),
(4), and (5) of Theorem (3.4).

We have isomorphisms

@AP

End, , (A) ———> End, (),

center A A-A

PGB
EndB_B(B) —_— EndA_B(P)

center B

and similar ones involving Q. Part (5) follows from these
and Proposition (2.1).

We now prove (6). Since P is projective the canonical

map, g_@AP > aP, is an isomorphism for right A-ideals a.

Therefore the fact that a > > aP 1s a lattice isomorphism

from right A-submodules of A to B-submodules of P = A@AP

follows from the fact that QAP: mod-A > mod-B is an

. 3 = = P
equivalence. Moreover, since A Endmod_A(A) EndB( ) the
fully invariant submodules of A and P are the two sided

ideals and the A-B-submodules, respectively. Clearly these
correspond also under an equivalence.

The remaining assertions of (6) are clear. The
isomorphism between lattices of two-sided ideals in A and B
makes a C A and b C B correspond if and only if gP = Pb.

The conclusions above show that this does, indeed, define
a bijection,

Finally, we prove (7). If M, N ¢ A-mod write N =
HomA(N, A) and define hy: N* 8 M — HomA(N, M) by
hN(f 8 x)(n) = xf(n). This is a natural transformation and
hA is clearly an isomorphism. Therefore, by additivity, hN

is an isomorphism if N is finitely generated and projective.
By virtue of (2) and (3), therefore, T = HomA(P, *) and Q@A

are isomorphic functors. If M ¢ A-mod is finitely generated
then Q GAﬁ is a finitely generated B-module because Q is.
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Conversely, if TM is finitely generated so is M because T
is an equivalence.

Let g = annA(M). Then a P is characterized as the
largest submodule of P killed by every A-homomorphism
P —> M. Therefore b = T(g'P) is the largest submodule of
B = T(P) killed by every B-homomorphism B —> TM, i.e., b =
annB(TM). From part (6), the ideal ¢ in B corresponding to
a is characterized by a P = P c. Therefore T(qg P) =

Hom(P, P ¢) = Bc = ¢, so c =b. q.e.d.

§4, CONSTRUCTING AN EQUIVALENCE FROM A MODULE

Our treatment thus far has emphasized the symmetry
inherent in equivalence data. On the other hand it follows
from Theorem (3.5) that a small part of the data determines
the rest.

We start from an R-algebra B and a right B-module P.

From these we shall construct a set of pre-equivalence data,
and then we shall determine the conditions on P for these
to be equivalence data.

Set
A= EndB(P) and Q = HomB(P, B)
Then A is an R-algebra and P is a left A @RB°—module.

Moreover Q is a left B@R A°-module with action

(bg)p = b(qp) (beB, qeQ,pebP)
and
(qa)p = q(ap) (@ eQ,aelA, peP)
Next we define bimodule homomorphisms
fP: P GBQ > A and gP: Q QAP > B

The map 8 is just "evaluation," gP(q 8 p) = qp. We

define fP(p 8 gq) =pq e A= EndB(P) by
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(pa)p” = pap™) (p” ep)

It now follows from Lemma (3.3) that:

(4.1) PROPOSITION. Let B be an R-algebra and let p

be a right B-module. Let fP and g be the homomorphisms

constructed above. Then

(4.2) (A = EndB(P), B, P, Q= HomB(P, Q, £ )

p* &p

is a set of pre-equivalence data (see definition (3.2)).

(4.3) EXAMPLE. Let P = eB where e is idempotent.
Then B =P & (1 - e)B so any q: P

> B can be extended

to E} B > B by setting E((l - e)B) = 0. Thus we obtain

inclusions A = HomB(P, Pyc q = HomB(P, B) CB = HomB(B, B).

With these identifications we have
P =eB, Q=Be, and A = eBe

and all pairings are induced by multiplication in B. In

particular, fP: eB @BBe > A = eBe is surjective, and

& * Be @eBeeB > B has image BeB, the two-sided ideal

generated by e.

(4.4) PROPOSITION. In the notation of Proposition

(5.1):

(a) fP is surjective <=> P is a finitely generated

projective B-module, in which case fP is an isomorphism.

(b) gp is surjective <= P is a generator of mod-B,

in which case &p is an isomorphism.

(¢) (4.2) is a set of equivalence data <= P is a
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faithfully projective B-module. In this case

P
8A

mod-A < 7 mod-B
Hom, (P, )

are inverse equivalences.

Proof. The implications = in (a) and (b) follow

from Proposition (4.1) and Theorem (3.4). Part (c) follows
from (a) and (b) (see Proposition (2.1)) and from Theorem
(3.5), in view of the fact that the functors HomBG?, <)

and @BHomB(P, B) are isomorphic for P finitely generated

and projective (cf. proof of (3.5)(7)). If P is a generator
p (D

then there is an epimorphism (qg. > B, so

> I
Imgp DO Zqu = B, and gp is surjective. The remaining

implication in part (a) follows immediately from the more
general:

(4.5) PROPOSITION. A right B-module P is projective

<=> there exist families p; € P and q, € Q = HomB(P, B)
- i

(i € I) such that, given p € P,

(i) 4P = 0 for almost all i, and

(ii) pi(qip) =

The families (Pi) which arise in this way are precisely

the generating sets in P. Moreover the ideal g = Im &p

= % qP(q € Q) is generated, as a two-sided ideal, by

{qui}. In addition P g =P and g? = q.

Proof. Projectivity of P is equivalent to the

(q,) (1) _n=(,)

existence of homomorphisms p —————t—s> B —3i— P

such that he = lP’ and the first assertion just rewrites
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this equation. When ¥ is projective the h's which can

occur here are precisely the epimorphisms; hence the second
assertion.

To prove the third assertion suppose p ¢ P and q ¢ Q.
=q I p,(q, =z . (q.p. . =
Then qp = q I p;(q;p) i, jq(pJ (a3p4)) (a;p) L. j(qu)
(qui)(qip). For the last assertion, (ii) implies P g =P,
and therefore a = QP = QPQP = a2.

We close this section now by describing faithfully
projective modules over commutative rings.

(4.6) LEMMA. Let P be a finitely generated module

over a commutative ring B, and let a be a B-ideal such that

Pa=P. Then P(1 - a) = 0 for some a ¢ a.

Proof. If x1,..., X generate P we can solve, for

each i, x, =2, x, a,, for suitable a,, ¢ a, by hypothesis.
i 373 73 i =

The equations £, x, (8., - a.,) =0 1 < i < n) now impl
4 IR E S £ Gets P
that de =0 (1 <j <n) (Cramer's rule), where d = det

(o) - =
( 1 aji) = 1 mod a.

(4.7) PROPOSITION. Let B be a commutative ring, let
P be a projective B-module, and let a = Im gP =ZIqPp

(g e Q= HomB(P, B)). If a is finitely generated, e.g., if

B is noetherian or if P is finitely generated, then a = eB

for an idempotent e, and annB(P) = (1 -~ e)B. Hence P is

a generator of mod-B if and only if P is faithful (i.e.,

annB(P) = 0).

Proof. Proposition (4.5) says a? = g. Our hypothesis
makes Lemma (4.6) available (with P = g) so that a(l - e)
= 0 for some e £ g. Clearly, then e2 = e and a = eg = eB.

Moreover, by (4.5) again, P ¢ =P soP (1 - e) = 0. Write
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e =Iq;p; - Then if a € annB(P) we have ea =z(qipi)a =
Zqi(pia) =0, soa= (1l -¢e)aec (1 - e)B. Thus annB(P)
= (1 - e)B. Finally, P is a generator <= g =B <=> e =1

<= annB(P) (= (1 - e)B) =0.

(4.8) COROLLARY. A module over a commutative ring is
faithfully projective (in the sense of §1) if and only if
it is finitely generated, projective, and faithful.

Examples. 1. (cf. example (4.3)). Let B be the ring
of matrices of the form <2 E) over a field k, and let

e = <é 8>~ Then P = eB is a finitely generated, projective,

and faithful right B-module. However, Im & = P+# B, soP
is not a generator of mod-B, i.e., P is not faithfully
projective. Of course B is not commutative.

2. (Kaplansky). Let B be the (commutative) ring of
continuous real-valued functions on the interval [0, 1],
and let P be the ideal of all functions which vanish in a

neighborhood (depending on the function) of zero. It is
known that P is projective. (Just construct p, and g, as in
i i

(4.5), using multiplication by suitable 'plateau'" functions
for the qi.) Moreover, it is easy to see that P is faithful.

If a = Im gp then PC g, thanks to the linear functional

PC B, and it is not difficult to show even that P = g. Thus
P is not a generator of mod-B, and therefore P is not

faithfully projective. Of course P is not finitely generated.

§5. AUTOEQUIVALENCE CLASSES: THE PICARD GROUP

Let R be a commutative ring. If A is an R-category
we define B

Picy (4)

to be the group of isomorphism classes [T] of R-equivalences
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T: A

> A. The group law is
functors.
If A is an R-algebra we
PlCR(A)
to be the group of isomorphism

left ABR A°-modules. The group

PRELIMINARIES

induced by composition of

define

classes [P] of invertible

law is:

e] [Q] = [p 8,0l

It follows from (2.4) and (3.5)-(3) that this is, indeed, a
i 1 = =
group, with [P] [Hommod_A(P, A)] [HomA_mod(P, A].

According to Theorem (2.3):

(5.1) PROPOSITION. There are inverse isomorphisms

[+

PiCR(A) Z—B——_> PicR

[Pl = 2], and

(mod-A)

8lT]

= [TA]

It is intuitively clear that algebra automorphisms of
A should contribute to PicR(mod-A). We shall now indicate

how they appear in PicR(A).

For an R-algebra A write
invertible left A@R A°-modules,
Suppose Pe EiL,R(A) and a, B €

o d B

g;;R(A) for the category of

and bimodule homomorphisms.

A

utR-alg

(A). Then we define

to be the left A @RA°—module whose additive group is p,

and whose bimodule structure is given by

a + p=oa(a)p, p *a=pB(a) (pepP, acl

Thus P = P for example. Moreover, we clearly have

11

P_ = A 8 P

Suppose that P, Q ¢ Pic

9

A 1t

R(A) and that f: p —> Q is
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a left A-isomorphism. Since A = HomA_mod(P, P)°, the left

A-endomorphism p H———— £ 1 (f(p)a) must be right multi-
plication by a unique a(a) & A, In other words

f(p aa)) = f(pla (pep,achi

Evidently o € AutR_alg(A), and this equation therefore can

rephrased: f: 1Pa

proves part (4) of:

> Q is a bimodule isomorphism. This

(5.2) PROPOSITION. Let A be an R-algebra and let

a, B, Y € AutR_alg(A).
(1) aAB = YdAYB as bimodules.
(2) ,A 8 A = _A as bimodules.

1a "A 1R 17aB

(3) lAa = lAl as bimodules <= o ¢ In Aut(A), the

group of inner automorphisms of A.

(4) If P e Pic R(A) and if P ~ A as left A-modules

then P = 1Aa as bimodules for some a € AutR_alg(A).
Proof. (1) The map x |—> y(x) is the required
isomorphism.

(2) Using (1) we have lAa 8A lAB = a—lAl @A lAB =

—lAB N lAaB'
a

(3) If f: lAa —_— IAl is a bimodule isomorphism

then, as a left A-automorphism, f(x) = xu, where u = f(1) is
a unit in A. Moreover, f(a(a)) = f(1 ¢« a) = f(1)a, which
gives a(a)u = ua, or a(a) = uau ! for all a ¢ A.

Conversely, if a(a) = uau ! for some unit u ¢ A, then
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> A

f(x) = xu is a bimodule isomorphism 181

lAa
(4) was already proved above.
The group PicR(A—mod) > PicR(A) operates on the

isomorphism classes of faithfully projective left A-modules.
We now describe the stability subgroups of this action.

(5.3) PROPOSITION. Let A be an R-algebra, let Q be a
faithfully projective left A-module, and let B = EndA(Q)°.

Then there is an exact sequence of groups,

(5.4) 1 —> InAut(B) —> Aut 3 —2 Picy (A)

R-alg
with

ImSQ = {[p] e PicR(A) | P@AQ ¥ Q as left A-modules}

Proof. Suppose first that Q = A, so that B = A,
Define GA(a) = [lAa]' Then Proposition (5.2) tells us that
6A is a homomorphism (part(2)), that (5.4) is exact
(part (3)), and that Im(éA) is as described above (part (4))

In the general case set Q% = HomA(Q, A). Then T =
HomA(Q, *) = Q% @A': A-mod —> B-mod is an equivalence

with TQ = B, and it induces an isomorphism h: PicR(A)

. - o .

> PlcR(B) by h{P] [qQ QA P @A Ql. We now define SQ as
’s . ! .

(B) > PlcR(B) > PlcR(A).

the composite AutR_alg

Hence Ker(éQ) = Ker (SB) = InAut(B), so (5.4) is exact. If
P 3 o~ — = EY

e Pic R(A) then P @AQ Q as left A-modules <= Q SAP @AQ
= Q*QAQ as left B-modules. Since Q% QAQ ~ B as bimodules

this says that P @AQ = Q as left A-modules <= hlP] & Im 6B.

This establishes the alleged description of Im(8.), thus

proving the proposition.

Q

When P ¢ Pic R(A) the elements of C = center A need
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not act the same on the left and right on P, If t & C then
P ’——~> pt, being a bimodule endomorphism of P, is left-
multiplication by a unique element, uP(t), which must again

be in C. Thus we have, what is clearly an R-algebra homo-
morphism,

op § C > C3 pt = uP(t)p (peP, t eC)

For example if P = 1Aa (o € AutR_alg(A)) then qp = u[c.

Suppose P, Q & Pic _(A). Then for p e P, q € Q, and

R
t e Cwe have (pg qQ)t =p@g aQ(t)q = paQ(t) @ q = @P(GQ(t))

(p ® q). Thus
op @AQ = op aQ

Evidently a, = lC’ so the invertibility of P now implies Op

A

is an automorphism. We have now proved:

(5.4) PROPOSITION. Let A be an R-algebra with center
C. Then there is an exact sequence

h

0 > PicC(A) > PicR(A) > Aut c)

R-alg

where hl[P] = op - If A is commutative then

0

. . h
> Pch(A) > PlCR(A) > AutR_alg(A) >1

is exact, and h is split by o [ > [lAa] (see (5.2)).

EXAMPLE. Let A be the ring of algebraic integers in
a finite extension L of Q, and let G be the (Galois) group

of field automorphisms of L. Evidently we can identify
G = Autz_alg(A), so that PicZ(A) is the semidirect product
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of G with PicA(A), which is known to be isomorphic to the

ideal class group of A (see Chapter III, §7). Under this
isomorphism the action of G on PicA(A) corresponds to the

obvious action of field automorphisms on ideal classes.

If we take this as a description of autoequivalences
of the category A-mod then we find that PicZ(A—mod) is

finite (finiteness of class number: see §4 of Chapter X).

In particular Picz(é—mod) = {1}, i.e., any autoequivalence

of the category of Abelian groups is isomorphic to the
identity functor.

HISTORICAL REMARKS

Fragments of the material in this chapter have
occurred, in disguised form, in many places. The questions
were first clearly posed and treated systematically by
Morita [1], and the basic results are sometimes called the
"Morita Theorems'. I have borrowed much from an unpublished
exposition of S. Chase and S. Schannel, as well as from
Gabriel [1].

This material leads, in a natural way, to a general
form of the Wedderburn theory (see Chapter III, §1 below)
and to the theory of the Brauer group of a commutative
ring. This is the theme pursued in my Tata notes (Bass [4]).



Chapter 111
REVIEW OF SOME RING

AND MODULE THEORY

In this lengthy chapter we review a number of more
or less standard topics, as may be seen from the following
section titles.

§1 Semi-simplicity and Wedderburn theory.
§2 Jacobson radical and idempotents.

§3 Chain conditions, spec, and dimension.
§4 Localization, support.

§5 Integers.

§6 Homological dimension of modules.

§7 Rank, Pic, and Krull rings.

§8 Orders in semi-simple algebras.

Much of this material occurs in one or another chapter of
Bourbaki. In particular, in §5 and §7 I have lifted a great
deal from Bourbaki, especially from his beautiful Chapter

7 on divisors. On the other hand, a certain amount of the
material here is either not standard or else not easily
accessible in a form suitable for the applications to be
made here.

The reader is advised to pass over this chapter and
to refer to particular sections as they become relevant to
the later exposition.
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§1. SEMI-SIMPLICITY AND WEDDERBURN THEORY

Let A be a ring. We call M ¢ mod-A simple if it has
precisely two submodules (0 and M), and we call M semi-
simple if it is a direct sum of simple modules. The ring

A is called semi-simple if it is a semi-simple right A-
module. We shall shortly see that this notion is left-right
symmetric.

(1.1) PROPOSITION., Let M ¢ mod-A and let N and

{Si | i € I} be submodules such that each S, is simple and

such that M = N + ESi. Then there is a subset J C I such
that the map
. I e
fJ. N & jed Sj > M

induced by the inclusions, is an isomorphism.

Proof. By Zorn's lemma we can choose J maximal so
that fJ is injective. If it is not surjective there is an

i € T - J such that Si ¢iIm(fJ). Since Si is simple we
0 0
must have Si M Im(fJ) = 0, and this implies f
0

JuU{ g} e
injective, contradicting the maximality of J.

(1.2) COROLLARY. A sum of simple modules is semi-

simple. A submodule of a semi-simple module is a direct

summand, and therefore is also semi-simple.

(1.3) LEMMA ("Schur's Lemma'). A non zero homo-

morphism between simple modules is an isomorphism.

Proof. Let f£: S

and f # 0. Then Im(f) # 0 so Im(f) = T. Moreover Ker(f) # S
so Ker(f) = 0.

> T where S and T are simple

(1.4) PROPOSITION. Let P be a finitely generated

semi-simple module. Then there is a direct sum decomposition

n] n
unique up to isomorphism, P = S5, @...er T, where the Si
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are pairwise non-isomorphic simple modules and each n, > 0.

Moreover

EndA(P) =1 Mni(Di)

where Di = EndA(Si) is a division ring for each i.

Proof. P is a direct sum of simple modules, and this

sum must be finite because P is finitely generated. Hence
n Py
we obtain a decomposition P = S, 1 Y Sr as above after
collecting each group of isomorphic summands into a term of
the form Sini. By Shur's lemma Di is a division ring and
HomA(Si, Sj) =0 if 1 # j. Since Di is local the uniqueness
of the decomposition follows from the Krull Schmidt theorem
= ni o M
(I, (3.6)). Moreover we have EndA(E) Hi, 3 HomA(Si ,Sj )
n.
= iy, _
HEndA(Si )y = HMn,(Di)' g.e.d.
i
We call a module Artinian if any non empty family of

submodules contains minimal elements. We call the ring A
right Artinian if A is an Artinian right A-module.

(1.5) THEOREM. The following conditions on a ring A

are equivalent.

(1) A is semi-simple.

(2) Every right A-module is semi-simple.

(3) Every short exact sequence of right A-modules

splits.

(4) A is a finite product of full matrix rings over

division rings.

(5) A is right Artinian and has no nonzero nilpotent

two sided ideals.
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Proof. (1) = (2). Every module, being a quotient of
a free module, is a sum of simple modules. Now apply (1.2).
(2) = (3) follows from (1.1).

(3) = (1). Let J be the largest semi-simple right
ideal in A, i.e., by (1.2), the sum of all simple right

ideals. By hypothesis A = J 8 J” for some right ideal J~,
which is clearly generated by one element. If J” # 0 let
J°"C J° be a maximal submodule (use Zorn). Then J” = J°" &S
for some S * J7/J”7, Since S is simple S C J; contradiction.
Therefore J° = 0, i.e., J = A.

(1) = (&) follows immediately from (1.4).

(4) = (5). It suffices to establish (4) for Mn(D) =
EndD(Dn), where D is a division ring. According to (II, 4.4)
and (II, 3.5) Mn(D) has the same lattice of two sided ideals
as D, so it is simple. Moreover the lattice of right ideals

n

is isomorphic to the lattice of D-subspaces of D, so it is
Artinian., (Of course these facts are easy to prove directly,
without appeal to Chapter II.)

The implication (5) = (1) is contained in the
following more general proposition, in the special case
B=A=T.

(1.6) PROPOSITION. Let T be a two sided ideal in a

ring B. Assume that T is an Artinian right B-module and that

every nilpotent two sided B-ideal has zero intersection with

T. Then T is a semi-simple right B-module generated by a

central idempotent e. Hence B is the product of B/(1l - e)B
=~ T and of B/eB.

The proof is based on the following useful Lemma.

(1.7) LEMMA. Let P be a minimal non zero right ideal

in a ring B. Then either P2 = 0, and BP is a nilpotent two

sided ideal, or else P = eB for some idempotent e, and
B=P4# (1 - e)B.

Proof. If P2 = 0 then (BP)2 = BPBP = BP? = 0. If
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P2 4 0 choose x ¢ P so that xP # 0. By Schur's lemma,
P F——~> xp is an automorphism of P, so xe = x for a unique
e ¢ P. Since xe? = xe = x we have e? = e # 0. Now eBC P
= eP, and the lemma follows immediately.
Proof of (1.6). We claim every right B-submodule of

T is semi-simple and is a direct summand of B. If not let
a C T be a minimal counter-example, and let P C & be a

minimal non-zero right ideal. If P? = 0 then BP is a nil-

potent two sided ideal in T, contrary to hypothesis. There-
fore (1.7) implies P = eB for some idempotent e. It follows

that ¢ =P & (1 - e)a. By the minimality of a, (1 - e)a is
semi-simple and a direct summand of B, say B = (1 - e)a ® b.
Hence P = eB = eb is a direct summand of B, so g =P &

(1 - e)a is a direct summand of B. This contradicts the

fact that ¢ was a counterexample to our claim.

We now know that T itself is a semi-simple direct

summand of B, say T = eB with e? = e, Let L: B —> A =
EndB(T) be the map defined by left multiplication (recall

T is a two sided ideal). Since T is a direct summand of B,
L is surjective. Hence L(T) is a two sided ideal in A.
Since lT = L(e) it follows that L(T) = A. If x € T M Ker(L)

then xT = 0 so T x B is a nilpotent two sided ideal in T.
By assumption then T x B = 0, so also x = e*x*1 = 0. There-
fore L induces an isomorphism T > A, In particular

et = te for all t € T. If b € B then eb and be are in T so
eb = ebe = be. Thus e is central, and the proposition is
proved.

(1.8) THEOREM(Wedderburn). Let B be a ring and
suppose there is a simple generator P of mod-B (cf. (1.9)

below). Then P is a faithfully projective right B-module,

and:

(1) A = EndB(P) is a division ring. (Schur)
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(2) P is a finite dimensional left A-module and

B = EndA(P)°. (Density theorem.)

(3) Center (B) = Center (A), and it is a field.

(4) B has no two sided ideals except 0 and B (i.e.,

B is simple) and the lattice of left ideals of

B is isomorphic to the lattice of A-submodules

ofp, viaa > P a.
(5) p @B: B-mod
categories.

> A-mod is an equivalence of

Conversely, if A is a division ring and if p is a

non-zero finite dimensional left A-module, thenP is a

faithfully projective simple right module over B = EndA(P)°,
and A = EndB(P).

Proof. If mod-B has a semi~simple generator then

every module, being a quotient of a semi-simple module, is
semi-simple, by (1.2). Therefore P above is projective,

since all B-modules are, and it is finitely generated, being
simple. This means that P is faithfully projective, so

(11, 4.4) says P gives rise to a set of equivalence data,

(A, B, P, HomB(P, B), fP, gP). The conditions 1,..., 5

above now follow from (II, 3.5).

The converse assertion follows similarly once one
verifies that P is faithfully projective, and the latter

is obvious.

We close this section with a criterion for the
existence of a module P as in (1.8).

(1.9) PROPOSITION. Suppose the ring B has no idem-

potent two sided ideals except 0 and B and no non-zero

nilpotent two sided ideals. (E.g., assume B is simple.)

Suppose further that B has a minimal non-zero right ideal P.
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(E.g., assume B is right Artinian.) Then P is a simple

generation of mod-B, so Theorem (1.8) applies.

Proof. Our hypothesis prevent P2 = 0 so (1.7) implies
P = eB with e? = e. Then BeB is an idempotent two sided

ideal so BeB = B, and this implies P is a generator of
mod-B (see (II, 4.4)).

The results of this section are preliminary to the
study of the "Brauer group' of a field (cf., e.g.,
Auslander~Goldman [1]). We shall not take this up here,
but we do mention one fact that properly belongs to that
theory: Let A and B be finite algebras over a field L
which are simple and have center L. Thus they are 'central
simple" L-algebras. Then A@L B is also a central simple

L-algebra. (cf. Bourbaki [2], §10, no. 4 or Bass [4] Ch.III,
Cor. 2.7.) Using this we can prove:

(1.10) PROPOSITION. Let L be a field and let A be a

semi-simple finite L-algebra with center C. Then PicL(A) is

isomorphic to a subgroup of Aut (C), which is a finite

L-alg
group.

Proof. From (II, 5.4) we have an exact sequence

> Picc(A) — PicL(A) ——> Aut (C), so it suffices

0
L-alg
to show that PicC(A) = 0, Write A = I Ai as a product of

simple algebras A,, with center C,, and C = Il C,. There is
i i i

a homomorphism from Aut g(C) to the group of permutations

L-al
of the Ci’s, whose kernel is the product of the (finite)
galois groups of the field extensions Ci/L' Hence AutL alg(c)
is finite.

Next note that PicC(A) = Il Pic (Ai), clearly, so
i

it suffices to prove that PicC(A) = 0 when C is a field and

C

A is central simple. Let P ¢ Pic . (A). Viewing P as a

C
right A-module we have A = EndA(P). Since A is simple this

can happen only if P =~ A as right A-module. In particular
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[P: C] = [A: C]. Now let Q e Pic C(A) also. Then P and Q
are left A @CA°—modules both of dimension [A: C]. Since
A @CA° is simple (see remark above) it follows that P = Q as

A 8 A°-modules, i.e., as two sided A-modules. Hence [pP] =
[Q] in PicC(A). q.e.d.

§2. JACOBSON RADICAL AND TIDEMPOTENTS
For a ring A and an M € mod-A we write
radM = M Ker(h) (h: M —> 8; S simple)

Suppose g: N —> M, Then hg: N —> S so hg(radN) = 0 for
all h as above. Thus g(rad N) C rad M, so rad is a sub-
functor of the identity. In particular rad M is a fully
invariant submodule of M. Applying this observation to left
multiplications in A we see that rad A is a two sided ideal.

If J C rad A is a two sided ideal then J is contained in
every maximal right ideal of A so it follows easily that
rad(A/J) = (rad A)/J. In particular

rad(A/rad A) = 0

If S is a simple right A-module and x ¢ S define f: A —> S
by f(a) xa. Then f(rad A) = 0 so, since x was arbitrary,
Serad A = 0. If h: M —> S is any homomorphism then

h(M rad A) C S*rad A = 0. Thus, for any M € mod-A,

M+srad A C rad M

(2.1) PROPOSITION. Let N be a submodule of M ¢ g(A).

The following conditions are equivalent:

(1) N < rad M.
(2) If H is a submodule of M then N + H =M = H = M,

Proof. (1) = (2). Suppose H# M. Since M is finitely

generated we can, by Zorn's lemma, find a maximal proper
submodule L containing H. Since N C rad M we have NC L, so
N + HC L; contradiction.
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Conversely, (2) clearly implies N is contained in
every maximal proper submodule, hence in their intersection,
which is rad M.

(2.2) PROPOSITION (''Nakayama's Lemma'). The following

conditions on a right ideal J in A are equivalent:

(1) Jc rad A.
(2) If M e M(A) then MJ =M = M = 0.

(27) If M ¢ g(A) and if H is a submodule of M, then
M=H+M = M= H.

(3) 1 + J consists of invertible elements (so 1 + J

is a subgroup of U(A)).

Proof. Since M(rad A) C rad M for all M it follows

from (2.1) that (1) = (27) and, in the special case M = A,
that (27) = (1). Trivially (27) = (2) and conversely (27)
follows by applying (2) to M/H.

(27) = (3). If x € J set u =1+ x. Then A = J + uA
so A = uA. Choose v so that uv = 1, Since 1 = uv = v + xv
we have v =1 - xv ¢ 1 + J also, so v itself has a right

inverse. Thus u is invertible and v = u ! ¢ 1 + J.
(3) = (1). We claim J is contained in every maximal
right ideal H. If not then J + H = A so 1 = x + y with

xe€J, ye€H, Theny =1~ x is invertible, by (3), so
H = A; contradiction.

(2.3) COROLLARY. rad A is the intersection of the

maximal left ideals in A.

Proof. Let J be that intersection. Since rad A is a

two sided ideal and 1 + rad A C U(A) we have rad A C J, by
the left sided analogue of (2.2). By symmetry J C rad A.

(2.4) COROLLARY. A nil ideal (i.e., one in which

every element is nilpotent) is in rad A.
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n n-1

Proof. If x = 0 then (1 - x)_'l =1l+x+ -—+ x

(2.5) COROLLARY. Let R be a commutative ring and let

A be a finite R-algebra. Then A(rad R) C rad A.

Proof. Suppose M e M(A) and M:(rad R) = M. Since
M e E(R) also we conclude from (2.2)(2) that M = 0 and
hence A(rad R) C rad A.

(2.6) PROPOSITION. Let p be a faithfully projective
right A-module, Then rad P = P+(rad A) and rad(EndA(P)) =

HomA(P, rad P). In particular, rad Mn(A) = Mn(rad A).

Proof. M I——~> rad M and M | > Me+(rad A) are

additive functors that agree on M = A and therefore on all
P e P(A). If P is faithfully projective and B = EndAG?)

then h(M) = HomA(P, M) is an equivalence from mod-A to
mod-B. In particular h(rad M) = rad h(M). q.e.d.

(2.7) COROLLARY. If J is a two sided ideal in rad A
then GL (A)
— ""n

> GLn(A/J) is surjective for all n > 1.

Proof. If u ¢ A lands in U(A/J) we can solve
uv = vu = 1 rad J in A. Then uv, vu € 1 + JC U(A) so
u € U(A). Thus U(A)
this to Mn(A)

> U(A/J) is surjective. Now apply
> Mn(A/J) = Mn(A)/Mn(J), using the fact
that Mn(J) C rad Mn(A) (see (2.6)).

Remark. This proof actually shows that GLn(A) is the

universe image in Mn(A) of GLn(A/J),

We shall call a ring A semi-local if A/rad A is

semi-simple. Since A/rad A has zero radical it can have no
non-zero nilpotent ideals. Hence it follows from (1.5)
that A is semi-local as soon as A/rad A is right Artinian.
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Moreover it is then a finite product of full matrix rings
over division rings. It follows from (2.6) that Mn(A) is

semi-local if A is. We call A local if A/rad A is a

division ring. Note that this is equivalent to the
definition in (I, §3). For a local ring A = U(A) U rad A.

The following proposition will be used frequently
in Chapters IV and V.

(2.8) PROPOSITION. Let g be a right ideal in a

semi-local ring A. Let b ¢ A be such that ¢ + bA = A. Then

a + b contains a unit of A.

Proof. An element of A is invertible if and only if

it is invertible module rad A (see remark above). Hence we
can, after passing to A/rad A, assume rad A = 0. Then A
decomposes into a product so it suffices to solve our
problem in each factor. Therefore, we can further assume
A= EndD(V) where V is a finite dimensional right vector

space over a division ring D. In this case g is the set of

all a: V > V such that aVC W = aV (see, e.g., (II,
3.5 (6))). Since g + bA = A it follows that W + Im(b) = V.
Choose Wg C W so that V = Wg & Im(b). If V = Ker(b) 8 U

then b induces an isomorphism from U to Im(b), so Ker(b) =
Wo. Choose a so that qU = 0 and g induces an iscmorphism

from Ker(b) to Wg. Then aV = Wy C W so g € g. Moreover

a + b is clearly an automorphism of V.

(2.9) COROLLARY. Let g be a two sided ideal in a

> GLn(A/q) is surjective

semi-local ring A. Then GLn(A)
for all n > 1.

Proof. If u € A is invertible modulo q then q + uA
= A, so 9 + u contains a unit of A. Thus U(A) —> U(A/q) is
surjective. The corollary follows by applying this to Mn(A),
which is also semi-local.

We next treat the problem of lifting idempotents.
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(2.10) PROPOSITION. Let J be a two sided ideal in a

ring A. Suppose either that J is nil or that A is J-adically

> proj. lim A/I" is an isomorphism).

complete (i.e., A
Then finite sets of orthogoral idempotents can be lifted

modulo J. I.e., given aj,..., a e A such that aiaj =68, .a

1391
mod J (1 < i, j < m) then there exist ej,..., e £ A such
that e, = g, mod J and such that e,e, = §,,e. (1 < i, § <m).
- 1 i 1] iji - —_
Proof. Let g ¢ A, For any n > 0O,
_ 2n  _ 2n\ 2n-j i
L= @+ a-an™ = 5y o, ()0

Set

f (@) =2 2r1>a2n_j(l - a)j
n

Oijin(j

=1-3 2n>a2n_3(l - a)J

n<j£2n<j

Then fn is a polynoimal in a with integer colfficients, i.e.

it lies in the ring R generated by a, and we have:

1

£ (@) = 0 mod a"R;

1 mod (1 - a)"r

HE

fn(a)

These imply fn(a)2 = fn(a) mod (a(l - a))nR. Since

a"R + (1 - a)nR = R clearly it follows that (a(l - a))nR =
a"R M1 - a)nR (cf. (2.14) below). Hence we also conclude

that £ (@) = £ _ (@) mod (a1 - @)™ ~ 'R. At the outset

_ 2> 2 2 _ 2 _
we have fl(a) —<0 a” + (l>a(1 -a) =a“ + 2a(l - a) =
20 - a® =a+a(l -a) = amod a(l - A)R. Thus £ (a) =
a mod a(l - a)R.
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Now suppose a2 - a = a(l - @) is nilpotent. Then the

congruences above show that, for large n, we have fn(a) =

a mod (@2 - a)R, and fn(a)2 = fn(a). This shows we can 1lift
an idempotent modulo a nil ideal J (for we are then given a
with a® - a € J.) If, on the other hand, A is J-adically

complete, then we can inductively construct e € A such that

- n _ n L.
e] =a, e 2 ze modJ , and e = e mod J . This is
n n n+1 n

n .
because J/J is nilpotent, and we can use the construction
. n
above. Now the e converge to an e £ A = proj. lim A/J
such that e = ¢ mod J and e2 = e, This proves the pro-
position for a single idempotent.
In general, we suppose, by induction, that ej,...,

e have been constructed as in the proposition. Then

m- 1

e=e; + *°° + e is idempotent and e = g] + *** + q
m m

mod J. Therefore e aid a  are orthoqural idempotents mod J%
Set f =1-eand b = famf. Then evidently b = a, mod J

and eb = 0 = be. Form the sequence fn(b) as above, so that
the fn(b) converge to an idempotent emsuch that e = b

mod J. Since each fn(b) is a poloyminal in b with zero
constant term and integer coefficients we have efn(b) =90

= fn(b)e. Therefore e and e are orthogonal. For i < m we
have e;e = e, = ee, so it follows that e is orthogonal to

i
these e, . q.e.d.

(2.11) PROPOSITION. Let A be a right Artinian ring,

and let J = rad A, Every non-nilpotent right ideal in A

contains a non-zero idempotent; in particular J is nil-

potent. Moreover, A/J is semi-simple.

Proof. Since A/J has no non-zero nilpotent ideals

its semi-simplicity follows from (1.5). If e € J is
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is idempotent then eA = (eA)? so eA = 0 by Nakayama's lemma.
Therefore the first assertion implies J is nilpotent.

If the first assertion is false let the right ideal
I be a minimal counterexample. Then since I2 C I is not

nilpotent we have I2 = I, Let H be minimal among the right
ideals in I (e.g., I itself) such that HI # 0. Choose x ¢ H
such that xI # 0; then minimality implies xI = H. Choose

a € I so that xa = x. Then xa° = xa so a° - @ € N =
C
{y e I | xy = 0}. Since N# I the minimality of I implies

N is nilpotent. Hence a? - aq is nilpotent. Let R be the
subring generated by a. By (2.10) there is an idempotent

e € R such that e = a mod(a2 ~ a )R. In particular e = «

mod N, Since a ¢ I, «a i N we have e ¢ I, e é N also, and
this completes the proof.

(2.12) PROPOSITION. Let J be a two sided ideal

contained in rad A. Set A = A/J and write M= M @AK'= M/MJ

for M € mod-A. Then

> P(4)

ifav]

is a full additive functor with the following properties:

(a) If f: P > Q is_a morphism in P(A) such that

f is an isomorphism then f is an isomorphism.

(b) The functor is injective on isomorphism classes

of objects, and bijective if A is J-adically

complete.
Proof. Given f: E_ > a-there is an f: P > Q
making
f
P > Q
v _ v
— f —_
P > Q
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commute, i.e., making the notation consistent. This is

because P is projective and Q > 6-is surjective. Thus the

functor is full. If f is surjective then it follows from
Nakayama's lemma, since Q is finitely generated, that f is
surjective. The projectivity of Q now implies f is a split
epimorphism., It follows that H = Ker(f) is finitely

generated, being a direct summand of P. But H = 0 because
Ker(f) = O so again Nakayama implies H = 0. This proves (a)

and shows that P = 6‘=5 P =~ Q.

There remains only to be shown that every Q e E(Z) is
isomorphic to some P O e P(A)) when A is J-adically
complete. We can write Q = Im(E) where e is an idempotent

in EndK(Kn) = Mn(ZJ. If we can lift e to an idempotent

e ¢ Mn(A) = EndA(An) then P = Im(e) will clearly solve our
problem. Since A is J-adically complete we evidently also
have M_(A) = proj. lim Mn(A/Jm), so the liftability of e
follows from (2.10). q.e.d.

(2.13) COROLLARY. If A is a local ring then every
P e P(A) is free.

Proof. Take J = rad A above. Then A is a division
ring so P is free.

Let R be a commutative ring. We say two ideals g and
b are comaximal if ¢ + b = R. In this case, for any M ¢
mod-R, the inclusion Mab C Mg M Mb is an equality. For if
x e Mo Mb write 1 =a+b (aea, b eb) and we have

x = xa + xb € Mgb.

Suppose g is comaximal with b, (1 < i < n). Write

o

a; + bi (ai € a, bi € Ei’ 1 <1i <n). In the product

(ay + bl)——-(an + bn), all monomials lie in g except

biee+b cve =
1 n € by En’ so a + (Hhi) R.
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(2.14) PROPOSITION ("Chinese Remainder Theorem," CRT).
Let a; (1 <1 < n) be pairwise comaximal ideals in a

commutative ring R, and let M ¢ mod-R. Then

N Mg, =M« (I.a,)
1 —1 11

and

M > 1IIM/Ma,
—1

is surjective (with kernel(jngi).

Proof. The case n = 1 is trivial, so assume n > 1.
Set g = 1, .a.. The remark above shows that a, + a = R
=i j # 1i7 = =
for each i. By induction and the remarks above, we have

M(Higi) = Mﬂl a

Ma; 1 Maj

Ma; N ( Ma.)

N
1l <i<n
Suppose we are given x;,---, x € M. Write 1 = a; + bi with

a, €ea, and b, € a7. Then b, = 1 mod g, and b, = 0 mod «,
i -1 i 1 i i i =]

for j # i. Thus inbi =%y mod Mgi (1 <1 < n). This proves

the surjectivity of M > HM/Mgi, and its kernel is

evidentlnyMgi.

§3. CHAIN CONDITIONS, SPEC, AND DIMENSION

We call a partially ordered set X noetherian if every
ascending chain in X terminates. This is easily seen to be
equivalent to the "noetherian induction principle"; Every
non-empty subset of X has maximal elements. Dually, we call

X Artinian if every descending chain terminates, and there
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is an equivalent "Artinian induction principle". If X0 is

the set X with ordering reversed then X is Artinian if and
only if XY%is noetherian.

Suppose now that X is a lattice. This means that each
x, ¥ € X have a supremum, x U y, and an infimum, x Ny.

Moreover, there are a greatest element and a least element,
which we denote 1 and 0, respectively.

(3.1) PROPOSITION. If X is noetherian and Artinian

then X has "finite length'. Specifically, every finite chain

of distinct elements of X can be refined to a chain 0 =

Xy < x] <ee< x, = 1 such that no element lies properly

between x,

i -1 and Xy (1 <4 <mn),

Proof. It suffices to show simply that X has some
finite chains as above. For then we can apply this con-
clusion to the lattices of elements of X lying between two

successive elements of a given chain to obtain the necessary
refinements.

If the conclusion fails, choose a minimal x such
that it fails for the lattice of elements below x. Clearly
x # 0 so we can choose y maximal among the elements strictly
smaller than x. Then there is a finite chain, as required,
below y, and hence also below x; contradiction.

We shall say that x ¢ X isi{J-ineducible if x# 0 and

ifx=yUz= x=yo0r x=2z.

(3.2) PROPOSITION(''Decomposition Lemma"). Let X be

an Artinian lattice and let x be a non-zero element of X.

(a) We can write x = XﬂJ"ﬂan where each xg is

(J-irreducible and with no inequalities among the

x,'s,
i
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(b) If M distributes over \y then everyy-irreducible

y < x is < some x,. In particular the xi's are
— & 22 Z B arte

then unique, and we call them the "irreducible

components' of x.

Proof. (a) If not let x be a minimal counterexample.

Clearly x £ 0 and x is notiJ-irreducible so x = y | z with
¥y, 2z < x. Since y and z are finite unions of U-irreducible
elements (by minimality of x) so is x. After deleting
redundant terms we reach the desired contradiction.

(b) If y<x theny=yMNx=(yNxHU U N an
If y isy-irreducible this implies y =y (\xi, i.e., vy i_xi,

for some i.

(3.3) PROPOSITION. Let X be a lattice and let x £ X
be such that

(1) Ify<y,yNnx=y Nxand yyUx =y~ (x then
y=y".

Then X is noetherian (resp., Artinian) if and only if the

lattices of elements above and below x are.

Proof. If X is noetherian (resp., Artinian) then the
lattices above and below x are clearly also such. Conversely,
suppose (yn) is a chain in X. For large n the chains
(yn(W x) and (yn \J X) are stationary, by hypothesis. Hence

condition (1) implies (yn) itself becomes stationary.

Let A be a ring. We call M & mod-A noetherian or
Artinian according, as its lattice of submodules is such.
This lattice satisfies (1) above. For suppose X and Y C Y~
are submodules of M such that YM X =Y M X and Y + X =
Y” + X. Then we apply the 5-lemma to
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00— X/XNY — MY — M/X+Y — 0
¥ ¥ ¥

0 — X/XNY — M/Y — M/X+Y —> 0

We call A right noetherian or right Artinian if the right

A-module A is such.

(3.4) PROPOSITION. (1) A module M is northerian and

Artinian if and only if it has finite length. If M is semi-

simple it is noetherian if and only if it is Artinian.

(2 If 0 — M" —> M —> M”"" —> 0 is exact then

M is noetherian (resp., Artinian) if and only if M~ and M™~

are.

(3) A is right noetherian (resp., Artinian) if and

only if every M e M(A) is.

(4) A module M is noetherian if and only if every

submodule is finitely generated.

Proof. (1) The first assertion follows from (3.1). If

M is a direct sum of simple modules then clearly M can be
neoetherian or Artinian only if this sum is finite, in which
case M has a Jordan-Holden series, and so has finite length
in the sense of (3.1), by the Jordan-Holder Theorem (I, 4.3).

(2) follows from (3.3) and the remarks above.
(3) If A is right noetherian (resp., Artinian) then

(2) implies the same is true of At and all of its quotients
for all n > 0. The converse is trivial.

(4) Let °--an: H **+ be a strictly ascending

n+1

chain of submodules of M, and let H be their union. If H

were finitely generated each generator would lie in some H
n

and hence all of them would lie in Hn for large n;

contradiction. Thus, if all submodules of M are finitely
generated then M is noetherian. Conversely, suppose M is
noetherian. If M is not finitely generated set M, = (0) and
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M b i
let 1 e generated by Mn together with some X 41
é Mn. This ascending chain is impossible, so M is finitely

generated. The submodules of M, being also noetherian, are
likewise finitely generated.

The importance of right noetherian rings lies in the
fact ((3.4)(4) above) that the category M(A) of finitely

generated right A-modules is abelian.

(3.5) PROPOSITION. A right Artinian ring is also

right noetherian.

Proof., Let J = rad A. According to (2.11) A/J is

semi-simple and Jn = (0 for some n. The modules J1 - l/Jl
(1 <1 < n) are therefore semi-simple and Artinian, hence

of finite length. Thus A is also of finite length, thanks
to (2) and induction on n.

(3.6) THEOREM('"Hilbert Basis Theorem''). Let A be a

right noetherian ring and let t be an indeterminate. Then

Alt] is also right noetherian.

Proof. Let J be a right ideal in Aft]. Then the set
Jg of leading coefficients of elements of J, together with
0, is clearly a right ideal in A. Choose f;,---, fn e J
whose leading coefficients generate J;, and let N be >
deg(fi) for each i. If g ¢ J has degree > N then we can
find g~ = Zfihi with the same degree and leading coefficient

as g, clearly, and then deg(g - g”) < deg(g). By an
induction argument we can thus show that any g € J is of
the form g = gg + g1 where g; € ZfiA[t] and where deg(gg)

< N. In other words J = ¥ f A[t] + (JN I, tJA). The
ii j <N

J

N
second term is an A-submodule of Zj t“A = A, so it

< N
is a finitely generated A-module. Therefore J is a finitely
generated Alt]-module., q.e.d.

We now come to some topological considerations
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preliminary to the introduction of the prime and maximal
ideal spectra.

A topological space X is irreducible if X # § and if
X is not the union of two proper closed subsets. The latter

means that any two non-empty open sets intersect non-
trivially,

(3.7) PROPOSITION. (a) A subspace Y of X is irre-

ducible if and only if its closure, Y, is.

(b) Every irreducible subspace of X is contained in

a maximal one, and the latter is closed. X is the union of

the maximal irreducible subspaces, which we call the "irre-

ducible components' of X,

Proof. (a) Since Y is dense in §-every non-empty open

get in Y meets Y, and two such which meet must meet in Y as
well, (a) follows immediately from this.

(b) An ascending union of irreducible subspaces is
irreducible, because two open sets which meet in the union
meet already in one of the subspaces. Therefore, by Zorn's
lemma, every irreducible subspace is contained in a
maximal one. The latter is closed by part (a). The closure

of a point is irreducible (by part (a)) so X is the union
of the maximal irreducible subspaces. g.e.d.
We call X noetherian if the lattice of open sets is

noetherian, or, equivalently, if the lattice of closed sets
is Artinian. It is easy to see that a noetherian space is
quasi-compact, i.e., every open covering has a finite

subcovering.

(3.8) PROPOSITION. A noetherian space X has only

finitely many irreducible componments. If Y is a subspace of

X then Y is also noetherian. If {Yi} are the irreducible

components of ¥ then {?;} are the irreducible components of

Y.
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Proof. The first assertion follows from the decom-
position lemma (3.2). If (Unfﬁ Y% .1 is an ascending chain
in Y with U open then (V. = _ U U)) terminates and

n n i<n 1in>1
hence so does (Un M Y). Thus Y is noetherian. Since Y =L)Yi
we have §_=LJ§;, and each ?; is irreducible, by (3.7). The
decomposition lemma now implies the Y; are the irreducible

components of §-provided we verify that ?i # Yﬁ for 1 4 j.

Otherwise we would have YiCZ ?5 NY = Yj, because Yj is

closed in Y, and this contradicts maximality. q.e.d.
For an irreducible closed subset Y of X we define

codim < )

to be the (possibly infinite) supremum of the lengths, n,
of chains Y = Y5C Y CeerCY of distinct irreducible
closed sets above Y in X, If Y is closed but not necessarily

irreducible we define codim X (Y) to be the infimum of
codim X (Y”) where Y’ ranges over all irreducible closed

subsets of Y, and we may as well restrict Y* to the
irreducible components of Y, clearly. In particular we have
codim X (@) = o,

If Z is a closed subset of Y then it is easy to see
that

codim % (Z) > codim v (Z) + codim X )

Let A be a commutative ring and write
spec(A)

for the set of prime ideals of A. If S C A and if F C spec(d
we write
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v(s) = {p | p DS}, I(¥) = EQFP‘

Evidently I(F) is an ideal and V and I are inclusion
reversing functions such that S ¢ IV(S) and F C VI(F). It
follows that V(S) C VIV(S) c V(S8), so VIV = V, and similarly

IVI = I. If I(F) C I(F’) then F"C VI(F") C VI(F), and
conversely F < VI(F) implies I(F) C I(F”). Similarly

V(8) C V(S") <= 8~ C IV(S). We shall abbreviate the
notation by writing

F = V(I(F)) (F c spec(A))
and

Ya = 1(V(a)) (a an ideal in A)

Thus we can restate the conclusions above:
I(F) C I(F") < F’"C F, and

V(@) € V(@) <= a'Cva

for ideals a, a”c A. The notation is suggested by the

following proposition.

(3.9) PROPOSITION. If g is an ideal in A

a={aeA] e a for some n > 0}

In particular Y (0) = nil A is the ideal of all nilpotent

elements in A. A finitely generated ideal in nil A is

nilpotent.

Proof. Since, evidently, 9§_is the inverse image of

A/QV(O , 1t suffices to treat the case g = (0). Clearly

a nilpotent element belongs to every prime ideal, so it
remains only to show that a non-nilpotent element, s, is
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excluded from some prime p. Let S = {sn I n > 0}. We shall

. . -1 .
use the localization, S "A, whose construction and prop-
erties are discussed in the following section. In particular,

since O i S we have S-lA # 0, so the latter has a prime
ideal q, e.g., any maximal ideal will do. Then p = 'q M A"

is a prime of A excluding S (cf. (4.2) below).
If aj,..., an € nil A, say aim =0 (1 <1i<n), and

if g = fAa , then it is not difficult to see that g = 0.

This proves the last assertion.

If a; is a family of ideals then clearly
V(Za,) =Nviay)
Moreover, if g and b are ideals we have
V(ab) = V(@nb) = V(@) U V(b)

For these sets clearly decrease from left to right, while,
conversely, if a prime p contains g b it must contain ¢ or b.

The formulas above show that we can view spec(A) as a
topological space with the Zariski topology, whose closed

sets are those of the form V(S). The dimension of this
space is called the Krull dimension of A, and it is denoted

dim A = dim spec(A)
If p € spec(A) we write

ht(p) = dim(éR) (= codim spec(A) ).

(3.10) PROPOSITION. spec(A) is quasi-compact, and

P ]-“—-> V(p) = {E} is an inclusion reversing bijection from

spec(A) to the irreducible closed sets in spec(A). If A is

noetherian then spec(A) is a noetherian space.
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Proof. If V(gi) is a family of closed sets with empty

intersection then ¢ ={WV(gi) = V(Zgi) so /Zgi = A, It

follows that 1(= 1" for all n > 0) lies in Zgi, by (3.9),
and hence 1 ¢ Eﬁgi = A where I~ refers to some finite sum
of the gi's. Thereforerﬁ’V(gi) = ¢, where M” denotes the

corresponding finite intersection, and this shows that
spec (A) is quasi-compact.

Since p = /E_for p € spec (A), p %——> V(p) is in-
jective. Moreover, V(p) = {p}, the closure of {p}, so it is

irreducible., Suppose F is an irreducible closed set. Write
F = V(a) with g = /é, We claim g is prime. For say a D> b c.

Then F C V(b ¢) = V(b) U V(c) so F C V(b) or V(c), (say
F CV(b)), because F is irreducible. Hence b C Vg = 4.

If (Fn) is a decreasing chain of closed sets then

(I(Fn)) terminates if A is noetherian and hence (Fn) =

(VI(Fn)) terminates. g.e.d.

Let f: A
rings, and let

> B be a homomorphism of commutative

L. spec(B) > spec(A), af(q) = f_l(q)

If S C A then af—l(V(S)) = {q ¢ spec(B) | af(q)jD S}

={q | g D £(8)} = V(£(S)). Hence % is continuous, so spec

is a functor from commutative rings to topological spaces.
In case f is surjective with kernel g then ae is a

homeomorphism of spec(A/a) onto the closed set Via).

We quote, without proof, the following result.

(3.11) THEOREM. (See Serre [2], Ch.III, Prop. 13).
_EE A is a commutative noetherian ring, and if t1,...5, t

n
are indeterminates, then

dim Altq{,..., tn] =n + dim A
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(3.12) COROLLARY. Suppose, above, that dim A < «,

Then any finitely generated commutative A-algebra is a

noetherian ring of finite dimension.

Proof. Any such algebra is a quotient of A[tl,...,tn]
for some n > 0, so the corollary follows from (3.6) and
(3.11).

The corollary applies notably when A is a field or
when A = Z. The latter case translates: a finitely generated

commutative ring is noetherian and of finite dimension. The

importance of this observation derives largely from the

fact that any commutative ring is a direct union of finitely
generated subrings. By this device many propositions can be
reduced to the noetherian case, and we shall have occasion
to use this procedure.

The maximal ideals of A constitute a subspace
max (A) C spec (&)

whose points are just the closed points of spec (A). Thus

A is semi-local <= max (A) is finite, and in this case
max (A) is discrete. By the general remarks made earlier,
max (A) is noetherian if spec (A) is.

An argument like that in proving (3.10) will show
that F +——> I(F) is an (inclusion reversing) bijection
from the irreducible closed sets in max (A) to the primes
p which are intersections of maximal ideals. In particular,

dim max (A) < dim spec (A).

Unfortunately, there is no decent analogue of (3.11)
for the maximal spectrum. Indeed it turns out that, if A is
noetherian and t is an indeterminate, then

dim max(A[t]) = dim A[t]
This may be arbitrarily large even though A might be local

(in which case dim max (A) = 0). There is, however, the
following weak result.

(3.13) PROPOSITION. Let A be a commutative noetherian
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ring of dimension d, and assume that dim (A/rad A) < d. Let

T be a free abelian group or monoid on n > 0 generators.

Then max (A[T]) is the disjoint union of a closed and an

open set, each of dimension < d + n.

Proof. The closed set F defined by rad A is homeo-

morphic to max( (A/rad A)[T]), which has dimension dim
(A/rad A) + n < d + n.

To show that the complement of F has dimension
<d + n it suffices to show that every E.# F has height

<d + n. For such an m we have rad A ¢ m and hence mM A = p

is not maximal. To determine ht(m) we can pass to A[T]m,

and the latter is a localization of AR[T], which has
dimension <d + n. q.e.d.

We close this section with a description of the
connectivity of spec (A). Note first that the set of idem-
potents in A is a Boolean algebra, with e; N ey = eje,,

eqUe, =e; + e, - eje,, and complementation e {—~> (1 - e).
We can exhibit the resulting partial ordering as follows:
e] < ey <> ejepx = e] <> e]A C ezA. In particular, an ideal
can be generated by at most one idempotent. Moreover, if

e? = e then eA =vVeA so V(eA) uniquely determines e.

(3.14) PROPOSITION. The map e ] > V((1 - e)A) is an

isomorphism from the Boolean algebra of idempotents in A to

the Boolean algebra of open and closed sets in spec (A).

Proof. Since A = eA ® (1 - e)A it follows that spec(A)

is the disjoint union of V(eA) and V((l1 - e)A). Thus
V((1 - e)A) is open and closed. The remarks above show that
the map is injective. If e; < e, then (1 - e;) < (1 - e;),

i.e., (1 - e3)AC (1 - ep)A, so V(1 - e1)A) D V((1 - en)A);

thus the map preserves order and complementation. Since the
Boolean operations are determined by the partial ordering
and complementation the proposition will follow now once
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we show that the map is surjective.

Suppose spec (A) 1s the disjoint union of V(a) and
V(b). Then spec (A) = V(a) U V(b) = V(g NDb) = V(0), so
c=aNbC /(0) = nil A. Moreover, V(A) = ¢ = V(a) N V(b)
V(g + b); so A = ﬂii:ji, and this implies g + b = A,

Write 1 = a + b with a ¢ g and b ¢ b. Since A/c = (a/c) g
(b/c) it follows that a and b are orthogonal idempotents,
modulo ¢, which generate the two summands. Now since ¢ is a
nil ideal it follows from (2.10) that there are orthogonal
idempotents, a” and b7, such that a” = @ mod ¢ and b = b
mod ¢. In particular, a”" e a+ccCcasoa’ACacC a’A + c,
Since ¢ is nil this implies Ja'h = a and therefore V(a) =

V(a“A) with a” idempotent, as was to be shown. This con-
cludes the proof.

§4, LOCALIZATION, SUPPORT

Most of the material in this section is quite
standard, so we shall leave many elementary details to the
reader.

We fix a multiplicative set S (i.e., s, t ¢ § =
st ¢ 8) in a commutative ring R. If M ¢ mod-R then the
"localization" of M is

sl = M x S)/~

where ~ is the equivalence relation: (x;, s1) ~ (x,, s,) if
(x1872 - %X981)t = 0 for some t € S. We denote the class of

(x, s) by x/s and we make S_lM an additive group by
(x/s) + (y/t) = (xt + ys)/st

In particular

(1) x/s = 0 <= xt = 0 for some t € S

If x/s ¢ S_lM and a/t ¢ S_lR we define (x/s)(a/t) = (xa)/(st)

-1
These structures are well defined, they make S "R a
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. . - -1
commutative ring, and they make S lM an S "R-module. More-
over, there is a canonical map

> S_lM (hM(x) = xs/s for any s € 8)

hM: M

It is clear that hR is a ring homomorphism (for which

-1 . s L.
hR(S) C U(S "R)) and that hM is hR—seml—llnear, i.e.,
hM(xa) = hM(x)hR(a) for x € M, a € R. Therefore, it induces

a canonical S_lR-homomorphism
> sy

by hﬁ(x 8 (a/s)) = xals

. -1
hyt M8.S R

If £f: M —> N is R-linear it induces an S_lR—homo—
morphism

s7le: sTlM — S_lN, s'lf(x/s) = f(x)/s

thus making

-1

S 7: mod-R > mod—S_lR

an additive functor. The basic fact is:

(4.1) PROPOSITION. S_1 is an exact functor, and

byt M QRS_lR

is a natural isomorphism of functors.

> sty (M ¢ mod-R)

Proof. If M~ £ .M

> M”” is exact then clearly

(S_lf)(S—lg) = 0, so we want to show that any x/s in

Ker (S"1f) lies in Im(s"lg). Since f(x)/s = 0 we have
f(x)t = 0 for some t ¢ S, by (1) above. Therefore, xt ¢
Ker(f) = Im(g); say xt = g(y). Then x/s = xt/st = g(y)/st
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= s g (y/st).

It is easily checked that S_l preserves arbitrary
coproducts. Hence h” = (hﬁ) is a natural transformation
between right continuous functors (see (II, §2). Since hR
is evidently an isomorphism it follows that h,, is an

M
isomorphism whenever M is of the form Coker (R(I)

and this covers all M € mod-R. q.e.d.

-_—

NEON

A ring homomorphism f: R > R” such that £(8)

U(R”) factors as f = f’hR for a unique homomorphism

£ S—lR —> R7; £7(a/s) = f(a)f(s)_l. In particular an
R-module M on which multiplication by elements of S is
bijective has a canonical S_lR—module structure (take R” =

EndZ(M)). In this case hM: M— S_lM is an isomorphism.

If g is an ideal in R we can canonically identify

S_l(R/g) with the localization of R/g with respect to the

image in R/a of S.

Let M ¢ mod-R. Since S—l is exact an R-submodule N
of M leads to an S_lR—submodule S_lN of S_lM. On the other

hand if H is an S-lR—submodule of S—lM then we shall write,
by abuse of notation,

T
HOAM= by (1)

. -1 . . -1
Since S is exact the function N ( > § "N preserves the
lattice operations (sum and intersection) on submodules.
Moreover, we have:

NC s"leM (Nc M)

(2)
H = S_l(H N M) (H C S—LM)

(4.2) PROPOSITION. spec(s'lR)

> spec(R) induces
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a homeomorphism from spec(S_lR) to the space of all p ¢

spec(R) such that pMN S = ¢, the inverse map being p | >

S_;R- In case S = {s" | n > 0} for some s ¢ R this identi-

fies spec(S_lR) with the (open) complement of V(s) C spec(R).

Proof. The map spec(S_lR) > spec(R) is q >—>

hR_l(q) =q MR, Since q = S_l(q M R) the map is injective,
and (qM R)YN S = ¢ because hR(S) consists of units whereas
q is a proper ideal.

Suppose p e spec(R) and pMN S = ¢. Consider the

> sl

exact sequence O > 0,

> s (R/p)

The image of S is a multiplicative set of non-zero elements

> S-lR

in the integral domain R/p, so S_l(R/R) is contained in the
field of fractions of R/p. It follows that S_¥E>is prime,

and that hR is injective, from which it easily follows

/p

that p = S_¥EJW R. For the first assertion of the propo-
sition, therefore, it remains only to be shown that p |—>
S_lE>is continuous (for p e spec(R), pMS§ = ¢). But the

. . -1 -
inverse image of V(a) c spec(S "R), for an ideal g C S lR,

is 4 € R | ac©q}, and this is easily seen to be the set
of p € spec(R) such that pMN'S =0 and (@M R) C p, a

closed set.

Finally, in case S = {s"} we have PNS=0<= s ¢
p <= B.¢ V(s), for p £ spec(R). q.e.d.

If p € spec(R) then SB = R - p is a multiplicative
set, and it is customary to write ¥E for the localization

-1
SR. M. In this case RE.iS a local ring with maximal ideal
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RBR' If M ¢ mod-R we write
supp(M) = {p € spec(R) | ME_# 0}

Occasionally we shall also consider the support of M in
max(R), which is defined similarly. The localizations of M,

taken altogether, do not lose essential information about
M, in the following sense:

(4.3) If x ¢ M then x = 0 <= x/1 =0 ig_Mm for all

m ¢ max(R). In particular, M = 0 <= Mm =0

for all m € max(R).

This fact, together with the exactness of localization,
permits one to reduce many questions to the case of local

rings; e.g., the question whether or not an R-homomorphism
is an isomorphism.

We shall now indicate how 8 and Hom behave under
localization. If M, N € mod-R there is a commutative square

h

M8 N
8 _.~._B__ -1 8
M RN > S T (M RN)
@ |
hy “r By l &y
sy sy ——— 5 s7lus s~y
R £ s~z

where f(x eRy) =x8 RRL and where g exists because

@ = 8 . _ s 1
f(hM RhN) hM S_thN is hR semi-linear. The fact that
localization preserves tensor products is expressed by:

(4.4) f and 8y are isomorphisms.

The case of f we leave as an exercise. As for g, it
is a natural transformation between right continuous
functors (see (II, §2)) and gr is evidently an isomorphism.
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Now a standard argument shows that By is an isomorphism for

any M of the form Coker (R(I) —_— R(J)), i.e., for all M.

Before treating Hom we shall generalize the context
by introducing an R-algebra A. Then if M ¢ mod-A we see

easily that S_lA is an S_lR—algebra and

-1

S 7: mod-A > mod-S_lA

; . -1 .
is an exact functor isomorphic to 8z § "R, or, equivalently,

to 9A S_lA. If M, N € mod-A we have a commutative diagram

Pom, (1, ) _,
HomA(M, N) ———> 8§ HomA(M, N)
-1
(3 gy
HomA(s'lM, s'lN) <———————— Hom (s"lM, s'lN)
f s™1a

. . . . -1
where f is an inclusion, and where =" exists because §

above is hR—semi—linear.

(4.5) PROPOSITION. In diagram (3) above f is an

isomorphism, and the natural transformation

> Hom _, (S_lM, s'lN)

-1
: S "Hom, (M, N)
£ A o1y

is an isomorphism if M is a finitely presented A-module

(i.e., if M is of the form Coker(An > Am) for some

n, m > 0).

Proof. The assertion for f is an easy exercise which

we leave to the reader. Clearly gy is an isomorphism so g

n
A
. . -1,
is for all n > 0. Since S is exact, both contravariant
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functors of M above convert cokernels into kernels, so the
5-lemma shows that 8y is an isomorphism if there is an

> M
s
is an isomorphism. Taking Pi = A 7 we obtain all finitely

exact sequence P > Py > 0 such that each gP

1

presented M this way. q.e.d.

(4.6) PROPOSITION. (a) Let M € mod-A and let H be an

S_lA—submodule of M. Then H = S—l(H(ﬂ M), so_the map

H > HM M is an injection from the lattice of S_lA-

submodules of S-lM to the lattice of A-submodules of M. In

particular, if M is a noetherian (resp., Artinian) A-module

-1 L -
then S "M is a noetherian (resp., Artinian) S lA-module.

(b) Assume A is right noetherian and let E =

d 5 g7y

LY

(0 > Hn > Hy > (0) be an exact

sequence in M(S_lA). Then there is an exact sequence E~ =
do

Q)

o e

> Mg

> M

> M > 0) in M(A) and an

- -1
isomorphism § lE‘ = E inducing the identity om § "M.

Proof. (a) The first assertion follows from (2)
above, and it implies the remaining assertiomns.

(b) After bteaking E into short exact sequences and
applying an obvious induction argument, it suffices to
treat the case n = 1. We are given

0 d . sy

>H1

>HO > 0

If we can find an epimorphism dg: Mg > M in M(A), and

an isomorphism S—ldo = d inducing 1 -1
S ™

, then the exactness

of S-l forces this isomorphism to induce an isomorphism
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S_lMl ® Hy, where M; = Ker(dg). Moreover M; € M(A) because
A is right noetherian, so the problem will be solved once
we construct dg.

Let X be a finite set of S_lA-generators of Hy. After
multiplying the elements of X by elements of S, if necessary,
we can assume d(X) lies in the image of hM: M — S_lM.

Now choose a finite set Y C Hy so that d(Y) generates the
A-module Im(hM), and let N C Hy be the A-submodule generated
by X and Y. Then d induces an epimorphism d”°: N —> Im(hM)

in M(A). Moreover the inclusion i: N

> Hy induces a

commutative square

: -1, . . . . .. .
in which § i is surjective by construction and injective
-1 .
because § is exact.

Form the cartesian square

dg
My —————> M

N —'——'—d':——-> Im (hM)

Since A is right noetherian M(A) is abelian, so My & M(A)

because M, N ¢ E(A). (In fact Mg C M ¢ N.) Moreover dg is
is an epimorphism since d” is. Finally, since S_th is an

. . -1, . -
isomorphism and S is exact it follows that S lf is also
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an isomorphism. Therefore

- - do
o, 1 s
S M

> M)—> (Hg d >S_1M)

is the required isomorphism.

(4.7) PROPOSITION. Let A be an R-algebra.

(a) Let M ¢ g(A) and let g be the annihilator of M

as an R-module. Then supp(M) = V(a), a closed
set in spec(R).

d d;

n> ese

(b) Let P = (O > Pn

> PO > 0)

be a finite complex in P(A). Then supp(H(P)) is

closed in spec(R).

Proof. (a) If s € a, s ¢ p then clearly M_ = 0.
Conversely, suppose MR = 0. If x1,..., X generate M (as

A-module) then, for each i, there is an s, i p such that

X8, = 0. Therefore, s = spters € a and s ¢ p.
(b) We argue by induction on n, the case n = 0, when

H(P) Py, following from (a).

iIf p # supp(H(p)) we propose to find a neighborhood
of p outside supp(H(p)). Let M = Coker(d;) & M(A). Then
M = Hg(P) so M = 0. Choose s ¢ p such that Ms = 0 (using

(a)). and set S = {s" | n > 0}. We shall pass to the complex
S_lP over the S_lR—algebra S_lA. According to (4.2) we can
identify spec(S_lR) with spec(R) - V(s), an open neighbor-
hood of p. Hence it will suffice to show that supp(H(S_%?))

is closed in spec(S—lR).

. -1 . . . . :
By construction, S "d; is surjective, so it splits
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‘_1P -1 -1 . . .
(because S 0 € Z(S A)). Therefore, S "p is isomorphic to

- -1
the direct sum of (*+<0 —> § lpo L > 8 PO —=> Qo)

and of the subcomplex @ = (+++:0 —> S_an —> e e— s_lpz

—> Ker(S_ldl) —> Q+°**) of S_lP. Therefore, H(S_lP) = H(Q).

Since Q has length <n it follows by induction that supp
(H(Q)) is closed. q.e.d.

85, INTEGERS

Let R be a commutative ring and let A be an R-algebra
If X ¢ A write R[X] for the R-subalgebra of A generated by
X. We say a € A is integral over R if it satisfies the

conditions below. A is integral over R if each of its
elements is.

(5.1) PROPOSITION. The following conditions are
equivalent:

(1) There is a monic polynominal £(T) e R[T] such
that f(a) = 0.

(2) Rlal is a finitely generated R-module.

(3) There is a faithful R[g]-module M finitely

generated as an R-module.

Proof. (1) = (2). If rgl + rya +--++ rn_lan_l +a"
= 0 (each r; e R) then 1, a,..., a  generate R[a] as an
R-module.

(2) = (3). Take M = R[a].

(3) = (1). Say M = by x;R. We can solve

l<ic<n
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x,a =35, x, r,, with r,, e Rand so £, x, (@8., - r.,) =0
1 J J 1] i] J ] 1] 1]

(L < i < n). By Cramer's Rule we have xjf(a) = 0 for all j,
and hence, Mf(a) = 0, where f(T) = det(TcSij - rij). Since
M is faithful, f(a) = 0.

(5.2) COROLLARY. A subalgebra B of A is integral
over R if B CM C A for some finitely generated R-module

M such that BM C M.

Proof. If g € B then M is a faithful R[a]-module.

(5.3) PROPOSITION, Let S be a multiplicative set in

R. If A is integral over R then S_lA is integral over S_lR.

n-1 n

Proof. Let afs ¢ s71A and say rg +er+ r_ .a + a

n-1
= 0 with r, € R. Then (ro/sn) oot (rn_l/s)(a/s)n_1 +
(a/s)™ = 0.

(5.4) PROPOSITION. Let A be a commutative R-algebra,
and let M ¢ g(A)

(1) If aj,..., a e A are integral over R then

Rl@1seees an] e M(R).

(2) If A ¢ g(R) then M ¢ g(R).

Proof. (2) If A = ZaiR and M = ijA then M = ZaibjR.

(1) Since a is integral over R, and, a fortiori,

over R” = Rlay,..., a 1, it follows that Rlaj,..., an] €

-1
M(R”). By induction on n R™ € M(R). Now apply (2).

(5.5) COROLLARY. Let A be a commutative R-algebra and

let B be an A-algebra. The set R” of elements of A which
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are integral over R is an R-subalgebra of A. If a ¢ A is

integral over R” then a ¢ R-. If b € B is integral over R~

then b is integral over R.

Proof. The first assertion follows from (1) above.
As for thé third, suppose cgy ++-++ cn_lbn_:L +b" = 0 with

¢y € R”. Then R™ = Rlcgyen., Cn—l] € h='I(R) by (1) and
R7[b] ¢ b='I(R’), so R[b] c R7[b] € 1\_}(R) by (2), and (5.2)

implies b is integral over R. The second assertion follows
from the third with B = A.

We call R” above the integral closure of R in A. We
call an integral domain integrally closed if it equals its

integral closure in its field of fractioms.

(5.6) PROPOSITION. Let A C B be commutative rings

such that B is integral over A, and let p - g be primes of
4.

¥

(a) There is a prime p” of B such that p"M A = p.

(b) For any such p” there is a prime q” containing

P such that ¢" M A = q.

-

(¢) If p = q then necessarily p” = q

Proof. (a) Suppose first that A is local with maximal
ideal p. If pB = B then pBy = By for some finitely generated
A-subalgebra By of B, and (5.4) implies By ¢ 1\='I(A). However
p Crad A, so pBy = By implies By = 0 by Nakayama's lemma,
and this is impossible. Therefore, pB# B so there is a
maximal ideal p” of B containing RB. Since pC p"MA# A
we have p = p”" M A,

In the general case we pass to ABC B_and pA .

Thanks to (5.3) we can apply the conclusion above to find
a prime q°° of BP_ such that q”°"MN AP_ = RAR. Then q~ = q”~

B solves our problem.
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(b) We pass to the integral extension A/p C B/p~
and apply (a) to find q”/p~ lying over q/p.

(c¢) After passing to A/p C B/p~ again it suffices to
show that if A and B are integral domains and if q'# 0

then ¢ M A # 0. If b € q” choose an equation qg +***+ a

n-1
n-1 n . s
b + b =0, with a; e A, of minimal degree. Then aq; € bB
MNACq M A, and qp # 0 or else we would have g +-+++ a 1
R ]

The last condition implies chains of primes in B do
not collapse at all when restricted to A. Thus we have:

(5.7) COROLLARY. spec(B)

> spec(A) is surjective,
and dim B = dim A.

(5.8) PROPOSITION. Let R be a commutative noetherian

ring, let A be a finite R-algebra, and let M & M(A). The

following conditions are equivalent:

(1) M has finite length as an A-module.

(2) M has finite length as an R-module.

(3) supp(M) (in spec(R)) is finite and consists of

maximal ideals.

Proof. (1) = (2). By induction on length it suffices

to show that a simple A-module M has finite R-length. Since
Me Q(R), clearly (see (5.4)(2)), it suffices to show that

q = annR(M) is maximal, for then M is finite dimensional
over R/q.

By Schur's lemma, multiplication by ¢ ¢ R on M is
either zero or an automorphism. This shows that g is prime

and that M is a vector space over the field of fractions,
F, of R/q. But it is an easy exercise to see that F can be
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a finitely generated R/q-module only if F = R/q.

2> 3). If0—> M —> M —> M7 —> 0 is an
exact sequence of R-modules then clearly supp(M) = supp(M”)
Usupp(M”7). Since the implication in question has only to
do with R-modules, it suffices, by induction on length, to
establish (3) when M is a simple R-module, R/m (m e max(R)).

But then supp(M) = {m}.

(3) = (1) By (4.7) we have supp(M) = V(ag), where g
= annR(M). Set R” = R/a; then M ¢ M(R”) so it suffices to

show that R” is Artinian. We have spec(R”) = V(g), a finite
set of maximal ideals. Let J = rad R”. Then (3.9) implies

J = nil R and, since R” is noetherian, that J is nilpotent.
The Chinese Remainder Theorem (2,14), applied to the maximal
ideals of R”, shows that R"/J is a finite product of fields,

and hence semi-simple. For each i > 1, Jl—l/Jl is a

noetherian (R”/J)-module, and hence of finite length. Since
J is nilpotent it follows that R” is Artinian. q.e.d.

The implication (2) => (1) is trivial, so the
proposition is proved.

A two sided ideal p in a not necessarily commutative
ring A is called BEEES.if agbCc p=ac porbcp for two
sided ideals g and b. It suffices to have this only for g
and b which contain p. Thus it is evident that a maximal

two sided ideal is prime.

(5.9) PROPOSITION. Let R and A be as in (5.8) and

let p be a two sided ideal in A. The following conditions

are equivalent:

(1) p is maximal.

(2) p is prime and A/p is an R-module of finite
length.

(3) p is the annihilator in A of a simple right

A-module.
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Proof. (1) == (3). If M is a simple right (A/p)-
module then the inclusion p C annA(M) is an equality be-

cause p is maximal.

(3) = (2). If M is a simple right A-module then
P = annA(M) is clearly prime. By (5.8) M has finite length

as an R-module, so likewise for A/p C EndR(M).
(2) = (1). B = A/p has finite length as an R-module,

so it is an Artin ring in which the zero ideal is prime.
The latter implies B has no non-zero nilpotent ideals, and
that it does not decompose properly into a product of
rings. Thanks to (2.11) this implies B is simple, so p is
maximal. q.e.d.

We next study integrality properties of polynominals.
R always denotes a commutative ring and t an indeterminate.

(5.10) LEMMA. If P(t) e R[t] is monic then there is

an_integral extension R” containing R such that p is a

product of linear polynomials in R7[t].

Proof. Induction on n = deg(p). We can clearly assume
n > 1. Let R; = R[t]/PR[t], which contains R. The residue,
a, of t in Ry is a root of P. Since P is monic we can apply
(t - a)Q(t) in

Rj[t], where Q is monic and of degree n - 1. By induction

the division algorithm to write P(t)

we can embed R; in an R” which splits Q.

(5.11) COROLLARY. Let A be a commutative R-algebra

and let R” be the integral closure of R in A. Let P, Q ¢

Aft] be monic and such that PQ € R°[t]. Then P, Q ¢ R7[t].

Proof. Use (5.10) to construct an A” containing A in
which P and Q factor into linear factors: p = II(t - ai),
Q = I(t - bj). Let R“” be the integral closure of R in A~.
Since PQ € R7[t], each a; and b, belongs to R™7, being a
root of PQ. Therefore P, Q ¢ R"7[t]. Since R""M A = R~
the corollary follows.
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(5.12) PROPOSITION. Let A be a commutative R-algebra,

and let R” be the integral closure of R in A. Then R7[t] is

the integral closure of R[t] in A[t].

Proof. Let B be the integral closure of R[t] in A[t].

Evidently, R°[t] € B. Conversely, suppose P ¢ B. Say P is a
root of

Q(X) = Fp ++-++ Fm—l X m-1 + X " e R[t][X]

Choose an integer r > max(deg(P), deg(Fi)(l <1i<m), and

set Pl(t) = P(t) - t*. Then P, is a root of

QI(X) = Q(X + tr) = GO RN Gm_l X m-1 + X m
Therefore we obtain
* = - e m-2 m-1
“ 50 PGy 4ot Cn-1 PI " P )

The size of r guarantees that -p; (t) and Go(t) = Q;(0) =

Q(tr) are monic. This is clear for -P;, and for Q(tr) =
Fo(t) +*++ Fm_l(t) tr(m—l) + t™ we need only note that
deg(Fi(t)trl) = deg(Fi) +ri <r(i+ 1) <rm for i < m.

Now the equation (*) implies the second factor on
the right is monic also, so (5.11) implies -p;, and hence

also P, have coefficients in R”, since Gy does.

(5.13) COROLLARY. If R 1s an integrally closed

integral domain so also is R[t].

Proof. Let L be the field of fractions of R. Then

(5.12) dimplies R[t] is integrally closed in L[t]. It remains
only to observe, therefore, that the principal ideal domain
L[t] is integrally closed. We leave this as an exercise

(cf. (7.12) below.)
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We close this section with some observations on the
norms and traces of integral elements.

(5.14) PROPOSITION. Let A be a commutative R-algebra

and let x € Mn(A). Then x is integral over R if and only if

the coefficients of its characteristic polynomials, P(t) =

det(t+I - x), are integral over R.

Proof. Since P(x) = 0 (Cayley~Hamiltomn; cf.(XII, §1)

below) x is integral over the subalgebra generated by the
coefficients of P. Thus, if the latter are integral over R

so also is x.

Now suppose x is integral over R. Then if ei(l <1i
< n) is the standard base of An, the R{x]-module M
generated by the e, is in M(R). Let u be the endomorphism
of A" defined by x, and let N C A"A™ be the R-module

generated by all m; A<-<A m where m, e M (1 < i < n). Then

N e M(R) and N is stable under AMu = det(x). Since
e; Meee e e N it follows that N is a faithful R[det(x)]-
module, so det(x) is integral over R.

Since t*I - x ¢ Mn(A[t]) is integral over R[t] we
see from the conclusion above that p(t) is integral over
R[t]. Therefore, by (5.12), the coefficients of P are

integral over R. q.e.d.

§6. HOMOLOGICAL DIMENSION OF MODULES
Let A be a ring and let M € mod-A. We write

hdA(M)

for the minimal length (possibly infinite) of a projective
resolution of M (cf. (I, §6)), and we define

rt.gl.dim.A = sup hdA(M) (M ¢ mod-A)
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We quote, without proof, the following useful result of
Auslander (see MaclLane [1]}, Ch. VII, Cor. 1.5):

(6.1) PROPOSITION (M. Auslander).

rt. gl. dim. A = sup hdA(M) (M e M(A))

It follows from (1.5) that rt. gl. dim. A = 0 if and
only if A is semi-simple. If rt. gl. dim A < 1 we call A
right hereditary.

(6.2) PROPOSITION. (a) A is right hereditary if and

only if every right ideal is projective.

(b) Let A be right hereditary and right noetherian.

Suppose M € g(A) and set T =MKer(h)(h: M > A)., Then T

is a direct summand of M and M/T is a direct sum of modules

isomorphic to right ideals in A.

Proof. (a) If g is a right ideal then the exact
sequence 0 —> g —> A —> A/qg —> 0 shows (cf.(I, 6.8))
that hdA(A/g) <1l <= hdA(g) < 0. Thus all right ideals are
projective <= every monogene,(i.e., one generator) module
has hdA < 1. The latter implies hdA(M) <1 for all M ¢ g(A),
and hence A is right hereditary by (6.1). For if M has n
generators there is an exact sequence 0 —> M* —> M —> M"~
—> 0 where M” and M”“” have 1 and n - 1 generators,
respectively. By (I, 6.8) hdA(M) j_sup(hdA(M’), hdA(M")) 50
the assertion follows by induction on n.

(b) If we show M/T is a direct sum of modules
isomorphic to right ideals then it follows from (a) that
M/T is projective, so M = T § M/T. Since A is right
noetherian the module M/T ¢ M(A) is noetherian. Among all

direct summands of M/T which are direct sums of modules
isomorphic to right ideals (e.g., 0).let N be a maximal one.
Then M/T = N4 H and we claim H = 0. If not there is a
non-zero h: H > A. Since Im(h) is projective and # 0 we
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we have H =~ Ker(h) & Im(h), and then N & Im(h) contradicts
the maximality of N.

We now introduce the full subcategory

o

(A)

of modules M ¢ mod-A which have finite E(A)—resolutions.

Evidently we have

lLav}

(A)  H(A) C M(A) C mod-A

and if M ¢ E(A) then hdA(M) < o, On the other hand, if
M e g(A) and hdA(M) < «, M need not belong to H(A). For M

must be not only finitely generated, but finitely presented,
and even more. In the notation of (I, §6) E(A) is the

category Res(B(A)), and we have the following excerpt from
(1, 6.9).

(6.3) PROPOSITION. If all but one term of an exact

sequence 0 —> Mn —>e+++—> My —> 0 lie in H(A) then so

does the remaining term.

A is said to be right regular if H(A) = M(A). It

follows immediately from (6.3) that A must be right
noetherian. Conversely, if A is right noetherian and if
hdA(M) < o for all M ¢ g(A) then A is right regular. For if
hdA(M) < n choose an exact sequence 0 —> Pn —> Pn—l —>eee
—> Py == M —> 0 with Pi € P(A) for 0 < i < n. We may do

this since A is right noetherian. Then it follows from
Schanuel's lemma (cf. (I, 6.4)) that P is automatically

projective, so Pn e P(A) also.

(6.4) PROPOSITION., Let S be a multiplicative set in

a commutative ring R, let A be an R-algebra, and let M e

mod-A. Then,
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hd (s™M) < nd M), rt.gl.dim.S_lA < rt.gl.dimA
st - A h

and S_lA is right regular if A is right regular.

Proof. If p
1

> M is a projective A-resolution of
length n, then § P —> S_lM is a projective S—lA—reso—
lution (because S_l is exact) and its length is < n. Since
every N ¢ mod—S_lA is isomorphic to some S_lM the second
inequality follows from the first. If A is right noetherian
then so also is S_lA, and any N ¢ g(s'lA) is isomorphic to

S_lM for some M ¢ E(A). Hence the last assertion follows

also from the first inequality. q.e.d.

(6.5) PROPOSITION. Let A be an R-algebra and let
M £ mod-A. Define

Un(M) = {p ¢ spec(R) | hdAPFMé? < n}

If there is an exact sequence

P € . M

n+l > P n

> ese

> Py >0

with Pi > E(A) (0 <i<n+ 1) then Un(M) is open and
hdA(M) <n <= UN(M) = gpec(R).

Proof. Induction on n.

n = 0. We have an exact sequence P, £ M

> PO

> 0 with Pi e P(A) (1 = 0, 1). Consider the map

h: HomA(M, Py) > HomA(M, M)

induced by e, and let e denote the image of lM in Coker(h).

