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Abstract 

Baues, H.1., Quadratic functors and met astable homotopy, Journal of Pure and Applied Algebra 91 
(1994) 49-107. 

Quadratic functors lead to the fundamental notion of a quadratic 9i'-module M where 9i' is a ringoid 
or a ring. We introduce the quadratic tensor product A ®£H M and the corresponding abelian group 
Horn £H(A, M) consisting of quadratic forms. Then we describe new quadratic derived functors of 
® and Horn together with applications for homotopy groups of Moore spaces and (co)homology 
groups of Eilenberg-Mac Lane spaces. 

Introduction 

In this paper we develop the quadratic homological algebra which is needed for the 
met astable range of homotopy theory. On the one hand we study quadratic functors 
and their derived functors (Sections 1-7 and Appendices A and B); on the other hand 
we describe applications in homotopy theory (Sections 8-11). 

Let ddd(~) be the additive completion of a ringoid ~ and let dt be the category 
of abelian groups. We classify quadratic functors by "quadratic ~-modules"; see 
Definition 3.1. 

Theorem 3.6. There is a 1-1 correspondence which carries a quadratic functor 

F: ddd(~) ~ dt to a quadratic ~-module F {~}. This correspondence yields an 
equivalence of categories. 

We are especially interested in the case when ~ is a ring R (then ddd(R) is the 
category of finitely generated free R-modules) or when ~ is the ringoid rtf lie which is 
the full subcategory of dt consisting of cyclic groups 7L/pi of prime power order and 
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7L (then ddd ('(5 lie) is the category of finitely generated abelian groups). But also the 
topological ringoid consisting of elementary Moore spaces M(7L, n) = sn and 
M(7Ljpi, n) is important for the computation ofhomotopy groups of Moore spaces, see 
Remark 9.2. 

In case the ringoid ~ is the ring 7L of integers, a quadratic 7L-module is the same as 
a Q-module where Q is the ring described by generators and relations in Proposition 
2.2. The quadratic functor ddd(7L) --> d6, corresponding to Q by Theorem 3.6, 
is the direct sum of the tensor square ®2 and the quadratic construction p2 in 
Definition 2.9. 

For the proof of Theorem 3.6 we use the quadratic tensor product A ®9t M E d6 
where A is an ~oP-module and where M is a quadratic ~-module, we also introduce 
the quadratic Hom-functor for which Hom9t(B, M) E ,916, see Sections 4 and 5. For 
quadratic functors F: d6 --> d6 and G: d6°P --> d6 one has the quadratic approxima
tions (4.2) and (5.2), 

)..: A ®z F {7L} --> F(A), )..': G(A) --> Homz(A, G{7L}), 

which are natural in AEd6. Here F{7L} and G{7L} are quadratic 7L-modules corres
ponding to F and G respectively. For the classical functors 

the quadratic approximation ).. is an isomorphism, see Lemma 2.11 and Pro
position 4.5. We introduce derived Junctors of the quadratic tensor product ® and 
the quadratic Hom-functor respectively in Section 7 and in Appendices A and B. 

They only partially coincide with the derived functors in the sense of Dold and 
Puppe [15]. 

We need such quadratic derived functors of ® and Horn for new natural six-term 
exact sequences in homotopy theory. The sequences are useful for the computation of 
the homotopy groups JrmM(A, n) of a Moore space and the homology HmK(A, n) and 
the cohomology HmK(A, n) of an Eilenberg-Mac Lane space in the metastable range. 
In particular the naturality of these exact sequences yields insight in the functorial 
properties of these groups. We now describe the exact sequence for JrmM(A, n); the 
sequences for HmK(A, n) and HmK(A, n) are of a similar nature, see (10.3) and 
Theorem 10.3. 

Theorem 9.3. For m < 3n - 2 there is a natural exact sequence (A E d6) 

iJ 
---> A ® Jrm{sn} --> JrmM(A, n) --> ).JrmM(A, n) --> O. 
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Here ;.nmM(A, n) is the cokernel ofi*: nmM(A, nt -> nmM(A, n) where i is the inclusion 
of the n-skeleton M(A, n)". Moreover, nm{sn} is the quadratic Z-module given by 

homotopy group of spheres 

The map H is the Hopfinvariant and P = [in' in]* is induced by the Whitehead square. 
The operators *' and *" are derived from the quadratic tensor product, see (7.4). 

Various examples of explicit computations of nmM(A, n) are given at the end of 
Section 9. Using the exact sequence in the theorem we obtain in Example 9.8 a new 

homotopy invariant 

r(M) E Hn(M) *' n2n- 1 {sn} 

of an (n _ 1)-connected (2n + 1)-dimensional closed manifold M, or more generally 
Poincare complex M. The torsion invariant r(M) is an analogue of the invariant 

e(N)EHn(N) (8) n2n-l {sn} 

which determines the homotopy type of an (n - 1)-connected (2n)-dimensional Poin
care complex N and which essentially was used by Kervaire and Milnor [20], see 
Example 9.7. In [9] we describe the connection of e(N) with the a-invariant [35] of 
Wall which classifies (n - I)-connected (2n)-dimensional manifolds. 

For the curious functors Rand Q of Eilenberg and Mac Lane [16J with 
HsK(A, 2) ~ R(A) and H7 K (A, 3) ~ Q(A) EB (A ® Z/3) we get a new interpretation 

by the natural isomorphism (see Remark 10.7 and Example 10.4) 

Here Zr = n3{S2} is the quadratic Z-module Zr = (Z -1 z.!. Z) for which 
r(A) = A ® Zr is Whitehead's quadratic functor [37]. Also (8)' is derived from the 

quadratic tensor product, see (7.4). 
Further significant applications of the new quadratic algebra discussed in this paper 

are described in [7, Chapter n, Section 7] and in [9]. We also use results of this paper 
in a crucial way for the classification of 2-connected 6-dimensional homotopy types. 

1. Modules 

We fix some basic notations on categories, ringoids, rings and modules respectively, 
compare also [24]. A script letter like "€ denotes a category, Ob("€) and Mor("€) are 
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the classes of objects and morphisms respectively. We identify an object A with its 
identity lA = 1 = A. We also writeJE'1&' ifJis a morphism or an object in '1&'. The set of 
morphisms A ...... B is '1&'(A, B). Surjective maps and injective maps are indicated by 
arrows -- and >-+ respectively. 

A ringoid f!I/ is a category for which all morphism sets are abelian groups and for 
which composition is bilinear (equivalently a ringoid is a category enriched over the 
monoidal category of abelian groups). A ringoid is called a "pre additive category", or 
an sit-category, see [22]. We prefer the notion "ringoid" since in this paper a ringoid 
will play the role of a ring. In fact, a ringoid !!/l with a single object e will be identified 
with the ring R given by the morphism set R = !!/lee, e). Recall that a biproduct (or 
a direct sum) in a ringoid !!/l is a diagram 

(1.1) 

which satisfies r1i 1 = 1, rzi z = 1 and i1r1 + izrz = 1. Sums and products in a 
ringoid are as well biproducts, see [22]. An additive category is a ringoid in which 
biproducts exist. Clearly the category sit of abelian groups is an additive category 
with biproducts denoted by X EB Y. A functor F:!!/l ...... !:f' between ringoids is 
additive if 

F(f + g) = F(f) + F(g) (1.2) 

for morphisms f, g E !!/leX, Y). Moreover, we say that F is quadratic if LI, with 

LI(f, g) = F(f + g) - F(f) - F(g), (1.3) 

is a bilinear function. A module with coefficients in a ringoid !!/l or equivalently an 
f!I/-module is an additive functor 

M: f!I/ ...... sit. (1.4) 

In case!!/l has only one object e we identify M = M(e) with a module over a ring in 
the usual sense. An !!/l-module is also called a lejt !!/l-module. A right !!/l-module N 
is a contravariant additive functor N:f!I/ ...... sit. For JE!!/l(X, Y) we use the 
notation 

M(f)(x) = j~(x) = r x for x E M(X), 

N(f)(y)=J*(y)=yf for YEN(Y). 
(1.5) 

A right !!/l-module is the same as an !!/loP-module where !!/lOP is the opposite category. 
In case!!/l is small (that is, if the class of objects in !!/l is a set) let A(!!/l) be the category 
oJ f!I/-modules. Morphisms in A(f!I/) are natural transformations. The category A(!!/l) 
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is an abelian category; as an example one has vU(Z) = d&.. We now recall the 
definition of tensor products of modules. 

Definition 1.1. Let 9t be a small ringoid, let A be an 9t0P-module and let B be an 
gt-module. The tensor product A ®9f B is the abelian group generated by the elements 
a®b, aEA(X), bEB(X) where X is any object in 9t. The relations are 

(a + a') ® b = a ® b + a' ® b, 

a ® (b + b') = a ® b + a ® b', 

(a ff 
• qJ) ® b = aff ® (qJ . b), 

for a, a' E A (X), b, b' E B(X), qJ : X -> YE gt, aff E A( V). The tensor product is a biaddi
tive functor ®gp: vU(9t°P) x vU(9t) -> d&.. 

Definition 1.2. The tensor product 9t ®!f' of ringoids 9t,!/' is the following ringoid. 
Objects are pairs (X, Y) with X E Ob(9t), YE Obe!/') and the morphisms 
(X, Y) -> (X', V') are the elements of the tensor product of abelian groups 
9t(X, X') ®z!/'(Y, V'). Composition is defined by (f® g)(f' ® g') = (ff') ® (gg'). 
Any biadditive functor F: 9t x !/' -> si&. has a unique additive factorization (as 
well denoted by F) F:gt®!f'->d6 with F(f®g)=F(f,g). For example an 
9t-module A and an !/'-module f!J yield the gt ® !/'-module A ® B given by 
(A ® B)(f® g) = A(f) ®z B(g). 

2. Quadratic Z -modules 

Let d dd (Z) be the category of finitely generated free abelian groups. The additive 
functors F: d dd (Z) -> d6 are in one-one correspondence with abelian groups. The 
correspondence is given by F H F (Z). In this section we introduce quadratic 
Z-modules which are in one-one correspondence with quadratic functors 
ddd(Z) -> d6. In this sense a quadratic Z-module is just the "quadratic analogue" of 
an abelian group. 

Definition 2.1. A quadratic Z-module 

H p 
M = (Me -> Mee -> Me) 

is a pair of abelian groups Me. Mee together with homomorphisms H, P which satisfy 
PHP = 2P and HPH = 2H. A morphismf: M -> N between quadratic Z-modules is 
a pair of homomorphisms f: Me -> Ne. f: Mee -> Nee which commute with Hand 
P respectively. Let !2VU(Z) be the category of quadratic Z-modules. For a quadratic 

------------------......... 

I , 
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Q is given by Q = ll6 with basis (a, b, h, p, ph, hp). Moreover, the quadratic ll-module 

X-I(Q), as well denoted by Q, is given by 

(4) Qe = a' Q = ll3 with basis (a, ap, aph), 

Qee = b· Q = ll3 with basis (b, bh, hhp), 

and by 

(
0 0 01 

H=P= 1 0 2 , 

010 

T = HP - 1 = ~ 1 ~ ~1' 
101 

(2.1) 

The ring Q was obtained in a more general context by Pirashvili [26]. In fact, 

Pirashvili defines a ring Q(n) for which the category of Q(n)-modules is isomorphic to 
the category of polynomial functors F from d dd (ll) to d6 of degree n with F (0) = o. 
He does not give a description of Q(2) = Q as in (3) above. Recently W. Dreckmann 
computed for small n the following rank of the free abelian group Q(n), this rank is 

1, 6, 39, 320, 3281, 40558, 586751, 

9719616, 181353777, 3762893750, 

85934344775, 2141853777856, 57852105131809, 

168323763330550~ 52483648929669119 

for n = 1, ... , 15. Many results on quadratic ll-modules in this paper should have 

generalizations for Q(n)-modules. 0 

Recall that an object X in an additive category is indecomposable if X admits no 
isomorphism X ~ A EB B with A =1= 0 and B =1= O. It is an interesting problem to 
classify all finitely generated indecomposable quadratic 7l-modules up to isomor
phism. This leads to the following examples. We say that a quadratic 7l-module M is 
of cyclic type if Me and Mee are cyclic groups. Let In E 7l/n be the generator and let 
k: 7l/n ~ 7l/m be the homomorphism with k(1n) = k· 1 rn' k E 7l, ml k· n. Then we obtain 

the list in Table 1 where C = 7l or C = 7l/pi, P = prime, s, t :2: 1. 
The isomorphic objects in the list are given by C r ~ CS if C = 7l/qi (q odd). With 

the notations in Definition 2.1 we clearly have er = [llr] @z C, CS = [7lS] Q9z C and 
CA = [ll A] Q9z C. We leave it to the reader to describe the dualities in the list. An 

elementary but somewhat elaborate proof shows the following: 

Proposition 2.3. The quadratic 7l-modules in Table 1 furnish a complete list of indecom

posable quadratic 7l-modules of cyclic type. 0 
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Table 1 

M 

e 
CA 
er 
CS 

H(t) 
P(s) 

s + t > 1, H(s, t) 
s + t > 1, P(s, t) 
s + t > I, M(s + t) 
r(s) 
5(s) 

s> I, r'(s) 
s> I, 5'(s) 

M. 

e 
0 
e 
e 
Z 
Z/2' 
Z/2' 
Z/2' 
71./2' 
71./2s+ 1 

71./2' 
Z/2'+ 1 
71./2' 

H.J. Baues 

M •• 

0 
e 
e 
e 
Z/2' 
71. 
71./2' 
Z/2' 
71./2' 
71./2' 
Z/2,+1 

71./2' 
71./2s+ 1 

H P 

0 0 
0 0 
1 2 
2 1 
2'-1 0 
0 2,-1 
2'-1 0 
0 2,-1 
2'-1 2,-1 

1 2 
2 1 
2,-1 + 1 2 
2 2,-1 + 1 

Remark. It would be interesting to know a complete list of all indecomposable 
quadratic Z-modules. However, to furnish such a list is an intricate problem of 
representation theory. It might be helpful to consider the more general problem of 
finding indecomposable A-representations of the quiver 

.±:+. 
(cf. for example [38, Vol. II, Section 77]). Indeed, if A = Z[Zj2] is the group ring of 
the cyclic group Zj2, then a quadratic Z-module is a representation of this quiver 
given by A-homomorphisms H: Me -+ Mee , P: Mee -+ Me where A acts via T on 
Mee and acts trivially on Me. Here one can use the fact that the indecomposable 
Z[Zj2]-lattices are known, see [38, Vol. I, (34.31)]. Such lattices are part of quadratic 
Z-modules M for which Me and Mee are finitely generated free Z-modules like for 
example Z® and zP in Remark 2.8; compare [38]. 

