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Preface

The classical formulation of homology theory is based on the notion of ring and
module or more generally on abelian categories. The homology that one considers,
however, often comes from a group, or a Lie algebra, or a topological space, etc.
which are non-abelian objects. Therefore a general treatment of homology should
derive the abelian concept of homology from non-abelian data.

The notion of homology emerges in this book from a theory of cogroups or more
generally from a theory of coactions. Such theories arise frequently in algebra and
topology. For example, most algebraic objects like groups, algebras, Lie algebras,
etc. are models of theories of cogroups. Moreover, each homotopy theory contains
theories of coactions. A “theory of coactions” is a very general concept related
to notions in the literature like near ring or Malcev variety. Nevertheless it has
exactly those properties which are needed to obtain a homology theory suitable
for obstruction theory.

Classical obstruction theory relies on the properties of CW-complexes. Here we
will show that fundamental results on CW-complexes have generalizations in the
realm of categorical algebra. For this we associate to a theory T of coactions the
notion of a T-complex in a cofibration category which is the categorical general-
ization of a CW-complex.

We present a homology and cohomology theory for T-complexes which em-
bodies numerous homology theories in various fields of algebra and topology. For
example, by suitable specialization one obtains the homology of groups, the homol-
ogy in a variety of groups, the Hochschild homology of an algebra, the homology
of a Lie algebra, the homology of a topological space, the Bredon homology of a
G-space where G is a group, the homology theory for diagrams of spaces, the ho-
mology theory for controlled spaces, or the homology theory for compactifications,
and many more examples. All these examples are homology theories associated to
theories T of coactions and T-complexes.

The book consists of two parts. The first part (Chapters A, B, C, D) furnishes
a long list of explicit examples and applications in various fields of topology and
algebra. The second part (Chapters I, ..., VIII) develops the axiomatic theory of
combinatorial homology and homotopy.

The unification in this book possesses all the usual advantages. One proof
replaces many different proofs in all such fields. In addition, an interplay takes
place among the various specializations, which thereby enrich one another. The
unified theory also applies to various new situations. Moreover, all definitions,
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proofs and results in the second part use a categorical language, so that by a
duality which reverses the direction of arrows one obtains the corresponding dual
definitions, proofs and results, respectively.

May 1998

H.-J. Baues
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Leitfaden

The main concepts studied in the axiomatic theory of Part 2 are given by the
following list. We start with a

theory of cogroups T, or a (1.1.9)
theory of coactions T. (I.1.11)

All the results in Chapter I, IT and in VII, §3 deal with properties of T. This is
pure categorical algebra. We derive from T the

enveloping functor U : Coef — Ringoids (I1.5.11)

which is needed in all chapters. In order to introduce homotopy theory we recall
from Baues [AH] some properties of a

coftbration category C, or an (IIL.1.1)
I-category C. (1IL.7.1)

A T-complex can be defined in a
cofibration category under T (Iv.2.1)
and homology of a T-complex can be obtained in a
homological cofibration category under T. (V.1.1)

Chapter IV deals with cofibration categories under T; in particular, we discuss the
Whitehead theorem, cellular approximation, and the Blakers-Massey property in
such categories. If the Blakers-Massey property holds then one obtains a homo-
logical cofibration category under T and all the results of Chapters V, VI, VII are
available.

In particular, we prove the following results in a homological cofibration cate-

gory:

— definition of homology and cohomology in terms of a chain functor
— obstruction theory for the extension of maps

— Whitehead’s exact sequence for the Hurewicz homomorphism

— homotopy lifting property of the chain functor
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— model lifting property of the twisted chain functor

— homological Whitehead theorem

— obstruction theory for the realizability of chain complexes and chain maps
— Hurewicz theorem

— Eilenberg-Mac Lane complex and Quillen (co-) homology

— finiteness obstruction theorem of Wall

Finally in Chapter VIII we deal with Whitehead torsion. For this we choose a
class of discrete objects D (VIL.1.1)
in an I-category C and we describe the properties of (C, D) which define a
cellular I-category (C, D). (VIIL5.1)
The geometric Whitehead group can be defined in such an I-category. Moreover
in a
homological cellular I-category (C,D) (VIIL.12.3)
the geometric Whitehead group coincides with the algebraic Whitehead group.
Here the algebraic Whitehead group is defined in terms of the enveloping functor U
studied in Chapter I. The finiteness obstruction theorem also uses the enveloping
functor U, for the definition of a reduced projective class group.
We point out that all the results above are proved in a new way since we do

not use the universal covering of a CW-complex which was of crucial importance
in the proofs of J.H.C. Whitehead.



Fields of Application

The results of the axiomatic theory in Part 2 can be applied in many different
areas of algebra and topology. We here describe various fields of application, some
of which already have been worked out in the literature. The theory was designed
to cover all these specializations. It is worth while to formulate in each such field
all the results which are implied by the axiomatic theory. We give various hints in
this respect in the text. A complete discussion of such applications in the context
of the abstract results in Part 2 was avoided in order not to obscure the axiomatic
theory.

For the convenience of the reader we describe explicit examples and applications
in the introductory chapters A, B, C and D of Part 1. These chapters can be read
without knowing the results and notation of the general theory.

The first two chapters I and II of Part 2 can be applied for all theories of
coactions and theories of cogroups. For example,

(1) varieties of groups, or
(2) algebras, commutative algebras, Lie algebras, and many other kinds of algebras
defined by operads

give rise to theories of cogroups. Also
(3) groupoids

give rise to theories of coactions, see (1.2.11). Moreover, in each homotopy theory C
the homotopy category of suspensions termed susp(x) is a theory of cogroups and
the homotopy category of x-cones termed cone(x) is a theory of coactions; see
(I.2.4) and (I1I, §6).

The chapters 111, ... , VIII of Part 2 deal with complexes in cofibration cate-
gories. There are many different homotopy theories which have the properties of
a cofibration category, in particular each Quillen model category. We are mainly
interested in the homotopy theories of

(4) topological spaces,
(5) simplicial objects in some category like (1) and (2),
(6) differential algebras of some kind like (2).

We also consider for a small category A the category of

(7) A-diagrams in a category C like (4), (5), (6)
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which are functors A — C. Morphisms are natural transformations of such func-
tors. If A is given by a discrete group G then (7) is the category of G-equivariant
maps between G-objects in C. Moreover, if G is a topological group we have the
category of

(8) G-spaces

which leads to the homotopy theory of transformation groups. We can put re-
strictions on the maps in the categories above and again obtain new homotopy
theories. For example, we may consider

(9) topological spaces and compact maps,

(10) topological spaces with some control (for example, bounded control or con-
tinuous control, etc.),

(11) shape theory.

Again we can consider A-diagrams in (9) or (10) and the theory of transformation
groups for (9) and (10), respectively.

One important feature is also the possibility of relativization. In fact, given a
homotopy theory C and an object D in C then also the category

(12) CP of objects under D in C

is again a homotopy theory. We can apply this to all theories C in (4), ..., (11)
above.

In the literature there are many further examples of homotopy theories. Most
of them are candidates for the application of the abstract theory in this book. In
particular, the recent

(13) “motivic homotopy theory”

of Morel-Voevodsky [HC] will lead to applications in algebraic geometry. Moreover,
the homotopy theory of

(14) resolutions of spaces

due to Dwyer-Kan-Stover [E?], [HG], Blanc [AI] and Goerss-Hopkins [RM] is a
wonderful field of application for the methods and results of this book; see Chap-
ter D.

This list, which is by no means complete, shows the wide range of different fields
to which the theory of this book can be applied. It also shows the necessity of an
axiomatic approach which separates a result from the specific environment where
the result was proved for the first time. We consider classical and fundamental
results of homotopy theory and we characterize axiomatically the assumptions
under which such results hold. This leads to the concepts in the Leitfaden above.
The non-axiomatic approach would try to prove the results in each case again and
again.

For example, the theorem on Whitehead torsion was proved in the following
categories:

a) for topological spaces by J.H.C. Whitehead [SH], Stocker [W] and Cohen [C],
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b) for G-spaces by Liick [TG],

c) for topological spaces and compact maps by Siebenmann [S] and Farell-
Wagoner [S],

d) for bounded controlled spaces by Munkholm-Anderson [B].

All these cases a), b), ¢), d) are specializations of the general result in (VIII,
§12) below which holds in any homological cellular I-category. Here the axiomatic
approach has a further advantage since it clarifies the definition of the algebraic
Whitehead group. We give a definition which is valid simultaneously for all cases
a), b), ¢) and d). The reader may compare the complicated definitions of algebraic
Whitehead groups of Liick [T'G], Siebenmann [S] and Munkholm-Anderson [B].

Similar remarks hold for the finiteness obstruction theorem in (VIII, §2) or
for the homological Whitehead theorem in (VI, §7) which was recently proved for
diagrams of spaces by Moerdijk-Svenson [D].

Concerning the homotopy theory of simplicial objects we point out that André
[HS] and Swan [HA] use a kind of T-complex to define André-Quillen homology,
which is a special case of (C, T)-homology in (VI, §11).

The reader will find many further examples which connect the general theory
in this book with the literature.

We point out that there are numerous results in this book which are new
even if one specializes them, for example, to G-spaces in (8) or to other fields of
application (4) ... (14). Already the specialization to spaces under D in (12) in
the category of topological spaces leads to new and interesting facts in ordinary
topology; compare §1 in Chapter A.



Part I

Examples and Applications



The axiomatic theory of Part 2 is based on a theory of coactions which is
embedded in a homotopy category C/~. Here C is an abstract category in which
“homotopies” are defined satisfying suitable axioms. For example, C is a category
of cofibrant objects in a Quillen model category. In the theory of Chapters I, ... ,
VIII in Part 2 we describe the notions and results concerning the combinatorial
foundation of homology and homotopy.

In the following chapters A, B, C, D we consider the specialization of the
axiomatic theory for various examples in topology and algebra. We discuss only
the basic notation and results for these examples. This can be understood easily
without knowing the axiomatic theory.

The reader will benefit from the presentation of the examples. It is useful to
compare such examples in order to visualize the abstract theory and to clarify the
motivation for the various abstract notions.



Chapter A: Examples and Applications
in Topological Categories

In this chapter we describe the leading examples of combinatorial homology and
homotopy theory which are well known fields of algebraic topology. We consider
the homotopy theory of spaces, diagrams of spaces, spaces with a topological group
of transformations, and spaces controlled at infinity. These examples are discussed
in a highly parallel fashion so that the underlying abstract theory is a shining
achievement.

1 Homotopy Theory of Spaces Under a Space

Ordinary homotopy theory is concerned with the category Top of topological
spaces and (continuous) maps. Let

I=1[0,1CcR (1.1)

be the unit interval of real numbers. Then a homotopy H : f ~ g of maps f,g :
X —Yisamap H : I x X — Y satisfying Hy = f and H; = g with Hy(z) =
H(t,z) fort € I,x € X. Here I x X is the topological product of the spaces I and
X . The relation of homotopy is an equivalence relation so that the set of homotopy
classes

[Xa Y]Q = Top(X, Y)/'Z (12)

is defined. [X,Y]? is the set of morphisms X — Y in the homotopy category
Top/~. Homotopies H as above are also called free homotopies or homotopies
relative the empty space (). They have the disadvantage that they are not com-
patible with base points and therefore free homotopies are not suitable for the
definition of the fundamental group and homotopy groups of a space. In order
to obtain such groups one has to consider homotopies relative a point or more
generally homotopies relative a non empty space D.

We choose a topological space D which may be any space in the category Top.
As important special case D = x is a point or D is a discrete space. The results
achieved below for D = x are well known and classical though for an arbitrary
space D some of the results seem to be new.

Consider the homotopy theory in the category

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999



4 Chapter A: Examples and Applications in Topological Categories

C = Top” (1.3)

of spaces under D. Objects in C are maps D — X in Top and morphisms [ are
maps under D, i.e. commutative triangles in Top

X/L\>Y

A homotopy H : f ~ g rel D of maps in C is a homotopy relative D; this is
a homotopy for which H; is a map under D for all ¢t € [0,1]. If D — X is a
cofibration in Top we write

[(X,Y])P =C(X,Y)/~rel D (1.4)
for the set of homotopy classes relative D. Let
C.= Topf:D C Top? (1)

be the full subcategory of Top®” for which the objects are cofibrations D ~— X in

Top. Here cofibrations in Top are defined by the homotopy extension property;
see Baues [AH]. Then homotopy rel D is a natural equivalence relation on Top?
so that the homotopy category

C./~ = Top? /~ rel D (2)

is defined. If D = x is a point this is the homotopy category of “well pointed”
spaces. The set of morphisms X — Y in C./~ coincides with [X,Y]P above.
A homotopy type under D is a class of isomorphic objects in C./~. Homotopy
relative D is also defined by the cylinder object I(X, D) in Top? which is given
by the push out in Top

[0,1] x X —— I(X,D)
I I
0,1]xD —*— D

where pr is the projection. (Compare § 7 of chapter III below.)
Recall the following notation on spheres and balls. Let R**! be the Euclidean
space with the norm || — ||. Then the Euclidean (n 4 1)-ball is the subspace

B™ = {z ¢ R""!, ||z|| <1} of R™*L.

The Euclidean n-sphere is the subspace S” = {z € R™*!,||z|| = 1} which is the
boundary of the Euclidean (n + 1)-ball. A sphere S™ is a space homeomorphic to
the S™ and a ball B"*+! is a space homeomorphic to the Euclidean ball B"*!. The
boundary of B™*! is an nm-sphere S™. For example the interval I is a 1-ball and
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also the cube I™*! (given by the product of n + 1 intervals) is an (n + 1)-ball. We
choose for each sphere S™ a basepoint * so that we have

€ S"c B" forn >0. (1.5)

We say that a space Y is obtained from a space X by attaching (n 4 1)-cells if a
discrete set Z together with a push out diagram

ZxB"W! —— Y

U U (1.6)

Zxsh —L . x
in Top is given. Here f is called the attaching map. The disjoint union A Il B is
the coproduct of spaces A, B in the category Top. Clearly for a discrete set Z the
product

ZxA:HA

z€Z

is such a disjoint union of spaces.

We now recall the appropriate notion of CW-complex in the category of spaces
under the space D. A (relative) CW-complex (X>¢, D) is given by a sequence of
inclusions

DcXocX;C---CXpCXny1C-.. (1.7)

Here X is the disjoint union of D and a discrete set and X1 is obtained from
the n-skeleton X, by attaching (n + 1)-cells, n > 0. We also write X = lim(X>)
for the direct limit of the sequence and call (X, D) a relative CW-complex. The
dimension of (X, D) is defined by dim(X, D) < n if X = X,,. We say that (X, D)
is reduced if Xo = D, that is, if the discrete set Xo — D of 0-cells in X is empty.
Moreover (X, D) is normalized if all attaching maps carry base points * of the
sphere S™ to the 0-skeleton Xg. Clearly each 1-skeleton X; is normalized since X
is obtained by attaching 1-cells to Xj.

(1.8) Lemma. Let (X, D) be a relative CW-complex. Then there ezxists a nor-
malized relative CW-complex (Y, D) together with a homotopy equivalence Y — X
under D. If mgD — moX is surjective then (Y, D) can be chosen to be normalized
and reduced.

Proof. The proof uses standard arguments; compare the proof of (2.9) below for
A-spaces which yields (1.8) as a special case if A = x is the trivial category.

We now consider homotopy groups of a space A. Let mo(A) be the set of path
components of A with 0 € mo(A) given by the basepoint ag € A. For n > 1 the
homotopy groups are given by the set of homotopy classes relative *
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(A, a0) = [S™, A]". (1.9)

For a pair of spaces (A, B) with ag € B C A we also obtain the relative homotopy
groups

7Tn+1(A7 B, aO) = [(Bn+17 Sn)v (Av B)]*

defined by the set of homotopy classes relative * of pair maps (B"*!, S") — (A, B).
A weak equivalence in Top” is a map f : X — Y under D which induces
isomorphisms between homotopy groups

fe 7Tn(X7 aO) = Wn(Y, fao)

for all ag € X and n > 0. It is well known that for each space Y under D there
exists a relative CW-complex (X, D) together with a map X — Y under D which
is a weak equivalence. We call (X, D) a CW-approximation of (Y, D). This implies
that the localized category Ho(TopD ), in which weak equivalences are inverted,
admits an equivalence of categories

Ho(Top”) = CW? /~ rel D. (1.10)

Here CW? is the full subcategory of Topf consisting of relative CW-complexes.
Using the equivalence (1.10) each homotopy functor defined on relative CW-com-
plexes (like homology and cohomology in (1.26), (1.27) below) yields a homotopy
functor on Top®.

A groupoid G is a category in which all morphisms are isomorphisms. We write
a € Ob(G) or a € G if a is an object in G and for a,b € Ob(G) let G(a,b) be the
set of morphisms from a to b. Then G(a) = G(a,a) is a group, the vertex group
of G at a.

For each space A we have the fundamental groupoid I7(A) = ITA. Objects in
IT A are the points of A and morphisms are homotopy classes of maps f : [0,1] —
A rel S° = {0,1} with £(0) = a, f(1) = b. Such a morphism is also called a track
t:b— a € ITA. The vertex group IT(A)(ag) coincides with the fundamental group
m1(A, ag). If D is a subspace of X we write

II(X,D)C IIX

for the full subgroupoid of I7X consisting of objects which are points in D. We call
II(X, D) the restricted fundamental groupoid. If mgD — mpX is surjective then
the inclusion IT(X,D) C IIX is an equivalence of categories. We shall use the
assumption on the surjectivity of moD — mwyX frequently since this implies that
each path component of X contains a point in D.

Let Ab be the category of abelian groups. For a category G let G°P be the
opposite category. Then the homotopy groups (1.9) and (1.10) yield canonical
functors (n > 2)

{ Tn(A) : (ITA)°° — Ab 111)

n+1(4, B) : (ITB)°® — Ab
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Here 7,(A) carries ag € A to the abelian group m,(A,ap) and carries a track
t 1 by — ap in ITA to the induced map t* : 7,(A4,a0) — mn(A,by) which is
an isomorphism. The element t*{g} with {g} = {g : S — A} € m,(4,a0) is
determined by the homotopy extension property of the cofibration * — S™. See
Baues [AH] IL.5.7. In a similar way the functor m,41(A, B) in (1.11) is defined.

A functor

M :G® - Ab (1.12)

is called a (right) G-module. Hence M is a contravariant functor from G to Ab.
If G is small (i.e. if the class of objects in G is a set) then such G-modules are the
objects of the abelian category Mod(G). Morphisms are natural transformations.
Hence by (1.11) we see that homotopy groups m,(A) and m,(A, B) are (IIA)-
modules and (IT B)-modules respectively.

Next we consider the functorial property of the fundamental groupoid. For this
let Grd be the category of small groupoids. Morphisms are functors. For a groupoid
G let Grd(G) be the following category. Objects are functors G — H between
groupoids which are the identity on objects (hence Ob G = Ob H). Morphisms are
functors H — K under G that is, commutative triangles in Grd:

G
H—K
For each cofibration D — X in Top(? we obtain the object
o(X) = (II(D) — II(X, D))

in Grd(I1D) where II(X, D) is the restricted fundamental groupoid of X. This
defines the coefficient functor

¢: Top? /~rel D — Grd(IID). (1.13)

If D = * is a point x then Grd(IT*) = Gr is the category of groups. Moreover the
coefficient functor ¢ for D = x is just the functor which carries a pointed space X
to its fundamental group 7; X. In this sense the coefficient functor c is a canonical
generalization of the fundamental group.

For each small groupoid H we have the abelian category Mod(H) of H-
modules. We now define the full subcategory

mod(H) C Mod(H) (1.14)

consisting of free H-modules. For this we use the category Setoyz) of sets over
Ob(H); objects are functions o : Z — Ob(H) in the category Set of sets and
morphisms f are functions over Ob(H), i.e. commutative triangles in Set
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Z——>Z’

N

Ob(H)
We have the forgetful functor
¢ : Mod(H) — Seton(m)
which carries F': H — Ab to the function
f:z2= ][] F(a)— Ob(H)
a€Ob(H)

with f(z) = a for z € F(a). Let L(H) be the left adjoint of ¢ which carries a
function « : Z — Ob(H) to the H-module L,(H) € Mod(H). We call L,(H)
the free H-module with basis a. Let mod(H) be the full subcategory of Mod(H)
consisting of all free G-modules L, (H) with o : Z — Ob(H) an object in Setoy 5.
A further description of L,(H) is obtained as follows. Let Z[H(—,a)] be the H-
module which carries b € Ob(H) to the free abelian group generated by the set
H(b,a). Then L, (H) is the direct sum

@ ZIH (-, a(z))]
z2€Z

in the abelian category Mod(H).
For a groupoid G and H € Grd(G) we have Ob H = Ob G and hence the class
of objects of mod(H) admits the bijection

Ob mod(H) = Ob SetOb(G)

which carries L,(H) to . Moreover each map u : H — K € Grd(G) yields a
canonical additive functor

ux : mod(H) — mod(K) (1.15)

which carries Lo (H) to Ly(K) and for which the following diagram in Mod(H)
commutes with a, 3 € ObSetoy,(q),

Lo(K) —*— Ls(K)

Here a K-module is an H-module via u : H — K. Moreover u, is the unique map
which is the identity on the basis a : Z — Ob(G). The functor u, in (1.15) carries
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the morphism a in mod(H) to the morphism a, in mod(K) given by the diagram
above.

A ringoid is a category in which all morphism sets are abelian groups and in
which composition is bilinear. An additive category is a ringoid in which finite
sums (coproducts) exist. A ring is a ringoid with exactly one object. By (1.14) we
obtain a “functor” which carries H € Grd(G) to the additive category mod(H)
and which carries u: H — K € Grd(G) to u, in (1.15). Here, however, mod(H)
is not a small category. We therefore choose a subset

A cC Ob SetOb(G) (1.16)

that is, A is a set of elements o where o : Z, — Ob(G) is a function on a set Z,.
Let Ringoids be the category of small ringoids and additive functors. Then we
obtain the enveloping functor

U4 : Grd(G) — Ringoids (1.17)

which carries H to the full subcategory of mod(H) consisting of free H-modules
L,(H) with a € A. Moreover Uy carries u : H — K € Grd(G) to the induced
map u, : U4(H) — U4(K) which is the restriction of u, in (1.15).

(1.18) Ezample. If A in (1.16) is a set which has only one element o, 4 = {a},
then U4(H) is a ring. In particular we consider the case that G = * is the trivial
groupoid (consisting of one object * and one morphism 1,) and that A consists of
the element o which is the identity of Ob(G) = *. Then U4 in (1.17) yields as a
special case the enveloping functor

U : Gr — Rings

Here Gr is the category of groups which coincides with Grd(*) and Rings is
the category of rings. Moreover U carries the group H to the group ring Z[H].
Therefore the enveloping functor U4 in (1.17) is a canonical generalization of the
well known group ring functor H — Z[H].

It is possible to describe free H-modules in mod (H) by use of homotopy
groups. Let G = IID be the fundamental groupoid of the space D. Then any
function « : Z — D = Ob(G) where Z is a discrete set yields the following push
out diagram in Top

Zx8" ——F 57
u U (1.19)

Zxx=27 —2 5 D

We call S? the n-dimensional spherical object in TopCD associated to a. The pro-
jection Z x S™ — Z induces the retraction 0 : S — D. Moreover S for n > 1 is
a cogroup object in Top” /~ which is abelian for n > 2. For objects D — X and
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D — Y we define the sum X VY in Top? by the push out of X « D — Y. In
particular we may consider the sum S7} V X and the retraction map

0,1): ShvX - X
which is a map in Top? . For a basepoint ag € D we define
ma(Si V X, ag)2 = kernel{(0,1), : m,(S% V X, ap) — mn(X, a0)} (1.20)

Using (1.11) each track ¢t : b — ag € IIX between points ag,by € D yields an
induced map t* : m,(S?V X, a0)2 — 7, (S?V X, bg)2. This shows that (1.20) defines
a I1(X, D)-module 7,(S% V X) which carries ag € D to the abelian group (1.20),
n > 2.

(1.21) Proposition. For H = II(X,D) and n > 2 the free H-module L,(H)
coincides with the I1(X, D) module IT,,(S2VX ). Moreover given amap f : X — Y
in Top? which induces u : H = I1(X,D) — K = II(Y, D) the following diagram
commutes; see (1.15).

Lo(H) mn(STV X)a
” l(lvf)*
La(K) ———— mn(S"V Y)s

A relative CW-complex (X, D) with G = II(D) which is reduced and normal-
ized yields for n > 1 functions

an : Zn — D = Ob(G) (1.22)

where Z,, is the set of n-cells in X — D. In fact, each n-cell e € Z,, has an attaching
map which carries the basepoint * € S"~1 to a point a,(e) € D. We point out
that the restricted fundamental groupoid

H = II(X, D) = II(X,, D) (1.23)

depends only on the 2-skeleton of X. This follows from the cellular approximation
theorem. The attaching map of 2-cells yields a map Jx : S;Q — X3 which induces

dx : (S}

M,D) — II(X1, D) € Grd(G). (1.24)
This is a presentation of H in the sense that
H = I(X,, D) /N (image(9x))

Here N (image(0x)) denotes the normal closure of image (0x ). These facts are well
known if D = % is a point. Since (X1, D) is reduced we see that X; is obtained
from D by attaching 1-cells. This implies that I1(X1, D) is the free groupoid under
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IID. See (1.2.10) below. This free groupoid admits a coaction induced by the
coaction map

p:X: — X1 VS, in Top? /=~ (1.25)
which is defined on each 1-cell by the map

obtained from the canonical homeomorphism [0,1] & [0, 2] of intervals in R. Here
1 is the basepoint of S° = {0,1} ¢ B* = [0, 1].
A chain complex C, in an additive category A is a sequence of maps

d d
c— Cpy1 — Cpy, — Cpy — ., n € 7,

in A with dd = 0. Chain maps and homotopies of chain maps in A are defined in
the usual way.

(1.26) Definition. Let (X, D) be a relative CW-complex which is normalized and
reduced so that a,, : Z, — D is defined for n > 1; see (1.22). Let G = IID and
let H = II(X2, D) be the restricted fundamental groupoid of X5. Then there is a
well defined chain complex (see (1.27))

{C’*(X,D) in mod(H) with )

Cn(X,D) =Ly, (H) forn>1

and C,(X,D) = 0 for n < 0. Moreover a cellular map f : (X, D) — (Y, D) under
D induces a map

w: H=1(Xs,D)— K =1I(Y2,D) € Grd(G)
and a chain map
fe 1 u(Cu(X, D)) — C(Y, D) (2)
in mod(K). Here we use u, in (1.15). If D is a discrete space we define

Oéo:ZOZD

by the identity of D; in this case there is a well defined augmented chain complex

{ C.(X) =augC,(X,D) in mod(H) with )

Cn(X) =Ly, (H) forn>0

and C,(X) =0 for n < 0. A cellular map f as above induces f, on C,(X) as in (2)
such that f, is the identity in degree 0. If D = x is a point then C,(X) coincides
with the cellular chain complex of the universal covering of the space X. We get
C.«(X, D) by the general procedure in (V, §2). The augmentation functor aug is
described in (II, §6). In (1.27) we recall the classical method to obtain C,(X, D).
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If (X, D) is any space under D for which mgD — mpX is surjective we choose
a normalized reduced CW-approximation (Y, D) of (X, D). Hence in this case we
can define the chains of (X, D) by the chains of (Y, D), that is:

{ C.(X,D) = C,(Y, D) @

C.(X) =C.(Y)

This yields below the notion of homology and cohomology of (X, D) which by
standard arguments does not depend on the choice of (Y, D).

(1.27) Remark. Let (X, D) = (X>1, D) be a relative CW-complex as in (1.26) and
assume for all v € D the universal covering space p, : X(v) — X exists and let
Xi(v) = (py) "' X; for i > 0. Then the chain complex C,(X) in (1.26) satisfies

Co(X)(v) = Hn (X (v), Xn-1(0)) ()

where the right hand side is the singular relative homology. Equation (*) is an
isomorphism of H-modules with H = II(X, D) and (*) is natural with respect to
cellular maps X — Y under D. The isomorphism (*) follows from (5.2) in Brown-
Higgins [CC]. In fact, we consider first the ‘crossed complex’ of (X>1, D) given by
the relative homotopy groups

Tn(Xny Xn-1,v), n>2, vED (**)

and the groupoid IT(X;, D). Then we apply the functor A of Brown-Higgins [CC]
and we get a chain complex of H-modules which coincides with C,(X) in degree
> 1. If D is discrete then A applied to (**) yields the augmented chain complex
C.(X). In this book we do not use (*) or (**) for the definition of the chain
complex in (1.26) since C\(X>1) is defined for any T-complex X>;1 in (V, §2).

Using the chain complexes C.(X,D) and C.(X) in mod(H) with H =
II(X, D) in (1.26) we obtain for each object M of Mod(H) the chain complexes
of abelian groups

Hom(C.(X,D),M) and Hom(C.(X), M).

Here Hom denotes the set of morphisms in the abelian category Mod(H). Hence
the cohomology with coefficients in M

{H"(X,D;M) — H" Hom(C*EX7D)vM) (1.28)

H™(X; M) = H"Hom(C\(X), M)
is defined.

Remark. Given a space X and any IT X-module M then the singular cohomology
H™(X, M) with local coefficients M is defined, see for example Spanier [AT]. Using
the restriction M of M given by the inclusion H = I1(X, D) C IIX we get the
natural isomorphism
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H™(X,M)=H"(X, M)
where the right hand side is defined by (1.28).
On the other hand we can define the homology
H,(X,D) = H,(C.(X, D)) (1.29)

of the chain complex C.(X,D) in the abelian category Mod(H) with H =
II(X, D). Hence H, (X, D) is an H-module, i.e. an object in Mod(H).

(1.30) Notation. Each H-module M yields a mod(H )-module
Hom(—, M) : mod(H)°® — Ab

which carries L, (H) to Hom(Lq(H), M). We denote Hom(—, M) as well by M.
In particular H, (X, D) in (1.29) yields the mod(H)-module

H,(X,D)=Hom(—,H,(X,D)): mod(H)®® — Ab

which is the homology of (X, D) considered in (V.3.3) since we have for C, =
C.(X, D) the canonical isomorphism

H,Hom(Ly(H),C\) = Hom(L,(H), H,C.).

We now are ready to formulate the following homological Whitehead theorem
for relative CW-complexes which is a special case of (VI, §7).

(1.31) Theorem. Let f: (X,D) — (Y, D) be a cellular map between normalized
reduced relative CW-complexes in Topf. Then f : X — Y s a homotopy equiv-
alence under D (i.e. an isomorphism in the homotopy category Top?/f:rel D) if
and only if the coefficient functor c induces an isomorphism u = c(f),

w: H = II(X,D) = K = II(Y,D) € Grd(G)
with G = II(D) and one of the following conditions (i), (ii), (i) is satisfied:
(i)  f«:u(Ciu(X, D)) — Ci(Y, D) is a homotopy equivalence of chain complexes
in mod(K), see (1.15).
(it) fv : Ho(X,D) — u*H,(Y,D) is an isomorphism of H-modules (or right
mod (H)-modules) for n > 1, see (1.30).
(i11) For all K-modules N € Mod(K) the induced map
f* H"(Y,D; N) — H"(X, D;u*N)

is an isomorphism for n > 1; see (1.28).
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Part (iii) of this theorem is well known and for D = x also part (i) and (ii) are
well known.

We use homology (1.28) and homotopy groups (1.11) for the following cer-
tain exact sequence of J.H.C. Whitehead . Again let (X, D) be a normalized re-
duced relative CW-complex or more generally let (X, D) be a pair of spaces of
which myD — 7w X is surjective. Let H = II(X, D) be the restricted fundamental
groupoid. Then homotopy groups yield the H-modules (resp. mod(H)-modules;
see (1.30))

m(X): H® — Ab, n > 2,
Ir,(X,D):H® - Ab, n>1,

with m,(X)(v) = 7, (X,v) for v € D = Ob(H). Moreover I, is defined for n > 3
by skeleta, that is

Fn(X7D)(v) = image{ﬂ-n(Xn~1a'U) - 7rn()(nav)}'

For n = 1,2 the definition of I, is more complicated, see (V.5.3) and (II, §2). As
a special case of (V.5.4) we get

(1.32) Theorem. Let (X, D) be a pair of spaces for which moD — moX is sur-
jective and let H = I1(X, D). Then the following sequence is an exact sequence of
H-modules (resp. right mod(H)-modules)

— T,(X, D) — m(X) 2% H,(X,D) — Ih_y(X,D) — ...
— Iy(X, D) — ma(X) -2 Hy(X, D) — (X, D) — 0

Moreover this sequence is natural in (X,D) € Top®. The homorphism h is the
Hurewicz homomorphism.

If D = % then I} and Iy are trivial and in this case the theorem describes
exactly J.H.C. Whitehead’s result [CE].
The cohomology groups with local coefficients
H"Y(X,D;u*n,Y), and
H"*N(X, D;u*I,(Y, D))
are needed to define various properties of obstruction theory which we discuss in

detail in (V, §4) and chapter VI. For example we get by (V.4.4) the well known
result:

(1.33) Theorem. Let (X, D) be a normalized reduced relative CW-complez and
let f: D —Y be a map in Top which admits an extension g : X,, - Y, n > 2.
Then the restriction g | X,—1 admits an extension g : X,+1 — U if and only if an
obstruction element

O(g| Xn_1) € H"'Y(X, D;u*m,Y)
vanishes. Here u : I1(X, D) — IIY is induced by g.
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We point out that this obstruction theorem requires the use of the restricted
fundamental groupoid which satisfies II(X, D) = II(X2, D) so that the induced
map u is well defined.

There is also an obstruction theory for the realizability of chain maps and
chain complexes described by a tower of categories in (VI, § 5). Moreover there are
the homotopy lifting property of the chain functor and the model lifting property
of the twisted chain functor which have useful meaning for the chain functor in
(1.26); see (VI, §3) and (VI, §8). We cannot describe all the results of this book
in this section applied to the example TopD . We leave it to the reader to give the
appropriate explicit interpretation in TopD of the abstract results of the theory
below. We here discuss only a few examples in order to illustrate the abstract
theory.

As main applications of this book we now discuss special cases of results in
chapter VII and VIII which relate problems of homotopy theory with algebraic
K-theory.

(1.84) Definition. Let D be a space and let A be a set of functions a with « :
Zy — D where Z, is a discrete set. We say that a function ¢ : Z — D is A-finite
if B1,..., Bk € A together with a commutative diagram

-1 Zg,

\ e

of sets are given where x,, is a bijection. Similarly we say that a normalized reduced
relative CW-complex (X, D) is A-finite if all functions o, : Z, — D, n > 1, in
(1.22) are A-finite and (X, D) is finite-dimensional.

(1.35) Examples. A) Let D = x be a point and let A = {1,} be given by the
identity of x. Then (X, «) is A-finite if X is a finite CW-complex.

B) If D is discrete and A = {1p} is given by the identity of D then (X, D) is
A-finite if all path components of X are finite CW-complexes with the same
number of n-cells for n > 1.

Now let (X, D) and (Y, D) be normalized reduced relative CW-complexes. A
domination (X, f,g,H) of Y in Top? is given by maps
Y Lo X %Y inTop?

and a homotopy H : gf ~ 1 relD. The domination has dimension < n if
dim(X, D) < n and the domination is A-finite if (X, D) is A-finite.
As a special case of theorem (VII.2.4) we get:
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(1.36) Theorem. Let (Y, D) be a normalized reduced relative CW-complex with
restricted fundamental groupoid K = II(Y, D). If (Y, D) admits an A-finite domi-
nation in Top? then the finiteness obstruction

[Y]=[C.(Y, D)] € Ko(Ua(K))

is defined where Uy is the enveloping functor in (1.17) and Ky is the reduced
projective class group, see (VII, §1). Moreover [Y] = 0 if and only if there ex-
ists an A-finite normalized reduced relative CW-complex (X, D) and a homotopy
equivalence X — 'Y wunder D.

If D = « is a point this yields a classical result of Wall [FC], [FCII]; compare
the first example in (1.35). If we consider the second example in (1.35) we get a
new result.

The reader might wonder why we have chosen such a general form (using
U 4) for the description of the finiteness obstruction theorem of Wall. In fact, we
describe the result here in the same way as the general result of the abstract theory
which requires the enveloping functor U 4. For A-diagrams of spaces in §2 below
we shall see that the choice of the set A has a significant role. The same type of
remark holds also for the choice of the set D in the next definition (1.37).

We now describe simple homotopy equivalences and Whitehead torsion under
a space D:

(1.87) Definition. Let D be a space (which is allowed to be empty) and let
K = Top/ (1)

be the category of cofibrations under D, see (1.4) (1). Moreover let D be a set of
sets with the property that the empty set () is in D and that the disjoint union
ATl B of A, B € D is again in D. Then each A € D yields the disjoint union

AIID in Top? (2)

which we call a discrete object. Here A has the discrete topology. The most im-
portant example of D is the set of finite sets {1,...,n}, n > 0. A D-complex is a
relative CW-complex (L, D) for which the set Z,, of n-cells in L — D is an element
in D, n > 0. Let R R™™ € R**! be defined by elements (z, . ..,z,) € R*!
with o > 0 and zp < 0 respectively. A ball pair is a tuple (B"! S™, P" Q")
which is homeomorphic to the Euclidean ball pair (see (1.5))

(B™1, 8™, 8" NRYF, Sm N R (3)

Here P" N Q™ = S™ ! is a sphere and we assume that the basepoint of B**! is
an element in P" N Q". For A € D we consider a push out diagram

AxBrtl — L K
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where f is given by a pair map f : (A x P";A x S" 'Y — (L,,L,_1). Then
(K, D) is again a D-complex which we call an elementary expansion of L. Clearly
L C K is a homotopy equivalence under D and we call a retraction r : K — L
an elementary collapse. A simple homotopy equivalence f : L — L’ under D is
obtained by a finite sequence of elementary expansions and collapses respectively.

Let D-cell be the full subcategory of Topf) consisting of finite dimensional
D-complexes (L, D). In (VIII, §8) we define a functor

Wh : D-cell/~ rel D — Ab

which carries (L, D) to the Whitehead group Wh(L, D). As a special case of
(VIIIL.8.3) we get the following result.

(1.38) Theorem. There is a function T assigning to any homotopy equivalence
f Y — L under D between finite dimensional D-complezes Y,L an element
7(f) € Wh(L, D). Moreover 7(f) = 0 if and only if f is homotopic rel D to a
simple homotopy equivalence under D.

The Whitehead group Wh(L, D) can be computed algebraically by the follow-
ing result which is a special case of (VII1.12.7).

(1.39) Theorem. Let (L, D) be a normalized finite dimensional D-complex and
let H = II(L,Lg) be the restricted fundamental groupoid. Then the algebraic
Whitehead group

Wh(H) = Ki*°(Ua(H))/~

is defined. Here A is the set of all functions A — Ly with A € D, the functor Uy
is the enveloping functor in (1.17) and K*° is the “isomorphism torsion group”
in (VIII, § 10). Moreover there is an isomorphism

7: Wh(L, D) 2 Wh(H)

We now consider the speécial case that D = ) is empty and Lg = * is a point so
that H = m; L is the fundamental group. Moreover let D be the class of finite sets
so that U4(H) is the additive category of finite dimensional free Z[r; L]-modules.
In this case the theorems (1.38), (1.39) coincide with the classical results of J.H.C.
Whitehead [SH] on simple homotopy equivalences; compare Cohen [C].

All the results in this section are examples and applications of the results of the
general theory in the chpaters I, ... , VIII below. In order to translate the general
theory to the special homotopy theory in TopD one has to use the following
glossary where on the left hand side we use the notation of the general theory.
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T Category of coactions given by the full subcategory of Top? /~
(I.1.11) of reduced 1-dimensional relative CW-complexes (X1, D). This is
also the category of free groupoids under IID = G. Cogroups in T
are spherical objects S% and the coaction map is given by (1.25).

Twist Category of presentation Ox, generalizes the category of free “pre
(1.3.5) crossed modules”.

Ox Presentation of a groupoid H in Grd(G).

Coef This is a category equivalent to Grd(G). The equivalence carries
(1.4.1) the presentation Ox of H to H.

mod(9x) This is the category mod(H) in (1.14) where Ox is a presentation
(1.5.7) of H. Here we use (1.21).

Ua This is the enveloping functor U4 in (1.17). Here we identify o €
(1.5.11) A with the spherical object SL € T.

(C,T) (Top?, T) is a homological cofibration category if D is non empty.
(V.11) Here T is defined above.

Complex This is the subcategory of Top? consisting of normalized reduced
(Iv.2.2) relative CW-complexes (X>1, D) and cellular maps.

C. This is the chain functor in (1.26).

(V.2.3)

(C,D) Top? is a homological cellular I-category with the cylinder in
(VIIL5.1) (1.4) (3) and the class D of discrete objects in (1.37).

(VIIL12.3)

(O 2% PR Q%) For X in Top? this is the push out of Bx X D Bx D 25 D
(VIIL.4.5) where pr is the projection and B = (B**1, 5%, P* QF) is the ball

pair in (1.37) (3).

It is very useful to have these examples in mind in order to visualize the abstract
and categorical theory in the second part of the book.

2 Homotopy Theory of Diagrams of Spaces

Let A be a fixed small category. For objects a,b € A let A(a,b) be the set of
morphisms (arrows) a — b in A. If C is a category then an A-diagram or an
A-object X in C is a functor

X A% — C, (2.1)

i.e. a contravariant functor from A to C. Let AC be the category of such A-
objects in C; morphisms are natural tarnsformations. An object X in C yields
the constant A-object (also denoted by X) which carries each object in A to X
and each morphism in A to the identity of X. This way we obtain the inclusion of
categories

CCAC
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which carries the object X to the constant A-object given by X.

In particular we need the category A Set of A-sets. We consider Set as a sub-
category of the category Top of topological spaces by taking the discrete topology
of a set. This yields also the inclusion of categories

A Set C ATop (2.2)

where A Top is the category of A-spaces. We say that an object in ASet is a
discrete A-space.

Notice that the notions of coproduct, product, pushout, pullback, colimit, and
limit exist in the category A Set and A Top respectively. They are constructed by
applying these notions objectwise in Set, resp. Top.