Then clearly M is projective <= lM e Im(h) <= e = 0.
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Since both Py and M are finitely presented A-modules it

follows from (4.5) that, for P ¢ spec(R), we can identify

the corresponding map HomA (Mpf POE} > HomA (MEf ME?
b P

with the localization, hR’ of h, Thus it follows that MR is
A -projective <= e = e/l ¢ Coker(h) (= Coker(h )) is zero.
P 2 B P

Now éE =0 <> es = 0 for some s § p < a¢ p, where g =

annR(e), so Ug(M) is the (open) complement of V(g). Moreover
M is projective <= e = 0 <= g = R <= V(@) = § <= Uy (M)

= spec(R).

n > 0. Consider the exact sequence 0 > K >

€

> M

Py > 0 where K
hd, (K) <n -1 and U (M)
A t n

the exact sequence 0

Ker(e). Then hdA(M) <n <>

Un_l(K), clearly. Since we have

> >
Pn P

> see

> P >

n+1

K > 0 with Pi € P(A) (1 <1 <n+ 1) it follows by

induction that Un-l(K) is open and hdA(K) <n-1<=
Un—l(K) = gpec(R). q.e.d.

(6.6) COROLLARY. Let R be a commutative noetherian

ring, let A be a finite R-algebra, and let M ¢ E(A). Then
hdA(M) = sup hdA (Mm)(g_e max(R)), and if hd
m 2

A (Mm) < o for
m =

all m ¢ max(R) then hdA(M) < », Hence A is right regular if

and only if Am is right regular for all m e max(R).

Proof. Clearly the last assertion follows from the

first. Let n = sup hdA (Mm) (m £ max(R)). By (6.4) hdA(M)

> n so we have equality if n = ~. If n < « consider Un(R).

Our finiteness assumptions make the hypothesis on M in (6.5)
automatic, so Un(R) is an open set whose complement contains
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no maximal ideals, and is therefore empty. (If V(a)
max(R) = ¢ then g is contained in no maximal ideal, so g =
R.) Thus Un(R) = gpec(R) and (6.5) now implies hdA(M) < n.
If hdA (Mm) < » for all m € max(R) then (6.4) implies
m =
the same is true for all m e spec(R). Therefore, in this
case the union of the Un(M) is spec{R). Since Un(: Un+l and

since spec(R) is quasi-compact (even noetherian in the
present case) it follows that Un(M) = gpec(R) for some n.

Now apply (6.5) to obtain hdA(M) < n. q.e.d.

Let R be a commutative ring, let A be an R-algebra,
and let S be a multiplicative set in R. We shall call M ¢

mod-A an S-torsion module if S_lM = 0, and we shall write

Hg (4) © Mg(A)

for the full subcategories of S-torsion modules in E(A) and
in g(A), respectively. It is easy to see that an M ¢ mod-A
is in ES(A) if and only if M ¢ E(A) and Ms = 0 for some s ¢
S. The latter means that § F\annR(M) + 0. We shall say that
S is regular for A if ES(A) = gS(A). It is then easy to

show, with the aid of (6.3), that the latter is an Abelian
category in which every object is noetherian.

(6.7) PROPOSITION. Let R be a commutative noetherian

ring and let A be a finite R-algebra.

(a) rt.gl.dim.A = sup hdA(M), where M ranges over

the simple right A-modules. Therefore, if R is semi-local

and if A is right regular then rt.gl.dim.A < «.

(b) Let S be a multiplicative set in R. Then S is

regular for A if and only if Am is right regular for all

m € max(R) such that m NS + §. In this case, if M ¢ M(A),
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we have

M e H(A) <> s e g(s‘lA)

Proof. (a) The left side dominates the right, and
equals sup hdA(M) (M e M(A)), by Auslander's Theorem (6.1).
In particular, if n = sup {hdA(M) | M is simple} is infinite
then we have equality, so assume n < ®, Given M ¢ E(A), we
claim hdA(M) < n. According to (6.6) it suffices to prove
this locally, so assume R is local with maximal ideal m.

Let g be an ideal in R. We claim that if M e M(A)
and if Mg = 0 then hdA(M) < n. (The case g = 0 will imply
what we want to prove.) If not let g be a maximal counter-
example (noetherian induction) and choose M ¢ E(A) such that
Ma = 0 and hdA(M) > n. Then choose a maximal submodule
N C M such that hdA(M/N) > n. Replacing M by M/N we can
assume hdA(M’) < n for all proper quotients M” of M, We
cannot have ¢ = m for otherwise M would have finite length,

and the homological dimension of its Jordan-Holder factors
would dominate that of M (see (I, 6.8)). Thus we can choose
t

tem,t ¢ a. If N = Ker(M > M) then annR(N) Da + tR so

hdA(N) <mn. If N + 0 then hdA(M/N) < n also, and hence
hdA(M) < n, contrary to assumption (using (I, 6.8) again).

Therefore we have an exact sequence

t

* 0 > M > M > M/Mt > 0
At this point we shall use the functor Ext, and its
properties, for which the reader can consult, for example,

Cartan-Eilenberg [1]1. Namely (*) induces an exact sequence
ExtX(M,H) X Eth(M,H) —_— ExtX_H(M/Mt,H)

for 2ll H € mod-A. Since hdA(M) > n it is known that one
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can choose H ¢ M(A) such that Eth(M, H) # 0. But the latter

+
is a finitely generated R-module and Ext” l(M/Mt, H) = 0.
Since t € rad R this contradicts Nakayama's lemma. q.e.d.

(b) Assume S is regular for A and that m & max(R)

is such that mM S # ¢. If M is a simple Am-module then M

is a simple A/Am-module so hdA(M) < ©, By (6.6), hdA M <

m
hdA(M). Therefore part (a) implies rt.gl.dim.Am < w3 in

particular Am is right regular.

Conversely, assume Am is right regular for every m
such that mM S # 0. Let M e M(A) and suppose hd 1 (S_lM)
- S A

< », We claim then that hdA(M) < ®», (The opposite implica-
cation follows from (6.6)). Moreover, this assertion

(in the special case S_lM = 0) implies that S is regular for
A.

It suffices, by (6.6), to show that hdA (Mm) < « for
—

all m ¢ max(R). If mM § = ¢ then Am is a localization of

-1 -1 « s

S A, and hd (8"™M) <=, IfmMNS £ (¢ then A_ is right
s™1a - z

regular, by hypothesis, so hdA (Mﬁ) < =, g.e.d.

§7. RANK, PIC, AND KRULL RINGS

All rings in this section are commutative.

(7.1) THEOREM. Let A be a commutative ring. The

following conditions on P & mod-A are equivalent:

(1) P e B(A).
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(2) P is finitely presented and Pm is a free Am—

module for all m ¢ max(A).

(3) P is finitely generated, and P is a free A -

module for all p ¢ spec(A). Eﬁ_rR is the

cardinality of an A -basis of P then f——» r
3 P = 3

is a continuous (i.e., locally constant) function

spec (A) > Z (discrete topology).

Proof. (1) = (2). Clearly P is finitely presented,
and Pm is Amffree by (2.13).

(2) = (3). Clearly P is finitely generated. If p ¢

spec(A) embed p in m e max(A). Then ?E is a localization of

Pm and hence is free.

Let n = r . Since P = AT we can choose a homo-
P P B

morphism d: A" > P such that dE_iS an isomorphism. We

then want to show that d 1is an isomorphism for all q in a

neighborhood of p. If we view d as the differential in a
complex C (with two non-zero terms) then supp(H(C)) is
closed, by (4.7). If q ¢ supp(H(C)) then Cq is acyclic, i.e.,

dq is an isomorphism.

(3) == (2). Given p ¢ spec(A) we can construct d:

A‘ﬂ

> P such that dR.iS an isomorphism, as above. We

claim, as above, that d is an isomorphism in a neighborhood
of p. Since P is finitely generated, Coker (d)s = 0 for

some s & p. Moreover, rq = n for all q in some neighborhood

of p, by hypothesis. If the complement of this neighborhood

is V(a) we can choose t € a, t ¢ p. If U is the complement
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of V(st) then for all q ¢ U, dq is surjective (because s ¢

q) and rq = n (because t ¢ q and hence ¢ & q). But an

; R n n . . . . .
epimorphism Aq > A" is an isomorphism, so d is an iso-
q

q
morphism for all q € U.

With this conclusion we see that (2) will follow once
we prove: Suppose, for each p € spec(A), there is an s i P
such that, if § = {s" | n > 0}, S_lp is a finitely presented
S_lA-module. Then P is a finitely presented A-module. (In
the case above we use the element st constructed there, in

which case S_IP = (S—lA)n.)

To prove this we first use the quasi-compactness of
spec(R) (see (3.10)) to find s;,..., s, such that S;lP is
finitely presented for each i, where S, = {Sin}, and such

that the complements of the V(si) cover spec(R). Let

0 > K >Am > P > 0

be an exact sequence. Then S;lK is finitely generated so
there is a finite set Xi(: K whose image in S;lK generates
the latter as Si-lA-moddle. Then the submodule M C K
generated byLJXi is such that ME = KE-for all p, and hence

M = K.

(2) = (1). Ug(P) = {p | hd, P_) < 0} = spec(A), by
AP
B
hypothesis, so P ¢ P(A) by (6.5), which applies because P

is finitely presented. g.e.d.

If P ¢ E(A) we shall write

[P: Al: spec (A)

for the continuous function described in part (3) above, and
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call this the rank of P. We shall alsoc write

*
P = HomA(P, A)

For any module M we have hP: P*QAM > HomA(P, M) defined
by hP(f 8 m)(x) = mf(x). It is a natural transformation and

hA is clearly an isomorphism so, by additivity, hP is an

isomorphism for all P e P(A).

(7.2) PROPOSITION. Let P, Q € P(A). Then

[P*: A] = [P: A]

[P & Q: A]

[p: Al + [Q: A]

and

[P @AQ: Al [HOH?‘P, Q): Al = [P AJ[Q: A]

Moreover, P is faithful (and hence faithfully projective

(cf. (IT, 81))) if and only if [p: A] is everywhere
positive.

Proof. The formulas are obvious. The set of points

where [P: A] is non-zero is supp(P) = V(ann(P)). q.e.d.

(7.3) PROPOSITION. Let f: A > B be a homo-

. . . . _a
morphism of commutative rings, inducing “f: spec(B) >

spec(A). Let P ¢ P(A) and M ¢ mod-A. Then the natural homo-

morphisms

(P GAM)QAB —_ (P@AB) GB(M QAB) and
HomA(P, M)@AB —> HomB(PeAB, M@AB)

are isomorphisms. Moreover




RING AND MODULE THEORY 131

[p §,B: B] = [p: Alo%f

Proof. The tensor isomorphism is well known (and
valid without restriction on P) and the Hom isomorphism

follows, by additivity, from the special case P = A, when
it is clear.

If q € spec(B) and p = af(q) = f_l(q) then Bq is a

localization of the A -algebra B_. Since p_ is A -free,
B P B P

(P® B)= (P @B, and its localization (pg,B) are
PA_ P Ap A q’
free of the same ranks as BET and B —modules, respectively.
I.e.,
[(Pe,B) : B]=([pP_: A .e.d.
AVq g PR d

(7.4) PROPOSITION. Suppose P, Q € mod-A are such

that P GAQ = A" for some n > 0. Then P, Q ¢ E(A) and they
are both faithfully projective.

Proof. If {xi 8 v, | 1 < i < m} generates P BAQ

(which is finitely generated) then define h: A"

> P
by sending the basis elements onto the xi's. Then

m
h8,0: A" 8,Q
splits. Likewise, then, h GAQ @AP is a split epimorphism.

> P @AQ = An is surjective, and hence

But the latter is isomorphic to a direct sum of n copies of
h, so h is a split epimorphism. This shows that P ¢ P(A4),

and Q € E(A) by symmetry. Moreover they are faithful

because P GAQ is.

We shall next study the category

Pic (A) = Pic ,(A)

A

introduced in (II, §5). The emphasis there was on two sided
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A-modules, but the fact that we now view A as an algebra
over itself means that the elements of A operate on objects
of Pic(A) in the same way on the right and the left. Hence

we may view its objects simply as right A-modules. As such,
the condition for P ¢ mod-A to be a member of Pic(A) is that

P should be invertible, in the sense that there is a Q ¢
mod-A such that P eAQ ~ A, In this case the theory of
Chapter II shows that we must have Q = HomA(P, A) = p*,
Moreover, the isomorphism classes, [p], of these invertible
modules form a group,

Pic(A)
with multiplication [P][Q] = [P QAQ].

(7.5) PROPOSITION. The following conditions on P ¢

mod-A are equivalent.

(1) P is invertible, i.e., P € Pic(A).

(2) P e P(A) and [P: A] =1

A.

(29)P ¢ E(A) égg_EndA(P)

(3) P ¢ g(A) and P = Am for all m ¢ max(A).

Proof. (1) = (2). Since P*@AP = A we have P ¢ P(A),
by (7.4), and [P*: AJ[P: A] = [P: A]2 = 1. Since [P: A]
takes non-negative integer values we have [P: A] = 1.

(2) = (27). 1If [P: A] = 1 the inclusion A C EndA(P)

is locally an equality, and hence an equality.

(27) = (3). We know p = A; for some n > 0, and

AE.= EndAm(PER implies n = 1.

(3) = (1). We have PR = AE for all p ¢ spec(A), as

may be seen by localizing first at some m e max(A)

*
containing p. Now (7.1) implies P ¢ P(A). Let h: P BAP-—> A
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by h(f 8 x) = £(x). Since P is finitely presented we can

identify (P*)E.= (Pp?ﬁ and so 52 is an isomorphism for all

p € spec(A). Hence h is an isomorphism, so P & Pic(A).

(7.6) COROLLARY. A homomorphism A > B of

commutative rings induces a functor 8AB: Pic(A) —> Pic(B)

converting eA_£2~®B’ and hence also a homomorphism Pic(A)

> Pic(B). (The latter makes Pic a functor).

Proof. This follows from (7.3) and criterion (2)
above.

Now let S be a multiplicative set of non-divisors of

zero in A. If M is an A-submodule of S_lA then there is an

induced monomorphism S_lM > S—lA which is an isomorphism

precisely when M generates S—lA as an S_lA—module, i.e.,

when (S_lA)M = S_lA. In this case we have 1 = (a/s) x for

some x € M, and hence s = ax ¢ MM 8. Conversely, if
MMNS + ¢ then clearly (S—lA)M = S-lA. If M satisfies these
equivalent conditions we call M a non-degenerate A-submodule

of S TA.

If M and N are two such, say s e M/ S and £t ¢ NN S,
then st belongs to M + N, to MM N, and to M « N, the sub-
module generated by all xy (x ¢ M, v ¢ N).

Define
N: M= {b es'lA[bMCN}

If b ¢ N: M then hb(x) = bx defines an element hb € HomA

> HomA(M, N) which is
clearly a homomorphism. If h, = O then b = 0 because b kills

(M, N), and hence a map (N: M)

b
a non-divisor of zero in S M N. Morecover, given h ¢ HomA
-1 -1 -1
(M, N) then we have S ~h ¢ Hom -1 (S M, S "N) = Hom 1
S A S A

-1, -1 -1 - -
(S "A, S "A) = S "A. Thus § lh(x) = bx for some b ¢ S lA.
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Since S_lh(M)(: N we have b ¢ N: M and therefore h = hb.
We record this:

(7.7) PROPOSITION. If M and N are non-degenerate

submodules of S_lA then the natural homomorphism N: M

HomA(M, N) is bijective. In particular the inclusion M C

A:(A:M) is isomorphic to the natural homomorphism M —> ME*,

Moreover, M* is reflexive.

To obtain the last assertion we can identify M* =

A: M. If MC N then N*C M*. Therefore, since M C M**,
M* C (M) = () F Comk,

An A-submodule M C S_lA is called an invertible

submodule of S_lA if M « N = A for some NC S_lA. Evidently

M and N must then be non-degenerate. If we choose s ¢ S Y
AN then Ms C MN = A and so

As CMC As“l

When S is the set of all non-divisors of zero in A we call

S_lA the full ring of fractions of A. We call ¢ C A an

invertible ideal if it is invertible in the full ring of

fractions.

(7.8) THEOREM. Let M be a non-degenerate A-submodule

of S-lA. The following conditions are equivalent:

(1) M is an invertible submodule of s™1a

(2) M e B(4)

(3) M e Pic(A)

(4)y M ¢ E(A) and Mm is generated by one element for

each m ¢ max(A).
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Proof. (1) = (2). If MN = A write 1 = Zmini, with
m, € M and n, € N, Define h,: M —> A by h,(m) = n m.
i i i i i
Then for all m € M, m = Zminim = Zmihi(m) so M € E(A) by
(11, 4.5).

(2) = (3). Since S 1M = S 'A we have T M = T TA
where T = {t" | n > 0} for some t € S. Given p € spec(A)
there is a prime q C p such that t ¢ q. For otherwise t/1
would be in nil ARf by (3.9), and we would have t"s = 0 for

some n > 0 and s ¢ p, contradicting the fact that t is not

a divisor of zero. Now since A = (A ) we have [M : A ]
b g b
E 1
= [Mq: Aq]’ Since TMq = ¢, A.q is a localization of T "A,

M: Al=1.
so Myt Al

The implications (3) = (2) and (3) = (4) are
trivial. We conclude the proof by showing (4) = (3) and
(2) = (D).

(4) => (3). Since M is non-degenerate it is a faith-
ful A-module. Since M is finitely generated Mm is also a

faithful Am—module. For if X is a finite set of generators

of M and if a/s ¢ Am annihilates Mm then Xa is annihilated

by some t i m. This follows because Xa is finite and it

becomes zero in Mm. Thus at ¢ annA(M) = 0 and therefore

al/s = at/st = 0.

By assumption, Mm has one generator. Being also
faithful it is = Am'

(2) = (1). By (7.7) we can identify M with A: M.
Thus if M ¢ E(A) it follows from (II, 4.5) that there are
m, € M, n, At M (1 e 1), for some finite set I, such
that m = Zminim for all m € M. Since M is faithful we have

Zmini = 1 and so M(A: M) = A. q.e.d.
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(7.9) PROPOSITION. Let M and N be A-submodules of
S_lA with M invertible. Then N = (N: M)M, N: M = N(A: M),

and the natural homomorphism

M SAN > MN

is an isomorphism.

Proof. Let i: N > S—lA be the inclusion. Since M

is projective, M eAN > M QAS_lA is a monomorphism. We

can identify M GAS_lA with S-lA, and then the image of
M 8AN is MN.

Let M" = A: M. Then M'NC N: M, and M(N: M) C N,
clearly. Therefore, since MM” = A, we have N: M = M"M(N: M)
CM”N, and N = MM"N C M(N: M), thus completing the proof.

We shall denote by
Pic(A, S)
the set of invertible A-submodules of S_lA. It is a group
under multiplication. Moreover, if M e Pic(4, S) then

M ¢ Pic(A), by (7.8), and the map

Pic(a, S)

> Pic(A)

M %——> [M], is, according to (7.9) above, a homomorphism.
If b ¢ U(S_lA) then Ab is invertible with A: Ab = Ab—l.
> Pic(A, S).

Thus we obtain a homomorphism U(S_lB)

(7.10) PROPOSITION. Let S be a multiplicative set

of non-divisors of zero in A, as above. Then the sequence

0 —> U(A) —> U(S TA) —> Pic(A,S) —> Pic(A)
— Pic(S_lA)
is exact.

t SO . .
> § "A is injective so also is

Proof. Since A
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U(A) —> U(S™IA). If b e U(STTA) then bA = A <= b & U(A),
clearly. If M ¢ Ker(Pic(A, S) > Pic(A)) then we can
choose D" ¢ A: M = HomA(M, A) and b € M: A = HomA(A, M)

inducing inverse isomorphisms

b~
b

> A
<

-1
It follows that M = bA and bb” =1 so b ¢ U(S "A).

If M ¢ Pic(A, S) then s™h = s7%A so [M] & Rer(Pic(A)

> Pic(S_lA)). Conversely, if P lies in this kernel

-1 . .
choose an h: P > A such that S "h is an isomorphism.

Since S consists of non-divisors of zero and P e P(A), the

-1y L .. . . - .
> 8§ P is injective, and hence h is also injective.

Thus P = hP C S_lA. According to (7.8), hP & Pic(A, S), and

map P

this completes the proof.
Now assume A is an integral domain and that S° = A -

{0}. Thus L = S_lA is the field of fractions of A. Since
Pic(L) = O clearly it follows from (7.8) and (7.10) that an
ideal g C A is invertible as an A-module if and only if it

is an invertible as a submodule of L, in the sense discussed
above. We shall then say simply that g is an invertible
ideal. A is called a Dedekind ring if every non-zero ideal

in A is invertible, and a discrete valuation ring (DVR) if

it is a local Dedekind ring. For example a principal ideal
domain is a Dedekind ring.

(7.11) PROPOSITION. The following conditions on a

local ring A with maximal ideal p + 0 are equivalent:

(1) A is a DVR.

(2) A is noetherian and p ¢ P(A).

(3) A is an integral domain, p = pA is principal, and

U(L) = U(A) x {pn | ne 2}, where L is the field
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of fractions of A.

Proof. (1) = (2). Every invertible module lies in

E(A) so A is noetherian and p ¢ E(A).

(2) = (3). Since A is local p = A" for some n > 0,
by (2.13) and our assumption that E_+ 0. Since two elements,

a and b of A cannot be linearly independent (for ab = ba!l)
we must have n = 1. Thus p = pA = A and p is not a divisor

of zero. The last property implies that pg = g where g =
EPA- Since A is noetherian and p € rad A Nakayama's lemma
implies a = 0. If « + 0 in A let n > 0 be the largest
integer such that a € pnA. We have just seen that n exists.
Write a = upn; then u € U(A) for otherwise u & pA and

a e p""YA. Finally, if b = vp™ with v e U(A) then ab =
uvpn+m + 0, so A is an integral domain. The decomposition

U(L) = U(A) x {pn} now follows easily from the remarks
above.

(3) = (1). Clearly (3) implies every non-zero ideal
is principal and hence invertible. q.e.d.

Let A and p be as in (7.11). If g}+ 0 is an A-module
in L such that da C A for some d # 0 in A, then we can write
dA = EF and da = B? for some n, m > 0, and then g = E@—n =

n-m . A .
P A. Thus every such g is a power, positive or negative,

of p. We shall write

VE‘RF) =n and VEFX) = vEfo) for x e U(L)

Thus v : U(L) > 7 1s a homomorphism. Also, if we define |
R -

v (0) = <, with the usual conventions, then
P

VR‘a + b) Z_min(vg‘a), VEFb))
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(i.e., a, b ¢ EP = g+ b e EP), with equality when vEﬁa)
d b) differ. Also A = {a (a) > 0} and p = {a (@)
an YE( ) diffe s | Vo > P 1 o

> 0}.

Note that since the only non-zero ideals in A are of
the form BP’ spec(A) = {(0), p} and dimA = 1. Moreover, if
a = up_n with n > O then A[a] = L, and hence a is not
integral over A. This shows that: A DVR is integrally
closed and of dimension < 1. (We put < 1 to allow for

fields.)

(7.12) THEOREM. Let A be an integral domain. The

following conditions are equivalent:

(1) A is a Dedekind ring.

(2) A is hereditary (see (6.2)).

(3) A is noetherian and AR'is a DVR for all p ¢

max{A) .

(4) A is noetherian, integrally closed, and dim A < L

Proof. The equivalence of (1) and (2) follows from
(6.2), by virtue of (7.8).

(1) and (2) = (3). By (7.8) an invertible ideal is
finitely generated, so A is noetherian. By (6.4) AR is

hereditary for all p.
(3) = (4). For each p € max(4), AE,iS a DVR and
hence integrally closed of dimension < 1, by the remark

before the statement of the theorem. In particular ht(p) =
dim(AR) <1 for all p £ max(A) so dim A < 1, We show that A

is integrally closed, moreover, by noting that the inclusion

AC B = A

P @ max (A) P
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is an equality. This follows because AEf: BE.C AP_for all
p e max(A).

The implication (4) = (1) will be proved in a more
general form in §8, (8.6).

Let A be an integral domain with field of fractions
L, and write Ht;(A) for the set of prime ideals of height

one in A. A is called a Krull ring if it satisfies the
following conditions:

(i) AR is a DVR for all p e Ht;(4).

(ii) A =(WAD (p € Ht;(A)). (The intersection is

taken in L).
(iii) An ¢ # 0 in A is contained in only finitely
many p € Hty(A).
Conditions (i) and (ii) imply A is integrally closed,
because each AR is. Condition (iii) is valid in any
noetherian integral domain. For then the p of height one

containing a correspond to certain irreducible components
of spec(A/aA), and there are only finitely many of these
since A/gA is noetherian. We mention, without proof, the
following example:

(7.13) PROPOSITION. A noetherian integrally closed

integral domain is a Krull ring.

Condition (iii) was pointed out above and condition
(i) follows from (7.12). Thus only condition (ii) is left
unproved. However, since A =(3Am (m ¢ max(A)) for any

integral domain we see that (ii) is automatic if dimA < 1,
i,e., if every maximal ideal has height < 1. Thus, we have

proved that a Dedekind ring is a Krull ring of dimension

< 1. The converse is proved below (7.14).
For a Krull ring A we define the divisor group D(A)
to be the free Abelian group with basis Ht;(A). We view D(A)



RING AND MODULE THEORY 141

as a partially ordered group whose positive elements are
those with positive coordinates w.r.t. the basis Ht;(A). An

A-module ¢ C L is called a fractional ideal if da C A for

some d + 0 in A, and we write Frac(A) for the set of non-
zero fractional ideals. It is easy to check that if g, b ¢
Frac(A) then a + b, aMNb, ab, and a: b ={xe L | xbC a}

are also in Frac(A). There is a natural map

div: TFrac(A)

> D(A)

div(a) = ZVR(Q)R (p £ Hty(A))

Here VR is the valuation associated with the DVR A :

v (a)

_a_P_ = (P‘AR) 27 1t follows easily from condition (iii),

and the fact that da A for some d % 0, that VR(g) is

defined and equals zero for almost all p. In case x ¢ U(L)
we shall abbreviate: div(x) = div(xA).

The following formulas are obvious:

div(a b) = div(a) + div(b)

div(g + b) inf(div(a), div(b))

div(ga M b) = sup(div(a), div(b))

If g € Frac(A) write § =Ng
- P

stood to vary over Ht;(A)) and call g divisorial if g = &.

(all p's here are under-

Since ¢ C & we have « a a_ for all so & = g for
24 - HC Y B, S0 &, =4 *O

all p, and hence g is divisorial. Moreover, div(a) = div(a)
and, since div(a) determines &, we have div(a) = div(h) <=

a=n.

If g, b € Frac(A) then (g b) C (a_ - b ) for all P
°— P Pt R
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(always in Ht;(A)) so (a: E)~Cif\(g£; EE?- Now dé,C g <=

db C a for all <= db C a for all <= db C &, i.e
i ) = ) = - =

(&: b) =ﬂ(gp_: P‘P_) = (&: b). But we also have (@: b)c
(a: 9)“c:rw(g2f E&Q = (ggf EE?. Putting these relation-

ships together we conclude that

~
|
on
p

(@: b)" =N(a_: b)) =(a: b) =
2 R

In particular
div(a: b) = div(a) - div(b)

and (a: b) is divisorial if g is. This formula shows that

A: g 1s divisorial and div(A: a) = - div(a), so it follows
that
*) & =A: (A a)

(7.14) PROPOSITION. If A is a Krull ring of dimension

[ A

1 then A is a Dedekind ring.

Proof. We can assume A is not a field, so that Hty(A)

max(A). Therefore every a ¢ Frac(A) is divisorial, and

div: Frac(4) > D(A) is an injective homomorphism of
monoids. Since Im(div) is a group so also is Frac(4), i.e.,
all a e Frac(A) are invertible. q.e.d.

It follows from (*) above that the group Cart(A)
("Cartier divisors') of invertible ideals consists of
divisorial ideals, so we have a monomorphism Cart(A)

D(AY. If S = A - {0} then Cart(A) = Pic(A, S) in the
notation of (7.10). There is a commutative diagram with
exact rows

>
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v

) — v Y. p@a) —  ca) —> 0
(1 | | A t
u(a) —> U) > Cart(A) > Pic(A) > 0

whose bottom row is the sequence of (7.10) (using the fact
that Pic(L) = 0). Since Cart(A) > D(A) is injective
Pic(A) > C(A) 1is also.

Now let S be any multiplicative set in A - {0}. Then

-1, . . .
it is easily seen that S A is a Krull ring whose primes of
height one correspond to those of A not meeting S. With
this identification we can write

D(A) = D(S—iA) # D(A, S)

where D(A, S) is the subgroup generated by {p e Ht;(4)

pMs # ¢}. We then easily deduce a commutative diagram

div

vy — vty B paLs) — oy — o(sTta)—0
(2) 4 4 4 4 4
U — U(s"lA) > Pic(A,S) —> Pic{A) — Pic(s“lA)

whose rows are exact and whose verticals are monomorphisms.
The bottom row comes from (7.10).

(7.15) PROPOSITION. If S above is generated by

elements which generate prime ideals then C(A) —> C(S_lA)

is an isomorphism, and hence Pic(A) —> Pic(S_lA) is a

moncemorphism (in diagram (2) above).

Proof. Let (pi)i eI be generators of S such that
piA is prime. If p is prime and pM S ¥ § then p contains a

product of the p 's, and hence some P, € P. Since piA is
i
prime it follows that piA = p if ht(p) = 1, so p ¢ Im

-1 :
(U(s ~A) —QEX—> D(A, S)). This is true for all such p so div

is surjective. The proposition now follows from the
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properties of diagram (2).
We call a ring A factorial is it is a Krull ring for

which C(A) = 0.

(7.16) PROPOSITION. Let A be factorial and let a e

Frac(A) be divisorial. Then g is principal and g =

v_(a)
p BT (p e HE (A)).

Proof. If p € Htj;(A) there is an « + 0 such that p =

div(a). Since aA and (clearly) also p are divisorial it

v_(a)
follows that p = gA. Now given g as above set b = Ilp

Then b is principal, as we have just seen, and hence
divisorial. Since div(g) = div(b) and g is divisorial, by
assumption, we have g = b. q.e.d.

Let A be any commutative ring and let T be a multi-
plicative set in A. We say T is factorial for A is Am is

factorial for all m ¢ max(A) such that mMN T % 0.

(7.17) PROPOSITION. Let A be a commutative noetherian

ring and let T be a multiplicative set of non-divisors of

zero which is factorial for A. Then Pic(A) —> Pic(T_lA) is

surjective, and Pic(A, T) is a free Abelian group with

M={peHt;(A) | pN T+ 0} as a basis.

Proof. We shall assume for the proof that, if S is
the set of all non-divisors of zero, that Pic(S—lA) = 0.
It is known (see, e.g., Bourbaki [4], §5, no. 7, Remarque 2)

that S—lA is semi-local, and we shall prove in (IX, 3.5)
that Pic(B) = 0 if B is semi-local. Thus the assumption is
justifiable.

We will first show that if P ¢ E(A) is reflexive
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-1 . -1
(i.e., P —> P** is an isomorphism) and if T P e Pic(T ~A)

then P ¢ Pic(A).

We must show that Pm = Am for all m e max(A).

mT= ¢ then Pm is a localization of T_l'P so this follows

because T—lP e Pic(T_lA) . IEmNT $ ¢ then Am is factorial,

by hypothesis. Since T C S and since Pic(S—lA) =0 it
follows that S P = (T ]?) = s A Let S denote the

image of S in Am. Since S consists of non-divisors of zero

it is easily checked that 0 ¢ S_. Further st = (57l =
m m m m

(s~ A)m o~ S:nlAm. Moreover, since we are dealing with

finitely generated modules over noetherian rings Hom com-
mutes with localization. Thus P 1is reflexive, so PmC
m

S‘lP = S—lA and P is isomorphic to a reflexive, hence
m m m m m

divisorial, fractional ideal of Am. Now (7.16) implies

P .
E‘Am'

To show Pic(A) > Pic(T—lA) is surjective suppose
Qe Pic(T—lA). Since Pic(S TA) = 0 it follows that Q =
for some ideal a C T-lA such that S_l_g = S_lA. Set ag = a
MA. Then gy, N S #+ ¢ so ag is a non-degenerate A-submodule
of S_lA in the sense of (7.7). Moreover, (7.7) implies b =

A: (A: ag) = af** is reflexive. We have T_lb = (T-lao)**

= a** = g since g is invertible. Now the last paragraph
shows that b € Pic(A), and [Q] ¢ Pic(T A) is the image of

[b] € Pic(a).

Next suppose p ¢ M, i.e., ht(p) = 1 and pN T + q)
mNT =0 thenp_E=AEand if_nlﬂT+d)thenEm is either
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Am or a prime of height one in a factorial ring. Thus p is

invertible, and hence p ¢ Pic(A, T). It follows now from
(7.11) that AE,iS a DVR. Thus we can define a "divisor

e

homomorphism" div: Pic(a, T) by div(a) = Iv (@)p
a pd

(p € M). This is a homomorphism of partially ordered groups,
where a € Pic(A, T) is > 0 if g C A. We have seen that it is
surjective (div(p) = p for p € M). The ordering makes it
sufficient, for injectivity, to show that if g e Pic(A, T)

and g C A then div(a) = 0 = g = A, i.e., that a = A for
= = = “m m

all m € max(A). This is true if mN T = ¢ because g e Pic

(A, T). Otherwise Am is factorial, and a. is invertible in

Am' If p e Hty(A) and aC p then pMNT % O so p ¢ M. Thus

gm belongs to no primes of height one in Am so (7.16)

implies a. = Am. q.e.d.

(7.18) COROLLARY. Let R C A be commutative noetherian

rings, and let TC R be a multiplicative set of non-divisors

of zero (in A) which is factorial for R and for A. Let M and

M~ denote the sets of prime ideals of height one in R,

respectively, in A, which meet T. Assume that if p € M then

p” = pA is a prime ideal and p "N R = p. Then p~ € M~ and

the resulting map M

isomorphism Pic(R, T)

> M~ is bijective. It induces an

> Pic(A, T), a > aA.

Proof. If p ¢ M then p is invertible, by (7.17), and
hence p” = pA is an invertible A-ideal. (For if 1 = Zaibi
with a; € p and biB.C R for each i, then also biEf(: A for

each i.) Hence A . is a local ring with invertible maximal
B

ideal, so (7.11) implies AEf is a DVR. In particular
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ht(p”) = 1, and this shows that p” e M”. Conversely, if p~

e M” then p = p"M R is a prime that meets T, and it there-
fore contains some py € M. Since py C p we have pgA C PAC
p”~. Since ht(p”) = 1 this implies that ppA = pA =p~,
because pgA is prime. Therefore p = p"MA = ppAMA = pj ¢
M. This establishes that R_f~——> pA is a bijection M —> M7,

If ¢ € Pic(R, T) then gA & Pic(A, T) because gA still

meets T, and gA is invertible over A (cf. beginning of the

proof above). The resulting map Pic(R, T) > Pic(A, T) is
a homomorphism. According to (7.17) these are free Abelian
groups with bases M and M~”, respectively. Hence the first
part of the proof shows that the homomorphism is an iso-
morphism.

We shall close this section now by quoting, without
proof, the following basic results.

(7.19) PROPOSITION. Let A be a Krull ring and let t

be an indeterminate. Then A[t] is a Krull ring, and A
C(A[t]) and Pic(A)
Pic(Aft]). (See Bourbaki [7], &1, nos. 9-10).

>

Alt] induces isomorphisms C(A)

v

>

(7.20) THEOREM. Let A be an integral domain with

field of fractions L, and let A" be the integral closure of

A in a finite field extension L~ of L.

(a) If A is a finitely generated algebra over a field

then A” is a finite A-algebra, i.e., A" ¢ M(A). (See
Bourbaki [5], 83, no. 2.)

(b) Suppose A is a Krull ring. Then A" is a Krull

ring. Moreover, if L” is separable over L then A~ is con-

tained in a finitelv generated A-module in L°. (See Bourbaki

[7], 81, no. 8 and [5], §1, no. 7. Cf., also (8.5) below.)

(7.21) THEOREM. Let A be a commutative noetherian
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ring and let S be a multiplicative set which is regular for

A (see §86). Then S is factorial for A.

By (6.7) we know that if m ¢ max(A) and if m M S + ¢

then Am is regular. The theorem asserts that Am must then

also be factorial., Thus we want to know that a regular local
ring is factorial. This is a well known theorem of Auslander
-Buchshaum [1].

§8., ORDERS IN SEMI-SIMPLE ALGEBRAS

We fix an integral domain R with field of fractions

L. Our purpose 1is to study certain R-algebras A contained
in semi-simple L-algebras. This material will be applied

in Chapter XI to examples like group rings, A = Rm, where
m is a finite group.

Let V ¢ M(L). An R-lattice in V is an R-submodule

M C V satisfying the following conditions, which are equi-
valent:

(i) ML = V and M is contained in a finitely
generated R-module N C V.,

(ii) There are free R-modules F, F” of rank [V: L]
such that FC MC F"C V.

Since L is a localization of R (L = R(O)) an inclu-

sion M C V induces a monomorphism M @RL > V with image

ML. If FC V is R-free of rank [V: L] then dimension count
shows that FL = V. Thus (ii) => (i) is clear. Conversely,
if ML = V let F be the R-module generated by an L-basis for
V in M. Suppose x ¢ V. Since (V/F) SRL = 0 we have xa ¢ F

for some a + 0. Taking products we can find one a which does
this for a finite set of x's. Therefore, if N ¢ g(R) we have
Na C F for some ¢ + 0 in R. It follows that FC MC a_lF,
thus proving (ii).

Similar arguments will show that if M is an R-lattice
in V and if N is an R-submodule of V, then N is an R-lattice

if and only if MC N C a_lM for some ¢ ¥ 0 in R. More
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generally, N is an R-lattice if it can be sandwiched between
two R-lattices. We leave these remarks as well as the
following proposition as exercises. All L-modules are
assumed finite dimensional.

(8.1) PROPOSITION. (Bourbaki [7], §4, no. 1, Prop. 3)
(1) If M; and M, are R-lattices in V then so also
are My + M, and M; M M,.

(2) If WC V are L-modules and if M is an R-lattice

in V then MM W is an R-lattice in W.

> V is a multilinear map of

(3) 1If £: V1x~°°an

L-modules, and if Mi is an R-lattice in Vi

(1 <41 < n) then the R-module generated by

f(Mlx-'-an) is an R-lattice in the L-module

generated by f(V1X°--an).

(4) Let MC V and N C W be R-lattices. Then N: M is
an R-lattice in HomL(V, W), where N: M = {h |
h(M) C N} is caronically isomorphic to HomR(M,N).

(5) If 8 is a multiplicative set in A - {0}, and if

M is an R-lattice in V, then S_lM is an S_lR—

lattice in V.

The next proposition is a basic tool for constructing
and enlarging lattices.

(8.2) PROPOSITION. Assume R is a Krull ring, and let

M be an R-lattice in the L-module V. Suppose we are given,

for each p ¢ Ht (R), ég_ggflattice NE_EB.V' Then a necessary

and sufficient condition for the existence of an R-lattice

N~ in V such that Né.= NE for all p e Ht;(R) is that N =

gE for all but finitely many p € Ht;(R). In this case
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N =f\§2‘ (p € Ht1(R)) is the largest such R-lattice.

Proof. We first show that if N” is any lattice (in V)

then ﬁE = xé'for almost gll p. For we can choose a # 0 in R

such that aM C N” C a_lM, and a U(RP? for almost all p.

Next suppose NB = &E for almost all p, and set N =
FNE.(all p's here range over Hty(R)). If N is a lattice

such that Né = NR for all p then clearly N'C N. Thus the

preposition will follow once we show that N is an R-lattice.
According to the first part of the proef our hypothesis on
the NR'S is independent of the lattice M with which we

compare them. Thus there is no loss in assuming that M is
R-free. Since R =f\32'it then follows that M =f\¥2.

Let I = {E_I ﬂE + NR}’ a finite set. For each p ¢ I

there is an « + 0 in R such that
P R

aM C N C o M
B P PR
and we can certainly take aE_e R, after changing it by a

unit in gEf Set a = I a €R. ThenaM Cc N C a-lM

pelp 2R 2
for all p. We have arranged this for the p ¢ I, and MR‘= N

if B.é I. Taking intersections we have aMcC N C a_lM, thanks

to the fact that M =rjMEf Thus N is a lattice. q.e.d.

We shall call an R-lattice M in V divisorial if

M=MNM_.
P
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(8.3) COROLLARY. If M is an R-lattice in V then the

divisorial R-lattices in M satisfy the ascending chain

condition.

Proof. Let Dl c D2 C +++ be a chain of divisorial R-
lattices contained in M, and let I = {p ¢ Ht;(R) | Pé + &R}.
If p ¢ I then, since M 1is a noetherian REfmodule, the chain

pl € D2 C «.. gtablizes. Since I is finite there is an n

such that Qg = Dg for all m > n and all p ¢ I. For E_é I we

have D£'= 32 so this property persists. Therefore, for
m > n, p™ =(\p§ =(7D; = Dn, because the D's are divisorial.
q.e.d.

(8.4) COROLLARY. Let M and N be R-lattices in V and

W, respectively, and let S be a multiplicative set in R.

Assume N is divisorial. Then S_l(N: M) = (S_lN): (S_lM).

Moreover

(N: M) = (N: M) = (N: M
-1 -1
Proof. Suppose h: V —> W and hS "M C S "N. Let
I={p e Ht;(R) l hME‘¢ SE?' This is a finite set and if
peIthenpMNS (. Choose a_e pMS such that ¢ hM_C
P P 2
N for each p € I and set s = . _ a . Then shM_C N_ for
P pel p 2 P
all p € I, and therefore for all p € Ht;(R). It follows that
shMCIfWNE.= N =N, so h = sh/s ¢ S_l(N: M). The opposite

inclusion S_l(N: M) C S—lN: S_lM is obvious.

Using the first part of the proof and the fact that
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N = N we have N: MC N: M C(N: M) =N@N: M) =

: = tih hM N f 1 = M = H .
m(NR MR) {n | L C Roralp_} (N: M) = (N: M)

q.e.d.

For the rest of this section we assume R is a Krull

ring. If A is a finite L-algebra we call an R-algebra A C A
an R-order in A if AL = A and if each element of A is

integral over R.
Let M be an R-lattice in A. Then M +« M is also an
R-lattice (see (8.1)(3)) so aM + MC M for some a %+ 0 in R.

Setting N = a_lM we have N « NC NsoR +«+ 1+ N is an R-
algebra in A which is also an R-lattice. In particular it
is an R-order in A, so R-orders exist. Qur first aim is to
show that, if A is semi-simple, that any R-order is con-
tained in a maximal one, and that the latter are sometimes
R-lattices.

Suppose first that A is simple with center L. By the
theory of central simple algebras (Bourbaki [2]) there is a

field extension L” of L and an isomorphism a: A @LL’ >
Mn(L’) (where [A: L] = n?). We then define the reduced

trace and reduced norm by

Trd (x)

AL Tr(a(x 8 1))

Nrd (x) = det(ax 8 1))

A/L

Since o is determined up to an inner automorphism of Mn(L’)

the definitions are insensitive to the choice of a. It is
then easy to see that they are unchanged if we enlarge L7,
and therefore it is independent of L”, as we see by em-
bedding two field extensions in a common one. Finally, it
is known that L” can be chosen to be a galois extension,
say with group G. Then one checks that TrdA/L(x) and

NrdA/L(x), for x € A, are fixed by G, and hence lie in L. In

conclusion, we have an L-linear map

Trd A

AL’ > L




RING AND MODULE THEORY 153

and a multiplicative map

Nrd A

/\/L: > L

Moreover:

x £ U(A) <= NrdA/L(x) 0

and

Ax A > L, (%, y) l > TrdA/L(xy)

is a non-degenerate bilinear form. The first assertion

depends on the observation that, if x ¢ U(A), then x_l £
L[x]. The second follows from the fact that the trace form
on Mn(L’) is non-degenerate, and that a degenerate form

cannot become non-degenerate under extension of the base
field.

Suppose x £ A is integral over R. Then, in the
notation above, y = a(x 8 1) ¢ Mn(L‘) is integral over R.

It follows therefore from (5.14) that P(t) = det(t- I - y)
has coefficients which are integral over R. In particular,

since R is integrally closed:

(1) If x e A is integral over R then TrdA/L(X) and

NrdA/L(x) lie in R.

Now let A be any semi-simple L-algebra. Write A = HAi

where Ai is simple, with center Ci. Then we define

ayn (G =

((xi)) = HNrdAi/L(xf

TrdAi/L = TrCi/L TrdAi/Ci, and we define Trd

LTrd (Xi)' We similarly define Nrd

Ai/L AL

where Nrd ° Nrd It is easy to see

=N .
AL/L c,/L AL /C,
i i i"7i
that property (1) above remains valid in this more general
setting.

If each Ci is a separable field extension of L then

A is called a separable L-algebra. This is equivalent to the




154 PRELIMINARIES

condition that A QLL’ is semi-simple for all field

C.
i

extensions L” of L. In this case Tr > L is not

c./L’
1

zero for each i so it follows easily that (x, y) |——>
TrdA/L(xy) is a non-degenerate bilinear form.

(8.5) THEOREM. As above, let R be a Krull ring with

field of fractions L and let A be a semi-simple finite L-

algebra. Then every R-order A in A is contained in a maximal

R-order. If A is a separable L-algebra, or if R is a

finitely generated algebra over a field, then A is an R-

lattice in A. Moreover, A is then maximal if and only if A

is a divisorial R-lattice and A 1is a maximal R -order in A

for each p e Ht; (R).

Proof. Case 1. A is separable over R.

Choose a basis ej,..., e € A for A. Since TrdA/L(xy)
is a non-degenerate form we can find e{,..., e; e A such
that TrdA/L(eiej) = 6ij' If B is an R-order containing A

write b = Zeiaj with aj e L. Since eib e B is integral over

R for each i, we have Trd (e.b) L. Tr(e.e )a. = a. € R,
1 J 1] 3

A/L i

by (1) above. Therefore, B C ZejR = F, so B is an R-lattice

in A. Moreover, B =(7BE_(E_E Ht; (R)) is a divisorial R-

lattice, and hence it is an R-order containing B (see (8.2)).
By (8.3) the divisorial R-orders in F satisfy the ascending
chain condition, so there is a maximal one containing A.

The remarks above imply that it must be a maximal R-order.

If A is a maximal R-order then we have seen that A
must be a divisorial R-lattice. If A is not maximal over
RD
R for some p e Ht;(R) then we can use (8.2) to comstruct
0 0
a divisorial R-order B such that B_ = A_if E.+ p and B
B 3% 0 E%
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properly contains AE.' This contradicts the maximality of A.
0

Conversely, suppose A is a divisorial R-order and
that AR is maximal for all p £ Ht;(R). Then if B is an R-

order containing A we have BE.= AR for all p so B C A=A,

Note that the arguments in the last two paragraphs
used only the fact that every R-order in A is an R-lattice.

General case. Write A = HAi where Ai is simple with
center Ci’ and let R{ be the integral closure of R in Ci'
If Ai is the projection of A in Ai then clearly R{[Ai] is
an R-order in Ai (see (5.5)). By (7.19) R{ is a Krull ring

which is a finite R-algebra if R is a finitely generated
algebra over a field. By Case 1, we can embed Ri[Ai} in a

maximal R}-order B, in A,, and B, is an R[-lattice.

i i i i i
Evidently, Bi is a maximal R-order in Ai’ and Bi is an R-
lattice in case Ri is a finite R-algebra. It is now easy to
see that B = HBi is a maximal R-order containing A. For any

order containing B must decompose into a product of orders
containing Bi’ which are maximal. If R is a finitely

generated algebra over a field we have seen that each Bi’

and hence also B and A are R-lattices. By virtue of the
remark at the end of case 1, this proves the theorem.

For the remainder of this section we make the
following assumptions:

(2) R is a Krull ring with field of fractioms L.

A is a semi-simple finite L-algebra.

Every R-order in A is an R-lattice.

Let A be an R-order in A and let V ¢ M(A). We shall call an
R-lattice in V an A-lattice if it is an A-submodule of V.

These always exist. For let M C A be a finitely generated

R-module containing A (which exists by (2) above) and let

(e.) be an L-basis for V. Then Ze. A is an
Y1<i<n *
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A-submodule of V containing a basis and contained in the
finitely generated R-module ZeiM. In A itself we shall

speak of left, right, and two-sided A-lattices, in the

obvious sense.

(8.6) THEOREM. Assume R is a Dedekind ring, and let

A be a maximal R-order in A. Let max(A) denote the set of

maximal two sided ideals in A. Then the set of two sided

A-lattices in A is, under multiplication, a free Abelian

group with max(A) as a basis.

REMARKS. We shall use only the fact that R is a
noetherian integrally closed integral domain of dimension
< 1. Thus, in the special case A = L, this theorem will

imply that R is Dedekind, thus proving the implication
(4) = (1) of (7.12) which was postponed until now.

We shall call M ¢ mod-R a torsion (resp., torsion

free) module if the map M > M @R; is zero (resp., a

monomorphism), and we shall apply these terms, in partic-
ular, to A-modules. If M ¢ E(A) is torsion then annR(M) + 0,

so supp(M) is a proper closed subset of spec(R). The latter
is irreducible and of dimension < 1 so supp(M) must be a

finite set of maximal ideals. We conclude therefore, from
(5.8) that: If M e g(A) is torsion then M has finite length

as _an R-module. From (5.9), moreover, we see that p e max(A)

<= p is prime and A/p is torsion. But if g C A is an ideal
then clearly A/g is torsion <= A SRL = g_@RL <=> g is an

R-lattice. Thus: If pC A is a two sided A-lattice then

p € max(A) <= p is prime. We now go to the proof.

Proof of (8.6). We carry it out in several steps. All
lattices referred to are in A.

(i) If g is a left A-lattice then A = {x € A [

xa ¢ a}l, and similarly for right lattices.

For {x ¢ A | xa € a} is evidently an R-order
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containing A, and A is maximal.

(ii) If o c A is a two sided A-lattice then a

contains a product of elements of max(A).

If g ¢ max(A) there is nothing to prove. If not then,
as remarked above, a is not prime. Thus there are two sided
ideals b and ¢ properly containing g (and hence lattices)
such that b ¢ C a. By a noetherian induction argument we
can assume that b and c contain products of elements of
max(A). Hence the same holds for g.

If g is a two sided A-lattice we shall write
a={xe A | xaC A}

Since (Ag A)a = Agd a C AA = A we see that g is also a two
sided A-lattice.

(iii) If p e max(A) then E + A

Choose a + 0 in R such that gA C p, and choose
Plsee+s B € max(A) such that b1 °rp, C aA (using (ii)).
Let us assume also that n is as small as possible. Since p
is prime it contains some P> and hence p = Py because By
is maximal. Therefore, we can write g p b C gA where
a=P1 " Pyq and b = Piy1 °°° By Now we reason:

ctappca=batapbch

= baapCaA (step (1))

implies b a ¢ aA, so ot bad¢ A. Thus p # A. q.e.d.

Since b a is a product of n - 1 primes, the minimality of n

(iv) If p e max(A) then pPp=A-= P p.
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Since A C E we have p C E P C A, so the maximality
of p implies E P =Aor E p =p. If i p = p then (i) implies
E C A, contradicting (iii). Thus E p =A. Now p E p = pA
= p so (i) implies p EC A, and clearly pc p E Arguing

just as before we conclude now that p E = A.

(v) If p;, p, € max(A) then pip, = popi.

Let g = E_IP_ZP_P Since pypjc p; it follows that g C
A, Since pja = pyp1 c p», and since p, is a prime not
containing p;, it follows that a C po. Therefore, pypi=

P14 C p1py, and the reverse inclusion follows by symmetry.

(vi) A two sided A-lattice g C A is uniquely, up to

order, a product of elements of max(A).

We can assume g + A, so choose p ¢ max(A) containing
a. Then a Egc A, and (1) and (iii) imply a + Eg_. By a
noetherian induction we can assume Eg is a product of

elements of max(A), and therefore g = _p_(i a) is also.

Suppose p; *-° P = qy - q_> with the p's and q's
in max(A). Since p; is prime and contains q; --- qm it must
contain some qi' Using (v) to rearrange terms we can assume
P1 D ql. Since 41 is maximal we have p; = q1. Multiply the
equation above by E, and one obtains p, --° P, =42 "t

and the uniqueness follows by induction on n (the case
n = 1 being obvious).

Finally, if g is any two sided A-lattice then b a C
A for some b + 0 in R, so a = (bA) (ba) is a product of

elements of max(A) and their inverses. If there were a

n
relation A = Iip 2 (p ¢ max(A), nR = 0 for most p) then we
could put all factors with nR < 0 on the left and obtain a

relation in A contradicting (vi). Thus max(A) is a free
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basis for the group of two sided A-lattices. q.e.d.

(8.7) THEOREM. Assume R is a Dedekind ring and let A

be an R-order in A.

(a) A is right hereditary (see 8§6) <= every p ¢

max(A) is a projective right A-module. In this

case hdA(M) = hdR(M) for all M e M(A), and M ¢

P(A) <= M is torsion free. Moreover, every M ¢

M(A) is the direct sum of its torsion submodule

and of modules isomorphic to right ideals.

(b) A is a maximal order <= A is right hereditary

and every P ¢ E(A)—which is faithful (i.e.,

annA(P) = () is faithfully projective (i.e., in

this case, a generator of mod-A).

Proof. (a) If M ¢ E(A) is torsion free then M(= M@L)
is an A-lattice in M@RL = V. Since A is semi-simple we can
solve V ¢ W = A" for some n > 0. Let N be an A-lattice in
in W, so that M ® N is an A-lattice in A", Since A" C A" is
is another such A-lattice we can find @ $ 0 in R such that

M & Na C An. Of course, (M & N)a * M & N. In conclusion,
we have shown that a torsion free M ¢ E(A) is isomorphic to

n ;
a submodule of A" for some n > 0, and the converse is

evident. It follows that A is right hereditary if and only
if all such M are A-projective.

Assume now that A is right hereditary. Since a
module which is projective over R or over A must be torsion
free we conclude that P(A) consists of the torsion free

modules in M(A), and similarly for R. Since the only homo-

logical dimensions are 0 and 1 (and -1 for the zero module)
we have hdA(M) = hdR(M) for M ¢ M(A). Moreover, if M ¢ M(A)

has torsion submodule T then M/T is projective, so M =
T® M/T. According to (6.2) M/T is a direct sum of modules
isomorphic to right ideals.
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Conversely, assuming every p ¢ max(A) is projective

as a right A-module, we must show that A is right hereditary,
i.e., hdA(M) <1 for all M e M(A).

Let T ¢ M(A) be torsion. The T has finite length.

Moreover, if 0 > T” > T > T77 > 0 is exact then
by (I, 6.8), hdA(T) E_sup(hdA(T’), hdA(T")). Therefore, by
induction on length, it suffices to show that hdA(T) <1
when T is simple. Let p = annA(T). By (5.9) p e max(A), so
A/p is a simple ring. It follows that T is a direct summand
of A/p. Moreover, the exact sequence 0 —> p —> A —> A/p
—> 0, plus our assumption that p € g(A), shows that

hdA(A/E) < 1. Hence hdA(T) < 1.

Now let M ¢ E(A) be torsion free. It suffices to
show that hdA(M) < 0 for all such M. The first part of the
proof showed that we could find an embedding M & N c A" so
that M @ N is a lattice in A". This leads to an exact

> M@ N~—> A"

> T

sequence 0 > 0 where the
cokernel T must be torsion. We have proved that hdA(T) <1,
so M & N is projective. q.e.d.

(b) Let A be a maximal order. If p ¢ max(A) then
i:p_= A= R_E, so we can find a, e p and bi e p such that

> A by hi(x) = bix. Then if

Za,b, = 1. Define h_: p
i1 i

X € p we have x = Zaibix = Zaihi(x). Hence, by (II, 4.5), p

is a projective right A-module. It follows now from part (a)
that A is right hereditary.

Suppose P ¢ P(A) is faithful, and let g = Ihp

(h e P* = Hom, (P, A)). Since P, = P § L is a faithful A-

L
module and A is semi-simple it follows that A = IhP

(he?P

L
L ), and since HomA(PL, A) = HomA(P, A) @RL, we

conclude that ¢ C A is an R-lattice. Moreover, it follows

from (II, 4.5) that g is an idempotent two sided ideal. But



RING AND MODULE THEORY 161

Theorem (8.6) asserts unique factorization for the two sided
A-lattices in A, so we must have g = A, i.e., P is a

generator., Since P e P(A) it follows from (II, 1.2) that P
is a faithfully projective right A-module.

Suppose, conversely, that A is right hereditary and
that every faithful P ¢ g(A) is faithfully projective. Let

B be an R~order containing A. Then B ¢ g(A) because A is

right hereditary, using part (a), and B is clearly faithful.
Viewing B as a right A-module we can identify HomA(B, A)

with B = {x € A l xB C A}. Our assumptions imply B is a
faithfully projective right A-module, and so B B = A. But

then A = B B = B(BB) = (BB)B = AB = B. This proves that A
is a maximal order, and completes the proof of (8.7).

(8.8) THEOREM. Keeping the assumptions of (2) above,

let A be a maximal R-order in A. Let V be a faithful

finitely generated left A-module, and let P be a divisorial

A-lattice in V. Then A~ = EndA(P) is a maximal R-order in

AT = EndA(V), and A = EndA,(P).

Proof. Since V is faithful we can view A as a sub-
algebra of E = EndL(V), and then A” is just the centralizer
in E of A. Moreover, AC (P: P) = {h e E | hPC P} =
EndR(P), and A = A" (p: P) because an h ¢ E commutes
with A if and only if it commutes with A. (Recall A = A - L)
Since P is divisorial it follows from (8.4) that (p: P) is

a divisorial R-lattice in E, and hence A” is a divisorial
R-order in A~.

Our hypotheses imply V is a faithfully projective
A-module, and hence A = EndA,(V), i.e., A is the centralizer
in E of A”. Reasoning as above, we see that A (P: P) =
EndA,(P), and that A M (P: P) is an R-order in A, con-

taining A. Since A is maximal we have A = EndA,(P).

It remains only to be shown that A” is a maximal
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R-order in A”. We have seen that A" is a divisorial R-
lattice so, by (8.5), it suffices to show that AE‘is a
maximal RRforder for each p £ Ht 1 (R). Using (8.4) again we

have AE,= A (P: P)R_= A r\(PBf PR? = EndARFPB?. Since

A is a maximal R _-order, and since R_ is a Dedekind ring
P 2 B
(in fact, a DVR) it follows from (8.7) that pE_is a faith-

fully projective RBfmodule. Therefore

Hom, P , * ): A -mod
AP_P_ ol

> A”-mod
P

is an R-equivalence of R-categories (see (II, §5§1-2)). Since
52 is hereditary (see (8.7)), Aé'is also. Moreover, every

object of B(Aé? is isomorphic to‘HomA
P

(PPf Q) is a faithful Aéimodule then Q

® , Q for some
P Q

A
P

is a faithful ARfmodule, by (II, 8.3 (7)). In this case,

Q € P(A ). If Hom
= R

therefore, Q is a faithfully projective ABfmodule, by (8.7),

A
b

We have thus established the criterion of (8.7)(b), which
shows that Aé~is a maximal RET order in A”. This completes

and hence Hom, (P , Q) is a faithfully projective Aéfmodule.
P

the proof of (8.8).

(8.9) COROLLARY. Keeping the assumptions of (2), let

A be a maximal R-order in A. Then A = HEndA (p ) where each
;i -
i

A; is a maximal order in a divisor algebra Di and where P,

is a divisorial Ai—lattice in a finite dimensional Di-

module.
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Proof. Let Sy,..., Sn represent the distinct simple
left A-modules, let Di = EndA(Si), let Pi be a divisorial
A-lattice in Si’ and let P = HPiCI vV = HSi. Then Di is a
division algebra (Schur's lemma), A~ = HDi, and A" = HA{,
where Ai = EndA(Pi), in the notation of (8.8). The corollary
now follows from (8.8).

We close this section with the following proposition,
which gives a method for reducing certain questions for
arbitrary finite R-algebras to the case of orders in semi-
simple algebras.

(8.10) PROPOSITION. Let R be a Dedekind ring and let

B be a finite R-algebra. Then there is a largest two sided

nilpotent ideal N in B. If T is the (R-) torsion submodule

of B/N then T is a semi-simple ring (of finite length as an

R-module) and B/N = T x A where A is an R~order in a semi-

simple L-algebra.

nj no n] + no
Proof. If Ny =0 = N, then (N} + N,) =0,

clearly, for two sided ideals N; and N,. Since B is

noetherian (e.g., as an R-module) it follows that a largest
nilpotent two sided ideal exists. Evidently, B/N has no
nilpotent ideals. Since T has finite length as an R-module
we can apply (1.6) and conclude that B = T x A, for some A,
and T is semi-simple. It follows that A is torsion free and
has no non-zero nilpotent ideals. Hence A is an R-order in
A @RL, and the latter has no non-zero nilpotent ideals.

(They would have to intersect A.) Now (1.5) implies that
A @RL is semi-simple. q.e.d.
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HISTORICAL REMARKS

The following are a few of the many possible
references for the material of this chapter:

§§1-2: Artin-Nesbitt-Thrall [1], Bourbaki [2],
Curtis-Reimer [1], Deuring [1].

§53-5: Bourbaki [4], Serre [2].
§6 : Cartan-Eilenberg [1], Kaplansky [1l].
§7 : Bourbaki [7].

§8 : Deuring [1], Fossum [1].
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Chapter IV
THE STABLE STRUCTURE

OF PROJECTIVE MODULES

This chapter contains the two basic "stability
theorems" for projective modules. The first is Serre's
Theorem (§2) which says that a projective module of '"large'
rank has a free direct summand. The second is the '"Cancel-
lation Theorem'" which gives similar conditions for the
uniqueness of the complementary summand.

In §5 and §6 we present what are, essentially, the
only known "non-stable" structure theorems. The first is a
theorem of P.M. Cohn which asserts that projective modules
over a free algebra (the algebra of '"mon-commuting poly-
nomials') over a field are free. The same is true of the
group algebra of a free group. These results are deduced
from a general theorem on free products of augmented
algebras.

The second non-stable theorem is the theorem of
Seshadri. It implies that the projective modules over Rm
are free when R is a principal ideal domain, and where 7
is a free (non-commutative) monoid or group. When 7 has
one generator this implies that projective modules are
free over a polynomial ring in two commuting variables
over a field. The case of more than two variables remains
unsettled; this is ""Serre's Problem'.

§1. PROJECTIVE MODULES OVER SEMI-LOCAL RINGS

In this section we fix a ring A with radical
165
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J = rad A. Eventually we shall assume that A is semi-local,
i.e., that A/J is semi-simple.

Let P ¢ mod-A and let o & P. We shall write:
*
P = HomA(P, A) and
oP(a) = {ha | h e P*}

The latter is a left ideal. We say o is unimodular in P if

op(a) = A. This is evidently equivalent to the condition

that h: A

>P (h(a) = aa) is a split monomorphism.

(1.1) PROPOSITION. Let o, 1t Q > P be morphisms

in mod-A, and assume Q ¢ E(A).

. , . * .
(a) o is a split monomorphism <= ¢ : P > ¢ is

an epimorphism.

(b) If Im(oc - 1) C PJ then o is a split monomorphism

<> 1 is.

Proof. (a). If o has a left inverse, then ¢* has a
right inverse, so o* is surjective. Conversely, since
Q* ¢ E(AO), c* has a right inverse if it is surjective.
Therefore, o*%: p**

*% -
If hP: P > P is the canonical map then th(c’)*hP is

> Q** has a left inverse, say ¢~.

a left inverse for o.

(b) The inclusion JQ* C HomA(Q, J) is an equality
when Q@ = A, clearly, and hence also when Q € g(A), by
additivity. If h € Im(c - 7)* then h(Q)  J, so h € JQ , by

. * *
the remark just made. Hence o*, T P

> Q* agree
mod JQ . By Nakayama's lemma, therefore, o is surjective

<= 1™ is. Now (b) follows from (a). g.e.d.
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Henceforth, we assume A is semi-local, If P ¢ mod-A
and if S is a subset of P, we denote by (S) the submodule

of P generated by S. The non-negative integer (or infinity)
f—rankA(S; P)
is the supremum of all r > o such that (S8) contains a direct
summand of P isomorphic to A". since A here is fixed, we
shall often drop the subscript.
(1.2) PROPOSITION. f-rank(S; P) = f-rank((S) + PJ; P

Proof. It clearly suffices to show the left side

dominates the right., Let o: Ar > P be a split mono-
> (8) such

that Im(o - 1) C PJ. Then (1.1)-(b) implies T is a split

morphism with Im(c) C (S) + PJ. Choose 1: AF

moncmorphism. q.e.d.

(1.3) PROPOSITION. Let P ¢ mod-A and let a, B & P be

unimodular. Then there is a ¢ ¢ AutA(P) such that (i)

6(cA) = BA, and (ii) ¢ leaves invariant all submodules

containing o and B.

Proof. Write P = BA® P~ and a = Bb + aP,(b e A,

SP’. = = . 1
op - ). Then A oP(a) Ab + o ,(uP,) According to

P
(I1I, 2.8) there is an g ¢ oP,(aP,) such that u = b + ¢ ¢

U(A). Choose £° ¢ P * such that g = £7(a,.) and define

f: P
fZ

> P by £(Bx + v) = Bf“(y) for x e A, vy € P". Then

o so ¢ = lP + f is an automorphism such that ¢;(a) =

Bu + aP,. Define g: p

0 80 ¢, = 1

> p by g(Bx + v) = o a k. Again

g2 - g is an automorphism, and ¢,¢;(a) = gu.

p

It is clear now that ¢ = ¢,¢; satisfies (i) and (ii). q.e.d.
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(1.4) COROLLARY. Suppose P, P~ € mod-A and Qe P(A).
Then P& Q =P“ & Q = P = P",

Proof. Writing Q & Q~ = An, and using induction on
n, reduces us to the case Q = A. Then we have an equality
of modules P& oA =P~ & BA with o and 8 unimodular (after
using the isomorphism to identify). Choose ¢ as in (1.3).

Then P = (P & cA)/oA = @ & aA)/¢(aA) = (P~ & BAY/BA = P~,

(1.5) COROLLARY. If M is a submodule of P & mod-A

then
f—rank(Ar & M; A" ® P) = r + f-rank(M; P).
Proof. The left side clearly dominates the right.
To prove the converse it suffices, by an easy induction, to
treat the case r = 1. Let Ulseees0 ¢ BA® M be a basis for
a free direct summand of BA @ P. Choose ¢ as in (1.3) with

respect to aj and B. Then condition (1.3)(ii) implies

¢(ai) € BA @ M for all i. Moreover BA & M = ¢(ay) A& M,
by (1,3)(i), so we can write ¢(ai) = ¢{ay) a; + Bi, with
Bi e M (2 <i<s). It is now evident that Bose..sB  are

a basis for a free direct summand of P. Thus we have shown

that:
f-rank(A & M; A® P) > s = f-rank(M; P)

>s - 1. q.e.d.

(1.6) COROLLARY. Let P ¢ mod-A and let a and S be

an element and subset, respectively, of P. Then

f-rank(S, a; P) < 1 + f-rank(S; P).

Proof. Map A @ P onto P by sending A onto aA. A split
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monomorphism o: A" > P with image in oA + (S) lifts to a

homomorphism o7 At > A® P with image in A & (S).
Therefore f-rank(S, a; P) < f-rank(A @ (S); A® P). Now
apply (1.5).

(1.7) PROPOSITION. Let p ¢ mod-A and let aj,...,

a € P. Suppose, for some t < r, that f—rank(ul,...,ar; P)

> t. Then there exist B, = a, + a_a.(a, ¢ A) (1 < i < t)
= i i r ivi - =

such that f—rank(Bl,...,Bt,u ) > t.

S AR LU

Proof. Induction on t; the case t = 0 is trivial.

t = 1. Choose a unimodular R s(al,...,ur) and write
P =BA® Q. Write a = Bbi + oy (bi e A, a,” e Q)
(1 <i<r). Writing B = & a; ¢y shows that we have

I bi c, = 1. With the aid of (III, 2.8), applied to bjA

+ szifF biA = A, we can solve u = b; + Zi>2
Hence o = ay + = - - - .
1 ZiiZ OLi ai Bu + (Otl + Zi>2 OLi ai) is

b
;9 ¢ ua).

unimodular. -
ular. Therefore f-rank(a; + @ a, uz,...,ar_lg P) > L

t > 1. By (1.6) we have f—rank(az,...,ar’, P) >t -L

By induction, therefore, we can find Bi =a, + a. ay

(2 < i < t) such that f—rank(Bz,...,Bt, P)

Fe41r 0O

>t - 1. Let P* C (62,...,St,a ) be a direct

t4+12 %1

summand of P isomorphic to At_l, and write p = p~ &p".

Write o, = a.,” + o," and B, = B,” + R." in these
i i i i i i

coordinates. Then
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t < f—rank(al,...,ar; P)
= f-rank(ul,Bz,...,Bt, Opggoeees0ls P)
= f-rank(P” & (al",Bz",...,Bt",at+l",...,ar");

P° & P'")

(t - 1) + f—rank(al",Bz",...,Bt”,

at+l”’."’ar"; PIY)’

using (1.5). By the case t = 1, therefore, we can find a,
so that f-rank(a;" + ar"al, 82",...,Bt”, at+l"'°’ur—l”; P
> 1. If we set B; = aj + a a) then 61,...,Bt clearly solve

our problem.

§2. SERRE'S THEOREM

For the next two sections we shall fix the following

data:
R = a commutative ring such that
(2.1) X = max(R) is a noetherian space
A = a finite R-algebra.

If M ¢ mod-A recall that
M) = X M 0}.
supp (M) = {m e | b # 0}
If M is a finitely generated A-module then suppm(M) =
V(annR(M)) = {meX | m :>annR(M)}, a closed set. (see

(III, §3) for a discussion of these matters). Since A is a
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finite R-algebra it follows that Am is semi~-local for each

m € X, and hence we can define, for P ¢ mod-A, and S C p,

f—rankA(S; P) = infg‘ f—rankA (s; ng,

e X

and

f~rankA(P) = f-rankA(P; P).

The following is an immediate consequence of (1.5) and the

definition:

(2.2) PROPOSITION. Let M be a submodule of P ¢
mod-A. Then f-rankA(Ar $ M; AT® P) = ¢ + f—rankA(M; P).

Now if P £ mod-A and if S is a subset of P then we define

the "singular sets" of S in P, for each j > 0:

Fj(S; P) = {meX | f-rank, (S3 P@_) <3}

For example FO(S; P) = ¢ for all S, and Fj(¢; P) = X for

all § >0.

(2.3) PROPOSITION. Suppose P ¢ mod-A is a direct
summand of a direct sum of finitely presented modules.

Then for any S C P, and for any j >0, Fj(S; P) is a

closed set in X,

Proof. Suppose m ¢ Fj(S; P). Then there is a split

monomorphism hl:AmJ > Pm. We can even arrange that

n! = h  for some h:ad > P, If we show that U = {n | h

is a split monomorphism} is open then U will be a neighbor-
hood of m not meeting Fj(S; P), showing thus that Fj(S; P)

is closed.
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Write p ¢ p~ = HiQi where each Qi is finitely pre-
sented. Choose a finite sum, Q, of the Qi's so that

Im(h)C Q. Then h:Ad

> P has a left inverse <=> the

induced homomorphism A’ > Q has one, clearly. Therefore
there is no loss in assuming P itself is finitely presented.

In this case it follows from (III, 4.5) that the

natural map (E%)n > <2n)* is an isomorphism for each

n € X. The same applies, of course, to AJ. Now, using (1.1)

(a), we have

U={neX| h is split monomorphism}
= {n € X | Coker ((hn)*) =0}
={neX | Coker (ﬁ#)n) = 0}

]

X - supp(Coker (h*)).

* —— (A%)*) is finitely generated it

Since Coker (h : P
has closed support, q.e.d.
The last part of the proof above showed that h splits

if and only if hn splits for all n. If al,...,aj is the

image of the basis of AJ, therefore we obtain the following

conclusion:

(2.4) COROLLARY. Let P be as in (2.3) and let

al,...,aj ¢ P. Then aj,...,a, is a basis for a free direct

summand of P if and only if Fj(al,...,aj; P) = . In

particular a € P is unimodular if and only if Fi(a; p) = ¢.

We now come to the main theorem of this section.

(2.5) THEOREM (Serre). Let V = V(8) be a closed set
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in X such that X - V is a disjoint union of a finite number

of subspaces, each of dimension < d., Let P & mod-A be a

direct summand of a direct sum of finitely presented

modules, and let v € P be such that its image in the (A/Aa)-~

module P/Pa is unimodular. Then, if f—rankA(P) > d, there is

a unimodular element o ¢ P such that o = y mod Pa.

(2.6) COROLLARY. Let V and P be as above. Assume that.

f—rankA(P) > d + r and that P/Pa has a direct summand iso-

morphic to (A/Ag)r. Then P has a direct summand isomorphic

r
to A

Proof. Choose v € P to reduce to part of an (A/Aa)-

basis for a direct summand of P/Pa isomorphic to (A/Ag)r.
Then the theorem gives us a unimodular o € P such that

P =0A® P~ and o = vy mod Pa. The last condition guarantees
the induction hypothesis for P*, so we finish by induction

on r.

(2.7) COROLLARY. Let P be as above, assume X is a

disjoint union of a finite number of subspaces each of

dimension < d, (e.g. if dim X < d). Then, if f—rankA(P) > d,

P contains a unimodular element.

Proof. Take a = R, so V =4,

Remark. The hypotheses of (2.7) do not imply dim
X < d. For example let R be a semi-local noetherian ring of
dimension d > O, and let A = R[t], t an indeterminate. Then
dim max(A) = d + 1, while max(A) is a union of a closed set
and an open set each of dimension < d (see III, 3.13).

The proof of (2.5) will be based on two iemmas. Let
Yisee0,Yy be disjoint subspaces of X - V. Recall from
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(III, 3.8) that all subspaces of X are noetherian. Moreover,
by virtue of our hypothesis on P, it follows from (2.3) that

Fj(S; P) is closed in X for all SC P and all j > 0. Here
are the lemmas:
(2.8) LEMMA. Suppose f—rankA(P) > r. Then given vj,
ceesY € P, there exist Ulseee,® € P such that a1,...,
a. € P such that oy = vy mod Pa (1 < i < r) and such that
codiin(Yi{T Fj(al,...,ar; P))>r+1-1
(3 20;1<1i<N).

(2.9) LEMMA. Suppose Alyeeesa . € P (r>1) and k >0

are such that

A
[
| A

codlei(Yi{W Fj(al,...,ur; P)) >k -3 1< r)

(1 <4

| A

N).

Then there exist 8, = a, + a a.(a. € A) (1 < i < x)
i i r i1 - =

such that
codlei(Yi(W Fj(Bl,...,Br_l; P)) >k - j
(I1<j<r-1

(1 <1i<N).

Proof that (2.8) and (2.9) imply (2.5). By hypothesis

we can choose Yi's as above so that X =V L)Y1LJ--LJYN-

Moreover we can apply (2.8) with r = d + 1. In doing so we

take y; = v (given in (2.5)) and v; = 0 for i > 1. Then

(2.8) gives us @ly..ea_ € P such that
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@] = y mod Pa

(*)

@, =0 mod Pa (@ <1i<1),

i
and such that
codiin(Yi(W Fj(ul,...,ar; P)) >r+1-7]

(320, 1<i<M.

Now we apply (2.9) to these data, (r - 1) times in
succession. The result will be a single element, o, such
that

codimY (Yi(W Fi(o3P)) >r+1-1=r=d+1
i

(1 <1 < N). Since dim Yi < d (by hypothesis) this implies
Fi(a; )N Yi =¢ (1 <1i < N). Moreover, the transformation

= a, + i . i -
ai P—*> Bi ai ur ar, used in (2.9) will leave the con

gruences (*) above in tact for the B's: i.e. B8] = y mod Pa
and Bi 2 0 mod Pa (1 < i < r), Thus, in the end, we have

o = y mod Pa. Since v, by hypothesis, is unimodular mod Pa,
it follows that a is also, and hence Fi(a; P) M V(a) = ¢.
Since X is the union of V and of the Yi‘s this proves that

Fi(a; P) = ¢ . Hence o is unimodular, by (2.4). q.e.d.

Proof of (2.8). Induction on r; the case r = o is

trivial, Suppose now that r >0 and f-rankA(P) >r + 1.

Given YlseeesY g € P, we can construct Qlyeers0 € P as in

(2.8), by induction, and we seek o g Recall that

ey = Y4 mod Pa (1 <1ix<r)

and

codimY (Yi(W Fj) >r+1-3 (J>20;1<1i<N),
i
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where Fj = Fj(ul,...,ar; P). Fixaj, 0 < j < r, and let C

be an irreducible component of Yifﬁ Fj+l such that

codim v (€ =(+1)-(j+1)=1r- 3. Since codim
i

Y.
i
(Yi(W Fj) >r+1-3>r-jit follows that C & Fj' By
varying C now we see that there are finite sets D; (0 <j< 9,
such that
C = =
Dj Fj+l, Dijj 6, D, NV=g¢,

J
and such that, for each i, Dj contains a point in each com~

ponent of Yirﬁ Fj+l of codimension r - j in Yi (1 < i E_N)-

If m ¢ D, then ay,...,a_ have f-rank > j in P_.
o 3 r - m

Therefore, since f-rank(P) > r + 1 > r > j, there is an

a(m) € Pm’ which we can even take to be in P, such that

UlseessC s a(m) have f-rank > j + 1 in Pm. This follows
easily from (1.5). Let D =LJDj (0 < j <r). By the Chinese

Remainder Theorem (III, 2.14) we can choose @ 1 € P to

satisfy o =

P
1 - Yeel mod Pa and o

= P
+1 a(m) mod Pm for each

m € D. Then, if m ¢ Dj’ it follows from (1.2) that

me F) =

341 Fj+l(a1""’ar+l; P). This uses the fact that

C F,

§+1° and we know that

A +«mcC rad A . Evidently F.
m - m j+

1

codim Yi(Yi(’\ Fj+l) >(r+1)-(j+1)=r- 3. Since Fj+l

excludes one point from each component of codimension r - j

in Y, F, we conclude that
i j+i

codimY'(YirW Fj+l) >r-j+1=(+1) +1
. -G+
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© <j <r). Since F,” = ¢ and since (r+1)+1-(GG+D
<0 for j » r, the above inequality persists for all j >0

(1 <i<N). q.e.d.

Proof of (2.9). We are given Alseees0 € P such that

codimY (Yi F\Fj) >k~ j(1<i<N;0 <j<r), where
i

Fj = Fj(ul,...,ur; P). Suppose 0 < j < r. Then, for each i,

the components of Yi(W Fj+ whose codimension equals

1

k -(j + 1) cannot be contained in Fj. Therefore, we can

choose a finite set Dj CF,

41 such that Dj(W Fj = ¢ and such

that Dj contains, for each i, one point from each irreduc-

ible component of YifW F.. of codimension k -(j + 1). It

j+1

follows that if m ¢ Dj then Opseees0 have f-rank j < r in

Pm' Therefore we can apply (1.7), according to which there

are SiQB) =a, +a, ai(g) (ai(gg € Am) (1 <1i< 1), such

that f—rankAm(Bi(EQ,...,Br_l(gp; Pm) > j. Since m is

maximal we have Am/E . Am = A/m - A. Hence, by the Chinese

Remainder Theorem, we can find a; ¢ A such that a; = ai(EQ

mod m ° Am for each m ¢ U Dj(O < j < r). Now set Bi = Q

3

+ a,. a; (1 <1 < r). Then the submodules of P, (aj1,..

i

oy Q
Ll

ar) and (81,...,Br_1,ar) are equal, so it follows from (1.6)

that FJ =Fj(81,...,5r_l;P)C Fj+l(81,...,6 : P)

r-1°%3

= Fj+l' On the other hand, if m ¢ Dj’ then Bi = Bi(E)

mod Pm * m, due to the congruences on the a;, so it follows
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from (1.2) that f—rankAm(Bl,...,Br_l; PE) = f-rank(By(m),

..,Br_lQE); ?E) > j. Thus Fj M Dj = ¢, SO Fj excludes,
for each i, one point from each component of Yi F\Fj+l of

codimension k -(j + 1) in Yi' It follows therefore that

codim, (Yiﬂ Fj’) >k - j.q.e.d.
i

§3. CANCELLATION; ELEMENTARY AUTOMORPHISMS

Serre's Theorem gives a criterion for a module P ¢
mod-A to be of the form P = A® P”. The results of this
section give a similar criterion for the uniqueness (up to
isomorphism) of P”, We retain the notation and assumptions
of (2.1). We shall assume, moreover, that X is the union of
a finite number of subspaces whose dimension are each < d.

(3.1) THEOREM. Let P, Q ¢ mod-A be projective and

assume f—rankA(P) > d. Let a = aQ + QP e Q6 p_(aQ e Q,

ap € P), and let a be a left ideal in A such that a + o (a)
P

= A, (See §1 for definition of oP(a)). Then there is a

homomorphism £: Q > P such that a + oP(f(aQ) + aP) = A,

Proof. We use induction on d; the case d = o will be
subsumed in the general induction step.
Thanks to Serre's Theorem (2.7) we can write

P = BA & P for some unimodular B8 e P; write o = 8b + a
(2 € P). Then we have A = a+o(a) = a+ o(aQ) + Ab + o(a).

Let D C X be a finite set containing one point (at least)
from each irreducible component of each of the subspaces of
which X is assured, above, to be the union. Then if ¢ = IIm

(m € D) the ring A/gA is semi-local. Hence it follows from
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(11T, 2.8) that we can find ¢ € a, aQ € o(aQ), and 2 € o(a)

such that ¢ + b + a. + a maps onto a unit in A/Aq. By

Q

definition of o(a) there is a homomorphism g: P > BA

such that g(a)= Ba. Extend g to an endomorphism of P by

g(g) = o. Then g2 =0, SO 0 = lP + g is an automorphism,
and CY((X,P) =8(b +qa) +c. Set 8 = 0_1(—8—), Py = 0_1('1?) , and
a1 = o !(a) € P,. Then we have P = BA® P, and Gy =

o 1oley)) = B +a) + ap.

By definition of o(a,) there is a homomorphism

Q
> BA C P such that f;(a

) = 8 a.. Then

f1: Q Q Q

(*) fl(ocQ) + a = Bby + aj,

where b; = b + aQ + a. We saw above that c + b; maps to a
unit in A/Aq. If we set S =R -(UmED m) then s 1R ig
semi-local (its maxial ideals cor;espond to those in D) and
(s71! Ay/q - (871 A) = A/q + A (recall q = mri:D m). Moreover
q + (81 A)YC rad(s"! A) so it follows that_c + by e U(s~la).

If d = 0 then D = X so ¢ + b; € U(A), and the proof is
complete in this case. If not we still have S 1(a + Ab;) =

S ! A sowe can find a t £ S such that
(%) At C a + Ab;.

Write R” = R/Rt, A" = A/At, a”"= image of a in A~,
etc. Then X” = max(R”") = V(Rt) is disjoint from D, so it is

a closed set in X containing no irreducible component of
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any of the given subspaces of which X is the union. There-
fore, X is the union of its intersections with these
subspaces, and the intersections have strictly smaller
dimension than their counterparts in X. Thus X” is a finite
union of subspaces each of dimension < d - 1. Moreover we
see, with the aid of (2.2), that f—rankA,(Pl’) Z_f-rankA(Pl)

= f—rankA(P) - 1>d - 1. Consider vy~ = aQ’ + 017 eQ” 8 Py
Since A = a + o(a) =2 + o(aQ) + Ab; + o(a;) it follows
that A~ = a” + o(y”) + A’b;”. Now we are in a position to

apply the induction hypothesis to vy~ € Q” #P{” and the left

ideal 2" + Ab; ., We obtain a homomorphism h”: Q~ > Py

such that 2” + A"D1” + of .(h7(a ) + ;7)) = A, (where
- 1

Q
o’M(é) = {gé I ge HomA’(M, A7)} for M € mod-A” and § € M).

Since Q is projective we can cover h” by a homomorphism

h: Q

> P1 (CP). Now, for the theorem, we take

>P = A & P,y.