Definition 2.4. Let F: flI-+ d~ be a quadratic functor and let X v Y be a biproduct 
in flI. The quadratic cross effect F(XJ Y) is defined by the image group 

see (1.3) and (1.1). If flI is an additive category we get by (1) the biadditive functor 

(2) F(-J-): flI x al-+ d~. 

Moreover, we have the isomorphism 

(3) V':F(X)Ei3F(Y)Ei3F(XJY)~F(Xv Y) 
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which is given by F(id, F(i2) and the inclusion i12 : F(X 1 Y) c F(X v Y). Let r12 be 
the retraction of i12 obtained by 'l' -1 and by projection to F(X 1 Y). For the biproduct 
X v X one has the maps /l = i l + i2 : X -+ X v X and V = rl + r2: X v X -+ X. 
They yield homomorphisms Hand P with 

(4) F {X} = (F(X) !! F(X 1 X) ! F(X)) 

by H = r12F(/l) and P = F(l7)i 12 . Moreover, we derive fromJ + g = V(fv g)/l the 

formula 

(5) F(f + g) = F(!) + F(g) + PF(flg)H 

or equivalently ,1(f, g) = PF(flg)H, see (1.3). 

Proposition 2.5. Let F: fJi-+ sit be a quadratic Junctor and assume fJi is an additive 
category. Then F {X} is a quadratic 7L -module and X H F {X} defines a Junctor 

fJi-+ fLit (7L). 

Proof. We define the interchange map 

(1) t: X v X -+ X v X, 

Then we have t/l = /l and Vt = V. Moreover, t induces a map 

(2) T: F(X 1 X) -+ F(X 1 X) 

with F(t)i12 = i 12 T and r12F(t) = Tr12. Hence we get TH = H and PT = P. More
over, we obtain HP = 1 + T by applying F to the following commutative diagram in 

fJi: 

XvX 
V /l )X )XvX 

(3) /lV/l 1 1 Vv V 

XvXvXvX )XvXvXvX 
1 v t v 1 

Here we use the biadditivity of F (-1-) in Definition 2.4(2). 0 

The significance of quadratic 7L-modules is described by the next result which 
is a special case of Theorem 3.6 below. Let sldd(7L/n) be the full subcategory of 
sit consisting of finitely generated free (7L/n)-modu\es, n?: 0 (for n = 0 we set 

7L/D = 7L). 
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Theorem 2.6. There is a 1-1 correspondence between quadratic functors 
F: sldd(Z/n) -+ sld. and quadratic Z/n-modules M, n ~ O. The correspondence carries 
F to F {Z/n}, see Definition 2.4(4). 0 

Here a "1-1 correspondence" denotes a bijection which maps isomorphism classes 
to isomorphism classes. Hence any quadratic functor F: sldd(Z/n) -+ sld. is com
pletely determined (up to isomorphism) by the fairly simple algebraic data of the 
quadratic Z-module F {Z/n} which is actually a quadratic Z/n-module. In addition to 
the correspondence in Theorem 2.6 we obtain in Theorem 3.6 below an equivalence of 
categories. 

The next result shows that the universal quadratic Z-module Q in (2.1) is actually 
decomposable. 

Proposition 2.7. One has an isomorphism Q ~ zP Et> Z ® of quadratic Z-modules where 

Z® = (Z -+ Z Ea Z -+ Z) and zP = (Z Ea Z -+ Z -+ Z Ea Z) 

are given by H = (1,1) and P = (1,1). Here zP is the dual of Z®, that is zP = DZ®. 

Proof. The isomorphism is given by the matrices 

( ~ 1 ~ !) for Q. and (! ~ 1 ~ ) for Q~. 0 

Remark 2.S. The quadratic Z-modules Z® and zP are unique in the following 
sense. Up to isomorphism there is only one indecomposable quadratic Z-module 
M with Me = Z and Mee = Z Ea Z, namely M ~ Z®. Dually there is up to iso
morphism only one indecomposable quadratic Z-module N with Ne = Z Ea Z 
and Nee = Z, namely N ~ Zp. For example zP is isomorphic to the following 
two quadratic Z-modules 

Z Et> Z ~ Z (~) Z Ea Z, ZEaZ~Z~ZEaZ. 

The quadratic Z-modules Z® and zP correspond to classical quadratic functors (8)2 

and P 2 which we define as follows. 

Definition 2.9. The tensor square (8)2 is the quadratic functor 
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which commute with T, H, and P respectively. Let fLIt(Yl) be the category of quadratic 

Yl-modules for a small ringoid Yl. 

We identify a quadratic Yl-module, satisfying Mee = 0, with an Yl-module. This 
yields the full inclusion of abelian categories A(Yl) c !lA(Yl), see (2.1). On the other 
hand a quadratic Yl-module M with Me = ° is the same as a pair (Mw T) where 
Mee a biadditive functor Yl x Yl-+ d6 and where T = Tx, Y: Mee(X, Y) ~ Mee(Y, X) is 
a natural transformation with TT = 1 and Tx.x = -1, X, YE Ob Yl. The direct sum 
M EB N of quadratic Yl-modules is given by (M Efl N)e(X) = Me(X) EB Ne(X) and 

(M EB N)ee(X, Y) = Mee(X, Y) EB Nee(X, Y). 

Remark 3.2. For the ringoid Yl = lL a quadratic Yl-module M is the same as a 
quadratic lL-module with Me = M(e), Mee = M(e, e). In fact, for nEYl(e, e) = lL 
the induced map M(n) = n* is defined in Definition 2.1 and T = Te.e in 
Definition 3.1 is defined by T in Definition 2.1. This also shows that for the ring 
Yl = lL/n a quadratic Yl-module is the same as a quadratic lL/n-module defined 

in Definition 2.1. 

The equations (1), (2) and (3) in Definition 3.1 for a quadratic Yl-module show that 

for X E Ob(Yl) 

M {X} = (M(X) ~ M(X, X) -: M(X») 
(3.1) 

is a quadratic lL-module. Hence M yields a functor M: Yl-+ !lA(lL) which carries 
the object X to M {X}. The quadratic Yl-module M, however, is not determined by 
this functor since for example Tx, Y in Definition 3.1 is given for all pairs 
(X, y) E Ob(9f) x Ob(Yl). In case 9f has a single object e, that is, if Yl = R is a ring, then 

a quadratic R-module M consists of quadratic lL-module 

(1) 
H P 

M(e) -+ M(e, e) -+ M (e). 

Here M(e, e) is an R <8>z R-module and the multiplicative monoid of R acts on M(e) 
such that Hand Pare equivariant with respect to the diagonal action on M(e, e) and 

such that 

Here f*(x) denotes the action of fE R on x E M(e). 
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Examples 3.3. Let R be a commutative ring. We define quadratic R-modules RA, R S , 

and R r as follows: 

M M(e) 

o 
R 

R 

M{e, e) 

R 

R 

R 

H 

o 
2 

P 

o 

2 

Here fER acts on xEM(e) by f*(x)=f'f'x and f®g acts on YEM(e,e) by 
(f® g)' Y = f'g' y. 

Example 3.4. Let f7l be a ringoid, let d be an additive category, and let i: f7l---+ d be 
an additive functor. Often f7l is a subringoid of d and i is the inclusion, for example 
f7l = d. Then any quadratic functor F: d ---+ d6 yields a quadratic f7l-module 

F {f7l} = i* F = (Fe,Fee> T, H, P) 

as follows. The functors Fe = i* F and Fee = (i X i)* F (-1-) are the restrictions of the 
functors F and F (-1-), see Definition 2.4. Moreover, H, P and T are given as in 
Definition 2.4 and in the proof of Proposition 2.5, respectively. In case f7l is the 
subringoid generated by the identity 1x EOb(d), F {f7l} is the same as the quadratic 
Z -module F {X} in Proposition 2.5. 

We now are ready to describe the generalization of Theorem 2.6 for quadratic 
f7l-modules; for this we recall from [22, Chapter VIII, Section 2] the following 
definition: 

Definition 3.5. Let f7l be a ringoid. Then the free additive category 

(1) i:f7l c ddd(f7l) 

is given as follows. The objects of ddd(f7l) are the n-tuples X = (X 1, ... , Xn) of 
objects Xi in f7l, 0 S n < 00. The morphisms are the corresponding matrices of mor
phisms in f7l. The inclusion i carries the object X to the corresponding tuple ofiength 1. 
Any additive functor f: f7l---+ d (where d is an additive category) has a unique additive 
extension l: ddd(f7l) ---+ d which carries the tuple X to the n-fold biproduct 
fiX) = fX 1 V ... V fXn in d. Let !'2uad(f7l) be the category of quadratic functors 

(2) F: ddd(fJi) ---+ d6, 

morphisms are natural transformations. 
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Theorem 3.6. There is an equivalence of categories flaad([Jll) ~ fl.Jt([Jll) which carries 

F to the restriction F {[Jll} in Example 3.4. 0 

For a ring [Jll = R the category ddd(R) coincides with the full subcategory of 
finitely generated free R-modules in .Jt(R). Therefore, Theorem 2.6 is readily obtained 
by Theorem 3.6. The inverse of the equivalence in Theorem 3.6 is given by the tensor 
products defined in the next section; one obtains Theorem 3.6 as a corollary of 

Proposition 4.3. 

4. The quadratic tensor product 

We introduce the tensor product of an [JlloP-module and a quadratic [Jll-module. This 

is the quadratic generalization of the tensor product defined in Definition 1.1. 

Definition 4.1. Let [Jll be a small ringoid. We define the functor 

which carries the pair (A, M) to the tensor product A ®[JtM. The abelian group 

A ®[Jt M is generated by the symbols 

(1) a®m, aEA(X), mEM(X), 

[a, bJ ® n, aEA(X), bEA(Y), nEM(X, y), 

where X, Y are objects in [Jll. The relations are 

(a + b) ® m = a ® m + b ® m + [a, bJ ® H(m), 

a®(m + m') = a®m + a®m', 

[a, a] ® n = a ® P(n), 

(2) [a, b] ® n = [b, a] ® T(n), 

[a, bJ ® n is linear in each variable a, b, and n, 

[cp*a, '1'*bJ ® n = [a, b] ® (cp, '1')*(n), 

where cp, '1' are morphisms in [Jll and where a, b, m, m', n are appropriate elements as in 
(1). (We point out that the last two equations of (2) are redundant if [Jll = 2..) For 

------------------........ 
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morphisms F: A ~ A' E...It(~OP) and G: M ~ M' E,q...lt(~) we define the induced 
homomorphism 

(3) F@ G:A ®91M ~ AI@91M' 

by the formulas 

(4) (F @ GHa ® m) = (Fa) @ (Gem), 

(F @ G)([a, b] @ n) = [Fa, Fb] ® (Geen). 

In case Mee = 0 we see that A @91 M coincides with the tensor product of 
Definition 1.1. 

Proposition 4.2. The tensor product of Definition 4.1 yields an additive functor 

for each A in ...It(9l) and a quadratic functor 

for each M in ,q...lt(~). The quadratic cross effect of(2) is given by the formula 

(3) D 

Here A and B are ~oP-modules which yield the (~@ ~)OP-module A ® B by 
Definition 1.2 and the ~ @ ~-module Mee is given by M. The right-hand side of (3) is 
a tensor product in the sense of Definition 1.1. The isomorphism (3) is obtained by the 
inclusion 

which carries a@b@n to [ila, izb] @n for aEA(X), bEB(Y), nEM(X, Y). By 
Example 3.4 the quadratic functor F = (-) ®91 M is as well a quadratic ...It (9l)-module. 
Here the structure maps T, H, P are given by the natural transformations 

(5) 

(6) 



Quadratic Junctors and metastable homotopy 

defined by the formulas 

(7) 

H(a ® m) = (a ® a) ® H(m), 

H([a, b] ® n) = (a ® b) ® n + (b ® a) ® T(n), 

T((a ® b) ® n) = (b ® a) ® T(n), 

P«a ® b) ® n) = [a, b] ® n. 
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We point out that the tensor product of Definition 4.1 is compatible with direct limits 
in .Jt(~OP) and fl.Jt(!?f) respectively. 

