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Preface 

The classical formulation of homology theory is based on the notion of ring and 
module or more generally on abelian categories. The homology that one considers, 
however, often comes from a group, or a Lie algebra, or a topological space, etc. 
which are non-abelian objects. Therefore a general treatment of homology should 
derive the abelian concept of homology from non-abelian data. 

The notion of homology emerges in this book from a theory of cogroups or more 
generally from a theory of coactions. Such theories arise frequently in algebra and 
topology. For example, most algebraic objects like groups, algebras, Lie algebras, 
etc. are models of theories of cogroups. Moreover, each homotopy theory contains 
theories of coactions. A "theory of coact ions" is a very general concept related 
to notions in the literature like near ring or Malcev variety. Nevertheless it has 
exactly those properties which are needed to obtain a homology theory suitable 
for obstruction theory. 

Classical obstruction theory relies on the properties of CW-complexes. Here we 
will show that fundamental results on CW-complexes have generalizations in the 
realm of categorical algebra. For this we associate to a theory T of coactions the 
notion of a T-complex in a cofibration category which is the categorical general­
ization of a CW -complex. 

We present a homology and cohomology theory for T-complexes which em­
bodies numerous homology theories in various fields of algebra and topology. For 
example, by suitable specialization one obtains the homology of groups, the homol­
ogy in a variety of groups, the Hochschild homology of an algebra, the homology 
of a Lie algebra, the homology of a topological space, the Bredon homology of a 
G-space where G is a group, the homology theory for diagrams of spaces, the ho­
mology theory for controlled spaces, or the homology theory for compactifications, 
and many more examples. All these examples are homology theories associated to 
theories T of coactions and T-complexes. 

The book consists of two parts. The first part (Chapters A, B, C, D) furnishes 
a long list of explicit examples and applications in various fields of topology and 
algebra. The second part (Chapters I, ... , VIII) develops the axiomatic theory of 
combinatorial homology and homotopy. 

The unification in this book possesses all the usual advantages. One proof 
replaces many different proofs in all such fields. In addition, an interplay takes 
place among the various specializations, which thereby enrich one another. The 
unified theory also applies to various new situations. Moreover, all definitions, 
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proofs and results in the second part use a categorical language, so that by a 
duality which reverses the direction of arrows one obtains the corresponding dual 
definitions, proofs and results, respectively. 

May 1998 

H.-J. Baues 
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Leitfaden 

The main concepts studied in the axiomatic theory of Part 2 are given by the 
following list. We start with a 

theory of cogmups T, or a 

theory of coactions T. 

(1.l. 9) 

(1.1.11) 

All the results in Chapter I, II and in VII, § 3 deal with properties of T. This is 
pure categorical algebra. We derive from T the 

enveloping functor U: Coef ---+ Ringoids (1.5.11) 

which is needed in all chapters. In order to introduce homotopy theory we recall 
from Baues [AH] some properties of a 

cofibmtion category C, or an 

I -category C. 

A T -complex can be defined in a 

cofibmtion category under T 

and homology of a T-complex can be obtained in a 

homological cofibmtion category under T. 

(III.Ll ) 

(IIl.7.1) 

(IV.2.1) 

(V. 1.1) 

Chapter IV deals with cofibration categories under T; in particular, we discuss the 
Whitehead theorem, cellular approximation, and the Blakers-Massey property in 
such categories. If the Blakers-Massey property holds then one obtains a homo­
logical cofibration category under T and all the results of Chapters V, VI, VII are 
available. 

In particular, we prove the following results in a homological cofibration cate­
gory: 

- definition of homology and cohomology in terms of a chain functor 
- obstruction theory for the extension of maps 
- Whitehead's exact sequence for the Hurewicz homomorphism 
- homotopy lifting property of the chain functor 
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- model lifting property of the twisted chain functor 
- homological Whitehead theorem 
- obstruction theory for the realizability of chain complexes and chain maps 
- H urewicz theorem 
- Eilenberg-Mac Lane complex and Quillen (co-) homology 
- finiteness obstruction theorem of Wall 

Finally in Chapter VIII we deal with Whitehead torsion. For this we choose a 

class of discrete objects D (VII. I. 1) 

in an I-category C and we describe the properties of (C, D) which define a 

cellular I-category (C, D). (VIII.5.1) 

The geometric Whitehead group can be defined in such an I-category. Moreover 
in a 

homological cellular I -category (C, D) (VIII.12.3) 

the geometric Whitehead group coincides with the algebraic Whitehead group. 
Here the algebraic Whitehead group is defined in terms of the enveloping functor U 
studied in Chapter 1. The finiteness obstruction theorem also uses the enveloping 
functor U, for the definition of a reduced projective class group. 

We point out that all the results above are proved in a new way since we do 
not use the universal covering of a CW-complex which was of crucial importance 
in the proofs of J.H.C. Whitehead. 



Fields of Application 

The results of the axiomatic theory in Part 2 can be applied in many different 
areas of algebra and topology. We here describe various fields of application, some 
of which already have been worked out in the literature. The theory was designed 
to cover all these specializations. It is worth while to formulate in each such field 
all the results which are implied by the axiomatic theory. We give various hints in 
this respect in the text. A complete discussion of such applications in the context 
of the abstract results in Part 2 was avoided in order not to obscure the axiomatic 
theory. 

For the convenience of the reader we describe explicit examples and applications 
in the introductory chapters A, B, C and D of Part 1. These chapters can be read 
without knowing the results and notation of the general theory. 

The first two chapters I and II of Part 2 can be applied for all theories of 
coact ions and theories of cogroups. For example, 

(1) varieties of groups, or 
(2) algebras, commutative algebras, Lie algebras, and many other kinds of algebras 

defined by operads 

give rise to theories of cogroups. Also 

(3) groupoids 

give rise to theories of coactions, see (1.2.11). Moreover, in each homotopy theory C 
the homotopy category of suspensions termed susp( *) is a theory of cogroups and 
the homotopy category of *-cones termed cone( *) is a theory of coactions; see 
(1.2.4) and (III, § 6). 

The chapters III, ... , VIII of Part 2 deal with complexes in cofibration cate­
gories. There are many different homotopy theories which have the properties of 
a cofibration category, in particular each Quillen model category. We are mainly 
interested in the homotopy theories of 

(4) topological spaces, 
(5) simplicial objects in some category like (1) and (2), 
(6) differential algebras of some kind like (2). 

We also consider for a small category A the category of 

(7) A-diagrams in a category C like (4), (5), (6) 
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which are functors A --+ C. Morphisms are natural transformations of such func­
tors. If A is given by a discrete group G then (7) is the category of G-equivariant 
maps between G-objects in C. Moreover, if G is a topological group we have the 
category of 

(8) G-spaces 

which leads to the homotopy theory of transformation groups. We can put re­
strictions on the maps in the categories above and again obtain new homotopy 
theories. For example, we may consider 

(9) topological spaces and compact maps, 
(10) topological spaces with some control (for example, bounded control or con-

tinuous control, etc.), 
(11) shape theory. 

Again we can consider A-diagrams in (9) or (10) and the theory of transformation 
groups for (9) and (10), respectively. 

One important feature is also the possibility of relativization. In fact, given a 
homotopy theory C and an object D in C then also the category 

(12) CD of objects under D in C 

is again a homotopy theory. We can apply this to all theories C in (4), ... , (11) 
above. 

In the literature there are many further examples of homotopy theories. Most 
of them are candidates for the application of the abstract theory in this book. In 
particular, the recent 

(13) "motivic homotopy theory" 

of Morel-Voevodsky [HO] will lead to applications in algebraic geometry. Moreover, 
the homotopy theory of 

(14) resolutions of spaces 

due to Dwyer-Kan-Stover [E2], [HGl, Blanc [AI] and Goerss-Hopkins [RM] is a 
wonderful field of application for the methods and results of this book; see Chap­
ter D. 

This list, which is by no means complete, shows the wide range of different fields 
to which the theory of this book can be applied. It also shows the necessity of an 
axiomatic approach which separates a result from the specific environment where 
the result was proved for the first time. We consider classical and fundamental 
results of homotopy theory and we characterize axiomatically the assumptions 
under which such results hold. This leads to the concepts in the Leitfaden above. 
The non-axiomatic approach would try to prove the results in each case again and 
again. 

For example, the theorem on Whitehead torsion was proved in the following 
categories: 

a) for topological spaces by J.H.C. Whitehead iSH], Stocker [W] and Cohen [0], 
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b) for G-spaces by Luck [TG], 
c) for topological spaces and compact maps by Siebenmann [S] and Farell­

Wagoner [S], 
d) for bounded controlled 8paces by Munkholm-Anderson [B]. 

All these cases a), b), c), d) are specializations of the general result in (VIII, 
§ 12) below which holds in any homological cellular I-category. Here the axiomatic 
approach has a further advantage since it clarifies the definition of the algebraic 
Whitehead group. We give a definition which is valid simultaneously for all cases 
a), b), c) and d). The reader may compare the complicated definitions of algebraic 
Whitehead groups of Luck [TG], Siebenmann [S] and Munkholm-Anderson [B]. 

Similar remarks hold for the finiteness obstruction theorem in (VIII, § 2) or 
for the homological Whitehead theorem in (VI, § 7) which was recently proved for 
diagrams of spaces by Moerdijk-Svenson [D]. 

Concerning the homotopy theory of simplicial objects we point out that Andre 
[HS] and Swan [HA] use a kind of T-complex to define Andre-Quillen homology, 
which is a 8pecial case of (C, T)-homology in (VI, § 11). 

The reader will find many further examples which connect the general theory 
in this book with the literature. 

We point out that there are numerous results in this book which are new 
even if one specializes them, for example, to G-spaces in (8) or to other fields of 
application (4) ... (14). Already the specialization to spaces under D in (12) in 
the category of topological spaces leads to new and intere8ting fact8 in ordinary 
topology; compare § 1 in Chapter A. 



Part I 

Examples and Applications 



The axiomatic theory of Part 2 is based on a theory of coactions which is 
embedded in a homotopy category Cle:::.. Here C is an abstract category in which 
"homotopies" are defined satisfying suitable axioms. For example, C is a category 
of cofibrant objects in a Quillen model category. In the theory of Chapters I, ... , 
VIII in Part 2 we describe the notions and results concerning the combinatorial 
foundation of homology and homotopy. 

In the following chapters A, B, C, D we consider the specialization of the 
axiomatic theory for various examples in topology and algebra. We discuss only 
the basic notation and results for these examples. This can be understood easily 
without knowing the axiomatic theory. 

The reader will benefit from the presentation of the examples. It is useful to 
compare such examples in order to visualize the abstract theory and to clarify the 
motivation for the various abstract notions. 



Chapter A: Examples and Applications 
in Topological Categories 

In this chapter we describe the leading examples of combinatorial homology and 
homotopy theory which are well known fields of algebraic topology. We consider 
the homotopy theory of spaces, diagrams of spaces, spaces with a topological group 
of transformations, and spaces controlled at infinity. These examples are discussed 
in a highly parallel fashion so that the underlying abstract theory is a shining 
achievement. 

1 Homotopy Theory of Spaces Under a Space 

Ordinary homotopy theory is concerned with the category Top of topological 
spaces and (continuous) maps. Let 

1= [0,1] c lR. (1.1) 

be the unit interval of real numbers. Then a homotopy H : f ~ 9 of maps f, 9 : 
X -t Y is a map H : I x X -t Y satisfying Ho = f and HI = 9 with Ht{x) = 
H (t, x) for tEl, x EX. Here I x X is the topological product of the spaces I and 
X. The relation of homotopy is an equivalence relation so that the set of homotopy 
classes 

[X, y]0 = Top(X, Y)/~ (1.2) 

is defined. [X, Yj0 is the set of morphisms X -t Y in the homotopy category 
Top/~. Homotopies H as above are also called free homotopies or homotopies 
relative the empty space 0. They have the disadvantage that they are not com­
patible with base points and therefore free homotopies are not suitable for the 
definition of the fundamental group and homotopy groups of a space. In order 
to obtain such groups one has to consider homotopies relative a point or more 
generally homotopies relative a non empty space D. 

We choose a topological space D which may be any space in the category Top. 
As important special case D = * is a point or D is a discrete space. The results 
achieved below for D = * are well known and classical though for an arbitrary 
space D some of the results seem to be new. 

Consider the homotopy theory in the category 

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999



4 Chapter A: Examples and Applications in Topological Categories 

(1.3) 

of spaces under D. Objects in C are maps D ---7 X in Top and morphisms fare 
maps under D, i.e. commutative triangles in Top 

A homotopy H : f ~ 9 reI D of maps in C is a homotopy relative D; this is 
a homotopy for which Ht is a map under D for all t E [0,1]. If D ---7 X is a 
cofibration in Top we write 

[X, y]D = C(X, Y)/~ reID (1.4) 

for the set of homotopy classes relative D. Let 

C c = Top~ C TopD (1) 

be the full subcategory of TopD for which the objects are cofibrations D >----+ X in 
Top. Here cofibrations in Top are defined by the homotopy extension property; 
see Baues [AH]. Then homotopy reID is a natural equivalence relation on Top~ 
so that the homotopy category 

Cc/~ = Top~ /~ reID (2) 

is defined. If D = * is a point this is the homotopy category of "well pointed" 
spaces. The set of morphisms X ---7 Y in Cc/~ coincides with [X, y]D above. 
A homotopy type under D is a class of isomorphic objects in Cc/~. Homotopy 
relative D is also defined by the cylinder object I(X, D) in Top~ which is given 
by the push out in Top 

[0,1] x X -----t I(X, D) 

r 
[0,1] x D 

pr 
-----t 

r 
D 

where pr is the projection. (Compare § 7 of chapter III below.) 
Recall the following notation on spheres and balls. Let jRn+l be the Euclidean 

space with the norm II - II. Then the Euclidean (n + I)-ball is the subspace 

iJn+l = {x E jRn+\ Ilxll ::; I} ofjRn+l. 

The Euclidean n-sphere is the subspace §n = {x E jRn+l, Ilxll = I} which is the 
boundary of the Euclidean (n + I)-ball. A sphere sn is a space homeomorphic to 
the §n and a ball Bn+l is a space homeomorphic to the Euclidean ball iJn+1. The 
boundary of Bn+l is an n-sphere sn. For example the interval I is a I-ball and 



1 Homotopy Theory of Spaces Under a Space 5 

also the cube rn+1 (given by the product of n + 1 intervals) is an (n + I)-ball. We 
choose for each sphere sn a basepoint * so that we have 

* E sn c B n+l for n 2:: o. (1.5) 

We say that a space Y is obtained from a space X by attaching (n + I)-cells if a 
discrete set Z together with a push out diagram 

u u (1.6) 

in Top is given. Here f is called the attaching map. The disjoint union A Il B is 
the coproduct of spaces A, B in the category Top. Clearly for a discrete set Z the 
product 

ZXA=IlA 
zEZ 

is such a disjoint union of spaces. 
We now recall the appropriate notion of CW-complex in the category of spaces 

under the space D. A (relative) CW-complex (X:;,o, D) is given by a sequence of 
inclusions 

D c Xo C Xl C ... C Xn C X n+ l C ... (1.7) 

Here Xo is the disjoint union of D and a discrete set and X n+1 is obtained from 
the n-skeleton Xn by attaching (n + I)-cells, n 2:: O. We also write X = lim(X>o) 
for the direct limit of the sequence and call (X, D) a relative CW-complex. The 
dimension of (X, D) is defined by dim(X, D) :::; n if X = X n . We say that (X, D) 
is reduced if Xo = D, that is, if the discrete set Xo - D of O-cells in X is empty. 
Moreover (X, D) is normalized if all attaching maps carry base points * of the 
sphere sn to the O-skeleton Xo. Clearly each I-skeleton Xl is normalized since Xl 
is obtained by attaching I-cells to Xo. 

(1.8) Lemma. Let (X, D) be a relative CW-complex. Then there exists a nor­
malized relative CW-complex (Y, D) together with a homotopy equivalence Y --> X 
under D. If 7roD --> 7roX is surjective then (Y, D) can be chosen to be normalized 
and reduced. 

Proof. The proof uses standard arguments; compare the proof of (2.9) below for 
A-spaces which yields (1.8) as a special case if It. = * is the trivial category. 

We now consider homotopy groups of a space A. Let 7ro(A) be the set of path 
components of A with 0 E 1fo(A) given by the basepoint ao E A. For n 2:: 1 the 
homotopy groups are given by the set of homotopy classes relative * 
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(1.9) 

For a pair of spaces (A, B) with ao E B c A we also obtain the relative homotopy 
groups 

7rn+1(A, B, ao) = [(Bn+1, sn), (A, B)]* 

defined by the set of homotopy classes relative * of pair maps (Bn+1 , sn) -> (A, B). 
A weak equivalence in TopD is a map J : X -> Y under D which induces 

isomorphisms between homotopy groups 

for all ao E X and n 2: O. It is well known that for each space Y under D there 
exists a relative CW-complex (X, D) together with a map X -> Y under D which 
is a weak equivalence. We call (X, D) a CW-approximation of (Y, D). This implies 
that the localized category Ho(TopD), in which weak equivalences are inverted, 
admits an equivalence of categories 

(1.10) 

Here CWD is the full subcategory of Top~ consisting of relative CW-complexes. 
Using the equivalence (1.10) each homotopy functor defined on relative CW-com­
plexes (like homology and cohomology in (1.26), (1.27) below) yields a homotopy 
functor on TopD. 

A groupoid G is a category in which all morphisms are isomorphisms. We write 
a E Ob(G) or a E G if a is an object in G and for a, bE Ob(G) let G(a, b) be the 
set of morphisms from a to b. Then G(a) = G(a, a) is a group, the vertex group 
of Gat a. 

For each space A we have the fundamental groupoid II(A) = IIA. Objects in 
II A are the points of A and morphisms are homotopy classes of maps J : [0,1] -> 

A reI SO = {O, I} with J(O) = a, J(I) = b. Such a morphism is also called a track 
t: b -> a EllA. The vertex group II(A)(ao) coincides with the fundamental group 
1l"l(A,ao). If D is a subspace of X we write 

II(X, D) c IIX 

for the full subgroupoid of IIX consisting of objects which are points in D. We call 
II(X, D) the restricted fundamental groupoid. If 7roD -+ 7roX is surjective then 
the inclusion II(X,D) c IIX is an equivalence of categories. We shall use the 
assumption on the surjectivity of 7roD -+ 7roX frequently since this implies that 
each path component of X contains a point in D. 

Let Ab be the category of abelian groups. For a category G let GOp be the 
opposite category. Then the homotopy groups (1.9) and (1.10) yield canonical 
functors (n 2: 2) 

{ 
7rn(A) : (IIA)OP -+ Ab 

7rn +l (A, B) : (II B)OP -+ Ab 
(1.11) 
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Here 71" n (A) carries ao E A to the abelian group 71" n (A, ao) and carries a track 
t : bo ---+ ao in IIA to the induced map t~ : 71"n(A, ao) ---+ 71"n(A, bo) which is 
an isomorphism. The element t~ {g} with {g} = {g : sn ---+ A} E 71" n (A, ao) is 
determined by the homotopy extent:ion property of the cofibration * >---> sn. Sec 
Baues [AH] 11.5.7. In a similar way the functor 71"n+l(A,B) in (1.11) is defined. 

A functor 

M : GOp ---+ Ab (1.12) 

is called a (right) G-module. Hence l'l/I is a contravariant functor from G to Ab. 
If G is small (i.e. if the class of objects in G is a set) then such G-modules are the 
objects of the abelian category Mod( G). Morphisms are natural transformations. 
Hence by (1.11) we see that homotopy groups 71"n(A) and 71"n(A, B) are (IIA)­
modules and (II B)-modules respectively. 

Next we consider the functorial property of the fundamental groupoid. For this 
let Grd be the category of small groupoids. Morphisms are functors. For a groupoid 
G let Grd( G) be the following category. Objects are functors G ---+ H between 
groupoids which are the identity on objects (hence Ob G = Ob H). Morphisms are 
functors H ---+ K under G that is, commutative triangles in Grd: 

G 

/~ 
H----t>K 

For each cofibration D ---+ X in Top? we obtain the object 

c(X) = (II(D) ---+ II(X, D)) 

in Grd(II D) where II(X, D) is the restricted fundamental groupoid of X. This 
defines the coefficient functor 

c: Top? Ie::=. reID ---+ Grd(IID). (1.13) 

If D = * is a point * then Grd(II*) = Gr is the category of groups. Moreover the 
coefficient functor c for D = * is just the functor which carries a pointed space X 
to its fundamental group 71"lX. In this sense the coefficient functor c is a canonical 
generalization of the fundamental group. 

For each small groupoid H we have the abelian category Mod(H) of H­
modules. We now define the full subcategory 

mod (H) c Mod(H) (1.14) 

consisting of free H-modules. For this we use the category Setob(H) of sets over 
Ob(H); objects are functions a : Z ---+ Ob(H) in the category Set of sets and 
morphisms f are functions over Ob(H), i.e. commutative triangles in Set 
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f 
Z )Z' 

~,;;; 
Ob(H) 

We have the forgetful functor 

c.p : Mod(H) --- SetOb(H) 

which carries F : H --- Ab to the function 

f : Z = II F(a) --- Ob(H) 
aEOb(H) 

with f(x) = a for x E F(a). Let L(H) be the left adjoint of c.p which carries a 
function 0: : Z --- Ob(H) to the H-module La(H) E Mod(H). We call La(H) 
the free H-module with basis 0:. Let mod(H) be the full subcategory of Mod(H) 
consisting of all free G-modules La(H) with 0: : Z --- Ob(H) an object in SetObH. 

A further description of La(H) is obtained as follows. Let Z[H( -, a)] be the H­
module which carries b E Ob(H) to the free abelian group generated by the set 
H(b, a). Then La(H) is the direct sum 

La(H) = EB Z[H( -, o:(z))] 
zEZ 

in the abelian category Mod(H). 
For a groupoid G and H E Grd(G) we have ObH = ObG and hence the class 

of objects of mod(H) admits the bijection 

Obmod(H) = ObSetob(G) 

which carries La(H) to 0:. Moreover each map u : H --- K E Grd(G) yields a 
canonical additive functor 

u* : mod(H) --- mod(K) (1.15) 

which carries La(H) to La(K) and for which the following diagram in Mod(H) 
commutes with 0:, (3 E Ob SetOb(G), 

La(H) ~ L(3(H) 

U O 1 1 u~ 
La(K) ~ L(3(K) 

Here a K-module is an H-module via u : H --- K. Moreover U a is the unique map 
which is the identity on the basis 0: : Z --- Ob(G). The functor u* in (1.15) carries 
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the morphism a in mod(H) to the morphism a* in mod(K) given by the diagram 
above. 

A ringoid is a category in which all morphism sets are abelian groups and in 
which composition is bilinear. An additive category is a ringoid in which finite 
sums (coproducts) exist. A ring is a ringoid with exactly one object. By (1.14) we 
obtain a "functor" which carries H E Grd( G) to the additive category mod (H) 
and which carries u : H -+ K E Grd(G) to u* in (1.15). Here, however, mod(H) 
is not a small category. We therefore choose a subset 

A c Ob Setob(G) (1.16) 

that is, A is a set of elements a where a : Za -+ Ob(G) is a function on a set Za. 
Let Ringoids be the category of small ringoids and additive functors. Then we 
obtain the enveloping functor 

UA : Grd(G) -+ Ringoids (1.17) 

which carries H to the full subcategory of mod(H) consisting of free H-modules 
La(H) with a E A. Moreover UA carries u : H -+ K E Grd(G) to the induced 
map u* : UA(H) -+ UA(K) which is the restriction of u* in (1.15). 

{1.18} Example. If A in (1.16) is a set which has only one element a,A = {a}, 
then U A (H) is a ring. In particular we consider the case that G = * is the trivial 
groupoid (consisting of one object * and one morphism 1*) and that A consists of 
the element a which is the identity of Ob(G) = *. Then UA in (1.17) yields as a 
special case the enveloping functor 

U : Gr -+ Rings 

Here Gr is the category of groups which coincides with Grd( *) and Rings is 
the category of rings. Moreover U carries the group H to the group ring Z[H]. 
Therefore the enveloping functor U A in (1.17) is a canonical generalization of the 
well known group ring functor H f---+ Z[H]. 

It is possible to describe free H-modules in mod (H) by use of homotopy 
groups. Let G = II D be the fundamental groupoid of the space D. Then any 
function a : Z -+ D = Ob( G) where Z is a discrete set yields the following push 
out diagram in Top 

Z X sn ---+ 

u u (1.19) 

We call s~ the n-dimensional spherical object in Top~ associated to a. The pro­
jection Z x sn -+ Z induces the retraction 0 : s~ -+ D. Moreover s~ for n 2: 1 is 
a cogroup object in Top~ I'::::!. which is abelian for n 2: 2. For objects D >----> X and 
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D >-+ Y we define the sum X V Y in Top? by the push out of X f-- D ----> Y. In 
particular we may consider the sum S:; V X and the retraction map 

(0,1) : S~ V X ----> X 

which is a map in Top? For a basepoint ao E D we define 

7rn(S~ V X, aoh = kernel { (0, I). : 7fn(S~ V X, ao) ----> 7fn(X, ao)} (1.20) 

Using (1.11) each track t : bo ----> ao E II X between points ao, bo E D yields an 
induced map t~ : 7fn(S~ V X, aoh ----> 7rn(S:; V X, boh. This shows that (1.20) defines 
a II(X, D)-module 7rn(S:; V X) which carries ao ED to the abelian group (1.20), 
n::::: 2. 

(1.21) Proposition. For H = II(X, D) and n ::::: 2 the free H -module Lo(H) 
coincides with the II(X, D) module IIn(S:;V Xh- Moreover given a map f : X -> Y 
in Top? which induces u : H = II(X, D) ----> K = II(Y, D) the following diagram 
commutes; see {1.15}. 

1 (IV!). 

7fn(S:; V Yh 

A relative CW-complex (X, D) with G = II(D) which is reduced and normal­
ized yields for n ::::: 1 functions 

an : Zn ----> D = Ob( G) (1.22) 

where Zn is the set of n-cells in X - D. In fact, each n-cell e E Zn has an attaching 
map which carries the basepoint * E sn-l to a point an(e) E D. We point out 
that the restricted fundamental groupoid 

H = II(X, D) = II(X2' D) (1.23) 

depends only on the 2-skeleton of X. This follows from the cellular approximation 
theorem. The attaching map of 2-cells yields a map ax : S~2 -> X I which induces 

(1.24) 

This is a presentation of H in the sense that 

H = II(XloD)jN(image(ax » 

Here N (image ( ax)) denotes the normal closure of image (ax). These facts are well 
known if D = * is a point. Since (Xl, D) is reduced we see that Xl is obtained 
from D by attaching I-cells. This implies that II(Xlo D) is the free groupoid under 
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IID. See (1.2.10) below. This free groupoid admits a coaction induced by the 
coaction map 

J1, : Xl -+ Xl V S~, in Top? /r::::; 

which is defined on each I-cell by the map 

J1,: [0,1]-+ [0,1] U{l} ([1,2l/{1,2}) 

(1.25) 

obtained from the canonical homeomorphism [0, 1] ~ [0,2] of intervals in R Here 
1 is the basepoint of SO = {O, I} C Bl = [0,1]. 

A chain complex C* in an additive category A is a sequence of maps 

d d 
... ---> Cn+1 ---> Cn ---> Cn- 1 ---> ... , nEZ, 

in A with dd = 0. Chain maps and homotopies of chain maps in A are defined in 
the usual way. 

(1.26) Definition. Let (X, D) be a relative CW-complex which is normalized and 
reduced so that an : Zn -+ D is defined for n ::::: 1; see (1.22). Let G = IID and 
let H = II(X2' D) be the restricted fundamental groupoid of X 2. Then there is a 
well defined chain complex (see (1.27)) 

{ 
C*(X, D) in mod(H) with 

Cn(X, D) = Lan (H) for n::::: 1 
(1) 

and Cn(X, D) = ° for n ::; 0. Moreover a cellular map f : (X, D) -+ (Y, D) under 
D induces a map 

u: H = II(X2' D) -+ K = II(Y2, D) E Grd(G) 

and a chain map 

in mod(K). Here we use u* in (1.15). If D is a discrete space we define 

ao: Zo = D 

(2) 

by the identity of D; in this case there is a well defined augmented chain complex 

{ 
C*(X) = augC*(X, D) in mod(H) with 

Cn(X) = Lan (H) for n ::::: 0 
(3) 

and Cn(X) = 0 for n < o. A cellular map f as above induces f* on C*(X) as in (2) 
such that f* is the identity in degree O. If D = * is a point then C*(X) coincides 
with the cellular chain complex of the universal covering of the space X. We get 
C*(X, D) by the general procedure in (V, § 2). The augmentation functor aug is 
described in (II, §6). In (1.27) we recall the classical method to obtain C*(X, D). 



12 Chapter A: Examples and Applications in Topological Categories 

If (X, D) is any space under D for which 7roD ........ 7roX is surjective we choose 
a normalized reduced CW-approximation (Y, D) of (X, D). Hence in this case we 
can define the chains of (X, D) by the chains of (Y, D), that is: 

{ 
C*(X,D) = C*(Y,D) 

C*(X) = C*(Y) 
(4) 

This yields below the notion of homology and cohomology of (X, D) which by 
standard arguments does not depend on the choice of (Y, D). 

{1.27} Remark. Let (X, D) = (X~l' D) be a relative CW-complex as in (1.26) and 
assume for all v E D the universal covering space Pv : X ( v) ........ X exists and let 
Xi(V) = (Pv)-lXi for i ?: O. Then the chain complex C*(X) in (1.26) satisfies 

(*) 

where the right hand side is the singular relative homology. Equation (*) is an 
isomorphism of H-modules with H = II(X, D) and (*) is natural with respect to 
cellular maps X ........ Y under D. The isomorphism (*) follows from (5.2) in Brown­
Higgins [Ce]o In fact, we consider first the 'crossed complex' of (X~l' D) given by 
the relative homotopy groups 

(**) 

and the groupoid II(X1 , D). Then we apply the functor Ll of Brown-Higgins [Ce] 
and we get a chain complex of H-modules which coincides with C*(X) in degree 
?: 1. If D is discrete then Ll applied to (**) yields the augmented chain complex 
C*(X). In this book we do not use (*) or (**) for the definition of the chain 
complex in (1.26) since C*(X~l) is defined for any T-complex X~l in (V, § 2). 

Using the chain complexes C*(X, D) and C*(X) in mod (H) with H = 

II(X, D) in (1.26) we obtain for each objectM of Mod(H) the chain complexes 
of abelian groups 

Hom(C*(X, D), M) and Hom(C*(X), M). 

Here Hom denotes the set of morphisms in the abelian category Mod(H). Hence 
the cohomology with coefficients in M 

is defined. 

{
Hn(X,D;M) = HnHom(C*(X,D),M) 

Hn(X;M) = H n Hom(C*(X), M) 
(1.28) 

Remark. Given a space X and any IIX-module M then the singular cohomology 
Hn(x, M) with local coefficients M is defined, see for example Spanier [AT]. Using 
the restriction M of M given by the inclusion H = II(X, D) c II X we get the 
natural isomorphism 
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where the right hand side is defined by (l.28). 

On the other hand we can define the homology 

(l.29) 

of the chain complex C*(X, D) in the abelian category Mod(H) with H = 
II(X, D). Hence Hn(X, D) is an H-module, i.e. an object in Mod(H). 

(1.30) Notation. Each H-module M yields a mod(H)-module 

Hom( -, M) : mod(HtP -+ Ab 

which carries La(H) to Hom(La(H), M). We denote Hom( -, M) as well by M. 
In particular Hn(X, D) in (l.29) yields the mod(H)-module 

Hn(X, D) = Hom( -, Hn(X, D)) : mod(H)OP -+ Ab 

which is the homology of (X, D) considered in (V.3.3) since we have for C* 
C*(X, D) the canonical isomorphism 

vVe now are ready to formulate the following homological Whitehead theorem 
for relative CW-complexes which is a special case of (VI, § 7). 

(1.31) Theorem. Let f : (X, D) -+ (Y, D) be a cellular map between normalized 
reduced relative CW-complexes in Top? Then f : X -+ Y is a homotopy equiv­
alence under D (i.e. an isomorphism in the homotopy category Top? /r::::rel D) if 
and only if the coefficient functor c induces an isomorphism u = c(f), 

u: H = II(X, D) ....:::.... K = II(Y, D) E Grd(G) 

with G = II(D) and one of the following conditions (i), (ii) , (iii) is satisfied: 

(i) f*: u*(C*(X, D)) -+ C*(Y, D) is a homotopy equivalence of chain complexes 
in mod(K), see (1.15). 

(ii) f* : Hn(X, D) -+ u* Hn(Y, D) is an isomorphism of H -modules (OT T'ight 
mod(H)-modules) fOT n 2': 1, see (1.30). 

(iii) For all K -modules N E Mod(K) the induced map 

is an isomorphism for n 2': 1; see (1.28). 
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Part (iii) of this theorem is well known and for D = * also part (i) and (ii) are 
well known. 

We use homology (1.28) and homotopy groups (1.11) for the following cer­
tain exact sequence of J.H.C. Whitehead. Again let (X, D) be a normalized re­
duced relative CW-complex or more generally let (X, D) be a pair of spaces of 
which 7roD -+ 7roX is surjective. Let H = JI(X, D) be the restricted fundamental 
groupoid. Then homotopy groups yield the H-modules (resp. mod(H)-modules; 
see (1.30)) 

{ 
7rn(X) : HOP -+ Ab, n ~ 2, 

rn(X, D) : HOP -+ Ab, n ~ 1, 

with 7rn(X)(v) = 7rn(X, v) for v E D = Ob(H). Moreover Tn is defined for n ~ 3 
by skeleta, that is 

rn(X, D)(v) = image{ 7rn (Xn - 1 , v) -+ 7rn(Xn , v)}. 

For n = 1,2 the definition of Tn is more complicated, see (V.5.3) and (II, § 2). As 
a special case of (V.5.4) we get 

(1.32) Theorem. Let (X, D) be a pair of spaces for which 7roD -+ 7roX is sur­
jective and let H = II(X, D). Then the following sequence is an exact sequence of 
H -modules (resp. right mod( H) -modules) 

h 
--+ Tn(X,D) --+ 7rn(X) --+ Hn(X,D) --+ Tn-1(X,D) --+ ... 

h 
--+ r 2 (X, D) --+ 7r2(X) --+ H 2 (X, D) --+ r 1 (X, D) --+ 0 

Moreover this sequence is natural in (X, D) E TopD. The homorphism h is the 
Hurewicz homomorphism. 

If D = * then r 1 and T2 are trivial and in this case the theorem describes 
exactly J.H.C. Whitehead's result [CE]. 

The cohomology groups with local coefficients 

{ 
Hn+l(x, D; u*7rnY), and 

Hn+l(x, D; u* Tn(Y, D)) 

are needed to define various properties of obstruction theory which we discuss in 
detail in (V, § 4) and chapter VI. For example we get by (V.4.4) the well known 
result: 

(1.33) Theorem. Let (X, D) be a normalized reduced relative CW-complex and 
let f : D -+ Y be a map in Top which admits an extension 9 : Xn -+ Y, n ~ 2. 
Then the restriction 9 I X n- 1 adm'its an extension 9 : X n+1 -+ U if and only if an 
obstruction element 

vanishes. Here u : II(X, D) -+ JIY is induced by g. 
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We point out that this obstruction theorem requires the use of the restricted 
fundamental groupoid which satisfies II(X, D) = II(X2 , D) so that the induced 
map u is well defined. 

There is also an obstruction theory for the realizability of chain maps and 
chain complexes described by a tower of categories in (VI, § 5). Moreover there are 
the homotopy lifting property of the chain functor and the model lifting property 
of the twisted chain functor which have useful meaning for the chain functor in 
(1.26); see (VI, § 3) and (VI, § 8). We cannot describe all the results of this book 
in this section applied to the example TopD. We leave it to the reader to give the 
appropriate explicit interpretation in TopD of the abstract results of the theory 
below. We here discuss only a few examples in order to illustrate the abstract 
theory. 

As main applications of this book we now discuss special cases of results in 
chapter VII and VIII which relate problems of homotopy theory with algebraic 
K-theory. 

(1.34) Definition. Let D be a space and let A be a set of functions 0: with 0: : 

Za. ---> D where Za. is a discrete set. We say that a function t.p : Z ---> D is A-finite 
if 131, ... ,13k E A together with a commutative diagram 

of sets are given where Xa. is a bijection. Similarly we say that a normalized reduced 
relative CW-complex (X, D) is A-finite if all functions O:n : Zn ---> D, n ~ 1, in 
(1.22) are A-finite and (X, D) is finite-dimensional. 

(1.35) Examples. A) Let D = * be a point and let A = {l*} be given by the 
identity of *. Then (X, *) is A-finite if X is a finite CW-complex. 

B) If D is discrete and A = {lD} is given by the identity of D then (X, D) is 
A-finite if all path components of X are finite CW-complexes with the same 
number of n-cells for n ~ 1. 

Now let (X, D) and (Y, D) be normalized reduced relative CW-complexes. A 
domination (X, J, g, H) of Y in Top? is given by maps 

and a homotopy H : 9 J ~ 1 reI D. The domination has dimension < n if 
dim(X, D) ::; n and the domination is A-finite if (X, D) is A-finite. 

As a special case of theorem (VII.2.4) we get: 
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(1.36) Theorem. Let (Y, D) be a normalized reduced relative CW-complex with 
restricted fundamental groupoid K = II(Y, D). If (Y, D) admits an A-finite domi­
nation in Top~ then the finiteness obstruction 

is defined where U A is the enveloping functor in (1.17) and Ko is the reduced 
projective class group, see (VII, § 1). Moreover [Y] = 0 if and only if there ex­
ists an A-finite normalized reduced relative CW-complex (X, D) and a homotopy 
equivalence X ~ Y under D. 

If D = * is a point this yields a classical result of Wall [FC], [FCll]; compare 
the first example in (1.35). If we consider the second example in (1.35) we get a 
new result. 

The reader might wonder why we have chosen such a general form (using 
U A) for the description of the finiteness obstruction theorem of Wall. In fact, we 
describe the result here in the same way as the general result of the abstract theory 
which requires the enveloping functor U A. For A-diagrams of spaces in § 2 below 
we shall see that the choice of the set A has a significant role. The same type of 
remark holds also for the choice of the set V in the next definition (1.37). 

We now describe simple homotopy equivalences and Whitehead torsion under 
a space D: 

(1.37) Definition. Let D be a space (which is allowed to be empty) and let 

(1) 

be the category of cofibrations under D, see (1.4) (1). Moreover let V be a set of 
sets with the property that the empty set 0 is in V and that the disjoint union 
A II B of A, B E V is again in V. Then each A E V yields the disjoint union 

AIID in Top~ (2) 

which we call a discrete object. Here A has the discrete topology. The most im­
portant example of V is the set of finite sets {I, ... ,n}, n ;::: O. A V-complex is a 
relative CW-complex (L, D) for which the set Zn of n-cells in L - D is an element 
in V, n ;::: O. Let lR.~+l, lR.~+l C lR.n+l be defined by elements (xo, ... ,xn ) E lR.n+1 

with Xo ;::: 0 and Xo ::; 0 respectively. A ball pair is a tuple (Bn+l, sn, pn, Qn) 
which is homeomorphic to the Euclidean ball pair (see (1.5)) 

(3) 

Here pn n Qn = sn-l is a sphere and we assume that the basepoint of Bn+l is 
an element in pn n Qn. For A E V we consider a push out diagram 

A x B n+ 1 ------+ K 

u u (4) 

Axpn ~ L 
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where f is given by a pair map f : (A x pn, A x 5 n- 1 ) --+ (Ln, Ln-d. Then 
(K, D) is again a V-complex which we call an elementary expansion of L. Clearly 
L c K is a homotopy equivalence under D and we call a retraction r : K --+ L 
an elementary collapse. A simple homotopy equivalence f : L --+ L' under D is 
obtained by a finite sequence of elementary expansions and collapses respectively. 

Let V-cell be the full subcategory of Top? consisting of finite dimensional 
V-complexes (L, D). In (VIII, § 8) we define a functor 

Wh: V-cell/~ reiD --+ Ab 

which carries (L, D) to the Whitehead group Wh(L, D). As a special case of 
(VIII.8.3) we get the following result. 

(1.38) Theorem. There is a function T assigning to any homotopy equivalence 
f : Y --+ Lunder D between finite dimensional V-complexes Y, L an element 
T(f) E Wh(L, D). Moreover T(f) = 0 if and only if f is homotopic rei D to a 
simple homotopy equivalence under D. 

The Whitehead group Wh(L, D) can be computed algebraically by the follow­
ing result which is a special case of (VIII.12.7). 

(1.39) Theorem. Let (L, D) be a normalized finite dimensional V-complex and 
let H = II(L, La) be the restricted fundamental groupoid. Then the algebraic 
Whitehead group 

is defined. Here A is the set of all functions A --+ La with A E V, the functor U A 

is the enveloping functor in (1.17) and KtSO is the "isomorphism torsion group" 
in (VIII, § 10) . Moreover there is an isomorphism 

T : Wh(L, D) ~ Wh(H) 

vVe now consider the special case that D = 0 is empty and La = * is a point so 
that H = 7r1L is the fundamental group. Moreover let V be the class of finite sets 
so that UA(H) is the additive category of finite dimensional free Z[7r1L]-modules. 
In this case the theorems (1.38), (1.39) coincide with the classical results of J.H.C. 
Whitehead [SH] on simple homotopy equivalences; compare Cohen [C]. 

All the results in this section are examples and applications of the results of the 
general theory in the chpaters I, ... , VIII below. In order to translate the general 
theory to the special homotopy theory in TopD one has to use the following 
glossary where on the left hand side we use the notation of the general theory. 
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T 
(1.1.11 ) 

Twist 
(1.3.5) 

ax 

Coef 
(1.4.1) 

mod(ax ) 
(1.5.7) 

UA 
(1.5.11) 

(C,T) 
(V.11) 

Complex 
(IV.2.2) 

c. 
(V.2.3) 

(C,V) 
(VIIL5.1) 
(VIIL12.3) 

(D~+1, E~,P.f, Q~) 
(VIIL4.5) 

Category of coactions given by the full subcategory of Top~ /-.::::. 
of reduced I-dimensional relative CW-complexes (Xl, D). This is 
also the category of free groupoids under lID = G. Cogroups in T 
are spherical objects s~ and the coaction map is given by (1.25). 

Category of presentation ax, generalizes the category of free "pre 
crossed modules". 

Presentation of a groupoid H in Grd(G). 

This is a category equivalent to Grd(G). The equivalence carries 
the presentation ax of H to H. 

This is the category mod(H) in (1.14) where ax is a presentation 
of H. Here we use (1.21). 

This is the enveloping functor U A in (1.17). Here we identify a E 
A with the spherical object s~ E T. 

(Top~ , T) is a homological cofibration category if D is non empty. 
Here T is defined above. 

This is the subcategory of Top~ consisting of normalized reduced 
relative CW-complexes (X?l' D) and cellular maps. 

This is the chain functor in (1.26). 

Top~ is a homological cellular I-category with the cylinder in 
(1.4) (3) and the class V of discrete objects in (1.37). 

For X in Top~ this is the push out of B x X ~ B x D ~ D 
where pr is the projection and B = (B k+l , Sk, pk, Qk) is the ball 
pair in (1.37) (3). 

It is very useful to have these examples in mind in order to visualize the abstract 
and categorical theory in the second part of the book. 

2 Homotopy Theory of Diagrams of Spaces 

Let A be a fixed small category. For objects a, b E A let A( a, b) be the set of 
morphisms (arrows) a ----.; b in A. If C is a category then an A-diagram or an 
A-object X in C is a functor 

X:AOP----.;C, (2.1) 

i.e. a contravariant functor from A to C. Let AC be the category of such A­
objects in C; morphisms are natural tarnsformations. An object X in C yields 
the constant A-object (also denoted by X) which carries each object in A to X 
and each morphism in A to the identity of X. This way we obtain the inclusion of 
categories 

CcAC 
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which carries the object X to the constant A-object given by X. 
In particular we need the category A Set of A-sets. We consider Set as a sub­

category of the category Top of topological spaces by taking the discrete topology 
of a set. This yields also the inclusion of categories 

ASet c ATop (2.2) 

where A Top is the category of A-spaces. We say that an object in A Set is a 
discrete A-space. 

Notice that the notions of coproduct, product, pushout, pullback, colimit, and 
limit exist in the category A Set and A Top respectively. They are constructed by 
applying these notions objectwise in Set, resp. Top. 

For each object a in A we have the A-set 

A(-,a): AOP ----; Set (2.3) 

which carries bE Ob(A) to the set A(b, a) of arrows in A. We call the A-set A( -, a) 
an A-point. A coproduct of A-points over an index set M, 

z = II A(-,ai) (1) 
iEM 

in A Set, is termed a free A-set. Let 

Aset c ASet (2) 

be the full subcategory consisting of free A-sets. 

(2.4) Remark. There is a covariant version of the theory which considers covariant 
diagrams A ----; C and for which A-points in (2.3) are replaced by the covariant 
functors A(a, -). Accordingly all definitions and results below have a covariant 
analogue. 

In this section we describe basic results of homotopy theory in A Top. A 
homotopy or more precisely an A-homotopy between A-spaces X, Y is a map 

[O,l]xX----;Y inATop (2.5) 

where [0,1] is the constant A-space given by the unit interval [0,1] C R Equiva­
lently [0, 1] x X is the composite of functors 

X I A op -----+ Top -----+ Top 

where I with I(Y) = [0,1] x Y is the cylinder in Top. Such homotopies are free 
homotopies or homotopies relative the empty A-space 0. As in (1.3) we have to 
consider homotopies relative a non-empty A-space D in order to obtain algebraic 
objects like homotopy groups. In particular the case when D is a discrete A-space 
is of interest. The example of Or( G)-spaces for a topological group G in the next 
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section § 3, however, shows that also the non-discrete case plays an important role. 
Let 

C = (A Top)D (2.6) 

be the category of A-spaces under D. Using the cylinder (2.5) we define cofi­
brat ions in A Top by the A-homotopy extension property. They yield the full 
subcategory 

(1) 

consisting of cofibrations D >----> X in A Top. Accordingly we obtain the homotopy 
category 

(2) 

where homotopy relative D is defined by the cylinder object J(X, D) defined by 
the push out in A Top 

as in (1.4) (3). 

[0,1] x X --------+ J(X, D) 

[0,1] x D 
pr 

--------+ D 

(3) 

We say that an A-space Y is obtained from an A-space X by attaching (71 + 1)­
cells if a free A-set Z together with a pushout diagram in A Top 

Z x B n +1 --------+ Y 

u u (2.7) 

Zxsn -L X 

is given. Here sn and Bn+1 are the constant A-spaces given by (1.5). A relative 
A-CW-complex (X>o, D) = (X, D) is given by a sequence of inclusions 

D c Xo C Xl C ... C Xn C X n +1 C ... (2.8) 

in A Top. Here Xo is the coproduct of D and a free A-set and X n +1 is obtained 
from Xn by attaching (71 + I)-cells for n 2 o. Let X = lim(X::,:o) be the direct 
limit of the sequence. We say that (X, D) is reduced if Xo = D and that (X, D) 
is normalized if the attaching maps 

in : Zn X sn-1 ---+ X n - 1 (1) 

carry Z" x * to X o, 71 2 1. Here the free A-set Zn is called the set of n-cells of the 
A-CW-complex (X, D). We point out that for a space U in Top and an A-space 
Y we have 
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A Top(A( -, a) xU, Y) = Top(U, Y(a)). (2) 

Hence the attaching map in above is for each A-point A( -, a) E Zn defined by 
a map sn-l ---+ Xn-1(a) in Top which is the attaching map of a generating cell 
in the relative CW-complex (Xn(a), D(a)). Using such generating cells we see 
that obstruction theory for A-spaces X can be described by ordinary homotopy 
groups of the spaces X(a), a E Ob(A). This in particular implies that the cellular 
approximation theorem holds for A-CW-complexes. The next result is an analogue 
of (1.8). 

(2.9) Lemma. Let (X, D) be a relative A-CW-complex. Then there exists a 
rWTmalized relative A-CW-complex (Y, D) together with a homotopy equivalence 
Y ---+ X in (A Top)? / "" reI D. Moreover if JroD ---+ JroX is surjective then (Y, D) 
can be chosen to be normalized and reduced. 

Proof. Since the cellular approximation theorem holds we can find homotopies of 
attaching maps in "" gn where gn carries Zn x * to Xo. This yields inductively 
the A-CW-complex (Y, D). If JroD ---+ JroX is surjective we can choose a path 
for each generating O-cell A( -, a) in X to a point in D. We glue a ball pair 
A(-,a) x (B2 ,Sl,P,Q) via Q to this path and we collapse P to a point. The 
resulting space (Y, D) is a reduced A-CW-complex. q.e.d. 

For each A-space X one gets the A-groupoid H = II X which is given by the 
composite of functors 

X II H: AOP -> Top -> Grd (2.10) 

Here the functor II carries a space U to the fundamental groupoid of U. We 
use the A-groupoid II X to define the following category fA II X which we call 
the integrated fundamental groupoid of the A-space X (compare § 2 in Moerdijk­
Svenson [D]). The category 

(1) 

is the integration of H = II X along A which assembles the diagram of categories 
(2.10) into one large category. The objects are pairs (a,x) where a E Ob(A) and 
x E X(a) = Ob(II X)(a). An arrow (a, x) ---+ (a', x') between such objects is a pair 
(a, t) where a : a ---+ a' is an arrow in A and t : x ---+ X(a)(x' ) E X(a) is an arrow 
in II X (a). Composition is defined in the evident way. 

If X is an A-space under D we also obtain the functor H' = II(X, D) : 
AOP ---+ Grd which carries a E Ob(A) to the restricted fundamental groupoid 
II(X(a), D(a)). We clearly have the inclusion 

II(X, D) = H' c H = IIX (2) 

of A-groupoid::; which yields the inclusion of integrations along A 
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(3) 

If the morphism 7roD -> 7roX of A-sets is surjective (that is, if each path component 
of X(a), a E ObA, contains a point of D(a)) then the inclusion is an equivalence of 
categories. The assumption that 7roD -> 7roX is surjective will be used frequently. 

Homotopy groups (1.9) yield the canonical functor 

7rn(X) : (1 IIX) op -> Ab, n 2: 2, (2.11) 

which carries (a,x) to 7rn(X(a),x) and which carries (a,t) to the induced map 

X(a). t# 
7rn(X(a'), x') ----+ 7rn(X(a), X(a)(x')) ----+ 7rn(X(a), x) 

Hence the homotopy group 7rnX of the A-space X is a fA IIX-module in the 
category Mod(JA IIX); compare (1.12). In a similar way we see that for a pair 
(Y, X) in ATop the relative homotopy group 7rn+l(Y, X) is a fA IIX-module. 

A weak equivalence in (ATop)D is a map f : X -> Y under D in ATop which 
induces isomorphisms between homotopy groups 

for all a E ObA, ao E X(a), n 2: o. It is known (see for example Dror [HH]) that 
each A-space Y under D admits a weak equivalence f : X -> Y under D where 
(X, D) is a relative A-CW-complex termed an A-CW-approximation of (Y, D). It 
is easy to show that a weak equivalence f : (X, D) -> (Y, D) under D between 
relative A-CW-complexes is actually a homotopy equivalence in (A Top)? Ie:::; reID; 
see (IV, § 3). 

For example, if D = (/) is empty and Y is a discrete diagram then an A­
CW-approximation EY of Y yields the classifying space BY = EYlrv where the 
equivalence relation on EY is generated by x rv a*x for a : a -> b in A and 
x E (EY)(b). 

The A-CW-approximation yields the equivalence of categories 

Ho(ATop)D ~ A-CWD Ie:::; reID (2.12) 

Here the left hand side is the localization defined by inverting weak equivalences 
and the right hand side is the full subcategory of (ATop)? Ie:::; reID consisting 
of relative A-CW-complexes (X, D). The equivalence shows that each homotopy 
functor defined on relative A-CW-complexes (X, D) yields a homotopy functor on 
(ATop)D. Therefore it is sufficient to define homology and cohomology only for 
A-CW-complexes. For an A-groupoid G let AGrd(G) be the following category 
which is a subcategory of (AGrd)G. Objects are maps f : G -> H in AGrd which 
induce the identity 

Ob(f) = 1 : Ob(G) = Ob(H) 
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where Ob : Grd --+ Set carries a groupoid to its set of objects. Morphisms are 
maps in AGrd under G. For each cofibration D >-> X in ATop we obtain the 
object 

c(X) = (IID --+ II(X, D)) 

in AGrd(IID). This defines the coefficient functor 

c: (ATop)? Ie:-: reID --+ AGrd(IID) (2.13) 

For each A-groupoid H we have integration fA H and the abelian category 
Mod(fA H) of (fA H)-modules. We now define the full subcategory 

(2.14) 

consisting of free (fA H)-modules. For this we use the category (ASet)obH of 
A-sets over the A-set ObH given by (2.12). We have the forgetful functor 

rp: MOd(l H) --+ (ASet)obH (1) 

which carries F : fA H --+ Ab to the A-set over Ob H given by 

f(a) : II F(a,x) --+ ObH(a) E Set (2) 
xEObH(a) 

for a E Ob(A). Here f(a) is the function which satisfies f(a)(y) = x for y E F(a, x). 
Let L(H) be the left adjoint of rp. Moreover consider a map 

a: Z --+ ObH in ASet (3) 

where Z is a free A-set (2.3) (2). Then we call La(H) = L(H)(a) E ModU.~ H) 
the free (fA H)-module generated by a. Let mod(f", H) be the full subcategory in 
(2.14) consisting of such free modules. 

Now let G be a fixed A-groupoid. Each morphism u : H --+ K E AGrd( G) 
yields a canonical functor 

(2.15) 

which carries La(H) to La(K) where Ob(H) = Ob(K) = Ob(G). Moreover one 
has the commutative diagram in Mod(fA H) 

~ L{3(H) 

1 U0 

~ L{3(K) 
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as in (1.15). Here La(K) is a (fA H)-module via the induced map fA u : fA H ---> 
fA K on integrations along A given by u. For H in AGrd( G) we choose a subset 

(2.16) 

that is, A is a set of elements a where a : Za ---> Ob(H) = Ob(G) is a function in 
A-Set defined on a free A-set Za. We define the enveloping functor 

U A : AGrd( G) ---> Ringoids (2.17) 

which carries H to the full subcategory of mod(fA H) consisting of free objects 
La(H) with a E A. Moreover UA carries u : H ---> K E AGrd(G) to the induced 
map u* : UA(H) ---> UA(K) which is the restriction of u* in (2.15). 

It is possible to describe the free (fA H)-modules in mod(fA H) by use of 
homotopy groups. For this we assume that an A-space D >---> X under an A-space 
D is given and that H = II(X, D). Then any function a as in (2.14) (3) yields the 
following push out in ATop 

u u (2.18) 

Zx*=Z ~ D 

We call s~ the n-dimensional spherical object in (ATop)? associated to a. The 
projection Z x sn ---> Z induces the retraction 0 : S;; ---> D. Moreover S;; for n :2: 1 
is a cogroup object in (ATop)? /-:::::. which is abelian for n :2: 2. For the sum S;; V X 
in (ATop)? we obtain the retraction map 

(O,l):S~VX--->X 

which is a map in (ATop)? Now we define the fA H = fA II(X, D)-module 

7rn(S:; V Xh = kernel { 7rn(S~ V X) ~ 7rn(X)} 

by use of (2.11), n :2: 2. 

(2.19) 

(2.20) Proposition. For H = II(X, D) the free (fA H)-module La(H) coincides 
with 7rn(S~ V Xh for n :2: 2. Moreover given f : X ---> Y in (ATop)? we obtain 
the induced map 

u: H = II(X, D) ---> K = II(Y, D) 

in AGrd(IID) for which the following diagram commutes; see {2.15}. 

7rn (S:; V Xh 

1 (IV!). 

7rn(S;; V Yh 
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Let (X, D) be a relative A-CW-complex which is reduced and normalized where 
D is an A-space. We obtain by the attaching maps In in (2.8) (1) the functions 
(n ~ 1) 

an : Zn -+ D E ATop (2.21 ) 

where Zn is the free A-set of n-cells in (X, D). Here an is the restriction of In to 
Zn X * C Zn X sn-l. The function an is well defined since we assume that (X, D) 
is reduced and normalized. 

The cellular approximation theorem yields the following canonical isomorphism 
of A-groupoids in AGrd(lI D) 

H = lI(X, D) = 1I(X2' D). (2.22) 

Hence lI(X, D) depends only on the 2-skeleton of X. The attaching map ax 
S;2 -+ Xl of 2-cells given by h in (2.8) (1) yields a map (also denoted by ax) 

ax : lI(S~, D) -+ lI(XI' D) (2.23) 

in AGrd(lI D) which is a presentation of H = 1I(X2' D) in the sense that 

H = lI(XI,D)IN image(ax ) 

where N denotes the normal closure; compare (1.24). Since (Xl, D) is reduced 
lI(XI' D) is a free object in AGrd(lI D). Such free A-groupoids under D admit a 
coaction induced hy 

M : Xl -+ Xl V S~, in (ATop)? Ie:::: reID 

Here M is defined in the same way as M in (1.25). 

(2.24) 

{2.25} Definition. Let D be an A-space and let (X, D) be a relative A-CW-complex 
which is normalized and reduced. Hence the functions an : Zn -+ D are defined for 
n ~ 1; see (2.21). Let H = II(X2' D) E AGrd(IID). Then there is a well defined 
chain complex 

{
C. (X, D) in mod (1 H) with 

Cn(X, D) = Lan (H) for n ~ 1 

(1) 

and Cn(X, D) = 0 for n :s: O. Moreover a cellular map f : (X, D) -+ (Y, D) induces 
a map 

u: H = 1I(X2' X) -+ K = II(Y2' D) E AGrd(IID) 

and a chain map 

(2) 
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in mod(Jfl. K). Here we use u. in (2.15). If D is a free A-set (2.3) then we define 

ao: Zo = D 

by the identity of D. In this case there is a well defined augmented chain complex 

c. = augC.(X,D) in mOd(l H) with 

{ 
Cn(X) = Lan (H) for n 2: 0 and 

Cn(X)=O forn<O 
(3) 

If (X, D) is an A-space under D for which 7roD ----> 7roX is surjective we choose a 
normalized reduced A-CW-approximation (Y, D) of (X, D) (see (2.9) and (2.12)). 
Hence in this case we can define the chains of X by the chains of Y, that is: 

{ 
C.(X, D) = C.(Y, D), see (1), 

C.(X) = C.(Y), see (3). 
(4) 

This yields below the appropriate notion of homology and cohomology for any 
A-space X under D for which 7roD ----> 7roX is surjective. It is easy to see that 
homology and cohomology of (X, D) does not depend on the choice of Y. 

It is possible to obtain C. (X, D) along the lines in (1.27). We get C. (X, D) by 
the general procedure in (V, § 2). The augmentation functor aug used in (3) above 
is described in (II, § 6). 

Using the chain complexes C. (X, D) and C. (X) in mod(Jfl. H) we obtain for 
each object M in Mod(Jfl. H) the chain complexes of abelian groups 

Hom(C.(X,D),M) and Hom(C.X,M). 

Here Hom denotes the set ofmorphisms in the abelian category Mod(Jfl. H). Hence 
the cohomology with coefficients in M 

is defined. 

{ 
Hn(X,D;M) = H n Hom(C.(X, D),M) 

Hn(x; M) = H n Hom(C.(X), M) 
(2.26) 

(2.27) Remark. Moerdijk-Svenson [D] have introduced for each A-space X and 
(Jfl.ll X)-module M the cohomology Hn(x, M). In fact (1.27) yields a further 
way to describe the Moerdijk-Svenson cohomology since for the restriction M of 
M given by the inclusi~n ffl. H = ffl.ll(X, D) c ffl.ll X we have the natural 
isomorphism Hn(x, D; M) = Hn(x, D; M) where the right hand side is defined 
by (1.27). 
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On the other hand we can define the homology 

(2.28) 

of the chain complex C*(X, D) in the abelian category Mod(fA H) with H = 
II(X, D). Hence Hn(X, D) is an (fA H)-module in Mod(fA H). 

(2.29) Remark. As in (1.30) we obtain by Hn(X, D) the mod(fA H)-module 

This is the homology of the complex (X, D) considered in (V.3.3). 

We now are ready to formulate the following homological Whitehead theorem 
for diagrams of spaces which is exactly the analogue of (1.31). 

(2.30) Theorem. Let D be an A-space and let f : (X, D) ----+ (Y, D) be a cellular 
map between normalized reduced relative A-CW-complexes in (A Top)? Then f 
is a homotopy equivalence under D (i. e. an isomorphism in the homotopy category 
(ATop)? / '::::' reI D) if and only if the coefficient functor c induces an isomorphism, 
u = c(J), 

u : H = JI(X, D) ---=-. K = II(Y, D) E AGrd(II D) 

and one of the following conditions (i), (ii), (iii) is satisfied: 

(i) f*: u* (C* (X, D)) ----+ C* (Y, D) is a homotopy equivalence of chain complexes 
in mod(fA K); see (2.25). 

(ii) f*: Hn(X, D) ----+ u* Hn(Y, D) is an isomorphism of fA H -modules for n ~ 1; 
see (2.28). 

(iii) For all modules N in Mod(JA K) the induced map 

1* : Hn(y, D; N) ----+ Hn(x, D; u* N) 

is an isomorphism of abelian groups for n ~ 1, see (2.26). 

Part (iii) of the theorem can also be derived from the Whitehead theorem 3.8 
of Moerdijk-Svenson [D] which in turn can be derived from (1.30) (iii). For us 
theorem (1.30) is a special case of (VI, § 7) below. 

We now use the homology (2.28) and homotopy groups (2.11) for the following 
certain exact sequence of J.H.C. Whitehead. Let D be an A-space and let (X, D) 
be a normalized reduced relative A-CW-complex or more generally let (X, D) be 
a pair of A-spaces for which 7roD ----+ 7roX is surjective. Let H = II(X, D) be the 
restricted fundamental A-groupoid in (2.10) (2). Then homotopy groups yield the 
fA H-modules (resp. mod(fA H)-modules; see (1.30)) 
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{ 
?Tn(X) : ([ H) op --> Ab, n ~ 2, 

Fn(X, D) : ([ H) op --+ Ab, n ~ 1. 
(2.31) 

Here Fn is defined for n ~ 3 by skeleta, that is 

Fn(X, D) = image { ?Tn (Xn- 1 ) --> ?Tn (Xn) }. 

For n = 1,2 the definition of Fn is more complicated, see (V.5.3) and (II, § 2). As 
a special case of (V.5.4) we get 

(2.32) Theorem. Let (X, D) be a pair of A-spaces for which ?ToD --> ?ToX is 
surjective and let H = JI(X, D). Then the following sequence is an exact sequence 
of fA. H -modules, n ~ 2, 

Moreover this sequence is natural for (X, D) in ATopD. The homomorphism h is 
the Hurewicz homomorphism. 

The cohomology groups (2.26) with local coefficients 

{ 
Hn+l(x, D; u*?TnY) , and 

Hn+l(x, D, u* Fn(Y, D)) 

are needed to define various features of obstruction theory which we discuss in 
detail in (V, § 4) and chapter VI. For example we get by (V.4.4) the next result 
which is the analogue of (1.33). 

(2.33) Theorem. Let (X, D) be a normalized reduced relative A-CW-complex and 
let f : D --> Y be a map in ATop which admits an A-extension g : Xn --> Y, n ~ 2. 
Then the restriction 9 I X n- 1 admits an A-extension g : Xn+l --+ Z if and only if 
an obstruction element 

vanishes. Here u : fA. JI(X, D) --> fA. JIY is induced by g. 

We point out that the result requires the use of the restricted fundamental 
A-groupoid which satisfies IJ(X, D) = JI(X2' D) so that the induced map u is 
well defined by 9 : Xn --> Y for n ~ 2. 

There is also an obstruction theory in ATopD for the realizability of chain 
maps and chain complexes described by a tower of categories in (VI, § 5). Moreover 
there are the homotopY lifting property of the chain functor and the model lifting 
property of the twisted chain functor which have useful meaning for the chain 
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functor in (2.25); see (VI, § 3) and (VI, § 8). We leave it to the reader to give the 
appropriate explicit interpretation in ATopD of such results. We here discuss only 
a few examples in order to illustrate the theory in chapter I, ... , VIII. 

As main application of this book we now describe special cases of results in 
chapter VII and VIII which relate problems of homotopy theory in ATop with 
algebraic K-theory. 

(2.34) Definition. Let D be an A-space and let A (2.16) be a set of functions a 
in ATop with a : Za ---4 D where Za is a free A-set. We say that a function 
<p : Z ---4 D in ATop is A-finite if (31, ... ,(3k E A together with a commutative 
diagram 

in ATop are given where Xa is a bijection. Similarly we say that a normalized 
reduced relative A-CW-complex (X, D) is A-finite if all functions an : Zn ---4 D, 
n ~ 1, in (2.21) are A-finite and (X, D) is finite dimensional. Using the various 
A-points A( -, a) in (2.3) it is easy to obtain many different examples of sets A as 
above. 

Now let (X, D) and (Y, D) be normalized reduced relative A-CW-complexes. 
A domination (X, f, g, H) of Y in (ATop)? is given by maps 

Y ~ X ~ Y under D (2.35) 

and an A-homotopy H : gf c::' 1 reID. The domination has dimension::; n if 
dim(X, D) ::; n and the domination is A-finite if (X, D) is A-finite. As a special 
case of theorem (VII.2.4) we get: 

(2.36) Theorem. Let D be an A-space and let (Y, D) be a normalized reduced 
relative A-CW-complex with restricted fundamental A-groupoid K = II(Y, D). If 
(Y, D) admits an A-finite domination in (ATop)? then the finiteness obstruction 

is defined. Here UA is the enveloping functor in (2.17) and Ko is the reduced 
projective class group, see (VII, § 1). Moreover [Y] = 0 if and only if there exists 
an A-finite normalized reduced relative A-CW-complex (X, D) and a homotopy 
equivalence X ---4 Y in (A Top)? . 

This is the analogue of the finiteness obstruction theorem (1.36) of Wall. 

Remark. Theorem (2.36) only holds in the relative case when D is not empty. In 
order to obtain such a result in the non-relative case one has to apply the theorem 
to the pair (X, Xo) where (X, 0) is an A-CW-complex relative the empty diagram 
0. The condition (X,0) "dominated" by (Y,0) has to imply that we may assume 
Xo = Yo and that (X, Xo) is dominated by (Y, Yo) relative Xo = Yo = D. 
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Next we describe simple homotopy equivalences and Whitehead torsion for 
A-spaces. 

{2.37} Definition. Let D be an A-space (which is allowed to be empty) and let 

K = (ATop)? (1) 

be the category in (2.6) (1). Moreover let 1) be a set offree A-sets with the property 
that the empty set 0 is in V and that the coproduct A II B of A, B E 1) is again 
in V. Then each A E V yields the coproduct 

A II D in (ATop)? (2) 

which we call a discrete object in K. Here A has the discrete topology. A V­
complex is a relative A-CW-complex (L, D) for which the free A-set Zn of n-cells 
in L - D is an element in V, n ~ o. A ball pair is a tuple (Bn+l,sn,pn,Qn) as 
defined in (1.37) (3) where n ~ O. For A E V we consider a push out diagram in 
ATop(n ~ 0) 

u u (3) 

Axpn ~ L 

where f is given by a pair map f : (A x pn, A x sn-l) ----> (Ln, Ln-d. Then 
(K, D) is again a V-complex which we call an elementary expansion of L. Clearly 
L c K is a homotopy equivalence in (ATop)? and we call a retraction r : K ----> L 
an elementary collapse. A simple homotopy equivalence f : L ----> L' under D is 
obtained by a finite sequence of elementary expansions and collapses respectively. 

Let V-cell be the full subcategory of (ATop)? consisting of finite dimensional 
V-complexes (L, D). In (VIII, § 8) we define a functor 

Wh: V-cell/c:o:' reID ----> Ab 

which carries (L, D) to the Whitehead group Wh(L, D). As a special case of 
(VIII.8.3) one has the following result. 

(2.38) Theorem. Let D be an A-space which may be empty. There is a function T 

assigning to any homotopy equivalence f : Y ----> L in (ATop)? between finite 
dimensional V-complexes Y, L an element T(f) E Wh(L, D). Moreover T(f) = 0 
if and only if f is A-homotopic reI D to a simple homotopy equivalence under D. 

The Whitehead group Wh(L, D) can be computed algebraically by the follow­
ing result which is a special case of (VIII.12.7). 

(2.39) Theorem. Let D be an A-space which may be empty. Let (L, D) be a 
normalized finite dimensional V-complex and let H = II(L, Lo) be the restricted 
fundamental A-groupoid. Then the algebraic Whitehead group 
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is defined. Here A is the set of all functions A ----> Lo in ASet with A E Vi 
the functor UA is the enveloping functor in (2.17) and Ktso is the "isomorphism 
torsion group" in (VIII, § 10). Moreover there is an isomorphism of abelian groups 

T : Wh(L, D) ~ Wh(H). 

All the results in this section are examples and applications of the results of the 
general theory in the chapter I, ... , VIII below. In order to translate the general 
theory to the special homotopy theory in (ATop)D one has to use the following 
glossary where on the left hand side we use the notation of the general theory. 

T 
(1.1.11) 

Twist 
(1.3.5) 

ax 
Coef 

mod(ax) 
(1.5.7) 

UA 
(1.5.11 ) 

(C,T) 
(V. 1.1) 

Complex 
(IV.2.2) 

c. 
(V.2.3) 

(C,V) 
(VIII.5.1) 
(VIII. 12.3) 

(O~+l , Ei, pl, Qi) 

(VIII.4.5) 

CategorI; of coactions given by the full subcategory of 
(ATop)c Ie:=. of reduced I-dimensional relative A-CW-complexes 
(Xl, D). Cogroups in T are spherical objects S; and the coaction 
map is defined by (2.24). 

Category of presentation ax, generalizes the category of free "pre 
crossed modules". 

Presentation as in (2.23). 

This is a category equivalent to AGrd(IID). The equivalence 
carries the presentation ax of H to H. 

This is the category mod(JA H) in (2.14) where ax is a presen­
tation of H. Here we use (2.20). 

This is the enveloping functor U A in (2.17). Here we identify a E 
A with the spherical object S; E T. 

((ATop)?, T) is a homological cofibration category if D is non 
empty. Here T is defined above. 

This is the subcategory of (ATop)? consisting of normalized re­
duced relative A-CW-complexes (X, D) and cellular maps. 

This is the chain functor in (2.25). 

(ATop)? is a homological cellular I-category with the cylinder 
in (2.6) (3) and the class V of discrete objects in (2.37). Here D 
is allowed to be empty. 

For X in (ATop)? this is the push out of B x X ~ B x D -E:.. D 
in ATop where pr is the projection and B = (Bk+t, Sk, pk, Qk) 
is the ball pair in (1.37) (3). 

It will be convenient to have these examples in mind in order to visualize the 
abstract and categorical theory in the second part of the book below. 

3 Homotopy Theory of Transformation Groups 

In this section let G be a fixed topological group which is locally compact Hausdorff 
(for example a Lie group). Let X be a topological space. A (left) action of G on X 



32 Chapter A: Examples and Applications in Topological Categories 

is a continuous map G x X ----+ X, (g, x) f---+ g. x satisfying e· x = e for the neutral 
element e E G and gl . (g2 . x) = (gl . g2) . x for gl, g2 E G and x EX. Here G x X 
is the product of spaces with the product topology. Given a G-action on X we 
call G a transformation group for the G-space X. A G-map or an equivariant map 
f: X ----+ Y between G-spaces is a continuous map satisfying f(g·x) = g. f(x). Let 
GTop be the category of G-spaces and equivariant maps. (There is an alternative 
approach using only compactly generated spaces, see Luck [TG].) 

We are going to apply the theory of this book to the homotopy theory of G­
spaces. This, in fact, leads to many new features and results on G-spaces; compare 
the books of tom Dieck [TG] and Luck [TG]. In particular, we obtain a new way 
in dealing with the twisted version of Bredon cohomology. 

The trivial G-space X is a topological space X with the action g . x = x for 
g E G, x EX. The product of G-spaces X and Y is the G-space X x Y with the 
action g. (x, y) = (g. x, g. y) for g E G, x E X, Y E Y. The coproduct XU Y is the 
disjoint union of spaces with the obvious G-action. A G-homotopy is a G-map 

H: [0,1] x X ----+ Y 

between G-spaces. Here [0, 1] is the interval considered as a trivial G-space. Here 
H is a "free" homotopy. For a G-space DIet 

C = (GTOp)D (3.1) 

be the category of G-spaces under D and let 

C c = (GTop)? (1) 

be the full subcategory given by G-cofibrations D ,........ X in C. Such G-cofibrations 
are defined via the homotopy extension property in GTop. The homotopy category 

CJ::::; = (GTop)? Ie::::'. reID (2) 

is defined by homotopy relative D and the relative cylinder I(X, D) as m (1.4) 
(3). 

Given a closed subgroup H of G we obtain the homogeneous space G I H which 
is the quotient space of G consisting of cosets g' H for g' E G. Clearly G I H is a 
G-space with the action g. (g' H) = (g. g')H. We call any such homogeneous space 
G I HaG-orbit point. A G-orbit set Z is the coproduct of such G-orhit points, 
that is, Z is given hy a set M and closed subgroups Hrn of G for m E M such that 

Z= II GIHm (3.2) 
mEM 

is a coproduct of G-orbit points in GTop. G-orbit sets are the most elementary 
G-spaces. 

We say that a G-space Y is obtained from a G-space X by attaching (n + I)-cells 
if a G-orbit set Z together with a push out diagram in GTop 
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Z X Bn+l ---+ Y 

u u (3.3) 

Z X sn ---+ X 

is given. Here sn and Bn+l are trivial G-spaces A (relative) G-CW -complex 
(X~o, D) = (X, D) is given by a sequence of inclusions in GTop 

D c Xo C Xl C ... C Xn C X n+l C ... (3.4) 

Here Xo is the coproduct of D and a G-orbit set Zo and Xn+l is obtained from 
Xn by attaching (n + I)-cells, n ~ o. Let X = limX>o. We say that (X,D) is 
reduced if Xo = D and (X, D) is normalized if the attaching map 

of n-cells carries Zn X * to Xo. Here Zn is the G-orbit set of n-cells of X - D, n ~ o. 
The cellular approximation theorem holds and also the Blakers-Massey property 
is satisfied; see tom Dieck [T]. 

{3.5} Definition. The orbit category Or(G) is the category consisting of G-orbit 
points and G-maps. This is the full subcategory of GTop consisting of homoge­
neous spaces G/H where H is a closed subgroup of G. Each G-space X yields an 
Ore G)-space XO 

Xo : Ore G)OP ~ Top 

XO(G/H) = Mapc(G/H,X) = XH 

where Mapc is the space of G-maps. Here X H is the H-fixed point set of X. For 
the Ore G)-space XO all the notation in section § 2 is available if we set A = Ore G). 
We point out that for a discrete group G and a G-CW-complex X the Ore G)-space 
XO is an Or(G)-CW-complex in the sense of § 2. This does not hold if G is not 
discrete. In fact, if G is discrete the theory on G-spaces in this section is completely 
determined by the theory on Ore G)-spaces in § 2; compare for example Moerdijk­
Svenson [D]. 

(3.6) Lemma. Let (X, D) be a relative G-CW-complex. Then there exists a 
normalized relative G-CW-complex (Y, D) together with a homotopy equivalence 
Y ~ X in (GTop)? /r:::!. reID. Moreover if 7roDo ~ 7roXo is surjective in 
Or(G)Set then (Y, D) can be chosen to be reduced. 

The proof is similar to the proof of (2.9). A map f : X ~ Y in GTop is 
a weak equivalence if the induced map r : XO ~ yo in Or(G)Top is a weak 
equivalence; see (2.12). It is known (see for example Luck [TG] 1.2.3) that each 
G-space Y under D admits a weak equivalence f : X ~ Y under D where (X, D) 
is a G-CW-complex termed a G-CW-approximation of Y. Moreover, it is easy to 
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show that a weak equivalence f : (X, D) ---; (Y, D) under D between relative G­
CW-complexes is actually a homotopy equivalence in (GTop)? I'::::!. reID; see (IV, 
§ 3). This yields the equivalence of categories 

Ho(GTop)D ~ G-CWD I'::::!. reID (3.7) 

Here the left hand side is the localization with respect to weak equivalences and 
the right hand side is the full subcategory of (GTop)? consisting of relative G­
CW-complexes (X, D). The equivalence (3.7) shows that it is sufficient to define 
homology and cohomology for G-CW-complexes. 

As in (2.13) we define for a G-space D the coefficient functor 

c: (GTop)? I'::::!. reID ---; Or(G)Grd(IIDO) (3.8) 

which carries the object D >---+ X to the restricted fundamental groupoid c(X) = 

(IIDO ---; II(XO,DO)). Here we use (3.5). Let Z be a G-orbit set and D be a G­
space. Then we observe that a G-map a : Z ---; D can be identified with a collection 
of points am E XHm with Z = llmEM G/Hm . Such a collection of points as well 
can be identified with a map 

a: Z' ---; Ob(IIDO) E Or(G)Set (3.9) 

where Z' is the free Or( G)-set given by Z' = llmEM Or( G) ( -, G / Hm). Hence by 
(2.14) the free modules 

La(H) E mOd( r H) C MOd( r H) 
JOr(G) JOr(G) 

(3.10) 

are defined for HE Or(G)grd(IIDO). As in (2.17) we choose a set A consisting 
of elements a which are G-maps a : Za ---; D where Za is a G-orbit set. Then the 
enveloping functor 

UA : Or(G)Grd(IIDO) ---; Ringoids (3.11) 

is defined which carries H to the full subcategory UA(H) C mod(jor(G) H) con­
sisting of free modules La(H) with a E A. This is a special case of (2.17). 

It is possible to describe the free modules (3.10) by use of homotopy groups. 
For this we introduce the spherical object S:; in (GTop)? which is the push out 

Z X sn -----+ S:; 

u u (3.12) 

Zx* ~ D 

in GTop with the retraction 0 : S:; ---; D given by the projection Z x sn ---; Z. 
Now let X be an object in (GTop)? and let S:; V X be the sum of S:; and X 
under D with the retraction 
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(0,1) : S~ V X -+ X 

in (GTop)P. We now obtain for n ?: 2 and H = JI(XO, DO) the UOr(G) H)-module 

(3.13) 

which satisfies La(H) = 1fn(S'{; V X)~; compare (2.20). 
If (X, D) is a normalized reduced G-CW-complex then the attaching maps in 

of n-cells yield for n ?: 1 the G-maps 

(3.14) 

where Zn is the G-orbit set of n-cells in X-D. In fact, an is the restriction of in 
to Zn X * which maps to D since (X, D) is normalized and reduced. Therefore in 
actually is given by a map 

in : S~n -+ X n- 1 in (GTop)P 

where S'{;n is the spherical object in (3.12). We call 

ax = 12 : S~2 -+ Xl 

the presentation associated to (X, D). Here Xl has a coaction 

f.L: Xl -+ Xl V S~l in (GTop)P /~ reID 

where S~l is a cogroup object. In fact f.L is defined similarly as in (1.25). 

(3.15) 

(3.16) 

(3.17) Definition. Let D be a G-space and let (X, D) be a relative G-CW-complex 
which is normalized and reduced. Hence the functions an : Zn -+ D in GTop are 
defined for n ?: 1 where Zn is the G-orbit set of n-cells. Let 

Then there is a well defined chain complex 

{ 
C*(X,D) in mOd( r H) 

JOr(G) 

Cn(X, D) = Lan (H) for n ?: 1 

with 

and Cn(X, D) = 0 for n ::; o. If D is a G-orbit set then we define 

ao: Zo = D 

by the identity of D. In this case the augmented chain complex 

{ 
C*(X) = augC*(X,D) in mOd( r H) 

JOr(G) 

Cn(X) = L"'n (H) for n ?: 0 

with 

(1) 

(2) 
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and CnX = 0 for n < 0 is defined. These chain complexes have properties as in 
(2.25). In fact, if G is discrete we have C* (X, D) = C* (XO, DO) and C* (X) = 

C*(XO) where the right hand side is defined in (2.25); compare the final remark 
in (3.5). We get C*(X, D) by the general procedure in (V, § 2). The augmentation 
functor aug used in (2) is described in (II, § 6). 

We obtain for each (fOr (G) H)-module M the cohomology with coefficients in 
M 

{
Hn(X,D;M) = HnHom(C*(X,D),M) 

Hn(x; M) = H n Hom(C*(X), M) 
(3.18) 

Here Hom is defined by the abelian category Mod(for(G) H) with H = II(XO, DO) 

= II (X2 , DO). This is a twisted version of the cohomology of Bredon [Ee]; see 
Moerdijk-Svenson [D] where this cohomology is studied if G is discrete. On the 
other hand we define the homology 

(3.19) 

of the chain complex C*(X, D) in the abelian category Mod(for(G) H) so that 

Hn(X, D) is a (fOr (G) H)-module (and hence a mod(for(G) H)-module; see (1.30»). 
We now are ready to formulate the homological Whitehead theorem for G-spaces. 

(3.20) Theorem. Let D be a G-space and let f : (X, D) ---+ (Y, D) be a cellular 
map between normalized reduced relative G -CW-complexes in (GTop)? Then f 
is a homotopy equivalence under D (i. e. an isomorphism in the homotopy category 
(GTop)? / ~ reI D) if and only if the coefficient functor c induces an isomorphism, 
u = c(J), 

and one of the following conditions (i), (ii), (iii) is satisfied: 

(i) 

(ii) 

is a homotopy equivalence of chain complexes in mod(for(G) K). 

f* : Hn(X, D) ---+ u* Hn(Y, D) 

is an isomorphism of (for(G) H)-modules (or ofmod(for(G) H)-modules) for 
n2:1. 

(iii) For all modules N in Mod(for(G) K) the induced map 

1* : Hn(y, D; N) ---+ Hn(x, D, u* N) 

is an isomorphism of abelian groups for g 2: 1. 
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Also the Hurewicz homomorphism and the exact sequence of J.H.C. Whitehead 
have an analogue for G-spaces. As a special case of (V.3.4) we get. 

(3.21) Theorem. Let (X, D) be a pair of G-spaces for which 7roDo ~ 7roXo is 
surjective. Then the following sequence is an exact sequence of (forCG) H)-modules 

with H = JI(XO,DO), n ~ 2 . 

... ~Tn(X,D) ~ 7rn(XO) ~ Hn(X, D) ~ Tn-l (X, D) ~ ... 
T2 (X,D) ~ 7r2(XO) ~ H 2 (X, D) ~ n(X,D) ~ 0 

Moreover the sequence the sequence is natural for (X, D) in (GTop)? 

The homomorphism h is the Hurewicz homomorphism and 7rn (XO) is defined 
by (2.11) and Tn (X, D) for n ~ 3 is defined by 

Tn (X, D) = image { 7rn(X~_l) ~ 7rn(X~)} 

The definition of nand T2 is more complicated. If G is a discrete group then 
(3.21) can be considered as being a special case of (2.32). 

Concerning obstruction theory we get the following analogue of (2.33): 

(3.22) Theorem. Let (X, D) be a normalized reduced relative G-CW-complex 
and let f : D --+ Y be a G-map which admits a G-extension g : Xn ~ Y, n ~ 2. 
Then the restriction g I X n- 1 admits a G-extension 9 : X n+1 ~ Y if and only if 
an obstruction element 

O(g I X n- 1 ) E Hn+l(x, D, u*7rnYO) 

vanishes. Here u : fOrCG) JI(XO, DO) ~ fOrCG) JIYO is induced by g. 

This result again shows that the restricted fundamental groupoid is needed 
which satisfies JI(XO, DO) = JI(X2' DO) by the cellular approximation theorem. 
Hence 9 : Xn ~ Y with n ~ 2 yields a well defined map u in the theorem. 

We leave it to the reader to translate further results from the obstruction 
theory in chapter VII, VIII to the category of G-spaces. We now consider main 
applications concerning connections with algebraic K-theory. 

{3.23} Definition. Let D be a G-space and let A be a set of functions a : Za ~ D 
in GTop where Za is a G-orbit set. We say that a function a : Z ~ D in GTop 
is A-finite if {31, ... , {3k E A together with a commutative diagram 



38 Chapter A: Examples and Applications in Topological Categories 

in GTop are given where Xc> is an isomorphism. Similarly we say that a normalized 
reduced relative G-CW-complex (X, D) is A-finite if all functions an : Zn --> D, 
n :2 1, in (3.14) are A-finite and (X, D) is finite dimensional. 

Now let (X, D) and (Y, D) be normalized reduced relative G-CW-complexes. 
A domination (X, f, g, H) of Y in (GTop)P is given by G-maps 

Y L X ~ Y under D (3.24) 

and a G-homotopy H : gf ~ 1 reID. The domination has dimension::::; n if 
dim(X, D) ::::; n and the domination is A-finite if (X, D) is A-finite. As a special 
case of theorem (VII.2.4) we get the following result which corresponds to (2.36) 
if G is discrete. 