For each object a in A we have the A-set

A(—,a) : A°? — Set (2.3)
which carries b € Ob(A) to the set A(b, a) of arrows in A. We call the A-set A(—, a)
an A-point. A coproduct of A-points over an index set M,
ieM
in A Set, is termed a free A-set. Let
Aset C A Set (2)

be the full subcategory consisting of free A-sets.

(2.4) Remark. There is a covariant version of the theory which considers covariant
diagrams A — C and for which A-points in (2.3) are replaced by the covariant
functors A(a, —). Accordingly all definitions and results below have a covariant
analogue.

In this section we describe basic results of homotopy theory in A Top. A
homotopy or more precisely an A-homotopy between A-spaces X,Y is a map

[0,1] x X —Y in ATop (2.5)
where [0, 1] is the constant A-space given by the unit interval [0,1] C R. Equiva-
lently [0,1] x X is the composite of functors

AP X, Top BN Top

where I with I(Y) = [0,1] x Y is the cylinder in Top. Such homotopies are free
homotopies or homotopies relative the empty A-space §). As in (1.3) we have to
consider homotopies relative a non-empty A-space D in order to obtain algebraic
objects like homotopy groups. In particular the case when D is a discrete A-space
is of interest. The example of Or(G)-spaces for a topological group G in the next
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section § 3, however, shows that also the non-discrete case plays an important role.
Let

C = (A Top)? (2.6)

be the category of A-spaces under D. Using the cylinder (2.5) we define cofi-
brations in A Top by the A-homotopy extension property. They yield the full
subcategory

C.,= (ATop)iD (1)

consisting of cofibrations D — X in A Top. Accordingly we obtain the homotopy
category

C./~ = (ATop)?/~ rel D (2)

where homotopy relative D is defined by the cylinder object I(X, D) defined by
the push out in A Top

[0,1] x X —— I(X,D)
| | 3)
0,1xD —*- D

as in (1.4) (3).
We say that an A-space Y is obtained from an A-space X by attaching (n+1)-
cells if a free A-set Z together with a pushout diagram in A Top

ZxBvtl — YV
U U (2.7)
Z x 8™ 4, X

is given. Here S™ and B"'! are the constant A-spaces given by (1.5). A relative
A-CW-complex (X>0, D) = (X, D) is given by a sequence of inclusions

DCcXoCXiC--CXpnCXpp1C-. (2.8)

in A Top. Here X is the coproduct of D and a free A-set and X, is obtained
from X,, by attaching (n + 1)-cells for n > 0. Let X = lim(X ) be the direct
limit of the sequence. We say that (X, D) is reduced if Xo = D and that (X, D)
is normalized if the attaching maps

fo:Zp xS 5 X, (1)

carry Z, X x to Xy, n > 1. Here the free A-set Z,, is called the set of n-cells of the
A-CW-complex (X, D). We point out that for a space U in Top and an A-space
Y we have
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ATop(A(—,a) x U,Y) = Top(U,Y (a)). (2)

Hence the attaching map f, above is for each A-point A(—,a) € Z, defined by
a map S""! — X,,_i(a) in Top which is the attaching map of a generating cell
in the relative CW-complex (X, (a), D(a)). Using such generating cells we see
that obstruction theory for A-spaces X can be described by ordinary homotopy
groups of the spaces X (a),a € Ob(A). This in particular implies that the cellular
approximation theorem holds for A-CW-complexes. The next result is an analogue
of (1.8).

(2.9) Lemma. Let (X,D) be a relative A-CW-complex. Then there ezists a
normalized relative A-CW-complex (Y, D) together with a homotopy equivalence
Y — X in (ATop)? /~ rel D. Moreover if moD — w0 X is surjective then (Y, D)
can be chosen to be normalized and reduced.

Proof. Since the cellular approximation theorem holds we can find homotopies of
attaching maps f, ~ g, where g, carries Z,, x * to Xy. This yields inductively
the A-CW-complex (Y, D). If mpD — mpX is surjective we can choose a path
for each generating 0-cell A(—,a) in X to a point in D. We glue a ball pair
A(—,a) x (B2,8, P,Q) via Q to this path and we collapse P to a point. The
resulting space (Y, D) is a reduced A-CW-complex. q.e.d.

For each A-space X one gets the A-groupoid H = ITX which is given by the
composite of functors

H:A® X Top L Grd (2.10)

Here the functor II carries a space U to the fundamental groupoid of U. We
use the A-groupoid ITX to define the following category |, A IIX which we call
the integrated fundamental groupoid of the A-space X (compare §2 in Moerdijk-

Svenson [D]). The category
[ 1= [ nx 1)
A A

is the integration of H = IIX along A which assembles the diagram of categories
(2.10) into one large category. The objects are pairs (a,z) where a € Ob(A) and
z € X(a) = Ob(I1X)(a). An arrow (a,z) — (a’,x’) between such objects is a pair
(a,t) where o : @ — o’ is an arrow in A and ¢ :  — X (a)(2') € X(a) is an arrow
in ITX (a). Composition is defined in the evident way.

If X is an A-space under D we also obtain the functor H' = II(X,D) :
A°? — Grd which carries a € Ob(A) to the restricted fundamental groupoid
II(X(a), D(a)). We clearly have the inclusion

I(X,D)=H cH=1IX (2)

of A-groupoids which yields the inclusion of integrations along A
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I(X,D)= | Hc | H= [ OX (3)
A e for= |

If the morphism moD — 7 X of A-sets is surjective (that is, if each path component

of X(a),a € Ob A, contains a point of D(a)) then the inclusion is an equivalence of

categories. The assumption that moD — 7y X is surjective will be used frequently.
Homotopy groups (1.9) yield the canonical functor

T (X) : (/A HX)Op — Ab, n>2, (2.11)

which carries (a, ) to m,(X(a),z) and which carries (e, t) to the induced map

K (X (a), X(@)(@)) — ma(X (@), 2)

(X (a'), )
Hence the homotopy group m,X of the A-space X is a f » I X-module in the
category Mod( [, ITX); compare (1.12). In a similar way we see that for a pair
(Y, X) in ATop the relative homotopy group 7,41 (Y, X) is a [, I X-module.
A weak equivalence in (ATop)” is a map f : X — Y under D in ATop which
induces isomorphisms between homotopy groups

fe 2 mn(X(a), a0) = mn (Y (a), fao)

for all a € ObA,ap € X(a), n > 0. It is known (see for example Dror [HH]) that
each A-space Y under D admits a weak equivalence f : X — Y under D where
(X, D) is a relative A-CW-complex termed an A-CW-approximation of (Y, D). It
is easy to show that a weak equivalence f : (X, D) — (Y, D) under D between
relative A-CW-complexes is actually a homotopy equivalence in (A Top)? /~ rel D;
see (IV, §3).

For example, if D = @ is empty and Y is a discrete diagram then an A-
CW-approximation EY of Y yields the classifying space BY = EY/~ where the
equivalence relation on EY is generated by x ~ a*x for @ : a — b in A and
xz € (EY)(b).

The A-CW-approximation yields the equivalence of categories

Ho(ATop)? =5 A-CW?P /~ rel D (2.12)

Here the left hand side is the localization defined by inverting weak equivalences

and the right hand side is the full subcategory of (ATop)?/~ rel D consisting
of relative A-CW-complexes (X, D). The equivalence shows that each homotopy
functor defined on relative A-CW-complexes (X, D) yields a homotopy functor on
(ATop)?. Therefore it is sufficient to define homology and cohomology only for
A-CW-complexes. For an A-groupoid G let AGrd(G) be the following category
which is a subcategory of (AGrd)®. Objects are maps f : G — H in AGrd which
induce the identity

Ob(f) = 1: Ob(G) = Ob(H)
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where Ob : Grd — Set carries a groupoid to its set of objects. Morphisms are
maps in AGrd under G. For each cofibration D ~— X in ATop we obtain the
object

¢(X) = (IID — II(X, D))
in AGrd(I1D). This defines the coefficient functor

¢: (ATop)P /~ rel D — AGrd(IID) (2.13)

For each A-groupoid H we have integration |, » H and the abelian category
Mod( [, H) of ([, H)-modules. We now define the full subcategory

mod( [ 1) < Mod( [ ) (2.14)

consisting of free (fA H)-modules. For this we use the category (ASet)opn of
A-sets over the A-set Ob H given by (2.12). We have the forgetful functor

¢ : Mod (/ H) — (ASet)ob (1)
A
which carries F : [, A H — Ab to the A-set over Ob H given by
fa: J[ F(a,x)— ObH(a) € Set (2)
z€Ob H(a)

for a € Ob(A). Here f(a) is the function which satisfies f(a)(y) = = fory € F(a,z).
Let L(H) be the left adjoint of . Moreover consider a map

a:Z —ObH in ASet (3)

where Z is a free A-set (2.3) (2). Then we call Lo(H) = L(H)(a) € Mod(f, H)
the free ([, H)-module generated by a. Let mod( [, H) be the full subcategory in
(2.14) consisting of such free modules.

Now let G be a fixed A-groupoid. Each morphism v : H — K € AGrd(G)
yields a canonical functor

Uy mod(/AH> —>mod(/AK> (2.15)

which carries Lo (H) to Lo(K) where Ob(H) = Ob(K) = Ob(G). Moreover one
has the commutative diagram in Mod(f, H)

~
Q

H) —— Lg(H)

v l lug
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as in (1.15). Here Lo (K) is a (f, H)-module via the induced map [, u: [, H —
[, K on integrations along A given by u. For H in AGrd(G) we choose a subset

AcCOb mod(/A H) (2.16)

that is, A is a set of elements o where a : Z, — Ob(H) = Ob(G) is a function in
A-Set defined on a free A-set Z,. We define the enveloping functor

U4 : AGrd(G) — Ringoids (2.17)

which carries H to the full subcategory of mod( , H) consisting of free objects
L,(H) with o € A. Moreover U4 carries u : H - K € AGrd(G) to the induced
map u, : Ua(H) — Ua(K) which is the restriction of u, in (2.15).

It is possible to describe the free ([, H)-modules in mod(f, H) by use of
homotopy groups. For this we assume that an A-space D — X under an A-space
D is given and that H = II(X, D). Then any function « as in (2.14) (3) yields the
following push out in ATop

Zx8" —— 8§
U U (2.18)
Ixx=7 —> 5 D

We call S? the n-dimensional spherical object in (ATop)? associated to a. The
projection Z x S™ — Z induces the retraction 0 : S? — D. Moreover S} forn > 1
is a cogroup object in (ATop)? /~ which is abelian for n > 2. For the sum S? v X
in (ATop)? we obtain the retraction map

0,1):S"VX > X
which is a map in (ATop)?. Now we define the [, H = [, II(X, D)-module

T (ST V X)), = kernel {7, (5% V X) oD,

(X))} (2.19)
by use of (2.11), n > 2.

(2.20) Proposition. For H = II(X, D) the free ([, H)-module Lo(H) coincides
with 7,(S™ V X)y for n > 2. Moreover given f : X — Y in (ATop)? we obtain
the induced map

u:H=II(X,D)— K=1I(Y,D)
in AGrd(IID) for which the following diagram commutes; see (2.15).
Ly(H) = m,(S?V X))

ual l(lvf)*

Lo(K) = m(SEVY)
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Let (X, D) be a relative A-CW-complex which is reduced and normalized where
D is an A-space. We obtain by the attaching maps f, in (2.8) (1) the functions
(n2>1)

oy Zy — D € ATop (2.21)

where Z,, is the free A-set of n-cells in (X, D). Here «, is the restriction of f, to
Z, X % C Zy x S*~1. The function «, is well defined since we assume that (X, D)
is reduced and normalized.

The cellular approximation theorem yields the following canonical isomorphism
of A-groupoids in AGrd(IID)

H = II(X,D) = II(X,, D). (2.22)

Hence IT(X, D) depends only on the 2-skeleton of X. The attaching map Jx :
S, — X1 of 2-cells given by f, in (2.8) (1) yields a map (also denoted by 9x)

dx : (S}, D) — II(Xy, D) (2.23)
in AGrd(I1D) which is a presentation of H = IT(X», D) in the sense that
H = II(X,,D)/N image(Jx)

where N denotes the normal closure; compare (1.24). Since (X1, D) is reduced
II(X1, D) is a free object in AGrd(/ID). Such free A-groupoids under D admit a
coaction induced by

p:Xi— X1 VS, in(ATop); /=~ relD (2.24)
Here p is defined in the same way as p in (1.25).

(2.25) Definition. Let D be an A-space and let (X, D) be a relative A-CW-complex
which is normalized and reduced. Hence the functions v, : Z,, — D are defined for
n > 1; see (2.21). Let H = I1(X5, D) € AGrd(IID). Then there is a well defined
chain complex

C.(X,D) inmod(/H) with
A

Cn(X,D) =Ly, (H) forn>1

(1)

and C,,(X, D) = 0 for n < 0. Moreover a cellular map f : (X, D) — (Y, D) induces
a map

w:H=10H(X3,X)— K=10(Y2,D) € AGrd(IID)
and a chain map

fe 1 ua(Cu(X, D)) — CL(Y, D) (2)
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in mod( [, K). Here we use u, in (2.15). If D is a free A-set (2.3) then we define
Qg ZO =D

by the identity of D. In this case there is a well defined augmented chain complex

C. =augC.(X,D) in mod(/ H) with
A

Cn(X)=1L,,(H) forn>0 and
Lt ®

( forn <0

If (X, D) is an A-space under D for which moD — myX is surjective we choose a
normalized reduced A-CW-approximation (Y, D) of (X, D) (see (2.9) and (2.12)).
Hence in this case we can define the chains of X by the chains of Y, that is:

Cu(X)=C.(Y), see (3). (4)

{ C.(X,D) = C,(Y,D), see (1),
This yields below the appropriate notion of homology and cohomology for any
A-space X under D for which mgD — myX is surjective. It is easy to see that
homology and cohomology of (X, D) does not depend on the choice of Y.

It is possible to obtain C,(X, D) along the lines in (1.27). We get C.(X, D) by
the general procedure in (V, §2). The augmentation functor aug used in (3) above
is described in (II, §6).

Using the chain complexes C, (X, D) and C,(X) in mod(f, H) we obtain for
each object M in Mod( [, H) the chain complexes of abelian groups

Hom(C\(X,D),M) and Hom(C.X,M).

Here Hom denotes the set of morphisms in the abelian category Mod( [, H). Hence
the cohomology with coefficients in M

(2.26)

H™(X,D; M) = H" Hom(C, (X, D), M)
H™(X; M) = H" Hom(C..(X), M)

is defined.

(2.27) Remark. Moerdijk-Svenson [D] have introduced for each A-space X and
([, IX)-module M the cohomology H™(X,M). In fact (1.27) yields a further
way to describe the Moerdijk-Svenson cohomology since for the restriction M of
M given by the inclusion [, H = [, II(X,D) C [, IIX we have the natural
isomorphism H™(X,D; M) = H"(X,D; M) where the right hand side is defined
by (1.27).
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On the other hand we can define the homology
H,(X,D) = H,(C.(X, D)) (2.28)

of the chain complex C,(X,D) in the abelian category Mod( [, H) with H =
II(X,D). Hence H,(X, D) is an ([, H)-module in Mod( f, H).

(2.29) Remark. As in (1.30) we obtain by H,(X, D) the mod( f, H)-module

H,(X,D) = Hom(—, H,(X, D)) : (mod</A H))Op — Ab

This is the homology of the complex (X, D) considered in (V.3.3).

We now are ready to formulate the following homological Whitehead theorem
for diagrams of spaces which is exactly the analogue of (1.31).

(2.30) Theorem. Let D be an A-space and let f: (X,D) — (Y, D) be a cellular
map between normalized reduced relative A-CW-complezes in (A Top)P. Then f
is a homotopy equivalence under D (i.e. an isomorphism in the homotopy category
(ATop)P /~ rel D) if and only if the coefficient functor c induces an isomorphism,

w:H =II(X,D) — K = II(Y,D) € AGrd(IID)

and one of the following conditions (i), (i), (iii) is satisfied:

(i)  fs:u.(Cu(X, D)) — C.(Y, D) is a homotopy equivalence of chain complezes
in mod( [, K); see (2.25).

(i) fv:Hn(X,D) — u*Hy,(Y, D) is an isomorphism of [, H-modules for n > 1;
see (2.28).

(i) For all modules N in Mod( [, K) the induced map

f*+H"(Y,D;N) — H"(X,D;u*N)
is an isomorphism of abelian groups for n > 1, see (2.26).

Part (iii) of the theorem can also be derived from the Whitehead theorem 3.8
of Moerdijk-Svenson [D] which in turn can be derived from (1.30) (iii). For us
theorem (1.30) is a special case of (VI, §7) below.

We now use the homology (2.28) and homotopy groups (2.11) for the following
certain exact sequence of J.H.C. Whitehead. Let D be an A-space and let (X, D)
be a normalized reduced relative A-CW-complex or more generally let (X, D) be
a pair of A-spaces for which 7oD — 7y X is surjective. Let H = II(X, D) be the
restricted fundamental A-groupoid in (2.10) (2). Then homotopy groups yield the
J,, H-modules (resp. mod( [, H)-modules; see (1.30))
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op
7rn(X):</H) — Ab, n>2,
A

I(X,D): (/AH)OP CAb a1 (2.31)

Here I, is defined for n > 3 by skeleta, that is

Fn(XvD) = image{ﬂ-n(anl) - ﬂ'n(Xn)}'

For n = 1,2 the definition of I, is more complicated, see (V.5.3) and (II, §2). As
a special case of (V.5.4) we get

(2.32) Theorem. Let (X,D) be a pair of A-spaces for which moD — moX is
surjective and let H = I1(X, D). Then the following sequence is an exact sequence
of [, H-modules, n > 2,

— TW(X, D) = mn(X) 2 Ho(X,D) — I,_1(X,D) — ...

— I3(X, D) — my(X) 2 Hy(X, D) — I (X, D) — 0

Moreover this sequence is natural for (X, D) in ATop”. The homomorphism h is
the Hurewicz homomorphism.

The cohomology groups (2.26) with local coefficients

H" (X, D;u*n,Y), and
H""Y (X, D,u*T,(Y, D))
are needed to define various features of obstruction theory which we discuss in

detail in (V, §4) and chapter VI. For example we get by (V.4.4) the next result
which is the analogue of (1.33).

(2.33) Theorem. Let (X, D) be a normalized reduced relative A-CW-complez and
let f: D —Y be a map in ATop which admits an A-extensiong: X, —» Y, n > 2.
Then the restriction g | X,—1 admits an A-extension §: X,11 — Z if and only if
an obstruction element

O(g| Xn_1) € H"'(X, D;u*m,Y)
vanishes. Here u : [, II(X,D) — [, IIY is induced by g.

We point out that the result requires the use of the restricted fundamental
A-groupoid which satisfies I[I1(X, D) = II(X3, D) so that the induced map u is
well defined by g : X,, — Y for n > 2.

There is also an obstruction theory in ATopD for the realizability of chain
maps and chain complexes described by a tower of categories in (VI, § 5). Moreover
there are the homotopy lifting property of the chain functor and the model lifting
property of the twisted chain functor which have useful meaning for the chain
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functor in (2.25); see (VI, §3) and (VI, §8). We leave it to the reader to give the
appropriate explicit interpretation in ATop® of such results. We here discuss only
a few examples in order to illustrate the theory in chapter I, ..., VIII.

As main application of this book we now describe special cases of results in
chapter VII and VIII which relate problems of homotopy theory in ATop with
algebraic K-theory.

(2.84) Definition. Let D be an A-space and let A (2.16) be a set of functions «
in ATop with o : Z, — D where Z, is a free A-set. We say that a function
¢ : Z — D in ATop is A-finite if 31,...,0c € A together with a commutative
diagram

- 11 Zs,

\ /,31» Bk)

in ATop are given where X, is a bijection. Similarly we say that a normalized
reduced relative A-CW-complex (X, D) is A-finite if all functions o, : Z, — D,
n > 1, in (2.21) are A-finite and (X, D) is finite dimensional. Using the various
A-points A(—,a) in (2.3) it is easy to obtain many different examples of sets A as
above.

Now let (X, D) and (Y, D) be normalized reduced relative A-CW-complexes.
A domination (X, f,g, H) of Y in (ATop)? is given by maps

vy L. x %y under D (2.35)

and an A-homotopy H : gf ~ 1 rel D. The domination has dimension < n if
dim(X, D) < n and the domination is A-finite if (X, D) is A-finite. As a special
case of theorem (VII.2.4) we get:

(2.36) Theorem. Let D be an A-space and let (Y, D) be a normalized reduced
relative A-CW-complex with restricted fundamental A-groupoid K = II(Y, D). If
(Y, D) admits an A-finite domination in (ATop)P then the finiteness obstruction

[Y] = [C.(Y, D)] € Ko(Ua(K))

is defined. Here Uy is the enveloping functor in (2.17) and Ky is the reduced
projective class group, see (VII, § 1). Moreover [Y] = 0 if and only if there exists
an A-finite normalized reduced relative A-CW-complez (X, D) and a homotopy
equivalence X — Y in (ATop)P.

This is the analogue of the finiteness obstruction theorem (1.36) of Wall.

Remark. Theorem (2.36) only holds in the relative case when D is not empty. In
order to obtain such a result in the non-relative case one has to apply the theorem
to the pair (X, Xy) where (X, 0) is an A-CW-complex relative the empty diagram
(. The condition (X,0) “dominated” by (Y,0) has to imply that we may assume
Xo =Y and that (X, Xy) is dominated by (Y, Y)) relative Xo = Yy = D.
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Next we describe simple homotopy equivalences and Whitehead torsion for
A-spaces.

(2.87) Definition. Let D be an A-space (which is allowed to be empty) and let
K = (ATop)? (1)

be the category in (2.6) (1). Moreover let D be a set of free A-sets with the property
that the empty set () is in D and that the coproduct A Il B of A, B € D is again
in D. Then each A € D yields the coproduct

AJ[D in (ATop)? (2)

which we call a discrete object in K. Here A has the discrete topology. A D-
complex is a relative A-CW-complex (L, D) for which the free A-set Z,, of n-cells
in L — D is an element in D, n > 0. A ball pair is a tuple (B"*! S" P" Q") as
defined in (1.37) (3) where n > 0. For A € D we consider a push out diagram in
ATop(n > 0)

AxB"! — — K

U u 3)

Axpr —L
where f is given by a pair map f : (4 x P*",A x S" ') — (L,,L,_1). Then
(K, D) is again a D-complex which we call an elementary expansion of L. Clearly
L C K is a homotopy equivalence in (ATop)? and we call a retraction 7 : K — L
an elementary collapse. A simple homotopy equivalence f : L — L’ under D is
obtained by a finite sequence of elementary expansions and collapses respectively.

Let D-cell be the full subcategory of (ATop)? consisting of finite dimensional
D-complexes (L, D). In (VIII, §8) we define a functor

Wh : D-cell/~ rel D — Ab

which carries (L, D) to the Whitehead group Wh(L, D). As a special case of
(VIIIL.8.3) one has the following result.

(2.38) Theorem. Let D be an A-space which may be empty. There is a function T
assigning to any homotopy equivalence f : Y — L in (ATop)? between finite
dimensional D-complezes Y, L an element 7(f) € Wh(L, D). Moreover 7(f) = 0
if and only if f is A-homotopic rel D to a simple homotopy equivalence under D.

The Whitehead group Wh(L, D) can be computed algebraically by the follow-
ing result which is a special case of (VII1.12.7).

(2.39) Theorem. Let D be an A-space which may be empty. Let (L,D) be a
normalized finite dimensional D-complex and let H = II(L, Ly) be the restricted
fundamental A-groupoid. Then the algebraic Whitehead group
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Wh(H) = Ky (Ua(H))/~

is defined. Here A is the set of all functions A — Lg in ASet with A € D;
the functor Uy is the enveloping functor in (2.17) and K*° is the “isomorphism
torsion group” in (VIII, § 10). Moreover there is an isomorphism of abelian groups

7: Wh(L, D) = Wh(H).

All the results in this section are examples and applications of the results of the
general theory in the chapter I, ..., VIII below. In order to translate the general
theory to the special homotopy theory in (ATop)? one has to use the following
glossary where on the left hand side we use the notation of the general theory.

T Category of coactions given by the full subcategory of
(I.1.11) (ATop)? /=~ of reduced 1-dimensional relative A-CW-complexes

(X1, D). Cogroups in T are spherical objects S} and the coaction
map is defined by (2.24).

Twist Category of presentation Ox, generalizes the category of free “pre

(1.3.5) crossed modules”.

Ox Presentation as in (2.23).

Coef This is a category equivalent to AGrd(IID). The equivalence
carries the presentation Ox of H to H.

mod(9x) This is the category mod( [, H) in (2.14) where dx is a presen-

(1.5.7) tation of H. Here we use (2.20).

Ua This is the enveloping functor U4 in (2.17). Here we identify a €

(I.5.11) A with the spherical object S& € T.

(C,T) ((ATop)?,T) is a homological cofibration category if D is non

(V.1.1) empty. Here T is defined above.

Complex This is the subcategory of (ATop)? consisting of normalized re-

(1v.2.2) duced relative A-CW-complexes (X, D) and cellular maps.

C. This is the chain functor in (2.25).

(V.2.3)

(C,D) (ATop)? is a homological cellular I-category with the cylinder

(VIIL.5.1) in (2.6) (3) and the class D of discrete objects in (2.37). Here D

(VIIL.12.3) is allowed to be empty.

(O%F, 2%, P%,Q%) For X in (ATop)? this is the push out of Bx X D Bx D X% D
in ATop where pr is the projection and B = (B**!, % P* Q%)
(VIIL.4.5) is the ball pair in (1.37) (3).

It will be convenient to have these examples in mind in order to visualize the
abstract and categorical theory in the second part of the book below.

3 Homotopy Theory of Transformation Groups

In this section let G be a fixed topological group which is locally compact Hausdorff
(for example a Lie group). Let X be a topological space. A (left) action of G on X
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is a continuous map G x X — X, (g,z) — g - z satisfying e - = e for the neutral
element e € G and g1 - (g2- ) = (g1 -92) -z for g1,92 € G and x € X. Here G x X
is the product of spaces with the product topology. Given a G-action on X we
call G a transformation group for the G-space X. A G-map or an equivariant map
f: X — Y between G-spaces is a continuous map satisfying f(g-x) = g- f(x). Let
G'Top be the category of G-spaces and equivariant maps. (There is an alternative
approach using only compactly generated spaces, see Liick [TG].)

We are going to apply the theory of this book to the homotopy theory of G-
spaces. This, in fact, leads to many new features and results on G-spaces; compare
the books of tom Dieck [TG] and Liick [TG]. In particular, we obtain a new way
in dealing with the twisted version of Bredon cohomology.

The trivial G-space X is a topological space X with the action g -z = z for
g € G,z € X. The product of G-spaces X and Y is the G-space X x Y with the
action g- (z,y) = (9-z,9-y) for g € G,z € X,y € Y. The coproduct X [[Y is the
disjoint union of spaces with the obvious G-action. A G-homotopy is a G-map

H:[0,]]xX—>Y

between G-spaces. Here [0,1] is the interval considered as a trivial G-space. Here
H is a “free” homotopy. For a G-space D let

C = (GTop)” (3.1)
be the category of G-spaces under D and let
C. = (GTop); 1)

be the full subcategory given by G-cofibrations D — X in C. Such G-cofibrations
are defined via the homotopy extension property in GTop. The homotopy category

Co/~ = (GTop)? /=~ rel D (2)

is defined by homotopy relative D and the relative cylinder I(X, D) as in (1.4)
(3).

Given a closed subgroup H of G we obtain the homogeneous space G/H which
is the quotient space of G consisting of cosets ¢'H for ¢’ € G. Clearly G/H is a
G-space with the action g-(¢'H) = (g-g’)H. We call any such homogeneous space
G/H a G-orbit point. A G-orbit set Z is the coproduct of such G-orbit points,
that is, Z is given by a set M and closed subgroups H,,, of G for m € M such that

Z = H G/H,, (3.2)

meM

is a coproduct of G-orbit points in GTop. G-orbit sets are the most elementary
G-spaces.

We say that a G-space Y is obtained from a G-space X by attaching (n + 1)-cells
if a G-orbit set Z together with a push out diagram in GTop
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ZxB"tl Y
U U (3.3)
Zx8" — X

is given. Here S™ and B™*! are trivial G-spaces A (relative) G-CW-complex
(X>0,D) = (X, D) is given by a sequence of inclusions in GTop

DcXyCcXiC---CX,CXpp1C... (3.4)

Here X is the coproduct of D and a G-orbit set Zy and X, is obtained from
X, by attaching (n + 1)-cells, n > 0. Let X = lim X>¢. We say that (X, D) is
reduced if Xg = D and (X, D) is normalized if the attaching map

frn:Zyx S 5 X,

of n-cells carries Z,, x x to Xy. Here Z,, is the G-orbit set of n-cells of X — D, n > 0.
The cellular approximation theorem holds and also the Blakers-Massey property
is satisfied; see tom Dieck [T].

(8.5) Definition. The orbit category Or(G) is the category consisting of G-orbit
points and G-maps. This is the full subcategory of GTop consisting of homoge-
neous spaces G/H where H is a closed subgroup of G. Each G-space X yields an
Or(G)-space X°

X°:0r(G)°? — Top
X°(G/H) = Mapg(G/H,X) = X"

where Mapg; is the space of G-maps. Here X ¥ is the H-fixed point set of X. For
the Or(G)-space X° all the notation in section § 2 is available if we set A = Or(G).
We point out that for a discrete group G and a G-CW-complex X the Or(G)-space
X° is an Or(G)-CW-complex in the sense of § 2. This does not hold if G is not
discrete. In fact, if G is discrete the theory on G-spaces in this section is completely
determined by the theory on Or(G)-spaces in §2; compare for example Moerdijk-
Svenson [D].

(3.6) Lemma. Let (X,D) be a relative G-CW-complex. Then there exists a
normalized relative G-CW-complex (Y, D) together with a homotopy equivalence
Y — X in (GTop)P/~ rel D. Moreover if mgD° — moX° is surjective in
Or(G)Set then (Y, D) can be chosen to be reduced.

The proof is similar to the proof of (2.9). A map f: X — Y in GTop is
a weak equivalence if the induced map f° : X° — Y° in Or(G)Top is a weak
equivalence; see (2.12). It is known (see for example Liick [TG] 1.2.3) that each
G-space Y under D admits a weak equivalence f : X — Y under D where (X, D)
is a G-CW-complex termed a G-CW-approximation of Y. Moreover, it is easy to
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show that a weak equivalence f : (X, D) — (Y, D) under D between relative G-
CW-complexes is actually a homotopy equivalence in (GTop)? /=~ rel D; see (IV,
§3). This yields the equivalence of categories

Ho(GTop)? = G-CW? /~ rel D (3.7)

Here the left hand side is the localization with respect to weak equivalences and
the right hand side is the full subcategory of (GTop)? consisting of relative G-
CW-complexes (X, D). The equivalence (3.7) shows that it is sufficient to define
homology and cohomology for G-CW-complexes.

As in (2.13) we define for a G-space D the coefficient functor

¢: (GTop)? /~ rel D — Or(G)Grd(I1D°) (3.8)

which carries the object D — X to the restricted fundamental groupoid ¢(X) =
(IID° — II(X°,D°)). Here we use (3.5). Let Z be a G-orbit set and D be a G-
space. Then we observe that a G-map « : Z — D can be identified with a collection
of points am, € X with Z = [],,c)s G/Hm. Such a collection of points as well
can be identified with a map

a:Z' — Ob(IID°) € Or(G)Set (3.9)

where Z’ is the free Or(G)-set given by Z’ = [[,,c Or(G)(—, G/Hy,). Hence by
(2.14) the free modules

Lo(H) € mod( /O o H> C Mod< /O o H) (3.10)

are defined for H € Or(G)grd(IID°). As in (2.17) we choose a set A consisting
of elements o which are G-maps « : Z, — D where Z, is a G-orbit set. Then the
enveloping functor

Uy : Or(G)Grd(I1D°) — Ringoids (3.11)

is defined which carries H to the full subcategory U4(H) C mod(for(G) H) con-

sisting of free modules L,(H) with a € A. This is a special case of (2.17).
It is possible to describe the free modules (3.10) by use of homotopy groups.
For this we introduce the spherical object S” in (GTop)? which is the push out

Zx8" —— S°
U U (3.12)
Zxx ——» D

in GTop with the retraction 0 : S — D given by the projection Z x §" — Z.
Now let X be an object in (GTop)? and let S? v X be the sum of S? and X
under D with the retraction
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0,1): S, vX —» X
in (GTop)?. We now obtain for n > 2 and H = IT(X°, D°) the (fOr(G) H)-module

0,1)«
R

T (S7V X)§ = kernel{m, (S" v X)° T (X°)} (3.13)

which satisfies Lo (H) = m,(S2 V X)$; compare (2.20).
If (X, D) is a normalized reduced G-CW-complex then the attaching maps f,
of n-cells yield for n > 1 the G-maps

Qn:Zp— D (3.14)

where Z,, is the G-orbit set of n-cells in X — D. In fact, «,, is the restriction of f,
to Z, x * which maps to D since (X, D) is normalized and reduced. Therefore f,
actually is given by a map

fn: Sk — Xp_1 in (GTop)?
where S}, is the spherical object in (3.12). We call
Ox = f: 55, = Xa (3.15)
the presentation associated to (X, D). Here X7 has a coaction
p:X1— X1VS,, in(GTop)?/~ rel D (3.16)
where S} is a cogroup object. In fact p is defined similarly as in (1.25).

(3.17) Definition. Let D be a G-space and let (X, D) be a relative G-CW-complex
which is normalized and reduced. Hence the functions «,, : Z,, — D in GTop are
defined for n > 1 where Z,, is the G-orbit set of n-cells. Let

H = II(X3,D°) € Or(G)Grd(ITD®)

Then there is a well defined chain complex

C.(X,D) in mod(/ H) with
or(@) (1)

Cn(X,D)=L,,(H) forn>1
and Cp, (X, D) =0 for n < 0. If D is a G-orbit set then we define
Qp - ZO =D

by the identity of D. In this case the augmented chain complex

C.(X) =augC.(X,D) in mod(/ H) with
Or(G)

Cn(X) =Lq,(H) forn>0
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and C, X = 0 for n < 0 is defined. These chain complexes have properties as in
(2.25). In fact, if G is discrete we have C.(X,D) = C,(X°,D°) and Ci(X) =
C,(X°) where the right hand side is defined in (2.25); compare the final remark
in (3.5). We get C(X, D) by the general procedure in (V, §2). The augmentation
functor aug used in (2) is described in (II, §6).

We obtain for each (fOr(G) H)-module M the cohomology with coefficients in
M

{ H™(X,D; M) = H" Hom(C, (X, D), M) (3.18)

H™(X; M) = H"Hom(C, (X), M)

Here Hom is defined by the abelian category Mod(for(G) H) with H = II(X°, D°)
= II(X35,D°). This is a twisted version of the cohomology of Bredon [EC]; see
Moerdijk-Svenson [D] where this cohomology is studied if G is discrete. On the
other hand we define the homology

Ho(X,D) = Ho(C.(X, D)) (3.19)

of the chain complex C.(X, D) in the abelian category MOd(fOr(G) H) so that
H,(X,D)isa (fOr(G) H)-module (and hence a mod(for(G) H)-module; see (1.30)).
We now are ready to formulate the homological Whitehead theorem for G-spaces.

(3.20) Theorem. Let D be a G-space and let f : (X, D) — (Y, D) be a cellular
map between normalized reduced relative G-CW-complexes in (GTop)P. Then f
is a homotopy equivalence under D (i.e. an isomorphism in the homotopy category
(GTop)? /~ rel D) if and only if the coefficient functor ¢ induces an isomorphism,

u=c(f),
w: H =II(X°,D°) = K = II(Y°,D°) € Or(G)Grd(II D°)
and one of the following conditions (i), (i), (1) is satisfied:
()
fe 1 uCiu(X, D) — Cu(Y, D)
is a homotopy equivalence of chain complexes in mod(fOr(G) K).
(ii)
fu t Hy(X, D) — u*Hy (Y, D)

is an isomorphism of(for(G) H)-modules (or of mod(for(G) H)-modules) for
n>1.
(#ii) For all modules N in MOd(fOr(G) K) the induced map

f*: H"(Y,D;N) — H"(X,D,u*N)

s an isomorphism of abelian groups for g > 1.
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Also the Hurewicz homomorphism and the exact sequence of J.H.C. Whitehead
have an analogue for G-spaces. As a special case of (V.3.4) we get.

(3.21) Theorem. Let (X, D) be a pair of G-spaces for which moD° — myX° is
surjective. Then the following sequence is an exact sequence Of(fOr(G) H)-modules
with H =II(X°,D°), n > 2.

—TI,(X,D) — mp(X°) 25 H,(X,D) — I_1(X, D) —
Fz(XaD) - 7T2(Xo) - H2(X7D) - Fl(XaD) —0
Moreover the sequence the sequence is natural for (X, D) in (GTop)?

The homomorphism h is the Hurewicz homomorphism and 7, (X°) is defined
by (2.11) and I,(X, D) for n > 3 is defined by

I(X,D) = image{ﬂn(XfL_l) — Wn(XZ)}

The definition of I7 and I3 is more complicated. If G is a discrete group then
(3.21) can be considered as being a special case of (2.32).
Concerning obstruction theory we get the following analogue of (2.33):

(3.22) Theorem. Let (X,D) be a normalized reduced relative G-CW-complex
and let f : D —'Y be a G-map which admits a G-extension g: X, — Y, n > 2.
Then the restriction g | X,,—1 admits a G-extension g : X,+1 — Y if and only if
an obstruction element

O(g| Xn_1) € H"'YX, D, u*m,Y°)
vanishes. Here u : fOr(G) II(X°,D°) — fOr(G) IIY° is induced by g.

This result again shows that the restricted fundamental groupoid is needed
which satisfies IT(X°, D°) = II(X3, D°) by the cellular approximation theorem.
Hence g : X,, — Y with n > 2 yields a well defined map u in the theorem.

We leave it to the reader to translate further results from the obstruction
theory in chapter VII, VIII to the category of G-spaces. We now consider main
applications concerning connections with algebraic K-theory.

(8.23) Definition. Let D be a G-space and let A be a set of functions « : Z, — D
in GTop where Z, is a G-orbit set. We say that a function a : Z — D in GTop
is A-finite if 8y,..., 0k € A together with a commutative diagram

- 11 Zg,

\A 1/,317 -Bk)
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in GTop are given where Y, is an isomorphism. Similarly we say that a normalized
reduced relative G-CW-complex (X, D) is A-finite if all functions «a, : Z, — D,
n > 1, in (3.14) are A-finite and (X, D) is finite dimensional.

Now let (X, D) and (Y, D) be normalized reduced relative G-CW-complexes.
A domination (X, f, g, H) of Y in (GTop)? is given by G-maps

vy L x %Y under D (3.24)

and a G-homotopy H : gf =~ 1 rel D. The domination has dimension < n if
dim(X, D) < n and the domination is A-finite if (X, D) is A-finite. As a special
case of theorem (VII.2.4) we get the following result which corresponds to (2.36)
if G is discrete.

(3.25) Theorem. Let D be a G-space and let (Y, D) be a normalized reduced rela-
tive G-CW-complex with K = I1(Y°, D°). If (Y, D) admits an A-finite domination
in (GTop)? then the finiteness obstruction

[Y] = [C.(Y, D)] € Ko(Ua(K))

is defined. Here Uy is the enveloping functor in (3.11) and Ky is the reduced
projective class group; see (VII, § 1). Moreover [Y] = 0 if and only if there exists
an A-finite normalized reduced relative G-CW-complex (X, D) and a homotopy
equivalence X — 'Y under D.

As in the remark following (2.36) we can obtain a non-relative version of this
result for G-CW-complexes (X, @) relative the empty G-space .

Also the theory of Whitehead on simple homotopy equivalences has a general-
ization for G-spaces as follows.

(3.26) Definition. Let D be a G-space (which is allowed to be empty) and let
K = (GTop); (1)

be the category in which the objects are G-cofibrations D — X in GTop, see
(3.1) (1). Moreover let D be a set of orbit sets with the property that the empty
G-orbit set () is in D and that for A, B € D also the coproduct A Il B in GTop is
in D. Then each A € D yields the object

AIID in (GTop)? (2)

which we call a discrete object in K. A D-complex is a relative G-CW-complex
(L, D) for which the G-orbit set Z, of n-cells in L — D is an element in D, n > 0.
Let (B™*1 S™ P" Q") be a ball pair as defined in (1.37) (3) with n > 0. For
A € D we consider a push out diagram in G'Top

Ax Bl —— K

U U (3)
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where f is given by a pair map f : (A x P", A x S ') — (Ly,Lp—1). Then
(K, D) is again a D-complex which we call an elementary expansion of L. Clearly
L C K is a homotopy equivalence in (G-Top)? and we call a retraction K — L
an elementary collapse. A simple homotopy equivalence f : L — L’ under D is
obtained by a finite sequence of elementary expansions and collapses respectively.
Let D-cell be the full subcategory of (GTop)? consisting of finite dimensional
D-complexes (L, D). In (VIII, §8) we define a functor

Wh : D-cell/~ rel D — Ab

which carries (L, D) to the Whitehead group Wh(L, D). As a special case of
(VIIL.8.3) we get:

(3.27) Theorem. Let D be a G-space which is allowed to be empty. There is
a function T assigning to any homotopy equivalence f :'Y — L in (GTop)?
between finite dimensional D-complezes Y, L an element 7(f) € Wh(L, D). More-
over, 7(f) = 0 if and only if f is a G-homotopic rel D to a simple homotopy
equivalence under D.

The Whitehead group Wh(L, D) can be computed algebraically by the follow-
ing result which is a special case of (VIII.12.7).

(3.28) Theorem. Let D be a G-space which may be empty. Let (L, D) be a nor-
malized finite dimensional D-complex and let H = II(L°, Lg) be the restricted fun-
damental groupoid given by the pair (L, Lo) where Lo is the 0-skeleton of (L, D).
Then the algebraic Whitehead group

Wh(H) = K{*(Ua(H))/~

is defined. Here A is the set of all G-maps A — Lo with A € D. The Sfunctor Uy is
the enveloping functor in (3.11) and Ki¥° “isomorphism torsion group” in (VIII,
§ 10). Moreover there is an isomorphism of abelian groups

7: Wh(L, D) = Wh(H).