It remains to be shown that a + b = A, where b = o(f(aQ)

+ o). Using (*) above we see that f(a

. ) + oy = (n(ay)

Q
+ fl(aQ)) + ap = h(aQ) + (Bby; + ay) = Bb; + (h(aQ) + ay)

€ BA®P,. Since P; is projective the natural map

o. (h(a.) + ayp) > 0 ,kh’(a “Y + a7”) is surjective.
P ( Q 1 P Q 1 J
We have constructed h” so that a~ + A"b;” + Oél,(h‘(aQ’)

+ a;7) = A" = A/At. Hence we conclude that 2 + b + At = 2

+ Ab; + oPI(h(aQ) + a1) + At = A. Since At C a + Ab;

(see (**))C a + b it follows that a + b =A. q.e.d.
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(3.2) COROLLARY. In the setting of (3.1) assume

Q = YA for some unimodular y; say o = yq + ap .

(a) P = BA ® p~ for some unimodular 8 e P.

(b) Suppose, for some two sided ideal g, that a = B

mod (YA & P)q. Then there is a v” € P g such

that o, (v7q + oaP) +a = A,

Proof. (a). follows from Serre's Theorem,.
(b). Since o = B(e P) modulc (yA § P)g it follows
that q € g. By assumption (see (3.1)) there is an h: vyA g P

> A, and an a ¢ & such that 1 = h(y)q + h(aP) + . Hence
q=r1r+ qh(aP) + qa, where r = qh(y)q. Set ¢” = yr + aP.

Then q € o{a”) = Ar + o(aP) C Aq + o(aP) = o(a), so o{a”)

]

o(a). Hence we can apply (3.1) to a” and a to obtain an

Hh

: YA —> P such that o(f(yr) + uP) + a = A. Since f{(yr)

f(y) qh(y)q we see that y” = f(y) qh(y) ¢ P g solves our

problem. qg.e.d.

In preparation for the next theorem we shall intro-
duce now some notation which will also be used in the next
chapter. For these definitions our hypotheses (2.1) on A
are irrelevant.

Let M € mod-A have a direct sum decomposition
M=M 8, .. $Mﬁ. Then End, (M) is the direct sum of the

B . . . .
omA(Mi, Mj), where we identify h ¢ HomA(Mi, Mj) with its

extension to M by h(Mk) =0 for k + i. In case i # j then
gh = 0 whenever g, h ¢ HomA(Mi, Mj), and hence (lM + g)

(lM + h) = lM + g + h, and we deduce a homomorphism

HomA(Mi, Mj) > AutA(M) for each + j. The group generated
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by the images of these homomorphisms, for all i # j, will be
denoted

E(M1,...,M ).
If h e HomA(Mi, Mj) (1 4 j), then we shall call

lM + h an elementary automorphism (with respect to the
decomposition M = M; #... & Mn). If q is a two sided ideal
in A we shall call lM + h g - elementary if Im(h) C Mq.
We denote by

EM,. .o )

the normal subgroup of E(Ml,...,Mn) generated by all g-

elementary automorphisms.

(3.3) PROPOSITION. LetP =P; &...8 Pn be a projec-
tive right A - module, let q be a two sided ideal in A,
and let f: A

> A” be a surjective ring homomorphism. Then

the induced homomorphism,

-

E(Pl,...,Pn; Q) > E(Pl’,-..,Pn H IS

is surjective, where g” = £(q) and Pi’ = PigA A" (1 < i<

Proof. Since Pj q > Pj’ g~ is surjective, any

-

homomorphism h”: Pi > Pj’ q” lifts to a homomorphism

h: P,

i > Pj g, because Pi is projective. This shows that

-

q~ - elementary automorphisms can be lifted. Taking g = A

this shows that E(Pl,...,Pn) > E(Pl’,...,Pn') is surjec-

tive. Now E(Pl’,...,Pn’; q7) is generated by elements of the

form 0”t70” ! where ¢~ ¢ E(Pl’,...,Pn’) and 17 is q° - ele-
mentary. We can lift v° to a q ~ elementary 1, and we can

lift " to a o ¢ E(Pl,...,Pn). Hence 10 ! ¢ E(Pl,...,Pn; Q)
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is the required 1ifting of s’t70” 1. q.e.d.

Now we return to our standing hypotheses (2.1).
Moreover d has the same meaning as in (3.1).

(3.4) THEOREM. Let M = vyA & M; where M & mod-A, vy

is unimodular in M, and M; has a projective direct summand P

of f-rank > d. Let g be a two sided ideal in A and let a,

-

o” € M be unimodular elements such that o = o” mod Mq. Then

-

there is an automorphism 1 ¢ E(yA, Mj; g) such that ta = a”.

Proof. We have M =P & N for some N, and P = BA & P~

for some unimodular B £ P by Serre's Thecrem.

€ My) and

Case 1l: 0” = 8. Write a = yq + aMl(aMl

Q. =g _ + aN(uP € P, a. € N). According to (3.2) (b) there

M; P N

is v” ¢ Pq such that o(y“q + aP) + O(GN) = A.

Remark. It is only at this point, to apply (3.2)(b)to
Yq + op (with a2 = o(aN)), and above to write P = Ra § P~,

that the hypothesis on f—rankA(P) is used. If we accept

these conclusions from (3.2), our standing assumptions on A
and P (vis—-a-vis R and X) do not otherwise intervene. This
observation will be used in the next chapter.

Define gy: M > M by g1(y) = v* and g;(M;) = o.

Then evidently 1; = lM + g1 € E(yA, My; q). Moreover t1(a) =

vq + (f{vq) + aMl) =vq +&°q + qP) + a,.. Write y“q + o =

N
Bb + @ ¢ P = BA® P~ (¢” € P”). By construction, § = y°q +
ap + ay = Bb + o~ + «a

N is unimodular in P ¢ N = M;, so we

can write M; = SA® M;”. Let g,: M

> M by go(8) =
¥(1 - b - q) and go(yA) = g, (M;") = 0. Since o = B mod Mq we
must have b = 1 mod ¢, and hence 1, = lM + g» € E(vA, Mj; q)
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Moreover To11(a) = 12(yq + 8) = y(L -Db) + 6 = v(1 - b) +

b+ a” + .
B o QN

Define g3, gy: M > M by gg(Y) = B, gg(Ml) =0,
and g,(8) = y(b - 1), g,(yA) =0 = g,(P & N). Then 13 =

1, * 83 ¢ E(YA, M), and Ty = Iyt &s e E(GA, M5 9.
Moreover, g = T3 T4T3ToT; € EC A, My; g), and o(a) =
T3 1 14,13(y(1 - b) + Bb + a” + uN) =14 ! 1,(y(1L -b) + 8 +

a” + aN) =13 B+ a + aN) =8+ a” + ay Finally, define

g5, 8c: M > M by g5(8) = v, g85(yA) =0 = g5(P” & N), and
ge(y) = (" + a), ge(My) = 0. Then 15 = Iyt ese

E(vyA, M;) and 1¢ € lM + gg ¢ E(vyA, M1; q), so 15_1 TgTs €
E(vyA, M;; q). Moreover 15_1 1675 o(a) = 15_1 gy + B+ o~
+ uN) = T5_1(Y + R) = B. This proves case 1.

General case. Apply case 1 with g = A to obtain
a o ¢ E(yA, My) such that ¢ o = 8. Now apply case 1 to

o a” = B mod Mg to find 1 € E(yA, M;; g) such that 7 0 o =
8 =0 oa”. Then 6 ! 7 0 ¢ E(yA, M;; gq) solves our problem.
q.e.d.

(3.5) COROLLARY. ("Cancellation") Suppose M e mod-A
has a projective direct summand of f-rank > d. Then if M~ ¢

mod-A and if Q ¢ B(A),

Qe M=Qé M — M =M,

Proof. After writing Q & Q~ = A" an induction on n
reduces this to the case Q = A. If we use the isomorphism
to identify the modules we obtain cA & M = o"A & M~ where
a and a” are unimodular. We can now apply (3.4) (with
a =y, M =M;, in the notation of (3.4)) to obtain an auto-
morphism ¢ such that ¢ o = a”. Therefore M = (cA & M)/(cA)
=~ (aA & M)/o(aA) = (a"ABM ) /oA = M", q.e.d.
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(3.6) COROLLARY. Let M be as in (3.4), and let g be a
two sided ideal in A. Write A” = A/g and M”~ = M/Ag, If o~ is

a unimodular element in M” (as A“-module) then there is a

unimodular element o in M whose image mod Mg is a”.

Proof. Apply (3.4) to M” over A” (the hypotheses are
clearly still valid) to obtain a 7° ¢ E(y"A”, M;”) such that
T7vy" = a”. Now use (3.3) to 1lift 1”7 to 7 ¢ E(yA, M;). Then
a = 1y solves the problem. q.e.d.

(3.7) COROLLARY. Let M and q be as in (3.4), and
suppose M = y’A & M;” for some unimodular element v~. Then
E(y'a, M17; @) = E(yA, M1; Q.

Proof. From (3.4) we obtain a o ¢ E(yA, M;; g) such
that oy = y”. It follows from the definitions that

E(vA, Mj; q) = o E(yA, My; Q)o ! = E(y"A, oMy; @).

Therefore we may assume y = y~. Define g: M > M by g(y)
=0 and g]Ml = piMl, where p is the projection of yA 4§ M~
on yA. Then t = 1, - g ¢ E(vyA, M;), and T M; = M;” . Hence

E(vA, My; @) = 1 E(yA, My; g)r_l = E(yA, M17; ¢q). q.e.d.

(3.8) COROLLARY. Suppose P ¢ P(A) is such that, for

each m ¢ X, Pm can be generated (over Am) by < r elements.

Then P can be generated by < r + d elements.

Proof. Write P @ Q = Ar+n for some n > 0, It suffices
to shown we can do this with n < d, so suppose otherwise. If
m ¢ X then, by hypothesis, we can write Pm & P~ = Amr for

some P~, Since Am is semi-local it follows from (1.4) that

Qm =P " @& Amn. Thus f—rankA(Q) >n > d, so Serre's Theorem

(2.7) implies Q = Q” @ A. SinceP & Q" & A = AT™® ¢

follows that (P & Q’)m = Amr+n—l for each m ¢ X, again by
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(1.4). If r =0 then P = 0 and there is nothing to prove.
Otherwise r + n - 1 > d so we can apply cancellation, (3.5)

. rin-1 ,
above, to conclude that P ¢ Q7 = A . The conclusion now
follows by induction. q.e.d.

Remark. Swan [4] has recently shown that (3.8) above
is valid without the assumption that P is projective.

§4, THE AFFINE GROUP OF A MODULE

It is convenient to make here a few simple observa-
tions on the groups of elementary automorphisms introduced
in 83. These results will be used in the next chapter.

We fix a ring A.
(4.1) PROPOSITION. Let Pl""’Pn g€ P(A), and assume

that at least two of the Pi's are faithfully projective. Let
P=7P 86...6P .
n

(a) The additive group generated by E(Pl,...,Pn)
is all of EndA(P).

(b) The centralizer in AutA(P) 9§_E(P1,...,Pn) is

center (AutA(P)) ={cl | ¢ € (center (A))}.

(¢) An additive subgroup of P invariant under

E(Pls--~»Pn) is of the form Pg for a unique left

ideal g in A, and Pg is also invariant under

EndA(P).

Proof. Let B = EndA(P) and let BO be the additive
group generated by E = E(P;,...,P ). Then E and Bo have the
: n

same centralizer in B, and a subgroup of P invariant under
E is a Bo—module. Therefore (a) implies (b) and (c). For,

since P is faithfully projective, it follows from (III, 3.5)
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and (II, 4.4) that center (B) = center (A) and that every
B - submodule of P has the form described in (c).

It remains to prove (a). It is clear from the defini-
tion of E(P1,...,P ) that the additive group BO it generates
n

is generated by I( = 1P) and by all HomA(Pi, Pj) i 4 3).
Therefore we need only show how to recover HomA(Pi, Pi) for

each i. Suppose we have an endomorphism f = gh of Pi which

h > Pj g . Pi for some j # i. Then (I + g)

(I+h)=1I+4+g+h+ghe E(Pl,...,Pn) and I, g, h ¢ BO.

factors as Pi

Our hypothesis guarantees that we can choose a j # i so that
Pj is faithfully projective. Therefore it will suffice to
show that EndA(Pi) is additively spanned by endomorphisms
which admit a factorization through Pj. If f ¢ EndA(Pi)
factors through P,n then it is a sum of n endomorphisms that
factor through P,. For n large enough P,n has a direct
summand = A. Since Pi € E(A), it followg from (II, 4.4(a))
that EndA(Pi) is additively generated by endomorphisms

which factor through A, and hence through Pjn. q.e.d.

Before introducing the affine group we shall estab-
lish some group theoretic conventions.

Let G be a group, and let x, y, z ¢ G. Then we shall
write x = vy lxyand [x, y] =x !y lxy=x! x”. The

following formulas are familiar, and easily checked:

(x7)* = 7 = (xz)yz

1

[x, y1 [y, x]

(4.2) [x, y 2] [x, z1 [x, yl?

z” ly, zl

1
»

[xy, 2]
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If H and H” are subgroups of G then [H, H”] denotes the sub-
group generated by all [x, x7] (x ¢ H, x~ ¢ H").

Let P be a group on which G operates as a group of
automorphisms (x] > a(x), for x ¢ P, o € G)., (This struc-
ture is equivalent to a homomorphism G > Aut(P)). Then we
can form the semi-direct product

PS}_( G,

whose underlying set is P x G and whose multiplication is
defined by

(x, a) (y, B) = (x + a(y), aB).

For example (x, a) 1 = (a_l(x)_l, a 1), We can identify x €
P with (x, 1) and o & G with (1, a). As such, P is a normal

subgroup of I’Sgd G, and we have a "split group extension"

1

> P

> P X, G > G > 1.
S—

d

Suppose now that P is an additive abelian group. Then
it is suggestive to use matrix notation, writing

1 O> .
<x o in place of (x, a).
Then the group law becomes

(i 2) <i g> - (x +la(u) 28),

i.e, matrix multiplication. The following formulas are
easily checked, where we write I for the identity element in

G.
1 0
—o (%) a !

——
WP
R O
|
et
I

69!
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Finally, if P ¢ mod-A, the affine group of P is

T 1 0 "
ALL (B) =P x4 Aut,(P) =<P AutA(P)>

When P = A" we denote this group by

AFE_(A) = <1 0> x e A", o e GL_(&)
X o

It is a subgroup of GLn+1(A).

(4.3) PROPOSITION. Let P ¢ mod-A and let H be a sub-

group of AffA(P) with projection L }B.AUtA(P)-

(a) [H, P] = [L,P] = I, el Im(a - 1P)

(b) If H is normalized by P then HNP = {1} =
H = {1}.

(c) If P=P; &...8 Pn is as in (4.1), and if H is
normalized by E(Pl,...,Pn), then there are unique

left ideals @, b in A such that H MP = Pg and
[H: P] = Pb, If L # {1} then b # 0.

Proof. (a) follows immediately from the last formula
in (1) above.

(b) If P normalizes H then [H, P] C HM P. Therefore

if HMNP = {1} formulas (1) show that HC P, and this
proves (b).

(c) If E(P;,...,P ) normalizes H then HM P and
[H, P] are additive subgroups of P invariant under
E(Pl""’Pn)' Therefore (c) follows from (4.1)(z) together

with part (a).
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§5. FREE PRODUCTS OF FREE IDEAL RINGS; COHN'S THEOREM

If A = R[t] is a polynominal ring in one variable t
over a field R then A is a principal ideal ring. This is a
direct consequence of the euclidean (division) algorithm in
A. When we pass to a polynomial ring in several variables,
R[t1’°'°9tn]’ this situation no longer prevails. If, on the

other hand, we consider a polynomial ring in ''mon commuting
variables", i.e. the free associative algebra on tls°'°’tn’

then the case of general n behaves very much like the case
n = 1. Of course the ideals are no longer principal, but
they are free as modules. Moreover, this property can be
deduced from a generalization of the division algorithm.

These results are due to P. M, Cohn [1]. His point of
view is to regard the free algebra as a "free product" of
polynomial rings in one variable, and then to show that free
products of algebras whose ideals are free again have this
property. This theorem applies equally well to free products
of copies of R[t, t !], and these are just group algebras
of free (non abelian) groups.

Since the material of this section is lengthy and
rather technical it is perhaps useful to mention that it is
not required elsewhere in these notes except in §6
(Corollary (6.4)) and in Chapter XII, §11.

(5.1) DEFINITION. Let n be an integer > 1. A ring A
is called an n-fir (fir = "free ideal ring') if it satis-
fies:

(an) Every basis for A" has cardinality n; and

(bn) Every right ideal with at most n generators
is a free A-module,
Each condition implies the corresponding conditions
for smaller values of n. Condition (an) asserts that, for
allm > 0, A" = A" = n = . Taking duals, i.e., HomA( , A)

we deduce the same condition for free left A-modules, so
(an) is left-right symmetric. We shall see below that the

notion of n-fir is likewise left-right symmetric.
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(5.2) PROPOSITION. Let A be an n-fir. Then:

(a;) Every epimorphism f: A" > A" is an isomor-

phism; and

(b;) For each m > 0, the image of every homomorphism

f: AT

> Al is free.

Proof. (bn) = (b;). We use induction on m, the case
m = 1 being just (bn). If M = Im(f) we have an exact
> M~ > M

=~ MH

> o where M" is the

-projection of M on the last coordinate, and M" C Am_l.

sequence 0

Since M" has < n generations it is free, by (bn). Hence
M= M'8® M so M also has < n generators. By induction M~

is also free. Therefore M is free.

[(a)) and (b )] = (a7). We have A" = Rer(f) g A" if

T > A" is surjective, Therefore (b;) (which follows
from (bn)) implies Ker(f) is free, say = Ar, Then (an)

implies n+ r = n, sor =0, i,e. Ker(f) = 0.

It is easy to see that (aé) = (an), so that (5.2)
actually characterizes n-firs. The condition (a;) can

sometimes be verified with the aid of the following useful
proposition.

(5.2) PROPOSITION. Let A be a ring, let M e M(A),
and let h: M

> M be an epimorphism. Assume that either

(i) M is noetherian, or (ii) A is commutative. Then H is an

isomorphism.

Proof. (i) The chain Ker(hn) terminates; say Ker(hn)

= Ker(hn+l) for some n > 0. If x ¢ Ker(h) write x = hn(y)

(note that h® is surjective). Then hotl (y) = h(x) = 0 so
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y € Ker(hn+l) = Ker(hn), and hence x = hn(y) =0, q.e.d.

(ii) It suffices to show that hm is surjective for

each m € max(A), so we can assume A is local, say with

maximal ideal m. Choose g: A" > M so that g GA(A/Q) is
an isomorphism. Then g is surjective, by Nakayama's Lemma.
Therefore we can find £f: An —_— An covering h (i.e. gf =
hg). Again Nakayama implies f is surjective, because

£8 (A/m) ~h8,(A/m). Let P(t) =a + .. +a 01+ "
A AT o n-1

be the characteristic polynomial of f. Then a, = -n"
det(f) is a unit, being non zero modulo m. By the Cayley-
Hamilton Theorem, P(f) = 0, so f ! = ao_l(a1 + .. +a

n-1
n-2 n-1 R . .
£ + f ). Since f leaves Ker(g) invariant so also does

f-l, being a polynomial in f. Therefore £ 1 induces an

endomorphism h” of M, and evidently h” = h 1, q.e.d.

Let el,...,en be the standard basis of An = ueiA.
We can identify GLn(A) with AutA(An) where o ¢ GLn(A)
operates on o = (al,...,an) (= Zeiai) e AT by t(ota). Here

the "t" denotes transpose, so that ta is a column vector.
We have the group

E (A) = E(ejA,...,e A)

n n
introduced in §3. If eij denotes the matrix with 1 in the
(i, j) coordinate and zeros elsewhere (so eij e = ij ei)
then En(A) can be identified with the group generated by all

elementary matrices, In + a eij (a e A, i # j). The group

of all diagonal matrices, diag(ul,...,un) = Zui?ii(ui €

U, 1 i < n) will be denoted
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D_(4a).
n

Since the diagonal matrices normalize the set of elementary
matrices we can write

GEn(A) = Dn(A) . En(A)

for the group generated by Dn(A) and En(A). When n = 1 we

have E;(A) = {1} and GL;(A) = GE;(A) = D;(A) =U(A).

(5.4) DEFINITION. A ring A is said to be a general-
ized n-euclidean ring if A is an n-fir such that GEr(A) =

GLr(A) (1 < r <mn). If this is so for all n > 1 we call A

generalized euclidean.

The motivation for this terminology will appear in
Proposition (5.9) below.

We shall view GLn(A) as a subgroup of GLn+l(A) by

0
identifying o ¢ GL_(A) with (°

0 1) € GLn+1(A). Suppose now

that we are given a family of subgroups GL;(A)<: GLn(A)
containing En(A) and such that GLn+l(A)(W GLn(A) D GLn(A).
Relative to this family of subgroups we can formulate con-

dition: (C )

n’GL”* If r < n and if al,...,ar are linearly

dependent elements in a free right A-module F, then there
is a o ¢ GL;(A) such that (al,...,ar)c has at least one

zero coordinate.

By induction on r it follows that there is a o ¢
GL;(A) such that the non zero coordinates of (al,...,ar)c
are a basis for the A-module generated by Alseeesdpe
In particular, a submodule of F with < n generators is free,

thus showing that (Cn)GL’ = (bn).
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(5.5) PROPOSITION. The ring A satisfies condition
if and only if A is an n-fir such that GL;(A) =

GRS

GLr(A) for each r < n. For this it suffices even that A

satisfy (Cn)GL’ only for the free module T = A,

Proof. Let (Cn)GL’ denote the special case of (Cn)GL’
when F = A. The remarks above show that (C;)GL, = (bn). We
further prove (an) and the fact that GL;(A) = GLr(A) for

r < n.

Let UlyeessOy be a basis for the left A-module Ar. By
induction on r we will show that there is a o ¢ GL;(A) such
that alc,...,aso 1s the standard basis. This implies r = s,
and hence condition (an) (or, rather, its left hand analogue,
with which it is equivalent), as well as the fact that
GLZ(A) = GL_(&).

Since o; is unimodular its coordinates generate the
unit right ideal. It follows therefore form (C;)GL, that
@107 = (u,0,...,0) for some u, necessarily a unit, and we
can arrange that u = 1 using an element of Dn(A). Choose

1 ¢ E (A) so that o, 07 T = 0,01 - 0101a,, where a, is the
T i i i i
first coordinate of 0 01, (1 <i<s). Then Bi = 0,017 has
first coordinate zero, so 82,...,85 can be viewed as a basis
r-1 . .
for A . By induction we can transform these to the stan-

dard basis of Ar"l with some 0y € GL;_l(A), and then

o =01 T 1o solves our problem.
002

For the converse, we will show that if A is an n-fir

and if GLr(A) = GLr(A) for r < n then A satisfies (Cn)GL,.
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. . . . AT
Given Ulsenssd, € F as in (Cn)GL’ define f: A > F
by f(ei) =a, (L <i<r). Condition (b;) implies Im(f) is

free, so AP Ker(f) & Im(f). Therefore Ker(f) has at most
r (< n) generators so it likewise is free. Say Ker(f) = AS
and Im(f) = At. Condition (an) implies s + t = r so there is
ac e GLr(A) (= GL;(A)) such that O@1s.e.s0€ is a basis for
Ker(f). Since als...,q  are assumed to be linearly dependent
we have s > 0, If oei = Zj ejbji then 0 = f(oe;) = Zj aj bjl
50 (al,...,ar) (bji)lii,jjr has first coordinate zero, and
o= (bji) € GL;(A). This concludes the proof of (Cn)GL" and

hence of the proposition.

(5.6) COROLLARY. The ring A is generalized n-eucli-

dean if and only if it satisfies (Cn)GE.

(5.7) COROLLARY. If A is an n-fir then so also is

A°. (i.e. the notion of an n-fir is left right symmetric).

Proof. According to (5.5) it suffices to show that
if bl,...,br e A (r < n) are left linearly dependent then

there is a o ¢ GLr(A) such that otB has a zero coordinate,
where R = (bl,...,br). We can clearly assume that none of

the bi are already zero. Let Ig bi = 0 be a dependence

i
relation. According to (5.5), and our hypothesis, there is

aoe GLr(A) such that the non zero coordinates of oo are
right linearly independent, where a = (al,...,ar). Since

0 = utB = o0 o ! tB it follows that the ith coordinate of

R .th
o B is zero whenever the 1t coordinate of ac is not
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zero. Since a # 0, by assumption, there exists at least one
such i. q.e.d.

(5.8) DEFINITION. A euclidean algorithm on a ring A
A

is a function | > R satisfying: (i) |Al is a closed
discrete subset of R; (ii) |a| > 0 and |a] =0 <= a =0
for a ¢ A; (iii) |ab| > |a| |b|for a, b e A; and (iv). If

a, b e Aand a# 0 then b = aq + r for some q, r € A such

that Irl < la . A is called euclidean if it possesses a

euclidean algorithm.

The main examples of euclidean rings are A = Z
(| | = ordinary absolute value) and A = k[t], a polynomial
ring over a field ([fl = exp(degree (f))).

(5.9) PROPOSITION. If A is a euclidean ring then A is

a generalized euclidean ring and every right ideal in A is

principal.

Proof.Let g be a right ideal in A; we claim g is
principal. We can assume g #0, and, thanks to (i), we can
choose a# 0 in g so that |a| is minimal. If b € g write
b=agq+ras in (iv). Then r =b - aq ¢ g and |r| < |a]
so r = 0. Therefore g = gA is principal.

In particular A is right noetherian so (5.3) implies
A satisfied condition (an) (ef (5.2)) for all n > 1.
Condition (iii) implies A is an integral domain. Since right
ideals are principal they are therefore free, so we have
condition (bn) for all n > 1.

It remains to be shown that GEn(A) = GLn(A) for each
n, This is an easy consequence of the following fact: If
o = (al,...,an) ¢ A" there is an ¢ ¢ En(A) such that ae =

(@,0,...,0) for some o ¢ A. For it suffices, by induction on
n, to make a single coordinate of ae equal zero. For this
we can, thanks to (i), use induction on m(o) = the minimum
of [ail (1 <i<mn). If 1ai[ = m(a) and a, # 0 then we can

1y (iv) to a.(j # i) and write a, = a.q, + r, with
apply (iv) J(J ) 3 195 P
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[rj’ < [ai . Putting ai =, if 3#4 and a; = a; we can find

€ so that oae = (al',...,a;) = a”, and m(a”) < m(a). The

proof concludes now by induction.

(5.10) EXAMPLES. When n = 1 the notion of a l-fir
reduces simply to the notion of an integral domain, i.e. a
ring without proper divisors of zero, though not necessarily
commutative.

Two elements a,b in a commutative ring A can never be
linearly independent: ab-ba = (. Therefore a free ideal must
have a basis of cardinality at most one. It follows easily
that, if A is commutative the following conditions are

equivalent.

(i) A is an n-fir for some n > 1.

(ii) A is an integral domain in which every finitely

generated ideal is principal.

(iii) A is an n~fir for all n > 1.

Moreover the extra condition for A to be generalized n-eucli-
dean can be restated as: Er(A) = SLr(A) for all r < n.

Let A be a Dedekind ring, and let S be a multiplica-
tive set in A. If A" = ST!A then, since Pic(A) > Pic(A”)
is surjective, it follows that A is principal if A is.
Moreover it follows from the remark after (VI, 1.5) in
Chapter VI below that SLn(A’) is generated by SLn(A)

together with En(A’). We conclude therefore that A~ is

generalized n-euclidean 1f A is. As a special case, the
group ring k[t, t !] over a field k of an infinite cyclic
group is a generalized n-euclidean ring for all n > 1,
thanks to (5.9). h

Let R be a commutative ring. An augmented R-algebra
is an R-algebra, e: R > A, together with an R-algebra
homomorphism € =¢,: A > R3; note that tge = lR’ the only

A
R-algebra endomorphism of R, so that A = R® A as R-module,

where A = Ker(e) is called the augmentation ideal of A. The

augmented R-algebras the objects of a category in which a
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morphism £: A > B 1s an R-algebra homomorphism such that
er =€y In this category coproducts (sometimes called free

Eroducts) exist. We shall give a description of them, due to
Stallings, and then prove Cohn's Theorem stating that a co-
product of n-firs over a field is again an n-fir.

(5.11) EXAMPLE. The functor

augmented ) augmentation ideal
(R—algebras >  R-mod

has an adjoint, T(= TR)’ called the tensor algebra. Thus, if

M e R-mod and A is an augmented R-algebra, then

Ho (T(M), A) = Bom,__ . (M, A).

maug.R—alg.

8
T(M) is actually a graded R-algebra, with M) = M oo M@R
"'SR M, and with the obvious multiplication. The augmenta-

tion sends Tn(M) to zero for all n > 0. If we denote the
coproduct of A and B in (aug.R-alg.) by A * B then the
adjointness formula shows that

(1) (M & N) = T(M) *¥ T(N).

Moreover T commutes with base change, R > R”, in the
obvious sense. If M is a free module with basis (Xi)iel

then T(M) is called the "polynomial algebra in non commut-

i indeterminates (x.,). "
ing ( 1)151

(5.12) EXAMPLE. The functor

> (1 + X)

(augmented ) A > (monoids)

R-algebras

has an adjoint called the monoid algebra. If w is a monoid
the monoid algebra, Rm, is the free R-module with basis m,
and with multiplication extended R-bilinearly from the

multiplication in =. If a = & a x (xem) then e(a) = 2 ays

so the augmentation ideal i?, is, as an R-module, generated
by all 1 - x (xem). If A is an augmented R-algebra the
adjointness is expressed by
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(Rw, A) = Hom

monoid (ny 1+ 4).

Homaug.R—alg.

Again it follows that
R[Tl'l * 1T2] = R'ﬂ'l * R1T2,

where my * 7w, denotes coproduct (or free product) in the

category of monoids. When 7 is a free monoid with basis

(Xi)iEI then Rm is a new representation of the ring of '"non

commuting polynomials" encountered above. If 7 is a free
abelian monoid we recover the ordinary commutative poly-
nomial algebra. In particular, if T is a free monoid with

generator t, and if m; is the free group with generator t
then Rﬁo = R{t] and Rm; = R[t, t 1] are euclidean if R is a

field. Thus if 7 is a free monoid or group and if R is a
field, then Rm is a coproduct of euclidean rings.

We now come to the construction of coproducts. In
describing them we shall use the notion of a wm-graded R-
algebra A where m is a not necessarily commutative monoid.
Such a grading consists of an R-module decomposition.

A = [AY (w e w) such that A"AVC AYY (u, v ¢ 7).

Let A and B be augmented R-algebras. We propose to
describe C = A * B,

To begin with the R-module homomorphism A C A induces
an algebra epimorphism, Pyt T@&) > A, from the tensor

algebra of &. Similarly we have P’ T(B) > B, and these

induce an epimorphism p = Py * Pp’ C — C, where C = T(A)
% T(B). Since

T(A) * T(B) = T(A & B)

it follows that C has a natural T-grading, where T is the
free monoid on two generators o and B. Specifically,

c'’"=¢c"8B (w e T
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If w e W write |w| for its "length", i.e. the number of
factors ¥ and % in w. In passing from C to C this grading
collapses, and we are led to introduce the monoid m with
generators o and B subject only to the relations a? = o and
g2 = B. We map T > 1 by al—> o and E‘f*—> B. In
every element w # 1 has a unique representation of the form
w = aBaB... or w = BaBa.., Thus, if w € 7 then there is a
unique preimage W £ 7 for which ]WI is minimal. We then de-
fine the length ‘wl of w to be the length of W.

Now we shall construct C and exhibit a m-grading of
C. If we 7 we set C¥ = C¥, Next define

£ 1 W8 E—> "
W,Q

as follows. If w terminates with B let fw N be the

3
identity; this makes sense because wo = W& in this case.

If w = ua for some u € m of smaller length then we have
wao = w and C¥ = CY 8 A, and we define fW 0= cY 9 m,
where m, : A8 R

A.

b
> K is induced by the multiplication in

B

c"8 B > ¢'F, By

Similarly we define £ :
w,B

induction on \v‘ we can then define an associative multipli-
cation f_ _: c¥ 8 ¢V
sV

algebra. It is augmented by eC(CW) = 0 for all w# 1.

> C¥V which makes C a m-graded R-

The inclusion A =R & & =cCl 8 c*c C is an inclusion
of augmented R-algebras, and we have a similar inclusion
B C C. To show that the C just constructed is indeed A * B
consider the projection p: T(A & B) > C which exists
because C is generated by A8 B C T. Clearly p(CYH =

cP(W) yhere we also write p: 7T

T+ o, B}F— 8.

Algebra homomorphisms hA: A

> 7 for the projection

> D and hB: B > D

induce module homomorphlsmi or X and B from which we obtain
an R-algebra homomorphism h: C > D. Since h induces hA

and hB on X and B, respectively, and since h, and hB are

A
algebra homomorphisms, it is clear that T factors uniquely
> D. This shows that C is the

through a homomorphism h: C
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free product of A and B.

We shall occasionally omit the symbol 8 when writing
the multiplication in C. Thus, for example,

C=R®(A ® B) ® (AB® BA) & (ABA & BAB) &...

For each n > 0 there are precisely two elements of length n
in 7. (An element of length n is uniquely determined by
either its initial or terminal factor (o or B). We filter C
by

Fic = oo
|w|<n

and this clearly makes C a filtered ring, i.e. F'c - F'C

C:Fn+mC. If @ € C we shall write h(g) = n if a ¢ F’C but

at Fn—lc with the convention that F'C = {0} for n < 0, and
hence that h(CG) = - «, For example, h(a) < 0 <= g.e R. If
h{a) = n we write

a e gr C = FnC/Fn_lC,

and the grC = nEO grnC is a graded R-algebra in the usual

sense. Clearly gr,C = R. If n > 0 then the projection
Fle

> grnC induces an isomorphism of R-modules, cle ¢’

> grnC, where u and v are the two elements of length n
in 7. We shall often use this isomorphism to identify the

two modules. If @ lies in C' or CV, say in Cu, we shall say
that a is pure of type u, and write u = w(a). Thus a is

oo ¢ but o ¢ .

pure of type u if a ¢ F

(5.13) PROPOSITION. Let A" denote the R-algebra with

the same underlying R-module and augmentation as A, but with

multiplication defined by A%> = 0. Define B” similarly. Then
grC = A" * B", If o, b ¢ C and if ¢ b # 0, then gb = a b,
and h(ab) = h{(a) + h(b).

u,v uv
Proof. If u, veas.then CC C C . If u and v
"interact", i.e. if the terminal factor of u coincides with
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the initial factor of v, then |uv| = [u[ + |v| - 1. If not

then |uv| = |u] + lv . Projecting ¢? into grlu]C and ¢ into

gerIC, therefore we see that, in grC, c'c’ = 0 if u and v

interact, and otherwise c’s ¢’ > ¢V in grC coincides
with the corresponding multiplication in C. Thus we see from
the construction above of C that grC is obtained by the same
construction, but applied to A” and B~ instead.

If a b# 0 then, by definition, h(ab) = h(a) + h(b)

anda b= ab.

(5.14) PROPOSITICN. Let R > R” be a homomorphism

of commutative rings. Then there is a natural isomorphism

KA

% 8 - = - “y.
(A R B) R R (A GR R™) *R’ (B @R R7)

I.e. base change preserves coproducts of augmented algebras.

Proof. This follows easily from the following
adjointness property of base change: If D is an R”-algebra

then HomR_alg (A, D) = HomR,_alg (A R R, D).

Now we come to the main result of this section.

(5.15) THEOREM. (P.M. Cohn) Let R be a field and let

A and B be augmented R-algebra which are N-firs. Then C =

A* B is also an N-fir, and, for each n < N, the group

GL” (C), generated by GL (A), GL_(B), and E (C), is all of
n n n — n —_—
GLn(C).

(5.16) COROLLARY. If A and B above are generalized

N-euclidean rings so also is C.

(5.17) COROLLARY. Let G be a free monoid or a free

group, and let A = R[G] be the monoid algebra of G over a

field R. Then A is a generalized euclidean ring.
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Proof. If X is a basis for G we can write X as a
direct limit of finite subsets, and A is then a correspond-
ing direct limit. We can use this device to reduce to the
case when X is finite, and then argue by induction on card
X. If X has one element then A=R[t], or R[t. t7 1], is gener-
alized euclidean (see (5.1)). Otherwise X = X; U X,

(disjoint), G = G; * G, (where Xi is the basis of Gi) and
A = R[G; *# Gy] = R[G;] * R[Gy]. By dinduction R[Gi] is

generalized euclidean (i = 1, 2), so A is generalized
euclidean thanks to (5.15).

The rest of this section is devoted to the proof of
(5.15). We fix the notation and hypothese of (5.15).
Further, we shall use the m-grading of C discussed above,
where 7 is the monoid generated by o and B with relations
0?2 = o and BZ = B.

Since N > 1 in (5.15) both A and B are integral
domains.

(5.18) LEMMA. Eﬁ_al,...,ar,b are non zero elements

of A such that aib € R (1 <1 < 1) then there is a u e U(A)

such that a.u, ulper (1 <i<x).

Proof. Since A is an integral domain g b # 0 is a
unit, and hence a, and b are units, so we can take u = a3
By induction on r we can find v such that av, v Iy ¢ R

1

(2 <i <r), Then ayv = u v ¢ R because u-lv = (u™tb)

(b7lv) = (W) (v b)7! e R. q.e.d.

We shall call c e C left (resp., right) reduced if
h(c) < h(ue) (resp., h(ec) < h(cu)) for all u e U(A) U U(B).

(5.19) PROPOSITION. Let ¢ and b be non zero elements

of C such that either a is right reduced or b is left

reduced. Assume that a b = 0 in grC. Then @ is pure of type

w(a), b is pure of type w(b), and a b is pure of type

w(a) w(b). In particular h(ab) = h(a) + h(b) - 1.

Proof. Since a b = 0 neither g nor b can be in R. Say
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r = h(a) and s = h(b), and write d=a +a and b= b+ _b

A B A B™"
The summands here correspond to the decomposition grrC =
ua uB _ 0X By - = = = =
C#® C 7 and grSC C" @ C”, Thena b = A Ab +a, Bb +

I
I
I
I

=S T LT 0T uofy vBax
aB Ab + aA Bb aA Bb + aB Ab e C @& C . Therefore

b=_ E: = = . imi q =
a a, 8 0, so aA 0 or Bb 0. Similarly aB 0

o
"
:>c‘l
]

0. It follows that a and b are pure of interacting

types: either a = a, and b = A a = ap and b = Bb. Assume

|
o
o]
[a

the former is the case, and say b is left reduced. (The
other cases will follow by symmetry).

Write a = g +a + ... and b = b+ b+ ... in
ua u oxX X

r-homogeneous coordinates. Then ab = (g s b+a - b)
ua X u  ax

+ ... where all the undenoted terms lie in ]¥+S~ZC. There-
fore the assertion that ab is pure of type w(a)w(b) = uax
is equivalent to the assertion that h(ab) = r + s - 1, and
in any case it is < r + s - 1.

If r = s = 1 then h(ab) = 1 thanks to (5.18), because

a or b is reduced. If r > 1 write g = L ci di mod Fr_lC

where (ci) is an R-basis for Cu and di € A. Then if ab ¢

Fr+s_2C we conclude also that h(Z ey dib) <r +s - 2. Since

dib € Fs_lC & COLX and since the sum X ¢y c™* is direct it

follows that dib € Fs_lC for each i. This is impossible if
di # 0 and di € R, Choosing an i for which di # 0 we can

replace a by that di and reduce to the case r = 1.

Now apply the same reasoning to b, and we find that
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b

b e fi mod Fs—lC where (fi) is an R-basis for € and e,

e A. It follows as above that ae; ¢ Fr_lC = R for all 1.
According to (5.18) there is qu ¢ U(A) such that au 1, ue,

¢ R for all i. Hence ub = % uei fi mod FS_lC. But ue, fi €

RfiCZ c*c FS_lC so ub € Fs-lC, contradicting the assumption

that b was reduced. q.e.d.

Remark. The proof of (5.19) shows that a b depends

h(a)-2 h(b)-ZC.

only on g mod F C and on b mod F

Proof of (5.15) when N = 1. We must show that C is an
integral domain and that U(C) is generated by U(A) and U(B).
Suppose a and b are not zero. Let u be a product of units in
U(A) and U(B) so that qu is right reduced: If gb = 0 then

au u b = 0 whereas (5.19) implies h(ab) Z~h(u—1b). There-
fore C is an integral domain. If a ¢ U(C) choose u as above.
If qu ¢ R then the equation (qu) (qu) ! = 1 contradicts
(5.19) again. Therefore au ¢ U(R) C U(A) so a is in the sub-
group generated by U(A) and U(B). q.e.d.

(5.20) PROPOSITION. Suppose ClseeesC € C (n < N)

are such that there is a relation & c; di e FS=1¢ with

h(ci di) =s (1 < i <n). Then there is a o ¢ GL;(C) such

that h(yo) < h(y), where vy = (cl,...,cn) and we write h(y)
=¥ h(ci) and similarly for h(yo).

Proof that (5.20) => (5.15). We prove (5.15) by
induction on N, the case N = 1 being accounted for above.

According to (5.5) it suffices to show that, if ClseeesC

are right linearly dependent, we can find o ¢ GL;(C) such

that yo has a zero coordinate. Choose ¢ so that h(yo) is
minimal, and let vy~ = yo = (cl’,...,cn’). If no ¢.” is zero

let X ci‘ di = 0 be a dependence relation. Say h(ci’ di) =3



206 PROJECTIVE MODULES AND THEIR AUTOMORPHISM GROUPS

for i < m and h(ci' di) <s for i > m after relabeling.

Then by (5.20) there is a ¢~ ¢ GLé(C) such that h(c¢;”,.
g’ 0

cm’)o’) < h(cl’,...,cm’). Putting o" = o 1) Ve have

h{y” ¢") < h(y”), contradicting minimality. q.e.d.

Proof of (5.20). We shall argue by induction on n,
the case n = 1 being vacuous. This permits us to assume that
no proper subset of ClsevesC satisfies a relation of the

type given. We can also assume that all the c, are right

reduced.

From the fact that h(ci di) = s we conclude using
(5.13) and (5.19), that h(ci) < s for each i. We shall

assume the ci's listed so that h(cy) > h(cy) > ... z_h(cn).
Case 1. In grC, E; E; # 0 for each i.

We claim'zl is a right linear combination of Z&,...,
Eg. Lifting such an expression to C it will follow that we
can subtract a linear combination of c2,...,cn from ¢; and

lower h{cy).

If some Ei € R then we must have d; € R, and the con-
clusion is clear. If each E; has positive degree we can
write it as E; =d,, + diB in ™ -homogeneous coordinates,

iA

where the terminal factor of the w-degree of di is a, and

A
that of d,_ is B. Then the two sums in Z ¢, d,, + ¥ c, d,
iB i 1A i 1iB
= 0 are independent, so each separately equals zero. Either
. # 0. . -
dlA or dlB is not zero, say dlA 0. Write diA Zj eij aj
where eij has lower degree and where (aj) is an R-basis for

A . The terms of the sum £ (X, c, e, )a, = 0 are independent,
371 4377

so we have Zi Ei eij = 0 for each j. The degrees of the

coefficients have been reduced so our conclusion follows by
applying induction (on the minimum of the degrees of the
coefficients) to an equation for which e11 # 0.
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Assume h(ci) =r for 1 < m and h(ci) <r for i > m.
Case 2. In grC, E; 5; # 0 for some i < m.

We can assume c¢; d; # 0, and again we will show that
h(c;) can be reduced by subtracting a linear combination of

C2,...,Cn.

Suppose 1 > 1 and E; Ei = (0. Then c; and di are pure,
say of types w(ci) = ua and w(di) = ov (see (5.19)). Then we

can write d, = I x,, e,, so that x,, € A, h(e..,) < h(d.),
i ij i ij ij i

and either ¢, x,. E:_ # 0 or else h(c, x,, e,,) < s. In the
i 713 i3 i1 ij

congruence ¥ ¢ di = 0 mod FS—lC leave the terms for which

Zi'Ei # 0 unchanged, and replace the others by the express-

ions L] ¢, x,, e,,, where I means summation over only those
J 1 1] 1] J

terms such that h(c, x,, e,.) = s. Then by case 1 we can
i "ij i3

reduce h{c;) by subtracting a (right) linear combination of

the ¢, for which c, d, # 0 together with the ¢, x,, for the
i ii i7i

other i > 1. Altogether the latter is a right linear combin-

ation of cz,...,cn, so case 2 1is established.

Case 3. We have E£ di =0 (1 <1i<m.

The remark after the proof of (5.19) shows that cy di

depends on di only modulo Fh(di)_z. If h(di) > 1 for all 1,
therefore, we can modify the di's to have no constant term

and then write di =d,

A + diB in CA 8 CB. Then the congruence

- s-1 .
z ¢y di = 0 mod ¥~ "C breaks up into two congruences permit-
ting us to assume, say, that each di € CA. Then we can write

di =z dij aj where (aj) is an R-basis for A and h(dij) <

h(d.). Then we conclude that Z, ¢, d,. = 0 mod FS_ZC for
i i i "ij
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each j, and at least one ¢y dij has height > s - 1. By
induction on s, therefore, we can assume that h(di) <1 for
some i. If some di e R then that ¢y is a linear combination
of the remaining cj. Hence we can assume that h(di) =1

(1 <i<m, andh(di) > 1 for i > m.

It follows from (5.19) that g di is pure for 1 <1
< m. If we segregate the terms with terminal factor o« and B,
respectively, for their types, and then write di = diA
for 1 > m (as above), we can obtain two separate congruences

from Z 5 di = 0 mod FS_lC. If both types occur among c; dj,

+
diB

ceesCo dm then the two resulting congruences will each

involve fewer than n terms, and the proof concludes by
induction on n.

Therefore we may assume c) dl,...,cm dm are all pure
of the same type. It follows that d1,...,dm all lie in
either A or B, say in A. Moreover each ¢, is pure of type

w(ci) = ua for some u.

Let J denote the R-module generated by elements of

the form cid such that i > m and Cid € Fs_lC + Cua' We claim

that J + FS_lC = VA + FS_lC where V is an R-submodule of Cu.

For let V be the largest R-submodule of c” such that VA C

J + FS_lC. To show that every cid as above lies in VA +

Fs_lC we can of course assume h(cid) = 8.

If Ei& # 0 then we can modify d, without changing

cid = cid, so that d € CA. Then we can write d X ej aj

where h(ej) < h(d) and (aj) is an R-basis for A. From

c.d =232, c, e, a, we conclude that c,d = Z, ¢, e, a.. There-
1 J 1 1 1] 1 J 1 1 1]
s-2 1

fore, ey ej e V+F C for each j, so Cid € VA + F° C.
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Next suppose E;E = 0. Since ey is reduced it follows
from (5.19) that s = h(cid) = h(ci) +h(d) -1 <s -1+

h(d) - 1, so we have h(d) > 2. Further, since cid is pure of

type ua it follows that d is pure of type w(d) = va for some

v. Without changing Cid mod FS~1C we can further assume that

d = vad + V’ad where v~ is v with its initial factor removed.

Therefore Cid € cinX + cin K, and the modules ciCV and

ciCV project, modulo FS-ZC, into V C c". Therefore again

c d e VA + P57 1c.

Now we return to our congruence (%) (c; dj + ... +

_ s=1
c dm) + (Cm+l dm+l oot e dn) = 0 mod F~ “C. The second

term in parenthesis lies in Fs_lC & VX, as we have just
proved, and ClreeesC € Fs—lc 8 c"A, Passing to

s-1

#1lce " 7 e v

= (c%/V) 8 A

the congruence (*¥) becomes a linear dependence relation over
A between the images of ClaesssC -« Since (Cu/V) 8 A is a
submodule of the free A-module (CY/V) 8 A, it follows from

the fact that A is an n-fir that there is a o ¢ GLm(A) such

-

that, if (cl,...,cm)o = (cl',...,cm’), we have c e F

& VA. Hence, modulo Fs—lC, cm’ is a linear combination of

s—lC

Co41? 2 C,» SO wWe can reduce h(cm ) to something <s -1,
since we still have h(ci’) < s (1 <i < m) we have succeeded

in reducing ¥ h(ci), as claimed. q.e.d.
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§6., SESHADRI'S THEOREM

It states, under suitable hypotheses, the following:
Let R be a commutative ring, let S be a multiplicative set
in R, let A be an R-algebra, and let P ¢ P(A). Then if s 1p
is a free S ! A-module, P is a free A-module.

In the original version of Seshadri, R was a principd
ideal domain, S was R-{0}, and A was R[t], a polynomial ring
in one variable. In this case § !P is automatically free,
clearly, so he deduced that all P ¢ P(R[t]) are free.
Seshadri's argument applies to somewhat more general situa-
tions, as many authors have observed, and we shall present
such a generalization. While the hypotheses are necessarily
quite restrictive, they allow certain non commutative R-
algebras A. Moreover it is useful to further allow a more
general type of multiplicative set than heretofore consider-
ed, and we begin by taking up this point.

Let R be a commutative ring, and let S be a multi-
plicative set of invertible ideal in R. We propose to con-
struct a localization functor M > § 1M from mod-R to mod-
S IR with all the properties of ordinary localization, with
which it coincides when the ideals in S are principal. Let
L be the full ring of fractions of R. Then if a ¢ S we have
a lc 1, and

s 1r =LJ§71 (a e 8)
is clearly a subring of L. It is more convenient to write
S IR = lim a ! (a € 8),

the maps in the direct system being the inclusions. If M ¢
mod-R then we set

s 1M

. ~1
11m> ™M GR a )

. -1
M @R (1im . a )

~1
M 8R S R.

We used here the fact that GR and lim _ commute. Since eRi—l
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is exact (a 1 is projective) and since lim> is exact,

> mod - S IR.

we see that S ! is an exact functor mod-R

There is a natural homomorphsim

M =48 R > s 1M,

and (see (I, 8.2)) its kermel is the union of the Ker(M SRR

> M 8R 371) (a € 8). We claim the latter is just

annM(g) ={xeM| xa=0} Since a is finitely generated
(being invertible) it suffices to check this locally. There-
fore we may assume a = gR is principal. But then the homomor-
phisms M 8 R —> M 8, 4 IR and M % M are isomorphic,

and the latter clearly has kernel annM(a).

Let A be an R-algebra. Then evidently S lA is an

S_IR—algebra, and S ! induces an exact functor

S 1l: mod-A > mod - S lA.

We claim:

If M e M(A) then STIM =0 < Ma = 0 for some a ¢ S.
The implication <= is clear. For the converse we apply the
conclusion of the last paragraph to each of a finite set of
A-generators of M, and let a be the product of the annihil-
ating ideals so obtained.

We have the natural homomorphism of S !R-modules

hp: 1 Hom, (P, M) > Homs-lA(s"lp, s~ v

for P, M ¢ mod-A. Evidently hA is an isomorphism, so it
fellows from additivity that hP is also for all P ¢ ng).

Using half exactness and the 5-lemma it now follows by a
standard argument that hP is an isomorphism whenever P is a

finitely presented A-module.



212 PROJECTIVE MODULES AND THEIR AUTOMORPHISM GROUPS

(6.1) THEOREM (Seshadri,...). Let R be a commutative

ring, and let S be the multiplicative monoid generated by a

set SO of invertible prime ideals in R, Let A be an R-alge-

bra which is faithful and flat as an R-module and such that

for each p ¢ SO and a € S, A/Ap is generalized n-euclidean

ring (see (5.4)) and Aa/Aap = A/Ap. Let P, Ll,...,Ln e B(A)
be such that Li/LiB_: A/AE (1 <1 <mn) for each p e S, and

such that S P = S 1L, where L = L1 &...8 L_. Then there is

an a in the group S generated by S such that

(1) P:LléQLz Q’...$Ln.
Moreover, if ESPRRRRE S T are such that ap...a = R, then

2 L =L 8L e .
(2) 1 aj 2 8 &...8 Ln én

(6.2) COROLLARY. Suppose above that A/Ap is general-

ized euclidean for each p ¢ S, and that every module in
P(s"1A) is S !A-free. Then if P # O and P € P(A) we have
P ~Aa & An_l for some a ¢ § and scme n > O.

Proof. By hypothesis s lp = S_l(An) for some n > O,

so we can take each Li = A above. q.e.d.

(6.3) EXAMPLES. Suppose A and B are augmented R-alge-
bras for which the hypotheses of (6.1), vis—-a-vis SO and S,
hold. Then they hold also for A *

(5.15).

R B; this follows from

Let R be a Dedekind ring and let A = Rm, where 7 is a
free monoid or group. Then it follows from (5.17) that A/Ap
is generalized euclidean for all p € max(R). Moreover the
same is true of STlA, where S IR is the field of fractions

of R. Thus we can apply (6.2).
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(6.4) COROLLARY. Let R be a Dedekind ring and let =

be a free monoid or free group. If P & P(Rm), P # 0, then
P~ (Rn QR L) 8 ®RN™ ! for some L ¢ Pic(R) and some n > 0.

Proof of (6.1). We shall carry out the proof in
several steps.

(i) If H e P(A), a €S, and p € S5, then Ha = H@Ri,

and Ha/Hap = H/Hp. (We regard Ha C S™!H).
and na/Hap P 8

Since A is R-flat so also is H(e P(A)). Therefore H @R

preserves the exactness of 0 > a > S—IR, so H QR a is

thus identified with Ha C H @R SR = ST1H. (In case a

]
i

we see that H is embedded in S™1H).

Suppose a € S. Then Ha/Hap = H QR(E/?_R) = (H GA A) QR
(a/ap) = H @A(AE/AEP_) = H QA(A/AP_) (by hypothesis) = H/Hp.
In general we can write a = b _c__l with b, ¢ € S. Then HE/HER
=~ Hc™l/Hc !p =~ H/Hp, applying the special case above to
(e
(i).

and b) and to (Hg_1 and c¢), respectively. This proves

A splitting of an H ¢ P(A) will mean a direct sum
decomposition H = Hle’..ﬁ}Hn such that Hi/HiP_ = A/Ap for all
P €S, (1 <1i<n).

(ii) Let H = Hld}...@Hn be a split submodule of Q ¢
P(A), and assume Qbp C H for some P €S, and b e S. Then

(B MQp)/Hp = (A/Ap)T for some r (0 <r < n), and there is a

module, H, such that Qb C HC Q, and with a splitting H =

Hip ~ ®H, #...8 H_.

Consider the exact sequence of (A/Ap)-modules
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0 J

> (H M Qp) /Hp > H/Hp > Q/Qp.

We have Q/Qp ¢ P(A/Ap), and H/Hp = (A/Ap)". Thus Im(j) is a
submodule with < n generators of a projective (A/Ap)-module,
so (5.2) implies that Im(j) is (A/Ap)-free. In particular
H/Hp = Im(j) & Ker(j), so Ker(j) also has < n generators and
is therefore also free; say Ker(j) = (A/AR_)r and Im(j) =
(A/Ap)S. Then (5.1) (an) implies r + s = n.

Write M” = M/Mg_for M € mod-A. Then there is an o~ ¢
AutA,(H’) such that o”(H;" &... QHr’) = Ker(j), and hence

o (Hr+l &... QHn ) is mapped injectively by j. Now AutA,(H )

> GLn(A’) = GEn(A’), the latter equality because A~ is
generalized n-~euclidean. Therefore we can write a” = 78~
where £~ € E(Hl’,...,Hn’) and §° is represented by a

diagonal matrix with respect to a basis consisting of
elements in the various Hi' Since 5’(Hi’) = Hi‘ for each i

it follows that Ker(j) = e‘(Hl’@'...QHr‘) also. According
to (3.3) there is an ¢ € E(Hls---an) which reduces modulo
p toe”.

Let G = e(H; & ... @Hr), so that G + Hp = H M Qp. Put

H=0Cp'!® c_,® . @H) = Gp ! +H = (HNQp)p !. Since

Qbp C EM Qp we have Qb € (H M QE)ETI = H. There now remains
only to be shown that

*) H=~Hp 8 Hy ®...0H .

We have ﬁf}: H and EQ/HE_: (A/AE_)r for some
r(0 < r < n). Under these conditions we will show, by
induction on r, that ) holds. If r = 0 then ﬁﬁ_= Hp so H

= H, Assume now that r > 0. Choose ¢ as above and put K =
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s(Hl)pfl @ c(Hy 8...8 Hn). Then, using part (i) of the proof
we see that this is a splitting of K C H, and clearly Hp/Kp
~ (A/AQ)r_l. By induction, therefore, A= e(Hl)Efr ® c(H, &

~ -r
B H) = HpT @ Hy &... 8H .

(iii) The isomorphism (2) holds.

Since S is a free abelian group with basis S it will

suffice to show that, if p € Sy, and if i # j, then L =

k#i,i “k

side of this is a new splitting of L, and the isomorphism

LiEfl & LjB & oo, For, according to (i), the right

(2) can then be realized as the composite of a finite

sequence of isomorphisms of the above type.

To prove the isomorphism above there is no loss in
assuming (i, j) = (1, 2), just to simplify writing. Let H =
Ly Lop 138 ...6 L C L. Then Lp C H and Lp/Hp * L,p/Lop?

® L,/Lop = A/Ap, using (i). Thanks to (ii) now we conclude
that L « L1p”! @ Lop ®# Ly & ...8 L . q.e.d.

(iv) The isomorphism (1) holds.

By hypothesis we can identify s7lp with s”1L. Every
element of S~!P/P is annihilated by some element of S. If we
apply this to the images in S—IE/E_Of a finite generating set
of L we obtain an a € S such that LaC P. Put H = La = Lja &
...$‘Ln§, There 1s also agce S such that Pc C H. It follows

from (iii) that H = H; & H, &...8 H where H, = L, (1 <1<
i s

n) and Hy = ngé. It will therefore suffice to show that P

=~ Hia” %1, 8,...8 H for some a” ¢ S, and we shall do this

now by induction on the number of prime factors (in S,) of
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of c. If ¢ = R then H = p and there is nothing to prove.

Otherwise we can write ¢ = pb with p e S and b € S. We can
< o L2
apply (iii) now to find H = HlEfr o Hy ¢...6 Hn for some r,

and such that Pb € HC P, Since b has fewer prime factors

than ¢ the desired isomorphism follows by induction.
This concludes the proof of Theorem (6.1).

We shall close this section by outlining the proof of
some further applications of Seshadri's Theorem.

(6.5) COROLLARY. Let R be a commutative noetherian

ring of dimension < 1 having only finitely many non inver-

tible maximal ideals. Let A = R[T] where T is a free group

or monoid on one generator t. Then if P e P(A) has constant

rank > 0, it 1s the direct sum of an invertible module and

of a free module.

Proof. Let a be the product of all non-invertible
maximal ideals in R, and put " = 1 + a. If p € max(R) and
s € p 8" then p is invertible, so RR is a discrete valua-
tion ring. Assuming that spec(R) is connected (which is no
essential restriction for the problem at hand) it can be
shown that s is not a zero divisor. This derives simply from

the fact that 32 is an integral domain whenever s e p.

Let SO be the set of primes in A generated by the
maximal ideals of R which meet S”. Then clearly SO satisfies
the conditions in (6.1), and the ring S 1A in (6.1) coin-
cides with S°7!A, If m ¢ max(A) meets S~ then A is a local-
ization of RE[T], p =m MR, Since RR is a DVR it follows

that 3R[T] is a unique factorization domain, so that §7 is

factorial for A. Hence it follows from (III, 7.17) that



THE STABLE STRUCTURE OF PROJECTIVE MODULES 217

Pic(A) > Pic(S” !A) is surjective.

With the aid of (6.1), therefore, the corollary Qill
follow once we establish that the conclusion of the coroll-
ary is valid for S"lA in place of A. In turn, the latter
will follow from Serre's Theorem (see (2.6) and (2.7)) if we
can show that max(S 1A) is a finite union of subspaces of

dimension < 1.

S“7IR is a semi-local
ring of dimension < 1. If dim R” = 0 then dim max(R"[T]) =
1. On the other hand, if dim R” = 1 then dim (R"/rad R”) <
dim (R7) so it follows from (III, 3.13) that max(R7[T}) is

Now S 1A = R”[T] where R’

a union of two subspaces of dimension < 1. q.e.d.

(6.6) COROLLARY. Let 7 be an abelian group of rank

one and let A = Zwv., Then the conclusion of (6.5) is valid

for A.

Proof. By a direct limit argument we can reduce to
the case when m is finitely generated. Then 7 = T, X T where

T is finite and T is infinite cyclic. Putting R = éﬁo we
have A = R[T], and the hypotheses of (6.5) apply to R = ;po.
(Every maximal ideal of R not containing the "conductor"
(see XI, §6)) from Zr  to its integral closure in Qr  is

invertible).

A refinement of the above methods, due to Endd[1],
can be used to prove an analogue of (6.5) for a free abelian
group or monoid on two generators. In this case, however, R
must be assumed to the semi-local of dimension < 1. The idea
is to show that A = R[T] has a "large" set SO of invertible

primes of the type occurring in (6.1), and then to show, as

above, that max(S_lA) is a union of subspaces of dimension
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< 1. A broad generalization of Seshadri's theorem has recent-
ly been obtained by Murthy [1]. He extends the theorem to

the coordinate ring of any affine surface (over an algebra-
ically closed field) which is birationally equivalent to a
ruled surface.

HISTORICAL REMARKS

The treatment of the stability theorems here follows
closely that of Bass [l]. There are, however, a number of
technical improvements of the results as presented in that
reference.

The material of §5 is taken from papers of Cohn,
especially Cohn [1]. I have used a description of free
products which is due to Stallings [1].

Seshadri's Theorem has precedents in a long series of
papers by various authors. The exposition here is taken from
Bass-Murthy [1] and Bass [2]. The first of these references
contains a more extensive bibliography. In particular, as is
pointed out there, End6[1l] has contributed greatly to the
present -form of the theorem.



Chapter V
THE STABLE STRUCTURE OF GL,

This chapter treats, essentially, the problem of
classifying all normal subgroups of GLn(A), where A is any

ring. The theory is satisfactory for "sufficiently large" n.
Indeed, if we pass to GL(A) =nlim>°o GLn(A) (see §1) then

one can give a first order solution which is valid for
arbitrary A: The normal subgroups are each sandwiched
between two groups of the form E(A, q)C GL(A, q), for some
two sided ideal g. Here GL(A, g) = Ker(GL(A) > GL(A/q))
the "congruence group of level g", and E(A, g) is the normal
subgroup generated by all "g-elementary" matrices. Moreover
we have the commutator formula, [GL(A), GL(A, Q]1= E(A, q),
so that the classification of normal subgroups of GL(A) is
reduced to the calculation of the abelian groups

Kl(As &) = GL(A, ﬂ_)/E(A> S_).

The main results of this chapter (see §4) give
conditions, of the type occurring in Chapter IV, for results
like those above to hold in GLn’ for finite n. For example,

let A be a finite algebra over a commutative noetherian ring
of dimension d. Then if n > d + 3 one can largely reduce the
classification of normal subgroups of GLn(A) to the calcula-

tion of certain abelian groups, GLn(A, g)/En(A, q), and the

latter map isomorphically onto Ky(A, ).

219
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The proofs of these results are quite long and
technical. The exposition is based partly on that of Bass
[1], but mainly on Chapter II of Bass-Milnor-Serre [1]. In
the latter reference that stability theorem is used to solve
the "congruence subgroup problem’" for the special linear
group over a ring of algebraic integers. This type of
application will be discussed below, in Chapter VI, in a
rather general setting.

In the basic theorems here we allow A to be non
commutative. (This was not the case in Bass-Milnor-Serre).
For this reason the results are not completely trivial even
in "dimension zero", i.e. when A is a semi~local ring. For
example, the theory here touches upon Dieudonné's theory of
non commutative determinants, when A is a division ring
(cf. §9), and upon work of Klingenberg [1], when A is local.

The groups K; (A, g) introduced above will appear in
later chapters in a slightly different guise. The methods
developed in those chapters will permit us to compute these
groups in many interesting cases (cf., for example, the last
sections of Chapter XII).

§1. ELEMENTARY MATRICES AND CONGRUENCE SUBGROUPS

Let A be a ring. Then GLn(A) = AutA(An) where AT =
A® ... A is the standard free right A-module. We shall
write

E (A) = E(A,...,4A),
n

where the notation is that of (IV, §3). If, as we shall do

freely, we identify endomorphisms of A" with the correspond-
ing matrices, then En(A) is generated by elementary matrices,

e=1 +ae,, (a e A, 1 £ j), where e,, denotes the matrix
n ij ij

with 1 in position (i, j) and zeros elsewhere. We shall say
e is g-elementary, where g is a two sided ideal in A, if «
€ q. The group

E (4, g) = E(A,...5A5 @)

(again in the notation of (IV, §3)) is thus the normal
subgroup of En(A) generated by all g-elementary matrices.
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As a special case of (IV, 3.3) we have.

(1.1) PROPOSITION. Let g be a two sided ideal in A.

and let f: A——> B be a surjective ring homomorphism. Then

> En(B, f(q) for all

f induces an epimorphsim En(A, q)

n > 1.

(1.2) PROPOSITION. Let A be a ring, let a, b € A, and

let u, v ¢ U(A). Then we have the following formulas in
GL (A).
n
(a) 1f 14 § then A

> GL (A), a‘ > 1 + qe,,,
n i3

is a monomorphism of groups.

(b) If i, j, and k are distinct (so n must be > 3)

then
1+ aeij, I+ bejk] =1+ ¢gb "
(u B)
0 -
(¢) /1 «a Y _ 1 u lgv
0 1 0 1 >
and

1 a u b 1 ulgv - a
0 1/ \o v/i” \o 1 :

Proof. Recall that e,, e = &8, e, . Hence e, = 0
—_— ij kh jk "ih ij
if 1 # j and (a) follows from this.

()] [r + ae; ;s I+ bejk] = (I - aey s - bejk + ab eik)
(I + aeij + bejk + ab eik)

= (I - aeij - bejk + gb eik)

+ (aeij) + (bejk - ab eik)

+ (ab eik) =1+ gb -
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(c) u b 1 bv'! u O
o v = \o 1 0 v/’ and the left factor

commutes with I + gej,. Hence

e neae

and 1 a u b
0 1/ \0 v

I

]
— P N
[

i HQI
\/
TN
[

c
|
= et
\_g

(1.3) COROLLARY. If A is a finitely generated Z-

algebra then En(A) is a finitely generated group for all

n> 3. If A is a finite Z-algebra then E,(A) is likewise

finitely generated.

Proof. En(A) is generated by a finite number of sub-
groups, each isomorphic to the additive group of A, by (1.2)
(a); this proves the last assertiom.

Suppose a = 1, Ayseresa generate A as a ring. Let

s={1+aiejk | 0<i<r,1<3j, k<n,j¢#k} afinite
set, Since n > 3 it follows, by induction, from (1.2) (b)
that the group generated by S contains all I + Meij for all
i# j and all monomials M in ao,...,ar. These M's generate
A additively so it follows now from (1.2) (a) that S

generates En(A). q.e.d.
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(1.4) COROLLARY. Assume n > 3. Let H C GLn(A) be a

subgroup normalized by En(A). Let T be a family of elemen-

tary matrices contained in H. Then H D En(A’ q) where g is

the two sided ideal generated by the coordinates of I - ¢

for all o ¢ T.

Proof. If o = 1 + aeij e T then it follows from (1.2)

(b), thanks to the fact that n > 3, that H contains all
matrices of the form I + bac &k (b, ¢c € A; h# k). The

En(A)—normalized subgroup generated by these is En(A’ AgA).

Letting o vary now, the corollary follows easily. q.e.d.

(1.5) COROLLARY. Assume n > 3. Let g and g~ be two

gsided ideals in A. Then

E (A, g4 C [En(A, [ En(A, q7 7.

In particular
En(A, qQ = [En(A), En(A, Q1.

Proof. The group [En(A, ), En(A, q7)] is normalized
by En(A)’ and (1.2) (b) implies it contains all qq“-elemen-
tary matrices; now apply (1.4). The inclusion En(A’ QD
[En(A), En(A’ g)] holds because En(A) normalizes En(A, Q).

We now introcduce some notation which will be used
throughout this and the ensuing chapters. Let A be a ring.
For n, m > 1 we shall regard GLn(A) as a subgroup of

GLn+m(A) via the monomorphism
o> aa 1 =0 (GL_(A) C GL_ . (A))
m 0 I n n+m -
m

Passing to the limit we obtain

GL(A) =U_GL (&) (= lim  GL_(A)).
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We can think of the elements of GL(A) as infinite matrices.

o 0
ll
< . ) (o ¢ GL _(A) for some n).
0 . n

In particular we have identified U(A) = GL;(A) with
the set of diagonal matrices, diag(u, 1,...,1) in GLn(A),

for each n. These are a subgroup of

Dn(A) = {diagonal matrices in GLn(A)}.

Let g be a two sided ideal in A. Then the principal

congruence subgroup of level q in GLn(A) is

an(A, qQ = Ker(GLn(A) > GLn(A/g))-

11 H i
More generally, we sha say that H C GLn(A) is a subgroup
of level q if H is a subgroup such that

E (A, 9C HCGL_(A, ).

(1) If n > 2 then the level of, H, is uniquely determined

To see this it suffices to show that if En(A,_g)C

GLn(A, q7) then g ¢ q”. Let f: A > A/q”. Then our
assumption and (1.1l) imply that En(A/q‘, f(Q)= {1}. Since

n > 2 this clearly implies f(gq) = (0), i.e. that g C q”~.
If o is an m x n matrix over A we shall write

T
o

. . . o
for its transpose. It is an n x m matrix over A~ (not Al).

If aB is defined then TB Ta is defined and equals T(aB).
In particular we have a ring antiisomorphism

M (A) transpose > M (AO).
n n

As sets Mn(A) = Mn(Ao), and hence it makes sense, and is
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true, to say that all the groups introduced above are
invariant under transposition.

If A is commutative we have the determinant, and its
kernel,

SL (A) = Ker(cL (&) 3855 y(a)).
n n

We write
= M
SLn(A, q) SLn(A) GLn(A, q), and
SL(4&, ) =\g% SLn(A, Q-
The inclusion U(A) = GL;j(A) C GLn(A) is a right inverse for
det. Thus we have
E (4 g C SLn(A, 9 c 6L (A, @) =U(A, g)

. SLn(A, q).

As before, all of these groups are invariant under trans-
position.

We shall further write

D (&, 9 =D _(&)NCL (4 Q.

In case n = 1 we have U(A, q) = GL1(A, gq) = D;(4, g). The
group generated by En(A,<9) and Dn(A, g) will be denoted

GEn(A, Q-

The subgroups introduced above are "stable" in the sense
that the embedding GLn(A) C GLn+m(A), induces embeddings of

these subgroups. Thus we can introduce

E(A) =U_E (&)

E(A, @) =U_ En(A, )
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GL(A, @) = Y GL_(A, 9)

D(A, @ Un Dn(A, q)

GE(A, @) =kJn GEn(A, q), etc.

(1.6) PROPOSITION. For all n > 1, En(g) = SLn(g), and
GE (Z) = GL_(2).
n = n =

Proof. Since Z is euclidean this follows from (IV,
5.9). B

The next result is a basic tool in what follows. It
shows that, modulo the elementary subgroups, the group law
in GL and the direct sum coincide.

(1.7) PROPOSITION ("Whitehead Lemma'). Suppose a €
GLn(A) and b ¢ GLn(A, q), where q is a two sided ideal in

A. Then
a O ab O ba 0
0 b 0 I 0 I mod B, (4, @)
0 a
b 0 mod Ezn(A).

These congruences apply to both left and right cosets.

11

11

Proof. We shall give the proof for left cosets. The
proof for right cosets is similar. Alternatively one can
deduce the latter from the former with the observation that
all subgroups involved are invariant under transposition.

0 a a 0 0 I
First we have 5 o/ \o b 1 0o and it

0 I
follows from (1.6) that <—I 0> e E, (A).

Write b = I + q, so that q has all coordinates in q.
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Then direct calculation shows that

) CNEOETIE )
6 )

S EZn(A’ q) . Therefore
ab O a O\ /b O
o 1/ "\o b/\0 bl
Finally, we have
ba 0 N fa O
0o I 0 b/
<IO>
I (ba)-lq I —a-lq a I
~\o I 0 I

I 0
b lge I € EZn(A’ q). q.e.d

(1.8) COROLLARY. Let q be a two sided ideal in A,

(a) If Alseensd € GLn(A, gq) then
dlag(al,...,am) = dlag(al...qm,l,...,l) mod Enm(A, q).

(b) Dn(A) normalizes En(A, q9), and GEn(A, Q)
= U @ * E_(4, 9.

() GEn(A, q) contains all generalized permuta-

tion matrices (see proof for definition).

Proof. (a) diag(al,...,am) = diag(ul,...,am) diag(I,

...,I,am,am Y = diag(al,...,um_l . am,I) mod Enm(A, q) by
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the Whitehead Lemma. Now (a) follows by induction on m.

(b) If S € Dn(A) and if e is g-elementary then it

follows from (1.2) (c) that 56 is g~elementary. When g = A
this shows that § normalizes En(A). In general En(A’ q) is

generated by elements of the form e’ with ¢ as above and
o € En(A). We have just seen that 86 is g-elementary and
" ¢ B8 so (D% = (D% € & (4, @). Thus D_(4), and
hence also U(A) C Dn(A), normalize En(A, q). Part (a)
implies the group generated by U(A, gq) and En(A’ q) contains
Dn(A, q), and this proves (b).

(c) A generalized permutation matrix is one of the

form &m, where § e Dn(A) and where 7 is a permutation matrix

(i.e. is invertible and has a single non zero entry, equal
to 1, in each row). It follows from (1.6) that © = diag(+l,
1,...,1) « ¢ where ¢ ¢ En(A). Hence & € GEn(A).

(1.9) COROLLARY. Let g be a two sided ideal in A.
Then [GLn(A), GLn(A, 9l C Ezn(A, Q.

Proof. Let o € GLn(A) and b € GLn(A, q). Then in

GLZn(A) we have
b 0 b 0 o b1 o\ fab O
0 I/°\0 1 0 1/ \0 1
a ! o0 o O
1\o0 b} \o b/ "2

= €7 € € E2n(A’ q)

for suitable ey, €5, € E, (A, q), by the Whitehead Lemma.

2n
gq.e.d.

§2. NORMAL SUBGROUPS OF GL(A); Ki(A, @)

(2.1) THEOREM. Let A be a ring.
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(a) If HC GL(A) is a subgroup normalized by E(A)

then there is a unique two sided ideal g in A such that H

is of level ¢, i.e. such that E(A, g) C HC GL(A, q).

(b) Let q be a two sided ideal in A and let H C GL(A)

be a subgroup of level gq. Then

E(A, g) = [E(A), H] = [GL(4), H] (CH).

In particular H is normal in GL(A).

(c) Let f: A
phism, and let H be as in (b). Then E(A, q)

> B be a surjective ring homomor-
> E(B, £(g))
is surjective, and f(H) is a normal subgrcoup of level f(q)

in GL(B).

This theorem shows that, for each two sided ideal g,
K1 (A, q) defn GL(A, @)/E(A, @)

is an abelian group. Moreover, the determination of Kj(A, q)

for each ¢, is equivalent to the determination of all normal

subgroups of GL(A). In Chapter IX the group K (4, gq) will
be introduced from a slightly different point of view, but
it will be shown that the definition used there is equival-
ent with the present one.

In case A is commutative we have det: GL(A) > U(4a),
whose kernel, SL(A), contains [GL(A), GL(A)] = E(A). There-
fore we obtain a split exact sequence

0 det

> SK1(4a, g) > Ky (4, g) > U(A, g) > 0

for each g, where

The theorem above shows further that the groups SK; (A, q)
classify the normal subgroups of SL(A).

When g = A we shall write

Ky (a) = K;(A, A) = GL(A)/E(4),
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and, if A is commutative,
SKy1(A) = SKj(A, A) = SL(A)/E(A).
Proof of (2.1). Part (c) follows immediately from

(1.1) and parts (a) and (b). For part (b) it clearly
suffices to show that

E(A, g) = [E(4), E(A, g)] = [GL(A), GL(A, @)].

The first equality follows from (1.5), and, in the second,
the inclusion C is obvious. Therefore it suffices to show
that [GL(A), GL(A, g)] C E(A, g). This follows, by passing
to the limit over n, from (1.9).

It remains to prove (a). The uniqueness of q follows
from the remark (1) in §1 (or from part (b)).

We first claim that, if H # {I}, then E(A, q) C H for
some g_# 0. For let Hn =H F\GLn(A) and view this as a sub-

group of

GL_(A) A"
. . CGLn+l(A).

This is conjugate to the affine group Affn(A), (see IV, §4)).
Hn is normalized by En(A) and, for large enough n, Hn‘# {InL
Hence it follows from (IV, 4.3 (a) and (¢)) that [Hn, AT

= Ang for some non zero left ideal g C A. I.e. [Hn, AR] c H

I X
consists of all matrices o for which x € A" has

0 I
coordinates in a. Now it follows from (1.4) that E(A, aA)C
H, thus proving our contention.

To conclude the proof now, let g be the largest two
sided ideal such that E(A, ¢) C H; this clearly exists. We
claim HC GL(A, gq). If not let H” be the image of H in
GL(A™), where AT = A/q. Since E(A) —> E(A”) is surjective,
H” is normalized by E(A”). Since H~ #{I} it follows from the
last paragraph that E(A”, q°/q) C H” for some q” # q. Taking
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inverse images we conclude that E(A, q") C GL(A, ¢) -+ H.
Hence

E(A, q7) = [E(A), E(A, ¢7)] C [E(4), GL(A, g) -+ H]

If ¢ € E(A), o € GL(A, q), and B € H then [e, aB] = [e, B]

[e, a]e (see (IV, 4.2)). Since E(A) normalizes H, [e, B] e
H. Moreover [e, a] € E(A, g) C H, by part (b). Hence

[e, aBl € H, and this shows that E(A, q”) C H, contradicting
the maximality of q. q.e.d.

§3. THE STABLE RANGE CONDITIONS, SRn(A, qQ)

The main theorems of this chapter are stated in the
next section. Their formulations involve certain technical
hypotheses which we shall define and study in this section.
In particular, with the aid of theorems proved in Chapter
IV, we shall show that these hypotheses are satisfied by
a reasonably large class of rings.

For the following three definitions we fix a ring A

and a two sided ideal g in A. Recall that a = (al,...,an) >
AT is said to be unimodular in A™ if there is a homomor-

phism f: A" > A such that f(a) = 1. This is evidently
equivalent! to the condition that al,...,an generate the

unit left ideal: T Aai = A, If, further, o = (1, 0,...,0)

mod g then we shall say that o is g-unimodular.
(3.1) DEFINITION OF
condition SRn(A, Q'

If m >n and if o = (al,...,am) e A" is g-unimodular then

there exist a,” = a., + b, a_ with b, ¢ g (1 < i < m) such
1 1 1 m 1 e

- . m-1 | .
that (a, seees@ ) £ A is unimodular.

-1

When g = A we will write SRn(A) in place of SRn(A, A
Note that SRn(A, 9) can be fulfilled only for n > 2.
Manifestly,
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SRn(A, q) = SRm(A, q) for all m > n,

The analogue of SRn(A, q), for the right (instead of left)

ideal generated by the coordinates of a ¢ Am, is expressed
by SRn(AO, q), where A® is the opposite ring of A.

(3.1)' DEFINITION OF
condition SR;(A, q):
GLn(A, ﬂ) operates transitively on the g-unimodular elements
n
in A,

Again, we shall write SR;(A) when g = A. Note that
this definition imposes a condition only on An, and not on

all A" (m > n), as does (3.1).

Before formulating the last condition we must intro-
duce some new notation and terminology. We shall write

Em(A, )

for the group generated by Em(A, q) together with [GEm(A),
GLm(A, g9)]. It follows from (1.5) that:

(1) E:'m(A, @ = [GE_(&), GL (4, g)] for all m > 3.

Let t € A. We shall say that a ¢ GLm(A) is of type
(g, t) if o has the form

I+at ajo
cq o=
az1t  ag2
where a € q, osp € Mm_l(A), and ajp, and Tu21 have coordin-

ates in g. Given such a representation of a, we can set
1+ta talz
a” = s
%21 G2

and we shall say that an o” obtained in this way is (g, t)
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~related to a. Unfortunately, since t may be a zero divisor,
o does not quite determine a”.
(3.1)" DEFINITION OF
condition SR;(A, q):

If t e g, if a ¢ GLn(A, q) is of type (g, t), and if o~ is
(q, t)-related to @, then o~ ol ¢ Eﬁ(A, q).
This condition is admittedly rather artificial look-

ing, but it is forced on us inescapably by the arguments of
§6.

(3.2) PROPOSITION. Let f: A
ring homomorphism.

> A” be a surjective

(a) Eﬁ_goc: q are two sided ideals in A then SRn(A,'Q
= SRn(A, go). In particular SRn(A) = SRn(A, q) for all q.
(b) If q” is a two sided ideal in A” then
SRn(A, f_l(g’)) = SRn(A’, q7). In particular, SRn(A) =
SR (A7).
n

Proof. (a). Suppose m > n and o = (al,...,am) is

g -unimodular. Writing 1 = I ¢, a, (¢, € A) we have g =

o iTici m

I.a, ¢c. a, so a_ 1is in the left ideal generated by the
171 1 m m

coordinates of o~ = (al,...,am c a am). It follows that

-1 m m
o’ is unimodular, and hence g-unimodular. By hypothesis
there exist a,” =a, +b, ¢ a g withb, e g (1 <1i < m)
i i i m™m i~ = —
such that (@, ,...,a’ .) is unimodular. Since b, ¢ a e g
i m-1 i m m o

(because a. ¢ go) this verifies SRn(A, g@).

Remark. This proof used only the fact that 9, is a
left ideal.

(b) Suppose m > n. We first claim that a g -unimodu-
lar ¢~ = (al’,...,aé) e A”™ can be lifted to a unimodular
a = (al,...,am) e A®: f(a) = a”. For let o be any lifting.
Write 1 = T f(ci) ai’ with e € A (1l <i<m). Then 1 =
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T 4 ai + g for some q & Ker(f) C f—l(gf). Therefore (a;,
cees@os q) is f_l(g’)—unimodular in Am+l, so we can find
i

unimodular, by hypothesis. Clearly f(B) = o
-unimodular.

b, =a, + t,q (1L < i <m) such that 8 = (by,...,b ) is
i i - - m

-

so B is f_l(gf)

. . . - +
Again, by hypothesis, we can find di bi 85 bm

l)
m—
is unimodular. Now the f(di) = ai’ + f(si) am’ solve our

with f(si) e g7 (1 < i <m) such that § = (dy,...,d

problem. q.e.d.

(3.3) THEOREM. Assume SRn(A, gq) holds, and let m > n.

(1) Em(A, q) operates transitively on the g-unimod-

ular elements in A". In particular SRn(A, q) = SR&(A, q).

Moreover Em(A, q) is a normal subgroup of GLm(A, q), and

GLm(As _CL) = Em(As &) * GLn—l(A’ ﬂ)-

(2) Let t € A and let a ¢ GLm(A, q) be of type (g, t)

If o” is (g, t)-related to a then a” € GLm(A, q) and o~
ol ¢ Em(A, q). In particular, SRn(A, qQ = SR;(A, q) -

Proof. We could actually deduce (1) from (IV, 3.4),
but the details of the argument are required for part (2).
The proof will be carried out in several steps.

(i) Let a«, B ¢ GLm(A) be of type (q, t) and let o~
and B” be (g, t)-related to o and B, respectively. Then af

is of type (q, t) and a”8” is (g, t)-related to aB.

Let o and B” be defined relative to representations

1+at G190 1+bt 812
o = and B = of o and 8.
g1t Gpp B21t Ba2

Then
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(1 + (@ + b+ atb + a1o897)¢t
aB =

(0621 + OLthb + 0&22821)1'.

Bio * atByo + @1252%>
ap1 tBip + a22822

and

(1 + t(a + b 4+ abb + ¢19851)
a’B” =

ap1 +oapith + a8y
t(B1o + atByp + OL12322>
ap1tBio + an2Bss .

(ii) Suppose Ty = (al,...,am) = (3, 0,...,0) mod qt

and that v is unimodular. Then there is a 1 ¢ Em(A, Q) of

type (g, t) such that ty = T(l, 0,...,0) and such that there

isat’ e Em(A, q) which is (g, t) related to t.