(3.25) Theorem. Let D be a G-space and let (Y, D) be a normalized reduced rela­
tive G-CW-complex with K = IJ(Yo, DO). If (Y, D) admits an A-finite domination 
in (GTop)P then the finiteness obstruction 

is defined. Here UA is the enveloping functor in (3.11) and Ko is the reduced 
projective class group; see (VII, § 1). Moreover [Y] = 0 if and only if there exists 
an A-finite normalized reduced relative G-CW-complex (X, D) and a homotopy 
equivalence X --> Y under D. 

As in the remark following (2.36) we can obtain a non-relative version of this 
result for G-CW-complexes (X,0) relative the empty G-space 0. 

Also the theory of Whitehead on simple homotopy equivalences has a general­
ization for G-spaces as follows. 

(3.26) Definition. Let D be a G-space (which is allowed to be empty) and let 

K = (GTop)? (1) 

be the category in which the objects are G-cofibrations D >--t X in GTop, see 
(3.1) (1). Moreover let V be a set of orbit sets with the property that the empty 
G-orbit set 0 is in V and that for A, BE V also the coproduct All Bin GTop is 
in V. Then each A E V yields the object 

All D in (GTop)P (2) 

which we call a discrete object in K. A V-complex is a relative G-CW-complex 
(L, D) for which the G-orbit set Zn of n-cells in L - D is an element in V, n :2 o. 
Let (Bn+!,sn,pn,Qn) be a ball pair as defined in (1.37) (3) with n :2 O. For 
A E V we consider a push out diagram in GTop 

A x B n +! ------> K 

u u (3) 

Axpn ~ L 
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where f is given hy a pair map f : (A x pn, A x 3 n- 1 ) ----+ (Ln, L,,-l)' Then 
(K, D) is again a 'Ducomplex which we call an elementary expansion of L. Clearly 
L c K is a homotopy equivalence in (G-Top)? and we call a retraction K ----+ L 
an elementary collapse. A simple homotopy equivalence f : L ----+ L' under D is 
obtained by a finite sequence of elementary expansions and collapses respectively. 
Let V-cell be the full subcategory of (GTop)? consisting of finite dimensional 
V-complexes (L, D). In (VIII, § 8) we define a functor 

Wh : V-celli,,:, reI D ----+ Ab 

which carries (L, D) to the Whitehead group Wh(L, D). As a special case of 
(VIII.8.3) we get: 

(3.27) Theorem. Let D be a G-space which is allowed to be empty. There is 
a funct'ion T assigning to any homotopy equivalence f : Y ----+ L in (GTop)? 
between finite dimensional V-complexes Y, L an element T(j) E Wh(L, D). More­
over, T(j) = 0 if and only if f is a G-homotopic reI D to a simple homotopy 
equivalence under D. 

The Whitehead group Wh(L, D) can he computed algebraically by the follow­
ing result which is a special case of (VIII.12.7). 

(3.28) Theorem. Let D be a G-space which may be empty. Let (L, D) be a nor­
malized finite dimensional V-complex and let H = II(L O , Lo) be the restricted fun­
damental groupoid given by the pair (L, Lo) where Lo is the O-skeleton of (L, D). 
Then the algebraic Whitehead group 

is defined. Here A is the set of all G-maps A ----+ Lo with A E V. The functor U A is 
the enveloping functor in (3.11) and KtSO "isomorphism torsion group" in (VIII, 
§ 10). Moreover there is an isomorphism of abelian groups 

T : Wh(L, D) = Wh(H). 

All the results in this section are examples and applications of the results of 
the general theory in the chapters I, ... , VII below. For the translation of the 
general theory to the special case one has to use the following table. 
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T 
(1.1.11 ) 

Twist 
(1.3.5) 
Coef 
(1.4.1) 

mod(8x) 

UA 
(1.5.11) 

(C,T) 
(V.l.1) 
Complex 
(IV.2.2) 

c. 
(V.2.3) 

(C,V) 
(VIII.5.1) 
(VIII.12.3) 

(D~+l, E~, P~, Q~) 

(VIII.4.5) 

Category of coactions. This is the full subcategory of 
(GTop);; /':C:'. reID of reduced I-dimensional G-CW-complexes 
(Xl, D). Cogroups in T are spherical objects s~ and the coac­
tion map on Xl is given by (3.16). 

Category of presentations ax in (3.15). 

This is a category equivalent to Or(G)Grd(lIDO). The equiv­
alence carries the presentation ax defining (X2, D) to H = 
1I(X2, DO). 

This is the category modCfor(G) H) in (3.10) where ax is a pre­
sentation of H. 

This is the enveloping functor UA in (3.11). Here we identify a E 
A with the spherical object s~ E T. 

(GTop);; is a homological cofibration category if D is not empty. 

This is the subcategory of (GTop);; consisting of normalized re­
duced relative G-CW-complexes (X, D) and cellular maps. 

This is the chain functor in (3.17). 

(GTop);; is a homological cellular I-category with the cylinder 
I(X, D) and the class D of discrete objects in (3.26). Here D is 
allowed to be empty. 

For X E (GTop)? this is the push out of B x X ~ B x 
D -> D where B X D -> D is the projection and where 
B = (Bk+l, Sk, Pk, Qk) is the ball pair in (1.37) (3). 

4 Homotopy Theory Controlled at Infinity 

We choose a fixed compact Hausdorff space which we denote by 00. An oo-space 
or infinity space is a tuple X = (X, X, 00) where X is a compact space together 
with a closed embedding 00 C X such that X is the complement X = X - 00. The 
space X is termed the open part of the oo-space. A point e E 00 is an end of X if 
there is a sequence of points Xl, X2, . .. in the open part which converges in X to 
e E 00. Hence X is dense in X if all points of 00 are ends; in this case X is called 
an oo-compactification of the space X. An oo-map f : X ----t Y between oo-spaces 
is a contiuous map for which the following diagram commutes in Top: 

00 

/A~ 
A f A 

(4.1) 

X )y 
U U 
X f )y 

Hence an oo-map is a map under 00 which carries the open part to the open 
part. The continuous map j is determined by f. Let ooEnd be the category of 
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oo-spaces and oo-maps. In this section we study the homotopy theory of oo-spaces 
and oo-maps. Details on this example are described in Baues-Quintero [HI]. 

(4.2) Example. Let 00 = * be a point. Then any locally compact Hausdorff space 
X has a one point compactification (X, X, *) which is an object in *End. In this 
case a map f ; X ----t Y between locally compact Hausdorff spaces is an oo-map 
if and onyl if f is a compact map. Compact maps in Top are closed maps for 
which the inverse of each point is a compact space; such maps are also termed 
proper maps. This shows that proper homotopy theory is a special case of the 
homotopy theory of oo-spaces. 

(4.3) Example. Let T be a locally finite tree with Freudenthal compactification 
T. Then T = (T, T, ooT) is an oo-space where ooT = T - T is a Cantor set. As 
a special case we may consider the category ooTEnd containing the OOT-space 
T=(T,T,ooT). 

Given a compact space K in Top and an oo-space X we obtain the oo-space 
K @ X by the push out diagram in Top 

K x X -----t K@X 

u 

Kxoo 
pr 

-----t 

u 

00 

(4.4) 

where K x X is the product in Top. The open part of K @X is the product K x X. 
An 00-homotopy is an 00-map 

H ; [0,1] @ X ----t Y (4.5) 

The according homotopy relation yields the homotopy category ooEnd/~. We 
now choose an oo-space D and consider the category 

C = (ooEnd)D (4.6) 

of oo-spaces under D. An object in C is an oo-map D ----t X and an oo-homotopy 
relative D is a homotopy as in (4.5) for which the composite [0,1] @ D ----t [0,1] @ 

X ----t Y is the trivial homotopy. Using the homotopy extension property with 
respect to the cylinder [0,1] @ X we define oo-cofibrations. If D ----t X is such an 
oo-cofibration we write 

[X, y]D = C(X, Y)/~ reID 

for the set of oo-homotopy classe relative D. Let 

C c = (ooEnd)? 

(4.7) 

(1) 

be the full subcategory of C for which the objects are oo-cofibrations D >---+ 

X. Then oo-homotopy relative D is a natural equivalence relation so that the 
homotopy category 
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eel':::!. = (ooEnd)? I':::!. relD 

is defined. The relative cylinder object leX, D) is the push out in ooEnd 

[O,l]®X ~ I(X,D) 

T 
[0,1] ®D 

pr 
~ 

T 
D 

(2) 

(3) 

We point out that a push out P of (A +- B ----+ C) in ooEnd is given by the push 
out P of (..4 +- B ----+ 6) in Top; the open part of P is the push out of the open 
parts in Top. 

We say that an oo-space Z is an oo-set if the open part of Z is a discrete space 
in Top. The oo-set Z is empty if the open part of Z is the empty space in Top. 
An oo-space Y is obtained by attaching (n + I)-cells if an oo-set Z together with 
a push out diagram 

Bn+l®z ~ Y 

u u (4.8) 

sn®z ~X 

is given. Here (BnH, sn) is a ball in Top with n ;:::: O. We now define the appro­
priate notion of CW-complex in ooEnd. A (relative) oo-CW-complex (X:::: ° , D) is 
given by a sequence of inclusions 

D c Xo C Xl C ... C Xn C X nH C ... 

in ooEnd which is finite dimensional, that is, there is N ;:::: 0 such that X N ----+ 

XN+k is the identity for k ;:::: o. Here Xo is the coproduct in ooEnd of D and an 
oo-set Zo and X nH is obtained from Xn by attaching (n+1)-cells as in (4.8). Since 
(X>o, D) is finite dimensional the limit X = limXi = XN is defined in ooEnd. 
We-also write (X>o, D) = (X, D). We say that (X, D) is reduced if the oo-set Zo 
of O-cells is empty, that is Xo = D. Moreover (X, D) is normalized if all attaching 
maps, n;:::: 1, 

in : sn-l ® Zn ----+ X n- 1 

carry * ® Zn to Xo. Here * is the basepoint of sn-l. The oo-set Zn is termed the 
oo-set of n-cells in (X, D). It is shown in Baues-Quintero [HI] that the cellular 
approximation theorem and the analogue of the Blakers-Massey theorem hold for 
oo-CW -complexes. 

We denote by 

(4.9) 

the set of oo-homotopy classes Z ----+ X in ooEndl':::!.. We say that an object D ----+ X 
in (ooEnd)D is connected if the induced map 7ft(D) ----+ 7ft(X) is a surjection for 
all oo-sets Z. For example the pair (X, Xo) is connected if X is an oo-CW-complex. 
The next result is an analogue of (1.8). 
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(4.10) Lemma. Let (X, D) be a relative oo-CW-complex. Then there exists a 
normalized oo-CW-complex (Y, D) together with a homotopy equivalence Y ---> X 
under D in ooEnd. If (X, D) is connected then (Y, D) can be chosen to be reduced. 

Given an oo-se~ Za and an oc-map a : Za ---> D we define the spherical object 
S~ by the push out diagram in ooEnd 

u u 

and we define for X in (ooEnd)D the homotopy group (n ~ 1) 

(4.11) 

where we use (4.7). Let D --> X and D ---> Y be connected objects in (ooEnd)D. 
An oo-map f : X ---> Y under D is a weak equivalence in ooEnd if for all a and 
n ~ 1 the induced IIlap 7f~X ---> 7f~Y is an isomorphism. As a consequence of the 
general Whitehead-theorem (IV.4.6) we get: 

(4.12) Theorem. Let (X, D) and (Y, D) be connected relative oo-CW-complexes. 
Then a weak equivalence X ---> Y under D in ooEnd is a homotopy equivalence 
under D, that is, an isomorphism in (ooEnd)? Ie:::'. reI D. 

The analogue of CW-approximation as in (l.10), however, does not hold. This 
shows that oo-CW-complexes form typical examples for the definitions in chapter 
IV. Let (ooCW)D be the full subcategory of (ooEnd)? consisting of normalized 
reduced relative oo-CW-complexes (X, D). We now define the coefficient functor 

c: (OOCW)D Ie:::'. reID ---> ooCoef(D) (4.13) 

Here the objects of ooCoef(D) are presentations ax which are elements 

where S~ is a spherical object and (Xl, D) is a I-dimensional reduced relative 
oo-CW-complex. By choosing an attaching map h representing ax we obtain 
the 2-dimensional normalized reduced CW-complex X 2 associated to ax. A map 
u : ax ---> 8y in ooCoef(D) is an element u E [Xl, y2]D which admits an extension 
X 2 ---> Y2 . There is an obvious composition of such maps. The coefficient functor 
c in (4.13) carries the oo-CW-complex (X, D) to ax where ax is represented by 
the attaching map of 2-cells. Moreover c carries a cellular map f : X ---> Y to 
the map u represented by the restriction h : Xl ---> YI of f. At this point it is 
quite complicated to give a more algebraic description of the coefficient category 
ooCoef(D) above. In the examples (l.13), (2.13), (3.8) it was possible to describe 
the coefficient categories by use of groupoids. Such a description is a lot more 
complicated for the category ooCoef(D). 
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We associate with each object ax in ooCoef(D) an additive category mod(8x ) 
as follows. Let n ~ 2. The objects in mod(ox) are given by the coproduct under 
D S:;. V X 2 which is the push out in ooEnd of S;;; f- D ---. X 2 . Here S:;. is a 
spherical object (4.11) and X 2 is associated to ax. Morphisms are commutative 
diagrams 

X 2 X 2 

1 1 
S:;. vX2 

f S3V X 2 (4.14) ---+ 

1 (0,1) 1 (0,1) 

X 2 X 2 

in the homotopy category (ooEnd)? Ie::!. reID. Here 0 : S:;. ---. D ---. X 2 is given 
by the retraction S:;. ---. D of the spherical object. Given a and (3 the sum in the 
additive category mod( ax) is given by 

(S~ V X 2 ) EB (S3 V X 2 ) = S(0,/3) V X 2 

where (a, (3) : Zo II Z{3 ---. D is defined by a, (3 on the coproduct in ooEnd. The 
initial object in mod( ax) is given by 0 = X 2 = s;;; V X 2 where a : Zo ---. D is 
defined on the empty oo-set Zo. The "partial suspension" shows that the category 
mod(ox) does not depend on the choice of n with n ~ 2. Therefore we omit n in 
the notation and we write 

S~ V X 2 = So V X 2 E mod(8x ) 

for an object in the additive category mod(ox). We point out that mod(8x) here 
is not a subcategory of a canonical abelian category so that we do not have an 
obvious inifnity analogue of the embedding (1.14). 

Each map u : ax ---. f)y induces a functor 

u* : mod(ox) ---. mod(f)y) (4.15) 

which carries S:;. V X 2 to S:;. V Y2 and which carries f in (4.14) to the map 

Now we choose a set A of elements a where a : Zo ---. D is an oo-map defined on 
an oo-set Zo. Then the enveloping functor 

U,A: ooCoef(D) ---. Ringoids (4.16) 

carries ax to the full subcategory of mod( ax) consisting of objects S:;. V X 2 with 
a E A. Moreover U,A is defined on morphisms u by u* in (4.15). 

Each normalized reduced relative oo-CW-complex (X, D) yields canonical 00-

maps 



4 Homotopy Theory Controlled at Infinity 45 

an: Zn ---t D (4.17) 

where Zn is the oo-set of n-cells of (X, D). Here an is the restriction of the attaching 
map In. In fact 

sn-l 181 Zn in 
X n- l ------'> 

r r 
*I8IZn = Zn 

an D ------'> 

commutes since (X, D) is normalized and reduced. For the I-skeleton Xl we also 
obtain the coaction map 

tJ : Xl ---t Xl V S~1 in (ooEnd)~ Ie::::. reID 

which is defined as in (1.25). 

(4.18) 

(4.19) Definition. Let (X, D) be a relative oo-CW-complex which is normalized 
and reduced so that the oo-maps an : Zn ---t D are defined for n 2': 1; see (4.17). 
Let ax : S;1 ---t Xl be given by the attaching map of 2-cells in X. Then there is 
a well defined chain complex 

{ 
C*(X,D) in mod(ax) with 

Cn(X, D) = San V X 2 for n 2': 1; see (4.14) 
(1) 

and Cn (X, D) = 0 for n :==; O. Moreover a cellular map I : (X, D) ---t (Y, D) under 
D induces u : ax ---t 8y in ooCoef(D) and a chain map 

(2) 

in mod(8y). Here we use u. in (4.15). If D is an oo-set we define 

aD: Zo = D 

by the identity of D. In this case there is a well defined augmented chain complex 

{ 
C*(X) = augC*(X,D) in mod(ax) with 

Cn(X) = San V X 2 for n 2': 0 
(3) 

and Cn(X) = 0 for n < o. These chain complexes are exactly the infinity-analogue 
of the chain complexes in (1.26). We define (1) by the general procedure in (V, 
§ 2). The augmentation functor aug is described in (II, § 6). 

Using the chain complexes in (4.19) we obtain for each (right) mod(ax)­
module M the cochain complexes of abelian groups M(C*(X, D)) and M(C*(X)) 
so that the cohomology with coefficients in M 
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{ 
Hn(X,D;M) = HnM(C*(X, D)) 

Hn(x; M) = H n M(C*(X)) 
(4.20) 

is defined. As an example we observe that homotopy groups (4.11) yield canonically 
mod(8x )-modules as follows. 

Let D -+ Y be an oo-map and let (X, D) be a normalized reduced relative 
oo-CW-complex. Moreover let 

be an oo-map under D which admits an extension X 2 -+ Y. Then the right 
mod(8x )-rnodule 

(4.21 ) 

is defined for n 2: 2. This module carries Sa V X 2 to the homotopy group 1f~(Y) 
in (4.11). Moreover a map f : S(3 V X 2 -+ Sa V X 2 induces the homomorphism 

j* : 1f~ (Y) -+ 1f~ (Y) 

which carries (a : S~ -+ Y) E 1f~(Y) to the composite 

f*(a) : sg ~ S~ V X 2 ~ Y 

Here f' = f I sg is the restriction of f. As a special case we get for the inclusion 
u: Xl C X the mod(8x )-module 1fn(X) defined by (4.21). 

The coefficients u*1fn(Y) show that the cohomology HTn(X, D; u*1fn(Y)) is 
defined for m E Z, n 2: 2. This is needed in the following theorem of obstruction 
theory. 

(4.22) Theorem. Let (X, D) be a 7w77nalized reduced relative oo-CW-complex 
and let f : D -+ Y be an oo-map which admits an extension g : Xn -+ Y, n 2: 2. 
Then the restriction g I X n - l admits an extension 9 : X n +l -+ Y in ooEnd if and 
only if an obstruction element 

vanishes. Here U : Xl -+ Y is the restriction of g. 

This is the infinity-analogue of a classical theorem of obstruction theory. We 
can also define the homology Hn(X, D) and Hn(X) which are right mod(8x )­
modules 

They carry the object Sa V X 2 to the abelian group 

Hn(X, D) (S·. V X 2 ) = Hn Hom(S,., V X 2 , C*(X, D)) 

Hn(X)(Sa V X 2 ) = Hn Hom(Sa V X 2 ) C*X) 

( 4.23) 
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Here Hom denotes the set of morphisms in mod(ax). These mod(ax)-modules 
describe the oo-analogue of (1.30). We use them for the following homological 
Whitehead theorem which is a special case of (VI, § 7). 

(4.24) Theorem. Let f : (X, D) -+ (Y, D) be a cellular map between normal­
ized reduced relative oo-CW-complexes in (ooEnd)p. Then f : X -+ Y is a 
homotopy equivalence under D (i. e. an isomorphism in the homotopy category 
( ooEnd) p / ':::i. reI D) if and only if the coefficient functor c in (4.13) induces an 
isomorphism u : ax -+ ay in ooCoef(D) and one of the following conditions (i), 
(ii) are satisfied. 

(i) 

f. : u.(C.(X, D)) -+ C.(Y, D) 

is a homotopy equivalence of chain complexes in mode ay ) . 
(ii) 

is an isomorphism of mode ax) -modules for n 2: 1. 

Next we consider the Hurewicz homomorphism and the exact sequence of 
J.H.C. Whitehead for oo-spaces. As a special case of (V.3.4) we get: 

(4.25) Theorem. Let (X, D) be a connected relative oo-CW-complex. Then the 
following sequence is an exact sequence of mode ax) -modules, n 2: 2. 

h 
... -+rn(X,D) -+ 7rnX --+ Hn(X, D) -+ r n- 1 (X,D) -+ ... 

r 2 (X, D) -+ 7r2X -+ H 2 (X, D) -+ r 1(X, D) -+ 0 

Moreover the sequence is natural in (X, D). 

The homomorphism h is the Hurewicz homomorphism for the modules 7rn X 
and Hn(X,D) defined in (4.21) and (4.23) respectively. The module rn(x,D) for 
n 2: 3 is defined by 

The definition of r 1 and r 2 is more complicated; see (V.5.3) and (II, § 2). As in 
all the sections § 1, § 2, § 3 we also have the following results which describe a 
connection with algebraic K-theory. 

(4.26) Definition. Let D be an oo-space and let A be a set of oo-maps a: Za -+ D 
where Za is an oo-set. We say that an oo-map a: Z -+ D is A-finite if 131,"" 13k E 

A together with a commutative diagram in ooEnd 
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are given where Xc> is an isomorphism and II is the coproduct in ooEnd. A 
normalized reduced relative oo-CW-complex (X, D) is A-finite if all functions 
an : Zn -+ D, n 2 1, in (4.17) are A-finite. Recall that in the definition of an 
oo-CW-complex (X, D) we assume that (X, D) is finite dimensional. 

Now let (X, D) and (Y, D) be normalized reduced relative oo-CW-complexes. 
A domination (X, f, g, H) of Y in (ooEnd)? is given by oo-maps 

Y L X ~ Y under D (4.27) 

and an oo-homotopy H : gf '::::: 1 reI D. The domination has dimension :s; n if 
dim(X, D) :s; n and the domination is A-finite if (X, D) is A-finite. As a special 
case of (VII.2.4) we get the following infinity version of a classical result of Wall; 
see (1.36). 

(4.28) Theorem. Let D be an oo-space and let (Y, D) be a normalized reduced 
relative oo-CW-complex with 8y = c(Y, D) E ooCoef(D) defined by the coefficient 
functor {4.13}. If (Y,D) admits an A-finite domination in (ooEnd)? then the 
finiteness obstruction 

is defined. Here UA is the enveloping functor in {4.16} and Ko is the reduced 
projective class group; see (VII, § 1). Moreover [Yj = 0 if and only if there exists 
an A-finite normalized reduced oo-CW-complex (X, D) and a homtoopy equivalence 
X -+ Y under D in ooEnd. 

This result implies also a non relative version for a oo-CW-complexes (X, 0) 
where 0 is empty. Compare the remark following (2.36). 

We now describe the infinity version of classical results of J.H.C. Whitehead 
for simple homotopy equivalences. 

(4.29) Definition. Let D be an oo-space which is allowed to be empty and let 

K = (ooEnd)? (1) 

be the category in which the objects are oo-cofibrations D >----+ X; see (4.7) (1). 
Moreover let 'D be a set of oo-sets with the property that the empty oo-set is in 
'D and that for A, B E 'D also the coproduct A II B in ooEnd is in 'D. Then each 
A E 'D yields the object 
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AIID in (ooEnd)~ (2) 

which we call a discrete object in K. A V-complex is a relative oo-CW-complex 
(L, D) for which the oo-set Zr of n-cells is an element in V, n 2: O. Let (Bn+l, sn, 
pn, Qn) be a ball pair as defined in (1.37) (3) with n 2: O. For A E V we consider 
a pushout diagram in ooEnd (compare (4.4)) 

Bn+l @ A ------+ K 

where f is given by a pair map 

Then (K, D) is again a V-complex which we call an elementary expansion of L. 
The inclusion L c K is a homotopy equivalence in ooEnd. Any retraction K -+ L 
is termed an elementary collapse. A simple homotopy equivalence f : L -+ L' 
under D is a finite sequence of elementary collapses and expansions respectively. 

Let V-cell be the full subcategory of (ooEnd)~ consisting of V-complexes 
(L, D). In (VIII, § 8) we define a functor 

Wh : V-cell/~ reID -+ Ab 

which carries (L, D) to the Whitehead grOUP Wh(L, D). As a special case of 
(VIII.8.3) we get: 

(4.30) Theorem. Let D be an oo-space which is allowed to be empty. There is a 
function r assigning to any homotopy equivalence f : Y -+ L in (ooEnd)~ between 
V-complexes Y, L an element r(f) E Wh(L, D). Moreover r(f) = 0 if and only if 
f is oo-homotopic reI D to a simple homotopy equivalence under D. 

The Whitehead group Wh(L, D) can be computed algebarically by the follow­
ing result which is a special case of (VIII.12.7). 

(4.31) Theorem. Let D be an oo-space which may be empty. Let (L,D) be a 
normalized finite dimensional V-complex and let (h = c(L, Lo) E ooCoef(Lo) be 
given by the coefficient functor (4.13). Then the algebraic Whitehead group 

is defined. Here A is the set of all oo-maps A -+ Lo with A E V. The functor UA 
is the enveloping functor on ooCoef(Lo) in (4.16) and Ktso is the "isomorphism 
torsion group" in (VIII, § 10). Moreover there is an isomorphism of abelian groups 

r: Wh(L, D) = Wh(8L ) 
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In order to translate the general theory in the following chapters to the special 
case of oo-spaces one needs the following list. 

T This is the full subcategory of (ooEnd)? /-:::::. reID of reduced 1-
(1.1.11) dimensional oo-CW-complexes (Xl, D). A cogroup is a spherical 

object S; and the coaction is defined in (4.18). 

Coef 
(1.4.1) 
mod(8x ) 
(L5.7) 
UA 
(1.5.11) 
(C,T) 
(V.U) 

Complex 
(IV.2.2) 

c. 
(V.2.3) 

(C,V) 
(VIIL5.1) 
(VIIL13.3) 

(0';;+\ Ei,p;, Qi) 

(VIIL4.5) 

ooCoef(D} in (4.13). 

mod(8x ) in (4.14). 

UA in (4.16). 

(ooEndJP is a homological cofibration category with T defined 
above. 

Contains the subcategory of (ooEnd)? consisting of normalized 
reduced relative oo-CW-complexes (X, D) and cellular maps. 

This is the chain functor in (4.19). 

(ooEnd)? is a homological cellular I-category with the cylinder 
I(X, D) and the class V of discrete objects in (4.29). Here D is 
allowed to be empty. 

For X E (ooEnd)? the ball pair is the push out of B ® X ~ 
B ® D --> D where B ® D --> D is the projection and where 
B = (Bk+l, Sk, pk, Qk) is the ball pair in (1.37) (3). 



Chapter B: Examples and Applications 
in Algebraic Homotopy Theories 

In this chapter we describe algebraic categories in which the theory of this book can 
be applied. We consider the category of differential algebras and certain categories 
of simplicial objects. In such algebraic categories we can consider complexes which 
correspond to CW-complexes in topology. There are, however, no obvious ball 
pairs in the categories, so that we do not apply the results on simple homotopy 
equivalences in chapter VIII. 

In chapter C and D we study also homotopy theories of simplicial objects from 
a different point of view. The theory in § 2 is based on the "normal" Blakers­
Massey theorem for simplicial objects while the theory in chapter C is based on a 
"delicate" Blakers-Massey theorem for simplicial objects. 

1 Homotopy Theory of Chain Algebras 

Let R be a commutative ring with unit l. Thus a left R-module M is also a right 
R-module and we have the tensor product M lSi N of R-modules M and N which 
is an R-module by r . (x lSi y) = (rx) lSi y = x lSi (ry) for r E R, x E M, yEN. An 
algebra A is an R-module A together with an R-linear map 

A Q9 A --t A carrying x lSi y to X· Y (l.1 ) 

and an element 1 E A satisfying (x· y) . Z = X· (y . z) and X· 1 = 1· x = x for 
x, y, z E A. Let Aig be the category of algebras; morphisms f : A --t B in Aig are 
R-linear maps which satisfy f(l) = 1 and f(x· y) = (Ix) . (Iy). The ring R is an 
algebra which is the initial object of Aig also denoted by R = *. 

We have the forgetful functor r.p : Aig --t Set which carries the algebra A to 
the underlying set of the R-module A. The left adjoint F of r.p yields for each set Z 
the free algebra F(Z). This is the tensor algebra F(Z) = T(V) where V is the 
free R-module generated by Z. For the empty set 0 we set F(0) = R = *. Let 
algndexalg be the full subcategory of Aig consisting of free algebras F(Z) where 
Z is a set. Each free algebra F(Z) is an (abelian) cogroup in the category Alg 
with the comultiplication 

j1 : F(Z) --t F(Z) V F(Z) (l.2) 

defined by j1(z) = i 1z+i2 z for z E Z. Here A V B denotes the coproduct of algebras 
satisfying F(Z) V F(Z') = F(Z II Z') where Z II Z' is the disjoint union of sets. 

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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Moreover il, i2 are inclusions i l : A ----) A V Band i2 : B ----) A V B. This shows 
that the subcategory 

T = alg C Aig (1.3) 

is a theory of cogroups in the sense of (I.1.9) below. 

(1.4) Remark. Let algU be the full subcategory of Aig consisting of free algebras 
F(Z) where Z = {1, ... , n} is a finite set with n :2: O. Then S = algU is a sin­
gle sorted theory and the category of models of algU satisfies model(S) = AIg; 
compare (I.1.5). The category of free objects in model(S) is the category algi 
compare (I.2.6). 

For each algebra A we can choose a surjective map q : X ----) A in Aig where X is 
a free algebra. Moreover we can choose a free algebra X" and a map ax : X" ----) X 
in alg for which the ideal I(image( ax)) in X generated by image ( ax) coincides 
with kernel(q). We call ax a presentation of the algebra 

A = X/I(image(ox)). (1.5) 

This shows that the category of coefficients Coef defined for T = alg in (1.4.1) 
below admits an equivalence of categories 

Coef ~ Aig (1.6) 

which carries the presentation ax to the quotient A in (1.5). Hence the category 
Aig can be obtained in two ways from free algebras: On the one hand side Aig 
in the category of models of the single sorted theory S = algU in (1.4), on the 
other hand Aig is the category of coefficients associated to the theory of cogroups 
T = alg in (1.6). 

We say that M is an A-bimodule if M is a R-module together with actions of 
A on M from the right and from the left, that is, we have an R-linear map 

A 18) M 18) A ----) M carrying x 18) m 18) y to x· m· y (1.7) 

which satisfies 1· m· y = m· y,X· m· 1 = X· m and (x· m)· y = X· (m· y). If V 
is a free R-module then M = A 18) V 18) A is the free A-bimodule generated by V 
(with the obvious action of A from the left and from the right). Let AOP be the 
opposite algebra of A. As modules we have AOP = A and we denote by x* E AOP 
the element corresponding to x E A. The multiplication on AOP is defined by 
x* . y* = (y. x)* for X,Y E A. The algebra A 18) AOP with the multiplication 
(x 18) y*) . (Xl· yi) = (xxd 18) (YIY)* is called the enveloping algebra of A, see for 
example Cart an-Eilenberg [HA]. This yields the enveloping functor 

U : Alg ----) Rings (1.8) 

which carries A to U(A) = A 18) AOP. Here Rings denotes the category of rings. An 
A-bimodule M may be regarded as a right U(A)-module by setting m· (x 18) y*) = 

y. m· x. Let ax be a presentation of A then 
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mod(8x ) = mod(A) (l.9) 

is the category offree A-bimodules Or equivalently offree right U(A)-modules. One 
can check that (l.9) coincides with mod(8x ) in (1.5.7) below by using (1.5.10). 
Therefore the enveloping functor (1.8) is a special case of (1.5.11). Each map 
u : A ---+ B in Aig induces the functor 

u* : mod(A) ---+ mod(B) 

which carries the U(A)-module M to M ®U(A) u*U(B). 
Next we consider graded R-modules and graded algebras. A graded R-module 

(positively graded) is a sequence V = {Vn, n E Z} of R-modules with Vi = 0 
for i < o. An element v E Vn has degree Ivl = n and we write v E V. A map 
f : V ---+ W of degree r between graded modules is a sequence of R-linear maps 
fn : Vn ---+ Wn+r for n E Z. The suspension sV of V is defined by (sV)n = 11,,-1; 
let s : V ---+ sV be the corresponding map of degree +1, that is Isvl = Ivl + 1 for 
v E V. A chain complex V is a graded module together with a map d: V ---+ V of 
degree ~1 satisfying dd = 0 and the homology of (V, d) is the graded R-module 
H(V,d) = kerneldjimaged. The tensor product V ® W of graded modules is 
defined by 

(V ® W)n = EB Vi ® Vj 
i+j=n 

If V and Ware chain complexes than V ® W is a chain complex with d( v ® w) = 
(dv) ® w + (~l)lvlv ® (dw). A chain map is a map f : V ---+ W of degree 0 between 
chain complexes satisfying df = fd. 

(1.10) Definition. A graded algebra A is a graded R-module A together with a 
map of degree 0 

p,:A®A-->A withp,(x®y)=x·y 

and an element 1 E Ao such that the multiplication p, is associative and has 1 as a 
unit. This is a chain algebra if A is a chain complex and p, is a chain map, that is 

d(x· y) = (dx) . y + (~l)lxlx· dy. 

Let DA be the category of chain algebras; morphisms f : A ---+ B in DA are maps 
of degree 0 satisfying f(x· y) = (fx) . (fg), f(l) = 1 and df = fd. 

The homology H A of a chain algebra A is a graded algebra with the multipli­
cation 

HA®HA ~ H(A®A) ~HA (1.11) 

where j ( {x} ® {y}) = {x ® y}. We point out that we have the natural map 

A: A ---+ HoA (1.12) 
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with AX = 0 for Ixl > 0 and AX = {x} for Ixl = O. Here we use the fact that in a 
chain algebra each element of degree 0 is a cycle. We say that a graded module V 
is concentrated in degree k if Vi = 0 for i -I- k. We have the functors 

i c Aig ------> DA ------> Aig (1.13) 

Here i carries the algebra A to the corresponding chain algebra which is concen­
trated in degree 0 and c is the coefficient functor which carries the chain algebra 
A to c(A) = Ho(A), compare (1.25) below. 

(1.14) Definition. For a graded module V we have the tensor algebra T(V) which 
is the graded algebra given by 

T(V) = EBv®n 

n2':O 

where v®n = V QSI ... ® V is the n-fold tensor product. The multiplication in T(V) 
is given by v®n ® v®m = v®(n+m). The tensor algebra T(V) is a free graded 
algebra if Vn is a free R-module for all n E Z. A chain algebra A is termed a 
free chain algebra if the underlying graded algebra admits an isomorphism T(V) ~ 
A where T(V) is a free graded algebra. Let 

DFAcDA 

be the full subcategory of free chain algebras. For a free chain algebra A 
(T(V), d) we define the cylinder 

IA = (T(V' EB V" EB sV), d) (1.15) 

where V' and V" are two copies of V, that is V' = V" = V. Let io : A ----) IA and 
i l : A ----) IA be given by io(x) = x' and il(x) = x". Here x' E V' and x" E V" 
are the elements which correspond to x E V. We define the differential d on I A 
on generators by dx' = iodx, dx" = ildx and 

dsx = x" - x' - Sdx 

where S : A ----) I A is the unique map of degree +1 satisfying Sx = sx for x E V 
and 

S(x. y) = (SX)(ilY) + (-l)lxl(iox)Sy 

for x, YEA. Two maps f, g : A ----) B in DA are homotopic, f C:::' g, if there exists 
a map H : IA ----) B in DA with Hio = f and Hil = g. 

(1.16) Definition. An algebra A in Aig is supplemented if an algebra map s : 
A ----) * = R is given. A map f : A ----) B in Aig is supplemented if sf = s. Hence 
supplemented algebras and maps form the category AIg* of objects over * in Aig. 
A chain algebra A is supplemented if HoA is supplemented so that one has the 
composite 
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in DA. Hence the category of supplemented chain algebras DA* is the same as 
the category of objects over * in DA. Accordingly let DFA* be the category of 
objects over * in DFA. 

Using the notions of I-category in (II. Appendix A) we prove in Baues [AH] I, 
§ 7 the following result. 

(1.17) Proposition. The categories DFA andDFA* with the cylinder (1.15) are 
I -categories. Cofibrations are maps in DFA which carry generators to generators. 

According to III.7.4 the proposition implies that DFA and DFA* are also 
cofibration categories. Moreover using (1.13) we have full inclusions 

alg C DFA/::::- and alg* c DFA*/::::- (1.18) 

where T = alg, resp. T = alg* are theories of cogroups. A map f : A -t B in 
DA is a weak equivalence if f induces an isomorphism f* : HA ~ HB. The next 
result corresponds to the classical Whitehead theorem for CW-complexes. 

(1.19) Theorem. Let f : A -t B be a map in DFA, resp. DFA*. Then f is a 
weak equivalence if and only if f is a homotopy equivalence (i. e. an isomorphism 
in the quotient category DFA/::::-, resp. DFA*/::::-). 

We obtain (1.19) as a special case of (IV.3.11) below. For this we observe that 
a T-complex X in DA is the same as a free chain algebra X = (T(V), d) with the 
filtration of skeleta XCi) given by the sub algebras 

(1.20) 

of X. Here Vi is the submodule of the graded module V with (Vi)j = Vj for j:S: i 
and (Vi)j = 0 otherwise. Using the filtration (1.20) it is easy to see that one has 
an equivalence of categories 

DFA = Complex 

where the right hand side is the category of T-complexes in (IV.2.2). We point 
out that the inclusion alg C DFA carries a free algebra concentrated in degree 0 
to a T-complex of dimension 1 since there is a shift in degree in (1.20). 

Let E = F( {a}) be the free algebra generated by one element a in degree O. 
Then E is supplemented by the map E -t * which carries a to 0 E R. One 
readily checks that for a pair (X, Y) of objects in DA (resp. DA*) one has natural 
isomorphisms (n ~ 1) 

{ 
7f;(X) = Hn(X) 

7f;+1 (X, Y) = Hn+l (X, Y) 
(1.21 ) 



56 Chapter B: Examples and Applications in Algebraic Homotopy Theories 

where the left hand side is a homotopy group in DA (resp. DA*) and the right 
hand side is a homology group of the underlying chain complex. Since each free 
algebra F(Z) is a coproduct F(Z) = V z E we thus obtain for A = F(Z) E alg 
the homotopy groups 

{ 
1f~(X) = xHn(X) 

1f~+1(X, Y~ = ~Hn+1(X, Y) 

where the right hand side is a product over the set Z of generators in A. Now it 
is an easy exercise to show that (IV.3.11) below implies (1.19). 

(1.22) Remark. Let DA(fiat) be the full subcategory of DA consisting of all chain 
algebras A for which all An are flat R-modules, n E Z. We show in Baues [AH] I, 
§ 7 that DA(fiat) is a cofibration category provided R is a principal ideal domain. 
Compare also Munkholm [DGA] and Gugenheim-Munkholm [Tor]. In this case 
DFA is the category of cofibrant objects in DA(fiat) and hence one has the 
equivalence of categories 

Ho(DA(fiat)) ~ DFA/~ 

where the left hand side denotes the localization with respect to weak equivalences. 
This result implies (1.19) in case R is a principal ideal domain. The equivalence 
carries a chain algebra Y in DA(fiat) to a free chain algebra X for which one has 
chosen a weak equivalence X ~ Y. Here X is termed a free approximation of Y. 

Next we consider the pushout diagram in DA 

K ---+ KULY 

L ---+ Y 
j 

for which we get the following Blakers-Massey theorem where R is an arbitrary 
commutative ring. 

(1.23) Theorem. Let L, K, Y be free chain algebras and assume i and j carry 
generators to generators. For n, m ~ 1 let Hs(K, L) = 0 for s S; n - 1 and 
H t (Y, L) = 0 for t S; m - 1. Then the induced map 

is surjective for r S; n + m - 1 and bijective for r S; n + m - 2. 

(1.24) Remark. Theorem (1.23) implies that the category DFA with T = alg 
has the Blakers-Massey property in (IV.5.3) below. Here we use (1.20) and (1.22). 
Hence nand m in (1.23) correspond exactly to nand m in (IV.5.3) since there 
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is a shift of degree by +1. By (V.1.2) the Blakers-Massey property implies that 
(DFA, T = alg) and (DFA., T = alg.) are homological cofibration categories. It 
is easy to check the axioms of a homological cofibration category in (V.1.1) directly 
without the use of (1.23). We leave this to the reader; compare Baues [DA] C2.0.17 
and C2.0.19. 

Proof of (1.23). Using Baues [AH] 1.7.21 and the glueing lemma Baues [AH] II.1.2 
we may assume that the generators v in K - L satisfy Ivl ~ n and that the 
generators w in Y - L satisfy Iwl ~ m. Now the spectral sequence of a cofibration 
Baues [AH] 1.7.23 yields (1.23); compare Baues [AH] 1.7.5 where we can omit the 
summand given by "n = 0" since we consider relative homology groups. q.e.d. 

We have the coefficient functor 

c: DFA/c::= ~ Aig (1.25) 

which carries A to the algebra c(A) = HoA which is the degree 0 part of the graded 
algebra HA in (1.11). This is a special case of the coeffcient functor (V.1.3). 

(1.26) Definition. Let X = (T(V),d) be a free chain algebra in DFA and let 
A = HoX be the associated coefficient algebra in AIg; see (1.25). Then there is a 
well defined chain complex 

{ 
C.(X, *) in mod(A), see (1.9), with 

Cn(X,*)=A0Vn- 10A forn~ 1 

and Cn (X, *) = 0 otherwise. Moreover there is a well defined augmented chain 
complex 

{ 
A0Vn-10A for n ~ 1, 

Cn(X)= A0A forn=O, 

o for n < O. 

Moreover a map f : X ~ Y in DFA induces a chain map 

where B = HoY and u = Ho(f) : A ~ B, see (1.9). 

We get the chain complex C.(X,*) by the general procedure in (V, §2). The 
augmented chain complex C.(X) is defined by (II, § 6) since T = alg is weakly 
augmented by the maps 

c : F(Z) ~ F(Z) V E in alg (1.27) 
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with E = F({a}) generated by one element a and c(z) = (1 +a)· z· (1- a) for 
z E Z; see (1.2). We leave it to the reader to check the properties in (1.7.11). 

We get the differential 8 of C*X explicitly by the differential d of X = (T( v), d) 
as follows. For v E Vn C Cn+1X with n :2: 0 let 8(v) E CnX be given by the formula 

{
(AV)®l-l®(AV) forn=O 

8(v) = -Adv for n = 1 

-(A ® 1 ® A)qdv for n :2: 2 

(1.28) 

Here A : X -+ HoX = A is the map in (1.12) and 

A : T(Vo) -+ A ® Vo ® A 

is the unique function with A(l) = 0, A(v) = 1 ® v ® 1 for v E Vo and 

A(x· y) = (AX) . (Ay) + (Ax) . (AY) 

for x, y E T(Vo). For Ivl = 1 we have dv E Xo = T(Vo) so that Adv is well defined. 
Finally for n :2: 2 let q be the projection of 

X n - 1 = T(Vo) ® Vn - 1 ® T(Vo) EB (X(n-1))n-l 

onto the direct summand T(Vo) ® Vn- 1 ®T(Vo). Then for v E Vn with Ivl = n :2: 2 
the element qdv E T(Vo) ® Vn - 1 ® T(Vo) is well defined. This yields the formula 
for 8(v) in (1.28) for n :2: 2. One can check that the chain complex C*(X) given 
by (1.28) coincides with the chain complex defined by (V, § 2) and (II, § 6). 

(1. 29) Remark. There is a classical functor 

(1) 

which carries a supplemented chain algebra Y to the cobar construction [l of 
the bar construction B of Y. Compare Husemoller-Moore-Stasheff [DN]. Then 
X = [lB(Y) is actually a free chain algebra and one has a natural weak equivalence 
[lB(Y) -+ Y which is a homotopy equivalence in DFA* provided Y is a free 
chain algebra by (1.19). Hence [lB(Y) is a functorial free approximation of Y. If 
A E Alg c DA then B(A) is the reduced bar resolution of A and 

B(A, A) = C*(DBA) (2) 

is the normalized bar resolution of A; compare Mac Lane [H] chapter X. Here C* 
is the chain functor in (1.26) and using (1.28) one can check that (2) holds. The 
Hochschild homology and the Hochschild cohomology of A with coefficients in an 
A-bimodule M is defined by 

{ 
HHn(A, M) = Hn(B(A, A) ®U(A) M) 

HHn(A,M) = Hn(HomU(A)(B(A,A),M)) 

See Mac Lane [H] X § 3, § 4. 

(3) 
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According to this remark we define for any free chain algebra X in DFA 
with A = HoX the following homology and cohomology with coefficients in an 
A-bimodule M: 

{ 
HHn(X,M) = Hn(C(X) Q9U(A) M) 

HHn(x, M) = Hn(HomU(A)(G*(X), M)) 
(1.30) 

For example if A = HoX is supplemented then R is an A-bimodule so that 
HHn(X,R) and HHn(X,R) are defined. Moreover we obtain the A-bimodule 

Tor;; (A, A) = HHn(X,U(A)) = Hn(G*(X)) 

which is the homology of the chain complex G*(X) in the abelian category of 
U(A)-modules. 

If Y is a supplemented chain algebra which is not free we have the free approx­
imation X ~ Y of Y given by X = [lBY. Then we define the (co-) homology of 
Y by 

{ 
HHn(Y,M) = HHn(X,M) 

HHn(Y,M) = HHn(X,M) 

It is often the case that this does not depend on the choice of the free approximation 
X of Y (in particular, if R is a principal ideal domain and Y is fiat, see (1.22)). We 
now are ready to formulate the following homological Whitehead theorem which 
is a special case of (VI, § 7). 

(1.31) Theorem. Let f : X -t Y be a map in DFA (resp. DFA.). Then f is a 
homotopy equivalence if and only if the induced map 

u = f* : A = HoX -t B = HoY 

is an isomorphism and one of the following conditions (i), (ii), (iii) is satisfied. 

(i) f*: u* G* (X, *) -t G* (Y, *) is a homotopy equivalence of chain complexes in 
mod(B). 

(ii) f* : Tor;; (A, A) -t u*Tor; (B, B) is an isomorphism of A-bimodules for 
n?1. 

(iii) For all B-bimodules N the induced map 

is an isomorphism for n ? 1. 

Let X be a free chain algebra with skeleta X(i) in (1.20). Then we obtain for 
n? 2 the Ho(X)-bimodule 

r,;(X) = image{HnX(n) -t HnX(n+l)} 

This corresponds to the mod(HoX)-module r,;(X) = rn+1(X) in (V.5.3) where 
this module is also defined for n = 0, 1. 
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(1.32) Theorem. For each free chain algebra X with A = HoX the following 
sequence is an excat sequence of A-bimodules (n ~ 1) 

---+ r;; (X) ---+ Hn(X) ~ Tor;;+! (A, A) ---+ r;;_1 (X) ---+ •.. 

---+ rf (X) ---+ HI (X) ---+ Tor: (A, A) ---+ r{ (X) ---+ 0 

The sequence is natural in X. 

This sequence is a special case of the exact sequence of J.H.C. Whitehead in 
(V.5.4) and h is the analogue of the Hurewicz homomorphism. 

(1.33) Remark. In Baues-Felix-Thomas [PAl we study the sequence (1.32). If R 
is a principal ideal domain and if HoX is free as an R-module we show that 
rfx = rfx = 0 and that 

rf(x) = HI (X) ~HoX HI (X) 

where the right hand side is the tensor product of the right Ho(X)-module HI (X) 
with the left Ho(X)-module HI (X) so that the tensor product has the obvious 
structure of an HoX-bimodule. Moreover we show that in case HiX = 0 for 
0< i < n then rl(x) = 0 for i < 2n and 

Using (V.4.4) we get the next result concerning obstruction theory of chain 
algebras. Let Y c X be an inclusion of free chain algebras which carries generators 
to generators. Let (X, Y)(n) be the relative n-skeleton given by the subalgebra of 
X generated by Y and X(n) in (1.20). 

(1.34) Theorem. Let f : Y ---+ U be a map in DA which admits an extension 
g : (X, Y)(n) ---+ U with n ~ 2. Then the restriction gn-I = g I (X, Y)(n-I) admits 
an extension 9 : (X, Y)(n+l) ---+ U in DA if and only if an obstruction element 

vanishes. Here u : HoX ---+ HoU is induced by g since n 2: 2. 

This is the analogue of the classical result of obstruction theory for CW­
complexes. By (VI.3.1) we have the following homotopy lifting property of the 
chain functor C* in (1.26), (1.28). 

(1.35) Theorem. Let 1: X ---+ Y be a map in DFA with f = C*(/) : C*(X, *) ---+ 

C*(Y, *) given by (1.26). Let Q : f ~ g be a homotopy of the chain map f. Then 
there exists a homotopy H : 1 ~ 9 in DFA satisfying C*(9) = g and C*(H) = Q. 

There are many further results on the homotopy theory of DFA which can 
be deduced from the abstract theory; for example the tower of categories in (VI, 
§ 5) and the model lifting property of the twisted chain functor; see (VI, § 3, § 8). 
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We leave it to the reader to formulate the appropriate explicit interpretation of 
such results in the homotopy theory of chain algebras. As a final application of 
the abstract theory to chain algebras we describe the following result on finiteness 
obstructions. 

Let X, Y be free chain algebras. A domination (X, f, g, H) of Y in DFA is 
given by maps 

and a homotopy H : gf ~ 1 in DFA. The domination is finite if X is finitely 
generated. As a special case of (VII.2.4) we get 

(1.36) Theorem. Let Y be a free chain algebra which admits a finite domination 
in DFA. Then the finiteness obstruction 

is defined. Here U is the enveloping functor (1.8) and Ko is the reduced projective 
class group; see (VII, § 1). Moreover [Y] = 0 if and only if there exists a finitely 
generated free chain algebra X and a homotopy equivalence X -+ Y in DFA. 

This is the chain algebra analogue of the finiteness obstruction theorem of Wall. 

2 Homotopy Theory of Connected Simplicial Objects 
in Algebraic Theories 

In this section we discuss simplicial objects in the category of models of a single 
sorted theory with zero object S. The corresponding homotopy theory was recently 
considered by Schwede [SH]. 

The homotopy theory for S, however, behaves very different to the homotopy 
theory for a theory T of coactions in chapter C. The basic example for S is the 
category of pointed simplicial sets while the basic example for T is the category 
of simplicial groups. 

Pointed simplicial sets have all the homotopy theoretic properties as pointed 
spaces in Top* which are considered in (A, § 1) above. Accordingly one obtains 
for the homotopy theory of simplicial S-models similar reults as for pointed spaces 
in (A, § 1). 

(2.1) Definition. A single sorted theory S is a category with a distinguished "gen­
erating" object S E Ob(S) such that the objects of S are exactly the finite n-fold 
coproducts 

nS = SV ···v S 
'-----.,.---" 

n-times 

(1) 

with n 2: O. Here OS = * is the initial object of S and IS = S. We say that S has 
a zero object if * is also the final object of S. Let sop be the opposite category of 
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S. A functor sop --+ C is the same as a contravariant functor S --+ C. A model M 
of S is a functor 

M : Sop --+ Set (2) 

which carries coproducts in S to products of sets. We call M(8) the underlying 
set of M. Let 

M = model(S) (3) 

be the category of models; morphisms are natural transformations. We have the 
distinguished model 

8 = S( -,8) : sop --+ Set (4) 

which as well is denoted by 8. The category M has arbitrary coproducts II so 
that for a set Z the free object 

80Z=1l8 (5) 
zEZ 

is defined. Let Mfree C M be the full subcategory of free objects. If S has a zero 
object then also M has a zero object. 

(2.2) Example. (a) Let 8 = {I} be the set consisting of the number 1. Then the 
n-fold coproducts in Set (n ?: 0) 

n{l} = {I, ... ,n} 

form the full subcategory setU of Set for which model(setU) = Set. 
(b) Let 8 = 8° = {O, I} be the pointed set consisting of 2-elements with basepoint 

* = O. Then the n-fold coprod ucts in Set * (n ?: 0) 

n8° = {O,l, ... ,n} 

form the full subcategory (set*)U of Set* for which model(set*)U = Set* is 
the category of pointed sets. Here (set*)U is a single sorted theory with zero 
object * = {O}. 

(c) Let 8 = Z be the group of integers. Then the n-fold coproducts in the category 
Gr of groups are the free groups 

nZ= ({l, ... ,n}) 

which form the full subcategory gr# of Gr for which model(grU) = Gr. Here 
grU is again a single sorted theory with zero object * which is the trivial group 
consisting of one element. 
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(2.3) Remark. Schwede [SH] considers the "simplicial enriched" version of a single 
sorted theory with zero object which he calls (in the dual language) a "simplicial 
theory". The single sorted theories with zero objects considered in this section 
correspond exactly to "discrete simplical theories" in the sense of Schwede. All 
results in this section have a canonical generalization for the more general simplicial 
theories. 

In the following let S be a single sorted theory with zero object. Then the cat­
egory M of models of S has also a zero object * and hence * = const( *) is the zero 
object of the category LlM of simplicial objects in M. See (C.l.I) below. We have 
the inclusion 

const : M c LlM (2.4) 

which carries the model M to the constant simplicial object const(M) also denoted 
by M. The functor M -+ Set* which carries M to the underlying set M(S) yields 
the functor 

LlM -+ LlSet* (2.5) 

which carries the simplicial model X to the underlying pointed simplicial set X(S). 
The simplicial set X (S) has the additional algebraic structure given by the theory 
S. For example for S = gr~ in (2.2) (c) a simplicial model is the simplicial analogue 
of a topological group. We say that X is connected if X(S) is connected; i.e. 
7foX = *. A map f : X -+ Y in LlM is a weak equivalence if the underlying map 
f : X(S) -+ Y(S) between simplicial sets is a weak equivalence. According to 
Dwyer-Hirschhorn-Kan [Me] or Schwede [SH] we have the following result. 

(2.6) Theorem. Let S be a single sorted theory with zero object and let M be 
the category of models of S. Then the category LlM of simplicial models has the 
structure of a closed simplicial model category with weak equivalences defined above. 

The fibrations in LlM are the maps f : X -+ Y for which f : X(S) -+ Y(S) 
is a fibration of simplicial sets. Hence the fibrant objects X in LlM are exactly 
the simplicial models X for which the underlying simplicial set X(S) satisfies the 
Kan extension condition (May [SO]). Let Ho(LlM) be the homotopy category of 
LlM obtained by localizing with respect to weak equivalences in LlM. Moreover 
for X, Yin LlM let 

[X, Y] = Ho(LlM) (X, Y) (2.7) 

be the set of morphisms X -+ Y in Ho(LlM). For a cofibrant object X in LlM we 
can define the suspension EX by the push out diagram in LlM 

X®S[I] ----> EX 

X®* ----> * 
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Here we use (C.1.8) and (C.1.4) below.· As usual the set [EX, Y] is a group. In 
particular we have the equation of homotopy groups 

7r~(X) = [EnS,X] = 7rn(X(S)), n 2:: 1, (1) 

where Ens is the n-fold suspension of S = const(S) E L1M. Similarly relative 
homotopy groups satisfy 

(2) 

The following crucial result is due to Schwede [SH]; this is the (non-delicate) 
Blakers-Massey theorem for the category L1M. Clearly since pointed simplicial 
sets L1Set* form an example of L1M by (2.2) (b) we cannot expect that a delicate 
version of the Blakers-Massey theorem holds in L1M; though this is the case for 
L1Gr given by the example (4.2) (c); see chapter C below. 

(2.8) Theorem. Consider a push out diagram in L1M of cofibrant objects 

K ~ KULY 

L~ Y 

where i is a cofibration. Assume further that all objects are connected and that 
7rf (K, L) = 0 for i ::; m and 7rf (Y, L) = 0 for i ::; n. Then the induced map 

]* : 7ri(K, L) ----> 7ri(K UL Y, Y) 

is surjective for i ::; n + m and bijective for i ::; n + m - 1. 

For the example (2.2) (b) this is exactly the classical Blakers Massey theorem 
for connected spaces which are equivalent to connected pointed simplicial sets. 

(2.9) Definition. Let S be a single sorted theory with zero object and generating 
object S and let M be the category of models of S. Then the full subcategory 

T(S) c Ho(L1M) 

consisting of the suspensions E(S Q9 Z) of free objects S Q9 Z = const(S ® Z) is 
the theory of cogroups associated to S; see (2.1) (5) and (2.4). Using (III.6.8) we 
set that T(S) is augmented by ES with augmentation maps induced by Z ----> {*}. 

For example for S in (2.2) (b) we get T(S) = gr the category of free groups; 
while for S in (2.2) (c) we get T(S) = ab the category of free abelian groups. As 
a consequence of (2.6) and (2.8) we have the following result where we use the 
notation in (IV.2.1), (IV.5.3), (V.1.1). 

(2.10) Theorem. Let S be a single sorted theory with zero object and let M 
be the category of models of S. Then L1M is a cofibration category under T(S) 
which satisfies the Balkers-Massey property (IV. 5. 3). Hence L1M is a homological 
cofibration category under T(S). 
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This theorem shows that we can apply all the notation and results of the general 
theory in chapter I, ... , VII for the category L1M. We now describe a selection of 
such applications. 

Let T" (S) be the full subcategory of Ho(L1M) consisting of the finite coproducts 

nES=~=E(S®{l, ... ,n}) 
n-times 

Then T"(S) is a single sorted theory of cogroups with zero object and we obtain 
the category of models 

Coef = modeJ(T"(S)) (2.11) 

which coincides with the category of coefficients in (1.4.1). The category T(S) is 
the full subcategory of Coef consisting of all free models of T"(S). We have the 
coefficient functor 

c: Ho(L1M) --+ Coef (2.12) 

which carnes the simplicial model X to c(X) : T"(S)OP --4 Set such that 
c(X)(nES) = [nES, Xl. For the example (4.2) (b) we see that c(X) = 1Tl(X) 
is the fundamental group of X. 

Next we define the analogue of a CW-complex in the category L1M; this is a 
sequence of cofibrations 

(2.13) 

where Xl = E(S ® Zl) is an object in T(S) and where xn >----> X n+1 is a principal 
cofibration with attaching map in : En(s ® Zn) --4 xn; i.e. X n+l is up to weak 
equivalence the mapping cone of in. Here the set Zn is called the set of n-cells of 
X. We call X = lim Xi a T(S)-complex in L1M. We can choose all Xi and X to be 
fibrant and cofibrant in L1M for i ::::: 1, see (IV, § 1, § 2). Let Complex be the full 
subcategory of L1M consisting of T(S)-complexes. Then we have the equivalence 
of categories 

Ho(L1M)o --:::... Complex/~ (2.14) 

where (L1M)o is the full subcategory of connected objects in L1M and ~ is the 
relation of homotopy of maps between cofibrant and fibrant objects. We point out 
that the cellular approximation theorem holds in L1M by (IV.5.8). 

For each object G in Coef we can choose a T(S)-complex X 2 with c(X2) ~ G. 
We call the attaching map Ox = 12 a presentation of G. Moreover we define for G 
the following additive category mod(G). Let n ::::: 2. Objects are the coproducts 
En (S ® Z) V X 2 in L1M where Z is a set and morphisms are commutative diagrams 
in Ho(L1M) 
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X 2 x 2 

1 i2 1 i2 

En(s@z) V X2 f En(s 181 Z') V X2 ~ 

1 (0,1) 1 (0,1) 

X 2 X 2 

The initial object is given by the empty set Z = 0. The partial suspension shows 
that the category does not depend on the choice of n 2: 2; moreover the cat­
egory does not depend on the choice of the presentation of G. We define the 
enveloping functor 

U ; Coef -> Rings (2.15) 

which carries G to the ring of endomorphisms ofthe object En(s)V X 2 in mod(G). 
Moreover U carries a map u : G -> H in Coef to the ring homomorphism u* 
U(G) -> U(H) which carries f ; Ens V X 2 -> Ens V X 2 E U(G) to 

u*f = ((1 V u)f ! Ens, i 2 ) ; Ens V y2 -> En V y2 

where u ; X 2 -> y2 is a map with c(u) = u. Let Mod(G) be the abelian category 
of all right U(G)-modules. Then mod(G) C Mod(G) is the full subcategory of all 
free U (G)-modules. 

(2.16) Definition. Let X be a T(S)-complex in LlM and let Zn be the set of n­
cells of X for n 2: 1. Moreover let G = c(X) be given by the coefficient functor 
(2.12). Then there is a well defined chain complex C*(X) in the category mod(G) 
of free right U(G)-modules satisfying 

{ 
EBU(G) 

Cn(X) = Zn 

U(G) 

n2:1 

n=O 

and Cn(X) = 0 for n < O. Moreover a filtration preserving map f ; X -> Y 
between T(S)-complexes induces u ; c(X) -> c(Y) and a chain map 

f* ; u*C*(X) -> C*(Y) 

in mod(H) with H = c(Y). Since T(S) is augmented we obtain C*(X) by (V, § 2) 
and (II, § 6). 

(2.17) Example. If S is defined as in (2.2) (b) then X is a pointed simplicial set 
corresponding to a OW-complex Y with !X! ~ Y and cells as in the T(S)-complex 
X, in particular yO = *. In this case G = c(X) = 7f1 (X) is the fundamental group 
of X and U(G) = Z[7flX] is the group ring. Moreover C*X with 

Cn(X) = HnCfrn, yn-l) 

is the cellular chain complex of the universal cover of Y. 
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If S is defined as in (2.2) (c) then X is a connected simplicial group correspond­
ing to a CW -complex Y with yl = * such that X ~ Gy where Gy is the Kan 
loop group of y. In this case we have G = c(X) = 7rI X = 7r2Y and U(G) = Z; i.e. 
U is the constant functor Z. Moreover C.X satisfies 

CnX = n+, -{ 
H I(yn+l. yn) for n > 1 

Z for n = 0 

for n E Z; i.e. up to the shift of degree C.X/CoX is the reduced cellular chain 
complex of y. 

Using the chain complex eX in (2.16) we define for each right U(G)-module M 
with G = c(X) the cochain complex Hom(C.X, M) of abelian groups where Hom 
is defined in the category Mod(G) ofright U(G)-modules. The cohomology with 
coefficients in M is 

(2.18) 

Moreover the homology of X is the homology of C.X in the abelian category 
Mod(G), that is 

Hn(X) = ~erneld: CnX -+ Cn-IX 
Image d : Cn+IX -+ CnX 

Hence HnX is a right U(G)-module. 

(2.19) 

Let X be a T(S)-complex and let Y be an object in L1M. Moreover let u : 
Xl -+ Y be a map which admits an extension X 2 -+ y. Then u induces a map 
u. : c(X) = G -+ c(Y). Moreover we obtain the right mod(G)-module (n ~ 2) 

(2.20) 

which is given by a right U(G)-module u'7rn(Y) as follows. The module carries 
the object En(s ® Z) V X 2 to the abelian group 

[En(s ® Z), Y] = EB7rn (y) 
Z 

Moreover a map f in mod( G) induces the homomorphism 

which carries a: En(s ® Z') -+ Y to the composite 

Here f' = f I En(s ® Z) is the restriction of f. If we take Z = Z' = point then 
we obtain this way the U(G)-module u*7rn(Y). 
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(2.21) Theorem. Let S be a single sorted theory with zero object and let M be 
the category of models of S. Then obstructions for the extension of maps in LlM 
are defined as follows. Let A be a subcomplex of the T(S)-complex X and let 
f : A --> Y be a map in LlM such that f I An admits an extension g : Xn --> Y, 
n 2: 2. Then the restriction g I X n- l admits an extension g : X n+! --> Y with 
g I An+! = f I An+l if and only if an obstruction element 

vanishes. Here u : Xl --> Y is the restriction of g. 

For the example (2.2) (b) of pointed simplicial sets this is a classical result of 
obstruction theory; compare (2.17). We obtain (2.21) as a special case of (V, §4). 
Next we obtain by (VI, § 7) the following homological Whitehead theorem: 

(2.22) Theorem. Let S be a single sorted theory with zero object and let M be 
the category of models of S. Let f : X --> Y be a filtration preserving map between 
T(S)-complexes in LlM. Then f is a homotopy equivalence, i.e. an isomorphism 
in Ho( L1M), if and only if the coefficient functor c induces an isomorphism 

u : G = c(X) ---=--. H = c(Y) 

and one of the following conditions (i), (ii) , (iii) is satisfied. 

(i) f* : u*C*X --> C*Y is a homotopy equivalence of chain complexes in 
mod(H). 

(ii) f*: Hn(X) --> (u*)* Hn(Y) is an isomorphism of U(G)-modules for n 2: 1. 
(iii) For all right U(H)-modules M and n 2: 1 the induced map 

is an isomorphism. 

In Schwede [SH] 2.2.2 the result is proved for the special case that X and Y 
are simply connected, that is G = H = O. Next we consider the Hurewicz 
homomorphism and the exact sequence of J.H.C. Whitehead in LlM. 

(2.23) Theorem. Let S be a single sorted theory with zero object and let M be 
the category of models of S. For each connected object X in LlM one has the 
following exact sequence of right U(G)-modules, G = c(X), n 2: 2 . 

... --> Fn(X) --> 7fn(X) --> Hn(X) --> Fn-I(X) --> ... 

... --> F2(X) --> 7f2(X) --> H2(X) --> n(X) --> 0 

Here we use (2.14) in order to replace X by a T(S)-complex. Hence it is suffi­
cient to prove (2.23) only for T(S)-complexes X for which we define 
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if n ~ 3. The definition of Tl and T2 is more complicated; see (V, § 5). If the 
(n - I)-skeleton X n - 1 is trivial (n ~ 2) then it is easy to see that TiX = 0 for 
i ~ n and hence we get the following Hurewicz theorem; compare Schwede [SH] 
2.4.3. 

(2.24) Corollary. Let n ~ 2 and let X be (n - I)-connected. Then 1fn(X) ---+ 

Hn(X) is an isomorphism and 1fn+l(X) ---+ Hn+l(X) is surjective. 

Finally we consider the theorem of Wall in ..:1M. We say that a T(S)-complex 
X is finite if X has only finitely many cells; that is the set Zl U Z2 U . .. is finite. 
Now let X and Y be T(S)-complexes. Then a domination (X, f, g) of Y is given 
by maps 

Y ~ X ~ Y in Ho(..:1M) 

with gf = 1. The domination if finite if X is finite. As a special case of (VII.2.4) 
we get: 

(2.25) Theorem. Let S be a single sorted theory with zero object and let M be the 
category of models ofS. Let Y be a T(S)-complex and let H = c(Y) be given by the 
coefficient functor. If Y admits a finite domination then the finiteness obstruction 

is defined. Here U is the enveloping functor in (2.15) and Ko is the reduced pro­
jective class group; see (VII, § 1). Moreover [Yj = 0 if and only if there exists a 
finite T(S)-complex X and an isomorphism X ---+ Y in Ho(..:1M). 

For the example (2.2) (b) of pointed simplicial sets this corresponds exactly to 
Wall's result on finiteness obstructions. 



Chapter C: Applications and Examples 
in Delicate Homotopy Theories 
of Simplicial Objects 

In this chapter we consider homotopy theories of simplicial objects which resemble 
the homotopy theory of simplicial groups. It is well known that in the Quillen model 
category of simplicial groups L1Gr all objects are fibrant; i.e. all simplicial groups 
satisfy the Kan extension condition. Moreover the free simplicial groups form a 
sufficiently large class of cofibrant objects in the sense that the homotopy category 
of free simplicial groups is equivalent to the homotopy category Ho(L1Gr) defined 
by localization with respect to weak equivalences. Since free groups are cogroups 
we see that free simplicial groups are simplicial objects in a special theory T 
of cogroups. In this chapter we study the homotopy theory of "free" simplicial 
objects in any theory of cogroups, or more generally in any theory of coactions. 
Such homotopy theories are canonical generalizations of the homotopy theory of 
simplicial groups. 

Simplicial groups have the additional property that a delicate Blakers-Massey 
theorem holds which corresponds to the ordinary Blakers-Massey theorem for con­
nected spaces via the Kan-equivalence of homotopy categories: 

Ho(Top~) ~ Ho(L1Gr) 

Here Top~ is the category of pointed connected spaces. In section § 2 and § 3 we 
describe many further examples of theories of cogroups (resp. coact ions) in which 
such a delicate Blakers-Massey theorem holds. We therefore call the homotopy the­
ory considered in this chapter the "delicate homotopy theory of simplicial objects" . 
The non-delicate or normal theory of simplicial objects resembles the homotopy 
theory of simplicial sets and is discussed in (B, § 2) above. The delicate homotopy 
theory has many features which are different to the normal theory. In particular 
a homology and cohomology theory with twisted coefficients is defined in the del­
icate theory which is not defined in the normal theory. In the case of a simplicial 
group G the homology of G is the homology of the classifying space of G with 
twisted coefficients; see (A, § 1). 

1 Homotopy Theory of Free Simplicial Objects 
in Theories of Coact ions 

We study the simplicial objects in a theory T of coactions and we describe basic 
results for the homotopy theory of such simplicial objects. In the next section 
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we consider various examples of such theories T. In particular if T = gr is the 
category of free groups then the results of this section correspond to well known 
facts of classical homotopy theory since a free simplicial object in gr is a model of 
a connected space. We discuss only some of the main applications of the general 
theory of chapter I, ... , VIn to simplicial objects. We leave it to the reader to 
work out results like the "model lifting property" or the obstruction theory for the 
"realizability of chain complexes" and many further applications. 

Let Ll be the category of ordered sets [n] = {O < ... < n} and order preserving 
functions 0: : [n] ----> [m] in Set where n, m 2: O. For 0:::; i :::; n we have the functions 

d~ : [n - 1] >-> [n]- {i} C [n] 

s~ : [n + 1] """* [n] with s~(i) = s;(i + 1) 

in Ll where d; is injective and s; is surjective. A simplicial object in a category C 
is a functor 

X: Llop ----> C (1.1) 

We write Xn = X[n] and the face maps are di = (d;)* : Xn ----> Xn- 1 and the 
degeneracy maps are Si = (s;)* : Xn ----> X nH . The collection (Xn' di , Si) satisfies 
the usual simplicial identities; see May [SO]. Let LlC be the category of simplicial 
objects in C; morphisms are natural transformations. Hence LlC is an example 
of a category of Ll-diagrams as considered in (A.2.1). We have the standard full 
embedding of categories 

const : C C LlC (1.2) 

which carries the object X E Ob(C) to the constant simplicial object const(X) 
with const(X)n = X and di = Si = 1x. We often identify the constant simplicial 
object const(X) with the object X in C and we write X = const (X) E LlC in 
this case. 

Let LlSet be the category of simplicial sets. The standard n-simplex Ll[n] = 
Ll( -, [n]) in LlSet is generated by an E Ll[n]n where an is the identity of [n]. The 
n-simplex Ll[n] has the universal property that, for every X E LlSet and x E Xn 
there is a unique map ix : Ll[n] ----> X in LlSet with ix(an) = x. For every n 2: 0 
let 

iM[n] C Ll[n] (1.3) 

be the largest subobject of Ll[n] not containing an. The base point * of Ll[n] is 
given by * = do ... do(an) E (Ll[n])o which defines 

* = const(*) ----> Ll[n]. 

The inclusion (1.3) is a simplicial model of the n-ball since the geometric real­
ization of Ll(n) is the standard n-simplex Lln in Euclidean space with boundary 
8Lln the realization of 8Ll[n]. We need a further simplicial model of the n-ball 
given by the simplicial n-ball 
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S[n - 1] C D[n]. (1.4) 

Here S[n -1] is the push out of Ll[n -1] :J 8Ll[n -1] ----- * where * is the constant 
point. Moreover D[n] is the push out of Ll[n] :J AO[n] ----- * where AO[n] is the 
subobject of Ll[n] generated by dWn with i > O. We have the canonical push out 
diagram in LlSet 

Ll[n] --+ D[n] 

u u 

8Ll[n] ~ S[n - 1] 

where q carries AO[n] to *. 
An element x E Xn is degenerate if it is of the form x = SiY for some y E X n- 1 

and 0 s:: i s:: nand non-degenerate otherwise. The simplicial n-ball has the non­
degenerate elements Un and doun . The geometric realization of (1.4) is the usual 
n-ball (Dn,sn-l) which is a eW-complex with two nontrivial cells; see (A, §1). 
Recall from May [SO] or Fritsch-Piccini [eS] that the geometric realization IXI of a 
simplicial set X is a eW-complex in which the cells of IXI are in 1-1 correspondence 
to the non-degenerate elements of X. A simplicial set X is finite if X has only 
finitely many non-degenerate elements; this implies that Xn is a finite set for all n. 

Let lDJ c Ll be the subcategory consisting of all surjective maps in ..1. The 
morphisms s~ in (1.1) generate ]]JJ. Each simplicial set X yields a lDJ-set X IIli by the 
composite 

X X IIli : lDJop c Llop ----> Set (1.5) 

It is known that XIIli has the following "pull back property". 

(1.6) Definition. We say that a lDJ-set X : ]]JJ°P ----- Set has the pull back property 
if for n 2: 0 and 0 s:: j s:: n all degeneracy maps Sj = (sj)* : Xn ----- Xn+l are 
injective and if for i < j the diagram 

X n- 1 
8i 

Xn --+ 

8j - 1 1 18 j (1) 

Xn 
8i 

Xn+l --+ 

is a pull back diagram in the category of sets, i.e. SiXn n SjXn = SjSiXn-l. In 
particular the lDJ-set (i 2: 0) 

lDJ(-, [il) : lDJop ----- Set (2) 

which carries [n] E lDJ to the set lDJ([n], [il) has the pull back property. 
We now consider a theory of coact ions T as defined in (1.1.11) below. Hence 

coproducts X V Y and an initial object * exist in T and each object X in T is 
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endowed with the structure of a coaction /1x : X -; X V X' where X' is a cogroup 
in T such that one has a canonical isomorphism 

(ix,/1x) :XVX=XVX' (1. 7) 

in T, see (1.1.12). For a finite set Z and an object X III T we define the 
tensor product X Q9 Z which is the coproduct 

XQ9Z= V X (1.8) 
zEZ 

of as many copies of X as there are elements in the set Z. Clearly the tensor 
product defines a bifunctor 

Q9 : T x Set (fin) -; .1T (1) 

where Set(fin) is the category of finite sets. If T has arbitrary coproducts then 
we can omit the finiteness of sets. If Z is a (finite) simplicial set then X Q9 Z is 
a simplicial object in .1T with face and degeneracy maps induced by those of Z. 
Moreover we obtain the functor 

Q9 : (.1T) x .1Set(fin) -; .1T (2) 

which carries the pair (X, Z) to the simplicial object X Q9 Z with (X Q9 Z)n = 
Xn Q9 Zn· Here face and degeneracy maps are defined by (Ti Q9 (Ti and di Q9 di 

respectively; i.e. X Q9 Z is the "diagonal" of the corresponding bisimplicial object. 
If Z is a pointed simplicial set and if X is a based object in .1T (i.e. a map 
o : X -; const(*) is given) then we define the half smash product X 1\ Z by the 
push out diagram in .1T 

XQ9Z ~ X I\Z 

o 
~ * 

(3) 

Clearly any cogroup A in T is based by the trivial map 0 : A -; * so that A 1\ Z 
is defined. 

We shall need the following lemma which we derive from (1.7). 

(1.9) Lemma. Let Z : ][))OP -; Set (fin) be a ][))-set with the pull back property 
in (i. 6) and let * E Zo be a basepoint. Then the inclusion const ( *) c Z has the 
complement Z - const( *) which is again a ][))-set with pull back property and for a 
coaction X -; X V X' in T one has via (1.7) the canonical isomorphism in][))T 

X Q9 Z ~ const(X) V X' Q9 (Z - const(*)) 

We can omit the finiteness of Zn in (1.9) if we assume that T has arbitrary 
coproducts. 
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For X E T the object X Q9 Ll[n] in LlT has the following universal property: 
For each object Y in LlT and each map f : X ----. Yn in T there exists a unique 
map 

f: X Q9 Ll[n] ----. Y in LlT (1.10) 

which extends f : X = X Q9 {an} ----. Yn in degree n. According to this universal 
property we define "free" objects in LlT as in the following definition. 

(1.11) Definition. Let T be a theory of coactions and let LlT be the category of 
simplicial objects in T. We consider a diagram X:2:o: 

in LlT with the following properties: 

(i) X O = const(XO) is the constant simplicial object given by XO E T with 
coaction J.l- : X O ----. XO V AD. 

(ii) For n ~ 1 a push out diagram in LlT of the form 

An Q9 Ll[n] ~ xn 

is given where An is a cogroup in T termed the n-cell of X:2:o. 

Then the direct limit X = lim X:2:0 in LlT is defined and X is called a free object 
in LlT. We say that X is a pointed free object if for n ~ 1 the attaching map an 
admits a factorization 

where we use the base point of Ll[n] in (1.3). Each free object is actually isomorphic 
to a pointed free object; see (1.21) below. 

Let Y be a free object in LlT with cells B n , n ~ O. We say that a map 
f : X ----. Y between free objects is a free inclusion if isomorphisms in T 

yO ~ XOVyO 

B n ~ An V I3n 

are given such that the map f : xn ----. yn, n ~ 0, is inductively induced by the 
inclusions 

X O ----. X O V yO ~ yO, 

An ----. An V I3n ~ Bn. 

Here I3n is a cogroup and yo is a coaction and the isomorphisms are compat­
ible with the cogroup (resp. coaction) structure on both sides. We call I3n the 
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relative n-cell of (Y, X). Now assume that for all n 2: 1 the attaching map On in 
(ii) has a factorization 

8' 
~xn-l 

Then we call X a CW-object in ..:1T. For a CW-object the push out (ii) induces 
the push out diagram (see (1.4)) 

An A D[n] -------> xn 

(iii) 

An AS[n-l] ~ X n - 1 

Hence we obtain the full subcategories 

(..:1T)cw C (..:1T)free C ..:1T (iv) 

Here (..:1T}rree consists of all objects X in ..:1T which are isomorphic in ..:1T to a 
free object. Moreover (.::1T)cw consists of all CW-objects in .::1T. 

(1.12) Lemma. Let X be a free object in .::1T with Xo, An E Ob(T) for n 2: 0 
defined as in (1.11). Then there is an isomorphism of~-objects 

XlIli ~ const(XO) V V Ai 129 ~(-, [iD 
i~l 

Proof. We have a disjoint union of sets 

.::1[n]k = (o.::1[n]h II ~([k], [n]) 

Hence the isomorphism in (1.12) is a consequence of the push out (1.11) (ii). We 
do not claim that all push outs exist in .::1T, but push outs as in (1.11) exist since 
there are coproducts in T. q.e.d. 

The next result is a kind of converse of Lemma (1.12). 

(1.13) Proposition. Let..J be a (finite) index set and for j E ..1 let Z(j) be a 
pointed lDl-set in Set (fin) which has the pull back property. Moreover let X(j),j E 
..1, be objects in the theory of coactions T. If X is an object in ..:1T together with 
an isomorphism of lDl-objects 

X lIli ~ V X(j) 129 Z(j) 
jE:J 

then X is isomorphic to a free object in ..:1T. 

If arbitrary coproducts exist in T we can omit in (1.13) the finiteness assump­
tions. 
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(1.14) Example. Let T = gr be the category offree groups. Hence gr is a theory of 
cogroups in which arbitrary coproducts exist. Kan [HG] and Curtis [SH] say that 
a simplicial group G is free if there exists a j[))-set Z together with an isomorphism 
of j[))-groups 

(*) 

Here Z is the group of integers and each free group F = (Zo) with basis Zo can be 
written F = Z Q9 Zoo Jardine-Goerss [SH] V.1.8 show that (*) implies that Z has 
the pull back property. Hence by (1.13) we see that (*) implies that the simplicial 
group X is also free in the sense of (1.11). In fact, this was already proved by 
Jardine-Goerss [SH] V.1.9 and our proof of (1.13) below generalizes the argument 
of Jardine-Goerss. 

Proof of (1.13). Since Z(j) is pointed we have the j[))-set U(j) = Z(j) - const(*). 
Moreover for the object X (j) in T we have the coaction 

p, : X(j) --+ X(j) V A(j) 

where A(j) is a cogroup. Let 

X O = V X(j) (1) 
jE3 

then (1.9) and the assumption in (1.13) show that we have an isomorphism of 
j[))-objects 

X IIli ~ const(Xo) V V A(j) Q9 U(j) 
jE3 

(2) 

Let U'(j)n be the subset of U(j)n consisting of non-degenerate elements and let 
An(n 2: 1) be the coproduct 

Then (2) shows 

X IIli ~ const(Xo) V V An Q9 j[))( -, [n]) 
n:;::l 

(3) 

(4) 

and this is the form of a free object in (1.12). Following the argument of Jardine­
Goerss [SH] V.1.9 we see that one has a push out in ..1T 
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where skn(X) is the "n-skeleton" of X, compare Jardine-Goerss [SH] V, § 1. Hence 
the filtration in (1.11) coincides with 

(1.15) 

if X is a free object in LlT. q.e.d. 

(1.16) Corollary. Let X be a free object in LlT and let 3 be a (finite) simplicial 
set. Then X (8) 3 is isomorphic to a free object in LlT. 

Proof. Since X is free we have (1.12) and hence we get 

i;:::l 

Here we use the product of ID-sets; compare Quillen [HA] II. page 1.9. Since 3IIli 
and ID( -, [iD satisfy the pull back property we see that Zi = ID( -, [iD X 3IIli satisfies 
the pull back property. Hence we can apply (1.13). q.e.d. 

Following Quillen [HA] II. page 1.6 we define the cylinder functor 

I: (LlT)rree ----+ (LlT)free (1.17) 

which carries X to I(X) = X (8) Ll[l]. Here we use (1.16) to see that I(X) is 
actually again an object in (LlT)free. We have the obvious maps between simplicial 
sets .:1[0] II Ll[O] ----+ .:1[1] ----+ .:1[0] which induce the structure maps of the cylinder 

XvX ~I(X) ~X 

Compare (III. 7.1). Let * be the initial object of T then const( *) is the initial 
object of LlT. Moreover we say that a map f : X ----+ Y in (.:1T)free is a cofibration 
if f is isomorphic in LlT to a free inclusion; see (1.11). 

(1.18) Theorem. Let T be a theory of coactions. Then the category (LlT)free 
with the cylinder (1.17) and cofibrations given by free inclusions (1.11) satisfies 
the axioms of a I-category in (III, § 7). 

This implies by (III.7.4) that (LlT)rree is also a cofibration category. 

Proof of (1.18). The axioms (11), (12), (14) and (15) are obviously satisfied. We 
only have to check the homotopy extension property in (13). For this it suffices to 
show that 

A (8) 8Ll[n] ----+ A (8) Ll[n] 

has the homotopy extension property for all cogroups A in T. But this is a con­
sequence of the fact that for any U in .:1T the simplicial set T(A, U) is actually 
a simplicial group which satisfies the Kan-extension condition; see May [SO] 17.1. 
q.e.d. 
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Theorem (1.18) shows that we have for any theory of coact ions a well defined 
homotopY category 

(1.19) 

We obtain this result readily from the simple proofs above. 

(1.20) Remark. Dwyer-Hirschhorn-Kan [MC] 9.7 obtain a Quillen model category 
for simplicial objects in certain categories of universal algebras. If the universal 
algebras are defined on underlying groups then the associated homotopy theory 
is up to equivalence of categories of the form (1.19) where T is the category of 
cogroups given by free universal algebras. Compare also theorem 11.5.4 in Jardine­
Goerss [SH]. 

(1.21) Proposition. Eachfree object in LlT is isomorphic to a pointed free object 
and is homotopy equivalent to a CW-object in LlT. Hence there is an equivalence 
of categories 

Proof. Let X be a free object defined as in (1.11). The attaching map 8n yields a 
map 

a : A Q9 * ----t A Q9 8[n] ~ X n - 1 (1) 

with A = An. Using the comultiplication fl of A we get for a simplicial set Z 

fl: A Q9 Z ----t (A V A) Q9 Z = A Q9 Z V A Q9 Z ----t A Q9 Z V A Q9 * (2) 

Here the first map is fl Q9 Z and the second map is 1 V (A Q9 0) where 0 : Z ----t * is 
the trivial map. Using fl we get the following commutative diagram 

A Q9 L1[n] A Q9 8L1[n] 
an·{3 X n - 1 f--- -----+ 

1p 1p II 
A Q9 Ll[n] V A Q9 * A Q9 8L1[n] V A Q9 * (an,{3l X n - 1 f--- -----+ 

r i 1 r i 1 II 
A Q9 Ll[n] A Q9 8Ll[n] an X n - 1 f--- -----+ 

The push outs of the rows are denoted by X~, P, and xn respectively. Now the 
lower left hand square is a push out and hence i 1 : xn ----t P is an isomorphism. 
Therefore we get the canonical map 

(3) 
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satisfying /-L(3/-L0I = /-L(3+0I : X~+OI ----+ X~ ----+ xn. Hence for j3 = -a we see that /-L(3 
is the inverse of /-La. Moreover an . j3 is pointed in this case by (1). Hence the free 
object X is isomorphic to a pointed free object. 