All the results in this section are examples and applications of the results of
the general theory in the chapters I, ..., VII below. For the translation of the
general theory to the special case one has to use the following table.
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T Category of coactions. This is the full subcategory of

(I.1.11) (GTop)? /=~ rel D of reduced 1-dimensional G-CW-complexes
(X1, D). Cogroups in T are spherical objects S. and the coac-
tion map on X is given by (3.16).

Twist Category of presentations dx in (3.15).

(1.3.5)

Coef This is a category equivalent to Or(G)Grd(IID°). The equiv-

(I.4.1) alence carries the presentation Ox defining (X2,D) to H =
(X3, D°).

mod(Jx) This is the category mod(fOr(G) H) in (3.10) where 0x is a pre-
sentation of H.

Ua This is the enveloping functor U4 in (3.11). Here we identify « €

(1.5.11) A with the spherical object SL € T.

(C,T) (GTop)? is a homological cofibration category if D is not empty.

(V.1.1)

Complex This is the subcategory of (GTop)? consisting of normalized re-

(Iv.2.2) duced relative G-CW-complexes (X, D) and cellular maps.

Cy This is the chain functor in (3.17).

(V.2.3)

(C,D) (GTop)? is a homological cellular I-category with the cylinder

(VIIL5.1) I(X, D) and the class D of discrete objects in (3.26). Here D is

(VIIL.12.3) allowed to be empty.

(O, 2% PE,Q%) TFor X € (GTop)? this is the push out of B x X D B x
D — D where B x D — D is the projection and where
(VIIL.4.5) B = (B**!, 8% P* QF) is the ball pair in (1.37) (3).

4 Homotopy Theory Controlled at Infinity

We choose a fixed compact Hausdorff space which we denote by co. An oo-space
or infinity space is a tuple X = (X X, 00) where X is a compact space together
with a closed embedding co C X such that X is the complement X = X — co. The
space X is termed the open part of the oo-space. A point e € oo is an end of X if
there is a sequence of points 1, 2,... in the open part which converges in X to
e € co. Hence X is dense in X if all points of co are ends; in this case X is called
an oo-compactification of the space X. An co-map f: X — Y between oo-spaces
is a contiuous map for which the following diagram commutes in Top:

() (4.1)

Hence an oo-map is a map under oo which carries the open part to the open
part. The continuous map f is determined by f. Let coEnd be the category of
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oo-spaces and co-maps. In this section we study the homotopy theory of co-spaces
and oco-maps. Details on this example are described in Baues-Quintero [HI].

(4.2) Example. Let oo = * be a point. Then any locally compact Hausdorff space
X has a one point compactification (X', X, *) which is an object in *End. In this
case a map f : X — Y between locally compact Hausdorff spaces is an oo-map
if and onyl if f is a compact map. Compact maps in Top are closed maps for
which the inverse of each point is a compact space; such maps are also termed
proper maps. This shows that proper homotopy theory is a special case of the
homotopy theory of co-spaces.

(4.3) Exzample. Let T be a locally finite tree with Freudenthal compactification
T. Then T = (T, T cor) is an oo-space where cop = T — T is a Cantor set. As

a special case we may consider the category corEnd containing the cor-space
T = (T, T, OOT).

Given a compact space K in Top and an oco-space X we obtain the oco-space
K ® X by the push out diagram in Top

KxX — S K®X

u U (4.4)

pr
Kxoo —— o

where K x X is the product in Top. The open part of K ® X is the product K x X.
An oo-homotopy is an co-map

H:0,1]®X —Y (4.5)

The according homotopy relation yields the homotopy category coEnd/~. We
now choose an co-space D and consider the category

C = (coEnd)? (4.6)

of oo-spaces under D. An object in C is an co-map D — X and an co-homotopy

relative D is a homotopy as in (4.5) for which the composite [0,1] ® D — [0,1] ®
X — Y is the trivial homotopy. Using the homotopy extension property with
respect to the cylinder [0,1] ® X we define co-cofibrations. If D — X is such an
oo-cofibration we write

[X,Y]P = C(X,Y)/~ rel D (4.7)
for the set of co-homotopy classe relative D. Let
C. = (ccEnd)? (1)

be the full subcategory of C for which the objects are oo-cofibrations D —
X. Then oco-homotopy relative D is a natural equivalence relation so that the
homotopy category



42 Chapter A: Examples and Applications in Topological Categories

C./~ = (00End)? /~ rel D (2)
is defined. The relative cylinder object I(X, D) is the push out in coEnd
0,1]]® X —— I(X,D)

| I ®

019D 22— D

We point out that a push out P of (A «~ B — C) in coEnd is given by the push
out P of (A — B — C) in Top; the open part of P is the push out of the open
parts in Top.

We say that an co-space Z is an oo-set if the open part of Z is a discrete space
in Top. The oo-set Z is empty if the open part of Z is the empty space in Top.
An oo-space Y is obtained by attaching (n 4 1)-cells if an oo-set Z together with
a push out diagram

Y

Bl @ Z
U U (4.8)

is given. Here (B™*!,S") is a ball in Top with n > 0. We now define the appro-
priate notion of CW-complex in coEnd. A (relative) co-CW-complex (X>o, D) is
given by a sequence of inclusions

DCXOCX1C"'CXnCXn+1C...

in cocEnd which is finite dimensional, that is, there is NV > 0 such that Xy —
XNy is the identity for k > 0. Here Xy is the coproduct in cocEnd of D and an
oo-set Zp and X, 11 is obtained from X, by attaching (n+1)-cells as in (4.8). Since
(X>0, D) is finite dimensional the limit X = lim X; = Xy is defined in coEnd.
We also write (X>¢,D) = (X, D). We say that (X, D) is reduced if the co-set Z
of 0-cells is empty, that is Xo = D. Moreover (X, D) is normalized if all attaching
maps, n > 1,

fn: sl Zn — Xn—1

carry * ® Z,, to Xgo. Here * is the basepoint of S"~1. The oo-set Z,, is termed the
oo-set of n-cells in (X, D). It is shown in Baues-Quintero [HI] that the cellular
approximation theorem and the analogue of the Blakers-Massey theorem hold for
o0o-CW-complexes.

We denote by

5 (X) =2, X]° (4.9)

the set of co-homotopy classes Z — X in coEnd/~. We say that an object D — X
n (coEnd)? is connected if the induced map 7% (D) — 7Z (X) is a surjection for
all co-sets Z. For example the pair (X, Xj) is connected if X is an co-CW-complex.

The next result is an analogue of (1.8).
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(4.10) Lemma. Let (X, D) be a relative oo-CW-complex. Then there exists a
normalized co-CW-complex (Y, D) together with a homotopy equivalence Y — X
under D in cocEnd. If (X, D) is connected then (Y, D) can be chosen to be reduced.

Given an oo-set Z, and an oco-map « : Z, — D we define the spherical object
S? by the push out diagram in coEnd

S"®Zy — ST
U U
*® Zy =Ly ——— D
and we define for X in (coEnd)” the homotopy group (n > 1)
T (X) =[S, X]P (4.11)

where we use (4.7). Let D — X and D — Y be connected objects in (coEnd)P.
An co-map f: X — Y under D is a weak equivalence in coEnd if for all o and
n > 1 the induced map 75z — 7Y is an isomorphism. As a consequence of the
general Whitehead-theorem (IV.4.6) we get:

(4.12) Theorem. Let (X, D) and (Y, D) be connected relative co-CW-complezes.
Then a weak equivalence X — Y under D in ooEnd is a homotopy equivalence
under D, that is, an isomorphism in (ccEnd)? /~ rel D.

The analogue of CW-approximation as in (1.10), however, does not hold. This
shows that co-CW-complexes form typical examples for the definitions in chapter
IV. Let (coCW)P be the full subcategory of (coEnd)? consisting of normalized
reduced relative co-CW-complexes (X, D). We now define the coefficient functor

c¢: (00CW)P /=~ rel D — coCoef (D) (4.13)
Here the objects of coCoef(D) are presentations dx which are elements
ox € [SL, X,)P

where S} is a spherical object and (X;,D) is a 1-dimensional reduced relative
0o-CW-complex. By choosing an attaching map f, representing dx we obtain
the 2-dimensional normalized reduced CW-complex X5 associated to x. A map
u : dx — Oy in coCoef(D) is an element u € [X, Y] which admits an extension
X5 — Y;. There is an obvious composition of such maps. The coefficient functor
¢ in (4.13) carries the co-CW-complex (X, D) to Ox where Ox is represented by
the attaching map of 2-cells. Moreover ¢ carries a cellular map f : X — Y to
the map u represented by the restriction f; : X; — Y7 of f. At this point it is
quite complicated to give a more algebraic description of the coefficient category
ooCoef (D) above. In the examples (1.13), (2.13), (3.8) it was possible to describe
the coefficient categories by use of groupoids. Such a description is a lot more
complicated for the category coCoef (D).
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We associate with each object dx in coCoef (D) an additive category mod(dx)
as follows. Let n > 2. The objects in mod(dx) are given by the coproduct under
D S7 v X3 which is the push out in cocEnd of S}, «— D — X,. Here SI is a
spherical object (4.11) and X5 is associated to dx. Morphisms are commutative
diagrams

Xo —— X,
! |

SnV Xy —L— 5V X (4.14)
l(o,l) l““)
Xo —— X,

in the homotopy category (coEnd)?/~ rel D. Here 0 : S — D — X, is given
by the retraction S? — D of the spherical object. Given « and 3 the sum in the
additive category mod(dx) is given by

(Sg \Y X2) & (Sg \% X2) = S(naﬂ) V Xo

where (o, 8) : Zo I1 Zg — D is defined by «, 3 on the coproduct in coEnd. The
initial object in mod(9y) is given by 0 = Xy = S* V X3 where a : Z, — D is
defined on the empty oco-set Z,. The “partial suspension” shows that the category
mod(0x) does not depend on the choice of n with n > 2. Therefore we omit n in
the notation and we write

SZ VXos=8,VXs€E mod(@x)

for an object in the additive category mod(dx ). We point out that mod(dx) here
is not a subcategory of a canonical abelian category so that we do not have an
obvious inifnity analogue of the embedding (1.14).

Each map u : x — 9dy induces a functor

uy : mod(dx) — mod(dy) (4.15)
which carries S7 V X5 to S% VY, and which carries f in (4.14) to the map
(AVu)f,1): Sy VYs — SEVYs,

Now we choose a set A of elements o where a: Z, — D is an co-map defined on
an oo-set Z,. Then the enveloping functor

U4 : coCoef(D) — Ringoids (4.16)

carries Ox to the full subcategory of mod(Jdx) consisting of objects ST V X with
a € A. Moreover Uy is defined on morphisms u by wu, in (4.15).

Each normalized reduced relative co-CW-complex (X, D) yields canonical oo-
maps
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an: Z, — D (4.17)

where Z,, is the co-set of n-cells of (X, D). Here a,, is the restriction of the attaching
map fn. In fact

s lez, —I X,
| |
@ Zy =Ly —2s D

commutes since (X, D) is normalized and reduced. For the 1-skeleton X; we also
obtain the coaction map

p:X1— X, vS,, in(ccEnd)?/~relD (4.18)
which is defined as in (1.25).

(4.19) Definition. Let (X, D) be a relative co-CW-complex which is normalized
and reduced so that the co-maps a,, : Z,, — D are defined for n > 1; see (4.17).
Let Ox : Sél — X, be given by the attaching map of 2-cells in X. Then there is
a well defined chain complex

Ci(X, in mod(0x) with
{ (X, D) d(dx) wit M

Cn(X,D)=2S8,,VXy forn>1; see(4.14)

and C, (X, D) = 0 for n < 0. Moreover a cellular map f : (X, D) — (Y, D) under
D induces u : 9x — Jy in coCoef (D) and a chain map

fu 1 uCu(X, D) — C.(Y, D) (2)
in mod(dy ). Here we use u, in (4.15). If D is an co-set we define
Qo - Zo =D

by the identity of D. In this case there is a well defined augmented chain complex

3
Cp(X)=84,VXy forn>0 (3)

{ Cy(X) =augCy(X,D) in mod(0x) with
and C,,(X) = 0 for n < 0. These chain complexes are exactly the infinity-analogue
of the chain complexes in (1.26). We define (1) by the general procedure in (V,
§2). The augmentation functor aug is described in (II, §6).

Using the chain complexes in (4.19) we obtain for each (right) mod(dx )-
module M the cochain complexes of abelian groups M (C,(X, D)) and M(C.(X))
so that the cohomology with coefficients in M
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{ H™(X,D; M) = H"M(C.(X, D)) (4.20)

H™(X; M) = H"M(C.(X))
is defined. As an example we observe that homotopy groups (4.11) yield canonically
mod(9x )-modules as follows.

Let D — Y be an oco-map and let (X, D) be a normalized reduced relative
00-CW-complex. Moreover let

UZX1—>Y

be an oco-map under D which admits an extension Xs — Y. Then the right
mod(Jx )-module

u*m,(Y) : mod(dx)°® — Ab (4.21)

is defined for n > 2. This module carries S, V X2 to the homotopy group 7%(Y)
in (4.11). Moreover a map f : SgV X2 — S, V Xs induces the homomorphism

from(y) — ml(Y)

which carries (a: S? — Y) € 7%(Y) to the composite
w0y, an I n (a,u)
f(a): 85 —— SEvVXy —— Y

Here f' = f | S} is the restriction of f. As a special case we get for the inclusion
u: Xy C X the mod(dx)-module 7,(X) defined by (4.21).

The coefficients u*m,(Y) show that the cohomology H™ (X, D;u*m,(Y)) is
defined for m € Z, n > 2. This is needed in the following theorem of obstruction
theory.

(4.22) Theorem. Let (X, D) be a normalized reduced relative co-CW-complex
and let f : D — Y be an co-map which admits an extension g : X, — Y, n > 2.
Then the restriction g | Xn—1 admits an extension g : X, 11 — Y in coEnd if and
only if an obstruction element

O(g| Xn_1) € H"Y(X,D,u*n,Y)
vanishes. Here u : X1 — Y is the restriction of g.

This is the infinity-analogue of a classical theorem of obstruction theory. We
can also define the homology H,(X, D) and H,(X) which are right mod(dx)-
modules

H,(X,D),H,(X) : mod(dx)°® — Ab. (4.23)
They carry the object S, V X2 to the abelian group

H,.(X,D)(Sa V Xa) = Hy, Hom(Sa V Xz, Ca (X, D))
Hn(X)(Sa \Y XQ) =H, HOI’II(Sa \Y Xz,C*X)
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Here Hom denotes the set of morphisms in mod(dx). These mod(dx )-modules
describe the oo-analogue of (1.30). We use them for the following homological
Whitehead theorem which is a special case of (VI, §7).

(4.24) Theorem. Let f : (X,D) — (Y, D) be a cellular map between normal-
ized reduced relative co-CW-complezes in (coEnd)P. Then f : X — Y is a
homotopy equivalence under D (i.e. an isomorphism in the homotopy category
(0cEnd)? /=~ rel D) if and only if the coefficient functor c in (4.13) induces an
isomorphism u : Ox — Oy in coCoef (D) and one of the following conditions (1),
(i) are satisfied.

()

fx 1 us(Cu(X,D)) - C.(Y,D)

is a homotopy equivalence of chain complezes in mod(dy).
(ii)
fe it Ho(X, D) — (us)"Hn (Y, D)
is an isomorphism of mod(9x )-modules for n > 1.

Next we consider the Hurewicz homomorphism and the exact sequence of
J.H.C. Whitehead for co-spaces. As a special case of (V.3.4) we get:

(4.25) Theorem. Let (X, D) be a connected relative oo-CW-complex. Then the
following sequence is an exact sequence of mod(9x )-modules, n > 2.

coe 5T (X, D) = 1 X~ Ho(X,D) = Iu_y(X,D) — ...
I'y(X,D) — mX — Hy(X, D) — I'(X,D) — 0

Moreover the sequence is natural in (X, D).

The homomorphism h is the Hurewicz homomorphism for the modules 7, X
and H,(X, D) defined in (4.21) and (4.23) respectively. The module I}, (X, D) for
n > 3 is defined by

I(X,D)= image{wn(Xn_l) — ﬂn(Xn)}

The definition of Iy and I is more complicated; see (V.5.3) and (II, §2). As in
all the sections §1, §2, §3 we also have the following results which describe a
connection with algebraic K-theory.

(4.26) Definition. Let D be an oo-space and let A be a set of co-maps o : Zo — D
where Z,, is an co-set. We say that an co-map « : Z — D is A-finite if B1,..., 08 €
A together with a commutative diagram in coEnd
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- 11 Zg,

\ l/ﬂlv -Bk)

are given where x, is an isomorphism and II is the coproduct in cocEnd. A
normalized reduced relative co-CW-complex (X, D) is A-finite if all functions
an : Zn — D, n > 1, in (4.17) are A-finite. Recall that in the definition of an
00-CW-complex (X, D) we assume that (X, D) is finite dimensional.

Now let (X, D) and (Y, D) be normalized reduced relative co-CW-complexes.
A domination (X, f,g, H) of Y in (coEnd)? is given by oo-maps

Yy Lo x %y under D (4.27)

and an oo-homotopy H : gf =~ 1 rel D. The domination has dimension < n if
dim(X, D) < n and the domination is A-finite if (X, D) is A-finite. As a special
case of (VII.2.4) we get the following infinity version of a classical result of Wall;
see (1.36).

(4.28) Theorem. Let D be an oco-space and let (Y, D) be a normalized reduced
relative oo-CW-complex with Oy = c(Y, D) € coCoef(D) defined by the coefficient
functor (4.13). If (Y, D) admits an A-finite domination in (ccEnd)? then the
finiteness obstruction

[Y] = [C.(Y, D)] € Ko(Ua(y))

is defined. Here Uy is the enveloping functor in (4.16) and Ky is the reduced
projective class group; see (VII, § 1). Moreover [Y] = 0 if and only if there exists

an A-finite normalized reduced co-CW-complex (X, D) and a homtoopy equivalence
X — Y under D in coEnd.

This result implies also a non relative version for a co-CW-complexes (X, ()
where () is empty. Compare the remark following (2.36).

We now describe the infinity version of classical results of J.H.C. Whitehead
for simple homotopy equivalences.

(4-29) Definition. Let D be an oco-space which is allowed to be empty and let
K = (coEnd)? (1)

be the category in which the objects are co-cofibrations D — X; see (4.7) (1).
Moreover let D be a set of co-sets with the property that the empty oco-set is in
D and that for A, B € D also the coproduct AIl B in coEnd is in D. Then each
A € D yields the object
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AIID in (coEnd)? (2)

which we call a discrete object in K. A D-complex is a relative co-CW-complex
(L, D) for which the oo-set Z, of n-cells is an element in D, n > 0. Let (B! S,
P™ Q") be a ball pair as defined in (1.37) (3) with n > 0. For A € D we consider
a pushout diagram in coEnd (compare (4.4))

Bl oA — K
] @]
ProA —I

where f is given by a pair map
f:(PP®AS" ' ®A) — (Lp,Ln_1).

Then (K, D) is again a D-complex which we call an elementary expansion of L.
The inclusion L C K is a homotopy equivalence in coEnd. Any retraction K — L
is termed an elementary collapse. A simple homotopy equivalence f : L — L’
under D is a finite sequence of elementary collapses and expansions respectively.

Let D-cell be the full subcategory of (cocEnd)? consisting of D-complexes
(L, D). In (VIII, §8) we define a functor

Wh : D-cell/~ rel D — Ab

which carries (L, D) to the Whitehead group Wh(L, D). As a special case of
(VIIL.8.3) we get:

(4.30) Theorem. Let D be an oco-space which is allowed to be empty. There is a
function T assigning to any homotopy equivalence f : Y — L in (coEnd)? between
D-complezes Y, L an element 7(f) € Wh(L, D). Moreover 7(f) = 0 if and only if
f is co-homotopic rel D to a simple homotopy equivalence under D.

The Whitehead group Wh(L, D) can be computed algebarically by the follow-
ing result which is a special case of (VIII.12.7).

(4.31) Theorem. Let D be an oco-space which may be empty. Let (L,D) be a
normalized finite dimensional D-complex and let 01, = ¢(L, L) € coCoef(Lg) be
given by the coefficient functor (4.13). Then the algebraic Whitehead group

Wh(8r) = K1*°(Ua(01))/~

is defined. Here A is the set of all co-maps A — Ly with A € D. The functor U4
is the enveloping functor on coCoef(Lg) in (4.16) and Ki%° is the “isomorphism
torsion group” in (VIII, § 10). Moreover there is an isomorphism of abelian groups

7: Wh(L, D) = Wh(dy)
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In order to translate the general theory in the following chapters to the special
case of co-spaces one needs the following list.

T
(1.1.11)

Coef
(I.4.1)
mod(0x)
(1.5.7)
Ua
(1.5.11)
(C,T)
(V.1.1)

Complex
(Iv.2.2)

C*
(V.2.3)

(C,D)
(VIIL5.1)
(VIIL13.3)

(O, 2%, Pk, Q%)

(VIIL4.5)

This is the full subcategory of (coEnd)Z /~ rel D of reduced 1-
dimensional co-CW-complexes (X1, D). A cogroup is a spherical
object SL and the coaction is defined in (4.18).

ocoCoef(D) in (4.13).

mod(9x) in (4.14).

U4 in (4.16).

(ooEnd)cD is a homological cofibration category with T defined

above.

Contains the subcategory of (coEnd)? consisting of normalized
reduced relative co-CW-complexes (X, D) and cellular maps.

This is the chain functor in (4.19).

(coEnd)? is a homological cellular I-category with the cylinder
I(X, D) and the class D of discrete objects in (4.29). Here D is
allowed to be empty.

For X € (coEnd)? the ball pair is the push out of B® X D
B®D — D where B® D — D is the projection and where
B = (B**!, 5%, P*,QF) is the ball pair in (1.37) (3).



Chapter B: Examples and Applications
in Algebraic Homotopy Theories

In this chapter we describe algebraic categories in which the theory of this book can
be applied. We consider the category of differential algebras and certain categories
of simplicial objects. In such algebraic categories we can consider complexes which
correspond to CW-complexes in topology. There are, however, no obvious ball
pairs in the categories, so that we do not apply the results on simple homotopy
equivalences in chapter VIII.

In chapter C and D we study also homotopy theories of simplicial objects from
a different point of view. The theory in §2 is based on the “normal” Blakers-
Massey theorem for simplicial objects while the theory in chapter C is based on a
“delicate” Blakers-Massey theorem for simplicial objects.

1 Homotopy Theory of Chain Algebras

Let R be a commutative ring with unit 1. Thus a left R-module M is also a right
R-module and we have the tensor product M ® N of R-modules M and N which
isan R-module by r- (2 ®y) = (rz) @y =2 Q (ry) forr€ R,x € M,y € N. An
algebra A is an R-module A together with an R-linear map

A®A— A carrying zQ®y to z-y (1.1)

and an element 1 € A satisfying (z-y)-2=2z-(y-2z)andz-1=1-2 = z for
z,Yy,z € A. Let Alg be the category of algebras; morphisms f : A — B in Alg are
R-linear maps which satisfy f(1) =1 and f(z-y) = (fz) - (fy). The ring R is an
algebra which is the initial object of Alg also denoted by R = x.

We have the forgetful functor ¢ : Alg — Set which carries the algebra A to
the underlying set of the R-module A. The left adjoint F' of ¢ yields for each set Z
the free algebra F(Z). This is the tensor algebra F(Z) = T(V) where V is the
free R-module generated by Z. For the empty set 0 we set F(f)) = R = *. Let
algndexalg be the full subcategory of Alg consisting of free algebras F(Z) where
Z is a set. Each free algebra F(Z) is an (abelian) cogroup in the category Alg
with the comultiplication

w:F(Z)— F(Z)V F(Z) (1.2)

defined by u(z) = i1z+i9z for z € Z. Here AV B denotes the coproduct of algebras
satisfying F(Z)V F(Z') = F(Z 11 Z') where Z 11 Z' is the disjoint union of sets.

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy

© Springer-Verlag Berlin Heidelberg 1999
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Moreover i1, i are inclusions i1 : A — AV B and i3 : B — AV B. This shows
that the subcategory

T = alg C Alg (1.3)
is a theory of cogroups in the sense of (I.1.9) below.

(1.4) Remark. Let alg® be the full subcategory of Alg consisting of free algebras
F(Z) where Z = {1,...,n} is a finite set with n > 0. Then S = alg® is a sin-
gle sorted theory and the category of models of algu satisfies model(S) = Alg;
compare (1.1.5). The category of free objects in model(S) is the category alg;
compare (1.2.6).

For each algebra A we can choose a surjective map g : X — A in Alg where X is
a free algebra. Moreover we can choose a free algebra X" and a map 9x : X" — X
in alg for which the ideal I(image(Jx)) in X generated by image(Ox) coincides
with kernel(q). We call dx a presentation of the algebra

A = X/I(image(dx)). (1.5)

This shows that the category of coefficients Coef defined for T' = alg in (1.4.1)
below admits an equivalence of categories

Coef — Alg (1.6)

which carries the presentation dx to the quotient A in (1.5). Hence the category
Alg can be obtained in two ways from free algebras: On the one hand side Alg
in the category of models of the single sorted theory S = alg® in (1.4), on the
other hand Alg is the category of coefficients associated to the theory of cogroups
T = alg in (1.6).

We say that M is an A-bimodule if M is a R-module together with actions of
A on M from the right and from the left, that is, we have an R-linear map

AQM®A— M carrying z@m®y to z-m-y (1.7)

which satisfiess 1 -m-y=m-y,z-m-1=z-mand (z-m)-y=z-(m-y). fV
is a free R-module then M = A ® V ® A is the free A-bimodule generated by V'
(with the obvious action of A from the left and from the right). Let A°P be the
opposite algebra of A. As modules we have A°? = A and we denote by z* € A°P
the element corresponding to x € A. The multiplication on A°P is defined by
x* - y* = (y-z)* for x,y € A. The algebra A @ A°P with the multiplication
(z®y*) - (z1-y}) = (zz1) ® (y1y)* is called the enveloping algebra of A, see for
example Cartan-Eilenberg [HA]. This yields the enveloping functor

U : Alg — Rings (1.8)

which carries A to U(A) = A® A°P. Here Rings denotes the category of rings. An
A-bimodule M may be regarded as a right U(A)-module by setting m- (z ® y*) =
y-m-z. Let Ox be a presentation of A then
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mod(dx) = mod(A) (1.9)

is the category of free A-bimodules or equivalently of free right U(A)-modules. One
can check that (1.9) coincides with mod(9x) in (1.5.7) below by using (1.5.10).
Therefore the enveloping functor (1.8) is a special case of (I.5.11). Each map
u: A — B in Alg induces the functor

uy : mod(A) — mod(B)

which carries the U(A)-module M to M ®a) u*U(B).

Next we consider graded R-modules and graded algebras. A graded R-module
(positively graded) is a sequence V = {V,, n € Z} of R-modules with V; = 0
for i < 0. An element v € V,, has degree |v| = n and we write v € V. A map
f V. — W of degree 7 between graded modules is a sequence of R-linear maps
fn: Vo = Wy, for n € Z. The suspension sV of V is defined by (sV),, = V,_1;
let s : V — sV be the corresponding map of degree +1, that is |sv| = |v| + 1 for
v € V. A chain complex V is a graded module together with a mapd:V — V of
degree —1 satisfying dd = 0 and the homology of (V,d) is the graded R-module
H(V,d) = kerneld/imaged. The tensor product V ® W of graded modules is
defined by

VeWw).= @ eV,
i+j=n

If V and W are chain complexes than V ® W is a chain complex with d(v ® w) =
(dv) @w + (—1)I"!v ® (dw). A chain map is a map f: V — W of degree 0 between
chain complexes satisfying df = fd.

(1.10) Definition. A graded algebra A is a graded R-module A together with a
map of degree 0

prA®A—-A withpu(z®y)=z-y

and an element 1 € Ay such that the multiplication p is associative and has 1 as a
unit. This is a chain algebra if A is a chain complex and p is a chain map, that is

d(z-y) = (dz) -y + (=1)*lz - dy.

Let DA be the category of chain algebras; morphisms f : A — B in DA are maps
of degree 0 satisfying f(z -y) = (fz) - (fg), f(1) =1 and df = fd.

The homology H A of a chain algebra A is a graded algebra with the multipli-
cation

HAQHA -1 HA® A) L5 HA (1.11)
where j({z} ® {y}) = {x ® y}. We point out that we have the natural map
A:A— HpA (1.12)
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with Az = 0 for |z| > 0 and Az = {z} for || = 0. Here we use the fact that in a
chain algebra each element of degree 0 is a cycle. We say that a graded module V
is concentrated in degree k if V; = 0 for i # k. We have the functors

Alg —* DA -% Alg (1.13)

Here i carries the algebra A to the corresponding chain algebra which is concen-
trated in degree 0 and c is the coefficient functor which carries the chain algebra
A to ¢(A) = Hy(A), compare (1.25) below.

(1.14) Definition. For a graded module V we have the tensor algebra T(V') which
is the graded algebra given by

T(V)=pve"

n>0

where V®" =V ®---®V is the n-fold tensor product. The multiplication in T'(V)
is given by V®" @ V®m — y@(+m) The tensor algebra T(V) is a free graded
algebra if V,, is a free R-module for all n € Z. A chain algebra A is termed a

free chain algebra if the underlying graded algebra admits an isomorphism T'(V') =
A where T(V) is a free graded algebra. Let

DFA c DA

be the full subcategory of free chain algebras. For a free chain algebra A =
(T(V),d) we define the cylinder

IA=(T(V'®eV"®sV),d) (1.15)

where V' and V" are two copies of V, thatis V/ = V" =V. Let ig: A — IA and
i1 : A — IA be given by io(z) = 2’ and i1(z) = z”. Here 2’ € V' and 2/ € V"
are the elements which correspond to z € V. We define the differential d on IA
on generators by dx’ = igdz, dz” = i;dx and

dsx = 2" — 2’ — Sdz

where S : A — IA is the unique map of degree +1 satisfying Sx = sx forx € V
and

S(z - y) = (Sz)(iry) + (=1)"" (iox) Sy

for z,y € A. Two maps f,g: A — B in DA are homotopic, f ~ g, if there exists
amap H : [A — B in DA with Hig = f and Hi; = g.

(1.16) Definition. An algebra A in Alg is supplemented if an algebra map ¢ :
A — x=Risgiven. Amap f: A — B in Alg is supplemented if ef = . Hence
supplemented algebras and maps form the category Alg, of objects over * in Alg.
A chain algebra A is supplemented if HpA is supplemented so that one has the
composite
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A HoA S5 R=x

in DA. Hence the category of supplemented chain algebras DA, is the same as
the category of objects over x in DA. Accordingly let DFA, be the category of
objects over *x in DFA..

Using the notions of I-category in (II. Appendix A) we prove in Baues [AH] I,
87 the following result.

(1.17) Proposition. The categories DFA and DFA, with the cylinder (1.15) are
I-categories. Cofibrations are maps in DFA which carry generators to generators.

According to III.7.4 the proposition implies that DFA and DFA, are also
cofibration categories. Moreover using (1.13) we have full inclusions

alg C DFA/~ and alg, C DFA,/~ (1.18)

where T = alg, resp. T = alg, are theories of cogroups. A map f: A — B in
DA is a weak equivalence if f induces an isomorphism f, : HA = HB. The next
result corresponds to the classical Whitehead theorem for CW-complexes.

(1.19) Theorem. Let f : A — B be a map in DFA, resp. DFA,. Then f is a
weak equivalence if and only if f is a homotopy equivalence (i.e. an isomorphism
in the quotient category DFA [/~ resp. DFA,/~).

We obtain (1.19) as a special case of (IV.3.11) below. For this we observe that
a T-complex X in DA is the same as a free chain algebra X = (T'(V),d) with the
filtration of skeleta X(;) given by the subalgebras

of X. Here V* is the submodule of the graded module V with (V*); = V; for j <i
and (V*); = 0 otherwise. Using the filtration (1.20) it is easy to see that one has
an equivalence of categories

DFA = Complex

where the right hand side is the category of T-complexes in (IV.2.2). We point
out that the inclusion alg C DFA carries a free algebra concentrated in degree 0
to a T-complex of dimension 1 since there is a shift in degree in (1.20).

Let ¥ = F({o}) be the free algebra generated by one element o in degree 0.
Then X' is supplemented by the map Y — #* which carries ¢ to 0 € R. One
readily checks that for a pair (X,Y) of objects in DA (resp. DA,) one has natural
isomorphisms (n > 1)

(1.21)
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where the left hand side is a homotopy group in DA (resp. DA,) and the right
hand side is a homology group of the underlying chain complex. Since each free
algebra F(Z) is a coproduct F(Z) = \/, £ we thus obtain for A = F(Z) € alg
the homotopy groups

T (X) = xHy(X)
Z

T (X,Y) = XHyi1(X,Y)

where the right hand side is a product over the set Z of generators in A. Now it
is an easy exercise to show that (IV.3.11) below implies (1.19).

(1.22) Remark. Let DA(flat) be the full subcategory of DA consisting of all chain
algebras A for which all A,, are flat R-modules, n € Z. We show in Baues [AH] I,
§ 7 that DA(flat) is a cofibration category provided R is a principal ideal domain.
Compare also Munkholm [DGA] and Gugenheim-Munkholm [Tor]. In this case
DFA is the category of cofibrant objects in DA(flat) and hence one has the
equivalence of categories

Ho(DA(flat)) = DFA /~

where the left hand side denotes the localization with respect to weak equivalences.
This result implies (1.19) in case R is a principal ideal domain. The equivalence
carries a chain algebra Y in DA(flat) to a free chain algebra X for which one has
chosen a weak equivalence X =, Y. Here X is termed a free approximation of Y.

Next we consider the pushout diagram in DA
K —— KurY

d I

L —— Y
J

for which we get the following Blakers-Massey theorem where R is an arbitrary
commutative ring.

(1.23) Theorem. Let L,K,Y be free chain algebras and assume i and j carry
generators to generators. For n,m > 1 let Hi(K,L) = 0 for s < n—1 and
Hy(Y,L) =0 fort <m — 1. Then the induced map

H.(K,L) — H.(KU_Y,Y)

is surjective for r < n+m — 1 and bijective forr <n+m — 2.

(1.24) Remark. Theorem (1.23) implies that the category DFA with T = alg
has the Blakers-Massey property in (IV.5.3) below. Here we use (1.20) and (1.22).
Hence n and m in (1.23) correspond exactly to n and m in (IV.5.3) since there
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is a shift of degree by +1. By (V.1.2) the Blakers-Massey property implies that
(DFA, T = alg) and (DFA,, T = alg,) are homological cofibration categories. It
is easy to check the axioms of a homological cofibration category in (V.1.1) directly
without the use of (1.23). We leave this to the reader; compare Baues [DA] C2.0.17
and C2.0.19.

Proof of (1.23). Using Baues [AH] 1.7.21 and the glueing lemma Baues [AH] 11.1.2
we may assume that the generators v in K — L satisfy |[v| > n and that the
generators w in Y — L satisfy |w| > m. Now the spectral sequence of a cofibration
Baues [AH] 1.7.23 yields (1.23); compare Baues [AH] 1.7.5 where we can omit the
summand given by “n = 0” since we consider relative homology groups. q.e.d.

We have the coefficient functor

c: DFA/~ — Alg (1.25)

which carries A to the algebra ¢(A) = HyA which is the degree 0 part of the graded
algebra HA in (1.11). This is a special case of the coeffcient functor (V.1.3).

(1.26) Definition. Let X = (T(V),d) be a free chain algebra in DFA and let
A = HyX be the associated coefficient algebra in Alg; see (1.25). Then there is a
well defined chain complex

Cy(X,*) in mod(A), see (1.9), with
Cn(X,¥) =AQV,_1®A forn>1

and C,(X,*) = 0 otherwise. Moreover there is a well defined augmented chain
complex

Ci(X) = augCi(X,*) in mod(A) with

ARV,_.1®A forn>1,
Cr(X)=< A®A forn=0,
0 forn <0.

Moreover a map f: X — Y in DFA induces a chain map
fe i uC.X - C.Y in mod(B)
where B = HyY and u = Hy(f) : A — B, see (1.9).

We get the chain complex C,. (X, *) by the general procedure in (V, §2). The
augmented chain complex C,(X) is defined by (II, §6) since T = alg is weakly
augmented by the maps

e:F(Z) - F(Z)VY inalg (1.27)
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with ¥ = F({o}) generated by one element ¢ and ¢(z) = (1+0)-2z-(1 — o) for
z € Z; see (1.2). We leave it to the reader to check the properties in (I.7.11).

We get the differential 0 of C. X explicitly by the differential d of X = (T'(v), d)
as follows. For v € V,, C Cp,41 X withn > 0let d(v) € C,, X be given by the formula

MW)®1-1® (M) forn=0
o(v) = —Adv forn=1 (1.28)
—(A®1®Ngdv forn >2
Here A\ : X — HpX = A is the map in (1.12) and
A:T(Vo) » A Voo A
is the unique function with A(1) =0,A(v) =1®v®1 for v € Vj and
Az -y) = (Az) - (Ay) + (Az) - (\y)
for z,y € T(Vy). For |v]| =1 we have dv € Xy = T(Vp) so that Adv is well defined.
Finally for n > 2 let ¢ be the projection of
Xn 1 =TVo) ® Vi1 @ T(Vo) & (X(n—1))n-1

onto the direct summand T'(Vp) ® V;,,—1 ® T'(Vp). Then for v € V,, with |v] =n > 2
the element gdv € T(Vp) ® V,,—1 ® T(Vp) is well defined. This yields the formula
for O(v) in (1.28) for n > 2. One can check that the chain complex C,(X) given
by (1.28) coincides with the chain complex defined by (V, §2) and (II, §6).

(1.29) Remark. There is a classical functor
2B :DA, — DFA, (1)

which carries a supplemented chain algebra Y to the cobar construction 2 of
the bar construction B of Y. Compare Husemoller-Moore-Stasheff [DN]. Then
X = 2B(Y) is actually a free chain algebra and one has a natural weak equivalence
2B(Y) — Y which is a homotopy equivalence in DFA, provided Y is a free
chain algebra by (1.19). Hence 2B(Y') is a functorial free approximation of Y. If
A € Alg C DA then B(A) is the reduced bar resolution of A and

B(A, A) = C,(R2BA) 2)

is the normalized bar resolution of A; compare Mac Lane [H] chapter X. Here C.,
is the chain functor in (1.26) and using (1.28) one can check that (2) holds. The
Hochschild homology and the Hochschild cohomology of A with coefficients in an
A-bimodule M is defined by

3)

HH,(A,M)=H,(B(A,A) Ru(a) M)
HH"(A,M) = H"(Homy4)(B(A, A), M))

See Mac Lane [H] X §3, §4.
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According to this remark we define for any free chain algebra X in DFA
with A = HoX the following homology and cohomology with coefficients in an
A-bimodule M:

{ HH, (X, M) = Hy(C.(X) ®u(ay M) (1.30)

HH™(X, M) = H"(Homy () (C.(X), M)

For example if A = HyX is supplemented then R is an A-bimodule so that
HH,(X,R) and HH™(X, R) are defined. Moreover we obtain the A-bimodule

TOI‘f(A,A) = HHn(Xv U(A)) = Hn(c*(X))

which is the homology of the chain complex C.(X) in the abelian category of
U(A)-modules.

If Y is a supplemented chain algebra which is not free we have the free approx-
imation X —> Y of Y given by X = 2BY. Then we define the (co-) homology of
Y by

HH,(Y,M) = HH,(X, M)
HH"(Y,M) = HH"(X, M)

It is often the case that this does not depend on the choice of the free approximation
X of Y (in particular, if R is a principal ideal domain and Y is flat, see (1.22)). We
now are ready to formulate the following homological Whitehead theorem which
is a special case of (VI, §7).

(1.31) Theorem. Let f: X — Y be a map in DFA (resp. DFA, ). Then f is a
homotopy equivalence if and only if the induced map

U:f*ZA:HOX—>B=HOY
is an isomorphism and one of the following conditions (i), (ii), (iii) is satisfied.
(i)  fu:ue Cu(X, %) — Cu(Y, %) is a homotopy equivalence of chain complexes in
mod(B).
(ii) f. : TorX(A,A) — w*TorY (B,B) is an isomorphism of A-bimodules for
n>1.
(i3) For all B-bimodules N the induced map
f*+HH™(Y,N) - HH"(X;u"N)
is an tsomorphism forn > 1.

Let X be a free chain algebra with skeleta X(;) in (1.20). Then we obtain for
n > 2 the Hy(X)-bimodule

Iy (X) = image{ Hy X (n) = HyX(n41)}

This corresponds to the mod(HpX)-module I'>(X) = [,4+1(X) in (V.5.3) where
this module is also defined for n =0, 1.
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(1.32) Theorem. For each free chain algebra X with A = HpX the following
sequence is an excat sequence of A-bimodules (n > 1)

— LF(X) = Hy(X) =5 Toryy (A, 4) = I (X)) — ..
— I (X) — Hi(X) — Tory (A, 4) = I (X) = 0

The sequence is natural in X.

This sequence is a special case of the exact sequence of J.H.C. Whitehead in
(V.5.4) and h is the analogue of the Hurewicz homomorphism.

(1.33) Remark. In Baues-Felix-Thomas [PA] we study the sequence (1.32). If R
is a principal ideal domain and if HyX is free as an R-module we show that
IfX =I#¥X =0 and that

I's(X) = Hi(X) ®n,x Hi(X)

where the right hand side is the tensor product of the right Hy(X)-module H;(X)
with the left Ho(X)-module H;(X) so that the tensor product has the obvious
structure of an HyX-bimodule. Moreover we show that in case H;X = 0 for
0 <i<nthen I'*(X) =0 for i < 2n and

I X = Hy(X) @pox Ho(X).

Using (V.4.4) we get the next result concerning obstruction theory of chain
algebras. Let Y C X be an inclusion of free chain algebras which carries generators
to generators. Let (X,Y)(,) be the relative n-skeleton given by the subalgebra of
X generated by Y and X, in (1.20).