We first apply (3.2) (a) with 9, = gt; it is remarked
there that the proof only requires go to be a left ideal.
Thus we obtain a,” = q, + b, a_ with b, e qt (1 <1i < m)

i i i m i —

such that (a;",...,a” is unimodular, Set 7y = I + I
(@7 ? m—l) 1 1<i<m
bi e Since T; has trivial first column we can define

a1y’ € Em(A, q) (e.g. 117 =1+ tby e+ Zl<i<m by e;n)

which is (g, t) related to 1;. Moreover 11y = T(al',...,

- _ T . _ -
am_l,am) = (1, 0,...,0) mod gt. Write 1 = Zi<m e, a; and
set 15 = I + (Zi<m 1-a;” - am) ci emi). Since 1 - a;” -
a € gt we see that 7, is of type (¢, t), and again we can

define a 1,” ¢ Em (A, g) which is (g, t)-related to 1,.

T, . - -
Moreover T5T1Y = (a1 5...,a 1l -a;7). Nowe =1+e

m-1" im
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€ Em(A) has trivial first column, and €~ I+ te € Em(A)

1m

is (q, t)-related to e. Moreover, eToT1y = T(l, Ap " yeansy
a1 1 -a;7). Set 13 =1 - (Zl<i<m a; eil) -1 -am)
e € Em(A, q). As above we can define a 137 € Em(A, q)
which is (q, t)-related to 13. Moreover T3 € ToTi]y =

T
(1, 0,...,0), and the latter is fixed by e. Therefore 1 =

T3€ ToT] € Em(A, q) and Ty = T(l,O,...,O). It follows from

(1) above that T is of type (g, t) and that 17 = Tg’e’rz‘Tw’

is (g, t)-related to T. Evidently also 1”7 € Em(A, Q. )
(iii) Proof of (1).
In case t = 1 we have qt = q and part (ii) implies
Em(A, q) acts transitively on the g-unimodular elements of

Am. If 0 € GLm(A, q) we can therefore find 1) ¢ Em(A. qQ)

such that 170 has last column T(O,...,O, 1); say 110 =

a 0 I 0 a O
= . The left factor is clearly in
o1 pat 1/ \0 1

Em(A, q), and a ¢ GLm_l(A, q). Thus GLm(A, q) = Em(A, qQ)
GLm_l(A, q). By induction on m - n (> 0) we conclude that
GLm(A, q) = Em(A, Q GLn_l(A, Q-

Finally, to show that Em(A, q) is normal in GLm(A, q)
we take one of the defining generators, Te, of Em(A, Q.
Here 1 is g-elementary and ¢ € Em(A). Since the latter
contains all permutation matrices of determinant one, we
I 0
can, after altering e, assume 1 is of the form t = .
t 1
£\ 0 ag—l €
If o € GLm(A, q) then (t) = (7 )~, and € normalizes

Em(A, q). Therefore, after replacing a by o7, it suffices
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O : -1 -1 -1 :
to show that © ¢ E (A, g). Write o * = g, o; ~ with €, €
m 1 1

E (A, q) and a) € GLm l(A, q), using the first part of the
- _

proof. Then % = (ral)61 so it suffices to show that %1
Em(A, q). But

I O
t 1
(iv) Proof of (2).
Let o and a” be as in part (2). Apply (ii) above to

Yo = first column of o. Then we obtain 1 € Em(A, gq) of type

(q, t) and T~ ¢ Em(A, q) and (g, t)-related to T, such that

1 o 1 tp
§ = ta has the form § = o g/ Then &~ = 0 8 is (q, t)-

.-

related to §. and evidently §7871 ¢ Em(A, q). Let 60 = 1707}
then (i) implies 60 is (g, t) related to ta = §. To show

that a”a”!

€ Em(A, q) (and thus prove (2)) it suffices to
show that 606-1 = 170”0 1t71 ¢ Em(A, q). Further, since
505”1 = 505"1 67671, it suffices to show that aoa'"l €

Em(A, q). Now 60 and §” are both (g, t)-related to the same

1 ¢
§ = ta = <; ﬁ>. It follows that 60 must be of the form

1+ta tp
60 = v 8 where at = 0 and yt = 0. Therefore

l+ta tp\ /1 -tpg~?!
soa"l = _
v 8 0 g1
<l+ta o> (1 0) 1+tg O
Y I v I 0 1
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The left hand factor is in Em(A,_g), clearly. For the right
hand factor we have the following expression in GL,(A), due

to the fact, again, that at = O:

I+ta O 1 0 1 -t
= e E5(A, ¢). q.e.d.
0 1 a 1/7\0 1

We can summarize the logical interdependence of the
stable range conditions, which are proved above, in the
following diagram. Here A is a ring and 4,C g are two sided
ideals.

SR-(A, ) SR (A, q) SR (4, g)
X U -/ (for m > n)
(3.3)(1)\ (3.3)(2)
SRn(A, Q
(3.2)(/ \)(b)
Z NI
SR_(4, g.) SR_(A/q» g/_qo)

Finally, we give two results affirming that the con-
ditions introduced above are satisfied in some generality.

(3.4) PROPOSITION. Let A be a ring and let q be a

two sided ideal in A.

(a) If A is semi-local or if g < rad A then SR, (A, )

is satisfied.

(b) SR{(A, gq) is always satisfied. If A is commuta-

tive then SR;(A, q) is satisfied.

Proof. (a). Let (al,...,am) e A" be g-unimodular



THE STABLE STRUCTIURE OF GLn 239

(m > 2). If ¢ C rad A then a7 € U(A) since q; = 1 mod g so

(al,...,am_l) is unimodular. If A is semi-local then, since
2 Aai = A, it follows from (III, 2.8) that a1 + Ei>2
U(A) for some b2,...,bm e A, Thus (a; + bm as az,...,am_l)

b, a, ¢
i i

is unimodular, and this verifies SR, (A). By (3.3) (a) this
implies SR,(A, ¢).

(b) SRi(A, g) is obvious, sc assume A is commutative,
and let o = T(a, b) € AZ be g-unimodular. Write 1 = ax + by
for some x, y € A and then set ¢ = -by? ¢ g and d = x + bxy.

Then ad - be = a(x + bxy) + b2y2 = gx + by(ax + by) = 1,

b d

is in SL,(A, g). Moreover o <l> = (%) = o, and this proves
0 b

a c
Reading this med g shows that d = 1 mod g, and so ¢ = ( )

(d).

(3.5) THEOREM. Let R be a commutative ring such that

max (R) is a noetherian space which is the union of a finite

number of subspaces each of dimension < d. Let A be a finite

R-algebra. Then A satisfies SR

d+2(A)'
Proof. Let €ls.eesl be the standard basis for A" and
assume m > d + 2. Let o = X e, a; be unimodular. By (IV,

!

> A" such that

3.1) there is a homomorphism f: emA
(al""’am—l) + f(em am) is unimodular., Then f(em) = (by,
"’bm—l) satisfies the requirements of definition (3.1).

q.e.d.

§4, THE MAIN THEOREMS

We fix a ring A. If g is a two sided ideal we write
L”(A
GL_ (A, @)

for the inverse image in GLm(A) of the center of GL (A/q).
m
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(4.1) THEOREM. Assume SRn(A) (see 3.1)) and let

m > n., Then, for any two sided ideal q:

(a) Em(A, q) is a normal subgroup of GLm(A), and
GLm(A, q) = Em(A, qQ - GLn_l(A, q).

(®) [GE (&), 6L (4, Q)] CE (A, ¢). If m > 3 this is

equality and, moreover,

[Em(A), GLI;(A, Q1 = Em(A, Q.
If m>2 (n - 1) then
(6L (&), GL (A, 9] CE (A, 9).

(c) Assume m > 3. Then a subgroup H gﬁ_GLm(A) is

normalized by Em(A) if and only if there is a two sided

ideal g such that

E (A, @) C HCOL (4, @).

In this case q is determined by: Em(A, q) = [Em(A), H].

This theorem will be proved in §5. The proof of parts
(a) and (b) will show, more precisely:

(4.1)' PROPOSITION. Assume only SRn(A, q), and let
m > n. Then GLm(A, qQ = Em(A, q) - GLm_l(A, q), and

[GE_(8), GL (4, Q1 CE (4, 9),

with equality for m > 3.

(4.2) THEOREM. Let q be a two sided ideal in A.

Assume that conditions SRn(A, ), SRn(AO, ), SR;_l(A, q)
hold. Then

L (4, @ — K14, @

is surjective, and for m > n, the natural homomorphism
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is an isomorphism.

Recall from §2 that K; (A, @) = GL(A, Q) /E(A, ).
Thus the fact that GLm(A, q) > Ky (A, q) is surjective for

m>n - 1 follows from (4.1) (a) (or, rather, from (4.1)").
The procf of the injectivity assertion is rather technical,
and it occupies §86-8.

When A is commutative it follows immediately from
(4.2) that

SL__1(4, @ > SK; (4, Q)

is surjective, and that

SLm(As ﬂ) /Em(A, ﬂ) > SKI(A: _(]_)

is an isomorphism for all m > n. We also have the following
useful corollaries.

(4.3) COROLLARY. In the setting of (4.2) assume
further that SRn(A) holds. Let m > n, and let HC GLm(A) be

a subgroup of level gq. Then

E (4, 9 D [6L_(&), B] D [E_(A), HI,

with equality if m > 3,

Proof. The equality when m > 3 follows from (4.1) (b).
For the rest it suffices to show that [GLm(A), GLm(A, QI1C

Em(A, g . By (2.1) (b) we have [GL(A), GL(A, q)] = E(4, @),

and the injectivity part of (4.2) means that E(A, @) M
GLm(A) = Em(A, q). This proves the corollary.

(4.4) COROLLARY. Suppose, in the setting of (4.2),

that q = A and that A is a finitely generated Z-algebra. If

GLm(A) is _finitely generated from some m > n - 1 then K; (&)

is finitely generated (as an abelian group). Conversely, if

K;(A) is finitely generated then GLm(A) is fipitely

generated for all m > max(n, 3)

Proof. The first assertion follows because GLm(A)



242 PROJECTIVE MODULES AND THEIR AUTOMORPHISM GROUPS

> Ky (A) is surjective for m > n - 1., According to (1.3)
Em(A) is a finitely generated group for all m > 3. If,
further, m > n, then (4.2) implies GLm(A)/Em(A) = K,(4).
Therefore if K;(A) is finitely generated so also is GLm(A).
q.e.d.

Remark. If, in (4.4), A is commutative, then we have
also the analogue of (4.4) with SLm in place of GLm and SK;
in place of K;. This follows from the corresponding analogue

of (4.2), described above, for SK;.

(4.5) COROLLARY. Let R be a commutative ring such

that max(R) is_a noetherian space which is the union of a

finite number of subspaces each of dimension < d. Let A be

finite R-algebra. Then the conclusions of Theorem (4.1) are

valid for A with n = d + 2. The conclusions of Theorem (4.2)

are valid for A, and all ideals g, withn =d + 3, or for

n =3 if A is commutative and d = 1.

o
Proof. By (3.5) we have SRd+2(A), and SRd+2(A ) also,

by symmetry. By (3.3) (b), SRn = SR;, and, trivially,

,- Hence we have SR 113 and SR&+2 for A, Thus we've
established the hypotheses of (4.1) and (4.2), respectively,
in the indicated ranges. Moreover, if A is commutative, then
SR5(A, q) is always satisfied according to (3.4) (b). Hence,
if further d = 1, then we have SR3(=SRd+2) and SR;, i.e. the

SRn = SRn+

hypotheses of (4.2) for n = 3.

Remark. I conjecture that Theorem (4.2) is valid with
only the hypothesis SRn. It will be seen from the proof that

the hypothesis SRr’l_l intervenes only at the last stage (see

(8.1)).

§5. PROOF OF THEOREM (4.1).

We keep the setting of (4.1) and fix an m > n,
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Proof of (a). According to (3.3) (1), SRn(A, q)
implies GLm(A, Q = Em(A, q) - GLn_l(A, q) . Now assume
SRn(A). We propose to show that Em(A, g) is normal in
GLm(A). By definition Em(A, q) is generated by elements of
the form 1= where ¢ € Em(A) and 1 = Im + aeij (a e q, i # 1.
Since Em(A) contains all permutation matrices of determinant

1 (e¢f (1.8) (¢)) it suffices even to restrict i to the value

I 0
m, in which case 71 has the form 1 = < m-1 >. In order to
t 1

show that Em(A, 9) is normal in GLm(A) it suffices to show
for each o ¢ GLm(A), that (TE)G € Em(A, q). Since
-1
€
(t7) Ye, and since € e Em(A) normalizes Em(A, q)
(by definition), it suffices, after replacing o by eoe~ !,
-1

to show that t° e Em(A, q). Write ¢" ! = €, 6”1 with

0] £0E
= (T

01 0
€, € Em(A) and ¢~ = (; 1) € GLm_l(A); this uses the

conclusion of the last paragraph. Then =061 = (T0 )EQ

and, again, it suffices to show that 1° € E_(A, q). We
calculate: m

o <01‘1 0> I 0\ fo; O I 0
(l) T = =
0 1 <t 1) (o 1> <t01 1)

€ Em(A, Q). q.e.d.

Proof of (b). Assuming SRn(A, q) we shall show that
[GEm(A), GLm(A, Pl C Em(A, q) . The equality when m > 3
follows from (1.5).

As above, Em(A) is generated by elements TE, where

I O
€ € Em(A) and T = < ;} By (1.8) (b) GEm(A) is generated
t 1
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with Em(A) by elements § = diag(l,...,1, u) where u € U(A).

Therefore, it suffices to show that, given o € GLm(A, ),
€
[o, 618] € Em(A, gq). We have [o, 5T€] = {o, TE] [o, 5]T and

~1
fo, TE] = [ce , T]S. Since Em(A) normalizes Em(A, q) (by
definition) it suffices to show, for all ¢ € GLm(A, Q,
that {0, 8] and [0, T] are in Em(A, q). By part (a) (applied

0'1‘ 0
to o !) we can write ¢ = o0,e; where oj = <

) <cL__,(A, 9

and €1 € E_(4, g). Then [§, o] =[5, ] [s, 511%. since

0 1

§ and o) commute and since § normalizes Em(A, q) (see (1.8)

(b)) this shows that [§, o] € Em(A, q). Next [1, o] = [1,

€ . .
e1] [T, o1] ! 5o it remains to be shown that [T, o1]

Em(A, q). But (cf. formula (1) above) we have

I 0 17 O I 0
[7, 01] = )3 < > = < )
t 1 0 1 t(o1”°-I) 1

€ Em(A, q). (Recall 07" = I mod g).

Now assume SRn(A), and let o ¢ GLm(A) and B € GLm(A’EQ

Then, if m > 2 (n - 1), we claim o and 8 commute modulo
(the normal subgroup) Em(A, q). For we have just seen that

Em(A) commutes with B8, mod Em(A, q), and mod Em(A) we can

o 0
assume o = ° with ao € GL

A). Moreover, mod E (A, q)
0 I m

n—l(

I 0
we can assume B ( >. In each of these matrices 1 =

0 BO

I . Sincem > 2 (n - 1) it follows that o and B now
m-{n-1) -

actually commute. This shows that [GL_(A), GL (A, @)]1C
Em(A, qQ) form>2 (n -~ 1). m m
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It remains to be shown that [Em(A), GL&(A, Q1 =
Em(A, g) for m > n and > 3. The inclusion D follows from

(1.5). Consider the diagram of subgroups:

GL (A)
m
GL (A, @)
. & |
m
\ /GLm(A, ¥
Em(A, @Q

In view of what has been shown above we see that the
opposite inclusion C follows from the next lemma, applied to-
G = GLm(A)/Em(A, qQ:

(5.1) LEMMA. Let

be a diagram of normal subgroups of a group G. Assume that
[E, c;]1 cc, [E, C] = {1}, and [E, E} = E. Then [E, C;] =
{1}.

Proof, Fix v € C; and define

h: E

> E M C C center (E)

by h(e) = [y, €]. Then h(eiey) = [y, eg1e5] = [v, e5]
[y, €112 (see (IV, 4.2)) = [y, o] [y, €1] (because [E, C]
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= {1]) =h(ey) h(e,) (because C/M E is commutative). Thus h
is a homomorphism into an abelian group. Since [E, E] = E
it follows that [y, €] = 1 for all ¢ € E. Thus [E, C;] =
{1}. q.e.d.

Proof of (¢). If, for some two sided ideal g, Em(A, q)
CHC GLA(A, q), and if m > max(n, 3), then it follows
from part (b) that

E_ (4, = [ (&), E (A& 9]c [E &), H

C[Em(A), GLI;(A, Q] = Em(A, D,
and hence Em(A) normalizes H.

Now suppose, conversely, that H C GLm(A) is a sub-
group normalized by Em(A), and the m > max(n, 3). We must

show that H has the above form.

(5.2) LEMMA. If H is not central then Em(A, qQC H

for some two sided ideal g # O.

We shall first conclude the proof assuming the lemma.
Let q be the largest two sided ideal such that Em(A, q) C H;

this clearly exists. We must show that the image, H”, of H
in GLm(A’), A” = A/q, lies in the center of GLm(A’). Thanks

to (3.2) (b) the hypothesis SRn(A) of Theorem (4.1) implies
SRn(A’). Moreover H” is normalized by the image of En(A)
which, according to (1.1), is En(A’). Therefore, if H” is
not central, Lemma (5.2) implies H” contains Em(A’, q°/q)

for some g” # g. Taking inverse images, we deduce that
Em(A, 9" C_GLm(A, q) + H. Suppose € € Em(A), a € H, and 8

€ GLm(A, q). Then [e, Bal = [e, a] [e, B]®. Since Em(A)

normalizes H, [e, a] € H. Moreover part (b) of the theorem
implies [e, B] ¢ Em(A, q) C H. Thus [e, Ba] C H. Hence we

have

Em(A, q = [Em(A), Em(A, q7]
C[Em(A), GLm(A, q) - H] C H.
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This contradicts the maximality of g, and thus completes the
proof of (¢}, modulo the:

Proof of (5.2)

Case 1. H contains a non central element ¢ = ua where
u € U(center (A)) and where

(1 0 ) <1 0 )
o = e Aff (A = _ .
x o m-1 Al GL__;(A)

0

1 0
Write Am—'l for the set of matrices t(t) = < ) (t e Am_l).
t I

It suffices to show that H f\Am_l # {I}. For themn (IV, 4.3
(c)) implies H contains all 1(t) such that t has coordinates
in some left ideal ¢ # 0, and then (1.4) implies that H
contains Em(A, a A).

We have [1(t), o] = [1(t), o] = T((uo - I)t) so we
are done if ol # I. Otherwise, since ¢ is not central, we

1 0
have x # 0, so there is an ¢ = ( ) € Em(A) such that

0 €
o

eo(x) # x. Therefore H contains [o, €] = [a, €] = [t(x), €]

= T((eo - I) (x))# I in Am_l.

Case 2. H contains a non central element ¢ with at
least one off diagonal coordinate equal to zero.

After conjugation by an element of Em(A) we can
assume ¢ has a zero in its first row, a = (al,...,am), and

even that a = 0. For t € A write ©(t) = I + tes;. Then

- T
o ! 7(t)o = I + 8ta where B = (bl,...,bm) is the second

column of ¢~!. (The "T" denotes transpose). Suppose o
commutes with all t(t). Setting t = 1 we find that o = (u,0,

+ee,0) and B8 = T(0, ul,0,...,0). Moreover, u ltu = t for
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all t so u e U(center (A)) and we are in case 1.

Therefore we can assume there is a 1

t(t) such that
v =[t, 0] #I. v =11+ 1! gta. Since a = 0 the last

column of 1 ! Bta is zero, so y has the form y = © . In
X 1
T TYo Tx
particular y is non central. Moreover "y = lies in
0 1

an Em(A)-conjugate of Affm_l(A), S0 we can argue as in case

1 to conclude the proof.

General Case. Choose a non central o in H, say with

i =T =
first column o (al,...,am). If ¢ I+ 21§i<m bi e

-1 . T +
then eoe * has first column “(a; + b; A seeesd g bm_l as
am). Thanks to the hypothesis SRn(A), therefore, we can,
after conjugating by an element of Em(A), assume that (aj,
e sQ ) is unimodular. Then we can write g =3I s, a,
m-1 m i1

(1 <i<m). Setting e =TI - L, . S, e_ . now we have
= I<i<m "1 "mi

€a T(al,.;.,a 0)

m-1’
Let T = I + te;, and consider § = 010 1 7 ! = (I +
atB)T_l, where B is the second row of o~ !, As in case 2 we
can choose t so that § # I, or else we are back in case 2.
Now set ¢” = €8 ¢ ! = ¢t 1 € 1 + eatB ¢ !. Since ea has
last coordinate O the bottom row of (ea) (tBe !) is zero.
Therefore o~ and et ! ¢ ! = 771 + eteqn e ! have the same
botton row. But etej, ¢ ! = (I + Zi<m g emi) te;, (I -
Ziem Si emi) = (teyz + s3 temz) (I - Ziem 51 emi) = teyp +
sy te (recall m > 3). Therefore ¢~ has last row (0, sit,
0,4..,0,1). Since ¢~ # 1 it cannot be central (it has a 1

on the diagonal) so we can apply case 2 to ¢~ € H.
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This finishes the proof of (5.2), and hence of
Theorem (4.1).

§6., PROOF OF (4.2): I. THE CONSTRUCTION OF «~.

For the next three sections we fix a ring A and a
two sided ideal gq.

Recall from §3 that
Em(A, Q)

is the group generated by Em(A, q) together with [GEm(A),
GLm(A, q)]. Thus, for example, it follows from (1.5) that

@) Em(A, qQ = [GEm(A), GLm(A, @) if m > 3.
On the other hand (4.1)' and (4.1) imply:

(2) If A satisfies SRn(A, q) then, for all m > n,
Eﬁ(A, q) = Em(A, q). It is a normal subgroup of
GLm(A) if A satisfies SRn(A).

The proof of Theorem (4.2) will be organized around
the following proposition, which we shall establish under
suitable hypotheses:

(6.1)n Given a homomorphism «: GLn(A, Q) > C such that

E;(A, q) c Ker(k), there is a homomorphism k~:

GLn+l(A’ q) —> C extending « and such that

En+1(A’ q) C Ker(x™).

We shall prove, in particular, the following:

(6.2) THEOREM. 1f the conditions SK_(A, g), SRn(AO,_(L),

and SR;_l(A, q) are satisfied then (6.1)n holds.

Proof that (6.2) = (4.2). For m > n let Ko
GLm(A, Q > Cm(g) = GLm(A, g)/Em(A, q) (ef. (2) above)

be the natural projection. There are natural homomorphisms
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S : C (9
m n
they are surjective, and even that GLn—l(A’ Q)

> C (@) for m > n and (4.1) (a) implies that

> Cm(g)

is surjective. To complete the proof of (4.2), therefore,
we must show that each Sm is an isomorphism.

According to (6.2) we can apply (6.1)n to Ky The «~
so obtained clearly induces an inverse, Cn+l(g) —_— Cn(ﬂ),
to Sn+l' Now we can finish, by induction on m - n, thanks
to the fact that SRD(A) = SRm(A) and SR&(A) (see (3.3))

for all m > n, and similarly for A°. q.e.d.

In the proof of (6.1)n all but the last stage of the

argument will be carried out with hypotheses weaker than
those of (6.2), and this added generality will be used in
§9, as well as in Chapter VI.

Throughout §§6-8, «: GLn(A, Q > C denotes a

fixed homomorphism as in (6.l)n.

We shall say that an element of GLm(A) is of type L
if its last row is (0,...,0,1), and of type R if its first
column is T(l,O,...,O). For example a type L looks like

()

where o ¢ GLm ), Ty £ Am_l, etc. Similarly, we can write

-1
a type R in the form

(0

1f o ¢ GLm(A, g) we define a standard form for o to be a

factorization
(3) T =0ac¢ B,

with all factors in GLm(A, q), where o and @ are of types L
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R, respectively, as above, and where ¢ = 1 + teml for some

t € g. (In fact t must be the (m, 1) coordinate of a).

These notions are, of course, only provisional. Their
importance here 1s explained by the next proposition.

(6.3) PROPOSITION. (a) Assuming SRn+l(A’ q) and

SRr;(A’ q), every ¢ € GLn+l(A’ q) has a standard form o = @&

e B, as above in (3).

Now further assume SR;(A, Q.

(b) The map

K7 GLn+l(A, qQ) > C,

k(o) = k(o) «{(B) if 0 = & ¢ B in standard form, is well

defined and extends «.

(¢) If oy, By € GLn+i(A’ q) are of types L and R,
respectively, then «”(a; o By) = «k”(ay) 7 (o) x”(By).

(d) If there is a homomorphism x': GLn+l(A, Q) >

C extending « and such that En+l(A’ q) C Ker(x") then «" =

-

Ko

We shall prove (6.1)n by showing eventually (i.e.
after strengthening the hypotheses of (6.3)) that the «~
above is a homomorphism killing E 1 A, q@).

n

Proof. (a). Let oy = T(al,...,an+l) be the first

I -
column of o. Using SR (A, q@) we can find vy =
n+l
0 1
e E (A ) h that = T(b b ) wh C o=
- +1 (As Q) suc at yo; = 15++5b sa .,) where o7 =
T
(bl,...,bn) is g-unimodular. By SR;(A, q) there is an a ¢

GL_(A, @) such that a”lo;” = T(1,0,...,0). Set &, =
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ol 0
- = T
. Then a7 v 01 = "(1,0,...,0,a ); set £ =1 +
0 1 n+l

a1 4110 Then 8 = ¢ ! a; Yy ¢ has first column T(1,0,...,
b

0), i.e. B is of type R. Then ¢ = o ¢ B where

_ _ I v a O oy
a=7v1lg*t= . q.e.d.
0 1 0 1 0 1

(b) Let 0 = Eﬁ € E& = Eé € Eé be two standard forms

for ¢. (We have noted that ¢ is determined by (the (n + 1,

1) coordinate of) o). Write
1 p,
< 1> (1 =1, 2).
0 B,
i

- RPEE % _
o, = < + 1> and B,
i i
0 1
k(an) k(By). Since k is a

We must show that k(ap) «(By)

homomorphism this is equivalent to «(a) = k(B), where o =
ul'luz and B = 8182'1. We shall deduce this from

equation:

_ - - oy o 1 o
ae = €B; a = o) la, = , B =B 1By ! = .
0 1 0 B

T
Write o = (a,. = (b, = C y3aessC and = (r
(lJ),B (lJ)’Y (13 ’n)’ D (1’
...,rn)-
ayp f et a2 . . aip ¢
o =
+ c . . c
t 0 . . 0 1

and
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1 ry . rn
0 bll . . bln
e—— =
0 bn—l,l : n-1,n
t bpp +try . . b *tr

Set a = c¢1, which also equals o Then we have

l-at a0
a:
—ap1t  app

T
where a1p = (Q12s+.-5a1n) = (rl,...,rn_l), Gp1 = (c2,...,cn)

and ap, = (aij)2iisjin = (bij)lf_i,j_<_n—1' We therefore also
have
022 G21
B =
~-toy2 l-ta
0 1
Let n = e GE_(A), the matrix of the permutation
I 0 n
n-1
i !-——> i+ 1 (mod n). Then

-1 1-ta -toyo
BW =7 8 1 = ( > .
G21 a2
-1
Thus o above is of type (g, t) (see (3.1)") and BTT is
(g, t)-related to a. The hypothesis SR;}'(A, q) says that if

-

a” is (q, t) related to o then a’a"? e 'E'n(A, q). Since

fn(A, q) € Ker(x) (by hypothesis) this implies that x(a)

-1 -1
«(a”). In particular we have |<(STr ) = k(a). Since g-! BTT
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— -1
= [g, m!] ¢ En(A’ g) we further have k(8) = «(8™ ") and so

o O

k(a) = «(B). This shows that « is well defined. If o = ))

0

€ GLn(A, q) then o is already of type L, so k" (a) = «(a),
i.e. k7 extends k. q.e.d.

(6.4) Remark. The last stage of the proof above is

the only place in our arguments where the hypothesis
SR;(A, q) is used. For future reference we record the

following observation, which is evident from the argument
above: Proposition (6.3) remains valid if we replace the

hypothesis SR;(A, q) by the assumption that x(a) = x(a”)

whenever, for some t € ¢, a € GLn(A, q) is of type (g, t)

and 0" is (g, t)-related to a.

(¢c) Let o = o e E be a standard form for o ¢ GLn+l

(A, @, as above, and let

_ o Y1 _ 1 e
o] = and B =
0 1 0 B

be elements of GLn+l(A, q) . Then El o §1 = (EIE) € (_B—El)

is a standard form, where

_ npo % _ 1 *
aja = and BB, = .
0 1 0 B8,

Hence k" (a; 0 B1) = k(aja) «(88y) = k(o) x(a) «(B) «(8y) =
k(@) «7 (o) k“(B1). q.e.d.

(d) Let «": GLn+l(A’ Q > C be a homomorphism

extending « and killing En+l(A’ q). According to (4.1)' and
our hypothesis SRn-i-l(A’ gq) we have GLn+l(A, q) = En+l(A’ Q-
GLn(A, q). Hence «'" is uniquely determined by the conditions

above. 1If 0 = o ¢ B is a standard form, as above, then
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. I v o O _
k'"(g) = 1, Since o = we also have k' (a) = «{(a).
0 1 0 1

_ 1 0 1 o
Finally, B = » and the first factor is
0 8/ \0 I

B 0

conjugate, by a permutation matrix, to < ). Therefore

0 1

k" (B) = x(B) because [GEn+l(A)’ GLn+l(A’ Qlc En+1(A’ Q)

(cf (2) above)). This shows that k" = kI, thus proving (d)
and concluding the proof of (6.3).

§7. PROOF OF (4.2): II. THE NORMALIZER OF «~

Let A be the opposite ring of A. Then transposition
is a self inverse pair of antiisomorphisms

<

—— o)
GL_(4, @) T GL (A7, @).

Let C° denote the opposite group of C (in (6.l)n). Then we

have a homomorphism k% GLn(AO, Q) > ¢° defined by the

commutativity of

o)
GL (A, @) T __ GL (A°, q)

)
I.e. k (a) = K(Ta), as a set map. To avoid confusion we
shall use a dot when writing products in GLm(AO) or in C°,

E.g. if x, y € C then x+y = yx.

Throughout this section we shall work with the
following:

(7.1) HYPOTHESES. The conditions SRn+l’ SR;, and
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SR; hold for both (A, q) and (A, g).

These hypotheses make available all the conclusions
of Proposition (6.3) for both « and k. Thus we have the «~
of (6.3) which extends k, and the analogously defined (with
the aid of standard forms in GLn+1(A°, q) «79 extending «©.

By virtue of the symmetry in our hypotheses all definitions

and propositions concerning x~ have analogues for «~C.

It is important to note that: The hypotheses of (6.2)

imply those of (7.1). For the hypotheses of (6.2) are

SRn(A, 4, SRn(AO, q), and SRn_l(A, ). But, for all m > n,
= - — ]

SRn = SRm (see (3.3) (1)) and SRn = SRm (see (3.3) (2)).

In view of this observation all of the arguments of this
section are legitimate contributions to the proof of (6.2).
The stronger hypotheses of (6.2) will intervene only in §8
(see (8.1) (b) and (8.2)).

Finally we remark, for use in Chapter VI, that the
hypothesis SR; above is present only to make the conclusions
of (6.3) available. Therefore one can substitute for SR; the
condition on k described in (6.4), and then all the results

of this section remain valid.

Consider the groups

H= {oc¢ GLn+1(A, Q) | k(007 = x7(0) k(")
for all ¢~ ¢ GLn+l(A’ q)}
and
N={t¢e GLn+1(A) I k“ (%) = k(o) for all

g€ GLn+l(A, Ql.

That they are groups follows from:

(7.2) LEMMA. (a) H is a subgroup, containing all

matrices of type L, 9£_GLn+l(A, Q.

(b) N is a subgroup of GLn+l(A) and N normalizes H.
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(c) Let K be a subgroup of GLn+l(A’ gq) containing all
matrices of type L and normalized by E (A). Then K =

GLn+l(A, Q.

n+l

Proof. (a). If o ¢ H then 1 = k(1) = k" (oo™ }) =
k" (o) k" (a71), so «7(0671) = «7(o)7!. Now if o7 e GL__ (4, @)
then x”(67) = k"(o0 * 67) = k(o) k("1 ¢7), so x" (o7 o)
=k (@)} k" (c”) = k(6 1) «“(67). This shows that o ! ¢ H.
If o1, 0p € H then, for any ¢~ as above, k" (010,07) = k7(07)
kK (0907) = k”(01) «7(o2) k(o) = «"(010,) «7(0), s0 0107 €
H. Thus H is a group. That H contains all type L's follows
from (6.3) (c).

(b). Let o ¢ GLn+l(A, q). If T € N then K’(GT_l)
= K’((GT_I)T) = ¢’ (o), so 1! ¢ N. If 71, To € N then
k“(0T1T2) = " (') = k" (o6), so T1To € N. Thus N is a group.
Suppose T ¢ N, and o; € H., Then K’(OIT o) = k7 ((oy OT_l)T)
= k(0 oT-1y = k7 (o) K’(OT'I) =« (01T) k" (o), so 01" & H.
Thus N normalizes H.

(¢) Let E = {I + tey, | t € q}; clearly E C K since
all I + te;, are of type L. As a subgroup of GLn+l(A’ q)
the group GLn(A, q) consists of matrices of type L. Moreover

n+l(A’ -
Hence the hypotheses on K imply K contains En+l(A, qQ -

the normal subgroup of En+1(A) generated by E is E

GLn(A, q). But, thanks to SRn+l(A’ ), (4.1)7 implies the
latter is all of GLn+l(A, Q. q.e.d.

(7.3) COROLLARY. lg_En+l(A)(Z N then «” is a homomor-
phism whose kernel contains En+l(A’ q), and hence (6.1)n is

established.

Proof. If En+l(A) C N then (7.2) implies H = GLn+l

(A, @), i.e. that «” is a homomorphism. Moreover Ker(x~”) D
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Ker(x) D En(A, q), and Ker(x”) is normalized by En+l(A), S0

Ker(x™) D En+1(A, q9). q.e.d.

Because of this corollary the rest of our efforts
will be spent trying to show that En+l(A)(: N.

(7.4) LEMMA. N contains all matrices of the form

u % %

0 0 wv

with u, v ¢ U(A) and v ¢ GEn—l(A)’ provided n > 2. If n = 1
then N still contains D,(A).

Proof. These matrices form a group, generated by
those of the following types: T, < diag(ul,...,un+l) €

1 0 0
Dn+l(A): Ty = 0 v 0 with v € En_l(A); and 1, = I + teij
0 0 1

with t ¢ A and (4, j) = (1, 2) or (n, n + 1).

Let 0 ¢ GLn+l(A’ 9) have a standard form ¢ = a ¢ R.

Then, if T = T, or 71, it is easy to see that o7 = ol €7 BT

is still a standard form. Moreover since GEn(A, q) normalizes
'« (this is one of the hypotheses on « in (6.l)n) it follows
easily that x”“(¢7) = «“(s). This is a simple calculation
which we leave to the reader.

Suppose next that T = I + te),, say. Then 1 is
simultaneously of type L and of type R. Therefore ot and
B' are still of types L and R, respectively, and (@) =
k” () and k" (BY) = « (B).

. . . _ +
Now we invoke the assumption n > 2. If ¢ I sen+l,l

then e = 1 + Sen+l,l + st en+l,2 = ¢B) where B; = I +
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T

st is of type R, and K'(E&) = 1. Therefore o' =& ¢

®nt+1,2
(8, BY) is a standard form for GT, and we deduce from (6.3)

(¢) that " (0)) = k" (@Y) " (B1) k" (B) = x (@) <« (B) = k"(a)

In case T =1 + ten the argument is similar,

,n+l
. . T _ — - .
except that this time we have ¢ = o7 € where a; is of type

L and «“(a;) = 1. We omit the details.

Now we shall use the map 9 GLn+l(Ao, qQ) > ¢°

described at the beginning of this section. There is also
the analogue of N,

0 0 L0, T, _ .0
N = {1 ¢ GLn+l(A ) | k" (o) = k" (o) for all

O
oeGL . (A7, Q1.

1

Since our hypotheses on A and A® are symmetric we can apply
conclusions, proved for N, to N° also.

0 0 1 T
Let ¢ = 1 L and note that ¢ = ¢ = ¢~}
n-1
1 0 0

0
€ GEn+l(A) (or GLn+l(A ), as the case may be). For ¢ ¢
GLn+l(A) define

~ T T T

T=9 - o6 =C®=T0" e @

(a7).

n+l

Then o >F——> T is an antiisomorphism. It exchanges the first
and last rows and columns, and then transposes.

(7.5) LEMMA. If 1 ¢ GLn+l(A) and ¥ ¢ N then T e N.

Proof. Let ¢ = a ¢ B be a standard form for o ¢

GLn+l(A, q). Then we claim o = B - ¢+ ais a standard form

| o] - & = oy
for o in GLn+1(A » Q. For if o = 0 1 then a = 0 o

. . T .
where a” is obtained from "o by putting the first row and
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T . m 0 1 -1
column last. I.e. o” = (Ta) where 7 = o e GE .
10 n

B” »p

o =1
Similarly B8 =< ) where 8° = (*8)" . Finally T = ¢

o 1

(recall ¢ is of the form I + en+l,l)' Therefore we can

.0 0, . . . o . .
compute: «” (3) = k (B7) - Ko(a ). Since x  is normalized

by TGEn(A) = GEn(AO) we have KO(B’) = KO(TB) and k°(a¢”) =
«°(To). Therefore « 0@ = «°(Tg) - «°(a) = () «(8) =
k(o).

Now 1f T e N° then «°(67) = « (™Y = «°F) =

«"%(® = «"(s). Thus 1T € N. q.e.d.

(7.6) LEMMA. Assume n > 2, and set 7 =

If 7 ¢ N then En+l(A)<: N.

Proof. According to (7.4) N contains all I + teij
(teA, i#43j,1#n+1,3j+# 1). By symmetry, N° contains
all I + teij (t e A°, i # j, i#n+ 1, j# 1), so (7.5)
implies N contains all 7 = 1 + teij such that T is of the
above type.

™
= . i
Let To I+ en,n 1 € N. By assumption wm € N so To
= . = 3

I+ e, 1,n e N, If 1 I+ tenj (j# 1, n, n + 1) then

i

[TO , 1] = [I + e I+ tenj] =1+ te e N

n+l,n’ n+l,j

Therefore we lack only the elementary matrices with off
diagonal entry in the first column to generate En+l(A). For

. ~ o
1 <3j<n+ 1we have (I + tejl) =1+ ten+l,j ¢ N7, so
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I+ tejl

the generators I + te

e N by the first paragraph above. Now we lack only

1,10 But we obtain these from the

ones already obtained with the formula

[T + e 1 =1+ te

I+ te
+1,n n

1 1,10 g.e.d.

3

Now we can summarize the conclusions of this section
as follows:

(7.7) PROPOSITION. Keep the hypotheses (7.1) and

assume further that n > 2 and that

e Ty -

(1) k(o) k(o) for all ¢ ¢ GLn+l(A, q),
In—l 0

where m = 0o 1 . Then ¥~ is a homomorphism extending
c 10

k and En+l(A’ q) C Ker(x”), thus establishing (6.l)n.

This follows from (7.3) and (7.6). In the next
section we shall conclude the proof of (4.2) by establishing
(1) above under hypotheses somewhat stronger than those of
(7.1). In Chapter VI we shall use (7.7) again, but in a
setting where the stronger hypotheses are not available. It
is for this reason that we have kept such careful track of
our assumptions.

§8. PROOF OF (4.2): III. CONCLUSION
We assume n > 2, with 7 as in (7.7) we set
P .
S ={oce 6L (4, @ | k" (c") = «"(a)}.

The task that remains for us is, according to (7.7), to
show that S = GLn+l(A, Q-

(8.1) LEMMA. Let o ¢ GLn+l(A’ Q).

(a) 1f By e GL__ (A, @) is of type R and if o] ¢
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GLn+l(A, q) is of the form

(where a7 € GLn—l(A’ q)) then 6 € S <= o] 0 By € S.

(b) We can choose a; and 8] as above so that ai o By

— _ by
= ge where € = 1 + qe and where o = is of type
—_ n+l,1 0 1

L, with v = T(O,..,O,c). Assuming SRn(A, q) we can arrange

that the first column, T(al,...,an),_gg a is such that

(al,...,an_l) is unimodular. If, further, we assume SRn_

= (1,0,..0).

1

(A, @) we can arrange that (al,...,an_l)

" _ 1 o
Proof. (a). With o; and By = < > as above,
6 8

LSS Y A
ap = is still of type L, and B; = .
0 I, 0 B ]

is still of type R. Hence, by (6.3) (c), « ((a; © E&)ﬂ) =
K’(&&ﬁ) K’(oﬂ) K’(E&n), and it is clear that K’(&iﬂ) =
K’(El) and K’(E&ﬂ) = K‘(E&). This proves (a).

(b) If ¢ = o £ B in standard form we first take E& =

— _ oy
8”1, It remains to be seen how we can modify o = < >
0 1

with left multiplication by an E& as above. The matrices of

the latter type are clearly a group, so we are at liberty
to perform a succession of such left multiplications.

Say y = T(cl,...,cn). Then left multiplication by
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—'Y‘
, where v~ = T(cl,...,c ,0), is admissible. The
0 1 n-1

result is to replace y by T(0,...,O,c), where ¢ = . and to

leave o unaltered. Therefore we can achieve the required
form for vy, and even if it is upset by the operations to
follow on o, we can restore it without harm to the work done
on o.

Let B = T(al,...,an) be the first column of «a.

I Y1
Assuming SR (A, g) we can find an a] = < n-1 ) E (A, q)
n n
0 1
such that o8 = T(a e’ Lea ) with (a7 ,...,a” )
1 1o *“n-1""n 1oseres®h1

_ oy 0
unimodular. After left multiplication by a; = < >, which
0 1

is admissible, we can therefore assume (al,...,an_l) is

unimodular. Assuming SR;_l(A, g) we can now further find

T T
oo GLn_l(A, q) such that a, (al,...,an_l) = "(1,0,...,0).
_ a; O
Therefore left multiplication by a, = achieves the
0 I

last condition indicated in part (b) for o, thus completing
the proof of (b). q.e.d.

(8.2) LEMMA. Suppose o GLn+1(A, gq) has the form

0 = 0e where € = I + ae i1.n (a € q) and
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1 aio . . aln
0 azp -+ + aon
T
with v = “(0,...,0,c) and o =] . . . . Then
0
b anz ann
oe 8, i.e. K’(cﬂ) = (o).

Let us first note that (8.2) completes the proof of

(6.2), and hence also of (4.2). For we have already noted

that (6.2) = (4.2) and that the hypctheses of (6.2) imply
the hypotheses (7.1). The hypothesis SRn(A, q) can be

fulfilled only for m > 2, so this restriction on n above is
innocent. Moreover, all of the hypotheses in (8.1) (b) above
are among those of (6.2). Hence, by (8.1), to prove S =
GLn+l(A, q), if suffices to show that o € S if o is of the

form presented in (8.2). Therefore (8.2) will, indeed,
complete the proof of (6.2). q.e.d.

Proof of (8.2). By definition of «”, «”"(56) = x(a).
To save some writing we shall put these matrices in block
form:

1 a1 ay3

o = ere = PR PR
0 app aps p VRETE 22 (alJ)Zj},Jjn-l,
b 0632 a3

and the rest of the notation is clear. Set

Q22 a23
a” = .
agp-bajs  a33-ba;j

1 ayp a3 o« 0
Then o 2} 0O < > mod E;(A, q), so
0

il

0 1
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a” O
(%) k(o) = k(a) =« o 1/

Next we display o = ae =

1 Q12 (113 0
R 0 o o 0
(I+ae ., )= 22 %23 :
+
<O l) ntl,1 btca «a3p o33 ¢
a 0 0 1
Since ¢ |}—> 0TT just exchanges the last two rows and the

last two columns we have

1 a2 0 apsz
. 0 aro 0O ap3
o =1, 0 1 0 (d =b + ca).
d a3y ¢ azg
We can write ¢ = (I + aen’l) (I + den+l,l) E, in standard
form, where
1 agp 0 o3
— {1 e 0 ap 0 a3
&= <O B) “lo -aoo 1 -aojgj
0 oagp-dajp ¢ agzz-dags

Therefore we have

k(o) = k(I +ae_ 1) «(8) = k(B).

To compute «(B) we can replace 8 by anything to which it is
congruent modulo Eh(A, q). The congruences which follow are

all modulo E (4, g).
n

aso 0 ass
B =1 -aaio 1 -au] 3

agzp=daip ¢ azz—doags



266 PROJECTIVE MODULES AND THEIR AUTOMORPHISM GROUPS

@22 0 993
= -Qaadio 1 -ao13

u32+(ca—d)a12 0 a33+(ca—d)u13

Recall that d = b + ca so ca - d = -b. Therefore

%22 0 %23
B = -acyg 1 -0 3
agzp~bajz 0 oaz3-bars
0o 0 03
a” 0
= 0 1 0 = .
0 1
a3zp-ba;p 0 azz-baps
G22 023
where a” = is the same o~ that appears
a3p~bajy  agz=bajg

in (*) above. It follows from (*) therefore that k(") =
a” 0

k(B) =« =k"(a). q.e.d.
0 1

§9. SEMI-LOCAL RINGS

(9.1) THEOREM. Let g be a two sided ideal in a ring

A, Assume either that A is semi-local or that g C rad A.
Then

(D Ua, @ —> K4, @

is surjective, and, for all m > 2,

GLm(A, g)/Em(A, q) —> K1(4, @
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is an isomorphism. Moreover [GLm(A), GLm(A, q)] C’Em(A, qQ),

with equality for m > 3.

Proof. The conclusions above are just the conclusions
of (4.2) and (4.1) (b) in the case n = 2. Therefore we need
only verify the relevant hypotheses: (A, q) and (A°, q)
satisfy SR, and SRj. These both follow from (3.4). q.e.d.

(9.2) COROLLARY. Suppose that A above is commutative.

Then (1) is an isomorphism,

En(A, q) = SLn(A, q) for alln > 1,
and SK;(4, g) = 0.
Proof. The determinant induces the inverse, det:

Ki(A, @) > U(A, g), to (1). In particular, if a ¢
GLn(A, q) and det(a) = 1 then a € En(A, q), i.e. SLn(A, qQ)

C:En(A, q). The opposite inclusion is trivial. Finally,

SK1(A, @) = SL(A, Q) /E(A, @) = 0. g.e.d.

(9.3) COROLLARY. Let A be a commutative ring and let

q and g~ be ideals such that A/q is semi-local. Then, for
alln > 1,

SLn(A, qt+tgq7) = En(A, q”) - SLn(A, D,

and

E (A4, g9 > SL (A/g, 9 +97/ Q)

is surjective. In particular,

E_(A) —> SL_(A/Q)

is surjective. Moreover SK;(A, gq)

surjective.

> SK (A, ¢ + ¢7) is

Proof. It follows from (1.1) that E (A, g7 >
—_— n
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En(A/s’ g + q°/q) is surjective. Since A/q is semi-local
(9.2) implies the latter group equals SLn(A/g, q+q97/9.

Taking inverse images modulo SLn(A, q) this implies SLn(A,

q+tg9m) = En(A, q7) - SLn(A, g), and hence SKi(A, q) >

SK1(A, g + q7) is surjective. In case ¢~ = A we see also
that En(A) > SLn(A/g) is surjective. q.e.d.

In terms of the general theorems of this chapter the
results above represent, in some sense, their most effective
case. Nevertheless there remain, even here (i.e. in the
setting of (9.1)) a few loose ends:

(1) When is the inclusion [GL,(A), GLy(A, )] C Eo(A,
q) an equality?

(ii) What is the kernel of the epimorphism U(A, q)
> K1 (A, q) in (1) (when A is not commutative)?

(iii) What are the normal subgroups of GLn(A, q) for

n=1andn= 27

In connection with (i) we can deduce certain infor-
mation from the commutator formula,

1 t v 0 1 v ltu-t
(2) o 1/°\o u/l T\o 1 .

(9.4) PROPOSITION. Let A be a commutative ring and

let q and q” be ideals in A. Let g1 and ¢, denote the
ideals generated by {1 - ul}, resp. {1 - u2}, where u ranges

over U(A, q). Then
[GE,(A, @), Eo(A, g7)] D Ep(A, 9,97
and

[E2(A, @, Ep(a, 912 Ey(4, 9,97

Proof. Formula (2) (with v = 1), and its transpose,
shows that [GE,(A, q), E,;(A, q7)] contains all elementary
matrices of the form I + t(1 - u) eij with t € ¢” and u ¢
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U(A, q). The E,(A)-normalized subgroup genererated by these
is clearly E5(A, q197), so the latter is contained in
[GLo(A, q), Es(A, q7)]. The second inclusion follows from
(2) similarly, in the case v = u !, It follows from the
Whitehead Lemma (1.7) that diag(u !, u) e Ey(A, ). q.e.d.

Of course one can obtain similar conclusions when A
is not commutative, but we will not pursue the matter.

0f much greater interest are questions (ii) and (iii)
In case A is a division ring there are essentially complete
results, due to Dieudonné. We quote the answer to (ii) (see
Artin [1], Chapter V)).

(9.5) THEOREM (Dieudonné). Let A be a division ring.
Then the kernel of U(A)

> K;(A) is the commutator sub-

group [U(A), U(A)]. The commutator factor group of GLn(A)

is isomorphic to K;(A) for all n > 1 except, for n = 2,

when A is the field of two elements.

More generally, if A is a local ring, then results
of this type have been proved by Klingenberg [1]. We shall
treat only the following case which, unfortunately, does
not cover Dieudonné's Theorem.

(9.6) THEOREM, Let f: U(A, g) > K1(A, q) be_the

epimorphism (1) in Theorem (9.1). Let E denote the subgroup

of U(A, gq) generated by [U(A), U(A, g)] together with all

elements of the form (1 + ts) (1 + st)” !, where s, t ¢ q

and 1 + st € U(A). Then E C Rer(f). Assume that A is

generated by U(A) as an algebra over R = center(A). Assume

further that ¢ C rad A. Then E = Ker(f).

Remark. The hypothesis that A = R[U(A)] is quite
innocent; for example any local ring satisfies it. The
undesirable hypothesis is that q < rad A. In fact the proof
is arranged so that this hypothesis is invcked only at the
very last step. I lacked the patience to work out the
details in the general case. Let me indicate, at least,
that Dieudonné's theorem would follow from (9.6) if the
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restriction on q were dropped. For suppose A is a division
ring. First the group E equals {U(A), U(A)]. For if 1 + st
e U(A) (we may assume t # 0) then 1 + ts = t(1 + st)t !.
Finally, if A has more than two elements then formula (2)
above shows that [GL,(A), GL,(A)] D E,(A); hence (9.1)
implies En(A) = [GLn(A), GLn(A)] for all n > 2.

Proof of (9.6). Since Ki(A, g) = GL(A, q)/[GL(4),
GL(A, g)] we evidently have [U(A), U(A, @) ] C Ker(f). If s,
t € g and if 1 + st € U(A) then 1 + st is of type (g, t)

(see (3.1)") and 1 + ts is (g, t)-related to (1 + st).

Since we have condition SR, (A, gq) it follows from (3.3) (b)
that (1 4 ts) (1 + st) ! belongs to E, (A, g), and hence also
to Ker(f). Thus E C Ker(f).

Let x: U(A, q) > C = U(A, q)/E be the natural
projection. If we can show that «k extends to a homomorphism
k”: GLo(A, g)

will induce an inverse to the obvious homomorphism C

> C such that E (A, q) C Ker(x”) then «k~

>

GL, (A, q)/E; (A, q). Thus the theorem will be proved by
virtue of (9.1).

We saw in the proof of (9.1) that (A, g) satisfies
SR, and SR{“. Moreover the definiton of E shows that k(a) =
k(a”) whenever, for some t € ¢, a ¢ U(A, q) if of type
(g, t), and a” is (g, t)-related to a. Therefore (see
Remark (6.4)) we can apply (6.3) to obtain a well defined

extension, «”: GLy(A, q) > C, of «, defined with the aid
of "standard forms" in GL,(A, q). Precisely, every ¢ ¢

GL, (A, q) can be factored in GL,(A, q) in the form

o (Y6
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and then «” (o) = k(a) x(b).

Let N = {1 € GL,(a) | k“(c') = x"(o) for all o ¢
GL, (A, g)}. It follows from (7.3) that, if the group N
contains E,(A), then «” is a homomorphism whose kernel
contains E, (A, q). Thus the proof will be complete if we
show that E,(A) C N. We further note that (7.4) implies D, (A)
CN.

Now we claim, under the assumption that A = R[U(A)],

that the group H generated by D, (A) together with {e(s) =1

0 1

1 O> is all of GE(A). For if

+ sejy | s € R} and 7 = (

formula (2) above shows that M = {t | e(t) ¢ H} contains all
us with u € U(A), s € R. But these additively generate A so
M= A, Since me(t) 7w ! =1 + te,; we see that H D E,(4),

as well as Dy (A), so H = GE,(A) as claimed.

In view of what has been said the theorem will be
proved if we show that 7 ¢ N and that e(s) ¢ N for all s ¢
R.

If ¢ has the standard form ¢ = a ¢ 8 as in (%) above

then, since e(s) is both of type L and of type R, it follows
easily from (6.3) (c) that

e (o5(8)y = - GE(E) (8] gele)y

. —s(s)) K,(Ee(s)) K,(é-e(s))
(s)

I
~
=]

K(a)K‘(eE

) «(b).

Therefore it suffices to show, in this case, that K’(ee(s))

= 1, Let B be a commutative subring of A containing R[t] and

such that U(A)MN B = U(B)j e.g. any maximal commutative
subring has this property. Let 9, = q M B, and suppose we

know that (B, ﬂo) satisfies the same hypotheses that we have
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made on (A, g). Then we have a map «": GL, (B, 30) > U(B,g&

analogous to k7, and evidently K’(ee(s)) = hK"(€€(S)),

where h: U(B, go) > C is the inclusion U(B, ﬂo) C U(A, 9@
followed by «. Since B is commutative it follows from (9.2)

that " = det, and manifestly det(ee(s)) = det(e) = 1.

To check the hypotheses on (B, go) first note that

rad AN B Crad B, For if b ¢ B and b = 1 mod (rad A M B)
then b ¢ U(A) M B = U(B). Therefore if q C rad A we have 4,

Crad B, as required. (Note also that if R is semi-local
and if A is a finite R-algebra, then it is easy to show that
B is also semi-local). Again, if A is local then B must be
also. Hence the proof so far works under any of these
hypotheses.
Finally, we complete the proof by showing that 7 ¢ N.
. a b
We will show that «“(0 ) = (o) if o = e GL,(A, q)
c d

is such that a, d ¢ U(A, g). This last condition is auto-
matic if g ¢ rad A, of course. With it we have the standard

forms,
<a b> <a 0\ /1 © <1 a b >
o = =
c d 0 1/ \¢ 1/\0 d-ca”lb
(a-bd'lc bd'l> <1 0> <1 o)
= 5
0 1 c 1/ \0 d

" (g) = x(ad - aca b) = k(ad - bd lted).

. d c
Similarly, o = , SO
b a

k“(c") = k(d - dbd”lc).

and so
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But d-l(da - dbd~le¢)d = ad - bd~lecd, and thus k" (¢") = « (o).
q.e.d.

Let A be a semi-simple finite algebra over a field,
L, and let C denote the center of A. Then C is the product
the centers of the simple factors of A, and these factors of
C are finite field extensions of L. Recall from (III, §8,
discussion preceding (8.5)) that there is a reduced norm
homomorphism

: U(A) ——> U(C).

Nrd = NrdA/C.

It is defined as the product of the reduced norms in the
simple factors, it is stable under an extension of the base
field (which preserves semi-simplicity), and it is the
ordinary determinant when A = Mn(C) for some n > 0. These

properties characterize it. The last one implies that it has
the same stability properties as det. Explicitly, suppose
n > 0. Then Mn(A) is semi-simple with center C, so we have

"det" = NrdMn(A)/C: GLn(A) — U(C),

whose kernel we shall denote by SLn(A), the elements of
reduced norm one. If o ¢ GLn(A) and B € GLm(A) then

a O
det = deta detR.
0 B

In particular det(a & Im) = det(a), so we obtain

det: GL(A) —> U(Q).

This is a homomorphism into an abelian group, so its kernel,
which we shall denote SL(A) contains E(A). Thus we have an
exact sequence

0 —> SK; (&) > Ky (a) 25 ueo)

where SK; (A) = SL(A)/E(A).

Problem. Is SK;(A) = 07
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The answer is yes if A is commutative and, more
generally, if A is a product of full matrix algebras over
fields (not just division rings). If A is simple then it is
known that there is a field extension C” of C such that

A SC C” = Mn(C’), where [A: C] = n?. We have just noted that

SK, (A @C €C”) = 0. From this one can deduce easily (cf (IX,
4.7)).that SK;(A) is a torsion group of exponent [C”: C].

While no examples are known for which the answer to the
question above is negative the only positive result of any
generality is the following theorem of Wang [l]. Wang's
proof, which we omit, uses rather deep theorems from number
theory.

(9.7) THEOREM (Wang). Let A be a semi-simple finite

algebra over a number field. Then, for all n > 1, the group

SLn(A), of elements of reduced norm one in GLn(A), coincides

with the commutator subgroup of GLn(A). In particular SK;(A)
= 0.

Remark. By virtue of Dieudonné's theorem the last
assertion is equivalent to the first.

§10, CRITERIA FOR FINITE GENERATION
In Chapter X we will prove theorems stating, in some
circumstances, that K;(A, q) is finitely generated. With the

aid of some purely group theoretic facts this can sometimes
be deduced from the finite generation of K;(A). This section

records some of these propositions from group theory.

(10.1) PROPOSITION. Let G be a group and let H be a

subgroup of finite index.

(a) H has only a finite number of conjugates in G,

and their intersection is a normal subgroup of finite index.

(b) G is finitely generated if and only if H is.

Proof. (a). The number of conjugates of H is [G: N],



THE STABLE STRUCTURE OF GLn 275

where N is the normalizer of H, and hence if finite. For the
rest it suffices to show that H M\ H” has finite index in G
if H and H” do. G acts as permutations of the cosets, G/H,
as well as G/H”., Therefore we have a homomorphism G >
Permutations of ((G/H) x (G/H”")) whose kernel is clearly in
HMNH", and has finite index in G.

(b) Let X be a set of generators for G and let C be
a set of coset representatives for G/H containing 1. If a
€ G there is a unique factorization a = c(a) h(a) with c(a)
¢ C and h(a) ¢ H. Let HO be the subgroup of H generated by

+1
Y ={h(x"¢c) | xeX, ceC}.

We claim HO = H. If X is finite then so is Y (because C is)
so this will imply H is finitely generated if G is. The
converse is trivial because H and C generate G.

If a ¢ G then o is a product of elements xih1 (xe X).
To show that h{(a) € H, we can use induction on the number n
of such factors. If n = 1 then h{(a) € ¥ C:Ho. It suffices
now to show that, if h(a) € H , and if y = x*1 for some x
e X, then h(ya) ¢ HO. But ya = yc(a) hia) = c(yc(a)) hiycla))
h(a), so h(ya) = h(yec(a)) h(a). We have h(a) ¢ Ho, by
assumption, and h(yc(a)) £ Y , so h(ya) ¢ HO. q.e.d.

(10.2) PROPOSITION. Let

(1) 1 > G~ > G P > G" > 1

be a group extension (i.e. exact sequence of groups) and

assume G'" is finite. Then

(2) G*/[6, 6] —> G/[G, Gl

has finite kernel and cokernel.

We will not prove this here, but simply indicate
that it follows from an exact sequence, due to Schur, which
occurs as the "exact sequence of low order terms' in the
Hochschild-Serre spectral sequence of (1). The sequence in
question is
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t

(3 H, (G) > Ho (G™)

> H_(G", B (67) —> H;(0)

> H]_(G") —> 0.

Here Hi(G) = Gi(G’ é), the ith homology group of G with

integer coefficients. The homomorphism (2) above can be
identified with j in the sequence (3). The proposition now
follows from the fact that, since G" is finite, Hi(G”) is a

finite group for all i > O,

The same reasoning shows that if G" is finitely

presented then the kernel and cokernel of (2) are finitely

generated. For it is trivial that H,(G") = G"/[G", G"] is
finitely generated if G" is, and it is well known that H,
(G") is finitely generated if G' has a presentation with a

finite number of defining relatioms.

In case the projection p is split by a homomorphism

s: G" > G then the maps Hi(G) —_> Hi(G”) in (3) are

split epimorphisms, so the exactness implies that (2) is a
split monomorphism. The existence of s just means that G
is a semi-direct product (see (IV, §4)). We shall record
this conclusion for future reference; it is a simple
exercise to prive it directly.

(10.3) PROPOSITION. Suppose G = G’sfd G" is a semi-

direct product. Then

G/[G, 6] = (67/[G, ¢"]) & (¢"/[G", G"]).

Let A be a ring and suppose that, for each n > 1, we
are given a group Sn(A) such that

E_(A) C s _(a) C GL_(A)
and

M = .
Sn+m(A) GLn(A) Sn(A) for allm > 0

If g is a two sided ideal we put
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s (A, @ =S_(&) N CL (4,
and

= U
S(a, @) 0 Sn(A, Q-

(10.4) PROPOSITION. (cf. (4.4)). Suppose A satisfies

the hypotheses of (4.2) (with q = A) for some n > 2. Then

if S(AY/E(A) (CKy(A)) is finite (resp. finitely generated)

the same is true of S(A, ¢)/E(A, g) for all ideals g such

that A/q is finite. If, further, A is a finitely generated

Z-algebra, then for all m > max(n, 3), Sm(A, q) is a

finitely generated group.

Conversely, if Sm(A) is finitely generated for any

m > n - 1 then S(A)/E(A) is finitely generated.

Proof. If m > n and if a € GLm(A, q) then, by (4.2),
o = gff with € € Em(A, q) and B € GLn_l(A, Q). If o € Sm(A,g)
it follows that B € Sm(A, q) FﬁGLn_l(A) = Sn—l(A’ qQ).

Thus we see from (4.2) that

Sn—l(A, S_) —> S(A’ ﬂ)/E(A: &)

is surjective, and

Sm(As ﬂ)/Em(A’ g_) _— S(A, _q_)/E(As _q_)

is bijective for all m > n. This establishes the last asser-
tion of the proposition. It further follows from (4.3) that,
form > n,

E (A

[E_(A), S_(A, 9] C 6L (&), s (&, 91 CE_(4, @,

with equality if m > 3.

If A/q is finite then Sm(A, q) is a normal subgroup

of finite index in Sm(A), so it follows from (10.2) above
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that

Su(8, D/IS_(A), S (&, @] —> S_(A)/[5 (&), S_(&)]

has finite kernel and cokernel. For large m this map is iso-
morphic to

S(A, Q/E(A, @ > S(A)/E(A),

and the first assertion of the proposition now follows.

If A is a finitely generated Z-algebra then (see
(1.3)) Em(A) is finitely generated for all m > 3. Therefore

if S(A)/E(A) is finitely generated the same is true of
Sm(A) for all m > (n, 3). If A/q is finite then Sm(A, q) has

finite index in Sm(A) so (10.1) (b) implies Sm(A, q) is also

finitely generated. q.e.d.

HISTORICAL NOTES

As mentioned in the introduction, the material above
is taken primarily from Bass [1] and from Bass-Milnor-Serre
[1]. Some improvements in the exposition were supplied by
Hervé Jacquet, to whom I am grateful.

The questions treated here fall within the tradition
of the work of Dickson, Dieudonné, Artin,... on the classi-
cal groups (over a field). Klingenberg, in a series of
papers (cf. Klingenberg [1] and [2]) has extended much of
that theory to the classical groups over local rings, and it
is now reasonable to seek a "globalization" of his results,
such as we have obtained here for GL.

Presumably the most natural setting for such a theory
would be the theory of semi-simple algebraic groups, or
rather group schemes, over a commutative ring A. Stability
conjectures could be formulated in terms of dim(max(A)) and
the ranks of a split tori in the group.



Chapter VI
MENNICKE SYMBOLS

AND RECIPROCITY LAWS

In this chapter something quite remarkable happens.
We start with a Dedekind ring A, with the intention of
refining the results of Chapter V on the groups SK;(4A, g).
The latter imply that

SL_(&, @/E (A, @ —> SKy(A, @

is an isomorphism for n > 3, and that

(L KS_: SL2 (A’ g) > SK1<A3 &)

is surjective. It is natural to ask for the kernel of «

We note first that if a = <% b) e SLo(A, g) then Kq(a)
c d -

depends only on (a, b), so we can denote this by

a b b
K =
4 (c d) al

Here (4, b) varies over a set we denote by W_. The first

theorem, due tc Mennicke, states that the function [ ]:
Wﬂ > SK (A, q) has some pleasant algebraic properties,

the most striking of which is that it is bimultiplicative
in (@, b). The main result then is that it is the universal

279
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function from W_into a group having these properties; such

functions are called "Mennicke symbols". The proof consists
in showing first that a Mennicke symbol induces a homomor-
phism from SL, (A, q) with certain properties - this step

is a theorem of Kubota. Next we must extend Kubota's homo-
morphism from SL, to SLg, and thence to SLn {n > 3). This is

accomplished by the methods of Chapter V.

The remarkable fact now is that Mennicke symbols are
intimately related to "reciprocity laws", of a type that
includes, for example, the classical quadratic and higher
reciprocity laws in number fields, as well as certain
"geometric reciprocity laws" on algebraic curves.

This connection was already apparent in the paper
Bass-Milnor-Serre [1], from which the present material is
adapted. The classical reciprocity laws are most naturally
expressed as ''product formulas" for certain local symbols.
In the case of quadratic reciprocity these are the Hilbert
symbols. The Mennicke symbols in the present context are
then analogous to the Legendre symbols in the quadratic
reciprocity law.

In §§5-6 we show how, over an arbitrary Dedekind
ring A, with a non zero ideal g, one can construct certain
local symbols, one for each p e max(A). Then we formally
define a "g-reciprocity" to be a certain collection of data
satisfying a product formula relative to these local symbols
(definition (6.1)). The definition poses a universal mapping
problem, and hence there is a universal g-reciprocity. In
§6 we establish an equivalence between Mennicke symbols on
W and g-reciprocities. The upshot is that SK;(A, @), which

we originally investigated in order to determine the normal
subgroups of SLn(A), is now characterized as the group

defined by the universal g-reciprocity.

So far A has been any Dedekind ring. In §7 we take A
to be the ring of integers in a number field L. The main
theorem of Bass-Milnor-Serre [1] is then quoted without
proof. It states that SK (A, ¢) = O for all ¢ if L has a
real embedding. If, on the other hand, L is totally imagin-
ary, then the power reciprocity laws in L give rise to non
trivial reciprocity laws in A. Moreover, there are no others
From this it follows that SKj (4, @) = L the rth roots of



MENNICKE SYMBOLS AND RECIPROCITY LAWS 281

unity, where r = r(q) is a divisor of the number of roots
of unity in L. An exact formula is given for r.

Finally, in 88, we take A to be the coordinate ring
of an absolutely non singular and irreducible algebraic
curve X over a field k. Following Serre [3], we give the
proof of a reciprocity law on X, the complete non singular
curve determined by X. This reciprocity law, which has been
attributed to Weil, is sometimes formulated as "f((g)) =
g((£))" where f and g are non zero rational functions on X,
We show how to obtain from this a sometimes non trivial
induced reciprocity law on the affine curve X. No non
trivial examples can occur this way when k is finite, and,
indeed, it is proved in Bass-Milnor-Serre [1] that SKy (A,
g) = 0 for all g when k is finite.

On the other hand we show that there is a non trivial
reciprocity law, with values in p, = {#1}, defined on the
coordinate ring of the real circle: R[x, y], x2 4+ y2 = 1,

We give a direct proof of the reciprocity law in this case,
using elementary arguments, and we also give a topological
interpretation of the corresponding homomorphism SK; (A)

> Hg.

It is natural to ask whether there are any recipro-
city laws on algebraic curves other than those which can
be deduced, by the method of 88, from that of Weil. The
answer is "'yes', as we shall see in Chapter XIII. The
reason is that SK;(A) can be much larger than Weil's
reciprocity law can account for. The proof of this relies
heavily on the machinery developed in subsequent chapters
which we use to compute SK;(A). This is an illustration of
the double edged nature of the theory. In Bass-Milnor-Serre
the classical recprocity laws were used to settle the pro-
blem of congruence subgroups, i.e., essentially, the
computation of the groups SK;(A, gq). Since the "K~theory"
methods developed below give a direct means for computing
SK1(A, ¢) in certain cases, we can then go back and use the
K-theory to discover new reciprocity laws in those cases.

b
§1. MENNICKE SYMBOLS [a}

We fix a commutative ring A and an ideal g in A, We

shall write w& for the set of g-unimodular elements in A2,
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Explicitly,

Wy = {(a, B) € A% | (a, b) = (1, 0) mod g;
- ah + bA = A}.

The object of study in this section is described by:

(1.1) DEFINITION. Let C be a group. A function

[1: W —>¢C, (a,b) F—m
q (¢}

is called a Mennicke symbol if it satisfies MS1 and MS2
below.

+
MSla. [b tal - [b} whenever (a, b) ¢ W and t € g
a a 4
MS1
b b
MS1b. { } = [ } whenever (a, b) e W and t ¢ A
attb a 4

(Note the assymetry).
MS2a. [bl} {bﬂ
a a

MS2b. [b J [b ] = [ b J whenever (aj;, b),
- a2 @192 (ap, b) e W .
9

- [b1b2} whenever (a, by),

a (CZ, b2) e W .
MS2 4

It is clear from the definition that there is a
universal Mennicke symbol, [ ]gf W > Cgf characterized

by the fact that any other Mennicke symbol [ ], as above, is
of the form he [ ]& for a unique homomorphism h: C > C.

Moreover this defines C_ up to a unique isomorphism. It can

be constructed, for example, as the group with generators
Wg.and relations MS1 and MS2. (We shall see below that the

axioms are not independent, so that this presentation of C

is redundant). The main theorems of this chapter will show



MENNICKE SYMBOLS AND RECIPROCITY LAWS 283

that if A is a Dedekind ring then Cg_: SK;(A, ¢). This

explains our interest in Mennicke symbols. The effect of this
result is that to give a homomorphism SK;{A, q) > C is
equivalent to giving a Mennicke symbol W > C, for any

group C. In the later sections we will exhibit examples
where SK; (A, q) can be computed with the aid of Mennicke
symbols. We begin here by establishing some of their elemen-
tary properties.

(1.2) PROPOSITION. (a) Eﬁva = (l
c d

E) € GLo(A, g) then

(a, b) ¢ Wﬂ. The resulting map GL, (A, q) 15t row S w&

induces bijections

SN/SL, (A, q) > N/GLy (A, @)

> W&’
where the left and middle terms denote coset spaces modulo

the subgroups SN = {I + tey,; | t ¢ g}, and

N = {<? O> e GLp(A, ¢q)}, respectively.
c d

(b) Let «: SL,(A, q)
that Ker(k) contains both E,(A, q) and [E5(A), SLo(A, 9)1.

> C be a homomorphism such

Then k admits a factoriation

SL, (A, 9) > C

n 1°" row

and [ ] satisfies MS1.

In §2 we shall see what further conditions on « are
required to make [ ] a Mennicke symbol.

Proof. (a). Clearly (a, b) = (1, 0) mod g; moreover
ad - bc ¢ U(A). Thus (a, b) ¢ Wq, and we have a map GL, (A,
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1%t row _ W_. Suppose o = ab and o~ = (¢ b have
9 c d ¢’ d7

the same first row, i.e. ea = €0’ where ¢ = (1, 0). Then

ea’a ! = g, i.e. a’a"! ¢ N. Since N M 8L,(A, q) = SN the

maps of coset spaces above are well defined and injective.
To establish bijectivity we must show that every (a, b)
W is the first row of some o € SLy(A, q). This follows

from (V, 3.4 (b)), but we shall recall the proof. Write 1 =
ax + by; then set ¢ = -byZ € q and d = x + bxy. We have
ad - be = a(x + bxy) + b2y?2 = gx + by(ax + by) = 1. Reading

ab

mod ¢ shows that d = 1 mod g, and thus <
¢c d

> € SLz(A, g.).
q.e.d.

(b) Since SNC E,(A, q) C Ker), it follows from
part (a) that ¢ factors through WSK= SN/SL, (A, g)), thus

¢ P\e s, . If € =
c d

I+ tej, (t € g then & € E5(A, q) C Ker(x) so K(ae) = «(a).

But ae = a btta , SO we have [b+ta} = [b} for t € q. If € =
* % a a

giving us diagram (1). Let o = <

I + tey; (t € A) then [o, €] = o laf e Ker(k) also so K(&E)

= (). But of =1 OY[a bY/1 Oy _fattb b}
-t 1 c d t 0 % %

[ b } = [b1 for t € A. Thus we have verified MSla and MSlb,
attb a

respectively, for [ ]. q.e.d.

Let H C SL,(A) denote the group generated by all
T12(t) =1 + teys (t € A) and all tp1(t) =T + ty; (t € g).
1f (a, b) € A2 then (a, b) T12(t) = (a, b + ta) while (a, b)
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191(t) = (a + tb, B). If (aj, by), (az, by) € A® we shall
write

ays by) ~ (az, by)
(ap, by q (925 P2

if there is a T ¢ H such that {(a;, by) = (a1, by)t. This is
the equivalence relation generated by (a, b + t) ~g (a, b)
for all t ¢ g, and (a + tb, b) ~SL (a, b) for all t € A. Note
that if (a;, by) ¢ wﬂ above then (a,, bs) € w& also. More-

over, we can restate axiom MS1 for a Mennicke symbol with
this notation, as follows:

b~ b
MS1 [,J=[} if (a, b) ¢ W and
—_— a a q
(@, )~ (a, b).
q
(1.3) PROPOSITION. Let (a, b) € W and let u e U(A).
Then (a, b) ~1 (¢, (1 - @) b), and (a, b) ~g (1, 0) if

either ¢ = umod b 0r b = u mod a.

Proof. (a, b) N.‘l (@, b —ab) = (a, (1 - a) b). If
a =u - tb then (a, b)Ng_ (a + tb, b) = (u, b)~£l (u, b +

u - u (1l -u-1b)) = (u, 1—u)~_q (1, l—u)~ﬂ(l, 0).
Suppose, finally, that b = u + ta, and set ¢ = 1 - a.

Then (a, b)Y~ (a, gb) ~ (a, gb - qta) = (a, Y~ (a -
q q q q qta) qu g(

u™l ¢ uq, uq) = (1, ug) ~q (1, 0). q.e.d.

(1.4) PROPOSITION. Let q” be an ideal containing q

and assume that A/q is semi-local. Then given (a”, b7) ¢

W ., there is an (a, b) € W_such that (¢, b))~ . (¢”, b7).
q7 9 q ’

Proof. After passing to A/q and q”/q we can assume
q = 0, so A is semi-local. Then, by (III, 2.8), we can
choose t ¢ A so that a” + tb” ¢ U(A). Applying (1.3) then

we have (a¢”, b))~ . (¢ + tb”, b))~ . (1, 0). q.e.d.
q q s q
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This proposition is especially useful when A is a
noetherian integral domain of dimension < 1. For then A/g
is semi~local (in fact, an Artin ring) for every ideal q #
0.

(1.5) PROPOSITION. Let A be a noetherian integral

domain of dimension < 1 (e.g. a Dedekind ring).

(a) Let g be a non zero ideal in A and let t # 0 be

an element of q. Given (a;, bl),...,(an, bn) e W , there

exist (a, c1t),...,(a, cnt) € wt (= th) such that (ai, bi)

~ (@, c;t) (1 <41 <m).

(b) Let S be a multiplicative set in A, let q” be an

ideal of A~ = 8”1 A, and let q=4g"M A. Given (a”, b") ¢
W ., there is an (a, b) € W such that (g, b) ~ . (a”, b7).
g 7 g——— 7’ q

Remark. It follows easily from (1.5) (b) that, for
alln > 1, SLn(A’, q7) is generated by En(A‘, q7) together

> SK1(A7, g7)

with SLn(A, q) . In particular, SKj(4A, q)
is surjective,

Proof. (a). Since A/tA is semi-local we can use (1.4)
to find (ai s bi t) € wt such that (ai , bi t)/vg_(ai, bi)
(1 <i < n). Assume, by induction on n, that we have found
(a’, cit) € wt such that (a”, cit)—vt (ai, cit) (L <i<n).
We can, of course, arrange that each cy # 0. Let c = ¢;..
Co1 # 0. Since bn' is comaximal with anA we can, by (III,
2.8), find ¢. = b_~ mod q_ such that c¢c_ maps to a unit in

n n n n
(the semi-local ring) A/cA. Then we have (an’, bn’t)’wt
(an’, cnt), clearly. Moreover, writing a” - an = dt, we can
solve d = rc_ - sc, Theng” - g = rc t - sct so g~ + rc_ t
n n n n n
= q° + sct; call this element a. Then (a_~, c_ t) ~_ (a, c_t),
n n t n
and, since ¢ = CreeC 75 (a”, cit)~t (a, Cit) (1 <1i<mn).

q.e.d.
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(b) Let a # 0 be an ideal in A. Then A/g is an Artin
ring, so Afg = HA/ii where each A/gi is a local ring with

n,
maximal ideal -Ei/&i' Moreover P, e 44 for some n, > 0 so

the g, are comaximal, and we have g =(‘gl = Hgi (see Chinese
Remainder Theorem (III, 2.4)). Moreover S‘lg_ = HS_l_cli (Eiﬂ
S =¢), and A°/S7lg = na/q; (M 8 = $). These facts follow

from standard properties of localization (see (III, §4)) and
the fact that the p, are maximal ideals. Since any ideal g~

in A" is of the form a’= S_lg (@ =a M A) it follows, in

particular, that the composite A C A~

> A”/a” is surjec-—
tive for a” # 0.

We are given (¢”, b”) ¢ W . and we seek (a, b) e W
such that (@, b) ~ . (a”, 7). If @~ or b~ is zero then
the other is a unit, and (1.3) implies (a”, b") ~ . (1, 0).
If not we can find b# 0 in A such that b = b~ mo% a’ q’,
by the paragraph above. Moreover the same paragraph shows
that bA = bjb, where b; = bA“ (VA (so that bA” = bjA”) and
where b, is comaximal with b;. Choose a; & A such that a;

= a” mod bA“, and then choose ¢ £ A to solve

a = a; mod by

a = 1mod by.

The first congruence implies ¢ = a; = a” mod bA", so (a7,
b’)~_q, (a”, b) NEL‘ (a, b). Hence (g, b) = (1, 0) mod q"M A
(=q) . To show that (a, b) € W it remains tc be shown that
a = aA + bA equals A. Of course gA” = A” and g D bA = byb,.
If s ¢ SV g then s belongs to no maximal ideal containing
b;. Moreover ¢ € ¢ and a = 1 mod b,. Therefore A = sA + gA
+ biby C a. q.e.d.

(1.6) PROPOSITION. Let q be an ideal in a commutative

ring A, let C be a group, and let [ ]: wﬂ > C be a
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function satisfying MS1, and such that [O} = 1.
1

(a) If (a, b) € Wﬂ’ and if there is a u ¢ U(A) such

that @ = u mod b or b = u mod a then [b} =1,
a

(b) Suppose t ¢ q, and a = 1 mod t. Then the map b

]———> [bt1 for b ¢ A, bA + gA = A, induces a map
a

(2) U(A/aA) —> C

whose composite with U(A) > U(A/aqA) is the constant map L

(c) Suppose A is a noetherian integral domain of

dimension < 1. Then given (aj, bl),...,(an, bn) e W , there

b.
exist t and a as above such that al (1 <i <n) all lie

in the image of (2).

Now suppose that [ ] satisfies MS2a also. (This

implies {0} = 1).
1

(d) The map (2) is a homomorphism. If A is as in (c)

then [W ] is an abelian subgroup of C. Moreover, if 0 # ¢~

h 1= .
cgq then [wﬂ ] [Wﬂ]

(e) (Kervaire). Let t ¢ ¢ and suppose a, d € A are
that ¢ = 1 2 d mod t and ¢A + dA = A, Then

dt _ fat
L]
Proof. (a) follows from (1.3).

{(b) Let (a, byt), (a, byot) ¢ wﬂf If by, = by - xa
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then [bzt} = {bzt +oxt a} = [blt]. Thus {bt} depends only on
a a a a

the class of b in U(A/gA). If b € U(A) then ¢ = 1 mod tA

(= btA) so (a) implies [bt] = 1.
a

(c) follows from (1.5) (a).

t} = 1, by part (a), so [blbzt:]= {blbzf

(d) We have [
a a a

{t} = [blt bzt] = {blt] [bzt}, using MS2a. Hence (2) is a
a a a a

homomorphism. In particular, the image of (2) is an abelian
subgroup of C. If A is as in part (c) then the latter
implies [W ] is the direct union of the images of (2), for

variable t and ¢. Therefore [W ] is an abelian subgroup of
C. If 0 # g” c q then A/q” is semi-local so it follows from

1.4) that [W_.] = .
(1.4) that [ g'] [WQJ

(e) Write d - a = xt. Then {dt} = [dt - at] = [Xt%

a a a

_rXt] _ Xt _orxty _ %%t at - dt at
IR R R PR b S
a a + xt d d d d
(1.7) PROPOSITION. (Lam) Let A, q, and C be as in
(1.6), and let [ ]: W
9

> C be a function satisfying MS1.

(a) MS2b = MS2a.

(b) If A is a noetherian integral domain of dimension

< 1 and if q is an invertible ideal then MS2a = MS2b.

Proof (a). We assume MS2b. Suppose t € ¢, @ = 1 mod
t, and (a, bt) € W&; say a = 1 + st. Then
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AN R

2 2 _ + —
For we have \i bt } = [bt e bt):| = [ t ]= 1,
1+ bt 1+ bt 1+ bt

bt?2 bt? bt? bt?
and hence [ }=[ } [ }=[ }
a a 1 + bt (1 + st)(1 + bt)

{ bt? J_[ bt? }
1+ st + bt + sbt? a + bt

[bt2 - tla + bt)] ={ -at }
a + bt a + bt
Next suppose above that b = b;b,. Then

[bltz} [b2t2] =[ -at } { -at } (using (%))
a a a + blt a + bzt

)l ]
CZZ + Clt(bl + bz) + b1b2 t2

Lt v o0 2oy €2)
a(l + st) + bib, t?

-ta
[CZ + b1b2 tz:l

[cblbzw tz} (using (%)).

a

Finally, suppose (a, by), (a, by) ¢ W&. We claim

- [bl} \:bz}. Set t = 1 - a. Then if (a, b)e W& we
a a

]
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b7 _[bt] _ rbt"
have [ ] = [ ] = [ } for all n > 0. Hence, using the
a a a

calculation above, we have
[bﬂ [bZ} - [bltz] [bztz} _ {b1b2t3} _ [blbz}. q.e.d
a a a a a a

(b) We now assume A is a noetherian integral domain
of dimension < 1, that g is invertible, and MS2a. We claim
that if (a;, b), (az, b) ¢ Wﬂ_then

e Ll TG

Case 1, There is a t € q such that g7 = 1 = ay mod t.

Then [ t } =1 = [t } (i =1, 2), so it suffices to show
a as ai

that [ bt } = [btJ [bt}. Neither side of this equation is
aiaz ayd taz
altered if we vary b modulo aja,. If ajay, = 0 then b ¢ U(A)

and (1.6) (b) implies all these symbols equal 1. Otherwise
we can, after changing b modulo ajap, arrange that b is

comaximal with t. (We can assume t# 0 for the problem here
is otherwise trivial). Then we can find b~ ¢ A so that b~ =
1 mod aja; and by = 1 mod t, where b; = b”b. Now using (1.6)

(d), we have

Pl PR PR R el
Laas alaz a1ap aas

2P FA) B e
Lai ai ai ai

Finally, with the aid of (1.6) (c¢), we obtain

and
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[ blt:' = {a1a2CJ _ [altJ \:azt} _rb;t bit

= - s
a1ap b by by [al } [az }
and this concludes the proof in case 1.

General case, Write g =1 - t; if t = 0 we are in
case 1 so assume t # 0. If we replace b by b; = b + saja,

for some s ¢ g then neither side of (**) is altered. We
claim s can be chosen so that t and b, generate q. For it

suffices to choose s so that this is so at each of the
(finite number of) maximal ideals containing t. By the
Chinese Remainder Theorem it suffices to do this locally.
But then the invertible ideal q is principal and either
ayap, or b is a unit, so such an s clearly exists.