Let si be an additive category and let F: si ~ sit! be a quadratic functor. For 
a small subringoid ~ c si the quadratic ~-module F {!?f} is defined by Example 3.4. 
On the other hand each object U in d gives us the !?foP-module 

which carries XE~ to sI(X, U) = [X, U]. We now define a map 

A:[~, U] ®~F{~} ~ F(U) (4.1) 

by A(a® m) = F(a)(m) for aE[X, U], mEF(X) and A([a, b] ®n) = PF(alb)(n) for 
bE[Y, U] and nEF(XI Y). 

Proposition 4.3. The homomorphism A in (4.1) is well defined and natural. Moreover, A is 
an isomorphism if U = X 1 V ... v X r is a finite biproduct with Xi E!?f for i = 1, ... , r 
and if ~ is a full subringoid of si. 0 

This is a crucial property of the tensor product of Definition 4.1 which shows that 
this definition is naturally derived from the notion of a quadratic functor. The 
proposition shows that a quadratic functor F:sldd(~)~ sit! is completely deter
mined by the quadratic ~-module F {~} = i* F. This proves Theorem 3.6; in fact, the 
inverse of the functor of Theorem 3.6 carries M E fl.Jt(~) to the quadratic functor 
[~,-]®~M. 

The next corollary illustrates Proposition 4.3. Let ((j ye be the full subcategory of dt! 
consisting of cyclic groups 1L/n where n = 0 or where n is a prime power. Then we have 
the equivalence of categories 

(4.2) 

where ff sit! is the full category of dt! consisting of finitely generated abelian groups. 
Since each abelian group is the limit of its finitely generated subgroups we get the 
following corollary: 

I 
I 
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Corollary 4.4. Let F: dt --+ dt be a quadratic functor which commutes with direct 
limits. Then F is completely determined by the quadratic ~lIc-module F {~lIc}, see 
Example 3.4. In fact, we have the natural isomorphism [~lIc, A] ®'6yc F {~lIc} c::' F (A) 
for A in dt. 0 

We now consider examples of the natural transformation A in (4.1). A commutative 
ring R satisfies ROP = R. Therefore, we get for any quadratic functor F:vft(R)--+ sit 
the natural homomorphism (A E Ob vft (R» 

(4.3) 

Here the quadratic R-module F {R} is essentially gIven by the homo
morphisms in sit 

F(R) ! F(R I R) ~ F(R), 

see Definition 2.4(4) and (1) below (3.1), and A is defined as follows. For a E A let 
a:R--+A be the map in vft(R) with a(1)=a. Then we get for mEF(R) and 
nEF(RIR) the formulas A(a®m)=F(a)(m) and A([a,b]®n) = PF(alb)(n). 
By Proposition 4.3 the map A is an isomorphism if A is a finitely generated free 
R-module. We call A the tensor approximation of the quadratic functor F. For 
R = 7L we have the following examples for which the tensor approximation is 
actually a natural isomorphism. 

Proposition 4.5. The quadratic functors F = ®2, p2, A 2, T, S2 in Remark 2.10 satisfy 
A ®71. F {7L} ~ F (A) for A E sit, hence one has natural isomorphisms 

o 

The torsion functor F : dt --+ sit with F (A) = A * A, however, is a quadratic 
functor for which the tensor approximation is no isomorphism, in fact, F {7L} = 0 in 
this case. One can check Proposition 4.8 by the definition of the relations in Definition 
4.1. Finally we observe the next result where we use the notation [M] ®71. C in 
Definition 2.1. 

Proposition 4.6. For ME!2vft(7L) and A,CEsl6 we have the natural isomorphism 

A ®71.([M] ®71. C) c::' (A ®71. M) ®71. c. 0 
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5. The quadratic Horn (uoctor 

Let fJIl be a small ringoid. For fJIl-modules A, B one has the abelian group 
Hom91(A, B) which consists of all natural transformations A ....... B. We now extend this 
Horn functor for the case that B is a quadratic fJIl-module. 

Definitions 5.1. We define the functor 

which carries the pair (A, M) to the abelian group Hom91(A, M), the elements of which 
are called quadratic forms A ....... M over fJIl. A quadratic form a: A ....... M is given by 
functions (X, YEOb(fJIl» 

(1) ax:A(X) ....... M(X), ax.y:A(X)xA(Y) ....... M(X, Y) 

such that the following properties are satisfied; (they are analogous to the correspond
ing properties in Definition 4.1(2) and they as well define the sum a + P of quadratic 
forms). 

ax(a + b) = ax(a) + ax(b) + Pax.x(a, b), 

(a + P)x = ax + Px, 

ax.x(a, a) = Hax(a), 

(2) ax. yea, b) = Tay. x(b, a), 

ax.y is bilinear and (a + Ph.y = ax.y + Px.y, 

Me(cp)ax = ax, A(cp), 

Mee(CP, lJI)ax.y = ax,.y,(A(cp) x A(IJI». 

Here a, b are appropriate elements in A(X) or A( Y) and cp: X ....... Xl, IJI: Y ....... Y1 are 
morphisms in fJIl. The last two equations describe the "naturality" of the quadratic 
form a (these equations are redundant if rJl = Z). For morphisms F: A' ....... A in .4t(fJIl) 
and G: M ....... M' Efl.4t(fJIl) we define the induced homomorphisms 

(3) Hom(F, G): Hom91(A, M) ....... Hom91(A', M') 

by the formulas Hom(F, G)(a) = P with 

(4) Px.y = GeeaX.y(F x F). 
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In case Mee = 0 we see that Hom9l(A, M) coincides with the usual group of natural 
transformations A --+ M, hence the functor of Definition 5.1 extends canonically the 
classical functor Hom9l for 9l-modules. 

Proposition 5.2. The Homjunctor of Definition 5.1 yields an additive functor 

(1) Hom9l(A, -): jl"'(((9l) --+ .sit 

for each A in "'(((9l) and a quadratic functor 

for each M in jl"'(((9l). The quadratic cross effect of(2) is given by the formula 

(3) o 

Compare Proposition 4.2 where we describe the corresponding result for quadratic 
tensor products. The isomorphism in (3) is obtained by the projection 

which carries rx to the natural transformation (J: A(X) ® B( Y) --+ Mee(X, Y) with 
fJ(a ® b) = rxx. r(i1 a, i2 b). By Example 3.4 the quadratic functor F = Hom9lh M) is 
a quadratic ..,(((Bl)OP-module; the structure maps T, H, P are given by the following 
natural transformations 

(5) 

(6) 

defined by 

(TfJ)(a ® b) = T{J(b ® a), 

(7) (Hrx)(a ® b) = rx(a, b) + Trx(b, a), 

(PfJ)(a) = H{J(a ® a) and (P{J)(a, b) = (J(a ® b). 

Examples 5.3. Let R be a commutative ring and consider the quadratic R-modules 
RA, R S and RT defined in Example 3.3. Moreover, let A be an R-module. 
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(1) A quadratic form (J(:A ...... RA can be identified with an R-bilinear map 
(J(: A x A ...... R satisfying (J(a, a) = O. Hence (J( is just an alternating bilinear form. 

(2) A quadratic form (J(: A ...... RS can be identified with a function (J(: A ...... R which 
satisfies 0:(A-. a) = A- 2 • (J(a) for A- E R, a E A and for which the function 

LI.: A x A ...... R, LI.(a, b) = (J(a + b) - (J(a) - (J(b) 

is R-bilinear. Thus 0: is the same as a quadratic form on A in the classical sense, see for 

example [1,29]. 
(3) A quadratic form 0: : A ...... RT can be identified with a pair of functions 0:: A -+ R, 

LI : A x A ...... R for which O:(A-a) = A- 2(J(a) and for which LI is symmetric R-bilinear with 
2L1 (a, b) = (J(a + b) - o:(a) - o:(b) and LI (a, a) = (J(a). If R is uniquely 2-divisible 0: is 
a special quadratic form as in (2) since in this case LI is determined by 0:. 

Lemma 5.4. Let R be a ring and let F be a finitely generated free R-module. Then 

HomR(F, R) is an ROP-module such that 

for any quadratic R-module M. 

Proof. We define the natural isomorphism X as follows. Let a,b E HomR(F, R), 
mE M(e), nE M(e, e). Then x(a ® m) = (J( is given by (J(x) = Me(a(x))(m) and 
(J(x, y) = Mee(a(x), a(y))H(m) for x,YEF. Moreover, x([a, b] ® n) = f3 is given by 
f3(x) = PMee(a(x), b(x))(n) and f3(x, y) = Mee(a(x), b(y))(n) + Mee(a(y), b(x))(n). 0 

Let d be an additive category and let F: d OP ...... dt be a quadratic functor. For 
a small subringoid fJl c d the quadratic fJloP-module F {fJloP } is defined as in 
Example 3.4 by fJl op c d OP. On the other hand each object U in d gives the 

fJloP-module [fJl, U] as in (4.1). We now define the map 

(5.1) 

as follows. For ~EF(U) let A-(~) be given by the functions (J(x,(J(x,Y (X,YEfJl oP ) with 
O:x(a) = a*(O = F(a)(o, a E [X, U] and (J(x, yea, b) = F(a I b)H(O, bE [Y, U]. 

Proposition 5.5. The homomorphism A- is an isomorphism if U = XIV' .. V Xr is 
a finite biproduct with Xi E fJl for i = 1, ... , r and if fJl is a full subringoid of d. 0 

This result is a crucial property of the Horn-group in Definition 5.1 which shows 
that this definition is again naturally derived from the notion of a quadratic functor. 
We leave it to the reader to formulate a corollary of Proposition 5.5 corresponding to 
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Corollary 4.4. Moreover, we get as in (4.3) the following example. Let R be a 
commutative ring and let F: At(R)OP ~ sit be a quadratic functor. Then the 
quadratic R-module F {R} is defined and we derive from (5.1) the natural trans
formation 

A: F(A)~ HomR(A, F {R}) (5.2) 

where A E At (R), compare (4.3). By Proposition 5.5 this map is an isomorphism if A is 
a finitely generated free R-module. We call (5.2) the Horn-approximation of the 
quadratic functor F. 

6. The quadratic chain (unctors 

In this section we associate with each quadratic ~-module M quadratic chain 
functors M* and M*. The definition of M* and M* is motivated by the applications in 
homotopy theory below. The quadratic chain functors as well form a first step for the 
construction of derived functors. 

Let ~ be a ringoid with a zero object denoted by O. A chain complex X * = (X *' d) in 
~ is a sequence of maps in fYl 

d d 
.. '~Xn ~ X n- I ~ ... (nE£') (6.1) 

with dd=O. A chain map F:X*~Y* is given by maps F=Fn:Xn~Yn 
with dF = F d and a chain homotopy rx: F ::: G is given by maps rx = rxn: X n - 1 ~ Yn 
with - Fn + Gn = rxnd + drxn+ I' The chain complex X * is positive (negative) if 
Xi = 0 for i < 0 (Xi = 0 for i > 0). A negative chain complex is also called a 
cochain complex X* where we write xn = X- n, d:xn~ xn+l. Let ~* (~*) be 
the category of positive (negative) chain complexes and let fYl*/::: (~* / :::) be 
its homotopy category. 

We also need the category £?l' a~'~(fYl) of pairs in fYl; objects are morphisms d in fYl and 
maps F:d~ d', F = (FA, FB), are commutative diagrams 

FA 
A ---..... , A' 

dl Id' 
F8 

B ,B' 

(6.2) 

A homotopy a: F::: G is a map a: B ~ A' with -FA + GA = ad, - FB + GB = d'a. 

We have full inclusions of £?l'ai~(fYl)/::: into R*/::: and R*/::: which carry d 
to the chain complex d: A = X I ~ B = X 0 and to the cochain complex 
d:A = Xo~ B = Xl respectively. 
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Definition 6.1. Let M be a quadratic 9i-module. The quadratic chain functors asso

ciated to M are functors 

(1) 

which are defined as follows. For an object d:X l -+ Xo in gIlai~(9i) we define the 

chain complex M*(d) by MM) = 0 for i > 2 and by 

(2) 

On the other hand we define for an object d: X 0 -> X 1 in gIl ai~(9i) the cochain 

complex M*(d) by Mi(d) = 0 for i > 2 and by 

(d., (d, I).H) 1 1 0 ) M(X ) EEl M(X , X ) 

(3) 
11 

Ml(d) 

For a map F: d -> dO in gIlai~(9i) the induced chain maps M*(F) and M*(F) are 
defined in the obvious way. One readily checks that the composition of maps in (2) 
and (3) respectively is the trivial map O. The definition of M*, M* is motivated by the 

examples in [8]. 
We point out that the definition of M* above is dual to the definition of M*; here 

duality is obtained by reversing arrows and by the interchange of Hand P. 

Theorem 6.2. The quadratic chain functors of Definition 6.1 induce functors 

between homotopy categories. 

Proof. Letf = Ul ,fo) and g = (gl, go) be maps d -> d' in 8Jlai,z(9i) and let lI.:f ~ g be 
a homotopy. We can define a homotopy 

by the matrices (2) and (3), 
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For the proof of (1) we have to check the following equations (4)-(9): 

Originally we found the formulas in (2) and (3) as a solution of the system of equations 
(4)-(9). We now check (4). 