(1.34) Theorem. Let f : Y — U be a map in DA which admits an extension
g:(X,Y)ny — U with n > 2. Then the restriction gn—1 = g | (X,Y)(n—1) admits
an extension g : (X,Y)(n4+1) — U in DA if and only if an obstruction element

O(gn_1) € HH" (X, Y;u*H, _,U)
vanishes. Here u : HyX — HyU is induced by g since n > 2.

This is the analogue of the classical result of obstruction theory for CW-
complexes. By (VL.3.1) we have the following homotopy lifting property of the
chain functor C in (1.26), (1.28).

(1.35) Theorem. Let f : X — Y be a map in DFA with f = C.(f) : Cu(X, %) —
C.(Y,*) given by (1.26). Let o : f ~ g be a homotopy of the chain map f. Then
there exists a homotopy H : f ~ g in DFA satisfying C..(g) = g and C«(H) = a.

There are many further results on the homotopy theory of DFA which can
be deduced from the abstract theory; for example the tower of categories in (VI,
§5) and the model lifting property of the twisted chain functor; see (VI, §3, §8).
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We leave it to the reader to formulate the appropriate explicit interpretation of
such results in the homotopy theory of chain algebras. As a final application of
the abstract theory to chain algebras we describe the following result on finiteness
obstructions.

Let X,Y be free chain algebras. A domination (X, f,g,H) of Y in DFA is
given by maps

vy Lx %y

and a homotopy H : gf ~ 1 in DFA. The domination is finite if X is finitely
generated. As a special case of (VI1.2.4) we get

(1.36) Theorem. LetY be a free chain algebra which admits a finite domination
i DFA. Then the finiteness obstruction

[Y] = [Cu(Y,%)] € Ko(U(HoY))

is defined. Here U is the enveloping functor (1.8) and Ky is the reduced projective
class group; see (VII, § 1). Moreover [Y] = 0 if and only if there exists a finitely
generated free chain algebra X and a homotopy equivalence X — Y in DFA.

This is the chain algebra analogue of the finiteness obstruction theorem of Wall.

2 Homotopy Theory of Connected Simplicial Objects
in Algebraic Theories

In this section we discuss simplicial objects in the category of models of a single
sorted theory with zero object S. The corresponding homotopy theory was recently
considered by Schwede [SH].

The homotopy theory for S, however, behaves very different to the homotopy
theory for a theory T of coactions in chapter C. The basic example for S is the
category of pointed simplicial sets while the basic example for T is the category
of simplicial groups.

Pointed simplicial sets have all the homotopy theoretic properties as pointed
spaces in Top™ which are considered in (A, §1) above. Accordingly one obtains
for the homotopy theory of simplicial S-models similar reults as for pointed spaces

in (A, §1).

(2.1) Definition. A single sorted theory S is a category with a distinguished “gen-
erating” object S € Ob(S) such that the objects of S are exactly the finite n-fold
coproducts

nS=8v---vS§ (1)
——

n-times

with n > 0. Here 0S = % is the initial object of S and 1.5 = S. We say that S has
a zero object if * is also the final object of S. Let S°P be the opposite category of
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S. A functor S°? — C is the same as a contravariant functor S — C. A model M
of S is a functor

M : S°P — Set (2)

which carries coproducts in S to products of sets. We call M(S) the underlying
set of M. Let

M = model(S) (3)

be the category of models; morphisms are natural transformations. We have the
distinguished model

S =8(—,8): 8% — Set (4)

which as well is denoted by S. The category M has arbitrary coproducts ][] so
that for a set Z the free object

Sez=1]]s (5)

z€Z

is defined. Let Mgee C M be the full subcategory of free objects. If S has a zero
object then also M has a zero object.

(2.2) Example. (a) Let S = {1} be the set consisting of the number 1. Then the
n-fold coproducts in Set (n > 0)

n{l} ={1,...,n}

form the full subcategory set? of Set for which model(set) = Set.
(b) Let S = S° = {0, 1} be the pointed set consisting of 2-elements with basepoint
* = 0. Then the n-fold coproducts in Set*(n > 0)

nS® ={0,1,...,n}

form the full subcategory (set*)* of Set* for which model(set*)! = Set* is
the category of pointed sets. Here (set*)? is a single sorted theory with zero
object * = {0}.

(c) Let S = Z be the group of integers. Then the n-fold coproducts in the category
Gr of groups are the free groups

nZ={{1,...,n})

which form the full subcategory gr* of Gr for which model(gr*) = Gr. Here
gr! is again a single sorted theory with zero object * which is the trivial group
consisting of one element.
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(2.8) Remark. Schwede [SH] considers the “simplicial enriched” version of a single
sorted theory with zero object which he calls (in the dual language) a “simplicial
theory”. The single sorted theories with zero objects considered in this section
correspond exactly to “discrete simplical theories” in the sense of Schwede. All
results in this section have a canonical generalization for the more general simplicial
theories.

In the following let S be a single sorted theory with zero object. Then the cat-
egory M of models of S has also a zero object * and hence * = const(x) is the zero
object of the category AM of simplicial objects in M. See (C.1.1) below. We have
the inclusion

const : M C AM (2.4)

which carries the model M to the constant simplicial object const(M) also denoted
by M. The functor M — Set* which carries M to the underlying set M (S) yields
the functor

AM — ASet* (2.5)

which carries the simplicial model X to the underlying pointed simplicial set X (.5).
The simplicial set X (S) has the additional algebraic structure given by the theory
S. For example for S = gr® in (2.2) (c) a simplicial model is the simplicial analogue
of a topological group. We say that X is connected if X(S) is connected; i.e.
mX =% Amap f: X — Y in AM is a weak equivalence if the underlying map
f: X(S) — Y(S) between simplicial sets is a weak equivalence. According to
Dwyer-Hirschhorn-Kan [MC] or Schwede [SH] we have the following result.

(2.6) Theorem. Let S be a single sorted theory with zero object and let M be
the category of models of S. Then the category AM of simplicial models has the
structure of a closed simplicial model category with weak equivalences defined above.

The fibrations in AM are the maps f : X — Y for which f: X(S) — Y(S)
is a fibration of simplicial sets. Hence the fibrant objects X in AM are exactly
the simplicial models X for which the underlying simplicial set X (S) satisfies the
Kan extension condition (May [SO]). Let Ho(AM) be the homotopy category of

AM obtained by localizing with respect to weak equivalences in AM. Moreover
for X,Y in AM let

[X,Y] = Ho(AM)(X,Y) (2.7)

be the set of morphisms X — Y in Ho(AM). For a cofibrant object X in AM we
can define the suspension XX by the push out diagram in AM

X®S[1l] —— £X

I I

X®%x —— %
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Here we use (C.1.8) and (C.1.4) below. As usual the set [Y'X,Y] is a group. In
particular we have the equation of homotopy groups

T (X) = [E"8, X] = ma(X(S)), n2>1, (1)

where XS is the n-fold suspension of S = const(S) € AM. Similarly relative
homotopy groups satisfy

Tni1(X,Y) = Tny1 (X (), Y (S)) (2)

The following crucial result is due to Schwede [SH]; this is the (non-delicate)
Blakers-Massey theorem for the category AM. Clearly since pointed simplicial
sets ASet” form an example of AM by (2.2) (b) we cannot expect that a delicate
version of the Blakers-Massey theorem holds in AM; though this is the case for
AGr given by the example (4.2) (c); see chapter C below.

(2.8) Theorem. Consider a push out diagram in AM of cofibrant objects

K — KUY

d I

L — . v

where i is a cofibration. Assume further that all objects are connected and that
72 (K,L) =0 fori <m and n?(Y,L) = 0 for i <n. Then the induced map

Je (K, L) - m(K UL Y)Y)
is surjective for i < n+m and bijective fori <n+m — 1.

For the example (2.2) (b) this is exactly the classical Blakers Massey theorem
for connected spaces which are equivalent to connected pointed simplicial sets.

(2.9) Definition. Let S be a single sorted theory with zero object and generating
object S and let M be the category of models of S. Then the full subcategory

T(S) C Ho(AM)

consisting of the suspensions X'(S ® Z) of free objects S ® Z = const(S @ Z) is
the theory of cogroups associated to S; see (2.1) (5) and (2.4). Using (II1.6.8) we
set that T(S) is augmented by XS with augmentation maps induced by Z — {*}.

For example for S in (2.2) (b) we get T(S) = gr the category of free groups;
while for S in (2.2) (c) we get T(S) = ab the category of free abelian groups. As
a consequence of (2.6) and (2.8) we have the following result where we use the
notation in (IV.2.1), (IV.5.3), (V.1.1).

(2.10) Theorem. Let S be a single sorted theory with zero object and let M
be the category of models of S. Then AM is a cofibration category under T(S)
which satisfies the Balkers-Massey property (IV.5.3). Hence AM is a homological
cofibration category under T(S).



2 Homotopy Theory of Connected Simplicial Objects in Algebraic Theories 65

This theorem shows that we can apply all the notation and results of the general
theory in chapter I, ... | VII for the category AM. We now describe a selection of
such applications.

Let T¥(S) be the full subcategory of Ho(AM) consisting of the finite coproducts

nXS=XSv.-..vXS=X(S®{1,...,n})
—_——

n-times

Then T#(S) is a single sorted theory of cogroups with zero object and we obtain
the category of models

Coef = model(T*(S5)) (2.11)

which coincides with the category of coefficients in (I1.4.1). The category T(S) is
the full subcategory of Coef consisting of all free models of T#(S). We have the
coefficient functor

¢ : Ho(AM) — Coef (2.12)

which carries the simplicial model X to ¢(X) : TH#(S)°® — Set such that
c(X)(nXS) = [nXS, X]. For the example (4.2) (b) we see that ¢(X) = m(X)
is the fundamental group of X.

Next we define the analogue of a CW-complex in the category AM; this is a
sequence of cofibrations

X1>——>X2>—>-’->—>Xn>-—~>X"+1>-—~> (2.13)

where X! = ¥(S® Z;) is an object in T(S) and where X™ »— X"™*! is a principal
cofibration with attaching map f, : X*(S ® Z,) — X™; i.e. X"+ is up to weak
equivalence the mapping cone of f,. Here the set Z,, is called the set of n-cells of
X. We call X = lim X* a T(S)-complex in AM. We can choose all X* and X to be
fibrant and cofibrant in AM for ¢ > 1, see (IV, §1, §2). Let Complex be the full
subcategory of AM consisting of T(S)-complexes. Then we have the equivalence
of categories

Ho(AM)y —~ Complex/~ (2.14)

where (AM)y is the full subcategory of connected objects in AM and =~ is the
relation of homotopy of maps between cofibrant and fibrant objects. We point out
that the cellular approximation theorem holds in AM by (IV.5.8).

For each object G in Coef we can choose a T(S)-complex X? with ¢(X?) ~ G.
We call the attaching map dx = fo a presentation of G. Moreover we define for G
the following additive category mod(G). Let n > 2. Objects are the coproducts
Xn(S®Z)VX?in AM where Z is a set and morphisms are commutative diagrams
in Ho(AM)




66 Chapter B: Examples and Applications in Algebraic Homotopy Theories

X2 ——— X2

I I

In(S®Z)VvX? IS ®Z')VvX?

1(0,1) 1(0’1)

X2 X2
The initial object is given by the empty set Z = (). The partial suspension shows
that the category does not depend on the choice of n > 2; moreover the cat-

egory does not depend on the choice of the presentation of G. We define the
enveloping functor

j\

U : Coef — Rings (2.15)

which carries G to the ring of endomorphisms of the object £™(S)V X? in mod(G).
Moreover U carries a map u : G — H in Coef to the ring homomorphism wu, :
U(G) — U(H) which carries f : ¥"SV X2 - XSV X2 € U(G) to

uf=(AV@)f | T"S,iz) : E"SVY? - Z" VY2

where i : X? — Y? is a map with ¢(@) = u. Let Mod(G) be the abelian category
of all right U(G)-modules. Then mod(G) C Mod(G) is the full subcategory of all
free U(G)-modules.

(2.16) Definition. Let X be a T(S)-complex in AM and let Z, be the set of n-
cells of X for n > 1. Moreover let G = ¢(X) be given by the coefficient functor
(2.12). Then there is a well defined chain complex C,(X) in the category mod(G)
of free right U(G)-modules satisfying

U(G) n>1
Co(X)=1( z.
U(G) n=20

and C,(X) = 0 for n < 0. Moreover a filtration preserving map f : X — Y
between T(S)-complexes induces u : ¢(X) — ¢(Y) and a chain map

fo i Cu(X) = Cu(Y)

in mod(H) with H = ¢(Y). Since T(S) is augmented we obtain C,(X) by (V, §2)
and (II, §6).

(2.17) Ezample. If S is defined as in (2.2) (b) then X is a pointed simplicial set
corresponding to a CW-complex Y with |X| ~ Y and cells as in the T'(S)-complex
X, in particular Y° = x. In this case G = ¢(X) = 7 (X) is the fundamental group
of X and U(G) = Z[m X] is the group ring. Moreover C, X with

Cn(X) = Hn(}}n7 ?n—l)

is the cellular chain complex of the universal cover of Y.
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If S is defined as in (2.2) (c) then X is a connected simplicial group correspond-
ing to a CW-complex Y with Y! = x such that X ~ Gy where Gy is the Kan
loop group of Y. In this case we have G = ¢(X) = m X = 1Y and U(G) = Z; i.e.
U is the constant functor Z. Moreover C, X satisfies

cx - {Hn+1(Y”+1;Y") forn>1
Z forn=0
for n € Z; i.e. up to the shift of degree C,X/CoX is the reduced cellular chain
complex of Y.

Using the chain complex C. X in (2.16) we define for each right U(G)-module M
with G = ¢(X) the cochain complex Hom(C.X, M) of abelian groups where Hom
is defined in the category Mod(QG) of right U(G)-modules. The cohomology with
coefficients in M is

H™"(X; M) = H*(Hom(C, X, M)) (2.18)

Moreover the homology of X is the homology of C,X in the abelian category
Mod(G), that is

_ kerneld: C, X — C,, 1 X
Hn(X) = imaged : Cp11X — Cp X

(2.19)

Hence H, X is a right U(G)-module.

Let X be a T(S)-complex and let Y be an object in AM. Moreover let u :
X; — Y be a map which admits an extension X5 — Y. Then u induces a map
Uy : ¢(X) = G — ¢(Y). Moreover we obtain the right mod(G)-module (n > 2)

vw*m,Y : mod(G)°® — Ab (2.20)

which is given by a right U(G)-module u*m,(Y) as follows. The module carries
the object X™(S ® Z) V X5 to the abelian group

(ZM(S® Z),Y] = @ mn(Y)
A

Moreover a map f in mod(G) induces the homomorphism
freEsez) Y- [2M(Se 2),Y]
which carries a : X"(S ® Z') — Y to the composite
@) 2SS 2z) s s se 2 v, Y.

Here f' = f | X™(S ® Z) is the restriction of f. If we take Z = Z’' = point then
we obtain this way the U(G)-module u*m,(Y).



68 Chapter B: Examples and Applications in Algebraic Homotopy Theories

(2.21) Theorem. Let S be a single sorted theory with zero object and let M be
the category of models of S. Then obstructions for the extension of maps in AM
are defined as follows. Let A be a subcomplex of the T(S)-complex X and let
f:A—=Y be amap in AM such that f | A, admits an extension g : X, — Y,
n > 2. Then the restriction g | X,—1 admits an extension § : Xpy1 — Y with
3| Ant1 = f | Ant+1 if and only if an obstruction element

O(g | Xpn_1) € H" (X, A;u*m,Y)
vanishes. Here u: X1 — Y is the restriction of g.

For the example (2.2) (b) of pointed simplicial sets this is a classical result of
obstruction theory; compare (2.17). We obtain (2.21) as a special case of (V, §4).
Next we obtain by (VI, §7) the following homological Whitehead theorem:

(2.22) Theorem. Let S be a single sorted theory with zero object and let M be
the category of models of S. Let f : X — Y be a filtration preserving map between
T(S)-complezes in AM. Then f is a homotopy equivalence, i.e. an isomorphism
in Ho(AM), if and only if the coefficient functor ¢ induces an isomorphism

u:G’:c(X)iH:c(Y)

and one of the following conditions (i), (ii), (1) is satisfied.

(i) fo : uCiX — C.Y is a homotopy equivalence of chain complexes in
mod(H).

(i) fi: Ho(X) — (us)*Hp(Y) is an isomorphism of U(G)-modules for n > 1.

(iii) For all right U(H)-modules M and n > 1 the induced map

ffHY(Y,M) — H"(X,u"M)
is an isomorphism.

In Schwede [SH] 2.2.2 the result is proved for the special case that X and YV
are simply connected, that is G = H = 0. Next we consider the Hurewicz
homomorphism and the exact sequence of J.H.C. Whitehead in AM.

(2.23) Theorem. Let S be a single sorted theory with zero object and let M be
the category of models of S. For each connected object X in AM one has the
following exact sequence of right U(G)-modules, G = ¢(X), n > 2.

o (X)) > (X)) = Hp(X) = T (X) — ...

o (X)) > me(X) = Hy(X) = I1(X) — 0

Here we use (2.14) in order to replace X by a T(S)-complex. Hence it is suffi-
cient to prove (2.23) only for T(S)-complexes X for which we define

Ih(X)= image{ﬂ'n(Xn—l) - Wn(Xn)}
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if n > 3. The definition of I} and I is more complicated; see (V, §5). If the
n — 1)-skeleton X, is trivial (n > 2) then it is easy to see that I X = 0 for
i < n and hence we get the following Hurewicz theorem; compare Schwede [SH]
2.4.3.
(

2.24) Corollary. Let n > 2 and let X be (n — 1)-connected. Then 7,(X) —
H,(X) is an isomorphism and mp41(X) — Hpi1(X) is surjective.

Finally we consider the theorem of Wall in AM. We say that a T(S)-complex
X is finite if X has only finitely many cells; that is the set Z; U Zo U ... is finite.
Now let X and Y be T(S)-complexes. Then a domination (X, f,g) of Y is given
by maps

Y L X %y inHo(AM)

with gf = 1. The domination if finite if X is finite. As a special case of (VII.2.4)
we get:

(2.25) Theorem. Let S be a single sorted theory with zero object and let M be the
category of models of S. Let Y be a T(S)-complex and let H = ¢(Y') be given by the
coefficient functor. If Y admits a finite domination then the finiteness obstruction

[Y] =[C.Y] € Ko(U(H))

is defined. Here U is the enveloping functor in (2.15) and Ky is the reduced pro-
jective class group; see (VII, §1). Moreover [Y] = 0 if and only if there exists a
finite T(S)-complex X and an isomorphism X —Y in Ho(AM).

For the example (2.2) (b) of pointed simplicial sets this corresponds exactly to
Wall’s result on finiteness obstructions.



Chapter C: Applications and Examples
in Delicate Homotopy Theories
of Simplicial Objects

In this chapter we consider homotopy theories of simplicial objects which resemble
the homotopy theory of simplicial groups. It is well known that in the Quillen model
category of simplicial groups AGr all objects are fibrant; i.e. all simplicial groups
satisfy the Kan extension condition. Moreover the free simplicial groups form a
sufficiently large class of cofibrant objects in the sense that the homotopy category
of free simplicial groups is equivalent to the homotopy category Ho(AGr) defined
by localization with respect to weak equivalences. Since free groups are cogroups
we see that free simplicial groups are simplicial objects in a special theory T
of cogroups. In this chapter we study the homotopy theory of “free” simplicial
objects in any theory of cogroups, or more generally in any theory of coactions.
Such homotopy theories are canonical generalizations of the homotopy theory of
simplicial groups.

Simplicial groups have the additional property that a delicate Blakers-Massey
theorem holds which corresponds to the ordinary Blakers-Massey theorem for con-
nected spaces via the Kan-equivalence of homotopy categories:

Ho(Top;) — Ho(AGr)

Here Topy is the category of pointed connected spaces. In section §2 and §3 we
describe many further examples of theories of cogroups (resp. coactions) in which
such a delicate Blakers-Massey theorem holds. We therefore call the homotopy the-
ory considered in this chapter the “delicate homotopy theory of simplicial objects”.
The non-delicate or normal theory of simplicial objects resembles the homotopy
theory of simplicial sets and is discussed in (B, §2) above. The delicate homotopy
theory has many features which are different to the normal theory. In particular
a homology and cohomology theory with twisted coefficients is defined in the del-
icate theory which is not defined in the normal theory. In the case of a simplicial
group G the homology of G is the homology of the classifying space of G with
twisted coefficients; see (A, §1).

1 Homotopy Theory of Free Simplicial Objects
in Theories of Coactions

We study the simplicial objects in a theory T of coactions and we describe basic
results for the homotopy theory of such simplicial objects. In the next section

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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we consider various examples of such theories T. In particular if T = gr is the
category of free groups then the results of this section correspond to well known
facts of classical homotopy theory since a free simplicial object in gr is a model of
a connected space. We discuss only some of the main applications of the general
theory of chapter I, ... ) VIII to simplicial objects. We leave it to the reader to
work out results like the “model lifting property” or the obstruction theory for the
“realizability of chain complexes” and many further applications.

Let A be the category of ordered sets [n] = {0 < --- < n} and order preserving
functions « : [n] — [m] in Set where n,m > 0. For 0 < i < n we have the functions

d; : [n = 1] — [n] = {i} C [n]
s, n+1] - [n] with s;(i) = si(i + 1)

in A where d] is injective and s] is surjective. A simplicial object in a category C
is a functor

X:A® - C (1.1)

We write X,, = X|[n] and the face maps are d; = (d})* : X,, — X,—1 and the
degeneracy maps are s; = (s})* : X,, = Xp41. The collection (X,,,d;, s;) satisfies
the usual simplicial identities; see May [SO]. Let AC be the category of simplicial
objects in C; morphisms are natural transformations. Hence AC is an example
of a category of A-diagrams as considered in (A.2.1). We have the standard full
embedding of categories

const : C C AC (1.2)

which carries the object X € Ob(C) to the constant simplicial object const(X)
with const(X), = X and d; = s; = 1x. We often identify the constant simplicial
object const(X) with the object X in C and we write X = const (X) € AC in
this case.

Let ASet be the category of simplicial sets. The standard n-simplex Aln] =
A(—,[n]) in ASet is generated by o,, € A[n], where o, is the identity of [n]. The
n-simplex A[n| has the universal property that, for every X € ASet and z € X,,
there is a unique map i, : A[n] — X in ASet with i,(0,) = z. For every n > 0
let

dA[n] C Aln] (1.3)

be the largest subobject of A[n] not containing o,. The base point * of A[n] is
given by * = dy...dy(0n) € (Aln])o which defines

* = const(x) — Aln].

The inclusion (1.3) is a simplicial model of the n-ball since the geometric real-
ization of A(n) is the standard n-simplex A™ in Euclidean space with boundary
OA™ the realization of OA[n]. We need a further simplicial model of the n-ball

given by the simplicial n-ball
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S[n—1] C Din]. (1.4)

Here S[n — 1] is the push out of An—1] D dA[n — 1] — x where * is the constant
point. Moreover D[n] is the push out of Aln] D A°n] — x where A°[n] is the
subobject of A[n] generated by d;o,, with i > 0. We have the canonical push out
diagram in ASet

Aln] ——  D[n]
U @]
8AM] —2— S[n — 1]

where ¢ carries A°[n] to x.

An element x € X, is degenerate if it is of the form x = s;y for some y € X,,_;
and 0 < i < n and non-degenerate otherwise. The simplicial n-ball has the non-
degenerate elements o,, and dpo,. The geometric realization of (1.4) is the usual
n-ball (D", S™~1) which is a CW-complex with two nontrivial cells; see (A, §1).
Recall from May [SO] or Fritsch-Piccini [CS] that the geometric realization | X| of a
simplicial set X is a CW-complex in which the cells of | X | are in 1-1 correspondence
to the non-degenerate elements of X. A simplicial set X is finite if X has only
finitely many non-degenerate elements; this implies that X, is a finite set for all n.

Let D C A be the subcategory consisting of all surjective maps in A. The
morphisms s} in (1.1) generate D. Each simplicial set X yields a D-set X7, by the
composite

Xp : D C AP X, Set (1.5)

It is known that Xp has the following “pull back property”.

(1.6) Definition. We say that a D-set X : D°? — Set has the pull back property
if for n > 0 and 0 < j < n all degeneracy maps s; = (s;)* : Xp — X4 are
injective and if for ¢ < j the diagram

Xpnog —2— X,
s,._ll lj (1)
Xn —— Xnp1
is a pull back diagram in the category of sets, i.e. s;X,, N s; X, = 5;5:X5—1. In
particular the D-set (i > 0)
D(—,[i]) : D°° — Set (2)

which carries [n] € D to the set D([n], [i]) has the pull back property.
We now consider a theory of coactions T as defined in (I.1.11) below. Hence
coproducts X VY and an initial object * exist in T and each object X in T is
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endowed with the structure of a coaction ux : X — X V X’ where X’ is a cogroup
in T such that one has a canonical isomorphism

(ix,/.tx):XVXZX\/X’ (1.7)

in T, see (I1.1.12). For a finite set Z and an object X in T we define the
tensor product X ® Z which is the coproduct

xez=\/X (1.8)
2€Z

of as many copies of X as there are elements in the set Z. Clearly the tensor
product defines a bifunctor

® : T x Set(fin) —» AT (1)

where Set(fin) is the category of finite sets. If T has arbitrary coproducts then
we can omit the finiteness of sets. If Z is a (finite) simplicial set then X ® Z is
a simplicial object in AT with face and degeneracy maps induced by those of Z.
Moreover we obtain the functor

® : (AT) x ASet(fin) — AT 2)

which carries the pair (X, Z) to the simplicial object X ® Z with (X ® Z), =
X, ® Z,. Here face and degeneracy maps are defined by o0; ® ¢; and d; ® d;
respectively; i.e. X ® Z is the “diagonal” of the corresponding bisimplicial object.
If Z is a pointed simplicial set and if X is a based object in AT (i.e. a map
0 : X — const(x) is given) then we define the half smash product X A Z by the
push out diagram in AT

X®Z — XANZ

I I ®

Clearly any cogroup A in T is based by the trivial map 0: A — x so that AA Z
is defined.
We shall need the following lemma which we derive from (1.7).

(1.9) Lemma. Let Z : D°? — Set(fin) be a D-set with the pull back property
in (1.6) and let x € Zy be a basepoint. Then the inclusion const(x) C Z has the
complement Z — const () which is again a D-set with pull back property and for a
coaction X — X V X' in T one has via (1.7) the canonical isomorphism in DT

X ® Z = const(X) VX' ® (Z — const(x))

We can omit the finiteness of Z, in (1.9) if we assume that T has arbitrary
coproducts.
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For X € T the object X ® A[n] in AT has the following universal property:
For each object Y in AT and each map f : X — Y}, in T there exists a unique
map

f:X®An —Y in AT (1.10)

which extends f : X = X ® {o,} — Y, in degree n. According to this universal
property we define “free” objects in AT as in the following definition.

(1.11) Definition. Let T be a theory of coactions and let AT be the category of
simplicial objects in T. We consider a diagram X Z°:

X0 o xt s X XL

in AT with the following properties:

(i) X° = const(X?) is the constant simplicial object given by X° € T with
coaction p: X0 — XO0v A0,
(ii) For n > 1 a push out diagram in AT of the form

A ® Aln] ——— X7

I I

A" ®0An] —2n xn1
is given where A™ is a cogroup in T termed the n-cell of X2°.

Then the direct limit X = lim X29 in AT is defined and X is called a free object
in AT. We say that X is a pointed free object if for n > 1 the attaching map 9,
admits a factorization

Bn : A" ® 0A[n] — A™ ADA[R] — X"

where we use the base point of A[n] in (1.3). Each free object is actually isomorphic
to a pointed free object; see (1.21) below.

Let Y be a free object in AT with cells B™®, n > 0. We say that a map
f X — Y between free objects is a free inclusion if isomorphisms in T

yo= x0vy?
B" >~ A™ v B"
are given such that the map f : X™ — Y™ n > 0, is inductively induced by the
inclusions
X0 xO0vy0xy?
A" — A"V B" =~ B".

Here B™ is a cogroup and Y is a coaction and the isomorphisms are compat-
ible with the cogroup (resp. coaction) structure on both sides. We call B™ the
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relative n-cell of (Y, X). Now assume that for all n > 1 the attaching map 9, in
(ii) has a factorization

O : A" ® A —E9 An A S —1] —2n . xn-!

Then we call X a CW-object in AT. For a CW-object the push out (ii) induces
the push out diagram (see (1.4))

A" AND[p] —— X"
| | (i)
AP AS[n— 1] =, xn-1
Hence we obtain the full subcategories
(AT)cw € (AT)gee C AT (iv)

Here (AT)fee consists of all objects X in AT which are isomorphic in AT to a
free object. Moreover (AT)cw consists of all CW-objects in AT.

(1.12) Lemma. Let X be a free object in AT with X° A" € Ob(T) forn > 0
defined as in (1.11). Then there is an isomorphism of D-objects

Xp 2 const(X%) v \/ A @ D(-, [i])
i>1
Proof. We have a disjoint union of sets

Alnly, = (0A[n]), TD([], [n])

Hence the isomorphism in (1.12) is a consequence of the push out (1.11) (ii). We
do not claim that all push outs exist in AT, but push outs as in (1.11) exist since
there are coproducts in T. q.e.d.

The next result is a kind of converse of Lemma (1.12).

(1.13) Proposition. Let J be a (finite) index set and for j € J let Z(j) be a
pointed D-set in Set(fin) which has the pull back property. Moreover let X (j),j €
J, be objects in the theory of coactions T. If X is an object in AT together with
an isomorphism of D-objects

Xp = \/ X(j)® Z(j)
JjeT
then X is isomorphic to a free object in AT.

If arbitrary coproducts exist in T we can omit in (1.13) the finiteness assump-
tions.
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(1.14) Example. Let T = gr be the category of free groups. Hence gr is a theory of
cogroups in which arbitrary coproducts exist. Kan [HG] and Curtis [SH] say that
a simplicial group G is free if there exists a D-set Z together with an isomorphism
of D-groups

GpZ®Z (%)

Here Z is the group of integers and each free group F = (Z,) with basis Zy can be
written F = Z ® Zy. Jardine-Goerss [SH] V.1.8 show that (x) implies that Z has
the pull back property. Hence by (1.13) we see that (x) implies that the simplicial
group X is also free in the sense of (1.11). In fact, this was already proved by
Jardine-Goerss [SH] V.1.9 and our proof of (1.13) below generalizes the argument
of Jardine-Goerss.

Proof of (1.13). Since Z(j) is pointed we have the D-set U(j) = Z(j) — const(*).
Moreover for the object X (j) in T we have the coaction

piX(J) = X(G) Vv AQG)
where A(j) is a cogroup. Let
=\ X() (1)
JjeJ

then (1.9) and the assumption in (1.13) show that we have an isomorphism of
D-objects

Xp = const(X?) v \/ A(j (2)
JET

Let U’ ( /), be the subset of U(j),, consisting of non-degenerate elements and let
A™(n > 1) be the coproduct

=\{AG); G €T, U'G)a # 0} (3)
Then (2) shows
Xp 2 const(X°) v \/ A" @ D(—, [n]) (4)

and this is the form of a free object in (1.12). Following the argument of Jardine-
Goerss [SH] V.1.9 we see that one has a push out in AT

A" ®@ Aln] —— sk, (X)

I I

A" ®9AN] —2 sky_1(X)
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where sk, (X) is the “n-skeleton” of X, compare Jardine-Goerss [SH] V, § 1. Hence
the filtration in (1.11) coincides with

X" = sky(X) (1.15)
if X is a free object in AT. q.e.d.

(1.16) Corollary. Let X be a free object in AT and let S be a (finite) simplicial
set. Then X ® S is isomorphic to a free object in AT.

Proof. Since X is free we have (1.12) and hence we get

(X@S)p=X"@SV\/ AeD(-,[i])®Sp with
i>1
A'@D(—,[i]) ® S = A* ® (D(—, [i]) x Sp)
Here we use the product of D-sets; compare Quillen [HA] II. page 1.9. Since Sp

and D(—, [1]) satisfy the pull back property we see that Z* = D(—, [i]) X Sp satisfies
the pull back property. Hence we can apply (1.13). q.e.d.

Following Quillen [HA] II. page 1.6 we define the cylinder functor
I: (AT)free - (AT)free (117)

which carries X to I(X) = X ® A[l]. Here we use (1.16) to see that I(X) is
actually again an object in (AT)gee. We have the obvious maps between simplicial
sets A[0] II A[0] — A[1] — A[0] which induce the structure maps of the cylinder

xvx e pxy P, x

Compare (III. 7.1). Let * be the initial object of T then const(x) is the initial
object of AT. Moreover we say that a map f: X — Y in (AT )gee is a cofibration
if f is isomorphic in AT to a free inclusion; see (1.11).

(1.18) Theorem. Let T be a theory of coactions. Then the category (AT )gree
with the cylinder (1.17) and cofibrations given by free inclusions (1.11) satisfies
the axioms of a I-category in (III, § 7).

This implies by (111.7.4) that (AT )gee is also a cofibration category.

Proof of (1.18). The axioms (I1), (I12), (I4) and (I5) are obviously satisfied. We
only have to check the homotopy extension property in (I3). For this it suffices to
show that

A®0A[n] - A® Aln]

has the homotopy extension property for all cogroups A in T. But this is a con-
sequence of the fact that for any U in AT the simplicial set T(A,U) is actually
a simplicial group which satisfies the Kan-extension condition; see May [SO] 17.1.
q.e.d.
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Theorem (1.18) shows that we have for any theory of coactions a well defined
homotopy category

C./~ = (AT )free/ (1.19)
We obtain this result readily from the simple proofs above.

(1.20) Remark. Dwyer-Hirschhorn-Kan [MC] 9.7 obtain a Quillen model category
for simplicial objects in certain categories of universal algebras. If the universal
algebras are defined on underlying groups then the associated homotopy theory
is up to equivalence of categories of the form (1.19) where T is the category of

cogroups given by free universal algebras. Compare also theorem I1.5.4 in Jardine-
Goerss [SH].

(1.21) Proposition. Each free object in AT is isomorphic to a pointed free object
and is homotopy equivalent to a CW-object in AT. Hence there is an equivalence
of categories

(AT)free/ﬁ - (AT)Cw/E

Proof. Let X be a free object defined as in (1.11). The attaching map &, yields a
map

a: A®* — A®0dn] 2 xn! (1)
with A = A™. Using the comultiplication u of A we get for a simplicial set Z
p:A®Z - (AVA)RZ=AQRZVAQRZ - AQRZVARx* (2)

Here the first map is 4 ® Z and the second map is 1V (A ® 0) where 0: Z — x is
the trivial map. Using i we get the following commutative diagram

A®Al] ——  A®8AR) £, xn

[ s

AR An]VA®* «——— A®OIA[n]VAQ x

I I
an

A® Aln] — AQ OA[n] —r s Xxn-l

(anvﬁ) Xn_]

The push outs of the rows are denoted by Xj, P, and X™ respectively. Now the
lower left hand square is a push out and hence i; : X™ — P is an isomorphism.
Therefore we get the canonical map

ps: Xy Lo P xn (3)
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satisfying pgta = pp+a * Xjio — X — X™. Hence for B = —o we see that ug
is the inverse of y,. Moreover 9, - 3 is pointed in this case by (1). Hence the free
object X is isomorphic to a pointed free object.

Next we consider the second statement in (1.21). Using the push outs in (1.11)
(i), (iil) it now suffices to prove that

1®q: ANOA[n] ~ AN S[n—1]

is a homotopy equivalence in (AT)gee/~ for each cogroup A in T. To obtain a
homotopy inverse we see that for U = A®QJA[n] there exists a map A with A(x) = 0
for which the following diagram homotopy commutes in ASet

/’\

dA[n] —L— S[n — 1]

Here 1 is given by the identity of U. Since T(A,U) is a Kan complex and hence
fibrant and since ¢ is a weak equivalence under * we obtain . q.e.d.

Next we define for each object X in T and for a simplicial object U € AT the
set of homotopy classes

(X, U] = mT(X, U) (1.22)

where the right hand side is the set of path components of the simplicial set
T(X,U) obtained by U. One can check that (1.22) is the same as the set of
homotopy classes const(X) — U defined by the cylinder (1.17). Moreover we
define for each cogroup A in T the homotopy groups (n > 0)

{ 7A(U) = m, T(A,U)
’/T,:?_'_I(U, V) = Tn+1 (T(A: U)’ T(A7 V))

(1.23)

where V' — U is a morphism in AT. The right hand side denotes the usual
homotopy groups in ASet. Since A is a cogroup T (A, U) is a simplicial group and
hence a Kan complex. We now are ready to state the following Whitehead theorem
which is a direct consequence of (IV.3.11) below.

(1.24) Theorem. Let T be a theory of coactions and let X and Y be free objects
in AT. Then a map f : X — Y is a homotopy equivalence (i.e. an isomorphism
in the quotient category (AT )sree/=2) if and only if [ induces bijections

fe 2, X] — [Z, Y]
feorm(X) = mp(Y)

for all objects Z in T and all cogroups A in'T and n > 1.
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Proof. By (1.21) we may assume that X and Y are CW-objects in AT. Such a
CW-object X yields a T-complex

X(l) CX(Q) cC--- CX(n) CX(n-H) C...

with the shift in the dimension of skeleta defined by X,y = X"~ ! = sk, _1(X);
see (1.11) and (1.15). It is clear that these T-complexes are T-good; hence the
result follows from (IV.3.11). q.e.d.

(1.25) Definition. We say that f : X — Y in AT is (m, T)-connected with m > 0
if for all objects Z in T the induced map

f«: 12, X] — [Z,Y]

is surjective and if for all cogroups A in T the relative homotopy groups 72 (Y, X) =
0 are trivial for r < m.

For example let i : X — Y be a free inclusion in (AT)gee with X™ = Y™ then
i is easily seen to be (m, T)-connected since the “cellular approximation theorem”
obviously holds. The following result is a kind of converse of this fact.

(1.26) Proposition. Let i : X — Y be a free inclusion which is (m,T)-

connected. Then there ezists a free inclusion X — Y with X™ = Y™ and a
map Y — Y under X which is a homotopy equivalence in (AT )gee/>2.

Proof. We define for Z in T a ball pair by the following push out diagram (compare
VIII, §4)

Z®Dp|®@lI —— 0Ot

I I

Z@Sm—-1®l -2 Z®Sh-1]

Here pr: S[n — 1] x I — S[n — 1] is the projection. We have two inclusions
Py = Z ® D[n] =% 003!
Q% =27 ® Dln] - 03"
Now assume Y = X?V Z. Then there exists a homotopy
P;=Z®D[]=Zx®A]1] =Y

from Z C Y° C Y to amap Z — X since X — Y is (m, T)-connected. We now
define V' by the double push out diagram
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pr
Qy —

[

A 1%

of I

Pé—>Y

Then Y — V is a homotopy equivalence and X® = V© holds. Now assume for
0<r<mwehave X" = Y" and let Y"*! = X"tV A where 4 is a cogroup. Then
a similar argument as above yields a homotopy equivalence Y — V with X"t! =
VTl These are classical ball pair arguments going back to J.H.C. Whitehead.
q.ed.

(1.27) Definition. We say that the theory T of coactions has the delicate Blakers
Massey property if the following holds. Consider a push out diagram in (AT)¢ee

K L KUY

d I

L 2 Y

where 7 and j are free inclusions of CW-objects with K™~1 = L™~ and Y"1 =
L™~1 and m,n > 1. Then for all cogroups A in T the induced map

Jo: A, L) - tAK UL YY)

is surjective for 1 < r < n+m — 1 and bijective for 1 < r < n+m — 2. (The
usual (non-delicate) Blakers-Massey property requires only surjectivity of 7, for
r < n+m — 2 and bijectivity of j, for r <n +m — 3; compare (B.2.8).)

(1.28) Remark. We define T-complexes X(>1) in C. = (AT)gee by CW-objects
X as in (1.11) however with the shift +1 in dimension

X(n) = )(n_1 for n > 1.

Then all objects of T are T-complexes of dimension 1 and we can proof that the
delicate Blakers-Massey property in (1.27) implies the Blakers-Massey property
in (IV.5.3) for T-complexes. For this we use (1.26) and the glueing lemma Baues
[AH] IL.1.2. The shift +1 above implies that (m — 1, T)-connected corresponds to
m-connected in (IV.5.2). Hence the delicate Blakers-Massey property of T implies
by (V.1.2) that the inclusion

const : T C (AT)free/~

yields a homological cofibration category in which all results of chapter I, ..., VII
hold.
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Below we describe many examples of theories of coactions which satisfy the
delicate Blakers-Massey property. For all these examples one can use the following
results which are special cases of the general theory in this book.

For the theory T of coactions we obtain the category Coef of coeffcients as in
(I, §4). Then the coefficient functor

c: (AT)ew /=~ — Coef (1.29)

is defined which carries X to the attaching map dx : A7 — Xy and which carries
amap f: X — Y to the d-equivalence class of fy: Xo — Yp. One can check that
¢ is a well defined functor. In fact c is obtained by the commutative diagram

(AT)ew — % Twist
[ |
(AT)ow /[~ —>— Coef

where ¢ denotes the quotient functor and where ¢ carries X to the simplicial 1-
diagram given by X; see (1.3.7). The functor ¢ has a left adjoint

sk, : Twist — (AT)cow (1.30)
for which sk; (¢(X)) = sk;(X) is the 1-skeleton of X. We also write
sk (Ox) = X!

where dx : A — X0 is the attaching map of the CW-object X!.

For an object dx in Coef we define the additive category mod(9x) as follows.
Let n > 1. The objects of mod(dx) are given by the coproducts A A S[n] Vv X!
in AT where A is a cogroup in T and X! is given by the attaching map Ox.
Morphisms are commutative diagrams

AASRIVXY —L s BAS[] VX! (1.31)
“””l ‘O’”l
X1 _— be

in the homotopy category (AT)gec/~. The initial object in mod(Jx) is given by
the trivial cogroup * in T for which * A S[n] vV X1 = X1. If T satisfies the deli-
cate Blakers-Massey property then the partial suspension shows that the category
mod(dx) does not depend on the choice of n with n > 1. Therefore we omit [n]
in the notation and we write

AANS]VX'=AASV X!
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for an object in the additive category mod(Jx ). The sum in mod(dx) is given by
(ANSVXHY@®(BASVXY)=(AVB)ASV X!