Since g = At + Ab; we can write a, = 1 + xt + yb;

Then neither side of the alleged equation,
o) “Lad L2
- s
a1az ai-s Laz
is altered if we replace a; by a»” = ap - ybi. But {(aj, bi),

(as”, by) satisfy the conditions of case 1, so this con-

cludes the proof.

§2, THE MAIN THEOREMS

Let q be an ideal in a commutative ring A, and let «k:
SLo (A, @) > C be a group homomorphism such that Ker(k)

contains both E,(A, q) and [E,(4), SL,(A, g)]. Then, accord-

ing to (1.2) (b), k admits a factorization

SL, (A, @) > C
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and [ ] satisfies MS1l. Clearly also [0} = 1.
1

(2.1) THEOREM. (a) [ ] satisfies MS2a if and only if

k satisfies the following condition:

+
(2 If o, a” ¢ SLy(A, g) are of the form a = <? ta b)
te d

and a” = (? t ta tﬁ) for some a, t e g, then k(o) =
c d

k({a).

(b) (Mennicke) If k is the restriction of a homomor-

phism «”: SL3(A, g) —> C such that [E3(4), SLg3(A, )] C

Ker(x”) then [ ] is a Mennicke symbol.

Let MS(A, g) denote the normal subgroup of SL,(A, q)
generated by E»(4, g), [E;(A), SLo(A, q)], and all o1 a’,

where o, o are as in (2) above.

(2.2) COROLLARY. In the setting of (2.1) assume that

A is a noetherian integral domain of dimension < 1, and

that q is an invertible ideal. Then [ ] is a Mennicke symbol

<> MS(A, q) C Ker(x).

Proof. This is an immediate consequence of (2.1) (a)
and (1.7) (b).

Proof of (2.1) (a). If a = <a b>z—: SL,(A, q) then [b}
cd a

= k(a).

MS2a = (2). Given o and a” as in (2) we have

o1 LG
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= [ b } = x(a). q.e.d.
1+ at

(2) = MS2a. We first note the following immediate
consequence of (2):

*) If (a, b) ¢ W.9 and ¢ = 1 + xt with x, t e g then

L0

We must prove now that if (a, bo), (a, b1) ¢ wQ. then

[bobl} = [bo} [bl}. Write a
a a a

¢ € A such that

1+ q (so q € @ and choose

¢ =1 mod q; and

boblc = -l mod a; say 1 + boblc ad.

a by b
Then a, = <b e d> e SLo(A, q) and{ 1}
1-1 a

Let T =<O _l> e E;(A). Then, by hypothesis, K(O(.TT) = k{(a)
1 0

for o & SLy(A, ¢). Hence we have

K(Oti) (i =0, ).

\:bol [bl} = K(OLO) K(OL]_ﬂ) = «(ay onlﬂ),

a a

T _ a b d -b ¢ ad-bgb; ab -ab ¢
o, a1 = o o = o) o
bic d ~-b; a * *

where
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* *

_ <1 - b by(1-c) ab (1 - c)) .

Since ¢ = 1 mod q (recall ¢ = a - 1) we can write 1 - ¢ = tq,
and we have

LG e
a a 1 - bybitq

= [ a9 J ((*) with t there = b_t
1 - bybytg here)

= aq } (because a = 1 + q)
-a - q(l + boblt)

- raq - qla - q(1 + bOblt))J
L a - q(l + bybit)

r q?(1 + bgbyt) J
La - q(1 + boblt)

= [ A * Bobrt) } ((*) with t = q

Lag - q(l + bObIt) <= a - l))

[q(l + boblt):l

a

[q + bob; (1 - C)J (1-c=qu

a
= [bobl +q - boblc}

a

boby + q + 1 -
- [ ob1 q 1 ad} (ad - bobjc = 1)

a
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- [bobl + a(l - d)} _ [bobl

}. q.e.d.
a

a

Proof of (2.1) (b). Thanks to (1.7) (a) it suffices,
in order to show that [ ] is a Mennicke symbol, to verify
MS2b. Thus, given (a;, b), (as, b) ¢ Wﬂ, it suffices to show

that [ b } =[b J [b }, under the assumption that «k extends
a1a; ap taz

to a homomorphism «” on SL3(A, g) that kills E3(A, g).

a
Choose ai

1
PR
0

i b > e SLo(A, q), and write

d.
-1 0 e E3(A), where
0 7

i i

1, 2). Let

T = 01 . Then we have
1 0

[ZJ {Z’j = k(a1) «(ap)

a; b 0\ fap O -b
c; d;y 0140 1 O

e |
-

[]
RS
o R
[
= O
N—
—~
[

]

k*(ay) k(o) = k7(a),

where

Q
I
el
-
A
N
[

0 0 1 -Co 0 d2

aja, b -ajb

cijap dy -c1b

~-Co 0 d2 .

Let 7 = I + a; e;3 € E3(A). Then
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ds

a1a, b 0
0.€1 =] ci1a2 — Cray dl a1d1 - a1d2 - ¢c1b
=Co 0 d2
ajas b 0
= X dl 1- aldz
—C2 0 d2
Let €9 = I + (a; - 1l)e,3; then
ajas b 0
e, ol =
2 y d  1-4d,
—C2 0 d2
Let €3 = I - eg; € E3(A). Then
aias b 0
€
(e, o D3 =[ d; +d, -1 1 -
y - Co dl—l 1

Let ey = I + (dy - l)ey3 € E3(A, q); then

aiay

3
eney @

ai1as b _
Let B = , and B
Z d1d2

l.¢e
) 3

Z

C

(

2

g8 C

0 1

b 0
did, 0
-1 1

). Then e4(es o

with e5 € E3(A, g), clearly. Since Ej(A, g) C

[E3(A), SL3(A, q)] C Ker(x”) we conclude that

el ¢

)

3

297

853
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b b €1 €3 -
{ J [ J =k(a) = k" (ey(ey o ) ) =« (e5B)

ai 2%

b

< (B) = «(8) =[ } q.e.d.

aiay

The main theorem of this chapter is the following
result, which contains a partial converse to (2.1). In the
later sections we shall explore some of its consequences.

(2.3) THEOREM. Let A be a noetherian integral domain

of dimension < 1, and let g be an ideal in A. The natural

homomorphism Kﬂ: SLy(A, @ —> SK;(A, q) admits a
factorization
Kq
SLy (A, @) > SK1 (A, q)
lSt row ,//////I/;/’
W 9
g9

as in (1) above, and [ ]g.is a universal Mennicke symbol.

This theorem will be deduced from the following, more
explicit, statements (which are themselves consequences of
the theorem).

(2.4) I. (Kubota). Let [ ]: wg
symbol, and let «: GL,(A, g)

> C be a Mennicke

> C be the composite GLZ(A’EQ

15°F row wq [ ] , C. Then « is a homomorphism whose

kernel contains GE» (A, q), [GEx(A), GLp(A, @), and all

elements o~ la” where a, a” € GL, (A, q) are of the form

1+ gt +
o = at b and a” = L+at b with a, t € q.
ct d c d

(2.5) II. The homomorphism « of I can be extended to
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a homomorphism k”: GL3(A, g) ——> C such that E3(A, q) C

Ker(k”).

Proof that I and II = (2.3). First it follows from
(2.1) (b) that [ ]g_is a Mennicke symbol (without any

assumptions on A). To prove that it is universal let [ ]:

W& > C be a universal Mennicke symbol. Then [ ] = he[ ]

for a unique homomorphism h: C > SK;(A, q), and we must

show that h is an isomorphism. Let « and «” be the homomor-
phisms whose existences are guaranteed by I and II, respec-

tively, and let f~”: SL3(A, q)/E3(A, @)

> C be the homo-
morphism induced by «“. Since dim A < 1 it follows from

(IV, 4.5) that the natural homomorphism SL3(A, q)/E3(A, Q)

> SK1(A, q) 1s an isomorphism. Thus f” induces f: SK;(A,q)

> C. If o = (a b) £ SLo(A, q) then [b} = f (class of
¢ d a

I A, Q) = £ [b} - fn [b} . Since, again by
0 1 alq a

(V, 4'5)’ SLZ(A’ ﬂ_)

that h is an epimorphism. We have just seen that fh = 1 _,

> SK; (A, q) 1s surjective, it follows

C
and hence h is an isomorphism with inverse £. q.e.d.
§3. PROOF OF THEOREM (2.3): I. KUBOTA'S THEOREM
A and q are as in (2.3), and k: GL,(A, @) > C is

defined by

k(o) = [b], ifg=(% b s
a c d

where [ ] is a Mennicke symbol. We shall prove, in several
steps, that « is a homomorphism having the properties
described in (2.4).
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. a b c
(1) If o =< > € GL,(A, q) then x(a) = [ :l =

c d
-1 -1

MM

For u = ad - bc € U(A) so, with the aid of (1.6) (a),
we have

- -1

<= [1-CIE -0 G1-L

-1 -1
LG - L]

Let H= {o € GLy(A, q) | k(a"a) = k(a”) k(a) for all

a” € GLy(A, @)} and let N = {t GLy(A) | k(a') = k(o) for
all o € GL,(A, g)}. Then, just as in (V, 7.2), H and N are

groups and N normalizes H.

(ii) GE,(A) C N and GEp(A, q@) C H. In fact x(ae) =
k(a) for e € GE5(A, q).

Let o = (¢ b € GLo(A, @), and let e, (t) = 1 + te, .
c d +J +J

* * * *,

+ +tb b
If t € g then agjp(t) = <a b ta> and aeyg () = <b t >

so k(aeio(t)) = [b+ta] = [b} = k(a), and, similarly, e,3(t)
a a

€ H.

612(t) _ %
For any t € A we have o ==<a ct > and
c *
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]
—
Q o
|
—

* *

(t) e12(t) -1
a€21 = <a+tb b) . Hence «(a ) = [ ¢ }

= (o), and, similarly, eo1(t) € N.

b
If § = diag(l, u) then as (a u) and ad = (

* *

s ([0S

k(a), and also «(ad) = «(a) if u U4, q).

Q

o

[
S

* *

Since the e1,(t) and e,5(t) (t € A), and § as above,
generate GE,(A), we conclude that GE;(A) C N. Since N
normalizes H and all e3,(t), e51(t) (t € g) belong to H we
have E, (A, g) C H as well. Finally GE,(A, q) C H since GE,
(A, g) is generated by E,(A, q) and those § as above such
that u € U(A, q).

(iii) Suppose o = 2 Pland o =(% *)in GL, (A, @
c d c” d-
are such that d = 1 = ¢” mod t for some t € ¢, and assume

further that g”A + dA = A. Then «(a"a) = «{(a”) k(a).

Suppose (a”, xy) € W_with y € q. Then {xy] = [XYJ
4 a’d a”

[t ] = [th} = {y} [Xt} An analogous remark applies to d.

a a” a a”

Now, for the proof, we have

. a’a + b’c a’b + b’d
o o =
* * s

and hence
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. a’d + b~d
k(a’a) = [ ]
a’a + b’c

_rab+bd } {a’b + b’d}'l
[(a’a + b c)d d
(a"A + dA = A, so (d, a’b) ¢ Wq)

- a’b + b"d } [a‘bJ—l
{a‘u + c(a’b + b“d) d
(u=ad - bece UA, q))
_ a’d + b’dq ratq”! [b}‘l
[ a’u ] [ d } d
(remark above)

- LAET e
(see (1))
- AT

(remark above)

ppo=1
k(a™) [dt} [2 t} k(o)
a” d

((1) and (1.6)(a)

k(o) k() ((1.6)(e)) .

(iv) k is a homomorphism, i.e. H = GL,(4A, @)

Let a, a” € GLy(A, q); we claim k(a”a) = k(a”) «x(a).
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Suppose o = ajap with ap € GEo(A, q) C H (see (ii)). Then
k(o"a) = k(a’01) while (o) = x(a1) also, by (ii). Therefore
we are free to replace o by o uz_l for any ap € GE,(A, q).
We first arrange that det(a) = 1.

Write a” = 1 + t. If t = 0 we can apply (iii) to
finish the proof. If not then, by (V, 9.3), we can choose

a; by
¢y dy

d; +

g1 € E5(A, q) such that ae; € SLy(A, tA); say ce;

Since djA + cjA = A = d;A + c1?A we can find a d,

s c12 (s € A) which is a unit modulo a”. Set €5 = I + c¢;s

a, by +
ey € Ep(A, tA). Then we have aeje, =+ °1 7T €1591) & 44
Ci d2

we have achieved the hypotheses of part (iii) for aeje, and

a”. Therefore, by (iii) and (ii), we have

k(a”a) = k(o aeey) = k(a7) k(aeyey) = k(o) x(a).

(v) Ker (x) contains GE,{(A, g) and [GE,(4), GLZ(A,E)].

This follows immediately from (ii).

(vi) If o, a” € GLy(A, q) are of the form

1+ b +
a = at and o~ = Itat bt with a, t € g then «(a) =
ct d c d

k(a’).

-~ bt b t b
e = el -] - e
l+aqt l+atd ll+at 1+qtd = KV

(cf. (2.1) (a)).

The assertions of Kubota's Theorem (2.4) are contained
in (iv), (v), and (vi) above. g.e.d.



304 PROJECTIVE MODULES AND THEIR AUTOMORPHISM GROUPS

§4, PROOF OF THEOREM (2.3): II. CONCLUSION

The homomorphism k: GL,(A, q) > C constructed in

Kubota's Theorem ((2.4); see §83) is to be extended to a x”:
GL3(A, q) > C so that E3(A, ) C Ker (k7). We have seen

in §2 that this will complete the proof of (2.3). We can
assume, of course, that g # 0.

Since dim A < 1 and A is commutative we have the
stable range conditions SR3(A, gq) (see (IV, 3.5)) and SRj

(A, q) (see (V, 3.4 (b))). Furthermore « satisfies the con-
dition in (V, 6.4) (see part (vi) of the proof of Kubota's
Theorem). It therefore follows from (V, 6.4) that there is

a map «”: GL3(A, q) > C extending x, defined with the aid

of "standard forms". Explicitly, if

¢ = ¢y (I + t831) 1 e
0 1 0 B

with all factors in GL3(A, g), then «" (o) = x(a) k(B).
Moreover all of the results of (V, §7) apply to «”, in
particular (7.7). The upshot is that in order to show that

-

k” is. a homomorphism whose kernel contains E3(A, gq) it will
suffice to show that

€] k(0™ = k(o)
for all ¢ € GL3(A, q), where
1 0 O
m={0 0 1
o 1 0/.

It follows further from (V, 8.1) that it suffices to verify

(1) for ¢ = Ge where a, € € GL3(A, q) are of the form

— Q a
a = Y s O = 11 412 s Y = 0 , e =1+ tesy .
01 a1 ap c

We are further allowed (by (V, 8.1)) to replace o by 710 for
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any 1 = I + qey» (q € g) and we can thereby arrange that
aj; # 0.

Now
arl aijz O
o =]ap; t tc aso c _and
t 0 1
ar 0 ap
o' = t 10

a1 + tc c aso

Since A/a;;A is semi-local there is an s ¢ g such that t +
s(apy + tc) is comaximal with a13. Since s is determined
only modulo aj;;gq we can further choose s so that d = 1 + sc

# 0; note that t + s(ap; + tc) = sap; + td.

Put § = I + sey3, so that
ari 0 ayop
T
§c =]sap; +td d saps

asy + tc c anso

Since (aj;;, sap; + dt) ¢ wﬂA(by construction) there is an

w = <W11 w12> e SLy(A, g) such that

Wa1  Wao
all 0 1 X
(2) w
sap; +td d 0 vy
=(° 0 we have
0 1

g

for some x, y € A. Writing
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1 X Wil di2 + W12 SQgy
— ki
wdo = 0 y w2y ayp twap sapp
ar] + tc c azy

Let u = gy + tc and put €7 = I + ue3y, so that B =¢;"1 @ *

w a + w sa
. 1 y 21 412 22 22
o = e , where B8 = <
0 B C-UuX djpo — U(Wll alz + Wio Sazz)'

m -1 — . .
Now o = (§ ! w l)ejE is a standard form for o, since

0
-1 -l = <<»—1 —s> is of "type L" (see (V, 8§6)). Therefore
0 0 1

k(") = k(™ «(8),

and we must show that this equals «“(0) = «(a) = [alz}
ali

To solve for w we make equation (2) explicit,
wyiay; + wio(sagy + td) wyaod 1 x
(Wzlau + wyo(sap; + td) W22d>_ <0 Y>.
Since det(w) = 1 the left side of (2) has determinant ajid,
so y = ajid. Therefore wyod = aj;d, and since d # 0 (by

construction above) we conclude that wy, = aj;. Making this

substitution in the equation of (2,1) coordinates, we can
again cancel a;] to conclude that wp; = -sapy + td. There-

fore B has (1,2) coordinate -(sap1 + tddajs + ajisazy =

s(ayi1azs - ajpasi) - tdajs = s - tday, so B has the form

8 = alld s - tda12
* *
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On the other hand

w11 w12
w =
(sap; + td)  asy

where, recall, d =1 + sc. We can now compute k(o) ¥ «(B).

—(sa21 + td) -1

k(w)~L =
ar
—(sa21 + td) -1 ayo -1
= K {a)
a1 anl
=8d12d07 — tda12 -1
= k(a)
a11
s(1 - ayiass - tdalz -1
= «(a)
a11
s - tdajy| !
= k(a) .
aii
Next
s — tdaq.|
k(8) = 12
aii1d

[s - tday,] [6 - tda,

ail d

-

S - tdalz ]
a1 d
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s - taajs
ail

because d = 1 + sc. Thus, indeed, «(w) ! «(B) = «x(a). q.e.d.

b
§5. MENNICKE SYMBOLS [a}.

In this section we fix a noetherian integral domain

A of dimension < 1, and an ideal g_# 0 in A. Starting from

a Mennicke symbol [ ]: Wﬂ_ > C, we propose to construct a

symbol (a, b) |~*—> [b}, W > C, where

a

1%}

Wﬁ_= {(a, b) | @ = mod q; b is an invertible ideal

cgq; aA + b = A},

(5.1) PROPOSITION. There exists a function

R > C
q
satisfzing:
MO. If (a, b) ¢ W_and b# O then [bA] =[b};
ﬂ a a
b —_
M1 (a).{—i\=lfor all (1, b) ¢ W_;
1 — = q
M1 (b).[ L] 1={Ejlfor all (a, b) ¢ W
a+b a 4
and b e b;

M2 (a). [32 32] =[21J [32] for all (a, by),

a a a

(a, by) € Wﬂ; and
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M2 (b). [ b J=[-b—} [3} for all (aj, b),

ay az ai ay

as, b) ¢ W,
(az, b q

Moreover this function is uniquely determined by conditions

MO, MS1 (a) and (b), and MS2 (a).

For the proof we shall require:

(5.2) LEMMA. Let b be an invertible ideal and let a

be any non zero ideal in A. Then there is an invertible

ideal ¢, comaximal with a, such that b ¢ is principal,

Proof. Let P = hfl, and let S~!A be the (semi-)
localization of A at the (finite set of) maximal ideals
containing a. Then, since s-1A is semi-local, we have S”lp

> A

=~ §T1A, It follows that there is a homomorphism h: P
such that S™lh is an isomorphism. Then ¢ = Im(h) = P = Efl

is contained in no maximal ideal containing ¢. q.e.d.

Proof of (5.1).

Uniqueness. Given (a, b) e ﬁa put t =1 -a e q. If

t = 0 then [El = 1 by M1 (a). If not use (5.2) to find a ¢
a

comaximal with tb such that b ¢ = dA for some d ¢ A. By the

Chinese Remainder Theorem we can find g~ so that

a” = a mod(b M, tA)

a” =z 1 mod c.

Since a” = @ = 1 mod tA we have g~

1 mod (tAMgc) (= te).
Therefore

[h] - [EJ [tﬂ (M1 (b) and M1 (a))



310 PROJECTIVE MODULES AND THEIR AUTOMORPHISM GROUPS

- [thc] (Ms2 (a))
.

- [dtil (MO)
B

]
[
Q A
| SRS

Existence. Define {E} as above. There is no
a

ambiguity if t = 0 so assume t # 0. Since the congruences
determine a” uniquely modulo (b MtA)c, and hence modulo

dA = bc, it follows that [d }does not depend on the choice
a”

of a”, for a given choice of c. Moreover d is determined up

to a unit factor, and {d

} is unaffected by such a change.
a

Suppose c¢; and ¢, both satisfy the conditions on ¢
above, say Eig = diA (i = 1, 2). Choose b” comaximal with c¢;
cp bt in the same ideal class as b, i.e. so that hfgi = eiA
for some e, € A (i =1, 2); this is possible by (5.2).

Choose a” now so that

"

a” = a mod (b MtA)

a” 1 mod ¢y cp b~

Note that ¢j ¢») b = ¢c; e, = cp e1 is prime to bt. Since a~

= a = 1 mod tA we have @ = 1 mod et (i = 1, 2). Therefore

4[4 (3] (7 e 292
a’ a’ a’ a’ a” a’
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But diesA = (c; b) (c2 b)) = (2 b) (1 B) = dpyA, so

-

d d
diep, = udye; for some u e U(A). Therefore [ 1} _ { 1e2tJ =
a

-

a

-

a

-

a

-

a

-

[udzelt} _ [dzelt] {Ut} = [dz]’ because ¢” = 1 mod tA
a

(= utA). This shows that [ ]: Wg_ > C is well defined, as

above. We must now check the axioms.
MO. If b = bA we can choose ¢ = A, d = b, and a” = a

in the construction above. Then we have {bA} = \:d i] = l:b:'
a a” a

Ml (a). This is part of the definition.

M1 (b). Given (a, b) € ‘ﬁﬂ and b ¢ b we must show that

[ b } = [EJ Write a = 1+ t (t € gq). Choose ¢ comaximal
a+b a

with bt if t# 0 and also with b(t + b) if t + b# 0 (the
assertion is trivial if t or t + b equals zero) and such
that bc = dA for some d e A. Now choose a;” and a,” such

that

i

a;” = amod (b MtA) , a” = (@ + b) mod (b N
(t + bYA)

-

ai

Then, by definition, [B} = |: d} and [ b :] = [ d }
a ap” a+b as”

But 1" = @ = a,” mod b since b € b, and a;” =1 2 g,” mod

-

1 mod ¢ s Qo 1 mod c.

c. Hence a1” = g,” mod be (= d4), so[ d} =[ d:].
ay’ az”

M2 (a). Given (a, b;), (a, by) ¢ Wﬂ we claim that
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[El] {22} = [El E2:] This follows from M1 (a) if a = 1, so
a a a

assume t = 1 - @ # 0. Choose <4 comaximal with b; byt such

that <4 Ei = diA (i =1, 2). Now choose a” so that

a” = a mod (by by, M tA)

-

a” = 1l mod ¢y ¢,

Since c; ¢y by by = d; do A we have, by definition,

[21 22} - [dl dz} =417 rday o [El} [Ez}
a”’ a” [a’J [a’] a a
M2 (b). Given (a;, b), (as, b) € & we claim that

[ L2 :]=[E} [E}.Writeti=l—ai(i=l,2)andt=l
ay az ay Lax

- aj ap. If t] tp = 0 our assertion follows from Ml (a), so
assume t; ts # 0. Choose ¢ comaximal with bty t,, and with t
if t =|= 0, so that cb = dA for some d ¢ A, as in (5.2). Now

choose a1~ and a,” so that

a.” = a. mod bt, (and mod bt .t, if t # 0)
i i — i =i

1 mod ¢ i=1, 2).

a,
1

Then we have \V-b—jl l:h} = [ d} [ d] =[ d jI Observe
La] as al' az’ ay az’

that @;” a,” = a; a, mod b and a;” a,” = 1 mod ¢. Therefore,

if a; ap, = 1, then a1 a,” = 1 mod be (= dA) and we have

[ d }=1=[ E}.Ifnot,i.e.ift% 0, then we
a;” az” ay a

choose a” so that
a” = a;” ap;” mod (b MtA)

-

a

[kl

1 mod ¢ .
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b d
Then a” = a1 a,” = a; ap mod tb so { - } = [ }. Moreover
ai ar a-

a” = ay” a;” mod be (= dA) so [d ] = [ d } = [E-} [P-]
a” ay” as” apd Lap

q.e.d.

Remark. The usual Mennicke symbol [b] equals 1 if g €

a

b

U(A). However it can happen that [ } # 1, even if a ¢ U(4),

a

if b is not principal. We shall see examples of this in §8.

§6, RECIPROCITY LAWS OVER DEDEKIND RINGS, AND THEIR
EQUIVALENCE WITH MENNICKE SYMBOLS.

Throughout this section g denctes a non zero ideal in

a Dedekind ring A, and we shall write X = max(A). For peX
we introduct the group

UE(_CL) U(A/pq, q/pq)

{units in A/pq which are = 1 mod g/pq}-*
Its description depends on whether or not p divides gq.

Case p I q. Then, by the Chinese Remainder Theorem,
A/pq = (A/p) x (A/q), and the corresponding product decom-

position of U(A/pq) yields a canonical isomorphism
1) Up(g) = U(A/p).
. h . . .
Case E,f gq. We can write q = p g~ where q~ is prime
to p and h = YB(S) > 0. In this case we can write A/pq =
+
(A/EF l) x (A/q”), and we deduce a canonical isomorphism

v, (@ vea/ptt, PP o= v, @ > 0.
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. h, h+l
Since @ = p /p has square zero it follows that a |—>1+
a is an isomorphism from the additive group of a to the
multiplicative group, 1 + g. Thus we can further write

Byhtly Ly bl

(2) UR(g) ~1+ (p/p th = VP_(_CL) > 0).

This module is unchanged by localization at AEf which is a
discrete valuation ring, and hence we see that

3) Bh/Rh+l - Alp

(non canonically).

We conclude therefore that U (g) is isomorphic to

the multiplicative group of A/p if R.* q, and to the
additive group of A/p if E]g,

Let U’(gq) denote the inverse image in A of U _(q).
Thus U7(q) is the set of a ¢ A such that a k pand a =1

mod q. If yx : UBFQ) > C is a homomorphism and is a €
Ué‘g), we allow ourselves to write x(a) for the value of ¥
at the residue class of ¢ in UEfg).

We are going to show below that Mennicke symbols
[ 1: Wﬂ > C are equivalent with the following objects.

(6.1) DEFINITION. A g-reciprocity with values in an
abelian group C is a collection {XE, p € X} of homomor-

phisms

: U
XR R(g)

> C

satisfying gq-RO and g-R1l below.
v_(1-a)
g-RO. If a e U (q) then x (@) 2 = 1.
- B ju
q-Rl. If @ = 1 mod g, if gA +bA = A, and if a ¢ O
4 b, then
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( fR(b) fR(a)
(&) I X (a) =1 x.. (b) .
plv "p pla “p

The last axiom requires some comment. If EJb then a
i p so a e UZ(q), and the left side makes sense. On the

other hand, if Eja then, since a = 1 mod g, R.I q. In this
case therefore we have a canonical isomorphism U_(q) =

U(A/p) (see (1)), and b(k p) represents an element of this
group. It is in the this sense that we interpret the right
side of (4). In case a or b equals 0, the other is a unit.
Then one side of (4) is the empty product (hence = 1) and
all exponents in the other are zero (hence it is 1 also).

Concerning g-RO it is automatically satisfied for p
* q, as the following result shows.

(6.2) PROPOSITION. Let {x } be a collection of homo-

morphisms as in (6.1). Then g-RO is equivalent to each of

the conditions:

v_(q)
g-RO7. If a e U (Q) then x (@) P =15 and

gq-RO". Eﬁ_vgﬁg) is not a multiple of char(A/p) then
¥x_ is trivial.
el

Proof. g-RO => ¢q-RO”. Let h = VEKE) and let a ¢ qﬁ
(g) . There 1s nothing to prove unless h > 0, and if v (1 -
a) = h then ¢g-RO” agrees with ¢-RO. But if YE(l -a) > h
then ¢ = 1 mod pq so XR(Q) = 1 already, in this case.

gq-R0” => g-RO. Let h and g be as above. First suppose
h = 0. If VR(l - a) = 0 there is nothing to prove. If YR(l -
a) > 0 then a = 1 mod p, and hence g = 1 mod pg, so XEFa) =
1.

Next suppose h > 0. Then, just as above, g-RO and g-
RO” agree if v (1 - a) = h, and otherwise a = 1 mod pg,

so that Xp(a) = 1 already.
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g-R0” <=> ¢-RO", Neither axiom asserts anything non

trivial if E.k g, so suppose p/g. In this case UEFQ) = A/p.

the additive group (see (2) and (3) above), and g-RO~
asserts that Im(x_) has exponent h = VEFE) > 0. If char(A/p)

= 0 then A/p is divisible, so it has no non trivial quo-
tients of finite exponent. If char(A/p) = p > 0 then A/p can
have a non trivial quotient of exponent h if and only if p
divides h. This establishes the equivalence of g-R0O” and
g-RO". q.e.d.

(6.3) THEOREM. Let C be an abelian group. There is a

bijective correspondence between Mennicke symbols [ ]: Wﬂ
> C and g-reciprocities {XE} with values in C, defined

by:

-2 4 P
Xp (@ [ ; } (a e UZ(a)

and

b YR(b) 2
=1 . b).
[a} plb XR(a) ((a, b) ¢ WS_ a¥® 04 b)

Note that we have made use here of (5.1) which makes

available the symbols [B_S} above. This is legitimate be-
a

cause, since A is Dedekind, all non zero ideals are inver-
tible, so we have the hypothesis of (5.1) for all p q.

Proof. Suppose first that [ ]: W > C is a

g
w

Mennicke symbol, and extend it to [ }: > C as in (5.1).

Suppose a = 1 mod g and ¢ # 0. If by and b, are comaximal

with ¢ (and # 0) then, since [S] =1 (see M1 (a) and M1 (b)
a

of (5.1)), we have

[.b_llzz&] - [_b_lkz_q] [3}= [21 ab &}

a a a
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- [31 SL] [Ez 1}
a a
Therefore, for any §_+ 0 which is comaximal with a,

. v (b)
o

VE(E)
i
plp %@ ’

where we define XEFa) here to be [E-ﬂ}. Note that a € Uéfg)
a

and that XEFa) depends on a only modulo p g by M1 (b). Hence

we can view XE_aS a map

: U (q) > C,
Xpt Tp

and M2 (b) implies it is a homomorphism. In case b C g above

then we have

v (b)
{E} = {P.ﬂ} =T b X (@) 7
a a RlI2 R

as well.

We must show that {x_} is a g-reciprocity. We first
establish q-RO. As pointed out in (6.2) this is automatic
if p I‘g. Assume therefore that h = viﬁg) > 0. An element
of UEFQ) can be represented by an element a ¢ Uéfg) such
that @ = 1 mod p“q for all primes p~ # p that divide q.
Therefore x_. (a) = 1 for these p~. Moreover we have already

v (1l-a)

remarked that XEJ(Q) Bl = 1 if p; I q. Therefore we

have
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1 -4 v . (1-a)
1= = . ) P
\: :] HP_ I 1-q XR ()

v (1-q)
x (@) B .
P

Next we must establish g-Rl. Given a = 1 mod q and b # 0
such that gA + bA = A we claim that

v (b) v {a)

hii P - b) B
plb xR(a) HB]CZ xR( )

This is trivial if ¢ = 1, so assume t = 1 ~ g # 0. Then it
follows from formula (*) in the proof of (1.7) that

{ -at J _ [btz} _ [btjl
a+b a a
Expanding each side of this equation we obtain

v _(bt) v_(b)

bt t
-1 2L 2 ,
[a ] olbt xR(a) blb XE(a) [QJ
with [t} = 1, and,
a
—at v (at)
[ } = I ’ ¢ X (a + bt) 2
a + bt Ria P
v_(a)

il x (@ +bt) B { t ,
pla ’p a + bt

with [ t } =1, If EJa then x_ depends only on the
a + bt B

residue class modulo p, and therefore only modulo a. Since
a+ bt =g+ b(l -a) =b mod a we conclude that yx_(a + bt)
= x_(b) if pla. Therefore the three equations dispgéyed
abd%é imply g-Rl. q.e.d.
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For the converse, suppose {XR} is a g-reciprocity

with values in C. If ¢ = 1 med ¢, and if b # 0 is comaximal
with a, put

v (b) v (b)
b D. D,
{—}= Hibx(a)P— = 1 x (o ® 7.
a RPi2 P pla P
Evidently [E} = 1 and [EJ is bimultiplicative in (a, b).
1 a

Next we claim that, if b C g, then

[ b jl=[3jl for all b ¢ b.
a+b a

v_(b) v _(b)
In fact we will show that XE(a +b) 2 = XE(a) 3 for

all p that divide b. If P_J' q this follows froma = a + b
mod p, because XP_ depends only on the residue class mod p
in this case. Suppose, therefore, that v_(g) = h > 0. If

v (b) > h thema + b = ¢ mod so (a +b) =y (@), If
2 P g XP_ p

~ e h h
v_(b) = h then q~R0” implies x (a + b)? =1 = x (@)™,
e q p 5 Xy

Now if (a, b) ¢ Wﬂ define

A
[bJ ifb$+ 0

[b}= ]

a 1 if b = 0.

It follows easily from the remarks above that this symbol
is multiplicative in a (MS2b) and depends on a only modulo
b (MSla), even allowing for the case b = 0. Moreover it is

clear that, if (a, by), (a, by) € W , then ]:bl sz = bl:l
9 a a

b
[ 2} provided either b, + O+ by, or by = 0 = by. Suppose,
a
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therefore, that by # O = by. Then the left side of the

equation is 1 and the right side is [bl}, where now a ¢ U(A)
a
since (a, 0) ¢ Wﬂ. It follows therefore from g-R1 that

v (bl) v (a>

b7 _ P _ 2] -
[a] Tolby Xp (@ fola Xp®1) 1.

This establishes MS2a, so we have all the axioms for a
Mennicke symbol except MSla.

We must show that, if (a, b) ¢ WQ and if t € g, then

[b + ta] = [b}. If either b or b + ta is zero then g is a
a a

unit, and we saw above that both symbols equal 1 in this
case. Moreover, if a = 0 the equation is an identity. Other-
wise we can apply g-R1 to obtain

v (b+ta)
{b + ta} = 7 X (@) P
a B|b+ta P
v_(a)
= Tpa X ® ) 2

If Eja then E_I g so XE-depends only on the residue class

modulo p and therefore only modulo a. For such p, therefore,
we have y (b + ta) = y_(b). Therefore the formula above

- b
together with the corresponding formula for [ } shows that
a

[b + ta} = [b}, as claimed.
a a

What we have shown now is that the formulas in
Theorem (6.3) do, indeed, define functions from Mennicke
symbols to g-reciprocities, as well as in the opposite
direction. It is evident from the arguments above that these
two functions are each other's inverse, so this completes
the proof of (6.3).

Certain reciprocity laws witnessed in number theory
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and in algebraic geometry are conveniently expressed as
"product formulas'. In order to find a similar description
for the g-reciprocities encountered here we shall now intro-
duce some local symbols (cf.Serre [3], Chapter III, no. 1).

Let A, g, and X = max(A) be as above, and let L be
the field of fractions of A, Put

U&<L) = {a £ U) , VR(a -1 > VR(—CL)

whenever v _(g) > 0}.
P_.‘l

This is a subgroup of U(L). For p ¢ X we define the local
q-symbol at p to be the following antisymmetric bilinear
(i.e. bimultiplicative) pairing,

s )Ef QEKL) x U(L) ——> UR(Q);

@, b)E.= the residue class in Up(g) of ¢, where

c = (_l>u6 aB/bu; a=v (a), B=v (b).
b P

This definition requires some comment, to insure that
¢ does have a residue class in qE‘g). We have

v (¢) = Bv (@) —av (b) =0, so c e U(A)
) P P P

and UEFS) = U(A/p) = U(AR[E_AR) if p | q. Moreover
aB if a =20

(5) c=] _ . _
5 if 8 = 0.

Finally suppose YE(Q) =h > 0. Then jR(l -a) >h >0 so
B

h
o =0and ¢ =g ¢ 1+ E'AEf Therefore it has a residue

class in UEFQ) ~ 1 + (Eh/2h+l).

The factor (—l)OLB will play no role in this section.
It is inserted to make our notation compatible with that of
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Serre [3], Chapter III, no. 4).
If a is a fractional ideal of A in L then (see (III,
§7)) we have div(a) = £ VEFQ)E_E D(A). In particular, for a

e U(L) we have div(a) = div(eA). The support of a divisor d
=3 ?EE is the set of p ¢ X such that nE>¥ 0; it is denoted

supp(d) .

Suppose (a, b) ¢ UQ‘L) x U(L). Then it follows from
(5) above that (a, b)R =1 1if p £ supp(div (a)) U supp(div

(b)), and the latter is a finite set. Hence we can define

((a, ) = (@ D))y = 7
where
T = E.g X UEFS).
(6.4) THEOREM. Let C be an abelian group, and let x:
z > C be a homomorphism corresponding to a family of

homomorphisms {XEf UEKS) > C ] p € X}. The following

conditions are equivalent.

(a) {XE? is a g-reciprocity

(®) (0) If ae USFL) and a# 1 then XEf(a, 1- a)E?
= 1 for all p ¢ X.
(1) For all (a, b) ¢ V= {(a, b) ¢ USFL) x U(L)
I supp(div (a)) M supp(div (b)) = ¢}

11 —
(6) peX xEﬁ(a, b)EP =1,

b7 (0 XE,iS trivial unless ngg) is a multiple of

char(A/p).

(1°) Formula (6) holds for all (a, b) ¢ wg.
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(6.5) COROLLARY. There is a canonical epimorphism

x(q): & > SK;(A, gq) whose kernel is generated by all

UEFS) for which v_(q) is not a multiple of char(A/p) to-
gether with all ((a, b)) with (a, b) ¢ wﬂ.

Proof. There is a universal Mennicke symbol [ ] :

w& > SK;(A, q) (Theorem (2.3)). To this corresponds a

universal g-reciprocity,

> SK; (4, q) ’ p e X},
by Theorem (6.3).

HE
{xp_(g) R(g)

> SKy (A, q).
The universality of {XEFQ)} implies that, if x: I

These XBFQ) define a homomorphism x(q): <L

> C 1is
any other homomorphism corresponding to a g-reciprocity,
then x = h « x(q) for a unique homomorphism h: SKj(4A, q)

—> C. But Theorem (6.4) says that the projection of I onto
its quotient by the subgroup with the generators indicated
above is the solution of the last universal problem. The
corollary follows immediately from this observation.

Proof of (6.4). If q ¢ UHFL) and ¢ #1 then

v (1-q) if v (@) =0

a2 P

(asl—a) =
2 1 otherwise.

Therefore (b) (0) is just q-RO, and clearly (b~") (07) is
just g-RO" (see (6.2)).

If (a, b) eV we can write (6) more explicitly as

I1 VEFb)
L= p € supp(div (b)) XEKG ))

I -v_(a)

" Up e suppaiv (@) %p
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or, transposing the second factor,

11 v_(b)

P
N p € supp(div (b)) XR(G)

H v (a)
= . x_(b) B
p € supp(div (a)) “p
Thus axiom q-Rl says precisely that (7) (i.e. (6)) is valid
for (a, b) ¢ wgf so (b) (1) = gq-Rl1 <= (b7) (17).
It remains to be shown that, if (6) is valid for all
(a, b) ¢ wg.then it is valid for all (a, b) ¢ V. Formula (6)

can be written, more briefly, as x({(a, b)) = 1. Since x((a,
b)) is a bilinear (i.e. bimultiplicative) expression in (a,
b) the theorem will be proved once we establish:

(6.6) LEMMA., If (a, b) € V we can write a = alaz_l
and b = bib,”! so that (a., b.) e W (1 <1i, j < 2).
ar- 102 _______(l:J ﬂ(_ J =

For then we have x((a, b)) = x((ay, b1)) x({az, by))
x((ay, b)Y x(ag, b)) = 1.

Proof of (6.6). We first seek an g, & A such that

(1) VE(az) = —vR(a) if vR(a) <0,

]
o

(i1) vp_(az) if vp_(b) £ 0

(iii) VR(l - ap) > VR(g) if vR(g) > 0.

Since v. (1 - a) > v_(q) if v (q) > 0 we have v_(a) = 0 for
)2 - BT P

these p. Therefore the sets of primes in (i) and (iii) are
disjoint, and those in (i) and (ii) are disjoint by hypothe-
sis. Those in (ii) and (iii) need not be, but the condition
in (iii) implies the condition in (ii) for any prime occur-
ring in both. Therefore we can solve for a, (Chinese
Remainder Theorem). Put a; = aa,, so that VEKal) = vgﬁa) +

VEFGZ) > 0 for all p (by (i)). Since A = (\p e X Ag_we ha?e
ay; € A. Moreover VEfl - ay) Z'VEFS) if VEFS) > 0 since this
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is true of a and of ap (by (iii)). Thus a¢; = 1 = ay mod (.

Moreover, (ii) implies supp(div (aj)) N supp(div (b)) = ¢,
so the same is true of aj.

Next we seek b, € A such that

vB(bz) = —YR(b) if YR(b) <0

VR‘bz) 0 if vEFal) # 0 or VEFaZ) # 0.

These conditions are independent, as we remarked above, so
b, exists, by the Chinese Remainder Theorem. Arguing just as
above we see that bj = bbs, € A and that supp(div (bj))rW

supp(div (ai)) =¢ (1 <1, j < 2). This proves the lemma.

§7. RECIPROCITY LAWS IN NUMBER FIELDS.

As in §6, A is a Dedekind ring, X = max(A), L is the

field of fractions of A, and q is a non zero ideal in A.

The "classical" g-reciprocities, which we discuss in this
and the next section, arise from the following type of
"reciprocity laws'.

Let V = {YE_’ p e X} and let S, be a set of indepen-
dent valuations of L inequivalent to those in V. Write V =
VUSg. If v eV write LV for the completion of L in the

topology defined by v, and, in case v is non-archimedean,
write Av for the valuation ring of v in L . In the latter
v

case we also write, for t > O,
U, (e = {a e U) | v(1 - a) > t}.
Thus UV(O) = U(AV) and Uv(t) is a subgroup of U(Av) for t >
0.
(7.1) DEFINITION. A reciprocity law on V with values

in an abelian group C is a collection of antisymmetric
bilinear pairings
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> C (v € V)

(5 TR x U@

such that <24%:£) =1lif g, 1 -a ¢ U(LV), and satisfying

the following "product formula': If g, b ¢ U(L) then (a’vb>

= 1 for all but finitely many v ¢ G; and

(1) T (9’——3) - 1.

velV v

In order to obtain from such a reciprocity law a g-
reciprocity, we introduce the conditions:

(0)E If peXand v = VE_then, with h = v(q), we have

U (h+ 1), uL) U _(h), U_(0)
v )= 1y = ),
v v

We also put

C, = the subgroup of C generated by all

(gé£> ((a, b) ¢ Wg} vV e So).

(7.2) PROPOSITION. Condition (O)R-implies that there

> C such that (2423
Vp
= f ((a, b) ) for (a, b) ¢ W . Let ¥ be the composite
p 7 pl == =% ® ’

is a unique homomorphism f : U (q)
q P D E_ﬂ

f .
U (g) P . ¢ -hat. proj. | C/Co.

Ei'(O)E.iS satisfied for all p ¢ X then {XR_I p e X} is a g-

reciprocity. It therefore induces a homomorphism SKj (A, q)

> C/C» whose image is generated by {Im(XE? | p e X).

Proof. Let v = v_ and h = v(q). Choose a generator =

for the maximal ideal in AV. It follows from (O)E.that
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A\

alb— <§l—£) (a € UEFh)) induces a homomorphism fE; UEKQ) =
U /U _(h+ 1)
P P

> C, which is independent of the choice

b
of m. Moreover, if b ¢ U(LV) and B8 = v(b) then (a; ) =

) - ()

Now suppose (a, b) ¢ W . If g ¢ Uv(h) (which is auto-

Na]

I

matic if h > 0) then (a, b)R

aB, so (a, b) = f ((a, b) ). If a¢ U (h) we must have h = 0
v P el P

the residue class in gR(g) of

and b ¢ U(0). Since both (—ira and ( , ) are antisymmetric

we have (gé—b) = (Ei~g>—l = fEF(b, a)R)_1 = fp((a, b)EBJ

v
This establishes the first assertion of the proposition.

a b)=f ((a, b))
b2d P
whenever (a, b) ¢ QSKL) x U(L) and supp(div (a@)) M supp(div

Moreover, it follows from (6.6), that (

(b)) = ¢, because the two sides of the equation are bilinear
in (a, b).

Suppose we have (0) for all p ¢ X, and we define
{XB} as above. To show that this a g-reciprocity we will
verify conditions (b) (0) and (b) (1) of (6.4). For (b) (0)
we take aq ¢ qg(L) and ¢ # 1. Then from the definition (7.1)

and the formula above we have 1 = (gi~j;;;££) =f ((g, 1 - a))
v D D

P
and hence XR‘(a, 1 - a)E? = 1 for all p ¢ X.

Condition (b) (1) requires that I ({a, b)) =
d peXx’p P

1 for (a, b) € Wﬂf By formula (1) in (7.1) plus the formula

above we have

1 =

= (

II_ a,b I
eV v peX

v fEF(a, b)E?)

) v:g S, <£$—E)
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This is an equation in C. Passing to C/C., the last factor
evaporates and fE~becomes XEf q.e.d.

Remark. For this proof it sufficed that formula (1)
of (7.1) hold only for (a, b) € Wﬂ.

Now assume that L is a number field, i.e. a finite
extension of Q, and let S, be the set of all (inequivalent)

valuations of L not among those of V. Suppose also that L
contains

Um9

th . . . .
the group of m roots of unity. Then there is a reciprocity

T o . h . .
law on V with values in [ called the m® power reciprocity

law. When m = 2 it is the usual quadratic reciprocity law in
number fields. Its local symbols will be denoted Cjé—)m, and

we shall now describe them in certain (in fact ''most') cases.
(The omnibus reference for all material of this section is
Bass-Milnor-Serre [l], appendix).

v complex: LV =C and (—éfﬁm is trivial.

v real : Lv = R, and we must have m < 2,

<g-\27——b_) 2

Now let v be non archimedean, and write k(v) for the
residue class field of AV. It is a finite field of charac-

teristic p with q = pf elements.

-1 if a, b <0

1 otherwise.

v non archimedean and char(k(v)) X m: Then BoC AV

maps injectively into k(v), so U(k(v)) is a cyclic group of
order ¢ - 1 =m ¢+ e (this defines e).

GLLE§ = ((-1)“B as/ba) mod (rad A ),
v /. v

where o = v(a), B = v(b). This congruence, and the fact that
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(a; b) € U defines the symbol. For example if a = 0 then
m
Cg; b) = aBe’ so, if b generates rad A _, <gé—é> =1 if and
m
only if o becomes an mth power in k(v). Thus we recover the
" th

m  power residue symbol".

The case when char(k(v)) | m is much more complicated.
Nevertheless the symbols exist also in that case, and the
product formula (1) holds.

With our ideal g now, we want to see for what m the
conditions (O)E.hold, and what the group Ceo is. The last

question has an easy answer: Co = all of Mo unless every

v € S 1s complex.

Moreover Proposition (A.17), (cf. also (3.1)) of
Bass~Milnor-Serre [1l] asserts that (O)E_holds precisely when

v (@
E- L v,
~ P

-1
VP_(p) P

where p = char(A/p). In this way one discovers, with the aid
of (7.2) certain g-reciprocities; one of the main theorems
(see (7.3) below) states that there are no others. We shall
quote this theorem here for future reference and use in
these notes.

(7.3) THEOREM {(Bass-Milnor-Serre). Let A be a

Dedekind ring whose field of fractions L is a finite exten-

sion of 9.

(a) Unless L is totally imaginary (i.e. R BQ L = Cr

for some r) and A is the ring of algebraic integerz in L,

we have SK;(A, q) = 0 for all ideals g in A. Hence there

are no non trivial g-reciprocities.

(b) Assume L is totally imaginary and A is its ring

of algebraic integers. Let m denote the number of roots of
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unity in L, and let q # 0 be an ideal in A. For each (ration-

al) prime p dividing m let j_ be the nearest integer in the

interval [0, vp(m)] to

v_(q) 1

@ -1

P
vP_(p)

minE! p in A

where [x] denotes the integral part of x for x € R. Then

SKi(A, q) = My (rth roots of unity),

where
J
_ — P
r =1r(q) =1 P .
q p!m

The universal g-reciprocity is that induced, as in (7.2), by

the rth power reciprocity law in L. IE_O‘# q’cqand r” =
> SK1 (A, g
>u (Ce ).

r(q”) then the natural homomorphism SK;(A, q7)

corresponds to the (r”/r)th power map u .

It follows easily from formula (2) above that jp =0

if, for some p dividing p, vEfg) E_VR(p). At the other

2v_(m)

extreme we have, for example, j = vp(m) if p P divides
q. Thus, in case (b),

(3) SKj (A, g) has no p-torsion if, for some p dividing

p, we have v_(q) < v _(p).
R T =
2v (m)
(4) If p P divides q (e.g. if m? divides q) then

the p-primary part of SK;(A, g) is isomorphic to

that of Um'

(7.4) COROLLARY. Let A be as in (7.3). Then SK;(A) =
0 and, for all n > 3, SLn(A) = En(A) and it is a finitely

generated group.
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The vanishing of SK;(A), even in case (b) of (7.3),
follows from (7.3) and (3) above. The remaining assertions
follow from (V, 4.5) and (V, 1.3).

Note that Theorem (7.3) can also be used in conjunc-
tion with Theorem (V, 4.1) to give a determination of the
normal subgroups of SLn(A) for n > 3. In turn this informa-

tion solves the '"congruence subgroup problem' for SLn(A),

i.e. it decides when there exist subgroups of finite index
in SLn(A) which contain no congruence subgroup. The latter

occurs precisely when A is the ring of integers in a totally
imaginary number fiegld.

§8. RECIPROCITY LAWS ON ALGEBRAIC CURVES

We shall presume here the basic facts about function
fields in one variable.

Consider a ground field k and a finitely generated
field extension L of transcendence degree one over k. We

assume, for all field extensions k” of k, that Lk’ = k’é}k L

remains a field.

X denotes the following set: p € X if and only if p
is the maximal ideal of a discrete valuation ring, AR’ such

that k C A C L, and L is the field of fractions of AR. We

also write k(p) AE/E; it is a finite extension of k of

degree

deg(p) [k(p): k].

The valuation corresponding to AR is denoted v_. For lack of

a better name, in this ad hoc notation, we will call X the
set of "closed points' of L/k. Similarly, if k” is an exten-
sion of k, we have the set Xk,of closed points of Lk,/k’,

and there is a natural projection X . —> X(= Xk) defined

: k”
by p* |— ﬁﬁﬂ L. In case k™ is separable over k{(p) we have



332 PROJECTIVE MODULES AND THEIR AUTOMORPHISM GROUPS

. _ ot i
k @k k(p) = P e X, . k“(p”).

pNL=p

In the general case we obtain the right side by factoring
out the nil radical on the left.

The divisor group, D(X), is the free abelian group
generated by X, and there is an exact sequence
div

(1) 0 > U(L) ——> D(X)

> U(k)

where div(a) = I v (a) p. Thus v_(a) = 0 for almost all
peX p

0 for all p € X <= g ¢ U(k). We alsc have

, and v_(a)
= )3

(2) 22_6 X VEFa) deg(p) =0 (a e UM)).
For p € X we define
() UL = u() > U(k)
P
by
(a, b)E.= Nk(g)/k (c), where
(3) ¢ = the residue class in k(p) of (—l)OLB

®/b%, and

Q
]

v (@), B =v_(b).
b P

Because of the norm here this does not coincide with the
symbol (a, b)B-introduced in §7.

(8.1) PROPOSITION. The ( , )RAare antisymmetric bi-

linear pairings with the following properties:

(a) If a, 1 - a ¢ U(L) then (a, 1 - a)2-= 1 for all
p e X.

(b) If a, b ¢ U(L) then (a, b)E.= 1 for almost all
p ¢ X.
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(¢) If k” is an extension of k then

@, v = _. I (a, b) ..
R -E. SXk,, R‘OL=R R

Proof. ( , )_1is obviously bilinear and antisymmetric.

(a) If VEFa) > 0 then, in (3) above, o« = 0 and 1 - ¢
= 1mod p, i.e. ¢ = 1, Similary, ¢ = 1 if YE(l -a) > 0,

since a = 1 - (1 - a), by antisymmetry. Also ¢ = 1 if o = 0O
= B, so assume a < 0. Then, the "ultrametric inequality" for
valuations shows that B = o < O also. Therefore c~! is the

2 2
residue class modulo p of (-1)% (1 - a/a)® = (-1)¢ (a1 -
2
D%, soc = (-1)%* (-1)* =1,

(b) It follows from (1) above that a = 0 = B8 for
most p, and for these we have (a, b)E.= 1 clearly.

(c) We have (a, b) = (c) =
B

N. N .
k(p) /k CH k(p) /" )
Now k~ @k k(p) =T ?R’ (p” e Xk,, p M L = p) where BEf =
AR,[Réz,, so Nk’ ek k(g)/k’(c) = HEf NER’/k’(C>. The norm
here is the determinant of multiplication by ¢, and BR, has

a Jordan-Holder series of length VET(E) with quotients

k(p). T - v_.(p)
" hus we can deduce that NB ) ’(c) Nk(p’)/kf(c) P
p/k =
Now ¢ is the residue class of (—1)OLB aB/ba so
v_.(p) wBS 87 a”
c is the residue class of (-1) a /b where o~ =

aYEf(E) = YE(a) VBf(E) = vEf(a), and similarly 8~ = vﬁf(b).

Therefore NB (e) = (a, b)_.. q.e.d.
p/k” 2

(8.2) THEOREM (Weil). If a, b e U(L) then

I1
(%) pex @B =1
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The key point in the proof is the following lemma,
which reduces the theorem to the case of a rational function
field. We first note that (8.1) (c) makes it sufficient to
prove the theorem when k is algebraically closed, so we
shall assume this is the case for the rest of the proof.

(8.3) LEMMA. Suppose K is a subfield of L of trans-—

1"t

cendence degree one over k, and let Y be the set of "closed

points" of K/k. If (a, b) & U(K) x U(L) and if q € Y then

- Il
(a, NL/K(b))ﬂ peX (a, b)R'
P MK=q

Proof., Let K be the completion of K with respect to
v .ThenK g L = I s where L is the v_ completion
9 a K pe X p P D

pMK=g

of L, and NL/K(b) = 1 NL K (b). Since the symbols ( , )

P g

and ( , )E.Clearly extend to the completions we see that it

suffices to prove each of the local formulas,

(* (a, N /K (b))ﬂ = (a, b)g-

P 4

It is known that these completions are power series
field in one variable over the residue class fields of A

and A_, respectively. Since we are now assuming k is alge-

braically closed they are power series fields over k.

Any unit of A is a quotient of two local parameters,
so U(K ) is generated by local parameters. The same is true
of L. . Since (*) is bilinear in (g, b) it suffices to estab-
lish (*) for (a, b) = (t, s) where Kg_= k((t)) and LE.=
k((s)). Put e = [L : K ], and let

2 g’
e e-1
%k =
%) s + a,_q s + ... tas tag 0

be the minimal equation of s over Kgf Then
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iy o ) P = 3 )
YR(ai st) vg‘al)e +1i=41i mod e

Therefore the vRFai si) are distinct except, possibly, that

ey (_ . -
jRKs Y (= e) is the same as VE‘ao) e vﬂfao). But then (%)

implies the latter must be equal, so vg‘ao) = 1, and further

i R _ (_1ne
YR(ai s) > e (0 < i < e). Now a, (-1) NL /K (s) so (t,
g

NL /X (s)) 1is the residue class mod t (or s) of (-1y1°1 ¢l
q .

/((-1)¢ ao)1 = (-l)l_e (t/ao). On the other hand (t, S)E.is

the residue class mod s of (—l)e'1 tl/se. Therefore we must

show that

e e
t/s mod s,

D' (ela) = (<D
i.e. that

ao/se = -1 mod s.

1

If we divide (**) by s we obtain
1+x+a /st =0,
0

—-e

where x = s (z a, si), and we saw above that YR(X) >

O<i<e i
0. g.e.d.

Proof of (8.2). As remarked above, we can assume k is
algebraically closed. Let a, b ¢ U(L). If a ¢ k then, in the
v (b)
notation of (3), o = 0 for all p and (a, b)_ = a 2 . In

this case, therefore, (4) reduces to the formula (2): ZVEFb)

= 0. (Deg(p) = 1 for all p because k is algebraically
closed).

If a i k we can apply (8.3) to K = k(a) and then we
are reduced to the case L = k(t), t an indeterminate, and

n,
a=+t. Moreover b = b I, (¢t - x.) 1 with b ¢ U(k) all x,
o i i o i
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e k, and n, € Z. By linearity, therefore, and the case of
constants treated above, we can assume b = t - x (x ¢ k).
Case x = 0. X now corresponds to the points of kU

(the projective line over k). The only non trivial symbols
are

(t, ©)_ = (DL ¢l/¢! mod t)

= -1

and
(£, e = (<1 D m1/0-1 pog 7Y

= -1,
Therefore (4) is valid because (-1)(-1) = 1.

Case x # 0. The only non trivial symbols now are

(t, t - %) (DY % - 01 mod t)

= —X‘l

(t, £ =0 (D% el - 0° mod £ - x)

= X

-1 D ED 21 2 01 med 1)

(t, t - X
= -1,

Since (-x ')+(x)+(-1) = 1 we have established (4) also in
this case, thus completing the proof of (8.2).
By virtue of (8.1) and (8.2) the symbols ( , )E

define a reciprocity law on X in the sense of (7.1). More-
over the symbol ( , ) evidently satisfies the condition

(O)E_Of §7 for all h > 0. We can therefore apply this recip-
rocity law, as in (7.2), to Dedekind rings of the following
type:

Let S, be a finite, non-empty, subset of X, and set

A= A = L 0 f 11 Sw1.
pt Se’p {ael ] vRFa) > or all p € Sw}
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We shall write A = k{X - S»] when we want the notation to be
more precise. It is known that A is a Dedekind ring whose
localizations at maximal ideals are precisely the AE.(E'¢

Sw) . Thus we can identify max(A) with X - Sw.

It follows now from (7.2) that we obtain an A-recip-
rocity (i.e. q = A in (7.2)) with values in

U(k)/Nws
where No, is the group generated by {Im(Nk(E)/k) | p e Swl.

(8.4) COROLLARY. Let A = k{X - S,] as above, and let

N, be the group just defined. Then there is a homomorphism

SKp (4) ———> U(K) /Ne

whose image is generated by the images of Nk(E)/k(U(k(B)))
for all B.¢ See

Note that N, ) (U() Dua)8® o thar vk) /N,

is a torsion group of exponent g.c.d. {deg(p) | P € Swl.
Corollary (8.4) represents the only classical source
of reciprocity laws on curves of the type which occur here

in connection with SK;(A). Of course it gives nothing non
trivial if the norms N are always surjective. This is
k(p) /k 7 J

the case when k is finite, and, indeed, in that case we
have:

(8.5) THEOREM (Bass-Milnor-Serre [1]). Suppose k is a
finite field, and let A be as in (8.4). Then, for all ideals
q in A, SK;(A, g) = 0.

Just as in (7.4) this implies:

(8.6) COROLLARY. With A as in (8.5) we have SLH(A) =

En(A) for all n > 3, and these are finitely generated groups.

One is now further tempted to conjecture that SKy(A)
= 0 also if k is algebraically closed, for again Neo = U(k)
in this case. This question was posed by Mumford. We shall
see in Chapter XIII that this is not the case. In fact
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SK1(A) can be quite large even when k is algebraically
closed, and we can use the theory of this chapter to go back-
ward, then, and deduce the existence of non classical recip-
rocity laws on curves.

We will close this section now by showing how (8.4)
can be used to help compute SK;(A) in some simple examples.

Let k = R and let L; = R(x, y) where x and y are
subject to the single relation

x2 + y2 = 1.

Thus A; = R[x, y] is the real coordinate ring of the unit
circle S1C RZ. In fact S! is precisely the "real locus" of
X, i.e. the set of p ¢ X such that k(p) = R. All the other
points are complex. It follows that the group Ne in (8.4) is
NC/R(U(g)) = the positive reals, and we have an exact

sequence
N

u(c) /R

S U(R) sign> é/Zé > 0

For technical reasons we want to write signs additively, so
that sign (x) = 0 if x > 0 and 1 if x < O,

If a, b ¢ U(L) write
[a, b] = sign (a, b) e Z/2Z.

Then [a, b]E = 0 if p is complex, so the product formula (4)

yields a reciprocity law on the real locus,

(5 z la, b]t =0

t e 8!

Moreover we have the homomorphism

SK; (R[x, y]) > Z2/2

e
e

as in (8.4), and it is clearly surjective (because max(Ay)
contains real points). We shall see in Chapter XIII that
this is even an isomorphism.

Formula (5) can be made more explicit in a special
case. Let f and g be non vanishing real rational functions
on S! with no common zeros or poles on Sl. Then
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Vt(g)

£(t) (t = 8D

v (e) #0
and v (f)

1
nvt(f) #0 g(t) (t e 8 )

are non zero real numbers with the same sign!

We shall now give a direct proof of (5) which has the
advantage of giving certain g-reciprocities, when g is not
the unit ideal, as well.

If f and g are real valued functions which are mero-
morphic (and not identically zero) in a neighborhood of t e
R then we can write, just as above,

[£, g], = sign (-1 (£7/g") () e z/22

where n = Vt(g) and m = Vt(f)' Suppose a < b and that f and

g are meromorphic in an open interval containing o and b.
Then they have only a finite number of zeros and poles in
(a < t <b), so we can define

[f, gl .

a[f’ g]b B za_<_}:<b t

These symbols are antisymmetric and bimultiplicative in
(f, g) and satisfy the analogue of the property in (8.1)
(a). Moreover, if g < b < ¢ then evidently

(6) a[f, g]C = a[f, g]b + b[f, el.-

(8.7) PROPOSITION. Let f and g be non vanishing real

meromorphic functions on an open interval containing a and

b (a < b). Then

N G LE 8ly = f.8+  fi8-

Here xf denotes the sign of f(x - e) for all suffic-

iently small € > 0, and the expression on the right is com-
puted in the ring Z/2Z. (It is for this reason that we have
written signs additively).
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Proof. Moving a and b a small amount to the left will
change neither side of (7), clearly, so we can assume f and
g each have neither a zero or pole at g or at b. Then, we
can cut the interval into small subintervals with the same
property, and such that, in the interior of each one, at
most one point is a singularity of either function. It
follows from (6) that the left side of (7) is additive over
intervals, and the right side is also because we are adding
in Z/ZZ Therefore it suffices to prove the proposition when
there is at most one point in (a <t =< b) which is a sing-
ularity of f or of g, and it is not an end point, Further,
since the two sides of (7) are bimultiplicative in (f, g)
we can assume that the singularities are at most a zero of
order one. Therefore we have only the following three cases
to consider:

(i) Neither f nor g has a singularity. Then af = bf

= + = =
and % = p8 S° afag bfbg 2 afag 0, and clearly also
LLEs 8ly

(ii) There is a ¢, a < ¢ < b, such that f (or g) has
a zero of order one at c, and the other has no singularities
By the symmetry in f and g of both side of (7) we can assume

f(e¢) = 0. Then bf =1 - af (in 2/22; i.e. af and bf have

opposite signs) and 8 = b8 Therefore the right side of (7)

. _ = .. . £ . .
is afag + (1 af)ag e The left side of (7) is sign
(g(e)) = o8 also.

(iii) f and g both have a zero of order one at c.
Then bf =1 - af and b8 = 1 - a8 S° the right side of (7) is

afag + (1 - af) (1 - ag)= 1 - £ 8 The left side of (7)

is sign ((-1) (f/g) (¢)) = 1 + sign ((f/g) (c)). Clearly the
latter term equals af g8 since each function has the

singularities of a linear function in the interval. Thus
(7) is established in case (iii), and this concludes the
proof of (8.7).

The reciprocity formula (5) is a corollary of (8.7)
since we can cut the circle into intervals, each of which is
analytically equivalent to a real interval. Then we can
apply (8.2) and add up over the intervals. The sum of the
terms on the right side of (7) will cancel, and those on



MENNICKE SYMBOLS AND RECIPROCITY LAWS 341

the left add up to the left side of (5).

Of more interest, however, is the fact that (8.7)
yields g-reciprocities on the affine line for certain g.
Specifically, let LO = R(T), where T is an indeterminate,

let Ao = E[T], and let q = (T2 - T)AO. If £, g € U(L) and
if p e X (the "closed points' of Lo/g) we define <§;—£§ to
be trivial unless p corresponds to a point t, 0 < t < 1, and
in that case we define (EETB) = [£, g]t as above. Then we

.f_’_i = = =
have ZR_S X ( > ) oct<l (£, g]t O[f, gl, Jf.8 158

by (8.7). If (f, g) ¢ Wg then £ = 1 mod (T? - T)A_ so £(0) =
1= £f(1) > 0. Therefore Of =0 = 1f and we have the recipro-
city formula (1) of (7.1) for (f, g) ¢ w&. It follows there-

fore from (7.2) that there is an induced homomorphism
(8) SKI(AO’ q) —> §/2§

whose image is generated by the symbols [f, g]t (0 <t <1
(f, g) e W ). If we take f(T) = 1 + 8(T2 - T) and g(T) = (T2
- T) (T - (1/2)) then (f, g) € W and [f, g]l/2

(£(1/2)). Since £(1/2) = 1 + 8(1/2)(1/2 - 1) = -1 we see that
(8) is an epimorphism. In contrast, note that SKI(AO) = 0

= sign

since Ao = §[T] is a euclidean ring.

Finally, we shall give a topological method for con-
structing the homomorphisms

sK) (R[x, y1) ——> 2/2

ey

and

Ky (R[T], (T? - T)) > /2

e

above. If o ¢ SLn(Al) then, for each t £ S!, a(t) ¢ SLn(B),

and o induces a continuous function

sl > .
SL_(R)
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Let [a] denote the homotopy class of this function, in
ﬂl(SLn(g)). Then o I > [a] defines a homomorphism

SLn(AI) > Wl(SLn(E))-

The latter is isomorphic to Z for n = 2 and Z/2Z for n > 3.
When n > 3 the resulting homomorphism SK;(A;) =
SL_(A])/E (A1)

> ﬂl(SLn(g)) = 5/25 is the same as the one
y

X
constructed above. In fact o = <
-y x

> ¢ SLo(A;) maps onto a
a generator on the right.

If o ¢ SLn(AO, q) then, 1if 0 < t < 1, a(t) ¢ SLH(E)
and a(0) = In = a(l). Again, therefore, if we identify §!

with the unit interval modulo identification of its two end
points, then we obtain, for n > 3, an epimorphism SLl(AO9 qQ)

> “1(SLn(§>) = Z/2Z which coincides with (8) above. This

example was first pointed out by Stallings, using this topo-
logical construction.

HISTORICAL REMARKS

The material of §§1-5 is taken from Bass-Milnor-Serre
[1], with some technical improvements due to T.Y, Lam.
Similarly the review of the situation in number fields, in
§7, is based on the same source. The reciprocity law of Weil
in §8 is taken from Serre [3], and the last example in §8 is
due to Stallings. The axiomatization of reciprocity laws in
§6, and the proof of their equivalence with Mennicke symbols,
is published here for the first time.
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Chapter VI
K-THEORY EXACT SEQUENCES

In this and the following chapter we develop an
axiomatic theory of Grothendieck groups (K,) and Whitehead
groups (K;).What is needed, to start with, is simply a cate-
gory A in which objects can be multiplied by an operation
enjoying all of properties of, say ® for modules. Then A is
called a '"category with product”. If F: A > A" is a
product preserving functor, the basic objective is to
associate with it an exact sequence of the form

(D) Ky (4) > Ki(A7) > Ko (F) > Ky (4) > K (A7)
for a suitable "relative group" K, (F). Such a sequence, in

a more general setting, has been constructed by Heller [1].

The approach here is based upon an idea of Milnor.
This is to associate to a "fibre product diagram'" (see §3),

G2

A
(2) G l
A

cf product preserving functors, a Mayer-Vietoris sequence

(3) K A

> K141 8 Ky4p

> KjA7

KoA1 & Koho

> Koé
> K A”.
o:

>

343



344 ALGEBRAIC K-THEORY

This is done in §4. The exact sequence (1) is then deduced
from (3) in the special case F; = F = F,. The fibre product,
A, in this case is denoted co(F), since it plays a role here
analogous to that of the mapping cone in topology.

Finally, in §6, we establish excision isomorphism
theorem. Under suitable hypotheses on the square (2) it
asserts that Ky(Gp) =~ Ko(Fy).

§1. GROTHENDIECK AND WHITEHEAD GROUPS OF CATEGORIES WITH
A PRODUCT

A product on a category A is a functor

Ligxa— 4

which is "coherently associative and commutative' in the
sense of MacLane [2]. This means that is supplied with
natural isomorphisms

1o (1A><L):Lo @€Lx1

and

Lo t

R

II?>
X

b=

where t is the transposition of A x A. The 'coherence'" of
these isomorphisms requires that isomorphisms of products
of several factors, obtained from the above by a succession
of threefold reassociations and twofold permutations, are
all the same., This permits us to write, unambiguously up to
canonical isomorphism, expressions like AjL ... J_An =

l'i: A.. We shall also write A" = ALl ...LA (n terms) for

i
Ae A, n> 0.

> =

A product preserving functor (A,lLl)
a functor F: A

A > (A7, 1 7) is
> A” supplied with a natural isomorphism

(€H) Foel=Llo (FxF):AxA— A",

The latter is required to be compatible, in an obvious sense,
with the associativity and commutativity isomorphisms in A
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and A”, Moreover natural transformations of product preser-
ving functors will be understood to respect the isomorphisms
(1) for the two functors.

In practice we shall denote all products by the same
symbol, 1L, except in examples where a standard notation is
available. Moreover we will allow expressions like: "F: A
> A” is a product preserving functor between categories
with product”. Under these circumstances we shall usually
use the (implicit) natural isomorphism to identify F(A L B)
(A, B £ A) with FA L FB in A”. We shall say that F is
cofinal if, given A" € A", these exist A ¢ A and B” ¢ A~
such that A1l B” = FA. - B

(1.1) EXAMPLES. Let R be a commutative ring and let
A be an R-algebra. Then we have:

1. E(A), the category of finitely generated projec-
tive right A-modules, and A-homomorphisms, with L = @&, One
can use other categories of modules just as well.

2. EE(R), the category of faithfully projective R-
modules, and R-homomorphisms, with L = QR. (See (II, §1)).

. . 03 O_
3. Pic,  (A), the category of invertible left A 8x A

modules, with 1 = GA (cf (II, §5)). Note that Pic_(R) is a
subcategory of FEP(R).

4, Quad(R), the category of pairs (P, q) with P ¢ P
(R) and q a non-singular quadratic form on P, The morphisms
are isometries, and L is orthogonal direct sum. One obtains
similar categories by using other types of forms (alterna-
ting, hermitian, ...).

5. A is an Azumaya R-algebra if there is another R-
algebra, B, such that A.QR B is a full matrix algebra over

R. These, and their algebra homomorphisms, constitute a
category Az(R) with product L =@

R

6. In P(A) the free modules are the objects of a
cofinal subcategory. This is also true, but less obvious, in
FP(R) (see (IX, 4.6)). If we restrict the morphisms in FP(R)
to be isomorphisms, then P ! > EndR(P) defines a product

preserving functor FP(R)

> éé(R), and the last remark
implies that it is cofinal.
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7. Let A(R) be any of examples 2-5, and let R
be a homomorphism of commutative rings. Then @R S: A(R)

> S

>

é(S) is a cofinal product preserving functor. In example 1
it induces P(4) > E(A @R S).

(1.2) DEFINITION OF K,. Let A be a category with
product. Its Grothendieck group is an abelian group KoA
supplied with a map,

[ Ja: ob A > Ko,

which is universal for maps into an abelian group satisfying;

Ka If A =~ B then [A]A = [B]A

(A, B e A)
Kb [A LB], = [A], + [B], )

This means that any map f: ob A > G (G on abelian group)
satisfying the analogues of Ka and Kb is of the form fA =
fO[A]A for a unique homomorphism f5: Koa > G.

To conmstruct K A we form the free abelian group with
the isomorphism classes of ob A as a basis, and then factor
out the subgroup generated by the relations corresponding
to Kb.

It follows immediately from the definition that K,A
is a functor of A with respect to product preserving
functors F: A ——> A”. Thus KpA > K,A®. 1s defined by
[A]A f—> [fA]A,. We will not denote this map by K, (F),

since the symbol Ky(F) will be used to denote a '"relative
group' to be introduced in §5.

When the category A is clear from the context we
shall often drop the subscript from [A]A.

(1.3) PROPOSITION. Let A be a category with product

and let B be a cofinal subcategory.

(a) Every element of K A is of the form [A]A - [B]A

with A € é and B € B.
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(b) If Ay, Ay € A then [Al]A = [A2]A <= AjL B = Apl

B for some B € B.

Proof. Let F be the free abelian group generated by
the isomorphism classes, (A), of Ae A, and let R be the
subgroup generated by all elements (A, A”) = (A | A7) - (&)
- (A°). Then (A) | > [A] induces an isomorphism F/R = KoA.

Since the [A]'s generate K,A any element is of the
form £.[A.] - £.[A,”] = [A] - [A”]), where A = [ _A, and A" =
it7i 373 i1

L;A,’. Since B is cofinal we can solve A~ L A" = B for A" ¢

A and B ¢ B. Therefore [A] - [A7] = [AL A"] - [A° L A"] =
Ta L A"] - [B], and this proves {(a).

As for (b), the implication<Tis trivial. Conversely,
assume [A;] = [A;]. Then, in F we have an equation of the
form (A1) - (Ay) = Zi(Ci, o ) - Zj(Dj, Dj ) so (A1) + I,

- - = - +
(ci) + (ci )y + Zj(Dj Dj ); (Ay) + zi(ci ci )y + Ej(Dj)
(Dj’). Since F is free on the isomorphism classes, this

equation implies that
Ay L E = AZ_L E,

where E =L1(C1L ¢, _J_J_J.(Dj 1 Dj “). Solving EL E” = B
for E7 ¢ é and B € B we obtain Aj 1 B = A, | B, as claimed.

EXAMPLES., (cf. (1.1). For an R-algebra A the group
Ko = KOP(A) will be studied in detail in Chapter IX, The
Picard group, Plc (A) = KyPic (A), has already been intro-
duced in (II, 55). The group Kogua (R) has, via 811, a
commutative ring structure, and it has a natural quotient
which is classically called the Witt ring of quadratic forms.
The functor EndR: E;(R) > Az(R) induces a homomorphism

K ER(R)
group of R.

> KoAz(R) whose cokernel is called the Brauer

(1.4) DEFINITION OF Kl(A F). “ be a
product preserving functor. There is an 1nduced functor

IF : $A —> IA”,
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VA
where IA = A= is the category of automorphisms of objects of

A (cf. (I, §1)). It inherits a product from A,
(A, o) L (B, B) = (ALB, ol B,

and similarly for ZA”. Moreover IF preserves this product.
We shall write

Ker IF C A

for the full subcategory of objects (A, o) such that Fa =

lFA' Now the Whitehead group of A relative to F is a group

K1 (A, F), supplied with a map

[ ](é’ F): ob Ker F —> Kl(é’ F)

which is universal for maps into an abelian group which
satisfy:

Ka. If (A, o)

[t

(Bs 8) then [As OL](A F)

= [B, B](é, )’

Kb. [A LB, o L8], 5y = (& ol g

+ [B, B](A, F); and

Ke. [A, aa’]<é’ P [A, a](é, ) + [A, a'](é, ),

for A, B e A, a, o € AutA(A, F), and B ¢ AutA(B, F). Here

we write

Auté(A, F) = Ker(Auté(A) > Auté,(FA)).

In case F is a constant functor we have IF = IZA, and in that
case we shall write

K (4)

in place of K;(A, constant functor). The functors Ker IF

LA IF S ZA” induce homomorphisms
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whose composite is evidently zero. Proposition (2.5) below
will give a criterion for the sequence to be exact.

In §5 we shall construct a sequence of the form

Ky (F) —> Kp(8) —> Ky (A7) —> K "(F)
K, (4) — Ko(A7)
for a cofinal product preserving functor F: A > A7, We

shall see then that the homomorphism j factors through a
homomorphism h: Kl(é F) > K1(F), which is sometimes an

isomorphism.
> A7 a product
preserving functor. If (4, a) € Ker IF write [a] for

[A, O‘](é, F) € K]_(é, F).

(a) Every element of K;(A, F) is of the form [a] for

some (A, a) € Ker IF.

{(b) We have [a] = [8] in Ky (A, F) if and only if

there exist vy, &

os 81s €4, €1, such that 6061 and 4,7 are

defined and such that

al yL oL 81 L eger = BL vL 6,87 L es Ll &g

as objects of Ker IF.

Proof. Since KI(A F) is a quotient, say K, (Ker =F)/
M, of Ky (Ker IF), it follows from (1.3) that every element
has the form [a] - [R]. Axiom Kc implies that 0 = [1] =

[8 8711 = [g] + [B7!], so that [a] - [B] = [a] + [B7!] =
[a Ll BR™}]. This proves {(a).

To prove (b) note first that M above is generated by
the elements <a, 8> = [aB]” - [a]l” - [8]~, where [ ]~
denotes the class of an element in K (Rer IF). If <a”, B”>
is another such element then, since (o L a”) (B ;| B") =
(aB 1. a”87) (o is a functor of two variables) it follows
that <a, B> + <a”, 87> = < | a”, B | B">. This implies that
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any element of M is a difference, <85, 61> - <e€g, €1>.

Now if [a] = [B] in K;(A, F) then [a]” - [B]” is an
element of M, therefore of the form <§,, 6;> - <egqy, €1> as
above. Thus

[a]” + [80]7 + [8;17 + [eoer]l” = [B]7 + [6456,]7
+ [ep]” + [e1]”

in K (KerZ F). If we apply (1.3) (b) to this equation we
obtain a y satisfying the conclusion of the proposition.
q.e.d.

The commutativity of | gives us, for any permutation
s of {1,...,n}, and any Al’-~-»An € A, an isomorphism

S
Al.L... _LAn —_ As(l)J_,..._L As<n).

If a Ai > Bi are morphisms in A then the diagram
apl... o
Al.L,. . .-LA > BI_L. . ..LB
n n
s s

Ayt o Gy (Lo L as(n)> Byt LBy

commutes, i.e.

s(lYL""Las(n)

Suppose now that we have isomorphisms ai: Ai

s(al.L..,l_.ocn)s‘1 = aq

Ai+l’ i <i<mn, and at An > Ap. Let

2) s(i) =1 -1 (mod n),
and set o = aan..ian. Then (A1l~'-iAn’ sa) € TA. Let

= 1 oq- 1
3 B8 (1A ap L.l (an

: ceeay) oAy LApl.. 1A

-1
> Al LAI.L..._L Al'

Then B: (All*--lAn9 sa) > (Al...lAy, B(sa)B 1) is an
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isomorphism in IA. We have o B! = o] L asay L,.nL(un...al),
and, by the formula above, 85 = s(a; U(aya)~1 iﬂ..l(un
-1
a1 1 1. ). Hence
1 Al

1t

(4) Bsag™! = s(lAl_l_..._L 1A1L (o ...a1)).

This proves:

(1.7) LEMMA ("Abstract Whitehead Lemma"). Let A be

1 <4i<n

a category with product and let ot Ai _— Ai+1’

> A; be isomorphisms in A. Let s be the cyclic

and o : A
— n n

permutation s(i) = 1 - 1 (mod n). Then we have a Zé - iso-
morphism
(all...L A, slogl..ol o)) = (Al...L Ay,

s(lAfL..LL 1A1 L(an---“l))-

In particular, if a: A

phisms then

> B and R: B

> C are isomor-

(AL B, t(al a 1)) = (ALA, t)

and

(AL BLC,s(al BL (B)7I)) = (AL AL A, s)

in IA where t and s are a transposition and three cycle,

respectively.

Suppose that all the A, above are the same object A,

and assume also that Gpeeeay = lA. Then equation (4) implies

that o = s~ ! 8-lgB. Thus:

(1.8) LEMMA. Suppose Alyeeesa € AutA(A) are such

that Opeeed] = lA' Then

aﬂ-...l-an = g~1 B'lsB,
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a commutator, where s and B are as in (2) and (3) above.

(1.9) PROPOSITION. Suppose [A, a] =0 in X;A. Then
there is an (F, ¢) € ZA such that al ¢L ¢! is a commuta-

tor in AutA(A.L F L F). Moreover a L 1 is a product of

ELF

two commutators.

Proof. Since [a] =0 = [lA] we have
ol yL 8§,L 8L epeq = 1A_L yL 881 L eol &

as in (1.5) (b). Denoting the domain of each automorphism by
the corresponding Latin letter, this implies, in particular,
that Al CL DL DL E=A} C}y DLEL E, Let X=AL CL
DL E. Then D" =D X =E" =E X. Moreover the isomor-
phism (5) above is preserved if we replace 61 by di_L lX

and ei by ai_L lX (i = 0, 1), for this amounts to adding
three lX's to each side. After changing notation, therefore,
we can assume that D = E. If we further add 1D to both sides

we obtain an isomorphism of

0] = ol YLl cSO_L §1 1 lD_L E4€1
with

ap = 1A.L v L lD_L 6061 L‘eo 1 e1.

Here ay, ap € AutA(A.L C L D%). The existence of the above

isomorphism just means that o] and o, are conjugate, so

1

aj0o” * is a commutator. We have

arop b =al 1, L8 L8711 et ¢
C o] o) o] 0
Set F=CL DL D and ¢ = I+ 8, L €, Then
aja "t L lo=al oL 6”1,

and this is also a commutator, clearly. Finally, Lemma (1.8)

implies that lA.L o7l L ¢ 1s a commutator, so
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= -1 -1
o l'lELF (oL 6L ¢ Y (lA.L o=t L ¢)

is a product of two commutators. q.e.d.

(1.10) COROLLARY. Suppose o is in the commutator

subgroup of AutA(A). Then there is a ¢ € AutA(An) for some

n > 0, such that ¢ L ¢ L ¢~! is a commutator, and o L 1A2n

is a product of two commutators.

Proof. Let B be the full subcategory of A whose
objects are the AP = AlL,, LA (n terms). Then since AutB(A)

> K1B is a homomorphism into an abelian group we have
[a]B = 0 in K1B. The corollary now follows from Proposition

(1.9).

§2. COFINAL FUNCTORS, AND K; AS A DIRECT LIMIT

Let A be a category with product. Then the set M@A)
of isomorphism classes, (A), of A€ A is a commutative
monoid, with (A) + (B) = (AL B). We shall write

G(A) = AutA(A)
and

G((A)) = GcA)/Ic), GA)],
the commutator factor group of G(A), for A€ A. The notation
is justified because two A-isomorphisms A ~—> B induce iso-
morphisms G(A) > G(B) which differ by an inner automor-

phism. Hence they induce the same isomorphism G((A)) >
G((B)). This shows that G((A)) depends, indeed, only on (A).

More generally, let F: A
ving functor. Write

> A" be a product preser-

G(A, F) = Auté(A, ) Ker(Auté(A)

F
> Auté,(FA)),
and write

G((A), F) = G(A, B)/[G(A), G(A, F)].
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If F is a constant functor we just recover the definitions
above. Moreover, G((A), F) depends, just as above, only on

(a).

An object B € A induces a group homomorphism

GA, F) —=2 > G(aL B, P, o |

> o L lB’

and this induces a homomorphism

G, F) —=2— c(al B, P).

Moreover, it is clear that the homomorphism L (B L C) from
G(A, F) to G(A3 B34 C, F) is the composite of | B and j C. It
follows that (A) + > G((A), F) is a functor

G: Tran(M(A)) ——> (abelian groups),

where Tran(M(A)) is the translation category of the monoid
M(A), in the sense of (I, §8).

(2.1) PROPOSITION. The natural homomorphisms

G(A, F) ——> K;(4, F)

(see (1.6) and the definitions above) induce an isomorphism

¢ g = colimit G((A), F)

> Kl(é, F) .

Proof. If a ¢ G(A, F) and B & G(A) then, in the
category Ker IF from which K;(A, F) is constructed, a and
g—lag are isomorphic. Therefore lo~ig~lag] = (87 1aB]l - [a]
= 0 in K;(A, F), so G(A, F) > Ky (A, F) factors through
the quotient G((A), F) = G(A, F)/[G(A), G(A, F)].