(l0) d*r:x* + P(d, 1)* (d,fo)*H 

= (dr:x)* + P(dr:x,fo)*H = (drx)* + (dr:x + 10)0 - (drx)* - 10* 

Here we use Definition 3.1 (5) and dr:x = -10 + go. Next we obtain (5) by 
r:xd = -11 + gl and by Definition 3.1(3): 

(11) (r:xd,fd*HP + (gl, r:x)*(l, d)* - TU1, r:x)*(1, d)* 

= (rxd,fd* T + (r:xd,fd* + (gl, r:xd)* - TUb r:xd)* 

= (r:xd,fd* + (gl, r:xd)* = (-11 + gl,fd* + (gl, -11 + gd* 

= -Ul,fd*+(gl,glk 

In the last equation we use the biadditivity of the functor Mee in Definition 3.1. For 
equation (6) we consider 

Next, equation (7) follows from 

(13) -(1, d)Agl, r:x)* - (1, d)* TUb r:x)* + (r:x,fo)*HP(d, 1)* 

= (gl, dr:x)* - (r:x, dId*T + (r:xd,fo)* + (r:x,jod)*T 

= (gb -10 + go)* + (-11 + gl,fO)* 

= (gl, go)* - Ul,fO)*. 
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Moreover, we obtain (8) by 

(14) - P(gl> !X)* + PT(/l> !X)* + !X*P(d, 1)* 

= - P(g 1, !X)* + P(f1, !X)* + P(!Xd, !X)* = 0 

In the last equation we use !Xd = -11 + 9 l' Finally we obtain (9) by 

Here we use dl1 = 10 d. This completes the proof of Theorem 6.2 for M *. 
The prooffor M* uses the "dual" arguments. Letl = (r,f1), 9 = (gO, gl) be maps 

d' -+ d in PJo,t;'-t(9"i) and let !X:f ~ g be a homotopy. Then we define a homotopy 

(16) f3: M*(f) ~ M*(g) 

by the matrices (17) and (18), 

One can check as above that (16) is satisfied. D 

Remark 6.3. The Dold-Kan theorem shows that positive chain complexes X * in an 
abelian category d are in 1-1 correspondence with simplicial objects Xo : LlOP -+ din 
d. Here Ll is the simplicial category. The correspondence is given by the functors 
K and N with NK(X*) ~ X* and KN(Xo) ~ Xo, see for example [15, Section 3]. 
Now let 9"i be a ringoid and let 

F:ddd(rH)-+ dd 

be a quadratic functor. Then F is determined by the quadratic rH-module M = F {rH} 
as in Theorem 3.6. Each positive chain complex X * in rH determines the simplicial 
object K(X*):Llop-+ ddd(rH) as above since for the definition of the functor K the 
category d needs only to be additive. The functor F yields the simplicial object 
FK(X*):Llop-+ dd so that the chain complex NFK(X*) in dd is defined. If 
X * = (d: Xl -+ X o) is given by a map d in rH with Xi = 0 for i > lone can show that 
there is a natural homotopy equivalence of chain complexes in dd, 
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Here the right -hand side is defined as in Definition 6.1 with M = F {91}. We do, 
however, not see that the dual complex M*(d) in Definition 6.1 as well has such 
a property. 

7. Quadratic functors induced by a quadratic Z-module 

For a Z-module M one has the functors which carry an abelian group A to the 
group 

A ® M, A * M, Hom(A, M) and Ext(A, M), 

respectively. We now introduce for a quadratic Z-module M twelve quadratic fun
ctors which generalize these classical functors. Using short free resolutions we obtain 
functors 

as follows. For each abelian group A we choose a short exact sequence 

where G and F are free abelian groups and we set i(A) = dA • For a homomorphism 
cp: A -+ B we can choose a map J: dA -+ dB in !!fJ ai't(dd) which induces cp. The 
homotopy class {f} ofJis well defined by cp and we set i(cp) = {f}. The functor i is 
actually full and faithful. The functor iOP is induced by i. 

A quadratic Z -module M yields the quadratic functors 

(-) ®z M : dd -+ dd and Hom(-, M): ddop -+ dd (7.2) 

which as well yield a quadratic dd-module {-} ®z M and a quadratic ddoP-module 
Hom{-, M} respectively; compare Proposition 4.2, (5) and (6) and Proposition 5.2, 
(5) and (6). We now use Theorem 6.2 and (7.1) for the definition of the quadratic chain 
Junctors, 

({-} ®zM)*i:dd-+ dd*/ ~, 

({-} ®zM)*i:dd-+ dd*j ~, 

(Hom{-, M})*ioP:ddop -+ dd*/ ~, 

(Horn {-, M} )*iop : ddop -+ dd* / ~ . 

(7.3) 
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The (co)homology groups of these four quadratic chain functors yield six functors 
sit ...... sit and six functors sltOP ...... sit which we denote as follows where dA = i(A) as 

in (7.1) and where j = 0, 1, resp. 2. 

Hj( {-} ®7LM)*dA = A * M, A 0' M, resp. A 0" M, 

Hj(Hom{-, M} )*dAP = Ext(A, M), Hom'(A, M), resp. Hom"(A, M), 

Hj(Hom{-, M} )*dAP = Hom(A, M), Ext'(A, M), resp. Ext"(A, M). 
(7.4) 

For the convenience of the reader we now describe explicitly the chain complexes used 

in (7.4). For this we choose d = dA : G ...... F as in (7.1). 
(1) The chain complex ({ -} ®7L M)*d A is given by 

G 0 G ® Mee~ G ®7L M EB G 0 F 0 Mee~F07LM. 

(2) The cochain complex ({ -} 07L M)*dA is given by 

(3) The chain complex (Hom{-, M})*dAP is given by 

(P, -d*) 
Hom(F ® F, Mee) ------+ Hom7L(F, M) EB Hom(F ® G, Mee) 

(d* Pd*) 
~ Hom7L(G, M). 

(4) The cochain complex (Hom{-, M})*dAP is given by 

(H, -d*) 
Hom(G ® G, Mee) ___ Hom7L(G, M) EB Hom(G ® F, Mee) 

(d*, d*H) ___ Hom7L(F, M). 

Here d*, d* denote the maps induced by d and the formulas for Hand Pare 
described in Proposition 4.2, (7) and 5.2, (7), respectively. The degree of the group at 

the right-hand side in each sequence above is o. 
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The notation in (7.4) is chosen since there is the following compatibility with 
classical functors. Assume M is a l"-module, that is Mee = 0, then one readily verifies 
that the groups 

A®M=A®'M, A*M = A*' M, 

Hom(A, M) = Hom'(A, M), Ext(A, M) = Ext'(A, M) 

are given by the corresponding classical functors for abelian groups. Moreover, all 
groups A *" M, A ®" M, Hom"(A, M) and Ext"(A, M) withj = 2 in (7.4) are trivial for 
Mee = o. 

Remark 7.1. Six of the functors in (7.4) are actually derived functors in the sense of 
Dold~Puppe [15]. For this let T = (~) ®2 M and T' = Hom(~, M) be the functors in 
(7.2). Then the derived Junctors Li T: sl6 -> sl6 and Ri T' : sl6°P -> sl6 are defined by 

respectively where X", = (dA : F -> G) is given by a presentation of A as in (7.1). Now 
one can show that one has natural isomorphisms 

LiT(A) = A®M, A",' M, resp. A"," M, 

RiT'(A) = Hom(A, M), Ext'(A, M), resp. Ext"(A, M) 

for i = 0, 1, resp. 2. For LJ(A) this is a direct consequence of the equivalence in 
Remark 6.3. Since T and T' are quadratic the derived functors above are trivial for 
i > 2. 

Proposition 7.2. One has natural isomorphisms A ® M = A ®2 M and Hom(A, M) = 

Hom2(A, M) where the right-hand side is defined by Definition 4.1 and Definition 5.1 
respectively. Compare also Theorem B.9. 0 

Proposition 7.3. AllJunctors in (7.4) are additive in M and quadratic in A. The quadratic 
cross effects are naturally given by 

(A I B) ® M = A ® B ® Mee = (A I B) ®" M, 

(A I B) '" M = A", B '" Mee = (A I B) "," M, 

Ext(A I B, M) = Ext(A '" B, Mee) = Ext"(A I B, M), 

Hom(A I B, M) = Hom(A ® B, Mee) = Hom"(A I B, M), 

(A I B) ",' M = HI (d A ® dB, Mee) = (A I B) ®' M, 

Hom'(A I B, M) = HI(d A ® dB, Mee) = Ext'(A I B, M). 
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Here dA denotes as well the chain complex (X *, d) with d = dA: Xl = G --+ X 0 = F, 
Xi = 0 for i ~ 2. The Kiinneth formula yields natural exact sequences 

These sequences are split, the splitting however is not natural. There is a natural 

isomorphism 

where the right-hand side is the triple torsion product of Mac Lane [21]. 

Proof of Proposition 7.3. We considerfor N = {-} ®z M thefunctor N*: [1J>ai't(d6)/ ~ 
--+ d6*! ~ , see (7.3). This functor is quadratic and its quadratic cross effect admits 

a weak equivalence 

of chain complexes. For dA: Xl --+ X 0 and dB: Yl --+ Yo and C* = N*(dA I dB) we have 

Co = Xo ® Yo ® Mw 

Cl = Xl ® Yl ®MeeEBXl ® YO® MeeEB Yl ®Xo® Mw 

C2 = Xl ® Yl ® MeeEB Yl ®Xl ® Mee· 

The differential d;: C; --+ C; - 1 is given by 

d2(Xl ® Yl ® n) = Xl ® Yl ® n - Xl ® dBYl ® n, 

d2(Yl ® Xl ® n) = Xl ® Yl ® Tn - Yl ® dAXl ® n, 

dl(Xl ® Yl ® n) = dAXl ® dBYl ® n, 

dl (Xl ® Yo ® n) = dAXl ® Yo ® n, 

dl(Yl ® Xo ® n) = Xo ® dBYl ® Tn, 

where Yi E Yi, X; E Xi, nE Mee. The map 'I' is given by the identity in degree 0 and by 

'I'2(Xl ® Yl ® n) = 0, 

'l'2(Yl ® Xl ® n) = Xl ® Yl ® Tn, 

'l'l(Xl ® Yl ® n) = Xl ® dBYt ® n, 

'I'l (Xl ® Yo ® n) = Xl ® Yo ® n, 

'I'l (Yl ® Xo ® n) = Xo ® Yl ® Tn. 
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Since HjN*(dA I dB) is the cross effect in HjN*(dA $ dB) we obtain (A I B) ® M, 
(A I B) *' M and (A I B) *" M by the weak equivalence 'I' and by the Kiinneth formulae. 
In a similar way one obtains the other cross effects. 0 

Proposition 7.4. There are natural inclusions and projections of abelian groups 

A *" M >-+ A * A * Mee , 

Hom"(A, M)>-+ Hom(A ® A, Mee ), 

Ext"(A, M)-Ext(A * A, Mee). 

Proof. We only consider the first inclusion. For this we see by (7.4), (1), that A *" M is 
the intersection (d* = 1 ® d ® 1) 

where ker( -d*) = G ® (A * Mee). We have to show (d ® 1 ® I)(A *" M) = O. Then 
the first inclusion is given. Let T: G ® G ® Mee ~ G ® G ® Mee be the interchange 
map with T(x ® y ® n) = y ® x ® Tn. Since HP = 1 + T we see that T restricted 
to ker(P) is -1. Whence we get for xEA*"M, (d®l®l)(x)= 
-Cd ® 1 ® l)T(x) = - T(1 ® d ® l)(x) = O. 0 

Remark 7.5. Using Proposition 7.3 it is easy to compute the functors (7.4) for finitely 
generated abelian groups A. For this we need only to consider cyclic groups lL/n = A 
with the presentation dA = n: lL = G ~ lL = F. In this case we have lL ®z M = Me 
and Horn (lL, M) = Me; therefore, the chain complexes (7.4) (1)-(4) can be expressed in 
terms of H, P in the quadratic lL-module M. In particular, (7.4) (1), resp. (2), is given for 
dA = n by 

(1) M (P, -n) M lI:'I M (n.,nP) M 
ee ----+ e W ee ----+ e, 

(2) M (H, -n) M lI:'I M (n*, nH) M 
ee+--- e Wee+--- e, 

where n* is defined in Definition 2.1. In addition we can use the following formulae for 
the computation. 
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Proposition 7.6. Let A be a finite abelian group and let AE = Ext(A, Z). Then one has 

the natural isomorphisms 

Ext(A, M) = AE (8) M, 

Hom'(A, M) = A E *' M, 

Hom"(A, M) = A E *" M, 

Hom(A, M) = AE*M, 

Ext'(A, M) = A E (8)' M, 

Ext"(A, M) = A E (8)" M. 

There is a non-natural isomorphism A E ~ A. 

Proof. Since A is finite we obtain a presentation of Ext(A, Z) by d1: F # = 
Hom(F, Z) ...... G # = Hom(G, Z). Using (5.1) we can replace Hom1'(F, M) by 
F # (8)1' M. This way the chain complex (7.4)(3) for dA is the same as the chain complex 
(7.4)( 1) for d~. This proves the left-hand side equations. 0 

Remark 7.7. The twelve functors in (7.4) evaluated on A = Z are given by: 

Z(8)M= Me, 

Z*M = 0, 

Z*' M = 0, Z*" M = 0, 

Z (8)' M = ker H, Z (8)" M = cok H, 

Ext(Z, M) = 0, Hom'(Z, M) = cokP, Hom"(Z, N) = ker P, 

Hom(Z, M) = Me, Ext'(Z, M) = 0, Ext"(Z, M) = 0. 

Here H, P are the maps of the quadratic Z-module M. 

Theorem 7.S. A short exact sequence 

i q 
O ...... K ...... M ...... N ...... O 

of quadratic Z-modules in fLU(Z) induces the following four types of natural 9-term 
exact sequences. 