We point out that mod(9x) is not in an obvious way the category of free objects
in an abelian category.
Each map u : 9x — dy in Coef induces an additive functor

uy : mod(0x) — mod(dy) (1.32)
which carries AA SV X! to AASVY?! and which carries f in (2.31) to the map
(1va)f,1): ANSVY' - BASVY!

Here @ : X' — Y is a map for which ¢(@) = u. The delicate Blakers-Massey

property implies that (1.32) is well defined. Hence we get for each set A consisting
of cogroups in T the enveloping functor

U4 : Coef — Ringoids (1.33)

which carries Ox to the full subcategory of mod(dx) consisting of objects A® SV
X! with A € A. Moreover U4 is defined on morphisms by u, in (1.32).

(1.34) Remark. Let T be a theory of coactions satisfying the delicate Blakers-
Massey property. Then we claim that mod(dx) in (1.32) actually coincides with
the additivization of premod(dx) in (1.5.10).

(1.35) Definition. Let T be a theory of coactions satisfying the delicate Blakers-
Massey property. Let X be a CW-object in AT with attaching maps A™ A S[n —
1] — X™ ! Then there is a well defined chain complex (see (V, §2))

{G*(X) in mod(dx) with )

Co(X)=A""TASV XY forn>1

and Cp,(X) = 0 for n < 0. We point out that there is a shift +1 in degree in this
definition of C,X. Moreover a map f : X — Y between CW-objects induces a
chain map

fr 1 uCu(X) = Cu(Y) in mod(dy) (2)

where u = ¢(f) is defined by the coefficient functor ¢ in (1.29).

If T is an augmented theory (or more generally a weakly augmented theory)
then also the augmented chain complex aug C,(X) in mod(9x) is defined; see (11,
§6). In this case it is suitable to denote (1) by C.(X,*) and to write C,(X) for
the augmented chain complex; compare (B.1.26).

We say that the CW-object X is of type A if for all n > 0 the objects A™ in
T given by X in (1) are coproducts of objects in A. In this case C,(X) in (1) is
considered as a chain complex of U4(0x)-modules; see (1.33).
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Using the chain complexes in (1.35) we define for each (right) mod(Jx )-module
M the cochain complexes of abelian groups M (C,X) so that the cohomology with
coefficients in M

H™(X; M) = H"M(C,X) (1.36)

is defined. As an example we observe that homotopy groups (1.23) yield canonically
mod(Jdx )-modules as follows. Let U be an object in AT and let

u: X0 U

be a map which admits an extension X' — U. If the delicate Blakers-Massey
property holds one obtains the right mod(dx )-module

w*m, (U) : mod(dx)°? — Ab (1.37)

for n > 2. This module carries A A SV X! to the homotopy group 7_,;(U) in
(1.23). Here we use again a shift in degree since A is considered to be of dimension
1; see (2.28). Amap f : BASV X! - AASV X! in mod(dx) induces the
homomorphism

fre Wf—l(U) - Wf—l(U)
which carries (a: BAS[n—1] — U) € 72_,(U) to the composite

@ :ANSn—1] —— BASH -1V X!

(a‘u)

U

where f’ is determined by f. As a special case we obtain for the inclusion 7 :
X% ¢ X of a CW-object X the mod(dx)-module i*m,(X) by the homotopy
groups 7>, (X). The mod(9dx)-module (1.37) is needed in the next result where
we again use the shifted dimension of skeleta in (1.28).

(1.38) Theorem. Let T be a theory of coactions in which the delicate Blakers-
Massey holds. Let Y C X be a free inclusion where X is a CW-object in AT
and let f :' Y — U be a map in AT such that f*~' = f | Y ! admits an
extension g : X"~ — U, n > 2. Then the restriction g | X"~ 2 admits an extension
g: X" —>U withg| Y™ = f™ if and only if an obstruction element

O(g| X" %) e H""(X,Y;u*m,U)
vanishes. Here u : X° — U is the restriction of g.

This typical result of obstruction theory is a special case of (V, §4). We define
the homology H,(X), resp. H,(X), which is a right mod(9x )-module

H,(X) : mod(dx)® — Ab. (1.39)

Here H,(X) carries the object AA SV X! to the abelian group
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Ho(X)(AASV XY) = H, Hom(A A SV X', C,(X))

where Hom denotes the abelian group of morphisms in mod(9dx). If we replace
C.(X) by C,(X) we obtain H,(X).

Now we are ready to state the following homological Whitehead theorem for
simplicial objects in theories of coactions. This is a special case of (VI, §7).

(1.40) Theorem. Let T be a theory of coactions satisfying the delicate Blakers-
Massey property and let f: X — Y be a map between CW-objects in AT. Then f
is a homotopy equivalence (or equivalently f is an isomorphism in the homotopy
category (AT)gee /) if and only if the coefficient functor carries f to an isomor-
phism u : Ox = Jy in Coef and one of the following conditions (i), (ii), (iii) is
satisfied.

feruCu(X) = C.Y (1)
is a homotopy equivalence of chain complezes in mod(dy).
fot Ha(X) — w H, (V) (i)
is an isomorphism of mod(0x)-modules for n > 1.
ff+H"(Y;N) - H"(X,u"N) (iii)

is an isomorphism of abelian groups for all right U(A)-modules N where X and
Y are of type A, n > 1.

Next we consider the Hurewicz homomorphism h and the exact sequence of
J.H.C. Whitehead. As a special case of (V.3.4) we get:

(1.41) Theorem. Let T be a theory of coactions satisfying the Blakers-Massey
property and let X be a CW-object in AT. Then the following sequence is an ezact
sequence of mod(Ox)-modules, n > 2.

s T (X) — (X)) -2 Hoy(X) — Doy (X) — ...
— In(X) — m(X) — Hy(X) — I(X) — 0
Moreover the sequence is natural in X .

The modules 7, (X) and H,(X) are defined in (1.37) and (1.39) respectively.
For n > 3 the module I',(X) is defined by

I,(X) = image{m, X" % - 1, X" "'}

Here we again use the shift of degree X1 = X(n) in (1.28). The definition of I'y
and I is more complicated; see (V.5.3) and (II, § 2).

(1.42) Definition. Let A be a set of cogroups in T. We say that a CW-object X
in AT is A-finite if the n-cells A, of X are finite coproducts of objects in A for
n > 0 and if X is finite dimensional, that is X = X" for some n > 0. This implies
that X is of type A; see (1.35).
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Now let X and Y be CW-objects in AT. A domination (X, f,g,H) of Y in
(AT )gree is given by maps

Y L X 2V in (AT)fee (1.43)

and a homotopy H : gf ~ 1. The domination is finite dimensional if X is finite
dimensional and the domination is A-finite if X is A-finite. As a special case of

(VI1.2.4) we get the following simplicial version of a classical result of Wall; see
(A.1.36).

(1.44) Theorem. Let T be a theory of coactions satisfying the delicate Blakers-
Massey property. If the CW-object Y in AT admits an A-finite domination in
(AT)gree then the finiteness obstruction

Y] =[C.(Y)] € Ko(Ua(dy))

is defined. Here Oy is the attaching map of Y1 which is an object in Coef and Uy
is the enveloping functor (1.33). Moreover Ky is the reduced projective class group;
see (VII, §1). One has [Y] = 0 if and only if there exists an A-finite CW-object
X in AT and a homotopy equivalence X — Y in (AT)free.

2 Examples of Theories of Coactions Satisfying
the Delicate Blakers-Massey Property

We have seen in section §1 that the homotopy theory of simplicial objects in a
theory T of coactions satisfies basic results of homotopy theory if the delicate
Blakers-Massey property (1.27) holds in T. In the following three sections we
describe many examples of theories with this property. The first example considers
the category T = gr of free groups studied by Kan. It is, in fact, worthwhile to
consider for each example below more carefully all results of section §1 and of the
general theory in chapter I, ..., VIL

(2.1) Example. Let T = gr be the category of free groups which is a full subcate-
gory of the category Gr of groups. Then gr is a theory of cogroups which satisfies
the delicate Blakers-Massey property. To see this we use the result of Kan [HG]
that there are equivalences of homotopy theories

Ho(Top;) — Ho(AGr) = (Agr)free/~

Here Topy, is the category of path connected pointed spaces. A reduced CW-
complex X with X% = % corresponds by the equivalence to a CW-object Gx in
Agr. Moreover one has the shift of dimension since X™ corresponds to (G x)"~!
for n > 1. Hence the Blakers-Massey theorem in Topy, (see for example Gray [HT])
yields the delicate Blakers-Massey property of gr.

We now describe two generalizations of the classical Kan example on simplicial
groups in (2.1).
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(2.2) Ezample. Let D be a discrete set and let Top{’ be the category of spaces X
under D for which D — X is path connected (i.e. D = mgD — 7wy X is surjective).
We have the theory

T = grd(D) C Topy /~ rel D

which is the full subcategory consisting of 1-dimensional CW-complexes X with 0-
skeleton X? = D. Hence grd(D) is the category of free groupoids G with Ob(G) =
D and functors which are the identity on objects. It is the result of Dwyer-Kan
[SG] that one has an equivalence of categories

Ho(Top{’) = (Agrd(D))gree/>

For D = x this is the classical result of Kan in (2.1). The equivalence again
implies that grd (D) satisfies the delicate Blakers-Massey property. The homotopy
theory of Top}’ is studied in (A, §1) above. Hence all results of (A, §1) with D a
discrete space have a transformation to the category (Agrd(D))see. For example
the Whitehead theorem (1.24) for T = grd(D)gee corresponds to the classical
Whitehead theorem for CW-complexes X with X° = D.

The next example also generalizes the result of Kan (2.1) but seems to be new.

(2.3) Example. Let G be a group and let GrY be the category of groups under G.
Let gr(G) C GrY be the full subcategory consisting of objects G — G V F where
G V F is the coproduct of the group G and a free group F. See (1.2.3) below. For
G = x the trivial group we clearly have gr(x) = gr as in (2.1). We claim that
gr(G) has the delicate Blakers-Massey property and that one has an equivalence
of categories

Ho(Topé{(G’l)) — (Agr(G))see/~

Here K(G,1) is the Eilenberg-Mac Lane space of G and Topé) is the category
of spaces X under D for which D — X is connected. The homotopy category
Top? is studied in (A, §1). All the results there concerning Topé( (@1 have a
transformation to (Agr(G))gee- If G = * is the trivial group then this is again
the classical correspondence of Kan (2.1) between connected spaces and simplicial
groups.

(2.4) Congecture. The theorem of Kan in (2.1) and the result of Dwyer-Kan (2.2)
should be generalized for the category of A-diagrams in §2 of chapter A. More
precisely let A be a small category and let D be a discrete A-diagram. Let T{g
be the full subcategory of (ATop)?/~ rel D given by the 1-dimensional reduced
relative A-CW-complexes (X1, D). Then T is a theory of coactions. We conjec-
ture that Tg satisfies the delicate Blakers-Massey property and that one has an
equivalence of categories

Ho(ATop)d > (ATE )tree/~.
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Here the category (ATop)d is the full subcategory of A-diagrams X under D
for which D = m9D — mX is surjective. If A is the trivial category then the
equivalence coincides with (2.1).

(2.5) Conjecture. The theorem of Kan (2.1) and the result of Dwyer-Kan (2.2)
should also be true for the category of G-spaces in § 3 of chapter A. More precisely
let G be a discrete group and let D be a G-space for which the associated Or(G)-
space D° in (A.3.5) is homotopy equivalent to a discrete Or(G)-space. Let TZ
be the full subcategory of (GTop)? /=~ rel D consisting of 1-dimensional reduced
relative G-CW-complexes (X1, D). Then (A.3.16) shows that TZ is a theory of
coactions. We conjecture that Tg satisfies the delicate Blakers-Massey property
and that one has an equivalence of categories

HO(GTOp)(I)) = (ATg)free/:

Here the category (GTop)Y is the full subcategory of (GTop)? consisting of G-
spaces X under D for which 79 D° — 7y X?° is a surjective map between Or(G)-sets.
In fact this conjecture is a special case of (2.4) if we set A = Or(G).

(2.6) Congecture. Next we consider the theorem of Kan (3.1) in the context of
spaces controlled at infinity in §4 of chapter A. Let D be a locally finite tree and
let 0o be the Cantor set of ends of D. Hence D is an object in coEnd. Let TP be the
full subcategory of (coEnd)? /~ rel D consisting of 1-dimensional reduced relative
00-CW-complexes (X1, D). Then TP is a theory of coactions. We conjecture that
TP satisfies the delicate Blakers-Massey property and that one has a full and
faithful functor

IfCWT /~ rel T — (AT )gree/~.

Here [ fCWg is the category consisting of finite dimensional locally finite CW-
complexes X (for which T is a maximal tree in X!) and proper maps under 7.
Moreover homotopies rel T' are also proper.

3 Polynomial Theories of Cogroups

We now describe a method which shows that polynomial theories of cogroups have
the delicate Blakers-Massey property. For this we need the following notions of
“polynomial functor” and “linear extension” of categories.

(8.1) Definition. (Compare Eilenberg-Mac Lane [H].) Let C be a category with
sums and zero object. Let I' : C — Ab be a functor with I'(x) = 0. Then for
X1,...,X4 € C the g-th cross effect I'(X; | --- | Xg), ¢ > 1, is the kernel of the
map

D(X1V-V X,) — ér(ai)

=1



90 Chapter C: Homotopy Theories of Simplicial Objects

for which the i-th coordinate is induced by

1\/0\/12X1\/~-~\/Xq—>ai with

82‘ =X1V"'VXZ‘_1\/*\/X1'+1\/-"\/Xq
We say that I" has degree ¢ if I'(Xy | -+ | Xq41) = 0 for all X;,...,X441 € C.
The functor I" is linear, resp. quadratic if I" has degree 1, resp. 2. Moreover I is

polynomial if there is 1 < ¢ < oo such that I has degree q. We also call q the
polynomial degree of I

(3.2) Definition. (Compare Baues [AH]). Let C be a category and let D : C°P x
C — Ab be a bifunctor (also termed C-bimodule). We say that

pALESLC

is a linear extension of the category C by D if (a)—(c) hold.

(a) E and C have the same objects and p is a full functor which is the identity on
objects.

(b) For each f : A — B in C the abelian group D(A, B) acts transitively and
effectively on the subset p~1(f) of morphisms in E. We write fo + a for the
action of a € D(A, B) on fo € p~1(f). Any fo € p~1(f) is called a lift of f.

(c) The action satisfies the linear distributivity law:

(fo +a)(go + B) = fogo + foB + g" .

We now consider a linear extension of categories
+ P
D—E-—C

where E and C are theories of cogroups in which the initial object * is also a
final object (i.e. a zero object). Moreover p carries sums to sums and carries the
cogroup structure of X in E to the cogroup structure of X in C and for all X,Y
in E we have a central extension of groups

D(X,Y) 5 E(X,Y) — C(X,Y) (3.3)

where i(a) = 0 + « is given by the action of D on E in (3.2). More generally we
have

(f+a)+u(g+0)=(f+u9) ta+p

for f,g € E(X,Y) and o, € D(X,Y). Here + is the action in (3.2) and +, is
the group structure on E(X,Y") defined by the cogroup p: X — X V X. Compare
(6.3) in Baues-Hartl-Pirashvili [QC]. If in addition D is a bifunctor which is left
linear and right polynomial then we say that E is polynomial related to C.
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(3.4) Theorem. Let E be polynomial related to C. If C satisfies the delicate
Blakers-Massey property then also E satisfies the delicate Blakers-Massey property.

Proof. Consider the diagram
K —— KUy L

(1

L —— Y

in (1.27) defined in AE. Then the induced diagram pX in AC is again a diagram as
in (1.27) since the functor p : AE — AC given by p : E — C carries CW-objects
to CW-objects. Now let A be a cogroup in E and apply the functors

E(A,-):E - Gr
C(4,-):C— Gr
to the diagram X and pX respectively. Then we get the cubical diagram of sim-
plicial groups
E(A,X) 2 C(4, pX) (1)
which by (3.3) is surjective and which has the kernel diagram
D(A, pX) = kernel(p). (2)

This is also the fiber diagram of (1). Since we assume that C satisfies the delicate
Blakers-Massey property we know that C(A, pX) is (n+m—2)-homotopy cartesian.
For this recall that a diagram of spaces or simplicial sets

X, — X2

I I

X—*)XQ

is k-homotopy cartesian if the induced map

7rT‘(X17X) - 7TT‘(X127X2)

is surjective for r < k + 1 and bijective for r < k. Using lemma (3.5) below we
know that D(A, pX) is (n+m—2)-homotopy cartesian. This implies by (1) and (2)
that also E(A, X) is (n+m— 2)-homotopy cartesian, compare Goodwillie calculus.
Hence we see that the delicate Blakers-Massey property also holds for E. g.e.d.

(3.5) Lemma. Let T be a theory of cogroups with zero object and let I' : T — Ab
be a polynomial functor. Then diagram (1.27) yields a diagram

I I
rwL —— Iy

which is (n +m — 2)-homotopy cartesian.
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Proof. Since x* is the zero object in T we have the quotient K/L in AT which is
a push out of K «— L — const(*). Moreover since (1.27) with X = K UL Y is a
push out diagram we know that

K/L2X/Y (1)
are isomorphic. Moreover the sequence
L5 K-LK/L (2)
is split in each degree, that is for n > 0 we have the equation
Ky =L,V (K/L), (3)

such that 7 is the inclusion of L, and ¢ is the projection (0,1) onto (K/L),. The
equation (3), however, is not compatible with the simplicial operators while the
maps i and ¢ are defined in AT. Similar properties as in (2) and (3) hold for the
pair (X,Y).

We now consider the functor I" : T — Ab. We have the natural map (U € T)

p:.rw|v)crwuvo) X rw) (4)

induced by the folding map (1,1) : U VU — U. This map yields for the simplicial
objects K, L the following commutative diagram

I'i

ro - k) —X— In&)rw o —%- rK/L

T I g
reen) 2 r(L|K) —— I(L|K)/T(L| L)

Here P is the composite

p:r| k) 2, rk | k) —F— (k).
Moreover I'(K)/I'(L) is the quotient of simplicial abelian groups and j is the
quotient map. Since we assume I'(*) = 0 we see that the map I'(q) has the
factorization I'(¢) = g.j. Moreover P, in (5) is induced by P. Now (3) implies
that

P(L | K)/T(L| L) == I'(K)/I(L) “* T(K/L) = 0 (6)

is an exact sequence of simplicial abelian groups. This follows from the definition
of the cross effect (3.1). We now apply (5) inductively, that is, we replace I" by
the functor I'y with I'y(V) = I'(U | V) for U, V € T. Then we get inductively
the following system
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C 2 Dy(K) /(L) —2— N(K)/(L) —2— [(K)/T(L)

. l"* l"* lq* (7)

I3 (K/L) N(K/L) I'(K/L)
Here I;(K) is the (i 4+ 1)-th cross effect
IyK)=IFK)=I(L|-|L|K) (8)
where L appears i times and I'h(K) = I'(K). Moreover as in (6) the sequence
Ty (K) /Ty (L) 25 T(K)/Ty(L) - Ti(K/L) — 0 (9)

is exact for ¢ > 0. Since I is polynomial we see that I, = 0 for all n sufficiently
large. We now consider the map

7 : LK)/ THL) — IV (X) /T (Y) (10)
induced by 7: (K,L) — (X,Y). For i > 1 the simplicial group I'*(K) is the
diagonal of a multi simplicial abelian group (8). Hence by the Eilenberg-Zilber
theorem (see Dold-Puppe [H] 2.9) we can compute 7, (K) by the homology
of the total complex of I'*(K). Now the grading in the total complex and the
assumptions L™~! = K™~! and Y~ = L"~! show that (10) induces a surjection
7;(J«) for i < m+n—1 and an isomorphism 7;(7.) for i« < m+n — 2. This implies
inductively by (7) and (9) and (1) that also

T« : T(K)/T(L) — I'(X)/I(Y) (11)

induces a surjection 7;(7x) for ¢ < m +n — 1 and an isomorphism m;(7.) for
i <m+n — 2. Hence the diagram in (3.5) is (n + m — 2) homotopy cartesian.
q.e.d.

(3.6) Definition. We say that a theory T of cogroups is polynomial if T has a zero
object and if there is n > 0 and a sequence

T:En_’En—l—)"'—?Eo

of theories of cogroups where Ej; is polynomial related to Eg for 0 < k < n
and where Eg is an additive category (i.e. Eg is a theory of cogroups in which
all morphisms are linear; see (1.1.10)). For example the “quadratic categories” in
Baues-Hartl-Pirashvili [QC] 5.4 are such polynomial theories of cogroups.

(3.7) Theorem. A polynomial theory of cogroups satisfies the delicate Blakers-
Massey property.

Proof. Tt is clear that an additive category satisfies the delicate Blakers-Massey
property. Therefore (3.7) is an inductive application of (3.4). q.e.d.
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(3.8) Example. Let (Z) be the free group generated by the set Z and let
(Z)n =(2)/Tni1(Z) (1)

be the free group of nilpotency degree n. Here I, +1G is the subgroup of the group
G given by all (n 4 1)-fold commutators in G. Let

nil, C Gr (2)

be the full subcategory consisting of all (Z),, where Z is a set. Then nil, is a
polynomial theory of cogroups. In fact we have for n > 2 the well known central
extension of groups

Ln(Z) — <Z>n - <Z>n—1 (3)

where L,,(Z) is the degree n part of the free Lie algebra generated by Z. By (3)
we see that

Hom(—, Ly,) ~ nil,, — nil,_; (4)

is a linear extension; compare Baues [AH]. Moreover (4) shows that nil, is poly-
nomial related to nil, _;. Since nil; = ab is the category of free abelian groups we
see that nil, is polynomial. Hence for all n the category nil,, satisfies the delicate
Blakers-Massey property. This example can be generalized for many other varieties
of groups.

The next examples can be applied to simplicial “(r — 1)-connected m-algebras”
and simplicial “modules over the Steenrod algebra” respectively.

(3.9) Ezample. Let r > 2 and let
S, ={s", 8" ...}
be the set of all spheres S™ with n > r. We define the subcategory
T(S,) C Top™/~

consisting of all (not necessarily finite) one point unions of spheres in S,. Then
T(S,) is a theory of cogroups which satisfies the delicate Blakers-Massey property.

(3.10) Example. Let r > 1 and let A be a set of abelian groups. Moreover let
K. (A)={K(An+r); n>0A¢c A}

be the corresponding set of Eilenberg-Mac Lane spaces K(A,n + r). We define
the subcategory

K, (A) C Top*/~

consisting of all (not necessarily finite) products of spaces in K,(.A). Then the
dual of K,.(A) is a theory of cogroups which satisfies the delicate Blakers-Massey
property.
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In fact (3.9) and (3.10) are special cases of the following result.

(3.11) Theorem. Let T be a polynomial graded theory in the sense of Baues [DF]
8.1, 9.4 and let free(T) be the full subcategory of model(T) consisting of free
objects. Then free(T) is a theory of cogroups which satisfies the delicate Blakers-
Massey property.

Proof. By Baues [DF] 8.4 we see that Ty is polynomial related to Add(R,,+1) X
T,,. Moreover it suffices to check the condition on 7, in (1.27) for all generating
cogroups A in T. Since by the assumption on T we have

T(4, X) = T, (4, X)

where n = |A| we see that we can apply (3.7). q.e.d.

4 Algebras over an Operad

We consider commutative algebras and more generally algebras over an operad.
The category of free algebras is a theory of cogroups which satisfies the delicate
Blakers-Massey property.

Let R be a commutative ring and let Calg be the category of all commutative
R-algebras with unit. Let

calg C Calg (4.1)

be the full subcategory consisting of free commutative R-algebras S(V') where V
is a free R-module. Then calg is a theory of cogroups. The cogroup structure of
S(V) is given by the diagonal (1,1) : V — V @V, that is

w=251,1):5(V)=SVaeV)=5V)VvSYV)

(4.2) Proposition. The theory calg of cogroups given by free commutative R-
algebras satisfies the delicate Blakers-Massey property (1.27).

‘We have an equivalence of homotopy theories

(Acalg)ree/~ — Ho(ACalg) (4.3)

Given an object A in Calg we can choose a weak equivalence K(A,1) — A where
K(A,1)isin (Acalg)fee- Then the (co-) homology (1.36) of K(A,1) coincides with
the André-Quillen (co-) homology of A with coefficients in the A-module M.

Proof of (4.2). The following proof was pointed out to me by Paul Goerss. Con-
sider the diagram (1.27) in (Acalg)free. Let K/L be the quotient of the R-module
K by the R-module L. Then the sequence

L—K—K/L (1)
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is an exact sequence of simplicial L-modules. Moreover in each degree n
0= Ly = Ky = (K/L)p — (3)

is a split short exact sequence of L,-modules. In fact we know that K,, = L, ®S(V)
with an appropriate V' and we obtain for the short exact sequence

SHV)— S(V) <> R

with augmentation e a splitting of € so that (K/L), = L, ® ST(V) is contained
in K,. For the push out

X=KUL,Y=K®_,Y (3)
in (1.27) we obtain by (1) and (2) the short exact sequence
0—-L®Y—>K®LY — (K/L)®LY —0 (4)

with L&Y =Y. By (4) and (1) we get
7rn()(v)/) = Trn((K/L) L Y) (5)
(K, L) = 7 (K/L)

Now using Quillen [HA] II, § 6 we obtain a spectral sequence

Tor] H(m. (K/L), 7Y ) = mpyg(K/L) @1 Y)

and hence since K™ ' = L™~ ! and Y™ ! = L"~! we get by (5) the conclusion
on 7, in (1.27). q.e.d.

Proposition (4.1) has a generalization for algebras over any operad; in particular
for associative algebras and Lie algebras. For an exposition on operads we refer to
Getzler-Jones [O], Ginzberg-Kapranov [K] and Fresse [C], and Loday [R]. Let R
be a commutative ring and let P be an operad over R. Then the category P-Alg
of algebras over P (or P-algebras) is defined. Moreover let

P-alg C P-Alg (4.4)

be the full subcategory of free P-algebras T'(V') where V is a free R-module. Then
T(V) is a cogroup with the cogroup structure

T(1,1)
_

w:T(V) T(V&V)=T(V)VT(V)

Hence P-alg is a theory of cogroups.

(4.5) Remark. The categories in (4.3) can also be described by the use of a single
sorted theory S. In fact, let S be the full subcategory of P-alg consisting of finitely
generated free P-algebras. Then we have P-Alg = model(S) and P-alg = free(S)
as in (1.2.5).
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(4.6) Proposition. The theory P-alg of cogroups given by free algebra over the
operad P satisfies the delicate Blakers-Massey property (1.27).

A proof of this result was obtained by P. Goerss (private communication).
Using the result of Quillen [HA] chapter II, §4 we see that A(P-Alg) is a closed
model category and that

(AP-alg)tree/~ — Ho(AP-Alg) (4.7)

is an equivalence of categories which generalizes (4.3). Given an object A in P-Alg
we can choose a weak equivalence K(A,1) — A in AP-Alg where K(A,1) €
(AP-alg)sree. Then the (co-) homology (1.36) of K(A,1) is the Quillen homology
of A.

It is of interest to study in detail all the implications of the theory in chapters I,
..., VII for the homotopy theory of AP-Alg.




Chapter D: Resolutions in Model Categories

The purpose of this chapter is to revisit, expand and simplify the “E2-homotopy
theory” of Dwyer-Kan-Stover [E?], [HG] which built simplicial resolutions of
pointed path connected topological spaces out of spheres. Using the notion of
a spiral model category Q in (2.4) we prove the existence of the spiral homotopy
category Ho(AQ), of simplicial objects in Q in (3.5). This is the analogue of
an E%-homotopy theory. Simplicial resolutions of objects in Q live in the spiral
homotopy category.

We introduce two essential assumptions on the closed model category Q. First
a full subcategory C of Q is given and the notion of homotopy is defined in C by
a natural cylinder I. Second a small subcategory T of C is given such that each
object A of T is a cogroup; hence A € T is not only a cogroup in the homotopy
category Ho(Q) but also in the category Q. These assumptions are basic properties
of a spiral model category

Q=(TcCcQ)

The spiral homotopy category Ho(AQ), depends on this structure of Q. The
model category is termed spiral since the spiral exact sequences form the crucial
ingredient of the theory.

In topology there are, however, no cogroups in Top* but we have cogroups
in the homotopy category Top*/~ rel *. Cogroups defined up to homotopy do
not suffice for the development of the “spiral homotopy theory” in this chapter.
We therefore replace the category Topg of connected pointed spaces by the cat-
egory AGr of simplicial groups. There are many cogroups in AGr defined by
constant free groups. The category of simplicial groups is the typical example of
a spiral model category. The spiral homotopy category Ho(AQ);s for Q = AGr
is equivalent to the E2-homotopy category of simplicial pointed spaces of Dwyer-

Kan-Stover [E?]. The theory in this chapter was also motivated by recent papers
of Blanc [AI] and Goerss-Hopkins [RM].

1 Quillen Model Categories

We recall the notion of a closed model category (Quillen [HA] and Dwyer-Kan-
Stover [E?]) and we describe the Reedy model category of simplicial objects.

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy

© Springer-Verlag Berlin Heidelberg 1999
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(1.1) Definition. A closed model category structure on a category C consists of
three classes of maps in C, called fibrations, cofibrations and weak equivalences,
satisfying axioms CM1-CM5 below. Note that axiom CM1 implies that C has an
initial object * as well as a terminal object ®. An object U € C is called fibrant
if the map U — ® € C is a fibration and cofibrant if the map * - U € C is a
cofibration. A map is called a trivial (co-) fibration if it is a weak equivalence as
well as a (co-) fibration. A map i : A — B € C is said to have the left lifting
property with respect to amap p: X — Y € C (and the map p is said to have the
right lifting property with respect to the map i) if in every commutative square in
C of the shape

A—— X

i| |7

there exists a diagonal arrow B — X such that the two resulting triangles are also
commutative.

CM1 The category C has finite limits and colimits.

CM2 If f and g are maps such that gf is defined and two of f,g and gf are weak
equivalences, then so is the third.

CMa3 If f is a retract of g and g is a fibration, a cofibration or a weak equivalence,
then so is f.

CM4 (i) Every cofibration has the left lifting property with respect to every trivial
fibration.
(ii) Every fibration has the right lifting property with respect to every trivial
cofibration.

CM5 Every map f can be factored
(i) f = qj, where j is a cofibration and ¢ is a trivial fibration, and
(ii) f = qj, where q is a fibration and j is a trivial cofibration.

Of course if C is a closed model category, then so its opposite C°P with as weak
equivalences, cofibrations and fibrations the opposites of the weak equivalences,
the fibrations and the cofibrations (respectively) of C itself.

If C is a category with finite limits and colimits one can construct the following
“latching objects” and “matching objects”.

(1.2) Definition. Let L,(n > 0) be the category which has as objects the maps
[1]] — [n] € A°P with j < n and which has as maps the obvious commutative
triangles. Given an object X € AC, let, by a slight abuse of notation, X | L, :
L, — C denote the composition of the forgetful functor L, — A°P with the
functor X : A°? — C. The n-th latching object L, X of X then is defined by
L, X =1lim(X | L,). In particular LoX is the initial object of C. Note that there
is an obvious natural map L, X — X,, (n > 0).
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(1.3) Definition. In a similar way, let M,, (n > 0) be the category which has
as objects the maps [n] — [j] € A°P with j < n and which has as maps the
obvious commutative triangles. Given an object X € AC, let, again by a slight
abuse of notation, X | M,, : M,, — C be the composition of the forgetful functor
M,, — A°P with the functor X : A°? — C. The n-th matching object M, X of X
then is defined by M, X = lim(X | My). In particular Mp X is the terminal object
of C and M, X is the product M1 X = Xy x Xo. There is an obvious natural map
X, — M, X eC.

(1.4) Theorem of Reedy [M]. Let C be a closed model category. Then AC ad-
mits a closed model category structure in which

(i) amap X — Y € AC is a weak equivalence (called “Reedy weak equiva-
lence”) whenever, for every n > 0, the restriction X,, — Y, € C is a weak
equivalence,

(1)) amap X - Y € AC is a (trivial) cofibration (called “(trivial) Reedy cofibra-
tion”) whenever, for everyn > 0, the induced map (X, Uy xL,Y) — Y, € C
is a (trivial) cofibration, and

(111) amap X —Y € AC is a (trivial) fibration (called “(trivial) Reedy fibration”)
whenever, for every n > 0, the induced map X, — (Yo IIp,y MpX) € Cis a
(trivial) fibration.

We shall use the Reedy model category structure for AC in § 3 below.

2 Spiral Model Categories

Let C be a category with initial object * and coproducts X VY for X, Y € C. A
natural cylinder I on C is a functor I : C — C together with a diagram

xvx ety Py (2.1)

which is natural in X and satisfies p(ip, 1) = (1,1). We assume that I(x) = * and
that I commutes with coproducts; i.e. (X VY) =I(X)V I(Y).

A based object in C is an object A in C together with a map 0 : A — * termed
the zero map. (If C has a zero object *, i.e. if the initial object is also a final
object, then each object in C is based. In general, however, we do not assume that
a zero object exists in C.) Given a based object X we define the suspension X'X
and the cone CX by the push out diagrams in C

IX —— 00X —%2. 5x

T A =

xvx 29, x o,

A map f: X — Y between based objects is a based map if 0f = 0. Clearly a
based map f induces maps Cf : CX — CY and Yf : ¥X — XYY in C since [
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is a natural cylinder. These maps C'f and X' f are again based since the zero map
IX — X — x of the cylinder given by (2.1) induces zero maps for CX and XX
respectively.

For example, let (A, 0, u,v) be a cogroup in C given by maps

0:A—x*, pu:A—-AVA v:A—A

for which the diagrams in (I.1.3) commute in C. Then A is based and y and v are
based maps and the assumptions on the natural cylinder I in (2.1) show that also
the suspension XA and the cylinder C'A,

(XA,0,Xpu,Xv) and (CA,0,Cu,Cu), (2.3)
are cogroups in C.

(2.4) Definition. A spiral model category is a category Q together with full sub-
categories

TcCcCcCcQ

having the following properties:

(i) Q is a closed model category in which all objects are fibrant; see (1.1).

(ii) Cis an I-category with x € C and cofibrations (resp. homotopy equivalences)
in C are cofibrations (resp. weak equivalences) in Q. Moreover arbitrary (not
just finite) coproducts exist in C and the cylinder I : C — C and the inlcu-
sion C C Q commute with arbitrary coproducts; in particular I* = *. The
interchange map /IX — IIX is an isomorphism. See (II1.7.1).

(iii) T is a small theory of cogroups which is closed under suspension and finite
coproducts in C; that is X,Y € T implies XX, X VY € T. Compare (2.3)
and (I.1.9). In addition for A € T the functor C(A, —) : C — Set commutes
with filtered inductive limits; see (3.1) (2) below.

(2.5) Example. Let Q = AGr be the category of simplicial groups and let C =
(Agr)sree be the category of free simplicial groups with the cylinder IX = X ® A[1]
in (C.1.18). Let T be the full subcategory of C consisting of finite coproducts of
spherical objects Z A S[n], n > 0. Then this is a spiral model category in the sense
of (2.4). More general examples are discussed in § 5 below.

We now assume that a spiral model category as in (2.4) is given. Let X € C
and Y € Q. An I-homotopy denoted by ~; is a map

H:IX —Y inQ with Hig= f and Hi; = g. (2.6)

Then (2.4) implies that ~ is an equivalence relation so that the set

QX,Y) =Q(X,)Y)/~; (1)
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of I-homotopy classes is defined. Here we use the fact that by (2.4) the object X
is cofibrant and Y is fibrant. This set is also the set of morphisms X — Y in the
homotopy category

Q = Ho(Q) (2)

obtained by localizing weak equivalences in Q. Let C = C/~; and T = T/~ be
the homotopy categories. Then we have the commutative diagram

T C C C Q

| | lp ®)
T c¢ C c Q
The inclusions are full inclusions. The functor p is the identity on objects and p

carries the morphism f : X — Y to the homotopy class f represented by f. The
functor p induces the functor

p:AQ—»AQ (4)

between categories of simplicial objects. This functor carries the simplicial object
X in Q to the simplicial object X =pX inQ.

The functor p : Q — Q carries coproducts in C to coproducts and therefore p
carries a cogroup in C to a cogroup in C. Hence T is also a theory of cogroups.
Moreover for a cogroup B in C and X € Q the morphism sets Q(B,X) and
Q(B, X) are groups and the quotient map

p:Q(B,X) - Q(B,X) given by (1) ()

is a surjective group homomorphism which is natural in X. If X is a simplicial
object in AQ with pX = X € AQ then p yields the surjection between simplicial
groups

p: Q(B,X) - Q(B,X) (6)
We shall use the following notation.

(2.7) Definition. A simplicial group G is contractible if all homotopy groups of G
vanish (i.e. m,G = 0) or equivalently if the realization |G| of G is a contractible
space. We say that a simplicial object X in AQ is spiral if for all A € T the
simplicial group Q(CA, X) is contractible. In § 3 we show that each Reedy fibrant
object in AQ is spiral.

(2.8) Theorem. (Spiral exzact sequence) Let X € AQ be spiral and A € T. Then
one has the long exact sequence of homotopy groups with n € Z:

o T 1Q(EA X)) - 1, Q(A, X) B 1, Q(A, X) — T 2Q(EXA, X) —
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Here the homotopy groups m, are trivial if n < 0 so that for n = 0 we get the
isomorphism

WOQ(Aa X) = ﬂOQ(Aa X)
The sequence is natural in X.

Proof. One has for each cogroup A in T the exact sequence of groups

0— Q(FA, X) 5 Q(CA, X) 5 Q(4, X) 2 Q(A, X) — 0

which is natural in X € Q; here 7 and ¢ are defined in (2.2) and p is the quotient
map. This easy fact is the reason for the spiral exact sequence. Let

Q(A, X)o = {f € Q(A,X); f~10}
Then we have Q(A, X)o = kernel p = image i* so that we get short exact sequences
of groups
00— Q(ZA, X)L Q(CA X) — Q(A, X)g — 0
0— Q(4,X) — Q(4,X) - Q(A4,X) — 0

which are natural in X. Hence if X is in AQ we obtain accordingly short exact
sequences of simplicial groups. This implies (2.8). q.e.d.

The proof shows that the existence of a spiral exact sequence for X implies
that X is spiral.

(2.9) Definition. A map f: X — Y in AQ is a vertical equivalence if f induces
an isomorphism

fe:mQ(A, X) = m,Q(A,Y)

for n > 0 and all A in T. The map f is a spiral equivalence if f induces an
isomorphism

fe: QA X) = 1,Q(A,Y)

for n > 0 and all A in T. Finally f is a horizontal equvalence if
fn i Xn — Y,

is a homotopy equivalence in Q (i.e. an isomorphism in Q) for all n > 0.

It is clear that each Reedy weak equivalence (1.4) is a horizontal equivalence
and that each horizontal equivalence is a spiral equivalence. Moreover we get from
(2.8):
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(2.10) Corollary. Let f: X — Y be a map in AQ between spiral objects X,Y .
Then f is a vertical equivalence if and only if f is a spiral equivalence.

Proof. We start the induction for n = 0 by the isomorphism for 7y in (2.8). Since
YA € T we get the case n = 1 by the five lemma, and so on. q.e.d.

Since T and T are both theories of cogroups we know by (C.1.18) that
(AT)free and (AT)free (211)

are both I-categories with the cylinder — ® A[1] and cofibrations given by free
inclusion. For X € AQ we call X ® A[1] the vertical cylinder of X and accordingly
a simplicial map X ® A[1] — Y is termed a vertical homotopy in AQ. Similarly a
map X® A[l] — Y is a vertical homotopy in AQ We denote vertical homotopies
by ~,. If X € (AT)gee C AQ then (C.1.18) shows that ~, is an equivalence
relation so that the sets of vertical homotopy classes

{ (X, Y], = (AQ)(X,Y)/~,
[X’ Y/]v = (AQ)(Xa Y)/EU

(2.12)

are defined for X € (AT)gee and Y € AQ. Here we use the fact that X is free if
X is free. Moreover one readily checks the following lemma.

(2.13) Lemma. The functor p in (2.6) induces a well defined functor
P (AT)gee — (AT)free

which carries X to X and which commutes with @A[1]; that is
(X @ A1)~ = X @ A1)

Moreover p carries free inclusions in (AT )gee to free inclusions.

The lemma shows that p : Q — Q induces for X € (AT)free and Y € AQ a
well defined map

p: [X,Y], — [X,)}]v (2.14)

between sets of vertical homotopy classes. Moreover if A is a cogroup in T then
A is based and one gets A A S[n] € (AT)gree- Now one readily checks the natural
isomorphisms:

{ [ANS[n), Y], = mQ(A,Y) (2.15)

[A/\ Sn], ]v = ﬂnQ(A Y)

The right hand side denotes the homotopy groups which appear in the spiral exact
sequence (2.8). This leads to the following result.
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(2.15) Lemma. For X in (AT)gee the projection q : X @ A[l] — X is a spiral
equivalence.

Proof. By (2.15) we have to show that for all Ae T, n > 0, and Y = X ® A[l]
the map

Gv : [ANS[n), Y], — [A A S[n], X],
is an isomorphism. But Y — X coincides by (2.13) with the projection X ® A[1] —
X which is a vertical homotopy equivalence by (C.1.18). g.e.d.

Next we consider the category Pair(Q) = Q2 of pairs in Q. Objects are
morphisms f : Y — X also denoted by (X,Y) and morphisms are pair maps;
see (III.1.4). The cylinder of a pair (X,Y) in Pair(C) = C, is defined by
I(f): I(Y) — I(X), that is

I(X,Y)=(IX,IY) (2.17)
If A is a cogroup in C then (CA, A) is a cogroup in Cy and the cone of (CA, A)
in Cg is
C(CAA) = (CCA,CA) (1)
Moreover since the interchange map (2.4) (ii) is an isomorphism we get the sus-
pension of (C A, A) by
Y(CAA)=(YCAYA)=(CYA XA (2)
This leads to the following result.