If B € A then [a L lB] = [a] so the maps G((A), F)

> Ky(A, F) above are compatible with the direct system
homomorphisms G((A), F) > G((A L B), F). We thus obtain

¢ as above, and ¢ is clearly surjective. To show that ¢ is
an isomorphism it suffices to show that o | > <q>, where
<a> is the class of a in G, satisfies axioms Ka, Kb, and Kc
for K;. For then the universality of K; gives us the required
inverse. Axiom Ka is already built into the fact that G((A),
F) depends only on the isomorphism class (A) of A. Thus, if
(A, o) = (B, B) in Ker IF then o and B are already identi-
fied in G((A), F), via any isomorphism A > B. Axiom Kc
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is clear since G(A, F) > G is a homomorphism. Finally,
given (A, @) and (B, B), we must establish that <a L R> =
<a> + <B>., By definition of the direct system, <a> = <a L
lB> and <B> = <B ¢-1A> = <lA 1 B>, the last because B L.lA =

1, L B. Hemce <a y 8> = <(a L lB) (lAJ“ B)> = <a | 1>+
<]_A 1 B> = <a> + <B>. q.e.d.

(2.2) COROLLARY. Let Ao be a full cofinal subcategory

of A, and let F, = Fléo. Then the inclusion functor induces

an isomorphism

Ki(a,s Fp) > K1(4, B).

Proof. If A, B ¢ A, then AutA a) = AutA(A) and A =
=0 =
B in éo <= A ~ B in é. This is because 4, is full in A.

Therefore M(4,) is a cofinal submonoid of M(é). Moreover Kj
(éo’ Fo) = go where G, is the restriction of G above to
Tran M(éo) C Tran M(é). By (I, 8.5) the induced map G, — g

is an isomorphism.

(2.3) COROLLARY. Let 4,, A2,...,An,... be a sequence
of objects of A. Write An m - An+l'L"‘L Am for 0 <n <m,

b4

and S = A . Assume:
anc >, ,n’ 255ETE

(1) Given A ¢ and n > 0, there is a B¢ A and anm > n

LB =A

A
A .
n,m

such that

Let G(A, F) be the direct limit of the grouggrc(sn, F) =

AutA(Sn, F), with respect to the homomorphisms | 1

A
n,m

> G(Sm, F) for n < m. Let G(A) be the correspon-

G(Sn, F)

ding direct limit of the groups G(Sn) = AutA(Sn). Then the

natural homomorphisms G(Sn’ F)

morphism

> Ky (4, F? induce an iso-

G(é’ F)/[G(é): G(é, F)] — Kl(é’ F).

Proof. The left end of the arrow is just the direct
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limit of the groups G((Sn), F) = G(Sn, F)/[G(Sn), G(Sn, i,
with respect to the homomorphisms ”_L(An m)”, in the nota-

tion introduced above. Now the corollary follows immediately
from (2.1) together with (I, 8.6). (The hypothesis (2) of
(I, 8.6) corresponds exactly to the hypothesis (1) above).
q.e.d.

(2.4) DEFINITION. A product preserving functor F: A
> A” will be called E-surjective if, given A ¢ A and a”
in the commutator subgroup of AutA,(FA), there exists a B ¢

A and an o in the commutator subg?oup of AutA(A.L B) such

= - L
that Fo o lFB'

(2.5) PROPOSITION. Let F: A > é’ be a cofinal

product preserving functor. Then KjA” is the direct limit

over Tran (M(A)) of the groups G((FA)), the commutator

factor group of G(FA) = AutA,(FA), (A e é) with respect to

the morphisms G((FA))
o L lFB for a e G(FA). If F is E-surjective the sequence

>

> G((F(AL B))) induced by o |

Ky (4, F) > Ky (4) > K (A7)

is exact. If, moreover, there is a product preserving

> é such that FeF~ =~ Id

functor F~: é’

. then it is
A n a

split short exact sequence.

Proof. According to Proposition (2.1), Kj (A7) = G
where G: Tran (M(A”))

} > G((A")). The functor F, being cofinal, induces a
cofinal homomorphism M(E): M(4) > M(A”), and hence a

cofinal functor Tran (M(F)): Tran (M(é)) > Tran (M(é’)).

> (abelian groups) is defined by A~

Under these circumstances (I, 4.5) says that G o Tran (M(F))
>

> G is an isomorphism, The first part of the proposition
at hand just makes this assertion explicit.
Suppose now that F is E-surjective and that [A, a]A

e Ker K F. We must show that [A, a]A = [B, S]A for some B=
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such that FR = lFB’ i.e. such that (B, B) € Ker IF. (It was

already noted, and is clear, that the composite of the two
maps in question is zero). According to (1.9) we can choose
B” € A" so that Fu L lB’ is in the commutator subgroup of

AutA,(FA L B”). The cofinality of F allows us further to

take B” of the form FB. By augmenting B still further, if
necessary, the E surjectivity of F provides us with an € in
the commutator subgroup of AutA(A_L B) such that Fe = Foa |
lFB' Then, in K;(4), we have (2] = [o L lB] + [e 1] = [8],

= _L -1 4 = . i
where B (o lB)e is such that FR lF(A.L B) This
shows that the sequence is exact.

Proposition (2.1) and the first part of this proposi-

tion show that the sequence Kj(4, F) > Ky (A) > K1 (A7)
is a direct limit of sequences - -
G((A), F) —> G((A)) > G((FA)) (A €4)

which are quotients of the sequences

G(A, F) > G(A) > G(FA).

The existence of a functor F~ such that FoF~ = IdA’ implies
that the latter are split group extensions., Hence the final
assertion of the proposition follows from:

P

(2.6) LEMMA. Let 1 > N > G > G” > 1 be a
split group extension. Then
0 > N/[G, N] > G/[G, €] > 67/[67, 67]

> 0

is a split short exact sequence of abelian groups.

Proof. If h: G~

> G splits p (ph = lG,) then we

need only check that x l—> x (hp&)~! induces a homomor-
phism G/[G, G] > N/[G, N]. For this will split the left
half of the sequence, while h splits the right half. Set e =
hp: G > G and let x, v € G. Then xy e(xy)”! = x(e(x)"ly
e(y)™D (ey) vyl ey el e = x e (v e(yD
(e (¥ e (¢ My N1 e = (xe®H ew-H
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mod {G, N]. This proves the lemma.

§3. FIBRE PRODUCT CATEGORIES

(3.1) DEFINITION. Given a diagram of functors

(1 F,

we define the fibre product category,

A=A x

é) éZ = CO(Fl’ Fz)

as follows: Its objects are triples (A;, a, Ajy) with Ai £ Ai

and a: FiA; > FpA, an isomorphism in A”. A morphism (A;,
Ay Az)

> Bi in éi (i =1, 2), such that

> (By, 8, By) in A is a pair of morphisms fi: Ai

FIAI _“—ii“_> FA2
Fi1f, Fofy

~————> F5B
B 282

commutes. There are canonical functors

(Al, Gy AZ) P A,

Gt A—— A3 Y i=1, 2).
(fla f2) l > fi
Moreover the square
Go
4 -y
2) Gy Fy
41 > A7
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is commutative up to the natural isomorphism
o F1G1 —> F2G2

which maps F1G1(A1’ ¢ 39 Az) = FlAl to Fsz(Al, Oy Az) = FrA,
by a.

This construction solves the following universal
problem: Given a square

Hy
B > Ap
(3) Hl F2 ) and R: FlHl — F2H2,
Al -

there is a unique (not just up to isomorphism) functor T: B
> A such that GiT = Hi (equality, not isomorphism) (i =

1, 2) and such that

B=o+T: F1H1 = FIGIT > F2H2 = F2G2T.
Namely, we must have

T(B)

(HlB, BB: HZB)

T(£)

(H; £, Hpf),
and this T clearly works.

We shall refer to the above data,

Gy
A > A2
Gy Foy, 0t F1Gy > FoGo,
A1 Fy > A

as a cartesian square. If A ¢ A then, as a triple, we have
A = (G4A, Gps GoA) .

Suppose that (1) above is a diagram of product pre-
serving functors between categories with product. Then we
can introduce a product on A = 4) X5. A; by:
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(Als Qy A2) L (B19 B, BZ) = (Al 1 Bl’ OLLB, A2 1 Bz)
(£1, £2) L (g1, 82) = (£1 L g1, 2 L g2).

Implicit in this definition are the identifications Fi(Ai_L
B,) =F.A, LF B, (i =1, 2). Evidently the functors G, in
i ii i"i i

(2) preserve this product. Finally, if (3) is a diagram of
product preserving functors then the functor T: B > A
constructed above is likewise product preserving. We shall
now investigate conditions which will guarantee that the
functors Gi and T are cofinal. The results below prepare for

certain arguments in &4 to follow.

(3.2) DEFINITION. Let (1) be a diagram of product
preserving functors. We say that F; is cofinal relative to
F, if, given A; € Aj, we can find Ay” € A, and A; € A; such

that F, (A L Ay7) = F1A;. We say that (F;, Fy) is a cofinal
pair if each Fi is a cofinal functor and if each is cofinal

rel the other.

Suppose A = (4, &y Ar) € A, B« AutA,(FlAl), and
Y € AutA,(FzAz). Then we shall write =

YAB = (Ar, va,B, Ay).

(3.3) DEFINITION. A diagram (3) of product preserving
functors will be called E-surjective if the following condi-
tion is satisfied: Given B € B and ¢ in the commutator
subgroup of AutA,(FlHlB), there is a B” € B and € in the

commutator subgroup of AutA (Hi(B L B7)) (i =1, 2) such

=i
that

(ey, €9) @ (TB)e L TB~” > TB | TB~
is an isomorphism in A.

(3.4) PROPOSITION. Let (3) be a diagram of product

preserving functors.

(a) If H; and H, are cofinal then the objects (TB)a
(B ¢ E), o € AutA,(FlGlB)) are cofinal in A.
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(b) 1f, further, (3) is E-surjective (see (3.3)) then

T : E _— é is cofinal.

(¢) If F, is cofinal relative to F) (see (3.2)) and

if F; is E-surjective (see (2.4)) then the cartesian square

(2) is E-surjective in the sense of (3.3) above.

(d) Suppose (F;, Fp) is a cofinal pair (see (3.2)).

Then given Ai € éi (i = 1, 2) there exists a B € A and
A.7€¢ A, (i =1, 2) such that G,(B = A, L A, (i =1, 2). In
i =i = | i i —

particular, the functors Gi’ and therefore also FiGi’ are

cofinal.

Note that, by symmetry, we can interchange F, and F,
in part (c).
Proof. (a) Given A = (A, o, Ajp) € A it suffices to
find B € B and A7 = (A7, a7y, A7) A such that Ai'L Ai‘ >
B (4
Hi (i

1, 2). For then we will have A ; A" = (HyB, vy, H,B)
for some v, and (H;B, y, HpB) = (TB)B, where g = BB_ly.

Since Hi is cofinal we can find Ci € éi and Bi.e B
such that Ai.L C;, = HB, (1 =1, 2). Now set A;” = C; | HiBy
and A,” = Cy, | HyB;: Then F1A;” = FiCy; | FjHB, = FiC; L
FyHyBy = F1Cy L FoAy L FyCy = F1Cy L F1Ay | FoCy (using a) =
FjH1By L F5C, = FoHoB; L FyCyp = FpAp”. Thus there is an

isomorphism o”: F1A;~

> FpA» 7. Moreover Ai_L Ai’ = HiB

(i =1, 2), where B = By L B,. This completes the construc-
tion.

(b) Thanks to part (a) it suffices, given (TB)a as in
the statement of (a), to find A € A and B~ € B such that
(TB)o L A = TB”, First form (TB)a L (TB)a~! = T(B L B)e,
where € = a L a-l. Since, by (1.8), € is a commutator, it
follows from the definition of E-surjectivity (3.3) that
T(BL B)elTB” = T(B L. B) L TB” for some B~ € B. q.e.d.

(c) Given A = (A7, a, Ap) € A and ¢ in the commutator
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subgroup of AutA,(FlAl) we must find B = (By, B, By) e A
and ey in the cgmmutator subgroup of AUtA’(Fi(Ai'L Bi))
(i = 1, 2) such that (e;, €5) : (Al’ ae,=A2).L B > ALB

is an isomorphism in A.

Since F; is E-surjective there is a B; ¢ A; and a §
in the commutator subgroup of AutA (Al-L B;) such that F;$
Al
=et1 . Since F, is cofinal relative to F; we can,
F1B,

after augmenting By and § if necessary, assume that there is

a By € Ay and an isomorphism B: FB, > F»By. This con-

structs B = (By, B, B,). Moreover, (§, lAz.L B2) : (A, oe,

Ay L B > (A L By, (ce L B) (Fy8)71, A, 1 B,). Since ae

lg= (oL B) (e L lF B ) = (o L B) (F;8) the right side of
101

the above isomorphism is A I B, as required. q.e.d.

(d) We are given Ai € A (i =1, 2). Since each Fi is

cofinal relative to the other we can find Ai’, Ai" € éi
(i = 1, 2) such that Fl(Al L Ay )y o= F2A2" and Fz(AzL AZ’)

AL Ai’_L Ai". Then clearly FiB; = F,By,

= F1A1". Set Bi
so there is a B = (By, B, By)€ A. This proves the first part
of (d), and the cofinality of the Gi is an immediate conse-
quence, Since the Fi are, by hypothesis, cofinal, the FiGi

are also.

§4. THE MAYER-VIETORIS SEQUENCE OF A FIBRE PRODUCT

In this section we propose to associate with a
cartesian square (see §3)

Gy
A > A
(1) Gll Fo , ot F16; > FoGo,
1 > A7
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an exact sequence. This is done in Theorem (4.3) below.

If A= (A, a, Ap) e A, B e AutA (F1A1), and v €
)

AutA,(FzAZ) we shall write (as in (3.3))
YAB = (Al’ yaB, Az).
Moreover, if oj, ay € AutA,(FlAl) we shall write

<A, ay, 0p> = [Aajap] + [A] - [Aa;] - [Aoy]
€ K A,
o:

(4.1) DEFINITION OF Ko'é. We define
Ky“A = Koa/

where M is the group generated by all <A, aj, dp>, (A = (A,
a, Ap) & A; op, 0s € AutA,(FlAl». We denote the class of A
in K_“A by [A]”. =

Note that, if <B, B;, 8,> 1s a second such element,
then

<A, A7, d2> + <B, 81, 62> = <A_L B, GI_L 81,

as | Bo>.

From this it follows that any element of M is of the form
<A, Oy, Qo> — <B, 81, 82>.

(4.2) LEMMA. Every element of K A is of the form

[A]l” - [B]”. If [A]” = [B]” then there exist elements

<C, Y1, Y2> and <D, §;, 65> as above, and an E ¢ A such that
Alcy;Lcy, Lps1s, LDLE

and

Bl Cy;yp, L CL Ds; L DSy L E

are isomorphic in A. In case the cartesian square (1) is

E-surjective (see (3.3)) then the natural projection KoA

> K,"A 1s_an isomorphism.
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Proof. The first assertion is clear since Ko’é is a
quotient of Koé' If [A]” = [B]” then [A] - [B] € M so, as
remarked above, we can write [A] - [B] = <C, y;, yo> - <D,
81, 6,>. Transpose this equation so that all terms on each
side have coefficient + 1, and then apply (1.3) (b) to
obtain an E yielding the above isomorphism.

For the last assertion we must show that all elements
<A, o, a,> are zero. According to (1.8), ¢ = az'l_L a, is a
commutator in AutA,(Fl(Al_L Ay)). Moreover (Aaja, 1 Ade =
Ao; L Ads. The definition of E-surjectivity now implies that,
for some B € A, Aaja, L AL B = Aa; | Aay, I B. Hence [Aaqa,]
+ [A] - [Aoy] - [Aoy] = 0, as required.

Let (1) be a cartesian square. We propose to construct
a Mayer-Vietoris sequence.

g1 £ 3 g
> K141 & Kjdp —> KjA” —> K A

O
>

(2) KyA

fO
Kod1 & Koo —> Ko

under suitable hypotheses. If we write (T)i for the homomor-

phism on Ki induced by a functor T, then we define
£.(x1, %) = (F1), (1) + (F), (xp)  (1=0, 1),

g1(x) = ((Gp)) (), - (G, (X)), and

go(x) ((Gl); ®), - (Gz)é x)).

In the latter (Gj); is the homomorphism on KO’(é) = Ko(é)/M
induced by (Gj)o' This exists because (Gj)O evidently kills
the generators <A, aj, ay,> of M (see (4.1)). It is clear
from these definitions and the commutativity of (1) (up to

isomorphism) that

(3 f.g. =0 (i1=0, 1).

i=i

(4.3) THEOREM. (''Mayer-Vietoris Sequence'). Let (1)
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be a cartesian square in which (F;, F,) is a cofinal pair of

functors (see (3.2)). Then there is a unique homomorphism

a: Klé/

> Ko’é such that

3[F1G1A, o] = [Ac]” -~ [A]" (A e A, o e Aut,.

=8

(F1G1A)) .

The resulting sequence (2) above is exact except perhaps at

K14 & K45, If (1) is E-surjective (see (3.3)) then (2) is

exact and the natural projection Ko(é) > KO’(é) is an

isomorphism, This is the case, in particular, if one of the

functors Fi is E-surjective (see (2.4)). Finally, the
sequence is natural with respect to functors between cartes-

ian squares.

Proof, The last assertion, which we leave the reader
to make precise, will be clear from the definition of 3 and
of the fi and 8; above. The fact that (1) is E-surjective if

one of the Fi is, is just (3.4) (¢). The fact that Ko(é)

> KO’(é) is an isomorphism when (1) is E-surjective is
contained in (4.2) above.
There remains for us now only the construction of 3

and the proof of the alleged exactness properties of (2). We
have already shown in (3) above that figi =01 =0, 1.

Note that the assumption that (F;, Fy) is a cofinal pair
implies, thanks to (3.4) (d), that the functors Gi and FiGi

(i =1, 2) are cofinal.

(a). Existence and uniqueness of 3: Suppose A = (A,
ay Ap) € A and o € G(F1Ay) = AutA,(FlAl). Set d(A, a) =
[Aa]” - [A]” € Ko‘é. If a;, oy € G(F1A;) then d(A, ajo,) =

[Aaja,]” = [A]” = d(A, oy) + d(A, oy), as we see directly
from definition (4.1). Thus d(A, ): G(FiAj)

> Ko'é is a
homomorphism into an abelian group, so it factors through
the commutator quotient group, G({(F;A;)), of G(F1A;). If h =
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(hy, hp): A
morphism (Fi1A;, o) = (F1B;, (Fihpa (Flhl)'l) in Zé’, and we

> B is an isomorphism in A it induces an iso-

have op = (thz)aA (Fihy)~™!. It follows that h induces an

isomorphism Aa > B(F1hy) a(Flhl)_l in A. Consequently
d(B, (F1hy) a(Fihy)™1) = [B(Fyhy) af(Fihy) 117 - [B]” = [Aal”

[A]7 = d(A, a). This shows that d is insensitive to iso-

morphisms A > B in A, so d depends only on the isomorph-
ism class (A) of A in é. Finally, if A, B € A and a & G(F;Ap
then d(AL B, a L 1 ) = [(ALB) (¢ L1 )1 - [AL B}
F1By F1By

= [Aa L B]” - [A]” - [B]” = [Aa]l” - [A]” = d(A, o). Thus d
defines a morphism into Ko’é from the direct system of
groups G((F1G1A)), indexed by the isomorphism classes (A) of
A e A, and with maps G((F;G;A)) > G((F1G,(A | B)))

4 .
> l"lFlGlB. ince we know that F;G; is a
cofinal functor, it follows from (2.5) that K;A” is the
direct limit of the above system, so the existence and

uniqueness of 3, as the homomorphism induced by d, is estab-
lished.

induced by o ]

(b) g 3 =0 and 3fj = 0: If A = (A}, a,, Ap) ¢ A and
a £ G(F1A;) as above then gOB[FlAl, al = go([Aa]’ - [A1)
= ([A;] - [A:], [Ap] - [A]) = 0. If o = F1B8, B € AUtél(Al)’
then (8, lAz): > A is an isomorphism in 4 so 0=
3[F1A;, F181=3f,([A;, B8], 0). Since G;: A

it follows from (2.2) that every element of Klél is of the

> A; is cofinal

form [A;, B] = [GjA, B] for some A ¢ A. Arguing similarly
with respect to the second coordinate in KijA; & K4, we

conclude that 3f; = 0 as required.

(c) Ker f C Im 8,° Suppose (x;, xp) € Ker f . Since
the G are coflnal we can write x; = [B; ] - {6, A] and
-X [Bz] - [GoA” ] for some A, A" ¢ A- If we replace A

2

and A” each by A1 A", and augment B and B, correspondingly,
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we can further achieve the condition A = A”. Having done
this we apply fo and find that [FlBl]A, = [FZBZ]A,. Since F;

is cofinal it follows that there is an isomorphi;m vy: F1By L

F1B;~

> FoB, L F1B;” for some By~ € A;. Since F, is
cofinal relative to F; there is also an isomorphism B: FiB{~

L FyB"

> FyBy” for some B;" ¢ A} and By~ ¢ 4. Now we

see that (xj, x%,) is the result of applying g, to
[Bl _L Bl’ _L Bln, a, Bz L Bz)]’ - [Bl, L Bl”, B,
BZ’]) - [A]s

where o = (1F2B2 L Bg) (v i'lFlBlu)'

(d) Ker goC: Im 3: Suppose [B]” - [A]~ ¢ Ker 8, This
means that [Bi]éi = [Ai]éi (i = 1, 2) and hence that Bi_L

A, = A L A ~ for suitable A,” ¢ A, (i = 1, 2). Since (F;,
i i i i =1
F,) is a cofinal pair it follows from (3.4) (d) that there
. = " - " o~
is a C cy, Gps Cy) € A and Ai € éi such that Ai 1 Ai

i = = ] - LI
Ci (i 1, 2). Set D Al C. Then Dy Ai_L Ai 1 Ai Bi
L.Ai‘ L Ai” (i = 1, 2). Using such isomorphisms we find that
BL C=DS for some § ¢ AutA”(FlDl). Finally then we have
[B]” - [A]” = [B L C]” - [A7L C]” = [D§]” - [DI” = 3[F;Dy,
8].

(e) Ker 3 CIm fy: Let x € Ker d. Since F;G; is
cofinal we can write x = [F1G;A, a] for some A ¢ A and a ¢
AutA,(F G A). Since [Aa]” - [A]” = 9x = 0 it follows from

Lemma (4.2) above that there is an isomorphism (hj, ho): U

> V in é, where U = Ao | Cy; I Cvyp 1 D818, 1 D | E and
v=Alcy; LCy, L D8 L D8, L E, as in (4.2). Writing U =

Uy, o U2) and V = (Vq, ays V,) we have U; = A; L Wy = V4
and Up = Ay LWy = V,, where W, =C, L C 1D 1D, |E

(i =1, 2). Moreover ay = av(q_L lFlwl), and the isomorphism
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(hy, hy) gives us aV = (Fyhy) “U(Flhl)_l- It follows that o
= -1 -1 3
L lFlwl = (Fyh,) aV(Flhl)aV in Auté,(Fl(Al_L Wy)). Con-
sequently, in K;A”, we have {[a] = [a L lF W ] = [(thz)‘l] +
= 171

[@V(F1h1)av_1] = [Fih;] - [Fohy] = £1([hy], = [hy]).

(f) If (1) is E-surjective then Ker f;CIm g;: Suppos
x = ([Ay, o071, - [Ap, ay]) € Ker £,. Proposition (3.4) (d)
B’ By) € A and Ai’ €A (1 = 1, 2) such
that Bi = Ai.L Ai’ (i =1, 2). Then (Ai,L Ai’, a; L lF.A.) =

gives us a B = (B;, «

(Bi’ Bi) for some Bi (i =1, 2), and we have x = ([B;, 8],
- [By, By]) clearly. Applying f; we find that O = £,(x) =
[F181] - [F28,] = [aB_l(Fzﬁz)-l aB(F181)]. It follows now
from (2.5) and the cofinality of F;G; that there is a B" =
(B17, oy
1F1B1, is in the commutator subgroup of Auté,(Fl(Bl_L B;17)).
Now we have (FZBZ)'1 B(F18;) L B" = (BL B")e, and it

.s» By7) € A such that e = aB'l(FzBZ)—l QB(FIBI) 1

follows from the hypothesis of E-surjectivity that there is

a B" = (B;", « B,") € A and € in the commutator subgroup

B"’
of Aut, (Bil B,”L B.,") (1 =1, 2) such that (e, e2): (BL
2
B“)e L B" > BL B-1l B" is an isomorphism. This means

that

-1
Faep “(ap Lop. Lag)Frey = (o Loy de L g

(erp_)_l OLB(FIBI) .L OLB, 1 OI.B"

(FZYZ)-I (aB L OLB; -L- O‘Bn) (F1Y1) ’

=g, 1
where v, = B;+ lp (5 -
1 1

B" and set 6i = vy ei'l (i = 1, 2). Then the above equations

B.") (1=1, 2). Set C=BL B"L
i
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imply that (F,8,)7 ! ac(Flél) = 0., in other words that (&,

§,) is an automorphism of C.

We conclude the proof now by showing that x = go([C,
(81, 82)1) = ([Cy, 811, - [Cy, &3]). For example, in KjAy,
{811 = [y1e1] = [v1] + [e1] = [v1] (because e1 is in the
commutator subgroup) = [B1 L lFl(Bl’J- Bln)] = [B1].
Similarly [82] = [B2] in KjAp. Since x = ([B1], - [B2]) the
proof of part (f), and hence of Theorem (4.3), is complete.

§5., THE EXACT SEQUENCE OF A COFINAL FUNCTOR

In this section we shall show that a cofinal product
preserving functor F: A > A” induces an exact sequence of
the form

-
.

K14 > K1A”

> K
[e]

In order to define K “(F) we first introduce the
fibre product diagram

co(F) ————>

[k

(1) Gl F, a: FGl > FGz.

[

\
n
AY

F

Since F is cofinal it is obvious that (F, F) is a cofinal
pair (see (3.2)). Moreover, if F is E-surjective (see (2.4))
then it follows from (3.4) (c¢) that the diagram (1) is E-

surjective (see (3.3)).

The identity functor from A to its two copies in (1)
induces a diagonal functor -

(2) A

e

—> co(F), GiA = lé (i=1, 2).

We now define the groups Ki(F) as cokernels in the short

exact sequences
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A
0 > Kié —_— Ki(CO(F)) _— Ki(F) > 0
i1=0, 1.
Since A is split by both G; and G, it follows that
K, (F) = Rer (K (co(F)) —l— K.A) (i =0, 1;
i=1,2)
~ 9 . i = .
K, (co(F)) = KA ® K (F) i=0,1

Since co(F) is a fibre product we have the quotient,
Ko’(co(F)) = Ko(co(F))/M, of Ko(co(F)) which occurs in the

Mayer-Vietoris sequence of (1) (see (4.1)). We now define

KO’(F) = Ko(co(F))/(M + Im(A))

to be the corresponding quotient of K (F). Thus we have an
exact sequence °

K A
o=

> K “(co(F)) > K 7(F) > 0,
0 0

where d = (nat., proj.) ° A. Recall from (4.1) that M is gen-
erated by elements

<A, a1, do> = [Aaja,] + [A] - [Aa;] - [Aas]

where A = (4, Gy As) € co(F), a; € AutA,(FAl) i=1, 2),
and where we write AR = <A1’ aAB, Aj) for B € AutA,(FAl).

Since GiA = Ai (i =1, 2) it follows that <A, a1,=a2> above

is in the kernel of the map Ko(co(F)) > Koé induced by

the Gi's. Thus each Gi induces a map KO’(co(F)) > Koé,

and these will both provide splittings for the homomorphism
d above, This proves the first assertion of the next pro-
position.

If (A, a, B) € co(F) we shall denote its class in
KO’(F) by [A, o, B]”, and use [A, a, B]" for its class in
KO’(co(F)).

(5.1) PROPOSITION. The diagonal functor A: A

>
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co(F) induces a split short exact sequence

0

> K A > K “(co(F)) > K “(F) > 0.
o= o o

Moreover, KO’(F) = Ko(co(F))/N, where N is the group gener-

ated by all elements of the form

[Aa Bas C] - [A, Q, B] - [Bs B, C]

EE_KO(CO(F)). Every element of KO’(F) is of the form [A, a,
B]-.

Proof. The first assertion was proved above. To prove
the second let us write [[A, a, B]] for the class of [A, o,
B] modulo N. To show M C N we must show that [[Acjo,]] +
[[A]] = [[Ac1]] + [[Aao]] for each element <A, o7, ap> as
above. This will follow immediately if we show that [[AR]] =
[[A]] + [[Ay, B, A;]] for any B ¢ AutA,(FAl). But the latter

follows directly from the definition of N.

To show that NC M we must show that
[A’ Bo, C]’ = [As Gy B]) + [B, B, C]’

in Ko‘(F). Suppose A ¢ A and a, B ¢ AutA,(FA). Then AA =

(A, lFA’ A) and [AA]” = 0 by the definition of KO'(F). It
follows now from the definition of M that [AAaB]” = [AAaB]”
+ [AA]” = [AAa]” + [AAB]~. Thus o |——> [AAa]” is a homomor-

phism, so [AAa]l” = 0 if o is in the commutator subgroup.

Now let A, a, B, 8, C be as above. Then (AL BL C,
al gL (Ba)~!, BL ¢cL A) is isomorphic in co(F) to (AL B
L, s(al BL (Ba)"!, AL Bl C) for a suitable 3-cycle s.
It follows from the Whitehead lemma (1.7) that there is an
isomorphism of AL BL C with AL AL A carrying s(a | B L

(Ba)~1) to t, the corresponding three cycle on AL ALl A.
Since a three cycle lies in the commutator subgroup of the
symmetric group on three elements it follows that s(a | B ]

(Ba)™!) is in the commutator subgroup of AutA,(F(A_L Bl C)).

The conclusion of the paragraph above now im;lies that 0 =



372 ALGEBRAIC K-THEORY

[ALBlCys(ayp B (B, A B Cl"=[ALBLC,u
L 8L (Ra) ', BL CLA]” =1[A, a, BI” + [B, 8, C]” + [C,
(Ra)~1, Al-.

Now an entirely analogous argument shows that [A, o,
B]” + [B, o”!, A]” = 0 as well. This and the previous con-
clusion imply that
(A, Ba, C]” = [A, a, B]” + [B, B, C]7,

as claimed.

Any element of Ko’(F) is of the form {A;, oy, By]~ -
[Ar, a5, By]1”, and we can express this as [A; L By, o
az_l, A, L B;)]. This concludes the proof of Proposition
(5.1).

We shall now investigate the group K;(F), and, in
particular, compare it with the group K;(4, F) = K,(Ker IF)

defined in (1.4). Recall that Ker IF is the full subcategory
of Zé whose objects are the (A, a) such that Fa = lFA' An

object of I co(F) is of the form ((A, v, B), (a, B8)) where
(o, B) is an automorphism in co(F) of (A, vy, B). This means
that o € AutA(A), B e AutA(B), and

FA —Yes FB
Fo FB

FA ——> FB
Y

A > ¥ co(F) is
defined by ZA(A, o) = (AA, Aa) = ((A, lFA’ Ay, (a, a)). It

induces the split exact sequence

commutes. The diagonal functor ZA: ZA

0 —> K;A — K;(co(F)) > Ky (F) > 0

which defines K1 (F). It follows from (3.4) (b) and (c) that
A is cofinal provided F is E-surjective.
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There is also a natural functor
(3) H: Ker £F —> I co(F)

defined by H(A, o) = (2A, (o, lA)). The fact that Fo = lA

shows that (a, lA) is indeed an automorphism of AA = (A,

lFA’ A)., Moreover this functor is clearly product preserving.
If (8, y) is any automorphism of AA then we can write (B, ¥)
= (a, lA) (y, v) where o = By~! is such that Fo = lFA' This

canonical factorization shows that Autco(F)(AA) is the semi-

direct product of A(AutA(A)) with the normal subgroup H(Aut
(A, F)). If we abelianize AutCO(F)(AA), we obtain G((AA)) =

G((A), F) & G((A)), in the notation of §2 (see Lemma (2.6)).
Here with first summand comes from H, the second from A. Now
if we take the direct limit of these groups over objects AA
(A € A), as in §2, then we obtain K;(A, F) ® Ki(A). In case

s

the functor F is E-surjective then, as remarked above, A is
cofinal, It follows therefore from (2.2) that the direct
limit we have just taken is canonically isomorphic to Kj{ecec
(F)). We record this now:

(5.2) PROPOSITION. The functors
ZA

A ———> I co(F) <——Ji—— Ker TF (see (2) and
(3

induce a homomorphism Kl(é, F) & Kl(é) > Ky (co(F)) which

is an isomorphism if F is E-surjective. Hence H induces an

isomorphism Kl(é, F)

> K1(F) in this case.

The exact sequence associated with F will now be
constructed as the bottom row of the following diagram:



wLE

(4) Ky (4)
S}
K; (co(F))
H
Kl (é, F)
h
K1 (F)

g1

>

> K1(4) 8 Ki(A)

81

Ky (&)

£

>

> Ki1(A7)

Ky (A7)

3

> K (4)

8o

> KO’(CO(F))

> KO’(F)

O =
do
Bo > K (A) & A fo > -
S8 K (8) K (&)
E Il
> K (&) > K (A7)
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The middle row is the Mayer-Vietoris sequence (4.3) of (1)
above. The maps di and s; are: di(x) = (x, -X)3; si(x, y) =

x+vy, (i =0, 1), The vertical involving AO is the split

exact sequence of (5.1) above. The vertical involving A is
the short exact sequence defining K;(F). Since the terms of
the bottom row are each the cokernel of the corresponding
vertical exact sequence, and since the top half of the
diagram commutes, it follows that the horizontal arrows on
the bottom are defined uniquely by commutativity of the
diagram.

On the left we have H: Kl(é, F)
(5.2) above, and we define h: Kl(é, F)

> Ky (co(F)) from

> K1 (F) to make

> Ky (F)

> Kl(é) sends the class of (A, a) e Ker IF to s;(g;([H(A,
D) = 18114, (@ 1) = 108, 8]y, (4, 1,1 =

[A, u]A, since [A, 1
map K; (4, F)
(see (1.5)).

the triangle commute. The composite K;(4, F)

A]A = 0. Thus this com;osite is Just the

> Ky (A) induced by the inclusion Ker IF C ZA

Since the top row is acyclic and the middle row is a
complex, it follows that the bottom row is a complex whose
homology agrees with that of the middle - thanks to the long
homology sequence (I, 5.1). Therefore the bottom row is
exact everywhere that the Mayer-Vietoris sequence is, If we
now invoke Theorem (4.3) we obtain from the discussion above
the following conclusions:

(5.3) THEOREM. Let F: A > A” be a cofinal product

preserving functor, and let

f

Ky (F) > Ky (4) > Ky (A7) > KO‘(F)

(5)

> K _(8) — K (")

be the sequence constructed above in (4). Then (5) is exact

except perhaps at K;(A), and the homomorphism h: K; (A, F)

> K1 (F) of (4) composes with f to give the map K;(A, F)

K;(A) induces by the inclusion Ker ZF C IA. If F is E-surjec-
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tive then the natural projection KO(F) > Ko’(F) is an

isomorphism, h is an isomorphism, and the sequence (5) is

exact.

We now indicate the naturality of the sequence (5).
For this suppose we are given a square

[{>~]
v
=

(6) J

J° , a: FJ > J”G.

[k
v
[[Je=g
\

of product preserving functors. Suppose, moreover, that F
and G are cofinal. Then the diagram (6) induces a morphism
of sequences.



CH% <

r

AY

(DY <

%% <
r

Ho
(4 <

@.°3 <

°c

[¢]
M. A% <

-€

-€

(MM <

(DM <

(M <
r

(D <

(@) tx

[y

(o

(L)
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The map jO is defined by

. . _ -1/~ -
JO[BI, B, Bo]" = [JB,, aBZ (J'B)a JB, 17,

B;’

Here, of course, B: GB; > GB, and ap * FJBi
i

(i = 1, 2). The definition of j; makes analogous use of the

natural transformation «.

> J“GB,
i

If (GB, B) € IB” then j 3°[GB, 8] = j [B, 8, B]" =
[JB, aB—l(J’s)aB, JB]” = 3~ [FJB, aB'l(J‘B)aB} = 3°{J°GB, J°
gl = 3°J°[GB, R]; i.e. joa’ = 3°J". This calculation illus-—
trates the mechanism in (7). We shall study a special type

of jo in the "excision theorem' in the next section.

We shall conclude this section now with a description
of the "exact sequence of a triple'. For this we suppose we
are given a commutative triangle

B

13
[[@]

H = GF

of cofinal product preserving functors. Then we have product
and composition preserving functors.

3: co(F) > co(H) ; 3(A1, B, Ap) = (A1, GB, Ap)

and

§: co(H)

> CO(G) 5 CS(A]_, Y A2) = (FAI’ Y FAz).
These induce homomorphisms

d . 8
> K (1)

Ko’(F) > KO’(G)

and

K, (F) > K1 (H) > K1(G)
with 83 = 0 in each case. Now consider the commutative

diagram



6LE

dg
K E)
® %2 (8)
§
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The map A is defined to make the diagram commute, and the
remaining commutativity follows directly from the defini-
tions,

(5.4) THEOREM. In the sequence

3 $ A

9 K1 (F) > K (H) > K1 (G)

> KO'(F)

d . 8 .
> K “(H) > K 7(6)

all composites are zero, and it is exact at KO’(H). If G is

E-surjective it is exact at Ko'(F). If also F is E-surjective
then it is exact at K;(G).

Proof. The K-sequences (5) of the functors F, G, and
H are embedded in the diagram (8), and in each of these
sequences all composities are zero. It follows then from
commutativity that AS 0 and 3A = 0 in (9), and we have
already noted that §3 0 in each case.

Exactness at KO’(H). This is a diagram chose, using
the exactness of the K-sequences of F, G, and H. We leave it
as an excercise.

Exactness at KO’(F) when G is E-surjective. If x ¢
KO’(F) and dx = 0 we must show that x ¢ Im(A). Since de =
we have x = éFy for y ¢ KI(E)- Since GHGl(y) = dSFy =dx =0
we have Gi(y) = Hy(z) for some z ¢ Kl(é) because G is E-
surjective., Now G;F;(z) = G1(y) soy - F;(z) = dG(u) for
some u € K;(G). Now Au = 6FdG(u) = 6F(y - Fi(z)) = SF(y) -0

= X.

Exactness at K;(G) when G and F are E-surjective.
Suppose x £ K1(G) and Ax = 0. We must show that x e Im($).
Since 0 = A(x) = GFdG(x) we have dG(x) = F;(y) for some y ¢
Kl(é). Since Hy(y) = 0 and H is E-surjective (because F and
G are) we have y = dH(Z) for some z ¢ K;(H). Then dGS(Z) =
FldH(Z) = F,(y) = DG(x) S0 dG(u) = 0 where u = x = x - 6z.
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Since G is E-surjective we have K;(G) = KI(E, G), so we can
write u = [B, B] for some B € B and B ¢ AutB(B) such that

GR = lGB' Since F is cofinal we can even assume B = FA for
some A € A, The fact that dG(u) = 0 implies, according to
(1.9), that B l_lB, is in the commutator subgroup of AutB(FA
1L B”) for some B”. We can further assume B~ = FA~ since F is
cofinal. Since F is E-surjective we can, after augmenting A~
if necessary, write B l.lFA, = Fo for some o in the commuta-
tor subgroup of AutA(A.L A7), We have Ho = GFa = G(B L lFA’)
=GB Ll,.= 1H(AJ:A,). Now v = [AL A, a] € K1 (4, H) =
K, (H) is such that §(v) = [F(A L A7), Fal] = u = x - §(z).
Hence x = §(v + z). q.e.d.

This proves Theorem (5.4) as formulated. We conclude
with a criterion for exactness at K;(H).

(5.5) PROPOSITION. Assume, in Theorem (5.4), that F

and G are E-surjective, and that the following condition is

satisfied:

Given A € A and o € AutA(A) such that Fa € [Aut

B
(FA), AutB(FA, G)], there exists a B = AL A” an

d

an € € [AEtA(B), AutA(B, H)] such that Fe = Fa.

Then (9) is exact at K;(H).

Proof. Given x € K;(H) such that §(x) = 0 we must
show that x € Im(3). Since H is E-surjective we can write x
= [A, o] with A € A and o € AutA(A, H). Since 0 = §(x) =

[FA, Fa] we can, according to (i.l), find C° = FA1 B~ such
that o L lB‘ € [AutB(C’), AutB(C’, G)]. Since F is cofinal
we can even take B” of the form FA”, so that C° = FC where
C=A] A”. According to the hypothesis we can now augment

C further, if necessary, to find e € [AutA(C), Aut, (C, H)]

A
such that Fe = F(a L lA,). Now y = [C, e 1(al lA‘)]F €



382 ALGEBRAIC K-THEORY

Ki(A, F) = Ky (F), and 3(y) = [C, ¢ ']+ [C, a L1 ], =

H
[A, o] = x, because [C, e]H = 0. q.e.d.

§6, EXCISION ISOMORPHISMS

(6.1) THEOREM (""Excision"). Let

G2
A -
(1) GlI F2 N [ 34 FIGl > F2G2,
él Fy > é

be a cartesian square of product preserving functors for

which (F;, F,) is a cofinal pair (see (3.2)). Let

Ky (8) — Ki(Ag) ——> K_"(6) —> K_(&) —> K_(A2)
K (A) —> K1 (A7) == K_“(F) —> K (&) —> K_(A")

be the morphism of exact sequences induced by (1). Then ¢ is

surjective. If (1) is E-surjective (see (3.3)), e.g. if F,

or F, is E-surjective (see (2.4)), then ¢ is an isomorphism.

Remark. Since E-surjectivity of (1) is a symmetric
hypothesis it also implies an isomorphism KO’(Gl) > KO’

(Fy;). In the applications we shall make of this theorem
either ¥; or F, will be E-surjective and hence, by (3.4) (¢),
(1) will be E-surjective. However, E-surjectivity of one of
the Fi is no longer a symmetric hypothesis.

Proof. The map ¢ is induced by a product preserving
functor:

F: co(G,) —> co(F1);

F(A9 Y B) = (GlAy aB-l(FZY)G GlB).

A’
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Here, of course, A = (G;A, Gy GoA) and B = (G;B, «
4=41 %

> Gy B.

B® GzB) €

. éz, and Y GzA

e

¢ is surjective: Suppose U = (Ay, v, By) € co(F,),

so y: F14 > F1By. Since F, is cofinal relative to F; we
can find Ay € Ay, Ay € A,, and an isomorphism a: F;(A; L

A)

> Fohy. Now define B to make

11 .
! P14

Fi(a; L Ay7) . F1(By L A7)

Fohsy

commute. Then U | AA;7 = (A7 1L A;7, v L 1F1A1" By L A7)

= FV, where V = ((&; 1 A;7, o, Ay), lAZ, (By L Ay7, B, As)).
Therefore, in Ko‘(Fl), [U]l” = [U L aay7]7 = ¢[V]~.

¢ is injective: Suppose ¢(x) = 0. According to (5.1)
we can write x = [U]” for some U = (A, v, B) ¢ co(Gy), and
so [Ay, ;; B;17 =0 in KO’(FI) where we are abbreviating Ai
= GiA’ Bi = GiB (1i=1, 2) and ¥ = aB'l(FzY)aA. In partic—
ular [4;] = [B;] in Ko(él) so Ay L A7 = By L A;” for some
-S> él' Since the functor G; is cofinal (see (3.4) (d)) we
can write A;” = GjA” for some A” ¢ A. Since x = [Ul" = [U L

AA”"]”, where AA” = (A", 1 A”), we can replace U by U 4.

GLA"?
AA” and henceforth assume that A; = Bj. 1f we use such an

isomorphism together with y: A, —> B, we can replace B by
an isomorphic object in A to further achieve: A} = B;, A, =

By, and y = 1, . Thus we now have x = [U]” where U = (A,

Ap
lAz, B}, A = (4, oy As), and B = (A, ags As). If we set
Y = a,"la, then we can write B = A;, soU= (A, 1, , A§),
B A Ay

FU = (A1, ¥, Ap).
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We have 0 = ¢(x) = [Ay, v, 4117 = 37[F A4, ;j. The
exact sequence of F; therefore implies that the element
[F144, Y] € K; (A7) belongs to Image (K (4;) > K1(A7)).

Since the functor FyG; is cofinal (see (3.4) (d)) it follows

from (2.1) that there is an A" € A and an o] € AutA ONED!

such that y L,l = (Fjoy)e, where ¢ is in the commutator

Al”
subgroup of AutA,(Fl(A1 L Ay")). Since x = [U]” = [U L aA"]"
we can replace U by U L AA". This does not affect any of
the normalizations (i.e. A} = By, Ay, = By, v = l ) made

above, and it replaces ;.by vy L1 Thus, after this

FAI'
replacement, we can assume further that Y = (Fyay)e, and we

still have U = (A, 1, , A;).
A

Since the diagram (1) is, by hypothesis, E-surjective
it follows that there is a C € A, and elements h in the

commutator subgroup of Aut, (Ai.L Ci), such that (eq, €5):
=i

> A(Fyop) L C is an isomorphism in A. (See

A2) : A(Flocl)

isomorphism in é. From these we obtain an isomorphism in

co(Gy):

A(Flal)e L C

definition (3.3)). Moreover (o, 1 > A is an

uLac=(lc, 1, A(Fjapde L C)

2L Cp?

((lA].J- Cl, lAz_L CZ)’ (0‘161, 52))

i} —-——

V=o(AL C, €9, Ay C).

Since €5 lies in the commutator subgroup of Aut, (A2.L Cy)
we have [A; L Cp, €3] = 0 in K;(A;). Therefore O = 37°(G,
(AL C), es] = [V]”=([UL AC]” = [U]” = x. q.e.d.

Using the excision isomorphisms and the Mayer-
Vietoris sequence of (1), there is a natural procedure,

familiar to topologists, for constructing a commutative
diagram of the following type:



———

N<HM

/g
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The middle line is Mayer-Vietoris, and the "sine curves' are
the exact sequences of the four functors in (1). The equali-
ties are the excision isomorphisms.

HISTORICAL REMARKS

A number of people have constructed exact sequences
more or less related to those considered here. Examples
include Heller [1], Gersten [3], and Chase [1]. There have
also been several, so far unpublished, definitions of higher
K-functors. In particular Milnor has defined a functor K,
(for the category P(A), where A is a ring) and this K, seems
to be susceptible to many of the techniques developed in
these notes (see Gersten [2]). Moreover Nobile and Villamayor
{1] have recently obtained a long exact sequence for functors
Kn which are related to ours for n = 0, 1.

The exposition in this chapter is derived mainly from
that of Chapter I of my Tata notes [4] plus some unpublished
notes of Milnor. The proof of the excision isomorphisms is
adapted from that of Theorem (7.2) in Bass-Murthy [1l]. The
latter, in turn, generalizes a theorem of Rim and Serre on
"reduction modulo the conductor" (see (IX, 5.6)).



Chapter VIII
K-THEORY IN ABELIAN CATEGORIES

If ¢ is an additive subcategory of an abelian cate-
gory A we can view C as a category with product, 8, in the
sense of Chapter VII. In practice, however, it is natural to
define the Grothendieck and Whitehead groups of C by intro-
ducing relations for all short exact sequences in C, not just
those which split. In case all short exact sequences in C
split, i.e. if C is "semi-simple", then the definitioms
coincide. In §2 we show that an "exact' functor F: C >
induces an exact sequence like that in Chapter VII provide
we impose conditions of semi-simplicity on the given data.
This result is deduced directly from its analogue in

Chapter VII.

c
d

In order to relax the semi-simplicity hypotheses we
then show that the groups Ki(g) can sometimes be computed on

a subcategory C,C C, the point being that C, may be semi-
simple even when C is not. The first such result, called
"devissage', is based on the Jordan-Holder Theorem (§3).
The other, a fundamental theorem of Grothendieck (in the
case of Ky), is based upon taking resolutions and the use
of "Euler characteristics' (see §4).

In §5 we prove an important theorem of Heller des-
cribing the exact sequence of a localizing functor. The
philosophy is, roughly, that if one views a localizing
functor as defining a short exact sequence of categories,
then K-theory should behave like a cohomological functor
with respect to such exact sequences.

387
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There is a closely related theorem (Theorem (5.8)),
applying specifically to categories of projective objects,
which seems to require additional techniques for its proof.
Both of these theorems are used heavily in later chapters.

The final section (§6) contains a remarkable new
theorem of Leslie Roberts: Let A be a k-category, where k is
an algebraically closed field, and assume that A(A, B) is
always finite dimensional. Then -

Ki(a) = K _(4) 8, K*.

This applies, notably, when A is the category of coherent.
sheaves on a complete algebraic variety over k.

§1. GROTHENDIECK GROUPS AND WHITEHEAD GROUPS IN
ABELTAN CATEGORIES

All categories in this chapter will be of the follow-
ing type, though condition (d) below will play no role until
§3.

(1.1) DEFINITION. A subcategory ¢ of an abelian
category A will be said to be admissible if it satisfies the
following conditions:

(a) C is a full subcategory of A and it contains a
zero object.

(b)

objects.

{e}

has only a set of isomorphism classes of

(c) Finite direct sums of objects in C are again in

no

(d) 1£f © > A7 > A > A"
sequence in A, then A, A" e C= A" ¢ C.

> 0 is an exact

Clearly £C (= C%, c.f. (VII, 1.4)) is then an admiss-
ible subcategory of the abelian category IA. We shall say P
is projective in C if P ¢ C and P is projective in A. Simi-
larly we call a sequence in C exact if it is exact in A. The
category of short exact sequences, 0 > A~ > A —> A"
> 0, in C will be denoted by
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Ex(Q)  ( Ex(d).

We call C semi-simple if all short exact sequences in C
split. Note that this does not imply that the objects of
are semi-simple. Neither does it imply that the category

is semi-simple.

c
e

Let CC A and C"C A~ be admissible subcategories of
abelian categories. A functor F: C > C” will be called
admissible if it is induced by an additive functor F: A
A”. We shall say that F is exact if it carries short exact
sequences in C into short exact sequences in C . In this

case F induces an additive functor

>

Ex(F): Ex(g) > Ex(g’).

Moreover the functor IF: ZIC > FC” will be exact if F is.
The category co(F) is an additive category. If T is exact
then co(F) is an abelian category of which co(F) is an
admissible subcategory.

The direct sum, #, gives C the structure of a cate-
gory with product, in the sense of Chapter VII, Moreover any
additive functor is product preserving. In order to avoid
confusion in what follows, we shall use the notation

c, )

when referring to C as a category with product. Thus we have
the groups

K, (C, ®) =0, 1

constructed in the last chapter. Similarly, if F: C
is an admissible functor then we have -

v
@]
\

Ko (F, ) and Ki(F, &)

constructed as quotients of Ki(co(F), #). We shall now
introduce groups Ki(g) (1 =0, 1) and K,"(F) which are

quotients of the corresponding groups above. They are
obtained by requiring the class of an object in K to be
additive not only over direct sums, but over all short exact
sequences., Specifically:



390 ALGEBRAIC K-THEORY

[ 1.: ob C

G > K_(©)

is universal for maps into an abelian group satisfying

KO. If (O > A7 > A > A" > 0) € Ex(g) then
= - + 1t .
[A]g [A ]g [A ]g
Similarly,
I ]C: ob Zg > Ky (g)

is universal for maps into an abelian group satisfying KO
and

K1. If (A, o), (A, B) € IC then

[a, o8], = [4, ol + (A, 8]

If F: C > " 1s an exact functor then

{ ]F: ob co(F) > KO’(F)

is universal for maps into an abelian group satisfying:

KO It (O > (Al‘, OL,, A2’> > (Al’ a, Az)
> (A", oy AT > 0) & Ex(co(F))
then
[A]_a G, AZ]F = [A]_‘9 0“3 AZ,]F + [Alns O‘Ha A2"]F;
and

K1 If (A, a, B), (B, B, C) € co(F) then
[A, Ba, c]F = [A, @, B]F + [B, B8, C]F.

(cf. (VII, 5.1)). From these definitions it is clear that
there are canonical epimorphisms Ki(g,o> > Ki(g) (i =0,

1) and Ko’(F, )

> Ko’(F). Moreover F induces homomor-

> K, (C) (1 =0, 1) via [a] > [FA] ..

phisms Ki(g)
and [A, a]g [

c |
> [FA, Fu]c,, respectively. There is also a

@]
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commutative square

K, (F, &) > K (C,8)

K () > K (©)

where d[A, a, B]F = [A]c - [B] ., and d is analogously

defined. =

@]

§2. THE K-SEQUENCE OF A COFINAL EXACT FUNCTOR

Let F: C > C” be an admissible functor between
admissible subcategories of abelian categories. We say F is
cofinal if it is cofinal with respect to # in the sense of
Chapter VII. Recall that this means, given A” ¢ C”, we can
find A ¢ C and B” ¢ C” such that A~  B” =~ FA. Similarly, if
F is exact, then it makes sense to say that Ex(F): Ex(C)
Ex(C”) is cofinal. The latter condition clearly implies that
F itself is cofinal, and the converse is true if C” is semi-
simple. -

>

Assume now that F is cofinal and exact. Then, except
for 9, we have a commutative diagram,




[e]
Lo <

0
(8 °.0) A <

Oy <

(.0
(¢ ‘°0) X <

A4

P

). ¥ =T O <

0

(@ “3). X < (.00 <

&

(o)™

(¢ ‘)M

M
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in which the top row comes from the sequence of (VII, 5.3).
The maps Ki(g) > Ki(g’) are those induced by F, and d was

constructed at the end of §1. The existence of 3 is clearly
equivalent to the following condition: If (O > (A7, a”)
> (A, a) > (A", o) > 0) € Ex(Zg’) then £3 [A,

oc](g,’ gy = 3 (a7, a’](g,, 8y T [a7 O‘"](g’, 8"

(2.1) PROPOSITION. Let F: c > g’ be an exact

cofinal functor as above. If Ex(F) is cofinal then 3: K;(C”)

> Ko’(F), making diagram (1) commute, exists. If Ex(F) is

surjective on stable isomorphism classes of objects then

K “(F) —> K (C) —> K _(C*) —> 0
o} o = o =

is exact.

The surjectivity hypothesis means that, given A ¢
Ex(g‘) there exist B, C ¢ Ex(g) such that FC ~ A& FB,

Proof. To show that 9 exists we must show, given an
exact sequence

(A, @) = (0 > (Ap, 0g) > (A1, ap) >
A, a) > 0)
0 o
in XC”, that £3 [Ay, al](g,, ®) = f) ([Ao, ao](g,’ ®) +

[A,, az](c,’ @))' By the hypothesis that Ex(F) is cofinal,
there are exact sequences B € Ex(C”) and C e Ex(C) such that
A® B = FC., Using such an isomorphism we obtain an isomor-
phism in Zg’ of the form (A® B, « & lB) = (FC, y) for some

s o] - @ =[A,9B,,a,@l ]
1(23 ) 1 1 1 i(g),ﬁ)

(0 < i < 2) it suffices to establish the equation above with

. Si
v ince [Ai B

(FC, v) in place of (A, a). But (C, v, C) is an exact
sequence in co(F). Using axiom KO for Ko’(F), therefore, we

have

£9 IFC, vilco gy = FIC1 v1s Cil (g oy =
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[Cis vi1s C1}F = [Co, Yoo Colp + [C2s v25 Coly

fa ([CO’ YO](E',@) + [CZa Yz](gz’e?

Now that 3 exists we can expand diagram (1) to:



S6¢

Nl > NZ N3 > N[+ > N5

3 d

(2) Ki(C, &) > K “(F, @)

> Ky(C7, )

> K (G, ) —> K_(C", )

RO —> KE) = KS® —— R(©Q — K (€D
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where the top row is the kernel of the epimorphism from the
middle to bottom. We shall view this as a short exact

sequence of complexes (the rows) whose undenoted terms we
take to be zero.

Evidently Ng is generated by all elements <A>C‘ =

[Al](g’, ®) - [Ao](g’, 8) " [Az](g’, g) vith A = (0 > Ay

> A —> AO > 0) € Ex(g‘). If Ex(F) is surjective on
stable isomorphism classes then we can write A& FB = FC for

some B, C € Ex(C), so <A>C, = F(<C>c - <B>c), and so Ny

>
N5 is surjective. Moreover F itself is surjective on stable

isomorphism classes of objects if Ex(F) is, and hence Ko(g,

9)

> Ko(g', #) is likewise surjective. The middle row of
(2) is acyclic at the three middle positions according to

(VII, 5.3). Therefore the long homology sequence of (2)

shows that K_“(F) < K (O > K (€7

claimed. This completes the proof of (2.1).

> 0 is exact, as

(2.2) THEOREM. Let F: c > g’ be an exact admissible

functor between admissible subcategories of abelian categor-

ies, and assume that Ex(F): Ex(g) > Ex(g’) is cofinal.

(a) If C is semi-simple then g’ is also semi-simple,

and all the vertical arrows in (1) above are isomorphisms.

In particular

K1(Q) —> K1(€)) ——> K_"(F) —> K_(Q)

> K -
O(C )
is exact

(b) lf_g‘ is semi-simple then the sequence

3

K, (C)

> K ~(F) > K (C) > K (C7)
o o = o=

is exact.
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Proof. (a). If A € Ex(C”) there exist B ¢ Ex(g’) and
C € Ex(g) such that A® B = FC. Since, by hypothesis, C is

split, so also is FC, and hence likewise for A. Thus C~ is
also semi-simple.

The fact that Ki(g, ) > Ki(g) is an isomorphism
is obvious for i = 0. For i = 1 we must show that if (A, o)
= (0 —> (A2, ap) —> (A], o)) —> (&, o) —> 0)

Ex(ZC) then [o;] = [ap] + [uo] in K (C, ®). Since C is semi-

simple the sequence A splits so we can identify A} = A, &
AO. We can then write o] in matrix form, with respect to

this decomposition, as

s3] * 0o 0 1A2 * 7

o] = =
0 ap o o/\0 1,
o]

so a; = (ap L4 uo)e, where ¢ corresponds to the right hand
factor. In Ki(C, #) we have [o7] = [0, @ ao] + [e] = [op] +
[uo] + [e], so we conclude by showing that [e] = 0. Set ¢~
=ecd lA1 € Autg(Al # A;) = GL,(R), R = EndQ(Al). If we
exchange the two direct summands A, of A; = A, & AO in A1 &
A, we see that e~ corresponds to an element of GL,(R) which

e
is conjugate to one of the form L . Pagssing to ¢® 1

0 1 A
@ lAl, and GL3(R), respectively, the elementary matrix above

lands in E3(R) € [GL3(R), GL3(R)], the commutator subgroup
(see (V, 1.5)). Thus [e] = [ & lA o 1A ] = 0, as claimed.
1 1

To see that KO’(F, &) > KO’(F) is an isomorphism

we must show that if

(A, o, B) = (0

> (AZ’ oy B?_) > (A}s Q71 B])

> (AO, a s BO) > 0) € Ex(co(F))

then [a;] = [ap] + [uo] in Ko‘(F, #). As above, since A and
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B split we can identify A; = A, & Ao and B; = B, & Bo and

obtain a matrix representation

% * -
al - OL2 _ 0!,2 O lFAz
0 3] 0 o3] 0 lFA
I

Then again we have a; = (a, & ao)e and we seek to show that
[e} = 0 in KO (F, #). But [c] = 3 [F(A, & Ao), e](g,’ 8’
and since g’ is semi-simple - we proved this above - it

follows as in the last paragraph that [F(A; & AO), el

€,
= 0 in Ky(C7, #).

Similarly, the semi-simplicity of g’ implies that

K, (¢, ®)

> Ki(g‘) is an isomorphism (i = 0, 1) so we

have proved that all verticals in diagram (1) are isomor-
phisms. Since the top row is exact by (VII, 5.3), so also is
the bottom. This completes the proof of part (a).

(b) We assume now only that C” is semi-simple. Then,
by virtue of part (a), the diagram (2) takes the form



=0
T <

@ °.0) A <

O— Ol
o
O ——= Ol

399
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We view the rows as complexes and write H(X) for the homo-
logy at X of the row in which X occurs. Then the long homo-
logy sequence, and the exactness of the middle row in its
three middle positions shows that H(KO(Q)) = (0 and that

there is an exact sequence

0

> H(K1(C)) > Nj > Ny > H(K_“(F))

> 0.

Therefore (b) will be proved if we show that Nj

> Ny is

surjective, Suppose <A>9 = [Al](g’ ®) " [Ao](g, ®) "

[AZ](C ) is one of the generators of Ny, where A = (0 >
=’
Ay > Ay > AO > 0) ¢ Ex(C). Let B = (0

A, & A, > A

> A2 —

> 0) be the split sequence. Since F is
exact and C” is semi-simple, FA splits, so there is an iso-

morphism of the form

lFA ): FA

o
Then (A, a, B) € Ex(co(F)), so it determines an element <A,

o= (1 > FB.

FAz’ Q1>

a, B> e N3 such that d <A, a, B> = <A>C - <B>C. Since B is

split <B> = 0, so this concludes the ;roof.

C

The assumptions of semi-simplicity in the above
theorem are quite restrictive. In the following sections we
shall give "reduction criteria'" for computing Ki(g) from a

subcategory QOCT €. In practice we can often find such a Qo

which is semi-simple.

§3. REDUCTION BY "DEVISSAGE"

Let Qo(: C be admissible subcategories of an abelian

category. The inclusion is exact so it induces homomorphisms

R, (C,) —> K, (©) (i=0, 1.

In this and the following sections we shall give criteria
for these to be isomorphisms., The criterion here is,
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roughly, that every object of C have a '"nice composition
series" with factors in g,- More precisely:

(3.1) DEFINITIONS. A go—filtration of an object A in
C is a finite filtration of the form 0 = AOCZ AIC...CZAn = A
such that each Ai/Ai-l e C» (1 <4 <mn). We say that it is
stable under o ¢ AutC(A) if aAi = Ai (0 < i <n), and we

call the filtration Characteristic if it is stable under all
such o. We call o ¢ AutC(A) go—unigotent if there is a go—

filtration as above such that (lA - u)Ai(I Ai—l (1<iz<mn).

This means that the filtration is stable under o and that a
induces the identity on each Ai/Ai-l' This clearly implies

that o is unipotent, i.e. that lA - a is nilpotent.

(3.2) PROPOSITION. Let A be an object of C and let
a € Autg(A).

(0) If 0 = AOCI A1C...C2An = A is a finite C-filtra-

tion then each A; e C and [A] = Z[A;/A, ;] (1 <1 <n) in
K (©).

1) If o i

C-unipotent then a is unipotent. The

converse is true if C is abelian. If o is C-unipotent then

[A, a] = 0 in Ki(C).

Proof. (0) We argue by induction on n, the case n =1
being trivial. If n > 1 the sequence 0O > An—l > A >
An/An-l ;€ C (condition (d) of (1.1)).
Therefore, using the induction hypothesis, we have [A] =

(A ;1 +0a/a  1=z2[a/A (1 A<ic<n).

> 0 shows that An—

(1) The first implication was noted above. Converse-
1y, suppose f = lA - o is nilpotent, say £7 = 0. Let Ai =
Im(f° ), 0 < i < n. This is a C-filtration if C is
abelian, and it then exhibits o as a C-unipotent automor-

phism,
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If o is C-unipotent choose a C-filtration as above so

that (a - lA)Ai(Z An—l (1 < i < n). Then o induces lBi on
Bi = Ai/Ai-l’ and it follows from part (0) (applied to ()

that [A, a) = Z[Bi, lB ] (1 <1i<mn), sofA, a] =0.
i

(3.3) THEOREM. Let gO.C C be admissible subcategories

of an abelian category and assume that Qo is abelian.

(0) If every A e C has a go—filtration then Ko(go)

° Ko(g) is an isomorphism.

(1) If every A ¢ € has a characteristic go-filtration
J1

then Klgo > K1C is an isomorphism.

Proof. (0) Since go is abelian it follows that a
refinement of a go—filtration is again one. According to the

Zassenhaus lemma (I, 4.2) any two finite filtrations have
refinements such that the successive factors of the first
refinement are, up to a permutation of the order of their
occurrence, isomorphic to those of the second. This shows
that if 0 = AOC: AC..C An = A is any Qo-filtration of A ¢
C, then J(A) = Z[Ai/Ai_l]C (1 < i <n) is well defined. For,
o

by virtue of the above remarks, we need only see that J(A)
is unaltered if we replace the given filtration by a refine-
ment. This amounts to introducing a filtration of each Ai/

Ai—l’ so what we desire follows from part (0) of (3.2) above

(applied in go).

If (0

> A7

> A > A"

> 0) ¢ Ex(g) we can
make a go—filtration for A by starting at the bottom with
one for A”, and then continuing with the inverse image of
one for A'". With such a choice we see clearly that J(A) =

J(A®) + J(A"). 1t follows now that J induces a homomorphism

Jo: Ko(g) > Ko(go), and (3.2) (0) implies that i, Jo is

the identity. If A ¢ QO then the trivial go—filtration shows
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o 3 1 = TA .
that Jo JO[A]EO 1 ]go

(1) The hypothesis of (1) implies, evidently, that
every (A, @) € IC has a Zgo—filtration. In the diagram

1
K (Ig ) ———> K_(z0)

Py p

K1) =37 KO

it follows from part (0) that there is an inverse I to i,
defined as above, using Zgo—filtrations. If we show that

P, o I is multiplicative, i.e. that P, o I [a, aB]ZC =P, o
I([A, u]c + [A, B]ZC) for a, B ¢ AutC(A), then it will
follow that there is an induced Jq: El(g)

> K1(¢_) which

will clearly be the required inverse to j;.

Let 0 = AO(: A1C...C2An = A be a characteristic go_

filtration of A above. Then it is stable under o« and 8. Say

they induce a, and Bi, respectively, on Bi = Ai/Ai—l (1<1
< n). Then from (3.2) (0) applied in KO(Zg), and axiom K1 in
Kl(go), we have

p (L[A, agl) = p (Z{B,, “iBi]Ego)

ZIBi, aiei]go Z([Bi, oei]

ey

+I3,, 8,1, )
=0

p_(1(1A, o]

+ [4, Bl ).

2¢
This completes the proof of Theorem (3.3).

(3.4) THEOREM. Let A be an abelian category in which

every object has finite length, and let éo be the full sub-

category of semi-simple objects of A. Then
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(a) The inclusion éoc: A induces isomorphisms Kiéo

> KA (i =0, 1).

(d) ;g_{sj | j € J} is a set of representatives of

the isomorphism classes of simple objects in éo then Koéo is

a free abelian group with basis {[Sj] | 3 ¢ J}.

(c) Let Dj = EndA(Sj). Then Dj is a division ring,

and Kléo is the direct sum,
a %/[D*_. D%
;O 0/x, pxD),
of the commutator factor groups of the multiplicative groups
*

D.”.
J

Remark. If we write Ki(R) = Ki(Z(R)) for a ring R, a

notation to be introduced in Chapter IX, then parts (b) and
(c) above can be written, more suggestively, as

- I .
K, (4) = ied Ki(Dj) (1i=0, 1).

(See (IV, §1) or (V, 8§2)).

Proof. If A ¢ A write s(A) for the-largest semi-simple
subobject of A. The chain condition on A plus the fact (cf.
(III, 1.1)) that a finite sum of simple objects is semi-
simple, shows the existence of s(A). Moreover it is evident-
ly a fully invariant subobject, and #0 if A # O (look at the
bottom of a Jordan-Holder series). By induction on n, now,
we define A c Aby A = 0 and A /A = s(A/A ). The

n 0 nt+tl ' n n

remarks above make it clear that An = A for some n (depend-

ing on A) and that f(An) C.Bn for any f: A > B in A. In

particular, every object of A has a characteristic éo_

filtration, so part (a) of the theorem follows from Theorem
(3.3).

Since éo is semi-simple and each object A has finite
= n.
length, it follows (cf. (III, §1)) that A = usj 1, with

) = HMhi(Dj)' Hence Aut, (A)

almost all nj = (0, and End A
=0

A
=0
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= HGLn (Dj). If we abelianize these groups and pass to the
limit,Jas in (VII, §2), by enlarging A, then we find that

K (a) = YaL(p,)/[6L(D,), GL(D,)]
=0 J J ] J

g ).
J J
According to Dieudonné's Theorem (V, 9.5) the natural map
D*/[D*, D*]
3 g

the image of d corresponds to [Sj, d] Kl(éo)). q.e.d.

> K;(D.) is an isomorphism, (If d e D,
J ]

(3.5) COROLLARY. Let A be a commutative ring and let

A be the category of A-modules of finite length. Then

~ H { =
k@ = U KRG/ =0, D).

Here KO(A/E) = Z and K1(A/m) = U(A/m) for each m ¢ max(A).

The notational convention here is that Ki(B) =

Ki(z(B)) for a ring B.

§4, REDUCTION BY RESOLUTION

Let QO C C be admissible subcategories of an abelian
category A. The aim of this section is to show that if
objects in C have "nice'" resolutions by objects in go then

K, (C,)

> Ki(g) (i = 0, 1) are isomorphisms.

Let O > A > > Ay > A > 0 be an
n o

exact sequence in A such that Ai € C for 0 < i < n. Then An
€ C also. For n = 1 this is trivial and for n = 2 it is

condition (d) in the definition (1.1) of admissible subcate-
gory. The general case follows by applying induction to

0 > ker d > 0.

>
An > .. > A,

1 - . . . . -
fcC (Cn)n is a finite graded object (i.e. Cn

€ Z
0 for almost all n) in C we shall write
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- L _ n
x(C) = x=(C) = Z(-1) [Cn] £ Ko(g).

(4.1) PROPOSITION ("Euler Characteristics').

> C7 > c"

> C

(a) If O > 0 is an exact
sequence of finite graded objects in C then x(C) = x(C") +

X(C”) .

(b) If C is a finite complex in C such that H(C) is
also in ¢ then x(C) = x(H(C)).

> C7

> C

(¢) If 0 > C" ——> 0 is an exact
sequence of complexes each of whose homologies is finite and

in € then x(H(C)) = x(H(CT)) + x(H(C")).

(d) Let f: C~ > C be a morphism of finite complex-

es in C, with mapping cone MC(f). Then MC(f) is a finite

complex in C and x(MC(£f)) = x(C) - x(C7). If H(f) is an
isomorphism then x(C”) = x(C).

Proof.(a) is trivial.

(b) Consider the exact sequences

0 > 7 > C > B > 0
n n n-1
and
0 > B > Z > H > 0.
n n n
Suppose Bn—l e C. Then Zn e C also, thanks to the first

sequence., We have assumed Hn € C so the second sequence
implies further that Bn e €. Now we can continue the same

reasoning. Since Bn = 0 for all sufficiently small n we

-1
can start with such an n and the argument above shows that
Bn’ Cn’ Zn, Hn e C for all n. Applying (a) to the exact

sequences above we find that y(C) = x(Z) - x(B) and x(Z) =
x(H) + x(B). Hence x(C) = x(H), thus proving (b).
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(c) Let L denote the long homology sequence of O >

> ¢ ——> ¢

c” > 0, graded, say, so that LO = HO(C”).
Then L is a finite acyclic complex in g so part (b) implies
x (L) = x(H(L)) = 0. Since, clearly, x(L) = x(H(C") - x(H(C))

+ yx(H(C")), this proves (c).

(d) Since MC(f)n+l = Cn+l
a finite complex in C and xy(MC(£)) = x(C) - x(C7). If H(D)

o Cn’ we see that MC(f) is

is an isomorphism then, according to (I, 5.4), MC(f) is
acyclic. Hence part (b) implies y(MC(£)) 0, and we con-
clude from that x(C) = x(C7).

(4.2) THEOREM (Grothendieck). Let gOCZ ¢ be admiss—

ible subcategories of an abelian category such that every

object of C has a finite Qo—resolution. Then the inclusion

> K (C).
o=

induces an isomorphism Ko(go)

We begin the proof with a lemma.

(4.3) LEMMA. Given a morphism f: A~

> A in C, and

a finite Qo—resolution c 5 A, we can find a finite QO—

> C covering

-

resolution C” ——> A” and a morphism F: C~

£.

(E, _f)

Proof. Let B > A) be the fibre

Ker(C & A~
0

e . A < f

product of CO A”, and choose an epimorphism

Co' > B with CO’ € go' Define ¢~ and FO to make the

diagram

commutative. Since e is surjective it follows that e~ is
also. Suppose now that we have constructed a commutative
diagram
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c” -l > ¢ - £ 4- > 0
n-1 0
Fn—l FO f
d
c o > C _— > C > A > 0
" Tn n-1 d ot o
n-1

with exact rows and with each Ci’ € Qo. Then, as we observed

)

at the beginning of this section, Zn—l 1 (= Ker(dn_

are in C. Therefore we can apply the construction above to
find a commutative diagram

and Zn— 1

|ld -1
. n “
Cn > Zn—l > 0
" 1"
Fn Fn—l
Cn g Zn—l >0
n

with exact rows. Eventually we reach a point where Cn =0,
at which time we complete C” with a finite Qo—resoltuion of

Zn—l' q.e.d.

Proof of Theorem (4.2). Suppose C > A and C~

A are two finite go—resolutions of A € C. Apply the lemma

>

to the resolution C & C~ > A ¢ A and the diagonal map A

> A & A. The result is a finite Qo—resolution c"

> C and C"

> A

and morphisms C" > C” both covering lA. In

other words we have lA as induced homology map A = H(C")

> H(C) = A, and similarly for C"

> C”. Therefore (4.1)
(d) implies that Xgo(C) = xgo(C") = xgo(C‘). This shows that
A %——> Xgo(C), where C

a well defined map, r: obl

> A is a finite Qo—resolution, is

i Ko(go)'

> A” 1>A__j__>An

Let O

> 0 be an exact
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sequence in C. Let C —> A be a finite go—resolution, and

use the lemma to fill in a commutative diagram

T‘—L—»T
AT ——— A

>

where C~ > A” is a finite go—resolution. Consider the

homology sequence (I, 5.4),

.. B0 > Hy (MC(1)) > HO(C’) > HO(C)

>

.

> H (MC(I))
0

Since C and C~ are resolutions we have Hn(C) =0 = Hn(C’)

for n # 0, and (HO(C’)

> HO(C)) = (A" £ A), a monomor-

phism with cokernel A". Since MC(I) is a finite positive
complex in go the homology sequence shows that MC(I) is a

finite go—resolution of Coker (i) = A". Therefore

rAH

Eoe (D) = x&o(0) - xEo(C)  ((4.1) (@)

rA - rA~.

It follows that r induces a homomorphism r: Ko(g) >
KO(QO). If A ¢ go then the complex with only A in degree
zero is a finite go-resolution, so r[A]C = [A]C . On the

other hand, if A ¢ C and 1if C is a finite Qo-rzgolution,

then the finite acyclic complex .. Cn > L., > Co
A

> 0 ... shows, using (4.1) (b), that xg(C) = [A]C'
Since r[A]C = xgo(C), the map Ko(go) —_ Ko(g) sends r[A]

¢ c
to XE(C) = [A]C. This shows that r is an inverse for Ko(go)

> Ko(g) and hence proves the theorem.

(4.4) THEOREM. Let PC go(: C be admissible subcate-—

gories of an abelian category, let F be an exact admissible

functor on C, and let FO be its restriction to QO. Assume,
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for each A ¢ C, that:

(1) If o, B € Autg(A, F) (so Fa = lFA = FB) then

there is an epimorphism CO

> A with CO € P such that «

and B lift to automorphisms in AutC CCO, FO); and
=0
> A is a g—resolution then Zn(C) € 90

(2) If C

for some n > 0.

Then the inclusion go(: C induces an isomorphism Kl(go, FO)

> Ky (C, F).

Proof. Suppose (A, a) ¢ Ker IF. Recall that Ker IF is
the full subcategory of IC consisting of objects (A, o) such
that Fa = lFA' According to (1) above we can find an exact
sequence in ZA,

0

> (ZO’ 8) > (CO’ YO) _—> (A’ 0‘) > 0,

P = i.e. wi .
with CO e P and Fyo lFCO’ i.e. with (CO, Yo) e Ker EFO
Since € is admissible Zo € €. Since F is exact and Fyo =

lFCO’ we have F§ = Fy | FZ = 1FZO' Therefore (ZO, B) €

Ker IF, Hence we can iterate this construction and produce

> (A, @), with C

> A a

P-resolution, It need not be finite, but condition (2) above
implies that we can truncate it at some stage, if necessary,
to replace it by a finite one. The full strength of (1)

implies that if we are given o, a” ¢ AutC(A, F) then we can,

a Ker(ZFo)-resolution, <, v

by the above procedure, find finite Ker(fFo)—resolutions

<, v > (A, o) and (C, ¥7)
complex C in each case.

> (A, a”) using the same

If (C, v)
—_ - -_ n
r(A, o) =x(C, y) = 2(-1)7 [C, v 1 e Ki(C, F ). It follows

> (A, o) is a resolution as above set

from the proof of theorem (4.2) that r is additive over

exact sequences. If {C, y7) > (A, a”) is a resolution of

(A, o”) as above then (C, yy~) > (A, aa”) is a finite
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Ker ZFO—resolution, clearly, so r(A, aa”y = x(C, yy7) =

2CDT e, vvy Tl = 2EDT e, v 1+ e, v D = T, o

+ r(A, o”). Hence r induces a homomorphism K,(C, F)

>K1

(go, Fo). Just as in the proof of Theorem 4.2 we see that

this gives the required inverse for Kl(Cos F) > Kqy(C, Fh
= fe] =

q.e.d.

We shall now indicate certain circumstances in which
the hypothesis (1) of Theorem (4.4) can be achieved.

(4.5) PROPOSITION. Let A be an abelian category.

(a) Let F be an additive functor on A and let f: P

—> A be an epimorphism in A such that every h e EndA(A)

for which ¥h = 0 lifts to an h” ¢ EndA(P) such that Fh~ = 0.

(This is automatic, for example, if P is projective and F

0). Let (f, 0): Q=P &P

> A. Then every a ¢ AutA(A)

such that Fa = lFA lifts to an o~ ¢ AutA(Q) such that Fo~
lFQ'

(b) Let f]_: Pl

> Ay and £,: Py > A, be epimor-
phisms in A with Q =P; & P, projective. Let (f;, 0): Q

Ay and (0, f5): Q

>

> Ap. Then any isomorphism wa: A4 >

> Q.

A, lifts to an isomorphism a”: Q

Proof. (a) In AutA(AfB A) = GLZ(EndA(A)) we have the

following formulas:

o £)-CILIE T
Ce)

and
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0 -1 10 1 -1 1 0
(2) = .
1 0 11 0 1 1 1
Since Fa = 1., we can, by hypothesis, lift 1-candl-o

to endomorphisms of P killed by F. Therefore, under f & f:
Q

1 0\/1 o
represented in GLZ(EndA(E)) in the form

1

> A® A we can 1ift o ® o”! to an automorphism o~

1 1/\h; 1
, where Fh; = 0 = Fhy. Evidently then
0 1 -1 1/ \0 1
®
Fa~ = lFQ' Under the composite, Q —g———£~—> A® A —ill~92—>

A, o lifts first to o @ a”l, clearly, and from there to a”,
as required.

(b) Using the same device as above it suffices to
find an isomorphism «” making the diagram

-

PP, ——— P, 8 P,

£, 8 f, £16 f,
0 -a”!
o3 0
Al & A2 —_— Al Q A2
(1, 0) (0,
A T

commute, since the bottom rectangle certainly commutes.
Using the isomorphism a & lAZ: A & Ay > Ay, & Ay the top

half of the diagram is seen to be isomorphic to



. N< $N<A

¢31 & lyo

g & 'a

vy @ °y
3 @ l30

g & la

413
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Since the Pi are projective we can 1lift lA to homomorphisms
2

hy; and h, each making

hy
Pl ———— P2
<—""‘—h2
Otfl f2
A —1— A,

commute. Then, using formula (2), above we can lift

0 -1 1, © 1, -hy \ /1. 0
< A2> to< P >< Py >< Py ) This shows
1 0 h 1 0 1 h 1

Az ' Py ' Py

Py

0 -a-!

that we can lift also to an isomorphism and hence
a O

completes the proof of (b).

(4.6) THEOREM. Let go(: c be admissible subcategories

of an abelian category. Assume, for each A ¢ C, that:

(1) There is an epimorphism f: Po > A with P 2

projective object in QO; and

(2) 1f P

> A is a resolution of A by projective

objects in <, then Zn(P) e ¢ for some n > 0.
Then the inclusion go(: C induces isomorphisms,Ki(Qo)

> K, (C) (1 =0, 1).
l=

More generally, let F be an admissible functor on C

with restriction FO Eg_go. Suppose in (1) above that f can

be chosen so that any h ¢ EndC(A) such that Fh = 0 1lifts to

an h” ¢ Endc(g) such that Fh” = 0. Then

Ki(C,, F)

> K1(C, F)

is likewise an isomorphism.

Proof. Conditions (1) and (2) clearly imply that



K~THEORY IN ABELIAN CATEGORIES 415

every A ¢ C has a finite go—resolution, so Theorem (4.2)

implies Ko(go)
K1(§O, FO)
verify the hypotheses of Theorem (4.4), taking P there to be

> Ko(g) is an isomorphism. To prove that

> Ky (€, F) is an isomorphism we need only

the full subcategory of projective objects in go' Then con-

ditions (2) of Theorem (4.4) and of the present theorem are
identical. Condition (1) of Theorem (4.4) is an immediate
consequence of our hypotheses above together with part (a)
of Proposition (4.5). The isomorphism Kl(go) > Kl(g)

corresponds to the case when F is the zero functor, in which
case the extra hypothesis on lifting endomorphisms killed by
F is automatic. g.e.d.

We close with a similar result on the relative groups.

(4.7) PROPOSITION. Let

F

e
v
\

Fo

-

¢]

>

o C
o C

o]

be a commutative diagram of exact admissible functors be-

tween admissible subcategories of abelian categories. Assume

that we have conditions (1) and (2) of Theorem (4.6) for QO

C¢C, and that F carries projective objects of Qo to projec~

tive objects of go" Then the inclusion co(Fo) C co(F)

induces an isomorphism

KO’(FO) —_— KO‘(F).

Proof. Suppose (47, a1, Ay) € co(F). Choose epimor-

phisms fi: Pi > Ai with P, projective and in QO (i =1,
i =
2). Set Q =P, & P, and (f;, 0): Q > Ay, (0, f,):Q

As. Since F is exact and preserves projectives it follows
that FPi is projective and Ffi is surjective (i = 1, 2). Now

>

it follows from part (b) of Proposition (4.5) that there is
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an isomorphism a;” making

al’
FQ — FQ

F(fl, 0) F(O, f2)

FAI——&I—"> FA2

commute. Therefore we have constructed an epimorphism (Q,
a1’ Q)
this again for the kernel, etc., and we obtain a resolution
(c, Y1 C)

tive objects in go' Condition (2) of Theorem (4.6) permits

> (A1, a1, Ap) with Q projective and in Qo' Do

> (A;, o1, Ay) where C is a complex of projec-

us to truncate this, if necessary, to obtain a finite co(Pb)

-resolution of (A;, a;, Ap). Suppose we are also given (A;,

ay, A3) € co(F), and let f3: Py > Ag be an epimorphism.
Then in the construction above replace Q by Q° = Q & P3 and
define Q7 —> Ai (i=1, 2, 3) by (£,, 0, 0), (0, £5, 0),
and (0, 0, f5). We can lift a; to a;" = a;” & lFP3' Similar-
ly we can lift o, to an automorphism a,” of F(P, # P3), and
we lift it to ap" = lPl 8 o,  on Q7. Then we have epimor-
phisms (Q7, a1", Q%) > (Ay, o1, Ay) and (Q7, ap", Q7)

> (Ap, 0o, Aj3). If we similarly modify the procedure

above we can finally produce resolutions (C, y;, C)

(Al’ Gy A2) and (C, Yoo C)

>

> (Ay, op, Ag). By truncating

each one at the same point we can assume further that they
are finite co(FO)—resolutions. Then (C, vyyyi, C) will be a

finite co(Fo)—resolution of (Ay, asal, Ajs).