Next we consider the second statement in (1.21). Using the push outs in (1.11) 
(ii), (iii) it now suffices to prove that 

10 q : A /I. oLl[nJ ~ A /I. S[n - 1J 

is a homotopy equivalence in (LlT)rree/~ for each cogroup A in T. To obtain a 
homotopy inverse we see that for U = A0oLl[nJ there exists a map ..\ with ..\( *) = 0 
for which the following diagram homotopy commutes in LlSet 

T(A,U) 

y~ 
oLl[nJ ~ S[n - 1J 

Here I is given by the identity of U. Since T(A, U) is a Kan complex and hence 
fibrant and since q is a weak equivalence under * we obtain ..\. q.e.d. 

Next we define for each object X in T and for a simplicial object U E LlT the 
set of homotopy classes 

[X, UJ = 7l"oT(X, U) (1.22) 

where the right hand side is the set of path components of the simplicial set 
T(X, U) obtained by U. One can check that (1.22) is the same as the set of 
homotopy classes const(X) ----+ U defined by the cylinder (1.17). Moreover we 
define for each cogroup A in T the homotopy groups (n ~ 0) 

{ 
7l":;(U) = 7l"n T(A, U) 

7l":;+1(U, V) = 7l"n+1(T(A, U), T(A, V)) 
(1.23) 

where V ----+ U is a morphism in LlT. The right hand side denotes the usual 
homotopy groups in LlSet. Since A is a cogroup T(A, U) is a simplicial group and 
hence a Kan complex. We now are ready to state the following Whitehead theorem 
which is a direct consequence of (IV.3.11) below. 

(1.24) Theorem. Let T be a theory of coactions and let X and Y be free objects 
in LlT. Then a map f : X ----+ Y is a homotopy equivalence (i.e. an isomorphism 
in the quotient category (LlT)free/~) if and only if f induces bijections 

f* : [Z,XJ ----+ [Z, YJ 
f* : 7l":;(X) ----+ 7l":;(Y) 

for all objects Z in T and all cogroups A in T and n ~ 1. 
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Proof. By (1.21) we may assume that X and Yare CW-objects in ..1T. Such a 
CW-object X yields aT-complex 

X(1) c X (2) c ... C XCn) C XCn+l) C ... 

with the shift in the dimension of skeleta defined by X(n) = X n - 1 = skn _ 1 (X); 
see (1.11) and (1.15). It is clear that these T-complexes are T-good; hence the 
result follows from (IV.3.11). q.e.d. 

(1.25) Definition. We say that f : X -+ Y in ..1T is (m, T)-connected with m :::: 0 
if for all objects Z in T the induced map 

f* : [Z, X] -+ [Z, Y] 

is surjective and iffor all cogroups A in T the relative homotopy groups 1T~(Y, X) = 
o are trivial for r ::; m. 

For example let i : X -+ Y be a free inclusion in (..1T)free with xm = ym then 
i is easily seen to be (m, T)-connected since the "cellular approximation theorem" 
obviously holds. The following result is a kind of converse of this fact. 

(1.26) Proposition. Let i : X -+ Y be a free inclusion which is (m, T)­
connected. Then there exists a free inclusion X -+ Y with xm = ym and a 
map Y -+ Y under X which is a homotopy equivalence in (..1T)rree/~. 

Proof. We define for Z in T a ball pair by the following push out diagram (compare 
VIII, § 4) 

Z ® D[n] ® I -----+ 

T 
Z®S[n -1] ®I 

10pr 
-----+ 

T 
Z®S[n-1] 

Here pr : S[n - 1] x 1-+ S[n - 1] is the projection. We have two inclusions 

Pz = Z®D[n] ~ D~+l 

Qrz = Z®D[n] ~ D~+l 

Now assume yO = XO V Z. Then there exists a homotopy 

pi = Z ® D[l] = Z ® ..1[1] -+ Y 

from Z c yO C Y to a map Z -+ X since X -+ Y is (m, T)-connected. We now 
define V by the double push out diagram 
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Q1 pr 
Z -------7 

1 qi , 1 
0 2 

q 
W V Z -------7 -------7 

io r r 
pI z -------7 Y 

Then Y ----+ V is a homotopy equivalence and X a = Va holds. Now assume for 
o ::::. r < m we have X r = yr and let yr+l = Xr+l V A where A is a cogroup. Then 
a similar argument as above yields a homotopy equivalence Y ----+ V with Xr+l = 
V,'+I. These are classical ball pair arguments going back to J.H.C. Whitehead. 
q.e.d. 

(1.27) Definition. We say that the theory T of coact ions has the delicate Blakers 
Massey property if the following holds. Consider a push out diagram in (LlT)free 

K ~ KULY 

where i and j are free inclusions of CW-objects with Km-I = L m - I and yn-I = 

Ln-I and m, n 2:: 1. Then for all cogroups A in T the induced map 

is surjective for 1 ::::. r ::; n + m - 1 and bijective for 1 ::::. r ::::. n + m - 2. (The 
usual (non-delicate) Blakers-Massey property requires only surjectivity of ]* for 
r ::::. n + m - 2 and bijectivity of]* for r ::::. n + m - 3; compare (B.2.8).) 

(1.28) Remark. We define T-complexes X(2:I) in C c = (LlT)free by CW-objects 
X as in (1.11) however with the shift +1 in dimension 

X - X n - I 
(n) - for n 2:: 1. 

Then all objects of Tare T-complexes of dimension 1 and we can proof that the 
delicate Blakers-Massey property in (1.27) implies the Blakers-Massey property 
in (IV.5.3) for T-complexes. For this we use (l.26) and the glueing lemma Baues 
[AH] II.1.2. Thc shift +1 above implies that (m - 1, T)-connected corresponds to 
m-connected in (IV.5.2). Hence the delicate Blakers-Massey property of T implies 
by (V.1.2) that the inclusion 

const : T C (LlT)free/'::::' 

yields a homological cofibration category in which all results of chapter I, ... , VII 
hold. 
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Below we describe many examples of theories of coact ions which satisfy the 
delicate Blakers-Massey property. For all these examples one can use the following 
results which are special cases of the general theory in this book. 

For the theory T of coactions we obtain the category Coef of coeffcients as in 
(I, § 4). Then the coefficient functor 

c: (L1T)cw I':::!. --> Coef (1.29) 

is defined which carries X to the attaching map ax : Al --> Xo and which carries 
a map f : X --> Y to the a-equivalence class of fo : Xo --> Yo. One can check that 
c is a well defined functor. In fact c is obtained by the commutative diagram 

(L1T)cw ~ Twist 

c 
~ Coef 

where q denotes the quotient functor and where c carries X to the simplicial 1-
diagram given by X; see (1.3.7). The functor c has a left adjoint 

SkI: Twist --> (L1T)cw (1.30) 

for which skdc(X)) = SkI (X) is the I-skeleton of X. We also write 

where ax : A l --> XO is the attaching map of the CW -object Xl. 
For an object ax in Coef we define the additive category mod(ax ) as follows. 

Let n ::::: 1. The objects of mod(ax ) are given by the coproducts A 1\ S[n] V Xl 
in L1T where A is a cogroup in T and Xl is given by the attaching map ax. 
Morphisms are commutative diagrams 

Xl Xl 

1 1 
A/\ S[n] V Xl f B /\ S[n] V Xl (1.31) ~ 

(0,1) 1 (0,1) 1 
Xl Xl 

in the homotopy category (L1T)free/':::!.' The initial object in mod(ax ) is given by 
the trivial cogroup * in T for which * /\ S[n] V Xl = Xl. If T satisfies the deli­
cate Blakers-Massey property then the partial suspension shows that the category 
mod( ax) does not depend on the choice of n with n ::::: 1. Therefore we omit [n] 
in the notation and we write 

A 1\ S[n] V Xl = A /\ S V Xl 
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for an object in the additive category mod(ax). The sum in mod(ax) is given by 

We point out that mod( ax) is not in an obvious way the category of free objects 
in an abelian category. 

Each map u : ax ----+ ()y in Coef induces an additive functor 

'11* : mod(ax) ----+ mod(()y) (1.32) 

which carries A;\ S V Xl to A;\ S V yl and which carries f in (2.31) to the map 

((1 V u)f, 1) : A;\ S V yl ----+ B ;\ S V yl 

Here u : Xl ----+ yl is a map for which c('il) = u. The delicate Blakers-Massey 
property implies that (1.32) is well defined. Hence we get for each set A consisting 
of cogroups in T the enveloping functor 

U A : Coef ----+ Ringoids (1.33) 

which carries ax to the full subcategory of mod( ax) consisting of objects A ® S V 
Xl with A E A. Moreover UA is defined on morphisms by u* in (1.32). 

(1.34) Remark Let T be a theory of coactions satisfying the delicate Blakers­
Massey property. Then we claim that mod( ax) in (1.32) actually coincides with 
the additivization of premod(ax) in (1.5.lO). 

(1.35) Definition. Let T be a theory of coact ions satisfying the delicate Blakers­
Massey property. Let X be a CW-object in .:1T with attaching maps An ;\ S[n-
1]----+ xn-l. Then there is a well defined chain complex (see (V, §2)) 

{ 
G*(X) in mod(ax) with 

Gn(X) = An - l ;\ S V Xl for n ~ 1 
(1) 

and Gn(X) = 0 for n :s: O. We point out that there is a shift +1 in degree in this 
definition of G*X. Moreover a map f : X ----+ Y between C\iV-objects induces a 
chain map 

f* : u*G*(X) ----+ G*(y) in mod(ay) (2) 

where u = c(f) is defined by the coefficient functor c in (1.29). 
If T is an augmented theory (or more generally a weakly augmented theory) 

then also the augmented chain complex augG*(X) in mod(ax) is defined; see (II, 
§6). In this case it is suitable to denote (1) by G*(X,*) and to write G*(X) for 
the augmented chain complex; compare (B.1.26). 

We say that the CW-object X is of type A if for all n ~ 0 the objects An in 
T given by X in (1) are coproducts of objects in A. In this case G*(X) in (1) is 
considered as a chain complex of UA(ax)-modules; see (l.33). 
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Using the chain complexes in (1.35) we define for each (right) mod(ox )-module 
M the cochain complexes of abelian groups M(C*X) so that the cohomology with 
coefficients in M 

(1.36) 

is defined. As an example we observe that homotopy groups (1.23) yield canonically 
mod(ox)-modules as follows. Let U be an object in LlT and let 

be a map which admits an extension Xl ----> U. If the delicate Blakers-Massey 
property holds one obtains the right mod(ox)-module 

(1.37) 

for n 2:': 2. This module carries A 1\ S V Xl to the homotopy group 7r;{_1 (U) in 

(1.23). Here we use again a shift in degree since A is considered to be of dimension 
1; see (2.28). A map f B 1\ S V Xl ----> A 1\ S V Xl in mod(ox) induces the 
homomorphism 

which carries (a: B 1\ S[n ~ 1] ----> U) E 7r;;_1 (U) to the composite 

f*(a) :AI\S[n~l] ~ BI\S[n~1]VX1 ~ U 

where l' is determined by f. As a special case we obtain for the inclusion i 
XO C X of a CW-object X the mod(ox)-module i*7rn(X) by the homotopy 
groups 7r;{_l(X). The mod(ox)-module (1.37) is needed in the next result where 
we again use the shifted dimension of skeleta in (1.28). 

(1.38) Theorem. Let T be a theory of coactions in which the delicate Blakers­
Massey holds. Let Y c X be a free inclusion where X is a CW-object in LlT 
and let f : Y ----> U be a map in LlT such that r-1 = f I y n- 1 admits an 
extension 9 : xn-1 ----> U, n :::: 2. Then the restriction 9 I X n- 2 admits an extension 
g : xn ----> U with y I yn = fn if and only if an obstruction element 

vanishes. Here u : XO ----> U is the restriction of g. 

This typical result of obstruction theory is a special case of (V, § 4). We define 
the homology Hn(X), resp. Hn(X), which is a right mod(8x )-module 

(1.39) 

Here Hn(X) carries the object A 1\ S V Xl to the abelian group 
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where Hom denotes the abelian group of morphisms in mod(ax). If we replace 
C*(X) by C*(X) we obtain Hn(X). 

Now we are ready to state the following homological Whitehead theorem for 
simplicial objects in theories of coactions. This is a special case of (VI, § 7). 

(1.40) Theorem. Let T be a theory of coactions satisfying the delicate Blakers­
Massey property and let f : X -+ Y be a map between CW-objects in LlT. Then f 
is a homotopy equivalence (or equivalently f is an isomorphism in the homotopy 
category (LlT)rree/':o:') if and only if the coefficient functor carries f to an isomor­
phism u : ax ~ 8y in Coef and one of the following conditions (i), (ii) , (iii) is 
satisfied. 

f* : u*C*(X) -+ C*Y (i) 

is a homotopy equivalence of chain complexes in mod( 8y ). 

(ii) 

is an isomorphism of mod( ax) -modules for n 2: 1. 

f*: Hn(Y;N) -+ Hn(X,u*N) (iii) 

is an isomorphism of abelian groups for all right U(A)-modules N where X and 
Yare of type A, n 2: 1. 

Next we consider the Hurewicz homomorphism h and the exact sequence of 
J.H.C. Whitehead. As a special case of (V.3.4) we get: 

(1.41) Theorem. Let T be a theory of coactions satisfying the Blakers-Massey 
property and let X be a CW-object in LlT. Then the following sequence is an exact 
sequence ofmod(ax)-modules, n 2: 2. 

h 
... --> rn(X) --> 1l"n(X) --> Hn(X) --> rn-1(X) --> ... 

--> r2(X) --> 1l"2(X) --> H 2(X) --> n(X) --> 0 

Moreover the sequence is natural in X. 

The modules 1l"n(X) and Hn(X) are defined in (1.37) and (1.39) respectively. 
For n 2: 3 the module rn(X) is defined by 

rn(X) = image { 1l"nxn-2 -+ 1l"nxn-1} 

Here we again use the shift of degree xn-l = XCn) in (1.28). The definition of r 1 

and r2 is more complicated; see (V.5.3) and (II, § 2). 

(1.42) Definition. Let A be a set of cogroups in T. We say that a CW-object X 
in LlT is A-finite if the n-cells An of X are finite coproducts of objects in A for 
n 2: 0 and if X is finite dimensional, that is X = xn for some n 2: O. This implies 
that X is of type A; see (1.35). 
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Now let X and Y be CW-objects in LlT. A domination (X, f, g, H) of Y in 
(LlT)free is given by maps 

Y L X ~ Y in (LlT}rree (1.43) 

and a homotopy H : g f -:=: 1. The domination is finite dimensional if X is finite 
dimensional and the domination is A-finite if X is A-finite. As a special case of 
(VII.2.4) we get the following simplicial version of a classical result of Wall; see 
(A.1.36). 

(1.44) Theorem. Let T be a theory of coactions satisfying the delicate Blakers­
Massey property. If the CW-object Y in LlT admits an A-finite domination in 
(LlT)free then the finiteness obstruction 

is defined. Here Oy is the attaching map ofy l which is an object in Coef and UA 
is the enveloping functor (1.33). Moreover Ko is the reduced projective class group; 
see (VII, § 1). One has [YJ = 0 if and only if there exists an A-finite CW-object 
X in LlT and a homotopy equivalence X ----> Y in (LlT)free' 

2 Examples of Theories of Coact ions Satisfying 
the Delicate Blakers-Massey Property 

We have seen in section § 1 that the homotopy theory of simplicial objects in a 
theory T of coact ions satisfies basic results of homotopy theory if the delicate 
Blakers-Massey property (1.27) holds in T. In the following three sections we 
describe many examples of theories with this property. The first example considers 
the category T = gr of free groups studied by Kan. It is, in fact, worthwhile to 
consider for each example below more carefully all results of section § 1 and of the 
general theory in chapter I, ... , VII. 

(2.1) Example. Let T = gr be the category of free groups which is a full subcate­
gory of the category Gr of groups. Then gr is a theory of cogroups which satisfies 
the delicate Blakers-Massey property. To see this we use the result of Kan [HGJ 
that there are equivalences of homotopy theories 

Ho(Top~) --=::... Ho(LlGr) --=::... (Llgr)free/-:=: 

Here Top~ is the category of path connected pointed spaces. A reduced CW­
complex X with X O = * corresponds by the equivalence to a CW-object Gx in 
Llgr. Moreover one has the shift of dimension since xn corresponds to (G x) n-l 

for n ~ 1. Hence the Blakers-Massey theorem in Top~ (see for example Gray [HTJ) 
yields the delicate Blakers-Massey property of gr. 

We now describe two generalizations of the classical Kan example on simplicial 
groups in (2.1). 
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(2.2) Example. Let D be a discrete set and let Topi? be the category of spaces X 
under D for which D -+ X is path connected (i.e. D = 7roD -+ 7roX is surjective). 
We have the theory 

T = grd(D) C Topi? Ie:::. reID 

which is the full subcategory consisting of I-dimensional CW-complexes X with 0-
skeleton X O = D. Hence grd(D) is the category offree groupoids G with Ob(G) = 
D and functors which are the identity on objects. It is the result of Dwyer-Kan 
[SG] that one has an equivalence of categories 

Ho(Topi?) ~ (L1grd(D))free/e:::. 

For D = * this is the classical result of Kan in (2.1). The equivalence again 
implies that grd(D) satisfies the delicate Blakers-Massey property. The homotopy 
theory of Topi? is studied in (A, § 1) above. Hence all results of (A, § 1) with D a 
discrete space have a transformation to the category (L1grd(D))free. For example 
the Whitehead theorem (1.24) for T = grd(D)free corresponds to the classical 
Whitehead theorem for CW-complexes X with X O = D. 

The next example also generalizes the result of Kan (2.1) but seems to be new. 

(2.3) Example. Let G be a group and let GrG be the category of groups under G. 
Let gr( G) C GrG be the full subcategory consisting of objects G -+ G V F where 
G V F is the coproduct of the group G and a free group F. See (1.2.3) below. For 
G = * the trivial group we clearly have gr(*) = gr as in (2.1). We claim that 
gr(G) has the delicate Blakers-Massey property and that one has an equivalence 
of categories 

Ho(ToptfCG,l)) ~ (L1gr(G))free/e:::. 

Here K(G, 1) is the Eilenberg-Mac Lane space of G and Topi? is the category 
of spaces X under D for which D -+ X is connected. The homotopy category 
TopD is studied in (A, § 1). All the results there concerning ToptfCG,l) have a 
transformation to (L1gr(G))free. If G = * is the trivial group then this is again 
the classical correspondence of Kan (2.1) between connected spaces and simplicial 
groups. 

(2.4) Conjecture. The theorem of Kan in (2.1) and the result of Dwyer-Kan (2.2) 
should be generalized for the category of A-diagrams in § 2 of chapter A. More 
precisely let A be a small category and let D be a discrete A-diagram. Let Tf 
be the full subcategory of (ATop)? Ie:::. reID given by the I-dimensional reduced 
relative A-CW-complexes (Xl, D). Then Tf is a theory of coactions. We conjec­
ture that Tf satisfies the delicate Blakers-Massey property and that one has an 
equivalence of categories 

Ho(ATop)i? ~ (L1Tf)rree/e:::.· 
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Here the category (ATop)if is the full subcategory of A-diagrams X under D 
for which D = woD --+ woX is surjective. If A is the trivial category then the 
equivalence coincides with (2.1). 

(2.5) Conjecture. The theorem of Kan (2.1) and the result of Dwyer-Kan (2.2) 
should also be true for the category of G-spaces in § 3 of chapter A. More precisely 
let G be a discrete group and let D be a G-space for which the associated Or( G)­
space DO in (A.3.5) is homotopy equivalent to a discrete Or (G)-space. Let Tg 
be the full subcategory of (GTop)~ /~ reID consisting of I-dimensional reduced 
relative G-CW-complexes (Xl, D). Then (A.3.16) shows that Tg is a theory of 
coactions. We conjecture that Tg satisfies the delicate Blakers-Massey property 
and that one has an equivalence of categories 

Ho(GTop)&> ~ (L1Tg)rree/~ 

Here the category (GTop)if is the full subcategory of (GTop)D consisting of G­
spaces X under D for which woDo --+ WOXD is a surjective map between Or( G)-sets. 
In fact this conjecture is a special case of (2.4) if we set A = Or( G). 

(2.6) Conjecture. Next we consider the theorem of Kan (3.1) in the context of 
spaces controlled at infinity in § 4 of chapter A. Let D be a locally finite tree and 
let 00 be the Cantor set of ends of D. Hence D is an object in ooEnd. Let TD be the 
full subcategory of (ooEnd)~ /~ reID consisting of I-dimensional reduced relative 
oo-CW-complexes (Xl, D). Then TD is a theory of coactions. We conjecture that 
TD satisfies the delicate Blakers-Massey property and that one has a full and 
faithful functor 

Here ljCW'{; is the category consisting of finite dimensional locally finite CW­
complexes X (for which T is a maximal tree in Xl) and proper maps under T. 
Moreover homotopies reI T are also proper. 

3 Polynomial Theories of Cogroups 

We now describe a method which shows that polynomial theories of cogroups have 
the delicate Blakers-Massey property. For this we need the following notions of 
"polynomial functor" and "linear extension" of categories. 

(3.1) Definition. (Compare Eilenberg-Mac Lane [H].) Let C be a category with 
sums and zero object. Let r : C --+ Ab be a functor with r( *) = O. Then for 
X!, ... , Xq E C the q-th cross effect r(Xl I ... I Xq), q ~ 1, is the kernel of the 
map 

q 

r(Xl V··· V Xq) --+ EB r(8i ) 

i=l 
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for which the i-th coordinate is induced by 

{
IV 0 VI: Xl V··· V Xq ~ 8i with 

8i = Xl V ... V X i - l V * V Xi+l V ... V Xq 

We say that r has degree q if r(Xl I ... I X q+l ) = 0 for all Xl, ... , X q+1 E C. 
The functor r is linear, resp. quadratic if r has degree 1, resp. 2. Moreover r is 
polynomial if there is 1 ::; q < 00 such that r has degree q. We also call q the 
polynomial degree of r. 
{3.2} Definition. (Compare Baues [AH]). Let C be a category and let D : cop x 
C ~ Ab be a bifunctor (also termed C-bimodule). We say that 

is a linear extension of the category C by D if (a)-(c) hold. 

(a) E and C have the same objects and p is a full functor which is the identity on 
objects. 

(b) For each f : A ~ B in C the abelian group D(A, B) acts transitively and 
effectively on the subset p-l(f) of morphisms in E. We write fa + a for the 
action of a E D(A, B) on fa E p-l(f). Any fa E p-l(f) is called a lift of f. 

(c) The action satisfies the linear distributivity law: 

(fa + a)(go + (3) = fogo + f*(3 + g*a. 

We now consider a linear extension of categories 

where E and C are theories of cogroups in which the initial object * is also a 
final object (Le. a zero object). Moreover p carries sums to sums and carries the 
cogroup structure of X in E to the cogroup structure of X in C and for all X, Y 
in E we have a central extension of groups 

i 
D(X, Y) >--+ E(X, Y) --* C(X, Y) (3.3) 

where i(a) = 0 + a is given by the action of D on E in (3.2). More generally we 
have 

(f + a) +" (g + (3) = (f + " g) + a + (3 

for f, 9 E E(X, Y) and a, (3 E D(X, Y). Here + is the action in (3.2) and +" is 
the group structure on E(X, Y) defined by the cogroup 11 : X ~ X V X. Compare 
(6.3) in Baues-Hartl-Pirashvili [QC]. If in addition D is a bifunctor which is left 
linear and right polynomial then we say that E is polynomial related to C. 
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(3.4) Theorem. Let E be polynomial related to C. If C satisfies the delicate 
Blakers-Massey property then also E satisfies the delicate Blakers-Massey property. 

Proof. Consider the diagram 

X= (r ~ KyL) 
L ------> Y 

in (1.27) defined in .dE. Then the induced diagram pX in .dC is again a diagram as 
in (1.27) since the functor p : LlE --> .dC given by p : E ----> C carries CW-objects 
to CW-objects. Now let A be a cogroup in E and apply the functors 

E(A,-): E ----> Gr 

C(A,-): C ----> Gr 

to the diagram X and pX respectively. Then we get the cubical diagram of sim­
plicial groups 

E(A, X) ~ C(A,pX) 

which by (3.3) is surjective and which has the kernel diagram 

D(A,pX) = kernel(p). 

(1) 

(2) 

This is also the fiber diagram of (1). Since we assume that C satisfies the delicate 
Blakers-Massey property we know that C(A,pX) is (n+m-2)-homotopy cartesian. 
For this recall that a diagram of spaces or simplicial sets 

Xl ------> X l2 

r r 
X ------> X 2 

is k-homotopy cartesian if the induced map 

7rr (XI , X) --> 7rr (XI2 , X 2 ) 

is surjective for r :::; k + 1 and bijective for r :::; k. Using lemma (3.5) below we 
know that D(A,pX) is (n+m-2)-homotopy cartesian. This implies by (1) and (2) 
that also E(A, X) is (n+m- 2)-homotopy cartesian, compare Goodwillie calculus. 
Hence we see that the delicate Blakers-Massey property also holds for E. q.e.d. 

(3.5) Lemma. Let T be a theory of cogroups with zero object and let r : T ----> Ab 
be a polynomial functor. Then diagram (1.27) yields a diagram 

r(K) ------> r(K UL Y) 

r r 
r(L) ------> r(Y) 

which is (n + m - 2)-homotopy cartesian. 
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Proof. Since * is the zero object in T we have the quotient K/L in LlT which is 
a push out of K <-- L ----+ const(*). Moreover since (1.27) with X = K UL Y is a 
push out diagram we know that 

K/L ~ X/Y (1) 

are isomorphic. Moreover the sequence 

(2) 

is split in each degree, that is for n 2: 0 we have the equation 

(3) 

such that i is the inclusion of Ln and q is the projection (0,1) onto (K/L)n- The 
equation (3), however, is not compatible with the simplicial operators while the 
maps i and q are defined in LlT. Similar properties as in (2) and (3) hold for the 
pair (X, Y). 

We now consider the functor r : T ----+ Ab. We have the natural map (U E T) 

P : r(U I U) c r(U V U) ~ r(U) (4) 

induced by the folding map (1,1) : U V U ----+ U. This map yields for the simplicial 
objects K, L the following commutative diagram 

r(L) Ti r(K) j 
r(K)/r(L) 

q. 
r(K/L) ----> ----> ----> 

IP IP I p. (5) 

r(L I L) 
TClli) 

r(L I K) r(L I K)/r(L I L) ----> ----> 

Here P is the composite 

p:r(LIK) ~ r(KIK) P r(K). ----> 

Moreover r(K)/r(L) is the quotient of simplicial abelian groups and j is the 
quotient map. Since we assume r(*) = 0 we see that the map r(q) has the 
factorization r(q) = q*j. Moreover P* in (5) is induced by P. Now (3) implies 
that 

r(L I K)jr(L I L) ~ r(K)/r(L) ~ r(K/L) ----+ 0 (6) 

is an exact sequence of simplicial abelian groups. This follows from the definition 
of the cross effect (3.1). We now apply (5) inductively, that is, we replace r by 
the functor ru with ru(V) = r(U I V) for U, VET. Then we get inductively 
the following system 
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~ r2(K)jr2(L) ~ rl(K)jrl(L) ~ r(K)jr(L) 

.. ·1 q. 1 q. 1 q. (7) 

n(KjL) r(KjL) 

Here ri(K) is the (i + 1)-th cross effect 

ri(K) = rF(K) = r(L I ... I L I K) (8) 

where L appears i times and ro(K) = r(K). Moreover as in (6) the sequence 

(9) 

is exact for i 2: O. Since r is polynomial we see that rn = 0 for all n sufficiently 
large. We now consider the map 

(10) 

induced by J: (K,L) --t (X,Y). For i 2: 1 the simplicial group rl(K) is the 
diagonal of a multi simplicial abelian group (8). Hence by the Eilenberg-Zilber 
theorem (see Dold-Puppe [H] 2.9) we can compute 1fnrF(K) by the homology 
of the total complex of rp(K). Now the grading in the total complex and the 
assumptions Lm-l = K m - 1 and yn-l = Ln-l show that (10) induces a surjection 
1fi (J*) for i ::; m + n - 1 and an isomorphism 1f i (J*) for i ::; m + n - 2. This implies 
inductively by (7) and (9) and (1) that also 

J* : r(K)jr(L) --t r(X)jr(Y) (11) 

induces a surjection 1fi(J*) for i ::; m + n - 1 and an isomorphism 1fi(J*) for 
i ::; m + n - 2. Hence the diagram in (3.5) is (n + m - 2) homotopy cartesian. 
q.e.d. 

(3.6) Definition. We say that a theory T of cogroups is polynomial if T has a zero 
object and if there is n 2: 0 and a sequence 

T = En --t En - 1 --t ... --t Eo 

of theories of cogroups where Ek+l is polynomial related to Ek for 0 ::; k < n 
and where Eo is an additive category (i.e. Eo is a theory of cogroups in which 
all morphisms are linear; see (1.1.10)). For example the "quadratic categories" in 
Baues-Hartl-Pirashvili [QC] 5.4 are such polynomial theories of cogroups. 

(3.7) Theorem. A polynomial theory of cogroups satisfies the delicate Blakers­
Massey property. 

Proof. It is clear that an additive category satisfies the delicate Blakers-Massey 
property. Therefore (3.7) is an inductive application of (3.4). q.e.d. 
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(3.8) Example. Let (Z) be the free group generated by the set Z and let 

(Z)n = (Z) / rn+l (Z) (1) 

be the free group of nilpotency degree n. Here rn+l G is the subgroup of the group 
G given by all (n + I)-fold commutators in G. Let 

niln C Gr (2) 

be the full subcategory consisting of all (Z)n where Z is a set. Then niln is a 
polynomial theory of cogroups. In fact we have for n ~ 2 the well known central 
extension of groups 

(3) 

where Ln(Z) is the degree n part of the free Lie algebra generated by Z. By (3) 
we see that 

(4) 

is a linear extension; compare Baues [AH]. Moreover (4) shows that niln is poly­
nomial related to niln-I' Since nill = ab is the category offree abelian groups we 
see that niln is polynomial. Hence for all n the category niln satisfies the delicate 
Blakers-Massey property. This example can be generalized for many other varieties 
of groups. 

The next examples can be applied to simplicial "(r -I)-connected n-algebras" 
and simplicial "modules over the Steenrod algebra" respectively. 

(3.9) Example. Let r ~ 2 and let 

Sr = {sr, Sr+1 , ... } 

be the set of all spheres sn with n ~ r. We define the subcategory 

consisting of all (not necessarily finite) one point unions of spheres in Sr. Then 
T(Sr) is a theory of cogroups which satisfies the delicate Blakers-Massey property. 

(3.10) Example. Let r ~ 1 and let A be a set of abelian groups. Moreover let 

Kr(A) = {K(A,n+r); n ~ O,A E A} 

be the corresponding set of Eilenberg-Mac Lane spaces K(A,n + r). We define 
the subcategory 

consisting of all (not necessarily finite) products of spaces in Kr(A). Then the 
dual of Kr(A) is a theory of cogroups which satisfies the delicate Blakers-Massey 
property. 
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In fact (3.9) and (3.10) are special cases of the following result. 

(3.11) Theorem. Let T be a polynomial graded theory in the sense of Baues [DFj 
8.1, 9.4 and let free(T) be the full subcategory of model(T) consisting of free 
objects. Then free(T) is a theory of cogroups which satisfies the delicate Blakers­
Massey property. 

Proof. By Baues [DF] 8.4 we see that Tn+l is polynomial related to Add(Rn+d x 
Tn. Moreover it suffices to check the condition on ]* in (1.27) for all generating 
cogroups A in T. Since by the assumption on T we have 

T(A,X) = Tn(A,X) 

where n = IAI we see that we can apply (3.7). q.e.d. 

4 Algebras over an Operad 

We consider commutative algebras and more generally algebras over an operad. 
The category of free algebras is a theory of cogroups which satisfies the delicate 
Blakers-Massey property. 

Let R be a commutative ring and let Calg be the category of all commutative 
R-algebras with unit. Let 

calg C Calg (4.1) 

be the full subcategory consisting of free commutative R-algebras S(V) where V 
is a free R-module. Then calg is a theory of cogroups. The cogroup structure of 
S(V) is given by the diagonal (1,1) : V ----; V EEl V, that is 

f-l = S(I, 1) : S(V) ----; S(V EEl V) = S(V) V S(V) 

(4.2) Proposition. The theory calg of cogroups given by free commutative R­
algebras satisfies the delicate Blakers-Massey property {1.27}. 

We have an equivalence of homotopy theories 

(Llcalg)free/~ ~ Ho(L1Calg) (4.3) 

Given an object A in Calg we can choose a weak equivalence K(A, 1) ~ A where 
K(A, 1) is in (Llcalg)free. Then the (co-) homology (1.36) of K(A, 1) coincides with 
the Andre-Quillen (co-) homology of A with coefficients in the A-module M. 

Proof of {4.2}. The following proof was pointed out to me by Paul Goerss. Con­
sider the diagram (1.27) in (Llcalg)free. Let K / L be the quotient of the R-module 
K by the R-module L. Then the sequence 

L----;K----;K/L (1) 
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is an exact sequence of simplicial L-modules. Moreover in each degree n 

(3) 

is a split short exact sequence of Ln-modules. In fact we know that Kn = Ln®S(V) 
with an appropriate V and we obtain for the short exact sequence 

with augmentation E a splitting of E so that (K j L)n = Ln ® S+ (V) is contained 
in Kn. For the push out 

x = K UL Y = K ®L Y 

in (1.27) we obtain by (1) and (2) the short exact sequence 

0---+ L ®L Y ---+ K ®L Y ---+ (KjL) ®L Y ---+ 0 

with L ®L Y = Y. By (4) and (1) we get 

{ 
7rn(X, Y) = 7rn((KjL) ®L Y) 

7rn(K,L) = 7rn(K/L) 

Now using Quillen [HA] II, § 6 we obtain a spectral sequence 

(3) 

(4) 

(5) 

and hence since Km-l = Lm-l and ym-l = Ln-l we get by (5) the conclusion 
on)* in (1.27). q.e.d. 

Proposition (4.1) has a generalization for algebras over any operad; in particular 
for associative algebras and Lie algebras. For an exposition on operads we refer to 
Getzler-Jones [0], Ginzberg-Kapranov [K] and Fresse [C], and Loday [R]. Let R 
be a commutative ring and let P be an operad over R. Then the category P-Alg 
of algebras over P (or P-algebras) is defined. Moreover let 

P-alg C P-AIg (4.4) 

be the full subcategory of free P-algebras T(V) where V is a free R-module. Then 
T(V) is a cogroup with the cogroup structure 

/1 : T(V) ~ T(V EB V) = T(V) V T(V) 

Hence P-alg is a theory of cogroups. 

(4.5) Remark. The categories in (4.3) can also be described by the use of a single 
sorted theory S. In fact, let S be the full subcategory of P-alg consisting of finitely 
generated free P-algebras. Then we have P-Alg = model(S) and P-alg = free(S) 
as in (I.2.5). 
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(4.6) Proposition. The theory P -alg of cogroups given by free algebra over the 
operad P satisfies the delicate Blakers-Massey property (1.27). 

A proof of this result was obtained by P. Goerss (private communication). 
Using the result of Quillen [HAJ chapter II, § 4 we see that ..1(P-Alg) is a closed 
model category and that 

(..1P-alg)rree/:::: -+ Ho(..1P-Alg) (4.7) 

is an equivalence of categories which generalizes (4.3). Given an object A in P-Alg 
we can choose a weak equivalence K(A, 1) -+ A in ..1P-Alg where K(A,l) E 
(..1P-alg)rree. Then the (co-) homology (1.36) of K(A, 1) is the Quillen homology 
of A. 

It is of interest to study in detail all the implications of the theory in chapters I, 
... , VII for the homotopy theory of ..1P-Alg. 



Chapter D: Resolutions in Model Categories 

The purpose of this chapter is to revisit, expand and simplify the "E2-homotopy 
theory" of Dwyer-Kan-Stover [E2], [HG] which built simplicial resolutions of 
pointed path connected topological spaces out of spheres. Using the notion of 
a spiral model category Q in (2.4) we prove the existence of the spiral homotopy 
category Ho(LlQ)s of simplicial objects in Q in (3.5). This is the analogue of 
an E2-homotopy theory. Simplicial resolutions of objects in Q live in the spiral 
homotopy category. 

We introduce two essential assumptions on the closed model category Q. First 
a full subcategory C of Q is given and the notion of homotopy is defined in C by 
a natural cylinder I. Second a small subcategory T of C is given such that each 
object A of T is a cogroup; hence A E T is not only a cogroup in the homotopy 
category Ho(Q) but also in the category Q. These assumptions are basic properties 
of a spiral model category 

Q = (T C CeQ) 

The spiral homotopy category Ho(LlQ)s depends on this structure of Q. The 
model category is termed spiral since the spiral exact sequences form the crucial 
ingredient of the theory. 

In topology there are, however, no cogroups in Top* but we have cogroups 
in the homotopy category Top* j-:::::. reI *. Cogroups defined up to homotopy do 
not suffice for the development of the "spiral homotopy theory" in this chapter. 
We therefore replace the category Top~ of connected pointed spaces by the cat­
egory LlGr of simplicial groups. There are many cogroups in LlGr defined by 
constant free groups. The category of simplicial groups is the typical example of 
a spiral model category. The spiral homotopy category Ho(LlQ)s for Q = LlGr 
is equivalent to the E2-homotopy category of simplicial pointed spaces of Dwyer­
Kan-Stover [E2]. The theory in this chapter was also motivated by recent papers 
of Blanc [AI] and Goerss-Hopkins [RM]. 

1 Quillen Model Categories 

We recall the notion of a closed model category (Quillen [HAl and Dwyer-Kan­
Stover [E2]) and we describe the Reedy model category of simplicial objects. 

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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(1. I} Definition. A closed model category structure on a category C consists of 
three classes of maps in C, called fibrations, cofibrations and weak equivalences, 
satisfying axioms CMl-CM5 below. Note that axiom CMl implies that C has an 
initial object * as well as a terminal object ®. An object U E C is called fibrant 
if the map U ----t ® E C is a fibration and cofibrant if the map * ----t U E C is a 
cofibration. A map is called a trivial (co-) fibration if it is a weak equivalence as 
well as a (co-) fibration. A map i : A ----t B E C is said to have the left lifting 
property with respect to a map p : X ----t Y E C (and the map p is said to have the 
right lifting property with respect to the map i) if in every commutative square in 
C of the shape 

A ------; X 

B ------; Y 

there exists a diagonal arrow B ----t X such that the two resulting triangles are also 
commutative. 

CMl The category C has finite limits and colimits. 
CM2 If f and 9 are maps such that gf is defined and two of f, 9 and gf are weak 

equivalences, then so is the third. 
CM3 If f is a retract of 9 and 9 is a fibration, a cofibration or a weak equivalence, 

then so is f. 
CM4 (i) Every cofibration has the left lifting property with respect to every trivial 

fibration. 
(ii) Every fibration has the right lifting property with respect to every trivial 
cofibration. 

CM5 Every map f can be factored 
(i) f = qj, where j is a cofibration and q is a trivial fibration, and 
(ii) f = qj, where q is a fibration and j is a trivial cofibration. 

Of course if C is a closed model category, then so its opposite cop with as weak 
equivalences, cofibrations and fibrations the opposites of the weak equivalences, 
the fibrations and the cofibrations (respectively) of C itself. 

If C is a category with finite limits and colimits one can construct the following 
"latching objects" and "matching objects". 

(1.2) Definition. Let Ln(n 2: 0) be the category which has as objects the maps 
[j] ----t [n] E ,d0P with j < n and which has as maps the obvious commutative 
triangles. Given an object X E ,dC, let, by a slight abuse of notation, X I Ln : 
Ln ----t C denote the composition of the forgetful functor Ln ----t ,dop with the 
functor X : ,dop ----t C. The n-th latching object LnX of X then is defined by 
LnX = ~(X I Ln). In particular LoX is the initial object of C. Note that there 
is an obvious natural map LnX ----t Xn (n 2: 0). 
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(1.3) Definition. In a similar way, let Mn (n ~ 0) be the category which has 
as objects the maps [n] ---. [j] E Llop with j < n and which has as maps the 
obvious commutative triangles. Given an object X E LlC, let, again by a slight 
abuse of notation, X I Mn : Mn ---. C be the composition of the forgetful functor 
Mn ---. Llop with the functor X: Llop ---. C. The n-th matching object MnX of X 
then is defined by MnX = ~(X I Mn). In particular MaX is the terminal object 
of C and MiX is the product MiX = Xa x Xa. There is an obvious natural map 
Xn ---. MnX E C. 

(1.4) Theorem of Reedy [M]. Let C be a closed model category. Then LlC ad­
mits a closed model category structure in which 

(i) a map X ---. Y E LlC is a weak equivalence (called "Reedy weak equiva­
lence") whenever, for every n ~ 0, the restriction Xn ---. Yn E C is a weak 
equivalence, 

(ii) a map X ---. Y E LlC is a (trivial) cofibration (called "(trivial) Reedy cofibra­
tion") whenever, for every n ~ 0, the induced map (Xn1hnx LnY) ---. Yn E C 
is a (trivial) cofibration, and 

(iii) a map X ---. Y E LlC is a (trivial) fibration (called "(trivial) Reedy fibration") 
whenever, for every n ~ 0, the induced map Xn ---. (YnIIMnyMnX) E C is a 
(trivial) fibration. 

We shall use the Reedy model category structure for LlC in § 3 below. 

2 Spiral Model Categories 

Let C be a category with initial object * and coproducts X V Y for X, Y E C. A 
natural cylinder I on C is a functor I : C ---. C together with a diagram 

XVX~IX~X (2.1) 

which is natural in X and satisfies p(ia, i i ) = (1,1). We assume that IC*) = * and 
that I commutes with coproducts; i.e. I(X V Y) = I(X) V I(Y). 

A based object in C is an object A in C together with a map 0: A ---. * termed 
the zero map. (If C has a zero object *, i.e. if the initial object is also a final 
object, then each object in C is based. In general, however, we do not assume that 
a zero object exists in C.) Given a based object X we define the suspension EX 
and the cone C X by the push out diagrams in C 

IX ----> CX ~ EX 

r 
XVX~ X o 

----> 

r 
* 

(2.2) 

A map f : X ---. Y between based objects is a based map if Of = 0. Clearly a 
based map f induces maps Cf : CX ---. CY and Ef : EX ---. EY in C since I 
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is a natural cylinder. These maps C f and E f are again based since the zero map 
IX ---; X ---; * of the cylinder given by (2.1) induces zero maps for CX and EX 
respectively. 

For example, let (A, 0, j.t, II) be a cogroup in C given by maps 

° : A ---; *, j.t : A ---; A V A, II: A ---; A 

for which the diagrams in (1.1.3) commute in C. Then A is based and j.t and II are 
based maps and the assumptions on the natural cylinder I in (2.1) show that also 
the suspension EA and the cylinder CA, 

(EA,O,Ej.t,EII) and (CA,O,Cj.t,CII), (2.3) 

are cogroups in C. 

(2.4) Definition. A spiral model category is a category Q together with full sub­
categories 

TcCCQ 

having the following properties: 

(i) Q is a closed model category in which all objects are fibrant; see (1.1). 
(ii) C is an I-category with * E C and cofibrations (resp.homotopy equivalences) 

in Care cofibrations (resp. weak equivalences) in Q. Moreover arbitrary (not 
just finite) coproducts exist in C and the cylinder I : C ---; C and the inlcu­
sion CeQ commute with arbitrary coproducts; in particular h = *. The 
interchange map IIX ---; IIX is an isomorphism. See (III.7.I). 

(iii) T is a small theory of cogroups which is closed under suspension and finite 
coproducts in C; that is X, YET implies EX, X V YET. Compare (2.3) 
and (1.1.9). In addition for A E T the functor C(A, -) : C ---; Set commutes 
with filtered inductive limits; see (3.1) (2) below. 

(2.5) Example. Let Q = LlGr be the category of simplicial groups and let C = 
(Llgr)free be the category offree simplicial groups with the cylinder I X = X@Ll[I] 
in (C.l.I8). Let T be the full subcategory of C consisting of finite coproducts of 
spherical objects Z 1\ S[n], n ;::: 0. Then this is a spiral model category in the sense 
of (2.4). More general examples are discussed in § 5 below. 

We now assume that a spiral model category as in (2.4) is given. Let X E C 
and Y E Q. An I-homotopy denoted by '::::'.[ is a map 

H: IX ---; Y in Q with Hio = f and Hil =g. (2.6) 

Then (2.4) implies that '::::'.[ is an equivalence relation so that the set 

Q(X, Y) = Q(X, Y)/'::::'.[ (1) 
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of I-homotopy classes is defined. Here we use the fact that by (2.4) the object X 
is cofibrant and Y is fibrant. This set is also the set of morphisms X ---> Y in the 
homotopy category 

Q = Ho(Q) (2) 

obtained by localizing weak equivalences in Q. Let C = C/':::i.I and T = T/':::i.I be 
the homotopy categories. Then we have the commutative diagram 

T c C c 

1 1 (3) 

T c C c 

The inclusions are full inclusions. The functor p is the identity on objects and p 

carries the morphism f : X ---> Y to the homotopy class ! represented by f. The 
functor p induces the functor 

(4) 

between categories of simplicial objects. This functor carries the simplicial object 
X in Q to the simplicial <?bject X = pX in Q. 

The functor p : Q ---> Q carries coproducts in C to coproducts and therefore p 
carries a cogroup in C to a cogroup in C. Hence T is also a theory of cogroups. 
Moreover for a cogroup B in C and X E Q the morphism sets Q(B, X) and 
Q(B, X) are groups and the quotient map 

p: Q(B, X) ---> Q(B, X) given by (1) (5) 

is a surjective group homomorphism which is natural in X. If X is a simplicial 
object in LlQ with pX = X E LlQ then p yields the surjection between simplicial 
groups 

p : Q(B, X) ---> Q(B, X) (6) 

We shall use the following notation. 

(2.7) Definition. A simplicial group G is contractible if all homotopy groups of G 
vanish (i.e. 7r*G = 0) or equivalently if the realization IGI of G is a contractible 
space. We say that a simplicial object X in LlQ is spiral if for all A E T the 
simplicial group Q( C A, X) is contractible. In § 3 we show that each Reedy fibrant 
object in LlQ is spiral. 

(2.8) Theorem. (Spiml exact sequence) Let X E LlQ be spiml and A E T. Then 
one has the long exact sequence of homotopy groups with n E Z: 
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Here the homotopy groups 7rn are trivial if n < 0 so that for n = 0 we get the 
isomorphism 

7roQ(A, X) ~ 7roQ(A, X). 

The sequence is natural in x. 

Proof. One has for each cogroup A in T the exact sequence of groups 

q* i* P -o ~ Q(L'A, X) ~ Q(CA,X) ~ Q(A,X) ~ Q(A,X) ~ 0 

which is natural in X E Q; here i and q are defined in (2.2) and p is the quotient 
map. This easy fact is the reason for the spiral exact sequence. Let 

Q(A, X)o = {f E Q(A, X); f ~I O} 

Then we have Q(A, X)o = kernelp = image i* so that we get short exact sequences 
of groups 

q* o ~ Q(L'A, X) ~ Q(CA,X) ~ Q(A,X)o ~ 0 

o ~ Q(A, X)o ~ Q(A, X) ~ Q(A, X) ~ 0 

which are natural in X. Hence if X is in LlQ we obtain accordingly short exact 
sequences of simplicial groups. This implies (2.8). q.e.d. 

The proof shows that the existence of a spiral exact sequence for X implies 
that X is spiral. 

{2.9} Definition. A map f : X --+ Y in LlQ is a vertical equivalence if f induces 
an isomorphism 

for n ~ 0 and all A in T. The map f is a spiral equivalence if f induces an 
isomorphism 

for n ~ 0 and all A in T. Finally f is a horizontal eguvalence if 

is a homotopy equivalence in Q (Le. an isomorphism in Q) for all n ~ O. 

It is clear that each Reedy weak equivalence (1.4) is a horizontal equivalence 
and that each horizontal equivalence is a spiral equivalence. Moreover we get from 
(2.8): 
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(2.10) Corollary. Let f : X --> Y be a map in L1Q between spiral objects X, Y. 
Then f is a vertical equivalence if and only if f is a spiral equivalence. 

Proof We start the induction for n = 0 by the isomorphism for 7ro in (2.8). Since 
EA E T we get the case n = 1 by the five lemma, and so on. q.e.d. 

Since T and T are both theories of cogroups we know by (C.l.18) that 

(L1T)free and (L1T}rree (2.11) 

are both I-categories with the cylinder - 181 ,1[1] and cofibrations given by free 
inclusion. For X E L1Q we call X 181,1[1] the vertical cylinder of X and accordingly 
a simplicial map X 181 ,1[1] --> Y is termed a vertical homotopy in L1Q. Similarly a 
map X 181 ,1[1] --> ¥ is a vertical homotopy in L1Q. We denote vertical homotopies 
by ~v' If X E (L1T}rree C L1Q then (C.l.18) shows that ~v is an equivalence 
relation so that the sets of vertical homotopy classes 

{ [-:' :]v = (L1~)(-:, :)/~v 
[X, Y]v = (LlQ) (X, Y)/~v 

(2.12) 

are defined for X E (L1T)free and Y E L1Q. Here we use the fact that X is free if 
X is free. Moreover one readily checks the following lemma. 

(2.13) Lemma. The functor p in (2.6) induces a well defined functor 

p : (.1 T) free -----+ (.1 T }rree 

which carries X to X and which commutes with 181,1[1]; that is 

(X ® Ll[I])~ = X ® .1[1]. 

Moreover p carries free inclusions in (LlT}rree to free inclusions. 

The lemma shows that p : Q --> Q induces for X E (L1T)free and Y E LlQ a 
well defined map 

p: [X, Y]v -----+ [X, ¥]v (2.14) 

between sets of vertical homotopy classes. Moreover if A is a cogroup in T then 
A is based and one gets A 1\ S[n] E (LlT)free. Now one readily checks the natural 
isomorphisms: 

{ [~I\ S[n], :]v = 7rn~(A,:) 
[A 1\ S[nJ, Y]v = 7rn Q(A, Y) 

(2.15) 

The right hand side denotes the homotopy groups which appear in the spiral exact 
sequence (2.8). This leads to the following result. 
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(2.15) Lemma. For X in (..::1T)free the projection q : X ® ..::1[1] -+ X is a spiral 
equivalence. 

Proof. By (2.15) we have to show that for all A E T, n ;:::: 0, and Y = X ® ..::1[1] 
the map 

is an isomorphism. But Y -+ X coincides by (2.13) with the projection X ®..::1[1] -+ 

X which is a vertical homotopy equivalence by (C.1.18). q.e.d. 

Next we consider the category Pair(Q) = Q2 of pairs in Q. Objects are 
morphisms f : Y -+ X also denoted by (X, Y) and morphisms are pair maps; 
see (IIL1.4). The cylinder of a pair (X, Y) in Pair(C) = C2 is defined by 
1(1) : I(Y) -+ I(X), that is 

I(X, Y) = (IX,IY) (2.17) 

If A is a cogroup in C then (C A, A) is a cogroup in C 2 and the cone of (C A, A) 
in C 2 is 

C(CA, A) = (CCA, CA) (1) 

Moreover since the interchange map (2.4) (ii) is an isomorphism we get the sus­
pension of (CA, A) by 

E(CA,A) = (ECA,EA) = (CEA,EA) (2) 

This leads to the following result. 

(2.18) Proposition. Consider a pair (X, Y) in ..::1Q2 for which X and Yare 
spiral. Then the simplicial group 

is contractible for all A E T. 

Proof. Since j : CA ~ CCA is a cofibration and an I-homotopy equivalence in 
the I-category C we know that there exists a retraction r : CCA -+ CA of j. 
For a morphism i : Y -+ X in ..::1Q we obtain the following pull back diagram of 
simplicial groups 

Q2((CCA,CA), (X, Y)) ------t Q(CA, Y) 

1 i·l 
Q(CCA, X) ~ Q(CA,X) 

Here j* is surjective since the retraction r exists. Hence the diagram is actually 
a homotopy pull back. The fiber of j* is Q(ECA, X). This yields the result by 
(2.17) (2) since Q(CA,Y), Q(CA, X) and Q(CEA,X) are contractible. q.e.d. 
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(2.19) Definition. We say that a map f : G ----> H between simplicial groups is a 
O-fibration if the sequence 

G f q 
---> H ---> 7r 0 H ---> 0 in <1Gr 

is exact. Here q is the canonical quotient map to the constant simplicial group 
given by 7roH. Moreover we say that a map f : Y ----> X in <1Q is spiral if Y and 
X are spiral and if f induces O-fibrations 

for all A in T. 

f* : Q(A, Y) ----> Q(A, X) and 

J* : Q(A, Y) ----> Q(A, X) 

(2.20) Theorem. Let f : Y -> X be a spiral map in <1Q. Then one gets for 
A E T and n ;:::: 1 the following exact sequence of abelian relative homotopy groups 
with X = pX, Y = pY E <1Q . 

... ---> 7rn (Q(EA, X), Q(EA, Y)) ---> 7rn +1(Q(A, X), Q(A, Y)) ---> 

---> 7rn +l(Q(A, X), Q(A, Y») ---> 7rn -l(Q(EA, X), Q(EA, Y)) 

Here the relative homotopy group 7rk( -, -) is trivial for k ::; o. Moreover for n = 0 
one has the following commutative diagram of groups in which the row and the 
columns are exact. 

1 1 

1 1 
AI A 

1 1 
o o 

If X is trivial, i.e. X = const( *), then the exact sequence coincides with the 
spiral exact sequence in (2.8). Accordingly we call (2.20) the spiral exact sequence 
for relative homotopy groups. 

Proof of (2.20). We first consider the case n = O. For 7rl = 7rl(Q(A, X), Q(A, Y)) 
and 7'i\ = 7rl (Q (A, X), Q (A, Y)) one has the following commutative diagram in 
which rows and columns are exact. 
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7T2(Q(A,Y) 7T2Q(A, X) --+ A' 

1 1 1 
7ToQ(EA, Y) --+ 7ToQ(EA, X) --+,1 

1 1 1 
7T1Q(A, Y) 7TIQ(A,X) --+ 7T1 --+ 7ToQ(A, Y) --+ 7roQ(A,X) 

1 1 1 
7r1Q(A, Y) 7r1Q(A, Y) ------';> irl --+ 7roQ(A, Y) --+ 7roQ(A, Xl 

1 1 1 
0 0 0 

The columns are given by (2,8) and the rows are the exact sequences for relative 
homotopy groups, Since by (2,8) also 

7foQ(EA, Z) = 7foQ(EA, Z) 

with Z = X, Y we get the diagram in (2,20), Next we consider the case n 2': L 
Since C is an I-category and Q is a cofibration category we can apply (IIL7A) 
and (IIL1A) to C 2 and Q2 respectively with Q2 = Ho Q2' Now the arguments in 
(2.8) applied to Q2 and (2.18) show that we obtain for A E T, nEZ, the exact 
sequence: 

... -+ 7fn -1 Q2(E(CA, A), (X, Y)) -+ 7fn Q2((CA, A), (X, Y)) 

-+ 7fn Q2((CA, A), (X, Y)) -+ 7fn -2Q2(L'(CA, A), (X, Y)) -+ ... 
(1) 

For each pair (Xn' Yn) in Q2 we have the long exact sequence of homotopy groups 
of the pair (see (III.2A)) given by 

Since A is a cogroup this is an exact sequence of groups. Since the sequence is 
natural in Xn and Yn this is also an exact sequence of simplicial groups. Since 
Y -+ X is spiral this exact sequence yields the following exact sequence of simplicial 
groups 

Here we use the assumption that f* in (2.19) is a O-fibration. This implies for 
n 2': 1 that 

Moreover we have for the simplicial group Q2(( CA, A), (X, Y)) the following pull 
back diagram of simplicial groups 
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~2(((7J1,J1), ()(, J7)) ~ ~((7J1,)() 

1 1 
~(J1,J7) ~ ~(J1,)() ~ 1fO~(J1,)() ~ a 

Here the row is an exact sequence of simplicial groups since f* is a a-fibration by 
(2.19). Since ~((7J1,)() is contractible this yields for n ~ 1 the isomorphism 

1fn~2(((7J1, A), ()(, J7)) = 1fn+1(~(J1, )(), ~(J1, J7)) (3) 

Now (1), (2) and (3) yield the exact sequence in (2.20) for n ~ 1. q.e.d. 

{2.21} Definition. We define an analogue of the pathlike construction of Dwyer­
Kan-Stover [E2] 4.3. Here we need the assumption that there are arbitrary coprod­
ucts in C. For J1 in T and n ~ 1 we define the object P(J1, n) in LlC by the push 
out diagram (* = const(*)) 

((7J1) Q9 * V J1 Q9 Ll[n] ~ P(J1, n) 

T T 
~ J1Q9Ll[1] 

where we use the basepoint of Ll[n]. For)( in Ll~ let P()() be the coproduct in 
LlC of all objects P(J1, n) indexed by tuples (J1, n, a, b, c) with 

such that 

J1ET 

n~1 

a : (7J1 ---t )(0 E ~ 

b : J1 ---t )(n E ~ 

c: J1 ---t )(1 E ~ 

{
a I J1 = doc and 

do··· dob = dIc. 

Then one has a canonical simplicial map 

c: P)( ---t)( in Ll~ 

given by a, b, c above. 

(2.22) Proposition. For Y and )( in Ll~ the map J7 ---t Y V P)( is a spiral 
equivalence and for any map f : J7 ---t )( in Ll~ the map 

9 = (j, c) : Z = J7 V P)( ---t )( 

induces O-fibrations Q(J1,g) and Q(J1,g); see {2.19}. 
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Proof. Let peA, n) = peA, n)/(CA)®* and let Px be the coproduct of all peA, n) 
indexed by (A,n,a,b,c) in (2.21). Since the cylinder I commutes with arbitrary 
coproducts in C we see that P X -- P X is a horizontal equivalence. This implies 
that also Y V P X -- Y V P X is a horizontal equivalence since Yn -- Yn V (P X)n 
is a cofibration in Q. Moreover Px is an object in (LtL)free where L is the full 
subcategory of C consisting of arbitrary coproducts of objects in T and L = L/':::!.[ 
is a theory of cogroups. We can apply (C.1.18) for (L1L)free' Now 

':::!. rio 
* 

is a push out diagram in (L1L)free and io is a vertical homotopy equivalence in 
((L1L)free, ®L1[iJ); see (2.16). Hence also * -- peA, n) is a vertical homotopy equiv­
alence in (L1L)free' This shows by (2.15) that * -- Px is a vertical homotopy 
equivalence and therefore also Y -- Y V P X is a vertical homotopy equivalence in 
L1Q. This implies by the second equation in (2.15) that Y -- Y V Px is a spiral 
equivalence. 

Finally it is easy to see that the maps Q(A,g) and Q(A,g) are O-fibrations 
since P X is defined appropriately. To see that Q( A, g) is a O-fibration we use the 
fact that 1l'oQ(A, Z) = 1l'oQ(A, Z) in (2.8). q.e.d. 

3 Spiral Homotopy Theory 

Given a spiral model category 

TCCCQ 

as in (2.4) we have the notion of spiral equivalence in L1Q by (2.9). In this section 
we study the homotopy theory obtained from spiral equivalences. 

Let L C C be the full subcategory of C consisting of arbitrary coproducts of 
objects in T. Then L and also the quotient category L = L/':::!.[ are theories of 
cogroups. We have the commutative diagram of functors 

TeL c Ceq 

1 1 1 (3.1) 

TeL c CeQ 

Compare (2.6) (3). The functor p carries a simplicial object X in L1Q to the 
simplicial object X in L1Q. For the theory T the category of models model(T) 
is defined. Objects are functors TOP -- Set which carry finite coproducts in T 
to products in Set. In particular A E T yields the model T( -, A) E model(T). 
Arbitrary coproducts exist in model(T). A free model is a coproduct 
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F = V T(-,Ai) 
iEJ 

where J is a set and Ai E T for i E J; see also (1.2.5). Let 

free(T) c model(T) (1) 

be the full subcategory of free models. The condition on filtered inductive limits 
in (2.4) (iii) implies that one has canonical isomorphism of categories 

{ 
~ = free(:) 

L = free(T). 

and 
(2) 

Here Land L are the categories in (3.1). 

(3.2) Definition. Consider a sequence of maps 

y = X~l -+ XO -+ ... -+ Xn~l -+ Xn -+ ... 

in L1Q where for n ::: 0 one has a push out diagram in L1Q 

(3.3) 

Here An is an object in C which is homotopy equivalent in C to an object An in 
L; see (3.1). Then we call the induced map Y -+ lim{Xn} a spiral inclusion. We 
say that a map f in L1Q is a spiral cofibration if f is a finite composite of spiral 
inclusions and trivial Reedy cofibrations. 

Let (L1Q)s be the full subcategory of all objects X in L1Q for which * -+ X is 
a spiral cofibration. Then we obtain for X E (L1Q)s an object X E (L1L)free with 
pX ~ X. This yields the canonical functor 

(3.4) 

with PL(X) = X. This functor carries spiral cofibrations to free inclusions; see 
(C.1.11). A map f : X -+ Y in (L1Q)s is a spiral equivalence if and only if pdf) 
is an isomorphism in the homotopy category (L1L)free/~v. 

We call (L1Q)s together with spiral equivalences and spiral cofibrations a spiral 
homotopy theory since one has the following fundamental result. 

(3.5) Theorem. Let Tee c Q be a spiral model category as in (2.4). Then 
the category (L1Q)s with spiral equivalences and spiral cofibrations is a cofibration 
category satisfying the axioms in (III. 1. 1). Moreover all fibrant models in this 
cofibration category (see (III.1.1)) are spiral objects in L1Q; see (2.7). 



112 Chapter D: Resolutions in Model Categories 

Proof. The composition axiom (Cl) and the push out axiom (C2) are satisfied in 
(LlQ), since these axioms hold in (LlL)free by (C.l.18) and (IIL7.4). Here we use 
(3.4). Next we obtain the factorization axiom (C3) by (3.6) below. We check the 
axiom on fibrant models (C4) as follows. We have by (1.4) for each object X in 
(LlQ). a factorization 

X -+ RX -+ ® 

where X -+ RX is a trivial Reedy cofibration (and hence a spiral cofibration) and 
where RX -+ ® is a Reedy fibration. Here ® is the final object in LlQ. Hence RX 
is Reedy fibrant and we show in (3.7) that all Reedy fibrant objects are fib rant 
models in the sense of (IILl.l). This proves (C4). Moreover we show in (3.9) that 
Reedy fibrant objects in LlQ are spiral. q.e.d. 

(3.6) Theorem of Stover. Let Tee c Q be a spiral model category. Then 
any map f : Y -+ X in LlQ admits a factorization 

f : Y -+ Mx -+ X in LlQ 

where Y -+ Mx is a spiral inclusion and NIx -+ X is a spiral equivalence. 

Proof. This is the analogue of the key construction in Stover [VK]; compare Dwyer­
Kan-Stover [E2] 4.5. Given a map R -+ Sin Q let W(S) = R V V(S) E LlQ where 
V(S) is obtained by taking a wedge of objects A = A, for every A E T and map 
a: A -+ S in Q, and attaching a cone CA = (CA);3 for every map (3 : CA -+ S in 
Q. Here (CA);3 is attached to A", with a = (31 A. As W(S) comes with an obvious 
map R -+ W(S) in Q, one can repeat this construction and obtain an object 
W.(S) E LlQ with Wn(S) = wn+l(S) for all n ;::: 0 and a factorization of the 
map R -+ S into a spiral cofibration R -+ W.(S) followed by a spiral equivalence 
W.(S) -+ S. Here we use the arguments in Stover [VK]. Now given a map Y -+ X 
in LlQ we obtain the factorization 

Y -+ diagW.(X) -+ X in LlQ 

with Mx = diagW.(X) being the diagonal of the bisimplicial object W.(X). This 
factorization has the property in (3.6); see Dwyer-Kan-Stover [E2] 4.6. q.e.d. 

(3.7) Theorem. Let X be a Reedy fibrant object in (LlQ)s. Then any spiral cofi­
bration f : Y -+ X which is a spiral equivalence admits a retraction. 

Proof. We have the following factorization of f: 

f i j q 
: Y ----+ Y V P X ----+ R ----+ X 

Here i is the inclusion in (2.22) and qj = (j,c) is obtained by (1.4). That is j is a 
trivial Reedy cofibration and q is a Reedy fibration. By (2.22) we see that 

q* : Q(A, R) -+ Q(A, X) 
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is a fibration of simplicial sets for all A E T. Since i and j and f are spiral 
equivalences also q is a spiral equivalence. By lemma (3.8) we get the lift a in the 
square 

Moreover by (1.4) we get the lift (3 in the square 

R ----- ® 

Here 0 : PX ---t * ---t Y is the zero map; see (2.21). Hence (3a is a retraction of f. 
q.e.d. 

(3.8) Lemma. Let L be Reedy fibrant and let q : R ---t L in ..1Q be a Reedy 
fibration and a spiral equivalence such that 

q* : Q(A, R) ---t Q(A, L) 

is a fibration of simplicial sets for all A E T. Then each commutative square 
diagram 

Y _____ R 

x ----- L 

where f is a spiral cofibration admits a lift. 

Proof. By (1.4) it suffices to consider the case where f is a spiral inclusion. Hence 
it suffices to consider the case when 

is given by the inlcusion 8..1[n] ---t ..1[n] where A is homotopy equivalent in C to 
A E L. We consider a diagram 

A®8..1[n] ~ R 

1 (1) 

A®..1[n] ~ L 
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A lift 0: for (1) exists if and only if there is a lift in the following diagram in Q 

(2) 

A ~ A ~ Ln XMnLMnR 

Here qn is a fibration by (1.4) and j is a homotopy equivalence in C. Since qn has 
the homotopy lifting property with respect to the cylinder I by (2.4) we see that 
(2) has a lift if and only if 

1 1 
A ~ Ln XMnL MnR 

has a lift. This is equivalent to the existence of a lift in 

A Q9 8L1[n] 

1 
A Q9 L1[n] 

a' 
~R 

b' 
~L 

(3) 

(4) 

where a' = a(j Q9 1), b' = b(j Q9 1). Now the existence of a lift in (4) is equivalent 
to the existence of a lift in 

8L1[n] 
a" 

Q(A,R) ~ 

1 1 q. (5) 

b" 
Q(A,L) ---+ L1[n] 

with a" and b" induced by a and b respectively. Since Rand L are Reedy fibrant 
and hence spiral by (3.9) below we can apply the spiral exact sequence (2.8) which 
shows that q* in (5) induces an isomorphism on homotopy groups. Here we use 
the assumption that q is a spiral equivalence. Hence q* in (5) is actually a trivial 
fibration of simplicial groups and hence a lift in (5) exists since simplicial sets form 
a closed model category. q.e.d. 

(3.9) Theorem. Let X be a Reedy fibrant object in L1Q. Then X is spiral. 

Proof. We have to show that Q( CA, X) is contractible for all A E T. In fact, 
7l'oQ( CA, X) = 0 is equivalent to the existence of a lift in 

* ~ Xl 

1 
CA ~ XoxXo 

(f,O) 
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with f E Q(CA, Xo). Here * ----> CA is a weak equivalence in Q by (2.4) and 
(do, d1 ) is a fibration in Q since X is Reedy fibrant. Hence the lift exists since Q is 
a closed model category. Similarly we see that 7r n Q( C A, X) = O. This is equivalent 
to the existence of a lift in 

* -------> Xn 

1 1 
CA I MnX 

(f,0, ... ,0) 

with f : CA ----> Xn representing an element in 7rnQ(CA, X). q.e.d. 

4 Spiral Homotopy Groups 

Let T C CeQ be a spiral model category. Then theorem (3.5) shows that the 
localization 

Ho(L1Q)s = (se)-l (L1Q)s (4.1) 

with respect to the class se of spiral equivalences exists. This is the spiral homotopy 
category. Recall that the completion of T with respect to arbitrary coproducts in 
C yields the theory L of cogroups with TeL c C. By (3.4) we obtain the functor 

PL : Ho(LlQ)s ----> (LlL)free/~v 

which carries X to X. The definition of spiral equivalences shows that this functor 
reflects isomorphisms. 

(4.2) Lemma. Let X be an object in (LlL)free' Then Xv X ----> X0Ll[1] is a spiral 
cofibration and the projection X 0Ll[1] ----> X is a spiral equivalence. Hence X 0Ll[1] 
is a cylinder object in the cofibration category (LlQ)s in (3.5),. see (II!. 1. 7). 

For the proof we use the same argument as in (2.16). The lemma implies for 
X in (LlL)free and for a fibrant object Y in (LlQ)s that 

[X, Y]s = [X, Y]v (4.3) 

is the same as the set of vertical homotopy classes X ----> Y in LlQ; see (2.12) and 
Baues [AH] II.3.13. 

An object X in LlQ is based if * ----> X is a spiral cofibration and if a map 0 : 
X ----> * is given. For example for each cogroup A in T or L the object A = const (A) 
is a based object in LlQ. Given a based object X the spiral homotopy group (n ::::: 
0) 

(4.4) 
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are defined in the spiral cofibration category (LlQ)s; see (III,§ 2). Here Y is an 
object in (LlQ), and Y ---> Z is an object in Pair (LlQ)s. If X is in (LlL)free and 
if Y and Z are fibrant (compare Baues [AH] II.l.5) then we obtain by (4.2) the 
canonical bijections 

{ 
7r;[ (Y)s = [X 1\ S[n], Y]v 

7r;[+l (Z, Y)s = [(X 1\ D[n + 1], X 1\ S[n]), (Z, Y)]v 
( 4.5) 

Hence such homotopy groups are given by vertical homotopy classes of maps or 
pair maps. As a special case of (4.5) we get for a cogroup A in T the canonical 
isomorphisms of groups (n::::: 0) 

{ 
7r~(Y)s = 7rnQ(A, Y) 

7r~+1 (Z, Y)s = 7rn+l (Q(A, Z), Q(A, Y») 
( 4.6) 

where the right hand side denotes homotopy groups of simplicial groups. The 
equation (4.6), (4.5) only hold if Y and Z are fibrant. Given objects Y and (2, Y) 
in (LlQ)s we can choose fibrant replacements which are spiral equivalences 

Y ---> Y, (2, Y) ---> (Z, Y) (4.7) 

where Y and Z are fibrant. Then we have 

Here the left hand isomorphism is induced by (4.7). 

(4.7) Lemma. Each pair (Z, Y) in (LlQ) s admits a fibrant replacement (Z, Y) ---> 

(Z, Y) for which Y ---> Z is a spiral map; see (2.19). 

Proof. First we choose a fibrant replacement a : 2 ---> Z. Then we get the com­
mutative diagram 

2 -----'=--+ Z = Z 

Y~YVPZ~Y 

Here 9 = (aI, E) is defined as in (2.22) and i is a spiral equivalence by (2.22). Now 
we choose a fibrant object Y together with a spiral cofibration j which is a spiral 
equivalence, i.e. j is a fibrant model in the cofibration category (LlQ)s. Then we 
obtain f by Baues [AH] H.l.6. We claim that f is a spiral map. In fact Z and Yare 
fibrant and hence spiral by (3.5). Moreover Q(A, g) and Q(A,.9) are O-fibrations 
by (2.22). This implies that also Q(A, f) and Q(A, j) are O-fibrations. q.e.d. 
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(4.9) Theorem (spiral exact sequence). For any object Y in (L1Q)s and n E 
Z one has the following exact sequence with Y = pL(Y) E L1L and A E T. 

Here homotopy groups 7fn are trivial for n < 0 so that for n = 0 we get the 
isomorphism 

The sequence is natural in Y. 

Proof. We choose for Y a fibrant replacement Y ----+ Y'. Then we know by the 
definition of spiral equivalences that Y ----+ Y' induces the isomorphism 

Moreover we can use (4.7) and (1.8) since fibrant objects are spiral by (3.5). q.e.d. 

Using similar arguments we get by (4.8) and (2.20) the next result. 

(4.10) Theorem (spiral exact sequence for relative homotopy groups). 
For any pair (X, Y) in (L1Q)s one has the following exact sequence of abelian 
groups with n ~ 1 and A E T. 

Here relative homotopy groups 7fk are trivial for k :S O. Moreover for n = 0 one 
has the following commutative diagram of groups in which the row and the columns 
are exact, see (2.20). 

1 1 

1 1 
A' A ---+ 7r]"(X, Y)s ---+ 7rdQ(A, X), Q(A, Y» ---+ 0 

1 1 
0 0 

Similarly as in (C.1.25) we define: 

(4.11) Definition. We say that a map f : Y ----+ X in (L1Q)s is (m, T)-connected 
with m ~ 0 if for all objects A in T the induced map 

is surjective and the relative homotopy groups 7f;:t(X, Y)s = 0 are trivial for l' :S m. 
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(4.12) Lemma. The map f : Y ---> X in (LlQ)s is (m, T)-connected if and only 
if the induced map J : Y ---> X in (LlL )free is (m, T) -connected in the sense of 
(C.l.25). 

Proof. For m = 0 this is clear by (4.9). Moreover for m > 0 we can use inductively 
theorem (4.10) where the relative homotopy groups 7rn +1(Q(A, X), Q(A, Y)) co­
incide with the homotopy groups in (C.1.25) defined in LlL. q.e.d. 

The next result is crucial for the application of the general theory of this book 
to spiral homotopy theory. It is the spiral analogue of the Blakers-Massey theorem. 

(4.13) Theorem. Assume the theory L of cogroups in (3.1) satisfies the delicate 
Blakers-Massey property in (C.l. 27) and consider a push out diagram in (LlQ) s 

K ~ KULY 

L~ Y 

where i and j are spiral cofibrations and i is (m, T) -connected and j is (n, T)­
connected with m, n 2' o. Then (K UL Y, Y) is (m, T)-connected and the induced 
map 

is surjective for 1 :S l' :S n + m - 1 and b~jective for 1 :S r :S n + m - 2 and A E L. 

Proof. We use (C.1.26) for objects in (LlL)free. Then we apply inductively (4.10). 
q.e.d. 

(4.14) Corollary. Assume L satisfies the delicate Blakers-Massey property. Then 
the spiral cofibration category (LlQ)s is a cofibration category under L in the sense 
of (IV.2.1) which has the Blakers-Massey property (IV.5.3). This implies that 
(LlQ)s is a homological cofibration category under L in the sense of (V.l.l). See 
(V.l.2). 

The corollary shows that we can apply all the theory of chapters I, ... , VII to 
spiral homotopy theories (LlQ)s provided L satisfies the delicate Blakers-Massey 
property. 

5 Examples of Spiral Model Categories 

Let S be a small theory of cogroups and let M = model(S) be the category of 
models of S; see (1. § 1). Moreover let free(S) be the category of free models as in 
(3.1) (1). Then we have full inclusions of categories 

S c free(S) eM = model(S) (5.1) 
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Here free(S) is again a theory of cogroups so that by (C.1.18) the I-category 

c = (Llfree(S))free with I(X) = X 0 .1[1] (1) 

is defined. Moreover the category of simplicial objects in M 

Q=LlM (2) 

is a closed model category in which all objects are fibrant; see Quillen [HA] chapter 
II. § 4. A map f : X -+ Yin Q is a fibration (resp. weak equivalence) iffor all A E S 
the map Q(A, f) is a fibration (resp. weak equivalence) in the category of simplicial 
sets or, since A is a cogroup, in the category of simplicial groups. According to 
Quillen [HA] (chapter II page 4.11) a map f is a cofibration in Q if and only if f is 
a retract of a "free map" . This shows that free inclusions in C are also cofibrations 
in Q. Now we get for k ~ 0 the spiral model category associated to S 

Tk C Ceq. (5.2) 

Here C and Q are defined as above and Tk is the full subcategory of C consisting 
of finite coproducts of spherical objects A 1\ S[nJ, n ~ k, A E T; see (C.1.8) (3). 
Now it is readily clear from the definition in (2.4) that Qk = (Tk' C, Q) with k ~ 0 
is spiral model category. Therefore the associated spiral cofibration category 

(5.3) 

is well defined. This is a category of bisimplicial objects depending on k ~ O. Let 
Lk be the completion of Tk with respect to arbitrary coproducts in C. Then Lk 
satisfies the delicate Blakers-Massey property if and only if 1\ does. Hence by 
(4.14) we get the following result. 

(5.4) Theorem. Let S be a theory of cogroups for which '1\ = Tk/r:::.[ defined 
in (5.2) satisfies the delicate Blakers-Massey property. Then (LlQk)s in (5.3) is 
a homological cofibration under Lk as in (V.i.i) which has the Blakers-Massey 
property {IV. 5. 3). 

(5.5) Example. Let S = gr~ be the category of finitely generated free groups. Then 
Tk is the homotopy category of finite wedges of spheres sn with n ~ k + 1. For 
k ~ 1 this is a polynomial graded theory of cogroups and therefore (C.2.17) shows 
that 1\ with k ~ 1 satisfies the delicate Blakers-Massey property. Hence we have 
the spiral model category 

Qk = (Tk c (Llgr}rree C LlGr) 

where Gr is'the category of free groups and Gr is the category of groups. We get 
the associated spiral cofibration category (LlQk)s' For k ~ 1 this is a homological 
cofibration category under Lk satisfying the Blakers-Massey property (IV.5.3). 
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(5.6) Example. Let Top' be the category of pointed spaces. The E2-homotopv 
theory of Dwyer-Kan-Stover [E2] yields a closed model category structure for 
L\Top· with E2-weak equivalences, E 2-cofibrations and E2-fibrations. The associ­
ated E2-homotopy category Ho(L\Top·) is actually equivalent to Ho(L\Qo)s with 
Q = L\Gr as defined in (5.5). It is convenient to replace Top· by L\Gr via the 
Kan equivalence since there are cogroups in L\Gr which correspond to spheres 
in Top·. The spheres, however, are cogroups in Top· Ie:::'. reh but they are not 
cogroups in Top·. Due to the existence of such cogroups in L\Gr we can apply 
the theory of a spiral model category described above. This is a lot easier than 
the E2-model category of simplicial pointed spaces of Dwyer-Kan-Stover [E2]. A 
similar remark also holds for the E2-homotopy theory of Goerss-Hopkins [RM]. 
It seems that in many cases when one has an E2-homotopy theory Q' there is a 
"replacement" Q of Q' where Q is a spiral model category and 

In particular Q = L\Gr is such a replacement for Q' = Top·. 

6 Homology and Cohomology in Spiral Homotopy Theory 

In this section let 

Q = (T c CeQ) (6.1) 

be a spiral model category for which L = L/e:::'.[ satisfies the delicate Blakers­
Massey property. Here L is the full subcategory of C consisting of arbitrary co­
products of objects in T. For example for k ~ 1 the spiral model category 

Qk = (Tk c (L\gr)free C L1Gr) 

in (5.5) satisfies the assumption on Q above. The assumptions in (6.1) imply 
that (L\Q)s is a homological cofibration category under I; see (4.14). Hence we 
can apply all results of chapter I, ... , VII. The cofibration category (L\Q)s is an 
example in which all objects are cofibrant but not fibrant. Hence the notion of 
principal cofibration in (III.3.1) (1) uses fibrant models. 

(6.2) Lemma. Let X = lim{Xn} be given by a spiral inclusion * ---7 X as in 
(3.2). Then X n - 1 ---7 xn is a principal cofibration with attaching map 

an E [An 1\ S[n -lJ,Xn- 1]s = 7r~'::l(xn-l)s 

where An E L. Hence XC;:::!) is a complex in the sense of (IV.2.2) with XCn) 
X n - 1 i compare (C. 1. 28}. 

Proof. Consider the push out in (3.2) with An homotopy equivalent in C/e:::'.[ to 
An. Then the composite 
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defines the element In . (3 with (3 = -0 and 0 = In I An ® * as in the proof of 
(C.1.21). Moreover using q in this proof we obtain 8n from In . (3. q.e.d. 

Lemma (6.2) shows by use of (3.6) that each object in (L1Q)s is spiral equivalent 
to an L-complex in (L1Q)s. Moreover (IV.5.lO) implies that one has an equivalence 
of categories at the left hand side of the following commutative diagram 

Ho{L1Q)s ~ model(T) 

1 
Complex/~ 

c 
------+ Coef 

(6.3) 

Here Complex is the category of L-complexes in (L1Q)s as defined in (IV. § 2) 
and the coefficient functor c is defined in (V.1.3). The coefficient functor c carries 
X E (L1Q)s to c(X) : TOP ----> Set defined by 

c(X)(A) = 1fDL(A, X) 

with X = PLX given by (3.4) and A ETc L. The equivalence on the right hand 
side of (6.3) is given as in (1.4.6) below. The spiral exact sequence shows that (6.3) 
is well defined and commutative. Moreover c is compatible with the coefficient 
functor c in (C.1.29) since c is defined by X E (L1Lhree. Using the spiral exact 
sequence we see that 81 in (6.2) yields an element 

(6.4) 

Here 8x represents an object in Coef which is a presentation of C(X) E model(T). 
We shall identify 8x and M = C(X). For each 8x E L(Al, AD) we can choose 
Xl in (L1Q)s such that XD ----> Xl is a principal cofibration with attaching map 
8x E [AI /\ S[O], XD]s where X D = const(AD) with AD ~ AD in C. 

(6.5) Lemma. Let A, BEL and n ~ 1. Then the maps A/\S[n] V Xl ----> B/\S[n]V 
Xl in Ho(L1Q)s under and over Xl can be identified with the maps A/\S[n] V Xl ----> 

B /\ S[n] V Xl in (L1L)free/~ under and over Xl. 

Proof It suffices to show that 

1 
1fn(Q(A, B /\ D[n + 1] V Xl), Q(A, B /\ S[n] V Xl» 

is an isomorphism. But this is a consequence of the spiral exact sequence for 
relative homotopy groups in (4.10). q.e.d. 
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(6.6) Definition. Given a small theory of cogroups T we define the enveloping 
functor 

U : model(T) --+ Ringoids 

as follows. The category M = model(T) has coproducts so that for A E T and 
ME M the coproduct A V M = T( -, A) V ME M is defined. Hence 

M~AVM~M 

defines a cogroup in the category M~ of objects under and over M in M. Let 
premod(M) C M~ be the full subcategory of all objects A V M with A E T. 
Then premod(M) is a theory of cogroups for which the additivization U(M) = 
premod(M)ad is defined by (1.1.16). Compare the definition of the enveloping 
functor in (1.5.10). 

For a ringoid R let Mod(R) be the category of (right) R-modules, i.e. additive 
functors ROP --+ Ab. Morphisms are natural transformations. In particular, one 
gets for A E R the R-module R( -, A). An arbitrary sum of such R-modules 
R( -, Lli ), i E J, is called a free R-module. Let 

mod(R) c Mod(R) (6.7) 

be the full subcategory of free R-modules. Lemma (6.4) shows that the category 
mod(ax ) defined in (LlL}rree as in (C.1.31) coincides with the corresponding cat­
egory mod(ax) defined in (LlQ)s; see (V.1.6). Moreover by (C.1.34) we get: 

(6.8) Proposition. Let ax be a presentation of M E model(T) as in (6.4). 
Then there is a canonical isomorphism of categories 

mod(ax ) = mod(U(M» 

where U(M) is the enveloping ringoid in (6.6). 

Using (6.4) we see that the chain complex of X in (LlQ)s depends only on the 
chain complex of X in (LlL)rree. This leads to the following observation. 

(6.9) Definition. Let X be an object in (LlQ)s such that X is a CW-object in LlL. 
Let M = c(X) E model(T) be given by the coefficient functor c in (6.3). Then 
the chain complex of X 

coincides with the chain complex of X in (LlL)free defined in (C.1.35). Accordingly 
homology and cohomology of X coincide with homology and cohomology of X in 
(C.1.36) and (C.1.39). 

Let U be a fibrant object in (LlQ)s and let ax and XO --+ Xl be given as in 
(6.4) and let M = C(XI) so that ax is a presentation of M. Let u : XO --+ U be a 
map which admits an extension Xl --+ U. We define the right U(M)-module 
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for n 2: 2 as follows. This module carries A V M to the spiral homotopy group 
7r:{_l(U)s in (4.6). Here we use a shift in degree since A is considered to be of 
dimension 1; see (C.1.28). A map f : B V M ----t A V Min U(M) corresponds to a 
map f: B 1\ S[n - 1] V Xl ----t A 1\ S[n - 1] V Xl in HO(,dQ)s under and over Xl. 
See (6.8). Hence f induces the homomorphism 

f* : 7r;:_1 (U)s --------; 7r:{_1 (U)s 

which carries (a : B 1\ S[n - 1] ----t U) E 7r;:_1 (U)s to the composite 

f*(a): AI\S[n-l] ~ B I\S[n-l] V Xl ~ U 

where f' is determined by 1. As a special case we obtain for a spiral inclusion 
* ----t X with fibrant model X~X the map u : Xo ----t X which defines the U(M)­
module 7rn (X) = u*7rn (X) with M = C(X). 