(2.18) Proposition. Consider a pair (X,Y) in AQq for which X and Y are
spiral. Then the simplicial group

QZ(C(CA7 A)v (Xa Y))
is contractible for all A € T.

Proof. Since j : CA — CCA is a cofibration and an I-homotopy equivalence in
the I-category C we know that there exists a retraction r : CCA — CA of j.
For a morphism 7 : ¥ — X in AQ we obtain the following pull back diagram of
simplicial groups

QQ((CCA’CA)a(X7Y)) —_— Q(CA,Y)

| “
Q(CCA, X) 2, Q(CA, X)

Here j* is surjective since the retraction r exists. Hence the diagram is actually
a homotopy pull back. The fiber of j* is Q(X'CA, X). This yields the result by
(2.17) (2) since Q(CA,Y),Q(CA, X) and Q(CX A, X) are contractible.  q.e.d.
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(2.19) Definition. We say that a map f : G — H between simplicial groups is a
O-fibration if the sequence

G H % 7H—0 in AGr

is exact. Here ¢ is the canonical quotient map to the constant simplicial group
given by moH. Moreover we say that a map f:Y — X in AQ is spiral if Y and
X are spiral and if f induces O-fibrations

f:Q(AY) - Q(A, X) and
£ QAY) - Q(4,X)
for all A in T.

(2.20) Theorem. Let f : Y — X be a spiral map in AQ. Then one gets for
A €T andn > 1 the following exact sequence of abelian relative homotopy groups
with X = pX,Y = pY € AQ.
P ﬂ'n(Q(ZAv X), Q(2A7 Y)) — 7rn+l(Q(A7 X)7 Q(A7 Y)) —
E— 7rn+1(Q(Aa X), Q(Av Y)) - Wn—l(Q(EA, X)a Q(ZAv Y))
Here the relative homotopy group mx(—, —) is trivial for k < 0. Moreover for n =0

one has the following commutative diagram of groups in which the row and the
columns are ezxact.

mQ(A,Y) — mQ(ZA,Y)

! !

mQ(A, X)) — mQ(XA, X)

! !

A — A — m(Q(A, X),Q(4,Y)) — m(Q(A, X),Q(A,Y)) — 0
0 0

If X is trivial, i.e. X = const(x), then the exact sequence coincides with the
spiral exact sequence in (2.8). Accordingly we call (2.20) the spiral exact sequence
for relative homotopy groups.

Proof of (2.20). We first consider the case n = 0. For m; = m(Q(A4, X),Q(A,Y))

and T, = ﬂl(Q(A,X'),Q(A, f/)) one has the following commutative diagram in
which rows and columns are exact.
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m(Q(A,Y) — mQ(A,X) — A

! l !

T0Q(ZA,Y) — mQ(ZA,X) — A

! ! l

mQ(AY) — mQ(A,X) — m — wQ(A,Y) — mQ(A, X)

! ! ! | |

mQ(A,Y) — mQ(A,Y) — &1 — mQ(A,Y) — mQ(A, X)
0 0 0
The columns are given by (2.8) and the rows are the exact sequences for relative
homotopy groups. Since by (2.8) also
10Q(XA, Z) = moQ(XA, Z)

with Z = X,Y we get the diagram in (2.20). Next we consider the case n > 1.
Since C is an I-category and Q is a cofibration category we can apply (I111.7.4)
and (II1.1.4) to Cy and Qy respectively with Q; = Ho Q. Now the arguments in
(2.8) applied to Q2 and (2.18) show that we obtain for A € T, n € Z, the exact
sequence:

- 7rn~1Q2(E(CA7A)7 (X’ Y)) - 7'rn(22((0147 A)? (va)) (1)
— 1, Q2((CA, A),(X,Y)) = m_2Qa(Z(CA, A), (X,Y)) — ...

For each pair (X,,,Y},) in Q2 we have the long exact sequence of homotopy groups
of the pair (see (II1.2.4)) given by

Q(ZA,Yn) — Q(ZA, X5) — Qa((CA, A), (X4, Ya)) = Q(A,Y5) — Q(4, Xn)

Since A is a cogroup this is an exact sequence of groups. Since the sequence is
natural in X, and Y, this is also an exact sequence of simplicial groups. Since
Y — X is spiral this exact sequence yields the following exact sequence of simplicial
groups

0 —mQ(ZA, Xn) — Q2((CA,A),(X,Y)) —Q(A,Y) EER Q(A, X) —»mQ(A,X) —0

Here we use the assumption that f* in (2.19) is a O-fibration. This implies for
n > 1 that

7"'71(32((0"47 A)v (X’ Y)) = Wn(kernel f*) = 71'n+1(Q(A, X)v Q(Aa Y)) (2)

Moreover we have for the simplicial group Q2((CA, A), (X,Y)) the following pull
back diagram of simplicial groups
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QQ((CAv A)’ (va)) - Q(CA’ X)

! !

Q(A,Y) QA X) —— QA X) —— 0

Here the row is an exact sequence of simplicial groups since f, is a 0-fibration by
(2.19). Since Q(CA, X) is contractible this yields for » > 1 the isomorphism

WHQQ((CAaA)v(X7Y)) = 7rn+1(Q(A7X)7Q(A7Y)) (3)
Now (1), (2) and (3) yield the exact sequence in (2.20) for n > 1. q.e.d.

(2.21) Definition. We define an analogue of the pathlike construction of Dwyer-
Kan-Stover [E?] 4.3. Here we need the assumption that there are arbitrary coprod-
ucts in C. For A in T and n > 1 we define the object P(A,n) in AC by the push
out diagram (* = const(*))

(CA)®@*V AR Aln] —— P(A,n)

I I

ARIAN] = AR* VAR 2, 4@ A[]

where we use the basepoint of A[n]. For X in AQ let P(X) be the coproduct in
AC of all objects P(A,n) indexed by tuples (A,n,a,b,c) with

AeT

n>1

a:CA— Xp€eQ
b:A—X,eQ

c:A—-X1€Q

such that

a|A=dyc and
dg‘..dob:dlc.

Then one has a canonical simplicial map
e: PX - X in AQ
given by a, b, ¢ above.

(2.22) Proposition. For Y and X in AQ the map Y — Y V PX s a spiral
equivalence and for any map f:Y — X in AQ the map

g=(f,e): Z=YVPX - X

induces 0-fibrations Q(A, g) and Q(A,g); see (2.19).
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Proof. Let P(A,n) = P(A,n)/(CA)®+ and let PX be the coproduct of all P(A,n)
indexed by (A4, n,a,b,c) in (2.21). Since the cylinder I commutes with arbitrary
coproducts in C we see that PX — PX is a horizontal equivalence. This implies
that also Y V PX — Y V PX is a horizontal equivalence since Y, — Y, V (PX),
is a cofibration in Q. Moreover PX is an object in (AL)¢ee where L is the full
subcategory of C consisting of arbitrary coproducts of objects in T and L = L /=~
is a theory of cogroups. We can apply (C.1.18) for (A]:)free. Now

A® A U;, A® Aln] ——— P(A,n)

~ [ E

A®* —_— *

is a push out diagram in (Af;)f,ee and ¢y is a vertical homotopy equivalence in
((AL)free, ®A[i)); see (2.16). Hence also * — P(A,n) is a vertical homotopy equiv-
alence in (AL)gee. This shows by (2.15) that * — PX is a vertical homotopy
equivalence and therefore also Y — Y V PX is a vertical homotopy equivalence in
AQ. This implies by the second equation in (2.15) that Y — Y VvV PX is a spiral
equivalence.

Finally it is easy to see that the maps Q(A4,g) and Q(A, g) are O-fibrations
since PX is defined appropriately. To see that Q(A4, g) is a O-fibration we use the
fact that moQ(4, Z) = moQ(4, Z) in (2.8). q.e.d.

3 Spiral Homotopy Theory

Given a spiral model category
TcCcCQ

as in (2.4) we have the notion of spiral equivalence in AQ by (2.9). In this section
we study the homotopy theory obtained from spiral equivalences.

Let L C C be the full subcategory of C consisting of arbitrary coproducts of
objects in T. Then L and also the quotient category L = L /=~ are theories of
cogroups. We have the commutative diagram of functors

T c L ¢ C c Q

l l l l" (3.1)
T c L c C c Q
Compare (2.6) (3). The functor p carries a simplicial object X in AQ to the
simplicial object X in AQ. For the theory T the category of models model(T)
is defined. Objects are functors T°P — Set which carry finite coproducts in T

to products in Set. In particular A € T yields the model T(—, A) € model(T).
Arbitrary coproducts exist in model(T). A free model is a coproduct
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F=\/T(-,A)
ieJ
where J is a set and A; € T for i € J; see also (1.2.5). Let
free(T) C model(T) (1)

be the full subcategory of free models. The condition on filtered inductive limits
in (2.4) (iii) implies that one has canonical isomorphism of categories

L = free(T) and
{ (T) @

L = free(T).
Here L and L are the categories in (3.1).

(3.2) Definition. Consider a sequence of maps
Y=X"'1-X"—. .. 5 x5 x" 5 .

in AQ where for n > 0 one has a push out diagram in AQ

A, ®An] —— X©

T T (3.3)

An ®9A] —— X7

Here A, is an object in C which is homotopy equivalent in C to an object A, in
L; see (3.1). Then we call the induced map Y — lim{X™} a spiral inclusion. We
say that a map f in AQ is a spiral cofibration if f is a finite composite of spiral
inclusions and trivial Reedy cofibrations.

Let (AQ)s be the full subcategory of all objects X in AQ for which * — X is
a spiral cofibration. Then we obtain for X € (AQ); an object X € (AL)gee with

pX = X. This yields the canonical functor
pr: (AQ)s — (Af')free (3.4)

with pr(X) = X. This functor carries spiral cofibrations to free inclusions; see
(C.1.11). Amap f: X — Y in (AQ);s is a spiral equivalence if and only if py(f)
is an isomorphism in the homotopy category (AL)gee/y.

We call (AQ), together with spiral equivalences and spiral cofibrations a spiral
homotopy theory since one has the following fundamental result.

(3.5) Theorem. Let T C C C Q be a spiral model category as in (2.4). Then
the category (AQ)s with spiral equivalences and spiral cofibrations is a cofibration
category satisfying the azioms in (III.1.1). Moreover all fibrant models in this
cofibration category (see (II1.1.1)) are spiral objects in AQ; see (2.7).
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Proof. The composition axiom (C1) and the push out axiom (C2) are satisfied in
(AQ); since these axioms hold in (AL)gee by (C.1.18) and (II1.7.4). Here we use
(3.4). Next we obtain the factorization axiom (C3) by (3.6) below. We check the
axiom on fibrant models (C4) as follows. We have by (1.4) for each object X in
(AQ)s a factorization

X—>RX—->®

where X — RX is a trivial Reedy cofibration (and hence a spiral cofibration) and
where RX — ® is a Reedy fibration. Here ® is the final object in AQ. Hence RX
is Reedy fibrant and we show in (3.7) that all Reedy fibrant objects are fibrant
models in the sense of (III.1.1). This proves (C4). Moreover we show in (3.9) that
Reedy fibrant objects in AQ are spiral. q.e.d.

(3.6) Theorem of Stover. Let T € C C Q be a spiral model category. Then
any map f:Y — X in AQ admits a factorization

1Y ->Mx - X inAQ
where Y — Mx is a spiral inclusion and Mx — X is a spiral equivalence.

Proof. This is the analogue of the key construction in Stover [VK]; compare Dwyer-
Kan-Stover [E?] 4.5. Given a map R — S in Q let W(S) = RV V(S) € AQ where
V(9) is obtained by taking a wedge of objects A = A, for every A € T and map
a:A— Sin Q, and attaching a cone CA = (CA)s for every map 8: CA — S in
Q. Here (CA)g is attached to A, with a« = 3| A. As W(S) comes with an obvious
map R — W(S) in Q, one can repeat this construction and obtain an object
W,o(S) € AQ with W, (S) = Wn*+L(S) for all n > 0 and a factorization of the
map R — S into a spiral cofibration R — W,(.S) followed by a spiral equivalence
W.(S) — S. Here we use the arguments in Stover [VK]. Now given a map ¥ — X
in AQ we obtain the factorization

Y — diagW,(X) - X in AQ

with Mx = diag W,(X) being the diagonal of the bisimplicial object W, (X). This
factorization has the property in (3.6); see Dwyer-Kan-Stover [E?] 4.6. q.e.d.

(3.7) Theorem. Let X be a Reedy fibrant object in (AQ)s. Then any spiral cofi-
bration f : Y — X which is a spiral equivalence admits a retraction.

Proof. We have the following factorization of f:
fiy SvyvPx LR L X

Here i is the inclusion in (2.22) and gj = (f,€) is obtained by (1.4). That is j is a
trivial Reedy cofibration and ¢ is a Reedy fibration. By (2.22) we see that

¢« : Q(A, R) — Q(A, X)
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is a fibration of simplicial sets for all A € T. Since i and j and f are spiral
equivalences also ¢ is a spiral equivalence. By lemma, (3.8) we get the lift o in the
square

Y —2- R

fl/lq

X ——X

Moreover by (1.4) we get the lift 8 in the square

yvpx 29,y

Lo

Here 0 : PX — % — Y is the zero map; see (2.21). Hence S« is a retraction of f.
q.e.d.

(3.8) Lemma. Let L be Reedy fibrant and let ¢ : R — L in AQ be a Reedy
fibration and a spiral equivalence such that

2« Q(A,R) — Q(A, L)

is a fibration of simplicial sets for all A € T. Then each commutative square
diagram

Y — R

fl aE

X —— L
where f is a spiral cofibration admits a lift.

Proof. By (1.4) it suffices to consider the case where f is a spiral inclusion. Hence
it suffices to consider the case when

f:A®ROA[n] — A® Aln)

is given by the inlcusion dA[n| — Aln] where A is homotopy equivalent in C to
A € L. We consider a diagram

A®0An] —— R

" <1>
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A lift « for (1) exists if and only if there is a lift in the following diagram in Q

* — R,
| [ ®)
J A (bva)*
A A Ln XM, L MnR

Here g, is a fibration by (1.4) and j is a homotopy equivalence in C. Since ¢, has
the homotopy lifting property with respect to the cylinder I by (2.4) we see that
(2) has a lift if and only if

* — R,

| | 3)
(ba)«j

A = Ln XM, L MnR

has a lift. This is equivalent to the existence of a lift in
A®0An] —%— R

" o

A® A —Y— L

where @’ = a(j ® 1), = b(j ® 1). Now the existence of a lift in (4) is equivalent

to the existence of a lift in

8Aln] —~— Q(A,R)

l lq* (5)
Al —Y Q4,1)

with @’ and b” induced by a and b respectively. Since R and L are Reedy fibrant
and hence spiral by (3.9) below we can apply the spiral exact sequence (2.8) which
shows that g, in (5) induces an isomorphism on homotopy groups. Here we use
the assumption that ¢ is a spiral equivalence. Hence g, in (5) is actually a trivial
fibration of simplicial groups and hence a lift in (5) exists since simplicial sets form
a closed model category. q.e.d.

(3.9) Theorem. Let X be a Reedy fibrant object in AQ. Then X is spiral.

Proof. We have to show that Q(CA, X) is contractible for all A € T. In fact,
moQ(CA, X) = 0 is equivalent to the existence of a lift in

T 4 X1

l l(doxdl)

CA —— Xy x X
(f,0)
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with f € Q(CA, Xp). Here x — CA is a weak equivalence in Q by (2.4) and
(do,dy) is a fibration in Q since X is Reedy fibrant. Hence the lift exists since Q is
a closed model category. Similarly we see that 7, Q(C A, X) = 0. This is equivalent
to the existence of a lift in

* — X,
CA M, X
(f,0,...,0)
with f: CA — X, representing an element in 7, Q(CA, X). q.e.d.

4 Spiral Homotopy Groups

Let T C C C Q be a spiral model category. Then theorem (3.5) shows that the
localization

Ho(AQ), = (se)™'(AQ)s (4.1)

with respect to the class se of spiral equivalences exists. This is the spiral homotopy
category. Recall that the completion of T with respect to arbitrary coproducts in
C yields the theory L of cogroups with T C L C C. By (3.4) we obtain the functor

prL - HO(AQ>S - (Af‘)free/’:v

which carries X to X. The definition of spiral equivalences shows that this functor
reflects isomorphisms.

(4.2) Lemma. Let X be an object in (AL)free. Then X VX — XQ® A[l] is a spiral
cofibration and the projection X ® A[1] — X is a spiral equivalence. Hence X @ A[1]
is a cylinder object in the cofibration category (AQ)s in (3.5); see (II1.1.7).

For the proof we use the same argument as in (2.16). The lemma implies for
X in (AL)free and for a fibrant object Y in (AQ); that

X, Y]s = [X, Y]u (4.3)

is the same as the set of vertical homotopy classes X — Y in AQ); see (2.12) and
Baues [AH] I1.3.13.

An object X in AQ is based if * — X is a spiral cofibration and if a map 0
X — xis given. For example for each cogroup A in T or L the object A = const (A)
is a based object in AQ. Given a based object X the spiral homotopy group (n >
0)

”g(y)m 7T5+1(Z7 Y)s (4.4)
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are defined in the spiral cofibration category (AQ)s; see (II1,§2). Here Y is an
object in (AQ)s and Y — Z is an object in Pair (AQ);. If X is in (AL)fee and
if Y and Z are fibrant (compare Baues [AH] 11.1.5) then we obtain by (4.2) the
canonical bijections

X —
{ X (Y)s = [X AS[n], Y], (4.5)

1 (Z,Y)s = [(X AD[n+1],X AS[n]), (Z,Y)],
Hence such homotopy groups are given by vertical homotopy classes of maps or

pair maps. As a special case of (4.5) we get for a cogroup A in T the canonical
isomorphisms of groups (n > 0)

{ TA(Y)s = mQ(A,Y)

7T71?+1(Z’ Y)S = 7rn+1(Q(AaZ)7Q(A=Y)) (46)

where the right hand side denotes homotopy groups of simplicial groups. The
equation (4.6), (4.5) only hold if Y and Z are fibrant. Given objects Y and (Z,Y)
in (AQ)s we can choose fibrant replacements which are spiral equivalences

Y -, (Z,Y) = (Z,Y) (4.7)
where Y and Z are fibrant. Then we have
{ Ta(V)s 2wl (V) = 1aQ(A,Y)
TH(Z,Y)s 2 mH(Z,Y)s = 1(Q(A, 2), Q(A,Y))
Here the left hand isomorphism is induced by (4.7).

(4.7) Lemma. Each pair (Z,Y) in (AQ)s admits a fibrant replacement (Z,Y) —
(Z,Y) for which'Y — Z is a spiral map; see (2.19).

Proof. First we choose a fibrant replacement o : Z — Z. Then we get the com-
mutative diagram

Z

d Js K

Yy — . yvpPz L vy

7z <«

Here g = (af,¢) is defined as in (2.22) and i is a spiral equivalence by (2.22). Now
we choose a fibrant object Y together with a spiral cofibration j which is a spiral
equivalence, i.e. j is a fibrant model in the cofibration category (AQ)s. Then we
obtain f by Baues [AH] I1.1.6. We claim that f is a spiral map. In fact Z and Y are
fibrant and hence spiral by (3.5). Moreover Q(A4, g) and Q(4, §) are 0-fibrations
by (2.22). This implies that also Q(A, f) and Q(A4, f) are O-fibrations. q.e.d.
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(4.9) Theorem (spiral exact sequence). For any object Y in (AQ)s and n €
7 one has the following exact sequence with Y = pp(Y) € AL and A € T.

=AY — A (Y)s — ﬂ'nQ(A,f/) — XA Y)s — ...

Here homotopy groups m, are trivial for n < 0 so that for n = 0 we get the
isomorphism

T (Y)s = [A4,Y]s = mQ(A,Y)
The sequence is natural in'Y .

Proof. We choose for Y a fibrant replacement ¥ — Y’. Then we know by the
definition of spiral equivalences that Y — Y induces the isomorphism

7TnQ(Av }7) = ﬂ'nQ(Av ?/)
Moreover we can use (4.7) and (1.8) since fibrant objects are spiral by (3.5). q.e.d.
Using similar arguments we get by (4.8) and (2.20) the next result.

(4.10) Theorem (spiral exact sequence for relative homotopy groups).
For any pair (X,Y) in (AQ)s one has the following exact sequence of abelian
groups withn >1 and A € T.

T WT?A(X’ Y)S - 7r7‘?+1(X,Y)s - 7Tn+1(Q(A’X)’ Q(A’?)) - Wffl(x’ Y)s

Here relative homotopy groups 7y are trivial for k < 0. Moreover for n = 0 one
has the following commutative diagram of groups in which the row and the columns
are ezact, see (2.20).

mQ(A,Y) — mQ(TA,Y)

! !

mQ(A, X) — mQ(ZA, X)

! !

A — A — (X, Y)s — m(Q(A, X),Q(4,Y)) — 0
0

Similarly as in (C.1.25) we define:

(4.11) Definition. We say that a map f : Y — X in (AQ), is (m, T)-connected
with m > 0 if for all objects A in T the induced map

fe: 7764(Y)s - 7T64(X)S

is surjective and the relative homotopy groups 72(X,Y)s = 0 are trivial for r < m.
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(4.12) Lemma. The map f:Y — X in (AQ), is (m, T)-connected if and only
if the induced map f : Y — X in (AL)free is (m, T) connected in the sense of
(C.1.25).

Proof. For m = 0 this is clear by (4.9). Moreover for m > 0 we can use inductively
theorem (4.10) where the relative homotopy groups m,41(Q(4, X), Q(A4,Y)) co-
incide with the homotopy groups in (C.1.25) defined in AL. q.e.d.

The next result is crucial for the application of the general theory of this book
to spiral homotopy theory. It is the spiral analogue of the Blakers-Massey theorem.

(4.13) Theorem. Assume the theory L of cogroups in (3.1) satisfies the delicate
Blakers-Massey property in (C.1.27) and consider a push out diagram in (AQ)s

K1 KUY

o

where i and j are spiral cofibrations and i is (m,T)-connected and j is (n,T)-
connected with m,n > 0. Then (K UL Y,Y) is (m, T)-connected and the induced
map

Je i TNK, L)y — 12 (K UL Y,Y)s
1s surjective for 1 <r < n+m—1 and bijective for 1 <r <n+m—2 and A € L.

Proof. We use (C.1.26) for objects in (AL)fee. Then we apply inductively (4.10).
q.e.d.

(4.14) Corollary. Assume L satisfies the delicate Blakers-Massey property. Then
the spiral cofibration category (AQ)s is a cofibration category under L in the sense
of (IV.2.1) which has the Blakers-Massey property (IV.5.3). This implies that
(AQ)s is a homological cofibration category under L in the sense of (V.1.1). See
(V.1.2).

The corollary shows that we can apply all the theory of chapters I, ..., VII to
spiral homotopy theories (AQ)s provided L satisfies the delicate Blakers-Massey

property.

5 Examples of Spiral Model Categories

Let S be a small theory of cogroups and let M = model(S) be the category of
models of S; see (I. §1). Moreover let free(S) be the category of free models as in
(3.1) (1). Then we have full inclusions of categories

S C free(S) C M = model(S) (5.1)
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Here free(S) is again a theory of cogroups so that by (C.1.18) the I-category
C = (Afree(S))free with I(X) = X ® A[1] (1)
is defined. Moreover the category of simplicial objects in M
Q= 4M (2)

is a closed model category in which all objects are fibrant; see Quillen [HA] chapter
II.§4. Amap f : X — Y in Q is a fibration (resp. weak equivalence) if forall A € S
the map Q(A, f) is a fibration (resp. weak equivalence) in the category of simplicial
sets or, since A is a cogroup, in the category of simplicial groups. According to
Quillen [HA] (chapter II page 4.11) a map f is a cofibration in Q if and only if f is
a retract of a “free map”. This shows that free inclusions in C are also cofibrations
in Q. Now we get for k > 0 the spiral model category associated to S

T, CCCQ. (5.2)

Here C and Q are defined as above and T}, is the full subcategory of C consisting
of finite coproducts of spherical objects A A S[n], n > k, A € T; see (C.1.8) (3).
Now it is readily clear from the definition in (2.4) that Qi = (Tk, C, Q) with k > 0
is spiral model category. Therefore the associated spiral cofibration category

(AQk)s C A(AM) (5-3)

is well defined. This is a category of bisimplicial objects depending on k > 0. Let
L be the completion of Ty with respect to arbitrary coproducts in C. Then Ly
satisfies the delicate Blakers-Massey property if and only if T does. Hence by
(4.14) we get the following result.

(5.4) Theorem. Let S be a theory of cogroups for which Ty = Ty/~ defined
in (5.2) satisfies the delicate Blakers-Massey property. Then (AQy)s in (5.3) is
a homological cofibration under Ly as in (V.1.1) which has the Blakers-Massey
property (IV.5.8).

(5.5) Ezample. Let S = gr! be the category of finitely generated free groups. Then
T}, is the homotopy category of finite wedges of spheres S™ with n > k + 1. For
k > 1 this is a polynomial graded theory of cogroups and therefore (C.2.17) shows
that T with k& > 1 satisfies the delicate Blakers-Massey property. Hence we have
the spiral model category

Qi = (Tx C (Agr)free € AGT)

where Gr is the category of free groups and Gr is the category of groups. We get
the associated spiral cofibration category (AQg)s. For k > 1 this is a homological
cofibration category under Ly satisfying the Blakers-Massey property (IV.5.3).
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(5.6) Example. Let Top* be the category of pointed spaces. The E2-homotopy
theory of Dwyer-Kan-Stover [E?] yields a closed model category structure for
ATop™* with E2-weak equivalences, E?-cofibrations and E?-fibrations. The associ-
ated E2-homotopy category Ho(ATop™) is actually equivalent to Ho(AQp), with
Q = AGr as defined in (5.5). It is convenient to replace Top* by AGr via the
Kan equivalence since there are cogroups in AGr which correspond to spheres
in Top®. The spheres, however, are cogroups in Top*/~ rel *x but they are not
cogroups in Top*. Due to the existence of such cogroups in AGr we can apply
the theory of a spiral model category described above. This is a lot easier than
the E2-model category of simplicial pointed spaces of Dwyer-Kan-Stover [E?]. A
similar remark also holds for the E2-homotopy theory of Goerss-Hopkins [RM].
It seems that in many cases when one has an E2-homotopy theory Q’ there is a
“replacement” Q of Q' where Q is a spiral model category and

Hop2(AQ') = Ho(AQ)s.

In particular Q = AGr is such a replacement for Q' = Top”™.

6 Homology and Cohomology in Spiral Homotopy Theory

In this section let
Q=(TcCcQ) (6.1)

be a spiral model category for which L = L/~ satisfies the delicate Blakers-
Massey property. Here L is the full subcategory of C consisting of arbitrary co-
products of objects in T. For example for k£ > 1 the spiral model category

Qi = (Tk C (Agr)see C AGr)

in (5.5) satisfies the assumption on Q above. The assumptions in (6.1) imply

that (AQ)s is a homological cofibration category under L; see (4.14). Hence we
can apply all results of chapter I, ..., VIL. The cofibration category (AQ)s is an
example in which all objects are cofibrant but not fibrant. Hence the notion of
principal cofibration in (IIL.3.1) (1) uses fibrant models.

(6.2) Lemma. Let X = im{X"} be given by a spiral inclusion x — X as in
(3.2). Then X"~ 1 — X™ is a principal cofibration with attaching map

O € [An A S[n — 1], X" 7Y, = w» (X",

where A, € L. Hence X(>1) is a complex in the sense of (IV.2.2) with X,y =
X"t compare (C.1.28).

Proof. Consider the push out in (3.2) with A, homotopy equivalent in C/~; to

A,. Then the composite
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fn: Ay ®0A[n] — A, ® 0A[n] — xn!

defines the element f, - 8 with 8 = —a and a = f,, | A, ® * as in the proof of
(C.1.21). Moreover using ¢ in this proof we obtain 8, from f, - 3. q.e.d.

Lemma (6.2) shows by use of (3.6) that each object in (AQ)j is spiral equivalent
to an L-complex in (AQ),. Moreover (IV.5.10) implies that one has an equivalence
of categories at the left hand side of the following commutative diagram

Ho(AQ); —S%— model(T)

Tz Tz (6.3)

Complex/é —%—~  Coef

Here Complex is the category of L-complexes in (AQ)s as defined in (IV. §2)
and the coefficient functor c is defined in (V.1.3). The coefficient functor ¢ carries
X € (AQ)s to &(X) : T°P — Set defined by

&(X)(A) = moL(A, X)

with X = py X given by (3.4) and A € T C L. The equivalence on the right hand
side of (6.3) is given as in (1.4.6) below. The spiral exact sequence shows that (6.3)
is well defined and commutative. Moreover ¢ is compatible with the coefficient
functor ¢ in (C.1.29) since ¢ is defined by X e (Af;)free. Using the spiral exact
sequence we see that 9y in (6.2) yields an element

0, = dx € [A A S[0], X0], = L(A!, A°) (6.4)

Here Ox represents an object in Coef which is a presentation of ¢(X) € model(T).
We shall identify dx and M = ¢&(X). For each dx € L(A!, A°) we can choose
X! in (AQ), such that X° — X' is a principal cofibration with attaching map
Ox € [A! A S[0], X°]s where X° = const(A°) with A% ~ A in C.

(6.5) Lemma. Let A, B € L andn > 1. Then the maps AAS[n]VX' — BAS[n]V

X' in Ho(AQ), under and over X* can be identified with the maps AANS[n]v X! —
B AS[n]V X' in (AL)free/~ under and over X*.

Proof. It suffices to show that
7A(BADn+ 1]V X1, BAS[n]v X1),
m(Q(A, BA D[n+1]V X'), Q(A, BA S[n] vV X1))

is an isomorphism. But this is a consequence of the spiral exact sequence for
relative homotopy groups in (4.10). q.e.d.
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(6.6) Definition. Given a small theory of cogroups T we define the enveloping
functor

U : model(T) — Ringoids

as follows. The category M = mgdel('i’) has coproducts so that for A € T and
M € M the coproduct AV M = T(—,A)V M € M is defined. Hence
M —— AvMm 292, Ny

defines a cogroup in the category M% of objects under and over M in M. Let
premod(M) C MAJ be the full subcategory of all objects AV M with A € T.
Then premod(M) is a theory of cogroups for which the additivization U(M) =
premod(M)2¢ is defined by (I.1.16). Compare the definition of the enveloping
functor in (I.5.10).

For a ringoid R let Mod(R) be the category of (right) R-modules, i.e. additive
functors R°® — Ab. Morphisms are natural transformations. In particular, one
gets for A € R the R-module R(—, A). An arbitrary sum of such R-modules
R(—,4;), i € J, is called a free R-module. Let

mod(R) C Mod(R) (6.7)

be the full subcategory of free R-modules. Lemma (6.4) shows that the category
mod(9x) defined in (AL)¢ee as in (C.1.31) coincides with the corresponding cat-
egory mod(Jx) defined in (AQ)s; see (V.1.6). Moreover by (C.1.34) we get:

(6.8) Proposition. Let Ox be a presentation of M € model(T) as in (6.4).
Then there is a canonical isomorphism of categories

mod(9x) = mod(U(M))
where U(M) is the enveloping ringoid in (6.6).

Using (6.4) we see that the chain complex of X in (AQ)s depends only on the
chain complex of X in (AL)gee. This leads to the following observation.

(6.9) Definition. Let X be an object in (AQ), such that X is a CW-object in AL.
Let M = ¢(X) € model(T) be given by the coefficient functor ¢ in (6.3). Then
the chain complex of X

C.X =C,X inmod(U(M))

coincides with the chain complex of X in (Ail)free defined in (C.1.35). Accordingly
homology and cohomology of X coincide with homology and cohomology of X in
(C.1.36) and (C.1.39).

Let U be a fibrant object in (AQ)s and let dx and X° — X! be given as in
(6.4) and let M = ¢(X!) so that dx is a presentation of M. Let u : X° — U be a
map which admits an extension X! — U. We define the right U(M)-module



6 Homology and Cohomology in Spiral Homotopy Theory 123

uemn,(U) : U(M)°® —— Ab (6.10)

for n > 2 as follows. This module carries A V M to the spiral homotopy group
72 [ (U)s in (4.6). Here we use a shift in degree since A is considered to be of
dimension 1; see (C.1.28). Amap f: BVM — AV M in U(M) corresponds to a
map f: BAS[n—1V X! — AASn—1]V X! in Ho(AQ)s under and over X1.
See (6.8). Hence f induces the homomorphism

fr :WE—I(U)S _— 7T;:‘—l(U)s

which carries (a: BA S[n—1] — U) € 7B_,(U)s to the composite

where f’ is determined by f. As a special case we obtain for a spiral inclusion
% — X with fibrant model X>=X the map u : Xo — X which defines the U(M)-

module 7, (X) = v*m,(X) with M = &(X).
(6.11) Theorem. Let Y — X be a spiral inclusion with Y = X~ as in (3.2)
and let U be a fibrant object in (AQ)s. Let f:Y — U be a map in (AQ)s which

admits an extension g : X"~ ' — U, n > 2. Then the restriction g | X" "2 admits
an extension g : X™ — U if and only if an obstruction element

O(g | X" ?) e H" 'YX, Y;u*m,(U)s)
vanishes. Here u : X° — U is the restriction of g.

This is a special case of (V.§4); compare (C.1.38) where the corresponding
result for maps in (Af;)f,ee is formulated. Next we consider the Hurewicz homo-
morphism A and the exact sequence of J.H.C. Whitehead in spiral homotopy theory
(AQ)s and we compare this exact sequence with the corresponding exact sequence
in (C.1.41).

(6.12) Theorem. Let X be an object in (AQ)s with X = pr(X) € (AL)tree and
M = &(X) € model(T). Then one has the following commutative diagram (n > 2)
in which the rows are exact sequences of U(M)-modules.

. — Hpp1(X) — TM(X)s — m(X)s — Hp(X) — ... — (X)s — 0
| | | I |
. — Hpp1(X) — TM(X) — m(X) — Ho(X) — ... — i(X) — 0

The bottom row coincides with the sequence in (C.1.41). The diagram is natural
in X.

The module 7, (X)s is defined in (6.10). Moreover we obtain for n > 3 the
module I, (X)s by
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[(X),s = image{m,(X""?)s — m,(X" 1)}

Here we use the shift of degree X"~! = X(,) as in (6.2). For the definition of
I (X)s and I(X)s see (V.5.3) and (I1.§2).

Since pr : Ho(AQ)s — (ALgee)/~ reflects isomorphisms we see that the
homological Whitehead theorem for (AQ);s coincides with the corresponding the-
orem for (A]:)free in (C.1.40). Moreover we leave it to the reader to formulate a
finiteness obstruction theorem for (AQ), which is the analogue of (C.1.44).

7 Spiral Resolutions and Spiral Realizations

Let Q be a spiral model category for which L satisfies the delicate Blakers-Massey
property as in (6.1).
(7.1) Definition. Let @ be an object in Q. A spiral resolution of @ is an object X
in (AQ); together with a spiral equivalence X — const(Q) in AQ.

The theorem of Stover (3.6) shows that spiral resolutions of @ exist. In fact,

the construction in the proof of (3.6) yields a spiral resolution which is functorial
in Q. (One can check that spiral resolutions are well defined up to isomorphism in

Ho(AQ)s.)

(7.2) Definition. Let M € model(T). We say that X € (AQ), is a spiral
realization of M if one has an isomorphism

N - M(A) forn=0
n AvX =
™ Q( ) { 0 forn>0

which is natural in A € T. Here X = py(X) is a “resolution of M” in (Ai/)free.
In fact, X is well defined up to homotopy equivalence in (AL)gee; but two spiral
realizations X, X’ of M in (AQ)s need not to be isomorphic in Ho(AQ)s.

Each object @ in Q yields the model
M = Q(—, Q) € model(T)
represented by Q. That is, M carries A € T to the set of morphisms Q(A, Q) in Q.

(7.3) Lemma. If X is a spiral resolution of Q € Q then X is a spiral realization
OfM = Q(_7 Q)

The lemma is an immediate consequence of the definition of spiral equivalence.

(7.4) Remark. We say that M € model(T) is realizable in Q if M = Q(—,Q)
for some @ in Q. Hence if M is realizable in Q then M is also spiral realizable
in (AQ)s. In certain cases such as Q = AGr also the converse holds; that is, the
spiral realizability of M implies the realizability of M in Q. For this one needs the
“realization” |X| € Q of X € AQ. Compare Dwyer-Kan-Stover [HG]|, Blanc [AI],
Goerss-Hopkins [RM].
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(7.5) Definition. Let M € model(T) and let 0 be a presentation of M as in (6.4).
By (2.4) (iii) we have the suspension functor X' : T — T which yields the model
"M € model(T) by

(2"M)(A) = M(5™A)

for A € T. Here X has a factorization X : T — Tadd _, T where Tadd is the
additivization of T see (1.1.16). Hence 2"M for n > 1 is actually a (right) T2dd-
module. We have the canonical inclusion

T - y(ar)

which carries f: A— BeTto fVv1:AVM — BV M € U(M). See (6.6). The
next result shows that 2" M is in addition a (right) U(M)-module if M is spiral
realizable.

(7.6) Proposition. Let X be a spiral realization of M. Then one has a canonical
isomorphism of abelian groups (n > 1)

1A(X), = (2"M)(A) for AeT.

Here the left hand side is a U(M)-module by (6.10). The isomorphism thus
yields a U(M)-module structure of 2" M denoted by £2"(M)x. At this point it is
not clear whether this module structure 2" (M)x actually depends on X.

Proof of (7.6). Since X is a spiral realization of M we can use the spiral exact
sequence and get the isomorphisms of abelian groups (n > 1)

T (X)s 2y A(X)s ZmQ(E"A, X) = M(E™A) = (2" M)(A).

n
q.e.d.

The proof shows that the U(M)-module £2"(M)x restricted to T2dd « (M)
yields the T24d-module £2"M described in (7.4) which does not depend on X.

(7.7) Definition. Let M € model(li‘). Then a resolution K (M,1) = X of M is an
object in (AL)fee with L = free(T) such that one has an isomorphism

(4.%) = M(A) forn=0
Tl 2= 0 forn>0

which is natural in A € T. Compare (VI. Appendix §11). Let C, X be the chain
complex of X as defined in (C.1.35). Then C, X is a chain complex of free U(M)-
modules with M = ¢(X) € Coef = model(T); see (6.3), (6.8) and (C.1.29).
Hence the homology of C, X in the abelian category Mod(U(M)) is defined. This
is the Quillen homology

H,(M) = H,(C.X)
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of the model M. The Quillen homology H, (M) is a (right) U(M )-module which
only depends on M. For every right U(M)-module K also the Quillen cohomology

H™(M, K) = H" Homy ) (C. X, K)
is defined.

As a consequence of (6.10) and (7.6) one readily gets the following result.

(7.8) Theorem. Let X be a spiral realization of M € model(T). Then one has
isomorphisms of U(M)-modules

Hy(M) forn=1

Iy (X)s = { n—1
H, 1 (M)® 2" (M)x forn>2
The result has many implications concerning the homological tower of cate-
gories in (VI. §6) and the obstructions described in (VI. §9). In particular the
obstructions for the realizability of chain complexes in (VI. §4) lead to the follow-
ing result.

(7.9) Theorem. Let M € model(T). Then M is spiral realizable if and only if
one can define inductively X (n) such that an obstruction

O(X(n)) € H" (M, 2" (M) x(n))

vanishes forn > 2. Here X (2) is determined by a presentation Ox of M and X (n+
1) can be defined if O(X(n)) = 0. Moreover the group H™ (M, Q2" (M)x(n))
acts transitively on the set of all possible choices of X (n + 1) which extend X (n).

A result of this type with different assumptions was recently obtained by Blanc
[AI] using completely different methods. Theorem (7.9) describes the obstructions
which were anticipated by Dwyer-Kan-Stover [E?] 1.3.

Proof of (7.9). We use (VI1.9.1) and (VI1.9.4) and observe that the cohomology
splits in two parts by (7.8). The first part is the corresponding obstruction in
(AL)gree which is trivial since we choose for M an object X = K (M, 1) as in (7.7).
The second part describes the obstruction for the existence of X in (AQ), with
pr(X) = K(M,1). We build X inductively by constructing the skeleta X(n) =
X1 with pr(X(n)) = X" 1, q.e.d.

The homological tower of categories in (VI. §6) yields further interesting re-
sults on the homotopy category of spiral realizations of M considered as a full
subcategory of Ho(AQ)s.



Part II

Combinatorial Homology and Homotopy



The long list of examples in Part 1 shows the necessity of an axiomatic theory
of combinatorial homology and homotopy. In the following chapters I, ..., VIII
we discuss the notions and results of such a foundational theory. The results are
considerably more sophisticated than previous results achieved in axiomatic homo-
topy theory. For example, Wall’s finiteness obstruction theorem and Whitehead’s
results on simple homotopy equivalences and Whitehead torsion are deep results
of classical homotopy theory which we prove in the axiomatic context.



Chapter I: Theories of Coactions and Homology

In order to obtain homology for a theory T of coactions we introduce in this
chapter the categories

Twist, Coef, premod, mod and chain

which we derive from the theory T. These categories are fundamental for the
general treatment of homology theory.

The category Coef of coefficients is used to describe the “coefficients” of the
homology and cohomology theory associated to T. The objects of Twist are pre-
sentations of the objects in Coef where a presentation Jx is a map in T. We
derive from the category Coef the category mod of modules. The link between
Coef and mod is the category premod of pre-modules. There is an enveloping
functor U which carries an object in Coef to a ringoid such that mod is the
Grothendieck construction of U. The category chain is the category of chain com-
plexes in mod. Such chain complexes are used to define homology and cohomology
for T.

For example let T = gr be the category of free groups which is a theory of
cogroups. Then Coef = Gr in the category of groups and the enveloping functor
carries a group G to the group ring Z[G]. In this case a presentation of G is a
map Jdx : X" — X between free groups in T and Twist is the category of free
pre-crossed modules given by such presentations. We can consider dx also as the
attaching map of 2-dimensional cells in a CW-complex X? such that 7 X2 = G.