To prove that KO’(FO) > KO’(F) is an isomorphism

we construct an inverse by setting r(A;, a;, Ay) = xco(Fo)
(C, vy1, C) ¢ Ko’(Fo), where (C, v1, C) is a finite co(FO)—

resolution. The proof of Theorem (4.2) shows that r is
additive over exact sequences. Given (A,, ap, Aj) we
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construct the resolutions compatibly, as above, and then we
have r(Ay, apay, A3) = x(C, v2v1, C) = x(C, v1, C) + x(C, v2,
C) = r(Ay, ay, Ay) + r(Ay, as, A3). Therefore r does indeed

induce a homomorphism on K _“(F) (see (VII, 5.1)) and it is
easily seen to be the required inverse (cf. proof of Theorem

(4.2)).

§5, THE EXACT SEQUENCE OF A LOCALIZING FUNCTOR

Let S: A

> B be an exact functor between abelian

categories, and let
§ - "Ker SH

be the full subcategory of objects A ¢ A such that SA = 0.
Since S is exact it is evident that:

> A7

>A >A"

*) If O
then A ¢ § <= A", A" ¢ 8.

> 0 is exact in

g

In general we shall call a full subcategory SC A a
Serre subcategory if it satisfies (*). The above method for
producing them (as "kernels'" of exact functors) is in fact
only one:

(5.1) THEOREM. Let S be a Serre subcategory of an

abelain category A. Then there is an abelian category é/S

nen i

and an exact "quotient" functor T: A > A/S such that

"Ker §", and solving the following universal problem: Given

> B such that TA = 0 for all A ¢ §,

an exact functor T: A

there is a unique functor U: A/S > B such that T = U °

S, Moreover U is exact.

We shall not prove this theorem here, referring the
reader instead to Gabriel [1, Chapter III]. Our intention is
to quote a number of properties of the quotient functor S of
the theorem - in fact enough to indicate how A/S is con-
structed - and then to use these properties to prove a

theorem of Heller [1] asserting that
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K,"(5) =K (9.

This is a very useful fact, and it permits us easily to com-—
pute Ko’(S) in many cases of interest.

Since the reader is to be burdened with several
unproved propositions we shall mention two basic examples of
the situation in Theorem (5.1) which he can bear in mind.
The propositions below can be checked directly in these
examples. The examples also explain how the quotient con-
struction is related to localization.

(5.2) EXAMPLE. Let S be a multiplicative set in the
commutative ring R, let A be an R-algebra, and let § C mod-A
be the Serre subcategory of modules M such that, given x ¢
M, xs = 0 for some s € S. Let S: mod-A > (mod-A)/S be the

quotient functor. Since the localizing functor, S™1: mod-A

> mod-(S~1A), kills S, there is a functor U: (mod—A)/g

> mod-{S”!A) such that S! = U o S. Now the point is that
U is an equivalence, so that, up to equivalence, the locali-

zation functor S~ ! is a quotient functor.

(5.3) EXAMPLE. Let A be a sheaf of rings on a topo-
logical space X, and let mod-A denote the category of
sheaves of A-modules. Let U be an open set, with complement
F, and let T: mod-A > mod-(A|U) be the restriction
functor. Then, just as in the example above, T is equivalent
to a quotient functor whose "kernel" has as objects the
sheaves with support in F.

For the rest of this section now we fix a quotient

functor

S: 4 4" =

>

/s.

We write I for the set of morphisms € in A such that 5f is

> SB is a mor-

A- £

an isomorphism. If A, B ¢ A, and if f: SA

phism in A”, we shall say that the diagram A < 2 >

B~ <2} in A is a representation of £, or represents f, if

a, belI and if T = (Sb)"! (Sf) (Sa)~!. The two basic facts

about S, other than those in Theorem (5.1), are:
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(1) S is bijective on objects.
(2) Every morphism in A” has a representation.

We shall now derive some further properties.

a f

(3} Let A <— A" —> B~ < b B represent f. Then we

can form the commutative diagram

f
A A > BH
a T I b~
A~ LN B~ ’
a”’ I b
A"___________> B
fB

where the top rectangle is cocartesian and the bottom is
cartesian, Since a, b ¢ I it follows easily that a”, b~ ¢ I.

For example, since S is exact it preserves cartesian and co-
cartesian squares, so this follows from the fact that a
pullback or pushout of an isomorphism is again one. Conse-
quently we have produced new representations,

f -
A=A A>B"<bb B
d

o aa” fB

A < A" > B = B,
of f.

(4) Suppose SA > §B & > SC are two mor-
phisms in A” with representations A < 2 a- £ > B~
b R b

<————— B and B < L By E—» ¢ = C, respective-

ly. Then we comstruct the diagram
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A < A~ > B~
a”
g
A" f > B B > C"
B
c-
By ——> €7 < —c
- g f -
as in (3) and it is seen that A < aa A" BB, (o ——
C represents EE.
a4 £y by

(5) If A < Ai’ > Bi' <—>=— B (i =0, 1)

are two representations of f then there is a commutative
diagram

fO
A7~ > B O
o] [o]
% % So bo
KN —2 A” £ > B” < b B
ay o 81 b1
Al fl > Bl,

whose middle row also represents f. Note that then s Bi €
I (1=0,1).

To see this we first make the A's the corners of a
cartesian square and the B's the corners of a cocartesian
square., Setting f;~° = Bifiui (i = 0, 1) we see that gfo‘ =
Sf,7, so Im(f;”" - fo') € S. Therefore if we replace B” by
Coker (£,7 - fo‘) we can correspondingly collapse the diagram
on the right so that the whole diagram now commutes, with £
induced by fo’ (and £17).

(6) Let A < 2 A~ £ B~ <*——E——-B represent f.




ey

Then we can construct the commutative diagram

aj

A <

ap

A7 —————ji——————> BZ
< natural projections -~ b
£y by
A”/Ker(g) ———————> B“/f(ker(a)) <——B
< inclusions -
by
f_l(Im(bl)) —_— Im(bq)



422 ALGEBRAIC K-THEORY

starting at the top left, and proceeding to the right and
down. The bottom then exhibits a new representation of f
for which ap; is a monomorphism and b, is an epimorphism.

(7) Let
§OL1 _ §(XO
SA, > SA; > SA,
Y2 Y1 Yo
-S'BZ — > -SBl — > —S—BO
5B, S8

be a commutative diagram in A”. Then there is a commutative
diagram as follows in A:

53] Oto
A2 > Al > A
o]
as a) .\ao
. o1 . %7
As > Al > A 7
o]
£, £ £
- - o}
B1 Bo
By~ > B~ > B
b, by b,
81 Bo
By > By > B

Here the verticals represent yo, Y;, and Yy respectively,
the a's are monomorphisms, and the b's are epimorphisms. In
particular, if aoyl and 8081 are zero then so also are

o “ay” and B “By7.
0 0

To construct such a diagram we start with vertical
representations of the v's so that the a's are monomorphisms
and the b's are epimorphisms, using (6) above. In order to
complete the construction we shall replace the initial
choices of the A”'s and B”'s by "smaller'" ones. For an Ai’

this means a smaller subobject of Ai such that the inclusion

into Ai is still in I. For the Bi‘ this means a smaller



K-THEORY IN ABELIAN CATEGORIES 423

quotient of Bi such that the projection from Bi is still in

I.

Step 1. Make A;” and By~ smaller so that o and B,

exist making the upper right and lower left rectangles, res-
pectively, commute.

-

Step 2. Make A,” and BO smaller so that o and BO

exist, making the upper left and lower right rectangles
commute.

) Step 3. Make BO still smaller so that the middle
right rectangle commutes.

Step 4. Make B~ smaller so that the middle left
rectangle commutes.

It is easily seen that all of the above reductions
are possible, and that each step leaves intact the condi-
tions achieved by the previous ones.

(8) If A = (0 —> A, —> A > 0) €

Ex(A”), i.e. A is a short exact sequence in A", then there

> A
o}

is an A ¢ Ex(é) and an isomorphism SA = A.

For since S is exact it suffices to lift E-to an

epimorphism f£: A,

> i . A = S . i
AO in A. Say Ai SBi Using (3) we

. b
can represent f by a diagram B; = B, £ > Bo’ SR Bo. We
now choose A} = By and AO = Im(f") > B,” is the inclusion
_ @y @ S s S, o &
then (Igy » (Sb)71(5)): (5A; > SA ) > (SB; —> SB)

is the required isomorphism.

(5.4) THEOREM (Heller). Let S: A —> A" = A/S be a

quotient functor. Let C be an admissible subcategory of A

such that A ¢ é, C ¢ g, and SA = SC implies A ¢ C. Let C” be
the full subcategory of A" with objects SA (A € C), and let
S:

> C” be the functor induced by S. Then the functor

I 1o

F: > co(8), defined by FA = (0, 0, A), induces an
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isomorEhism
$: K (§) —> K “(S5).
o= 0
Remark. Condition (d) in the definition (1.1) of

admissible subcategory is not necessary here, and it will not
be used in the proof.

Proof. First note that F is exact so that the homomor-
phism ¢ exists.

f

Suppose (A, o, B) £ co(S). Let A < a A~

B represent o. The hypothesis on C implies that A", B~

> B~

<

€ C. Therefore the equation o = (8b)71(sf) (sa)~! shows that
[A, o, B] = [o", Sf, B'] - [A", Sa, A] - [B, Sb, B"] in K ~
(S). Moreover, we can filter (A”, Sf, B”) in co(S) as

follows:

(Rer £, 0, 0) C (A", £, Im(f)) C (A", £, B"),

where f: SA” > § Im(f) = Im(Sf) is induced by Sf. Since
the successive quotients are in co(S) we find that

[A”, Sf, B”] = [Ker £, O, 0] + [Coim f, Sg, Im £] +
fo, 0, Coker f].

Here g is the isomorphism induced by f, so we have an iso-

> (Im £, 1, Im £). It

morphism (g, 1): (Coim f, Sg, Im f)
follows that [Coim f, Sg, Im f] = 0. Next observe that if C
e S then (C, 0, 0) & (0, 0, C) = (C, 0, C) = (C, ISC’ c),
and hence [C, 0, 0] = - [0, 0, C]. We conclude therefore that
fA-, sf, B“] = [0, O, Coker f] - [0, O, Ker f] = ¢([{Coker f]
- [Ker f]). Similar conclusions apply to (A", Sa, A) and (B,
Sb, B”).

If £ is any morphism in I write

x(f) = [Coker f] - [Ker f] ¢ Ko(g).

The discussion above shows, in summary, that if (A, o, B) ¢
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A~ —j;» B” < b

co(8), and if A < & B represents a, then
[A, a, B] = ¢(x(£) - x(a) - x(®)).

This suggests that we define

Y: ob co(S) > Ko(g)

by ¥(A, a, B) = x(£f) - x(a) - x(b). If we show that ¥ is well

defined and that it induces a homomorphism y: KO’(S) >
Ko(g) then the equation above will imply that ¢oy = identity.
In the other direction, if A ¢ S, then we can represent O ¢
A"(SO, SA) by 0 = 0 —— & = &, so y(¢[A]) = ¥[0, O, A] =

[Coker £] - [Ker f] = [A]. Therefore the theorem will be
proved once we show that:

(i) Y is well defined.
(ii) If (A, o, B), (B, B, C) & co(S) then

v(A, Ba, C) = yY(A, a, BY + ¢(B, B, C).

(iii) If 0

(AO, Yoo Bo)

> (A2 v2, By) > (A1, Y1, By)

> 0 1s an exact sequence in co(S) then

>

w(Als Yl, Bl) = w(Az, Yoo Bz) + w(AOa YO’ BO).

We begin by noting that if £, g ¢ I and if gf is
defined then x(gf) = x(g) + x(£f). This follows from the

exact sequence (I, 4.7): 0 > Ker £ > Ker gf > Ker g
> Coker f > Coker gf > Coker g > 0.
a. £, b.
Proof of (i). If A <—= A" LS B.” < .op (i =0,
— i i

1) are two representations of a, where (A, o, B) € co(S),
then we construct a commutative diagram as in (5) above.
Then y(f) - x(a) - x() = X(Bifiai) - x(aiai) - X(Bibi) =
x(£)) - x(a;) - x(b), (& =0, 1).

Proof of (ii). Using (3) above we can choose
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A- ft— B =B of o and B =B —E—
a

. a
representations A <

c” < [

C of B, whereupon A < A~ gt > ¢ <—S—¢
represents BRa. Hence Y(A, Ba, C) = x(gf) - x(a) - x(c) =
(x(£) - x(@) + (x(g) - x(C)) = v(A, o, B) + ¥(B, B, C).

Proof of (iii). Starting from the given exact
sequence in co(S) we construct a commutative diagram as in
(7) above. We shall view its rows as complexes (zero except
in degrees 0, 1, 2) and the verticals as morphisms of com-

a f b
plexes: A < A~ B < B. Here, for example, A =

("'A2 > Al

We deduce several exact sequences of complexes:

> AO...), a= (.., ap, ar, ao,..), etc.

> A~ g . A

0 > Coker(a) > 0
0 > Ker(f) > A~ > Im(f) > 0
0 > Im(£f) > B~ > Coker(f) > 0
0 > Ker(b) > B > B~ > 0.

Since Sf, Sa, and Sb are isomorphisms, the kernels and
cokernels of f, a, and b are complexes in S. Moreover, since

A and B are acyclic the complexes SA” and SB” are also, so
HA” and HB” are graded objects in S.

If C = (Cn) is a finite graded object in § we write

XE(C) = Z(—l)n [Cn] € Ko(g). With this notation the asser-

tion of (iii) can be formulated:
%) S (coker(H) - E®er () = x2(Rer (b))
- xg(Coker(a)).

To prove this we first recall ((4.1) (b)) that if C is a
finite complex in S then XE(H(C)) = XE(C), and ((4.1) (c))
that if 0 > Cc” > C"

> C

> (0 is an exact sequence
of complexes whose homology is finite and in S then XE(HC) =

S
x=(HC") + XE(HC”). From these facts and the exact sequences
above we deduce:
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0 = XE(HA’) + Xg(Coker(a))

Saay = xE®er(e)) + xZame)

@) = Eme) + x2(Coker(£))

0 = y2(Ker(d)) + y2(uB").

S
Subtracting the second from the first we find that x=(Coker
(£)) - Xg(Ker(f)) = XE(HB’) - xé(HA’), and subtracting from

the first and last equations gives (**). This concludes the
proof of Theorem (5.4).

(5.5) COROLLARY. Keep the notation of Theorem (5.4).

Then the functors SC C > €~ induce an exact sequence

d -
K (§) —— K (Q) —> K (") —> 0.

Moreover, there is a '"connecting homomorphism™ 3: K;(C7)

> Ko(g) defined as follows: If (SA, o) ¢ Zg‘, and if

a A” £

A <

> B” <

A represents o, then 3[S4A, a]c,

= x(f) - x(a) - x(b). Here, for a g € mor C §B£E_EB§£_SE is

an isomorphism, we write x(g) = [Coker g]S - [Ker g]s. The
sequence = =

(5.6) Ky (Q) 2

> Ry (C) == Ko (® — K_(©

> K () —> 0

is _exact, except possibly at K;(C7), if C” is semi-simple,

and it is exact if C is semi-simple.

Proof. According to (8) above, given A” e Ex(C”), i.e.
a short exact sequence in Q', there is an A ¢ Ex(A) such

that SA =~ A”. Automatically then A e Ex(C), so Ex(S): Ex(g)

> Ex(C”) is surjective on isomorphism classes of objects.

Proposition (2.1) therefore gives us a sequence
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3 d”-

K, (0)

> Ky(C7)

> K () > K (©)

> K (€ —> 0,
which is exact if we remove the two left terms. Moreover
Theorem (2.2) gives the remaining exactness conclusions
under the appropriate semi-simplicity hypotheses. Theorem
(5.4) just proved gives us an isomorphism ¢: KO(§) >

KO‘(S) which permits us to substitute Ko(g) for KO’(S) in
the sequence above. If A € S then d’d)[A]S = d4°[0, O, A]S =
- [A]C, so d = -d”¢ is induced by the inclusion § C C.
Moreover the definition of Y= ¢_1) in the proof of Theorem
(5.4) provides the description given above for 3 = ¢ 13~

q.e.d.

(5.7) COROLLARY. Suppose, in the setting of (5.5),

that g’ is semi-simple, and assume either (a) or (b) below:

(a) C is abelian and every object of A has a finite

C-filtration.

(b) Every object of A has a finite g—resolution.

Then the functors §<: A

> A” induce an exact sequence

KA — K_(9) <, K_(8) > K_(47) > 0.
Proof. The commutative square
p——s a
U U
¢ —— ¢
leads to a commutative diagram
Ky (A7) EIN K (9 4. K_ (&) > K (A7) > 0
I h
K (C) == K_(§) — K (&) —> K_(¢") —> 0.
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Corollary (5.5) gives the exactness of both rows, except
possibly at KO(§). Exactness there for the bottom row

follows from Theorem (2.2) (b) and the semi-simplicity of gﬁ
Since do = 0 the exactness of the top row at KO(E) will

follow if we know that h is a monomorphism. This follows
from Theorem (3.3) in case (a) and from Theorem (4.2) in
case (b). q.e.d.

We close this section now with a result which is
somewhat similar in spirit to Theorem (5.4), but whose

proof requires slightly different techniques.

(5.8) THEOREM. Let

e
U U
P p-

be a commutative square, where § is a quotient functor.

Assume:

(1) The objects of P and of P” are projective, and S

is cofinal.

(2) If £: P > @ is _a morphism in A such that p ¢ P

and such that Sf is a monomorphism then f is a monomorphism.

(3) If P ¢ P and if Q C P is such that P/Q € S then
there exists a P“ < Q such that P~ ¢ P and P/P~ ¢ S.

Let H be the full subcategory of objects A e A having

finite P-resolutions, and let ﬁs = HM S. Then there is an

exact sequence

3 d

Ky (g) > Ky (_E_‘) > KO(L{S) > KO(E)

> K (P7).
o =

Here d is the composite of Ko(gs)

> Ko(g) and the inverse
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of KO(E) > KO(E), induced by the inclusions H.C HC P.

S
The map 9 is defined as follows: If (SP, a) ¢ IP”, and if

PO P

f o » represents a, where P” ¢ P, then 3[SP, a]P, =

[Coker(f)]H - [p/P ]H .
=S =S
Proof. Let H® be the full subcategory of objects A" ¢

A” having finite P”~resolutions. Then we have a commutative

square
E T S E,
U U
P > B°
= g =

where T is induced by S, (T is defined because S is exact).
Then we have a commutative diagram



o)
A <

=l

(.

CBX < @ % < % < & Dy

uP

431
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in which, thanks to Theorem (4.6) and Proposition (4.7), all
the verticals are isomorphisms. Moreover, since P is semi-
simple and S is cofinal it follows from Theorem (2.2) that
the bottom row is exact; hence the top is also.

We shall prove the theorem now by constructing iso-
morphisms ¢ and Y such that

(8) v ¢

. h .
K, 7(8) > K (D)
commutes and such that d = -~ ™! and 3 = ¢3~° admit the

descriptions given in the statement of the theorem.

The functor F: QS > co(T), FA = (0, 0, A), is

exact, so it induces a homomorphism ¢: Ko(gs) > KO’(T).

Moreover d"¢[A] = 4"[0, 0, Al = - [A]._, so -d"¢ is the
I={S T H
map induced by ES(: H.

To construct ¥ suppose we are given (P, o, Q) ¢
co(8).

(i) o has a representation P 5 P~

and f a monomorphism. For let PO P~ £ Q- <~—b-Q be

any representation with b an epimorphism. Condition (1) says
we can make P~ smaller, if necessary, to achieve P” ¢ P.

Then condition (2) implies, since Sb and Sf~ are isomor-
phisms, that b and £° are monomorphisms. Therefore we can
replace Q” by Q, b by 1Q, and £ by £ = b~ lf",

(i1) v(e, o, Q) = [Q/fP7], - [p/P7]; is well
=5 £, =S
defined. For suppose that P D P, "~ = Q, (4 =0, 1), are
— i

two representations of a as in (i). The sequence 0
NPy~
e 8. Condition (1) therefore gives us a P C Po’(W Py~ such
that P” ¢ P and (P/P7) ¢ S. Let g;* P~ > Q be the

> P 7
0

> P > (P/PO’) & (P/P;”) shows that P/(PO’{W P10
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morphism induced by fi, (1 = 0, 1). Since Sg, = Sg; we have

a morphism g”: Q > Coker(g, - g1) such that Sg” is an

isomorphism. Hence g~ is a monomorphism, by condition (2),
so g = 813 call this morphism f. Then we have, in KO(ES)’

[Q/FP°] - [P/P°] = [Q/£.P "] + [£,p, 7/£,P7]

- (®/p) - [P, /p7]

(Q/€, "1 - [P/p,"]
(i =0, l)’

P.- 4 - /P
because fi 5 /fiP Pi /P-.
(iii) If (P, a1, Q1) € co(S), (i = 0, 1), then

¢(Po &P, o ® a;, Qo & Q1) = W(Po, o Qo)

+ PPy, o1, Q).
f

i

This is easily seen, because if Pi ) Pi’ > Qi represents

fo @
o fl>

o, as in (i) (i = 0, 1), then P &P D P78 P”
Qo ® Q) is such a representation of o, & oj.
(iv) I_f_ P, o, Q, (Q, B, R) £ co(S) then

v(P, Ba, R) = y@, o, Q) + y(Q, B, R).

First choose a representation Q D Q~ £ - R of B, as in (i).

Now we seek such a representation, P > P~ f > Q, of a for

which fP” D Q”. If the latter is not the case already, we
can make a smaller choice of P” for which it will be, as

follows. Since fP"/(fP" N Q7)) C Q/Q” = S we can use condi-
tion (1) to find P"C P~, P" ¢ P, such that fP"C fP M Q”
(recall that f is a monomorphism) and such that P”/P" e S.

We can then replace P~ by P'" to achieve the condition above.

-

This done, we have the representation P D P~ 8f > R of Ra,

where £7: P~

> Q° is induced by f. Therefore,
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¥(P, Ba, R) = [R/gf"P"] - [P/P"]
= [R/gQ"] + [gQ"/gf"P"] - [P/P"]
= [R/gQ"1 - [Q/Q°] + [Q/Q7] + [Q7/fP"]
- [P/P7]
(g is a monomorphism, so gQ”/gf’P* = 0°/f°P" = Q"/fP")
= y(Q, 8, B + [Q/fP"] - [P/P7]
= y(Q, B8, R) + (P, o, Q).

These conclusions imply that ¢ induces a homomorphism
S KO’(S) > Ko(gs). The fact that, in (iii) above, we

accounted only for direct sums rather than arbitrary exact
sequences, is permitted by Theorem (2.2) (a), thanks to the
semi-simplicity of P. If we recall that, for (SP, a) e ZP7,

3°[sp, a]P, = [p, a, P]S, then it is evident that 3 = 3~
admits the description given in the theorem.

To show that ¢ and Y are isomorphisms, and finish the
proof of the theorem, we will show that, in the triangle (A)
above, we have h = ¢y and yh~l¢ = identity on KO(ES)' This

suffices because h is an isomorphism.

Proof that h = ¢¢. If (P, a, Q) & co(S) choose a

£ Q of o as in (i). Then in K 7(S)
we have [P, o, Q] = [P", Sf, Q] - [P”, Sj, P], where j is
the inclusion of P~ in P. Therefore it suffices to show that

if £: P

representation P D P~

> Q is a monomorphism in P such that Sf is an

isomorphism then ¢y[P, S£, Q] = h[P, Sf, Q). First, ¢u[P,

Sf, Q]S = ¢([Q/fP]H ) = [0, O, Q/fP]T. On the other hand
=S

the exact sequence

(1, £)

0 > (P, Sf, Q)

> (P, 1 P)

Sp’

> 0, 0, Q/fP) > 0
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in co(T) shows that h[p, Sf, Q]S = [p, Sf, Q]T = [0, O,
o/ £P1,.

Proof that yph—l¢ = identity om KO(ES). We begin with

a lemma.

(5.9) LEMMA. Let Esl(: H, be the full subcategory

whose objects have P-resolution of length < 1. Then every

1—resolution, and hence the

” KO(ES)'

object of ES has a finite ES

inclusion induces an isomorphism KO(HSI)

Proof. If A ¢ H write d(A) for the shortest length of
a P-resolution of A. If A ¢ H, we will prove by induction on
d(A) that A has a finite gsl—resolution. The case d(A) <1
is trivial so assume d(A) > 1, and choose an exact sequence

0

> B

> P > A —> 0 with P ¢ P. Condition (1) of
the theorem says there is a P"C B, P’ ¢ P, such that P/P~
> B/P~ > P/P~
> 0 in S, and clearly d(P/P”) < 1. Since d(A) > 1

it follows from (I, 6.8) that d(B/P”) < d(A). Therefore B/P~

€ S. Hence we have an exact sequence 0

> A

has a finite H 1—resolution, by inauction, and therefore so

S
also does A. The last assertion of the lemma now follows
from Theorem (4.2). q.e.d.

Thanks to the lemma it suffices to show that yh™1¢

[A] = [A]H when d(A) < 1. Choose a resolution O
S S

> Py

[[fa=f

f

> PO > A > 0 with Pi € P. Then we have a co(S)-

resolution of (0, 0, A) € co(T):

(1, £)

0 > (Py, Sf, PO)

> (P, lSPl’ Py

> (0, 0, A)

> 0.

-1 - -l -

Therefore h ¢[A]§s h=i ([0, O, A]T) [Py, SEf, PO]S.

Finally, ¥[P), Sf, Plg = [Po/fP1], = [Al, . q.e.d.
=S =S
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(5.10) THEOREM. In the setting of Theorem (5.8)

suppose that every object of S has a finite P-resolutionm,

i.e. that S = ES' Let H” be the full subcategory of objects

A e A" having finite P’-resolutions. Then:

(a) If A c A then A ¢ H <= SA ¢ H™.

(b) The sequence

k) (B) 2

> K1 (") —— K_(8) —> K_(B)

> K (P7) > 0
O=
is exact.

Proof.(a) If P

> A is a finite P-resolution then

SP

> SA is a finite P -resolution so SA ¢ H”. To prove
the converse, suppose SA € H” and let d”(SA) denote the
minimal length of a z’—resolution of SA. We shall prove, by

induction on d”(SA), that A e H. The following facts will be

> B~ > B"

> B

used repeatedly: Let O > 0 be an
exact sequence in A", If two of B”, B, B" are in H” so also
is the third. Moreover if d"(B) < d“(B") then d"(B”) < d7(B".
These, and analogous properties of P and H, follow from
(I, 6.8).

gggg_d’(gA) = Q. Then SA is isomorphic to an object
of P”. Since S: P
SB

> g’ is cofinal it follows that SA &

R

EP, for some B € A and P ¢ P. Replacing A by A & B,
then, we can assume, there is an isomorphism a: Sp > SA

with P ¢ P. Let PD P~ £ > A <2

A be a representation of
o with a an epimorphism. Using condition (1) of (5.8) we can
further assume P” ¢ P. Since Sf is an isomorphism condition
(2) of (5.8) implies O > 0

is exact. Since Coker(f) ¢ S C H we conclude that A” e H.

£ > A7

> P~

> Coker (f)

Since Ker(a) ¢ 8 the exact sequence 0 > Ker(a) > A
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a

> A7

> 0 shows, finally, that A € H.

Case d”(SA) > 0. Any object of P can be lifted to

an object of A (but not necessarily in z). Therefore we can

£

find an epimorphism SB > SA for some B € A such that SB ¢

f

P”. Represent f in the form B < B~ > A = A. Since Sb

is an isomorphism we can replace B by B” and then assume we
have a morphism f: B > A such that SB ¢ P” and Sf is an

> SC
> 0 shows that d’(gb) < d’(gA). Therefore,

epimorphism., Let C = Ker f. The exact sequence 0

> 58 25 §a

by our induction assumption and the case d” = 0 we have C, B
> Im(f) > 0
shows therefore that Im(f) ¢ H. Finally, the sequence 0
Im(£f) > A > Coker (£f)
Coker (f) ¢ s C E.

e H. The exact sequence 0 > C > B

>

> 0 shows that A ¢ H since

(b) The exact sequence is just the exact sequence of
Theorem (5.8), except for the assertion that KO(E) >

KO(E‘) is surjective. But this map is isomorphic to the cor-

responding one, KO(E)
H

> KO(E'), and part (a) says that

> H” is surjective on objects. g.e.d.

§6, ROBERTS' THEOREM

In this section we fix an algebraically closed field

k, and a k-category A. Recall (cf. Chapter II) that this is

an abelian category such that A(A, B) is a k-modules for all
A, B ¢ é, and such that composition is k-bilinear. We assume

further that é(A, B) is always finite dimensional over k.

An example of such an A is the category of coherent
sheaves of modules over the structure sheaf on a complete
algebraic variety over k. It was for this example that
Leslie Roberts (Harvard thesis) proved the following theorem.

(6.1) THEOREM (Roberts). Let k be an algebraically
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closed field and let A be a k-category such that é(A, B) is

finite dimensional over k for all A, B ¢ A. Then there is an

isomorphism

£: K (&) 8, K

> K1 (4)

1~

for A e A and a ¢ k*.

defined by f([A]é a) = [A, a - lA]

ld

Proof. The map (A, @) |— [A, a - 1,1, from ob A x

A’

k* to Ki(A) is clearly additive over exact sequences in the
first variable (axiom KO for Kl(é)) and additive over pro-

ducts in the second variable (axiom K1 for Kl(é))° Hence f

is a well defined homomorphism. We propose to construct an

inverse to f.

Suppose (A, o) € ZA. The the subalgebra kla] C EndA
(A) is finite dimensional. Therefore k[al = k[X]/(Pa(X)) -
where Pa is the monic polynomial of least degree such that
Pa(a) = 0, Since k is algegraically closed it has a factor-
ization, PQ(X) = I(X - ai) i, where the a, are distinct, and
in ¥, because o is invertible. By the Chinese Remainder
Theorem (III, 2.14) we have k[a] = II k[X]/((X - ai)ni). Let
1= Zei be the decomposition of 1 as a sum of indecomposable
idempotents e, € k[a] which corresponds to the above factor-

ization, This induces a decomposition, A = I eiA. We can

ne.
describe eiA more intrinsically as eiA = Ker(a - ailA) 1=

n . . .
Un>0 Ker(a - ailA) . For any a e k , a - alA is invertible

unless g is one of the a, above. Thus

. n
Aa(a) =T Ker(a - a lA)

n>0

exists, and it is zero for almost all q. Moreover, we have
a direct sum decomposition in ZA,

(1 A, 0= T @w@,a),
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where aa is the automorphism of Aa(a) induced by a. Since

(a

a " alAa(a))n = 0 for some n > 0 it follows that B = a—laa

is unipetent. According to (3.2) (1) therefore, [Au(a), gl =
0 in Kl(é). Since a, = aB it follows that [Aa(a), aa] =

[Aa(a), alAa(a)] in Kl(é)~ Referring now to (1) above we
conclude from this that, for any (A, a) e ZA,

[A9 0"] = Za e k* [A(X(a)’ a * lAa(a)]

f(Za A (@] 8 a).

e K*

This suggests that we construct the inverse to f by intro-
ducing

(2) g: ob IA

> Ko(é) 8 k

g(A9 Oi) = X [Aa(a)]ga-

ace k*
Suppose that this g does, indeed, induce a homomorphism g:
Ky (&)

> Ko(é) 8 K*. Then the formula above shows that
f o g = the identity on K;(4). In the other direction we
have, trivially, g(£f([A]18 a)) = g([A, alA]) = [A] 8 «a. Thus

the theorem will be proved once we show that (2) induces a
homomorphism on K;(A). We must verify:

KO. If 0 > (A, a) > (B, B) > (C, v) > 0

is an exact sequence in TA then g(B, B) = g(A, o) + g(C, v);

and

Kl. If A ¢ A and if o, B ¢ AutA(A) then g(A, aB) =
g(A, o) + g(a, B). B

Proof of KO. Let h: (A, a)

> (B, B) be a morphism
in IA; thus ho = Bh. Then if ¢ ¢ k we have h(a - a * lA)n =
(8 ~a - 1)% h for all n > 0, so h(A (@) C By(a). This

implies that h is the direct sum of morphisms ha: (Au(a), aa)

> (BB(a), Ba) (a e k*). In particular, the exact sequence
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in KO above splits, in this way, into a direct sum of exact
sequences

0

> (@), @) —> (By(@), B)

—_—> (Cy(a), Ya) > 0

(a € ¥*). It follows that (B, (@] = [A, (@] + [Cy(a)] in
Ko(é) (axiom KO for Ko(é) so condition KO above results

immediately from the definition (2) of g.

Proof of Kl. This will be carried out in several
steps.

(1) (ef. (III, §51-2)). Let E be a finite dimensional
k-algebra. Then rad E is nilpotent, and E = E/rad E is a
finite product of full matrix rings over division algebras.
Since k is algebraically closed all division algebras are
trivial so that E is a finite product of algebras of the
form Mn(k).

Any (finite) set of orthogonal idempotents in E can
be lifted to a set of orthogonal idempotents in E (see (III,
2.10)). In particular, if e# 0 is an idempotent in E then
e is indecomposable <= its image e ¢ E is indecomposable.
(e is indecomposable if e # O and e is not the sum of two
non zero orthogonal idempotents). In view of the structure
of E it follows, in particular, that E has no non trivial
idempotents (i.e. 1 is indecomposable) <= E = k. This
implies that E is a (not necessarily commutative) local
ring,

(ii) Let B # 0 be an indecomposable object of A and
A = B for some n > 0. If R = End,(B) then E = End, (A) =
Mn(R). The remarks above show that R is a local ring with
residue class field R = k, so it follows that E = Mn(k).

This isomorphism is determined by A up to an inner automor-—
phism. Therefore the determinant,

det: E ——> k,

is well defined.
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Let C be an indecomposable object not isomorphic to

B, and let B h > C h

> B be morphisms in A. If h”h were

not in rad R it would be an automorphism of B, and this
would imply that B is a direct summand of C, contradicting
indecomposability. Thus h”h ¢ rad R. It follows, more

generally, that if B® s ¢ D2

> B" are morphisms in A
then h”h € rad EndA(Bn). This is because rad Mn(R) =
(rad R), a fact we have used already above. (see (III, 2.6)).

(iii) Let A be any object of A. By the Krull-Schmidt-
theorem in A (see (I, 3.6)) we can write A =}IAj where each
Aj = Bjnj and the Bj are pairwise non isomorphic indecom-
posable objects. Moreover any other representation of A as a

direct sum of indecomposable subobjects is obtained by
applying an automorphism of A to the decomposition above.

Let E = End (A) and let EJ = End (A ) Mn (R ),
where Rj = End (BJF The decomposition of A above 1nduces a

monomorphism of k-algebras,

h: I E, ——> E,
3
and it depends on the choice of decomposition only up to an
inner automorphism of E, We claim now that h induces an
isomorphism

h: T E, —— E.
]
This amounts to saying that rad E is the sum of all
rad é(Ai, Ai) and of all é(Ai, Aj) (i # 1). The second para-

graph of (ii) above shows that this is, indeed, an ideal;
call it I. It is evident that h induces an isomorphism from
i) Ej to E/I. It remains to be seen that I C rad E. For this

1 mod I then o

( ) lj € é (Ai’

Aj). Since each ujj = 1 mod rad Ej, the a.. are invertible.

it suffices to show that if o ¢ E and if o
is invertible. Write o in matrix form, o =

Now by elementary column operations we can transform the
first row to the form (ay7, O, ..., 0). This will alter the

a,. (3 > 1) by sums of morphisms Aj

> A, which factor
J] ]
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through some Ak’ k # j. Therefore, by part (ii) above, the
ajj are unaltered modulo rad Ej, for each j. We can there-

fore pass to the smaller matrix obtained by deleting the
first row and column, and continue the process. In the end
we will have, by elementary operations, put the matrix in
triangular form,

0611’ 0 1 0 O"ll’ 0

Since the ajj’ are invertible so also is a”. Since element-

ary operations are multiplications by invertible matrices,
the original o is invertible.

Suppose now that o e Aut, (A). Then its image o ¢ E

can be written in the I Eﬁ coordinates as a = (&5), (EE €

Eg). Recall that E5 = Mn_(k) so we have det(&&) e k . Set
J

- _ — %
g (A, o) = Z[Bj] 3] det(aj) £ KO(A) 8 k.

A priori this definition depends on the decomposition of A
chosen. However any two decompositions differ by an inner
automorphism of E. This will not affect the isomorphism
classes of the Bj's, and it will only change the Ej's by a

conjugation. Hence [Bj] 8 det(&ﬁ) is unaltered, for each j,

by the new choice, so g~ is well defined.

If also 8 £ Aut (A) then we have

g (A, aB) ZIBJ.] 8 det(oa_ej)

Z[Bj] 8 det(Ej Ej)

Z([3,] 8 detz.?j> + (18] 8 detEJ.)

g (A, a) + g7 (A, B).

(iv) In view of the last observation we can now
finish the proof of K1 for g, and hence of the theorem, by
showing that
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g(A, a) = g”(A, a) for (A, o) ¢ ZA.

First suppose (B, B) c Z£A also. We can decompose C =
A ® B into a direct sum of indecomposables by first decom-
posing A and B separately, and then combining these decom-
positions, The result will be a decomposition C = HCj as in

part (iii), where Cj = Djnj & Djmj, with Dj indecomposable,
and with the first summand in A, the second in B. In com-

puting g"(A® B, a ® B) from this decomposition we will then

a, 0

have (o & B), ={ 4 , in matrix form in End,k (C.)/(rad
0 B. £°3

J

EndA(Cj)), and so det(x & B)j = det(&&) det(é&). Consequently
g’ (A8 B, o & B) = z[Dj] § det(a @ s)j = Z[Dj] 8 det(&‘j)
+:[D;]8 det("e'j) = g7 (A, o) +g"(B, B).

Now to prove g = g~ we first write (A, o) = a E:k
(Aa(a), aa) as in (1) above. The last paragraph shows that
it suffices to prove g(Aa(a), aa) = g’(Aa(a), aa) for each a.
In other words we can reduce to the case when (a - alA)n

= 0 for some a € k , and hence g(A, a) = [A] 8 a.
Write A =LA, A = Bjnj as in (iii). Since we now

have (o - a l)n =0 in E (n > 0) it follows that (o - g *
l)n = 0 in E, and hence likewise for each @,. It follows

— _ n.
that uj € th(k) has only a as eigenvalue so det(aj) =q 3.

Therefore

n.
g (A, o) Z[Bj] 8 aqJ

in.[B.] 8 a
J ]

[ HBjnj] 8 a

[A] 8 o

g(As a). q.e.d.
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HISTORICAL REMARKS

For the material of the chapter my main sources have
been Bass-Heller-Swan [1], Heller [1], and Bass-Murthy [1].
The last two are used principally for the results in §5.

Robert's Theorem was communicated to me directly by
Roberts, and I have followed his proof rather closely.
Roberts has further shown that, on a projective variety over
k, the coherent sheaves and the locally free sheaves have
the same Kj.
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Chapter IX
K-THEORY OF PROJECTIVE MODULES

In this chapter we apply the general theorems of
Part 3 to the categories P(A), of finitely generated pro-
jective modules over rings A. We can bring to bear all of
the special features of these categories, in particular the
structure theory developed in Part 2, in order to obtain
information about the groups

KA = K,B(A) (1=0,1.

Related categories are also treated. For example, when A is
right noetherian we introduce

GiA = KiE(A) (1 = 0’ l),
and when A is commutative we have the groups

Pic(4) if i 0

K, Pic(A) =
+ UA)  if i

1.

The first two sections establish the basic properties of Ki
and Gi and record some exact sequences. In §3 we discuss,

for commutative rings A, an exact sequence

rank

0 > H_(4)

> RkO(A) > KO(A) > 0

and a functor

445
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det: Z(A) ————> Pic(A).

The stability theorems of Chapter IV are interpreted
in terms of Ko, in 84, These considerations also allow us to

introduce a filtration on KO from which one can deduce that
RkO(A) is a nil ideal (when A is commutative). This is a

very useful fact.

In §5 we discuss the Mayer-Vietoris sequence of a
fibre product, as in Chapter VII. This, together with the
exact sequence of a localization (in §6), constitute the two
basic tools of the theory. The theorem which makes the
Mayer-Vietoris sequence available to us is the following
result of Milnor: If

A > A2
2
Al f1 > A

is a cartesian square of rings, then the corresponding
square

g

(A) ——> B(Ap)

B(A)) ——> B(A")

is cartesian, in the sense of Chapter VII, §3, provided f;
or f, is surjective.
In §6 we apply the results of Chapter VIII, §5, to

a localization A > 8”1A. The theorem of Heller then
gives us a (G,, GO)—exact sequence here. A related exact

sequence is also established for (K, KO).

There are two appendices. In §7 we compute the groups
KiEE(A) (i = 0, 1) where EE(A) is the category of faithfully

projective modules over a commutative ring A, with product

QA' In §8 we give a formula in K which relates the
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operations defined by exterior and symmetric powers of a
module. These last two sections are used nowhere else in
these notes.

§1. DEFINITIONS AND FUNCTORIALITY OF KiA (i =0, 1).
The objects of study in this section are the functors
KiA = KiE(A) (i =0, 1).

Here A is a ring and P(A), we recall, is the category of
finitely generated projective right A-modules. We can view
P(A) as a category with the product, #, as in Chapter VII,
or as an admissible subcategory of the abelian category mod-
A, as in Chapter VIII, The two possible definitions of
Kiz(A) arising from these two points of view in fact

coincide, because P(A) is "semi-simple" in the sense of
(VIII, §2), i.e. all short exact sequences split. (See
Theorem (VIT, 2.2)).

> B induces an additive
> P(B). Since the free

A ring homomorphism f: A
functor P(f) = (- QA_B): P(4)

modules are cofinal in each P, and since this functor
carries free modules to free modules, we obtain an exact
sequence as in (VII, 5.3). The relative term, Ko’(g(f)),

appearing in that sequence, will be denoted here simply by
KO’(f). We now record the exact sequence.

(1.1) THEOREM. The Ki (i = 0, 1) are functors from

rings to abelian groups. A ring homomorphism f: A > B
induces an exact sequence
KI(A) > Kl(B) > KO,(f) > KO(A) > KO(B)‘

Of course this sequence is natural, in an obvious
sense, with respect to commutative squares of ring homomor-
phisms.

When f is the projection onto B = A/q for an ideal
q in A we shall sometimes write Ko(A’ q) in place of KO’(f).
We also write K;(A, q) for the group denoted K1 (B(A), B(D))
in Chapter VII (§2). Recall that it is a Whitehead group
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constructed from pairs (P, a) in ZE(A) (i.e. P € P(A) and a
. I I3 - .
P/Pq n this setting we

€ AutA(P)) such that o QA (a/lg) =1
can strengthen Theorem (1.1) as follows:

(1.2) THEOREM. Let q be a two sided ideal in A. Then

there is an exact sequence

(L K1 (A, 9@ > Ky (&)

> KI(A/S_) > KO(A, &)

> K (A > K (A/q)

extending the sequence in (1.1). The three term sequence of

K;'s here is naturally isomorphic to

GL(A, q)/E(A, g) > GL(A)/E(A)

> GL(A/qQ) /E(A/Q).

If q” is an ideal containing g then there is an exact
sequence

(2) KA, @

> K1(A, 47) > Ky(A/q, 47/9)

> K (4, @ > K (4, g7)

> K (A/g, 97/9).
Proof. Consider the commutative triangle of functors

P(A/g)

TN

B(A) —— P(a/g")

The exact sequence (1) will follow from (VII, 5.3), and (2)
will follow from (VII, 5.4) and (VII, 5.5), provided we
verify the "E-surjectivity' conditions in the hypotheses of
those theorems. We begin by verifying the condition (10) in
Proposition (VII, 5.5). This requires that, given P € P(A)

and a € AutA(P) such that
A -
a8 (A/g) € [AutA/i(P/Pg), AutA/q(P/Pg, /i,
there exists a Q =P & P~ ¢ Z(A) and an
€ € [AutA(Q), AutA(Q, g')]
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such that £ 8 (A/q) = (o 8 (A/q)) & lP'/Pig- Here

AUtA(Qa ﬂ_) = Ker(AUtA(Q) —_—> AUtA/ﬂ(Q/QS‘))’ and

Aut, , (P/Pq, q°/q) is defined similarly.

Alq
Since the free modules in P are cofinal it suffices

to establish the above condition for free modules P, P~,

etc. In this case it reads: Given an a € GLn(A) whose image

mod g lies in [GLn(A/g), GLn(A/g) q°/q) ], we can find an m >
0 and an £ ¢ [GLn+m(A), GLn+m(A’ q)] such that ¢ = a 8 Im

mod g. If we pass to the limit over n we see that it is
sufficient to show that

[GL(A), GL(A, g7)] > [GL(A/q), GL(A/g, q7/9)]

is surjective. According to (V, 2.1) we have [GL(A), GL(A,
q)] = E(4, ¢7), and E(A, ¢7) > E(A/q, q°/9) is indeed
surjective.

In case q” = A the argument above shows that P(A)
> E(A/g) is E-surjective. It follows that all functors
in the triangle above are E-surjective so we obtain the two
exact sequences.

Since the free modules are cofinal it follows from
(VII, 2.3) that the homomorphisms GLn(A, q) > K1 (4, @

induce an isomorphism in the limit (over n), GL(A, q)/[GL(A)
GL(A, q)]
/ECA, @)
GL(A) /E(A)

> K1(A, ¢q). This gives the isomorphism GL(A, gq)

> Ky (A, q@) and, in case q = A, the isomorphism

> K1(A). These isomorphisms are clearly

natural, so we have now established all assertions of the
theorem.

We shall now describe the behavior of the groups
Ki(A’ q) in some special situations.

(1.3) PROPOSITION. Assume g C rad A.

©) K_(&)
an_isomorphism if A is q-adically complete. Moreover KO(A’EQ

= 0,

> KO(A[g) is a monomorphism, and it is

>

(1) We have GL (A, @ =1 + g, and GLy(A, ¢)
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K;(A, q) is an epimorphism., It is an isomorphism if A is

commutative. Moreover K;(A) > K1(A/q) is an epimorphism.

Proof, According to (III, 2.12) P(A) > P(A/q) is
injective on isomorphism classes of objects, and bijective
if A is g-adically complete. The first assertion follows
from this. Since th(A)<: rad Mn(A) (see (III, 2.6)) it

follows that a matrix over A which is invertible mod q is
invertible. In particular GLn(A) > GLn(A/g) is surjective

for all n, and the inclusion GL;(A, @) C 1 + g is an equal-
> Ky (A/q)

is surjective, so the exact sequence (1) now shows that
K (A, @) = 0. The fact that GL, (A, @ > Ky (4, q) =

GL(A, ¢)/E(A, ¢q) is surjective is just (V, 9.1). If A is
commutative then the determinant, GL(A, q) > GL1 (A, q),
induces its inverse.

ity. The first assertion here implies that K;(A)

(1.4) PROPOSITION. Suppose that A is semi-local.

(0) KO(A) is a free abelian group of finite rank.

(1) For any two sided ideal q, K;(4) > K1 (A/q) is

> K1 (A, ¢) is an epimor-

phism, and an isomorphism if A is commutative.

surjective. Moreover GL;(A, g)

Proof. (0) KO(A) > KO(A/rad A) is a monomorphism,
by (1.3) (0). Since A/rad A is semi-simple KO(A/rad A) is

a free abelian group generated by the classes of simple
modules. Since a subgroup of a free abelian group is free,
and of no larger rank, this proves (0).

(1) If a ¢ A becomes a unit mod g, then ¢ + aA = A so
it follows from (III, 2.8) that q + g contains a unit. Thus
U(A) > U(A/q) is surjective, where U denotes "units",
Applying this to the matrix algebras over A we find that
GLn(A) > GLn(A/g) is surjective for all n, so Kj(A)

>
Kl(A/g) is also surjective. According to (V, 9.1) we have
GLn(A, g) = GLi1{A, ) En(A, q) for all n. Hence GL;(A, q)

> Ky (A, q) is an epimorphism. If A is commutative then

det: K;(A, @ > GL1(A, q) 1s its inverse.



K-THEORY OF PROJECTIVE MODULES 451

(1.5) PROPOSITION. Let q; and g, be two sided ideals

of A such that gy M g, = 0. Then

Ki(A, g1 + 9) = K1(A, g1) 8 KA, g0,

and the map K;(A, qi) > K1(A/qn, q1 + 92/90) is an iso-

morphism.

Proof. Since g M g, = 0 it follows that g;qp, = 0 =
goq; and so GL{A, gq; + go) = GL(A, g;) x GL(A, gy) (direct
product). A similar decomposition holds for E(A, q; + g5).
because the direct product E(A, q;) x E(A, go) is normal in
GL(A) and contains all (gq; + go)-elementary matrices. Since
Ki(A, g7 + q») = GL(A, q1 + g2)/E(A, g3 + gq5), both asser-

tions of the proposition are now clear.

Sometimes the Ki behave like contravariant functors.

For example, if f: A > B makes B a finitely generated

projective right A-module, then the restriction of scalars
from mod-B to mod-A induces a functor res: g(B) > P(A).
Then phenomenon occurs, more generally, as follows.

Let H(A) denote the category of modules having
finite Z(A)—resolutions (see (III, §6)). According to (VII,
4.2) the inclusion P(A) C H(A) induces isomorphisms

(1.6) K, (&) = K, RMA) —> K (H®) 1 =0, 1.
Now suppose above that B ¢ H(A) as a right A-module. Then it

follows from (I, 6.9) that restriction induces a functor
res: E(B) > E(A). Hence we can define res: Ki(B)

>

Ki(A) so that the diagram

K,(B) —5 > g _(A)
1 1

1R

.7 =

Ki(g(B)) Tes Ki(E(A))

commutes.
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Let R be a commutative ring and let A and B be

R-algebras. Then 8r defines an additive bifunctor

: 2(4) x B(B) ——> P(A g, B).

Using this we can make KO(R) a commutative ring (when A = R

= B) and we can then further make KO(A) and K; (A) KO(R)—

modules. Moreover we obtain pairings Ki(A) x Kj(B) >

Ki+j(A GR B) (4 =0 and j = 0 or 1) which are K, (R)-bilinear.

To illustrate these structures, suppose P ¢ P(R), Q ¢ P(A),
and o € AutA(Q). Then B -

[P1, [Q], = [P 8, Q] &K (&)

[P]R [Qs OL]A = [P @R Q’ lP@ OL]A > Kl(A)-

Similarly, if q is a two sided A ideal and o ¢ AutA(Q, q) we

thus make K;(A, g) also into a KO(R)—module. If £f: A > B

is an R-algebra homomorphism then KO’(f) is a KO(R)—module
via the action [P], [Q1, o, Q21" = [P 8, Q1s 1y 6, o5 P 6
Qy]7, where Qi € E(A) and o: Q @A B —> Qy 8A B is an

isomorphism. Moreover the exact sequence of (1.1) (or of
(1.3)) is then an exact sequence of KO(R)—modules. The

restriction homomorphism (1.7) is likewise KO(R)—linear,

when defined.

If R > S is a homomorphism of commutative rings
then the functor @R S: P(A) > P(A @R S) is naturally

isomorphic to the functor SA (A QR S). In case S is a

finitely generated projective R-module then we have the
restriction homomorphism res: Ki(A @R S) > Ki(A)’ and the

following proposition is evident.

(1.8) PROPOSITION. Let A and S be R~algebras with §

commutative, and a finitely generated projective R-module.

Then the composite

res

Ki(A) —— Ki(A SR S) > Ki(A)
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is multiplication by [S]R € KO(R). Hence Ker(Ki(A)
Ki(AGBR S$)) is a KO(R)—module annihilated PZ_[S]R-

>

§2. Gi’ AND THE CARTAN HOMOMORPHISMS Ki > Gi (i =0, 1)

For a right noetherian ring A we introduce the groups

G, (&) = K, (&) (1=0, 1.

Here M(A) is the abelian category of all finitely generated
right A-modules. The inclusion P(A) C M(A) induces homomor-

phisms

(1) C.(A): K, (&) > G, (&) (1 =0,1
1 1 1

which we call the Cartan homomorphisms. Recall from (1.5)
that Ki(A) > Ki(g(A)), is an isomorphism, where H(A) is

the category of modules with finite P(A)-resolutions. We
have z(A)(: H(A) C E(A), and A is called right regular (see
(111, §6)), if H(A) = M(A). Thus:

(2.1) PROPOSITION. If A is right regular then the

Cartan homomorphisms (1) are isomorphisms.

(2.2) COROLLARY. Let A be a right regular ring. If

P e Z(A) and if o ¢ AutA(P) is unipotent then [P, «] = 0 in

Ki(A). If J is a nilpotent two sided ideal in A then GL(A, J)
C E(A), and K; (&)

> K1 (A/J) is an isomorphism,

Proof. By (VIII, 3.2) [P, a] goes to zero in G;(4),

so the first assertion follows from (2.1). Since GL(A, J)
consists of unipotents it goes to zero in K;(A) = GL(A)/E(A).

Thus K;(A)

> Ky(A/J) is injective, and (1.3) implies it

is surjective.

Remark. In case A is commutative the corollary
implies GL(A, J) C SL(A). But the image of GL(A, J) under
det: GL(A) > U(A) (the group of units) is 1 + J. This
shows that J = 0; i.e. a commutative regular ring has no non
zero nilpotent ideals. Thus, of course, is well known. In
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fact such a ring is locally a unique factorization domain.

Let f: A > B be a homomorphism of right noetherian
rings. The functor BA B: ¥(A) > M(B) is not generally

exact, If it is, i.e. if B is flat (as left A-module), then
we obtain induced homomorphisms

(L Gi(A) > Gi(B) (i =0, 1).

More generally, if Torﬁ(M, B) = 0 for all A-modules

M and all sufficiently large n then one can still define the
homomorphism (1) by the formulas

p, | 2D [Tort (e, B € K_(B),

M, o] > 2(-1)F [TorA(M, B), Tor’(a, B)]
i i B

ol
£ Kl (B) .
In any case, when the homomorphisms (1) are defined,

the Cartan homomorphisms are natural transformations, i.e.
‘the diagrams

K, (A) ——> K, (B)
i i
Ci(A) Ci(B) (i =0, 1)
G, (A) ——— G, (B)
i i

commute. This is easily verified.

In case B is a finitely generated right A-module we
have a restriction functor res: M(B) > M(A), and this
induces

res: G.(B) > G, (A).
i i

If B is also A-projective then res: Ki(B) > Ki(A) is

defined, and again the Cartan homomorphisms are natural.

(2.3) PROPOSITION. Let A be a right noetherian ring

and let J be a nilpotent two sided ideal in A. Then the
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restriction homomorphisms

G, (A/3) > G, (A) i=0,01
i 1

are isomorphisms.

Proof. If M € M(A) then M D MJ D MI%D... is a finite
and characteristic filtration of M whose successive
i+l

quotient, MJl/MJ , lie in M(A/J). The proposition there-
fore follows from (VIII, 3.3).

The remainder of this section is devoted to a discus-
sion of the comportment of Gi(A) when A is Artinian.

(2.4) A is semi-simple: Then E(A) = E(A) and KO(A) =

GO(A) is a free abelian group with a canonical basis, [S;1,

oo [Sn], determined up to order, where the Si represent

the isomorphism classes of simple A-modules. A itself is
isomorphic to a product of full matrix algebras over the
division algebras Di = EndA(Si)’ and Ky (A) is the direct sum

of the commutator factor groups, Di*/[Di*, Di*] (see (VIII,
3.4)).

(2.5) A is Artinian: Write A = A/rad A and M = M 8, A
= M/{(M + rad A) for M € mod-A. Since rad A is nilpotent it
follows from (III, 2.12) that E(A)

> E(K) is bijective on
isomorphism classes. Thus, there exist Pj,..., Pn € E(A),
determined uniquely up to isomorphism and order, such that
f&,..., ?; represent the isomorphism classes of simple A-
modules, We see thereby that KO(A) is free abelian with

basis [Py],..., [Pn] and that KO(A)

> KO(K) is an iso-

morphsim. Moreover K;(A)

> Kl(K) is an epimorphism (see

(1.3)). By '"restriction" we can identify M(A) with the
category of semi-simple objects in M{A). Therefore it

follows from (VIII, 3.3) that res: Gi(z) > Gi(A)

(i = 0, 1) are isomorphisms. With the aid of (2.4) we can

thus determine the groups Gi(A) = Gi(Z). The Cartan
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homomorphism CO(A): KO(A) > GO(A) is defined by the

matrix (Cij)lji, j<n’ where

c ) [p1= c..[p.] (1 <i<n).
1 N

z
I<j<n 7ij

This matrix over Z, which is determined up to conjugation by
a permutation matrix (resulting from a reordering of the
Pi'S), is call the Cartan matrix of A. The coefficient Cij’

is just the multiplicity of ?& as a factor in a Jordan-

Holder series for Pi'

(2.6) Base change. An Artin ring A will be called

basically commutative if A = A/rad A is a finite product of
full matrix algebras over fields (not just division rings).
In this connection we quote (see Bourbaki [2]):

(2.7) THEOREM (Wedderburn). A finite ring A is

basically commutative.

The structure theory for Artin rings reduces this
theorem immediately to the case when A is a division ring.

Our interest in this notion is explained by the next
proposition.

(2.8) PROPOSITION. Let A be a finite dimensional

algebra over a field R, and let L be a field extension of R.

Then

K_(A) > K (A 8, L) and G_(A) > G_(A 8 L)

are monomorphisms. If A is basically commutative and if L is

separable over R then they are split monomorphisms.

Proof. The vertical arrows in

KO(A) > KO(A @R L) GO(A) > GO(A @R L)

and

KO(K) > KO(X 8, L) GO(X) > GO(X 6y L)
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are isomorphisms, thanks to (1.3) and (2.3), respectively.
Hence we can replace A by A and assume A is semi-simple.
Decomposing A into a product we can then further reduce to
the case when A is simple, say A = Mn(D) where D is a

division algebra. In this case KO(A) = GO(A) = Z, and both
homomorphisms in question are non zeroc with values in free

abelian groups. Hence they are monomorphisms.

If A is basically commutative then D above is a
finite field extension of R. The separability of L over R
implies that D QR.L = HDi, a finite product of fields Di.

Then A8 L =M (D8 _ L) = IM (D,) is semi-simple. If S is
R n R n i

the simple A-module then A = s" so A‘SR.L ~ (8§ QR_L)n. It

follows that S @R L is the direct sum of the simple
A eR L-modules, each with multiplicity one. Relative to the

> KO(A @R L) is

bases given by simple modules, KO(A)

therefore represented by the matrix (1, 1,..., 1). This

clearly represents a split monomorphism. Since GO = KO in

this case the proof is complete.

The situation for K; and G, is more complicated. In

the first place, even though GI(K) > Gp(A) is still an

isomorphism, K;(A) > Kl(K) need not be one. More serious,

however, is the fact that matters remain unclear even when
A is semi-simple (so that K; and G; coincide). The problem

here quickly reduces to the case of a division algebra D.
If then follows from Dieudonne's Theorem (see (V, §9)) that
K;(D) = D*/[D*, D*]. Suppose, for simplicity, that R is the
center of D, It is then known that we can choose a finite
(even galois) extension L of R such that D SR L = Mn(L),

where n? = [D:R]. Then the determinant defines an isomor-

phism K; (D SR L) —QEE——>L*. The homomorphism K; (D)

>

K, (D SR L) then corresponds to a homomorphism D% > L%
which we discussed in (III, §8); it is called the reduced
norm. In fact, its image lies in R* C I¥, and the resulting

> RY is independent of L. Thus in order

homomorphism D*
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that K](D)

> Ky (D @R L) be a monomorphism in the case

above it is necessary that the kernel of the reduced norm be
exactly [D*, D*]. When R is a number field this is the case,
according to a theorem of Wang (see (V, 9.7)). Of course it
will also be true if D is commutative. From the latter one
can easily deduce the following general result: Let A be a

> GI(A QR L)
is a monomorphism. If, further, A is right regular, then

Ki (&)

basically commutative R-algebra. Then G;(A)

> Ky (A @R L) is an isomorphism. We leave the proof

of this as an excercise.

(2.9) EXAMPLE. If A is a local Artin ring (i.e. A is
a division ring) then the Cartan matrix of A is the one by
one matrix (QA(A)), where QA(M) is the length (of a Jordan-

Holder series) of an A-module M. If A is a product of local
rings then the Cartan matrix is diagonal with positive
diagonal entries. In particular it has positive determinant.
The latter case covers all commutative Artin rings A.

(2.10) EXAMPLE. If A is a regular Artin ring then
(2.1) implies the Cartan homomorphisms are isomorphisms. It
follows that the Cartan matrix has determinant +1 in this

case. Moreover (2.2) implies that K;(A) > KI(K) is an

isomorphism.

As an exercise, let R be a field and show that

a b
A= { 0 c) [ a, b, ¢ € R} is regular with Cartan matrix

)

§3. RANK: KO

> HO AND DET: P > Pic.

In this section all rings will be commutative.

Let A be a commutative ring and let X = spec(A). From
(III, §3) we know that X is quasi-compact and that its
lattice of open and closed subsets is isomorphic, via e
{ > supp(eA), to the lattice of idempotents e ¢ A (III,
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3.14). We now introduce
HO(A) = {continuous functions: spec(A) —> é}’

where Z is given the discrete topology. If r ¢ HO(A) it
follows from quasi-compactness that r is bounded, i.e. takes
only finitely many values. Thus, the Xn = r n} are

disjoint open sets, almost all empty, whose union is X. If
e is the indempotent such that Xn = supp(enA) then the e,

are orthogonal and almost all zero, and 1 = Zen.

A ring homomorphism f: A > B induces a continuous

map af: spec(B) —> spec(A), af(g) = f_l(g), and hence a

ring homomorphism Ho(f): HO(A) > HO(B). It is easily

deduced from the remarks above that:

{3.1) LEMMA. Ho(f): HO(A) > HO(B) is injective

if and only if Ker{(f) contains no non zero idempotents. It

is surjective if and only if every set of orthogonal idem-

potents in B 1lifts to such a set in A,

According to (III, 7.1) we have [P: A] € HO(A) for
P € g(A), and (III, 7.2) implies that this induces a ring
homomorphism, which we call rank,
rk: KO(A) —— HO(A).
We shall write
RkO(A) = Ker(rk).

Its elements are of the form [P] - [Q] where [P:A] = [Q:Al.
It follows from (III, 7.3) that rk is a natural transforma-
tion and hence that RkO(A) is a covariant functor of A.

We shall now construct a {(natural) right inverse,
e HO(A) e KO(A), for rk. If e? = e in A write T, for the

characteristic function of supp(eA). These functions
additively generate HO(A). We propose to define
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e(X nire') =z ni[eiA].
i
The argument used in integration theory to show that a
similar definition of the integral of step functions is well

defined, shows that this € is well defined, and is a ring
homomorphism. Moreover rk{eA] = re so € 1s a right inverse

for rk. If f: A

> B is a homomorphism then Ho(f) carries
R to rf(e)’ and KO(A) > KO(B) sends [eA]A to [f(e)B]B;

thus € is natural. We summarize:

r

(3.2) PROPOSITION. The exact sequence
rk

0 > Rk (A)
o]

> KO(A) > HO (A > 0

is natural with respect to A, It is split by a ring homo-
morphism, e: HO(A)
whose image is additively generated by all [eA], e an

idempotent in A.

> KO(A), which is also natural, and

Next we treat Pic(A) as a category with product
(@A) in the sense of Chapter VII. Evidently

K Pic(A) = Pic(A).

If P € Pic(A) then EndA(P) = A, and hence AutA(P) = U(A), an

abelian group. The single object A is cofinal in Pic(A) so
(VII, 2.2) inplies

Klg(A) = U(A).

If £f: A
Pic(A)

> B is a ring homomorphism the functor ®A B:

> Pic(B) is product preserving and cofinal.

Moreover, it is E-surjective, since this condition involves
liftability of automorphisms in commutator subgroups, and
all automorphism groups in Pic are abelian. Similary, if

q C q° are ideals in A then, for the same reason, the
diagram
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Pic(a/q)

N

(A/q7)

satisfies the hypotheses of (VII, 5.4) and (VII, 5.5). We
shall denote the Oth relative group of f: A > B by
Pic(f), or Pic(A, q) if f is the projection modulo an ideal
q. If F = 8A B: Pic(A) > Pic(B) then it is easy to see

that the relative group denoted Ky(Ric(a), F) is just

UGA, @) = Ker(U(a) —> U(B))

Ker (U(A) > U(A/q)),

where q = Ker(f). With this notation we now summarize the
results of (VII, §5) alluded to above.

(3.3) THEOREM. A ring homomorphism f: A

> B with

kernel q induces an exact sequence

(L 0

> U(A, @) > U(A) > U(B) —> Pic(f)

> Pic(A) > Pic(B).

(We write Pic(A, gq) for Pic(f) if f is surjective). If g~

is an ideal containing g then we have an exact sequence

(2) 0 > U(A, g > U, g7 > U(A/q,97/9)

> Pic(A, q)

> Pic(A, q7) > Pic(A/q,q"/q)

(3.4) PROPOSITION. Assume q < rad A. Then Pic(A)

> Pic(A/q) is a monomorphism, and an isomorphism if A is

gq-adically complete. Moreover U(A)

> U(A/q) is an

epimorphism so Pic(A, gq) = 0

Proof. This follows exactly as in the proof of its
K-analogue, (1.3) above.

(3.5) PROPOSITION. If A is semi-local then, for all
ideals g, Pic(A) = 0 = Pic(4, q), and U(4A) > U(A/q) is
surjective.
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Proof. The vanishing of Pic(A) follows, for example,
from Serre's Theorem (IV, 2.7), and the surjectivity of
U(a) > U(A/q) follows from (IV, 2.9). The exact sequence
(1) now implies Pic(A, q) = O.

The next objective is to construct a product
preserving functor

det: P(A) ————> Pic(4).
r th .
If [P:A] = r then det(P) = A"P, the r exterior power.
However we must make some preliminary remarks to explain

this when r is not a constant function on spec(A).

Recall that the exterior algebra of M ¢ mod-A is a
graded anti-commutative algebra,

M=2"Me AlMe A2Me...,

over A = A°M. Moreover M = AlM C AM is universal among

A-linear maps h: M > A”, where A” is an A-algebra and

h(x)2 = 0 for all x ¢ M. From this universal mapping
property it is easy to establish a natural isomorphism

AM & N) = AQM) 8, AN,

where the right side is a tensor product in the sense of
graded algebras. In particular, for each r > 0, there is a
natural isomorphism of A-modules,

II

0<i<r

(3) ATQM @ N) = 1

At 8, ”TTa.

Moreover Al(A) =0 if i > 1. Thus (3) implies

Cn,r
b d

ATA™ = a

where S is the (binomial) coefficient of tT in (1 + t)n.
b

In particular
(4) APA™ = A, and AT(@A™) = 0 if r > n.

Suppose 1 = Zei where the e, are orthogonal idem~

potents in A. Then for each M ¢ mod-A we have a canonical
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identification, M HMei. In particular, for any integer

r > 0 we have ATM HAr(M)ei. (We do not write Ar(Mei),
which differs from Ar(M)ei when r = 0).

Next suppose r is any continuous function from
spec(A) to Z taking only non-negative values. Then we can

write 1 = Zéi as above so that r is constant, say with value
r;, on supp(eiA), for each i. We then set
T i
ATM = A (M)ei.
If we replace 1 = Zei by a finer decomposition then the

. s e T
preceding paragraph shows that the new definition of A™M so
obtained can be canonically identified with that above.
Since any two decompositions have a common refinement we see

that A™M is well defined, and it is a functor (non additive,
of course) of M.

If £: A > B is a ring homomorphism then there is a
natural isomorphism, AA(M) QA B = AB(M QA B), i.e. A

commutes with base change., It follows that there is a
natural isomorphism A;(M) eA B« A; M QA B), where r~ ¢
HO(A) is the image of r ¢ HO(A). In particular, we have the

following compatibility with localization.

() wap, = AT @) o) (p ¢ spec(a)).

Finally, we propose to define

> Pic(a), det(P) = A[P:A](P).

det: Z(A)

Localizing, with the aid of (5), and using (4), we see
indeed that det(P) e Pic(A). If [P:A] = r and [Q:A] = s are
constant then Al(P) =0 = AJ(Q) for 1 > r and j > s. There-

fore the isomorphism (3) for Ar+S in this case becomes
(6) det(P & Q) = det(P) 8, det(Q).

There is, in fact, such a natural isomorphism in general., By
virtue of the manner in which det is defined, we can choose
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a decomposition 1 = Zei so that [P:A] and [Q:A] are both
constant on supp(eiA) for each i, and then one can easily
reduce the construction of (6) to the case of constant rank.
If we restrict the morphisms in P(A) to isomorphism
(a restriction that does not affect the groups Ki(A) =
Ki(g(A)) and their associated exact sequences) then det is

a functor. Moreover, it is natural in the sense that, if f:
A > B is a ring homomorphism, the square

A B

commutes up to natural isomorphism. After a partial locali-
zation this reduces to the case of modules a constant rank,
whereupon it follows from the commutativity of A with base
change., From this we deduce a morphism of exact sequence



(4)oTd < (V)o1d < (I)OTd <—— (DN < (Vn
¢] [e] 0
(4) 30p (V) 3°p (3) 3°p (g) ta9p (v) T3ep
Am:ox < Aéoz < Oc\om < (D < W) Iy

(L)

465
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If P ¢ Pic(A) then det(P) = AP =P, and if u ¢
AutA(P), det;{(u) = u. Moreover if [p, «a, Q]P € Ko’{f) with
P, Q e Pic(A) then det (£) [P, o, Ql, = [p, o, Q]

follows that the verticals in (7) are epimorphisms. (They do
not split because the inclusion Pic C P is not product
preserving, so it does not induce a homomorphism).

Pic’ It

Recall that KO(A) = HO(A) & RkO(A), where the first
term is spanned by all [eA] with e? = e. Since [eA:A] is
zero on supp((l - e)A) and one on supp(eA) we have det(ed) =
(1 - e) (1%a) & e(AleAd) = (L - e)A® e(eA) = A. Hence
detO(A) is trivial on the first term, HO(A), and we are left

with an epimorphism

detO(A): Rko(A) > Pic(A).

If Im(KO’(f) > KO(A))CZ RkO(A), i.e. if HO(A) > HO(B)

is a monomorphism, then we can replace the Ko's by Rko's in

(7) and preserve exactness. According to (3.1) this happens
when Ker(f) contains no non zero indempotents.

(3.6) PROPOSITION. If f: A > B is a homomorphism

whose kernel contains no non zero idempotents then there is

an epimorphism of exact sequences,




L97%

K1 (A) > Kq(B) > K 7() > RkO(A) > Rk _(B)
\detl(A) det (B) ‘deto(f) ldeto(A) detO(B)
Ua) > U(B) > Pic(f) > Pic(A) > Pic(B) .
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We shall now interprete what it means for deto to be
an isomorphism. Recall that A-modules M and N are called

stably isomorphic if M & A" » N @ A" for some n > 0.

(3.7) PROPOSITION. The following conditions are
equivalent:

(a) deto(A): RkO(A) > Pic(A) is an isomorphism.

(b) If P ¢ E(A) has constant rank r > 0 then P is

stably isomorphic to det P & Ar-1,

(e¢) (1) A projective module of constant rank is

stably isomorphic to a direct sum of invertible modules; and

(i1) If P Q ¢ Pic(A) then P @ Q is stably isomorphic
P .
to (P8, Q) & A

Proof. (a) = (b). ([P] - [A"]) - ([det P] - [A]) ¢
RkO(A) has trivial determinant, so (a) implies [P & A] =
[det P & A"]. This clearly implies (b).

(b) = (c¢). (i) is clear. Part (ii) also follows
immediately once we note that det (P & Q) =P ®A Q.

(¢) = (a). Condition (ii) implies that [P]Pic >
P -

[ ]E [A]E > RkO(A),
and clearly deto(A) o h =

defines a homomorphism h: Pic(A)
lPic(A)' Condition (i) implies
that h is surjective, and this shows that detO(A) is an

isomorphism,

(3.8) COROLLARY. If max(A) is a noetherian space of
dimension < 1 then detO(A): RkO(A)

> Pic(A) is an isomor-

phism.
Proof. Serre's Theorem (IV, 2.7) implies that a P as
in condition (b) above is isomorphic to L & Ar_l for some

medule L, necessarily of rank 1. It follows that det P =
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det(L ® A" = det L O der(a™ ) ~ L8, A=L. q.e.d,

We close this section with some remarks about detl.
Under the isomorphism KI(A) = GL(A)/E(A) we see, from the

definition of the usual determinant (see Bourbaki [ ]
) that detl(A) is induced by det: GL(A) > U(A).

The map U(A) = GLl(A)

> GL(A) splits this determinant,

so we obtain a canonically split short exact sequence

detl(A)
> K1 (A) ————> U(4)

0 > SKI(A) > 0,

where SKl(A) = SL(A)/E(A). Similarly, for any ideal qC A
we obtain a canonical decomposition

K; (A, @) = U(A, @ & SK;(A, @)
From Theorem (1.2) we therefore deduce:

(3.9) PROPOSITION. If q C g~ are ideals in A then
> SKI(A) —_—>
> SKy(A/q, g7/9) .

there are exact sequences SK;(4, g)

SKy(A/q) and SK;(A, q@) —> SK (A, g")

(3.10) PROPOSITION. Let g be an ideal in A and let

a = annA(g). If either q C rad A or A/g is semi-local then
SKI(A, -(1) = 0.

Proof. The vanishing of SK;(A, q) when q C rad A
follows from (1.3) (1), and its vanishing when A is semi-
local follows from (1.4).

Set 4, = gMNa; since ¢ * g = 0 we have 302 = 0 and
hence 50(: rad A. From the exact sequence 0 = SK; (A, ﬂo)
> SK] (A’ ﬂ_)
to show that SK, (A" ~) = 0, wh = ‘= .

147, g7) where A A/g@, q gjgo

> SKl(A/go, g/go) we see that it suffices

If we set g~ = 2/30 then we have ¢”"M a” = 0. It follows

therefore from (1.5) that SK;(&”°, q7) >

SKi{A"/a”, g~ + a’/a’) is a monomorphism (even an
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{somorphism). Since A"/a” = A/a is semi-local the last
group vanishes. q.e.d.

(3.11) COROLLARY. Let q < g~ be ideals and let g =

annA(gf/g). If A/a is semi-local then SK;(4A, q) > SK; (4,

q”) is an epimorphism.

Proof. We apply (3.10) to kill SK,(A/q, q°/q) in the

exact sequence of (3.9).

§4, THE STABILITY THEOREMS

Throughout this section we fix a commutative ring R,

and we shall write

X = max(R).

The support of an R-module M refers here to its support in

X: supp) = {m e X | M # 0}.

(4.1) PROPOSITION., Suppose X is a noetherian space

which is a union of a finite number of subspaces of

dimensions < d.

(a) If u e KO(R) has rank > d then u = [P] for some
P e P(R).

(b) If P, Q € P(R) and if [P: R] > d then [P] = {Q]
= P = Q.

Q1] -~ [R®] for some Q ¢
n+d it follows from

Proof. (a) We can write u

E(R). Since [Q: R] = n + rank(u)

| v

Serre's Theorem (IV, 2.7) that Q =P & R" for some P, so
u= [P].

(b) If [P] = [Q] then P & R = Qe R" for some n. If
[P: R] > d then the Cancellation Theorem (IV, 3.5) further
implies that P = Q.
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We have a similar result without finiteness assump-
tions.

(4.2) PROPOSITION. (a) If u e KO(R) has non negative

rank then nu = [P] for some n > 0 and some P ¢ E(R). (b). If
P, Q € P(R) and if [P] = [Q] then P® = QU for some n > O.
Proof. (a) If we restrict to a direct factor of R we
can, without loss, assume u has everywhere positive rank.
Write u = [P] - [Rm]. Then P is defined over a finitely

generated subring, ROC: R, and R0 is noetherian. Moreover u

. . _ iy M .
is the image of u = [PO] [RO ] where PO > E(RO) is such

that PO 8R R = P. For large enough n the rank of nu will
o]

exceed dim max(Ro) so (4.1) (a) implies nuO = [QO] for some

QO. Thus nu = [Qo @Ro R].

(b) Suppose [P] = [Q]. We can restrict to a direct
factor of R and assume that P is faithful. Moreover there is

m
> Q@ R for some m. We can now

an isomorphism h: P & R

choose an ROCZ R large enough so that there exist Po’ QO >

m m
g(RO) and ho' P0 ® RO > QO & Ro such that P =P, 8 R,

R
0
h 8_ R. In particular [Py] = [Qo]

Q= Qo SR R, and h o °r
o o

in KO(RO), so [Pon} = [Qon] for all n > O, With n large

enough so that [Pon: RO] > dim max(RO) we can apply (4.1)
(b) to conclude that PO = Qo, and hence P =~ Q. q.e.d.

Let A be an R-algebra. We propose to introduce a
filtration on KO(A) from whose properties several useful

conclusions can be drawn.

d d ~

Let C = (" C L ") and C* = (" ¢~ —2—
n n-1 n

C;-l ") be complexes in mod-A and mod-B, respectively, where

A and B are R-algebras. Then we can define a complex
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8 P _ . ~ o [
C R C” in mod-(A SR B) as follows: (C GR C )n 1+9=n

C.8_ C,”. IfaeC, anda” € C,” then D(a 8 a”) = da g a”
i R 73 i hi

+ (-1 a8 da”. Suppose C is contractible, i.e. there is

a morphism s: C > C of degree one such that sd + ds = 1 ..

c

Then if S = s @ lC’ we have DS + SD = 1 , so C @R c”

C QR c”
is also contractible. For let a 8 a” be as above. Then
DS(a 8 a”) =D(sa® a°) =dsa® a” + (—l)i+l sa 8 d’a” =

(a - sda) 8 g~ + (—l)l+1 sa® d'a"=a® a° - S(dag a”
+ (- a8 da”) =ab a” - SD(a8 a’).

If P is a finite complex in E(A) we shall write

x®) = x*@) = £ [P ] £ K_(A).
n o]

If P is acyclic then x(P) = 0 (see (VII, 4.1 (b))). If A
> B is an algebra homomorphism then KO(A) > KO(B)

carries XA(P) to XB(P SA B). If Q is a finite complex in
KO(B) > KO(A fp B)

E(B) then the pairing KO(A) o)

KO(R)
8

A B
carries XA(P) 8 XB(Q) tox R (p 8z Q.

Recall from (III, 4.7) that the homology, H(P), of a
finite complex P in P(A) has closed support,

suppm(H(P)) C X = max(R).
Since localization is exact it commutes with homology.

Moreover, if a finite complex in P(A) is acyclic then it is
contractible (see (I, 6.6)). Therefore we can write

supp_(A(P)) = {m ¢ X | H(P) # 0}

{meX | H(PE) # 0}

{me X [ Pm is not acyclic}

{meX ] Pm is not contractible}.
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If Q is a finite complex in P(B) as above then (P 8R Q)m =

Pm QR Qm, and we have seen above that the tensor proddzt
r s, B

is contractible if either factor is. Therefore we conclude
that

supp (H(P 8, Q)) C supp (HP))M supp (H(Q)).
(4.3) DEFINITION OF FlKO(A). For i > O, FlKO(A)
is the set of u ¢ KO(A) satisfying the following condition:

Given a closed set Y C X, there is a finite complex P in

P(A) such that ¥(P) = u and such that

codimY(Y(W suppm(H(P))) > i,

(4.4) PROPOSITION. (1) The FiKO(A) are a descending
chain of subgroups with FOKO(A) = KO(A) and with FiKO(A) =

0 if i > dim X.

(2) 1f B is another R-algebra the natural pairing

KO(A) 8 KO(B) _— KO(A QR B) induces homomorphisms

K, (R)

PR (&) 8 FIK (B) —> F UK (A8 B) for all 1, j > 0. In

particular KO(R) is thus made into a filtered ring, and
KO(A) into a filtered KO(R)—module.

(3) An R-algebra homomorphism A
homomorphisms FiKo(A)

> B induces

> FlKo(B) for all i > 0.

(4) If A is a finite R-algebra and if X is a

noetherian space then

1 = M —
F KO(A) me X Ker(KO(A) > KO(AEB)'
I  cul 1 B a+1
n particular F KO(R) = RkO(R) and RkO(R) = 0, where
d = dim X,

Proof. (1) Let u, v ¢ FlKO(A). To show that u 4+ v ¢
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FiKO(A) suppose we are given Y closed in X. If P and Q are
finite complexes in E(A) serving as in definition (4.3) for
u and v, respectively, then P # Q serves for u + v, and
P(-1) (where P(—l)n = n ) serves for -u. The latter is
clear because H(P)-1)) = H(P) (-1). The former follows from
the fact that supp(H(P) & H(Q)) = supp(H(P)) U supp(H@Q))

and the fact that the codimension of a union of two closed
sets is the minimum of the two codimensions. It is evident
that the filtration is decreasing. If u € FlKO and if i >

dim X then we can choose P so that u = x(P) and codimX(X(W
supp(H(P))) > i > dim X. This implies H(P) = 0, i.e. P is
acyclic. Therefore u = x(P) =

(2) Suppose u ¢ FiKO(A) and v € FjKO(B), and let w be
the image in K (A @ B) of u 8 v. We must show that w ¢
F1+JK (A 8 B), s0 suppose we are given a closed Y C X.
Choose a f1n1te complex P in P(A) such that ¥ (P) = u and
codle(Z) > i, where Z = YN suppm(H(P)). Now choose a
finite complex Q in B(B) such that xB(Q) = v and codimZ(Z(W
supp(H(Q))) > j. We now contend that the finite complex
P BR Q in E(A QR B) satisfies the requirements of (4.3) for

ABS_B A
w and Y. Evidently ¥ (r 8R Q) is the image of x (P) @

XB(Q) = u § v, and hence equals w. Moreover we have seen
above that suppm(H(P @R.Q)) C suppm(H(P))rW suppm(H(Q)).
Hence

codimY(Y(W suppm(H(P 82 00))}

|v

codimY(Y F\suppm(H(P))fW suppm(H(Q)))

codimY (z N suppm(H(Q) )3

|v

codimY(Z) + codimZ(Z F\suppm(H(Q)))

| v

i+ 3.
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(3) Let A > B be an R-algebra homomorphism and let
ue FiKO(A). Given Y closed in X choose a complex P for u as
in (4.3). Then suppm(H(P SA B)) C suppm(H(P)). This follows,
as above, by localizing and using the contractibility of Pm

for m ¢ suppmﬂ(P). The image, v, of u in KO(B) is clearly._

B i
P 8 .
x ( A B), so vePF KO(B)

(4) Suppose u ¢ FIKO(A) and m ¢ X. Then we can find a
complex P such that x(P) = u and such that codim{ } ({m} M
m o
supp (H(P))) > 1. The last condition implies m # supp(H(P)),

s0 Pm is acyclic and hence u goes to zero in K (A ).
m

N
Conversely, suppose u & me X Ker(KO(A)

> K (A ).
o m
We claim u ¢ FIKO(A), so suppose we are given a closed Y in

X. Since S is (now assumed to be) noetherian we can write Y
as an irredundant union of irreducible closed subsets, say
Yl""»Yn' Choose distinct g% £ Yi (1 <14 5'n). If we write

u = [P] - [Q] then, by assumption, [Pm 1 = [QE-] in KO(Am')

—i i —1i
for each i. After adding a large free module to both p and
Q we can even assume Pm x Qm for each i. Since HomA

—i —i m,

(P ,Q ) = Hom, (P, Q) we can find h': P > Q such that
m, m, A m,

-1 -1 —i
hlm is an isomorphism (1 < i < n). Since the m, are

—i
comaximal the Chinese Remainder Theorem gives us an h ¢
HomA(P, Q) such that h - h e . HomA(P, Q, (1 <1i<mn).

Locally we have m, Am c rad A_ Dbecause A is a finite
=i
R-algebra. Hence it follows from Nakayama's lemma (see (III,

HB

Ui

2.12)), since hm is congruent to the isomorphism him mod
—i —i
rad Am , that hm itself is an isomorphism. Therefore the
i —i
h

complex C = (" 0 > P

> Q

> 0 "), where Q = Co’ is
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acyclic at each m and clearly x(C) = u. Since Z = Y M
supp(H(C)) misses at least one point, m, in each irreducible
component Yi of Y we conclude finally that codimY(Z) > 1, as

required.

It is clear that Rk (R) = Y Ker(K (R) >
o] me X o]

Ko(Rm)). Consequently (1) and (2) imply now that RkO(R)nCZ
F“KO(R) =0 if n > dim X. q.e.d.