(6.11) Theorem. Let Y -; X be a spiral inclusion with Y = X- 1 as in (3.2) 
and let U be a jibrant object in (,dQ)s. Let f : Y ----t U be a map in (,dQ)s which 
admits an extension 9 : X n - 1 ----t U, n 2: 2. Then the restriction 9 I X n - 2 admits 
an extension 9 : xn ----t U if and only if an obstruction element 

vanishes. Here u : X O ----t U is the restriction of g. 

This is a special case of (V.§ 4); compare (C.1.38) where the corresponding 
result for maps in (,dL}rree is formulated. Next we consider the Hurewicz homo­
morphism h and the exact sequence of J.H.C. Whitehead in spiral homotopy theory 
(,dQ)s and we compare this exact sequence with the corresponding exact sequence 
in (C.1.41). 

(6.12) Theorem. Let X be an object in (,dQ)s with X = PL(X) E (,dL)free and 
M = c(X) E model(T). Then one has the following commutative diagram (n 2: 2) 
in which the rows are exact sequences of U(M)-modules. 

The bottom row coincides with the sequence in (C.1.41). The diagram is natural 
in X. 

The module 7rn (X)s is defined in (6.10). Moreover we obtain for n 2: 3 the 
module rn(X)s by 
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rn(X)s = image { 1l"n(Xn- 2 )s --+ 1l"n(Xn- 1 )s} 

Here we use the shift of degree xn-l = X(n) as in (6.2). For the definition of 
n (X). and rz(X). see (V.5.3) and (II.§ 2). 

Since PL : Ho(L1Q)s --+ (L1Lfree)/~ reflects isomorphisms we see that the 
homological Whitehead theorem for (L1Q)s coincides with the corresponding the­
orem for (L1L)rree in (C.1.40). Moreover we leave it to the reader to formulate a 
finiteness obstruction theorem for (L1Q)s which is the analogue of (C.1.44). 

7 Spiral Resolutions and Spiral Realizations 

Let Q be a spiral model category for which L satisfies the delicate Blakers-Massey 
property as in (6.1). 

(7.1) Definition. Let Q be an object in Q. A spiral resolution of Q is an object X 
in (L1Q)s together with a spiral equivalence X --+ const(Q) in L1Q. 

The theorem of Stover (3.6) shows that spiral resolutions of Q exist. In fact, 
the construction in the proof of (3.6) yields a spiral resolution which is functorial 
in Q. (One can check that spiral resolutions are well defined up to isomorphism in 
Ho(L1Q)s.) 

(7.2) Definition. Let M E model(T). We say that X E (L1Q)s is a spiral 
realization of M if one has an isomorphism 

- - {M(A) for n = 0 
1l"nQ(A, X) = o for n > 0 

which is natural in A E i'. Here X = pLCX) is a "resolution of M" in (L1L)free. 
In fact, X is well defined up to homotopy equivalence in (L1L)free; but two spiral 
realizations X, X' of M in (L1Q). need not to be isomorphic in Ho(L1Q)s. 

Each object Q in Q yields the model 

M = Q(-,Q) E modelei') 

represented by Q. That is, M carries A E T to the set of morphisms Q(A, Q) in Q. 

(7.3) Lemma. If X is a spiral resolution of Q E Q then X is a spiral realization 
of M = Q(-,Q). 

The lemma is an immediate consequence of the definition of spiral equivalence. 

(7.4) Remark. We say that M E modelei') is realizable in Q if M ~ Q( -, Q) 
for some Q in Q. Hence if M is realizable in Q then M is also spiral realizable 
in (L1Q)s. In certain cases such as Q = L1Gr also the converse holds; that is, the 
spiral realizability of M implies the realizability of Min Q. For this one needs the 
"realization" IXI E Q of X E L1Q. Compare Dwyer-Kan-Stover [HG], Blanc [AI], 
Goerss-Hopkins [RMJ. 
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{7.5} Definition. Let M E model(T) and let a be a presentation of M as in (6.4). 
By (2.4) (iii) we have the suspension functor E : T ---> T which yields the model 
fln M E model(T) by 

for A E T. Here E has a factorization E : T ---> Tadd ---> T where Tadd is the 
additivization of T; see (1.1.16). Hence fln M for n 2: 1 is actually a (right) Tadd_ 
module. We have the canonical inclusion 

T add c U(M) 

which carries f : A ---> BET to f VI: A V M ---> B V ME U(M). See (6.6). The 
next result shows that flnM is in addition a (right) U(M)-module if M is spiral 
realizable. 

(7.6) Proposition. Let X be a spiral realization of M. Then one has a canonical 
isomorphism of abelian groups (n 2: 1) 

7f~(X)s = (fln M)(A) for A E T. 

Here the left hand side is a U(M)-module by (6.10). The isomorphism thus 
yields a U(M)-module structure of fln M denoted by fln(M)x. At this point it is 
not clear whether this module structure fln(M)x actually depends on x. 
Proof of {7.6}. Since X is a spiral realization of M we can use the spiral exact 
sequence and get the isomorphisms of abelian groups (n 2: 1) 

q.e.d. 

The proof shows that the U(M)-module fln(M)x restricted to T add c U(M) 
yields the Tadd-module [In M described in (7.4) which does not depend on X. 

{7. 7} Definit~on. Let M _E model(T). Then a resolution K(M, 1) = X of M is an 
object in (..1L)free with L = free(T) such that one has an isomorphism 

( - '" {M(A) for n = 0 
7fn A,X) = 

o for n > 0 

which is natural in A E T. Compare (VI. Appendix § 11). Let C*X be the chain 
complex of X as defined in (C.1.35). Then C*X is a chain complex of free U(M)­
modules with M = c(X) E Coef = model(T); see (6.3), (6.8) and (C.1.29). 
Hence the homology of C*X in the abelian category Mod(U(M)) is defined. This 
is the Quillen homology 
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of the model M. The Quillen homology Hn(M) is a (right) U(M)-module which 
only depends on M. For every right U(M)-module K also the Quillen cohomology 

Hn(M,K) = H n HOmU(M) (C*X, K) 

is defined. 

As a consequence of (6.10) and (7.6) one readily gets the following result. 

(7.8) Theorem. Let X be a spiral realization of ME model(T). Then one has 
isomorphisms of U (M) -modules 

The result has many implications concerning the homological tower of cate­
gories in (VI. § 6) and the obstructions described in (VI. § 9). In particular the 
obstructions for the realizability of chain complexes in (VI. § 4) lead to the follow­
ing result. 

(7.9) Theorem. Let M E model(T). Then M is spiral realizable if and only if 
one can define inductively X (n) such that an obstruction 

vanishes for n 2 2. Here X(2) is determined by a presentation ax of M and X(n+ 
1) can be defined if O(X(n)) = o. Moreover the group Hn+1(M, nn-I(M)x(n») 
acts transitively on the set of all possible choices of X (n + 1) which extend X (n). 

A result of this type with different assumptions was recently obtained by Blanc 
[AI] using completely different methods. Theorem (7.9) describes the obstructions 
which were anticipated by Dwyer-Kan-Stover [E2] 1.3. 

Proof of (7.9). We use (VI.9.1) and (VI.9.4) and observe that the cohomology 
splits in two parts by (7.8). The first part is the corresponding obstruction in 
(..1L)free which is trivial since we choose for M an object X = K(M, 1) as in (7.7). 
The second part describes the obstruction for the existence of X in (LlQ)s with 
pdX) = K(M, 1). We build X inductively by constructing the skeleta X(n) = 
xn-I with pdX(n)) = Xn- I . q.e.d. 

The homological tower of categories in (VI. § 6) yields further interesting re­
sults on the homotopy category of spiral realizations of M considered as a full 
subcategory of Ho(LlQ)s. 



Part II 

Combinatorial Homology and Homotopy 



The long list of examples in Part 1 shows the necessity of an axiomatic theory 
of combinatorial homology and homotopy. In the following chapters I, ... , VIII 
we discuss the notions and results of such a foundational theory. The results are 
considerably more sophisticated than previous results achieved in axiomatic homo­
topy theory. For example, Wall's finiteness obstruction theorem and Whitehead's 
results on simple homotopy equivalences and Whitehead torsion are deep results 
of classical homotopy theory which we prove in the axiomatic context. 



Chapter I: Theories of Coact ions and Homology 

In order to obtain homology for a theory T of coact ions we introduce in this 
chapter the categories 

Twist, Coef, premod, mod and chain 

which we derive from the theory T. These categories are fundamental for the 
general treatment of homology theory. 

The category Coef of coefficients is used to describe the "coefficients" of the 
homology and cohomology theory associated to T. The objects of Twist are pre­
sentations of the objects in Coef where a presentation ax is a map in T. We 
derive from the category Coef the category mod of modules. The link between 
Coef and mod is the category premod of pre-modules. There is an enveloping 
functor U which carries an object in Coef to a ringoid such that mod is the 
Grothendieck construction of U. The category chain is the category of chain com­
plexes in mod. Such chain complexes are used to define homology and cohomology 
for T. 

For example let T = gr be the category of free groups which is a theory of 
cogroups. Then Coef = Gr in the category of groups and the enveloping functor 
carries a group G to the group ring Z[G]. In this case a presentation of G is a 
map ax : X" -+ X between free groups in T and Twist is the category of free 
pre-crossed modules given by such presentations. We can consider ax also as the 
attaching map of 2-dimensional cells in a CW-complex X 2 such that 1l'1X 2 = G. 

1 Theories of Cogroups and Theories of Coactions 

We introduce basic notation concerning cogroups and coactions in categories. Also 
we consider theories and models of such theories. All the notation and results of 
the following sections are available in theories of cogroups and more generally in 
theories of coactions. 

Let C be a category and let X, Y be objects in C. Then C(X, Y) denotes the 
set of morphisms or maps X -+ Y in C and Ob(C) is the class of objects in C. 
A sum or coproduct X V Y in C is an object X V Y together with morphisms 
ix : X -+ X V Y, iy : Y -+ X V Y such that for all objects Z in C one has the 
bijection 

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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C(X V Y, Z) = C(X, Z) X C(Y, Z) (1.1) 

where the right hand side denotes the product of sets. The bijection carries f : 
X V Y ---> Z to (ix f, i y f). Hence any pair of maps a : X ---> Z, b : Y ---> Z yields a 
unique map (a, b) : X V Y ---> Z. 

{1.2} Definition. A theory T is a category with an initial object * and with fi­
nite sums denoted by X V Y. We consider * as the empty sum. A map between 
theories is a functor F : T ---> T' which preserves sums. This is an equivalence of 
theories if there is a map G : T' ---> T with FG and G F natural isomorphic to the 
corresponding identical functors. 

(1.3) Definition. Let T be a theory. A based object in T is an object X endowed 
with a map Ox = 0 : X ---> *. This map defines for all objects Y in T the zero-map 
o : X ---> * ---> Y. A cogroup X = (X, 0, /-l, v) in T is a based object (X,O) together 
with a comultiplication /-lx = /-l : X ---> X V X and a map vx = v : X ---> X such 
that the following diagrams commute. 

X ~ XvX 

XVX ~ XvXvX 

We say that the cogroup X is abelian if the diagram 

X 

;/"( 
XVX~XVX 

commutes where T is the interchange map with Til = i2 and Ti2 = i l . Moreover 
a map f : X ---> Y between cogroups is linear if the diagram 
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x ~ Y 

commutes. 

(1.4) Definition. Let T be a theory. A coaction X = (X,X',/L) in T is an object 
X together with a map /Lx = /L : X ----. X V X' where X' is a co-group such that 
the following diagrams commute. 

X XVX' 

l 1V/l 

XVX' ~ XVX'VX' 

X~XVX' 

~l(l'O) 
X 

Clearly each cogroup X yields a coaction with X' = X. 

Let Set be the category of sets and let TOP be the opposite category of T. A 
model of a theory T is a functor 

M: TOP ----. Set (1.5) 

(i.e. a contravariant functor T ----. Set) such that M carries sums in T to products. 
This means M carries the inclusions ix : X ----. X V Y, iy : Y ----. X V Y to the 
projections Px = i'X : M(X V Y) ----. M(X) and py = iy : M(X V Y) ----. M(Y) of 
the product 

M(X V Y) = M(X) x M(Y) 

In particular M carries the empty sum in T which is the initial object * to the 
empty product in Set which is the final object * in Set consisting of a single point. 

If the theory T is a small category we define the category model. Objects are 
the models of T and morphisms are the natural transformations between models. 
Smallness of T is only needed in order to make sure that all morphisms M ----. M' 
between models M and M' form a set. 

If X is a co-group in T then the set M(X) has the structure of a group which 
we write additively though the group M(X) needs not to be abelian. The neutral 
element 0 E M(X) is given by 0*(*) = 0 and the group structure of M(X) is the 
map 
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+ : M(X) X M(X) = M(X V X) £ M(X) (1.6) 

with the inverse - = v* : M(X) --t M(X). 
If X = (X,X',/-l) is a coaction in T then the group M(X') acts on the set 

M(X) by the map 

+ : M(X) x M(X') = M(X V X') £ M(X) (1.7) 

with x + (a + b) = (x + a) + b and x + 0 = x for x E M(X) and a, bE M(X'). As 
an example of a model on T we have for each object Y in T the functor 

Mory : TOP --t Set (1.8) 

which carries X to the set of morphisms Mory(X) = T(X, Y) in T. We also write 
Mory = T( -, Y). Hence if X is a cogroup then T(X, Y) has the structure of a 
group and a morphism f : Y --t Z induces a group homomorphism f* : T(X, Y) --t 

T(X, Z), that is for a, bE T(X, Y) we have 

f(a+b)=fa+fb. 

Here the composition is written multiplicatively. Therefore it is suitable to write 
the group structure in T(X, Y) and hence in M(X) additively. 

(1.9) Definition. A theory of cogroups is a theory G for which each object X in G 
is endowed with the structure of a cogroup which is compatible with sums; that 
is, the cogroup structure of a sum X V Y is given by the cogroup structures of X 
and Y respectively by OXVy = (Ox,Oy),VXVy = Vx V Vy, and 

/-lxvY : X V Y P,XVp,y) (X V X) V (YV Y) = (X V Y) V (X V Y). 

(1.10) Example. A ringoid (or a pre-additive category) is a category R with the 
property that all morphism sets R(A, B) with A, B E R are abelian groups and 
composition in R is bilinear. A ringoid with only one object is the same as a ring. 
An additive category A is a ringoid in which sums A V B = A EEl B exist. Such 
sums are also products in A; see Mac Lane [C]. Each object A in A is an abelian 
cogroup with the comultiplication 

In fact, an additive category is the same as a theory of cogroups in which each 
cogroup is abelian and all morphisms are linear. A functor F : R --t S between 
ringoids is additive if F : R(A,B) --t S(FA,FB) is a homomorphism between 
abelian groups for all A, B E R. A functor F : A --t B between additive categories 
which is a map between theories (i.e. F preserves sums) is the same as an additive 
functor since F/-lA = /-lFA. 
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(1.11) Definition. A theory of coactions is a theory T for which each object X is 
endowed with a cogroup object X' and a coaction 

/-tx : X --+ X V X' 

in T. This structure of coaction on X is compatible with sums; that is for X V Y 
the coaction /-tXVY is the composite 

/-tXVY : X V Y P,XVP,Y, (X V X') V (Y V Y') = (X V Y) V (X' V Y') 

where (X V Y)' = X' V Y'. Moreover each coaction /-tx has the following affine 
property. For all objects Y and all maps f, 9 : X --+ Y in T there exists a unique 
a : X' --+ Y with 9 = f + a. Then X is also termed a cotorsor. 

Clearly a theory of cogroups is an example of a theory of coactions. A model 
M on a theory of coactions T is affine if for all objects X in M and x, y E M(X) 
there is a unique a E M(X') with y = x + a; then M is also called a torsor. For 
example Mory for YET is an affine model by the affine property of all objects 
in T. 

(1.12) Lemma. Let /-tx : X --+ X V X' be a coaction in T. Then /-tx has the 
affine property if and only if 

(ix,/-tx): X V X --+ X V X' 

is an isomorphism in T. Here ix is the inclusion of x. 
Proof. Consider the pair of maps i l = ix : X --+ Xv X' and i2 = /-tx : X --+ Xv X'. 
The affine property shows that for each pair f, 9 : X --+ Y of maps in T there 
is a unique map a : X' --+ Y with 9 = f + a. Hence there is a unique map 
(f,a) : X V X' --+ Y with (f,a)i l = f and (f,a)i2 = g. Therefore il,i2 satisfies 
the universal properties of the inclusions of a sum. q.e.d. 

(1.13) Corollary. Each model M of a theory of coactions is affine. 

Proof. We have M(X) x M(X) = M(X V X) = M(X V X') = M(X) x M(X') by 
(1.12). q.e.d. 

(1.14) Remark. The collection of models M of a theory of coactions yields a Malcev 
variety in the sense of Smith [MV]. In fact for x, y, z E M(X) with X E T we have 
a unique (3 E M(X') with y + (3 = z. Now we define P by P(x, y, z) = x + {3. Then 
P(x, y, y) = x and P(x, x, z) = z. As a special case one obtains varieties of groups 
with operators as in (2.12) below. 

We shall need the "additivization" of a theory of cogroups which is an additive 
category. For this we define for a set T the full inclusion of categories 

add(T) c cogr(T) (1.15) 
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as follows. An object in cogr(T) is a theory T of cogroups with the property that 
the objects of T are the elements of the set T, that is Ob(T) = T. Morphisms in 
cogr(T) are maps between theories which are the identity on objects. An object 
in add(T) is an additive category A with Ob(A) = T. Morphisms in add(T) 
are additive functors which are the identity on objects. Using the final remark in 
(1.10) we see that (1.15) is a full inclusion. 

(1.16) Lemma. The inclusion functor (1.15) has a left adjoint 

)ad : cogr(T) --+ add(T) 

This functor which carries T to Tad is termed the additivization functor. 

Proof. For two maps a, b : A --+ B in T we write a ~ b if there exists a E 

T(A, Bl V B2 ) with Bl = B2 = B such that (0,1).00 = 0 and (l,O)*Q = 0 and 
a = b+ (1, 1)*(00). Then rv is a natural equivalence relation on T and one gets the 
quotient category Tad = T/~ which is the additivization of T. q.e.d. 

2 Examples 

We consider various examples of theories of cogroups and theories of coactions. 
The basic example is the category gr of free groups which is a theory cogroups. 
This theory can be topologically described as the homotopy category of one point 
unions of I-dimensional spheres. Therefore all results for the theory gr have a 
topological interpretation. 

(2.1) Example. Let Gr be the category of groups and let gr be the full subcategory 
of free groups F = (ZF) with a given set of generators ZF. The trivial group 
* = {O} is the initial and the final object of Gr. Sums in Gr exists and for 
F = (ZF) and E = (ZE) in gr the sum is simply 

where ZF U ZE is the disjoint union of sets. Each object in gr is a cogroup by the 
homomorphism 

J-LF: F --+ F V F 

defined on generators by J-L(x) = i1(x) 0 i2(X) for x E ZF. Here i 1 and i2 are the 
inclusions F --+ F V F and 0 is the group law in F V F. This shows that gr is a 
theory of cogroups. 

(2.2) Definition. Let D be an object in a category C. Then we define the category 
CD of objects under D as follows. Objects are morphisms D --+ X in C and 
morphisms in CD are commutative triangles in C 



D 

/~ 
X------t) Y 

f 
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Composition in CD is defined as in C. If push outs exist in C then sums exist in 
CD. In fact the sum D --+ X U D Y of D --+ X and D --+ Y in CD is given by the 
push out in C 

D ----+ X 

1 1 
Y ----+ XUDY 

(2.3) Example. Let G be a group and let Grc be the category of groups under 
G as defined in (2.2). A free group under G is an inclusion G --+ F V G where 
F = (ZF) is a free group. Let gr( G) be the full subcategory of Grc consisting of 
such free groups under G. Push outs exist in Gr so that sums exist in Grc and 
gr( G). One readily checks that a sum in gr( G) is given by 

(F V G) Uc (E V G) = (E V F) V G 

Each object in gr( G) is a cogroup in gr( G) by the homomorphism 

fJo = fJoF V lc : F V G --+ F V F V G 

where fJoF is the cogroup structure of F in gr. This shows that gr( G) is a theory 
of cogroups. Clearly for the trivial group G = * the theory of cogroups gr( *) 
coincides with gr in the example (2.1). 

(2.4) Example. Let Top' be the category of pointed topological spaces and let 
Top' /~ be its homotopy category. Let 

be the full subcategory consisting of all suspensions EX in Top'. It is well known 
that a suspension has a cogroup structure fJo : EX --+ EX V EX in Top' /~ so 
that susp( *) is a theory of cogroups. Let V be the class of discrete sets in Top' 
and let 

be the subcategory of suspension EX of discrete sets X in Top'. Then EX is 
just a one point union of one dimensional spheres and it is well known that the 
fundamental group 1l"1 yields an isomorphism 

1l"1 : susp( *, V) So! gr 

of theories of cogroups. This example is generalized in (2.8) below. 
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Next we describe further algebraic examples of theories of cogroups. 

(2.5) Definition. A theory S is single sorted if there is an object A in S such that 
all objects of S are given by the n-fold sums A V '" V A with n Z O. If A is a 
cogroup in S then S is a theory of cogroups. In this case the models of S form a 
variety of groups with operators. Let free(S) be the full subcategory of model(S) 
consisting of sums V E MorA where E is an index set and MorA is the model in 
(1.8). Such arbitrary sums exist in model(S); see 3.4.2 in Borceux [CAl. The 
objects of free(S) are termed the free models of S and S is the full subcategory 
of free(S) consisting of finitely generated free models. The inclusion S c free(S) 
carries A to MorA. If S is a theory of cogroups then also free(S) is a theory of 
cogroups. 

(2.6) Examples. Recall that Gr is the category of groups and Ab is the category 
of abelian groups. The category Niln is the full subcategory of Gr consisting of 
groups of nilpotency degree n. The free objects in Niln are the groups (Z) / rn+! (Z) 
where (Z) is a free group and r n +l (Z) is the subgroup of (n+ I)-fold commutators 
in (Z). We have Nill = Ab. The category Niln is an example of a variety of groups. 

A variety of groups Var is a full subcategory of Gr which is closed under 
taking subobjects, quotient objects and arbitrary categorical products. Given a 
subset C in the free group Foo = (Xl, X2, ... ) generated by a sequence of elements 
Xl, X2, . .. we say that a group G satisfies the laws in C if for all homomorphisms 
a : Foo ----+ G we have a(C) = {O} where 0 is the neutral element in G. The 
subcategory Var(C) c Gr consisting of all groups which satisfy the laws in C is a 
variety and each variety can be described this way; see Stammbach [HG]. A variety 
of groups Var yields the theory S = varU of finitely generated free objects in Var 
with Var = model(S); then free(S) = var is the category of all free objects in 
Var. 

Moreover for a fixed commutative ring R let AIg, Calg and Lie be the cate­
gories of algebras, commutative algebras and Lie-algebras over R respectively. We 
obtain theories of cogroups as in the following table: 

S free(S) lllodel(S) 

grU gr Gr 
nilU 

n niln Niln, nzl 
abU ab Ab 
var~ var Var 
algU alg Alg 
calgU calg Calg 
lieU lie Lie 

The column in the middle of the table denotes the full subcategories offree objects 
and the column on the left hand side denotes the full subcategories of finitely 
generated free objects. Hence gr, niln, ab, var, alg, calg and lie are examples of 
theories of cogroups. Theories of cogroups are considerably more general than 
varieties of groups. 
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(2.7) Example. The following modification of the examples in (2.6) was pointed 
out to me by M. Jibladze. 

Let us fix a Grothendieck topos E, with an explicit cite of definition (C, J). 
This means that C is a small category, J is a Grothendieck topology on it, and E is 
Sh(C, J), the category of set-valued sheaves on the site (C, J). Each object C E C 
determines a sheaf in E which we also denote by c, namely, the associated sheaf 
of the representable presheaf home ( -, c) : cop -+ Sets. The particular important 
case is determined by a topological space X, when C is the poset of open sets 
of X considered as a category in the usual way, and J is the canonical topology (a 
family of opens covers its union); in this case E is Sh(X), the category of sheaves 
onX. 

Now for any single sorted theory T, one can consider the notion of a sheaf of 
models of T in E. This is nothing else than a model of T in E, i.e. a product pre­
serving functor TOP -+ E. We denote the category of such models by model(T, E). 
Take in particular a single sorted theory S of cogroups with zero object. Then one 
knows (see for example Johnstone [TTl) that the category model(S, E) shares 
many good properties with the category of ordinary models: it is an exact cate­
gory, is complete and cocomplete, and the forgetful functor model(S, E) -+ E is 
monadic; in particular it has a left adjoint Free: E -+ model(S, E). 

Now for any sheaf lEE, Free(1) has the corresponding universal property: the 
functor homrnod(S,E) (Free (I) , -) is isomorphic to the functor homE (I, -). But 
since S is a theory of cogroups, this latter functor factors through the category of 
groups. This means that Free(I) has a cogroup structure. Explicitly, the comulti­
plication can be dsecribed as follows: take the morphism 

(j 0 ~I,j 0 ~2) : 1-+ Free(1 II 1) x Free(1 II I), 

where j : I II I -+ Free(1 II I) is the adjunction unit, and ~l, ~2 : I -+ I II I 
are coproduct inclusions. Compose the map above with the group multiplication 
Free(1 II 1) x Free(1 II 1) -+ Free(1 II I). Finally observe that since Free is a left 
adjoint, it preserves coproducts, so Free(I II 1) is isomorphic to Free(1) V Free(I). 
So we obtain a map I -+ Free(I) V Free(I) in E, which then by adjointness extends 
uniquely to a morphism Free(I) -+ Free(1) V Free(1) in model(S, E). This is the 
desired cogroup comultiplication. 

It follows that the full subcategory of model(S, E) on the image of the functor 
Free is a theory of cogroups. We can take a smaller category, namely its smallest 
subcategory containing all the Free (c) , for c E C, and closed under coproducts. 
Equivalently, it may be described as the full subcategory of model(S, E) with 
objects of the form Free(Ui Ci), for all families (Ci) of objects of C. This is again 
a theory of cogroups. 

(2.8) Example. Let D be a topological space and let TOpD be the category of 
spaces under D; see (2.2). Two maps in TopD are homotopic if they are homotopic 
relative D. We define full subcategories 

susp(D, 1)) C cone(D, 1)) C TopD j-:::::. reID 
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of the homotopy category where D is the class of discrete sets in Top. Here 
susp(D, D) is a theory of cogroups and cone(D, D) is a theory of coactions. These 
examples are used in chapter A, § 1. 

The objects 5~ of susp(D, D) are obtained by push out diagrams in Top 

where E is a discrete set. The inclusion i carries e E E to the pair (*, e) in the 
product 51 x E where * is the basepoint in the I-sphere 51. We call 5~ the 1-
dimensional spherical object obtained by the function a. The cogroup structure 
p, : 51 ---+ 51 V 51 in Top* /~ reI * induces a cogroup structure p, : 5~ ---+ 5~ UD 5~ 
of 5~ in the homotopy category TopD /~ reID. Hence the homotopy category 
susp(D, D) consisting of all I-dimensional spherical objects 5~ as above is a theory 
of cogroups. 

The objects Ca ,{3 of cone(D, D) are obtained by push out diagrams in Top 

I x E -------+ Ca ,{3 

r (io,i,) r 
EUE~ D 

Here E is again a discrete set and I = [0,1] is the unit interval. Moreover E U E is 
the disjoint union with ic(e) = (E, e) for e E E, E E {O, I}. Hence Ca ,{3 is obtained 
by attaching one cells to D. The pair (Ca ,{3, D) is the same as a I-dimensional 
relative CW-complex with trivial O-skeleton. We obtain a canonical coaction map 

p, : Ca ,{3 ---+ Ca ,{3 UD 51 
which is induced by the map p, : I ---+ I U{l} 51 which is the addition of the path 
from {O} to {I} in I and the path I ---+ 1/ {O, I} = 51. Hence the full homotopy 
category cone(D, D) consisting of all objects Ca ,{3 as above is a theory of coactions. 

(2.9) Proposition. Let D be a path connected space with fundamental group 
1f1 (D) = G. Then there are equivalences of theories 

gr(G) --..::.... susp(D, D) --..::.... cone(D, D) 

where gr(G) is the theory in {2.3}. 

It is, however, more intricate to describe for any space D the theory cone(D, D) 
purely algebraically. For this we generalize example (2.3) from groups to groupoids. 

{2.10} Example. Let Grd be the category of groupoids and let G E Grd. A free 
groupoid under G is an inclusion G ---+ X of groupoids which is the identity on 
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objects such that there exists a set E C Mor(X) of non-identity maps (called a 
basis) which has the following property. Every non-identity map of X can uniquely 
be written as a reduced composition of maps in E, their inverses and non-identity 
maps in G. Here reduced means that no map of E appears next to its inverse and 
that no two non-identity maps of G appear next to each other. If G consists only of 
identity maps then we call X a free groupoid. Let grd( G) be the full subcategory of 
GrdG consisting of free groupoids X under G. Free groupoids are also considered 
in Dwyer-Kan [SG]. 

For any pair of spaces (X, D) we obtain the fundamental groupoid II(X, D). 
Objects are the points of D and morphisms are the homotopy classes of paths in 
X between two points in D. Hence II(D) = II(D, D) is the usual fundamental 
groupoid of the space D. If X E cone(D, V) then II(X, D) is a free groupoid 
under II(D). A basis of II(X, D) is given by the set of oriented I-cells in X-D. 
In particular if D is discrete then II(X, D) is a free groupoid. 

(2.11) Proposition. Let G be a groupoid. Then the category grd(G) is a theory 
of coactions in such a way that for a space D and G = II(D) there is a canonical 
isomorphism of theories 

cone(D, V) = grd(G). 

3 The Category of Twisted Maps 

We introduce for each theory of coact ions T the category Twist of twisted maps 
which will be used in the next section for the definition of the category Coef 
of coefficients. We also introduce the difference operator V which we apply to 
morphisms in Twist. This operator is of crucial importance in the whole book. 

Let A, B be based objects in the theory T. We say that a map f : A ----+ B V Y 
is trivial on Y if the composite (0, l)f : A ----+ B V Y ----+ Y is the zero map for Ai 
i.e. the following diagram commutes. 

(3.1) 

Let T(A, B V Yh be the set of all such maps f which are trivial on Y. Let A be a 
cogroup in a theory T and let X be a coaction in T. Then we associate with each 
map f : A ----+ Y in T the difference map 

vf :A----+ Y'VY (3.2) 

in T defined by 

\l f = -iy f + (iy + iY')f 
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One readily checks that for 9 : Y --; Z and {3 : Y' --; Z in T one has 

(g + (3)f = gf + ({3, g)(\7 f) 

Moreover \7 f is a map trivial on Y. If T is a theory of coactions we also define for 
each map f : X --; Y in T the difference map 

\7 f : X' --; y' V Y (3.3) 

by the equation 

in the set Mor(X, Y' V Y). Here we use the affine property of T. The difference 
map \7 f is the unique map for which the following diagram commutes 

X f Y ---> 

ix+ix' l 1 iy+i y ' 

X'vX 
(\1 f,iy J) y'vY ) 

Here ix + ix' is up to an interchange of summands the same as the coaction map 
fJ on X. Clearly we get for 9 : Y --; Z and {3 : Y' --; Z again the equation 

(g + (3)f = gf + ({3,g) \7 f (1) 

and \7 f is trivial on Y. This implies for a, {3 : Y' --; Z the equation 

(a+{3,g) \7 f = (a,g) \7 f+ ({3,g+a) V f (2) 

since we have 

(g + a + (3)f = gf + (a + (3, g) V f 

= (g + a) f + ({3, 9 + a) V f 
= gf + (a,g) V f + ({3,g + a) V f 

Then the affine property of T yields (2). 

(3.4) Lemma. Let T be a theory of coactions. Then a composite gf : X --; Y --; 
Z in T satisfies 

\7(gf) = (Vg, izg) V f : X' --; y' V Y --; Z' V Z 

Moreover for a: X' --; Y we have 

v(I + a) = -iya + V f + iya + va. 

The first equation in (3.4) shows that the isomorphism in (1.12) is natural is the 
sense that the following diagram commutes 



Proof. We have 
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XvX fVf YVY ------+ 

II II 
X'VX 

(\7 f,iy f) 
Y'VY ) 

izgf + V(g1) = (iz + iz' )gf 

= (iZg + Vg)f 

= izgf + (Vg, izg) V f 
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The second equation in (3.4) is proved as follows. For h = f + a: X -+ Y we 
get 

and hence 

iy f + iya + Vh = (iy + iy')f + (iy + iY')a 

where iy f = (iy + iY')f - V f. Now affineness implies 

- V f + iya + Vh = (iy + iy,)a = iya + Va 

or equivalently the second equation in (3.4). q.e.d. 

(3.5) Definition. Let T be a theory of coact ions. Then we define the category 
Twist of twisted maps in T as follows. Objects are maps ax : X" ~ X in T where 
X" is a cogroup in T. Morphisms (f",1) : ax -+ 8y are given by commutative 
diagrams 

X" f " 
------+ Y" V Y 

1 (oy,l) 

Y 
where f" is trivial on Y. Composition is defined by 

(f", 1) (gil, g) = (f g", fg) 

where J: X" V X -+ Y" V Y is given by (f", iy 1). One readily checks that this is a 
well defined category. In fact an alternative description of the morphisms ax -+ 8y 
of Twist is given by pairs of commutative diagrams 

X f Y ------+ 

ix 1 liy 

XliV X J Y" vY XliV X J Y" vY ------+ ------+ 

(0,1) 1 1 (0,1) (ox,l) 1 1 (oy,l) 

X f Y X f Y ------+ ------+ 
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with the composition given by horizontal composition of these diagrams. We say 
that f : X -+ Y is 8-compatible if there exists 1" as above such that (f", J) : 
8x -+ 8y is a morphism in Twist. 

The category Twist has sums defined by the sum of maps 

8x V 8y : X" V yll -+ X V Y 

in T. The initial object in Twist is the identity 1 : * -+ * where * is the initial 
object in T which is a cogroup in T. We obtain a full embedding of categories 

T c Twist (3.6) 

which carries X to the object * -+ X in Twist which is also denoted by X. 

(3.7) Definition. A simplicial i-diagram or a graph in a category T is a diagram 

in T with doso = dlsO = id. This is the I-dimensional part of a simplicial object 
in T. Each object 8x in Twist yields a simplicial I-diagram 

. (0,1) 
X ~X"vX =4 X 

(ax,l) 

in T so that Twist is a full subcategory of the category of simplicial I-diagrams 
in T. Compare chapter B, § 2 where we consider free simplicial objects in T which 
generalize the presentations considered in Twist; see (B.2.30). 

An action of a group G on a group M is given by a homomorphism from 
the opposite group GOp to the group of automorphisms of M in the category 
Gr. For g E G and m E M we denote the action by mg. Let 'P : G' -+ G be 
a homomorphism between groups. Then a function h : G' -+ M is a 'P-crossed 
homomorphism if for x, y E G' 

h(x· y) = h(x)<P(Y) . h(y) 

holds. A pre-crossed module 

(3.8) 

is a homomorphism of groups together with an action of G on M such that 

(1) 

A morphism between pre-crossed modules (~, 77) : 8 -+ 8' is a commutative diagram 
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M~M' 

(2) 

C~C' 

in the category of groups such that ~ is 'T/-equivariant, that is ~(mg) = ~(m)1)g. 
The image of 8 is a normal subgroup of C so that the quotient group CI8M and 
the exact sequence 

a q I M ---+ C ---+ C 8M ---+ 0 (3) 

in Gr are defined. A pre-crossed module is termed a crossed module if in addition 
to (1) the following equation is satisfied with m, n E M 

(4) 

Each pre-crossed module [) defines an associated crossed module 

(5) 

Here Mer is the quotient group M I P where P is the subgroup of M generated by 
all Peiffer commutators 

(6) 

One can check that P is a normal subgroup of M. If 8 : M -+ C is a crossed 
module then kernel(8) is abelian and the action of C on M induces an action of 
CI8M on kernel(8). 

{3.9} Remark. Each simplicial I-diagram in the category of groups yields a pre­
crossed module 

d1 : kernel(do) -+ Xo 

Here the action of 9 E Xo on m E kernel(do) is defined by 

where the right hand side is defined in the group X 1. It is well known that this 
construction yields an equivalence of categories between the category of simplicial 
I-diagrams in Gr and the category of pre-crossed modules. 

If A and Bare cogroups in T then the group T(A, X) acts on the group 
T(A, B V Xh by setting 

r = -ixa + f + ixa (3.10) 

where the right hand side is defined in the group T(A, B V X). Moreover if 8x : 
X" -+ X is an object in Twist we obtain the pre-crossed module 
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(ax, 1)* : T(A,X" v Xh --; T(A,X) (3.11) 

by applying the functor T(A, -) to the simplicial I-diagram in (3.7); compare 
(3.9). Hence the image of (ax, 1)* in (3.11) is a normal subgroup. 

We now apply the difference operator 'V to morphisms in Twist 

(3.12) Lemma. Let (f", f) : ax --; 8y be a morphism in Twist and let Y{' = 

Y~' = Y". Consider the composite 

x" ~ Y~' V y' V Y{' V Y --'i-; y' V Y 

with q = ('V8y, iY', ay , iy). There exists a map ~ which is trivial on Y~'VY, y'vY 
and Y{' V Y such that 

(V'f,iyJ) 'Vax - ('V8y,iy)1" = q~. 

Here the left hand side is given by the composites in the diagram 

X" f" Y" VY -----t 

vax 1 1 (Vay,iy) 

X'vx (v f,iy f) 
Y'VY ) 

Proof. We have (8y,I)1" = fax. This implies that 'V(fax ) 
where 

'V(fax ) = ('V f, iy J) 'Vax 

'V((8y, 1)1") = ('V(8y, 1), iy(8y, 1)) 'V I" = q('V 1") 

since 'V(8y, 1) = ('Vay, 'Vly) = ('Vay, iY')' Here 'V I" is a map 

X" --; (Y~' V Y') V (Y{' V Y). 

We define ~ by 

Hence we get 

C f" ( . . )f" '" = 'V - Zyt, Zy . 

C f" (. . )f" q", = q'V - q Zy~" Zy 

= q'V I" - ('V8y,iy)1" 

= ('Vf(iyJ) 'Vax - ('V8y,i y )1" 

'V((8y,I)I") 

(1) 

(2) 

We now check that ~ is trivial one Y~' V Y, Y' V Y and Y{' V Y. In fact, I" is trivial 
on Y, that is (0,1)1" = O. We now replace in (1) the map 8y by 0 : Y" --; Y so 
that we get 
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° = \70 = \7 ((0, I)!") = q'(\7 f") 

where q' = (O,iy"O,iy). Hence \7i" is trivial on Y' V Y. This implies that ~ is 
trivial on Y' V Y. Moreover by definition of \7 f" we know that V f" is trivial on 
Y{' V Y so that also ~ is trivial on Y{' V Y. Finally we get for q" = (i y;', 0, 0, iy) 

" f" "( (. . )f" + (. . )f" + (. +. . +. )f" q \7 = q - Zy{" Zy Zy{" Zy Zy{' Zy;" Zy ZY' 

= (0, I)!" + (iyt, i y )1" 

= (iyt,iy)1" 

so that q"~ = ° and hence ~ is trivial on Y~' V Y. 

4 The Category of Coefficients 

q.e.d. 

Given a theory of coactions T we define the category of coefficients Coef by use 
of twisted maps. In fact, if T is the theory of free groups then Coef is equivalent 
to the category of groups. 

(4.1) Definition. Let T be a theory of coactions. We define the category Coef 
of coefficients as follows. Objects are the same as in Twist, namely maps ax : 
X" ----> X in T where X" is a cogroup. We say that two maps f, h : X ----> Yare a 
-equivalent, f'" h, if there exists ex : X' ----> Y" V Y trivial on Y with 

h = f + (By, l)ex 

A morphism {f} : ax ----> By in Coef is the a-equivalence class of a a-compatible 
map f : X ----> Y; see (3.5). Composition is defined by {fHg} = {fg}. An object 
ax in Coef is also termed a presentation. We also write Coef = Coef(T). 

The next lemma shows that Coef is a well defined category. Moreover the 
category Coef has sums ax V By and one has the full inclusion of categories 

T c Coef (1) 

which carries X to the object * ----> X also denoted by X. In particular we have for 
a cogroup A in T the set of morphisms Coef(A, ax) in the category Coef. This 
set is actually a group and it is clear by the definition of a-equivalences that one 
obtains an exact sequence of groups 

T(A,X" V Xh (ax,l)., T(A,X) ~ Coef(A,ax) ------+ 0 (4.2) 

where (ax, 1) * is the pre-crossed module in (3.11). 

Example. If T = gr is the theory of free groups then Coef(gr) is easily seen to 
be equivalent to the category Gr of groups. The equivalence 
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'if1 : Coef(gr) ~ Gr (1) 

carries ax to the group Coef(A, ax) = G where A = Z E gr. The exact sequence 
(4.2) with A = Z descrihes a presentation of the group G. Hence Coef(gr) is 
precisely the category of groups G for which G has a fixed presentation ax. The 
inclusion (4.1) (1) corresponds to gr C Gr. The equivalence 'if1 above is generalized 
for theories in (4.6) below. 

(4.3) Lemma. Let T be a theory of coactions. If f is a-equivalent to h and if 
f is a-compatible then h is a-compatible. Moreover a-equivalence is a natural 
equivalence relation on the category consisting of a-compatible maps. 

Proof. For h = f + (ay, 1)0 let 

f{' = f" + (o,iYT)) \7 ax· 

Then we get for {3 = (8y, 1)0 the equations 

hax = (f + (3)ax = fax + ({3, f) \7 ax 

= (ay, 1)f" + (ay, 1)(0, iy f) \7 ax 

= (8y, 1)(f" + (0, iy f) \7 ax) = (ay, l)(f{') 

so that the first proposition of the lemma is proved. Now let h : Y --> Z and 
9 : V --> X be a-compatible maps and f rv fI. Then we show hf rv hfI and 
fg rv fIg. In fact, we have 

hh = h(f + (3) = hf + h{3 

= hf + h(8y, 1)0 

= hf + (az, l)ho 

where h : Y" V Y --> Z" V Z is the map given by (h", h) : 8y --> az in Twist(T), 
that is h = (h", i z h). On the other hand we have 

fIg = (f + (3)g = fg + ({3, f) \7 9 

= fg + (ay, 1)(0, 1y f) \7 9 

Here \7g is defined since we assume that T satisfies the affine property. q.e.d. 

We now compare the category Coef associated to T with the category model 
of models of T. We include the following lemmas (4.4) and (4.5) and the remark 
(4.6) since in many cases the category Coef actually coincides with the category 
of models. 

(4.4) Lemma. Let T be a theory of coactions and let M : TOP --> Set be a model 
of T. Then M yields a well defined functor 

M~ : CoefOP --> Set 

defined by M~(lJx) = kernel(ax : M(X) --> M(X")). Here M(X") is a group so 
that kernel(ax) is defined by the set (aX)-l(O). 
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Proof. Let f : X ----+ Y be a-compatible then we have fax = (8y,1)1" where 
I" is trivial on Y. Hence for y E MU(8y) we have aY(y) = 0. We claim that 
f* : M(Y) ----+ M(X) induces a map 

f* : MU(8y) ----+ MU(ax ) 

In fact, for f*y we get 

ax f*y = (fax)*Y 

= ((ay, l)I")*Y 

= (f")*(8y, l)*y 

= (f")*(O,y) = (f")*(0, l)*y = ((0, l)J")*y = o*y = 0 

Now assume f rv h, that is h = f + (8y, l)a where a is trivial on Y. Then we 
get 

fi(y) = (f + (8y, l)a)*y 

= f*y + ((8y, l)a)*y 

= f*y + a*(8y, l)*y 

= f*y + a*(O, y) = f*y 

since a*(O,y) = a*(O, l)*y = ((0, l)a)*y = O*y = 0. q.e.d. 

(4.5) Lemma. Let T be a small theory of cogroups and let model be the category 
of models of T. Then we obtain a well defined functor 

7fl : Coef ----+ model 

by the cokernel in the category of groups 

7fl(ax)(A) = cokernel(T(A, X" V Xh (ax,l),) T(A, X)) 

where A is an object ofT. Moreover for ME model the functor M~ in (4.4) can 
be described by a canonical isomorphism 

Proof. It is clear that a a-compatible map f : X ----+ Y induces a well defined map 
f* for which the following diagram commutes 

T(A, X) ~ T(A,Y) 

1 1 
The vertical arrows are the quotient maps. In fact f*(ax, 1)* = (8y, 1)* f* where 
f* carries an element in T(A, X" V Xh to an element in T(A, Y" V Yh since f" 
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is trivial on Y. Clearly f* is natural in A. Now let f rv h with h = f + (Oy, l)a. 
Then we have for 9 E T(A, X) the equation 

with b = (a, iy 1) v 9 trivial on Y. Hence hg and fg represent the same element 
in 71"1 (By) (A). This finishes the proof that 1f1 is a well defined functor. 

Next let t E model (1f1 (ox), M) then we obtain for {Ix} E 1fn(OX )(X) the 
element t{lx} E M(X) with oit{lx} = 0 so that t{lx} E M~(ox). In fact 
oit{lx} = tox{1x} = t{ox} = 0 since {ox} = 0 in 1f1(OX)(X"). Therefore 
t I---? t{lx} is a well defined function. The inverse of this function carries x E 

M~(ox) C M(X) to the natural transformation tx : 1f1(OX) ---+ M defined by 
tx{g} = g*{X} with 9 E T(A, X). One readily checks that tx is well defined. 

q.e.d. 

(4.6) Remark. Let S be a single sorted theory and let free(S) be the full subcat­
egory of model(S) consisting of free models. If S is a theory of cogroups then so 
is T = free(S) and one obtains an equivalence of categories 

1f1 : Coef(T) ~ model(S) 

The functor 1f1 is defined as in (4.5) by restricting to objects A in S. The equiva­
lence of categories 1f1 yields for the examples in (2.12) the following list: 

T Coef 

gr Gr 
niln Niln 

ab Ab 
var Var 
alg Aig 
calg Calg 
lie Lie 

In the next proposition we use the inclusion T C Coef in (4.1) (1). Moreover 
Coef(Z, ox) denotes the set of morphisms Z ---+ Ox in Coef. 

(4.7) Proposition. A map {J} : Ox ---+ oy in Coef is an equivalence in Coef 
if and only if for all objects Z in T the induced map 

f* : Coef(Z,ox) ---+ Coef(Z,oy) 

is a bijection. 

Proof. Since f* : Coef(Y, ox) ---+ Coef(Y, oy) is surjective there exists 9 : Y ......., X 
in T snch that f*{g} = {Iy}. The following diagram commutes 
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Coef(Y, ax ) ~ Coef(Y, 8y ) 

Coef(Y",ox) ~ Coef(Y",8y) 

Here we have oy{ly} = {O}. Hence by the injectivity of f* in the bottom row 
we get Oy{g} = {O}. This shows that g is a a-compatible Oy -+ ax map so that 
{g} E Coef(8y,ox) is well defined with {tHg} = {fg} = lay. We now use the 
injectivity of 

f* : Coef(X,ox) -+ Coef(X,oy) 

which shows by 

that {gf} = {Ix} in Coef(X,ox). This shows that also {g}{f} = lax· 

5 Enveloping Functors and the Categories 
of Premodules and Modules 

q.e.d. 

We deduce from the category Coef of coefficients the category of premodules and 
the category of modules. 

(5.1) Definition. Let T be a theory of coactions. We define the category premod 
of premodules as follows. Objects are sums A V ax in Coef where A is a cogroup 
in T and where ax is an object in Coef; that is A V ax is the composite 

A V ax = ix ax : x" -+ x -+ A V X 

The inclusion ix and projection (0,1) 

X~AVX~X 
are a-compatible and therefore represent maps in Coef. Now a morphism (ii, u) : 
A V ax -+ B V 8y in premod is a commutative diagram in Coef: 

ax 
u 8y ---+ 

ix 1 liy 

A Vax 
v BV8y ---+ 

(0,1) 1 1 (0,1) 

ax 
u 8y ---+ 
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Composition is defined by horizontal composition of such diagrams. We have the 
canonical coefficient functor 

c : premod -+ Coef (5.2) 

which carries A V ax to ax and (v, u) to u. A morphism (v, u) is equivalently given 
by the pair (v, u) with v = ViA: A -+ B V 8y trivial on 8y. We also write 

(v, u) = v <::> u = f <::> u (5.3) 

and we say that v <::> u is an u-equivariant map in premod. Here v is represented 
by f with v = j(f) and f E T(A, B V Yh; compare lemma (5.5) below. Hence we 
get the identification 

premod (A vax, B V 8y)u = Coef (A, B V 8y h : v <::> u ~ v (5.4) 

where the left hand side denotes the set of all morphisms A V ax -+ B V ay in 
premod which are u-equivariant. This set is a subgroup ofthe group Coef (A, Bv 
8y). Here the group structure is obtained by the cogroup A in T which is also a 
cogroup in Coef; see (4.2). 

The group Coef(A, 8y) acts on the group (5.4) by setting for a E Coef(A, ay ) 
and f E Coef(A, B V 8y h 

r = -ia+ f +ia (1) 

where i : 8y -+ B V 8y is the inclusion in Coef. The right hand side is defined in 
the group Coef(A, BV 8y). This implies that the image of the pre-crossed module 
(ax, 1)* in (3.11) and (4.2) acts trivially on the group (5.4). 

(5.5) Lemma. One has the shori exact sequence of groups 

n n 

T(A, Y" V B V Y) T(A,BVY) 

Here 8 is induced by (iy8y,iB,iy) and N is the subgroup of all elements in 
T(A, Y" V B V Y) which are trivial on both Y" V Y and B V Y. Moreover j is equiv­
ariant with respect to the action in (5.4) (1) and (2.10); that is j(r) = (jf)ja. 

Proof. The map j carries f : A -+ B V Y trivial on Y to the class {J} in Coef. 
We now show that j is surjective. Let I' : A -+ B V Y be a map representing 
v E Coef (A, B V 8y h. Hence we have (0,1)1' rv ° and therefore there is 0: : A-+ 
Y" with (0,1)1' = (8y,1)0:. Then we obtain f = I' - (B V 8y, l)a satisfying 
(0, l)f = ° and f rv f'. This proves that j is surjective. Next let f E ker(j) that 
is f is trivial on Y and f = (B V 8y, 1)0: where 0: : A -+ Y" V (B V Y) is trivial 
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on B V Y. Let i : Y" V Y C Y" V B V Y be the inclusion and let r be the obvious 
retraction of i; that is r = (iy", 0, iy). Then we have for 0/ = ra the equation 
(Oy, 1)a' = 0 since f is trivial on Y. This shows that 

f = (B V ay , l)a = (B V Oy, l)(a - ia') 

where a - i a' E N. This shows that kernel(j) = 8(N). q.e.d. 

In all examples of chapter A and B we defined the categories mod( ax) of free 
modules with ax E Coef. Moreover we defined for u : ax ----+ ay the induced 
additive functors u* : mod(ax ) ----+ mod(Oy). The associated "Grothendieck con­
struction" of ax f-+ mod( ax) is a category mod with the following properties; 
see (5.8). 

(5.6) Definition. A category of modules is a category mod together with a diagram 
of functors 

with the following properties: 

E 
premod -----+ mod 

~/c 
Coef 

(i) The objects of mod are the same as in the category premod and E is a full 
functor which is the identity on objects. 

(ii) The diagram commutes, that is cE = c. We say that f : A V ax --+ B V Oy 
in mod is u-equivariant if c(f) = u : ax --+ ay E Coef; moreover f is 
ax-equivariant if ax = ay and u = 1 is the identity of ax. Let 

mod(A Vax, B V ay)u 

be the set of all morphisms f : A V ax --+ B V Oy in mod which are u­
equivariant. Then this set is an abelian group together with an action of the 
group Coef(A, Oy) and E induces a surjective homomorphism of groups 

E: pre mod (A Vax, B V Oy)u --t mod (A V ax,B V Oy)u 

which is equivariant with respect to the action of Coef(A, ay ) in (5.4) (1). 
For each morphism w : az --+ ax the following diagram commutes 

premod(A Vax, B V ay)u 

(lAVw)*l ~ 

premod(A V az , B V Oy )uw 

E 
------> mod(A V ax,B V Oy)u 

~ 1 E(lAVW)* 

E 
------> mod(A V az , B V Oy )uw 

Here (lA Vw)* is an isomorphism by (5.4) and we assume that also E(lA Vw)* 
on the right hand side of the diagram is an isomorphism. We denote the 
morphism E(lA V w) in mod also by 1A V w. 



152 Chapter I: Theories of Coactions and Homology 

(iii) For co groups A, B, AI, A2, B l , B2 one has isomorphisms of groups 

mod(Al V A 2Vox, BVoy)u = mod(Al Vax, BVoy)u EB mod(A2 vax, BVoy)u 

mod(Avax , Bl V B2VOy)u = mod(AVDx , ill v8y)u EB mod(AV8x , B2V8y)u 

These isomorphisms are induced by the inclusions i l : Al ----7 Al V A2 , i2 : A2 ----7 

Al V A2 and by the retractions rl = (1,0) : BI V B2 ----7 B I , r2 = (0,1) : BI V B2 ----7 

B2 . 

The conditions (i), (ii), (iii) imply that for! E mod (B V oy, BI Vow)w and 
9 E mod (AI V ov, A V oX)v the induced functions 

{ 
!** : mod (A Vax, B V OY)u ------> mod (A vax, BI V ow)wu 

(iv) 
9 : mod (A Vax, B V oY)u ------> mod (AI V ov, B V oY)uv 

are homomorphisms satisfying (f + P)* = !* +!; and (g + gd* = g* + g~. In this 
sense mod is an "additive category over Coef" . 

In (5.10) we show that such a category of modules always exists. The category 
mod, however, is not uniquely determined by the theory T of coactions. Later we 
shall use a category mod = mod(C) which is given by a co fibration category C 
under T. 

Remark. The composite 

T(A, Y" V Yh ~ Coef(A, Y" V Oy h 

II 
premod(A Vax, Y" V ay)u 

E 
-----+ mod(A Vax, Y" V OY)u 

carries Peiffer commutators of the pre-crossed module (3.11) to the trivial clement. 
In fact for m, n E T(A, Y" V Yh the Peiffer commutator is 

(m, n) = -m - n + m + n(ay,l)*m 

where we use the action of (Oy, l)*m E T(A, Y). But this action is killed by j 
since j is j-equivariant; see (5.5). Moreover E carries commutators to O. 

For an object ax in Coef let 

premod(ox) c premod 

mod(ox) c mod 
(5.7) 

be the subcategories consisting of objects A V ax where A is a cogroup in T and of 
maps A V ax ----7 B V ax which are ox-equivariant. Here premod(ox) is a theory 
of co groups since the cogroup structure of A in T induces a cogroup structure 
JlA VI: A V ax ----7 A V A V ax in premod(ax ). Moreover mod(ox) is an additive 
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category. A morphism u : ax -> f}y induces functors u* such that the following 
diagram commutes 

premod( ax) ~ premod( f}y ) 

(1) 

mod(ax) ~ mod(f}y) 

Here u* is a map between theories so that u* in the bottom row of the diagram is 
an additive functor. The functor u* carries the object A V ax to the object A V f}y. 
Moreover on morphisms u* is defined by the following commutative diagrams. 
The initial object 0* in Coef is given by the identity 0* = 1 : * -> * of the initial 
object * in T. Hence we have the unique map 0 : a. -> ax in Coef. 

premod(A V ax, B V aX)l 
u, 

premod(A V f}y, B V f}y h -----> 

(lVO)*l"" "" 1 (lVO)' (2) 

premod(A V 0*, B V ax)o 
(lVu), 

premod(A va., B V f}y)o ---4 

mod (A Vax, B v axh 
u, 

mod(A V f}y, B V f}y h -----> 

E(lVO)* 1 "" "" 1 E(lVO)* (3) 

mod(A va., B v ax)o 
E(lVu), 

mod(A va., B v f}y)o ) 

The vertical arrows in these diagrams are isomorphisms by (5.6) (ii). 

(4) Lemma. Both functors u* above are well defined and carry sums to sums. 

Proof. Clearly u* carries identities to identities. Moreover u*(jg) = (u*f)(u*g) 
is obtained by the commutativity of the following diagram in premod and mod 
respectively. 

Here the top square of the diagram commutes since (1 V u)(l V 0) = 1 V O. In a 
similar way one shows that u* carries sums to sums. Here a sum of A V ax and 
B V ax in premod( ax) or mode ax) is A V B Vax where A V B is the sum in T, 
compare also (5.6) (iii). q.e.d. 
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Let To be the set of all co groups in T. Then we have the category of theories 
of cogroups cogr(To) and the category of additive categories add(To) defined in 
(1.15). By identifying the object A V Ox with A E To we see that 

premod(ox) E cogr(To) 

mod(ox) E add(To) 

Moreover using u* in (1) above we obtain the enveloping functors 

premod : Coef -+ cogr(To) 

mod: Coef -+ add(To) 

(5) 

(6) 

which carry Ox to premod(ox) and mod(ox) respectively. These functors ac­
tually determine the categories premod and mod by the so-called Grothendieck 
construction; see Gray [Fe] and Thomason [He]. 

(5.8) Definition. Let C be a small category and F : C -+ Cat be a functor where 
Cat is the category of small categories. Then the Grothendieck construction of 
F is the category Gro(F) defined as follows. The objects are pairs (A, a) with 
a E Ob(C),A E Ob(Fo); and a morphism (A,o) -+ (A',o') is a pair (w,u) where 
u : a -+ a' E C and w : F(u)(A) -+ A' E F(o'). 

One readily checks that one has isomorphisms of categories 

premod = Gro(premod) 

mod = Gro(mod) 
(5.9) 

which carry A V Ox to (A, ox) and which carry the morphism f = w 8 u to the 
pair (w 8 1, u). Here w 8 1 and w 8 u are defined by the commutative diagram 

(1) 

AVoy 

For premod this coincides with the notation in (5.3). We also write w 8 u = 
(w, i 2u) so that the composition formula is given by 

(w 8 u)(w' 8 u') = (w, i2U)W' 8 uu' (2) 

We now are ready to prove the existence of a category mod of modules with the 
properties in (5.6). For this we use the additivization functor ( )ad in (1.16). 

(5.10) Proposition. The Grothendieck construction of the composite 

prcmod ( lad 
U : Coef ) cogr(To) -----+ add(To) 

denoted by 

premodad = Gro(U) 

is a category of modules in the sense of (5. 6). 
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Proof. All properties in (5.6) are readily verified except the action of Coef(A, ay) 
in (5.6) (ii). But (0,1)*, (1,0)* and (1,1)* in the proof of (1.16) applied to T = 
premod( ax) are easily seen to be equivariant with respect to this action. This 
implies that this action is well defined for premodad . q.e.d. 

For a set A let Ringoids(A) be the category consisting of ringoids R with 
Ob(R) = A and of additive functors which are the identity on objects. If A 
consists of only one object this is the category Rings of rings with unit. If A is a 
subset of To we have the canonical forgetful functor 

<fA: add(To) --> Ringoids(A) 

which carries the additive category K with Ob(K) = To to the full subcategory 
<fA(K) = R of K with Ob(R) = A. Given a category of modules as in (5.6) we 
call the composite 

UA: Coef 
mod 

---> add(To) 'PA 
---> Ringoids(A) (5.11) 

the A-enveloping functor associated to mod. In particular if A = A consists of 
only one object we get the functor 

U A : Coef --> Rings 

which carries ax to the A-enveloping ring of ax. 

(5.12) Definition. Let C be a category and let U : C --t Rings be a functor. Then 
we define the category Mod(U) as follows. Objects are pairs (1'vfx, X) where X 
is an object in C and Mx is a right U(X)-module. Morphisms are pairs (a, v) : 
(Mx,X) --t (My,Y) where v: X --t Y is a morphism in C and where a: 
Mx --t Afy is a U(v)-equivariant homomorphism of modules, that is a(m· t) = 
a(m) . U(v)(t) for m E M x , t E U(X). Let mod(U) be the full subcategory of 
Mod(U) consisting of objects (Mx, X) where Mx is a free U(X)-module. 

The category Mod(U) is again a Grothendieck construction of U; see (5.8). 
As a special case of (5.9) we obtain the following result. 

(5.13) Proposition. Let T be a theory of coactions such that the cogroups of T 
are sums V E A of an object A where E is a set. Then there is an isomorphism of 
categories 

where UA is the enveloping functor in (5.11). 

(5.14) Examples. Let S be a single sorted theory of cogroups so that model(S) is 
a variety of groups with operators as considered in (2.12). Then T = free(S) is a 
theory of cogroups satisfying the assumption in (5.13) so that 

mod = premo dad = mod(U) 
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can be described by the enveloping functor 

U = UA: Coef = model(S) ~ Rings 

Here A is the free model of S generated by one element. For the examples in the 
table of (2.12) and (4.6) one gets the following description of U. 

T X E Coef U(X) E Rings 

gr GE Gr U(G) = Z[G] group ring 
niln G E Niln U(G) = Z[G]jI(G)n 
ab GEAb U (G) = Z, U is constant functor 
var GEVar U(G) = Z[G]/V(G) factor ring of Z[G] 
alg A E AIg U(A) = A0Aop 
calg A E Calg U(A) = A 
lie L E Lie U(L) = universal enveloping algebra of L 

Here I(G)n denotes the n-th power of the augmentation ideal I(G) in the group 
ring Z[G]. Moreover V(G) is the ideal of Z[G] defined by the variety Var as follows. 
If Var = Var(£) is given by a set £ of laws, see (2.6), then V(G) is the ideal 
generated by all elements Q*c(x) E Z[G] with x E N(£) and Q E Gr(Foo, G). Here 
N(£) c Foo is the normal subgroup of Foo generated by £ and C : Foo ~ Z[Foo) is 
the unique function (crossed homomorphism) satisfying c(X2) = [Xi) for generators 
Xi, i 2: 0, of Foo and c(a· b) = c(a)b + c(b). Compare for example Leedham-Green 
L§ 1 [HV]. 

(5.15) Remark. The functor U in (5.14) can also be obtained as follows. Let C 
be a category and for an object G E C let C a be the category of objects over 
G. Then a module Mover G is an abelian group object in the category Ca. Let 
Mod(G) be the category of all abelian group objects in Ca. If C = model(S) as 
above then the forgetful functor 'P : Mod(G) ~ Set with 'P(M) = M(A) has a 
left adjoint 

freea : Set ~ Mod( G) 

which carries a set to a free module over G. Let U(G) be the endomorphism ring 
of the free module freea ( *) generated by one element *. One can check that U (G) 
coincides with U(G) defined in (5.14) above. Compare Quillen [CAl. 

(5.16) Remark. In universal algebra there are also means to define an enveloping 
functor U; see Rowan [ER] and Day-Kiss [FR). The list of examples of Rowan 
essentially agrees with the list in (5.14). 

6 Chain Complexes and Homology 

Given a category of modules mod as in § 5 we introduce the category of chain 
complexes in mod and the notion of homology for such chain complexes. 
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We first consider graded objects and chain complexes in an additive category A. 
A graded object V in A is a sequence V = {Vi, i E Z} of objects Vi in A. A map 
f : V ----t W of degree k between graded objects is a sequence of maps f = {fi : 
Vi ----t Wi+k, i E Z} of maps fi in A. The category gr(A) of graded objects and 
degree O-maps is again an additive category; the sum is given by 

where the right hand side denotes the sum in A for i E Z. Let M c Z be a subset 
and let * be the initial object of A. We say that V is concentrated in degree M if 
Vi = * for i E Z - M. We write V:;::n if V is concentrated in degree;:::: n. Moreover 
V is bounded below if there exists n E Z with V = V:;::n. The dimension of V is 
given by dim(V) :::; n if Vi = * for i > n. 

A chain complex V in A is a graded object V wih a map d : V ----t V of degree -1 
satisfying dd = O. A chain map f : V ----t V'is a map of degree 0 with df = fd. A 
homotopy f ~ g between chain maps is a map a : V ----t V' of degree 1 satisfying 

-f +g = da+ad 

A subcomplex W of a chain complex V is a chain map i : W ----t V with the 
property that V as a graded object is a sum WEB W' and i is the inclusion of the 
first summand. 

(6.1) Definition. Let A be an additive category (or more generally a ringoid). A 
left A-module M is an additive functor M : A ----t Ab where Ab is the category of 
abelian groups. A right A-module is an additive contravariant functor from A to 
Ab or equivalently an A °P-module. For example if A is an additive subcategory of 
an additive category M then we obtain for each object M in M the right A-module 

Hom(-,M) : AOP ----t Ab 

which carries A E A to the abelian group Hom(A, M) of morphisms A ----t M 
in M. Given an additive functor u : B ----t A between ringoids we obtain for a 
left (resp. right) A-module N the B-module u* N by the composition of functors 
u* N = Nu : B ----t A ----t Ab. 

For a chain complex V in A and a left A-module M we obtain the chain 
complex of abelian groups MV given by 

Hence the homology of V with coefficients in M is 

(6.2) 

Similarly we obtain for a right A-module N the cochain complex of abelian groups 
NV given by 
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d* d* 
+---- NVn +----- NVn- 1 +----

and the cohomology of V with coefficients in N is 

H n (V; N) = H n (NV) = kernel d* / image d* . 

If W is a sub complex of the chain complex V then one has the short exact sequences 
of chain complexes in Ab 

o ---> MW ~ MV ---> cokernel i* ---> 0 

o ---> kernel i* ---> NV ~ NW ---> 0 

We define the relative (co-) homology groups by 

Hn(V, W;M) = Hn(cokerneli*) 

Hn(v, W; N) = Hn(kernel i*) 

Clearly we have the associated long exact sequences 

a 
---> Hn(W;M) ---> Hn(V;M) ---> Hn(V, W;M) ---> Hn-1(W;M)--+ 

+-- Hn(w; N) +-- Hn(v; N) +-- Hn(V, W; N) .!!- Hn-1(W; N) +--

Now let T be a theory of coactions and let mod be a category of modules 
for T as defined in (5.6). Many definitions and results below depend only on T 
and mod. We first introduce chain complexes in mod and (co-) homology for 
such chain complexes as follows. Recall that for ax we have the additive category 
mode ax) in which the sum is given by 

(A vax) fJ) (B vax) = A V B V ax 

where A, Bare cogroups in T; see (5.7). 

(6.3) Definition. Let mod be a category of modules for T. Then the following 
category chain of chain complexes is defined. Objects are pairs (A, ax) where ax 
is an object in Coef and A is a chain complex in mod (ax); that is A is given by 
a sequence of cogroups Ai in T with i E Z and ax-equivariant maps 

di : Ai Vax --' A i - 1 vax 

in mod such that di - 1 0 di = 0 in the abelian group mod(Ai Vax, Ai- 2 vax h 
where 1 is the identity of ax . Morphisms (A, ax) --' (B, By) in chain are pairs 
(f,u) where u : ax --' ay is a morphism in Coef and where f is a sequence of 
u-equivariant maps fi' i E Z, for which the diagram 

Ai Vax 
di 

Ai- 1 vax ------+ 

fi 1 1/;-1 
Bi vay di 

B i - 1 V By ------+ 
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commutes in mod. Such a morphism is called a u-equivariant chain map. Two 
such chain maps (j, u), (g, v) from (A, ax) to (B, By) are homotopic if u = v and 
if there exists a sequence 0: of morphisms of u-equivariant maps in mod 

with i E Z such that in mod (Ai Vax, Bi V By)u we have the equation 

We also write 0: : (j, u) ~ (g, u) and one readily checks that homotopy is a natural 
equivalence relation so that the homotopy category chain/~ is defined. One has 
the canonical functors 

chain ~ chain/ ~ ~ Coef 

where q is the quotient functor and c is the coefficient functor which carries (A, ax) 
to ax. 

Example. Let S be a single sorted theory of cogroups and let T = free(S). Then 
we have the equivalence 

mod = mod(U) (1) 

where the right hand side is the category defined by the enveloping functor U, 
see (5.12). We define accordingly the category chain(U) of chain complexes in 
mod(U) such that (1) induces 

chain = chain(U) (2) 

Objects in chain(U) are pairs (A, G) with G E model(S) where A is a chain 
complex of free right U(G)-modules. 

For T = gr the functor U carries a group G E Gr to the group ring U(G) = 
Z[GJ. In this case chain(U) is the category of free chain complexes over group 
rings. In particular the cellular chain complex of the universal covering of a reduced 
CW-complex is an object in chain(U). The coefficient functor carries (A, G) to G. 

(6.4) Definition. Let (A, ax) be a chain complex in chain so that A is a chain 
complex in the additive category mod(ax). Then the homology Hn(A;M) with 
coefficients in a left mod(ax )-module M and the cohomology Hn(A; N) with 
coefficients in a right mod(ax)-module N are defined as in (6.2). A u-equivariant 
chain map f : (B, By) ----+ (A, ax) in chain induces the maps in (co-) homology 

f* : Hn(B; u* M) ----+ Hn(A; M) 
1* : Hn(A; N) ----+ Hn(B; u* N) 

Here u* M = (u*)* M is given by the additive functor u* : mod(By) ----+ mod (ax ) 
in (5.7) (1). We define f* and 1* by the canonical factorization in chain 
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f=w8u:(B,Oy) ~ (u*B,ax ) ~ (A,ax ) 

obtained from (5.9) (1). Here u* carries the chain complex B in mod(Oy) to the 
chain complex u*B in mod(ax ). The definition in (6.2) shows that 

Hn(u*B; M) = Hn(B; u* M) 
Hn(u*B; N) = Hn(B; u* N) 

so that f* = (w81)* and f* = (w81)* are well defined. Clearly f* and f* depend 
only on the homotopy class of f in chain/c::::. We say that i = w 8 u : (B, Oy) ----; 
(A, ax) is the inclusion of a subcomplex if the associated map w 81 : u*B ----; A of 
chain complexes in mod( ax) is the inclusion of a subcomplex. In this case we get 
the relative homology Hn(A, B; M) and the relative cohomology Hn(A, B; N) and 
the following long exact sequences as in (6.2) 

... ----; Hn(B; u* M) ~ Hn(A; M) ----; Hn(A, B; M) ----; Hn-1(B; u* M) ----; .. . 

... +- Hn(B; u* N) L Hn(A; N) +- Hn(A, B; N) +- Hn-1(B; u* N) +- .. . 

(6.5) Example. For objects D V ax and D' Vax in mod(ax ) let 

Homax(D,D') = mod(DV ax,D' vaxh 

be the abelian group ofax-equivariant maps DVax ----; D'Vax . Then Homax ( -, D') 
is a right mod( ax )-module and Homax (D, -) is a left mod( ax )-module. There­
fore we obtain the (co-) homology 

Hn(A,ax)(D) = Hn(A; Homax (D, -)) 

Hn(A,ax)(D') = Hn(A;Homax(-,D')) 

Here Hn(A, ax) is a right mod(ax)-module and Hn(A,ax ) is a left mod(ax )­
module. 

Let (D,ax)n be the chain complex in mod(ax ) which is concentrated in de­
gree n and which is D V ax in degree n. Then one readily checks that 

Hn(A,ax)(D) = [(D,ax)n,A] 

Hn(A,ax)(D') = [A, (D',ax)n] 

Here the right hand side denotes the corresponding sets of homotopy classes of 
ax-equivariant chain maps. 

A map f : (B, ay ) ----; (A, ax) in chain is a homotopy equivalence if there exist 
a map g : (A; ax) ----; (B, Oy) and homotopies fg c:::: 1 and gf c:::: 1 in chain. 

(6.6) Theorem. Let (A, ax) and (B, Oy) be chain complexes in chain which are 
bounded below and let f : (B, Oy) ----; (A, ax) be a u-equivariant chain map. Then 
(a) and (b) are equivalent. 
(a) f is a homotopy equivalence in chain. 
(b) u is an isomorphism in Coef and 
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is an isomorphism of right mod(oy)-modules, n E Z. 
Moreover, if mod(ox) is the additive subcategory of an abelian category M 

such that all objects ofmod(ox) are projective in M then (a) is equivalent to (c). 
(c) u is an isomorphism in Coef and 

f*: Hn(A,ox;N) -7 H"(B,oy;u*N) 

is an isomorphism for all right mod(ox )-modules N of the form N = Hom( -, M) 
where M is an object in M and n E Z; see (6.1). 

Proof of (6.6). Since f = w 8 u = (w 8 1) (u VI) it suffices to prove the theorem 
for Ox = By and u = l. In this case (6.6) is a special case of the corresponding 
result for additive categories in (III.9.6) below. q.e.d. 

Theorem (6.6) is needed for the various homological Whitehead theorems dis­
cussed in chapter A and B. 

7 Augmented Theories of Coactions 

In topology we have the action of the fundamental group 1fl (X) on the set of 
homotopy classes [X, U] in Top* /~. This action is well defined if * -7 X is a 
cofibration and then the action is induced by a canonical map 

(7.1) 

For 0: E 1f1(X) on ~ E [X,U] we write ~n = (~,o:)ex. Let [x,uVree be the set of 
homotopy classes of non-pointed, or free maps from X to U in Topr:::: and let 

cp : [X, U] -7 [X, u]free 

be the forgetful map. Then we have for (( E [X, U] the equation cp(O = cp(() 
if and only if there exists 0: with ( = ~a. Hence the action of 1f1 (X) on [X, U] 
determines the difference between pointed homotopy classes and free homotopy 
classes. Compare also (II1.§ 6) below. 

Maps as eX in (7.1) are used to define the general notion of an "augmented 
theory of coact ions" . The augmentation e x will be needed to define homology 
groups of complexes in degree o. If no augmentation is given such homology groups 
are only defined in degree ;::: 1. There are many examples of theories of co act ions 
which are augmented; see (II1.§ 6). In particular if D is a discrete space the theory 
cone(D, D) = grd(G) in (1.2.11) is augmented by E = 8 1 X D. 

(7.2) Definition. Let T be a theory (i.e. a category in which sums XvY exist) and 
let E be a cogroup in T. We say that the theory T is E-augmented or augmented 
by E if for each object X in T a coaction 
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c:x :X~XvE (1) 

in T is given such that for all f : X ~ Y in T the diagram 

X~xvE 

(2) 

Y~YVE 

commutes in T. 
We call c:x the augmentation map and for a : E ~ U and ~ : X ~ U in T we 

write 

~a = (~,a)c:x: X ~ U. (7.3) 

Then the following formulas hold. 

~al+a2 = (~al t2 and ~o = ~ (a) 

where aI, a2, a1 + a2 E T(E, U) with the group structure + of T(E, U) defined 
by the cogroup structure of E. Next we have 

(b) 

where (~, 1]) : X V Y ~ U. Moreover for a coaction /-Lx : X ~ X V X' in T we 
obtain 

~ + Q = (~, Q)/-Lx : X ~ U 

with ~ : X ~ U and Q : X' ~ U such that 

We also get for f : Y ~ X and g : U ~ V in T the formulas: 

f*(~a) = (f*~t 
g*(~a) = (g*~)g.a 

(c) 

(d) 

(e) 

Here (e) is a consequence of (3) and (d) follows from (2). Now (d) implies (b) and 
then (c). If T is a theory of coactions (or cogroups) then a coaction /-Lx is given 
for all objects X in T and we can use (c), (d) and (e) if T is augmented by E as 
in (7.2). In this case we say that Tor (T, E) is an augmented theory of coactions. 

(7.4) Definition. Let T be a theory of coact ions as in (1.11) so that for each object 
X in T a coaction 

/-Lx :X~XVX' (1) 
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is given. Here X is termed a cogroup in T if X = X'. Let (E,P,E) be a cogroup in 
T and assume that T is E-augmented as in (7.2) and (7.3) so that for each object 
X in T also a coaction 

ex :X~XVE (2) 

is given satisfying (7.2) (2). Then we say that T is strongly augmented by E if for 
each cogroup X' in T there exists a linear map (see (1.3)) 

(3) 

such that ex in (2) is given by the formula 

EX = -iE6X' +ix +iX:6X': X ~ Xv E (4) 

Here + is defined by the cogroup structure P,x of X and iE : E ~ X V E, ix : 
X ~ X V E are the inclusions. Moreover for X' = E we assume 6x: = 1. For 
~ : X ~ U, a : X' ~ U and u : E ~ U in T we write 

~ + a = (~, a)p,x 

~a = (~,U)EX 

Then clearly all formulas (7.2) (a) ... (e) hold in an augmented theory of coactions. 
Moreover by (4) we get 

(5) 

in the group T(X', U). 

(7.5) Remark. Each theory of coactions T is trivially augmented by the initial 
object *. In this case EX : X ~ X V * = X is the identity and 6X' : X' ~ * is the 
zero map of X'. Hence T is also trivially strongly augmented. 

(7.6) Example. Let V be the class of discrete sets in Top and let D E V. Consider 
the theory of coactions 

cone(D, V) = grd(G) 

in (1.2.11) which is the category of free groupoids G with Ob(G) 
cone(D, 'D) is augmented by the object 

E = Sl X D 

D. Then 

(1) 

which coincides with S~ where a : D ~ D is the identity; see (1.2.8). We have for 
each point xED the inclusion S~ = Sl X {x} C E. For an object X = Ca ,{3 in 
cone(D, V) we define the map 

(2) 
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under D as follows. For ct, f3 : E ----+ D and e E E let Ie = I X {e} ----+ Ca ,(3 be the 
map given by the definition of Ca ,(3. Then the restriction of EX to the arc Ie is 

(3) 

Since Ca ,(3 is the union of D and such arcs Ie, e E E, the map EX is well defined 
by (3). Now one can check that cone(D, V) with the augmentation maps (2) is 
an strongly augmented theory of coact ions satisfying the properties in (7.4). If 
D = * is a point then (2) above is a special case of (7.1). Moreover for a cogroup 
A = Ca,a = S; in cone(D, V) we have the canonical map 

(4) 

which carries S! C S;, e E E, identically to S~(e) C E. Clearly by (3) we see that 
(7.4) (4) is satisfied. The strongly augmented theory of coact ions cone(D, V) is a 
special case of (III.6.S) below; see (III.6.9). 

Let (T, E) be an augmented theory of coactions. Then we obtain for each 
object X in T the morphism 

6x: X' ----+ Ev X 

which via the affine property is uniquely determined by the equation 

ix + h = (ix, iE)EX = i~ 

Then we have for (0,1) : E V X ----+ X the equation 

(0, l)h = 0 : X' ----+ X 

so that 6x is trivial on X. In fact 

(0, l)*(i~) = 1~ = Ix 

(0, 1)*(ix + h) = (0, 1)*ix + (0, 1)*h 

= Ix + (0, 1)*6x 

(7.7) 

(1) 

(2) 

Hence the affine property shows (2) by use of (1). In case X is a cogroup with 
trivial map 0 : X ----+ E we get also 

(I,O)h = 0 : X' ----+ E (3) 

so that in this case 6x is also trivial on E. We get (3) by the following equations 

(1, O)(i~) = (O*ix/l:' = OiE = 0 see (a) 

(1, O)(ix + h) = O*ix + (1, 0)*6x = 0 + (1, O)*h 

This yields by (1) equation (3). 
For a morphism f : X ----+ Yin T we consider the following diagram in T. 
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X'VX 
(8x ,ix ) 

EVX ) 

(v!,!) 1 llV! 

Y'VY 
(8y,iy) 

EvY ) 

(7.8) Lemma. This diagram commutes in each augmented theory of coactions. 

Proof. We have the following equations 

i y f + (1 V f)r5x = (1 V f)(ix + r5x) 
= (1 V f)(i~) 

= (iy f)ix: see (7.3) (e), 

iyf + (r5y ,iy) V f = (iy + r5y )f see (1.3.3) (1) 

= (itf)f 

= (iy f)ix: see (7.3) (d). 

Hence the affine property shows 

(1 V f)r5x = (r5y ,iy ) V f. 

q.e.d. 

We derive from (7.8) the following two results on morphisms in premod. 

(7.9) Proposition. Let (T, E) be an augmented theory of coactions and let ax : 
X" -> X be an object in Coer. Then the composite 

x"vax V8x0\ x'vax ~ EVax 

is the trivial ax -equivariant morphism in premod( ax) and hence via the func­
tor E also in mod( ax). 

Proof. The morphism r5x 81 in pre mod is well defined by (7.7) (2); see (1.5.5). 
Moreover we get 

(8x (1)(Vax (1) = v 81 

Here v is given via the quotient map j in (1.5.5) by the equation 

v = j(r5x , ix) \l ax) 

=j((1 Vax )r5x ") see (7.8) 

=0 

since (1 V ax )r5x" EN in (I.5.5). This follows from (7.7) (2), (3). q.e.d. 
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(7.10) Proposition. Let (T, E) be an augmented theory of coactions and let u : 
Ox -4 8y be a morphism in Coef represented by f : X -4 Y. Then the diagram 

X'Vox 

Vf0ul 

Y'V8y 

8x0I 
---> 

8y 0I 
---> 

EVox 

llvU 
EV8y 

commutes in premod and hence via the functor E the diagram commutes also in 
mod. 

Proof. The diagram is the j-image of the diagram in (7.8) where j is the quotient 
map in (1.5.5). q.e.d. 

We use the properties in (7.9) and (7.10) for the following definition of a weakly 
augmented theory of coact ions which suffices to obtain the augmentation of the 
chain functor in (II.§ 6) below. 

(7.11) Definition. We say that a theory T of coact ions is weakly augmented by a 
cogroup E in T if for all X in T maps 

ex:X -4XV E 

are given such that (I,O)ex = Ix and the composite in (7.9) is via the functor E 
trivial in mod(ox) and the diagram in (7.10) is via the functor E commutative 
in mod. Here we do not assume that these properties hold in premod. 

For example we see in (B.1.27) that the category alg of free algebras is weakly 
augmented. 

(7.12) Lemma. Let (T, E) be an augmented theory of coactions. Then the group 
Coef(E,8y) acts on the set Coef(ox,8y). Ifa E Coef(E,8y) is represented by 
ao : E -4 Y and if u E Coef (ox, 8y) is represented by f : X -4 Y then the action 
is defined by ua = {fao}. One has the rules ua ov = (uov)a and uova = (uov)u.a. 

Proof. By (7.2) (2) the left hand side of the following diagram commutes. 

X" ---> X"VE ~ Y" VY 

ax 1 1 axVI 1 (ay,l) 

X XvE 
(I,ao) 

Y ---> ------+ 

Since f is o-compatible we obtain 1 such that also the right hand side commutes. 
Hence also fao = (I, ao)ex is o-compatible. Now it is easy to see by the definition 
of o-equivalenc in (4.1) that Ea = {ro} does not depend on the choice of f and ao. 
q.e.d. 
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(7.13) Definition. Let (T,1:') be an augmented theory of coactions and let u 
ax --> 8y be a morphism in Coef and a E Coef(1:', 8y). Then a function 

mod(A Vax, B V ay)u --> mod(A vax, B V 8y )U" 

is defined which carries ~ 8 u to 

(1) 

Here u<Y is defined by (7.9) and ~o : A --> B V Y represents ~ and ao : 1:' --> Y 
represents a so that 

(2) 

is defined by (7.4) (5). This is a special case of the action (5.4) (1) and therefore 
(1) is well defined since E in (5.6) is equivariant with respect to the action (5.4) 
(1). One readily checks the following rules by use of (7.3). 

(~8U)<Yl+<Y2=((~8utlt2 and (~8u)o=~8u 

((6 + 6) 8 ut = (68 u)<Y + (6 8 ut 
(~8 u)<Y 0 (1] 8 v) = ((~ 8 u) 0 (1] 8 v))<Y 

(~8 u) 0 (1] 8 vt = ((~ 8 u) 0 (1] 8 v))u.r 

(3) 
(4) 

(5) 

(6) 

Here (5) and (6) describe the compatibility of the action with the composition of 
morphisms in the category mod. 

(7.14) Definition. Let (T,1:') be an augmented theory of coactions and let f : 
(B, ay) --> (A, ax) be a chain map in chain. Then for a E Coef(1:', ax) the chain 
map 

r : (B,ay ) --> (A, ax) (1) 

is defined as follows. If f in degree n is given by f n 8 u then r is given by the 
commutative diagram in mod(n E ::2::) 

Bn+! v8y 
dn+101 

Bn V8y ) 

(fn+10u)" 1 1 Un0u)" (2) 

An+! v8y 
dn 01 

An v8y -----; 

This diagram commutes if we omit the action of a since f is a chain map. Hence 
by (7.10) (5), (6) diagram (2) commutes and hence r is well defined. Clearly r is 
u<Y -equivariant and not u-equivariant. Let 9 : (B, 8y) --> (A, ax) be a v-equivariant 
chain map. Then we write 

f ~free 9 {=} 3a with V U = u and gU ~ f (3) 

This is the notion of free homotopy in chain. One readily checks that free homotopy 
~free is a natural equivalence relation on chain. 
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(7.15) Remark. For T = gr a free homotopy corresponds exactly to the notion 
of homotopy of chain maps used by J.H.C. Whitehead [CHIll (10.1). This notion 
is relevant in the context of "Whitehead torsion". Clearly for T = gr free chain 
homotopies correspond to free homotopies in (7.1); compare theorem 13 in J.H.C. 
Whitehead [CHIll. 