(1) 0 ...... A *" K ~ A *" M ~ A *" N 

...... A *' K ...... A *' M ...... A *' N 

...... A (8) K ...... A (8) M ...... A (8) N ...... 0, 

(2) 0 ...... A * K ...... A * M ...... A * N 

...... A (8)' K ...... A (8)' M ...... A (8)' N 

...... A (8)" K ...... A (8)" M ...... A (8)" N ...... 0, 
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(3) 0 ~ Hom"(A, K) --+ Hom"(A, M) --+ Hom"(A, N) 

~ Hom'(A, K) --+ Hom'(A, M) --+ Hom'(A, N) 

~ Ext(A, K) --+ Ext(A, M) --+ Ext(A, N) --+ 0, 

(4) 0 ~ Hom(A, K) --+ Hom(A, M) ~ Hom(A, N) 

--+ Ext'(A, K) --+ Ext'(A, M) --+ Ext'(A, N) 

~ Ext"(A, K) --+ Ext"(A, M) --+ Ext"(A, N) --+ O. 

If the quadratic 1'-modules K, M, N are actually abelian groups, that is, if the short 
exact sequence in Theorem 7.8 lies in the subcategory dtJ of fLH(1'), see Definition 
2.1, then the terms with an index" above vanish so that in this case the 9-term exact 
sequences above coincide with the corresponding classical 6-term exact sequences of 
homological algebra. 

Example 7.9. One has the short exact sequences 

(1) 

(2) 

with ie = (1,1), iee = 1 andje = 2 andjee = 1. Hence we obtain by Theorem 7.8(1) via 
(1) the isomorphism A *' 1'S = A *' 1'P and the short exact sequences 

which coincides with the top row of Remark 2.10(4). Moreover, by (2) we get the exact 
sequence (A *" 1'/2 = 0) 

(J 

O~ A*'1's--+ A*'1'T ~ A*1'/2 

o (J 

~ A ® 1'S --+ A ® l' T ~ A ® 1'/2 --+ 0, 

which is a union of two short exact sequences. The second part coincides with the 
bottom row of Remark 2.10(4) and A *' 1'T = R(A) is given by Eilenberg-Mac Lane's 
functor R. Compare the exact sequence in Example 10.4. There are indeed many 
further interesting applications of the 9-terms exact sequences above. 
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Proof of Theorem 7.8. We first prove (1). For this we observe that the short exact 
sequence of quadratic Z-modules in Theorem 7.8 induces a short exact sequence of 

chain complexes 

Indeed this is short exact since F and Gin (7.4)(1) are free abelian. To see this we use 
Definition 2.4(3), Proposition 7.3 and Remark 7.7. Now the long exact Bockstein 
sequence of homology groups applied to ( * ) yields (1). In a similar way we obtain the 

other 9-term exact sequences. 0 

Remark 7.10. It is also of interest to consider the natural quadratic cross effect 
sequences derived from the 9-term exact sequences above. For example, Theorem 
7.8(1) and Proposition 7.3 yield the natural exact sequence 

...... Trp(A, B, Kee) ...... Trp(A, B, Mee) ...... Trp(A, B, Nee) 

...... A ® B ® Kee ...... A ® B ® Mee ...... A ® B ® Nee ...... O. 

A short exact sequence of abelian groups induces as well certain exact sequences for 
quadratic tensor products, this is discussed in Appendix B, see Theorem B.9. 

8. Quadratic homotopy functors 

We introduce additive categories ofhomotopy abelian co-H-groups and H-groups 
respectively and we describe quadratic functors on these categories. The functors are 
given by homotopy groups, homology groups, and cohomology groups respectively. 

Let Cfi1f/-{)luu;.eo*/ c:::: be the homotopy category of CW-spaces with basepoint *; 
the set of morph isms X ...... Yin this category is the set ofhomotopy classes [X, Y]. We 
write dim (Y) :s; m if there is a homotopy equivalence Y c:::: X where X is an 
m-dimensional CW-complex. Moreover, we write hodim(Y):S; m if 1!i(Y) = 0 for 
i > m. Let d~, resp. gj~ be the full subcategories of Cfi1f/ -{) IUICeo* / c:::: consisting of 
(n - i)-connected spaces X with dim(X) :s; n + k, resp. hodim(X) :s; n + k. Let G be 
an abelian group. An Eilenberg-Mac Lane space K(G, n) is a CW-space with 
1!n(K(G, n)) = G and 1!jK(G, n) = 0 for j #- n. A Maare space M(G, n) is a simply 
connected CW-space with homology groups HnM(G, n) = G and HjM(G, n) = 0, 
n #- j ~ 1. We clearly have hodim K(G, n) :s; n and dim M(G, n) :s; n + 1. 

Definition 8.1. Let Yf'd and coYf'd be the following subcategories of Cfi1f/

{) jzac.eo* / c:::: • Objects in Yf'd are homotopy abelian H -groups and morphism are 
H-maps. The objects in coYf'd are homotopy abelian co-H-groups and morphisms 
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are co-H-maps. Let Yf dn, resp. coYf d n be the full subcategories consisting of 
(n - I)-connected objects. 

For example, a double loop space Q Z Yand a double suspension L: Z Yare objects in 
Yf d and coYf d respectively. This shows that one has full inclusions 

d~ c coYf d n and !11! c Yf d n for k < n - 1. (8.1) 

All categories in (8.1) are additive categories; the biproduct in coYf d is given by the 
one-point union X v Y of spaces and the biproduct in Yf d is given by the product 
X x Yofspaces. For a CW-space K let n~ and n'K be the homotopy functors defined by 

(8.2) 

As usual we have n~(X) = nm(X) if K = SO is the O-sphere and we have 
n'K(X) = Hk(X, G) if K = K(G, m + k). The sets in (8.2) are groups, resp. abelian 
groups, for m = 1, resp. m ~ 2. Using the homotopy functors (8.2) and the homology 
and cohomology functors we obtain the following four functors: 

Hmh G):Yfdn-> d6 withm<3n. 

(8.3a) 

(8.3b) 

(8.3c) 

(8.3d) 

The functor (8.3c) is a special case of (8.3b) when we set K = K(G, m + k). The 
conditions on the right-hand side describe the meta stable range of these functors. It is 
well known that in this range the functors are quadratic. In the stable range (given by 
dim (L:mK) < 2n - 1, hodim(QmK) < 2n, resp. m < 2n) the functors are additive. 

We now consider the cross effects and the structure maps H, P, T in Definition 2.4 
for the quadratic functors in (8.3). For suspensions X = L:X', Y = L:Y', the 
Hilton-Milnor theorem shows 

n~(L:X' /\ Y') ~ n~(X I Y). (8.4) 

Here the isomorphism is induced by the Injection n~([ib i 2 J) where 
[i1 , i2 J: L:X' /\ Y' -> X v Y is the Whitehead product map. Using (8.4) as an identi
fication the map T coincides with -(L:Tzd* where T21 : X' /\ Y' -> Y' /\ X' is the 
interchange map. Moreover, the maps 

n~{L:X'} = (n~(L:X') ! n~(L:X' /\ X') ~ 1C~(L:X')), 
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given by (8.3), coincide with the James-Hopf invariant H = }'2 and the Whitehead 
product map P = [1, 1]* where 1 = Ix is the identity. These maps Hand P are exactly 
the operators which appear in the classical EHP-sequence of homotopy theory. Next 
we obtain the cross effects of the functors (8.3b)-(8.3d) by canonical isomorphisms 

n~(X /\ Y) ~ n~(X I Y), 

Hm(x /\ Y, G) ~ Hm(x I Y, G), 

Hm{X /\ Y, G) ~ Hm(X I Y, G) (8.5) 

which are readily obtained by the cofiber sequence X v Y -> X x Y -> X /\ Y. For 
(8.3b) and (8.3c) the maps H, P, T correspond to H = (Hfl)*, P = LI *, T = (T2d*, 

where LI : X -> X /\ X is the reduced diagonal and where Hfl:];X /\ X -> ];X is the 
Hopf-construction of the H-space multiplication fl = r1 + r2: X x X -> X. In (8.3d) we 
get H = LI*, P = (Hfl)* and T= (T21 k For the definition of Hfl see for example [6, 
Chapter II, 15.15]. For (Hfl)* and (Hfl)* we use the canonical suspension isomor
phisms n~-l(];X) = n~(X) and Hm+ 1(];X, G) = Hm(X, G). 

9. Homotopy groups of Moore spaces 

We describe a six-term exact sequence for the homotopy groups of Moore spaces 
which is useful for computation in the metastable range of these groups. As an 
application we obtain a new homotopy invariant r(X) of an (n - I)-connected 
(2n + I)-dimensional closed manifold X. 

Let fYt c coYf d. be a small subringoid consisting of suspensions X = ];X'. A CW
space U gives us the 9loP-module (= additive functor) 

which carries XEfYt to the abelian group [X, U]. The quadratic 9l-module n~{91} 
associated to (8.3a) and the tensor product of Definition 3.1 can be used for the natural 
homomorphism (dim ];mK < 3n - 2) 

(9.1) 

which we call a tensor approximation of n~(U). For aE[];X', U], bE [];Y', U], 
(];X',];Y'E91), and for aE[];my,];x'], (3E[];my,];x' /\ Z'] we define A by 
A(a ® a) = aD a and A([a, b] ® (3) = [a, b] 0 {3 where [a, b] is the Whitehead product. 
The image of A is the subgroup generated by all compositions 
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with XiE£J£, k 2: 1. The map IX is in the metastable range. The composition a 0 IX, 

however, needs not to be in the metastable range. 

Lemma 9.1. A in (9.l) is a well-defined natural homomorphism. Moreover, A is an 
isomorphism if U = Xl V ... V X k with XiEiJi and if [X, Xi] C £J£(X, X;) for all 
i = 1, ... , k and X E fJl. 

Proof. The lemma is a consequence of the distributivity laws [5] and of Proposition 
4.3. 0 

Remark 9.2. A natural description of the homotopy group 1t~M(A, n) of the Moore 
space M(A, n) can be obtained by the tensor approximation (9.l). For this we need to 
consider elementary Moore spaces M(71., n) = S" or M(71./pi, n), p = prime. Let iJi be the 
full homotopy category consisting of elementary Moore spaces. Then (9.l) yields the 
natural homomorphism, n 2: 3, 

A: [£J£, M (A, n)] ®9f 1t~ {R} -+ 1t~M(A, n) 

which is an isomorphism if A is finitely generated. This follows from Lemma 9.1. 

We now consider an example of A in (9.l) where fJl ~ 7l. is the full subcategory 
consisting only of the sphere S" and where U = M(A, n). Then 1t~{£J£} is just the 
quadratic 7l.-module 

which is defined by F = 1t~( -) as in (8.3c); here H is the Hopf invariant and 
P = [1,1]* as in (8.4). Now (9.l) gives us the natural homomorphism 

A: A ®z 1t~{S"} -+ 1t~M(A, n) (9.2) 

which is an isomorphism if A is a free abelian group (here A need not to be finitely 

generated). It is an old result of Hopf that 1t3 {S2} ~ 7Lr = (71. J. 7l. l 7l.). Therefore 

we derive from Remark 9.2 the natural homomorphism A.: T(A) = A ® 7l. r ~ 
1t3M(A, 2) which is actually an isomorphism for all abelian groups A, see [37], 
Definition 2.9 and Proposition 4.5. In general the map A in (9.2) is not an isomor
phism. Let S c 1t~M(A, n) be the subgroup generated by all compositions 
l:"'K -+ S" v ... V S" -+ M(A, n) and let 

;.1t~M(A, n) = 1t~M(A, n)/S 
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be the quotient group. For dimI'mK < 3n - 2 this is the cokernel of A in (9.2). Now 
A is embedded in the following exact sequence which shows the relevance of the 

corresponding derived functors in (7.4). 

Theorem 9.3. For dim(I'mK) < 3n - 2 there is a natural exact sequence 

a .le q 
--+ A ® n!{S"} --+ n!M(A, n) --+ ;.n!M(A, n) --+ 0, 

where q is the quotient map. 

Proof. Theorem 9.3 is a special case of (2.7) in [8]. For this let Xl.! X 0 - A be 

a short free resolution of the abelian group A and let g: M(X 1, n) --+ M(X 0, n) be 
a map which induces d. The mapping cone of g is the Moore space M(A, n) = eg • 

Using the isomorphism A in (9.2) (where we replace A by Xl and X 0 respectively) we 

obtain isomorphisms 

Ho{n!}*(g) = A ® n!{S"}, 

Hi {n!}(g) = A *' n!{S"}, 

H2 {n!}*(g) = A *" n~{S"}. 

Compare the definition in (7.4). Now it is easy to see that i in [8, (2.7)] corresponds to 
A in the theorem. Therefore the theorem is just a special case of [8, (2.7)]. 0 

Corollary 9.4. For m ~ min(2n, 3n - 3) one has the natural short exact sequence 

Proof. Since n2" _ 1 S 2" - 1 = 7L we see that A *" nm _ 1 {S"} = ° for m ~ 2n, compare 
Proposition 7.4. Whence Corollary 9.4 is a consequence of Theorem 9.3. In the stable 
range m < 2n - 1 the sequence of Corollary 9.4 is well known (see for example [2]); in 
this case we have A ® nm{S"} = A ® nmS" and A *' nm-i {SO} = A * nm-i So, see 

Remark 7.1. 0 

Next consider the cross effects of the exact sequence in Theorem 9.3. For this let 
M(A I B, n) = M(A, n) 1\ M(B, n - 1) and let ;.n!(A I B, n) = n!M(A I B, n)/S' where S' 
is the subgroup generated by all compositions I'mK --+ S2"-1 --+ M(A I B, n). 