1 Theories of Cogroups and Theories of Coactions

We introduce basic notation concerning cogroups and coactions in categories. Also
we consider theories and models of such theories. All the notation and results of
the following sections are available in theories of cogroups and more generally in
theories of coactions.

Let C be a category and let X,Y be objects in C. Then C(X,Y) denotes the
set of morphisms or maps X — Y in C and Ob(C) is the class of objects in C.
A sum or coproduct X VY in C is an object X VY together with morphisms
ix : X = XVY,iy : Y — X VY such that for all objects Z in C one has the
bijection

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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C(X VY, Z)=C(X,Z) x C(Y, Z) (1.1)

where the right hand side denotes the product of sets. The bijection carries f :
XVY — Z to (ixf,iy f). Hence any pair of maps a: X — Z,b:Y — Z yields a
unique map (a,b) : X VY — Z.

(1.2) Definition. A theory T is a category with an initial object * and with fi-
nite sums denoted by X VY. We consider * as the empty sum. A map between
theories is a functor F' : T — T’ which preserves sums. This is an equivalence of
theories if there is a map G : T — T with F'G and GF natural isomorphic to the
corresponding identical functors.

(1.8) Definition. Let T be a theory. A based object in T is an object X endowed
with a map Ox = 0: X — x. This map defines for all objects Y in T the zero-map
0: X »%—>Y.A cogroup X = (X,0,p,v) in T is a based object (X,0) together
with a comultiplication pyx = p: X — XV X and a map vx = v : X — X such
that the following diagrams commute.

X " XVvX

3 B2

Xvx MM, xvxvx

X
i
X‘(l,u) XVX oD X

We say that the cogroup X is abelian if the diagram
X
VR
XVX S5 XVX

commutes where T is the interchange map with T%; = i3 and Ty = 7;. Moreover
amap f: X — Y between cogroups is linear if the diagram
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X _f

ul lu
xvx Y, yvy

commutes.

(1.4) Definition. Let T be a theory. A coaction X = (X, X', u) in T is an object
X together with a map pux = p: X — XV X’ where X’ is a co-group such that
the following diagrams commute.

X £ 5 XxvXx

)| B2

Xvx M, xvx'vx

X5 xvx

\ l(l’o)

X

Clearly each cogroup X yields a coaction with X’ = X.

Let Set be the category of sets and let T°P be the opposite category of T. A
model of a theory T is a functor

M : T° — Set (1.5)

(i.e. a contravariant functor T — Set) such that M carries sums in T to products.
This means M carries the inclusions ix : X — X VY,iy : Y — X VY to the
projections px =% : M(XVY) = M(X) and py =i} : M(XVY) - M(Y) of
the product

M(XVY)=M(X) x M(Y)

In particular M carries the empty sum in T which is the initial object * to the
empty product in Set which is the final object * in Set consisting of a single point.

If the theory T is a small category we define the category model. Objects are
the models of T and morphisms are the natural transformations between models.
Smallness of T is only needed in order to make sure that all morphisms M — M’
between models M and M’ form a set.

If X is a co-group in T then the set M(X) has the structure of a group which
we write additively though the group M (X) needs not to be abelian. The neutral
element 0 € M(X) is given by 0*(x) = 0 and the group structure of M(X) is the
map
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*

+:M(X)x M(X)=M(XVX) £ M(X) (1.6)

with the inverse — =v* : M(X) — M(X).
If X = (X,X',u) is a coaction in T then the group M(X'’) acts on the set
M(X) by the map

o M(X) x M(X') = M(X V X') 25 M(X) (1.7)

withz+ (a+b)=(x+a)+band z+0=z for z € M(X) and a,b € M(X’). As
an example of a model on T we have for each object Y in T the functor

Mory : T’ — Set (1.8)

which carries X to the set of morphisms Mory (X) = T(X,Y) in T. We also write
Mory = T(—,Y). Hence if X is a cogroup then T(X,Y) has the structure of a
group and a morphism f : Y — Z induces a group homomorphism f, : T(X,Y) —
T (X, Z), that is for a,b € T(X,Y) we have

fla+b) = fa+ fb.

Here the composition is written multiplicatively. Therefore it is suitable to write
the group structure in T(X,Y") and hence in M (X) additively.

(1.9) Definition. A theory of cogroups is a theory G for which each object X in G
is endowed with the structure of a cogroup which is compatible with sums; that
is, the cogroup structure of a sum X VY is given by the cogroup structures of X
and Y respectively by Oxvy = (0x,0y),vxvy = vx V vy, and

fxvy : X VY 2 (X VX ) V(Y VY) = (X VY) V(X VY).

(1.10) Example. A ringoid (or a pre-additive category) is a category R with the
property that all morphism sets R(A, B) with A, B € R are abelian groups and
composition in R is bilinear. A ringoid with only one object is the same as a ring.
An additive category A is a ringoid in which sums AV B = A ® B exist. Such
sums are also products in A; see Mac Lane [C]. Each object A in A is an abelian
cogroup with the comultiplication

pa =11 +i: A—> AV A

In fact, an additive category is the same as a theory of cogroups in which each
cogroup is abelian and all morphisms are linear. A functor F' : R — S between
ringoids is additive if F' : R(A, B) — S(FA, FB) is a homomorphism between
abelian groups for all A, B € R. A functor F': A — B between additive categories
which is a map between theories (i.e. F' preserves sums) is the same as an additive
functor since Fua = pra.
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(1.11) Definition. A theory of coactions is a theory T for which each object X is
endowed with a cogroup object X’ and a coaction

ux: X - XvXx’

in T. This structure of coaction on X is compatible with sums; that is for X VY
the coaction pxvy is the composite

fxvy : X VY 22Xy XY V(Y VYY) = (X VY) V(X VYY)

where (X VY) = X'V Y'. Moreover each coaction pux has the following affine
property. For all objects Y and all maps f,g: X — Y in T there exists a unique
a: X' —Y with g = f + a. Then X is also termed a cotorsor.

Clearly a theory of cogroups is an example of a theory of coactions. A model
M on a theory of coactions T is affine if for all objects X in M and z,y € M(X)
there is a unique o € M(X’) with y = x + «; then M is also called a torsor. For
example Mory for Y € T is an affine model by the affine property of all objects
in T.

(1.12) Lemma. Let ux : X — X V X' be a coaction in T. Then ux has the
affine property if and only if

(ix,,u,x) XVX -5 XvX
s an isomorphism in T. Here ix is the inclusion of X.

Proof. Consider the pair of mapsi; =ix : X — XVX ' andi; = puyx : X — XVX'.
The affine property shows that for each pair f,g : X — Y of maps in T there
is a unique map «a : X' — Y with ¢ = f + «. Hence there is a unique map
(f,a) : X VX' =Y with (f,a)iy = f and (f, a)iz = g. Therefore i1, iy satisfies
the universal properties of the inclusions of a sum. q.e.d.

(1.13) Corollary. Each model M of a theory of coactions is affine.

Proof. We have M(X)x M(X)=M(XVX)=M(XVX')=M(X)xM(X') by
(1.12). q.e.d.

(1.14) Remark. The collection of models M of a theory of coactions yields a Malcev
variety in the sense of Smith [MV]. In fact for z,y, 2z € M(X) with X € T we have
a unique 8 € M(X') with y+ 8 = z. Now we define P by P(z,y,2) =+ 3. Then
P(z,y,y) = = and P(z,x,z) = z. As a special case one obtains varieties of groups
with operators as in (2.12) below.

We shall need the “additivization” of a theory of cogroups which is an additive
category. For this we define for a set 7" the full inclusion of categories

add(T') C cogr(T) (1.15)
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as follows. An object in cogr(T) is a theory T of cogroups with the property that
the objects of T are the elements of the set T, that is Ob(T) = T'. Morphisms in
cogr(T) are maps between theories which are the identity on objects. An object
in add(T) is an additive category A with Ob(A) = T. Morphisms in add(T)
are additive functors which are the identity on objects. Using the final remark in
(1.10) we see that (1.15) is a full inclusion.

(1.16) Lemma. The inclusion functor (1.15) has a left adjoint
( )2 : cogr(T) — add(T)
This functor which carries T to T? is termed the additivization functor.

Proof. For two maps a,b : A — B in T we write a ~ b if there exists a €
T(A, By V By) with By = By = B such that (0,1).a = 0 and (1,0).a = 0 and
a =b+(1,1).(c). Then ~ is a natural equivalence relation on T and one gets the
quotient category T?! = T/~ which is the additivization of T. q.e.d.

2 Examples

We consider various examples of theories of cogroups and theories of coactions.
The basic example is the category gr of free groups which is a theory cogroups.
This theory can be topologically described as the homotopy category of one point
unions of 1-dimensional spheres. Therefore all results for the theory gr have a
topological interpretation.

(2.1) Example. Let Gr be the category of groups and let gr be the full subcategory
of free groups F' = (Zp) with a given set of generators Zp. The trivial group
* = {0} is the initial and the final object of Gr. Sums in Gr exists and for
F ={(Zp) and E = (Zg) in gr the sum is simply

where Zp U Zg is the disjoint union of sets. Each object in gr is a cogroup by the
homomorphism

pup:F—FVF

defined on generators by u(z) = i1(x) o i2(x) for x € Zp. Here 41 and iz are the
inclusions F — F'V F and o is the group law in F'V F. This shows that gr is a
theory of cogroups.

(2.2) Definition. Let D be an object in a category C. Then we define the category
CP of objects under D as follows. Objects are morphisms D — X in C and
morphisms in CP are commutative triangles in C
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Composition in CP is defined as in C. If push outs exist in C then sums exist in
CP. In fact the sum D — X Up Y of D — X and D — Y in CP is given by the
push out in C

D —— X

l l

Y —— XUpY

(2.3) Ezample. Let G be a group and let GrY be the category of groups under
G as defined in (2.2). A free group under G is an inclusion G — F V G where
F = (ZF) is a free group. Let gr(G) be the full subcategory of Gr€ consisting of
such free groups under G. Push outs exist in Gr so that sums exist in Gr¢ and
gr(G). One readily checks that a sum in gr(G) is given by

(FVG)Ug(EVG)=(EVF)VG
Each object in gr(G) is a cogroup in gr(G) by the homomorphism
w=purVlig: FVG—-FVFVG

where up is the cogroup structure of F' in gr. This shows that gr(G) is a theory
of cogroups. Clearly for the trivial group G = * the theory of cogroups gr(x)
coincides with gr in the example (2.1).

(2.4) Example. Let Top™ be the category of pointed topological spaces and let
Top™ /~ be its homotopy category. Let

susp(x) C Top*/~

be the full subcategory consisting of all suspensions XX in Top™. It is well known
that a suspension has a cogroup structure p : XX — XX V ¥'X in Top" /= so
that susp(x) is a theory of cogroups. Let D be the class of discrete sets in Top™
and let

susp(*, D) C susp(x)

be the subcategory of suspension X' X of discrete sets X in Top*. Then XX is
just a one point union of one dimensional spheres and it is well known that the
fundamental group m; yields an isomorphism

7 : susp(x, D) X gr

of theories of cogroups. This example is generalized in (2.8) below.
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Next we describe further algebraic examples of theories of cogroups.

(2.5) Definition. A theory S is single sorted if there is an object A in S such that
all objects of S are given by the n-fold sums AV .-V A withn > 0. If Ais a
cogroup in S then S is a theory of cogroups. In this case the models of S form a
variety of groups with operators. Let free(S) be the full subcategory of model(S)
consisting of sums \/ g Mory where E is an index set and Mor 4 is the model in
(1.8). Such arbitrary sums exist in model(S); see 3.4.2 in Borceux [CA]. The
objects of free(S) are termed the free models of S and S is the full subcategory
of free(S) consisting of finitely generated free models. The inclusion S C free(S)
carries A to Mora. If S is a theory of cogroups then also free(S) is a theory of
cogroups.

(2.6) Examples. Recall that Gr is the category of groups and Ab is the category
of abelian groups. The category Nil,, is the full subcategory of Gr consisting of
groups of nilpotency degree n. The free objects in Nil,, are the groups (Z)/I,11(Z)
where (Z) is a free group and I, 11(Z) is the subgroup of (n+1)-fold commutators
in (Z). We have Nil; = Ab. The category Nil,, is an example of a variety of groups.

A wariety of groups Var is a full subcategory of Gr which is closed under
taking subobjects, quotient objects and arbitrary categorical products. Given a
subset £ in the free group F, = (x1,Z2,...) generated by a sequence of elements
Z1,T2,... we say that a group G satisfies the laws in L if for all homomorphisms
a : Fxy — G we have a(L) = {0} where 0 is the neutral element in G. The
subcategory Var(L) C Gr consisting of all groups which satisfy the laws in £ is a
variety and each variety can be described this way; see Stammbach [HG]. A variety
of groups Var yields the theory S = var? of finitely generated free objects in Var
with Var = model(S); then free(S) = var is the category of all free objects in
Var.

Moreover for a fixed commutative ring R let Alg, Calg and Lie be the cate-
gories of algebras, commutative algebras and Lie-algebras over R respectively. We
obtain theories of cogroups as in the following table:

S free(S) model(S)
grt gr Gr

nil? nil,, Nil,, n>1
ab? ab Ab

var! var Var

alg’ alg Alg

calg'j calg Calg

lie? lie Lie

The column in the middle of the table denotes the full subcategories of free objects
and the column on the left hand side denotes the full subcategories of finitely
generated free objects. Hence gr, nil,,, ab, var, alg, calg and lie are examples of
theories of cogroups. Theories of cogroups are considerably more general than
varieties of groups.
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(2.7) Example. The following modification of the examples in (2.6) was pointed
out to me by M. Jibladze.

Let us fix a Grothendieck topos E, with an explicit cite of definition (C,J).
This means that C is a small category, J is a Grothendieck topology on it, and E is
Sh(C, J), the category of set-valued sheaves on the site (C, J). Each object ¢ € C
determines a sheaf in E which we also denote by ¢, namely, the associated sheaf
of the representable presheaf homea(—, ¢) : C°P — Sets. The particular important
case is determined by a topological space X, when C is the poset of open sets
of X considered as a category in the usual way, and J is the canonical topology (a
family of opens covers its union); in this case E is Sh(X), the category of sheaves
on X.

Now for any single sorted theory T, one can consider the notion of a sheaf of
models of T in E. This is nothing else than a model of T in E, i.e. a product pre-
serving functor T°P — E. We denote the category of such models by model(T, E).
Take in particular a single sorted theory S of cogroups with zero object. Then one
knows (see for example Johnstone [TT]) that the category model(S, E) shares
many good properties with the category of ordinary models: it is an exact cate-
gory, is complete and cocomplete, and the forgetful functor model(S,E) — E is
monadic; in particular it has a left adjoint Free : E — model(S, E).

Now for any sheaf I € E,Free(I) has the corresponding universal property: the
functor hommeq(s,g)(Free(Z), —) is isomorphic to the functor homg(Z, —). But
since S is a theory of cogroups, this latter functor factors through the category of
groups. This means that Free(I) has a cogroup structure. Explicitly, the comulti-
plication can be dsecribed as follows: take the morphism

(jotr,joua): I — Free(I 11 1) x Free(I 111),

where j : TI1 T — Free(I II I) is the adjunction unit, and ¢1,09 : [ — IT1ITT
are coproduct inclusions. Compose the map above with the group multiplication
Free(I 1 I) x Free(I 1 I) — Free(I I1 I). Finally observe that since Free is a left
adjoint, it preserves coproducts, so Free(I I1I) is isomorphic to Free(I) V Free(I).
So we obtain a map I — Free(I)V Free(I) in E, which then by adjointness extends
uniquely to a morphism Free(I) — Free(I) V Free(I) in model(S, E). This is the
desired cogroup comultiplication.

It follows that the full subcategory of model(S, E) on the image of the functor
Free is a theory of cogroups. We can take a smaller category, namely its smallest
subcategory containing all the Free(c), for ¢ € C, and closed under coproducts.
Equivalently, it may be described as the full subcategory of model(S,E) with
objects of the form Free(] ], ¢;), for all families (¢;) of objects of C. This is again
a theory of cogroups.

(2.8) Example. Let D be a topological space and let Top” be the category of
spaces under D; see (2.2). Two maps in TopD are homotopic if they are homotopic
relative D. We define full subcategories

susp(D, D) C cone(D, D) ¢ Top” /~ rel D
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of the homotopy category where D is the class of discrete sets in Top. Here
susp(D, D) is a theory of cogroups and cone(D, D) is a theory of coactions. These
examples are used in chapter A, §1.
The objects S. of susp(D, D) are obtained by push out diagrams in Top

S'xE —— S}

o

where E is a discrete set. The inclusion i carries e € E to the pair (*,€) in the
product S' x E where * is the basepoint in the 1-sphere S'. We call S! the 1-
dimensional spherical object obtained by the function «. The cogroup structure
p:S* — S1v St in Top*/~ rel * induces a cogroup structure y : SL — SL Up S!
of S} in the homotopy category Top? /~ rel D. Hence the homotopy category
susp(D, D) consisting of all 1-dimensional spherical objects S} as above is a theory
of cogroups.
The objects Cq 3 of cone(D, D) are obtained by push out diagrams in Top

I x FE ———»Ca’g

o ]

EUE 2%, p

Here E is again a discrete set and I = [0,1] is the unit interval. Moreover E UE is
the disjoint union with i.(e) = (¢,e) for e € E, ¢ € {0,1}. Hence C, s is obtained
by attaching one cells to D. The pair (Cy,g, D) is the same as a 1-dimensional
relative CW-complex with trivial 0-skeleton. We obtain a canonical coaction map

J72 Ca’ﬂ — Ca,g Up Sé

which is induced by the map p: I — I' Uy S which is the addition of the path
from {0} to {1} in I and the path I — I/{0,1} = S'. Hence the full homotopy
category cone(D, D) consisting of all objects C,, g as above is a theory of coactions.

(2.9) Proposition. Let D be a path connected space with fundamental group
m1(D) = G. Then there are equivalences of theories

gr(G) — susp(D, D) — cone(D, D)
where gr(G) is the theory in (2.3).

It is, however, more intricate to describe for any space D the theory cone(D, D)
purely algebraically. For this we generalize example (2.3) from groups to groupoids.

(2.10) Example. Let Grd be the category of groupoids and let G € Grd. A free
groupoid under G is an inclusion G — X of groupoids which is the identity on
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objects such that there exists a set E C Mor(X) of non-identity maps (called a
basis) which has the following property. Every non-identity map of X can uniquely
be written as a reduced composition of maps in F, their inverses and non-identity
maps in G. Here reduced means that no map of E appears next to its inverse and
that no two non-identity maps of G appear next to each other. If G consists only of
identity maps then we call X a free groupoid. Let grd(G) be the full subcategory of
Grd® consisting of free groupoids X under G. Free groupoids are also considered
in Dwyer-Kan [SG].

For any pair of spaces (X, D) we obtain the fundamental groupoid II(X, D).
Objects are the points of D and morphisms are the homotopy classes of paths in
X between two points in D. Hence I1(D) = II(D, D) is the usual fundamental
groupoid of the space D. If X € cone(D,D) then II(X,D) is a free groupoid
under IT1(D). A basis of II(X, D) is given by the set of oriented 1-cells in X — D.
In particular if D is discrete then IT(X, D) is a free groupoid.

(2.11) Proposition. Let G be a groupoid. Then the category grd(G) is a theory
of coactions in such a way that for a space D and G = II(D) there is a canonical
isomorphism of theories

cone(D, D) = grd(G).

3 The Category of Twisted Maps

We introduce for each theory of coactions T the category Twist of twisted maps
which will be used in the next section for the definition of the category Coef
of coefficients. We also introduce the difference operator 57 which we apply to
morphisms in Twist. This operator is of crucial importance in the whole book.

Let A, B be based objects in the theory T. We say that amap f: A— BVY
is trivial on Y if the composite (0,1)f : A - BVY — Y is the zero map for 4;
i.e. the following diagram commutes.

A5 Bvy (3.1)

x fo’”

Y

Let T(A, BVY)y be the set of all such maps f which are trivial on Y. Let A be a
cogroup in a theory T and let X be a coaction in T. Then we associate with each
map f: A— Y in T the difference map

VA=Y VY (3.2)
in T defined by

vf=—iyf+ (iy + iyl)f
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One readily checks that for g: Y — Z and 8:Y’ — Z in T one has

(g+08)f=gf +(B,9)(Vf)

Moreover 7 f is a map trivial on Y. If T is a theory of coactions we also define for
each map f: X — Y in T the difference map

vf: X' =Y VvYy (3.3)
by the equation
ivf+vf=(y+iv)f

in the set Mor(X,Y’ VY. Here we use the affine property of T. The difference
map v/ f is the unique map for which the following diagram commutes

x 1. v
iX+iX/J/ J{iY—’_iY/
x'vx WD vy

Here ix +ix- is up to an interchange of summands the same as the coaction map
pon X. Clearly we get for g: Y — Z and 8: Y’ — Z again the equation

(9+B)f=9f+ B9V f (1)

and v/ f is trivial on Y. This implies for a, 8 : Y/ — Z the equation

(a+B,9)Vf=(,g) VI f+Bg+a)Vf (2)
since we have

(g+a+B)f=g9f+(a+B,9)V f
=@+ta)f+B,g+ta)vf
=g9f+(wg)Vf+Bg+a)vf

Then the affine property of T yields (2).

(3.4) Lemma. Let T be a theory of coactions. Then a composite gf : X —Y —
Z in T satisfies

vgf)=Vegizg)vf: X =Y VY >Z'VZ

Moreover for a: X' =Y we have

V(f+a)=—iya+vVf tiva+ va.

The first equation in (3.4) shows that the isomorphism in (1.12) is natural is the
sense that the following diagram commutes
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xvx M., yvy

| |

x'vx WDy y
Proof. We have
izgf +v(9f) = (iz +iz)gf
= (izg +v9)f
=izgf + (Vg,izg) V f
The second equation in (3.4) is proved as follows. For h = f +a: X — Y we
get
ivh+<vh = (iy +iy/)h
and hence
iy f+iva+ vh = (iy +iy)f + (iy +iy)a
where iy f = (iy +iy’)f — v f. Now affineness implies
—v [f+ivat+vh=(iy +iy)a=iya+ Ya
or equivalently the second equation in (3.4). q.e.d.

(8.5) Definition. Let T be a theory of coactions. Then we define the category
Twist of twisted maps in T as follows. Objects are maps Ox : X" — X in T where
X" is a cogroup in T. Morphisms (f”, f) : Ox — Oy are given by commutative
diagrams

x' L yrvy

axl l(ay,l)
! Y

X ——

where f” is trivial on Y. Composition is defined by

(" " 9) = (fg", fa)

where f : X”VX — Y” VY is given by (f”, iy f). One readily checks that this is a
well defined category. In fact an alternative description of the morphisms 0x — Oy
of Twist is given by pairs of commutative diagrams

X SN Y

«| [

X'vXx — L yryy X'vx — L yrvy

(0,1)l l(O,l) (Bx,l)l i(ay,l)
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with the composition given by horizontal composition of these diagrams. We say
that f : X — Y is O-compatible if there exists f” as above such that (f”, f) :
Ox — Oy is a morphism in Twist.

The category Twist has sums defined by the sum of maps
OxVoy: X"VY" - XVY

in T. The initial object in Twist is the identity 1 : * — % where * is the initial
object in T which is a cogroup in T. We obtain a full embedding of categories

T C Twist (3.6)

which carries X to the object * — X in Twist which is also denoted by X.
(3.7) Definition. A simplicial 1-diagram or a graph in a category T is a diagram
s do
Xo =5 X1 = Xo

dq

in T with dysg = disg = id. This is the 1-dimensional part of a simplicial object
in T. Each object 0x in Twist yields a simplicial 1-diagram
i (011)
XS5X'vX = X
(0x,1)

in T so that Twist is a full subcategory of the category of simplicial 1-diagrams
in T. Compare chapter B, § 2 where we consider free simplicial objects in T which
generalize the presentations considered in Twist; see (B.2.30).

An action of a group G on a group M is given by a homomorphism from
the opposite group G°P to the group of automorphisms of M in the category
Gr. For ¢ € G and m € M we denote the action by m9. Let ¢ : G’ — G be
a homomorphism between groups. Then a function h : G’ — M is a ¢-crossed
homomorphism if for z,y € G’

h(z - y) = h(@)*@ - h(y)
holds. A pre-crossed module
0:M—-G (3.8)
is a homomorphism of groups together with an action of G on M such that
A(mI) = g~ 1o(m)g (1)

A morphism between pre-crossed modules (£,7) : @ — 0’ is a commutative diagram
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M —£ M
T @
G 1 &

in the category of groups such that £ is n-equivariant, that is £(m9) = £(m)"9.
The image of 0 is a normal subgroup of G so that the quotient group G/0M and
the exact sequence

M-2.6-LG/oM — 0 (3)

in Gr are defined. A pre-crossed module is termed a crossed module if in addition
to (1) the following equation is satisfied with m,n € M

mo™ =n"'mn (4)

Each pre-crossed module 9 defines an associated crossed module
O : M - G (5)

Here M“" is the quotient group M/P where P is the subgroup of M generated by
all Peiffer commutators

(m,n) =m 'n"tm(n™) e M (6)

One can check that P is a normal subgroup of M. If 9 : M — G is a crossed
module then kernel(9d) is abelian and the action of G on M induces an action of

G/OM on kernel(9).

(3.9) Remark. Each simplicial 1-diagram in the category of groups yields a pre-
crossed module

d : kernel(dp) — Xo
Here the action of g € X on m € kernel(dy) is defined by
m? = s0(g) "' m so(g)

where the right hand side is defined in the group X;. It is well known that this
construction yields an equivalence of categories between the category of simplicial
1-diagrams in Gr and the category of pre-crossed modules.

If A and B are cogroups in T then the group T(A,X) acts on the group
T(A, BV X) by setting

f*=—ixa+ f+ixa (3.10)

where the right hand side is defined in the group T(A, B V X). Moreover if 9x :
X" — X is an object in Twist we obtain the pre-crossed module
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(0x,1)s : T(A, X"V X)3 — T(A, X) (3.11)

by applying the functor T(A, —) to the simplicial 1-diagram in (3.7); compare
(3.9). Hence the image of (Jx,1), in (3.11) is a normal subgroup.
We now apply the difference operator 7 to morphisms in Twist

(3.12) Lemma. Let (f",f) : 9x — Oy be a morphism in Twist and let Y{' =
Y, =Y". Consider the composite

X" S YvY' VY VY LY VY

with ¢ = (VOy, iy, Oy, iy ). There exists a map & which is trivial on Y3' VY, Y'VY
and Y{" VY such that

(vaZYf) v BX - (VaYin)f” = qg
Here the left hand side is given by the composites in the diagram

x» L yryy

Vaxl l(vayaiY)
x'vx WDy y

Proof. We have (dy,1)f"” = fOx. This implies that 7(fdx) = v ((Oy,1)f")
where

V(fox) = (Vf ivf) v Ox

F(@r ) f") = (9@ 1), iv Oy, 1) 7 = a(7 ") M
since (B, 1) = (vdy, Yly) = (9dy, iy.). Here 7" is a map
X" — (YyvY)v (Y VY).
We define & by
€= " — (iyiv) " )

Hence we get

a€ =q 7 f" —qlivy,iv)f"
=qv " = (Vo iv)f"
= (Vf(iv f) v 0x — (VO ,iy)f"
We now check that ¢ is trivial one Y3’ VY, Y’ VY and Y{" VY. In fact, f is trivial

on Y, that is (0,1)f” = 0. We now replace in (1) the map dy by 0: YY" — Y so
that we get
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0=v0=v(0,1)f")=4¢(7f")

where ¢’ = (0,iy+, 0,4y ). Hence 7f” is trivial on Y’ VY. This implies that £ is
trivial on Y’ VY. Moreover by definition of 7 f” we know that <7 f” is trivial on
Y{" VY so that also § is trivial on Y{" VY. Finally we get for ¢” = (iy,/,0,0,iy)

0" 7 " = q" (= (v iv) [+ Gypyiv ) [+ (iyy + vy iy +iv) f7
= (0, 1) f" + (ivy,iv)f”

= (iY2N7iY)f”

so that ¢”¢ = 0 and hence € is trivial on Yy’ VY. q.e.d.

4 The Category of Coefficients

Given a theory of coactions T we define the category of coefficients Coef by use
of twisted maps. In fact, if T is the theory of free groups then Coef is equivalent
to the category of groups.

(4.1) Definition. Let T be a theory of coactions. We define the category Coef
of coefficients as follows. Objects are the same as in Twist, namely maps Ox :
X" — X in T where X" is a cogroup. We say that two maps f, f1 : X — Y are 0
-equivalent, f ~ fi, if there exists a: X’ — Y” VY trivial on Y with

fi=f+ 0y,

A morphism {f} : 9x — 9dy in Coef is the J-equivalence class of a d-compatible
map f: X — Y; see (3.5). Composition is defined by {f}{g} = {fg}. An object
Ox in Coef is also termed a presentation. We also write Coef = Coef(T).

The next lemma shows that Coef is a well defined category. Moreover the
category Coef has sums Jx V Jy and one has the full inclusion of categories

T C Coef (1)

which carries X to the object ¥+ — X also denoted by X. In particular we have for
a cogroup A in T the set of morphisms Coef (A4, dx) in the category Coef. This
set is actually a group and it is clear by the definition of d-equivalences that one
obtains an exact sequence of groups

Ol 4, X) —L - Coef(A4,0x) —— 0  (42)

T(A4, X"V X),
where (Ox,1). is the pre-crossed module in (3.11).

Ezample. If T = gr is the theory of free groups then Coef(gr) is easily seen to
be equivalent to the category Gr of groups. The equivalence
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71 : Coef(gr) — Gr (1)

carries Ox to the group Coef(A,0x) = G where A = Z € gr. The exact sequence
(4.2) with A = Z describes a presentation of the group G. Hence Coef(gr) is
precisely the category of groups G for which G has a fixed presentation dx. The
inclusion (4.1) (1) corresponds to gr C Gr. The equivalence 7; above is generalized
for theories in (4.6) below.

(4.3) Lemma. Let T be a theory of coactions. If f is O-equivalent to fi and if
f is O-compatible then f; is O-compatible. Moreover 0-equivalence is a natural
equivalence relation on the category consisting of 0-compatible maps.

Proof. For f1 = f + (0y,1)a let

1 ="+ (e, iyn) v Ox.
Then we get for § = (dy, 1)a the equations

f10x = (f +B)ox = fox + (B, f) vV Ox
= (8Y7 1)f” + (8Y’ 1)(a’in) \V4 Ox
= (v, 1)(f" + (aviv f) v Ox) = (9, 1)(f])
so that the first proposition of the lemma is proved. Now let h : ¥ — Z and
g : V — X be 0-compatible maps and f ~ f;. Then we show hf ~ hf; and
fg ~ fig. In fact, we have
hfy = h(f +6) = hf +hp
=hf+ h(dy,1l)a
=hf+(0z, l)ﬁa

where }_L,: Y"VY — Z"V Z is the map given by (h”,h) : Oy — 0z in Twist(T),
that is h = (h"”,izh). On the other hand we have

fig=(f+Bg=Ffa+ (B, f)vyg
Here g is defined since we assume that T satisfies the affine property. q.e.d.

We now compare the category Coef associated to T with the category model
of models of T. We include the following lemmas (4.4) and (4.5) and the remark
(4.6) since in many cases the category Coef actually coincides with the category
of models.

(4.4) Lemma. Let T be a theory of coactions and let M : TP — Set be a model
of T. Then M vyields a well defined functor

Mj : Coef? — Set

defined by My(0x) = kernel(0% : M(X) — M(X")). Here M(X") is a group so
that kernel(9% ) is defined by the set (9%)~1(0).
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Proof. Let f : X — Y be J-compatible then we have fox = (dy,1)f” where
f" is trivial on Y. Hence for y € My(dy) we have 95 (y) = 0. We claim that
f*: M(Y)— M(X) induces a map

f* e My(0y) — My(9x)
In fact, for f*y we get
% f*y = fax)*y

f”) o, ) (f")7(0,1)"y = ((0, ) ")y =0"y =0

Now assume f ~ fi, that is fi = f + (dy, 1)a where « is trivial on Y. Then we
get

fily) = (f + 8y, D))"y
= [y + 0y, D))y
=fry+a” (3Y71)*y
=fy+a*(0,y) = fy
since o*(0,y) = a*(0,1)*y = ((0, 1)a)*y = 0*y = 0. q.e.d.

(4.5) Lemma. Let T be a small theory of cogroups and let model be the category
of models of T. Then we obtain a well defined functor

71 : Coef — model

by the cokernel in the category of groups

(0x,1)«
—

71(0x)(A) = cokernel(T(A, X"V X)), T(A, X))

where A is an object of T. Moreover for M € model the functor My in (4.4) can
be described by a canonical isomorphism

M;(0x) = model (m (0x ), M)

Proof. Tt is clear that a 0-compatible map f: X — Y induces a well defined map
f« for which the following diagram commutes

T(A,X) —I— T(4,Y)
m(0x)(A) —L— 71(dy)(A)

The vertical arrows are the quotient maps. In fact f.(9x,1). = (9y, 1)« f. where
f« carries an element in T(A4, X"V X)3 to an element in T(A,Y"” VY)s since f”
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is trivial on Y. Clearly f. is natural in A. Now let f ~ f; with f; = f + (0y, 1)a.
Then we have for g € T(A, X) the equation

fig=fg+ Oy,1).6

with § = (@, 2y f) v ¢ trivial on Y. Hence f;g and fg represent the same element
in 71 (0y)(A). This finishes the proof that 7; is a well defined functor.

Next let t € model (m1(0x), M) then we obtain for {1x} € m,(0x)(X) the
element t{1x} € M(X) with 0%t{l1x} = 0 so that t{1x} € M;y(dx). In fact
I t{lx} = t9%{lx} = t{Ox} = 0 since {Ox} = 0 in m;(dx)(X"). Therefore
t — t{1x} is a well defined function. The inverse of this function carries x €
M;(0x) C M(X) to the natural transformation tx : m(0x) — M defined by
tx{g} = g*{X} with g € T(A, X). One readily checks that tx is well defined.

q.e.d.

(4.6) Remark. Let S be a single sorted theory and let free(S) be the full subcat-
egory of model(S) consisting of free models. If S is a theory of cogroups then so
is T = free(S) and one obtains an equivalence of categories

7, : Coef(T) — model(S)

The functor 7, is defined as in (4.5) by restricting to objects A in S. The equiva-
lence of categories m yields for the examples in (2.12) the following list:

T Coef
gr Gr
nil,, Nil,
ab Ab
var Var
alg Alg
calg Calg
lie Lie

In the next proposition we use the inclusion T C Coef in (4.1) (1). Moreover
Coef(Z,0x) denotes the set of morphisms Z — Jx in Coef.

(4.7) Proposition. A map {f} : Ox — 9y in Coef is an equivalence in Coef
if and only if for all objects Z in T the induced map

f« : Coef(Z,0x) — Coef(Z,dy)
is a bijection.

Proof. Since f, : Coef(Y,0x) — Coef(Y,dy) is surjective there exists g : ¥ — X
in T such that f.{g} = {1yv}. The following diagram commutes
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Coef(Y,0x) —I— Coef(Y,dy)
% | |25
Coef(Y",dx) —L*— Coef(Y",dy)

Here we have 05 {1y} = {0}. Hence by the injectivity of f, in the bottom row
we get 05 {g} = {0}. This shows that g is a 9-compatible dy — 9x map so that
{9} € Coef(dy, dx) is well defined with {f}{g} = {fg} = 1o,. We now use the
injectivity of

f« : Coef(X,0x) — Coef(X,0y)

which shows by

flafy =A{f9f} = {r} = f{1x}
that {gf} = {1x} in Coef(X, dx). This shows that also {g}{f} = lo,.

q.e.d.

5 Enveloping Functors and the Categories
of Premodules and Modules

We deduce from the category Coef of coefficients the category of premodules and
the category of modules.

(5.1) Definition. Let T be a theory of coactions. We define the category premod
of premodules as follows. Objects are sums AV Ox in Coef where A is a cogroup
in T and where Ox is an object in Coef; that is AV Ox is the composite

AV Ox :ixaxtXN—)X—*A\/X
The inclusion ix and projection (0,1)

(0,1)
E—

X %, AvX X

are 0-compatible and therefore represent maps in Coef. Now a morphism (7,u) :
AV 3dx — BV dy in premod is a commutative diagram in Coef:

ox —=— Oy

«| Ji

AV Oy —2— BVoy

o | |
Ox

u
- 8Y
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Composition is defined by horizontal composition of such diagrams. We have the
canonical coefficient functor

¢ : premod — Coef (5.2)

which carries AV Ox to dx and (7, u) to u. A morphism (7, u) is equivalently given
by the pair (v,u) with v = 9i4 : A — BV Oy trivial on dy. We also write

(t,u)=vOu=fOu (5.3)

and we say that v ® u is an u-equivariant map in premod. Here v is represented
by f with v = j(f) and f € T(A, BV Y)2; compare lemma (5.5) below. Hence we
get the identification

premod (AV 0x,BV dy), = Coef (A,BVdy)2:vOQu+—v (5.4)

where the left hand side denotes the set of all morphisms AV 3x — BV 0y in
premod which are u-equivariant. This set is a subgroup of the group Coef (A, BV
Oy ). Here the group structure is obtained by the cogroup A in T which is also a
cogroup in Coef; see (4.2).

The group Coef (A4, dy) acts on the group (5.4) by setting for a € Coef(A, dy)
and f € Coef(A, BV 0y)2

f¢=—ia+ f+1ia (1)

where i : 0y — BV Oy is the inclusion in Coef. The right hand side is defined in
the group Coef(A, BV 0y ). This implies that the image of the pre-crossed module
(0x,1)« in (3.11) and (4.2) acts trivially on the group (5.4).

(5.5) Lemma. One has the short exact sequence of groups

N — % L T(A,BVY); —X— Coef (A, BV dy)s — 0

N N

T(A,Y'VBVY) —— T(A,BVY)

Here 6 is induced by (iyOy,ip,iy) and N is the subgroup of all elements in
T(A,Y"VBVY) which are trivial on both Y"VY and BVY . Moreover j is equiv-
ariant with respect to the action in (5.4) (1) and (2.10); that is j(f*) = (5 f)7°.

Proof. The map j carries f : A — B VY trivial on Y to the class {f} in Coef.
We now show that j is surjective. Let f' : A — B VY be a map representing
v € Coef (A, BV 0y )2. Hence we have (0,1)f’ ~ 0 and therefore there is a: A —
Y” with (0,1)f" = (dy,1)a. Then we obtain f = f' — (B V 9y, 1)a satisfying
(0,1)f = 0 and f ~ f’. This proves that j is surjective. Next let f € ker(j) that
is f is trivial on Y and f = (B V 8y,1l)a where o : A —» Y V (B VY) is trivial
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on BVY.Leti:Y"VY CY”V BVY be the inclusion and let r be the obvious
retraction of i; that is 7 = (1y~,0,iy). Then we have for @’ = ra the equation
(0y,1)a’ = 0 since f is trivial on Y. This shows that

f=(BVdy,l)a=(BVaiy,1l)(a—id)
where o — i’ € N. This shows that kernel(j) = §(N). q.e.d.

In all examples of chapter A and B we defined the categories mod(dx) of free
modules with Ox € Coef. Moreover we defined for u : dx — Oy the induced
additive functors u, : mod(dx) — mod(0dy ). The associated “Grothendieck con-
struction” of dx +— mod(dx) is a category mod with the following properties;
see (5.8).

(5.6) Definition. A category of modules is a category mod together with a diagram
of functors

premod £, mod

N L

Coef

with the following properties:

(i) The objects of mod are the same as in the category premod and FE is a full
functor which is the identity on objects.

(ii) The diagram commutes, that is cE = ¢. We say that f: AV 3x — BV dy
in mod is wu-equivariant if ¢(f) = u : 0x — Oy € Coef; moreover f is
Ox-equivariant if x = 0y and u = 1 is the identity of dx. Let

mod(AV dx, BV dy)y

be the set of all morphisms f : AV dx — BV 0y in mod which are u-
equivariant. Then this set is an abelian group together with an action of the
group Coef(A,dy) and E induces a surjective homomorphism of groups

E :premod (AV dx,BVdy)y, — mod (AV Ix,BV dy),

which is equivariant with respect to the action of Coef(A,dy) in (5.4) (1).
For each morphism w : 0z — Ox the following diagram commutes

premod(AV dx, BV dy )y £, mod(AV dx,BV dy)y
(1A\/w)*lg EiE(lAVw)*
premod(AV 9z, BV 0y )uw _E, mod(AV 9z, BV dy )uw

Here (14 Vw)* is an isomorphism by (5.4) and we assume that also E(14Vw)*
on the right hand side of the diagram is an isomorphism. We denote the
morphism E(14 V w) in mod also by 14 V w.
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(iii) For cogroups A, B, Ay, As, By, By one has isomorphisms of groups

mod(A1 Vszax, B\/ay)u = mod(A1 Vax7 Bvay)u (&) mod(Ag\/E)x, Bvay)u
mOd(A\/ax,31VBg\/ay)u = mod(Av(‘)x,Bl \/ay)u (&3} mOd(AV@x, Bgvay)u

These isomorphisms are induced by the inclusions iy : Ay — Ay V Ag, 19 : Ay —
AV Ay and by the retractions r1 = (1,0) : By V By — By, r9 = (0,1) : BV By —
B,.

The conditions (i), (ii), (iii) imply that for f € mod (B V 8y, By V 0w ), and
g € mod (A; V Oy, AV 0x), the induced functions

{f* :mod (AV dx,BVdy), — mod (AV Ix,B1 V 0w )wu (iv)
iv

g* : mod (A Vox,B Vay)u — mod (A1 Voy,BV ay)uv

are homomorphisms satisfying (f + f'). = f. + f! and (¢9+¢1)* = g* + g} In this
sense mod is an “additive category over Coef”.

In (5.10) we show that such a category of modules always exists. The category
mod, however, is not uniquely determined by the theory T of coactions. Later we
shall use a category mod = mod(C) which is given by a cofibration category C
under T.