(7.16) Proposition. Let T be an augmented theory of coactions. Then the quo­
tient functor 

'P : chainj::~ ---> chain/C::=free 

reflects equivalences. 

Proof. Assume f and 9 are chain maps with (gf)tT ~ 1 and (fgr ~ 1. Let f be 
u-equivariant and let 9 be v-equivariant. Then (vu)tT = 1 and (uvr = 1. This 
implies that uT v = 1. Hence for u : ax --+ 8y E Coer 

u: : CoerCE, ax) --+ CoerCE, 8y) 

is surjective. Hence for ,,(, .-( E CoerCE, 8y) we obtain a E CoerCE, ax) with 
uTa = "(T. Since uTa = (uar we get ua = "( and hence 

u* : CoerCE, ax) --+ CoerCE, 8y) 

is surjective. Let A E CoerCE, ax) with u* (A) = T. Then we have 

1 = (uvr = (UV)U*A = uvA 

1 = vtTu 

Hence VA = v tT is the inverse of u so that u is an ismorphism in Coer. Moreover 
we get 

(gf)tT = gtT f c::= 1 

(fgr = (fg)U.A = f(gA) ~ 1 

Hence f is an isomorphism in chain/~. q.e.d. 

(7.17) Remark. In chapter A we consider four examples of topological homotopy 
theories under an object D, see (A.§ 1), (A.§ 2), (A.§ 3) and (A.§ 4). In each case we 
obtain the theory T of coactions which is obtained by the I-dimensional reduced 
CW-complexes (Xl, D). If D is discrete then T is always augmented and, in fact, 
strongly augmented by the spherical object E = S~ where a is the identity of D. 
Hence we can apply (7.16) in all these cases; compare (7.6). 



Chapter II: Twisted Chain Complexes 
and Twisted Homology 

Let T be a theory of coact ions and let chain be the category of chain complexes 
as defined in (1.6.3). We introduce in this chapter the functor 

K : Twist --> chain 

which carries a presentation ax to a chain complex dx concentrated in degree 1 
and 2. 

In topology (Le. for the theory T = gr of free groups) one obtains dx by the 
Fox derivative of the presentation ax or equivalently, if X 2 is the 2-dimensional 
CW-complex given by the presentation ax of the group G = 1f1X2, then dx is 
the differential 02(X2) --> 0 1 (X2) of the cellular chain complex of the universal 
covering X2 of X2. 

The functor K leads to the definition of a "twisted chain complex" which is 
a pair A I ax consisting of a presentation ax in Twist and a chain complex A 
which in degree::; 2 coincides with dx . In topology such twisted chain complexes 
are the "admissible chain complexes" used by Wall [FC II]. The functor K induces 
the canonical functor 

K : TWIST2 --> TWIST1 

where TWIST2 is the category of twisted chain complexes and TWIST1 is a 
subcategory of the category chain of chain complexes. Most results in this chapter 
are concerned with this functor K. As one of the main results we show in (5.4): 

Theorem. A map in TWIST2 is a twisted homotopy equivalence if and only if 
the induced chain map is a homotopy equivalence in chain. 

This result is needed in the proof of the homological Whitehead theorem in 
chapter VI. If T = gr is the category of free groups then TWIST2 is isomorphic 
to the category of homotopy systems of J.H.C. Whitehead [CH], which are now 
termed crossed (chain) complexes in Baues [CH] and Brown-Higgins [CC]. The 
theorem above yields as a specialization theorem 12 of J.H.C. Whitehead [CH]. 
In fact, part of this chapter may be considered as an extension of Whitehead's 
classical Combinatorial Homotopy II paper [CH] to categorical algebra. 

The general situation, however, is more complicated than the case T = gr 
since the module r1 in § 2 vanishes for T = gr. This module is used to describe 

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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the obstruction for the realizability of a chain map by a twisted chain map; see 
§ 3. 

We use the category TWIST~ to define the homology and cohomology of 
objects in the category Coef of coefficients; see Appendix A. In a similar way 
we use TWIST~ for the definition of the twisted homology of such objects in 
Appendix B. In fact Fl is a special twisted homology group. Moreover in low 
degrees twisted homology specializes to Leedham-Green [HV] and Andre-Quillen 
[CR] homology. 

We point out that all constructions and results in this chapter are available 
whenever a theory T of coactions is given. In section § 6 we consider the case of 
an augmented theory of coactions. 

1 Twisted Chain Complexes 

We here combine the category Twist and the category chain of chain complexes 
in mod to obtain the category of twisted chain complexes. 

(1.1) Definition. We define a functor 

K : Twist ----; chain 

as follows. For an object ax: X" ----; X in Twist let K(ax) be the chain complex 
(concentrated in degree 1 and 2) given by the ax-equivariant map in mod 

dx = E(Vax (1) : X" V ax ----; X' Vax 

A map (J", f) : ax ----; f)y in Twist is carried via K to the chain map (/1, fz) 

X" Vax 

h=E(f"0u) 1 
Y" V f)y 

~ X'Vax 

1 E(\l f0u)=/1 

~ Y'vf)y 

where u : ax ----; f)y E Coef is represented by f. 

(1.2) Lemma. The functor K is well defined. 

Proof. We have to show /1dx = dy fz. For this we use lemma (1.3.8) where ~ yields 
a u-equivariant map 

~ 8 u : X" V ax ----; Y~' V y' V Y{' V f)y 

in premod which satisfies E(~ 8 u) = 0 by the second isomorphism in (1.5.6) 
(iii). Therefore the diagram in (1.3.8) induces via E a commutative diagram in 
mod which coincides with the diagram (1.1). Moreover K is a functor since for 
(gil, g) : f)y ----; az in Twist with v = {g} we get 

E(Vg 8 v) 0 E(V f 8 u) = E(V(gf) 8 vu) 

This follows from (1.3.4). q.e.d. 
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(1.3) Definition. We introduce a natural equivalence relation rvE on the category 
Twist. Let (j", f), (gil, g) : Ox -+ By be maps in Twist. Then we set (f", f) rv E 

(gil, g) if f = g and E(j" 8 {f}) = E(g" 8 {g}) where E is the quotient functor 
for mod in (1.5.6). Let 

E : Twist -+ Twist / rv E 

be the quotient functor. We denote the equivalence class E(j", f) by (E f", f). 
Clearly the functor K in (1.1) induces a well defined functor 

K : Twist/rvE -+ chain. 

Remark. Let 1A : A -+ A be the identity of the cogroup A in T. Then 1A is an 
object in Twist and one gets the pre-crossed module 

Twist(lA' By) ~ T(A, Y) 

II~ 
T(A,Y"VYh 

Here <5 carries (j", f) to f. Moreover <5 induces the homomorphism of groups 

<5 : Twist(lA' ay)/rvE -+ T(A, Y) 

which is a crossed module. 

(1.4) Definition. We introduce a natural equivalence relation ':::'.E on Twist as 
follows. Let (j", f), (gil, g) : ax -+ ay be maps in Twist. We say that these maps 
are E-homotopic, (f",f) ':::'.E (gil, g), if there exists 

a : X' -+ y" V YET 

trivial on Y such that 

g = f + (oy, l)a E T(X, Y) (1) 

and in mod (X" Vox, Y" V oY)u 

-E(j" 8 u) + E(g" 8 u) = E(a 8 u)dx (2) 

Here u = {f} = {g} is the map in Coef represented by f and g since (1) holds. 
Clearly ':::'. E is actually a natural equivalence relation on Twist / rv E so that one 
gets the sequence of quotient functors 

Twist ~ Twist / rv E ~ Twist / ':::'. E ~ Coef 

All functors E, q, and c are the identity on objects and c carries the homotopy 
class of (j", f) to the a-equivalence class of f. For this we point out that (1) above 
implies a-equivalence g rv f. 
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(1.5) Lemma. The functor K in (1.1) induces a well defined functor 

K : Twist/~E ----+ chain/~ 

between homotopy categories. Moreover K is compatible with coefficient functors, 
that is cK = c. 

Proof. We have to show that g = f + (Oy, 1)0' implies 

E(Vg 8 u) = E(V f 8 u) + E(voy 8 l)E(O' 8 u) (1) 

For this we compute Vg by the second equation in (1.3.4). Hence for f3 = (Oy, 1)0' 
we get 

v(g) = -iyf3 + V f + iyf3 + vf3 
= (V 1)(3 + vf3 

(2) 

We know that (V 1)(3 8 u = V f 8 u in premod since f3 represents the trivial 
element in Coef(X', Oy); see (I.5.5). Hence we get 

E(Vg 8 u) = E(V f 8 u) + E(Vf3 Co) u) (3) 

Here vf3 is computed as in (I.3.12) (1) where we replace 1" by a. Hence for 

we have E(~ 8 u) = 0 and 

Hence we get 

E(vf3 8 u) = E«voy, iy)O' 8 u) 

= E(VOy 8 l)E(O' 8 u) 

and the proof of (1) is complete. 

(4) 

(4) 

(5) 

q.e.d. 

We now use the functor K for the definition of a new category of twisted chain 
complexes. Let chainl,2 and chain2:1 be the full subcategories of chain consisting 
of chain complexes concentrated in degree {1,2} and in degree:::: 1 respectively. 
Then we have the following pull back diagram of categories 

TWIST2 ----7 chain2:1 

1 lr (1.6) 

Twist/~E ----7 

K 
chainl,2 

Here r is the forgetful functor and K is the functor in (1.1). We now describe the 
category TWIST2 and a full subcategory TWIST~ explicitly as follows. 
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(1.7) Definiton. We define the category TWIST2 . Objects are chain complexes 
(A, ox) in chain:;o.l with the properties 

{
AI =X', A2 = X" 

d2 = dx = E(\1ax 8 1) : X" Vox -+ X'V Ox 
(1) 

A morphism, termed a twisted chain map, 

f = (1)l,EI'',j): (A, ox) -+ (B,ay) (2) 

is given by a morphism (EJ", j) : Ox -+ ay in Twist/~E and a u-equivariant 
chain map hI : (A, ox) -+ (B, ay) in chain. Here u = {f} is represented by 1 
and 

(1.8) Definition. Let 

{
h=E(\11 8U), 

Jz=E(1"8u). 

TWIST~ C TWIST2 

(3) 

be the full subcategory of all objects (A, ox) satisfying the following cocycle 
condition: For d3 in (A, ox) there exists 03 E T(A3, X" V Xh such that 

{ d:~=E(fh81) 
(ox, 1)03 = 0 in T(A3,X) 

In this case we denote the object (A, ox) by Alax E TWIST~. 

( 1. g) Definition. We define the following subcategory 

TWIST~ C chain:;o.l 

Objects are chain complexes (A, ox) with the property 

{
AI = X', A2 = X" 

d2 = dx = E(\1ax 8 1) : X" Vox -+ X'V Ox 

A morphism, termed a a-compatible chain map, 

J = (1:;o.l,U): (A, ox) -+ (B,ay) 

(1) 

(2) 

is a u-equivariant chain map in chain for which there exists a a-compatible map 
f: X -+ Y representing u = {f}: Ox -+ ay in Coef such that h = E(\11 8 u). 

We have the canonical functor 

K: TWIST~ -+ TWIST~ (1.10) 

which is the identity on objects and which carries f = (1)1, EJ", j) to J = (1)1, u) 
- -

with u = {f}. In the next two sections we study properties of this functor. 
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2 The Module r 1 

Let T be a theory of coact ions and let mod be an associated theory of modules 
as defined in L§ 5. 

(2.1) Definition. Let 8y : Y" ---+ Y be an object in Twist. We define for each 
object A V ax in mod and u E Coef(ox,8y) the abelian group r 1 (8y)(A V 
ox)u = cokernel(E3 ) by the following diagram in which rows and columns are 
exact sequences of groups. 

o o 

1 E3 1 7 r" ) r' ----'----+) r 1 (8y)(A V ox)u 

1 1 
T(A, Y" V Yh ~ mod(A V ax, y" V 8y)u -------t) 0 

l(OY,l). l(dY). 
T(A, Y) El ) mod(A vax, Y' V 8y)u 

Here E1 and E2 are defined by 

{ 
E1(a) = E(Va 8 u) 

E2(b) = E(b 8 u) 

Here E is the quotient functor in (1.5.6) and va 8 u and b 8 u with a E T(A, Y) 
and b E T(A, Y" V Y), denote morphisms in premod by (1.5.3). The operator E1 
in general is not a homomorphism but satisfies E1 (0) = O. Using (1.5.6) (ii) we see 
that the map E(lA V u) : A V ax ---+ A V 8y in mod induces the isomorphism 

which we use as an identification. This abelian group yields the right mod(8y) 
-module 

which carries the object Av8y to r 1(8y )(A) = r 1(8y )(A V8y)l and which carries 
the 8y-equivariant map g to g* with g*'Y(~) = 'Y(~g); see (2.3) below. 

(2.2) Lemma. The diagram in (2.1) commutes and E1 is a j-crossed homomor­
phism where j : T(A, Y) --» Coef(A, 8y) is the quotient map. 

Proof We have 
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Here we see as in the proof of (1.3.8) that 

V((Oy, l)b)) = q(Vb) 

and that ~ = Vb - (iY~I, iy)b is trivial on Y{' V Y, Y' V Y and Y~' V Y. Hence by 
the second equation in (1.5.6) (iii) we see that E(~ 8 u) = 0 so that we get 

E 1 (oy, l)*b = E(q(Vb) 8 u) 

= E(q(iyt, iy)b 8 u) 

= E((V8y, iy)b 8 u) 

= E(V8y (1)E(b 8 u) 

= dy E2(b) 

and therefore the diagram in (2.1) commutes. We know by (1.5.6) that E is equiv­
ariant with respect to the action of Coef(A, 8y). Therefore E1 is a j-crossed 
homomorphism since we can apply the second equation in (1.3.4). q.e.d. 

(2.3) Lemma. r1 (8y) is a well defined right mod(8y)-module. 

Proof. Let 9 : B V Oz --+ A vax be a v-equivariant map in mod. We have to show 
that 

defined by g* 'Y(x) = l' g*(x) is a well defined homomorphism. Here we have x E 

r' = kernel(dy k Since clearly g*(dy )* = (dy)*g* we have also g*x E kernel(dy )* 
so that 'Y(g*x) is defined. Morover we have to check that for x = E3 y there is y 
with g*x = E3 y. Here we have y E T(A, Y" V Yh with (8y,l)*y = O. On the 
other hand E in (1.5.6) is full so that 9 = E(98V) with 9 E T(B, A V X)2. Assume 
u = {f} is represented by f : X --+ Y. Then we have the following commutative 
diagram in T 

B~AVX~Y"VY 
~ 1(0,1) 1 (By ,l) 

X f )Y 

Here we see that f) = (y, i y I)g satisfies (8y, 1)f) = 0 and 

E3 Y = E((y,iy f)g 8 uv) 

= E(y 8 u)E(9 8 v) 

= g*(E3Y) = g*(x) 

q.e.d. 
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(2.4) Proposition. Each map (g", g) : oy ----+ Ow in Twist representing w = {g} 
in Coef induces a map 

of right nlOd(oy)-modules. 

Proof. By (1.1) the map (g",g) induces a chain map K(g",g) = (gl,g2) : dy ---> 

dw . Hence we see that (g2)* carries kernel(dy )* to kernel(dw )* so that 

(1) 

is defined by 

(2) 

with 92 = E(g" 0 w). We have to check that for x = E", y there is y with (g2)*X = 
E3 y. Now the diagram 

y (g",iwg) 
A ) Y"VY----4) W"VW 

~lU~') l(nWl] 
y ---g------t) W 

commutes so that we have for y = (gil, iwg)y the equation (ow, 1)* y = 0 and 

E3 Y = E(y 0 uw) 

= E((g", iwg)y 0 wu) 

= E(g" 0 w)E(y 0 u) 

= (g2)*E3 (y) = (g2)*(X). 

q.e.d. 

(2.5) Lemma. Let (h", h), (gil, g) : oy ----+ Ow be maps in Twist with h = g. 
Then the maps 

coincide. 

This lemma shows that each a-compatible map 9 : Y ----+ W induces a well 
defined natural transformation g* : n (oy) ---> w* r 1 (ow). In fact, if T has "enough 
objects and modules" then g* = w* : r1 (oy) ---> w* r1 (ow) depends only on the 
induced map w = {g} in Coef, see (7.10) below. 
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Proof. The condition h = 9 implies 

(aw , l)h" = (aw, l)g" 

and hence we get an element 

~ = -h" + g" E T(Y", W" V Wh 

with (aw, 1)~ = o. Hence we get 

(g", g)*'"Yx = '"Y E(g" 8 w)*x 

= '"Y E((h" + 0 8 w)*x 

= '"Y E(h" 8 w)*x + '"Y E(~ 8 w)*x 

= '"Y E(h" 8 w)*x 

= (h", h)*'"Y x 

Here we use the following facts. Choose for x an element y with E 2 y = x. Then 
we get: 

E(~ 8 w)*x = E(~ 8 W)E2Y 

where the last equation holds since 

= E(~ 8 w)E(y 8 u) 

= E((~, g)y 8 wu) 

= E3((~,g)y) 

(aw , 1)((~, g)y) = ((aw , 1)~, g)y 

= (O,g)y = 0 

3 The Obstruction for the Twisted Realization 
of a Chain Map 

We consider the "realizability" of morphisms with respect to the functor 

K: TWIST~ ---> TWIST~ 

q.e.d. 

(3.1) 

in (2.8). Let Alax and BI8y be objects in TWIST~ and let (A, ax) = K(Alax ) 
and (B,8y) = K(Blay ) be the corresponding chain complexes in TWIST~. Let 

j: (A,ax ) ---> (B,8y) 

be a u-equivariant map in TWIST~. A K-realization of j is a map 

f: Alax ---> BI8y 

in TWIST~ with K(f) = j. 
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(3.2) Theorem. A K -realization of 1 exists if and only if an obstruction element 

vanishes. 

Here we use the cohomology of the chain complex (A, ax) with coefficients in 
the right mod(8y)-module r 1(8y) in (2.1). 

{3.3} Definition of the obstruction. Let 1 be the chain map 1 = (j>1, u). If 1 is 
in TWIST~ there exists a map (j", f) : ax -+ 8y in Twist with u = {j} and 
II = E(V f 8 u). Hence we have 

Therefore the element 

d2 h = IId2 = IIdx 

= E(V f 8 u)dx 
= dy E(j" 8 u) = d2 E(j" 8 u) 

- h + E(j" 8 u) E mod(X" V ax, y" V 8y)u 

satisfies (dy )*( - h + E(j" 8 u)) = 0 so that 

f3f = ,( - h + E(j" 8 un E r1 (8y )(X" V ax)u 

with X" = A2 is defined. In lemma (3.4) we show that f3f is a co cycle so that f3f 
represents a cohomology class 

a(j) = {f3f} E H 2 (A,ax,u*r1 (8y) 

{3·4} Lemma. djf3f = O. 

Proof. We consider the elements 

d;h, d'3E(j" 8 u) E mod(A3 Vax, y" V 8y )u. 

We have 

(dy)*d;h = dy hd3 = dy d3h = 0 

since d2 = dy. Since (dy )*( - h + E(j" 8 u» = 0 we also get 

Hence the elements 

(1) 

(2) 

(3) 

(4) 

are defined. We claim that both elements in (4) are trivial; this implies djf3f = o. 
Let 13 E T(A3, B3 V Yh be an element with h = E(j3 8 u); such an element 
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exists since E is full. On the other hand we have by the cocycle condition in (1.8) 
an element 03 with E(03 (1) = d3. Hence we get 

djh = d3h 
= E(03 (1)E(j3 8 u) 

= E((03, iy)i3 8 u) 

Here (By, 1)03 = 0 implies that y = (03,iy)i3 satisfies 

(By, l)*y = ((By, 1)03, 1)i3 

=(0,1)i3=0 

Hence we get for E3 in (2.1) 

Since "(E3 = 0 we thus have "(djh = o. Next we have 

djE(f" 8 u) = E(f" 8 U)E(03 8 1) 

= E((f", iy 1)fh 8 u) where u = {f}. 

Here z = (f", i y 1)03 satisfies 

(8y, l)*z = (By, l)(f", iy 1)03 

= ((By, 1)1",1)03 

= (fox, 1)03 

= 1(ox, 1)03 = 0 

Here again we use the co cycle condition. Hence z E r" and therefore 

djE(f" 8 u) = E(y 8 u) = E3(Z) 

satisfies "( djE(f" 8 u) = O. 

(3.5) Lemma. a(j) is well defined by j. 

(5) 

(6) 

(7) 

(8) 

q.e.d. 

Proof. Let (g",g) be a further map in Twist with u = {g} and h = E(Vg 8 u). 
Since u = {g} = {f} there is a E T(X', Y" V Y)2 with 

g=1+(oy,1)a. (1) 

This implies 

E(Vg 8 u) = E(V 18 u) + dy E(a 8 u) 

and hence since h = E(Vg 8 u) = E(V 18 u) we get 
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dy E(a8u)=0 

so that ,(E)(a 8 u) is defined. Moreover we have 

(Oy, 1)*( -(a, i y f)('Vox) - f" + g") 

= -(Oy, l)(a, iy f)('Vox) - f8x + gox 

= -((Oy, l)a, f)('Vox) - fox + (f + (Oy, l)a)ox 

=0 

In the last equation we use the equation in (1.3.2). Now (3) shows that 

y = -(a, i y f) 'V Ox - f" + g" 

satisfies (Oy, 1). y = 0 or Y E r". Moreover we get 

where 

E3(Y) = - E((a, iy f) 'V Ox (-) u) 

- E(f" 8 u) + E(g" 8 u) 

E((a, iy f) 'Vox 8 u) = E(a 8 u)E('Vox (1) 

= E(a 8 u)dx 

(2) 

(3) 

(4) 

(5) 

(6) 

Now (5) and (6) show that {3/ = ,(-h+E(f"8u)) and {3g = ,(-h+E(g"8u)) 
satisfy 

-{3f + (3g = d'X,(E(a 8 u)) (7) 

where we use (2). Hence {3f and {3g differ only by a co cycle so that the cohomology 
classes {{3 f } = {{3g} coincide. q.e.d. 

(3.6) Proof of (3.2). If J satisfies K(/) = J then one has by J a pair (f", f) with 
h = E(f" 8u) and hence aU) = 0 by (3.3). Now assume J satisfies aU) = O. We 
have to construct 9 = (g>3,Eg",g) in TWIST~ with K(g) = j. We first choose 
(f", f) as in (3.3). Then aU) = 0 implies that there is 

{ 
(3 E r1 (oy)(X' V ox)u with 

(dx )* {3 = ,( - h + E(f" 8 u)) 

Using diagram (2.1) we choose 

{32 E rnod(X' V ax, y" V OY)u 

with (dy ).{32 = 0 and ,{32 = {3 and we choose 

{31 E T(X', Y" V Ylz 

(1) 

(2) 

(3) 
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with E 2(31 = (32. We define 

Then we have as in the proof of (1.5) 

E(\lg 8 u) = E(\l f 8 u) + dy E((31 8 u) 

= II + dyE2(31 

= II +dy (32 = II 

Moreover we find g" as follows. We have by (1) and (2) 

ry( -(32 (\lOx 8 1) - E(f" 8 u) + h) = 0 

In fact, dy (32 = 0 and 

dy 12 = IIdx = E(\l f 8 u)dx = dyE(f" 8 u) 

(4) 

(5) 

(6) 

so that the left hand side of (6) is well defined. Using (6) we can choose by the 
diagram in (3.3) an element 

8 E T(X", y" V Yh 

with 

Now we set 

g" = 1" + ((31, iy f) \lOx + 8. 

Then (g", g) : Ox ---+ By is a map in Twist since we have 

(By, 1)*g" = (By, 1)1" + (By, 1)((31, iy f) \lOx + (Oy, 1)8 

= fox + ((By, 1)(31, f) \lOx 

= (f + (By, 1)(3dox; see (3.3) 

=gox 

Moreover we get by (8) and (3.3) and (7) 

E(g" 8 u) = E(f" 8 u) + E(((31, iy f) \lox 8 u) + E3(8) 

(7) 

(8) 

= E((31 8 u)E(\lox 81) + 12 - (32E(\lOX 81) (9) 

=12 

since E((31 8 u) = E 2(31 = (32. Now we set gi = fi for i ?: 3. Then we have 
constructed by (5) and (9) a map g with K(g) = j. q.e.d. 
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4 Twisted Homotopies 

We introduce the notion of homotopy for twisted chain maps and a-compatible 
chain maps as defined in (1.7) and (1.9) and we compare the corresponding homo­
topy categories. 

(4.1) Definition. Consider twisted chain maps /, 9 : Alox ----+ BIOy in TWIST~ 
with / = (J>l,Ej",j) and 9 = (g>l,Eg",g). Then / is twisted-homotopic to g, 
and we writ~ (00;::>:1, a) : / ~ g, if th~re exist 

{
a E T(X', y" V Yh 
00;::>:1 : (J;::>:1, {f}) ~ (g;::>:l, {g}) 

where 00;::>:1 is an u-equivariant homotopy in chain with u = {f} = {g} such that 

{ 
001 = E(oo 8u) and 

9 = f + (Oy, 1)00 in T(X, Y). 

(4.2) Definition. Considcr a-compatible chain maps j,9 : (A, ax) ----+ (B, Oy) in 
TWIS T~ with j = (J> 1, u) and 9 = (g> 1, u). Then j is homotopic to 9 if there 
exists an u-equivariant -homotopy 00;::>:1 : 1 ~ 9 in chain. 

The homotopy categories for (4.1) and (4.2) are well defined and one obtains 
by K in (1.10) the induced functor 

K 
TWIST~/~ -----'> TWIST~/~ ( 4.3) 

where TWIST~/~ is a subcategory of chain/~. The morphisms in the image of 
the functor K in (4.3) can be characterized by the obstruction 0 in (3.2) since we 
have the following result. 

(4.4) Theorem. Let j,9 : (A, ax) ----+ (B, ax) be a-compatible chain maps in 
TWIST~. If there is a homotopy j ~ 9 in chain one has 0(1) = 0(9)' That 
is 0(1) depends only on the homotopy class {j} in TWISTU~ and there exists 
{g} in TWIST~/~ with K{g} = {j} if and only if O{j} = o. 

Proof. Let j = (J;::>:l,U) and 9 = (g;::>:l,U) and let 00;::>:1 be a homotopy (J;::>:l,U) ~ 
(g;::>:l, u) in chain. Hence we have 

- h + gl = dy OO1 

- 12 + g2 = d3OO2 + OO1 dx 

(1) 

(2) 

where 001, 002 are u-equivariant in mod. Since E is full we choose for 001 an element 
a E T(X', Y" V Yh with 001 = E(oo 8 u). Then we obtain with the choice (J", j) 
for (J;::>:l,U) in (3.3) the following choice (g", g) for (g;::>:l, u). 
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{
9=f+(aY ,1)a 
g" = f" + (a, iy f) \l ax (3) 

In fact (g", g) is a map in TWIST since 

(ay, l)g" = (ay, 1)(f" + (a,i y f) \l ax) 

= (ay, 1)f" + (ay, l)(a, iy f) \l ax 

= fax + ((ay, l)a, f) \l ax 

= (f + (ay, l)a)ax 

=gax 

Moreover we know by (3) that u = {J} = {g} and we get gl = E(\lg 8 u) by the 
following argument. As in the proof of (1.5) we know 

E(\lg 8 u) = E(\l f 8 u) + E(\lay 81)E(a 8 u) 

= h + dy a 1 = gl 
(4) 

where we use (1). This completes the proof that (g",g) in (3) is a choice for 
9 = (g,;>l,U) defining the obstruction 0(9) as in (3.3). Now we get by (3) and (2) 
in (3.3) 

0(9) = b( -g2 + E(g" 8 u»)} 

= b( - h - d3a 2 - a1 dX + E(f" 8 u) + a1 dX)} 

= b( - h + E(f" 8 u»)} - b(d3 a 2)} 

= O(J) 

Here ,(d3a2) = 0 follows from the co cycle condition for d3 in (1.8) by the same 
argument as in (3.4) (5), (6). q.e.d. 

The next lemma shows that the functor K from twisted chain complexes to 
chain complexes has the homotopy lifting property; see (VI.§ 3). We describe the 
lifting of homotopies in chain to obtain homotopies in TWIST~. Let Alax, Blay 
be objects in TWIST~ which are carried by the functor K to chain complexes 
(A, ax) and (B, ay) respectively and consider maps 

{ J: Alax --> Blay in TWIST~ 

J,9: (A, ax) --> (B,ay) in chain 

where J = K(J) is the chain map induced by f. 

(4.5) 

(4.6) Lemma on lifting homotopies. If for the maps above there is a homo­
topy a:;:'l : J '::::: 9 in chain then there exists a homotopy (a:;:'l, a) : J '::::: 9 in 
TWIST~ where 9 is a K -realization of 9,. that is Kg = 9. 
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Proof of (4.6). Let j = (h>l' u) and g = (g?l' u) and let 0:?:1 j c::::: g be a 
homotopy. For 0:1 and 0:2 we choose elements 

{ 
O:ET(X',Y"VYh 
0:' E T(X",B3 VYh (1) 

with 0:1 = E(o: 8 u) and 0:2 = E(o:' 8 u). Moreover since (B, 8y) satisfies the 
cocycle condition we choose fh for d3 as in (1.8). Given J = (J>1, E1", f) we now 
define 9 = (g?:l,Eg",g) as follows: Let 

g=f+(ay,l)o: 

g" = 1" + (0:, iy f) Vax + (a3, iy)o:' 

(2) 

(3) 

Moreover g?:l in 9 coincides with g?:l in g. We have to check that 9 is a well defined 
twisted chain map. Using the cocycle condition (1.8) we know 

(ax, 1)(03,iy)o:' = ((ox, 1)03, 1)0:' = (0,1)0:' = 0 

so that by the argument following (1.5) (3) the map (g", g) is well defined in Twist. 
Moreover we see gl = E(Vg 8 u) as in (4.5) (4) and we have g2 = E(g" 8 u) since 
by (3) 

E(g" 8 u) = E(J" 8 u) + E(o: 8 u)dx + E(03 8 l)E(o:' 8 u) 

= .fz + O:l dX + d3 0: 2 

= g2, see (4.5) (2). 

Hence 9 is a well defined twisted chain map. Moreover (0:?:1' 0:) : J c::::: 9 is a twisted 
homotopy by (2) and the choice of 0: in (1); compare (4.1). q.e.d. 

We now study the set of all K-realization of a given map j in TWIST~. 

(4.7) Definition. Given a a-compatible map f : X --> Y in T representing u = 

{j} : Ox --> 8y in Coef we define the subset 

r(ox,aY)f c T(X', Y) 

as follows. Here r(ox, 8y h consists of all elements ..\ E T(X', Y) for which there 
exist 

satisfying the equations 

{ 
O:ET(X',Y"VYh 

t, E T(X", y" V Yh 

..\ = (oy, 1)0: 

0=dy E(0:8u) 

O=E(t,8u) 

0= (ay, 1)(~t, + (o:,ixf) vax) 
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Here the last equation is equivalent to 

(A, f) Vax = (ay, 1)~. 

Given a twisted chain map f = (f~l, E1", f) : Alax --> BI8y and A E ro(ax, 8y)f 
we define the twisted chain map 

by f~1 = g~1 and 

f + A = (g~l, Eg", g) : Alax --> BI8y 

{ 
g=f+A=f+(8y,l)o: 

g" = 1" + ~ 

where 0: and ~ are chosen for A as above. As in (4.5) (3) we see that f + A is a well 
defined map in TWIST~. Given A E r(ax, 8y)f one can check that)..' E T(X', Y) 
satisfies A +)..' E r(ax,8y)f if and only if A' E r(ax,8yh+)... 

(4.8) Proposition. Let f, g : Alax --> BI8y be maps in TWIST~. Then we have 
KJ = Kg if and only if there exists A E r(ax,8y)f with g = J + A. In fact, the 
function 

which carries A to J + A is a bijection. 

Proof. By definition we have K(J +A) = K(J). On the other hand since K J = Kg 
are the same chain maps we know that f and 9 represent the same morphism in 
u and therefore there is 0: E T(X', y" V Y) with 9 = f + (8y, 1)0:. Moreover there 
are (g", g), (f" , f) : ax --> 8y in Twist with 

Hence we get 

E(g" (0) u) = g2 = 12 = E(f" (0) u). 

(8y, l)g" = gax = (f + (8y, l)o:)ax 

= fax + «8y, 1)0:, f) V ax 

= (8y, 1)1" + (8y, l)(o:,iy f) Vax. 

Therefore ~ = - 1" + g" with E(~ (0) u) = 0 satisfies 

(8y, 1)~ = (8y, 1)(0:, iy f) Vax. 

Moreover 

E (V 9 (0) u) = g1 = It = E (V f (0) u) 

implies dy E(o: (0) u) = 0 since 

E(Vg (0) u) = E(V f (0) u) + dy E(o: (0) u) 

by (1.5) (1). q.e.d. 
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(4.9) Definition. Given a map u : ax ----+ f)y in Coef and chain complexes (A, ax) 
and (B, oy) in TWIST~ we define the subgroup 

H(A,ox;B,f)y)u c T(X',Y) 

which consists of all elements A E T(X', Y) for which there exist 0: E T(X', Y" V 
Yh and u-equivariant maps (i ::::: 1) 

such that 

O:i : Ai Vox ----+ Bi+l V f)y 

{
A = (f)y, 1)0: 

al = E(o: 8 u) 

0= di+lai + O:i-ldi for i ::::: 1. 

(4.10) Proposition. Let f: Alox ----+ Bloy and let A E r(ox,f)y)[. Then there 
exists a twisted homotopy f c::: 1 + A if and only if A E H(A, Ox; B, f)y)u where 
u = {J} is represented by f. 

Proof. Let (O:~l' a) be a twisted homotopy 1", 1 + A. Then we have 

f+A=f+(f)y,l)o: 

so that A = (oy,l)a by the affineness property of T. Now it is clear that a E 

H(A,ox;B,f)y)u since Kl = K(f + A). q.e.d. 

We derive from (4.10), (4.8) and (4.6) the next result: 

( 4.11) Proposition. Let 1, 9 : A lox ----+ B I f)y be maps in TWIST~ and as­
sume there exists a homotopy K(g) c::: K(f) in TWIST~. Then there exists 
A E r( ox, f)y) f with 9 c::: 1 + A in TWIST~. Moreover there is a bijection of 
sets 

where {g} denotes the twisted homotopy class of 9 and where the equivalence re­
lation '" is defined for A, X E r( ox, f)y ) f by A '" X if A - X E H( A, ox; B, f)y )u 
where u is represented by f. The bijection f+ carries the equivalence class {A} to 
{f + A}. 

Proof. If K(g) c::: K(f) we obtain by (4.6) a twisted homotopy 9 c::: 1 = Kl so 

that 1 = 1 + A with A E r( ox, f)y) f by (4.8). Now consider the function 

r(ox,f)y)[ ----+ {{g}; K{g} = K{f}} 

which carries A to {I + A}. By the argument above this function is surjective. We 
claim that f + A c::: f + X if and only of A'" A'. In fact by (4.10) we have for A" = 
-A+ A' and 9 = f +A a homotopy 9 c::: 9 + A" if and only if A" E H(A, ox; B, f)y)u 
where u is represented by 9 = f + A. Here u is also represented by f. q.e.d. 
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(4.12) Definition. Given a o-compatible map f : X -t Y representing u : Ox -t 

8y in Coef we obtain the canonical function 

which carries). = (Oy, l)a to 

Here we choose for)' the pair (a,~) as in (6.7) so that dy E(a 8 u) = 0 and hence 
EjC).) is well defined; compare the diagram in (2.1). 

(4.13) Lemma. kernelEj C H(A,ox;B,8y)u. 

Proof. Let Ej()') = o. Then we have). = (8y,l)a with E(a 8 u) = E38 with 
8 E T(X', Y" V Yh and (8y,1)8 = O. Hence we get). = (8y, l)(a - 8) with 
E(a - 8) = 0 and we can choose all ai = 0 in (4.9). 

Using (4.11), (4.13) and (4.4) we get 

(4.14) Theorem. Assume the function Ej in (4.12) is trivial for all f. Then the 
functor 

K: TWIST~/~ -t TWIST~/~ 

is faithful. Moreover if r 1 (Oy) = 0 for all 8y then this functor is full and faithful. 

5 Twisted Homotopy Equivalences 

A chain map f : (A, ox) -t (B, Oy) in chain is a homotopy equivalence if there 
exists a chain map g : (B, 8y) -t (A, ox) and homotopies of chain maps g f ~ 1 
and f g ~ 1 where 1 denotes the identity of (A, ox) and (B, 8y) respectively. The 
homotopy class {f} of f is then an equivalence in the homotopy category chain/~. 

A map f : (A, ox) -t (B, 8y) is a homotopy equivalence in TWIST~ / ~ if and 
only if f is a homotopy equivalence in chain such that a homotopy inverse g of f 
can be chosen to be a map in TWIST~. 

A twisted chain map f : Alox ---+ BI8y in TWIST~ is a twisted homotopy 
equivalence if there exist a map g : BI8y -t Alox in TWIST~ and twisted 
homotopies gf ~ 1 and fg c::: 1 where 1 denotes the identity of the object Alox 
and BI8y respectively. Then the twisted homotopy class {j} of f is an equivalence 
in the homotopy category TWIST~/~. 

We say that a functor F : C -t K reflects equivalences( or satisfies the "suffi­
ciency condition") if the following property holds. A map f in C is an equivalence 
in C if and only if the map F(f) is an equivalence in K. 
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(5.1) Theorem. A twisted chain map 1: Alox ----t BIOy is a twisted homotopy 
equivalence if and only if the induced chain map K 1 : (A, ox) ----t (B, Oy) is a 
homotopy equivalence in TWISTU~. Hence the functor 

K: TWIST~/~ ----t TWIST~/~ 

reflects equivalences. 

For the proof of the theorem we use the following lemma. 

(5.2) Lemma. Let h : Alox ----t Alox be a map in TWIST~ such that Kh ~ 1 
where 1 is the identity of (A, ox). Then the function 

defined by h* (A) = {hA} is surjective. The equivalence relation rv on r (ox, ox) h 

is defined by H(A,ox;A,ox)u as in (4.11) where u = {h} = 1 is the identity of 
Ox in Coef. 

Proof. One readily checks that h* is a well defined function. In fact, this is also a 
consequence of (4.11). Let h = (h>l, Eh", h). Since Kh ~ 1 we know that {h} = u 
is the identity in Coef. Hence there is 8 E T(X', X" V X)z satisfying 

h = 1 + 8' with 8' = (ox, 1)8. 

We have by (1.3.3) (2) 

(ix 8' + 0:, ix) V Ox = (ix 8', ix) V Ox + (0:, ix + ix 8') V Ox 

= (ixo', ix) V Ox + (0:, ixh) \lax 

Now we observe that 

ix8' 81 = 0 in premod so that 

{ 
E(ix8' 81 = 0 and 

E((ix8', ix) \lax (1) = E(ix8' (1)dx = 0 

Compare the definition of premod in I.§ 5. 
Now let A E r( ox, Ox )h, that is 

A = (ox, 1)0: 

O=dx E(0:81) 

o = E(~ (1) 

o = (ox,I)(-~+ (o:,ixh) Vox) 

Then we obtain A' E r( ox, Ox h satisfying 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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A' = (ox, l)a' (8) 

0= dx E(a' (1) (9) 

0= E(t 8 1) (10) 

0= (ox,I)(-t + (a',ix) \7 ox) (11) 

a' = i x 6' + a 

t = (i x 6',ix) \7 Ox + ~ 
(12) 
(13) 

Then (8) defines A' and we check (9) by 

dxE(ix6' + a) 81 = dxE(ix6' (1) + dxE(a (1) = 0 

where we use (3) and (5). Moreover we obtain (10) by (3) and (6). Finally we get 

-t + (a', ix) \7 Ox = -~ - (ix 6', ix) \7 Ox 

+ (ix 6' + a, ix) \7 Ox 

= -~ + (a,ixh) \7 Ox, see (2) 

Therefore (11) is a consequence of (7). We now consider 

hA' - A = h(ox, 1)(ix6' + a) - (ox, l)a 

= (ox, l)p with 

p = (h", ix)(ix 8' + a) - a (14) 

Here we use the fact that (h", h) : Ox ----; Ox is a map in Twist. We claim that: 

(Ox, 1)6 E H(A,ox;A,oxh. (15) 

This shows by (14) that h* in the lemma is surjective. 
For the proof of (15) we use the assumption that there is a chain homotopy 

1':::':1 : Kh '::0:' 1, that is 

- hI + 1 = dx 1'1 

- h2 + 1 = d3 1'2 + 1'1 dx 
- hi + 1 = dHni + I'i-ldi for i ~ 2 (16) 

where hI = E(\7h81) and h2 = E(h" (1). Now we define the l-equivariant maps 

with 
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Pl = E(p (1), see (14) 

= E(h" (1)(E(ixo' + a) 8 1) - E(a (1) 

= h2E(a (1) - E(a (1), see (16) and (3) 

= (1 - d3"(2 - 'YldX )E(a (1) - E(a (1), see (16) 

=-d3'Y2E(a81), see (5) (17) 

Moreover let 

P2 = 'Y2E(a 8 l)dx and 

Pn = 0 for n 2=: 3. (18) 

Then we have 

dXP1=O, see (17) 

d3P2 + P1dx = d3'Y2E(a (1)dx - d3'Y2E(a 8 l)dx = 0 

d4P3 + P2d3 = 0 + 'Y2E(a 8 1)d3dx = 0 

This completes the proof that (15) is satisfied. q.e.d. 

Proof of {5.1}. Let g be a map in TWIST~ which is a homotopy inverse of Kf = 

j, that is jg ~ 1 and gj ~ 1 in chain. We have by (3.2) and (4.4) 

0= 0(1) = O(gj) = (j)*O(g) (1) 

where j* is an isomorphism. Hence O(g) = 0 and therefore there exists 9 : BI8y ----+ 

Alax with Kg = g. By (4.11) we obtain the commutative diagram with h = fg 

where (fg)+ is a bijection. For h = fg we can use lemma (5.2) which shows that 
h* in (2) is surjective. This implies that also f* is surjective. Therefore there exists 
c E r(8y,ax )g with 

(3) 

where 1B is the identity of BI8y. We define 

9 = 9 + c : BI8y ----+ Alax (4) 
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so that by (2) and (3) we have a twisted homotopy 

T§ ~ IB and Kg = Kg = g. (5) 

Let lA be the identity of Ajax. Then we obtain by (4.11) an element A and a 
twisted homotopy 

gl~IA+A withAEro(ax,axh (6) 

since gj ~ 1 in chain. Now we replace above 1 by lA + A. Then (5) shows that 

there exists h with 

(7) 

Since ~ is a natural equivalence relation on TWIST~ we get by (5) and (6) 

1 = 11 with (8) 
- -

gl = g Ih ~ (IA + A)h ~ lA 
- -

1 ~ Ig1 ~ 1 and hence 

g/ ~gl ~ lA (9) 

By (9) and (5) we see that g is a twisted homotopy equivalence. Therefore by (5) 
also 1 is a twisted homotopy equivalence. q.e.d. 

(5.3) Proposition. The functor 

reflects equivalences. 

Combining (5.3) and (5.1) we thus get: 

(5.4) Theorem. A twisted chain map 1 : A j ax ~ B j 8y is a twisted homotopy 
equivalence if and only if the induced chain map K 1 : (A, ax) ~ (B, 8y) is a 
homotopy equivalence in chain~l' Hence 

K: TWIST~/~ ~ chain>d~ 

reflects equivalences. 

Proof of {5.3}. Let 1 : (A,ax ) ~ (B,8y) be a map in TWIST~ which is a 
homotopy equivalence in chain. Then we have 

h = (\7 f) 8 u with u = f (1) 

where u is an isomorphism in Coef with inverse v = {h}. Moreover we have a 
v-equivariant map g : (B, 8y) ~ (A, ax) and homotopies gl ~ 1 and Ig ~ 1 in 
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chain. We have to show that there is a map h: (B,Oy) ~ (A, ax) in TWIST~ 
with h '::::' g in chain. Since vu = 1 we know that hf = 1 + (ax, 1);3. Moreover h 
is a-compatible so that we have (h", h) : Oy ~ ax in Twist. Hence we get 

(\lh 0 v)h = (\lh 0 v)(\l f) 0 u 

= 1 + d(E;3 (1) 

Moreover fg,::::, 1 implies that there is al with dal = -1 + hgl. Hence we get by 
composing with \lh 0 v from the left 

Hence we get 

d(h" 0 v)al = (\lh 0 v)dal 

= - \l h 0 v + (\l h 0 v) h gl 

= - \l h 0 v + (1 + d(E;3 0 l))gl 

= - \l h 0 v + gl + d(E;3 0 l)gl 

- \l h 0 v + gl = d'Y with 

'Y = (h" 0 v)al - (E;3 0 l)gl 

We now define the map h : (B, Oy) ~ (A, ax) in TWIST~ by hI = \lh 0 v and 
h2 = g2 - 'Yd and hn = gn for n 2:: 3. Then clearly h is well defined in TWIST~ 
and 'Y yields a canonical homotopy h '::::' g. 

6 The Augmentation Functor 

All results in sections § 1 ... § 5 above are obtained if a theory T of coact ions is 
given. We now assume that T is augmented by E as in (1.7.2) or weakly augmented 
as in (1.7.11). Then we obtain a canonical augmentation functor 

aug : TWIST~ ~ chain~o (6.1) 

which carries the chain complex (A~l' ax) in TWIST~ to the following chain 
complex aUg(A>l,aX) = (A>o,ax) which coincides in degree 2:: 1 with (A, ox) 

- -
and which satisfies 

Ao = E, Al = X', A2 = X" (1) 

and for which the differentials in degree:::; 2 

X"Vax ~X'Vax ~ EVax (2) 

are given by the operators in (1.7.9), that is 

(3) 
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The functor (6.1) carries a chain map 

f: (A 2': 1 , ax) ---+ (B2':l' ax) E TWIST~ 

to the induced chain map 

aug(f) : (A2':O, ax) ---+ (B2':o, ax) E chain2':o 

which coincides in degree ~ 1 with f and which is 1 V u in degree 0 where f is 
u-equivariant. By (I.7.9) and (I.7.1O) or by (I.7.11) we see that the functor aug is 
well defined. Here the assumption II = E(V f 8 u) on f in (1.9) is needed. 

The augmentation functor is compatible with homotopies in (4.2) so that we 
obtain the induced functor 

aug : TWISTU~ ---+ chain2':o/~ (6.2) 

While (6.2) is faithful the induced functor (6.2) needs not to be faithful. The 
functor (6.2) is well defined since a homotopy a>l : f ~ g yields the homotopy 
a2':O : aug(f) ~ aug (g) which coincides with a2':l in degree ~ 1 and which satisfies 
ao = O. 

7 Appendix: Homology of Coefficient Objects 

We here introduce the cohomology and homology defined for objects in the cate­
gory of coefficients Coef of a theory T. This covers many classical notions of (co-) 
homology in the literature. In special cases the cohomology and homology can be 
described by certain Ext and Tor groups respectively. 

{7.1} Definition. We say that a sequence 

A~B~C 

in an additive category M is exact if (3a = 0 in M(A, C) and if for all objects K 
in M and all morphisms ~ : K ---+ B with (3~ = 0 there is ry : K ---+ A with ary =~. 
Equivalently for all K the induced sequence of morphism sets 

M(K, A) ~ M(K, B) ~ M(K, C) 

is an exact sequence of abelian groups. 

One readily checks that a chain complex (A, ax) in chain is exact in degree n, 
that is 

d d 
An+l Vax ------- An vax ------- An- 1 vax 

is exact in mod( ax), if and only if the homology 

is trivial; see (L6.5). 
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(7.2) Definition. A resolution of the object ax E Coef is a chain complex (A, ax) 
which is exact in degree n 2:: 2 with the property 

{
AI = X', A2 = X" 

d2 = dx = E(\lax 01) : X" V ax -4 X' Vax 

That is, a resolution of ax is the same as a chain complex (A, ax) in the category 
TWIST~ which is exact in degree 2:: 2. Compare the definition in (1.9). We do 
not assume exactness in degree = 1. 

(7.3) Lemma. Let (B, 8y) be a chain complex in TWIST~ and let (A, ax) be a 
resolution of ax E Coef. Given a morphism u : 8y -4 ax E Coef there exists a 
u-equivariant chain map 

j: (B,8y) -4 (A, ax) E TWIST~ 

and two such u-equivariant chain maps are homotopic in TWIST~. 

Proof. We know that u = {J} is represented by a a-compatible map f : Y -4 X 
so that there exists (f", 1) : 8y -4 ax in TWIST. Hence we obtain the following 
commutative diagram in mod 

+--- ... 

where h = E(\l f 0 u) and h = E(f" 0 u). Since dx , d3 is exact and since 
dx hd3 = hdy d3 = 0 we can find h with d3h = h = d3 . In the same way we 
can find inductively a u-equivariant map fn defining a chain map j = (f>1, u) in 
TWIST~; see (1.9). Now let 9 = (g::::I,U) be a further u-equivariant chain map 

g: (B,8y) -4 (A, ax) E TWIST~ 

Then we know that there is a a-compatible map g : Y -4 X representing u = {g} 
with gl = E(\lg 0 u). Since 

{J} = u = {g} 

we can find a : Y' -4 X" V X trivial on X with 

g=f+(8y,1)a 

Compare (1.4.1). Hence by the proof of (1.5) we obtain al = E(a 0 u) satisfying 

-h + g1 = da1 

This implies 
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d(-a1d - 12 + g2) = 
- dal d - d12 + dg2 = 

( - It + gt}d - d12 + dg2 = 0 

Therefore by exactness there exists a2 with -aId - 12 + g2 = a 2d. Inductively we 
obtain this way the homotopy (a~bu) : j ~ g. q.e.d. 

(7.4) Corollary. Let (A, ax) and (B, ax) be two resolutions of ax . Then there 
exists a canonical ax-equivariant homotopy equivalence 

(A, ax) ~ (B,ax) 

in TWISTU~. 

Hence resolutions are up to canonical isomorphism unique. The following con­
dition on mod( ax) implies that resolutions always exist. 

(7.5) Definition. We say that an additive category M has enough exact sequences 
if for each morphism (3 : B -t C in M there is an exact sequence 

A~B~C 

in M; see (6.1). We say that mod has enough exact sequences if mod(ax) has 
enough exact sequences for all ax in Coef. 

(7.6) Proposition. Assume mod has enough sequences. Then each object ax in 
Coef has a resolution R(ax) = (A,ax). By (7.3) the choice of such resolutions 
yields a functor 

R : Coef -t TWISTU~ 

which splits the coefficient functor c. Two such functors obtained by resolutions 
are canonically isomorphic. 

If T is an augmented theory of coactions we have in addition the composite of R 
with the augmentation functor (6.1) 

Raug : Coef ~ TWIST~/~ ~ chain~o/~ 

The functors Rand Raug respectively lead to the definition of (co-) homology of 
objects in Coef; see (7.7) below. 

Proof. Clearly ax defines 

E(\lox (1) : X" Vax -t X'V ax 

and using the property in (7.5) we can choose inductively a sequence 

X' V ax t-'!- X" V ax t-'!- A3 V ax ~ ... 

which is exact in degree n :2: 2. Now the functor R is obtained by (7.3). q.e.d. 
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(7.7) Definition. Let T be a theory of coactions and assume that mod has enough 
exact sequences. Let N be a right (resp. left) mod(ox )-module as in (I.6.4). Then 
the T -cohomology, resp. the T -homology, of an object Ox in Coef is defined by 
a resolution of Ox; that is 

Hn(ox; N) = Hn(R(ox); N), resp. 

Hn(ox;N) = Hn(R(ox);N). 

Using the results (7.3), (7.4) and (7.5) one readily checks that the T-homology and 
T-cohomology is well defined and natural in Ox E Coef and in N. For n = 0 the 
T-(co-)homology is trivial so that we obtain a reduced (co-)homology. Moreover 
using (I.6.5) we obtain the right mod(ox)-module Hn(ox) = Hn(R(ox)) and the 
left mod(ox)-module Hn(ox) = Hn(R(ox)). 

In case T is an augmented theory of coact ions we obtain the non-reduced (co-) 
homology by replacing R by Raug; for example 

frn(ox; N) = H n (Raug (ox ); N) 

Hn(ox) = Hn(Raug(ox)) 

Clearly in degree 2: 2 the non-reduced (co-) homology coincides with the reduced 
( co-) homology. 

(7.8) Example. Let S be a single sorted theory of cogroups and let T = free(S). 
Then the category mod = mod(U) is obtained by the enveloping functor U : 
Coef -> Rings. See (I.5.13). One readily checks that mod(U) has enough exact 
sequences in the sense of (7.5). Therefore the T-(co-)homology of an object 

G E model(S) = Coef (1) 

is defined. Here we use the equivalence of categories in (I.4.6). Hence the object G 
is given by a presentation ox. The category mod( ox) coincides with the category 
of free right U(G)-modules. Let Mc (resp. Nc ) be a right (resp.left) U(G)-module. 
Then Mc defines the right mod(ox)-module 

M = Homu(c)(-,Mc) : mod(ox)OP -> Ab (2) 

which carries a free right U(G)-module Ac to the abelian group of U(G)-homo­
morphisms Ac -> Mc. Moreover Nc defines the left mod(8x )-module 

N = - @U(C) Nc: mod(ox) -> Ab (3) 

which carries Ac to the U(G)-tensor product Ac @U(C) Nc. Now we denote the 
T - (co-) homology by 

Hn(G,Mc) = Hn(ox,M) 

Hn(G,Nc ) = Hn(ox,N) 

(4) 

(5) 
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Here the right hand side is defined in (7.7). We define the functor (see (1.5.12)) 

D : model(S) ----t Mod(U) (6) 

which carries G to right U(G)-module 

This is the cokernel of dx considered as a morphism in mod(U) where dx is 
determined by the object ax E Coef representing G. It follows from (7.3) that D 
is a well defined functor. Now it is clear by definition of resolutions in (7.2) that 
one has for n E Z: 

If T = gr is the theory of free groups then 

U(G) = Z[G] and D(G) = I(G). 

(7) 

(8) 

(9) 

Here I(G) is the augmentation ideal in Z[G] and hence (7), (8) is the classical (co-) 
homology of the group G with coefficients in the G-module MG. If T = niln then 

U(G) = Z[G]/I(G)n and D(G) = I(G)/I(G)n+l. (10) 

More generally if T = var is given by a variety of groups Var then 

U(G) = Z[G]/V(G) and D(G) = I(G) 0z[G] U(G). (11) 

Here U(G) is the factor ring of Z[G] described by Leedham-Green and the func­
tor D in (11) coincides with the functor D considered in Leedham-Green [HV] 
page 2. 

Finally let R be a commutative ring which is a principal ideal domain and let 
alg be the theory of free algebras over R. If G E Alg is free as an R-module we 
have 

U(G) = GOp 0 G and D(G) = kernel(JL : G 0R G ----t G) (12) 

where JL is the multiplication of G. In this case (7), (8) coincide with the classical 
Hochschild-(co-)homology of the algebra G, see Mac Lane [H]. 

8 Appendix: Twisted Homology of Coefficient Objects 

We study a further concept of (co-) homology defined for objects in the category 
Coef of coefficients of a theory T. We proceed similarly as in Appendix A where 
we used resolutions in the category TWIST~. We now define resolutions in the 



198 Chapter II: Twisted Chain Complexes and Twisted Homology 

category TWIST2 termed twisted resolutions which yield canonically the twisted 
homology. Let T be a theory of coactions. We say that a sequence of morphisms 

A~X"VX~X (8.1) 

is exact in T if A and X" are cogroups and Ct is trivial on X such that for all 
cogroups B in T the induced sequence 

T(B,AVXh (a,l x ).) T(B,X"VXh (8x ,1).) T(B,X) (8.2) 

of group homomorphisms is exact. 

(8.3) Definition. A twisted resolution of the object ax E Coef is an object Alax 
in TWIST2 with the following properties. For d3 : A3 Vax -+ X" vax in Alax 
there exists an exact sequence 

A3~XI'VX~X (1) 

in T such that d3 =E(a3 81). Moreover for n ~ 3 the sequences 

An+1 Vax ~ An Vax ~ An- 1 vax (2) 

are exact. The sequence (2) needs not to be exact for n = 2; the "exactness 
condition" for n = 2 is described by (1). 

(8.4) Lemma. Let BI8y be an object in TWIST2 and let Alax be a twisted 
resolution of ax E Coef. Given a morphism u : 8y -+ ax E Coef there exists a 
u-equivariant twisted chain map 

f: BI8y -+ Alax E TWIST2 
and two such are homotopic in TWIST2. 
Proof. We know that u = {f} is represented by a a-compatible map f so that 
there is (f", f) : 8y -+ ax in Twist. Now consider the following diagram in T. 

B3 
03 Y"Vy ~ Y -----. 

f'" 1 1 (f",ixfl 1f (1) 

A3 VX 
(o3,ix) 

X"VX ~ X ) 

where a3 in the top row is given by the co cycle condition for BI8y in (1.8). Since 
(8.2) (1) is exact we can find fill trivial on X such that the diagram commutes. We 
define the map f = (f"21, f) in the proposition by It = E(V f 8 1), h = (f" 8 1) 
and h = E(flll 8 1). Then the diagram 

B4 V8y ~ B3 V8y ~ B 2 V8y 

(2) 



8 Appendix: Twisted Homology of Coefficient Objects 199 

commutes so that by exactness of (8.2) (2) there exists f4 extending the diagram 
commutatively. Inductively we obtain this way fn for n 2:: 4. Now let 

be a further u-equivariant twisted chain map. Then we know {g} = u = {f} so 
that there exists a : Y" ---.. X" V X trivial on X with 

g=f+(ax,1)a (3) 

Compare (4). Moreover 9 is a-compatible with (g", g) : f)y ---.. ax E Twist. Hence 
we get 

(ax, 1)(-1" +9" - (a,ix!) 'Vf)y) = 0 (4) 

so that by exactness (8.1) (1) there is a' : Y" ---.. A3 V X trivial on X with 

(03, ix)a' = -1" + g" - (a, ixf) 'V f)y (5) 

We now define a twisted homotopy (see (4.1)) of the form (a>l' a) : f ~ g as 
follows. Let al = E(a 81) and a2 = E(a' 81) then equation (5) shows 

(6) 

Moreover we get 

d( -d2 d - h + g3) = 

- da2d - hd + g2d = 0 
(7) 

so that by exactness (8.2) (2) there exists a3 with 

(8) 

Inductively we obtain this wayan for n 2:: 3. q.e.d. 

(8.5) Corollary. Let Alax and Blax be two twisted resolutions of ax· Then there 
exists a canonical ax-equivariant twisted homology equivalence 

Alax ~ Blax 

in TWIST~/~. 

Hence twisted resolutions are unique up to canonical isomorphisms. 

(8.6) Definition. We say that T has enough exact sequences if for all ax E Coef 
there exists an exact sequence 

A~X"VX~X 
in T and if mod has enough exact sequences in the sense of (7.5). 
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(8.7) Proposition. Assume T has enough exact sequences. Then each object 
8x E Coef has a twisted resolution Q(8x ) = Alax . By {8.4} the choice of such 
twisted resolutions yields a functor 

Q: Coef -. TWIST~/~ 

which splits the coefficient functor c. Two such functors obtained by twisted reso­
lutions are canonically isomorphic. 

The composition of the functor Q and the chain functor K in (5.1) yields the 
notion of twisted (co-) homology below. Again if T is an augmented theory of 
coactions we also have the composite of functors 

(KQ)aug : Coef ~ TWIST~/~ ~ TWISTU~ ~ chain~o/~ 

{8.8} Definition. Let T be a theory of coactions with enough exact sequences and 
let N be a right (resp. left) mod(8x )-module as in (1.6.4). Then the twisted T 
-cohomology, resp. the twisted T -homology is defined by a twisted resolution AI8x 
of 8x ; that is 

H:!wist(8x ; N) = Hn(KQ(8x ); N) 

H;.wist(8x ; N) = Hn(KQ(ax ); N) 

Moreover using (1.6.5) we then obtain the right mod(8x )-module H~wist(8x) = 
Hn(KQ(8x )) and the left mod(8x )-module H:!wist(8x ) = H n (KQ(8x )). 

In case T is an augmented theory of coact ions we obtain the non-reduced 
twisted (co-) homology by replacing KQ by (KQ)aug; for example 

R:!wist(8x ; N) = Hn«KQ)aug(8x ); N) 

R;.wist(8x ) = Hn «KQ)aug (8x )) 

In degree ~ 2 this coincides with the corresponding reduced twisted (co-) homology 
above. 

(8.9) Proposition. Assume T has enough exact sequences. Using {7.3} we obtain 
a canonical natural transformation 

(): KQ(8x ) -. R(ax ) 

in chain/~. This shows that we have natural transformations 

()* :Hn (8x , N) -. H:!wist (ax, N) 

()* :H;.wist (8x , N) -. Hn (ax, N) 

which are isomorphisms for n :::; 1. Moreover ()* is surjective and ()* is injective in 
degree 2. 
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Proof. The two dimensional parts of R(ax) and KQ(ax) coincide. They are given 
by dx . q.e.d. 

The mod(ay )-module r 1 (()y) in § 2 has a new interpretation by the next result. 

(8.10) Proposition. Assume T has enough exact sequences. Then we have the 
natural isomorphism of right mod(()y )-modules 

H~wist (ay) = r 1 (ay ) 

This follows readily from the definition of exactness in (8.1) and the definition 
of r 1 in § 2. 

(8.11) Example. Let S be a single sorted theory of cogroups and let T = free(S). 
Then it is easy to see that T has enough exact sequences. With the notation in 
(7.8) the twisted (co-) homology of G E model(S) = Coef is defined by 

{ 
H~ist(G, Me) = Ht~ist(aX' M) 

H~wist(G, N e ) = H~wist(aX' N) 
(1) 

where ax is a presentation of G. We also write rl(G) = r1(ax) so that by (8.10) 

(2) 

is a right U( G)-module. One readily obtains the exact sequences 

H3(G, Mc) ----+ r] (G) ®U(c) Mc ----+ mWiSL(G, Mc) ~ H 2 (G, Mc) -----70 (3) 

H3(G, Me) <--- Homu(c)(H(G), Me) <--- H;wist(G, Mc) .!!- H2(G, Mc) <--- 0 (4) 

Remark. If S = varrt is a theory defining a variety of groups model(S) = Var 
then the exact sequences (3), (4) are exactly those of 3.2 II in Leedham-Green 
[HV]. For this use (8.8) (7), (8). 

The Leedham-Green (co-) homology on the category Var is a special case 
of the Quillen (co-) homology which we denote by HQ(G, Me) and H;;(G, Me) 
respectively. Compare Quillen (2.1) [CR]. Here G is an object in model(S) and 
Me is a right (resp. left) U(G)-module as above. We claim that there are natural 
transformations 

T* :H;:wist(G,Me) ---+ H'Q-l(G,Me) 

T* :H;;_l(G, Me) ---+ H~wist(G, Me) 

(5) 

(6) 

which are isomorphisms in degree n .:::: 2 and for which T* is injective and T* is 
surjective in degree 3. Compare (VI.12.10). 

The module r 1 (G) in (2) for the variety of groups of nilpotency degree n can 
be described by the relative dimension subgroup, that is 

rl(G) = Dn+1(H, B) n B/B2 (7) 
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for T = niln and G E Niln. Here H is an object in niln which surjects to G by 
(3 : H ---» G with kernel((3) = Band B2 the commutator subgroup of B. Moreover 
Dn+1 (H, B) = H n (1 + I(B) . I(H) + I(H)n+l). 

For n = 2 the group (7) was functorially computed by Hartl [H] namely 

(8) 

for T = nil2 and G E Nil2. Here * denotes the torsion product of abelian groups 
and Gab is the abelianization of G. Moreover 52 : Ab -. Ab is the symmetric 
square functor with 5 2 (A) = A@ Aj(a Q9 b rv b Q9 a) and L 15 2 is the first derived 
functor of 52. 

It is a classical result of J.H.C. Whitehead [CHII] that for the variety of groups 
we have 

(9) 

for T = gr and 7r E Gr. Moreover we prove in VI.4.11 Baues [AH] that one gets a 
non trivial r 1 for the theory T = gr( G) where G is a group. In this case an object 
in coef = GrG is a homomorphism i : G -. 7r E Gr and we get 

(10) 

Here iG \ 7r denotes the set of left cosets of iG in the group 7r and (ker i)ab is the 
abelianization of the kernel (i : G -. 7r). If G = 0 is trivial then (10) implies (9). 
The enveloping functor U on GrG is given by U(G -. 7r) = Z[7r]. 



Chapter III: Basic Concepts of Homotopy Theory 

In this chapter we describe most elementary properties of a homotopy theory. 
These properties are used to define the axioms of a cofibration category. We also 
describe basic results which can be deduced from these axioms and which are 
used in this book. We recall these results from Baues [AHl. In the applications 
we shall consider numerous different homotopy theories which satisfy the axioms 
of a cofibration category. This shows that all results in this chapter and in the 
following chapters can be applied in each of these examples of homotopy theories. 

1 Cofibration Categories 

Here we introduce the notion of a cofibration category; compare Baues [AHl. This 
is a category together with two classes of morphisms, called cofibrations and weak 
equivalences, such that four axioms C1, ... ,C4 are satisfied. 

(1.1) Dejinition. A cojibration category is a category C with an additional struc­
ture 

(C, co], we), 

subject to axioms C1, C2, C3 and C4. Here co] and we are classes of morphisms 
in C, called cojibrations and weak equivalences respectively. 

Morphisms in C are also called maps in C. We writei: B c A or B >----> A for a 
cofibration and we call u I B = ui : B -+ U the restriction of u : A -+ U. We write 
X ~ Y for a weak equivalence in C. An isomorphism in C is denoted by S:!. The 
identity of the object X is 1 = 1x = id. A map in C is a trivial cojibration if it is 
both a weak equivalence and a cofibration. An object R in a cofibration category C 
will be called a jibrant model (or simply jibrant) if each trivial cofibration i : R~Q 
in C admits a retraction r : Q -+ R, ri = 1R. 

The axioms in question are: 

(C1) Composition axiom: The isomorphisms in C are weak equivalences and are 
also cofibrations. For two maps 

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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if any two of f, 9 and gf are weak equivalences, then so is the third. The 
composite of cofibrations is a cofibration. 

(C2) Push out axiom: For a cofibration i : B >----+ A and a map f : B -----. Y there 
exists the push out in C 

and 'i is a cofibration. Moreover: 
(a) if f is a weak equivalence, so is 1, 
(b) if i is a weak equivalence, so is 'i. 

(C3) Factorization axiom: For a map f : B -----. Y in C there exists a commutative 
diagram 

J 
B )Y 

~/: 
A 

where i is a cofibration and 9 is a weak equivalence. 
(C4) Axiom on jibmnt models: For each object X in C there is a trivial cofibration 

X;::"RX where RX is fibrant in C. We call X;::"RX a jibmnt model of X. 

In the book Baues [AH] we describe a rich homotopy theory which is available in 
any cofibration category. In the following sections we recall some basic definitions 
(like homotopy groups) and results from Baues [AH] needed in this book. 

{1.2} Dejinition. Let * be the initial object of the cofibration category C. An 
object X in C is cojibmnt if the unique morphism * -----. X is a cofibration. Let 
C e be the full subcategory of C consisting of cofibrant objects. Then C e with 
cofibrations and weak equivalences as in C is again a cofibration category. Let 
CeJ be the full subcategory of C consisting of cojibmnt and jibmnt objects in C. 

In the following we are mainly concerned with cofibration categories in which 
all objects are cofibrant. In this case (C2) (a) is equivalent to (C2) (b) by I.1.4 
Baues [AH]. Moreover it is convenient to assume that all objects in Care fibrant. 
In this case the complication arising from choosing fibrant models is avoided. The 
theory in the following chapters is available also for cofibration categories in which 
not all objects are fibrant; for example in the spiral cofibration category (.:1Q)s in 
Chapter D. 

{1.3} Example. Let M be a Quillen model category and let C be the full subcat­
egory of cofibrant objects in M with weak equivalences and cofibrations defined 
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by M. Then C is a cofibration category in which all objects are cofibrant; compare 
1.2.6 in Baues [AR]. This shows that all the results of the following chapters also 
hold in Quillen model categories. There are, however, many cofibration categories 
which have not the structure of a Quillen model category. For example the cat­
egory Topp of compact maps or the category End of compactifications. This is 
the reason why we do not restrict to Quillen model categories. 

(1.4) Definition. Let C be a cofibration category. Then Pair(C) is the following 
category of pairs in C. Objects are maps i : B ----- A in C also denoted by (A, B) 
and morphisms (A, B) ----- (X, Y) are commutative diagrams 

A~X 

f' B -----+ Y 

in C. The morphism (j, 1') is a weak equivalence if f and l' are weak equivalences 
in C. Moreover (j,1') is a cofibration if l' and 

(j,i) : AUBY-----X 

are cofibrations in C. Then Pair(C) is again a cofibration category. Compare 11.1.5 
in Baues [AR]. An object CA, B) is fibrant if and only if A and Bare fibrant in C. 
Given an object Y in C we obtain the subcategory 

C Y C Pair(C). 

Objects in C Y are maps Y ----- X and maps are maps under Y in C. Weak equiva­
lences and cofibrations in C yield the structure of a cofibration category for C Y . 

The cofibrant objects in C Y are the cofibrations Y r--. X in C. 

(1.5) Definition. Let f : Y ----- B be a map in C then we obtain the push foward 
functor 

which carries Y r--. X to the induced cofibration B r--. B Uf X. If f is a weak 
equivalence then f* induces an isomorphism of homotopy categories, see II.4.5 in 
Baues [AR]. For example let i : * ~ R* be a fibrant model of the initial object 
* in C then the push forward functor 

is an equivalence of homotopy categories. Rere the initial object in C' is fibrant. For 
this reason we may assume below that the initial object in a cofibration category 
is always fibrant. 
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We now describe basic properties of a cofibration category used in this book. 
for cofibrant objects X, Y there exists the sum 

XVY =xu* Y (1.6) 

in C which is the push out of X <---- * ----> Y. Let (1,1) : X V X ----> X be the folding 
map. A cylinder IX of X is obtained by choosing via axiom (C3) a factorization 
of the folding map 

(io,id p 
(1,1):XVX >---> IX-;::X (1.7) 

where (io, id is a cofibration and p is a weak equivalence. Two maps a, f3 : X ----> U 
in C are homotopic if there exists a commutative diagram 

XVX c IX 

(a,(3'0 ~ 
U 

Here H : a c:::: f3 is termed a homotopy. If X is cofibrant and U is fibrant then c:::: is 
an equivalence relation. For a cofibrant object X in C and an object Y let 

[X, Y] = C(X, RY)/c:::: (1.8) 

be the set of homotopy classes. Here RY is a fibrant model chosen by (1.1) (C4). 
An element 9 E [X, Y] is represented by a map 9 : X ----> Y in C if Y is fibrant 
and is represented by a diagram 9 : X ----> RY ~Y if Y is not fibrant. The context 
will always make clear whether 9 denotes a map in C or a homotopy class. The 
set [X, Y] is the set of morphisms X ----> Y in the homotopy category Ho(C) which 
is obtained from C by inverting weak equivalences; see II.3.6 in Baues [AH]. Ho­
motopy c:::: is a natural equivalence relation on Cet in (1.2) so that the quotient 
category C et / c:::: is defined. The inclusion C et C C induces the equivalence of 
homotopy categories 

We point out that the cylinder I(X V Y) of a sum X V Y of cofibrant objects can 
be chosen to be I X V IY. This shows that the sum X V Y in C is also a sum in 
the homotopy category Ho( C). 

We also need the relative cylinder I y X of a cofibration Y >---> X. Let X Uy X 
be the push out of X+----< Y >---> X and let (1,1) : X Uy X ----> X be the folding map. 
Then Iy X is obtained by a factorization 

(io,itl ~ 
(1,1): XUyX >---> lyX----+X (1.9) 
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Two maps j, g : X ----t U with j I Y = g I Yare homotopic relative Y if there 
exists a map lyX ----t U with Hio = j and Hh = g. Clearly fy is a cylinder in the 
category (CY)c. Let [X, U]Y be the set of homotopy classes in Ho(CY ). If X >--+ X 
is a cofibration and if Y ----t U is a map into a fibrant object U of C then 

(1.10) 

where C Y (X, U) is the set of maps X ----t U under Y in CY ; see (1.4). 

2 Homotopy Groups 

Let C be a cofibration category as in (1.1). A based object A in C is a cofibrant 
object A together with a map 

A-~-q (2.1) 

termed the trivial map on A. This defines the trivial map 0 : A ----t * ----t U for all 
objects U in C representing 0 E [A, U]. Given a based object we define the cone 
CA and the suspension EA by the push out diagrams 

fA ~ CA ~ EA 

r (2.2) 

AvA~ A ~ * 
1,0 0 

Here CA and EA are based objects by use ofOp: fA ----t A ----t *. Hence the iterated 
suspensions En A, n ~ 0, are defined. We introduce the homotopy group 

(2.3) 

by use ofthe homotopy set (1.8). This is a pointed set for n = 0, a group for n = 1 
and an abelian group for n ~ 2; see II.§ 6 Baues [AH]. Moreover, if A is a cogroup 
in Ho(C) then 7f;:(U) is a group for n = 0 and an abelian group for n ~ 1. The 
pair (CA, A) is a based object in Pair(C) so that for an object (U, V) in Pair(C) 
also the relative homotopy groups 

(2.4) 

are defined. As usual one obtains the exact sequence (n ~ 0) 

A ( ) j A ( ) {) A() i A() . • . -----t 7f n+ 1 U -----t 7f n+ 1 U, V -----t 7f n V -----t 7f n U 

which is an exact sequence of groups if A is a cogroup in Ho(C). Compare II.7.8 
Baues [AH]. 
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Given a based object B and an object Y in C we consider the retraction 
(0,1) : B V Y ---+ Y which defines 

71"~(B V Yh = [1~m A, B V Y]z = kernel { (0,1)* : 71"~(B V Y) ---+ 71"~(Y)} (2.5) 

If A is a cogroup in Ho(C) we see that the operators j and 8 of the exact sequence 
above induce isomorphisms j and 8 in the following diagram (n ~ 1): 

71"~(CB V Y, B V Y) 

1 (noV1y). 

71"~(EB V Yh ~ 71"~(EB V Y, Y) 

The partial suspension 

71"~_l(B V Yh 

(2.6) 

is defined by the composite E = j-1 (71"0 V 1 y )*8-1 . Here 71"0 is the map in (2.2). If 
Y = * this is the suspension 

Compare II.§ 11 in Baues [AH] where it is shown that E and E are homomor­
phisms of groups. 

(2.7) Lemma. If the based object A is a cogroup in Ho(C) then the group [A, Y] 
acts from the right on the group 71":;' (D V Yh for m ~ ° and the partial suspension 
E in {2.6} is equivariant with respect to the action of [A, Y]. 

Proof. Since A is a cogroup we can define the element 

p = -i2 + i1 + i2 E [A, A V A]z 

The m-fold partial suspension 

defines the action of 0: E [A, Y] on ~ E 71":;'(D V Yh by 

Then dearly E(~Q) = (E~)Q; compare the properties of the partial suspension in 
II.§ 11 Baues [AH]. q.e.d. 
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3 Principal Cofibrations 

We here describe principal cofibrations which are called principal since they are 
defined by an attaching map. The dual of a principal cofibration is a principal 
fibration obtained by a classifying map. In this sense an attaching map is a "co­
classifying map" . 

Given a based object B and an object Y in C we define for a map 9 : B -> Y 
the mapping cone Cg by the push out diagram 

CBVY ~ C CBU Y ~-~ 9 = 9 

BvY ----+ Y 
(g,l) 

(3.1) 

where io V 1 is a cofibration so that also ig is a cofibration. We call a cofibration 
Y >--> Y a principal cofibration with attaching map 9 E [B, Y] if there is a map 

B ~ RY ~Y in C representing 9 together with a weak equivalence 

Cg = CB Ug RY ~ RY under Y. (1) 

At this point it is convenient to assume that all objects in Care fibrant so that 
we can choose RY = Y. In particular ig in (3.1) is a principal cofibration. It is 
clear that for all 9 E [B, Y] there exists a principal cofibration with attaching map 
Y and up to equivalence in Ho(C Y ) this cofibration in uniquely determined by 
9 E [B, Y]. The composite of pair maps 

(GB, B) -> (Cg , Y) rv (y, Y) 

given by (Kg, 1) in (3.1) and by (1) represents the characteristic element 

B -
Kg E Kl (Y, Y) (2) 

of the principal cofibration (y, Y). Clearly the boundary operator 0: Kf (Y, Y) -> 

Kg (Y) carries this element to the attaching map, that is OK 9 = g. 
By (3.1) we obtain the following commutative diagram of groups where A is a 

cogroup in Ho(C), n ~ 1. 

1 (ng,l)* 

K:;(Gg , Y) 

II 
K:;(y, Y) 

& 
----+ (3.2) 
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We define the operator (n 2: 1) 

A A -E y : 7rn -l (B V Yh --+ 7rn (Y, Y) by 

E y = (7rg , 1)*8-1 
(1) 

For an element f E 7r:;;(Cg ) we write 

f E Eg(~) with ~ E 7r;;_1 (B V Yh (2) 

if j(f) = Ey(O· Here j : 7r:;;(Cg ) --+ 7r:;;(Cg , Y) is the operator from the ex­
act sequence of a pair. Clearly Eg(~) = r 1 Ey(~) is non empty if and only if 
(g, 1)*(~) = O. We also call f with f E Eg(~) a functional suspension of ~. Com­
pare II.§ 11 in Baues [AH]. If g = 0 then Cg = EB V Y and (7rg ,l)* coincides 
with (7r V 1y)* in (2.6). A principal cofibration has the following crucial property 
II.S.5 Baues [AH]: 

(3.3) Lemma. Let (y, Y) be a principal cofibration with attaching map g E [B, Y] 
and let u : Y --+ U be a map in C where U is fib rant. Then there exists an 
extension u in C 

with u ig = u if and only if the element g* { u} E [B, U] is the trivial element 0 in 
the homotopy set [B, U]. 

For each principal cofibration (Y, Y) with attaching map g : B --+ Y we have 
the coaction p, which is an element 

(3.4) 

The coaction p, defines the action + of 13 E [EB, U] on ~ with 

{ 
y - y 

~,~ + 13 E [Cg, U] = [Y, U] 
~ + 13 = p,*(~, 13) 

If U is fibrant and ~ : Y --+ U,f3 : EB ----+ U are maps in C then 

~+f3:Y--+U 

denotes any map in C representing the element ~ + 13 E [y, U]Y. In particular the 
restrictions of ~ + 13 and ~ to Y coincide, that is (~ + 13) I Y = ~ I Y. 

(3.5) Lemma. Assume the set [y, U]Y is non empty. Then the action + of the 
group [EB, U] on the set [y, U]Y is transitive and effective. That is for ~,e E 

[y, U]Y there is a unique 13 E [EB, U] with e = ~ + 13· 
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Compare II.8.9 in Baues [AR]. We use J1 in (2.4) also for the definition of the 
action 

[Cg, U] x [EB, U] --±... [Cg, U] (3.6) 

which carries (~, (3) to ~ + (3 = J1 * (~, (3). This action, however, is in general not 
transitive or effective. In topology the action + is the well known action used in 
the Puppe sequence of a cofibration. 

The element J1 in (3.4) induces the map J1* in the following diagram where iI, 
resp. i 2 , denote the inclusions of Cg, resp. EB, into the sum Cg V EB. 

7rj3(cg , Y) ~ 7rj3(cg V EB, Y) ~ 7rj3(cg , Y) 

r (i2). 

7rj3(EB, *) 

(3.7) Lemma. The characteristic element 7rg E 7rj3(cg , Y) satisfies the formula 

J1*(7rg ) = (i l )*7rg + (i2)* 7r0 

where 7ro E 7rj3(EB,*) is represented by the quotient map (CB,B) ----* (EB,*). 

Using the coaction (3.4) we define for a cogroup A in Ro(C) the difference 
operator 

v: 7rt(cg) ----* 7rt(EB V Cgh 

v(f) = -i2f + (i2 + il)f (3.8) 

where h : EB C EB V Cg and i2 : Cg C EB V Cg are the inclusions; compare 
(1.3.2). Clearly v(f) is trivial on Cg. The difference operator v is part of the 
following commutative diagram; compare II.§ 12 in Baues [AR]. 

(3.9) 

Rere 0 is induced by the inclusion of pairs given by i : Y C Cg and j is the 
isomorphism already used in (2.6). Using the operators in (3.2) and (2.6) also the 
following diagram commutes. 

E 
7rt(EB VYh -----t 

1 (1 Vi). (3.10) 

V 7rt(EB V Cgh -----t 



212 Chapter III: Basic Concepts of Homotopy Theory 

Compare r1.12.5 in Baues [AR]. This diagram shows for a functional suspension f 
the following conclusion holds. 

f E Eg(~) =? \l f = (1 V i)*E(O 

Compare (3.2) (2). 

(3.11) Definition. Let (X,X) and (y, Y) be principal cofibrations with attaching 
maps f : A -+ X and g : B -+ Y where A is a cogroup in Ro(C). Then we consider 
the diagram 

where F : (X, X) -+ (y, Y) is a pair map in Pair( C) and 7r f is the characteristic 
element in (2.8) (2). We say that F is a twisted map associated to ~ E [A, B V Ylz 
if the equation 

holds. Moreover F is a principal map associated to ( E [A, B] if 

(3.12) Lemma. Let (X, X) and (y, Y) be principal cofibrations with attaching 
maps f E [A, X] and g E [B, Y] respectively. Given a map 7] : X -+ Y in C and 
an element ~ E [A, B V Yh such that the diagram 

f 1 1 (g.l) 

x~ Y 

commutes in Ro(C), that is (g, 1).~ = 7]. (f), there exists a twisted map 

F: (X, X) --+ (.Y, Y) in Pair(C) 

extending "/ and associated to ~. 

For a proof see V.§ 2 in Baues [AR]. Even in topology this lemma is not so 
well known. The usual construction used in topology is described by the following 
special case of (3.12). 

(3.13) Addendum. Given,,): X --+ Y in C and an element ~ E [A, B] such that 
the diagram 
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X~Y 

commutes in Ho(C), that is g*c, = 'T/*f, there exists a principal map 

F: (X, X) ----+ (y, Y) in Pair(C) 

extending 'T/ and associated to c,. 

(3.14) Definition. Let (X,X) and (Y, Y) be principal cofibrations with attaching 
maps f E [A, X] and g E [B, Y] respectively. Then any map 

F : (X, X) ----+ (y, Y) in Pair(C) 

yields the difference element 

by use of the operators 

Here 7rf is the characteristic element (3.1) (2) and "V is the difference operator in 
(3.9). 

In II.12.7 of Baues [AH] we show that the following diagram commutes 

X F Y -------> 

i 2+ i1 l 1 i2+il (3.15) 

EAVX 
(v(F),i2F) 

EBVY ) 

in the homotopy category Ho(C). This corresponds exactly to the diagram in 
(1.3.3). The map i2 + i1 is up to an interchange of summands the same as the 
coaction J1, in (3.4). Using (3.10) and (3.11) we get 

(3.16) Lemma. Let F : (X, X) ----+ (Y, Y) be a twisted map associated to C, then 

where i : Y c Y is the inclusion. 
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4 The Cylinder of Pairs 

Let X be a cofibrant object in the cofibration category C and let 

XVX>-tIX~X 

be a cylinder as in (1.9). If X >-t X is a cofibration then we can choose the cylinder 
I X and I X in such a way that we have cofibrations in C 

X V X >-t IX >-t X U IX U X >-t IX (4.1) 

Here X U IX U X is the push out of X V X f-- X V X -+ IX. In fact, we know by 
(1.4) that Pair (C) is again a cofibration category and that (X, X) is a cofibrant 
object in Pair (C). The cylinder I(X, X) in Pair (C) yields the cofibration 

(X,X) V (X,X) >-t I(X, X) = (IX,IX) 

with the properties in (4.1). For this compare the definition of cofibration in 
Pair (C) in (1.4). 

(4.2) Lemma. Let (X, X) be a principal cofibration with attaching map f E 

[A,X]. Then 

XUIXUX>-tIX 

is a principal cofibration with attaching map wf E [EA, X U IX U X]. Moreover 

x x - - -
io +wf =il E [X,XUIXUX] 

where + is defined by {3.4}. Here i~ and if are the two inclusions of X into 
XUIXUX. 