86 H.l. Baues 

Corollary 9.5. For dim(I'mK) < 3n - 2 there is a natural exact sequence 

0 ...... Trp(A, B, n!S2n-l) ...... An!+ IM(A I B, n) ...... A * B * n!-1 s2n-l 

a 
...... A ® B ® n!s2n-l ...... n!M(A I B, n) ...... ;.n!M(A I B, n) ...... O. 

Here Trp is the triple torsion product of Mac Lane [21], see also Proposition 7.3(3). 
Corollary 9.5 is the "cross effect sequence" of Theorem 9.3 obtained by the formulas of 
Proposition 7.3(3). It is an interesting problem to compute the boundary operators 
a in Theorem 9.3 and Corollary 9.5 only in terms of some structure of the homotopy 
groups nf(Si) of spheres, in partiuclar if K = So. 

Remark 9.6. There are many papers in the literature concerning the homo
topy groups of Moore spaces nmM(A, n), see for example [13, 27, 33]. We here 
are mainly interested in the functorial properties of nmM(A, n), m < 3n - 2, which 
are not so well understood; an early approach in this direction is due to Barratt [2] 
for m < 2n - 1. 

The functorial properties of the groups nm M (A, /1) are of special interest for the 
homotopy classification of manifolds and Poincare-complexes respectively. Let p! be 
the class of (n - I)-connected (2/1 + k)-dimensional Poincare-complexes. 

Examples 9.7. Let /1 :2: 2. For X E P~ there is a homotopy invariant 

B(X)EHn(X) ® n2n-l {sn} 

where HnX is a finitely generated free abelian group. In fact, X is the mapping cone 
X ~ CJ of a map f: S2n-l ...... M(HnX, n) and B(X) = ), -IU) is given by the isomor
phism A in (9.2). Whence B(X) is a complete homotopy invariant of X, that is for 
X, Y E P~ there is an orientation preserving homotopy equivalence X ~ Yifthere is an 
isomorphism cp: HnX ~ Hn Y with (cp ® l)B(X) = B(Y). We can write the invariant 
f,(X) in terms of the cohomology Hn(x) as follows. Since Hn(X) = Hom(Hn(X); Z) we 
have by (5.1) the isomorphism 

x: Hn(X) ® n2n- dS n } ~ Hom(Hn(X), n2n- dS n }) 

Therefore, Xf,(X) = (tXe, tXee ) is a quadratic form with tXe:Hn(X) ...... n2n_lsn and with 
tXee:Hn(X) X Hn(X) ...... n2n_ls2n-1 ~ Z. Here tXee is just the cup product pairing in X. 
Moreover, tXe = 'P is exactly the cohomology operation considered by Kervaire and 
Milnor in [20, 8.2] (the formula there is equivalent to the fact that (tXe, tXee ) is 
a quadratic form, compare the first equation in Definition 5.1(2». 
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Example 9.S. For X E p! (n ~ 2) we define a new homotopy invariant 

which we call the torsion-invariant of X. We obtain .(X) by a homotopy equiva
lence X ~ CJ wheref: s2n ~ M(Hn+ lX, n + 1) v M(HnX, n). Let rzfE1t2nM(HnX, n) 
be given by the retraction r2 and let .(X) be the image of rz! under the homo
morphism 

given by Corollary 9.4. One can check that an orientation preserving map v: X ~ Y 

with X, YE p! satisfies 

(Hn(v)*' 1)(.(X)) = .(Y) 

so that .(X) is a well-defined homotopy invariant. For n ~ 3 the exact sequence 
of Corollary 9.4 can be used for the computation of all possible f which yield the 
same torsion invariant. This yields a kind of homotopy classification of objects in 
P! , (using different invariants such a classification is intensively studied in [17, 28, 
30, 31, 36]). 

Examples 9.9. (Examples of computations) Table 2 shows some examples of the 
quadratic 7l.. -modules 1tm {sn} where we use the notation for indecomposable quadratic 
7l..-modules of Table 1 and Definition 2.9. These examples can be deduced from Toda's 
computations [34]. In the list we denote a cyclic group 7l../n simply by n and we denote 
a direct sum 7l../n E9 7l../m by n E9 m. Moreover, (n, m) and (n, m, r) are the greatest 
common divisors. 

The quadratic 7l..-module 7l..~ (see (n, m) = (4,7)) is given by 

and 6k in this line is 

1
2 k == 0(4), k -=F 0(8), 

6k = 4 k == 0(8), 

o otherwise. 
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Table 2 

n,m lrm{S"} £,/k ® lrm {S"} 1':/h' 7!m {S"} 1':/k*"7!m{S"} 

2,3 1':1' (k2,2k) (k,2) 0 
3,5 £,A Et) 2 (k,2) (k, 2) Et) k 0 
3,6 H(2,1)Et)3 (k,12) (k, 12) Et) (k, 2) (k,2) 
4, 7 £'r Et) 3 (p, 2k) Et) Gk Et) (k, 3) (k,24) 0 

4,8) 

HEt) 2 

0 0 k == 1 (2) 
(£,/2)p 2 0 k == 2(4) 

4,9 2 Et) 2 0 k == 0(4) 
5,9 P(I) (k,2) (P,2k) 0 
5,10 (1':/2)s (k,2) (k,2) 0 
5, 11 (£,/2)A Et) 2 (k,2) (k, 2) Et) (k, 2) (k,2) 
5, 12 H(1, 3) Et) 15 Et) (£'/3)A (k, 2) Et) (k, 15) (k, 2) Et) (k, 3) Et) (k, 8) Et) (k, 15) (k, 3) Et) (k, 8) 
6, 11 £,S k 0 0 
6,12 (£,/2)A Et) 2 (k,2) (k, 2) Et) (k, 2) (k,2) 
6,13 H(2, 1) Et) 15 (k,60) (k, 60) Et) (k, 2) (k,2) 
6,14 (£'/8)1' Et) 2 Et) (£'/3)s (k, 2) Et) (p, 2k, 24) (k, 2) Et) (k, 2) Et) (P, 2k, 24) (k,2) 
6, 15 2 Et) 2 Et) 2 (k, 2) Et) (k, 2) Et) (k, 2) (k, 2) Et) (k, 2) Et) (k, 2) 0 

Moreover, for (n, m) = (4,8), (4, 9) we use (7L/2)P = [7L P] ® 7L/2 as defined in Defini
tion 2.1. 

The computation of the groups in this table is readily obtained by Remark 7.5. 
Combining the groups in the list with the exact sequences of Theorem 9.3 and 
Corollary 9.4 we immediately get the following short exact sequences: 

(1) 7L/(k, 12) >-+ TC6 M (7L/k, 3) - 7L(k, 2) tB 7L/k, 

(2) 

(3) 

k == 1(2) 

k == 2(4) 

k == 0(4) 

k == 1(2) 

k == 2(4) 

k == 0(4) 

~/2 ) >-+ TCs M (7L/k, 4) -7L/(k, 24), 

7L/2 tB 7L/2 

~/2 ) >-+ TC9 M (7L/k, 4) _ f ~/2, 
7L/2 tB 7L/2 l7L/2 tB 7L/2, 

(4) 7L/(k, 2)>-+TCiOM(7L/k, 5)-7L/(2k, k2), 

(5) 7L/(k, 2)>-+ TCll M(7L/k; 5)-7L/(k, 2). 

By a result of Sasao [27] the sequence (1) is non-split only for k == 0(2) and 
k/(k, 12) == 1(2); in this case one has TC6M(7L/k, 3) = 7L/2 tB 7L/2k tB 7L/(k, 12)/2. More
over, Tipple [33] showed that (3) is split and that (4) is non-split only for k == 2(4). 
Finally we deduce TC12M(7L/k, 6) = 7L/(k, 12) from Table 2. We leave it to the reader to 
describe further examples for the exact sequences. 
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10. Homology of Eilenberg-Mac Lane spaces 

We describe a six-term sequence for the metastable homology groups of Eilen
berg-Mac Lane complexes. This sequence is a kind of Eckmann-Hilton dual of the 
corresponding exact sequence for metastable homotopy groups of Moore spaces in 
Section 9. Moreover, using the operators in Whitehead's certain exact sequence we 
obtain a map which carries the homotopy groups of Moore spaces to the homology 
groups of Eilenberg-Mac Lane spaces. 

Let !Jl c Yf d n be a small subringoid, see Definition 8.1. A homotopy abelian 
H-space U, U E Yf d, gives us the !Jl0P-module 

which carries XE!Jl to the abelian group of H-maps [X, UT = Yfd(X, U) 
which is a subgroup of [X, U]. The quadratic !Jl-module Hm {!Jl, G} associated 
to (8.3d) and the tensor product of Definition 3.1 yield the natural homomorphism 
(m < 3jn) 

(10.1 ) 

as follows. For aE[X, UT, bE[Y, UT, rxEHm(X, G), {3EHm(X" Y, G) let 
A.(a Q9 rx) = a*(rx) and A.([a, b] ® {3) = H(/l)*(a " b)*({3), compare (8.5). The image of 
A. is the subgroup of Hm(U, G) generated by all elements rx*(a) where 
IX:X 1 X· .. X Xk -+ U is an H-map, XiE(!ll, k ;?: 1, and where aEHm(X 1 x' .. X Xb G). 

Lemma 10.1. A. in (10.1) is a well-defined natural homomorphism. Moreover A. is an 
isomorphism if U = XIX' .. xX k, Xi E!Jl for i = 1, ... , k and if!Jl is afull subringoid 
of Yfdn · 

Proof. Similarly as in Lemma 9.1, the lemma is a consequence of Proposition 4.3. 0 

Remark to.2. A natural description of Hm(K(A, n), G), m < 3n, can be obtained by 
(10.1). For this let (!ll be the full homotopy category consisting of elementary Eilen
berg-Mac Lane spaces K(Z, n) or K(Zjpi, n), p = prime. Then (10.1) yields the natural 
homomorphism (n ;?: 2) 

which is an isomorphism for all A E dt. This follows essentially from Lemma 10.1, 
compare Corollary 4.4. We clearly have [!Jl, K(A, n)] = [!Jl, K(A, n)]'. 
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We now consider a special case of A in (10.1). For this let [J.l ~ 71. be the full 
subcategory consisting only of K(71., n) and let V = K(A, n). Then Hm{r~, G} is the 
quadratic 7l.-module (see (8.5)) 

and we get by (10.1) the natural homomorphism 

A: A ®zH:' {n} -+ Hm(K(A, n), G) (10.2) 

which is an isomorphism if A is free abelian; here A need not to be finitely generated. 
In fact, A is the tensor approximation of the functor dtJ -+ dtJ which carries A to 
Hm(K(A, n), G), compare Proposition 4.5. For G = 71. we set Hm{n} = H~{n}. Since 
K(71., 2) = CPoo we readily see that H4{2} ~ 7l.l". Therefore we derive from (10.2) the 
natural homomorphism A: r(A) = A ® 7l.l" ~ H4K(A, 2) which is actually an isomor
phism for all A, compare [16]. Table 3 shows some examples of quadratic 7l.-modules 
Hm{n}. We use in this list the notation for indecomposable quadratic 7l.-modules of 
Table 1 and Remark 2.10; the examples can be deduced from the computations in 
[16]. 

In general the map A in (10.2) is not an isomorphism. As an analogue of Theorem 9.3 
we obtain the following result. Again we use the derived functors in (7.4). 

Theorem 10.3. Let m ::; 3n - 3. Then there is a natural map 1(: Hm(K(A, n - 1), G)-+ 
A * H:, {n} such that KHm(K(A, n - 1), G) = ker(l() is embedded in the natural exact 
sequence 

where i is the inclusion. 

In the stable range m < 2n - 2 this yields just the short exact sequence 

K 

A * Hm(K(71., n), G)-Hm(K(A, n - 1), G)+-+A ® Hm+ 1 (K(71., n), G) 

(10.3) 

which is a kind of Eckmann~Hilton dual of the sequence in Corollary 9.4. Using the 
formulas in Proposition 7.3 it is easy to obtain the exact "cross effect sequence" of 
Theorem 9.3, this is a sequence of a similar nature as in Corollary 9.5. 
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d 
Proof. The theorem is a special case of (3.12) in [8]. For this let Xl ~ Xo-A be 
a short free resolution of A and let g: K(X l, n) ~ K(X 0, n) be a map which induces d. 
Then the fiber of g is the Eilenberg-Mac Lane space K(A, n - 1) = Pg. Therefore we 
can apply [8, (3.12)]. Using the isomorphism A. in (10.2) (where we replace A by X 0 and 
X 1 respectively) we get the isomorphisms 

HO {H~}*(g) ~ A * H~ {n}, 

Hl {H~}*(g) ~ A (8)' H~ {n}, 

H2 {H~}*(g) ~ A (8)" H~ {n}. 