(4.5) COROLLARY. Suppose X is a noetherian space of

dimension < d. Let P ¢ E(R) be faithful, and let n be the

least common multiple of its local ranks. Then there is a

Q € B(R) such that P GR Q = Rnd+1.

Proof. Clearly we can find r ¢ HO(R) such that r[P: R]
= n. In the decomposition KO(R) = HO(R) 3 Rko(R) write [P] =
[P: R] - t. Then r[P] = n - rt. Therefore, modulo the

principal ideal [P] K (R), we have n = rt, and (rt)d+1 -0
d+1

by part (4) of (4.4) above. It follows that n e [P] K, (R);
+

say nd 1_ [P]u. Then the rank of u is E_nd > d so (4.1) (c)

o _ X d+1 a+1

implies u = [Q] for some Q. Since [P GR Ql = n = R1 1,

and since nd+l > d, it follows from (4.1) (b) that P 8_ 0 =
qnd+1 R

Without finiteness assumptions we have:

(4.6) PROPOSITION. RkO(R) is a nil ideal, If P ¢

P(R) the following conditions are equivalent:

(1) P is faithful (and hence faithfully projective in
the sense of (II, §1)).

(2) [P: R] is everywhere positive.

-modul ihilated is t i .
(3) Every KO(R) module annihilated by [P] is torsion

(4) There is a Q ¢ P(R) and an n > 0 such that
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Proof. Since KO(R) is the direct limit of the KO(R’),
where R~ ranges over finitely generated, and hence
noetherian, subrings R” of R, the fact that RkO(R) is nil
follows from the corresponding property of each RkO(R’)

(see (4.4) (4)). The equivalence of (1) and (2) follows from
(III, 7.2). If [P: R] is everywhere positive we can solve
r[P: R] =n > 0 in HO(R), just as in the proof of (4.5)

above. Then r[P] = n - s for an s ¢ RkO(R). Since sd = 0 for
some d > 0 it follows that nd ¢ [P] KO(R), and this implies
(3).

Further, (3) implies t[P] = n for some n > 0 (apply
(3) to KO(R)/[P] KO(R)). Choosing n larger, if necessary, we

can force t to have large rank, so that a multiple of t is
of the form [Q], by (4.2) (a). Thus, with a further enlarge-
ment of n we can solve [Q] [P] = n for some Q € E(R). Since

[Q 8, P = [R"] it follows from (4.2) (b) that (Q 8y P =
Qm 8R P =~ RM)™ = R™ for some m > 0. This proves (4).

The implication (4) = (1) is trivial, so the
proposition is now proved.

(4.7) COROLLARY ("Torsion Criterion'). Let R

> L

be a monomorphism of commutative rings such that L € P(R).

Let A be an R-algebra. Then

Ker(Ki(A) > Ki(L @R A)) (i =0, 1)

and

Ker(Gi(A) > Gi(L 8 A)) (i

]
o
=

~

are torsion groups. If max(R) is a noetherian space of

dimension < d then these kernels are annihilated by nd+1,

where n is the least common multiple of the local ranks of L

over R.
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Proof. According to (1.8) there is a homomorphism

Ki(L GR A) > Ki(A) whose composite with Ki(A) >

K, (L8, A) i iplicati K i =
i( BR ) is multiplication by [L]R £ O(R) on Ki(A) i=0,

1). Similarly we have this also for the functors Gi (i=20,

1). It follows that all the kernels in question are anni-
hilated by [L]R. The assertions of the corollary therefore

follow from (4.6) (3) and from (4.5), respectively.

§5. FIBRE PRODUCTS; MILNOR'S THEOREM

Let
h2
A >A2
¢ h, £,
Ay —F— A

be a cartesian square of ring homomorphisms. Thus A = {(a;,
as) € Ay x Ay | fia1 = fya,}, and the h, are induced by the
coordinate projections. Writing g’ = Z(A’) and Ei = E(Ai)

(i =1, 2), we obtain a square of functors

Hy
B(8) —— B,
(2) H; 1F2 8: F1H, > FoH,
B Fy > E’
where Fi = @Ai A~ and Hi = @A Ai (i =1, 2), and B8 is the

natural isomorphism arising from the isomorphisms (P @A Ai)

GAi A” =P SA AT (1 =1, 2).
We also have the fibre product category P = Py x

-

[ilge]

P, (see(VII, §3)) and the cartesian square
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(3)

({1av]

]
—
el Ly~

The universal property
functor

T: g(A)
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G
2 >£2
1F2 s Qi F1G1 > FoGo.
¥, ¢

of (3) implies there is a unique

o

T(P) = (H;P, B , HyP),

such that Hi =

GiT (i =

1, 2) and such that B = aT.

(5.1) THEOREM (Milmor). If f; or f, is surjective

then the functor

T: E(AI XA, Az)

is an equivalence.

Proof. Write M~

=M
M 1 XM

above, and the terms of diagrams

= mod-A~, M,

. M,. These contain the

> P(Ay) x P(A;)

o

a”)

= mod-A, (i = 1, 2), and
=i i

corresponding categories

(2) and (3) above can be

embedded in the corresponding terms of diagrams

H G
mod—-A 2NN M, M 2 > M,
Hl F2 and Gl FZ »
My > M M ¥

We confuse the
they induce on
functor T: mod-A

M= (Ml’ &M,

functors F, G, and H here with the functors
the smaller categories. As above we obtain a
> M which induces the one above. We
shall now construct an adjoint, S: M

> mod-A, for T. If

M;) & M we form the cartesian rectangle
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SM > M,

M] ———> FiM] ———————— FyM,

Explicitly,
SM = {(x1, %) € M} x My | ay (x18 1) = x 8 1}

Now it is clear that SM has naturally the structure of a
right A-module, and that M | > SM defines an additive
functor from M to mod-A. To show that S is adjoint for T we
must exhibit a natural identification,

HomAKN, SM) = Homg(TN, M),

for N ¢ mod-A and M ¢ M. By the very construction of SM as a
fibre product we have

HomA(N, SM) = HomA(N, Mp) HomA(N, M),

X
HomA(N, F2M2)

Now there is a standard identification HomA(N, Mi) = HomA

i
= N . {

(N @A Ai’ Mi) HomAi(Hi s Mi)’ etc., so we then can write

HomA(N, SM) HomAl(HlN, M) x

HOmA,(FlHlN, F2M2)

HornA (H,N, M)

{(hy, hy) | h, e HomAi(HiN, M)

(i =1, 2), and aM(h1@ A7) = (hy A7)}

HomM(TN, M). g.e.d.

The natural transformation ¢N: N > S8TN is clearly an

isomorphism when N = A. By additivity, therefore, it follows
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that ¢P is an isomorphism for all P ¢ E(A).

So far we have made no special assumptions. We shall
now show that if f, (or f,) is surjective then T: E(A) >

P is cofinal (with respect to #). This means that, given
U e P, there is a Ve P and a P ¢ P(A) such that U & V = TP,

It will then follow that SU @ SV = STP = P (via ¢P) so that

SU ¢ P(A). Thus S then induces an adjoint S: P > P(A) to
T: P(A) > P. Moreover it will follow from (I, 7.4) that
these functors are inverse equivalences. Thus the theorem
will be proved once we show that T is cofinal.

If fl is surjective then we have seen in the proof

of (1.2) above that the functor Fj: P, > P” is E-surjec-

tive, and hence the diagram (3) is E-surjective in the
sense of (VII, §3). It follows therefore from (VII, 3.4 (b))
that T is cofinal. q.e.d.

(5.2) Remark. This theorem says that a cartesian
square (1) in which f; or f, is surjective leads to a square

(2) which, up to equivalence, is also cartesian. If all the
rings that intervene are commutative then we can deduce
other such equivalences. For example the squares analogous
to (2) with Pic, Quad, or Az replacing P (cf. (VII, 1.1))
are also essentially cartesian. The same applies to various
other categories of "structures on projective modules". In
each case the basic equivalence can be deducted easily from
that of Milnor's Theorem. The importance of this observation
is that essentially all of the results which we shall now
deduce for P have valid analogues for these other categories.

(5.3) THEOREM (Milnor). Let
h
A —.__l__> A2
hy £y
Ay *-EI~—> A

be a cartesian square of ring homomorphisms in which f; or

f, is surjective. Then there is an exact Mayer-Vietoris
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sequence
(4) Kj (A) > K1 (Ap) & Ki(Ay) > K(A7) > KO(A)
> KO(Al) @ KO(A2) > KO(A')

If these rings are all commutative there is also an exact

Mayer-Vietoris sequence

(5) 0 > U(A) > U(Al) & U(Az) _— U(A’)
> Pic(A) > Pic(Ay) & Pic(Ay)

—> Pic(A”),

and an epimorphism of exact sequences, det: (4) > (5).

Proof. The Mayer-Vietoris sequences are just those of
(V1II, §4). They apply here thanks to Milnor's Theorem and to
the fact that the cartesian square (2) is E-surjective. The
morphism of cartesian squares,

P(A) — PB(4p) Pic(A) —> Ric(4)
det: > 1
B(A)) —— B(A) Pic(A))——> Ric(A?)

when the rings are commutative, induces a morphism of
Mayer-Vietoris sequences, and we know from §3 that the
latter is surjective. Finally, the fact that U(A) > U(Ay)
& U(A,) is injective is clear. q.e.d.

(5.4) THEOREM. In the setting of Theorem (5.3) the

natural homomorphisms

KO (hz) > KO (f1> and KO (hl) > KO (fz)

are isomorphisms. If the rings are commutative then the

corresponding homomorphisms

> Pic(f,) and Pic(h;) > Pic(f,)

are also isomorphisms.

Proof. These are just the excision isomorphisms of
(VII, §6).
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The Mayer-Vietoris sequences are useful mainly for
getting information about KO(A), and about Pic(A) when A is

commutative. It is therefore convenient to show how
cartesian squares arise starting from A.

(5.5) EXAMPLE. Both f; and f, are surjective. We
start with two sided ideals g; and g, in A such that g; M g
= 0. Then the square

A ————> A/qy

Algy ——— Alqy1 + @
is cartesian. Excision implies that KO(A, q;) =

Ko(Algp, 91 + 92/95), and similarly for Pic in the commuta-
tive case. Note that the K; analogue of this was already
proved in (1.5). Examples of this type arise in (XI, §5).

(5.6) EXAMPLE. f, is injective and f, is surjective.

Let A be a subring of B and let ¢ be a two sided B-ideal
contained in A. Then we obtain a cartesian square

A—-——_j.——_——-—>B
Ale *———5:——~—¢ B/c

where j and ]~ are the inclusions, We shall call this a
"conductor situation' because it arises frequently when ¢ is
the conductor from an integral domain A to its integral
closure, B, and in similar situations. Examples of this type
occur in Chapters X and XI. In this case the excision
isomorphisms are

K () — K_"(]7) and K _(4, o) > K_(B, o).

Similary, in the commutative case we have isomorphisms

Pic(j) > Pie(j”) and Pic(A, c¢) > Pie(B, c).

(5.7) EXAMPLE. Both f; and f, are injective., A

diagram of ring inclusions
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A C A2
M M
Aq C A~

is cartesian if A = AI(W A2. The theorems above do not apply
here except in the trivial case, A" = A, or A,. Nevertheless

there is a Mayer-Vietoris sequence for the cartesian square
(3) where we put g(Al) XP(A’) E(Az) in place of E(A). This

sequence will be used in (XII, §9) where we study KO of the
projective line over A.

There is a special case of an excision isomorphism
for K; which we shall have occasion to use.

(5.8) PROPOSITION. Let B = Bi be a product of

m, .
l<i<n
rings and let A C B be a subring whose projection into each

Bi is surjective. Let c be a two sided ideal of B which is

contained in A. Then the natural homomorphism K; (A, c¢)

>

Ky (B, ¢) is an isomorphism.

Proof. GL(B, c) consists of all matrices o in GL(B)
such that o - I and o~! - I have coordinates in c. It

follows that o and o~ ! have coordinates in A so we see that
GL(A, ¢) = GL(B, o).

Since (K;(A, c) —> K;(B, c)) = (GL(A, c)/E(A, ¢)

>

GL(B, c¢)/E(B, ¢)) the proposition will be proved once we
show that the inclusion E(A, ¢) C E(B, E) is an equality.

Let S denote the set of elementary matrices which are
= I mod c. Then E(A, ¢) (resp., E(B, c¢)) is the normal
subgroup of E(A) (resp., of E(B)) generated by S. (See (VI,
§1).)

Since ¢ is a B-ideal it is the direct sum of ideals
¢. such that c, projects monomorphically into Bi (1 <1 <mn),
=i —i

and to zero in B, for j # i. Let S~ denote the set of € € S
J
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such that ¢ = I mod < for some i. The group generated by S~
evidently contains S, so E(B, c) is the group generated by
all B e 8 ! with B € E(B) and € € S”. It therefore suffices
to show that each such R e 87! € E(A, ¢). In the (HBi)—coor—

dinates we can write 8 = (B, 62,...,Bn) and, say, c = (g1,

I,...,I), assuming ¢ = I mod c;. Since A > By is

surjective, by assumption, it follows that E(A)

> E(B])
is surjective (see (V, 1.1)). Therefore, since R; € E(B;),

we can find o = (B, az,...,un) € E(A). Then 8 ¢ g 1 =
(B1e18; 1, I,...,I) =aea le EQA, ). g.e.d.

We shall next establish a weak Mayer-Vietoris type
proposition for the functors Gi.

(5.9) PROPOSITION. Let

h2
A————> A,
h, fs
Ay ——— A~°
1 fl

be a cartesian square of right noetherian rings, all of

which are finitely generated right A-modules. Assume that £,

or fp, is surjective. Then the restriction homomorphisms

induce epimorphisms

& ——— i = .

Gi(Al) Gi(Az) > Gi(A) (i =0, 1)
Proof. The homomorphisms above are induced by the

"restriction" functor from M(A; x A;) to M(A). According to

(VIII, 3.3) it suffices to show that every M € M(A) has a
characteristic finite filtration whose successive quotients
are (restrictions of) (A; x A,)-modules.

Let < = Ker(hi) (i =1, 2), and assume, say, that fj,

is surjective. Then h; is also surjective, and ¢cj M ¢y = O
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because A > Ay X A, is a monomorphism. Now we claim that
0 C Mc; € M is the required type of filtration. It is
certainly characteristic, and M/Mc; is a module over A/c; =
Ay, and hence over A; x A,. We conclude the proof by showing
that Mc; is an (A7 X Ap)-module. For this it suffices to

show that c) itself is an A,-module. But ¢; = 0 X c where ¢

= Ker(f,), so ¢; is an ideal in A; % A,. q.e.d.

(5.10) COROLLARY. Let B = Tl . B, be a product of
—_— l<i<n i
rings and let AC B be a subring that projects onto each

factor B,. Then the homomorphisms G,(B) = I,G,(B,) > G, (8
i i 51 i

(i = 0, 1) are surjective.

Proof. Let A;” be the projection of A into B, X...x

Bn. Then there is a fibre product diagram,

A——— A"

Bl —— All
to which we may apply (5.9) and conclude that Gi(Bl) )
G, (A7)

i
we conclude further that Gi(Bz)Q .8 Gi(Bn)

> Gi(A) is surjective (i = 0,1). By induction on n

> G, (Al‘) is
1

surjective. q.e.d.

We close this section now by describing the behavior
of Ho on a fibre product. This information is required in

certain calculations to be made in Chapter XII.

(5.11) PROPOSITION. Let

h
A —_2..__._._> A2
(1) hy £
A]. > A7
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be a cartesian square of homomorphisms of commutative rings

in which f; or f, is surjective.

(a) The square,

spec(A) <——————— spec(4y)

(6) a a

h; )

spec(A;) <———— spec(A”) ,
afl

is cocartesian in the category of topological spaces.

(b) The sequence

(o)
-H (h,)
(7) 0 o 2

> H_(A) > H (A) 8 E_(A))

(Ho(fl), Ho(fz))

> HO(A’)

is exact and Coker(Ho(fl), Ho(fz)) is a torsion free abelian

group.

Proof.(a) Say f, is surjective. Then we can factor
f, into an epimorphism followed by a monomorphism. In any

category, if the two squares of a rectangle

> . >

1]

> e >

are (co)cartesian then so also is the rectangle. Hence it
suffices to treat separately the cases

(1) f£; is also surjective; and

(ii) £; is injective.
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(i) In this case we can write Ai = A/g_i 1=1, 2),
and A" = A/(a; + ap), where g; and g, are ideals such that
ay M ap = 0. (See example (5.5).) Then all spec’s in

question can be identified with closed subsets of spec(A),
via the inclusions in diagram (6). With this identification
we have

spec(A;) U spec(Ay) = Vi(ay) U Viap) = V(g May)

n

spec(A)

spec(Ay) M spec(Ay) = V(ay) M Viay) = V(a1 + ay)

spec(A7).
These relations show that (6) is cocartesian.

(ii) In this case we can identify A with a subring
of Ay, and we have A} = A/c and A” = A,/c for some A,-ideal

€ C Ay. (See exampIe (5.6).) Then we can identify spec(A;) =
VA(S) C spec(A) and spec(A”) = VA (c) < spec(4A,). Moreover
2

spec(As) > spec(A) sends p to p MY A. We must show that
spec(A) is the union of VA(g) and of the image of spec(Ay),
and that 1f P ¢ spec(A;) is such that pMA € VA(E) then p

€ VAz(g). The latter is just the implication: "p M A D ¢

= p 5 ¢", which is trivial. It remains to be shown that if
p € spec(A) and p P ¢ then p is the restriction of a prime
in Ap. Choose t € ¢, t ¢ p. Then t is a unit in A_. On the
other hand tA,C ¢ C A, so we conclude that A_ = (Ap) . Let
q € spec(Ay) correspond to the maximal ideal of (AZ)Bf Then
9N A =p; q.e.d.

(b) Since (6) is cocartesian it follows, by defini-
tion, that Cont. maps((6), G) is a cartesian square of sets,
for any topological space G. If G is an abelian group with
the discrete topology then Cont. maps((6), G) is a diagram

of abelian groups, and, being cartesian as a diagram of
sets, it is also cartesian as a diagram of abelian groups.
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Taking G = Z, therefore, we deduce the exact sequence (7) of
Ho's. Because of the quasi-compactness of spec(A) we have

Cont. maps(spec(d), G) = HO(A) 8 G for any discrete abelian
group G. Therefore (7) 1s an exact sequence of groups of the
form (7) = (0 —> M_—> M; > M) such that (7) & G

remain exact for all abelian groups G. Taking G = é/né we

deduce easily that nM, M Im(h) = n * Im(h). In our example
My, = HO(A’) is torsion free, so the fact that nM, M Im(h) =
n * Im(h) for all n ¢ Z implies that Coker(h) is torsion

free. q.e.d.

(5.12) COROLLARY. In the setting of (5.11) we have a

commutative diagram with exact rows and columns




06%

0

————

SKy(A) —> SKy(A;) & SKq(Ay)

K1 (A) —_—

> U(a) —>

Ki(A)) & Kq(ay)

u(Ay) & U(Ay)

>

>

> SK1(A7)

Ki (A7)

u@”)

> SK_ A)

> Rk (A)
o}

> Pic(A)

>
SK_(A1) # SK_(A;)

> Rk_(A1) ® Rk_(A))

> Pic(A1) ® Pic(A,)

> SKO (&)

> Rk (A7)
[e)

> Pic(A)
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The maps from the middle to bottom row are determinants, and

we have introduced the notation SKO(C) = Ker(deto(C)) for a

commutative ring C.

Proof. If we replace RkO by Ko then the middle row

becomes the Mayer-Vietoris K-sequence of the cartesian
square (1) in (5.11). The exact sequence (7) in (5.11) shows
that the image of the connecting homomorphism, K; (A7) >

KO(A), in the Mayer-Vietoris sequence actually lies in

RkO(A), and that the resulting sequence above, with Rko's

replacing the corresponding Ko's, is exact. The bottom row

is the Mayer-Vietoris Pic-sequence, and the top row is the
kernel of the determinant homomorphism from the middle row
to the bottom. The exact homology sequence now implies that
the top row is exact. q.e.d.

(5.13) COROLLARY. Suppose, in the setting of (5.11),

that detO(Al), detO(Az), and det;(A”) are isomorphisms (i.e.
that SK (A;) = 0 = SK;(A”) (i = 1, 2)). Then det (A) is

an isomorphism also.

§6, THE EXACT SEQUENCES OF A LOCALIZATION

In this section we fix a commutative ring R and a

multiplicative set S in R. If A is an R-algebra then we have

the localization,
s™1: mod-A ———> mod-S~!A.

Up to equivalence, we can view this as a quotient functor in
the sense of (VIII, §5) (see example (VIII, 5.2)). Conse-
quently we can apply the results of (VIII, §5), and that is
the purpose of this section.

We begin by studying the functors Gi’ so assume first

that A is right noetherian. Then we can treat

-1
___.§____> I‘__’I(S_lA)

1 Mg (&) © M(A)
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as a quotient functor, where ES(A) is the full subcategory

of S-torsion modules M (i.e. STIM = Q). Moreover we shall
write

G, (A, 8) = KM (8) (1 =0, 1).

In the special case when § = {t@ ! n > 0} consists of
powers of a single element then we have M(A/tA) C MS(A) as
the subcategory of modules killed by t. If M ¢ MS(A) then
Mt" = 0 for some n so 0 = Mt® € MtP~lc,..cMt® = M is a
characteristic finite filtration with quotients in E(A/tA).
It follows therefore from (VIII, 3.3) that

G (A, {£7) = ¢ (a/tA) (i =0, D).

The next proposition summarizes part of (VII, 5.5).

(6.1) PROPOSITION. The sequence

G (A, S) > G (A) > G (S71a) > 0
O (¢] [e]

induced by (1) is exact. Moreover there is a unique homomor-
phism 3: G,(s—!A) > G_(A, §) such that als™IM, s-1la] =
[Coker o] - [Ker o] whenever M ¢ E(A) and o € EndA(M) is

such that S~lo is an automorphism.

(6.2) THEOREM. (Heller-Reiner [1]) Let A be a right

noetherian R-algebra as above. Assume there is a nilpotent

ideal J C S~!A such that B = (S !A)/J is right regular.

(This is the case, for example, if s-1A is a right Artinian

ring.) Then the sequence

Gy (s 1) 3

-1
> GO(A, S) > GO(A) > GO(S A)

> 0
is exact.

Proof. We begin by observing that, under the functor
S-1:M(A)

> M(S-lA), finite filtrations and resolutions of
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objects can be lifted. Specifically:

(1) If M e M(A) and if 0 = NC NiC...CN_ = s™ M
is a finite filtration in E(S_IA), then it is the localiza-

tion of a filtration 0 = MOC: Mlc...CZMn =M in E(A).

(ii) If 0 —/> N > ... >N —> STINM > 0
n [¢]

is an exact sequence in M(S_IA) then it is (isomorphic to)
the localization of an exact sequence

0

> M

> M > e > M > 0 in M(4).
n o] =

These facts follow from (III, 4.6)
Now we consider the subcategories
C,” = RB(®) C ¢~ = M(B) C M(s"'a),

where the second inclusion is the identification of B-modules

with S_lA—modules killed by J. Next we introduce

¢, € ¢ < HW

where C (resp., go) is the full subcategory whose objects
are those M such that STIM e € (resp., such that STl Me
C.). If N e M(S7!A) then NDNJ D NJ?S... gives a finite

and characteristic C"-filtration, since J is nilpotent. It
follows from (i) above that every object of M(A) has a
finite C-filtration as well. Therefore we can apply (VIII,
3.3) to conclude that the verticles in the commutative
diagram

G, (s 1A)

> G (A)
0

> G (A, S) > G (S1A) > Q
o] Q

> GO(A, S)

Ky (¢ > K () —> K_(C)

are isomorphisms. It therefore suffices to show that the
bottom row is exact at GO(A, S), the exactness at the other

points being covered by (6.1) above.
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The regularity hypothesis on B means that every
object of C” = M(B) has a finite resolution in go’ = P(B).

Property (ii) above now further implies that every object of
C has a finite go—resolution. Thus we can apply (VII, 4.2)

and (VII, 4.6) to conclude that the verticals in the
commutative diagram

Ky(C) —> 6, (4, )

||

> GO(A, S)

> K_(Q) — K _(C7)

- > > .
ISR(NY K (€D K (€D
are isomorphisms. Thus we are reduced to proving exactness
of the bottom row. But this follows now from (VII, 5.5)

because the category QO’ = P(B) is semi-simple. q.e.d.

In considering the functors K, now we no longer assume
i

that A is right noetherian. We shall write

g-1

2 Ho(A) C H(A) —— H(s7!a)

where ES(A) is the full subcategory whose objects are the

S-torsion modules in H(A) (cf. (III, §6)). Moreover we write

K (A, 8) = K.H(B) (1 =0,1

(6.3) THEOREM. Let A be an R-algebra on which

multiplication by any s € S is injective. Then there is a
> KO(A, S) such that
B[S—lP, S7la] = [Coker(a)] whenever P ¢ E(A) and o ¢ EndA(P)

unique homomorphism 8: K;(S™1A)

is such that S !a is an automorphism. The sequence

Ky (Aa) 2

> Ky (S71a)

> KO(A, S) > KO(A)

> KO(S'lA),

resulting from this and (2) above, is exact.
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Proof. The conclusions of this theorem follow
directly from those of (VIII, 5.8), so we need only verify
the three hypotheses of that theorem. The first one is
clear. The second requires that if f: P > Q in P(A) is

such that $"lf is a monomorphism then f is already a mono-
morphism. This follows from the commutative square

f

h h
2 Q

s~lp ——-——— s5-1Ig

and the fact that hP is a monomorphism. The latter condition
on hP follows, in turn, from the fact that P is projective

and that the s € S are not devisors of zeroc on A. The third
hypothesis of (VIII, 5.8) requires that if Q C P € B(A) and

if S'l(P/Q) = 0, then there is a P”C Q such that P~ & P(A)
and S"1(p/P°) = 0. Since P is finitely generated there is an
s € S such that (?/Q)s = 0. Therefore P~ =Ps =P fills our
needs. q.e.d.

In the setting of Theorem (6.3), if A is also right

noetherian, then we have a "Cartan homomorphism’ between the
two sequences:



0

o] @] [}
o (V7_8) 9 = (V) 9 «—— (§ V) D «—— (v; 9
v $)% W s M (V510
(V1-8) "N < W ¥ < (5 VA e (Vi_$) <

) Iy
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If A is right regular then so alsoc is S lA and the verticals
are isomorphisms. Thus we can splice the two sequences in
this case. We record this:

(6.4) COROLLARY. In the setting of Theorem (6.3)

suppose that A is right regular. Then there is an isomor-

phism of exact sequences




0

0

<

<

o
Q:lmv 9 <

0
A<leV A <

A<voo <

WA <

0
(s ‘v) 9 <

(o]
(s ‘v) ¥ <

(V-9 «— (N1d

(Vi )W <— (N y
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It would be of interest to be able to extend the
exact sequence above to K;(A, S) on the left. We can do this

now only in certain special cases, and then only with rather
delicate techniques (cf. Chapter XIII).

Let A be a right noetherian R-algebra. Recall (III,
§6) that S is regular for A if the inclusion ES(A)<Z gS(A)

is an equality. In other words if every finitely generated
right A-module M such that S IM = 0 has finite homological
dimension. Of course we then have

Ki(A, S) = Gi(A, S) (i1 =0, 1).

Moreover we deduce the following theorem immediately from
(VIII, 5.10).

(6.5) THEOREM. Let A be a right noetherian R-algebra.

Assume S is regular for A and that multiplication by each

s € S on A is injective. Then:

(a) If M e M(A), M e H(A) <= S IM e H(S™!A).

(b) The sequence

Gy (A, S)

I

> KO(A, S)

Ky (A) —> K, (s714)

> K, (A)

> Ko(s“lA) ~>0

is exact.

Let A be an integral domain with field of fractions

L=S'A(S=4-{0}). TfMe M(A) we define its rank to be
rankA(M) = [MZ@A L: L].

This is clearly an additive function, inducing the composite
homomorphism

GO(A) —> GO(L) = Z.

Note that this terminology is consistent with our use of the
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term rank for projective modules P ¢ E(A). We shall write

o (4) = Ker(c, (a) 2K ),

Since rank (A)

1 we obtain a decomposition

It
e

G (&) - [Al 8 T (A).
o] o]

Now assume that A is a Krull ring (see (III, §7)). If
M ¢ mod-A and if p e Htl(A) write QBKM) for the length
(possibly infinite) of the A ~module M . We define the full
subcategory C of all M e modgA such that (i) & (M) is finite
for all p € Hty(A), and (ii) QBFM) = 0 for allEBut finitely
many p € Hty;(A). Then for M ¢ C we can define

x(M) =2 QBFM)E'E D(A) (divisor group).

Since localization is exact we see that C is an abelian
category and that x is an additive function on C, therefore
inducing

x: K (€) —> D(A).

The category ES(A) of finitely generated torsion A-modules
is clearly contained in C. From the inclusions ES(A)CZ gS(A)

C C we therefore obtain homomorphisms, also denoted by ¥,

xi 6 (A, 8) = K_(Mg(A) —> D(4),
and

X3 KO(A, S)

K (Hg(8) — D(&).

(6.6) PROPOSITION. Let A be a commutative ring, let
o € EndA(An), and let M = Coker(a).

(a) M * det(a) = 0.

(b) Suppose A is a Krull ring and det(a) # 0. Then

x(M) = div(det(a)).
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(c) Let A be a noetherian Krull ring with field of

fractions L = $~!A (8 = A - {0}). Then there is a unique

homomorphism c#: GO(A)
such that cf2[A] = 0 and such that the diagram,

> C(A) (the divisor class group)

3

G (L) > GO(A, S) > GO(A) > GO(L) > 0
det | (=) X cl
Uy — D(A) —  C(A) > 0,

commutes. The top row here is the exact sequence of (6.2),

and the bottom is the exact sequence of divisors and divisor

classes (III, §7, (1)). Moreover the verticals are epimor-

phisms.

Proof. (a) It is well known (Cramer's Rule) that
there is a B ¢ EndA(An) such that af = Ba = det(a) 1 0
A
Therefore A" * det(a) € Im(a), thus proving (a).
(b) We will show that

3

K; (L) > K (A, S)

det | (=) X

U(L) —> D(4A)
commutes, where 3 is map in (6.3). If we consider a as
lying in GLn(L), it defines a class, [a] & Ky(L). According

to (6.3) 3[a] = [Coker(a)]. Hence (b) will follow from the
commutativity of the square. Since det above is an isomor-
phism it suffices to show that x(3[u]) = div(u) for u ¢
U(L), where [u] = [A, u - lA] e K1(L). Writing u = a/b,

a, b # 0 in A, we are reduced to the case u = g ¢ A. In this

case, as we saw above, x(8[a]) = x(A/ad). If p e Ht;(A) and
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aéE = (B~A2?n then clearly (A/aA)E_has length n as an
§R-module, because AE is a DVR. Thus x(A/gA) = div(a). q.e.d

(c) We have G (&) =z - [Al @ C_(4) where G_(A) =
Ker(GO(A) > GO(L)) = Im(GO(A, S) > GO(A)) = Coker(3d).
It follows from part (b) that

61 (L) — G_(4, 8)
det X
U(L) ——> D(A)

commutes, so there is an induced homomorphism cf: GO(A) >

C(A) on the cokernels. Thus ci& is defined, and uniquely so,
by the commutativity of the diagram and the fact that cf[A]
= 0,

We have noted already that det is an isomorphism.
Since x[A/p] = p for p e Ht;(A) it follows that x is an
epimorphism. The diagram then implies cf is likewise an
epimorphism. q.e.d.

(6.7) PROPOSITION. Let A be as in (6.6) (c) and let
T be a multiplicative set (0 ¢ T) such that B = T"!A is

regular. Then there is an epimorphism of exact sequences

G1(B) > GO(A, T) > GO(A) > GO(B) > 0
det XT ct cl
U(B) > D(A, T) > C(A) > C(B) > 0

Proof. The top row comes from (6.2). The map Xp here

is determined by the commutative square
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GO(A, T — GO(A, S)
Xop X
D(A, T) D(A)

where S = A - {0} and the top is induced by ET(A) - gS(A).
We need only note that if M ¢ ET(A) then x(M) ¢ D(A, T).

But Mt = 0 for some t ¢ T. Therefore if ME.# 0 for p e Ht (&)
we have p D annA(M) and hence p M T # ¢. Since D(A, T) is
generated by the p e Ht;(A) that meet T this shows that Xp

above exists. The exact sequence on the bottom is (III, §7,
diagram (2)). From the way the maps above are defined the
commutativity of the above diagram follows immediately from
that of (6.6) (c).

Next we consider the localization sequence for Pic.

> $T!'A be a localiza-

Let A be commutative, and let f: A
tion. Then we have the exact sequence

0 d

(3) U(A) > Pic(f)

> 7(S—1A)

> Pic(A)

> Pic(S71A)
of (3.3). If S consists of non divisors of zero in A then we
also have the group Pic(A, S) (see (III, §7)) of invertible

ideals ¢ C S  !A such that S lg = S!A, as well as an exact
sequence (III, 7.10)

(4) U(a) > U(S™1A) > Pic(A, S) > Pic(A)

> Pic(S~lA).

We shall identify these two sequences. By the 5-lemma it
suffices to construct a homomorphism h: Pic(A, S) >
Pic(f) making the resulting diagram (4) > (3) commute.

> 8 A is the

isomorphism induced by a C sTlA. It is easily checked that
this is a homomorphism, thanks to the fact that Q_SA b

We define h(g) = [a, a, Al, where a: S_lg

>

ab is an isomorphism for g, b € Pic(A, S). Moreover
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dla, o, A] = [a] - [A] = [a] in Pic(A). If g e U(S !A) then

3(a) = [A, a ° lS—lA’ Al = [aA, ls_lA’ Al = h(gA). Thus

Pic(f)
/ \
U(S_IA)\\\\\\\\ h ///////Pic(A)

Pic(A, S)

commutes, as required. Henceforth we shall use h to
identify Pic(f) with Pic(A, S). More generally, we shall
write Pic(A, S) for Pic(f) for any multiplicative set, not
necessarily consisting of non divisors of zero. With this
notation we can now write the '"determinant'' homomorphisms

as an epimorphism of exact sequences



(V(_S)°Td <

0
AQHIWV A <

(V)oTd <

"Y1 <

(s ‘V)O1d <

(s .¢voM <

A<H lva <

(Vi_S)M <

v)n

)y

()
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If A > 8~1p kills no non zero idempotents, e.g. if S
consists of non divisors of zero, then we can replace KO by

Rk above.
o

(6.8) THEOREM, Let A be a commutative noetherian ring,

and let S be a multiplicative set of non divisors of zero

which is regular for A. Then there is an epimorphism of

exact sequences,




L0S

GO(A, S)

[

K (A) > Kq(871A) > K (4, S) > Rk_(A) > Rko(s'lA) > 0
det (A) det; (s 1a) det (4, ) det (&) deto(S_lA)
U(A) > U(S”iA) > Pic(A, S) > Pic(A) > Pic(S™14) > 0,
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in which Pic(A, S) is a free abelian group with the primes

of height one meeting S as a basis.

Proof. The diagram is that of (3.6), except for the
zeros on the right and the term GO(A, S). The extra terms in

the top row come from (6.7). According to (III, 7.21) S is
factorial for A, so the indicated properties of the bottom
row follow from (III, 7.17).

We shall now apply some of these results to algebras
over Dedekind rings.

(6.9) PROPOSITION. Let R be a Dedekind ring with
field of fractions L = S IR (S = R - {0}), and write X =

max(R)., Let A be a right noetherian R-algebra which is

torsion free as an R-module. Set B = A @R L = S§71A and

assume B satisfies the conditions of (6.2). Then there is a

natural isomorphism

> Gi(A’ S) (i = O, l)a

I
(6) b o x G2 A

and hence an exact sequence

I
a® — U e Gpa — o

> G (B) > 0.,
[e]

Moreover, if A is right regular then there is an exact
sequence

Ky (4)

s r@) —— e @/

> K (A) > K (B) > 0
o o]

Proof., Once the isomorphism (6) is established the
exact sequences here follow from those of (6.2) and (6.7),
respectively, using (6) to substitute E.g - GO(A/B_A)

for GO(A, S) in the latter.

If p e X write EEFA) for the category of M ¢ E(A)
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which are annihilated by a power of p. If M ¢ gS(A) then

o I .
Mg = 0 for some ¢ # 0 in R. If @ = p; ~...p_ T is the prime

factorization of @ in R then the Chinese Remainder Theorem
implies R/g = 1 R/Eini. Thus M decomposes canonically as
M=M#s...8 Mn’ where Mi consists of the elements of M
killed by some power of ;- It follows easily from this

it+1 = = H
decomposition that Gi(A, S) Ki(gs(A)) c ¥ Ki(gR(A)).
Next observe that E(A/R A) C gE(A). If M e gR(A) then M D
My D MRZZ)... is a finite characteristic filtration with
successive factors in E(A/E.A)- Hence it follows from
(VIII, 3.2) that G, (A/p &) = K (M(A/p 4)) > Ki(gR(A)) is

an isomorphism (i = 0, 1). This completes the proof.

(6.10) PROPOSITION. Let R, L = S"IR, and X be as in
(6.9) and let D(R) = é(x) be the divisor group of R. Let A

be a commutative regular integral domain containing R such

that p A is prime for all p € X. Set B = A ®R L. Then there

is a commutative diagram with exact rows and columns,




0

0

<

<

<

0
(4)°Fa < (V)°1d <
(@) “30p (v) 19p
()14 < (v)
@ 1
0 0

0 0 0
(¥a < (W < (i
9 (g)t39p (v) Ta9p
(v m\ﬁﬂu X2 @l ——
v Iwn)’s ¥ m m < (@) T3S < (v) Lys
| L]
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If pe X and if M e g(A/E_A) then §[M] = rk(M)p, where rk(M)

is the rank of M over the integral domain A/p A.

Proof. The proposition is trivial if R = L, so assume
not. Then X = Ht;(R). If p € X then p C p AMR C R. Since

p A is prime and p is maximal we must have p = p A R. Thus

we have the hypothesis of (III, 7.18), thanks to the fact
that S is factorial in R and in A, because of the regularity
of R and A (cf. (III, 7.21)). It follows therefore from
(III, 7.18) and from (IILI, 7.17) that D(R) = Pic(R, 8) =
Pic(A, S) = D(A, S).

To define the lower two thirds of the diagram we
start with the epimorphism of exact sequences in (6.8). We
det (A, S)
replace GO(A, S) = KO(A, S) _— Pic(A, 8) in that

sequence using the isomorphism D(R) = Pic(A, S) derived
above, and the isomorphism E_g % GO(A/E_A) > GO(A, S) of

(6.9). Since A is regular we can use the Cartan homomorphisms
to identify deto(A, S) above with XS: GO(A, S) > D(A, S)

(see (6.4)). Recall that for M & M_(A) x. (M) =2 2, (M)
=S s A p

B
(p e Hty(A), p M S # ¢). According to (III, 7.18), quoted

already above, p | > p A is a bijection from X to {p e

Hty(A) | p NS # ¢). In particular, if p e X and if M e M
(A/p A) then MﬁA =0 for ¢ # p in X, so XS(M) =2, A(MEAXEAl

Since Mp = 0, M A is a vector space over the field of
fractions of A/p A (= the residue class field of A A? so
Ly (¥EA) is just the rank (cf. proof of (6.3)) of @RA.as
pA

a module over the integral domain A/p A. This establishes
the alleged description of §. Now the top row is just the
kernel of the morphism from the middle to the bottom (by
definition in the case of Rko). The top row is exact because

of the long homology sequence, plus the fact that the
epimorphisms det; split. q.e.d.

(6.11) COROLLARY. In the setting of (6.10) assume

that B and each A/p A (p ¢ X) is_a Dedekind ring. Then
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there is an exact sequence

SK; (A)

> SKj (B) > P_il Pic(A/p A)

X

detO(A)

> Pic(A)

> Rko(A) > 0

Proof. In the diagram of (6.10) we can identify
GO(A/E.A) with KO(A/B.A)s and then GO(A/E.A) = Ker(GO(A)

rk

> 5) is identified with Rko(A/E_A). Moreover (3.8)

implies detO: RkO > Pic is an isomorphism for Dedekind
rings. Therefore RkO(B) = 0, and we deduce from (6.10) a

diagram



0

<

()
o
(v) 3°p

()

")

0
*
214
H
Ty

N <

O O —

(v d/v)o14

x 3 d
I

(@ s <

(v)Txs
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with exact row and column. The corollary follows immediately
from this.

§7. APPENDIX: THE CATEGORY FP

We fix a commutative ring A. The category

ER = EE(A)

has, as objects, the faithfully projective A-modules. Its
morphisms are the A-isomorphisms between such modules, and
it is equipped with the product, eA, in the sense of Chapter

VII, Note, therefore, that the inclusion
Pic(A) C FP(A)

is a product preserving functor (though not cofinal).
According to (4.6), a module P ¢ mod-A belongs to FP if and
only if P @A Q = A" for some Q € mod-A and some n > 0. In

particular, therefore, the free modules are cofinal in FP.

It follows from this also that a homomorphism A > B of
commutative rings induces a cofinal, product preserving
functor, GA B: FP(A) > FP(B).

The purpose of this section is to calculate the
groups Kigg:in terms of the groups Kig.

Recall that we have a (split) exact sequence

rk

0 > Rk (A) > K (A) > H (A) > 0,
[e] [e] [e]
and this induces
0 —> Q8 Rk (A) —> Q8 K_(4) Ik,
> g@ HO(A) > 0,

where the tensors here will be all understcod to be over £~
Recall that HO(A), the ring of continuous functions from

spec(A) to Z, is additively generated by the characteristic
functions of supp(eA), e = e in A. (This followed from
quasi-compactness.) Consequently we can identify Q 6 HO(A)
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with the ring of continuous functions from spec(d) to Q.
Thus we can define

v (g s K_(4)

to be the set of x € 0 8 KO(A)such :hat rk(x) takes only
strictly positive values. Writing U (Q 8 HO(A)) for the
functions from spec(A) to the positive rationals we see that
U+(g 8 HO(A)) is a subgroup of the group of units of Q8
HO(A). Since Rko(A) is a nil ideal (see (4.6)) it follows
that Q 8 Rko(A) is also nil, and hence in rad(g 8 KO(A)).
Therefore an element of Q 8 KO(A) is invertible if and only

if its rank is. Thus we have a split exact sequence of
groups (of units),

W 0 —> 1+ (Q8 Rk_(A)) —> U (8 K (&)

> ut(Q 8 H_(4) —> 0.

If x ¢ Q 8 RkO(A) then x is nilpotent, so we have the poly-
nomials

exp(x) = I /!
n>0

and

log(l+ x) =~ ¢ (-x)"/n.
n>0

These are inverse group isomorphisms

(2) Q8 Rk (A) ———2—> 1+ (Q@ Rk_(A)).
log

Combining (1) and (2) we have

+ +
(3) U(@® K (&) =U' (@8 H (&) ® (@8 Rk_(4)).
The relevance of this to our present interest is:

(7.1) THEOREM. The map P |

> 18 [P]  from obFP(A)

[a~]

to Q ) KO(A) induces an isomorphism
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+
K FR(A) ———> U (Q 8 K_(&)).

Proof. If P e FP then [P: A] is everywhere positive,
by (4.6), so hP = 18 [P] e U'(Q & K _(A)). Evidently
h(P 8A Q) = h(P) h(Q) forp, Q ¢ FP, so h induces a

homomorphism

h: K FR(A) ——> U+(g 8 K _(a).

Suppose [P]FP - [Q]FP is in Ker(h), i.e. 1 & [P]P =18 [Q]F

Then [P]. - [Q]P has finite additive order in KO(A); say

o

alPl, = nlq]

P for some n > 0. This means that A" 8A P and

AR ®A Q are stably isomorphic. After multiplying n by a
large factor, if necessary, we can arrange (see (4.2)) that

A" 8 P =~ A" g Q. But then P1ep

Finally, suppose 1/n @ x ¢ U+(g 8 KO(A)) where n > 0

[Q]FP. Thus h is injective.

and x € KO(A). Then rk(x) is an everywhere positive function
on spec(A), so (4.2) implies there is an m > 0 such that

mx = [P]P for some P ¢ P. Since [P: A] is everywhere
positive we have P ¢ FP. Therefore 1/n 8 x = 1/om 8 mx = (1
8 nm)”! (16 [P]P) h(Anm)—1 h(P). This shows that h is

surjective, and hence completes the proof.

In order to compute K FP we shall require a lemma on
direct limits.

Let L= (W ;s £ : W > W ) be a direct
n’ n,nm’ n nm
n, me N

system of abelian groups indexed by the positi%e integers N,
ordered by divisibility. We then define a new direct system

L = (W 3 £~ W W)
n’ n,om’ n nm

by fn,nm =m fn,nm’ and a morphism,
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> 7~
e N Lo

(nlw )n : L
n

of direct systems. The required commutativity conditions are
easily seen:

nlwn
W > W
n n

£ - = f
n,nm n,nm n,nm

W > W

nm nmlw nm

nm

L” is a functor of L, and L > L7 is a natural transforma-

tion whose cokernel we denote by L" = (W /oW _; £ )
n n’ n,om

L > L~ > 1" > 0.

(7.2) LEMMA. Let L be a direct system as above. Then
the sequences

e

> LY > 0
3

and

Le (Z > Q > 0)

> Q/2

are naturally isomorphic.

Proof. Let E = (Z ; e
—_— n n,nm

and e = 1, for all n, m € N. Evidently the exact sequence
n,nm Z =

of direct sys?ems

) be the system with z = z

L > L~ > L" > 0
and
L8 (E > E” > E" > 0)
are isomorphic. (H L E = (W Z 3 £ .
morphi (Here L @ ( n@ 0’ n,nm@ en,nm)’ etc.)
Since L ] > E is an exact functor the lemma will follow if
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we show that E

> E’ is naturally isomorphic to Z

> g g

E” is a monomorphism and the morphisms in the system Q § E~

> Q.
Since all e om 2Te isomorphisms E=12. Moreover E~

are isomorphisms, so (g ® E7) = Q. However E‘ is clearly
_—
divisible, so E” = Q. q.e.d.

Since the free modules are cofinal in FP(A) it follows
from (VII, 2.3) that we can compute K FP(A) as the direct
limit of the commutator factor groups, wn, of AutA(An) =

GL_(® :
n
W = GL (A)/[GL (A), GL (A)].
n n n n

Of course the limit is taken with respect to the homomor-
phisms

g Y > W
n,nm 1 nm
induced by
o 0
o F——> a® 1 = o (o e GL (A)).
m . n
0 o

Consider also the homomorphism

HIY > W
n,nm n nm

induced by

o |—> a e (-1 T n (¢ e GL_(A)).

0 I
n

According to the Whitehead lemma (V, 1.7) we have
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= mod E (A),
nm
0 I
n

and (V, 1.5) implies that En(A)(: [GLn(A), GLn(A)] for n >

3. If n, m > 1 then nm > 3 so we conclude then that

=m f
8n,nm n,nm’
i.e. that g = f~ in the notation of (7.2). Since
n,nm n,nm

lim . (wn; fn,nm) = K, (A), clearly, we conclude from (7.2)

(7.3) THEOREM. There is a natural isomorphism
KFE(A) = Q8 Ki(A) = (Q 8 U(A)) & (Q8 SKy(A)).
We can even pass to the limit ‘
GLg (A) = lim _ (GL_(A); o [—> a8 Im)n’ me N’
and, by (VII, 2.3), write )
KiFP(A) = GL@ (A)/[GLQ a), GL@ a].

The elements of GL4(A) can be represented as infinite
matrices of the form

o 0

e
i

(4) (o ¢ GLn(A) for some

n > 0).
0

.

If we write det(a) = 1/n 8 det(a) ¢ Q 8 U(A) then it is easy
to see that this does not depend on the choice of a to

represent E.(note, for example, that o ¢ Im = o for all
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m > 0.) The resulting homomorphism

det: GLQ(A) > Q8 Ua)
is just the projection on the first summand in (7.3).

The inclusion Pic(A) C FP(A) induces homomorphisms

(5) Pic(A) > Kogg(A)
and
(6) U(A) > K{ER(A).

(7.4) PROPOSITION. (0) The kernel of (5) is the

torsion subgroup of Pic(A), and its image lies in the

subgroup corresponding to Q8 Rko(A) in (7.1).

(1) The kernel of (6) is the torsion subgroup of

U(A), and its image corresponds to the subgroup 1 8 U(A)C
Q 8 U(A) in (7.3). Thus the cokernel of (6) is

(Q/Z 8 UA)) & (Q8 SKi(A)).

Proof. (0) If P e Pic(A) then [P: A] = 1 so [P]P e 1
+ RkO(A); the last assertion follows from this because=g 8

RkO(A) corresponds to the subgroup 1 + (g 8 RkO(A))
+
CcUu (g e KO(A)) in (7.1).
If [P]EL = [A]££=then P @A Q = A @A Q for some Q ¢
FP, and we can even take Q = A" for some n > 0, since the

free modules are cofinal. Then P = A" so A = An(An) = An(Pn)

= P*, Hence [P].., has order n.
Pic

Conversely, suppose [P] has finite order n > O,

P(n-l)

Pic

so PR =A, Set Q=A8P &P 20...0
P8, Q

. Evidently,
Q = A BA Q, and Q & FP. Hence [P] p = [A]Zg; q.e.d.

1

(1) If u e U(A) = GL;(A) then we have
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u= . GL_ (A),
u € 8( )

and the homomorphism (6): U(A)
this inclusion

> Ky (ER(A)) is induced by

U CZGLQ(A).

In fact, we see that this identifies U(A) with the center of
GL @(A). Since the decomposition K;(A) = U(A) & SK;(4) is
induced by the splitting U(A) = GLj(A) C GLn(A) _det U(a)

it follows from the way in which the isomorphism in (7.3) is
constructed that (6) corresponds to the map

U(A) > (Q8 U(A) ® (Q8 SK;(A))

U |— (1 8 u) = det(n).

The assertions of (1) follow immediately from this. q.e.d.
If we write

PGL(A) = GLo(A)/U(A) = lim _ (PGL (&), b ),

where PGLn(A) = GLn(A)/(ScalarS), and where hn n is induced

by o — o © Im (o € GLn(A)), then we conclude from (7.4)
(1) that

PGL(A)/[PGL(A), PGL(A)] =~ (Q/Z @ U(A)) & (Q8 SKy(4)

where the projection on the first factor is the map induced
by the determinant (on GLB A)).

58. APPENDIX: THE SYMMETRIC ALGEBRA IS INVERSE TO
THE EXTERIOR ALGEBRA

If A is a ring and if t is an indeterminate we shall
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write, for M ¢ A-mod,

M[[t]] = {formal power series I mitl (m, € M)}.
i>0 *
This is a left module over the power series ring A[[t]]. The

"constant term' is a homomorphism A[[t]] > A, and we
write

U (Al[t]]) = Ker(u(allt]]) > U(A)).

If F e A[[t]] then 1 - tF is invertible, with inverse

% t"F". It follows that
n>0

Uy (alle]]) = 1 + ctAl[e]].

Henceforth we fix a commutative ring A. Assume that

we are given a (non additive) functor L = LA from A-modules

to graded A-modules,

P[> L) = (L"(p))

n>0’

which satisfies the following conditions:

(i) L° is the constant functor, P k——> A, If P ¢
P(A) then L7(P) ¢ B(A) for all n > O.

(ii) There is a natural isomorphism
LE 8 Q) = L(®) 8, L.

(This is a tensor product of graded modules, so the isomor-
phism consists of isomorphisms

e e Q) = . L@ 8, @

for each n > 0.)

(iii) If A > B is a homomorphism of commutative
rings then there is a natural isomorphism of graded
B-modules,

LA(P) @A B = LB(P @A B).

I.e. "L commutes with base change."



K-THEORY OF PROJECTIVE MODULES 523

With this L at hand we can define

L: KO(A) —_— Ul(KO(A)[[t]])
by

L[P] = ¢ [LPpIt" (P e P(A)).
n>0
Property (i) shows that the right side lies in Uy (K (A)[[t]]),

and property (ii) shows that it is an additive function from
obg(A) to an abelian group. Hence L is a well defined
homomorphism:

(1) L{x + y) = L(x) L(y)

Moreover property (iii) shows that it is natural in the
sense that

K_(4) —————> K_(B)
LA LB
U R (A [[£]]) ————> U3 (& (B [[£]])

commutes, where A > B is as in (iii).

Next suppose (P, a) ¢ ZE(A), i.e. P¢ E(A) and o €
AutA(P). Then we can define

L: obIP(A) ——> Ky (A)[[t]]
by
n n ,.n
L(P, a) = anp [L"P, L7alt .
(Note that [LOP, L°a] = [A, lA] = 0 according to (i).) If

also B ¢ AutA(P) then L%(aB) = Ln(a) L®(B) (L is a functor)

so we have

(2) L(P, aR) = L(P, a) + L(?, B) (P e P(A);
o, B & AutA(P)).
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If (P, o) and (Q, B) are two objects of IP(A) then

= I‘I i j
L8 Q a8 =z [ e, i,

Lie 8 1Ig) 1P,
since [L'P 8 1o, 170 ® 1ig] = [Lip 8 Liq, L, ® 1Ig] +
1 C . o , .
[L7P & LIq, 10 ® 1qu] = [L'P] [udq, tdg] + [Lial (L'p, L'al,

(using the KO(A)—module structure of K;(A)), we conclude

from the formula above that
(3) L(P®Qq, a® g) = L[] L(Q, B) + L[Q] L, o).
This suggests that we introduce
L1 (P, o) = L[P]-1 L(P, o).
For then it follows from (2) that L; is still additive with

respect to composition. Moreover, combining (3) and (1) we
have

Li(P&Q, a® g)

L[P®Ql"! L(P & Q, a & B)

L{P]7L L{Q]™! (LIP] L(qQ, B)

+ L[Q] L(P, o))

Ly(P, o) + L;(Q, B).

It follows therefore that L; induces an additive homomor-
phism

Li: Ky(A) —> Ky (A)[{tl].

Just as for L and Ko’ this is a natural transformation.

(8.1) EXAMPLE. Let LA = AA’ the exterior algebra.
The conditions (i), (ii), and (iii) are well known and Al is
the identity functor. An(A) =0 for n > 1 so we have A[A] =

1 + t. Hence A[A"] = (1 + ©)".
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If u € U(A) write [u] = [A, u] € Ky(A). Then A(A, u)
= [ult so Lyfu] = (1 + )71 [ult

= [u] (£ - t2 + t3-...).

(8.2) EXAMPLE. Let LA = SA’ the symmetric algebra.
Again conditions (i), (ii) and (iii) are well known, and
sl is the identity functor. Sn(A)

have S[A] = ¢

A for all n > 0 so we
n - _ -1
050 t (1 t)”. Thus

s[Al(t) = A[A](-t)7L.

We shall generalize this fact in (8.4) below.

If u e U(A) then S;[u] = (1 - t) (Zn 0 [un]tn) =
2o ([0%1 - [™7HDe” =

Zn>0 [u]tn = [u] <Zn>0tn)

Let P be any A-module and let d: P > A be a linear
functional. Then d extends to a derivation of A(P) by

(4)

d(xlA"'AXn) = z

l<i<n

DT dGx) Gohe.deix).

This defines a positive complex, the "Koszul complex",
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whose zero homology is Coker(d) = A/a, where g = Im(P d >A) .
We have the following well known criterion for the vanishing
of the other homology (see, e.g., Serre [2], Chapter IV,

Part A) which we quote without proof.

(8.3) PROPOSITION. Let P = AD, with basis (e,)

1’ 1<i<n,
and let d: P > A by d(e,) = a,. Set a, = r Aa,,
—_— — i it — = . .

0<j<i
and assume the image of a, ig_A/gi is not a divisor of zero

(1 <1 <n). Then (5) is a free resolution of A/gn+l.

This proposition applies notably when A is a poly-
nomial ring, A = B[al,...,an] = SB(Bn).

We shall apply (8.3) to the following situation. Let

P be an A-module. Then P = Sl(P)CZ S(P) so this inclusion
induces an S(P)-linear map

S(® QA p > S(P).

As above this extends to a derivation of the exterior
algebra, AS(P) (s@E) @A P), whose zero homology is

A = S(P)/(the ideal generated by P = S1(p)).

If P is free with basis (e, )l< < then S(P) is the poly-
nomial ring A[el,...,e ]. Moreover S(P) @A P ig a free

- 8 = .
S(P)-module with basis (1 e, )l<l<n and d(1 8 ei) e,
Therefore (8.3) implies AS(P) (seey 8 P) is a projective
resolution of A in this case. More generally, if P e P(A)

then we can apply the last conclusion to all the localiza-
tions Pm € g(Am), which are free, and conclude again that

8 P i . .
AS(P) (s@®) A ) is acyclic except in degree zero.

Note that ASCP) (s(p) 8A P) = S(P) @A A,(P) , so that

it is bigraded, by Sn(P) BA ARP) (n, m > 0). Moreover, since
d is extended S(P)-linearly from the inclusion P = sl(p) c

S(P) it follows from (4) that d induces homomorphisms
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> s™ 1 p) 8, ALy,

s (p) 8, A" Py

This shows that, as a complex of A-modules, (S(P) @AP)

As ey
is a direct sum of subcomplexes of the form

> s1(p) o, AL epy

(6) 0 >s (P) 8, AT ep)

> Sn(P)GA AO(P)

> 0,

one for each n > 0. We have seen above that if P ¢ P(A) then
(6)n is acyclic except for the one term complex (6),:

0 >S°@)8AAO@)

> 0. In this case, therefore, we

have

-1 stent wre)l =0 in k@)
0<i<n ©

for all n >0). This proves the following elegant formula:

(8.4) PROPOSITION. Let

A, St K (A) > U (Ko (A [[E1D)

be the maps corresponding to the exterior algebra (see

(8.1) and the symmetric algebra (see (8.2)), respectively.
Then if x & Ky(A) we have

Ax) (B). S(x)(-t) = 1.

HISTORICAL REMARKS

The exposition in the early sections is derived
largely from Bass [1] and Bass-Murthy [1]. Milnor's theorem
is taken from some unpublished notes of Milnor. The
G-sequence of a localization is due to Heller-Reiner [1],
and the analogous K-sequence is stated, with an incomplete
proof, in Bass-Murthy [1]. The calculation of Kiggzis lifted

from my Tata notes [4]. The formula relating A and S in §8
seems to be well known to the experts., I learned of it in a
conversation with Bott.



Chapter X
FINITENESS THEOREMS

FOR RINGS OF ARITHMETIC TYPE

Throughout this chapter we fix the following data and
notation:

R is a Dedekind ring.

X = max(R).
L =5"1R (S =R - {0}) is the field of fractioms of
R.

(0)

A is a semi-simple finite L-algebra.

A is an R-order in A which is an R-lattice (i.e. a
finitely generated R-module, in this case).

Our intention is to prove that the abelian groups
Ki(A) and Gi(A) (i = 0, 1) are finitely generated when

R = Z and (only sometimes for i = 1) when R = F[t], a
polynomial ring over a finite field F. The proofs consist of
a reduction to classical theorems on the finiteness of class
number and the finite generation of units. We also employ a
technique of Swan [1], who first proved some of these
results in the case when A = Rm is the group ring of a
finite group w.

§1. SWAN'S TRIANGLE, AND THE CARTAN CONDITION
We keep the notation of (0). The inclusion AC A =

529
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ST1A leads to a commutative diagram with exact rows:

ky Ko

Ky (&) > Ky (A) > KO(A, S) > KO(A) > KO(A)

(=) ec1(n) co (A, 8) co(8)  (=)fec )

(L Gy (M) > G, (A, 8) > 6 (8) o> G (M)
¢]

I
p e x Cola/p &)

The top row comes from (IX, 6.3), and the bottom row from
(IX, 6.2). The verticals are the Cartan homomorphism (IX,
§2). The coproduct on the bottom is identified with GO(A, S)

by (IX, 6.9). Many results in this section will refer to the
notation in (1).

Let EO(A)CZ g(A) be the full subcategory of (R-)
torsion free modules M e M(A). If O

> N

> P > M

> 0 is an exact sequence in mod-A with M ¢ gO(A) then P

£ EO(A) <=> N ¢ géA). Moreover, if P ¢ P(A) then N ¢ gO(A)
so it follows that go(A) is an admissible subcategory of
E(A), and every M ¢ g(A) fits into an exact sequence as
above with P ¢ E(A) and N ¢ EO(A). It follows therefore from
(VIII, 4.6) that the inclusion EO(A) C g(A) induces iso-

morphisms

(2) K, (M A)) > K, (M(4)) = G, (4 (dE=0,1.

Let a be a non zero ideal in R. Then the functor

8 R/a: M(4) > M(A/Ag),

has an exact restriction to gO(A), which is the reason for
introducing Mo' For if M ¢ EO(A) then M ¢ E(R), so a short

exact sequence of such modules splits as a sequence of
R-modules. Thus we obtain induced homomorphisms KiQyO(A))
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> Gi(A/Ag) (i = 0, 1). Combining these with (2) we obtain

homomorphisms

¢ 1 6, (A) ——— G, (&/A0) (1 =0, 1.

(1.1) PROPOSITION ("Swan's Triangle"). Let g be a

non zero ideal of R. Then there is a unique homomorphism

dgf G, () > GO(A/AQ) such that
8o
GO(A) > GO(A)
¢§_ 69.
G, (A/AD)

commutes.

Proof. Since g, is surjective (see (1)) the proposi-
0. Now
K_ (g (A))
is generated by the classes of simple A-modules M ¢ g(A/AE)

tion will follow once we show that ¢a(Ker(go))
Ker(go) = Im(Go(A, S) > G_(4)) anE'GO(A, S)

for all p ¢ max(R).

Let O > M
P(A). Then, by definition, ¢a[M] = [p/Pa] - [N/Nal. Suppose

> N > P > 0 be exact with p ¢
first that g = aR is principal.

*a

If Ma # O then, since M is simple, M > M is an

automorphism. It follows that Pg N\ N = Na and so 0 > N/Na
> P/Pa ——> M/Ma = 0 is an exact sequence, showing that
M] = 0.
¢2F l1=0
If, on the other hand, Ma = 0, then the exact
sequence 0 > Pa/Na > N/Pa > P/Pa > M > 0 1in

M(A/Ag) shows that ¢,[M] = [M] - [Pa/Na] = [M] - [M] = O.
Finally, in case g is not principal, set 8§ =1+ g

and localize to S”!R. This does not alter any of the modules
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P/Pg} N/Na, etc. which are annihilated by a. On the other
hand S_lg_C rad SR so s™1r, being a Dedekind ring with non
zero radical, is semi-local, and hence a principal ideal

ring. Hence we can apply the arguments above over sTIR to
conclude that ¢a[M] = 0. q.e.d.

(1.2) COROLLARY. Suppose that R is local with maximal

ideal p. If the Cartan homomorphism CO(E) = CO(A/AP):
KO(A/AE)
KO(A) is likewise. Moreover, if P, Q ¢ E(A), then P SR L =

>

> GO(A/AE) is a monomorphism then kO: KO(A)

Q @R L =P =~ Q. If, further, A is right regular, then ko

is an isomorphism.

Proof. We have the commutative diagram

cO(A)
K, (h) ———y—> G (1)
///Eg///////// go
CO(A)
KO(A) ——> GO(A) y

P
¢
\ \
KO (A/AR) ———C—o-(i)—"‘_> GO (A/AR)

Since Ap C rad A it follows from (IX, 1.3 (0)) that ?R is a
monomorphism (in fact an isomorphism if R is p-adically
complete). Therefore cO(E)¢B =8 co(A)kO is a monomorphism,
and hence ko is also. If A is right regular then co(A) is an

isomorphism so the surjectivity of ko follows from that of

8"

Finally, if P, Q € P(A) and if P @R L =Q QR L then,
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since ko is a monomorphism, [P] = [Q] in KO(A), i.e.p g A"
~ Q @ A" for some n > 0. Since A is semi-local it follows
from (IV, 1.4) that P = Q. q.e.d.

(1.3) DEFINITION. The Cartan condition on A is as
follows: For each p ¢ X, the Cartan homomorphism

CO(E) = cO(A/A{Q: KO(A/AR) > GO(A/AQ)

is a monomorphism. Equivalently, the Cartan matrix of A/Ap
has non zero determinant.

(1.4) COROLLARY. Let A satisfy the Cartan condition.
Let P e P(A) be such that P 8 L = A", Then for all p e X,

-1
P = An, and P has a direct summand isomorphic to A" . If

2 P -

R is semi-local then P = An.

Proof. The first assertion follows from (1.2) applied
to AR-over R . By virtue of the first assertion and the fact

that dim X < 1 the second assertion follows from Serre's
Theorem (IV, 2.7). If R is semi-local the last assertion

follows similarly because dim X = 0 in this case. q.e.d.

(1.5) COROLLARY. Let A satisfy the Cartan condition

and assume A is a division algebra. Then every P e P(A) is

the direct sum of a free module and of a right ideal in A,

Proof. Clearly P BR L =~ A" for some n so (1.4)
implies P = Q & An_l, and necessarily Q is an A-lattice in

Q @R L = A, Hence Q is isomorphic to a right A-ideal.
(1.6) PROPOSITION,. Let

c (A, S)
C = Coker(K_(A, §) _ 6 (a4, $)).

Then there is a natural epimorphism

I e
peX Coker(cO(R)) > C.
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Hence, if A satisfies the Cartan condition, then C is a

torsion group.

I
b £ X GO(A/E_A) and

KO(A, S) = KO(ES(A))’ where ES(A) is the category of torsion

Proof. We have GO(A, S) =

A-modules of finite homological dimension. Hence the pro-
position will follow once we show that E(A/R_A)(: ES(A) for

each p € X. Since any P ¢ E(A/E.A) is a direct summand of

some (A/E_A)n it suffices to show that hdA(A/E'A) < o, But

pA = E_QR A e E(A) because p is invertible. Therefore 0 >

> Alp A

pA —> A > 0 exhibits a finite E(A)-resolu-

tion. q.e.d.

(1.7) EXAMPLE. Suppose B = HBi (1 < i < n) where each
B, is a right Artin ring such that Bi/rad Bi is simple.
Then cO(B) = cO(Bl)Q...Q cO(Bn), and each co(Bi) is repre-

sented by a non zero one-by-one matrix. Hence c(B) is a
monomorphism. Now any commutative Artin ring is a product
of local rings, so the remark above implies:

If A is commutative then A satisfies the Cartan

condition.
We further contend:

If A is a maximal R-order then A satisfies the

Cartan condition.

Indeed, let g be any two sided ideal in A which is an
R-lattice (e.g. Ap for some p ¢ X). Then we will show that
c(A/a) is injective.

According to (III, 8.6) we have a unique factorization
nl n

a=p1 ---B, T with the p; € max(A), the set of maximal two
n.:
sided ideals. Set q; = Hj%i Ej J (1 <4 <n). By the uniqu?
factorization theorem 9, s p; so ngj ¢ P; for all 1 (1 < i
= t mi + =
< n). It follows that ngj A. Similarly we have Py 94
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A for each i, Now, just as in the proof of the Chinese
Remainder Theorem (III, 2.14), it follows that

0
Alg = T A/p; ~.

n.
Since each p; € max(A), it follows that Bi = A/Ri *
satisfies the hypothesis made at the outset, so we conclude
from the first remark above that c(A/g) is injective. g.e.d.

(1.8) EXAMPLE. Let 7 be a finite group. Then CO(LW)

is injective (cf. (XI, 4.5), and the ensuing remark). If
char (L) does not divide [n: 1] then Lm = A is semi-simple
(see (XI, 1.2)), and the R-order A = Ry satisfies the Cartan
condition. (Apply the first assertion to the fields R/p.)

By virtue of the theory of maximal orders (cf. (III,
§8) and (1.7) above) we can try to get information about A
by comparing A with a maximal R-order B containing A. There
is then a diagram analogous to (1) above for B, and we shall
now write ko(A) in place of ko, to distinguish it from its

analogue kO(B): KO(B) —_— KO(A). Similar conventions apply
to ki and 8; (i =0, 1).
For the rest of this section we assume B is a

maximal R-order containing A and that B is an R-lattice. The
last assumption guarantees that

e = {a e R } aB C A} = annR(B/A)

is a non-zero R-ideal. Then E@B is a two sided B-ideal

contained in A, and it is an R-lattice in A. There is, in
fact, a largest such ideal, SB/A’ called the conductor:

gB/A={beA|BbBCA}

{beB | BDbBCA}

{beA| BbBCA}

]

Let T = R ~ ( Rgc p). This is a multiplicative set
0

in R, and T 1R is a semi-local ring whose maximal ideals are
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-1 . PR
the T” "p, where p ranges over primes containing < -

(1.9) PROPOSITION. Keep the notation above.

(a) If pe Xand pMN T +# ¢ then AR = EE. Hence T is
regular for A (in the sense of (III, 6.7) so there is a

commutative diagram with exact rows

K (A, T) > K (A) > K (T~1a) > 0
o] (e} o]
~ -1
(=) | e (&, T c (&) c (T °8)
G (A, T) > G (A) > ¢ (T 1A) > 0
[e] [¢] (0]

in which co(A, T) is an isomorphism,

(b) Coker(cO(A, S): KO(A, S) > Go(A” S) is a

quotient of E;%gc Coker(co(A/E_A)), a finitely generated

group.

(c) KO(A) —_— KO(B) induces an epimorphism Ker(ko(AD

> Ker(kO(B)). If A satisfies the Cartan condition then

the (non commutative) square

K (A) ——————> K (B)
o 0
c (A) (=)|c (B)
o o
GO(A) S G (B)

induces a commutative square

Ker(kO(A)) —— Ker(kO(B))

(=)

Ker(go(A)) < Ker(go(B)).



FINITENESS THEOREMS FOR RINGS OF ARITHMETIC TYPE 537

Hence the left and bottom arrows have the same image.

Proof. (a) If pNT# ¢ then p P [ Hence EO?R = RR
so B = ¢ B C A ; this shows that A = B . According to

o P P P P
(111, 8.7) B is hereditary, so, in particular, regular. Thus
52 is regular for all p ¢ X that meet T. By (III, 6.7) this

implies that T is regular for A. The properties of the
diagram now follow from (IX, 6.2) and (IX, 6.5).

(b) If pMN T # ¢ then E(A/E_A) C H(A) because T is
regular for A. Hence, under the homomorphism

. - II
co(A, S): KO(A, $) > GO(A, S) = o GO(A/E.A)’

e X

the image contains all terms for which pM T # ¢. Moreover,
as in the proof of (1.6), the image contains the image of
cO(A/E_A): KO(A/E_A) > GO(A/E_A) for all p ¢ X. Since

each GO(A/E_A) is a free abelian group of finite rank part

(b) follows from these observations.

(c) An element in Ker(ko(B)) can be written in the
form [P] - [F] where F = B! for some n > O and P 8, L = Am.
Since B satisfies the Cartan condition (see (1.7)) it
follows from (1.4) that T™!P = T~1F, Therefore we can choose

> F such that T'lh is an isomor-

a B-homomorphism h: P
phism. It follows that h is a monomorphism, and T_lM =0,

where M = Coker(h). Since T is regular for A it follows that
hdA(M) <®, In fact M =0 if pMNT = ¢, and AE is hereditary
otherwise, so hdA(M) < 1 (see (III, 6.6)). Let O

> F~ > M
also.

> P

> 0 be exact with F'e BP(A); then P~ ¢ P(A)

We claim: (i) M BA B = M; and (ii) O
> F @AB >M@AB

> P QA B

> 0 is exact. Once we know this
it follows from Schanuel's Lemma (I, 6.3) that F & (P~ 8A B)
=~ (F~ @A B) # P, and hence [P] - [F] = [P’@A B] - [F~ 8, Bl
€ Im(Ker(kO(A))

> Ker(kO(B)), as required.
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To prove (i) tensor 0 > A > B > B/A > 0
with M over A. Since <B/A)ED = 0 and since M is annihilated

by an element prime to < (because T-IM = 0) it follows that

(B/A) GA M = 0, and hence M

> M 8A B is an epimorphism.

Since these are R-modules of finite length it is an isomor-
phism,

To prove (ii) we note that P~ @A B > F~ QA B is

a homomorphism of torsion free R-modules (because P~ is
projective) which becomes an isomorphism over L. Hence it is
a monomorphism. The other exactness is standard. Thus, we
have proved the first part of (c).

- [F]

For the second part we start with a [P]P(A) P(A)

e Ker(ko(A)) with F = A" and P @R L = A", The commutativity

assertion means, explicitly, that [P]M(A) - [F]M(A) =

[P 8 B] - [F 8, B] in G (A). Since A is now
A A o)

M(A) M(A)
assumed to satisfy the Cartan condition we can apply the
construction used above to obtain an exact sequence 0
> F > M —> 0 such that T-!M = 0, Then assertions
(1) and (ii) above (with P and F here replacing P” and F~
there) apply unchanged, and we conclude that [P]M(A) -

- [F @A B] “q.e.d.

> P

[Flycay = My = [P 84 Blyqa MA)

(1.10) PROPOSITION. Keep the notation of (1.9). Let

¢ be a two sided B-ideal contained in A which is an

R-lattice in A (e.g. c=cBorc-= the conductor).

C b
~0 =B/A
Then A” = A/c and B” = B/c are of finite length as R-modules,

and we have an exact Mayer-Vietoris sequence,

K (&)

> Ky(A") & K;(B)

> Ky (B9 —> K_(4)

> KO(A') & KO(B) > KO(B').

The groups K (A”) and K (B”) are free abelian of finite
—_— 0 o

> K;(B”) is surjective.

rank, and U(B")

In case A is commutative then B is just the integral
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cleosure of A in A, and we have an exact sequence

U(B") . ,
0 TG - U@ - > Pic(A) > Pic(B)
> 0,
where U(B)~ = Im(U(B) > U(B7)).

Proof. Since the square

A ——>

-

I

is a fibre product (see (IX, 5.6)) it yields the Mayer-
Vietoris sequence above, as well as

AT />

U(A)

> U(A") & U(B)

> U(B”)

> Pic(A)

> Pic(A”) ® Pic(B)

> Pic(B7)

if A is commutative (see (IX, 5.3)). Both A” and B~ are
finitely generated torsion R-modules, and hence of finite
length; therefore A” and B~ are semi-local. It follows now
from (IX, 1.4) that KO(A’) and KO(B’) are free abelian

groups of finite rank, and that U(B") > K1(B7) is

surjective. Moreover, in case A is commutative it follows
from (IX, 3.5) that Pic(A”) = 0 = Pic(B”). The last exact
sequence of the proposition follows from this and the
Mayer-Vietoris sequence above for Pic. q.e.d.

§2. FINITENESS OF CLASS NUMBER

For the remainder of this chapter we specialize the
data of (0) in §1 as follows:
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[[Les]

is a finite field of characteristic P, with q =

%o

Py elements.

0)~ R = either Z or F[t], where t is an indeterminate.

{integers > 0} if R =2

Ry 71w, 1£ R = E[¢].

It follows from (III, 8.5) that each R-order in A is an
R-lattice, and that it can be embedded in a maximal R-order.
We also introduce the homomorphism

| [: D®R) ——— U®) (R = reals)

[2np | = Wpl2 e,
where {EJ = card(R/p). If a is a fractional ideal of R we
set

la] = | div(@) |

and we abbreviate
x| = | xR | (x e U(L)).
Moreover, we shall agree that |0] = 0.

(2.1) PROPOSITION. (a) If a is a non zero ideal in R

then
la| = card(®R/a).
Hence, if a € R, then

ordinary absolute value, if R = Z

al
qdeg(a)’ if R = F{t]. (By convention,
deg(0) = -=.)
(b) If a, b ¢ R then
la+b | <lal + |b]

and

| a+b | <sup(lal, |p]) ifa, b e R, .
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(c) If c is a real number > 0 then

card{a e R | |a] < e} <=
and

card{a € R boJal < e} > c.

(d) Let N(Xl,...,Xm) € R[Xl,...,Xm] be a homogeneous

polynomial of degree n. Then there is a real number c > 0

such that, for all x = (xl,...,xm) e R™, we have

| NG [ < e Ix]7,
where |x| = sup(]xll,...,|xm|).
Proof. (a) |a| = | div(a) | and card(R/a) are both

multiplicative functions of g, and they agree on the
generators g = p e X, If ¢ # 0 in Z, then clearly card(é/aé)
is the ordinary absolute value of a. If ¢ # 0 in F[t] and

deg(a) = d then R/aR is a vector space over F with basis 1,

[aN

tyeeo,ot . Hence card(R/gqR) = qd.

(b) Follows immediately from (a) and the definition
of R+, and the same applies to the first assertion of (c).

{0, 1,...,[cl}, if R

faer | |a] <ec)= .
z i = .
0cicfelEt s 1f R = Ele]
e . [c] +1
Hence the cardinality is [c] + 1, respectively, q .
This proves the second assertion of (c).
(d) Write N(x) = ¢ auxa where o = (il,...,im) ranges
over m - tuples such that i; +...+ i = n, and x* = xlil...
l i ) )
x_ ™. For each such o we have [x] = |%| Lok Ilm < |x 1
m m =

i, n
e x|TR o= |x|". Hence IN(x)l <z laal |xa’ <z ’aal [x|™ <

x[n, where ¢ = % [aa[. q.e.d.

[
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Recall that if M e M(R) is a torsion module then we
have -

XGD = Ly 8 (Dp e DR),

where ¢ (M) is the length of the Rmeodule ME (see (IX,
6.6)).

(2.2) PROPOSITION. (a) If M e g(R) is a torsion
module then card(M) is finite and equals [x(M)

.

n n .
(b) Let o: R > R~ have non zero determinant, and

set M = Coker(a). Then M det(a) = 0 and

card(M) = |det(a)

[

(¢c) Let ¢ be a real number > 0. Let W denote the set

of submodules P C R" such that card(Rn/P) < c¢. Then there is
ad+# 0 in R such that R’ C P for all P ¢ W. Moreover
card(W) < o,

Proof. (a) M has a composition series with factors of

the form R/p (p € X). Hence card(M) is finite. Moreover it
is a multiplicative function of M. Since tX(R/E)‘ = !RJ =

card(R/p) (by definition) it follows that card(M) = lx(M)]
for all M as above.

Part (b) follows immediately from (IX, 6.6 ), with the
aid of part (a).
(c) Suppose P ¢ W. Since R is a principal ideal ring

P is free, so P = Im(a) for some o ¢ EndR(Rn). Therefore,

by (b), |det(a)| = card(Rn/P) < c. Let {dl,...,dm} = {a ¢ R]|
0 < |a| < e} (using (2.1) (c)), and set d = dp...d . Since

(R"/P) det(a) = 0 we have (R"/P)d = 0. Hence R" D P D R'd.
Since R"/R"d = (R/Rd)" is finite there are only finitely

many P ¢ W. q.e.d.



FINITENESS THEOREMS FOR RINGS OF ARITHMETIC TYPE 543

Now we resume our discussion of R-orders, keeping the
notation and conventions of (0) and of (0)~ above.

(2.3) PROPOSITION. If A is a division algebra then

there is only a finite number of isomorphism classes of

right A-ideals.

Proof. If ¢ # 0 is a right A-ideal then gL = A,
because A has no proper right ideals. Thus g is an
R-lattice in A so ¢ = card(A/a) is finite.

Let €lseevse be an R-basis for A, and let

_ 1/n
W= g %% | ay e Rys fagl <e
(1 <i=<n)}
, 1/n.0
According to (2.1) (c) card(W) > (c ) = c. Therefore

there exist distinct u and v in W such that u = v mod g.
Say u = Je,a, and v = Ze,b.. Then w = u - v = Ie,c, # 0,
ii i7i id

1/

where |ci‘ = Iai - bil f_sup(]ail, Ibi|) < ¢/, thanks to

(2.1) (b). Moreover, since u = v mod g, we have w € Q.

. _ X *

Consider the norm, NA/R(X) = detR(A-——————> A). If
X = Zeixi e A then NA/R(x) is a homogeneous polynomial of
degree n in the variables (xl,...,xn) with coefficients in
R. Therefore, if we write |x| = sup(]xll,...,lxn[) then

(2.1) (d) implies there is a comnstant K (depending only on
A) such that |N,, (x) | j_KIxIn for all x e A, Now it

A/R
further follows from (2.2) (b) that 'NA/R(X)] = card(Coker
(A —%-"—> A)) = card(A/xA), provided Ny () # 0.

Now we can apply this to the w # O constructed above.
Since A is a division algebra we have NA/R(W) = NA/L(W) 4 0,

1/n.n
c

and hence card(A/wA) < Klw|" < K( ) =Kc. Sincew € g

we have an exact sequence
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0

> alwhA > AfwA > Ala —> 0

so c(card(a/wA)) = card(A/a) card(a/wA) = card(A/wA) < Kc.
Therefore card(a/wA) < K. By (2.2) (c) there is a d # 0 in
R, depending only on K, such that (a/wA)d = 0. Thus ad C
wAC g, i.e. AC w_lg_c:d-lA. Now g = w'lg'as right ideals,
and d depends only on K, therefore only on A. Since d"lA/A
is finite, and since we have shown that any g is isomorphic
to a right ideal sandwiched between A and d !A, the proposi-
tion is proved.

(2.4) THEOREM (Jordan-Zassenhaus). Let V ¢ E(A). Then

the cardinal number, cA(V), of isomorphism classes of

A-lattices in V is finite.

Before the proof we record.

(2.5) COROLLARY. If n > O there is only a finite

number of isomorphism classes of M ¢ E(A) which are torsion

free of rank < n as R-modules.

Proof. Each such M is an A-lattice in V=M @R L e
E(A), and [V: L] < n. Since A is semi-simple there are only

finitely many such V (up to isomorphism), so the corollary
follows from the theorem.

Proof of (2.4). Embed A in a maximal order B (see
(I1I, 8.5)), and choose a # 0 in R such that Ba C A. If M is
an A-lattice in V, then MB is a B-lattice, and MBg C M C MB.
Suppose N 1is another A-lattice and MB = NB as B-lattices.
Then, after applying an automorphism of V to N, we can
assume MB = NB, In this case MBgq = NBa C N C NB = MB. Thus
every A-lattice N such that MB ~ NB has a representative
(of its isomorphism class) sandwiched between MBag and MB.
Since MB/MBa is finite, there are only a finite number of
such lattices. Thus the finiteness of CA(V) follows from

that of cB(V). In turn, the finiteness of CB(V) follows

immediately from:

(2.6) PROPOSITION. If A is a maximal order then there
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is only a finite number of isomorphism classes of indecom-

posable M ¢ g(A) which are torsion free.

Proof. According to (III, 8.7) the category of
torsion free M ¢ M(A) is just P(A). This category is
naturally equivalent to P(B) for any R-algebra B such that
mod-A and mod-B are equiGalent. It follows from (III, 8.7
(b)) and (III, 8.9) that we can find such a B of the form
B = HBi where each Bi is a maximal R-order in a division

algebra over L. Since E(B) =T g(Bi) we are thus reduced to

proving the proposition when A is a division algebra. It
follows from (IIL, 8.7) again that A is right hereditary and
every P € P(A) is a direct sum of modules isomorphic to right
ideals in A. Therefore every indecomposable P ¢ P(A) is
isomorphic to a right ideal. Now the conclusion follows from
(2.3). q.e.d.

(2.7) THEOREM. (a) The abelian groups KO(A) and GO(A)

are finitely generated.

(by Let A satisfy the Cartan condition. Then all

homomorphisms in the square

kO
KO(A) —_— KO(A)
¢h) CO(A) (=) co(/\)
GO(A) ———g;~———~> GO(A)

have finite kernels. Hence rank KO(A) < rank GO(A) = rank

GO(A) = the number of simple factors of A
Proof. We shall carry out the proof in several steps.

(i) Ker(ko) is finite in case (b), and hence KO(A) is

is finitely generated.

An x ¢ Ker(ko) can be written in the form x = [P] -

[4"] with P 8 L = A%, Now (1.4) implies P = Q & AR for
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some Q, and hence x = [Q] - [A]. Since Q is an A-lattice in
Q 8z L = A there are only finitely many such [Q]'s, by (2.4).
Hence Ker(ko) is finite. Since KO(A) is a free abelian group

of finite rank it follows that KO(A) is finitely generated.

(ii) GO(A) is finitely generated.

We have seen that GO(A) is generated by all [M] where
Me E(A) is torsion free. Thus M is an A-lattice in V =
M @R L. By restricting to M a A-Jordan-Holder series for V,

we 