Compare II.8.12 in Baues [AH]. 
We now consider a triple (X, X, T) where (X, X) and (X, T) are principal 

cofibrations with attaching maps f E [A, X] and h E [Q, T] respectively. Then we 
obtain via (4.1) cofibrations 

j - - i -
X U IT U X >-t X U IX U X >-t IX (4.3) 

Here (4.2) shows that i is a principal cofibration with attaching map wf E [EA, Xu 
IXUX]. Moreover (4.2) shows also that j is a principal cofibration with attaching 
map 

w = (i~ f, Wh, if f) E [A V EQ V A, X U IT U X] (4.4) 

Here i~, if are the two inclusions of X and Wh is obtained for (IX,XUITUX) 
as in (4.2). The next result shows the surprising fact that in this situation the map 
wf is often a functional suspension; see (3.2). 
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(4.5) Theorem. Let A = L'A' be a suspension in C. Then there is an element 

~ E [A, (A V L'Q V A) V (X U IT U X)h 

such that wf E Ew(O. In fact, ~ can be chosen to be 

Here the inclusions of the three summands in A V L'Q V A are termed i~, iEQ, if. 
Moreover 

vi E [A,L'QV Xh 

satisfies vf = ixf + \l(f) - ixf where \l(f) is the difference element in {3.8}. 

We point out that the inclusion i : X C X yields 

(1 V i)* v(f) = (1 V i)* \l (f) E [A, L'Q V X]2 (4.5) 

Theorem (4.4) is proved in II.1.37 Baues [AH]. 

5 Homotopy Cogroups and Homotopy Coact ions 

Recall that we defined in (1.1.3) the notions of a cogroup and a coaction in a cate­
gory. If C is a cofibration category we introduce the following additional concepts. 

{5.1} Definition. Let C be a cofibration category with an initial object *. A ho­
motopy cogroup in C is a cofibrant object A in C which is a cogroup (A, 0, fl, v) 
in homotopy category Ho( C) such that 0 : A --+ * ill Ho( C) can be represented by 
a map A --+ * in C and such that fl : A --+ A V A can be represented by a map 
fl : A --+ R(A V A) in C such that 

(iI, fl) : A V A ~ R(A V A) 

is a weak equivalence in C. A homotopy coaction in C is a cofibrant object X in 
C which has the structure (X, A, fL) of a coaction in Ho(C). Here A is a homotopy 
cogroup and fL : X --+ X V A E Ho(C) can be represented by a map fL : X --+ 

R(X V A) in C such that 

(iI, fL) : X V X ~ R(X V A) 

is a weak equivalence in C. 

We know by (1.1.12) that for any coaction (X, A, fl) in Ho(C) the map (ii, fL) : 
X V X --+ X V A E Ho(C) is an isomorphism in Ho(C). For a homotopy coaction 
we require that this isomorphism is actually induced by a weak equivalence. 
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(5.2) Proposition. Each suspension A = EA' in C is a homotopy cogroup and 
each principal cofibration (X, *) in C with attaching map f E [Q, *l yields a ho­
motopy coaction (X, EQ, p,) where p, is the coaction in {3.4}. 

Proof. We have OQ Uf * = Of ~ RX and hence Of V Of ~ R(X V X). Since 

is null homotopic we obtain the weak equivalence 

Therefore also (iI, p,) : X V X ---+ R(X V EQ) is a weak equivalence. Compare also 
(3.5). q.e.d. 

(5.3) Lemma. Let (X, A, p,) be a homotopy coaction in C. Then the cylinder 
(IX, X V X) is a principal cofibration with attaching map Wx E [A, Xv Xl. More­
over 

i~ + Wx = if E [X, X V Xl 

where + is defined by the coaction p,. Here it and if are the two inclusions of X 
into X V X. 

This lemma is an analogue of lemma (4.2) above. 

Proof of {5.3}. Since (ix,p,) : X V X ---+ R(X V A) is a weak equivalence there is 
a weak equivalence p : R( X VA) ---+ R( X V X) such that p( ix, p,) is homotopic to 
X V X;::·,R(X V X). Hence we obtain the composite in C 

w : A c X V A;:::'R(X V A) ~ R(X V X) 

This map represents Wx in (5.2). Since * ~ OA is a weak equivalence we see 
that j : X ---+ R(X V X) Uw CA is a weak equivalence. Moreover we choose h as in 
the commutative diagram 

XVX ~ IX 

R(XVX) ~ RIX 

Since h* (w) = 0 E [A, I Xl we see by (3.3) that there exists an extension 

h: R(X V X) Uw OA ---+ RIX 

of h with hj = io. Since j and io both are weak equivalences also J is one. This 
proves (5.3); compare the definition of principal cofibration in (3.1). q.e.d. 
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We now consider a principal cofibration (X, X) with attaching map f E [A, X] 
where (X, Q, J-L) is a homotopy coaction. Then we obtain via (4.1) cofibrations 

j - - i -
XvX~XUIXuX~IX (5.4) 

Here (4.2) shows that i is a principal cofibration with attaching map wf' Moreover 
(5.3) shows that j is a principal cofibration with attaching map 

w = (i~ f,wx,if f) E [A VQ V A,XV X] (5.5) 

Here again iff and if are the two inclusions of X in X V X. The map W is the 
analogue of Win (4.4). Also the following analogue of theorem (4.5) holds. 

(5.6) Theorem. Let A be a homotopy cogroup in C. Then there is an element 

~ E [A, (A V Q V A) V (X V X)h 

such that wf E Ew(~) is a functional suspension of~. In fact, ~ can be chosen to 
be 

Here the inclusion of the three summands in A V Q V A are termed i~,iQ,if. 
Moreover 

vf E [A,QV Xh 

satisfies V f = i x f + \7 (f) + i x f where \l (f) is the difference element (1. 3. 2). 

Again we have for the inclusion i : X C X 

(1 V i)* V f = (1 V i)* \l f E [A, Q U Xh (5.7) 

Theorem (5.6) is proved by a slight modification of the arguments in the proof of 
II.13.7 Baues [AH]. 

6 The Theories susp( *) and cone ( *) 

Let C be a cofibration category with an initial object *. For each based object 

(6.1) 

in C we obtain the suspension EB which is a homotopy cogroup in C c by (5.2). 
If Band B' are based objects then also the sum B V B' is a based object and we 
have 

E(BV B') = EBV EB' (1) 
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Let susp( *) be the homotopy category of suspensions in C, this is the full subcat­
egory 

(2) 

consisting of all suspensions EB where B is a based object in C. Then (1) and 
(5.2) show that susp(*) is a theory of cogroups; compare (1.1.9). Subtheories of 
susp(*) yield many examples of theories of cogroups. For example for C = Top* 
the theory susp(*, 'D) consisting of one point unions of I-spheres in (1.2.4) is such 
a subtheory of susp(*). In Top* the initial object * is also the final object. 

In general, however, we do not assume that * is the final object of the cofibration 
category C. For each based object B in (6.1) we therefore may have maps g : B --+ * 
which do not coincide with the trivial map 0 in (6.1). In this case we obtain the 
mapping cone, termed *-cone, 

Cg = * Ug CB (6.2) 

where the cone CB is defined by the trivial map 0 in (6.1). If g = 0 is the trivial 
map then Cg = EB is the suspension of B. Using a cylinder object IB of B we 
obtain Cg also by the push out diagram in C 

IB 

BVB 

r 
(g,O) 

-----* * 
Hence Cg may also be considered to be a "double mapping cylinder" in C in which 
one of the glueing maps is specified to play the role of the trivial map. One needs 
this specification to define the coaction map 

(1) 

in Ho(Cc ); see (3.4). In fact, this is a homotopy coaction by (5.2). Moreover if 
(g, g') : B V B' --+ * is defined on a sum of based objects then 

(2) 

This is a generalisation of (6.1) (1). Moreover (2) is compatible with the coaction 
maps at both sides of the equation. Let cone( *) be the homotopy category of *­
cones in C, this is the full subcategory in Ho(Cc ) consisting of *-cones as in (6.2). 
Then we have inclusions of full subcategories 

(6.3) 

Using (6.2) (1), (2) we see that cone(*) is actually a theory of coactions. In 
fact, (3.5) shows that the affine property holds in cone(*); compare (1.1.11). The 
cogroups in cone( *) are exactly the suspensions in susp( *). Subtheories of cone( *) 



6 The Theories susp(*) and cone(*) 219 

yield many examples of theories of coactions. Such subtheories T C cone( *) yield 
examples of "cofibration categories C under T" considered in (IV.2.1) below. 

Now let D be a cofibrant object in C. Then the category CD of objects under 
D is again a cofibration category with initial object D. We denote by 

susp(D) C cone(D) C Ho(CD)c (6.4) 

the full subcategories of suspensions and D-cones in CD respectively. Hence (6.4) 
coincides with (6.3) if we replace C by CD. In CD we have the special based object 

Ef)y=(D!:!..,DVD ~ D) (6.5) 

so that the suspension E(Ef)y) = E*(D) is defined in CD. We also write Ef)y = 
E~D. The based object 

(1) 

in CD can be obtained more directly by the push out diagram 

ID 
7r 

E*D 
pl 

~ ~D 

(io,id I Ii (2) 

DvD 
(1,1) 

D ~ 

Here pI is defined by pl7[" = P where p is the projection of the cylinder and p1i = 1D. 

For example if C = Top then we have E*D = 8 1 X D where the right hand 
side is the product of the I-sphere 8 1 and D. 

The homotopy category Ho(CD)c has sums which are given by 

(X,D) V (Y,D) = (X UD Y,D) 

Here (X, D) denotes an object in (CD)c and X UD Y is a push out inC. Using the 
homotopy extension property of the cofibration D ~ X (see II.2.17 and II.5.7 in 
Baues [AH]) we define the augmentation map 

ex : (X, D) --. (X, D) V (E*D, D) (6.6) 

in Ho( CD)c as follows. Let leX, D) = (I X, I D) be the cylinder of the pair (X, D) 
in (4.1). Then we have the cofibration 

j:XUDID--.IX 

which is io on X. Since j is a weak equivalence there exists a map r for which the 
following diagram commutes where R(Y) is a fibrant model of Yin C. 



220 Chapter III: Basic Concepts of Homotopy Theory 

Here v = 1 U 7r is given by 7r in (6.5) (2) and iJ is an extension of V on fibrant 
models; see II. 1.6 Baues [AH]. The composite iJ r i l defines the map EX in Ho(CD)c 
in (6.6). 

(6.7) Lemma. The map EX is a coaction and for all f : (X, D) --> (Y, D) in 
Ho(CD)c the diagram 

commutes in Ho(CD)c. 

(X, D) ~ (X, D) V (E*D, D) 

11 l lvl 

(Y, D) ~ (Y, D) V (E*D, D) 

This is a consequence of II.5.9, II.5.1O in Baues [AH]. The lemma shows that 
the category Ho(CD)c is a E-augmented theory where E = (E*D, D); see (1.7.2). 
Moreover we get the following result which yields many examples of augmented 
theories of coactions; compare the notation in (1.7.4). 

(6.8) Proposition. The category cone(D) is a theory of coactions which is aug­
mented by E = (E*D, D). 

Proof. A cogroup in cone(*)(D) is a suspension EA of a based object A in (CD)c. 
Hence one has maps 

- 0 
A={D>----+A----+D} 

in C. The trivial map a yields the suspension EA by the push out diagrams in C 

IA ------t IDA ------t EA 

r r r (1) 

AvA AuDA 
(0,0) 

D ------t ------t 

Here IA is the cylinder of A in C and IDA is the cylinder of D >----> A in CD. As in 
II.2.1O Baues [AH] we obtain for the map 0: A --> D the map 10 between cylinder 
in C such that the following diagram commutes 

IA t--­

[01 
ID t---

This diagram induces a linear map 

AVA~D 

10vo 11 
DVD~D 

EL'(A,D) : (EA, D) --> (E*D, D) (2) 

of cogroups in Ho(CD)c; for this use (1) and (6.5) (2). Now II.5.15 Baues [AH] 
shows that the maps in (2) and (6.6) satisfy a formula as in (1.7.4) (4). q.e.d. 
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Proposition (6.8) shows that each full subtheory of cone(D) which contains 
the D-torus E*D is actually an augmented theory of coactions. 

(6.9) Example. Let C = Top and let D be a discrete space. Then the D-torus 
E = (81 X D, D) is an object in the subtheory cone(D, V) of cone(D); see (1.2.11). 
Here cone(D, V) is an augmented theory of coactions by (6.8) above. In this case 
the augmentation in (6.6) and (6.8) (2) above coincides with the corresponding 
augmentation already described in (1.7.6). 

7 Appendix: Categories with a Cylinder Functor 

The cylinder I X of a cofibrant object X in a cofibration category is obtained by 
the factorization axiom C3; see (1.7). Therefore there are many choices of such 
cylinders of X and X ~ IX is not a functor in X. There are, however, many 
examples of homotopy theories (in particular the homotopy theory of topological 
spaces) which are defined by a cylinder functor. In the following definition we 
describe the basic properties of a cylinder functor which are needed to obtain the 
structure of a cofibration category. 

(7.1) Definition. An I-category is a category C with the structure (C, coJ,!, 0). 
Here coJ is a class of morphisms in C, called cofibrations, I is a functor C -+ C 
together with natural transformations io, i 1 and p, 0 is the initial object in C. The 
structure satisfies the following axioms (11), ... , (15). 

(11) Cylinder axiom: I : C -+ C is a functor together with natural transformations 

io, i1 : ide -+ I, p: I -+ ide, 

such that for all objects X the composite piE; : X -+ IX -+ X is the identity 
of X for c = 0 and c = 1. 

(12) Push out axiom: For a cofibration i : B -+ A and a map J there exists the 
push out 

A -------+ A U B X 

B -------+ X 
f 

where 'i is also a cofibration. Morover, the functor I carries this push out 
diagram into a push out diagram, that is I(AUBX) = IAU1BIX. Moreover, 
10 = 0. 

(13) Cofibration axiom: Each isomorphism is a cofibration and for each object X 
the map 0 -+ X is a cofibration. We thus have by (12) the sum XU0Y = XVY. 
The composition of cofibrations is a cofibration. Moreover, a cofibration i : 
B >---* A has the following homotopy extension property in C. Let c E {O, I}. 
For each commutative diagram in C 
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A -------+ X 
f 

there is E: IA -> X with E(Ii) = Hand Ei" = f. 
(14) Relative cylinder axiom: For a cofibration i : B -> A the map j defined by 

the following push out diagram is a cofibration: 

BVB iVi AvA -------+ 

(io,iJ) 1 push la 
IB AUIBuA 

j 
IA -------+ --------> 

{3 

where j(J = Ii and jn = (io, id. Equivalently (IB, B V B) -> (lA, A V A) is 
a cofibration in Pair(C), see (1.4). 

(15) The interchange axiom: For all objects X there exists a map T: IIX -> IIX 
with Ti" = I(i,,) and T I(i,,) = i" for c = 0 and c = 1. We call T an interchange 
map. 
We sketch the double cylinder I I X by 

lio 

/ 
/ 

/ 

/ 
/ 

i 1 

/ 

/ 
/ 

io 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

The interchange map T restricted to the boundary 812 X is the reflection at 
the diagonal. 

{7.2} Example. Let Top be the category of topological spaces and let 1= [0,1] c 
lR be the unit interval. The cylinder of a space X is defined by the product I(X) = 
I x X with the product topology. Cofibrations in Top are the maps which have 
the homotopy extension property in Top and the interchange map 

T: IIX = I x I x X -> I x I x X = IIX 

carries (tl,t2, x) to (t2' tl, x) for t1, t2 E I and x EX. Clearly this interchange 
map is natural in X. It is not hard to see that (Top,!, cof, 0) satisfies all the 
axioms of an I-category. We prove this by (8.2) and (8.3) below. Compare 1.4.2 in 
Baues [AR]. 
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(7.3) Definition. Let C be an I-category. We say fo, II : A ---* X are homotopic 
if there is G : I A ---* X with Gio = fo and Gil = II. We call G a homotopy and 
we write G : fo ~ II. A map f : A ---* X is a homotopy equivalence if there is 
g : X ---* A with fg ~ Ix and gf ~ 1A. 

The next result shows that actually all the properties and results for a cofibra­
tion category are available in an I-category. 

(7.4) Theorem. Let (C, cof, I, O) be an I -category. Then C is a cofibration cat­
egory with the following structure. Cofibrations are those of C, weak equivalences 
are the homotopy equivalences and all objects are fibrant and cofibrant in C. 

This theorem was originally proved in I.3.3 of Baues [AHl. In an I-category C 
the projection IX ---* X is a homotopy equivalence (see 1.3.13 Baues [AHD. Hence 
by (14) with B = * we see that IX is a cylinder in the sense of (1.7). 

For a map i : B ---* A in an I-category C and c; E {O, I} we obtain the push 
out diagram 

IB ~ IBUeA ~ IA 

push 

B~ A 

with je lIB = Ii and je I A = ie. Here ie is a cofibration by (14). 

(7.5) Lemma. The map i : B ---* A satisfies the homotopy extension property in 
C if and only if there exist maps re : IA ---* IB Ue A with reje = 1 for c; E {O, I}. 

8 Appendix: Natural Cylinder Categories 
and Homotopy Theory of Diagrams 

We first introduce the notion of a "natural I-category" and we then show that the 
category of diagrams in a natural I-category is again a natural I-category. 

(8.1) Definition. A natural I-category (C,I,0) is a category C with an initial 
object ° and a cylinder functor I such that (Il) and (12) in (7.1) hold. Here cofi­
brations are defined to be exactly the maps which satisfy the homotopy extension 
property in C; see (13). Moreover (14)' and (I5)' below are satisfied. 

(14)' For c; E {O, I} and B ,...... A there exists a commutative diagram in C where 
je is defined as in (7.5). 

lA' IIA 

r f(je) 
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Here B' = Au IB U A ----+ IA = A' is the map j in (14). Moreover a", and (3", 
are natural in (A, B) E Pair(C)c and (3", is an isomorphism in C. 

(15)' There exists an interchange map T : IIX ----+ IIX as in (15) which is natural 
in X. 

(8.2) Proposition. A natural I -category is an I -category. 

Proof. One readily checks (13). Moreover (14) holds by use of (7.5) since for a 
cofibration B )---) A with retraction r", the composite 

IIA ~ IIA ~ I(IBU",A) ~ IB'U",A' 

is a retraction for j~. Clearly (15) is satisfied by (15)'. q.e.d. 

(8.3) Example. The category Top of topological spaces with the cylinder in (7.2) 
is a natural I-category. We define the natural homeomorphism 

a", = T(a x 1) : I x I x X -----+ I x I x X 

by T in (7.2) and a homeomorphism a : I x I ----+ I x I which is given on a boundary 
by the sketches 

u v w v 
1---+-1 

a a c ------+ u w 

b a I-t;+-I c 

Compare I.4.2 in Baues [AHl. One can check that the restriction (3", is well defined. 

(8.4) Definition. Let J be a small category and let C be a category. A J -diagram 
in C is a functor 

X:J----+C 

A morphism between such J-diagrams X, Y is a natural transformation f : X ----+ Y 
in C. Hence f is given by a collection of maps 

f: Xj ----+ Yj in C 

where j E Ob(J) is an object in J. Here we write X(j) = Xj. Let C J be the 
category of such J-diagrams and morphisms. 

(8.5) Theorem. Let C be a natural I -category and let J be a small category. 
Then also the category c J of J -diagrams in C is a natural I -category. 



9 Appendix: Homotopy Theory of Chain Complexes 225 

Proof. The cylinder of a diagram X is defined by the composite of functors 

IX:J~C~C (1) 

where I is the cylinder in C. Hence we have (IX)j = I(Xj) for j E Ob(J). The 
natural transformation io,i1,p for I(Xj) in C yield such transformation for IX. 
Hence (II) is satisfied. Now cofibrations B >-+ A are defined by the homotopy 
extension property in CJ. Hence we have by (7.5) the retraction 

(2) 

in the category of diagrams. Push outs of diagrams are obtained by push outs 
in C. Hence by (2) we obtain for each j E Ob(J) the retraction in C 

(3) 

showing that B j ----+ Aj is a cofibration in C and hence the push outs in (12) for 
diagrams exist. Since I is compatible with push outs in C by (12) we see that I 
is also compatible with push outs of diagrams. Hence (12) holds for the category 
of diagrams; (it is easily seen that i has again the homotopy extension property). 
Now (14)1 and (15)' are clearly satisfied for diagrams since (x,,, (3" and T are natural 
in C. q.e.d. 

9 Appendix: Homotopy Theory of Chain Complexes 

Let A be an additive category with sums A EEl B. A chain complex in A is a graded 
object V = {Vi, i E Z} in A together with a map d : V ----+ V of degree -1 
satisfying dd = o. A chain map f : V ----+ W is a map of degree 0 with df = fd and 
a homotopy (X : f c:::: 9 between chain maps is a map (X : V ----+ W of degree 1 with 
- f + 9 = da + ad. A chain map i : V ----+ W is a cojibration if the underlying graded 
object of W is a direct sum W = V EEl Wand i : V ----+ V EEl W is the inclusion; then 
V is a sub complex of W; see (I.§ 6). 

(9.1) Dejinition. For a graded object V let sV be the suspension of V with 
(sV)n = Vn- 1 and let s : V ----+ sV be the map of degree +1 given by the identity. 
We define the cylinder I(V) of a chain complex V by the graded object 

I(V) = Vi EEl V" EEl sV 

Here VI = V" = V are two copies of the graded object V. Let io : V ----+ I(V), 
il : V ----+ I(V) be the inclusions given by V = VI and V = V" respectively. Then 
the differential d of I(V) is defined by dio = iod, di1 = ild and 

ds = -io + i 1 - sd. 

One readily checks that a homotopy a corresponds to the chain map H : I(V) ----+ 

VI with H s = a, Hio = j, Hil = g. A chain map f : V ----+ W induces the chain 
map If: IV ----+ IW given by j EEl f EEl sf. Let p : I(V) ----+ V be the chain map with 
pio = pil = 1 and pi sV = O. 
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(9.2) Proposition. The category chain! of chain complexes in A which are 
bounded below and the cylinder I and cojibrations as above form an I -category in 
the sense of {7.1}. 

This is an example of an I-category which is not a natural I-category. For the 
proof of (9.2) we use the tensor product functor 

o : ab~ x A ~ A (9.3) 

where ab~ is the category of finitely generated free abelian groups denoted by 
EB E Z, E a finite set. For A E A the tensor product is defined by 

There is an obvious way to define 0 on morphisms. If V is a chain complex in A 
and C is a chain complex in ab~ then C 0 V is the chain complex in A given by 

(C 0 V)n = EB Ci 0 Vj. (9.4) 
i+j=n 

The differential on Ci 0 Vj is given by d 0 Vj + (-l)iCi 0 d. Let I be the chain 
complex in ab~ (concentrated in degree 0 and 1) which is generated by {O} and {I} 
in degree 0 and by s in degree 1 with the differential d{ s} = - {O} + {I}. Then we 
identify the chain complexes 

IV = I0V (9.5) 

by V' = {O} 0 v, V" = {I} 0 V and sV = {s} 0 V. Using (9.1) we see that this is 
an isomorphism of chain complexes. 

Proof of {9.2}. It is easy to see that (II) and (12) and (14) are satisfied. For the 
proof of (I3) we have to check that a cofibration V ~ W has the homotopy 
extension property, c = O. For W = V EB W we define the subchain complex 
WCn) = V EB W:sn . We define inductively the homotopy extension 

ECn) : IWCn) U W ------ X 

by ECn+l) I sWn+l = 0 and 

ECn+l)il I Wn+l = f I Wn+l + ECn)sd I W n+1 . 

One readily checks that ECn+l) is a well defined chain map; see the proof of I.6.10 in 
Baues [AR]. Since we assume that W is bounded below we can start the induction. 
Renee E = lim ECn) is defined and therefore (I3) holds. Finally we obtain a natural 
interchange map 

T=t01 :I0I0V------I0I0V 

where t : I0 I ~ I0 I is defined by t(x 0 y) = (_l)lxIIYly 0 x. q.e.d. 
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Recall that the homology and cohomology of chain complexes is defined as in 
(1.§6). 

(9.6) Theorem. Let V, W be chain complexes in A which are bounded below and 
let f : V ...... W be a chain map. Then (a) and (b) are equivalent. 

(a) f is a homotopy equivalence. 
(b) f induces an isomorphism 

for all left A-modules M = HomA(A, ) where A is an object in A and n E Z. 

Moreover if A is the additive subcategory of an abelian category B such that all 
objects of A are projective in B then (a) is equivalent to (c). 

(c) f induces an isomorphism 

for all right A-modules N = HomB( , B) where B is an object in Band 
nE Z. 

Theorem (1.6.6) is an easy consequence ofthis result. The equivalence (a) ¢:? (b) 
in the theorem is a special case of the general Whitehead theorem in the next 
chapter. 

Proof of (9.6). By (9.2) we know that chaini is a cofibration category; see (7.4). 
Hence we can use the Puppe or cofiber sequence of f. Since f is a homotopy 
equivalence if and only if the suspension E f is a homotopy equivalence we see 
via the Puppe sequence that this is the case if and only if the mapping cone 
U = C f is contractible. On the other hand the (co-) homology of U with coefficients 
M (resp. N) is trivial if and only if the maps f* in (b) (resp. 1* in (c)) are 
isomorphisms for all n. This shows that it suffices to prove (9.6) if W is the trivial 
chain complex. It is clear that (a) '* (b) and (a) '* (c) holds. We now show 
(b) '* (a). For this we need the assumption that v is bounded below with Vi = * 
for i < no. Since Hno(V,M) = 0 with M = Hom(Vno ,-) we see that there exists 
ano : Vno ...... Vno+1 with dano = 1. Now assume an : Vn ...... Vn+1 is constructed 
with 1 = dan + an-1d. Then d(1 - and) = d - dand = an-1dd = 0 and hence 
1 - and represents an element in Hn+1 (V, M) = 0 with M = Hom(Vn+1, - ). 
Hence there exists an+l with dan+l = 1 - and. This completes the proof that V 
is contractible. 

Next we show (c) '* (b). For this let Hn(v, N) = 0 for n E Z and all N as 
in (c). In (c) we have A C B where B is an abelian category. (We may assume 
that A and B are small and that B is a subcategory of the category of modules 
over some ring; see Borceaux [CA]). Consider in B the diagram 
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where cok = cokernel and im = image. 
Since qdnH = 0 we see that q represents an element in Hn (V, N) = 0 with 

N = Hom( -, cok dnH ). Hence there exists p : Vn - 1 ----> cok dnH with pdn = q 
or pijq = q and hence pij = 1. Hence j is a monomorphism. Since j is also an 
epimorphism we see that j is an isomorphism. This implies im dnH = ker dn so that 
V is exact. Since the objects of A are projective in B we see that also HomA(A, V) 
is exact for all objects A in A and therefore (b) holds. This completes the proof 
of (9.6). q.e.d. 



Chapter IV: Complexes In Cofibration Categories 

We introduce "complexes" and "cellular objects" in cofibration categories which 
correspond to CW-complexes in algebraic topology. We prove a general Whitehead 
theorem for complexes and for cellular objects. This theorem yields as specializa­
tion most of the various Whitehead theorems proved independently in different 
fields of the literature. We also study the general concepts in cofibration categories 
which in algebraic topology correspond to the "cellular approximation theorem" 
and the "Blakers-Massey theorem" . 

1 Filtered Objects 

We consider filtered objects in a cofibration category C and we define O-homo­
topies and I-homotopies for maps between filtered objects. In the next section 
we introduce complexes in a cofibration category which are examples of filtered 
objects. 

(1.1) Definition. Let C be a cofibration category. Then Filo(C) is the following 
category of filtered objects in C. Objects are diagrams 

A~o = (Ao -t Al -t ... An -t A n+1 -t ... ) 

of maps i : An -t An+! in C, n ::::: O. A morphism f : A~o -t B?o is a sequence 
of maps fn : An -t B n , with ifn = fn+Ii. We say that f is a weak equivalence if 
each fn is a weak equivalence in C. Moreover, f is a cofibration if each map 

is a cofibration in Pair(C); see (!ILl.4). We have the full inclusion of categories 

C c Filo(C) 

which carries A E C to the constant filtered object with An = A for n ::::: 0 and 
i = lA. The initial object of Filo(C) is the constant filtered object given by * 
in C. Moreover we say that X~o is of dimension:::; n if Xm = Xn for m ::::: nand 
if i : Xm -t X m+1 is the identity. Let 

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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be the full subcategory of objects X2':O with Xo = the initial object of C. We also 
write X>l E Fih(C) where X>l = (Xl ----> X2 ----> ••. ) is given by X>o = (* ----> 

Xl ----> X~ ----> ••• ). - -

(1.2) Lemma. The category Filo(C) with weak equivalences and cofibrations in 
(1.1) is a cofibration category. An object A>o is fibrant if and only if all objects Ai, 
i ~ 0, are fibrant in C. Moreover A2':o is cofibrant if Ao is cofibrant in C and all 
i : An ----> An+! are cofibrations in C. 

Compare III.1.2 in Baues [AH]. 

(1.3) Definition. In the category Filo(C) we consider two notions of homotopies. 
Given a cofibrant object A2':o the cylinder 

IA>o = (lAo c IAI c ... ) (1) 

consists of a sequence of cylinders IAn in C, n ~ O. Two maps f, g : A2':o ----> U2':o 
are homotopic if there exists a map H : IA>o ----> U>o in Filo(C) with Hio = f, 

- -

Hil = g. We call such a homotopy a O-homotopy H : f g, g. Let 

(2) 

be the canonical shift map in Filo(C). Here we set (s-IU>O)n = Un+! for n ~ 0 so 
that S- I U2':O = (UI ----> U2 ----> ••• ). Then (2) in degree n is-the map i : Un ----> Un+!. 

The maps f, g are I-homotopic, f ~ gi if there exists a O-homotopy if g, ig. We 
define the cylinder object for l-homotopies IA~o E Filo(C) by 

{ 
(IA>o)o = Ao V Ao 

(IA2':o)n = An U IAn- 1 U An for n ~ 1 
(3) 

where the right hand side is the push out of An V An +- A n- l V A n- l ---' I An-I. 
- I 

Hence we have the cofibration A~o V A~o >---+ I A~o and a I-homotopy H : f c:::' g 
is the same as a map H : IA2':o ----> U~o with Hio = f and Hil = g. Compare also 
(III.4.3). 

Example. If C = Top and if A~o is the filtration of skeleta of the CW-complex A 
in C then I A~o is the filtration of skeleta of the cylinder I x A. Moreover if 
C = Top* is the category of pointed spaces and if A>l is the filtration of skeleta 
Al C A2 C ... of a reduced CW-complex A with AO =-* then IA2':1 is the filtration 
of skeleta of the reduced cylinder I x AI I x {*}. 

Let Filo(C)cJ be the full subcategory of cofibrant and fibrant objects m 
Filo(C). For objects X~o, U~o in Filo(C)cJ we have the quotient map 

(1.4) 

where the left hand side is the set of O-homotopy classes and the right hand side 
is the set of I-homotopy classes. Accordingly one has the quotient functor 
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of homotopy categories. Compare also Baues IIL1.5 [AHl. 
In general we do not assume that for an object X:::.:o the direct limit (also termed 

colimit) lim(X>o) exists in C. Later we shall, however, use the following property 
of an object in-Filo(C)c. 

(1.5) Definition. We say that a cofibrant object A:::.:o in Filo(C) has the limit 
property if the direct limits A = lim(A:::.:o) and fA = lim(IA:::.:o) exist and if fA is 
a cylinder object for A. That is, A is a cofibrant object in C and the maps 

A A (io,itJ fA 
:::':0 V :::':0 ------> :::':0 

in Filo(C) induce maps on direct limits 

AVA~fA~A 

where (io, id is a cofibration and p is a weak equivalence in C. It is clear that 
each finite dimensional object A:::':j in Filo(C) has this limit property. Moreover 
the object I A:::.:o in (1.3) (3) satisfies 

lim(IA:::.:o) = lim(IA:::.:o). 

2 Complexes Associated to Theories of Coactions 

Let T be a theory of coact ions as in (I.§ 1). Given T we have all the notation 
and results in chapter I and chapter II at hand. We now combine T with the 
homotopy category of a cofibration category C with initial object *. Recall that 
this homotopy category is given by Ho(Ce ) or by C el /~ and that we have the 
equivalence of categories 

which carries X to a fib rant model RX with X~RX. Sums X V Y exist in C e 

and X V Y is also a sum in Ho(Ce ) so that R(X V Y) is the sum of RX and RY 
in Cel /~. 

(2.1) Definition. Let T be a theory of coactions. A cojibration category under T 
is a cofibration category C together with a full embedding of categories 

(1) 

which carries sums in T to sums in Ho(Ce ) such that objects in T are homotopy 
coact ions in C; see (III.5.1). Given an object X in T we denote the corresponding 
object in C el as well by X. 
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For each cofibration category C with initial object * we obtain canonically full 
subcategories 

(2) 

as described in (III.§ 6). Here the objects of cone( *) are the *-cones of the form 

Cg=*UgCB (3) 

where * >---> B ~ * is a based object in C and where 9 : B ----> * is a map in C. If 
9 = 0 is the trivial map then Cg = EB is the suspension of B. Such suspensions 
EB of based objects B in C are the objects of susp(*). By (III.5.2) we see that 
C is always a cofibration category under the theory of coact ions cone( *). 

In many examples the theory T of coactions in (2.1) will be a subtheory of 
susp( *) or cone( *) above. There are however examples (like the categories of 
differential algebras or simplicial groups) where T is not a subcategory of cone( * ). 

(2.2) Definition. Let C be a cofibration category under T. A complex or more 
precisely a T -comple.x in C is a cofibrant object 

in Fill (C) with the following properties. The object Xl is an object in T and the 
pair (Xn+l' X n ), n ~ 1, is a principal cofibration (see (III.3.1)) with attaching 
map 

Here An+l is a cogroup in T for n ~ l. In particular 8x = 82 E [A2' Xl] is given 
by a map in T which represents an object 8x in Coef and X 2 is given by the 
mapping cone of 8x . Let 

be the full subcategory consisting of T-complexes X::: I = (X::: I , A::: I , 8::: 2 ), Here 
Al is the cogroup associated to the coaction on Xl. We write Complex = 
Complex(T). We also call a T-complex a reduced complex. In chapter VIII we 
shall discuss "non-reduced" complexes in a cofibration category. 

(2.3) Remark If C is a cofibration category under T then Pair(C) is a cofibra­
tion category under T(2). Here T(2) is the following theory of coactions. Objects 
(Xl, YJ) in T(2) are inclusions 

given by the sum of objects YI , Xl in T. Morphisms in T(2) are commutative 
diagrams 
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1 1 
YI V Xl = Xl ------+ Al = BI V jh 

in T. The coaction for YI and Xl in T yields the coaction for (Xl) Yd in T(2) in 
the obvious way. 

(2.4) Definition. We say that aT-complex Y>l is a subcomplex of the T-complex 
X>l if a T(2)-complex 

(X;:::l) Y;:::d = ((Xl) Yd C (X2 ) Y2 ) c ... ) 

in Pair(C) is given with the following properties. The pair (Xl) Yd E T(2) is 
obtained by an inclusion 

(1) 

where YI and Xl are objects in T; see (2.3). Moreover the attaching maps are of 
the form 

Here (An+!) B n+l ) is a cogroup in T(2) given by an inclusion 

Bn+! cAn+! = Bn+ I V .An+ I (2) 

where Bn+! and .An+l are cogroups in T. As a special case one obtains for n ~ 1 
the n-skeleton xn C X;:::l which is a subcomplex of X;:::l. Here (xn)i = Xi for 
i ::; nand (xn)j = xn for j ~ n. We define the dimension of a complex X;:::l by 
dimX;:::1 ::; n if X;:::l = xn is an n-skeleton. Then Ai = * for i ~ n + l. 

(2.5) Proposition. Let X;:::l be a complex and let IX;:::1 be the cylinder object for 
l-homotopies in (1. 3) with 

(IX>dn = Xn U IXn- 1 U Xn 

Then IX;:::1 is a complex and X;:::l V X;::: I is a subcomplex of IX;:::I. 

Proof. If X>l has attaching maps 8n+1 : En-IAn+! ---> Xn then IX>1 has the 
attaching m~ps (n ~ 2) -

an+! : E n- l An+! V E n- l An V E n- l An+! ----. (lX;:::dn 

obtained by (III.4.4) and (III.5.5). q.e.d. 

(2.6) Example. Let C = Top* be the cofibration category of pointed topological 
spaces. Weak equivalences are homotopy equivalences in Top and cofibrations are 
defined by the homotopy extension property in Top. All objects in Care fibrant. 
The cofibrant objects in C are also termed "well pointed" spaces. Let 
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T = susph 'D) c (Top*)cI~ 

be the full subcategory consisting of one point unions A = VESI of I-spheres Sl 
where E is an index set. Then T is a theory of cogroups isomorphic to the cat­
egory gr of free groups and Top* is a cofibration category under T. A CW­
complex X is reduced if the O-skeleton X O = * is the base point. Each reduced 
CW-complex X yields a filtered object X2':l = (Xl C X2 C ... ) given by the 
skeleta xn of X. This filtered object is a T-complex in the sense of (2.2). In fact 
Xl is a one point union of I-spheres so that Xl E T and there exists a map 
g : En-l A ----+ xn in Top* with A E T such that xn+l is homotopy equivalent 
under xn to the mapping cone eg • The homotopy class of gin Top* is determined 
up to the action of 1fl(xn) by the CW-complex X. If the reduced CW-complex X 
is normalized (in the sense that all attaching maps 0: : sn ----+ xn of (n + I)-cells 
in X carry the basepoint of sn to {*} = XO) then the structure of X as a T­
complex is well defined. A reduced CW-complex X has the additional property 
that 

X = lim(X2':l) 

is the direct limit of the filtered object X2':l in the category Top*. We point out 
that in the general definition of a T-complex in (2.2) we do not assume that the 
direct limit lim(X2':d of the complex X2':l exists in C. One readily checks that 
a sub complex Y of a reduced CW-complex is also a sub complex in the sense of 
(2.4). Moreover Ix?l in (2.5) corresponds to the skeletal filtration of the cylinder 
IxX/lx{*}. 

3 The Whitehead Theorem 

The classical Whitehead theorem shows that a weak equivalence between CW­
complexes is also a homotopy equivalence in the category Top. We here study 
the analogue of this theorem for T-complexes in a cofibration category C under 
T. This leads to the following notions of lifting map, elementary lifting map, T­
equivalence and weak T-equivalence. 

(3.1) Definition. We say that a map f: Y?l ----+ X2':l in Fill (C)cf is a lifting map 
if for all T-complexes K2':l with sub complex L2':l and commutative diagrams 

L2':l 
b 

Y2':l ---+ 

j1 11 
K2':l 

a 
X2':l ---+ 

in Fih(C)c (where j is the inclusion) there exist a map 
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1 
with dj = b and a I-homotopy fd ~ arel L?l. This map d is termed a lift of the 
diagram. 

(3.2) Definition. We say that a map f : Y?l ----t X?l in Fib(C)cJ is an elementary 
lifting map if for all cogroups A and objects Z in T the following properties hold, 
n'21. 

(ifnH)* : 7f~-l(YnH) --t 7f~_1(Xn+2) is injective. 

(ifn+d* : 7f~(YnH) --t 7f~(Xn+2) is surjective. 

(iii) For the maps between homotopy sets 

we have image(ifd* = image(i*). 

(3.3) Proposition. An elementary lifting map f is also a lifting map. 

(i) 

(ii) 

Proof. We first show that it is sufficient to prove (3.3) for the case that f is a 
cofibration in Fih (C). To see this we choose a factorization 

by (C3) in Fill (C) where X>l is fibrant. Then we consider the diagram in Fill (C)c 

L'2l 
1'b 

X'2l --------+ 

j1 p 11 
K>l 

a 
X>l --------+ 

By use of 11.1.11 (b) in Baues [AH] there exists a' : K>l ----t X>l with a'j = 1'b 
- -

and pa' g a relative L'2l' Since f is an elementary lifting map one readily checks 
that also l' is an elementary lifting map. Below we show that l' is a lifting map 
so that there is a lift d for the diagram 

L'2l 
b 

Y'2l --------+ 

j1 11' 
K'2l 

a' 
X'2l --------+ 

with dj = band f'd ~ a'rel L'2l' Hence fd = pf'd ~ pa' g a. This shows that also 
f is a lifting map. 

Now let f in (3.3) be a cofibration in Fih(C). We observe that the assumption 
on f in (3.2) imply that for any cogroup A in T the relative homotopy groups 
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(1) 

are trivial for n :2: 1. To see this we consider the following exact sequence: 

Here the right hand side is injective by (3.2) (i) and the left hand side is surjective 
by (3.2) (ii). Hence exactness implies (1). 

We now construct the lift d and the I-homotopy H : fd d:: a rel L?1 inductively. 
To start the induction we use (3.2) (iii) for Z = K 1 . For this recall that for 
L>1 C K>l we have by (2.4) (i) in degree 1 the inclusion Ll C L1 V Kl = K l . Now 
(3~2) (iiifshows for {iiI = a1 I Kd E [Kl' Xl] that there exists {ell} E [Kl' Yl ] 
with (ifd*{dl } = {iiI}. Hence we have a map in C 

(2) 

and a homotopy in C 

where i : Xl --+ X 2 is the inclusion. We define 

{ 
dl = (bb dl ) : Kl = Ll V Kl ------> Yl 

HI = (ibl,Hd: hI (Kl ) = Ll V [Kl ------> X2 
(3) 

Now let n :2: 1 and assume that 

(4) 

are defined. Let A' be a cogroup in T and let 

be the attaching map of the principal cofibration (K~+l' Kn) for which 

(5) 

is a push out diagram; see (2.4). Then we get the commutative diagram 
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Diagram (6) yields a map of pairs 

and hence an element in the group 

A A' 
'lfl (Xn+2, Yn+d = 'lfn (Xn+2' Yn+1) = 0 

which is trivial by (1). Therefore the map (7) admits an extension 

where the left hand side is the cone in Pair(C). We now obtain the diagram 

Cg =KnUgCA 
(idn,,B) 

Yn+1 ~ 

11 II 
K~+1 

d~+l 
Yn+1 ----> 

where the extension d~+1 exists since Yn+l is fibrant. Let 

dn+l = (d~+l' bn+d : Kn+l ~ Yn+1 
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(6) 

(7) 

(8) 

(9) 

be obtained by the push out (5). Then (8) shows that 
H n+l : ifn+1dn+1 ~ ian+l relative Ln+1 extending Hn. 
This completes the proof of (3.3). 

one gets a homotopy 
Here we use (III.4.2). 

q.e.d. 

(3.4) Definition. A map f : Y:;::l ---+ X:;::l in Fill (C)cj is a T -equivalence if for all 
T-complexes K:;::l the induced map 

(1) 

is a bijection. Here we use the sets of I-homotopy classes in (1.4). Moreover f is 
a weak T -equivalence if for all cogroups A and objects Z in T and n ~ 1 the 
induced maps f* below are bijections, where im = image. 
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im{[Z,Y1] ~ [Z,Y2]} ~im{[Z,X1] ~ [Z,X2]} 

im{7r~Yn+1 ----+ 7r~Yn+2} ~ im{7r~Xn+1 ----+ 7r;;Xn+2} 

(2) 

(3) 

One readily checks that a T-equivalence is also a weak T-equivalence. For this let 
K?1 be the constant object given by Z. Then (1) implies (2). Moreover choosing 
for K?1 the complex with trivial n-skeleton of dimension n given by En A shows 
that (1) implies (3). 

(3.5) Proposition. A lifting map f is aT-equivalence. 

Proof. Using L = * in (3.1) we see that f* in (3.4) (1) is surjective. Moreover if 
1 

a, b : K?l ----+ Y?l are maps for which H : fa r::.:: fb then one gets the commutative 
diagram 

K?1 V K?1 
(a,b) 

Y?1 --+ 

1 11 
lK?1 

H 
X?1 --+ 

A lift of this diagram yields a I-homotopy a ~ b. This shows that f* in (3.4) (1) 
is also injective. q.e.d. 

Using (3.3), (3.4) and (3.5) we have the following implications in a cofibration 
category under T: 

elementary lifting map 

lifting map 

(3.6) 

T -equivalence 

weak T-equivalence 

The converse of these implications are true if we assume that X?l' Y?l have an 
additional property as follows. 

(3.7) Definition. We say that X?l E Fih (C)c1 is T -good if for all cogroups A in 
T and n ~ 1 the groups 7r;;(Xn+2' X n+1) = 0 are trivial and 7rc;t(Xd ----+ 7rc;t(X2 ) 

is surjective. 

(3.8) Proposition. Assume that Y?l and X?l are T-good. Then a weak T­
equivalence f : Y?1 ----+ X?1 is also an elementary lifting map. 
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Proof. First we observe that (3.4) (2) implies (3.2) (iii). Moreover since Y21, X 21 
are T-good we see that (3.4) (3), (2) imply 

is an isomorphism for n 2: 0 and all cogroups A in T. Here we use the exact 
homotopy sequence. Moreover the diagram (n 2: 1) 

A-v i. A-v" 
7rn Ln+l ----+ 7rn Ln+2 ----+ 0 

7r;{ X n +2 

with exact row shows that (3.2) (ii) holds. Finally the diagram (n::::: 1) 

7r;{_1 Yn +1 

with exact row shows that (3.2) (i) holds. q.e.d. 

Now (3.8) and (3.6) imply the following result 

(3.9) Theorem. Let C be a cojibration category under T and let f : Y>l --+ 

X 21 be a map in Fih (C)cf between T -good objects. Then we have the following 
equivalences: 

f is elementary lifting map 

n 
f is lifting map 

n 
f is T-equivalence 

n 
f is weak T -equivalence 

(3.10) Proposition. Let f : X 21 --+ Y21 be a map between T-complexes which 
is a T-equivalence. Then f is a 1-homotopy equivalence (that is an isomorphism 

in the category Complex(T)/~). 
Proof. Since 

1 1 
f* : [Y21'X21l/~ ----t [Y21 , Y21l/~ 

is bijective we see that there is 9 : Y21 --+ X 21 with fg ~ 1. Since f*(gf) = f*(l) 

the injectivity of f* shows gf ~ 1. q.e.d. 
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As a corollary of (3.10) and (3.9) we get the following generalization of the 
classical Whitehead theorem. 

(3.11) General Whitehead Theorem (I). Let X>l! Y>l be T-complexes which 
ar'e T-good. Then a map] : X::?:l --) Y::?:l is a weak T-equivalence i] and only i] 
] is a 1-homotopy equivalence. 

(3.12) Example. Let A be an additive category and let C be the full subcategory 
of the I-category chain! in (III.9.2) consisting of chain complexes concentrated 
in degree:::: l. Then C is a cofibration category under A where A c Ho(C) carries 
the object A E A to the corresponding chain complex concentrated in degree l. 
One readily checks that 

1 
Ho(C) = Complex(A)/c::: 

Moreover the Whitehead theorem (3.11) yields for chain complexes in C the equiv­
alence (a) {c} (b) in theorem (II.6.6) or theorem (III.9.6). 

There are many generalizations of the Whitehead theorem in various homotopy 
theories. A general form of this theorem is (3.11) above which by specialization 
yields most of the Whitehead theorems in the literature. Using the cellular ap­
proximation we see in the next section that the classical Whitehead theorem is a 
consequence of (3.11). 

4 Cellular Approximation 

We first consider the classical cellular approximation theorem for reduced CVI­
complexes in C = Top*. Compare example (2.6). A map] : K --) X between 
reduced CW-complexes is termed cellular if ] carries the n-skeleton Kn of K 
to the n-skeleton xn of X. Hence a cellular map ] is equivalent to a filtered 
map ]::?:1 : K::?:l --) X::?:l with lim(J::?:l) = ]. The classical cellular approximation 
theorem shows that each map 9 : K --) X in C which restricted to a sub complex 
L of K is cellular is homotopic relative L to a cellular map] : K --) X. We 
can reformulate this by considering the following commutative diagram of filtered 
objects 

L::?:l giL X::> 1 ~ 

j1 1p ( 4.1) 

K::?:l ~ X 
g 

Here X is the constant filtered object and p is the canonical map given in degree n 
by the inclusion xn c X. The filtered map 9 in the diagram is given in degree n 
by the composite Kn c K ~ X. Now the cellular approximation theorem is 
equivalent to the existence of a lift ] of diagram (4.1) with ] j = giL and 
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pf ~ grelL?:l; compare (3.1). Hence using the notion of lifting map in (3.1) we 
get: 

(4.2) Cellular approximation theorem. Let X be a reduced CW-complex. 
Then p : X?:l ---+ X in (4.1) is a lifting map. 

Here a lifting map is defined as in (3.1) for the cofibration category C = 
Top* under T = susp(*, V); compare (2.6). Theorem (4.2) leads to the following 
definition. 

(4.8) Definition. Let C be a cofibration category under T. We call a cofibrant and 
fibrant object X in C weakly cellular if there exists aT-complex X?:l and a lifting 
map 

p: X?:l --+ X (1) 

where X is the constant filtered object given by X. Moreover X is cellular if there 
exists a lifting map as in (1) for which X>l has the limit property in (l.5) and the 
induced map 

(2) 

is a weak equivalence in C. Let 

Cell eWell c Cej (3) 

be full subcategories where Cell consists of cellular objects and Well consists of 
weakly cellular objects. 

Remark. Consider the cofibration category C = Top* under T = susp( *, V) as 
in (2.6). Then each reduced CW-complex X is cellular since X?:l has the limit 
property and since the cellular approximation theorem (4.2) holds. In fact the 
notion of "cellular object in a cofibration category C under T" is the appropriate 
generalization of the classical notion of CW-complex in algebraic topology. Each 
path connected space U in Top* is weakly cellular since there exists a reduced 
CW-complex X and a map p : X ---+ U inducing isomorphisms p* : 7fn X ~ 7fn U 
for n 2: l. Such a map is by (3.9) a lifting map. The CW-complex X is termed a 
CW-approximation of U; for example we can choose X to be the realization of the 
reduced singular set of Y; see Fritsch-Piccinini [CW]. Homology of U is defined by 
the homology of the CW-approximation of U. 

(4.4) Proposition. There is a canonical functor 

1 
cp : Well/c::= --+ Complex/c::= 

which carries a weakly cellular object X to the T -complex X?: 1 chosen for X as in 
(4.8). Moreover X>l is T-good in the sense of (8.7). 
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Proof. Given f : Y ---+ X in Well we obtain 

* --------4) X;:::l (1) 

1 1 
Y>l ----+ Y ----+ X - I 

and a lift f: Y;:::l ---+ X;:::l. The functor 'P carries the homotopy class of f to the 
I-homotopy class of 1. Let H : IY ---+ X be a homotopy f '::::' g in C el . Then we 
obtain the commutative diagram 

Y;:::l V Y;:::l 
(f,g) 

X;::: 1 ------> 

(io,id 1 lp (2) 

IY;:::l 
Ii 

X ------> 

in Fil1 (C)cl as follows. Let i: Y;:::l ---+ s-lY;:::l be the shift map with (s-lY;:::dn = 

Yn+1 so that i in degree n is the inclusion Yn C Yn+1; see (1.3). 
Then we get p : 8-1 Y;:::l ---+ Y with pi = p. Hence we get the composite 

- j -1 Jp H 
HI : I Y;:::l ---+ Is Y;:::l ---+ IY ---+ X (3) 

where j is the inclusion and Ip is obtained in the cofibration category Fill (C) as 
in (11.2.10) of Baues [AH]. Clearly H1iO = fp and H1i1 = gpo Moreover we have 

- 1 1 
I-homotopies Ho : pf '::::' fp and H2 : gp '::::' pg. We can add the homotopies Ho, HI 
and H2 and get a map fI representing Ho + HI + H2 such that (2) commutes. 

A lift of (2) gives us a I-homotpy f ~ g. This shows that the functor 'P is well 
defined. 

We still have to show that X;:::l is T-good. For this we use the lifting map 
p: X;:::l ---+ X which by (3.6) is a weak T-equivalence. Hence the maps 

are bijections. We now show that 

{ 
[Z, X2 ] ---+ [Z, X] 

7r:;; X n +2 ---+ 7r:;; X 

(4) 

(5) 

are injective and hence by (4) bijective. Assume we have maps f, g : Z ---+ X 2 

and a homotopy H : if '::::' ig where i : X 2 C X is given by p. Then we have the 
commutative diagram in Fih (C) 
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(f,g) 
Z V Z ----7 Xl ----7 X~I 

1 H lp 
Iz )X 

and a lift of this diagram yields a homotopy f ~ g. Thus the first map in (5) 
is injective. A similar argument replacing Z by En A shows that the second map 
in (5) is injetive. Using (4) and (5) we see that 1l't-(Xd -+ 1l't-(X2) is surjective. 
Moreover for n ~ 1 we have the exact sequence 

1l';;(Xn+l) ~ 1l';;(Xn+2) ----- 1l';; (Xn+2' Xn+l) ~ 
~ 1l';;_1 (Xn+d ~ 1l';;_1 (Xn+2) 

where j is surjective and i is injective. In fact, j is surjective since the composite 

is surjective. Moreover i is injective since the composite 

is a bijection. 

(4.5) Theorem. The restriction 

I 
r.p : Cell/~ ----- Complex/~ 

of r.p in (4.4) is a full and faithful functor. 

q.e.d. 

Proof. The functor r.p is full since r.p(1imhl) = hI. The functor r.p is faithful since 
I 

a I-homotopy H : hI ~ g~1 yields by (1.5) a homotopy limH: lim hI ~ limg2':I' 
q.e.d. 

Using theorem (4.5) we obtain the following result which is a more direct 
analogue of the cassical Whitehead theorem. 

(4.6) General Whitehead theorem (II). Let C be a cofibration category un­
der T and let X and Y be cellular objects in C. Then f : Y -+ X is a homotopy 
equivalence in CcJ /~ if and only if for all cogroups A and objects Z in T and 
n ~ 1 the induced maps 

are bijections. 

f* : 1l';;(Y) -+ 1l';;(X) 
f* : [Z, Y] -+ [Z, X] 
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Proof. We choose X>I -+ X and Y>I -+ Y as in (4.3) where X>I and Y>I are 
T-good by (4.4). Sin~e 'P in (4.5) is -full and faithful we have to ~how that-f>1 : 
Y~I -+ X~I with 'P(hd = f is a I-homotopy equivalence. By (3.9) it suffices 
to show that hI is an elementary lifting map. Now (3.2) (i), (ii) hold since we 
have the following commutative diagrams where i is injective and q is surjective; 
compare (4.4) (4), (5). 

7r:_1 (Yn+1) ----""-----4) 7r:_1 (Y) 

hi ~ 

7r: (Yn+1) ----q-------t) 7r: (Y) 

hi ~ 
7r: (Xn+d -----q-------t) 7r: (X) 

~ /. 
Moreover (3.2) (iii) is a consequence of the following diagram where q is surjective 
and i is bijective. 

[Z, y l ]---q---4) [Z, Y] 

hi i~ 

q.e.d. 

(4.7) Example. Let C = Top· and T = susp(*, D) as in (2.6). Then we obtain as a 
specialization of (4.6) the following classical Whitehead theorem: Let f : X -+ Y be 
a map between reduced CW-complexes in Top*. Then f is a homotopy equivalence 
if and only if f induces isomorphisms 

(*) 
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for n :2: 1. Since all objects of susp( *, D) are one point unions of I-spheres we see 
that (*) is equivalent to the corresponding condition in (4.6). Clearly all reduced 
CW-complexes are cellular by (4.2). 

5 The Blakers-Massey Property 

Let T be a theory of coact ions and let C be a cofibration category under T. Using 
the theory T we define below the notion of m-connected maps in C where m :2: 1. 
We then describe the Blakers-Massey property of a cofibration category C which 
for C = Top* is equivalent to the classical Blakers-Massey theorem. 

(5.1) Remark. We are not able to define a O-connected map in C since we do not 
have the analogue of a discrete set in the cofibration category C. In most examples 
of the cofibration category C the objects of T are actually "O-connected"; consider 
in particular C = Top* and T = susp(*, D). 

(5.2) Definition. A cofibration i : L ~ K in C c is I-connected if for all objects Z 
in T the induced map between homotopy sets in Ho(C) 

ix: [Z,L] ~ [Z,K] 

is surjective. Moreover i : L ~ K is m-connected with m :2: 1 if i is I-connected 
and if the relative homotopy groups 

are trivial for all cogroups A in T and 1 :::; r :::; m - 1. Here we use r :::; m - 1 since 
a cogroup A in T has dimension 1. A cofibrant object K is m-connected if * -f K 
is m-connected; this implies that the induced map 7r:( ( *) -f 7r:( (K) is surjective 
for r :::; m - 1 and bijective for 0 :::; r :::; m - 2. We do not assume that 7r:(( *) is 
trivial. 

(5.3) Definition. We say that the cofibration category C under T has the Blakers­
Massey property if (a) and (b) are satisfied. 

(a) For all cogroups A in T the n-fold suspension En A is n-connected. 
(b) Consider finite dimensional T -complexes 

where i and j are inclusions of a subcomplex. By applying the direct limit we 
obtain the induced cofibrations 

for which the push out diagram 
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r r 
L~ Y 

is defined in C. Let m, n 2: 1 and assume (K, L) is m-connected and (Y, L) 
is n-connected. Then (K UL Y, Y) is m-connected and for all cogroups A in T 
the induced map 

is surjective for 1 :::; r :::; n + m - 1 and bijective for 1 :::; r :::; n + m - 2. 

(5.4) Example. Let C = Top' and T = susp(*, 1)). Then (C, T) has the Blakers­
Massey property as follows from the Blakers-Massey theorem in algebraic topology; 
see for example tom Dieck-Kamps-Puppe [HT] and Gray [HT]. 

In the next theorem we consider the map (7rg , I). in (III.2.9). This result is 
used in chapter V to show that the Blakers-Massey property implies that (C, T) 
is "homological". 

(5.5) Theorem. Assume that (C, T) satisfies the Blakers-Massey property. Let 
A, D be cogroups in T and B = EnD with n 2: 0 and let Y~l be a finite dimensional 
T-complex with Y = lim(Y>d. Moreover let 9 : B ----> Yn +1 c Y be a map in C. 
Then the induced map 

(7rg , I). : 7r~(CB V Y, B V Y) ----+ 7r::(Cg , Y) 

is surjective for r :::; 2n + 1 and bijective for r :::; 2n. Moreover (Cg , Y) is (n + 1)­
connected. 

Using the trivial map 9 = 0 : B ----> * ----> Y in (5.5) we obtain by the definition 
of the partial suspension E in (III.2.6) the next result. 

(5.6) Theorem. Assume that (C, T) satisfies the Blakers-Massey property. Let 
A, D be cogroups in T and let Y~l be a finite dimensional T-complex with Y = 

lim(Y~d. Then the partial suspension 

E : 7r~_1 (En D V Yh ----+ 7r~(En+1 D V Yh 

is surjective for r :::; 2n + 1 and bijective for r :::; 2n. Using Y = * we see that the 
suspension 

is surjective for r :::; 2n + 1 and bijective for r :::; 2n. 

The second part of this theorem is the analogue of the Freudenthal suspension 
theorem. 
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Proof of {5.5}. We consider the mapping cylinder Zg obtained by the push out 

IB 9 Zg~ Y -----+ 
P 

io r r lO 

B 9 Y -----+ 

Here p is defined by pg = p and p'io = 1. Hence 

. B V Y (gh,lO) Z J : ) 9 

is a cofibration and we obtain the push out 

CBVY 

r push 

BvY -----+ 
j 

r 
lUp 

-----+ 

-----+ 
p 

(1) 

(2) 

CBUgY=Cg 

r (3) 

Y 

The composite of the top row is (ng ,l) = (1 U p)J. We can apply the Blakers­
Massey property to the push out diagram in (3) since j is obtained by the inclusion 
of a subcomplex; see (2.5). This yields the result in (5.5) since we show that 
( C B V Y, B V Y) is (n + I)-connected and that (Z g, B V Y) is (n + 1 )-connected: 
We have the maps 

(0,1) : B V Y ------> CB V Y ~ Y 

(g, 1) : B V Y ------> Z 9 ~ Y 

which both admit the splitting i2 : Y ----; B V Y. Hence (0,1) and (g,l) are 1-
connected; see (5.2). Moreover we have the push out diagram 

B -----+ B vY 

r r 
* -----+ Y 

Since B = EnD the Blakers-Massey property shows that Y ----; BvY is n-connected 
so that nf(Y) ----; nf(BVY) is surjective and hence bijective for i :::; n-1. Therefore 
the short exact sequences 

o ------> nf (C B V Y, B V Y) ------> nf-l (B V Y) ------> nf-l (Y) ------> 0 

o ------> nf (Z g, B V Y) ------> nf-l (B V Y) ------> nt 1 (Y) ------> 0 

show that nf(CB U Y, BUY) = 0 = nf(Zg, B V Y) for i :::; n. q.e.d. 

(5.7) Proposition. Assume (C, T) satisfies the Blakers-Massey property and let 
Y;:::l be a T-complex. Then (Yk, Yn ) is n-connected for k ~ n ~ 1 and thus Y;:::l is 
T-good. 
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Proof. By (5.5) we see that for n ::::: 1 the pair (Yn+l, Yn) is n-conneted. Hence 
(Yn+l, Yn) is I-connected and 

7r~ (Yn) ~ 7r~ (Yn+l) 

is surjective for 'r ::; n -1 and bijective for r ::; n - 2. This shows that for k ::::: n ::::: 1 
also (Yk, Yn) is I-connected and 

7r~ (Yn) ~ 7r~ (Yk) 

is surjective for r :::::: n -1 and bijective for r ::; n - 2. Thus (Yk , Yn ) is n-connected. 
q.e.d. 

(5.8) Proposition. Assume (C, T) satisfies the Blakers-Massey property and let 
Y;:O:l be a finite dimensional T-complex with Y = lim(Y;:o:d. Then 

P:Y;:O:l ~Y 

is a lifting map so that Y is cellular. 

Proof. It suffices to show that p is an elementary lifting map; see (3.3). Now (3.2) 
(i), (ii) are satisfied for p by (5.7). Moreover (3.2) (iii) is satisfied since (Y, Y1) is 
I-connected by (5.7). q.e.d. 

Proposition (5.8) shows that the Blakers-Massey property implies the cellular 
approximation theorem for finite dimensional complexes; see (4.2). In the case of 
infinite dimensional complexes we need the following property of (C, T). 

(5.9) Definition. Let C be a cofibration category under T. Then we say that 
(C, T) has good limits if all T-complexes Y>l have the limit property (1.5) and if 
for all cogroups A and objets Z in T we have 

[Z, lim Y>l] = lim[Z, Yk] 
- k 

7r~(lim Y>d = lim 7r~Yk 
- k 

(5.10) Theorem. Assume (C, T) satisfies the Blakers-Massey property and has 
good limits. Then the functor 

1 
'P: Cell/~ ~ Complex/~ 

in (4.5) is an equivalence of categories. 

Proof. We have to show that 'P is representative. For this let Y;:O:l be aT-complex 
with Y = lim(Y>d and let Y >----+ Y' be a fibrant model of Y. We show that Y' 
is cellular with 'P(Y') = Y;:O:l. In fact Y;:O:l has the limit property since (C, T) has 
good limits. Moreover the induced map 

P:Y;:O:l~Y~Y' 

is an elementary lifting map by the argument in (5.7) and (5.9). Hence p is a lifting 
map so that Y' is cellular with 'P(Y>d = Y'. q.e.d. 



Chapter V: Homology of Complexes 

Given a theory of coactions T and a cofibration category C under T we intro­
duced in chapter IV the notion of a T-complex X~l in C which is the analogue 
of the classical notion of CW-complex in algebraic topology. We now describe the 
properties of C and T which are needed for the definition of homology and coho­
mology of aT-complex. These properties lead to the definition of a "homological 
cofibration category under T" in § 1. We define homology and cohomology by a 
"chain functor" 

C* : Complex ----+ chain 

where Complex is the category of T -complexes and where chain is the cate­
gory of chain complexes associated to the theory T in chapter I. The cohomology 
obtained is sufficiently powerful to describe an obstruction theory for extension 
problems on T-complexes which specializes to the classical obstruction theory 
for CW-complexes. Moreover we obtain for T-complexes a generalization of the 
Hurewicz homomorphism and we are able to embed this Hurewicz homomorphism 
into an exact sequence which specializes to J.H.C. Whitehead's certain exact se­
quence [CE] for CW-complexes. 

1 Homological Cofibration Categories 

In the following definition we describe the appropriate conditions on a cofibration 
category C which will be used in the next section to obtain the chain complex 
C*(X~l) of a complex X~l in C. This chain complex yields the notion of homology 
and cohomology of X~l. 

(1.1) Definition. Let T be a theory of coactions and let C be a cofibration category 
under T as in (IV.2.1). Then we say that C is a homological cofibration category 
under T or that (C, T) is homological if all T -complexes are T -good as in (IV .3.7) 
and if the following conditions (a) and (b) are satisfied for all cogroups A, Bin T 
and T-complexes X~l. 

(a) For i ;:::: 0 the inclusion Xn C Xn+1 induces the map 
A . A . 

7ri (17' B V Xnh ------ 7ri (17' B V X n+1 h 
which is surjective for n = 1 and bijective for n ;:::: 2; see (III.2.5). 

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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(b) Let 9 : D = L'n-1 An+1 -t Xn be the attaching map of the principal cofibration 
(Xn+1' Xn) where An+1 is a cogroup in T. Then 

(-7l'g, 1)* : 7r:(CD V X n, D V Xn) ------> 7r:(Xn+1 , Xn) 

is surjective for n = 1 and bijective for n ~ 2; see (III.3.2). The same holds 
for the composite 

a- 1 
-------t 

where 8 is the isomorphism in (III.3.2). We derive from (a) and (b) the fol­
lowing property (c). 

(c) For m ~ 1 the partial suspension 

E: 7r:_1 (L'n-l B V Xmh ------> 7r:(L'n B V Xmh 

is surjective for n = 1 and bijective for n ~ 2. 

Proof of (c). To derive (c) from (a) and (b) we first choose in (b) the trivial 
attaching map 9 = 0 with D = L'n-1 Band Xn = Xm for m ::; n. This shows 
that (c) holds for m ::; n; see (III.3.2). Now (a) implies that (c) also holds for 
m > n. q.e.d. 

Remark. The assumption above that all T-complexes are T-good is not needed 
in chapter V and chapter IV if one considers only finite dimensional T-complexes. 
For infinite dimensional T-complexes we apply in (VI.7.1) and (VI.8.4) the general 
Whitehead theorem (IV.3.11) and this theorem requires that T-complexes are T­
good. 

(1.2) Proposition. Assume (C, T) has the Blakers-Massey properly. Then (C, T) 
is homological. 

This result yields many examples of homological cofibration categories under 
T. 

Proof of (1.2). Theorem (IV.5.5) shows that (1.1) (b) holds. Moreover we obtain 
(1.1) (a) by the following push out diagram where B = L'i B. 

ctJVXn -------t CB V Xn+l 

j1 r r 
BV Xn h 

B V Xn+l -------t 

Here Jz is n-connected since (Xn+1' Xn) is n-connected by (IV.5.7) and since we 
can use the Blakers-Massey property for Xn+l ~ Xn -t B V X n . Moreover j1 is 
(i+1)-connected; compare the proof of (IV.5.5). Thus the Blakers-Massey property 
shows that 
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1 
is surjective for 1 ::; r ::; i + n and bijective for r ::; i + n. Choosing r - 1 = i we 
see that (1.1) (a) holds. Moreover all T-complexes are T-good by (IV.5.7). q.e.d. 

(1.3) Proposition. Assume (C, T) is homological. Then one has the functor 

1 
C : Complex(:::, -----; Coef 

which carries X~l to the attaching map ax of (X2' Xl) and which carries hI 
to {h} . Moreover the restriction of c to the subcategory of 2-dimensional complexes 
is a full functor. 

Proof. We have to show that c is well defined for morphisms. Now (1.1) (b) implies 
that for a map f~l the induced map 

is a twisted map; see (III.3.11). Hence h is a-compatible. Similarly each map 

I 
is a twisted map by (1.1) (b). This shows that hI ~ g~l implies that h is 
a-equivalent to gl. Thus the a-equivalence class {h} is well defined by the 1-
homotopy class of f>l. Given a a-compatible map {fd in Coef one obtains an as­
sociated twisted map (J2, h) as above. Hence c is full if restricted to 2-dimensional 
complexes. q.e.d. 

(1.4) Proposition. Let (C, T) be homological and let A, B, A2 be cogroups and 
Z, Xl be objects in T. Moreover let (X2' Xl) be a principal cofibration with attach­
ing map ax: A2 ~ Xl. Then we have canonical bijections 

im{[Z,X1J ~ [Z,X2 ]} = Coef(Z, ax) 

[A, B V X 2h = Coef(A, B V ax)z 

Recall that Coef(A, B V ax h is used for the definition of morphisms in the 
category premod. Hence the second bijection in (1.4) yields a new interpretation 
of such morphisms. 

Proof of (1.4). The first bijection is obtained by the same arguments as in the 
proof of (1.3). The second bijection is a consequence of the first bijection and of 
(1.1) (a). q.e.d. 

Using (1.4.7) we derive from (1.4) the following corollary. 
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(1.5) Corollary. Let (C, T) be homological and let f : X 21 ---t Y21 be a map in 
1 

Complex! ~. Then c(f) : ax ---t ()y is an isomorphism in Coef if and only if the 
induced map 

is a bijection for all objects Z in T. 

The corollary describes exactly condition (IV.3.4) (2) for a weak T-equivalence. 
Recall that a category of modules for T is a quotient category of the category 

premod with certain additive properties. 

(1.6) Definition. Let (C, T) be homological. Then we define the category of mod­
ules mod = mode C) as follows: Objects are A V ax where A is a cogroup in T 
and ax E Coef and a morphism 

0: 8 u : A V ax --+ B V {)y 

is given by a morphism u : ax ---t {)y in Coef and by an element 

where (Y2 , Y1 ) is a principal cofibration with attaching map {)yo Composition is 
defined by 

«(38 v) (0: 8 u) = «(3, iJ)O: 8 (vu) 

where iJ is a map (Y2, Y1 ) ---t (Z2' Zl) in Complex with c(iJ) = v by (1.3). Now 
(1.1) (a) shows that the composition is well defined. 

(1.7) Lemma. The category mod = mod(C) is a category of modules for the 
theory T with the properties in {1. 5. 6). In fact, the functor E is given by the 
following commutative diagram: 

[A, B V Y2 ]z = premod(A Vax, B V ()y)u 

Here the left hand side is the partial suspension which is surjective by (1.1) (c). 
The identification in the top row of the diagram is obtained by (1.4). 

We have the commutative diagram of functors 

pre mod (1.8) 

/~ 
EI 

premodad ---+ mod(C) 
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where E~ is a full functor which is the identity on objects induced by E; see (1.5.8). 
For various examples of homological cofibration categories (C, T) the functor E~ 
is actually an isomorphism. In general we do not assume that this is the case. This 
is the reason for the definition of "categories of modules for T" in (1.5.8) which 
are not uniquely determined by T. In the following we always use the category 
mod = mod(C) for the definition of categories like chain or TWIST~ and 
TWISTL etc. 

Proof of (1.7). One readily checks that the isomorphism in the top row is com­
patible with the action of the group 

im {[A, Y1] ----> [A, Y2J} = Coef(A, Oy) 

and (111.2.7) shows that E is equivariant with respect to this action. Hence (1.5.6) 
(ii) is satisfied. Next the first equation of (1.5.6) (iii) is obviously satisfied; we 
obtain the second equation as follows. Consider the composite 

C(BI V B 2 ) ____ 1r ___ -t) E(BI V B 2 ) 

U sing the definition of the partial suspension we get the following diagram in which 
the row is split exact with B = Bl V B2 

7rf(CB V X, B V X) ~ 7rri(B V Xh 

1 

1 
7rf(EB V Xh ~ 7rt(EB V x, X) 

The exactness of the row is readily obtained by the exact homotopy sequence of a 
pair. The composite of the morphisms in the column yields the partial suspension 
which is surjective by (1.1) (c). Hence since the row is split exact we get 

7rt(EB V Xh = 7rt(EB1 V Xh EB 7rt(EB2 V Xh 

This shows that also the second equation of (1.5.6) (iii) holds. q.e.d. 

(1.9) Definition. For cogroups A, B in T and for aT-complex Y>l we can form 
the double colimit of groups termed stabilization 

(1) 
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Here the limit over j ~ 1 is induced by the inclusions Jj C Jj+! and the limit over 
i ~ 0 is induced by the partial suspension E. Hence we have canonical maps 

which by the conditions in (1.1) are surjective for i = 0 or j = 1 and are bijective 
otherwise. In particular 71,2 is an isomorphism so that a morphism ex8u in mod(C) 
with ex E [EA, EBvY2h is determined by its stabilization 71,2 (ex) E {A, BVY21 h; 
see (1.6). Given elements 

ex E [EiA,EiB V Jjh 

f3 E [ErA, E r B V Yfh 

we write ex == f3 if ex and f3 have the same stabilization, that is 

Here ex is uniquely determined by f3 if i > 0 and j > 1. 

2 The Chains of a Complex 

(2) 

Assuming that the cofibration category C under T is homological we are able to 
define the chain complex C",X21 of aT-complex X 21 . Here a chain complex is 
defined by the category mod = mod(C) in (1.7). 

Given aT-complex X>l = (X>l' A>l, 8>2) we have the attaching map 
8n+! E [En-l An+1' Xnl of the principal coflbration (Xn+!' Xn). Then we obtain 
the difference element 

(2.1) 

for n ~ 1. For n = 1 this element is defined by the coaction fJ, : Xl -> Xl V Al 
in T and for n ~ 2 we use the coaction fJ, : Xn -> Xn V En-l An of the principal 
cofibration (Xn' Xn-d so that 

Here i2 + i l is defined by /-l; compare (III.3.8). 
Moreover given a map 121 : X2:1 -> Y2:1 between T-complexes we obtain for 

n ~ 1 the difference element 

(2.2) 

as follows. For n = 1 this is the difference element defined by the map II : Xl -> 

Y1 E T; compare (1.3.3). For n ~ 2 we have the map 

In : (Xn' Xn-d --t (Yn , Yn-d 
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between principal cofibrations which induces the map (fn)* in the diagram 

X An (X X ) (fn). 
7rn E 7rn - 1 n, n-l ------> 

Here 7r; is the characteristic element of (Xn, X n- l ) and \7 is the difference oper­
ator; see (III.3.1) (2) and (IIL3.9). We now define \7fn for n 2:: 2 as in (IIL3.14) 
by 

(2.3) Definition. Let (C, T) be homological. Then we define the chain functor G* 
for which the following diagram of functors commutes 

/ 0 c. h' Complex ~ ------+ C am>l 

~/ 
Coef 

Here c is the coefficient functor in (1.3) and (1.6.3). The functor G* carries a 
T-complex X~l = (X~l' A~l' a~2) to the chain complex 

(1) 

Here ax = a2 E Coef is the attaching map of (X2' Xd and the cogroup An+! E T 
for A~l is given by the attaching map an+! : L'n-l An+ l ~ Xn of (Xn+l , Xn) for 
n 2:: 1. Let Al be the cogroup associated to Xl E T. The differential in the chain 
complex (A, ax) 

is defined by 

{ 
dn+! 8 1 : An+! V ax ~ An V ax E mod 

dn+! E [L'An+I' L'An V X 2h 

(2) 

for n 2:: 1; see (2.1) and (1.9). A map f : X~l ~ Y~l between T-complexes induces 
the chain map 

(3) 

which is u-equivariant. Here u = c(f) = {h} is given by the coefficient functor c 
in (1.3). In degree n the chain map 



256 Chapter V: Homology of Complexes 

is defined by 

{ 
Cn (J) = ~n 8 u : An V 8x --+ Bn V 8y E mod 

~n E [EAn,EBn VY2h 

~n == 'lfn (4) 

for n :2: 1; see (2.2) and (1.9). One can check that C* is a well defined functor. In 
fact C* coincides with the functor k in III.4.2 Baues [AH]. If T is an augmented 
theory of coactions, then also the functor 

augC* : Complex/~ --+ chain>o (5) 

is defined since C* above carries a T-complex to an object in the subcategory 
TWIST~ of chain~l; see (II. § 6). We call augC*(X~d the non-reduced chain 
complex of X~I' 

(2.4) Proposition. ThefunctorC* in (2.3) carries subcomplexes ofT-complexes 
to subcomplexes of chain complexes. Moreover C* is compatible with cylinders; that 
is there is a canonical isomorphism of chain complexes 

Here J(X?d is the cylinder for 1-homotopies in (IV.1.3) and IC*(X~d is the 
cylinder of a chain complex in mod(8x ) defined in (III.9.1). 

Proof of (2.4). The 2-skeleton of J(X~d is a principal cofibration with attaching 
map 

{ 
Wx : A2 V Al V A2 --+ X V X 

Wx = (iff8x ,wx,if8x ) 

Here Wx = W coincides with the attaching map W in (III.5.5). We have the 
canonical map 

in the category Coef where if is given by the second inclusion X ----+ X V X and 
where p is given by (1,1) : X V X ----+ X. We claim that if is an isomorphism in 
Coef with inverse p. In fact pif = Ix. On the other hand we have 

ifp = lxvx + (wx, l)a (1) 

where a : Al V Al ----+ (A2 V Al V A 2) V (X V X) is the inclusion of Al on the first 
summand of Al V Al and is trivial on the second summand of Al V AI. Then (1) 
is a consequence of iff + Wx = if; compare (III.5.3). By (1) we see that ifp is 
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a-equivalent to lxv x. Hence p is an isomorphism in Coef. Using this isomorphism 
we obtain the p-equivariant isomorphism 

(2) 

as follows. Here cJ(X>d is a chain complex (.ii, wx) with..An E T given by 

Compare (IV.2.5). Now p is the p-equivariant chain map which is the identity on 
..An, that is 

It is a consequence of (IIl.4.5) and (IlL5.6) that p is a well defined chain map. 
Moreover p is an isomorphism since p is an isomorphism in Coef. q.e.d. 

Proposition (2.4) implies that C* induces a functor 

c* : Complex/~ ------; chain/':::' (2.5) 

between homotopy categories. 
Using the category Well of weakly cellular objects in C we obtain the com­

posite chain functor 

c* : Well/,:::, ~ Complex/~ ~ chain/':::' (2.6) 

as well denoted by C*; see (IV.4.4). This yields the chain complex of a weakly 
cellular object in the cofibration category C. There are similar properties of the 
non-reduced chain complex aug C* if T is augmented; see (2.3) (5) and (Il.§ 6). 

3 The Homology of a Complex 

Let C be a homological cofibration category under T. Then we can use the chain 
complex in § 2 to define the homology and cohomology of a complex in C. We also 
obtain this way the homology of a weakly cellular object in C. 

(3.1) Definition. Let X 21 be a T-complex in C with coefficients ax = C(X21 ) E 

Coef. Moreover let M (resp. N) be a left (resp. right) mod(ax)-module. Then 
the homology and cohomology 

H n(X>l; M) = H n(C*(X>l); M) - -

Hn(X>l; N) = Hn(C*(X>d; N) - -
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is defined as in (1.§ 6). Here C*(X::::d is the chain complex in § 2. If Y:::: 1 is a 
sub complex of X:::: 1 then C*Y:::: 1 is a subcomplex of the chain complex C*X:::: 1 so 
that similarly the relative (co-) homology groups Hn(X>l, Y>l; M) are defined by 
(1.§ 6). If T is augmented we define accordingly the non-reduced (co-) homology by 
the non-reduced chain complex augC* in (2.3) (5). 

We also have the left mod(ax)-module Hn(X::::d = Hn(c*(x:::: 1)) with 

Hn(X>d(D) = Hn(X>1;Hom8x (-,D)) 
- -

(3.2) 

where D is a cogroup in T corresponding to the object DVax in mod(ax). Dually 
one obtains the right mod(ax )-module Hn(X:::: 1) = Hn(C*(X::::d) with 

(3.3) 

Compare (1.§ 6). More explicitly Hn(X>l)(D) can be obtained by the following 
chain complexes of abelian groups. Consider 

Here dn is defined as in (2.3) and we set (dn , 1) = (dn , i 2) where i2 is the inclusion 
of X 2 . 

This follows readily from the definition of Hn(X>l)(D). 
The homology Hn(X>d(D) can also be described for n 2: 3 by the formula in 

the following lemma. For this we define the operators 5n , n 2: 3, by the composites 

where a and j are the maps in the homotopy exact sequence of pairs and where 
\l is the difference operator in (III.3.8). 

(3.6) Lemma. We have 5n 5n +1 = 0 and for n 2: 3 there is a natural isomorphism 

Proof. The isomorphism is induced by the composite (n 2: 3) 

An: 7Tf(EAn V X2h ----> 7T:?_2(En- 2 An V Xn-1h ----> 7T:?_1(Xn,Xn- 1) 

of maps An = Ex (1 Vi)*En-3 where i : X 2 C Xn is the inclusion and Ex is the map 
in (1.1) (b). Using (1.1) (a), (b), and (c) we see that An is an isomorphism. Using 
(III.3.2), (III.3.9) and (III.3.1O) and (1.3.4) we show that the diagram (n 2: 3) 
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7r;;(Xn+I' Xn) 
8n+1 

7r;;_1 (Xn' X n- I ) ------t 

An+l r ~ ~ r An (1) 

7rf(EAn+l V X 2h (dn+l,I). 
7rf(EAn V X 2h I 

commutes. Moreover for n = 2 the diagram 

(2) 

7rf(EA3 V X 2h ~ 7rf(EA2 V X 2h 
commutes. This proves (3.6) by use of (3.4). For the proof of (1) and (2) we first 
observe that by (111.3.10) the diagram with n 2: 2 

Ex 
------t 

D (I ) (IVi). D (En-IA X) 7rn-1 En- An V X n- I 2 ------t 7rn- 1 n V n 2 

(3) 

commutes. Here E, Ex and (1 Vi)* are isomorphisms for n 2: 3 by (1.1) so that also 
V is an isomorphism. We now show (1) by proving Vb"n+IAn+l = VAn(dn+l , 1)*. 
In fact we have 

Vbn+lAn+l(~) = Vj8Ex(I Vi)*En-2~ 

= V ((8n+l , 1)(1 V i)En-2~) , 

= (V8n +l, i2)(1 V i)En-2~, 

= ((1 V i)En- 2dn+2, i)En-2~, 

see (III.3.9) and (111.3.2) 

see (4) below 

see (2.1) (4). 

VAn(dn+l, I)*(~) = VEx(I V i)En- 3(dn+l , I)*~ 

= (1 V i)E(I V i)En- 3((dn+l , I)~), see (3) 

= ((1 V i)En- 2dn+l, i)En-2~. 

Let 11 = En-2~. Since 11 = E11' we have for fj = (1 V i)11 by II.11.17 in Baues [AH] 
the equations 

V ((8n+l , I)fj) = -i2(8n+l , I)fj + (i2 + il)(8n+1, I)fj 

= (-i 28n+l, i2)fj + ((i2 + id8n +l , i2 + il)fj 

= (-i 28n+l, I)fj + ((i2 + id8n +l , I)fj (*) 
(4) 

= (V8n+1 , I)fj 
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Finally we prove (2) by 

82'\3(~) = \1oEx (l V i)*(~) 
= \1((03, 1)~), since i = 1 

= ("'1703, 1)~, by (4) above 

= (d3 , 1)~, see (2.1) (4). 

Here we use the fact that there exists an element f with ~ = (1 V i)Ef by (1.1) 
(a), (c). 

4 The Obstruction Co cycle 

We first define homotopy groups for filtered objects and then we show that an ex­
tension problem is related to a cohomology class with coefficients in such homotopy 
groups. For CW-complexes this is a classical result of obstruction theory. 

(4.1) Definition. Let C be a cofibration category under T and let U~l be a filtered 
object in Fil1 (C)c/. For each cogroup D in T and n ::::: 0 we define the homotopy 
group 

(1) 

Here i : Un+! C Un+2 is the cofibration in C given by U~l. It is easy to see that 
homotopy groups yield a functor 

(2) 

where on the left hand side we use the quotient category defined by 1-homotopies. 
For n ::::: 1 the groups 7r;; (U>d are abelian. If (C, T) is homological then the 
collection of homotopy group~ 7r;;+1 (U~l) for all D has the following additional 
structure. 

(4.2) Definition. Let C be a homological cofibration category under T. Then Coef 
and mod = mod(C) are defined and for ax E Coef we have the additive category 
mod(ox) of 1-equivariant maps a 81 : A V ax ----> B Vax. Here A and Bare 
cogroups in T and a is an element a E [EA, EB V X 2h where (X2' Xd is a 
principal cofibration with attaching map ax : A2 ----> Xl E T. Given an object 
U~l E Fil(C)c/ we say that 

(1) 

is a -compatible if iv8x ~ 0 where i : U1 ----> U2 • Equivalently v is 8-compatible if 
and only if there exists a map v : (X2' Xl) ----> (U2, U1 ) between pairs extending v. 
We define for the pair (v, U>l) and n ::::: 1 the right mod(8x )-module v*7rn+!(U>d - -
termed the (total) homotopy group of (v, U>l). The functor 
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carries A V Ox to the homotopy group 

defined in (4.1). Here we use a shift in degree since A has dimension 1. Hence 
on objects the functor (2) does not depend on v. On morphisms we define the 
functor (2) by the induced map 

(3) 

which carries ~ E n-;! (U>d to the composite 

Here i : U2 ~ Un +2 is the inclusion and v is chosen for v as in (1). By (1.1) (a) 
a factors through B V Xl. This implies that (4) depends only on v and hence 
(3) is well defined. Using 11.11.16 in Baues [AR] we see that (2) is a well defined 

functor. Clearly a map f : U?l ~ V?l in Fih(C)ctl~ induces a morphism of 
right mode Ox )-modules 

(5) 

If X>l is a T-complex we obtain as a special case the right mod(ox )-module 
7Tn+l(X?d which is the total homotopy group of (V,X?I) where v = 1: Xl ~ Xl 
is the identity. 