Compare the definition in (7.4). Whence the theorem is just a special case of 
[8, (3.12)]. 0 

Example 10.4. We describe some applications of Theorem 10.3 where we use Table 3. 
Since H 7 {4} = 0 we obtain the isomorphism 

A (8)' 7L f EB A (8) 7L/3 = A (8)' Hs(4) ~ KH7K(A, 3) 

= H7 K(A, 3) ~ QA EB A (8) 7L/3 

which corresponds to the isomorphism A (8)' 7L f ~ QA. Since H7{3} = 7L/3 we have 
A (8)" H7{3} = 0 so that KHSK(A, 2) ~ A (8)' TL A where TL A = H6{3}. Moreover we 
have H4 {3} = 0 so that KH4K(A, 2) = H4K(A, 2) ~ reA). Therefore, we derive from 
Theorem 10.3 the exact sequence 

Table 3 

m n Hm(n} Hm(K(A,n» 

3 2 0 0 
4 2 -Zr r(A) 
5 2 0 R(A) 
5 3 7L/2 7L/2® A 
6 3 7L A 7L/2* A Et> A 2(A) 
7 3 7L/3 7L/3 ® A Et> Q(A) 
8 3 (7L/2)® 7L/3 oA Et> (®2 A) ® 7L/2 
7 4 0 7L/2. A 
8 4 7L r Et> 7L/3 7L/3 ® A Et> r(A) 
9 4 0 7L/3 oA Et> R(A) 
9 5 7L/2 Et> 7L/3 (7L/2 Et> 7L/3) ® A 

10 5 7L A (7L/2 Et> 7L/3). A Et> A 2(A) 
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which is the union of two natural short exact sequences. By Remark 2.10(4) this shows 
that there are natural isomorphisms A ®" ZA ~ S2(A) ~ A ® Zs. 

Remark 10.5. Decker obtained a formula for HmK(A, n), m < 3n, in terms of a list of 
homology operations 0(, see [14, Chapter Ill, (4.3)]. This list of homology operations 
(based on results of Cart an [11]) allows in principle the computation of HmK(A, n) as 
a functor and hence we can derive the quadratic Z-module Hm {n}. The exact sequence 
of Theorem 10.3 still is helpful for understanding the somewhat intricate functors Dq 
and Rq which appear in Decker's formula. They generalize the functors D and R of 
Eilenberg-Mac Lane [16], that is Do = D, Ro = R. 

We now describe a connection between homotopy groups of Moore spaces and 
homology groups of Eilenberg-Mac Lane spaces. To this end recall that the Hurewicz 
homomorphism h is embedded in a long exact sequence [37] 

which is natural for simply connected spaces X. For an abelian group A we have the 
canonical map (n ~ 2) 

k: M(A, n) --+ K(A, n) 

which induces the identity H.(k) = lA of A. This map induces the natural homomor
phism 

(10.4) 

where we use i and b in the exact sequence above. Whitehead [37] showed that 
Ql is an isomorphism for m = n + 1. In the metastable range Ql is part of the 
following commutative diagram where we use 1:M(A, n - 1) = M(A, n), 
m < 3n - 2. 

(10.5) 

The maps Hand P are defined as in (8.4) and (8.5) respectively. The map Q2 is defined 
by Q2 = hnm + 1 (k 1\ k) 1: where 1: is the suspension operator and where " is till: 
Hurewicz map. Whence Q2 is an isomorphism for m = 2n - 1. The commutativity of 
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the diagram shows that Q = (Ql, Qz) is a map between quadratic Z-modules. We 
obtain the commutativity of (10.5) by the homotopy commutativity of 

~ V 
M(A, n)-----+) M(A, u) v M(A, n)----» M(A, n) 

1 k J 1 k' 1 k 

K(A, n) ) K(A, n) x K(A, n) J1 ) K(A, n) 

(10.6) 

Here p' and p are the co multiplication and multiplication respectively and k' is 
given by k v k and the inclusion. By applying the functor f m to (10.6) we essentially 

get (10.5). 
For any (n - I)-connected space X with HnX ~ A we have maps 

k' k" 
k: M(A, n) -> X -> K(A, n) (10.7) 

which induce isomorphisms in homology Hn. Here the homotopy class of k" is unique, 
the homotopy class of k', however, is not unique. From (10.5) we derive for m < 3n - 2 

the commutative diagram 

A Q9 1tm{sn} A Q9 Hm+ d n} 

l.le k,;i- 1 b-1k; l.le 
1tm M(A, n) --~----+) f mx-------+) Hrn+1K(A, n) 

(10.8) 

Ql 

which shows that f mX is non-trivial if Ql is non-trivial. The following lemma gives 

information on part of the kernel of Ql' 

Lemma 10.6. Let txE1tm(M(A, n)) be a map which admits aJactorization tx: srn -> Y-> 
M(A, n) where Y is n-connected and dim(Y) ~ m - 1. Then we have Ql(tx) = O. In 
particular, we have Ql ([~, 1]]) = 0 Jor all Whitehead products [~, 1]] with ~ E 1t/M (A, n), 

t > n. 0 

Example 10.7. All arrows in (10.8) are isomorphisms for n = 2, m = 3. Moreover, the 

map 
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is surjective and its kernel is the subgroup S in Theorem 9.3. Hence we have the 
natural isomorphisms 

compare Corollary 9.4. 

11. Cohomology of Eilenberg-Mac Lane spaces 

Here we obtain a six-term exact sequence for the cohomology groups of Eilen
berg-Mac Lane spaces in the metastable range. 

Let f!Jl c :Yf d n be a small ringoid, see Definition 8.1. A homotopy abelian H-space 
gives us the ~oP-module [~, U]' as in (10.1). Now the quadratic f!Jl0P-modules 
H m {f!Jl, G} and 1tK {f!Jl} associated to the functors (8.3c) and (8.3b), respectively, yield 
the natural homomorphisms (m < 3n, resp. hodim(QmK) < 3n) 

J,.:Hm(u, G)-+ Hom9j!oP([~, U]', Hm{f!Jl, G}), 

J,.: 1tK(U) -+ Hom9j!0p([f!Jl, U]', 1tK{f!Jl}). 

Compare (5.1). By Proposition 5.5 we have the following: 

(11.1) 

Proposition 11.1. The homomorphisms J,. in (11.1) are isomorphisms if U = X 1 X· .. xX r 

is a finite product with Xi E f!Jl for i = 1, ... , r and if ~ is a full subringoid of :Yf d n. 0 

Remark 11.2. Let ~ be the ringoid of elementary Eilenberg-Mac Lane spaces as in 
Remark 10.2. Then (11.1) yields the natural homomorphism 

J,.: 1tK(K(A, n), G) -+ Hom9j!0p([f!Jl, K(A, n)], 1tK{~}) 

which is an isomorphism if A is finitely generated. 
We now consider a special case of J,. in (11.1). For this let ~ ~ 7L be the full 

subcategory consisting only of K(7L, n) and let U = K(A, n). Then Hm{f!Jl, G} and 
TeK {f!Jl} are the quadratic 7L -modules 

HG'{n} = (Hm(K(7L, n), G) ! Hm(K(7L, n) /\ k(7L, n), G) 

!: Hm(K(7L, n), G)), 

TeK{n} = (TeKK(7L, n) ! TeKK(7L, n) /\ K(7L, n) !: TeKK(7L, n)) 
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respectively defined as in (8.5). Now (11.1) yields the natural homomorphisms 

A: Hm(K(A, n), G) --+ Homz(A, HG'{n}), 

A: n1((K(A, n)) --+ Homz(A, n1( {n}), 

(11.2) 

which are isomorphisms if A is a free abelian group (here A need not to be finitely 

generated). In the next result we use the derived functors in (7.4). . 

Theorem 11.3. Let m s 3n - 2. Then there is a natural map K: Ext(A, HG'{n})--+ 
Hm(K(A, n - 1), G) such that KHm(K(A, n - 1), G) = COk(K) is embedded in the natural 

exact sequence 

0--+ Hom'(A, HG'{n}) --+ Kwn-l(K(A, n - 1), G) --+ Hom"(A, HG'+ 1 {n}) 

K q 
--+ Ext(A, HG'{n}) --+ Hm(K(A, n - 1), G) --+ KHm(K(A, n - 1), G)--+ 0, 

where q is the quotient map. 0 

In the stable range m < 2n - 2 this sequence is equivalent to the short exact 

sequence 

0--+ Ext(A, HG'{n}) --+ Hm(K(A, n - 1), G) --+ Hom(A, HG'+ 1 {n}) --+ 0 
(11.3) 

where HG'{n} = Hm(K(Z, n),G) is an abelian group. Theorem 11.3 is a special case of 

the next result. 

Theorem 11.4. Let hodim(QmK) s 3n - 2. Then there is a natural map 
K: Ext(A, n1({n}) --+ n7(K(A, n - 1) such that Kn1(K(A, n - 1) = COk(K) is embedded in 

the natural exact sequence 

K q 
--+ Ext(A, n1( {n}) --+ n1(K(A, n - 1) --+ Kn1(K (A, n - 1) --+ 0, 

where q is the quotient map. 

Again it is obvious how to describe the "cross effect sequence" of Theorem 11.4 by 

the formulas in Proposition 7.3. 
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Proof. The theorem is a special case of (3.7) in [8]. For this let g be given as 
in the proof of Theorem 10.3 with Pg = K(A, n - 1). Using the isomorphism 
A in (11.2) (where we replace A by X 0 and Xl respectively) we get the 
isomorphisms 

Ho {1!K} (gOP) = Ext(A, 1!K{n}), 

Hi {1!K} (gOP) = Hom'(A, 1!K {n}), 

Compare the definition in (7.4). Now i in [8, (3.7)] yields the homomorphism K in 
Theorem 11.4. Therefore, Theorem 11.4, and also Theorem 11.3, is just a special case 
of [8, (3.7)]. 0 

Appendix A. Quadratic derived functors 

In this appendix we associate with a quadratic ~-module M a chain functor and 
a co chain functor. If we apply these functors to a projective (resp. injective) resolution 
we get the quadratic derived functors which coincide with the classical derived 
functors in case Mee = O. We understand that Dold and Puppe [15] obtained derived 
functors of non-additive functors which as well generalized the classical derived 
functors of an additive functor; the construction of the quadratic derived functors 
below is different and relies on the structure of a quadratic module. 

Let ~ be a ringoid with a zero object. An ~-module M yields the following chain 
Junctors which are as well denoted by M 

(A.l) 

compare the notation in (6.1). For a chain complex X * in ~* we define M(X *) simply 
by setting M(X*)n = M(Xn). The differential d* in M(X*) is induced by the differ
ential d in X *, d* = M(d). Similarly we get induced chain maps M(F) with 
M(F)n = M(Fn) and induced chain homotopies M(IX) with M(IX)n = M(lXn). Since M is 
an additive functor one readily observes that this chain functor is well defined. In the 
same way one gets the cochain functor M which carries X * E ~* to the cochain 
complex M(X*). 

Now let M be a quadratic 9l-module. We associate with M the quadratic 
chain Junctors M as in (A.l) which again are simply denoted by M, see Definitions 
A.1 and A.2. In fact, if Mee = 0 these chain functors coincide with the additive 
functors above. 
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Definition A.I. For X* in ~* the chain complex C* = M(X*) is given by the abelian 
groups (n ~ 2) 

(1) Co = M(Xo), 

Cl = cok {(P, -(1, d)*): M(X 1> X d -+ M(X d Ea M(X 1> X o)}, 

Cn = cok{P Ea (1, d)*: M(Xn' Xn) Ea M(Xn' X d -+ M(Xn) Ea M(Xn' Xo)}. 

The differential d = dn : Cn -+ Cn - l is induced by the maps 

(2) 

For a chain map F:X* -+ Y* we get the induced chain map M(F): MX* -+ MY* by 

(3) 

Finally a chain homotopy rx.:F ~ G, rx.n:Xn- l -+ Yn in ~* yields a chain homotopy 
Mrx.:MF ~ MG by 

The next definition is dual to Definition A.I. 

Definition A.2. For X * in ~* the cochain complex C * = M X * is given by the abelian 
groups (n ~ 2) 

(1) CO = M(XO) 

Cl = ker{ (H, -(1, d)*): M(X 1) Ea M(X 1, XO) -+ M(X 1, Xl)} 

en = ker{H Ea (1, d)*: M(xn) Ea M(xn, XO) -+ M(X n, xn) Ea M(xn, XO)} 

The differential d = dn : C n -+ en + 1 is induced by the maps 

(2) dn = d* Ea(d, 1)*, n ~ 2. 

For a chain map F:X * -+ y* we get the induced chain map M(F): MX* -+ MY* by 

(3) 

Finally a chain homotopy rx.: F ~ G (rx.n : X n + 1 -+ yn) in ~ * yields a chain homotopy 
Mrx.:MF~MGby 

(4) 
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Proposition A.3. Definitions A.I and A.2 yield well-defined functors M:qj*/::e --+ 
sl6*/::e and M:qj*/::e --+ sl6*/::e, respectively. 0 

The functors M in Proposition A.3 are quadratic, the cross effect of these functors is 
described below. The proof of Proposition A.3 is similar to the proof of Theorem 6.2, 
in fact, Theorem 6.2 can be used for the I-dimensional part of the proposition, 
compare Remark A.4. 

We point out that the definition of the quadratic chain functors relies on the 
structure maps Hand P of the quadratic qj-module M; a functor qj --+ sl6 which is 
merely quadratic is not appropriate for the definition of the functors in Proposition 
A.3. 

Remark A.4. The quadratic chain functors M* and M* in Definition 6.1 are related to 
the quadratic chain functors M in Proposition A as follows. Let d 1 : Xl --+ X ° and 
dO:X°--+ Xl be given by X* and X* respectively. Then the I-dimensional part of 
MX*, resp. of MX*, coincides with the map 

compare Definitions 6.1, A.1 and A.2. This shows that (with Xi = 0, Xi = 0, i ;?: 2) one 
has isomorphic homology groups HiMX* = HiM*(dd, HiMX* = HiM*(dO) for 
i = 0,1. The homology H2 M*(dd and H 2 M*(dO), however, cannot be obtained by 
M X * and M X * respectively. 