We now study the following extension problem in a homological cofibration 
category C under T. Let L?l be a subcomplex ofthe T-complex K?l and consider 
the diagram in Fill(C)c!. 

(4.3) 

where i is the inclusion. Given f and i does there exist a map g such the diagram 
commutes? If U?l = U is the constant filtered object this corresponds to the 
classical extension problem of algebraic topology. For this problem one considers 
inductively extensions gn of f where 

gn : L?l U K n ~ U?l E Fih(C)cf 

with n ~ 1. Here Kn is the n-skeleton of K?l and L?l U Kn is the sub complex of 
K?l given by the union of L?l and Kn. 
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(4.4) Theorem. Let n 2: 2 and assume an extension gn of f exists so that we 
obtain the o-compatible map v = gn I K1 : K1 ---> U1 as a restriction of gn' Then 
a relative cocycle 5(gn) of the cochain complex C* (K>l' L>d with coefficients in 
the right mod(oK)-module v*7fn(U~d is defined. This cocycle has the property 
5(gn) = 0 'if and only if an extension g,,+1 of gn exists. Moreover an extension 
gn+1 of g,,-l = gn I L>l U Kn-1 exists if and only if the cohomology class 

is trivial. 

The co cycle 5(gn) is termed the obstruction cocycle. 

Proof. Since L~l C K~l is a subcomplcx we see that (Kn+1' Ln+1 U Kn) is a 
principal cofibration with attaching map 

8n+1 : 1;",-1 An+1 -----+ Ln+1 U Kn 

Now the co cycle is given by the composite 

~ A 
5(gn) = gnOn+1 E 7fn- 1(U>d 

with A = A n+1' Here we identify 7f:;_1 (U>d with the group of relative cochains in 
degree n + 1 of C*(L~d c C*(K~d with coefficients in v*7fn(U~d. Now we can 
use (III.3.3) to see that gn+1 exists if and only if 5(gn) = O. Moreover by (III.3.5) 
we know that two extensions gn, g~ of gn I L~l U K n- 1 differ only by an element 
a E 7f;; (U~d with B = An, that is g~ = gn + a. By definition of dn+1 we get 

5(g~) = (gn + a)8n +1 

= gn8n+1 + (gn, a) v 8n +1 

= 5(g,,) + d~+l (a) 

This implies the property of the cohomology class {5(gn)} in (4.4). 

5 The Hurewicz Homomorphism 
and Whitehead's Exact Sequence 

q.e.d. 

Let C be a homological cofibration category under T. Then we obtain for each 
T-complex X>l the right mod(ox)-modules Hn(X>d and 7fn (X>l) for n 2: 2; 

- ---
see (4.2) and (3.3). The general Hurewicz homomorphism is a homomorphism of 
right mod(ox )-modules 

(5.1) 

1 
which is natural in X>l E Complex!'::", n 2: 2. For the definition of h we observe 
that for a cogroup B iiJ. T the (n -I)-fold suspension 17n - 1 B can be considered to 
be an n-dimensional T -complex with trivial (n - 1 )-skeleton. Then we can identify 
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where the right hand side is a set of morphisms in the category Complex/d:. 
Therefore we can apply the functor C* in (2.2) which defines h by the commutative 
diagram 

7rn(X~l)(B) 
h 

Hn(X>d(B) ~ 

II II 
[En-l B, X>l]/d: c. 

[C*En-l B, C*X>l] ~ 

The isomorphism on the right hand side is given by (3.3) and (1.6.5). By applying 
C* to the composite 

En-1A ~ En-1BVX2 ~ X~l 

in (4.2) (4) we see that h(ex 8 1)*~ = (ex 8 1)*(~). Hence h is a well defined 
homomorphism between right mod(8x )-modules. 

{5.2} Remark. For C = Top* and T = susp(*, 'D) the Hurewicz homomorphism 
(5.1) specializes to the classical Hurewicz homomorphism 

h : 7rn(X) ~ 7rn(X) --+ Hn(X) 

where X is the universal covering of the reduced CW-complex X. Here h is a 
natural homomorphism of right Z[7rl(X)]-modules. 

{5.3} Definition. Let (C, T) be homological. Then we define for a T-complex X~l 
and n;:::: 1 the right mod(8x )-module rn(X>d as follows. For n = 1 let 

(1) 

be defined by the module in (II.§ 2). For n ;:::: 1 and a cogroup B in T we define 

by 

{ 
image { 7r;; Xn --+ 7r;; X n+1} for n ;:::: 2 

rn+1(X~l)(B) = 
kernel{\7: 7rfX2 --+ 7rf(EA2 V X 2h} for n = 1 

(2) 

For n ;:::: 2 this definition is up to a shift in degree similar to the definition of 
7r;;(u~d in (4.1) (1). For n = 1 we use the difference operator \7 in (I1I.3.9). We 
define the structure of a right mod(8x )-module similarly as in (4.2). That is for 
~ E r n +1 (X~l)(B) we define (ex (1)*(~) by the composite 

(ex 8 1)*(~) = (~, i)(En- 1ex) : En A ---t En B V X 2 ---t X n+1 

Here i : X 2 --+ X n +1 is the inclusion which is well defined for n ;:::: 1. For n = 1 
this is again an element in kernel \7 since ~ E kernel(\7) and since ex is trivial on 
X 2 . This shows that the functor (2) is well defined. 
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We are now ready to describe the following ultimate generalization of J.H.C. 
Whitehead's [CE] certain exact sequence 

(5.4) Theorem. Let (C, T) be homological. Then one has for each T-complex 
X2:I the following long exact sequence of right mod(8x )-modules, n ~ 2, 

. h b . 
----+ r n(X2:I) ~ ?Tn(X2:d ----+ Hn(X2:I) ----+ r n- l (x2:d ~ ... 

. h b 
----+ r 2(X2:I) ~ ?T2(X2:d ----+ H2(X2:d ----+ r l (X2:I) ----+ 0 

I 
This sequence is natural in X2:I E Complex/,::::,. The operator h is the Hurewicz 
homomorphism. 

The theorem yields a new interpretation of the module r l in (II.§ 2) as the 
cokernel of the Hurewicz map in degree 2. Various explicit computations of r l are 
described in (11.8.11). 

Proof of (5·4). We define the operator i for n ~ 2 by the inclusion X n +1 C X n+2 ; 

compare (5.8) and (4.1) (1). It is clear that i is a homomorphism of mod(ox)­
modules. We define a sequence of abelian groups and homomorphisms, nEZ, 

with the property image(j) = kernel(,8). Then one obtains the exact sequence 

as follows: 

b i h b 
. .. ----+ H n+ I ----+ r n ----+ ?Tn ----+ H n ----+ ... 

rn = kernel{j: An ---t Cn} 

?Tn = An/ ,8Cn+! 

Hn = kernel(dn )/ image(dn +l ) 

(1) 

(2) 

Here d = j,8 : Cn ---t Cn - I satisfies dd = O. The operator i is given by rn c An ---» 
h 

?Tn. Moreover h is induced by h' with j : An' ----+ kernel(dn ) C Cn. Finally b is 
induced by b' : kernel(dn ) ---t r n- I which is the restriction of,8 : Cn ---t An-I. A 
diagram chase shows that (2) is exact; compare J.H.C. Whitehead [CE]. We define 
(1) by 

{ 
?T~_IXn for n ~ 2 

An = rl(8x )(B) for n = 1 

o for n S 2 

for n ~ 3 

for n = 2 

for n S 1 
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For the definition of C2 we use the homomorphism 

(d2 , 1)* : 7rf(EA2 V X2h ---+ 7rf(EA1 V X2h, 

compare (3.4). For n ?: 2 we have the exact sequence An+! -+ Cn+1 -+ An, namely 

7r;: (Xn+!) -.L. 7r;: (Xn+1' Xn) ~ 7r;:_1 (Xn) 

is given by the homotopy exact sequence. For n = 1 we obtain the exact sequence 
A2 -+ C2 by the exact top row in the following diagram 

7rf(x2) 
j 

kernel ( d2, 1) * 
(3 r1(ax)(B) ---4 0 ---4 ---4 

1 n 

7r~(A2 V Xd2 
Ex 

7rf(X2' Xd 
'V 7rf(EA2 V X2h ~ ~ 

81 1 (d2,1). 

7r~(X1) 7rf(EA1 V X2h 

Here Ex is surjective and the columns are exact. Moreover aEx = (ax, 1)*. Hence 
this diagram corresponds exactly to the definition of n (ax) (B) in (11.2.1) since 
\lEx = (1 V i)*E is given by the partial suspension E. By (3.6) we see that 
Hn = Hn(X;;~.d(B) and one readily checks that 7rn = 7rn(X?l)(B) and rn = 
rn (X?l)(B). This completes by (2) the proof that the sequence in (5.4) is exact. 
One can check that h in (2) coincides with h in (5.1). Moreover b in (2) is a 
homomorphism of right mod( ax )-modules. q.e.d. 

(5.5) Lemma. We have for n ?: 1 the equation 

rn+!(X?l)(B) = kernel { \l : 7r;: X n+! -+ 7r;:(En An+1 V X n+1h} 

For n = 1 this is exactly the definition in (5.3). 

Proof. We observe that for n ?: 1 the following diagram commutes; see (111.3.10) 
and (III.3.9). 

~ 7r;; (En An+! V X n+1h 

i (lVi).E 

--- 7r;;_1 (En- 1 An+1 V X n)2 
Ex 

Here Ex and (1 V i)*E are both isomorphisms for n ?: 2 by (V.1.1). Hence we get 
for n ?: 2 

image { 7r;: Xn -+ 7r;: Xn+d = kernel(j) = kernel(\l) 

q.e.d. 
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In this chapter we consider fundamental properties of the chain functor C* which 
carries aT-complex X2':1 to a chain complex A = C*X2':I. Then X2':1 is termed 
a realization of the chain complex A. We introduce partial realizations of a chain 
complex which are termed "twisted homotopy systems" ; this generalizes the notion 
of a twisted chain complex in chapter II. Using twisted homotopy systems we 
study partial realizations of chain maps. This leads to an obstruction theory both 
for the realization of a chain complex and for the realization of chain maps. To 
discuss these properties we introduce some useful language on "linear extensions 
of categories", "exact sequences for functors" and "towers of categories"; see § 5. 
The homological tower of categories in § 6 is a first main result which is needed to 
prove the homological Whitehead theorem in § 7 and the "model lifting property" 
of the twisted chain functor in § 8. The model lifting property is a key point in the 
proof of the Hurewicz theorem in § 10 and in the proof of the finiteness obstruction 
theorem in the next chapter VII. 

1 Twisted Homotopy Systems of Order n 

Let C be a homological cofibration category under a theory T of coactions. Then 
T-complexes X2':1 and the associated chain complex C*X2':1 are defined. In order 
to construct aT-complex X2':1 which realizes a given chain complex (A, ox) we 
consider inductively twisted homotopy systems of order n ~ 2 as follows. 

(1.1) Definition. Let C be a homological cofibration category under T and let 
n ~ 1. A twisted homotopy system of order (n + 1) or equivalently an (n + 1) 
-system for short is a triple 

(1) 

Here xn = (Xl C X 2 C ... C Xn) is an n-dimensional T-complex, On+l is an 
element on+! E [L'n-l An+l, Xnl and A = (A,ox) is a chain complex in chain. 
For n = 1 we have Ox = 02 and for n ~ 2 we obtain Ox by the attaching map of 
(X2' Xd. Moreover for n ~ 2 the chain complex A coincides in degree :s: n with 
C*(Xn ); see (V.2.3), and 

(2) 

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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holds as in (V.2.3) (2). Here dn+l (:) 1 is the differential of A. Hence X is 
a "partial realization" of A; in fact, the part of degree ~ n in A is realized 
by xn and in addition the differential dn+1 (:) 1 is realized by an attaching 
map On+1. We say that X in (1) satisfies the cocycle condition if there exists 
dn+2 E [En-1An+2, En-1 An+l V X1b with 

{ 
dn+2 == dn+2, see (V.l.9), 

(On+l' i)*dn+2 = 0 in [En- 1 An+2' XnJ. 
(3) 

A map between (n + 1 )-systems is a pair (~, 'T}) which we write 

(4) 

Here 'T} : xn -7 yn is a map in Complex and ~ : A -7 B is an 'T}l-equivariant 
chain map where 'T}1 : AX -7 f)y is defined by the restriction 'T}1 : Xl -7 Y1 
of'T}. Moreover ~ coincides in degree ~ n with C*'T} and there exists an element 
~n+l E [En- 1 An+l, E n- 1 Bn+l V Y1h with 

~n+l == ~n+l' see (V.l.9), (5) 

such that the following diagram commutes in Ho(C), 

En-1An+1 
En+l En-1 Bn+1 V Y1 ------> 

on+l1 1 (on+l,i) 

Xn ------> Yn 
TIn 

that is: 

(6) 

We say that (~, 'T}) in (4) is the inclusion of a subcomplex if both ~ : A -7 Band 
'T} : xn -7 yn are inclusions of sub complexes in chain and Complex respectively; 
see (IV.2.4). 

Two maps (~,'T}) and ((,'T}') as in (4) are 0 -homotopic if ~ = ( and if there 

exists a O-homotopy 'T} ~ 'T}' in Complex; see (IV.l.3). 
Let TWIST~+l be the following category. Objects are (n + I)-systems which 

satisfy the cocycle condition and morphisms are maps (~, 'T}) as in (4) above. There 

is an obvious composition of such morphisms. Let TWIST~+l/~ be the quotient 
category obtained by O-homotopies. 

(1.2) Remark. Let TWIST~(T) be the category of twisted chain complexes in 
chapter II defined by a theory T of coact ions and by a category mod of modules 
for T. If (C, T) is a homological cofibration category and mod = mod(C) then 
one has an isomorphism of categories 
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'IjJ : TWIST~(T) ~ TWIST~/g, 

where the right hand side is the category defined in (1.1) above for n = 1. From this 
point of view twisted homotopy systems of order n are the canonical higher order 
analogues of twisted chain complexes. The isomorphism 'IjJ of categories carries the 
twisted chain complex A I ax to the 2-system (A, ax, X) with X = Xl ETc 
C ej I':::!. and carries the twisted chain map f = U?l, EI",f) to the O-homotopy 
class of (~, 1]) with ~ = f> 1 and f = {1]}. The map 1" corresponds to ~2 in (1.1) 
(6) where n = 1. 

We now define a canonical commutative diagram of functors (n ~ 2) 

Complex 
r'n+l 

TWIST~+1 --+ 

c·l lA (1.3) 

chain Kn 
+--- TWIST~ 

with KnA = Kn+1 and Arn+1 = rn. We obtain the restriction functor rn+1 by 

(1) 

where xn is the n-skeleton of X, On+1 is the attaching map of (Xn+1,Xn) and 
A = C*X is the chain complex of X. Similarly we get 

(2) 

where an is the attaching map of (Xn, Xn-d and xn-l is the (n - I)-skeleton 
of xn. Moreover Kn is the forgetful functor with 

Kn(A,on,Xn- 1) = A. 

(1.4) Lemma. The functors in {1.3} are well defined. 

(3) 

Proof. It suffices to consider rn+l. In fact, by (V.1.1) (b) we see that the attaching 
map En An+2 ----> X n+1 of X?l is a functional suspension. Hence there exists dn+2 
so that the cocycle condition is satisfied. Moreover 

fn+l : (Xn+1,Xn) ---> (Yn+1, Yn) 

is a twisted map by (V.1.1) (b). Hence there exists ~n+l satisfYing (1.1) (b). q.e.d. 

One readily checks that the functors (1.3) are compatible with O-homotopies. 
We therefore obtain the infinite sequence of functors, n ~ 1, 

Complex/g, ---> ... ---> TWIST~+d~ ~ TWIST~/g, ---> ... ---> chain 
(1.5) 

where the functor A for n = 1 coincides with the functor K in (11.1.10). The 
sequence (1.5) is a factorization of the chain functor C*. Next we define the notion 
of I-homotopy for maps between twisted homotopy systems; compare (IV.1.3). 
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(1.6) Definition. Let (/;, "'), (e, ",') : X --> Y be maps in TWIST~+l' n ~ 1. Then 

(~, "') and (e, ",') are I-homotopic and we write (~, "') ~ (e, ",') if (a) and (b) hold. 

(a) There is an E [En-IAn, En-l Bn V Y1h and there is a I-homotopy 

H : '" + (an+l' i)an ~ ",' 

of maps in Fil(C). Here the action + for maps in C is defined as in (III.3.4). 
We define an E [EAn, EBn V Y2h by an == an; compare (V.1.9). 

(b) There are am E [EAm, EBm+! V Y2h for m ~ n + I such that 

/;m -~:n = (am-l 8 u)dm + dm+1 (am 8 u) 

Here u : ax --> 8y E Coef is the map given by u = {",d = {",a. The equation 
{"'I} = {",a is a consequence of (a). 

(1.7) Lemma. Given a (n+I)-system X in TWIST~+l there is a cylinder object 
Ix in TWIST~+! such that the functor rn+! satisfies 

for X = rn+l(X~d. Here IX~l is the cylinder object for 1-homotopies in (JV.1.3). 
Moreover the homotopy relation associated to the cylinder object I(X) coincides 
with the relation of i-homotopy in (1.6). 

Proof. We have the isomorphism of chain complexes 

defined in (V.2.4). Hence we can define for X = (A, an+! , xn) the cylinder object 

Ix = (JA,an+1 , (Ixn)n) with 

an+! E [En-IAn+! V E n- 1 An V E n- 1 An+l' Xn U J X n- 1 U Xn] 

an+! = (i1an+l, w, i2an+l) 

Here W = wf for f = an as in (III.4.2). By (III.4.5) and (III.5.6) we see that an+! 
satisfies the cocyc1e condition. As in VII.2.6 Baues [AR] we see that I-homotopies 
in (1.6) correspond to homotopies defined by Ix. q.e.d. 

One can check that I-homotopy is a natural equivalence relation on TWIST~+! 
and by (1.7) the functors in (1.3) induce functors between homotopy categories 

1 T n +l TWIST~+l/~ Complex/ ~ -----+ 

C·l lA (1.8) 

chain/~ 
Kn TWIST~/~ f---
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Given an n-system X = (A,an,xn-l) in TWISTn with n > 2 and a right 
mod(ax)-module M we obtain the cohomology 

(1.9) 

for mE Z. We shall use the right mod(ax )-modules TnX of an n-system X, n ~ 2, 
defined as follows. We choose a principal cofibration (Xn' X n - l ) with attaching 
map an so that X n- l is the (n -I)-skeleton of the T-complex xn = (Xl C X2 C 

... C Xn). Then we set 

(1.10) 

where the right hand side is given by (V.5.3). 

(1.11) Lemma. Let n ~ 2. A map f : X ----t Y in TWIST~/~ with c(f) = u 
induces a well defined homomorphism of right mod(ax)-modules 

I 
That is fa ~ II implies Tn(fo) = Tn(II)· 

Proof. The result is clear for n ~ 3 by the definition of Tn in (V.5.3). For n = 2 
we use the following argument. Let IX?1 be the cylinder for I-homotopies and 
let i : X?l ----t IX?1 be an inclusion. Then we obtain by the exact T-sequence the 
commutative diagram 

Here the two arrows on the left hand side and also the two arrows on the right 
hand side are easily seen to be isomorphisms. Hence the 5-lemma shows that also 
the arrow in the middle is an isomorphism. q.e.d. 

2 Obstructions for the Realizability of Chain Maps 

We consider the following problem. Given T-complexes X?l and Y?l and a u­
equivariant chain map ~ : C*X?1 ----t C*Y?1 is there a map f?l : X?l ----t Y?l 
with C*hl = e We call hI a realization of ~. Using the categories TWIST~ 
we describe a sequence of obstructions for the realizability of ~. In fact, if ~ is a 
map in the subcategory TWIST~ then we have seen in (11.3.2) that there is a 
map (: r2X?1 ----t r2Y?1 in TWIST2 with K 2(() = ~ if and only if an obstruction 
element 
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(2.1) 

vanishes. We now obtain more generally the following result describing higher 
order obstructions for the realizability of f For this we use the functors rn , rn+l 
and A in (1.3). 

(2.2) Theorem. Assume C is a homological cofibration category under T. Let 
X2:1' Y2:1 be T-complexes and let 

f : rnX2:1 ---> rnY2:1 

be a map in TWIST~, n ~ 1. Then there exists a map 

I: r n +1X2:1 ---> rn+1Y2:1 

in TWIST~+1 with AU) = f if and only if an obstruction element 

On(f) E H n+1(X2:1, u* rnY2:1) 

vanishes. Here u = c(f) : ax -+ 8y is induced by f. 

For n = 1 this is a consequence of (11.3.2). For n ~ 2 we obtain (2.2) by (2.3) 
below. It is clear that theorem (2.2) yields a sequence of obstructions for the realiz­
ability of a chain map.e-. The obstruction On(.e-) is the subset {On(f);Kn(f) = 0 
of H n+1(X2:1,U*rn(Y2:1)). If all On(.e-) are trivial, that is, if 0 E On(~) for all 
n ~ 1, then ~ is realizable. 

(2.3) Obstruction theorem. Let C be a homological cofibration category under 
T and let X, Y be objects in TWIST~+1 where n 2': 2. For f : AX -+ AY in 
TWIST~ there exists J: X -+ Y in TWIST~+l with Al = f if and only if an 
obstruction element 

OX,y(f) E Hn+l(x, u* rn(Y)) 

vanishes. Here u = c(f) : ax -+ 8y is induced by f. 

Proof. We first choose for f = (.e-, 17n - 1 ) a map F xn -+ yn in Complex 
extending 17n - 1 : X n- 1 -+ yn-l. We obtain 

F : (Xn' X n- 1) ---> (Yn, Yn- 1) (1) 

as a twisted map associated to [n in (1.1) (6); compare (111.3.12). Then we know 
by (111.3.16) that the chain map CF coincides with ~ in degree::::; n. For the 
map F we obtain the following diagram (2) where [n+l == ~n+1. This diagram 
corresponds to (1.1) (6) so that (.e-, F) is a map in TWIST~+1 if and only if (2) 
commutes in Ho(C). 

En-1An+1 
{;n+l En-l Bn+1 V Y1 -----t 

8n+11 1 (On+l,i) (2) 

Xn 
F 

Yn -----t 
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This diagram, however, needs not to commute in Ho(C). Hence we obtain the 
obstruction 

(3) 

This is actually an element in 

(4) 

Moreover O(F) is a co cycle representing the cohomology class OX,Y(f) in (2.3). 
By (V.5.5) we know that 

rn(Y)(B) = kernel(\7) (5) 

where \7 : 7r;;_1 Yn ~ 7r;;_1 (L'n-1 Bn VYnh. Hence (4) is a consequence of \70(F) = 
o where we set B = An+l. We check this by 

\1(FOn+l) = -i2Fon+l + (i2 + i 1)Fon+l 

= -i2Fon+l + (\7(F), i2F)(i2 + i 1)on+1 

= (\7(F), i2F) \7 On+1 

= ((1 V i)*E~n, i'f/2)En- 2dn+l 

= (1 V i)*En-2((~n 8 u)dn+1) 

= (1 V i)*En- 2((dn+1 8 1)~n+d 

= (\10n+1, i)En-2~n+1 

= \1((on+l,i)~n+l) 

(6) 

(7) 

(8) 

(9) 

(10) 

For (6) we use (III.3.16). For (7) we use (I1I.3.16) and (V.2.3)(4). Moreover (8) 
holds since ~ is a chain map; see (1.1) (4). For (9) we use again (V.2.3) (4). 
Moreover (10) is a consequence of the fact that En-2~n+l is a partial suspension 
also for n = 2 by (V.1.1). Since \7 is a homomorphism we see that (6) ... (10) 
imply \70(F) = 0 and hence (4) holds. 

Next we check that O(F) is a cocycle, that is 

(11) 

Here d~+20(F) E rn(y::::d(An+2) is represented by the composite 

We consider the two summands of O(F) and get accordingly the composites (12) 
and (13). 

(FOn+1' i'f/2)En- 2dn+2 = F( On+1, i)dn+2 = 0 (12) 

Here we use the cocyle condition (1.1) (7). On the other hand we get 
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((On+l' i)En-2~n+l' i'TJ2)En- 2dn+2 

= (On+l' i)En-2((~n+l 8 u)dn+2) 

= (on+l' i)En-2(dn+2(~n+2 8 u)) 

= (On+l' i)En-2dn+2(En-2~n+2' i'TJ2) = 0 

(13) 

Here we again use the co cycle condition (Ll) (7). By (12) and (13) we get (11). 
We can alter F in (2) by a E p:;m-l An, Ynl so that we obtain the map F + a E 

Complex as in (III.3.4). The restriction of F+a to X n- 1 coincides with 'TJn-l and 
we choose a such that C*F = C*(F+a) =~. This is the case iff a E rn(Y>I)(An) 
by (5) and (III.3.7); see (V.2.3) (4). We claim that 

O(F + a) - O(F) = (dn+l)*(a) 

is a coboundary. In fact by (3) we have 

O(F + a) = -(On+l' i)En-2~n+l + (F + a)on+l 

= -(on+l' i)En-2~n+l + FOn+1 + (a, F) V On+l 

= O(F) + (a, 'TJ2)En- 2dn+l' 

(14) 

Here we use (V.2.3) (4). We now are ready to prove (2.3). If f exists then OX,Y(f) 
is trivial since for F = 'TJn diagram (2) commutes in Ho(C) by the assumption on 
f = (~, 'TJn)' On the other hand if OX,y(f) = O. Then by (14) there exists a such 
that O(F + a) = 0 and hence we can choose f = (~, F + a) with >..(f) = f. q.e.d. 

In the following proposition we use the fact that the cohomology group in (2.3) 
actually depends only on >"X and >..Y, that is 

(2.4) 

Hence the maps g* and 1* are well defined. 

(2.5) Proposition. Let n 2:: 2. The obstruction element in (2.3) has the deriva­
tion property. That is, for objects X, Y, Z in TWIST~+l and maps gf : >"X -+ 

>..Y -+ >"Z in TWIST~ we have the formula 

This is an easy consequence of the definition of O(F) in (2.3) (3). 

(2.6) Proposition. Let n 2:: 2. The obstruction element (2.3) depends only on 
. 1 

the homotopy class of f zn TWIST~/:::::o. That is for X, Y and f, g: >"X -+ >..Y 
. 1 

wzth f :::::0 9 we have 

OX,Y(f) = OX'y(g). 
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Proof. Let Ix be the cylinder object for X with A(IX) = I(AX); see (1.7). A 

homotopy H : f ~ g is given by a map H : I(AX) ----> AY with Hil = f and 
Hi2 = g. Hence we obtain by the derivation property 

OX,Y(f) = irOIX,y(H) 

OX'y(g) = i;Olx,y(H) 

(1) 

(2) 

since Ox Ix(id = 0 = Ox Ix (i2). Since the projection p : Ix ----> X induces an 
isomorphism in cohomology and since pil = 1 = pi2 we see that (1) and (2) imply 
the equation in (2.6). q.e.d. 

The next result can be used for counting possible realizations of a chain com­
plex. 

(2.7) Proposition. Let X be an object in TWIST~+1' n ~ 1, and let 0: E 

Hn+1(X,rnX), Then there exists an object Y in TWIST~+l with AX = AY 
such that 

Ox,Y(I) = 0:. 

Here 1 is the identity of AX = AY and OX,y is the obstruction operator in (2.3). 

Proof. Let X = (A,on+l,xn) and let a E r n(X)(An+1) be a co cycle representing 
-0: and assume a is given by a map a: En-l An ----> X n. Then we obtain the object 

Y = (A, an+1 + a, xn) 

which is well defined in TWIST~+1' Using the definition of Ox,Y (1) in (2.3) one 
readily checks that OX,Y(1) = 0:. q.e.d. 

There is also a relative form of the obstruction theorem (2.3). For this we use 
the notion of subcomplex in a twisted homotopy system of order n in (1.1). 

(2.8) Obstruction theorem (relative form). Let n ~ 2, let X, Y be objects 
in TWIST~+1 and let X' c X be a subcomplex. Let l' : X' ----> Y be a map in 
TWIST~+1 and let f : AX ----> AY be a map in TWIST~ which extends Af' and 
which induces u in Coef. Then there exists a map ! : X ----> Y extending l' and 
satisfying AU) = f if and only if an obstruction 

OX,Y(f,f') E Hn+l(X,X';u*rnY) 

vanishes. 

The proof of (2.8) is an easy modification of the proof of (2.3). 



276 Chapter V: Homology of Complexes 

3 The Homotopy Lifting Property of the Chain Functor 

Let C be a homological cofibration category under T. Then we show that the 
chain functor 

C* : Complex -----+ chain 

defined in (V.2.3) has the following homotopy lifting property. 

(3.1) Theorem. Let 1: X;:::l ----> Y;:::l be a map in Complex with f = c*1 and 

let 0:;:::1 : f ~ g be a homotopy in chain. Then there exists a l-homotopy H : 1 ~ 9 
satisfying 

Here we use (2.4) so that Hand 0:;:::1 can be considered to be maps in Complex 
and chain respectively. The theorem describes a homotopy lifting property anal­
ogous to the "homotopy lifting property" of a Hurewicz fibration in topology. In 
lemma (II.4.6) we have seen that the functor 

K2 : TWIST~ -----+ chain 

has the homotopy lifting property. We now show that also for n :::::-: 2 the functor 

..\ : TWIST~+l -----+ TWIST~ 

has the homotopy lifting property in the following lemma. 

- 1 
(3.2) Lemma. Let f : X ----> Y be a map in TWIST~+l and let H : f ~ 9 be a 

- - - 1 
l-homotopy in TWIST~ with f = ..\f. Then there exists a l-homotopy H : f ~ 9 
with 

{ ..\9_= 9 and 

"\H=H 

Proof. Let Ix be the cylinder of X in TWIST~+l' Then io : X ----> Ix is a 
subcomplex and we can use the relative obstruction theorem (2.8) which yields 
the obstruction 

Here the cohomology group vanishes. Hence (3.2) is a consequence of (2.8). q.e.d. 

Proof of (3.1). We construct inductively maps 9n E TWIST~ and homotopies 
- 1 

Hn : rnf ~ 9n with K n9n = 9 and KnHn = 0!>1. For n = 2 we use (II.4.6) and 
we use (3.2) for n :::::-: 3. The sequence of maps H n , gn defines iI,9 in (3.1). q.e.d. 
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4 Counting Realization of Chain Maps 

Let C be a homological cofibration category under T. We can realize a chain 
map inductively by use of the tower of categories in (1.5). Obstructions for this 
realization are described in (2.3). We now describe the number of realizations 
obtained in each step; see theorem (4.2). 

Let X, Y be objects in TWIST~+l with n ~ 2 and let u : Ox ----+ f)y be 
a morphism in Coef. Then [X, Yju denotes the set of all I-homotopy classes of 
maps f : X ----+ Y in TWIST~+1 inducing c(f) = u. The functor A yields the 
function 

A 
[X, Yju ~ [AX, AYJu. (4.1) 

The image of this function is the kernel of the obstruction operator OX,Y in (2.3). 
In the next theorem we consider inverse images A -1 A(f) which are subsets of 
[X, YJu. 

(4.2) Theorem. There is an action of the group Hn(x, u* rny) on the set 
[X, Yju such that the orbits of this action coincide with the subsets A -1 A(f). 

We denote the action of a E Hn(x, u* rny) on f E [X, Yju by f + a. Then 
(4.2) shows that maps f, 9 E [X, Y]u satisfy A(f) = A(g) if and only if there exists 
a with 9 = f + a. Hence we obtain the exact sequence of sets 

Here the arrow ---±.... denotes the action in (4.2) and OX,y is the obstruction operator 
in (2.3). We define the action in (4.2) as follows. 

(4.4) Definition. Let X = (A, On +1 , xn) and Y = (B, On+1, yn) and let 

f = (~, Tf) : X ----+ Y (1) 

be a map in TWIST~+l inducing u = {Tf1}. Here Tf : xn ----+ yn is a filtered map 
in Complex. Given a E Hn(x, u* rny) we choose a co cycle 

(2) 

which is represented by a map a : 17n-1 An ----+ Yn. Using the action in (III.3.4) we 
can alter Tf by a so that we obtain a map Tf + a : xn ----+ yn in Complex extending 
Tf I xn-1. Then f +a = (~, Tf+a) is a map in TWIST~+1 and for the I-homotopy 
class {J} E [X, Yju we define the action in (4.2) by 

{f} + a = {J + a} (3) 

Proof of (4·2). We first check that (~, Tf + a) is a well defined map in TWIST~+1' 
Since n ~ 2 and since (Tf + a) I X n- 1 = Tf I X n- 1 we see that Tf + a induces 
u = {Tf1} in Coef and that 
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A(~, 7] + a) = A(C 7]) 

We show that 

G*(7] + a) = G*(7]) = ~ in degree::; n 

and that for (n+1 in (1.1) (6) we have 

(7]n + a)on+1 = (on+1' i)(n+1 in Ho(C). 

(4) 

(5) 

(6) 

Then (2) and (3) imply that (~, 7] + a) is a well defined map in TWIST~+l' Now 
(5) is clear in degree::; n - 1 and in degree n we have G*(7] + a) = G*7] by (2.3) 
(5), (III.3.4) (2); compare (V.2.3) (4). This argument was already used in (2.3) 
(14). Next we have 

(7]n + a)On+1 = 7]nOn+1 + (a,7]n) v On+1. 

Here (a, 7]n) V On+1 is trivial since a is a co cycle. Hence (6) holds since (1.1) (6) is 
1 

satisfied for (~, 7]). This completes the proof of (5) and (6). A homotopy H : f "':' g 
yields a homotopy f + a "':' g + a since + is defined by the coaction map f-l and 
the cylinder of a sum is a sum of cylinders. 

Now assume that the co cycle a is a coboundary. This is the case if and only if 
a in (2) admits a factorization 

- . E n - 1A ,In 
Q . n -------+ 

where dn == dn and f3 E Tn(Y)(An-1)' Using the argument in VII.2.12 (3) (4) (5) 
1 

Baues [AH] we see that in this case f + a",:, f. This completes the proof that the 
action in (3) above is well defined. 

Finally we have to show 

A{J} = A{g} ~ ::Ia with {g} = {J} + a. (7) 

1 
The direction -¢= is clear by (4). Now assume that we have a homotopy H : Af "':' 
Ag. Then by the homotopy lifting property of A in (3.2) we see that we obtain 

a I-homotopy f ~ I' with AI' = Ag. Hence (111.3.5) shows that there exists 
f3 : En-1 An -+ Yn with 7]' + f3 "':' 7]" reI X n - 1 where I' = ((,7]') and g = ((,7]"). 
Hence I' + f3 is a well defined map in TWIST~+l which is O-homotopic to g. This 
implies that f3 E Tn(Y)(An) and that f3 is a cocycle by arguments as in (5) and 
(6). Hence f3 represents a in (7). q.e.d. 

(4.5) Proposition. The action + in (4.4) has the linear distributivity law, that 
is for f E [X, Y]u, g E [Y, Z]v we have 

(g + f3)(f + a) = gf + g*a + f* f3 
f* : H n +1(y, v* TnZ) ---+ Hn+1(x, (vu)* TnZ) 

g* : Hn+1(x, u* TnY ) ---+ Hn+1(x, (vu)* TnZ) 
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We point out that f* and 9* in (4.5) actually depend only on )..f and )..g 

respectivly, that is f* = ()..f)* and g* = ()..g)* by (2.4). 

Proof. This is a consequence of V.3.4 Baues [AH] since all maps 'f] : (Xn , Xn-d ---* 

(Yn, Yn-d are twisted. q.e.d. 

5 Linear Extensions and Towers of Categories 

The results on the obstruction operator in § 2 and the action in § 4 lead to certain 
concepts in category theory like "linear extensions of categories" and "exact se­
quence for a functor" . In the next section we apply these concepts to the categories 
TWIST~ of twisted homotopy systems of order n. 

The concept of exact sequences for groups is fundamental in algebraic topol­
ogy. We can consider a group to be a category with a single object in which all 
morphisms are equivalences. Therefore we might try to find a more general notion 
of an exact sequence for categories and functors. In this section we introduce for 
a functor ).. exact sequences of the form 

D+ -----; A ~ B ~ H. 

Here, however, D and H are not categories but "natural systems" of abelian groups 
on B. Special exact sequences are the linear extensions of B by D denoted by 

D+ -----; A ~ B 

the equivalence classes of which are classified by the cohomology group H2(B, D). 
See Baues [AH]. This fact generalizes the classical result on extensions of a group B 
by a B-module D which are classified by the cohomology H2(B, D). 

Exact sequences for a functor ).. and linear extensions arise frequently in alge­
braic topology and in many other fields of mathematics. In fact, once the reader 
learned about these concepts he shall recognize many examples himself and soon 
the usefulness and naturality of such notions will become apparent. 

{5.1} Definition. Let C be a category. The category of factorizations in C, denoted 
by FC, is given as follows. Objects are morphisms f, 9, ... in C and morphisms 
f ---* 9 are pairs (a, (3) for which 

A~A' 

B~B' 

commutes in C. Here af(3 is a factorization of g. Composition is defined by 
(a', (3') (a, (3) = (a'a,(3(3'). We clearly have (a,(3) = (a, 1)(1,(3) = (l,(3)(a,l). 



280 Chapter V: Homology of Complexes 

A natural system (of abelian groups) on C is a functor D : FC ----; Ab. The func­
tor D carries the object f to D f = D(f) and carries the morphism (a, (3) : f ----; g 
to the induced homomorphism 

D( a, (3) = a*(3* : D f ------+ Daf(3 = D g . 

Here we set D(a, 1) = a*, D(l, (3) = (3*. 
We have a canonical forgetful functor 7r : FC ----; cop x C so that each bifunctor 

D : cop x C ----; Ab yields a natural system D7r, as well denoted by D. Such a 
bifunctor is also called a C-bimodule. 

We now describe examples of natural systems used below. For m E Z and n :::::. 2 
we have a well defined natural system 

1 
H m rn : F(TWIST~/~) ------+ Ab (5.2) 

which carries the morphism f : X ----; Y in TWIST~/~ to the cohomology group 

1 
Here c : TWIST~/~ ----; Coef is the coefficient functor which coincides with cKn . 

Compare (1.9) and (1.10). 

{5.3} Definition. Let D be a natural system on C. We say that 

D+ ------+ E ~ C 

is a linear extension of the category C by D if (a), (b) and (c) hold. 

(a) E and C have the same objects and p is a full functor which is the identity on 
objects. 

(b) For each f : A ----; Bin C the abelian group D f acts transitively and effectively 
on the subset p-l(j) of morphisms in E. We write fa + a for the action of 
a E D f on fa E p-l(j). 

(c) The action suffices the linear distributivity law: 

(fa + a) (go + (3) = fogo + f*(3 + g*a. 

Two linear extensions E and E' are equivalent if there is an isomorphism of cate­
gories c : E ~ E' with p'c = p and with c(fo + a) = c(fo) + a for fa E Mor(E), 
a E Dpfo. The extension E is split if there is a functor s : C ----; E with ps = 1. 

Let C be a small category and let M(C, D) be the set of equivalence classes 
of linear extensions of C by D. Then there is a canonical bijection 

(d) 

which maps the split extension to the zero element, see IV § 5 in Baues [AH]. 
Next we consider exact sequences for functors which were introduced in IV.4.lO 

Baues [AH]. 
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(5.4) Definition. Let>.: A ---+ B be a functor and let D and H be natural systems 
of abelian groups on B. We call the sequence 

an exact sequence for >.if the following properties (a), . .. , (e) are satisfied. 

(a) For each morphism fa : X ---+ Y in A the abelian group D f , f = >'fa, acts 
transitively on the set of morphisms >.-1(f) c A(X, Y). Let Ifo = {a E Df, 
fa + a = fa} be the isotropy group. 

(b) The linear distributivity law (5.3) (c) is satisfied. 
(c) For all objects X, Y in A and for all morphisms f : >'X ---+ >.Y in B an 

obstruction element OX,y(f) E H(f) is given such that OX,Y(f) = 0 if and 
only if there is a morphism fa : X ---+ Y with >.fa = f. 

(d) 0 is a derivation, that is Ox,z(gj) = g*Ox,Y(f) + j*OY,z(g) for f : >'X ---+ 

>.Y, g : >.Y ---+ >.Z. 
(e) For all objects X in A and for all a E H(l)"x) there is an object Y in A with 

>.Y = >.X and OX'y(l.xx) = a, we write X = Y + a in this case. 
(f) A tower of categories is a diagram (i E Z) 

1 

1 
where Di -----+ Hi -----+ H i- 1 -----+ Fi is an exact sequence. 

We say that D acts on>. if (a) above is satisfied. Moreover, D acts linearly on >. 
if (a) and (b) are satisfied. We say that D acts effectively if all isotropy groups in 
(a) are trivial. A linear extension as in (5.3) yields an exact sequence 

D~E-----+C~O 

where 0 is the trivial natural system. On the other hand each exact sequence as 
in (5.4) yields a linear extension of categories 

D/I ~ A -----+ >'A. (5.5) 

Here >'A is the image category of >. : A ---+ B. Objects in >'A are the same as in 
A and morphisms X ---+ Y in >'A are the maps f : >.X ---+ >.Y in the image set 
>'A(X, Y). Clearly>. induces functors 

A~>'A~B 
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where A is full and where i is faithful. We say that A is a quotient functor if i is 
an isomorphism of categories. The natural system D / I on AA in (5.5) is given by 
(D/I)(f) = Dj/ljo, fo E A-1(f), see (5.4) (a). 

An equivalence or isomorphism in a category A is written f : A ~ B. This is 
an automorphism of A if A = B. Such automorphisms form the group AutA(A). 
For the groups of automorphisms in an exact sequence (5.4) we obtain the exact 
sequence of sets 

(5.6) 

Here A is the homomorphism of groups induced by A and 1+ is the homomorphism 
of groups given by 1 +(0:) = 1.AA +0:. Moreover, the function 0 is defined by O(f) = 
(f-1).OA,A(f). In fact, 0 is a derivation of groups with O(fg) = O(l)g + 0(1). 
Here we set x g = g*(g-l )*(x) for x E H(l>'A). Compare (IV.4.11) Baues [AHl. 

(5.7) Lemma. A functor A in an exact sequence reflects equivalences. 

Proof. Let / : A ---+ B be a morphism in A such that f = A/ : AA ---+ AB is an 
equivalence in B. Then we can choose 9 : AB ---+ AA with gf = 1 and fg = 1. Now 
we get 

Here f* is injective since f is an equivalence. Hence OB,A(g) = 0 and therefore 
there exists a morphism g' : B ---+ A with A(g') = g. Moreover there exist 0:, (3 with 
g'/ = 1A + 0: and /g' = 1B + (3 since A(g' f) = 1 and A(lg') = 1 are the identity 
morphisms. We can alter g' by 8 E D(g) so that we get g' + 8 satisfying 

Here f* is surjective so that we can find 80 with 0: + f*80 = O. Hence 9 = g' + 80 

satisfies 9/ = lA· On the other hand we have 

/9 = /(g' + 80 ) = /g' + f*80 = 1B + (3 + f*80 · 

Hence we get for ~ = {(3 + f*80 } E (D/I)(1>.B) the equation /9 = lB + ~ and 

/ = /9/ = (1B +~)f = / + j* ~ 

where f* : (D/I)(l>.B) ---+ (D/I)(f) is injective. Since (D/I)(f) acts effectively we 
see that f*~ = 0 and hence ~ = O. This implies /9 = lB. q.e.d. 

(5.8) Definition. Let A : A ---+ B be a functor. A realization of an object B in B 
is a pair (A, b) where A is an object in A and b : AA ~ B is an isomorphism in B. 
We have an equivalence relation on such pairs by (A, b) rv (A', b') if there is an 
equivalence 9 : A' ~ A in A with A(g) = b- 1b'. The equivalence classes form 

Real>.(B) = {(A, b); b: AA ~ B} /rv 
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Let {A, b} be the equivalence class of (A, b). Let {A} be the equivalence class of 
A EA. Then 

types,A(B) = {{A}; 3b: >'A ~ B} 

We have a surjective function 

Real>.(B) """* types,A(B) 

which carries {A, b} to {A}. 
Now we consider again a functor>' which is part of an exact sequence (5.4). 

Then we obtain for {A, b} E Real,A (B) the derivation 

(5.9) 

similarly as in (5.6). Here H(l B} is a right AutB(B)-module by x 9 = g*(g-l )*(x), 
x E H(1B), g E AutB(B). The derivation 0 is defined by the obstruction opera­
tor 0 in the exact sequence (5.4), namely 

Let 

(5.10) 

be the cohomology class represented by O. This class does not depend on the choice 
of {A, b} E Real>.(B), in fact, the set {O{A, b}; {A, b} E Real>.(B)} coincides with 
the full cohomology class .::1B . This follows from (5.4) (e). 

(5.11) Proposition. Assume>. is a functor in an exact sequence (5.4). Let B 
be an object in B and let Real,A(B) be non empty. Then the group H(1B) acts 
transitively and effectively on Real,A(B). In particular Reah(B) is a set. Moreover 
the cohomology class.::1B determines the number of elements in the set types>.(B). 
In fact, let.::1 be a derivation which represents .::1B . Then there is a bijection 

where the equivalence relation rv on H(1B) is defined by .::1, that is a rv (3 if and 
only if there exists f E AutB(B) with .::1(1) = 1*((3) - f*(a). 

The first part of (5.11) is proved in IV.4.12 Baues [AH] and the second part is 
proved in II.1.14 Baues [CH]. 

6 The Homological Tower of Categories 

Let C be a homological cofibration category under T. Then the results in § 2 and 
§ 4 show that one has for n ~ 2 an exact sequence 
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Hnrn -±-. TWIST~+dd:- ~ TWIST~/d:- ~ Hn+1rn . (6.1) 

Here Hm rn is the natural system in (5.2). Hence (1.8) shows that we get the 
following homological tower of categories approximating the homotopy category of 
T-complexes. 

1 
Complex/,::: 

lr 

Hnrn 
+ TWIST~+dd:------> 

1\ 
TWIST~jd:- () Hn+lrn -----> 

1\ 

H 2r 2 
+ TWIST~/d:------> 

1\ 
TWIST~/d:- () 

H 3r 2 -----> 

(6.2) Remark. Using (1.2) the twisted tower (6.1) has the prolongation given by 

TWIST~/d:- ~ TWISTU,::: ~ H 2r 1 • 

Here K = A is the functor in (11.4.3) and 0 is the obstruction in (11.3.2). The 
pair (K,O) has only partially the properties of an exact sequence by the results 
in (1I.§ 3). In particular the action on K is more complicated by (H.4.11). 

We can apply all results in section § 5 to the twisted tower in (6.1). For example 
by (5.7) we get 

(6.3) Proposition. The functor A in (6.1) reflects equivalences. That is, a map 
f : X -> Y in TWIST~+l is a 1-homotopy equivalence if and only if the induced 
map ).,f : ).,X -> )"Y is a i-homotopy eq'uivalence. 

Inductively we get by (6.2) and (II.5.3) the corollary: 

(6.4) Corollary. For n .:::: 2 the functor 

Kn : TWIST~/d:- ---> chain/,::: 

reflects equivalences. 
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This corollary is the essential step for the proof of the "homological Whitehead 
theorem" in the next section. 

Now let X>l and Y>l be T-complexes and let [X>l' Y>l]u be the set of 1-
homotopy clas~es f : X;:::~ ---> Y;:::l inducing u = c(f) : ax- ---> 8y in Coef. Similarly 
let [X;::: 1, Y;:::l]~ be the set of I-homotopy classes f : TnX;:::l ---> TnY;:::l inducing 
u = c(f). Then we obtain as in (4.3) the following diagram of exact sequences of 
sets. 

[X>l' Y>l]u 

lr 

Hn(X>l' u* rny> I} + 
[X>l' Y>l]~+1 ------t 

- -

lA 
[X;::: 1 , Y;:::l]~ 

0 
Hn+1(X>l' u* r nY>l) ------t 

- -

1 

H3(X>1' u* r 3Y>1) + 
[X>l' Y>l]~ ------t 

- -

lA 
[X;::: 1 , Y;:::l]; 

0 
H3(X>1' u* nY>I} ------t 

- -

Here we have kernel(O) = image(A) and we have A(f) = A(g) if and only if there 
exists a with 9 = f + a. Moreover, for an N-dimensional complex X = XN the 
map 

(6.6) 

is bijective for n = N + 1 and surjective for n = N. This follows readily from the 
definitions. 

Next we derive from the twisted tower a structure theorem for the group 

Aut(X;:::l) of 1-homotopy equivalences of X;:::l in Complex/~. Let En(X;:::I} be 
1 

the corresponding group of I-homotopy equivalences of TnX>l in TWIST~/c:::'. 
Then we obtain the following diagram of exact sequences; co~pare (5.6). 
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Aut(X>d 

1 

Hn(X?1' rnx?d 
1+ 

En+1(X>d ---+ 

lA 
En(X?d 

6 
Hn+1(X?1' r nX?1) (6.7) ---+ 

1 

H2(X?1' nX?d 
1+ 

E3(X?d ---+ 

lA 
E2(X?d 

6 
H3(X?1' r 2X?1) ---+ 

Rere 1+ and A are homomorphisms of groups and 0 is a derivation as in (5.6). 
Moreover kernel(O) = image(>.) and kernel(A) = image(l +). If X?1 = X N is finite 
dimensional the homomorphism 

(6.8) 

is an isomorphism for n = N + 1 and surjective for n = N. 
The isotropy group of the actions in (6.5) and the kernel of 1 + in (6.7) can be 

described by use of a spectral sequence; see Baues [ARl. 

7 The Homological Whitehead Theorem 

In addition to the Whitehead theorems in chapter IV we obtain the following 
homological Whitehead theorem. 

(7.1) Theorem. Let C be a homological cofibration category under T and let f : 
X?1 ----+ Y?1 be a map between T-complexes. Then f is a 1-homotopy equivalence, 

1 
i.e. an isomorphism in the category Complex/""" if and only if the induced chain 
map 

is a homotopy equivalence in chain/"",. 

Using theorem (1.6.6) we derive from (7.1) the following two additional results. 
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(7.2) Addendum. With the assumption in (7.1) the map f is a l-homotopy 
equivalence if and only if the induced map u = c(j) is an isomorphism in Coef 
and 

is an isomorphism of right mod(ox )-modules for n E Z. 

(7.3) Addendum. Assume mod( ox) is an additive subcategory of an abelian 
category M such that all objects of mod( ox) are projective in M. If the assump­
tions on f in (7.1) hold then f is a l-homotopy equivalence if and only if the 
induced map u = c(j) is an isomorphism in Coef and 

is an isomorphism of abelian groups for all right mod( ox) -modules N of the form 
N = HomM( -, M) where M is an object in M and n E Z. 

Proof of (7.1). If C*f is a homotopy equivalence in chain then (6.4) shows that 
rnf is a I-homotopy equivalence in TWIST~ for all n :::: 2. If X~l and Y;l are 
finite dimensional this implies that f is a I-homotopy equivalence by (6.6). :IT X>l 
or Y;::l are infinite dimensional then the I-homotopy equivalence rnf, n :::: 2, shows 
that f is a weak T-equivalence in the sense of (IV.3.4). Then f is a I-homotopy 
equivalence by the general Whitehead theorem (IV.3.11) since we assume that all 
T-complexes are T-good; see (V.1.I). Compare also (V.1.4). q.e.d. 

8 The Model Lifting Property of the Twisted Chain Functor 

Let Y be a simply connected topological space for which the total homology 
H2 (Y) EB H3(Y) EB ... is a finitely generated abelian group. Then it is well known 
that there exists a finite CW-complex X and a weak equivalence X ----t Y. The 
CW-complex X is termed a "finite model" of Y. Similarly "minimal models" play 
an important role in rational homotopy theory. We describe the underlying general 
concept of models as follows. 

(8.1) Definition. Let (A,~) and (B,~) be categories with natural equivalence 
relations, ~, which we call homotopy. Moreover let A : A ----t B be a functor which 
induces a functor A : A/~ ----t B/~ between homotopy categories. Suppose we have 
an object Y in A and a morphism 

f3: B ----t AY 

in B which is a homotopy equivalence, that is, an isomorphism in B/~. Then f3 
is termed a model of AY. We say that the functor A has the model lifting property 
if for all Y in A and all models f3 of AY in B the following holds. There is a 
morphism 
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in A which is a homotopy equivalence in A and there is an isomorphism i : A(A) ~ 
Bin B with 

A(O:) = (3i : A(A) ~ B ----7 AY. 

Then we say that 0: is a model of Y which is a lifting of the model (3 of AY. 

Now let C be a homological cofibration category under T. Then we have the 
chain functor 

C* : Complexj6: ----7 chainj6: (8.2) 

defined in (V.2.3). Unfortunately in general C* has not the model lifting property. 
But if we replace chain complexes by twisted chain complexes then liftings of 
models exist. This is an important advantage of the category of twisted chain 
complexes in chapter II. We therefore consider the twisted chain functor 

1 1 
r2 : Complexj~ ----7 TWIST~(T)j~ (8.3) 

Here TWIST~(T) is the category oftwisted chain complexes in chapter II defined 
by T and mod = mod(C). As observed in (1.2) this category coincides with the 

I-homotopy category TWIST~j6: of the category of 2-systems in C. The twisted 
chain functor r2 is defined as in (1.3). 

(8.4) Theorem. The twisted chain functor r2 has the model lifting property. 

Theorem (8.4) is a consequence of the following result using the homological 
tower of categories. 

(8.5) Proposition. For n ~ 2 the functor 

A : TWIST~+1j6: ----7 TWIST~j6: 

has the model lifting properly. 

Proof. Let Y = (B, o~+1' yn) be an (n + I)-system with AY = (B, o~, yn-l) and 
let 

(1) 

be a I-homotopy equivalence in TWIST~ with u = c(G) = {17d. We construct 
an object X = (A, On+1, xn) with AX = X and a map 

C = (~,fI) : X ---* Y with AC = G. (2) 

Then C is a I-homotopy equivalence since A in (8.5) reflects equivalences by (6.3). 
Hence C is a lifting of the model G. Since G is a I-homotopy equivalence we see 
by (1.11) that G induces an isomorphism 
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For the construction of X and G we first choose a principal cofibration (Xn , Xn-d 
with attaching map an in (1). Then xn = (Xl C ... C Xn) is given by X n- l in 
(1) and (Xn , Xn-d. Moreover since an in (1) satisfies the cocycle condition we 
can choose a functional suspension O~+l of dn+l in (1.1) (3), that is 

O~+l E Ean(dn+d c [Lm - I An +1,Xn ]. (4) 

Then we obtain the (n + 1 )-dimensional object 

X~ = (A:;n+l, o~+l> xn) (5) 

which satisfies the co cycle condition since A:S;n+1 is trivial in degree n+2. Moreover 
(~, TJ) in (1) yields a map 

(6) 

in TWIST~ so that the obstruction 

(7) 

is defined. The map (3) induces an isomorphism 

We now choose a co cycle a E rn (X)(An +1) representing the cohomology class 
(G.)-l(a). Here a is given by a map a: L'n-IAn+1 --+ Xn and we can alter O~+1 
by a to obtain 

This yields the (n + I)-dimensional object 

in TWIST~+1 with A(xa) = A(X~) and by (2.3) (3) we see that 

OX",y(G') = o. 

Hence (2.3) shows that there exists a map 

Gil = (~<n' i)) : xa --+ Y with A(G") = G'. 

We now define X in (2) by 

(8) 

(9) 

(10) 

(11) 

(12) 
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so that XC> is the (n + 1 )-dimensional part of X. We have to show that X sati::dies 
the co cycle condition and that 

G = (C i)) : X --> Y (13) 

is a well defined map in TWIST~+ l' Clearly G is an extension of Gil in (11) and 
therefore G satisfies the properties in (1.1) (5) (6) and hence is well defined. We 
therefore have the following commutative diagram in Ho(C). 

l7n - 1 A n +2 V X 2 
((n+2,ih) 

l7n- 1 Bn+2 V Y2 ) 

(dn+2,1) 1 1 (d;,+2· 1) 

l7n- 1 An+1 V X 2 
((,,+2,i)2) 

l7n- 1 B n+1 V Y2 ) 

(On+1 ,i) 1 1 (o~+l,i) 
Xn -----+ Yn 

iln 

Here ~n+2 and ~n+l are defined by ~n+2 == ~n+2 and ~n+l == ~n+l' Therefore 
the top square of the diagram commutes since ~ is a chain map. Moreover the 
bottom square of the diagram commutes since Gil in (11) is a well defined map in 
TWIST~. By the co cycle condition for Y we know that on the right hand side of 
the diagram we have (8:,+1' i)d~'+2 = O. This implies that 

(14) 

Here, however, we have \7((3) = 0 since A is a chain complex. Hence we know by 
(V.5.5) that 

(15) 

The following diagram commutes where G* is an isomorphism by (3). 

r n (X)(An+2 ) c [l7n- 1 An+2' Xn] 

°*1"" l(i)n)* 

u* rn (X)(An+2) c [l7n - 1 An+2' }'r,] 

Hence by (15) and (14) we see 

(16) 

and therefore (3 = O. This shows that X satisfies the co cycle condition and the 
proof of (8.5) is complete. q.e.d. 

Proof of {8.4}. Let Y;:,l be a T-complex and let 
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be a model in TWIST~. Then we can choose inductively models in TWIST~ 

with n ~ 3, AXCn) = XCn-I), A(an) = an-I. Here we use the construction in the 
proof of (8.5). The sequence of objects X Cn )' n ~ 2 defines aT-complex X;::I and 
the sequence of maps an defines a map 

(3 : X;::I -+ Y;::I 

with r2(X;::I) = X and r2(fJ) = a2. Since a2 is a I-homotopy equivalence we see 
that C*f3 is a homotopy equivalence and hence (3 is a I-homotopy equivalence by 
the homological Whitehead theorem (7.1). This shows that (3 is a lifting of the 
model a. q.e.d. 

Remark. The model lifting property of the twisted chain functor in (8.4) is the 
ultimate generalization of theorem 17 in the classical paper on simple homotopy 
types of J.H.C. Whitehead [SH]. This theorem shows that the functor which car­
ries a reduced CW-complex X to its crossed chain complex has the model lifting 
property. On the other hand Wall [Fe] § 4 reproved Whitehead's result by showing 
that the functor which carries X to the "admissible chain complex (C*X, ax)" has 
the model lifting property. Our proof of the model lifting property does not rely 
on the proofs of Whitehead and Wall since it uses only properties of the homo­
logical tower of categories. Compare also VI. 7.5 Baues [AR] where this result was 
proved for relative CW-complexes (X, D) under a path connected space D; this is 
a special case of (8.4) if one considers the category C = TopD of spaces under D. 

9 Obstructions for the Realizability 
of Twisted Chain Complexes 

We consider the following problem. Given a twisted chain complex A I ax is there 
aT-complex X>I such that r2(X>d and A I ax are isomorphic in TWIST~? 
Then X>I is te;=-med a realization ~f A I ax. Using the categories TWIST~ we 
now des~ribe a sequence of obstruction for the realizability of A I ax. 

(9.1) Theorem. Assume C is a homological cofibration category under T. Let 
n ~ 2 and let X be an n-system in TWIST~. Then there exists an (n+ I)-system 
X in TWIST~+l with AX ~ X in TWIST~ if and only if an obstruction 

vanishes. 
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Proof. For X = (A, On, X n - 1 ) we can choose a principal cofibration (Xnl X n- 1) 
with attaching map On. Moreover by the co cycle condition (1.1) (3) we can choose 

OnH E [En-lAn+l,Xn] 

On+l E EOn ((1 V i)dn+d 
(1) 

Here On+l is a functional suspension of (1 V i)dn+1 in (1.1) (3). The element UnH 
yields 

(2) 

where d71+2 == dn+2 . We have O(X) = 0 if and only if OnH satisfies the co cycle 
condition. Hence for O(X) = 0 the object XO = (A, U71+l, xn) is well defined 
in TWIST~'+l and satisfies ),(XO) = X. We observe that (1) and (2) imply 
\70(X) = O. Therefore by (V.5.5) we see 

(3) 

Moreover O(X) is a co cycle since dn+2 == dn+2 . Therefore O(X) represents the 
cohomology class On(X) in (9.1). Now assume On(X) = O. Then O(X) is a 
coboundary. Hence there is 15 E rn(X)(An+1 ) such that 

satisfies d~+2(r5) = -O(X). Now 15 is represented by a map 

and we can alter OnH by 15. Since \715 = 0 we still have by (1) and (4) 

\7(On+l + 15) == dn+1 

(On+l + 15, i)dn+2 = 0 

(4) 

Hence X = (A,On+l + 15, xn) is a well defined object in TWIST~'+l satisfying 
)'(X) = X. q.e.d. 

(9.2) Proposition. Let f : X -+ Y be a map in TWIST~,. Then we have the 
formula 

where u = c(f) E Coef is induced by f. 

Proof. Let 

Then we have the following diagram in Ho( C) 
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En-l An+2 V X 2 
«(n+2,1)2) 

En-l Bn+2 V 1'2 ) 

(dn+2,1) 1 1 (dn+2,1) 

En-l An+l V X 2 
«(n+1,1)2) En-l B n+1 V Y2 ) 

(on+l,i) 1 1 (On+l,i) 

Xn 
f/ Yn ----+ 

Here the upper square commutes since ~ is a chain map. The map fJ is a twisted 
map associated to (n; for this we use (1.1) (6) with (n + 1) replaced by n. This 
implies that 

satisfies \7(8) = O. Hence we get 

'TJ*O(X) = fJ(8n+l, i)dn+2 

= ((8n+l' i)(n+l + 8, 'TJ2)dn+2 

eO(Y) = (8n +1 , i) (dn+2' 1)(n+2 

= (8n +1 , i) ((n+l , 'TJ2)dn+2 

This shows that 'TJ*O(X) and eO(Y) differ only by the coboundary d~+2(8) and 
therefore (9.2) holds. q.e.d. 

We now consider the functor 

(9.3) 

Then we have by (5.8) 

Real,\(X) = {(X, b); b: .xX ~ X} /'" 

- - - 1 - 1 
with (X, b) '" (Y, b') if there is 9 : Y ~ X with b.x(g) ~ b'. Here band 9 denote 
maps which are I-homotopy equivalences. 

(9.4) Proposition. Let n ~ 2. Then Real,\(X) is non empty if and only if 
On(X) = O. In this case Hn+l(x, rnX) acts transitively and effectively on the 
set Real,\(X). 

Proof. The second part is a consequence of (5.11) and (6.1). If Reah(X) is non 
empty '!Ie have ~: .xX ~ X and the model lifting property (8.5) shows that there 
exists X with .xX = X so that On(X) = a by (9.1). Conversely if On(X) = a then 
there exists X with .xX = X by (9.1) and hence Real,\(X) is not empty. q.e.d. 
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The results above yield an obstruction theory for the realization of a twisted 
chain complex A I ax. The first obstruction is 

(9.5) 

where r 2 (A I ax) is defined by (1.10) and (1.2). If (9.5) is trivial we get the set 
Real).. (A I ax) by (9.4) and for each class {X, b} in this set we get 

O{X, b} E 7/.,/2 (9.6) 

with O{X, b} = 0 if O(X) = 0 and O{X, b} = 1 otherwise. The element (9.6) 
is well defined by (9.2). The collection of all elements (9.6) forms the secondary 
obstruction. 

10 The Hurewicz Theorem 

Let C be a homological cofibration category under T and let X2':l be aT-complex 
with coefficient object ax E Coef given by the attaching map of the principal 
cofibration (X2' Xd 

(10.1) Definition. Let 1* be the initial object of Coef given by the identity 1* : 
* ----> * of * E T. We say that X2':l is I-connected if the map 

is an isomorphism in Coef. Moreover X>l is n-connected with n ~ 1 if X>I is 
I-connected and if the right mod(ox)-module 1fi(X2':l) is trivial for 2:S i:S;;. 

(10.2) Lemma. Let the complex X>I be 1-connected. Then the right mod(ox)­
module H1(X>1) is trivial. 

Proof. Clearly HI (*) = 0 where * is the trivial T-complex Y2':1 with Yn = * for all 
n. Here we assume that * is fibrant in C. Moreover we have maps 

(1) 

in TWIST which induce isomorphisms in Coef. In particular Ou '" 1. The maps 
(1) induce via the functor K maps between chain complexes of dimension :S 2 such 
that 

(2) 

is the identity of HI (dx ) = HI (X>t). Since H 1(d*) = H 1 (*) = 0 this implies 
H I (X2':t} = O. q.e.d. 
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(10.3) Hurewicz theorem. Assume that mod(l*) has enough exact sequences 
as in (II. 7.5). Let n 2': 2. Then a T-complex X~l is n-connected if and only if X~l 
is l-connected and the homology modules Hi(X~d = 0 are trivial for 2 :s; i :s; n. 
Moreover if X~l is n-connected then the Hur'ewicz homomorphism 

between right mod(l*)-modules is an isomorphism for i = n and is a surjection 
for i = n + 1. 

For the proof we shall use the following lemma on additive categories. 

(10.4) Lemma. Let A be an additive category with enough exact sequences as in 
(II. 7.5). Let D* be a chain complex in A which is bounded bela1/} such that for 
i:S; n and all objects A in A the homology Hi(D*,HomA(A,-)) = 0 is trivial. 
Then there exists a chain complex B* which is trivial in degree :s; n and a homotopy 
equivalence B* ----t D* of chain complexes. 

Pmof. We work on the I-category chain! in (III.C.2). We can find a map 

of chain complexes where K* has trivial homology and hence is contractible. Here 
K* in degree :s; n + 1 coincides with D* and f in degree :s; n + 1 is the identity. We 
obtain the exact prolongation K* of D~n+l since A has enough exact sequences. 
Now we desuspend f and obtain 

with ED: = D*, EK~ = K* and Eg = f. Then the cofiber sequence yields the 
homotopy equivalence 

since K~ and EK~ are contractible. Since g in degree :s; n is the identity we see 
that we have the cofihration 

Here the eone C(K~rJ is contractible. Hence we obtain the homotopy equivalence 

where clearly B~n is trivial. q.e.d. 

Proof of (10.3). Let X~l be n-connected, n 2': 2. Then ax is isomorphic to 1* 
in Coef and hence we get by the isomorphism 11, : ax ----t a* the isomorphism of 
categories 11,* : mod(ax ) ----t mod(l*) which maps the chain complex C*(X>l) = 
(A,ax ) to the chain complex (A, 1*) = A in mod(l*). Assume now that (A,ax ) 
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and hence A have trivial homology in degree S n - 1. This is true for n = 1 by 
(10.2). Then we obtain by (10.4) a chain complex B in mod(I*) which is trivial 
in degree S n - 1 and a map A ---> B which is a homotopy equivalence of chain 
complexes. Now let 00 : B2 ---> * be given by the O-map of the cogroup B2. Then we 
have the isomorphism 00 ~ 1* in Coef and hence we get the homotopy equivalence 
in chain 

(1) 

Here (A, ax) is the chain complex of an object A I ax in TWIST~. Moreover 
(B, 00) is the chain complex of the object B I 00 in TWIST~. Since E in (1.5.6) 
and j in (1.5.5) are surjective we see that B I 00 satisfies the cocycle condition. 
Again since E and j in (1.5.6) and (1.5.5) are surjective we see that (1) is induced 
by a map 

B I 00 ---; A I ax in TWIST~ (2) 

which is a twisted homotopy equivalence by (II.5.4). Hence we obtain by the model 
lifting property of r2 aT-complex Y:;::l with C* (Y:;::l) = (B, 00) and a I-homotopy 
equivalence 

(3) 

Here the (n - I)-skeleton of Y:;::l is trivial and hence riY:;::l = 0 for 1 < i < n. 
Therefore the exact r-sequence (V.5.4) yields the result in (10.3). q.e.d. 

11 Appendix: Eilenberg-Mac Lane Complexes 
and (C, T)-Homology of Coefficient Objects 

We describe the analogue of an Eilenberg-Mac Lane space K(7r, 1) in a cofibration 
category. This leads to the (C, T)-homology of a coefficient object ax which as 
specialization yields the Quillen homology of ax . 

Let C be a homological cofibration category under T. Since T-complexes X:;::l 
are T-good by the assumptions in (V.l.l) we know that the homotopy groups are 
given by 

7rn (X:;::d(D) = image{7r~_l(Xn) ---> 7r~_l(Xn+l)} 

= 7r~_1 (Xn +1 ) 

(11.1) 

for n ~ 1. Here 7rn (X:;::l) is a right mod(ax)-module. 

(11.2) Definition. A resolution of ax E Coef in C is aT-complex X>l with 
coefficient object C(X>l) = ax satisfying 

7rn (X>l) = 0 for n > 1 

We also call X>l = K(ax, 1) an Eilenberg-Mac Lane complex for ax. 
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(11.3) Lemma. Let K be a T-complex with subcomplex L C K and let f : L ---> 

K(ax,l) be a map in Complex and let u : OK ---> ax be a map in Coef with 
u I aL = c(f). Then there exists a map 9 : K ---> K(ox, 1) with giL = f and 
c(g) = u. 

Proof. Let X>l = K(ax, 1). We know that Kz is given by an attaching map 
OK = (aL' 8) ~ Bz V fh ---> L1 V K1 so that K2 = L2 ucfh. Since u is a-compatible 
and u I aL = c(f) there exists a map g2 : Kz ---> X 2 with g2 I L2 = f I L2 
and C(g2) = u. Now we can apply the obstruction theorem (V.4.4) and we get 
inductively a map 9 with the properties in (11.3). q.e.d. 

(11.4) Corollary. Given u : ay ---> ax in Coef there exists a map 

f : K(ay, 1) ---+ K(ax, 1) 

with c(f) = u and two such maps are i-homotopic. 

Proof. Use (11.3) and the cylinder IX;;>l in (IV.2.5). q.e.d. 

(11.5) Corollary. Let K(ax, 1) and K'(ax, 1) be both Eilenbery-Mac Lane com­
plexes for ax. Then there exists a i-homotopy equivalence f : K (ax, 1) ---> 

K'(ax, l) with c(f) = 1 which is unique up to i-homotopy. 

Hence Eilenberg-Mac Lane complexes are unique up to canonical isomorphism 
1 

in Complex/",:,. We now consider the existence of such resolutions. 

(1i. 6) Dejinition. We say that an additive category M has enough presentations 
if for each right M-module M there exists an object A in M together with a 
surjective map 

of right M-modules. We say that mod = mod(C) has enough presentations if 
for all ax E Coef the category mode ax) has enough presentations. One readily 
checks that this implies that mod has enough exact sequences, see (II.A.G). 

(11. 7) Proposition. Assume C is a homological cojibration category under T 
and suppose that mod has enough presentations. Then an Eilenberg-Mac Lane 
complex K (ax, 1) exists for each object Ox in Coef and choosing such complexes 
yields a functor 

1 
K( -,1) : Coef ---+ Complex/",:, 

Proof. It suffices to check the existence of K (ax, 1). The functorial property is 
a consequence of (11.4). We construct X;:::l = K(ax, l) inductively as follows. 
Let (X2,Xd be a principal cofibration with attaching map ax. Then we get the 
mod(ax)-module 'ifz(X2 ) and by (11.6) we can choose a surjection 

(1) 
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of mod(8x )-modules so that for all D 

'PD : Hom(D V 8x ,A3 V 8x h ----t 7r2(X2)(D) = 7rf(X2) (2) 

is surjective. For D = A3 let 

(3) 

We choose a principal cofibration (X3, X 2) with attaching map 83 . Then we have 
the commutative diagram 

II 
Hom( D V 8x , A3 V 8x ) 1 

Hence 8 is surjective and since the row is exact we get 7rP(X>l) = o. There­
fore 7r2(X>d = O. Inductively we get this way the Eilenberg-M~c Lane complex 
K(8x , 1). - q.e.d. 

(11. 8) Definition. Let C be a homological cofibration category under T and as­
sume mod(C) has enough presentations. Then the (C, T) -homology of an object 
8x in Coef is defined by 

H~(8x; N) = Hn(K(8x , 1); N) 

Hc (8x , M) = Hn(K(8x , 1); M) 

Here N is a left and M is a right mod(8x )-module. Moreover using (1.6.5) we 
obtain the right mod(8x )-module 

and the left mod(8x )-module 

(11.9) Lemma. There is a natural isomorphism of right mod(8x )-modules, n ~ 
2, 

This follows readily from Whitehead's exact r-sequence (V.5.4). We now com­
pare the (C, T)-homology with the twisted homology in (II.§ 8). For this we assume 
that (C, T) has the properties in (11.8) and that T has enough exact sequences. 

(11.10) Proposition. There is a 8x -equivariant map 

T: C*K(8x , 1) ---+ KQ(8x ) E chain/~ 
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which is natural in Ox E Coef. Hence we get natural transformations 

T . HC(!'l . N) ----+ Htwist(!'l . N) *. m ux, m UX, 

Here T* and T* are isomorphisms in degree::; 2 and T* is surjective and T* is 
injective in degree 3. 

This is an analogue of proposition (11.8.9). 

Proof. The property of Q( ox) in (II.8.4) yields a unique map 

T : r2K(ox, 1) ----+ Q(ox) E TWIST~/~ 

with c(T) = identity of Ox. Now let T be the chain map induced by T. The 3-
dimensional part of Q(ox) is realizable by aT-complex y3. Now (11.3) shows 
that one gets a map g : y3 --> K(ox, l) with c(g) = identity of ox. Then g 
induces the map 9 = r2 (g) such that 

is a ox-equivaraint map in TWIST~. By uniqueness in (II.8.4) this map is 1-
homotopic to the inclusion. This implies the result. q.e.d. 

Proposition (11.10) can be generalized by using resolutions in TWIST~, n ~ 2. 

(11.11) Proposition. Assume (C, T) has the properties in {11.B} and that T 
has enough exact sequences. Then one has for n ~ 2 the functor 

1 
Qn : Coef ----+ TWIST~/':::' 

which for n = 2 coincides with Q in (II.§ 8). Moreover there are natural maps in 
chain/':::' 

with ATn+l = Tn· 

Proof. Let n ~ 3. We define Qn(OX) = (A,on,Xn- 1 ) = X by choosing an 
n-system with the following properties termed a resolution in TWIST~. Let 
(Xn, X n- 1 ) be a principal cofibration with attaching map On so that the T-complex 
xn is defined. The properties in question are 

(1) 

Moreover for all cogroups D in T the sequence 

D (..,n-2A V X2) (dn +l,l). D (..,n-2A V X2) 
7Tn- 2 LJ n+l ) 7Tn- 2 LJ n (8n ,i). D ( ) 

------+ 7Tn - 2 X n - 1 

(2) 
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is exact. Here dn+l == dn+l is given by (A, ax). Finally for j ~ n + 1 the sequence 

(3) 

given by the chain complex (A, ax) is exact in mod(ax) ; see (II.7.1). The sequence 
(3) needs not to be exact in degree j < n + 1. One readily checks with arguments 
as in the proof of (11. 7) and (II.8.7) that such resolutions in TWIST~ exist and 
have the properties in (11.11). q.e.d. 

Using Qn(ax) we can define the n-th order twisted homology by the chain 
complex KnQn(ax). Then one obtains a similar result as in (11.10) with 2 replaced 
byn. 



Chapter VII: Finiteness Obstructions 

We prove in this chapter a generalization of Wall's finiteness obstruction theorem. 
This theorem was originally formulated for CW-complexes. We show that such a 
result actually holds for T-complexes in any homological cofibration category. The 
basic ingredient in the proof are the model lifting property of the twisted chain 
functor in (VI.§ 8) and the translation of Ranicki's "instant finiteness obstructions" 
to the language of twisted chain complexes in § 3. 

1 The Reduced Projective Class Group 

The finiteness obstructions which we shall consider are elements in the reduced 
projective class group Ko(R) of a small ringoid R. We need the following notation. 

Let R be a ringoid. Recall that a right R-module M is an additive functor 

M : ROP ---> Ab. 

Let Mod(R) be the category of right R-modules; morphisms are natural trans­
formations. We have the Yoneda inclusion 

Rc Mod(R) (1.1) 

which carries A E R to MorA with MorA(B) = R(B, A) for B E R. A module F 
is called free if it is a direct sum of such presented modules MorA. Moreover F is 
finitely generated and free if there exist objects AI, ... ,An in R with 

Let mod(R)~ be the full subcategory of Mod(R) consisting of finitely generated 
free objects. We call a module M finitely generated projective if there exists F E 

mod(R)~ together with an idempotent map p : F ---> F such that M = imagep, 
that is M is a direct summand of F. Here idempotent means that pp = p holds. 
Let proj(R) be the full subcategory of Mod(R) consisting of finitely generated 
projective R-modules. Then mod(R)ij and proj(R) are additive categories. 

For any small additive category A let Ko(A) be the isomorphism class group, 
i.e. the abelian group with one generator [A] for each isomorphism class of objects 
A E A with relations [A] + [B] = [A ffi B]. This is just the Grothendieck group 

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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of A as defined by Bass [AK]. A typical element of Ko(A) is a formal difference 
[A] - [B] with 

[A] - [B] = [A'] - [B'] 

if and only if there exists an isomorphism in A 

A E8 B' E8 C ~ A' E8 B E8 C 

for some object C in A. For the ringoid R we obtain the induced map 

Ko(mod(R)~) -+ Ko(proj(R)) (1.2) 

the cokernel of which is termed Ko(R) the reduced projective class group of R. 
Clearly an additive functor cp : R ~ S between ringoids induces Cp* : Ko(R) ~ 
Ko(S). Here Cp* carries an element in Ko(R) represented by p : F ~ F to cpp : 
cpF ~ cpF where cpF is readily seen to be an idempotent map in mod(S)~. We 
point out that proj(R) coincides with the "idempotent completion" of mod(R)" 
in the sense of Ranicki [FO]. 

Let Ringoids be the category of small ringoids and additive functors. Then 
the reduced projective class group yields the functor 

Ko : Ringoids ~ Ab (1.3) 

which carries R to Ko(R). Now let T be a theory of coact ions and let mod be a 
category of modules for T. For a set A of cogroups in T we obtain as in (1.5.11) 
the A -enveloping functor 

U A : Coef ~ Ringoids (1.4) 

which for A = {A} coincides with the enveloping functor UA. The functor UA 
carries ax E Coef to the full subcategory UA(OX) in mod(ox) consisting of all 
objects A V ax with A E A. Since mode ax) is an additive category we see that 
UA(OX) is a ringoid. For u: ax ~ {)y in Coef the induced morphism 

between ringoids carries AVox to AVoy and carries ~81 E mod(BVox, AVoxh 
with A, BE A to ((IA V u)O 8 1. Using (1.3) and (1.4) we obtain the composite 
functor 

KOUA: Coef ~ Ab (1.5) 

which will be used in the finiteness obstruction theorem. 
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2 The Finiteness Obstruction Theorem 

We now describe the finiteness obstruction theorem for complexes in a cofibration 
category which yields as a specialization the classical result of Wall [Fe] for reduced 
CW-complexes. 

Let C be a homological cofibration category under the theory T of coactions 
and let A be a set of cogmups in T. 

(2.i) Definition. A cogroup A in T is A-finite if there exist objects AI, ... ,An E 

A with n < CXJ such that A = Al V· .. V An. Moreover an object X E T which has 
a coaction f-1 : X -+ X V X' is A-finite if the cogroup X' associated to X by the 
coaction f-1 is A-finite. 

{2.2} Definition. AT-complex 

as in (IV.2.2) is A-finite if X;:>I is finite dimensional and if all Ai, > 1, are 
A-finite. 

(2.3) Definition. Let Y;:>I be a T-complex. A domination (X;:> I , j,g, H) of Y;:>I is 
aT-complex X;:>I together with maps 

in Complex and a I-homotopy H : gf ~ 1. The domination has dimension :s: n 
if dim(X>d :s: n and the domination is A -finite if X>I is A-finite. 

- -

In the next result we use the functor Ko UA in (1.5). 

(2.4) Theorem. Let Y>I be a T-complex in C which admits an A-finite domi­
nation. Then a finiteness obstruction 

is defined where ay is the attaching map of (Y2 , Yd. Moreover [Y>I] = 0 if and only 
if there exists an A-finite complex X;:>I and a i-homotopy equivalence X;:>I -+ Y;:>I 
. I 
zn Complex/c::::'. 

Addendum. The finiteness obstruction depends only on the homotopy type of 
I 

Y;:>I. More precisely let Y;:>I -+ Z;:>I be a i-homotopy equivalence in Complex/c::::' 
which induces the isomorphism u : ay -+ az in Coef. Then [Z> 1] is defined and 
the equation [Z>l] = U*[Y>l] holds. - -

We call (2.4) the "weak form" of the finiteness obstruction theorem. This is 
a consequence of the following "delicate form" which allows weaker assumptions 
and takes care of dimensions. 
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(2.5) Theorem on finiteness obstructions. Let C be a homological cofibra­
tion category under T. Let Y:::: 1 be a T-complex which admits an A-finite domi­
nation of dimension S n or more generally assume that Y:::: 1 is aT-complex for 
which the twisted chain complex r2(Y:::: 1 ) admits an A-finite twisted domination of 
dimension S n; see § 3 below. Then a finiteness obstruction 

is defined where 8y is the attaching map of (Y2, Yd. Moreover [Y>1] = 0 if and 
only if there exists an A-finite T complex X>l of dimension S max(3, n) and a 

1-homotopy equivalence X::::1 --+ Y::::1 in Complex/~. 

We prove this result in § 4 below. 

Remark. Wall's original result in [FC], [FCII] on finiteness obstructions for CW­
complexes is a special case of (2.5). For this let C be the cofibration category Top* 
of pointed spaces and let T be the theory of cogroups in Ho(C) consisting of one 
point unions of circles 8 1 . Moreover let A = {81 } be the set which contains only 
the cogroup 8 1. In this case ax is given by the fundamental group 7r1 (X) and the 
finiteness obstruction is an element in KO(Z[7r1X]) where Z[7r1X] is the group ring. 

The range of applications of theorem (2.5) is remarkable since only the as­
sumptions (V.1.1) on a homological cofibration category make this result available. 
Therefore we get the theorem in many topological and algebraic contexts. We dis­
cuss some of these contexts in the applications of the introductory chapters A, 
... ,D. 

3 Finiteness Obstructions for Twisted Chain Complexes 

All results in this section are available if a theory T of coact ions is given. We here 
deal only with chain complexes and twisted chain complexes as defined in chapter 
I, II. 

Let A be a set of cogroups in T. Then A-finite objects in T are defined as in 
(2.1). 

{3.1} Definition. A chain complex (A, ax) in chain or a twisted chain complex 
Alax in TWIST~ is of dimension S n if Ai = * for i > n. Moreover (A, ax), resp. 
Alax, is A -finite if Ai is A-finite for all i 2: 1 and if there exists n with Ai = * 
for i > n. Hence A-finite implies finite dimensional. 

{3.2} Definition. Let Blay be a twisted chain complex. A twisted domination 
(DI8x ,1, g, a) of Blay is a twisted chain complex DI8x together with twisted 
chain maps 

f - 9 B 18y ------; D I ax ------; B I ay 



3 Finiteness Obstructions for Twisted Chain Complexes 305 

in TWIST~ and a twisted homotopy a : 91 ~ 1; see (lI.4.I). The domination is 
A -finite if DI8x is A-finite. Moreover the domination has dimension::; n if DI8x 
is of dimension ::; n. 

(3.3) Theorem. Let BI8y be a twisted chain complex which admits an A-finite 
twisted domination. Then a finiteness obstruction 

[B,8y] E KO(UA(8y)) 

is defined. Moreover [B, 8y] = 0 if and only if there exists an A-finite twisted chain 
complex CI8x and a twisted homotopy equivalence BI8y ~ CI8x in TWIST~/~. 

Addendum. The finiteness obstruction depends only on the homotopy type of 
BI8y in TWIST~/~. More precisely let BI8y ~ EI8v be a twisted homotopy 
equivalence which is u-equivariant with u : 8y ~ Ov E Coef. Then [E,ov] is 
defined and the equation [E, ov] = u* [B, 8y] holds where u* is given by the functor 
(1.5). 

The proposition is a consequence of the following "delicate form" which also 
takes care of dimensions. 

(3.4) Theorem. Let BI8y be a twisted chain complex which admits an A-finite 
twisted domination of dimension::; n. Then a finiteness obstruction 

[B,8y] E K O(UA(8y)) 

is defined. Moreover [B,8y] = 0 if and only if there exists an A-finite twisted 
chain complex Clox of dimension::; max(3, n) and a twisted homotopy equivalence 
BIDy ~ Clox in TWIST~/~. 