We now assume that the additive category si is an abelian category with enough 
projectives and injectives respectively, for example si = vIt(qj). The homology of 
chain complexes in si is defined. We say that X * is a projective resolution of 
X E Ob(sI) if a chain map G: X * --+ X in si * is given (which induces an isomorphism in 
homology) where all Xi of X * are projective in si and where X is the chain complex 
concentrated in degree 0. On the other hand X * is an injective resolution of X if 
a chain map G: X --+ X * in sI* is given (which induces an isomorphism in cohomo
logy) where all X i of X * are injective in .<4. It is well known that the choice of 
resol utions X *' X * yields functors i: si --+ .<4*/::e and j : A --+ A* /::e which are well 
defined up to canonical isomorphisms. 

Definition A.S. Let si be an abelian category as above and let M: si --+.<46 be 
a quadratic functor. Then Example 3.4 shows that M yields a quadratic si-module 
M = M{A} as well denoted by M. Using the resolution functors i,j above and using 
Proposition A.3 one gets functors 
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The nth (co)homology of these functors yields the quadratic derived functors 
LnM:.stI ~ .still, R"M:.stI ~.stI1l respectively, n;:o: 0. For XEOb(.stI) one has 

(2) (LnM)X = HnMX* and (RnM)X = HnMX* 

where X *' X * are resolution as above. The chain complexes M X *' M X * are defined 
as in Definitions A.1 and A.2. 

Remark A.6. In case M in Definition A.5 is an additive functor, that is Mee = 0, the 
derived functors coincide with the classical derived functors of M, see for example 
[12,18]. For a quadratic functor M Dold and Puppe [15] as well defined derived 
functors; their construction, however, is different to the one in Defintion A.5 and is 
available for any non-additive functor .stI ~ .still, Remarks 6.3 and 7.1. Our definition 
in Definition A.5 is adapted especially to quadratic functors. In degree n = 0,1 the 
derived functors above coincide with the derived functors of Dold-Puppe. 

Definition A.7. Let .stI be an abelian category and let M:.stI ~ .stItJ be a quadratic 
functor. We say that M is quadratic right exact if each exact sequence 

X 1 ~ X 0 .! X ~ ° in .stI induces an exact sequence 

i 0 d 1· 
We say that M is quadratic left exact if each exact sequence ° ~ X ~ X ~ X III 

.stI induces an exact sequence 

The definitions immediately imply as in the classical case: 

Lemma A.S. Let M:.stI ~.stI1l be quadratic right exact. Then one has the natural 
isomorphism M ~ LoM. Dually, if M is quadratic left exact one has the natural 

isomorphism M ~ ROM. 0 

As examples of quadratic derived functors we obtain the following quadratic Tor 

and Ext functors for a small ringoid fJi, n ;:0: 0: 

Tor~: A(9f)OP x 2A(fJi) ~ .still, 

Ext9i: A(9f)OP x 2A(fJi) ~ .still. 

(A.2) 
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For M in fLIt(fJl) these functors are derived from the quadratic functors 

that is, for a projective resolution X * of X in A(fJl oP ) and for a projective resolution 
Y* of Y in A(fJl) we set 

(3) To~(X, M) = Ln(- ®alM)(X), 

(4) Ext91(Y, M) = RnHomalh M)( Y). 

In (4) we consider Y* as an injective resolution in A(~)OP and we use (8.2). Clearly 
the groups (3), (4) are trivial for n ~ 1 in case X and Yare projective objects in d. 
The functors (A.2) are quadratic in the first variable and additive in the second 
variable. 

Proposition A.9. The functor - ®al M is quadratic right exact and the functor 
Homalh M) is quadratic left exact so that we have natural isomorphisms (see Lemma 
A.8). 

In case M is an fJl-module, that is Mee = 0, the Tor and Ext groups above coincide 
with the classical groups, see [18]. 

Example A.10. Let fJl = 7L. be the ring of integers and let M be a quadratic 7L.-module. 
For an abelian group A one gets (see (7.4» Torf(A, M) = A *' M and 
Ext1{A, M) = Ext'(A, M). This follows since dA in (7.4) is a projective resolution of A, 

see Remark A.4. Clearly Tor~ = ° = Ext~ for n ~ 2 since the chain complex dA is 
I-dimensional. 

Appendix B. The cross effect of quadratic derived (unctors 

We introduce biderived functors which describe the cross effects of the quadratic 
derived functors above. Moreover, we discuss various exact sequences for these 
functors. We assume that ~ is a ringoid with a zero object. 

Definition B.l. Let M be an fJl x fJl-module, see Definition 1.2. Then we define the 
additive functor 
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(as well denoted by M) as follows. For chain complexes X *' Y* in fJl* we get 

C* = M(X*, Y*) by (n ~ 2) 

(1) Co = M(Xo, Yo), 

Cl = cok {((1, d)*; -Cd, 1)*): M(X I, Yd -+ M(X J, Yo)EB M(X 0, YI )}, 

Cn = cok {(1, d)* EFl (d, 1)*: M(Xn, Yd EFl M(X I, Yn) 

--+ M(Xn, Yo) EFl M(Xo, Yn)}. 

The differential d = dn : Cn --+ Cn - I is induced by the maps 

(2) dn = (d, 1)* EFl (1, d)*, n ~ 2. 

For chain maps F: X * --+ X~, G: Y* -+ Y* we get the induced chain map 

M(F ® G): M(X*, Y*)--+ M(X~, Y*) by 

(3) M(F ® G)o = (Fo, Go)* 

M(F, G)n = (Fn' Go)* EFl (Fo, Gn)*, n ~ 1. 

Finally, chain homotopies a: F ~ F', 13: G ~ G' yield a chain homotopy 

M(a, 13): M(F ® G) ~ M(F' ® G') by 

(4) M(a,f3h = ((ai, Go)*, (Fo, f3d*), 

M(a, f3)n = (an' Go)* EFl (Fo, f3n)*, n ~ 2. 

The next definition is dual to Definition B.l. 

Definition B.2. We associate with an fJl ® fJl-module M the additive functor 

(as well denoted by M) as follows. For cochain complexes X *, Y* in fJl* we get 

C* = M(X*, Y*) by (n ~ 2) 

(1) CO = M(X o, y O), 

Cl = ker{ ((1, d)*, -Cd, 1)*): M(X 1, y O) EFl M(Xo, yl) --+ M(X 1, yl)}, 

en = ker{ (1, d)* EFl (d, 1)*: M(X n, y O) EFl M(XO, yn) 

--+ M(X n, yl) EFl M(X 1, yn)} 



102 H.}. Baues 

The differential d = d": C -+ C+ 1 is induced by the maps 

(2) d" = (d, 1)* EB (1, d)*, n;:::-: 2. 

For chain maps F: X * -+ X '*, G: y* -+ Y'* we get the induced chain map 
M(F®G):M(X*, Y*)-+ M(X'*, Y'*) by 

(3) M(F ® G)O = (FO, GO)*, 

M(F, G)" = (F", GO)* EB (F0, G")*, n;:::-: 1. 

Finally, chain homotopies rx: F ~ F', f3: G ~ G' yield a chain homotopy 
M(rx, f3): M(F ® G) ~ M(F' ® G') by 

(4) M(rx, f3)O = ((rxo, GO)*, (F0, f3 0)*), 

M(rx, f3t = (rx", GO)* EB (F0, f3)*, n;:::-: 1. 

As in (S.3) one can readily check the following: 

Proposition B.3. The Junctors in Definitions B.1 and B.2 are well defined and 
additive. D 

The crucial property of the functors in Definitions B.1 and B.2 is described by the 
next result. 

Theorem B.4. Let M be a quadratic ~-module and let M(X * I Y*) and M(X * I Y*) be 
cross effects oJ the quadratic Junctors M in Definitions A.1 and A.2 respectively. Then 
there are natural isomorphisms 

oJ chain complexes. Here Mee is the ~ ® Bi-module given by M, see Definitions 3.1 and 
1.2, and Mee(X*, Y*) and Mee(X*, Y*) are defined by Definitions B.1 and B.2 respec
tively. D 

Similarly as in Definition A.5 we can use the functors in Definitions B.1 and B.2 for 
the definitions of derived functors. Let .91 be an abelian category with enough 
projective and injectives. 

Definition B.S. Let M be an d ® d-module. Using the resolution functors 
i: .91 -+ .91*/ ~ and j: .91 -+ .91* / ~ one gets the additive functors 
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The nth (co)homology of these functors yields the biderived functors 

Ln M :d ®d->d6 and R"M:d@d->d6, 

respectively, n z O. For X,YEOb(d) one has 

(2) (RnM)(X, Y) = H n M(X*, Y*), 

where X*, Y* (resp. X*, Y*) are projective (resp. injective) resolutions of X, Y. The 
chain complexes M (X *, Y *), M (X *, Y*) are defined in Definitions B.l and B.2. 

As a corollary of Theorem BA one gets immediately the following: 

Corollary B.6. Let M be a quadratic d-module. Then the quadratic derivedfunctors in 

Definition A.5 have the cross effects 

(LnM)(X I Y) = (LnMee)(X, Y), (R"M)(X I Y) = (RnMee)(X, Y), 

where Mee is the d @ d-module given by M. 0 

In addition to Corollary B.6 one gets the following natural exact sequences 
for quadratic derived functors, they correspond to the classical exact sequences 
for derived functors in case Mee = O. To this end we consider a short exact 

sequence 

(B.i) 

in d and maps S -> S' between such sequences. 

Theorem B.7. Let M be a quadratic d-module. Then S in (B.1) yields the following 

natural commutative diagram in which the rows and columns are long exact sequences 

(n Elf): 1 1 
Ln+ 1 MeeCX, Y) LnMeeCX, Z) 

a la 
p 1 a 

-> Ln+ 1 MqS LnMX~ LIIMY-; LnMqs • L II _ 1 MX-> 

1 a 1 \1 q' 1 a 1 
-> Ln+1 MZ • Ln MiS-; LnMY~ Ln MZ • Ln- 1 Mi S -> 

1 la 
LnMee(X, Z) Ln- 1 M eeCX,Z) 

1 1 
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We leave it to the reader to write down the dual diagram for right derived functors 
Rn; for this we simply replace L* by R * in such a way that a raises the degree by 1. If 
Mee = 0 we see that the rows of the diagram are isomorphic, in this case the row 
coincide with the classical exact sequence for left derived functors, see [18, Chapter IV, 
Section 6]. In case the sequence S is split all boundaries a are trivial and the remaining 
short exact sequences are split, this yields Corollary B.6. 

Proof of Theorem B.7. We can choose a short exact sequence of projective resolutions 

(1) 

of S, compare the proof of [18, Chapter IV, 6.l]. As a module we have Yn = Xn EB Zn. 
The differential of Y* is given by 

Here d denotes the differential of X * and Y* respectively. We now derive from (1) the 
following commutative diagram in which rows and columns are short exact sequences 
of chain complexes: 

(3) 

The maps j are well-defined chain maps since we have (2) for the boundary in Y*. We 
now set 

(4) 

Now Theorem B.7 is obtained by the long exact sequences associated to short exact 
sequences of chain complexes. 0 

There are the following examples of biderived functors. We associate with M in 
A/(fJl ® fJl) the additive functors 

(B.2) 
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which carry the object (X, Y) to (X ® Y) ®gr(8lgrM and Homgr®gr (X ® Y, M) 
respectively, compare Propositions 4.2(3) and 5.2(3). The biderived functors of (B.2) 

are denoted by 

(2) Ext?R(8Igr(X, Y, M) = R"(Homgr(8lgrh M )(X, Y)). 

Using Corollary 9.4 one obtains for a quadratic ~-module M the cross effects (n ~ 0) 

(4) Ext?R(X I Y, M) = Ext?R ® gr(X, Y, Mee)· 

As an example of (1) we get for ~ = ""l. the triple torsion product of Mac Lane [21], 

(5) Torf(X, Y, M) = Trp(X, Y, M) = HI (dx ® dy , M), 

compare Proposition 7.3(3). We can also apply Theorem B.7 for the functors in (3) 
and (4); this leads for ~ = ""l. to the following results on the functors in (7.4), see 

Example A.1O. 

Theorem B.9. Let M be a quadratic ""l. -module and let S: 0 -+ X ~ Y.!i z -+ 0 be an 

exact sequence of abelian groups. Then one has the following commutative diagrams in 
which the rows and the rectangle sequences of broken arrows are exact sequences of 

abelian groups. Moreover, these diagrams are natural in S. 

a 
H '(dx ® dz , Mee) <- --------------- Hom(X, M) 

1 q* a 1 q 
0<- Ext(i, M)<--Ext(Y, M) <-Ext(Z, M) <--Hom(i, M)<-Hom(Y, M) ~Hom(Z, M) <- 0 

1 1 
Ext(X, M) ---------+ 0 -----------+ Hom(X ® Z, Mee) 
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In case Mee = 0 the diagram above corresponds exactly to the classical six-term exact 
sequences. We can apply these exact sequences for example if M is the quadratic 
Z-module M = Zr. In this case the torsion product Y*'Zr = R(Y) corresponds to 
the functor R of Eilenberg and Mac Lane, see Remark 10.7. 
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