According to (1I.1.7) and (lI.4.I) we fix the notation for the twisted domination 

{
I = (/>1, E!", f) 
9 = (g>1, Eg", g) 

a = (a~1' a) : 9f ~ 1 

Here the composite 

Y~X~Y 

satisfies ly = gf + (8y, I)a and for the composite 

X~Y~X 

(3.5) 

(1) 

(2) 

there exists a unique rp : X' -+ X with fg + rp = Ix; see the affine property in 
(1.1.11). Using 8x in (3.5) and rp we define 

Ox = (rp,8x ) : X'V X" --+ X 

where X" = D2 and X' = D1 . 

(3) 
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(3.6) Lemma. The objects {)y and ax above are isomorphic in Coef. The iso­
morphism {)y ~ ax is given by the a-compatible map f, the inverse of this iso­
morphism is given by the a-compatible map g. 

Proof. We have to show that f and 9 are a-compatible. For this we use the fact 
that by (3.5) we have maps in Twist 

(f", f) : {)y ----> ax 
( " ) -9 ,g : ax ----> {)y 

Therefore we get the following maps in Twist 

Y" ~ X" V X c (X'v X") V X 

1 (ax,i) 

X 

X'V X" 
(g',g") 

------+ 

(<p,ax)=ox 1 
X 

g 
------+ 

1 (ox,i) 

X 

Y" vY 

1 (oy,i) 

Y 

(1) 

(2) 

Here we define g' by g' = -(-a, ly) \l g. We show that (2) commutes. For this 
we have 

g=g(fg+zp) 

= gfg + gzp 

= (ly - ({)y, l)a)g + gzp 

= 9 + ( - ({)y, 1 )a, 1 y) \l 9 + gzp. 

This implies by the affineness property 

gzp = -( -({)y, l)a, ly) \l 9 

= ({)y, 1)*(-(-a, ly) \l g) = ({)y, 1)*g'. 

Hence (2) commutes. On the other hand the equations 

fg = Ix - (ax, 1),8 with,8 = ix' 

gf = ly - ({)y, l)a 

show that in Coef we have {J}{g} = 1 and {g }{J} = 1. 

(3.7) Lemma. For Vi = X' and V 2 = X" let 

d2 : Vi V V 2 V ax ~ Vi V ax 

q.e.d. 
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be the ax -equivariant map in mod which is the differential associated to ax; that 
is d = E(\lox 8 1). Then we have 

d21Dl V ax = 1 - hgl 

d21D2 V ax = E(\lax 81) 

Here h, gl are given by {3. 5} and E (\l ax 8 1) is the differential in the chain 
complex (D, ax). 

Proof. Since fg + 'P = Ix we have by (1.3.4) 

ix' = \llx = \l(Jg + 'P) = -ix'P + V(Jg) + ix'P + \l'P. (1) 

Since 'P = (ax, 1){3,{3 = ix', we see by (1.5.4) (1) that (1) implies 

-E(V(Jg) 81) + 1 = E(v'P 8 1) (2) 

where the left hand side coincides with 1 - hgl. Hence (2) implies the equation 
for dlDl V ax in (3.7). q.e.d. 

{3.8} Definition. We define the infinite dimensional twisted chain complex Clox 
associated to the domination (3.5) as follows. Let ax be given as in (3.5) (3). 
Moreover let 

Ci = Dl V D2 V ... V Di 

be the sum of the objects Dl , ... , Di given by Dlax in (3.5). The differential 

di : Ci V ax ---t Ci - l Vax 

in the chain complex (C, ax) = K( Clox) is given by the coordinates 

·k 
di : D j V ax ---t Dk Vax 

with i ~ j ~ i and 1 ~ k ~ i - 1. These coordinates are the unique ox-equivariant 
maps for which the following diagram commutes. 

Dj vax 
d{k 

DkVOx --c> 

lVi! ! lVi 
Dj Vax 'W Dk vax --c> 

Here ax C ax is the inclusion; see (3.5) (3). Moreover using the notation in (3.5) 
we set: 

o ifj::::k+2 

(-I)i+k+ldk+l ifj=k+l 

1 - Iigj if j = k, j == i + 1 (mod 2) 

fjgj if j = k, j == i (mod 2) 

(-I)i+kfkcxk-jgj ifj~k-l 
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Here dk is the differential of (D, ax) and a k- j is the composite 

B j V ay ~ B j +1 V ay ~ ... ~ Bk Vay 

given by a>l in (3.5). The definition of Clax is essentially due to Ranicki [FO]; 
compare R;nicki-Yamasaki [CK]. The refinement here is the fact that Ranicki's 
construction for chain complexes actually can be achieved in the category of twisted 
chain complexes as is shown in the next lemma. If dim(Dlax) :::; n then Di = * 
for i > n and hence Cn = Cn +1 = .... Moreover we define in this case the 
ax-equivariant map 

p: Cn Vax ---> en vax E mod(ax) 

by p = dn +1 for n + 1 == 0 (mod 2) and p = 1 - dn +1 for n + 1 == 1 (mod 2). One 
can check that the map p is idempotent, that is pp = p; see Ranicki [FO]. 

(3.9) Lemma. The twisted chain complex Clax associated to a domination in 
(3.8) is well defined. 

Proof. We first observe that d2 in (C, ax) coincides with d2 in (3.7) so that (3.7) 
shows that d2 = E(Vax81). See (II.1.7) (1). Hence it remains to check the co cycle 
condition in (11.1.8). We have to find 

{ 
C2 = D1 V D2 = Xl V X" 

C3 = D1 V D2 V D3 

with (ax, 1)03 = 0 in T(C3,X) and d3 = E(a3 (1). Here 

(1) 

(2) 

is given by the coordinates d~k with 1 :::; j :::; 3 and 1 :::; k :::; 2 satisfying (see (3.8)) 

We define th by coordinates 

~1 = fIg1 

~2 = -h a 1g1 

~1 = -(12 

~2 = 1- hY2 

d3 1 = 0 
:732 -
d3 = d3 

which are trivial on X and which satisfy a31 D j = a§l + a§2 and 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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Here we set 

8F = ((-1 V 1)(v1)(-1),ix f) V 9 

8j2 = -(f",ixf)(o:,iy) V 9 
21 -83 =(-1V1)V8x 

8~2 = -ix" + (f", ix f)g" 

8~1 = 0 
32 -83 = 83 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Here 83 is given by the cocycle condition for the twisted chain complex D18x . One 
now readily checks that (10) holds and this implies d3 = E(83 8 1). It remains to 
check that (8x , 1 )83 = 0 with 8x = ('P, 8x ). This, in fact, is a consequence of the 
following equations: 

('P, 1)8j1 = -(8x , 1)8j2 

('P, 1)8~1 = -(8x , 1)8~2 

('P, 1)8~1 = 0 = -(8x , 1)8~2 

(17) 

(18) 

(19) 

Here (19) holds by the cocycle condition for D18x. Moreover we prove (17) and 
(18) as follows. 

Since 19 + 'P = 1 and g1 + (8y, 1)0: = 1 we have 

1 = (fg + 'P)1 = 19f + ('P, fg) V f by (1.3.3) 

= 1(1 - (8y, 1)0:) + ('P, fg) V f 

= f - f(8y, 1)0: + ('P, fg) V f. 

Hence the affineness property yields 

f(8y, 1) = ('P, fg) V f 

=('P,1-'P)vf 

= -( -'P, 1) V 1 by (1.3.3) (2) 

= ('P, 1)( -1 V 1)(V f)( -1). 

Hence we get (17) by 

Next we obtain 

('P, 1)8j1 = (<p, 1)((-1 V 1)(Vf)(-1),ixf) V 9 

= (f(8y, 1)0:, f) V 9 

= f(8y, 1)(0:,iy) V 9 

= (8x ,1)(f",ixf)(0:,iY)Vg 

= -(8x, 1)8j2. 

(20) 
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('{J,jg) \l ax = ('{J,1 - '(J) \l ax 

= -( -'(J, 1) \l ax by (1.3.3) (2). 

On the other hand 

('{J, fg) vax = - fgax + (fg + cp)ax by (1.3.3) 

= - fgax + ax 

= -(ax, 1)(f", ix 1)g" + ax 

= -(ax, l)(-ixlI + (f",i x 1)g"). 

This implies (18) since we get 

('{J, 1)8~1 = (cp, 1)( -1 V 1) \l ax 

= -(cp, fg) \l ax by (21) 
- 22 

= -(8x , 1)83 by (22). 

(21) 

(22) 

Hence the proof of (3.9) is complete. q.e.d. 

(3.10) Theorem. Let (Dlax ,1, g, a.) be a twisted domination of BIBy and let 
CI8x be associated to this domination as in (3.8). Then there is a twisted homotopy 
equivalence 

in TWIST~/~. 

Proof. We define the map h = (h~l' Eh", 1) by f : Y ----7 X and the composite 
(n ~ 1) 

In -
hn : Bn V By -----+ Dn V 8x C Cn V 8x 

where we use the canonical inclusions Dn C Cn and i : ax C 8x ; see (3.8). 
Moreover h" is the composite 

I II 

h" : y" -----+ X" V X C C2 V X 

Using (3.6) (1) we see that h is a well defined map in TWIST~. Using theorem 
(II.5.1) we see that h is a twisted homotopy equivalence if and only if the induced 
chain map K h is a homotopy equivalence in TWIST~. We describe a homotopy 
inverse (k~ 1, {g}) of K h = (h~ 1, {f}) by the {g }-equivariant maps 

kn : Cn V 8x = Dl V ... V Dn V 8x -----+ Bn V 8y 

which are determined by the coordinates k~. 



3 Finiteness Obstructions for Twisted Chain Complexes 311 

The commutativity of this diagram determines k~ for i = 1, .. , , n. The homotopy 

is given by a in (3.5). Moreover the homotopy 

with 13 = (lh1, 1) is given by the inclusion 

(3n : en Vax c en+! V ax· 

One can check that these maps and homotopies are well defined in TWIST~. 
Compare Ranicki [FO]. q.e.d. 

(3.11) Definition. Let Bloy be a twisted chain complex which admits a domina­
tion as in (3.5) where DI8x is A-finite and dim(DI8x ) = n. Then qox is defined 
as in (3.8) such that 

is an idempotent map where en is A-finite. Hence p defines by the Yoneda em­
bedding an idempotent map p in mod(UA(OX))~ representing the element 

which is termed the instant finiteness obstruction. Using the isomorphism v = 
{g} : ax ~ By E Coef in (3.6) let 

[B,By] = v.[e,ox] 

where v. is induced by the functor (1.5). Ranicki [FO] shows that [e, ax] is well 
defined by the homotopy type of (e, ax) in chain( ax). 

Proof of (3.4). Assume first that there is an A-finite twisted chain complex Alox 
which is homotopy equivalent to BIBy in TWIST~. Then [B, By] = v.[A, ax] 
for v : ax ~ By with [A, ax] = 0 since [A, ax] is A-finite, On the other hand 
assume [B, By] = 0, that is [e, ax] = 0 for the element in (3.11). The image 
im(dn+d c en V ax where dn+! is considered as a morphism in Mod(UA(OX)) is 
a direct summand. Let im(dn +1 ).L be a complement of this summand. Then there 
exists F E mod(UA(OX))~ such that 

(1) 

where F' is finitely generated and free; see (3.8). Hence we obtain homotopy equiv­
alences of chain complexes in Mod(UA(ox)) as follows where we omit the Yoneda 
embedding from the notation. 
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(C,ax ) : Cn- 2 vax Cn- 1 VaX Cn vax 
dn+1 

... f-- f-- f-- ~ 

il II II lin 
C: ... f-- Cn- 2 vaX f-- Cn- 1 VaX f-- im(dn+1)J.. 

jl II ljn-l ljn 

(G,ax ): Cn- 2 vax 
en-l 

Cn- 1 V A V ax 
en 

A' vax ... f-- ~ ~ 

Here F is given by Ao, ... , An as in (1.1) with A = Ao v··· V An- Similarly F' is 
given by A~, ... , A~ with A' = A~ v· .. V A~. The middle and the bottom row are 
chain complexes of dimensions::; n. The map in is the inclusion. Moreover jn-l 
is the obvious inclusion and the inclusion jn is obtained by the isomorphism (1). 
The map en-l restricted to A is trivial and the map en is obtained by the direct 
sum of F and the composite 

using (1). There is the canonical retraction r of j such that we obtain the homotopy 
equivalence 

- r == i 
ir: (C,ax ) ----> C ----> (C,ax ) 

which is the identity in degree ::; n - 2. If n ~ 3 then this map corresponds to a 
twisted chain map 

which is again the identity in degree::; n - 2. One readily checks that ~r is actually 
a map in TWIST~. Now ~r is a twisted homotopy equivalence by (II.5.1). Since 
Glax is A-finite the proof is complete by use of (3.10). q.e.d. 

4 Proof of the Finiteness Obstruction Theorem 

We are now eady to prove theorem (2.5). As basic facts we need the finiteness 
obstruction theorem for twisted chain complexes in (3.4) and the model lifting 
property of the twisted chain functor in (VI.8.4). 

Let Y>l be given as in (2.5). Using (VI. 1. 7) it is clear that the twisted chain 
functor r~ carries a domination of Y>l to a twisted domination of r2(Y>d. Now 

- -
we can apply theorem (3.4) which shows that 

satisfies [C*Y>l] = a if and only if there exists a model 
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1 -
in TWIST~/c:,' where C I ax is A-finite of dimension::; max(3, n). Hence by the 
model lifting property (VI.8A) we obtain a model 

in Complexi'~ with r2(X2:1) = C I ax· Hence X2:1 is of dimension::; max(3,n) 
and A-finite. q.e.d. 



Chapter VIII: Non-Reduced Complexes 
and Whitehead Torsion 

In dealing with the general concept of Whitehead torsion in cofibration cate­
gories we have to introduce "non-reduced complexes" in cofibration categories 
which generalize CW-complexes with arbitrary O-skeleton. We compare such non­
reduced complexes termed V-complexes with the T-complexes studied in the chap­
ters above. In fact "normalized" V-complexes are special T-complexes. Using V­
complexes we define the Whitehead group Wh(L) and we show that this group 
coincides with the algebraic Whitehead group Wh(ih). Hence the material in this 
chapter covers most of the results of J.H.C. Whitehead on simple homotopy types. 

1 Classes of Discrete Objects 

The definition of a non-reduced complex in § 3 relies on the choice of a class V of 
discrete objects in a cofibration category C. These discrete objects will serve as 
the O-skeleta. 

(1.1) Definition. A class (resp. set) of discrete objects V is a class (resp. set) of 
objects in C c which is closed under the formation of sums; that is, if X, Y E V 
then also X V Y E V. In particular the empty sum * is an element in V. 

For example if C = Top we can choose for V the class of all discrete spaces in 
Top. Moreover if C = Top· we can choose for V the class of all discrete spaces 
with base point. In Top the initial object is the empty set and sums in Top are 
given by the disjoint union. While in Top* the point * is the initial object and the 
sum in Top* is the one-point union. The next definition generalizes the definition 
in (1.2.8). 

(1.2) Definition. Let D be an object in C c and let V be a class of discrete objects 
in C. Then we define the subcategory 

This is the full subcategory consisting of the objects Ca ,{3 obtained by push out 
diagrams in C 

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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r (io,i 1 ) r 
EVE~ D 

Here E E V and a, j3 are maps in C. The cofibration (io, i 1 ) is part of the structure 
of the cylinder IE of E in C. If a = j3 then we call Co.,o. a suspension. This yields 
the full subcategory 

susp(D, V) c cone(D, V) 

consisting of suspensions. 
Recall that we have defined the category of D-cones termed cone(D) m 

(IIL6.4) and that cone(D) is a theory of coactions. 

(1.3) Proposition. One has a full inclusion of theories 

cone(D, V) c cone(D) 

so that cone(D, V) is a theory of coactions. The suspensions in susp(D, V) are 
the cogroups in cone(D, V). Moreover cone(D, V) is augmented by the D-torus 
E = E*D if D E V. 

Proof. An object Cf E cone(D) is given by a based object 

(1) 

and a map f : A -t D in CD. Then C f is given by the push out diagrams 

AUDA~ A ~ D 

Here IDA is the cylinder of (A, D) in CD which is obtained by the push out 

IA --+ IDA 

r r 
ID~ D 

in C. Here (lA, ID) is the cylinder of the pair (A, D); see (IIL1.9) and (III.4.1). 
Given E, a, j3 as in (1.2) we define A = D V E so that 

A = (D >-+ D V E ~ D) (2) 

is a based object as in (1). Moreover we define 
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f:A=DVE ~ D (3) 

by the map a. Then one readily checks that one can identify 

(4) 

For this we only have to use the fact that the cylinder of a sum D V E can be 
chosen to be I(D V E) = ID V IE. This implies ID(D V E) = D V IE. Clearly if 
a = {3 then f = (1, a) coincides with the trivial map 0 = (1, {3) so that in this case 
Ga,a = L'A is the suspension of the based object (2). If a = 1 is the identity of 
D E D we obtain the suspension Gl,l obtained by the pushout 

I I 

This is the D-torus Gu = 171 in (III.6.5) (2) and in the next section. q.e.d. 

2 Cells in a Cofibration Category 

CW-complexes in Top are obtained by attaching cells. In a cofibration category 
the corresponding notion of cell is given by the notion of n-dimensional D-torus 
and (n + 1 )-dimensional D-disk defined as follows. 

Let C be a cofibration category with initial object * and let D be a cofibrant 
object in C. As in (II.6.5) we have the based object 

L'fjy=(D ~ DVD ~ D) (2.1) 

in CD. Hence the n-fold suspension of L'fjy in CD is defined. We call 

(1) 

the n-dimensional D-torus. This is again a based object in CD so that we have 

i n 

D >---> L'D ~ D with pi = 1D (2) 

where the trivial map pn = 0 is termed the projection. For a cofibrant pair (X, A) 
we obtain the relative D-torus L'A(X) by the push out diagram (see (III.6.5)) 

1 

lAX ~ L'A(X) ~ X 

l(io,i,) Ii (3) 

X X (1,1) 
Uy ------+ X 
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Here the projection pl is given by the projection pln: = p of the relative cylinder 
lAX and by pli = Ix. Now we have 

Eb = E*D 

and inductively we obtain the n-fold D-torus by the following push out diagram 
(n 2 1) 

ED(ED) 
". E n+l 

pn+l 
D -------4 D -------4 

I Ii (4) 

En 
pn 

D D -------4 

Here pn+l is defined by pn+1n: = pnpl and pn+li = I D . Compare also (11.6.3) and 
(II.§ 10) in Baues [AH]. We define the (n + 1) dimensional D-ball or D-disk by 

(5) 

where the right hand side is the cone in CD of the based object (2). Equivalently 
we get the D-ball by the push out 

IDED 
". Lln +l q 

D -------4 D -------4 

I (io,iil Ii (6) 

En U En (l,ipn) 
D D D------+ En D 

Here q is given by qn: = pnn: and qi = pn; this is the trivial map of the cone in (5) 
so that q is a weak equivalence in C and 

(7) 

is a factorization of the projection pn in the sense of the factorization axiom. We 
can obtain the (n + I)-dimensional D-torus E£>+1 by the push out diagram 

Lln +l ". E n+l 
D -------4 D 

Ii Ii (8) 

En 
pn 

D D -------4 

This also makes sense for n = 0; in this case we use pl = (1,1) on E~ in (2.1) 
and Ll!D = I D is the cylinder on D. Hence for n = 0 diagram (8) coincides with 
diagram (3). The pair 

(9) 

plays the role of an (n + I)-dimensional closed cell in the cofibration category C. 
Compare example (2.3) below. We also call ED = 8Ll'lY+1 the boundary of .1;+1. 
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(2.2) Remark. If C is an I-category then the cylinder I(D) is a functor in D 
and accordingly also all constructions in (2.1) (1) ... (8) are natural in D E C e . 

Moreover the functors 

carry push out diagrams to push out diagrams as follows from the push out axiom 
(111.7.1) (12). These functors carry * to * and hence sums to sums, that is E DvE = 

ED V EE and ,1nvE =,1n V ,1'E. 

(2.3) Example. We first consider the case C = Top. Let sn be the n-sphere which 
is the boundary of the (n + I)-ball Dn+1 in Top. Then we have for D in Top and 
n ~ 0 the isomorphism of pairs 

(1) 

Here sn x D and Dn+l x D are the corresponding product spaces. The inclusion 
D >---> sn x D is given by the base point * E sn and the projection pn : sn x D --> D 
is the projection of the product. For the isomorphism (1) we use the fact that the 
initial object of Top is the empty set. 

For C = Top* the initial object is the point *. In this case we get for the 
cofibrant space D in Top* the isomorphism of pairs 

(2) 

Here the left hand side uses the smash product of pointed spaces defined by the 
quotient space A 1\ B = A x B / A x {*} u { *} x B. 

3 Non-Reduced Complexes 

Let C be a cofibration category with initial object * and let V be a class of discrete 
objects in C. For D E V we obtain as in § 2 the n-dimensional D-ball (,1n, E~-l) 
which we also call a V-disk of dimension n with n ~ 1. We say that X is obtained 
from Y by attaching a V-cell en and we write 

if a push out diagram 

X = Y U en = Y U f en 

,1n ~X 
D 

r r 

(3.1) 

(2) 

is given in C. We call f the attaching map of the V-cell en and we call 7r the 
characteristic map of this cell. We call a pair map 
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(2) 

a cell map if the induced map 

which extends the identity on Z is an isomorphism in C. Here Z Uhf eD is also 
the push out of 

Y n i Y h Z Uf eD +-- ---+ . 

(3.2) Definition. We say that an object 

X>o = (Xo C Xl C X 2 C ... ) E Filo(C)c (1) 

is a V-complex if Xo E V and if Xn is obtained from X n- l by attaching an n­
dimensional 'V-cell, n ::::: 1. Such 'V-complexes are termed non-reduced complexes 
in C; they are reduced if Xo = * E V is the initial object. If the direct limit 

X = lim(X;~o) (2) 

exists in C then we also call the object X in C a V-complex with skeletal filtration 
X;:::o. Clearly the direct limit X exists if X;:::o is finite dimensional. A map 1 : X ----; 
Y in C between V-complexes is cellular if 1 = lim 1;:::0 where 1;:::0 : X;:::o ----; Y;:::o is a 
map in Filo(Ck Such a cellular map 1 is a V-isomorphism if 10 is an isomorphism 
in C and if 

(3) 

is a cell map or equivalently if 1;:::0 is an isomorphism in Fil(Ck 

Remark. If X;:::o is a V-complex and if 1;:::0 : X;:::o ----; Y;:::o is an isomorphism in 
Fil(C)c with Yo E V then also Y>o is a V-complex. In fact, consider the diagram, 
n::::: 1, 

,dn 11" 
Xn 

fn 
Yn D ----+ ----+ 

r r r (4) 

I;n-l an 
X n - l 

fn-l 
Yn - 1 D ----+ ----+ 

Here the left hand square is a push out and since In and In-l are isomorphisms 
also the right hand square is a push out. Hence the outer square is a push out. A 
V-complex X;:::o has the structure 

(3.3) 

where Do, D I , D2 , ... is a sequence of objects in V with Xo = Do and where 
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is obtained by attaching the cell eDn via an attaching map an, n ~ 1. We say that 
X 2:0 is normalized if one has a commutative diagram in C with n 2: 1 

E n- 1 an 
X n- 1 Dn -----+ 

Ii io I (3.4) 

Dn 
On 

Xo -----+ 

A normalization of the V-complex X2:0 is a family H of tracks, n 2: 1, 

where On is a map as in (3.4). Here we choose Hn to be the trivial track if 
diagram (3.4) commutes. Recall that a track H : f ~ 9 with f, 9 : X ---+ Y E C is 
a homotopy class reI X V X of homotopies H : I X ---+ Y, H io = f and H i 1 = g. In 
(5.5) we need the existence of such normalization. If L2:o C X2:0 is a sub complex 
such that L2:o is normalized then a normalization of X 2:0 reI L2:o is given by tracks 
as above defined for cells in X - L. 

(3.5) Definition. Let V be a class of discrete objects in the cofibration category 
C. Then we define the class V(2) of discrete objects in Pair(C) as follows. Objects 
in V(2) are the pairs (Y V Y, Y) where Y >--> Y V Y is the inclusion of the first 
summand with Y, Y E V. We say that a V-complex L2:o is a subcomplex of the 
V-complex K2:o if (K2:o, L2:o) is a V(2)-complex in Pair(C). Similarly we say 
that a map i : L ---+ K in C is the inclusion of a sub complex and we write L < K 
if i = lim i2:o where i2:o : L2:o ---+ K2:o isgiven by a sub complex L2:o in the 
V-complex K2:o. 

We write dim(K - L) :::; n if K m, m 2: n, is the push out of Lm <- Ln ---+ Kn. 
Now consider the following push out diagram in C 

K -----+ X UL K 

(3.6) Lemma. Let K and X be V-complexes and let L be a subcomplex of K and 
let i : L ---+ K be the inclusion. Moreover let f be a cellular map. Then the push 
out X UL K is again a V-complex. 

The lemma is readily proved by going back to the definitions. For Xo E V we 
have by (1.2) and (1.3) the theory of coact ions 

T = cone(Xo, V) c Ho(CxO)c 

so that also T -complexes are defined in Fih (Cxo)c. 
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(3.7) Proposition. Let X>o be a D-complex. Then X>o defines the object X>l 
in Fill(eXok If X>o is no-rmalized then X>l is a con~(Xo, D)-complex. -

- -

Proof. We define the structure 

(1) 

of the cone(Xo, D)-complex X>l as follows. Clearly Xl is obtained by attaching 
eb, to Xo so that for -

(2) 

we have Xl = Cc; 0 E cone(Xo, D); compare (1.2). Moreover we define the based 
Ul, 1 

object (n ;::: 1) 

A~ = (Xo >---> Xo V Dn ~ Xo) 

in eXo by (3.4). Then the suspension 

is defined in e Xo . We have 

as follows from (3) and (2.1) (1). Now let 

(3) 

(4) 

(5) 

(6) 

be the map which is the inclusion on Xo and which is On+l on 173,,+,. We also 
have 

(7) 

where the left hand side is the cone in eXo . Hence comparing the definition of a 
D-complex and a T-complex with T = cone(XO, D) shows that X>l in (1) is a 
well defined T-complex. q.e.d. 

{3.8} Remark. We can study normalized D-complexes along similar lines as T­
complexes. In particular we can apply all the results on T-complexes in the chap­
ters above since each normalized D-complex X>o yields by (3.6) aT-complex 
in e Xo . For example if eXo is a homological c~fibration category under T = 

cone(Xo, D) then the augmented chain complex 

is defined which leads to the notion of homology and cohomology for X:::o:o. 
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(3.9) Example. Let C = Top and let V be the class of discrete spaces in Top. 
Then (2.3) (1) shows that a V-complex is the same as a CW-complex in Top. In 
fact we obtain for a CW -complex X the corresponding V-complex X:;::o as follows. 
Here Xn = xn is the n-skeleton of X and Dn is the set of n-cells in X with the 
discrete topology. Moreover the attaching map 

of the V-complex is obtained by an+! I sn x {e} = O!e for e E Dn where O!e is 
the attaching map of the cell e in the CW-complex X. It is clear that each CW­
complex X is O-homotopy equivalent to a normalized CW-complex. Here we say 
that X is normalized if each attaching map O!e : sn -t xn of an (n + 1 )-cell e 
in X with n :2: 0 carries the basepoint * of sn to a point in the O-skeleton XO. A 
V-isomorphism between CW-complexes is the same as a CW-isomorphism (i.e. a 
cellular homeomorphism for which the image of every cell is a cell). 

4 The Ball Pair Axiom 

Let C = (C, coj, I, *) be an I-category as defined in (III.7.I) with initial object *. 
Then we have for each object X in C the cylinder 

XVXi~l IX~X (4.1) 

in C which is natural in X and pio = 1, pil = 1. This cylinder defines homotopies 
and homotopy equivalences in C. We know by (III.7.4) that C is a cofibration 
category is which the weak equivalences are the homotopy equivalences. Moreover 
all objects in Care fibrant and cofibrant. We shall use the push out diagram in C 

X ~ IX 

(4.2) 

IX 
jo 
~ IXUxIX 

Moreover we have by (2.1) (9) the (n+ I)-dimensional closed cell (..:1'.;tl, Ex) in C 
which for n :2: 0 is a functor in X by (2.2). Here Ex = a..:1~+! = a is the boundary 
of the cell. For n = 0 the pair 

(..:11-, E~J = (IX, X V X) 

is given by (4.1). We also need the following push out diagram in C, n :2: 1 and 
c E {O, I}, 

E n- 1 i£ IEn- 1 
x ~ x 

1i 1, (4.3) 

..:1n '£ ..:1n U IEn- 1 
j£ 

I..:1'X x ~ x 8£ X ~ 
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Here je: is defined by j/i = I(i) and Yic: = iE • All maps in (4.2) and (4.3) are 
cofibrations in C; compare the relative cylinder axiom 14 in (IIL7.1). Moreover we 
choose two copies P'X, Q'X of the ball .1'X; that is P'X = Qx = .1'X with boundary 
fJ = 171-- 1 and we form the push out in C: 

For n = 0 let E~l = * be the initial object and let pC); 
p1 Ua Q~ = X V x. 

( 4.4) 

X so that 

(4.5) Definition. We say that the I-category C satisfies the ball-pair axiom if the 
following properties hold. For all X in C there are isomorphisms in C 

{ 

n: IX ~ IX 

m:IX~IXUxIX 

T: IIX ~ IIX 

satisfying the following equations, c E {O, 1}, 

nio = ii, nil = in, pn = p, 

mic: = jEiE, (p,p)m = p. (j1n,jon)m = mn, 

TiE = I(i,J, TIiE = iE. 

(1) 

Moreover n, m and T are natural in X E C. We show in (4.7) below that nand 
m induce an isomorphism K, as in the following push out diagram which defines 
On+l 

X . 

.171,-1 
X 

I 
En x 

i< On+l -----+ X 

I (2) 
K 

P'X Ua Q'X -----+ 

For n = 0 the isomorphism K, is the identity of X V X. We now require that in 
addition to the isomorphisms in (1) there exist isomorphisms a and (3 as in the 
following commutative diagram in C. 

E n- 1 1:il .1n IEn- 1 jo 
I.1x 

i 1 .1" x -----+ x Uao x -----+ f--- X 

11 ~Ia ~1i3 11 (3) 

E n - 1 
x ----> P" x -----+ on+l 

x f--- Q'X 
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The bottom row is given by (2) and the top row is defined by (4.3) above. We 
call (D~+1, Qx) a ball pair in C and we call Px the complement of Qx in the 
boundary. 

The map n in (1) above reverses the direction of the cylinder and Hn = -H 
defines the negative of the homotopy H. Moreover m in (2) is a homotopy addition 
map which yields the addition of homotopies HI : f c::: g, H2 : 9 c::: h by HI + H2 = 
(HI, H 2 )m. Finally T is an interchange map as in the interchange axiom (III.7.I) 
(15). Maps n, m, T exist in each I-category C but in general they are not natural 
isomorphisms in C; for this compare 11.2.4, II.2.5 in Baues [AHl. 

(4.6) Example. It is well known that the I-category Top of topological spaces 
satisfies the ball pair axiom above. In fact in Top all isomorphisms n, m, T, K" ct, j3 
in (4.5) can be defined to be natural in X E Top by choosing such isomorphisms 
for X = point. 

(4.7) Lemma. The isomorphisms m, n induce a natural isomorphism K, : 171 ~ 
P~ Ua Q~ for k 2: 1. 

Proof. Let (Y, B) be a cofibrant pair in C and let IBY be the relative cylinder. 
Then (p, p)m = p and naturality of m yield the isomorphism 

Hence we get for the relative torus 17BY the isomorphism 

in: 17BY = IBY Ua Y ~ (fBY Uy IBY) Ua Y = IBY Ua IBY. 

Here 8 = 80 u8I = Y UB Y is the boundary of IBY. If we set (Y, B) = (*, *) then 
in yields the isomorphism K, for k = 1. Moreover we obtain for (Y, B) = (171, X) 
by (2.1) (4), (6) the following isomorphisms, k 2: 1. 

171+1 = 17B(Y) Uy X ~ (fBY Ua IBY) Ua, X 

= (fBY Ual X) Ux (fBY Uao X) 

~ (fBY Ual X) Ux (fBY Ual X), induced by n 

= p~+1 Ua Q~+I, see (2.1) (6). 

q.e.d. 

(4.8) Remark. Let V be a class of discrete objects in C and let X E V. Then we 
have for the ball pair (D~+1) Qx) a canonical structure as a V-complex D~+1 with 

O-skeleton = (n - 2)-skeleton = X 

(n - I)-skeleton = 17~-I = 8 

n-skeleton = Px Ua Qx 
(n + 1 )-skeleton = O~+1 

Moreover Px and Qx are subcomplexes of D~+I. 
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(4.9) Lemma. For k 2' 1 there is an isomorphism n : E~ ~ E~ such that the 
composite 

_ -1 . pk U Qk ~ "k ~ "k rv pk U Qk 
T - tf,ntf, . x a x = LJ X = LJ X = X a x 

interchanges the role of P and Q that is Tip = iQ and TiQ = ip; see (4.4). This 
implies that one has an isomorphism T' for which the following diagram commutes 

T 
, 

Ok+l ------> x 

r 
T P'X Ua Q'X ------> P'X Ua Q'X 

Proof. The lemma is a consequence of the assumption (jOn,jln)m = mn in (4.5) 
and the definition of", in (4.7). Clearly n on E~ is induced by n in (4.7) in the 
obvious way and by (2.1) (6) we see that n extends to an isomorphism Ll~+1 ~ 
Ll~+1 which yields T'. q.e.d. 

(4.10) Lemma. Assume the ball pair axiom holds in C and let X be a finite 
dimensional V-complex in C. Then the cylinder I X in C is again a finite dimen­
sional V-complex with X V X as a subcomplex. The skeletal filtration of I X is 
given by lx>o where I is defined in (IV.l.3) (3). 

Proof. This is a consequence of the push out axiom in (III.7.1) (12) and (3.6) and 
attaching maps defined by 0 in (4.5) (3). 

(4.11) Remark. We can use also attaching maps of cells in IX defined as follows. 
Apply the isomorphism n : ILl'X ---+ ILl'X to the top row of diagram (4.5) (3). Then 
we obtain an attaching map defined by the composite no which does not agree 
with the attaching map chosen in the proof above. Hence I X has two different 
cell structures. The identity of I X however is easily seen to be a V-isomorphism 
of V-complexes. 

We define the mapping cylinder Aff of a map f : X ---+ Y in C by the push out 
diagram 

IX 

(4.12) 

X~Y 

If X and Yare finite dimensional V-complexes and if f is cellular then (3.6) and 
(4.10) show that also Mf is a finite dimensional V-complex and '[1 : Y ---+ M f and 
fil : X ---+ M f are inclusions of subcomplexes. We also denote Y by 01 and X by 
00 where 00 and 01 are boundary components of A1f . The projection p : IX ---+ X 
induces the natural retraction p : Mf ---+ Y. 
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5 Cellular I -Categories 

We now describe cellular I-categories. They have exactly the properties which we 
need to develop a theory of Whitehead torsion. 

{5.1} Definition. A cellular I-category (C, V) is an I-category C = (C, coJ, I, *) 
as defined in (III.A.l) together with a set V of discrete objects in C as in (1.1) 
such that 

(a) the ball pair axiom (4.5) holds and 
(b) the following cellular approximation property is satisfied. Let X and K be 

finite dimensional V-complexes and let L be a sub complex of K. Moreover let 
g : K ---+ X be a map in C such that the restriction giL: L ---+ X is cellular. 
Then there exists a cellular map J : K ---+ X extending giL and a homotopy 
J ~ g reI L. 

{5.2} Example. Let C = Top be the category of topological spaces and let Vj 
be the class of all discrete spaces which are finite sets. Then a finite dimensional 
V j-complex is the same as a finite CW-complex. Moreover it is well known that 
(Top, Vj) is a cellular I-category. Clearly also (Top, V) is a cellular I-category 
where V is the class of all discrete spaces in Top. The cellular approximation 
property is a consequence of the classical cellular approximation theorem. 

Given a cellular I-category (C, V) we have the functor 

lim: V-Complex ----7 V-cell (5.3) 

Here V-Complex is the full subcategory of Filo(C)c consisting of finite dimen­
sional V-complexes and V-cell is the full subcategory of C consisting of finite di­
mensional V-complexes. Moreover the functor lim carries X:o:o to the direct limit 
lim(X:o:o). 

(5.4) Properties. Let (C, V) be a cellular I-category. Then the Junctor lim in­
duces a Junctor 

. 1 
Rohm : V-Complex/ ~ ----7 V-celli ~ 

between homotopy categories which is an equivalence oj categories. 

Proof. The cellular approximation property shows that Rolim is full. Moreover if 
J = lim ho ~ lim g:o:o = 9 there exists by (4.10) and the cellular approximation 
property a homotopy H : J ~ 9 where H is cellular and hence a I-homotopy. q.e.d. 

(5.5) Proposition. Let (C, V) be a cellular I-category. Then each finite dimen­
sional V-complex X>o has a normalization H = {Hn' n ~ O} as defined in {3.4}. 
Moreover Jor a nor,,;{alization H we can choose a normalized V-complex x!fo and 
a homotopy equivalence ~ 

<.pH : x!fo ----7 X >0 
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o 
in V-Complex/~. If K>o C X>o is a subcomplex which is normalized then K>o C 
X~o is a subcomplex and rpH is-the identity on K?o. -

Proof. The cellular approximation property readily shows that a normalization H 
as in (3.4) exists. We now choose the n-skeleton Yn of Y?o = x!fo inductively as 
follows. Let Yo = Xo and let rprJ : Yo ---. Xo be the identity. Assu~e rp~ : Yn ---. Xn 
is already constructed n 2: O. Then we have the attaching map 

and a normalization Hn+1 : 8n+1 I D ~ ioOn where On : D ---. Xo. We now can 
choose by the cellular approximation theorem a homotopy 

such that G I ID represents rp~ H n+1 . Then 8{[+1 is a cellular map and the homo­
topy class 

8;;+1 E [ED' Yn]D 

is well defined by the choice of H. Now let Yn+1 = Yn U elJ be defined by the 
attaching map 8{[+1. Then Yn +1 is normalized and the homotopy G yields an 
extension rp'lI+1 : Yn+1 ---. X n+1 of rp'H which is well defined up to homotopy reI Yn 
and rp'lI+1 is a homotopy equivalence. q.e.d. 

6 Elementary Expansions 

The classical notion of elementary expansion for CW -complexes is defined by at­
taching ball pairs. Since we have such ball pairs also in a cellular I-category (see 
§ 4) we obtain the following definition which describes the obvious generalization 
of Whitehead's definition of elementary expansion and elementary collapse. 

(6.1) Definition. Let L be a finite dimensional V-complex in the cellular 1-
category (C, V) and let A E V. Then we have by (4.5) for n 2: 0 the ball pair 
(D~+l, QAJ with the complement PA in the boundary. Consider the push out 
diagram in C. 

(1) 

where f is given by a pair map 

(2) 
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Here EA1 = * = L-1 is the initial object for n = O. The map f needs not to be 
cellular since we do not require that the O-skeleton A of PA is mapped by f to 
the O-skeleton La. Still one readily checks that K is again in the obvious way a 
V-complex with sub complex L. Note that we have 

K = L U eA U eA+1 (3) 

where eA is the n-cell of QA = E'1- 1 U eA and where eA+1 is the (n + 1 )-cell of the 
ball OA+!. Now let K be a V-complex with subcomplex L and let r.p : K ~ K be 
an V-isomorphism under L. Then we call K an elementary expansion of L. Since 
i in (1) is a weak equivalence we see that also "i : L ~ K is a weak equivalence 
and hence by 11.1.11 and 11.1.12 in Baues [AH] there exists a retraction r : K ~ L 
with r"i = 1 and "ir ~ 1 reI L. Here r is unique up to homotopy relative L. We call 
any such map r : K ~ L an elementary collapse and we say that r "removes" the 
cells eA and eA+! of K. 

(6.2) Lemma. Let L ~ K be an elementary expansion and let h : (K, L) Co! 

(K', L') be a V-isomorphism. Then also L' ~ K' is an elementary expansion. 

This is an immediate application of the definition of V-isomorphism. Now 

pn ----> On+1 
X X 

Qn ----> on+1 
X X 

(6.3) 

(6.4) 

are both elementary expansions. For (6.3) this is a consequence of the definition 
and for (6.4) we use (6.2) and (4.9). 

(6.5) Example. For E E {O, I}, n ~ 0 and A E V the map 

is an elementary expansion. This is clear for E = 0 by (4.5) (3). For E = 1 we apply 
the isomorphism n to the upper sequence in (4.5) (3) and we obtain isomorphisms 
(1 U n)a and nf3 which show that j1 is also an elementary expansion; compare 
(4.11). 

(6.6) Lemma. For A E V and n ~ 0 the map 

J .. On+! U I pn U On+ 1 ----> IOn+! 
. A A A A 

is an elementary expansion. 

Here j is defined as in the relative cylinder axiom (111.7.1) (14). 

Proof. For n = 0 this is a special case of (6.5) since p1 ~ O~ coincides with 
ia : A ~ I A. For n ~ 1 we have the following isomorphisms of pairs where we set 
h = 12 = I and 0 = OA+!' P = PA' Q = QA' .,1 = .,1A, E = EA.- 1 . 
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(hD,DUh(PUQ)) ~ (I2hL1,hL1UI2 (L1UhE)UhL1) 

Here jo is an elementary expansion by the example (6.5). Hence the isomorphism 
(I(3-1)T(I(3)(IR,) shows that also j in (6.6) is an elementary expansion. q.e.d. 

7 Formal Deformations and Simple Homotopy Equivalences 

Let (C, V) be a cellular I-category. Let K and L be finite dimensional V-complexes 
in C and let Y be a sub complex of Land K. We say that a map j : L ----t K under 
Y is an expansion relative Y if j is the finite composition 

of elementary expansions KCi) ----t KCi+ll with 0 :S i < r. In this case we write 
L / K reI Y. On the other hand a map r : K ----t Lunder Y is a collapse relative 
Y if r is the finite composition 

of elementary collapses L(il ----t LCi+l) which do not remove cells in Y. Then we 
write K '\" L reI Y. A finite composition of expansions and collapses relative Y 

(7.1) 

is called a formal deformation relative Y. Hence a formal deformation relative Y 
is a map L ----t K under Y in C which is obtained by a finite composition of a se­
quence consisting of elementary expansions and elementary collapses respectively. 
A formal deformation relative Y is symbolized by L "" K reI Y. A map f : L ----t K 
under Y in C is a simple homotopy equivalence reI Y if f is homotopic reI Y to a 
formal deformation L "" K reI Y. If Y = * is the initial object then we say that f 
is a simple homotopy equivalence in the cellular I-category (C, V). 

We now follow the book of Marshall Cohen [SHl in describing properties of 
formal deformations; in fact this section contains all the results of § 5 in Cohen 
[SH1· 

Let X, Y, Z, K, L, J ... be finite dimensional V-complexes in C. We write 
Y < K or K > Y if Y is a subcomplex of the V-complex K. 

(7.2) Lemma. Let f : K ----t L be cellular and let Y < K be a subcomplex. Then 

MflY / Mf· 
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This is an inductive application of (6.5). The lemma implies for Y = * that 
L / Mf. Moreover we get by (6.5) that for c E {a, 1} 

IYUo, K / IK (7.3) 

where the left hand side is the push out of IY ~ Y ---> K. For c = 1 we use 
(4.11) and (6.2) so that (7.3) is true for both cell structures of IK. 

(7.4) Lemma. (a) Let K > Y < L be V-isomorphic to K' > Y' < L' and let 
K r..- L reI Y. Then K' r..- L' reI Y' . 

(b) Let K > Y < L be given with K r..- L reI Y and let f : Y ---> Y" be cellular. 
Then K Uf Y" r..- L Uf Y". 

This follows from (6.2) and properties of push outs. 

(7.5) Lemma. Let L > Y < K and let h : L ---> K be a V-isomorphism under Y. 
Then L r..- K reI Y. 

Proof. We have IY Ual K < Mh since h is the identity on Y so that IY Ual K / 
Mh rellY by (7.2). Moreover Ih induces a V-isomorphism Mh ~ IL and this 
shows that also IY Uao L / Mh rellY by (7.4). Now let 

Nh=MhU1yY 

where we use the projection p : IY ---> Y. Then (7.4) shows 

K / Nh "" L reI Y. 

q.e.d. 

(7.6) Lemma. Let f : K ---> L be cellular and Y / K then K Uy Mfl Y / Mf. 

Proof This is an inductive application of (6.6). q.e.d. 

(7.7) Lemma. Let f, g : K ---> L be homotopic cellular maps then Mf r..­

Mg relL U K. 

Proof Let H : I K ---> L be a homotopy f c::; g which we may assume to be cellular. 
Then (7.6) shows 

M f U IK / MH "" Mg U IK relL U IK 

since io : K / IK and i1 : K / IK by (7.3). Let p: IK ---> K the projection and 
M = MH Up K. Then (7.4) shows 

M f / M "" Mg relL U K. 

q.e.d. 
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(7.8) Lemma. Let 1 : L ---t K,g : K ---t J be cellular and let Mf UK Mg be the 
push out of Mf ~ K ---t Mg. Then 

Proof. Let p : M f ---t K be the natural retraction. Then gp : Mf ---t J is cellular 
with gp I K = 9 and gp I L = gl· Since M f \.. K it follows from (7.6) that Mgp \.. 
M f U Mg. On the other hand, since L < Mf we see by (7.2) that Mgp \.. Mgf. 
q.e.d. 

More generally one gets for a sequence of cellular maps 

K h K fq-l K 
(1) ------+ (2) ------; . .. ------+ ( q) 

with f = fq-l ... II the deformation 

Mf t+ Mh U Mj, U··· U Mfq_l reIK(1) U K(q). (7.9) 

(7.10) Lemma. Given a map I: K ---t L the following are equivalent statements: 

(a) 1 is a simple homotopy equivalence. 
(b) There exists a cellular approximation 9 to 1 such that Mg t+ K reI K. 
(c) For any cellular approximation 9 to lone has Mg t+ K reI K. 

Proof. (a) ~ (b): We know that 1 is homotopic to a formal deformation 9 with 

9 : K = K(G) ---t K(l) ---t ••• ---t K(q) = L 

and gi : K(i) ---t K(i+1)' Note that Mgi \.. K(i) for all i. In fact, if K(i) / K(i+l) is 
an elementary expansion then 

Mgi = IK(i) Ugi K(i+1) \.. IK(i) \.. K(i) 

and if K(i) \.. K(i+l) is an elementary collapse then by (7.6) 

Mgi \.. MgiIK(i+l) U K(i) = IK(i+l) Uao K(i) \.. K(i). 

Hence (a) ~ (b) follows from (7.9). Now (b) ~ (c) follows from (7.7). Moreover 
(c) ~ (a) is an exercise; see 5.8 Cohen [SH]. q.e.d. 

(7.11) Lemma. Let U < Y < K and U < X and let f : Y ---t X be cellular under 
U and consider the push out diagram 

K ~ KUfX 

If f is a simple homotopy equivalence reI U then also g is a simple homotopy 
equivalence reI U. 
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This is a simple analogue of the push out axiom (C2) (a) in a cofibration 
category; see (III.l.1). 

Proof. The mapping cylinder Mg satisfies lvIg = IK Uq M j where q : IY ---+ M j 

is J in (4.12). But IY Uao K / IK so that by (7.4) 

M j Uao K / Mg. 

Moreover M j Uao K I\- K reI K by (7.10) and (7.4) (b). Clearly 9 I Y = f and by 
(7.10) 9 is a simple homotopy equivalence. q.e.d. 

(7.12) Lemma. Let A E V and let 

be maps which are homotopic in Y; that is, there is H : if ':'::' ig with i : Yn C Y 
where n 2: O. Then there is a formal deformation 

Y U j e~+l I\- Y Ug e~+l reI Y. 

Proof. First we observe that there is a homotopy HI : f ':'::' l' in Yn where f' 
is cellular. Similarly there is a homotopy H2 : 9 ':'::' g' in Yn where g' is cellular. 
Now H shows that II' : l' ':'::' g' in Y and cellular approximation allows to choose 
the homotopy H' : 117:;1 ---+ Y to be cellular. Hence we may assume that H is a 
homotopy jf ':'::' jg where j : Yn C Yn +1 . We consider the space 

K = Y U j e Ug e' with e = e' = e~+1 . 

Using H we obtain the following commutative diagram where L1 
E=EA· 

17 i'l L1 UBo IE --------+ 

il 1 \DgH 

, 
\D L1 --------+ Kn+l C K 

L1n +I and A 

where rp' and rp are the characteristic maps of e' and e respectively with rpi = f 
and rp'i = g. Hence we obtain the push out 

(L1 UBo I E) UB, L1 

1 (\D,H,\D') 

j 
>-> I L1 

1 
K --------+ k 

Here j is given by the maps in the top row of (4.5) (3) and hence j is isomorphic 
to FA U Q'A. >-> D~+l. This shows that 
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YUfe/K 

since PA: / 0::~+1. Since also Q'A /0'1+1 by (6.4) we see that also 

YUge' / K 

Hence we obtain the proposition. q.e.d. 

(7.13) Proposition. Let (C, V) be a cellular I -category and let X be a finite 
dimensional V-complex. Then there exists a normalized finite dimensional V­
complex Y together with a simple homotopy equivalence Y --> x. 
Proof. We use the same method as in the proof of (5.5). Then inductive application 
of (7.12) and (7.11) yields the result. q.e.d. 

(7.14) Lemma. Let L < K and let f, g : L --> J be cellular maps which are 
homotopic f ~ g. Then K Uf J f\. K Ug J reI J. 

We point out that (7.12) is not directly a consequence of (7.14) since in (7.12) 
we do not assume that j, g are cellular. 

Proof. Let H : f ~ g be a homotopy which we can choose to be a cellular map 
H : IL --> J. Let ]0: K Uao IL --> IK and]l : K Ua1 IL --> IK be the inclusions 
in (7.3). Then we have by (7.4) (b) 

K U f J = (K Uao I L) U H J / I K U H J reI J, 

K Ug J = (K Ua1 I L) U H J / I K U H J reI J. 

q.e.d. 

(7.15) Lemma. Let L < K < J and let i : L --> K be a homotopy equivalence 
with retraction r. Then J f\. K U L (J Ur L). 

Proof. We have ir ~ 1 so that by (7.14) 
\ 

J = J Ul K f\. J Uir K = K U L (J Ur L). 

8 The Whitehead Group and Whitehead Torsion 

Let (C, V) be a cellular I-category. In this section we construct a functor 

Wh : V-cell/~ ----> Ab 

q.e.d. 

(8.1) 

which carries a finite dimensional V-complex L in C to the Whitehead group 
Wh(L). Moreover we obtain a function assigning to any homotopy equivalence 
f : Y --> L E C / ~ between finite dimensional V-complexes Y, L an element 

TU) E Wh(L) (8.2) 

termed the Whitehead torsion of f. The Whitehead torsion detects simple homo­
topy equivalences in the following sense. 
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(8.3) Theorem. A homotopy equivalence f : Y -+ L between finite dimensional 
V-complexes is a simple homotopy equivalence if and only if T(f) = o. 

Moreover the following formulas hold: 

(8.4) Addendum. T is a derivation on the subcategory of V-cell/c:::' consisting of 
homotopy equivalences; that is 

Here gf : L -+ K -+ J is the composite of homotopy equivalences g and f between 
finite dimensional V-complexes. This is also called the "logarithmic property" of T. 

(8.5) Addendum. Consider the commutative diagram 

K' > Y' < L' 

K > Y < L 

where K, L, K', L' are finite dimensional V-complexes with sub complexes Y 
and Y' respectively as indicated. Then we obtain the induced map 

f U g : K' Uy' L' --. K Uy L. 

If f, hand g are homotopy equivalences in C then II.1.2 in Baues [AH] shows 
that also f U g is a homotopy equivalence and one obtains the following additivity 
formula. 

Here jK, jL, jY are the canonical maps from K, L, resp. Y to K Uy L. 

(8.6) Definition of the Whitehead group. We call (K, L) a V- pair if L is a sub­
complex of the finite dimensional V-complex K such that the inclusion L -+ K 
is a homotopy equivalence in C. Two V-pairs (K,L) and (K',L) are equivalent 
if K rv K' reI L. This is an equivalence relation and we let [K, L] denote the 
equivalence class of (K, L). An addition of equivalence classes is defined by 

[K,L] + [K',L] = [KUL K',L]. 

Since we assume V to be a set we see by (7.5) that the equivalence classes [K, L] 
of V-pairs (K,L) form a set Wh(L) which is termed the Whitehead group of L. 

(8.7) Lemma. The setWh(L) with the addition + is a well defined abelian group. 

Proof. Clearly if (K, L) and (K', L) are V-pairs then also (KULK', L) is a V-pair. 
Moreover if [K, L] = [J, L], then 

K U L K' rv J U L K' reI L 
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by (7.4) (b). Hence + is well defined. It is clear that + is associative and com­
mutative. The element [L, L] is a neutral element, denoted by O. We have to show 
that each element [K, L] admits an inverse [k, L] with 

[k, L] + [K, L] = [L, L]. (1) 

That is [k, L] = -[K, L]. We construct k as follows. Let f : K -+ L be a retraction 
of the inclusion L -+ K. Such a retraction exists by 11.1.12 Baues [AH]. Moreover 
by the cellular approximation property we may assume that f is cellular. Now let 

(2) 

where Mf = Mi is the mapping cylinder of f. We have for L = L' the inclusions 
L C Mf c k and L' C Mi c k of subcomplexes. We then get the following 
equations with K" = K, 

[k, L] + [K", L] = [k UL K", L] 

= [(Mf UL K") UK Mj, L] 

= [Mif UK Mi, LJ, where i : L < K. 

Since if c::::. lK we see by (7.7) that 

Mif "" M1K = I K rel8a U 81 = K V K. 

Hence by (7.4) (b) we have 

= [IKUKMi,L] 

= [IL UL Mi, L] since IK '\.. IL Uao K by (7.3) 

= [ILUL IL,L] since Mj '\.. IL by (7.2) 

= [L, L] since I L '\.. L by (7.3). 

(3) 

(4) 

(4) 

q.e.d. 

{8.8} Definition of induced maps. Let f : L -+ J be a cellular map between finite 
dimensional V-complexes. Then the induced map 

f* : Wh(L) -+ Wh(J) 

between Whitehead groups is defined by 

The equation on the right hand side holds since the projection p : Mf -+ J satisfies 
p I J = 1 so that by (7.11) we have 

M f U L K "" (M f U L K) Up J = K U L J reI J. 

Now it is easy to see that f* is a group homomorphism and that gd* = (gfk If 
f c::::. 9 then f* = g* as follows from (7.7). 
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(8.9) Definition of the Whitehead torsion. Let f: K ~ L be a cellular homotopy 
equivalence in C between finite dimensional V-complexes. Then we define 

T(f) = f*[Mf,K] 

= [Mf UK L,L] E Wh(L). 

By (7.7) we see that f ::::::' 9 implies T(f) = T(g). 

(8.10) Proof of (8.3). If f is a simple homotopy equivalence then (7.10) shows 
that Mj n.- K relK and hence [Mf UK L, L] = [L, L] = 0 by (7.4) (b) so that 
T(f) = o. On the other hand assume now that T(f) = f*[Mj,K] = O. Since Wh is 
a functor on the homotopy category V-celli::::::, we know that 

f* : Wh(K) ~ Wh(L) 

is an isomorphism. Hence T(f) = 0 if and only if [Mj, K] = 0 and this implies by 
(7.10) that f is a simple homotopy equivalence. q.e.d. 

(8.11) Proof of (8.4). For L --L K ~ J we have to show 

or equivalently since g* and f* are isomorphisms 

where f: K ~ L is a cellular homotopy inverse to f. This is equivalent by (7.8) 
to 

But this follows by (7.14) since the following diagram homotopy commutes 

(8.12) Proof of (8.5). Let X = KUyL and X' = K'UYIL' andd = fUg: X ~ X'. 
Since d* : Wh(X) ~ Wh(X') is an isomorphism it suffices to prove in Wh(X') 

[Md, X'] = [Mj UK' X', X'] + [Mg Uu X',X']- [Mh Uyl X',X']. 

Using properties of push outs we obtain the following cubical diagram in which all 
squares are push outs. 
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Mh 
k lMg 

~ / 
Y' ----+L' 

1 1 
K' ----+ x' 

/ ~ 
Mf lMd 

By (7.2) we have Mg /' Mk and by (7.4) (b) we get Md /' Md UMg Mk. Hence we 
obtain by (7.4) (b) in Wh(X') the equations 

[X' UL' Mg,X'] = [X' UL' Mk,X'] 
[Md,X'] = [MdUMg Mk,X'] 

Write X" = Md UMg Mk, L" = X' UL' Mk, K" = X' UK' Mf, Y" = X' Up Mk. 
Then we have to show in Wh(X') 

[X",X'] = [K",X'] + [L",X']- [Y",X']. 

Here L" > Y" < K" are sub complexes of X" where X" is the push out of 
L" f- Y" -t K". Let r : Y" -t X' be a retraction. Then (7.15) shows in Wh(X') 

[X",X'] = r*[X",Y"] + [Y",X'] 
[K",X'] = r*[K",Y"] + [Y",X'] 
[L", X'] = r * [L", Y"] + [Y", X'] 

On the other hand we have in Whey") 

[X", Y"] = [K", Y"] + [L", Y"]. 

These equations imply in Wh(X') 

[X",X']- [Y", X'] = [K",X']- [Y",X'] + [L",X']- [Y",X']. 

q.e.d. 

(8.13) Remark. Following Eckmann-Maumary [GS] and Siebenmann [S] the book 
of Kamps-Porter [AH] describes a different axiomatic approach concerning the 
geometric Whitehead group. The axioms they use do not rely on cells as in our 
approach above and assume a priori that all isomorphisms are simple. This is 
actually a great disadvantage concerning the applicability of the axioms. Moreover 
the axioms of Kamps-Porter are by far not sufficient to prove a result like in § 12 
below on the isomorphism between geometric Whitehead torsion and algebraic 
Whitehead torsion which is the main result of simple homotopy theory. 
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9 Simplified Form of Elements in the Whitehead Group 

Let (e, V) be a cellular I-category and let L be a finite dimensional V-complex. 
Then the Whitehead group Wh(L) is defined. The elements [K, L] E Wh(L) are 
represented by V-pairs (K, L) as defined in (8.6). 

(9.1) Proposition. Let (K, L) be a V-pair with dim(K -L) ~ n and let r 2: n-l. 
Then there exists a V-pair (K', L) such that 

K ' Lu r U r+1 = feD eD' 

with D, D' E V and [K, L] 
composite 

[K', L]. Moreover the attaching map f of eD is a 

f:E;-l ~ D~LocL 

where pr-1 is the projection in (2.1) (2). In addition if L is normalized then K' 
can be chosen to be normalized. 

The pair (K', L) with the properties in the proposition is termed a V -pair in 
simplified form. 

For the proof of (9.1) we consider the following diagram which is given by (4.5) 
(3) with X E V and Ex = Er, pr = P'x, ... (i.e., we omit the index X for 
simplicity) . 

E r i Llr+1 ------> 

1~ 1~ 
pr Ua Qr ------> or+1 

1 ",U1 1(3 

aI Llr = Llr U IEr- 1 U Llr j ILlr ------> 

Here we set j = (io,Ii,i1 ). The vertical arrows are isomorphisms as defined in 
(4.5) (3) and (4.5) (2). We now apply the cylinder functor I to this diagram and 
we obtain 

prH ------> or+2 ~ QrH 

1'" 1(3 11 

LlrH U IEr ------> ILlrH ~ LlrH (9.3) 

1 1 J((3i<) 1 
LlrH U IaI Llr (io,I j) IILlr il ILlr ------> ~ 

Here again the vertical arrows are isomorphisms. This shows that i1 : I Llr -> II Llr 
is an expansion and that also the composite 
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(9.4) 

is an expansion with 8 = 8L1.r. 

(9.5) Lemma. Let (K, L) be a V-pair with 

where 0 ~ l' ~ nand Di E V for l' ~ i ~ n. Then there exists a V-pair (K', L) 
with [K, L] = [K', L] where 

Proof. Since (K, L) is a V-pair there exists a retraction q : K --> L of i : L --> K 
with qi = 1 and 

H : 1 ~ iq reI L. (1) 

Moreover we may assume that q and the homotopy H are cellular. We now consider 
for X = Dr the composite 

(2) 

where the left hand map is the characteristic map of the r-cell eD. By applying 
the homotopy (1) we get a homotopy reI E r - 1 

(3) 

with tjF = iq'P : L1r --> L. Moreover F maps I L1r to Kr+l and maps 8(1 L1r) to K r. 
For io : I L1r --> I I L1r let 

Then clearly K / P. Moreover let Yo be the subcomplex of Y given by 

Yo = L U eDT UFo E r+1 with 

{ 
Er+l = IL1r UBI I(8IL1r) ~ IIL1r 

Fo = F I 8IL1r 

(4) 

(5) 

Then (9.4) shows that L / Yo. Let g : Yo --> L be a retraction which is cellular 
and let 

K' =YUgL. (6) 

Then (7.11) shows that K '" K' relL and hence [K, L] = [K', L]. Moreover by 
(9.3) we see that K' has the cell structure in (9.5). q.e.d. 
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(9.6) Proof of (9.1). We can apply (9.5) inductively and get a V-pair (K,L) with 
Kr - 1 = L r - 1 . Since r ;:::: n -1 we do not obtain any cells in K of dimension greater 
r + 1. Hence we get 

We claim that there exists a homotopy 9 ~ f where f is a map as in (9.1). Then 
(7.12) yields the result in (9.1). As in (1) we choose a retraction q : K ----> L. Then 
the composite 

is an extension of 9 : E~-l ----> L. This shows by (2.1) (6) that one has a homotopy 
9 ~ (3pr-l in L where (3 : D ----> L. Moreover by cellular approximation (3 is 
homotopic to a map a : D ----> Lo ----> L. This yields the homotopy 9 ~ apr-l = f. 
As in (7.13) we may choose the attaching map of the (r + l)-cell e~-+;l to be 
normalized. q.e.d. 

We say that an elementary expansion K ----> K' = K U en U e~+l has order r + 1, 

also the collapse K' ----> K has order r + 1. 

(9.7) Proposition. Let (K, L) and (K', L) be V-pairs and assume K r- 1 = 
Lr- 1 = K;_l for some r ;:::: O. If D : K (\. K' reI L yields a simple homotopy 
equivalence 'P : K ----> K' under L then there is a sequence of elementary deforma­
tions D' : K (\. K' all of which have orders;:::: r + 1, such that D' yields a map 
'P' : K ----> K' under L with 'P ~ 'P' reI L. 

Proof. The result is true for r = O. Assume now the result holds for r = n - 1 ;:::: O. 
Then we prove the case r = n with K n - 1 = L n - 1 = K~_l as follows. The inductive 
assumption shows that we can find D : K (\. K' reI L where D is a sequence of 
order ;:::: n. By reordering we get sequences of elementary expansions K / X, 
K' / Y of order;:::: n and a V-isomorphism a : X ~ Y under L such that 

D: K / X ~ Y '\.. K' relL. 

By the assumption we have 

K = L U {cells of dimension;:::: n} 

K' = L U {cells of dimension;:::: n} 

X = K U e;}-l U e(j U {cells of dimension;:::: n} 

Y = K' U e~-l U ey U {cells of dimension ;:::: n} 

(1) 

(2) 

(3) 

(4) 

(5) 

Here U, V E V and e;}-l U e(j and e~-l U ey denote elementary expansions which 
are attached to L by (2) and (3) respectively. Let hX be the relative cylinder and 
let Z be the push out of rl : X ----> hX and a : X ----> Y. Then we also have by (1) 

K / X / Z "" Y "" K' reI L (6) 
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where all expansions are of order 2: n. We now "kill" the (n - 1) cells e~-l and 
e~-l by the procedure in the proof of (9.5) such that we obtain new (n + I)-cells 
e~+l and e~+l for which eu U e~+l and ev U e~+l describes expansions of order 
n + 1. Moreover by (7.6) we see that 

X UL Y /' X UL Y U le~-l U leu c Z (7) 

is an elementary expansion of order n + 1. This completes the proof. q.e.d. 

10 The Torsion Group Kl 

Following Ranicki [AT] we define for a small additive category A the torsion groups 
KiSO(A) and Kfut(A) respectively. 

(10.1) Definition. Let A be a small additive category with direct sum EB. 

(a) The isomorphism torsion group KiSO(A) is the abelian group with one gener­
ator T(f) for each isomorphism f : M --+ N in A, subject to the relations 

T(gf : M --+ N --+ P) = T(f : M --+ N) + T(g : N --+ P) 

T(f EB f' : M EB M' --+ N EB N') = T(f : M --+ N) + T(f' : M' --+ N') 

(b) The reduced isomorphism torsion group 1<1S0(A) is the quotient of KiSO(A) 
defined by the additional relation T(EM,N) = 0 where 

EM,N : M EB N --+ NEB M, EM,N = (1: 1;) 
is the interchange isomorphism for M, N E A. Let KiSO(A) ----t kiSO(A) , 
T(f) f---> 1'(f) be the quotient map. 

(c) The automorphism torsion group Kfut(A) Kfut(A) is the abelian group with 
one generator T(f) for each automorphism f : M --+ M in A, subject to the 
relations 

T(gf: M --+ M --+ M) = T(f) + T(g) 

T(ifi-1 : M' --+ M --+ M --+ M') = T(f) 

T(f EB f' : M EB M' --+ M EB M') = T(f) + T(f') 

Here i : M' --+ M is an isomorphism in A. 

Clearly an additive functor O! : A --+ B between small additive categories 
induces homomorphisms 

O!* : KiSO(A) --+ KtsO(B) 

O!* : kiSO(A) --+ ktsO(B) 

O!* : Kfut(A) --+ Kfut(B) 
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which carry T(f) to T(O'.f). The automorphism torsion group Kiut(A) is just the 
"Whitehead group" of A in the sense of Bass [AK] p. 348 and p. 397 also denoted 
by 

(10.2) 

We have the forgetful homomorphism 

cp : Kfut(A) ---> KtsO(A) (10.3) 

which carries T(f) to T(f). We refer the reader to Ranicki [AT] for a careful study 
of these torsion groups. Here we only recall some results of Ranicki [AT] needed 
below. 

(10.4) Definition. Let chain~ be the category of finite chain complexes 

C: ... ---> 0 ---> Cn ---> Cn - 1 ---> ... ---> C1 ---> Co 

in A and chain maps. The torsion of an isomorphism f : C ----> D in chain~ is 
defined by 

00 

T(f) = 2)-lrT(J: Cr ----> Dr) E KtsO(A). (1) 
r=O 

Moreover the torsion of a contractible finite chain complex C with contraction 
homotopy 0'. : 0 ~ 1 : C ----> C is defined by 

(2) 

where 

is an isomorphism in A defined by the matrix 

(
dO 0 0 "'J r d 0 0 .. . 

d+r= 0 r dO .. . 
. . . 

. . 

Ranicki shows that d + r is actually an isomorphism and that T(d + r) does 
not depend on the choice of r. Moreover the following result holds. Recall that 
a sequence M ----> N ----> K in A is exact if for all X in A the sequence of abelian 
groups 

A(X, M) ---> A(X, N) ---> A(X, K) 

is exact. Moreover a sequence C ----> D ----> E of maps between chain complexes in 
A is exact if for all r E Z the sequence Cr ----> Dr ----> Er is exact. 
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(10.5) Proposition. Let 

o ----+ C ~ C" ~ c' ----+ 0 

be a short exact sequence of contractible chain complexes in chain~. Then the 
reduced torsion satisfies the sum formula in k1S0(A) 

CXJ 

i(C") = i(C) + i(C') + 2) -lri(i, k) : CT ffi c; ---> C;') 
r·=O 

with {k : C~ ---> C~, r ;:::: O} any sequence of splitting morphisms such that jk = 1 : 
C~ ---> C~ (r ;:::: 0) and each (i, k) : CT ffi C~ ---> C~ (r ;:::: 0) is an isomorphism. 

(10.6) Definition. A canonical structure lP on an additive category A is a collection 
of isomorphisms {lP M,N : M ---> N}, one for each ordered pair (M, N) of isomorphic 
objects in A, such that 

lPM,M = 1 : A1 ---> M, 

lP M,P = lP N,PlP M,N : M ---> N ---> P, 

lPMffiM',NffiN' = lPM,N ffilPM',N' : A1 ffi M' ---> N ffi N' 

(i) 

(ii) 

(iii) 

(10.7) Lemma. A canonical structure lP on an additive category A determines a 
retraction 

of the forgetful homomorphism lP in (10.3), that is lP*lP = 1. Here lP* carries 
T(f : M ---> N) to T( lP N,M f : M ---> N ---> M). The kernel of lP* is generated by the 
elements T( lP N,M). 

11 The Algebraic Whitehead Group 

Recall the definition of an enveloping functor U in (I.§ 5). We now enrich the 
structure of U as follows. 

(11.1) Definition. Let C be a category and let A be a set and let 

U : C -'> Ringoids(A) 

be an enveloping functor as in (I.5.11). Moreover let U(8) be an additive category 
for all objects 8 in C. We say that J is an isomorphism structure for U if for each 8 
a subcategory J(8) C U(8) is given where J(8) has the same objects as U(8) and 
all morphisms of J(fJ) are isomorphisms. Moreover a map u : 8 ---> 8' in C induces 
a functor u* : U(8) ---> U(8') which carries J(8) to J(8'). Hence J is a functor 
from C to the category of groupoids which is a subfunctor of U. In addition we 
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assume that all interchange isomorphism cM,N in U(8) are morphisms in J(8); 
see (10.1) (b). 

For an enveloping functor U with isomorphism structure J we define the functor 

(11.2) 

termed the algebraic Whitehead group. We obtain Wh( 8) by the quotient group 

(1) 

defined by the relations 

r(j) rv 0 for j E J(8). (2) 

Since we assume that the interchange isomorphisms are in J( 8) one gets the natural 
surjective homomorphism 

(3) 

which carries r(f) to the equivalence class of r(f). 

(11.3) Lemma. Let 8 E C and assume that the category J(8) contains a canon­
ical structure tp on the additive category U(8); see (10.6). Then one has a natural 
surjective homomorphism 

which carries r(f) to the equivalence class of r(f). 

Proof. We have the commutative diagram 

where q admits a factorization q = q'tp* by (10.7) so that q' is surjective. Moreover 
by (1O.7) we have tp*tp = 1 so that q' = q'tp*tp = qtp is surjective. Here qtp is clearly 
natural. q.e.d. 

12 The Isomorphism Between the Geometric 
and Algebraic Whitehead Group 

Let (K, V) be a cellular I-category with initial object 0 and let L be a finite 
dimensional V-complex in K. Then we obtain as in § 8 the Whitehead group 
Wh(L) which we also call the geometric Whitehead group. We want to compare 
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the group Wh(L) with an algebraic Whitehead group Wh(8) defined in § 11. For 
this we consider the cofibration category 

C=KLo (12.1) 

with initial object * = La where La is the O-skeleton of L. By (1.3) we see that C 
is a cofibration category under the theory of coactions 

T = cone(La, V). (12.2) 

Let V(La) be the set of all maps {J : E --; La in K with E E V. Such a map (J 
defines a based object Eg in C by 

(1,,6) 
--+ La). (1) 

Here U0 is the sum in K since 0 is the initial object. The n-fold suspension of Eg 
in C yields the n-sphere 

(2) 

One can check that with the notation (2.1) (1) we have the push out diagram in K 

(3) 

E ~La 

This fact is used in (3.7) to show that for T above a T-complex in C is the same 
as a normalized V-complex in K. 

The cogroups in T are the I-spheres E1. More generally all objects of Tare 

of the form Xl = Co<,(3 as in (1.2) such that for Ct = {J we have E1 = C(3,(3' 

Let A be the set of all cogroups in T. Then one has the bijection 

(4) 

which we may use as an identification. 
The theory T yields the category Coef as in chapter I. The objects 8 E Coef 

are elements 

(5) 

and Ct, (J, I E V(La). Here [A, BJ denotes the set of homotopy classes in Cle::=.· 
Using 8 we can choose a principal cofibration 

(6) 

which is given by a mapping cone Cf in C of a map f representing 8. 
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(12.3) Definition. We say that (K, V) is a homological cellular I -category if (K; V) 
is a cellular I-category and if for La E V and 

C=KLo 

T = cone(Lo, V) 

the pair (C, T) is a homological cofibration category under T; see (V.l.l). 

Now assume that (K, V) is a homological cellular I-category. We fix La E V 
so that (C, T) is defined as above. As in (V.l.6) we obtain the category 

mod = mod(C) (12.4) 

of modules associated to T. An object in mod is given by L'~ V 8 with 'Y E V(Lo) 
and 8 E Coef and a morphism 

g 8 u : L'~ V 8' -----+ L'~ V 8 (1) 

is given by u : 8 --+ 8' in Coef and 

g E [L'~, L'~ V X 2 ]Z in C/':::::'.. (2) 

Here X 2 is defined by 8 as in (12.2) (6). For the set A of cogroups in T in (12.2) 
(4) we obtain by (1.5.11) the enveloping functor 

u = U A : Coef -----+ Ringoids(A) (12.5) 

Here U(8) = UA(8) c mod is the following subcategory. Objects are all L'~ V 8 
with a E V( La) = A and morphisms are all g 8 1 as above where 1 is the identity 
of 8. This shows that UA(8) is an additive category with the sum 

(1) 

where a EB fJ = (a, fJ) : E U0 E' --+ La. We have for n ?: 0 

(2) 

where the right hand side is a sum of spheres in C. 

(12.6) Definition. We say that an isomorphism structure J for U A is cellular if 
the following property holds where r ?: 3. Let L be a finite dimensional V-complex 
which is normalized with the O-skeleton La chosen above and let (K, L) and (M, L) 
be V-pairs satisfying K r - 1 = L r - 1 = M r - 1 and let 

<p:K~M (1) 

be a V-isomorphism under L. We choose normalizations Hand G of K and M 
respectively and we choose <pH and <pG as in (5.5) so that we get cellular maps 
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H -G 

KH~K~M~MG (2) 

under L where rpG is a O-homotopy inverse of cpG. Here KH and MG are normalized 
with 2-skeleton L 2 . Let fh be the attaching map of L1 C L 2 . Then the chain 
functor (V.2.3) yields the induced isomorphism 

(3) 

of (relative) chain complexes in UA(8d. For the isomorphism structure J we have 
J(8d C UA(8L) and we require that all chain isomorphisms f>o as constructed 
in (3) satisfy 

fn E J(8L ) (4) 

for all n 2: r. Moreover for normalized V-pairs (k, L) and (M, L) and for an 
isomorphism 

(5) 

satisfying (4) there exists an isomorphism cp : K -- M as in (1) and normalizations 
H, G such that KH = k and MG = M and f>o = G*(rpGcpcpH); (this condition 
is actually only needed for very special k and M as in the proof of (12.7) (29) 
below). 

(12.7) Theorem. Let (K, V) be a homological cellular I -category and La E V. 
Moreover let J be a cellular isomorphism structure for the enveloping functor U A 
where A = V(Lo). Then one has for each normalized finite dimensional V-complex 
L with a-skeleton La an isomorphism 

of abelian groups. Here Wh(L) is the geometric Whitehead group and Wh(8L) is 
the algebraic Whitehead group defined by (UA' J) in (11.2). Moreover T is natural 
for maps f : L -- L' which extend the identity La = L~. In fact T carnes [K, L] E 
Wh(L) to the equivalence class ofT(C*(KH,L)). Here H is a normalization of 
KrelL and G = C*(KH,L) is a contractible chain complex with T(G) defined in 
(10·4)· 

Proof. First we check that the map T is a well defined homomorphism. Using (9.1) 
and (9.7) we have to show that an elementary expansion K /' M of order 2: r + 1 
satisfies T( G* (K H, L)) rv T( G* (MG, L)) where G is a normalization of M reI L. We 
first choose a normalization F of N = K U eA U e~+l extending the normalization 
H of K where N is V-isomorphic to M under K. Then we have the short exact 
sequence of contractible chain complexes 



12 Geometric and Algebraic Whitehead Group 349 

and we can apply (10.5). The cell structure of N shows that we have canonical 
splitting morphisms k for which (i, k) in (10.5) is the identity. Hence (lO.5) implies 

T(C*(KH,L)) = T(C*(NF,L)) since 

T(C*(NF , KH)) = O. 

(2) 

(3) 

Here (3) is the consequence of the definition of an elementary expansion which 
shows that C * (N F , K H) is concentrated in degree nand n + 1 and that the dif­
ferential is the identity. Hence (10.4) (2) and (lO.l) (a) yield (3) since T(id) = O. 
Next we have as in (12.6) (2) the cellular map 

which induces the isomorphism 

with in E J(8d since J is cellular; see (12.6). Again (10.5) with C 
j = ho shows that 

(4) 

(5) 

o and 

(6) 

where we use the equivalence relation rv defined by J; see (1l.2) (2). Hence the 
functor T in (12.7) is well defined. Moreover T is a homomorphism since 

(7) 

Here we use again (lO.5). We now define a homomorphism A for which the com­
posite 

(8) 

is the quotient map in (11.2) (1). Let g be an isomorphism in UA(8d. Hence g is 
given by an element 

See (12.4) (2). Since (C, T) is homological we have the isomorphism, r ~ 3, 

[17~, 17& V L2h ~ [17~, 17~ V L2h 

(9) 

(10) 

which carries g to the (r - 2)-fold partial suspension Er-2(g); see (V.l.1). We 
define 

(11) 

Here C go is the mapping cone of go in C. For (3 : D ----+ Lo and A : E ----+ Lo in 
D(Lo) we have the cell structure 
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(12) 

Moreover the chain complex C*(Kg , L) is concentrated in degree rand r+l and the 
differential of C*(Kg , L) coincides with g. Since 9 is an isomorphism we see by the 
homological Whitehead theorem (VI.7.1) that L ----+ Kg is a homotopy equivalence 
in C. Hence the element [Kg, L] E Wh(L) is defined and we set 

)..(g) = [Kg, L]. (13) 

In fact the right hand side does not depend on the choice of go in (11) since we 
have (7.12). Now (13) defines a homomorphism).. in (8) if the following equations 
(14) and (15) hold 

)..(g E8 g') = )..(g) + )..(g') , 
)..(gf) = )..(g) + )..(1). 

(14) 

(15) 

Compare (10.1) (a). For elements 9 as in (9) and g' E [17~/ 17$1 V L2h the sum 
9 E8 g' is given by 

(16) 

where i1 and i2 are the obvious inclusions. Now it is clear that 

(19) 

and hence (14) holds; see (8.6). The proof of (15) is more complicated. We write 
D = E:;, G = E~ and B = 17E and we consider (g f)o defined by the composite 

(gf)o:D ~ GVL2 ~ BVL2 inC. (20) 

Here go and fo are trivial on L2 . We have to show 

(21) 

Then (15) is a consequence of (21) and (8.6). Now (21) is a consequence of (11) 
and 

(22) 

Let Nfo be the mapping cylinder of fo relLo, that is N fo is defined by the push 
out 

. D i 1 
)1 : ------. hoD ------. Npo 

io r r jo 

D fo Gv L2 ------. 

Moreover let CD be the cone of Din C. Then we readily get by (7.3) and (7.11) 
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Moreover as in (7.8) we have 

(24) 

Here R is the push out of jo : G V L2 ----; Nto and (jl, joi2) : G V L2 ----; Ngo . Hence 
we get 

C(fg)o I\- N(fg)o UD CD I\- R UD CD = S. (25) 

We now choose an inverse h of fin UA(ih). Then ho is given by a map in C 

ho : G ---> D V L2 (26) 

and we obtain a homotopy commutative diagram in C as follows. 

Here Oc is the composite G ~ Lo ~ L2 where 0 is the trivial map on G. 
In the same way we define OD. The inclusion jOil : G ----; Nto is homotopic to 
d = (j1,joi 2)ho so that by (7.14) 

Moreover jd is homotopic to iDc so that we get again by (7.14) 

s = R UD CD I\- T UD CD 

I\- NgO U(iOG,joi2 ) (Nto UD CD) 

= CgO UL2 (Nto) UD CD) 

I\- CgO UL2 Cto . 

(27) 

(28) 
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This completes the proof of (22) and hence of (21) and therefore A in (8) is a well 
defined homomorphism for which T A is the quotient map. In fact the homomor­
phism A induces a splitting of T. For this we have to show A(g) = a for g E J(Eh) 
or equivalently 

[Kg, L] = [L, L] for g E J(fh). (29) 

For this let k = Cgo U L2 L and let iII = Cb U L2 L = C B V L where b : B ---+ B V L2 
is the inclusion. Then we have an isomorphism 

with fr+1 = g and fr = identity. Hence f>o satisfies (12.6) (5) and therefore f>o = 
C.(cpHcp'iP) as in (12.6) (2). This shows-by (7.13) and (7.5) that k n- iII ~IL. 
Clearly [iII, L] = a since L n- iII reI L by (7.3). This completes the proof of (29) 
and hence oX in (8) induces a splitting 

oX: Wh(ih) -----+ Wh(L) (30) 

of Tin (8). Hence T and oX are isomorphisms since we show in (12.9) below that A 
is surjective. For this we need the following lemma. q.e.d. 

(12.8) Lemma. Let L be a finite dimensional V-complex in K and let A = E;; 
with n ~ 1 be an n-sphere in C given by a : D ---+ Lo with DE V. Hence A is an 
n-fold suspension in C and we can consider the map 

where a : A ---+ L is in C. Then f is a simple homotopy equivalence in K reI L. 

Proof. We have A = ED Un Lo and 

(1) 

We consider the mapping cylinder N f given by the push out 

]1: A V L ~ ho (A V L) = hoA V hoL ----+ Nf 

io r r jo (2) 

AVL f AVL ----+ 

We want to show that the inclusion]1 : A V L ---+ Nf is given by a deformation 

h : A V L n- Nf relL. (3) 

This yields the proposition. 
Let g be the restriction of f to B = ED and let P'D = P and QD = Q as in 

(4.5). Then g is given by the composite 
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I< 

g: B ~ PUaQ BUDB ~AVL. (4) 

Here 7r is the quotient map in (2.1) (8) and b is the restriction of a. We consider 
the push out 

(5) 

Then we have by diagram (2) 

(6) 

Since the projection haL ---> L is a collapse reI ilL we see that (3) follows from an 
expansion 

(7) 

Using (4) we see that N is also given by the push out 

ID(B) ~ ID(P Ua Q) ------t N 

(8) 

Q ~L 

Hence (7) follows from an expansion 

(9) 

Using K, in (4.5) we see that {) c Q is an expansion. Hence by (7.6) or (6.6) we see 
that 

(10) 

is an expansion. Moreover by (7.2) or by (6.5) we see that 

(11) 

is an expansion. Now (10) and (11) together yield (9) and hence (7) and (3) are 
proved. q.e.d. 

(12.9) Lemma. ). in (12.7) (8) is surjective. 

Proof. Each element [K, L] E Wh(L) is represented via (9.1) by a V-pair (K, L) 
which is normalized and in simplified form. We show that there is a V-pair (Kh' L) 
with 

)'(h) = [Kh' L] = [K, L]. (1) 
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Since (K, L) is in simplified form and normalized we have spheres A = E~ and 
B = E~ in C and a map 

g:A--+BVL inC (2) 

such that K = Cg is the mapping cone of 9 in C. Since L --+ K is a homo­
topy equivalence in K there exists a retraction r : K --+ L which shows that the 
composite 

(3) 

is homotopic to O. Here b = riB is the restriction of the retraction r. We have 
the sum decomposition 

g=h+iLa (4) 

where a E [A, L] and h E [A, B V Lh- This is clear since we have the split short 
exact sequence 

o --t [A, B V Lh --t [A, B V L] --t [A, L] --t O. 

By the assumption on a homological cofibration category in (V.l.1) we know that 
h is a partial suspension. Now (3) and (4) show 

0= (b, l)*g = (b, l)*(h + iLa) = (b, l)*h + a 

so that 

and hence 

On the other hand since h is a partial suspension we have 

(iB - iLb, idh = (iB' iL)h - (iLb, iL)h 

= h - iL(b, l)h. 

This shows that 

9 = (iB - iLb, iL)h 

and hence we have the push out diagram 

Kh = Ch -----+ Cg = K 

T T 
BVL ~ BvL 

(5) 

(6) 

(7) 

(8) 

(9) 

where b = (iB -iLb, iL)' Here it is sufficient to consider homotopy classes h, 9 since 
we can use (7.12). Now lemma (12.8) above shows that b is a simple homotopy 
equivalence under L. Hence by (7.11) also the map Kh --+ K in (9) is a simple 
homotopy equivalence relL. Therefore (1) holds and the proof of (12.9) is complete. 
q.e.d. 
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