Remark. The composite

T(A,Y"VY)y —L— Coef(4,Y"V dy)s

premod(AV 0x,Y" V 0y ). £, mod(AV 0x,Y" V dy),

carries Peiffer commutators of the pre-crossed module (3.11) to the trivial element.
In fact for m,n € T(A,Y” V'Y),y the Peiffer commutator is

(m, n) =—-m-n+m-+ 9y 1).m

where we use the action of (dy,1).m € T(A,Y). But this action is killed by j
since j is j-equivariant; see (5.5). Moreover F carries commutators to 0.

For an object Ox in Coef let

premod(Jx) C premod

mod(9x) C mod (5.7)

be the subcategories consisting of objects AV dx where A is a cogroup in T and of
maps AV dx — BV 0x which are 0x-equivariant. Here premod(9x) is a theory
of cogroups since the cogroup structure of A in T induces a cogroup structure
naV1l:Avox — AV AV Ox in premod(dx). Moreover mod(dx) is an additive
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category. A morphism u : 0x — Oy induces functors u, such that the following
diagram commutes

premod(dx) —=— premod(dy)

lE JE (1)

mod(dx) —=— mod(dy)

Here u, is a map between theories so that u, in the bottom row of the diagram is
an additive functor. The functor u, carries the object AV dx to the object AV Oy .
Moreover on morphisms u, is defined by the following commutative diagrams.
The initial object J, in Coef is given by the identity 0, = 1 : x — % of the initial
object * in T. Hence we have the unique map 0 : 9, — Jx in Coef.

premod(AV dx,BV d0x )1 SEELLIEN premod(A V dy, BV dy);
(IVO)*J'E %l(l\/o)* (2)

(1vu).
S A

premod(A V 0., BV 0x)o premod(AV 0., BV dy)o

mod(AV dx,BVdx)1 —=— mod(AVdy,BV dy),
E(lvo)*l%‘ %lE(l\/O)* (3)

mod(AV 8,, BV dx)y —V¥-,

mod(AV d.,BV dy)o
The vertical arrows in these diagrams are isomorphisms by (5.6) (ii).
(4) Lemma. Both functors u. above are well defined and carry sums to sums.

Proof. Clearly w, carries identities to identities. Moreover u.(fg) = (u.f)(u+g)
is obtained by the commutativity of the following diagram in premod and mod
respectively.

BV 0y v 5 BV oy

fT ]\u.f

AV, Y Avax 1vu AV By
] -

AVax 2% Avao, 2% Avoy

Here the top square of the diagram commutes since (1V u)(1vV0) =1V 0. In a
similar way one shows that wu, carries sums to sums. Here a sum of AV dx and
BV dx in premod(Jx) or mod(9dx) is AV BV dx where AV B is the sum in T,
compare also (5.6) (iii). q.e.d.
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Let Ty be the set of all cogroups in T. Then we have the category of theories
of cogroups cogr(7p) and the category of additive categories add(T}) defined in
(1.15). By identifying the object A V dx with A € Ty we see that

premod(Jx) € cogr(Tp) %)
mod(9dx) € add(Tp)

Moreover using u. in (1) above we obtain the enveloping functors

premod : Coef — cogr(Tp) (6)
mod : Coef — add(T})
which carry dx to premod(dx) and mod(Ox) respectively. These functors ac-

tually determine the categories premod and mod by the so-called Grothendieck
construction; see Gray [FC] and Thomason [HC].

(5.8) Definition. Let C be a small category and F : C — Cat be a functor where
Cat is the category of small categories. Then the Grothendieck construction of
F' is the category Gro(F') defined as follows. The objects are pairs (A, d) with
0 € Ob(C), A € Ob(F9); and a morphism (A, ) — (A4’,d") is a pair (w, u) where
u:0—>90 e€Candw: F(u)(A) — A" € F(9).
One readily checks that one has isomorphisms of categories
premod = Gro(premod)

mod = Gro(mod) (5.9)

which carry AV dx to (A,0x) and which carry the morphism f = w ® u to the
pair (w ® 1,u). Here w ® 1 and w ® u are defined by the commutative diagram

AVO, 2% Av oy 2 Av oy (1)

S e

AV Oy

For premod this coincides with the notation in (5.3). We also write w ® u =
(w,i2u) so that the composition formula is given by

(woOu)(w Ou') = (w,iu)w ©uu' (2)

We now are ready to prove the existence of a category mod of modules with the
properties in (5.6). For this we use the additivization functor ( )2d in (1.16).

(5.10) Proposition. The Grothendieck construction of the composite

)ad

U: Coef 24, cogr(Tp) L7, add(Tp)
denoted by
premod®? = Gro(U)

is a category of modules in the sense of (5.6).
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Proof. All properties in (5.6) are readily verified except the action of Coef (A, dy)
in (5.6) (ii). But (0,1)«,(1,0). and (1,1), in the proof of (1.16) applied to T =
premod(Jx) are easily seen to be equivariant with respect to this action. This
implies that this action is well defined for premodad. q.e.d.

For a set A let Ringoids(.A) be the category consisting of ringoids R with
Ob(R) = A and of additive functors which are the identity on objects. If A
consists of only one object this is the category Rings of rings with unit. If A is a
subset of Ty we have the canonical forgetful functor

w4 :add(Ty) — Ringoids(A)

which carries the additive category K with Ob(K) = Tj to the full subcategory
pA(K) = R of K with Ob(R) = 4. Given a category of modules as in (5.6) we
call the composite

Uy : Coef _mod , add(Tp) —2— Ringoids(A) (5.11)

the A-enveloping functor associated to mod. In particular if A = A consists of
only one object we get the functor

Uy : Coef — Rings
which carries dx to the A-enveloping ring of Ox.

(5.12) Definition. Let C be a category and let U : C — Rings be a functor. Then
we define the category Mod(U) as follows. Objects are pairs (Mx, X) where X
is an object in C and Mx is a right U(X)-module. Morphisms are pairs («,v) :
(Mx,X) —» (My,Y) where v : X — Y is a morphism in C and where « :
Mx — My is a U(v)-equivariant homomorphism of modules, that is a(m - t) =
a(m) - U(v)(t) for m € Mx,t € U(X). Let mod(U) be the full subcategory of
Mod(U) consisting of objects (Mx,X) where Mx is a free U(X)-module.

The category Mod(U) is again a Grothendieck construction of U; see (5.8).
As a special case of (5.9) we obtain the following result.

(5.13) Proposition. Let T be a theory of coactions such that the cogroups of T
are sums \/ g A of an object A where E is a set. Then there is an isomorphism of
categories

mod = mod(U,4)
where Uy is the enveloping functor in (5.11).

(5.14) Ezamples. Let S be a single sorted theory of cogroups so that model(S) is
a variety of groups with operators as considered in (2.12). Then T = free(S) is a
theory of cogroups satisfying the assumption in (5.13) so that

mod = premod™ = mod(U)
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can be described by the enveloping functor
U = Uy : Coef = model(S) — Rings

Here A is the free model of S generated by one element. For the examples in the
table of (2.12) and (4.6) one gets the following description of U.

T X € Coef U(X) € Rings

gr G € Gr U(G) = Z|G] group ring

nil,, G € Nil, U(G) = Z[G]/I(G)"

ab G € Ab U(G) =Z, U is constant functor

var G € Var UG) = [G]/V( ) factor ring of Z|G]
alg A€ Alg U(A) = A ® A°P

calg A € Calg U(A) =

lie L € Lie U(L) = 1versal enveloping algebra of L

Here I(G)™ denotes the n-th power of the augmentation ideal I(G) in the group
ring Z[G]. Moreover V(G) is the ideal of Z[G] defined by the variety Var as follows.
If Var = Var(L) is given by a set £ of laws, see (2.6), then V(G) is the ideal
generated by all elements a.c(z) € Z|G] with x € N(£) and a € Gr(F, G). Here
N(L) C Fy is the normal subgroup of Fi, generated by £ and ¢ : Foo — Z[F] is
the unique function (crossed homomorphism) satisfying c¢(X2) = [z;] for generators
x4, 1> 0, of Fy and c(a - b) = c¢(a)® + ¢(b). Compare for example Leedham-Green
1.§1 [HV].

(5.15) Remark. The functor U in (5.14) can also be obtained as follows. Let C
be a category and for an object G € C let Cy be the category of objects over
G. Then a module M over G is an abelian group object in the category Cg. Let
Mod(G) be the category of all abelian group objects in Cg. If C = model(S) as
above then the forgetful functor ¢ : Mod(G) — Set with p(M) = M(A) has a
left adjoint

freec : Set — Mod(G)

which carries a set to a free module over G. Let U(G) be the endomorphism ring
of the free module freeq(*) generated by one element *. One can check that U(G)
coincides with U(G) defined in (5.14) above. Compare Quillen [CA].

(5.16) Remark. In universal algebra there are also means to define an enveloping
functor U; see Rowan [ER| and Day-Kiss [FR]. The list of examples of Rowan
essentially agrees with the list in (5.14).

6 Chain Complexes and Homology

Given a category of modules mod as in §5 we introduce the category of chain
complexes in mod and the notion of homology for such chain complexes.
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We first consider graded objects and chain complexes in an additive category A.
A graded object V in A is a sequence V = {V;, i € Z} of objects V; in A. A map
f:V — W of degree k between graded objects is a sequence of maps f = {f; :
Vi = Wiyk, @ € Z} of maps f; in A. The category gr(A) of graded objects and
degree O-maps is again an additive category; the sum is given by

VoWw),=VieWw,

where the right hand side denotes the sum in A for ¢ € Z. Let M C Z be a subset
and let x be the initial object of A. We say that V is concentrated in degree M if
Vi =« fori € Z — M. We write V>, if V is concentrated in degree > n. Moreover
V' is bounded below if there exists n € Z with V' = Vs,,. The dimension of V is
given by dim(V) < n if V; = * for i > n.

A chain complexV in A is a graded object V wihamapd : V — V of degree —1
satisfying dd = 0. A chain map f : V — V' is a map of degree 0 with df = fd. A
homotopy f ~ g between chain maps is a map a : V — V' of degree 1 satisfying

—f+g=da+ad

A subcompler W of a chain complex V is a chain map ¢ : W — V with the
property that V as a graded object is a sum W @ W’ and ¢ is the inclusion of the
first summand.

(6.1) Definition. Let A be an additive category (or more generally a ringoid). A
left A-module M is an additive functor M : A — Ab where Ab is the category of
abelian groups. A right A-module is an additive contravariant functor from A to
Ab or equivalently an A°P-module. For example if A is an additive subcategory of
an additive category M then we obtain for each object M in M the right A-module

Hom(—, M) : A°® — Ab

which carries A € A to the abelian group Hom(A, M) of morphisms A — M
in M. Given an additive functor u : B — A between ringoids we obtain for a
left (resp. right) A-module N the B-module u*N by the composition of functors
uw*N =Nu:B— A — Ab.

For a chain complex V in A and a left A-module M we obtain the chain
complex of abelian groups MV given by

s MVpy —2 MV, - MV,.; ——
Hence the homology of V' with coefficients in M is
H,(V;M)= H,(MV) = kernel d./ image d. (6.2)

Similarly we obtain for a right A-module N the cochain complex of abelian groups
NYV given by
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Ny, L NV, ——

—— NVp
and the cohomology of V' with coefficients in N is
H™(V;N)= H"(NV) = kerneld* / image d*.

If W is a subcomplex of the chain complex V then one has the short exact sequences
of chain complexes in Ab

0 — MW - MV — cokerneli, —» 0
0 — kerneli* — NV -5 NW — 0
We define the relative (co-) homology groups by
H,(V,W; M) = H,(cokerneli,)
H"(V,W;N) = H"(kernel ")
Clearly we have the associated long exact sequences
— Hy(W; M) — Hy(V; M) — Hy (V. Wi M) = Hyo (W M) —
e H"(W;N) — H™(V;N) «— H"(V,W;N) <= H""Y{(W; N) —

Now let T be a theory of coactions and let mod be a category of modules
for T as defined in (5.6). Many definitions and results below depend only on T
and mod. We first introduce chain complexes in mod and (co-) homology for
such chain complexes as follows. Recall that for 0x we have the additive category
mod(dx) in which the sum is given by

(A\/ax)@(B\/ax) = AV BV ix
where A, B are cogroups in T; see (5.7).

(6.3) Definition. Let mod be a category of modules for T. Then the following
category chain of chain complezxes is defined. Objects are pairs (A4, Ox) where Ox
is an object in Coef and A is a chain complex in mod (0x); that is A is given by
a sequence of cogroups A; in T with ¢ € Z and 0x-equivariant maps

d; : A; VOx — A;_1 V Ox

in mod such that d;_; o d; = 0 in the abelian group mod(A; V 8x, A;—2 V 0x)1
where 1 is the identity of dx. Morphisms (A4,9x) — (B, dy) in chain are pairs
(f,u) where u : dx — Oy is a morphism in Coef and where f is a sequence of
u-equivariant maps f;, ¢ € Z, for which the diagram

A;VOx —H s A vox

i [

B; V Oy L—* B;_1V Oy
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commutes in mod. Such a morphism is called a u-equivariant chain map. Two
such chain maps (f,u), (g,v) from (A, dx) to (B, dy) are homotopic if u = v and
if there exists a sequence o of morphisms of u-equivariant maps in mod

o; t A; V Ox — B V Oy
with i € Z such that in mod (A; V 0x, B; V dy ). we have the equation
~fi+9i = dipr105 + aiq1d;

We also write a : (f,u) =~ (g,u) and one readily checks that homotopy is a natural
equivalence relation so that the homotopy category chain/~ is defined. One has
the canonical functors

. q . c
chain — chain/~ — Coef

where ¢ is the quotient functor and c is the coefficient functor which carries (A, dx)
to 8X .

Ezample. Let S be a single sorted theory of cogroups and let T = free(S). Then
we have the equivalence

mod = mod(U) (1)

where the right hand side is the category defined by the enveloping functor U,
see (5.12). We define accordingly the category chain(U) of chain complexes in
mod(U) such that (1) induces

chain = chain(U) (2)

Objects in chain(U) are pairs (A,G) with G € model(S) where A is a chain
complex of free right U(G)-modules.

For T = gr the functor U carries a group G € Gr to the group ring U(G) =
Z|G]. In this case chain(U) is the category of free chain complexes over group
rings. In particular the cellular chain complex of the universal covering of a reduced
CW-complex is an object in chain(U). The coefficient functor carries (4, G) to G.

(6.4) Definition. Let (A,Jx) be a chain complex in chain so that A is a chain
complex in the additive category mod(9x). Then the homology H,(A; M) with
coefficients in a left mod(dx)-module M and the cohomology H™(A; N) with
coefficients in a right mod(0x )-module N are defined as in (6.2). A u-equivariant
chain map f : (B,0y) — (A, dx) in chain induces the maps in (co-) homology

fe: Ho(B;u*™M) — Hp(A; M)
f*:H"(A;N) —» H,(B;u*N)

Here u*M = (u.)*M is given by the additive functor u. : mod(dy) — mod(dx)
in (5.7) (1). We define f, and f* by the canonical factorization in chain
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1Vu w®1

f=wou: (B,0dy) —— (u«B,0x) —— (A,dx)

obtained from (5.9) (1). Here w, carries the chain complex B in mod(dy) to the
chain complex u,B in mod(dx). The definition in (6.2) shows that

H,(u.B; M) = H,(B;u*M)
H"(u.B; N) = H"(B;u*N)

so that f, = (w®1)4 and f* = (w®1)* are well defined. Clearly f, and f* depend
only on the homotopy class of f in chain/~. We say that i = w ®u : (B,dy) —
(A, 0x) is the inclusion of a subcomplex if the associated map w® 1 : u,B — A of
chain complexes in mod(9x) is the inclusion of a subcomplex. In this case we get
the relative homology H,(A, B; M) and the relative cohomology H™(A, B; N) and
the following long exact sequences as in (6.2)

o+ — Hy(Byu*M) -2 Hy(A; M) — Hy,(A, B; M) — Hy_1(Byu*M) — ...
o H"(B;u*N) <— H,(A;N) — Hy(A, B;N) — Hy_(B;u*N) — ...
(6.5) Example. For objects D V dx and D’V Ox in mod(dx) let
Homy, (D, D’) = mod(D V dx, D'V dx )1

be the abelian group of dx-equivariant maps DVdx — D'VOx. Then Homg,, (—, D’)
is a right mod(dx)-module and Homy, (D, —) is a left mod(dx)-module. There-
fore we obtain the (co-) homology

Hn(A7 8X)(D) = Hn(A;Homax (D7 _))
H"(A,0x)(D') = H"(A; Homgy (—, D'))

Here H,(A,Jx) is a right mod(dx)-module and H" (A, dx) is a left mod(dx)-
module.

Let (D, 0x)n be the chain complex in mod(dx) which is concentrated in de-
gree n and which is D V Jx in degree n. Then one readily checks that

Hn(Av 8X)(D) = [(D78X)n>A]
H™"(A,0x)(D') = [A, (D', 0x)n]

Here the right hand side denotes the corresponding sets of homotopy classes of
Ox-equivariant chain maps.

A map f:(B,0y) — (A,0x) in chain is a homotopy equivalence if there exist
amap g: (A;9x) — (B, dy) and homotopies fg ~ 1 and gf ~ 1 in chain.

(6.6) Theorem. Let (A,0x) and (B, dy) be chain complezes in chain which are
bounded below and let f : (B,0y) — (A, dx) be a u-equivariant chain map. Then
(a) and (b) are equivalent.

(a) f is a homotopy equivalence in chain.

(b) u is an isomorphism in Coef and
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f* : HTL(Ba 8Y) - U*Hn(A, aX)

is an isomorphism of right mod(0y )-modules, n € Z.

Moreover, if mod(0x) is the additive subcategory of an abelian category M
such that all objects of mod(dx) are projective in M then (a) is equivalent to (c).
(c) u is an isomorphism in Coef and

f* H"(A,0x; N) — H™(B,dy;u*N)

is an isomorphism for all right mod(dx)-modules N of the form N = Hom(—, M)
where M is an object in M and n € Z; see (6.1).

Proof of (6.6). Since f = w®u = (w® 1)(uV 1) it suffices to prove the theorem
for Ox = Oy and u = 1. In this case (6.6) is a special case of the corresponding
result for additive categories in (II1.9.6) below. q.e.d.

Theorem (6.6) is needed for the various homological Whitehead theorems dis-
cussed in chapter A and B.

7 Augmented Theories of Coactions

In topology we have the action of the fundamental group m1(X) on the set of
homotopy classes [X,U] in Top*/~. This action is well defined if *x — X is a
cofibration and then the action is induced by a canonical map

8xtX~—>X\/Sl. (7.1)

For a € m1(X) on € € [X,U] we write £&* = (£, a)ex. Let [X, U] be the set of
homotopy classes of non-pointed, or free maps from X to U in Top/~ and let

(X, U] = [X, U]

be the forgetful map. Then we have for £, &' € [X, U] the equation ¢(§) = (&)
if and only if there exists a with ¢’ = £“. Hence the action of m1(X) on [X,U]
determines the difference between pointed homotopy classes and free homotopy
classes. Compare also (II1.§ 6) below.

Maps as ex in (7.1) are used to define the general notion of an “augmented
theory of coactions”. The augmentation ¢x will be needed to define homology
groups of complexes in degree 0. If no augmentation is given such homology groups
are only defined in degree > 1. There are many examples of theories of coactions
which are augmented; see (IIL.§ 6). In particular if D is a discrete space the theory
cone(D, D) = grd(G) in (1.2.11) is augmented by X = S x D.

(7.2) Definition. Let T be a theory (i.e. a category in which sums X VY exist) and
let X be a cogroup in T. We say that the theory T is X-augmented or augmented
by X if for each object X in T a coaction



162 Chapter I: Theories of Coactions and Homology

ex: X—->XVvVXY (1)
in T is given such that for all f: X — Y in T the diagram

X X, xvJxy
fl lf\/l (2)
Yy ¥ . vyvy

commutes in T.
We call ex the augmentation map and for o : ¥ - U and £ : X — U in T we
write

& =(&o0)ex: X - U. (7.3)
Then the following formulas hold.

£ = (¢7)7 and €°=¢ (a)

where 01,02,01 + 02 € T(X,U) with the group structure + of T(X,U) defined
by the cogroup structure of Y. Next we have

&mn)? =("n%) (b)

where (§,m7) : X VY — U. Moreover for a coaction pux : X — X VX' in T we
obtain

E+a=(¢Ea)ux: X -U
with £ : X — U and a : X’ — U such that
(E+a)?=£74+a° (c)
We also get for f:Y — X and g : U — V in T the formulas:
&) = (767 (d)
9+(€7) = (9:£)7"° (e)

Here (e) is a consequence of (3) and (d) follows from (2). Now (d) implies (b) and
then (c). If T is a theory of coactions (or cogroups) then a coaction px is given
for all objects X in T and we can use (c), (d) and (e) if T is augmented by X as
in (7.2). In this case we say that T or (T, X) is an augmented theory of coactions.

(7.4) Definition. Let T be a theory of coactions as in (1.11) so that for each object
X in T a coaction

pux : X - XVvX (1)
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is given. Here X is termed a cogroup in T if X = X’. Let (X, ux) be a cogroup in
T and assume that T is X-augmented as in (7.2) and (7.3) so that for each object
X in T also a coaction

ex: X —-XVvX (2)

is given satisfying (7.2) (2). Then we say that T is strongly augmented by X if for
each cogroup X’ in T there exists a linear map (see (1.3))

Exr: X - X (3)
such that ex in (2) is given by the formula
Ex = —ixEx' +ix +isgex : X > XV Y (4)

Here + is defined by the cogroup structure py of X and iy : ¥ — X V X, ix :
X — X V X are the inclusions. Moreover for X’ = X we assume &x = 1. For
§: X > Ua: X' —-Uando:X — U in T we write

£+ @ = (gva).u‘X

Then clearly all formulas (7.2) (a) ... (e) hold in an augmented theory of coactions.
Moreover by (4) we get

o = —0Ex +a+ ofx (5)

in the group T(X',U).

(7.5) Remark. Each theory of coactions T is trivially augmented by the initial
object *. In this case ex : X — X V* = X is the identity and £x, : X’ — * is the
zero map of X’. Hence T is also trivially strongly augmented.

(7.6) Example. Let D be the class of discrete sets in Top and let D € D. Consider
the theory of coactions

cone(D,D) = grd(G)

in ([.2.11) which is the category of free groupoids G with Ob(G) = D. Then
cone(D, D) is augmented by the object

Y=8"'xD (1)

which coincides with S} where a : D — D is the identity; see (I1.2.8). We have for
each point z € D the inclusion S1 = S! x {z} C X. For an object X = C, 4 in
cone(D, D) we define the map

Ex : Caygﬁca,gvz (2)
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under D as follows. For a,3: E — D and e € E let I. = I x {e} — C, g be the
map given by the definition of Cy g. Then the restriction of ex to the arc I, is

EXx I Ie = —Salz(e) + Ie + Sé(e) (3)

Since Cy g is the union of D and such arcs I.,e € E, the map ex is well defined
by (3). Now one can check that cone(D, D) with the augmentation maps (2) is
an strongly augmented theory of coactions satisfying the properties in (7.4). If
D = x is a point then (2) above is a special case of (7.1). Moreover for a cogroup
A=Cyqo=S5) in cone(D,D) we have the canonical map

:"-_:A:Sé—>2 (4)

which carries S} C Sl e € E, identically to Sé(e) C X. Clearly by (3) we see that
(7.4) (4) is satisfied. The strongly augmented theory of coactions cone(D, D) is a
special case of (I11.6.8) below; see (II1.6.9).

Let (T,Y) be an augmented theory of coactions. Then we obtain for each
object X in T the morphism

bx : X' - XVvX (7.7)
which via the affine property is uniquely determined by the equation
ix +0x = (ix,ix)ex = iy (1)
Then we have for (0,1) : 'V X — X the equation
0,1)5x =0: X' - X (2)
so that dx is trivial on X. In fact

(0,1).(5%) =1% = 1x
(0,1)4(ix +0x) = (0,1)six + (0,1),0x
=1x+(0,1).0x

Hence the affine property shows (2) by use of (1). In case X is a cogroup with
trivial map 0 : X — X' we get also

(1,000x =0: X' - X (3)
so that in this case dx is also trivial on X. We get (3) by the following equations

(1,0)(i%) = (04ix)™® =0 =0 see (a)
(1,0)(iX + (5)() = 04tx + (1,0)*5)( =0+ (170)*5X

This yields by (1) equation (3).
For a morphism f: X — Y in T we consider the following diagram in T.
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(0x yix)
—

X'vX >YvX
(vf»f)l lef
y'vy 20 wyy

(7.8) Lemma. This diagram commutes in each augmented theory of coactions.

Proof. We have the following equations

iy f+ (LV f)ox = (1V f)(ix + dx)
=(1V £)([i%¥)
= (iy f)'® see (7.3) (e),

ivf+ (6y,iy) vf= (iy + (Sy)f see (133) (1)
(i) f
(iy f)'=  see (7.3) (d).

Hence the affine property shows

(LV f)éx = (by,iy) V f.
q.e.d.
We derive from (7.8) the following two results on morphisms in premod.

(7.9) Proposition. Let (T,X) be an augmented theory of coactions and let dx :
X" — X be an object in Coef. Then the composite

VoxO1 SxO1
~

X”\/ax X/\/ax—>2\/8x

is the trivial Ox -equivariant morphism in premod(dx) and hence via the func-
tor E also in mod(0x).

Proof. The morphism dx @1 in premod is well defined by (7.7) (2); see (1.5.5).
Moreover we get

bxOD(Voxo)=v61

Here v is given via the quotient map j in (I1.5.5) by the equation

v =j(dx,ix) V Ox)
=75((1VvOx)dxr) see (7.8)
0

i

since (1V 0x)dx~» € N in (1.5.5). This follows from (7.7) (2), (3). q.e.d.
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(7.10) Proposition. Let (T, X) be an augmented theory of coactions and let u :
Ox — Oy be a morphism in Coef represented by f : X — Y. Then the diagram

X'V ox _§§_<9_1_) YV ox

Vf@ul ll\/u

Y'voy X2 sy,
commutes in premod and hence via the functor E the diagram commutes also in
mod.

Proof. The diagram is the j-image of the diagram in (7.8) where j is the quotient
map in (L.5.5). q.e.d.

We use the properties in (7.9) and (7.10) for the following definition of a weakly
augmented theory of coactions which suffices to obtain the augmentation of the
chain functor in (I1.§6) below.

(7.11) Definition. We say that a theory T of coactions is weakly augmented by a
cogroup X' in T if for all X in T maps

ex: X —->XVvXY

are given such that (1,0)ex = 1x and the composite in (7.9) is via the functor E
trivial in mod(dx) and the diagram in (7.10) is via the functor F commutative
in mod. Here we do not assume that these properties hold in premod.

For example we see in (B.1.27) that the category alg of free algebras is weakly
augmented.

(7.12) Lemma. Let (T, X) be an augmented theory of coactions. Then the group
Coef (X, 0y) acts on the set Coef(0x,0y). If o € Coef (X, dy) is represented by
09: X — Y and if u € Coef(dx,0y) is represented by f : X — Y then the action
is defined by u” = {f?°}. One has the rules u® ov = (uov)? and uov’ = (uov)*7.

Proof. By (7.2) (2) the left hand side of the following diagram commutes.

X' — . xryx Lo, yryy

axl lax\/l l(ay,l)

X — xvy Yoy

Since f is O-compatible we obtain f such that also the right hand side commutes.
Hence also f7° = (f,00)ex is O-compatible. Now it is easy to see by the definition
of 9-equivalenc in (4.1) that £% = {f?°} does not depend on the choice of f and oy.
q.e.d.
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(7.13) Definition. Let (T,X) be an augmented theory of coactions and let u :
Ox — Oy be a morphism in Coef and o € Coef(X,dy). Then a function

mod(A V 0x,BV dy), — mod(AV dx,BV dy )y
is defined which carries £ ® u to
(€ Ou)” = E({§ "} 0 u’) 1)

Here u” is defined by (7.9) and & : A — B VY represents £ and 09 : ¥ — Y
represents o so that

Y70 = —iyooEa + €0 + iy 0oéa (2)

is defined by (7.4) (5). This is a special case of the action (5.4) (1) and therefore
(1) is well defined since E in (5.6) is equivariant with respect to the action (5.4)
(1). One readily checks the following rules by use of (7.3).
(Eou 7 =(fou))™ and ((Ou)’={oOu (
(&1 +&)ou)” = (6L ou) + (L ou)’ (
(Eou)’e(nov)=((§Ou)o(now))” (5
Eou)omov) = (Qu)o(nov)™’ (

Here (5) and (6) describe the compatibility of the action with the composition of
morphisms in the category mod.

(7.14) Definition. Let (T, X) be an augmented theory of coactions and let f :
(B,0y) — (A,0x) be a chain map in chain. Then for 0 € Coef (X, dx) the chain
map

f7:(B,0y) — (A, 0x) (1)

is defined as follows. If f in degree m is given by f, ® u then f is given by the
commutative diagram in mod(n € Z)

dn 1
Bn+l\/8Y _ﬂ* B, V oy

(fn+1©u)"l l(fn@u)" (2)

An+1V(9y —dlgl—* AnvaY

This diagram commutes if we omit the action of o since f is a chain map. Hence
by (7.10) (5), (6) diagram (2) commutes and hence f? is well defined. Clearly f is
u?-equivariant and not u-equivariant. Let g : (B, 0y ) — (A, dx) be a v-equivariant
chain map. Then we write

f ~free ¢ <= Jo with v? = u and 9’ ~f (3)

This is the notion of free homotopy in chain. One readily checks that free homotopy
~fee 18 @ Natural equivalence relation on chain.
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(7.15) Remark. For T = gr a free homotopy corresponds exactly to the notion
of homotopy of chain maps used by J.H.C. Whitehead [CHII] (10.1). This notion
is relevant in the context of “Whitehead torsion”. Clearly for T = gr free chain
homotopies correspond to free homotopies in (7.1); compare theorem 13 in J.H.C.
Whitehead [CHII].

(7.16) Proposition. Let T be an augmented theory of coactions. Then the quo-
tient functor

¢ : chain/~ — chain/~.,
reflects equivalences.

Proof. Assume f and g are chain maps with (¢f)? ~ 1 and (fg)” ~ 1. Let f be
u-equivariant and let g be v-equivariant. Then (vu)° = 1 and (uv)™ = 1. This
implies that u"v = 1. Hence for u : 0x — dy € Coef

uy : Coef (X, 0x) — Coef (X, dy)

is surjective. Hence for v,7" € Coef(X,dy) we obtain a € Coef(X,dx) with
u"a = 7. Since u"a = (ua)” we get ua = and hence

uy : Coef(X,0x) — Coef(X, dy)

is surjective. Let A\ € Coef (X, 0x) with u,()\) = 7. Then we have

1= ()" = (w)** = u

1=2%u
Hence v* = v7 is the inverse of u so that u is an ismorphism in Coef. Moreover
we get

(9f)=9"f~1

(f9)" = (fg)"* = f(g*) ~1
Hence f is an isomorphism in chain/~. q.e.d.

(7.17) Remark. In chapter A we consider four examples of topological homotopy
theories under an object D, see (A.§1), (A.§2), (A.§3) and (A.§4). In each case we
obtain the theory T of coactions which is obtained by the 1-dimensional reduced
CW-complexes (X!, D). If D is discrete then T is always augmented and, in fact,
strongly augmented by the spherical object X = S! where « is the identity of D.
Hence we can apply (7.16) in all these cases; compare (7.6).



Chapter II: Twisted Chain Complexes
and Twisted Homology

Let T be a theory of coactions and let chain be the category of chain complexes
as defined in (I.6.3). We introduce in this chapter the functor

K : Twist — chain

which carries a presentation Ox to a chain complex dx concentrated in degree 1
and 2.

In topology (i.e. for the theory T = gr of free groups) one obtains dx by the
Fox derivative of the presentation Ox or equivalently, if X? is the 2-dimensional
CW-complex given by the presentation dx of the group G = w1 X?, then dx is
the differential Cy(X?) — C1(X?) of the cellular chain complex of the universal
covering X2 of X2.

The functor K leads to the definition of a “twisted chain complex” which is
a pair A | Ox consisting of a presentation Jx in Twist and a chain complex A
which in degree < 2 coincides with dx. In topology such twisted chain complexes
are the “admissible chain complexes” used by Wall [FC II]. The functor K induces
the canonical functor

K : TWISTS — TWISTS

where TWISTY is the category of twisted chain complexes and TWISTY is a
subcategory of the category chain of chain complexes. Most results in this chapter
are concerned with this functor K. As one of the main results we show in (5.4):

Theorem. A map in TWISTS is a twisted homotopy equivalence if and only if
the induced chain map is a homotopy equivalence in chain.

This result is needed in the proof of the homological Whitehead theorem in
chapter VI. If T = gr is the category of free groups then TWISTY is isomorphic
to the category of homotopy systems of J.H.C. Whitehead [CH], which are now
termed crossed (chain) complexes in Baues [CH] and Brown-Higgins [CC]. The
theorem above yields as a specialization theorem 12 of J.H.C. Whitehead [CH].
In fact, part of this chapter may be considered as an extension of Whitehead’s
classical Combinatorial Homotopy II paper [CH] to categorical algebra.

The general situation, however, is more complicated than the case T = gr
since the module I in §2 vanishes for T = gr. This module is used to describe

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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the obstruction for the realizability of a chain map by a twisted chain map; see
3.

We use the category TWISTY to define the homology and cohomology of
objects in the category Coef of coefficients; see Appendix A. In a similar way
we use TWISTS for the definition of the twisted homology of such objects in
Appendix B. In fact I is a special twisted homology group. Moreover in low
degrees twisted homology specializes to Leedham-Green [HV] and André-Quillen
[CR] homology.

We point out that all constructions and results in this chapter are available
whenever a theory T of coactions is given. In section §6 we consider the case of
an augmented theory of coactions.

1 Twisted Chain Complexes

We here combine the category Twist and the category chain of chain complexes
in mod to obtain the category of twisted chain complexes.

(1.1) Definition. We define a functor
K : Twist — chain

as follows. For an object 0x : X" — X in Twist let K(0x) be the chain complex
(concentrated in degree 1 and 2) given by the dx-equivariant map in mod

dx = E(yox ®1): X" Vvdx — X' v Ox
A map (f”,f): Ox — Oy in Twist is carried via K to the chain map (f1, f2)
X"V ax — . X'y
fzzE(f”QU)l lE(vaU):fl
Y'VOy —2 5 Y'vay
where u : Ox — 0y € Coef is represented by f.
(1.2) Lemma. The functor K is well defined.

Proof. We have to show fidx = dy fo. For this we use lemma (1.3.8) where £ yields
a u-equivariant map

EQu:X"Vox - Yy VY VY Voy

in premod which satisfies E(¢ ® u) = 0 by the second isomorphism in (L.5.6)
(iii). Therefore the diagram in (I1.3.8) induces via E a commutative diagram in
mod which coincides with the diagram (1.1). Moreover K is a functor since for
(9",9) : Oy — Oz in Twist with v = {g} we get

E(vgov)e E(Vf ou) = E(V(gf) ©vu)
This follows from (1.3.4). q.ed.
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(1.8) Definition. We introduce a natural equivalence relation ~g on the category
Twist. Let (f”, f),(¢9"”,9) : 9x — Oy be maps in Twist. Then we set (f”, f) ~g
(¢",9) if f =gand E(f" ©{f}) = E(¢” ® {g}) where E is the quotient functor
for mod in (1.5.6). Let

E : Twist — Twist/~pg

be the quotient functor. We denote the equivalence class E(f”, f) by (Ef”, f).
Clearly the functor K in (1.1) induces a well defined functor

K : Twist/~g — chain.

Remark. Let 14 : A — A be the identity of the cogroup A in T. Then 14 is an
object in Twist and one gets the pre-crossed module

Twist(14,8y) —— T(A,Y)

TA,Y"VY),

Here ¢ carries (f”, f) to f. Moreover § induces the homomorphism of groups
d: TWiSt(lA,ay)/NE — T(A,Y)
which is a crossed module.

(1.4) Definition. We introduce a natural equivalence relation ~g on Twist as
follows. Let (f”, f),(9”,9) : x — Oy be maps in Twist. We say that these maps
are E-homotopic, (f”, f) ~g (¢”,9g), if there exists

a: X'-Y"'vyeT
trivial on Y such that
g=f+ 0y, Daec T(X,)Y) (1)
and in mod (X" V 0x,Y" V 8y )u
~E(f"ou) + E(g" Ou) = E(a © u)dx (2)

Here u = {f} = {g} is the map in Coef represented by f and g since (1) holds.
Clearly ~ is actually a natural equivalence relation on Twist/~g so that one
gets the sequence of quotient functors

Twist —- Twist/~p — Twist/~p —— Coef

All functors E, g, and ¢ are the identity on objects and ¢ carries the homotopy
class of (f”, f) to the d-equivalence class of f. For this we point out that (1) above
implies d-equivalence g ~ f.
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(1.5) Lemma. The functor K in (1.1) induces a well defined functor
K : Twist/~p — chain/~

between homotopy categories. Moreover K is compatible with coefficient functors,
that is cK = c.

Proof. We have to show that g = f + (9y,1)a implies
E(vVgou)=E(Vfou)+ E(Viy ©1)E(a®u) (1)

For this we compute /g by the second equation in (I1.3.4). Hence for 8 = (dy, 1)
we get

v(g) = —iyB+f+ivB+ v
= (v +vB

We know that (Vf)? ®u = vf ® v in premod since [ represents the trivial
element in Coef (X', dy); see (1.5.5). Hence we get

2)

E(vgou)=E(Vfou)+E(VE06u) (3)
Here /(3 is computed as in (1.3.12) (1) where we replace f” by . Hence for
& =va — (iyy,iy)a (4)
we have E(§ ©u) =0 and
g€ = VB — (Voy,iy)a (4)
Hence we get

E(Vh O u) = E((Vdy,iy)a©u)

= E(vdy ©1)E(a®u) 5)

and the proof of (1) is complete. q.e.d.

We now use the functor K for the definition of a new category of twisted chain
complexes. Let chain; » and chainx; be the full subcategories of chain consisting
of chain complexes concentrated in degree {1,2} and in degree > 1 respectively.
Then we have the following pull back diagram of categories

TWIST; —— chains;

| I (16)

Twist/~r —— chain;
K

Here 7 is the forgetful functor and K is the functor in (1.1). We now describe the
category TWIST, and a full subcategory TWIST explicitly as follows.
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(1.7) Definiton. We define the category TWIST,. Objects are chain complexes

(A,dx) in chainx; with the properties
A =X, Ay =X"

i

d2:dxZE(vax(D].)ZX”\/aXHXI\/aX

A morphism, termed a twisted chain map,

f=(f>1,Ef".f): (A,0x) — (B,0y) (2)

is given by a morphism (Ef”, f) : 0x — dy in Twist/~g and a u-equivariant
chain map f>; : (A,0x) — (B,0y) in chain. Here u = {f} is represented by f
and

{ fle(Vf®u)7 (3)

fa=E(f" ©u).
(1.8) Definition. Let
TWIST, ¢ TWIST,

be the full subcategory of all objects (A,dx) satisfying the following cocycle
condition: For d3 in (A, dx) there exists 03 € T(As, X" V X)3 such that

{ d3 = E(0; ©1)

(0x,1)03 =0 in T(A3,X)

In this case we denote the object (A, dx) by Al0x € TWISTS.

(1.9) Definition. We define the following subcategory
TWIST] C chain>;

Objects are chain complexes (A, 0x) with the property

1)

Al =X, Ay = X"
dgde:E(vc?X@l):X”\/aX—»X’\/(?X

A morphism, termed a 0-compatible chain map,

f=(f>1,u): (A4,0x) — (B,0y) (2)

is a u-equivariant chain map in chain for which there exists a 0-compatible map
f:X — Y representing u = {f} : 9x — Oy in Coef such that fi = E(Vf ©u).

We have the canonical functor

K : TWIST — TWISTS (1.10)

which is the identity on objects and which carries f = (f>1, Ef", f) to f= (f>1,u)
with u = {f}. In the next two sections we study properties of this functor.
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2 The Module I}

Let T be a theory of coactions and let mod be an associated theory of modules
as defined in 1.§ 5.

(2.1) Definition. Let 9y : Y — Y be an object in Twist. We define for each
object AV Ox in mod and u € Coef (Jx,dy) the abelian group I (dy)(A V
Ox )y = cokernel(E3) by the following diagram in which rows and columns are
exact sequences of groups.

0 0
A s N g I8y )(AV 0x)e

T(A,Y"VY); —2s mod(AV dx,Y" V dy)y ———0

(9y, 1)« (dy )«

T(A,Y) —2 5 mod(AV dx,Y' V dy)a
Here F; and Es are defined by
Ei(a) = E(Ya®u)
E>(b) = E(bGu)

Here F is the quotient functor in (1.5.6) and Va ® v and b ® u with a € T(A4,Y)
and b € T(A,Y” VYY), denote morphisms in premod by (I1.5.3). The operator F;
in general is not a homomorphism but satisfies E;(0) = 0. Using (1.5.6) (ii) we see
that the map F(14Vu): AV dx — AV Jy in mod induces the isomorphism

(1aVu)*: [(dy)(AVOy): = I (9y)(AV Ix )y

which we use as an identification. This abelian group yields the right mod(dy)
-module

Fl(ay) : mOd(ay)OP — Ab

which carries the object AVdy to I'1(0y)(A) = I'1(dy)(AVOy)1 and which carries
the dy-equivariant map g to g* with g*y(§) = v(£9g); see (2.3) below.

(2.2) Lemma. The diagram in (2.1) commutes and E1 is a j-crossed homomor-
phism where 7 : T(A,Y) — Coef(A,dy) is the quotient map.

Proof. We have
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Here we see as in the proof of (1.3.8) that

V((9y,1)b)) = q(Vd)

and that £ = b — (iyy,iy)b is trivial on Y{" VY, Y’ VY and Y3’ VY. Hence by
the second equation in (1.5.6) (iii) we see that E(£ ® u) = 0 so that we get

E71(0y,1).b = E(q(Vb) © u)
= E(q(iyy, iy )b O u)
= E((Voy,iy)b ©u)
= E(v0y ©1)E(b® u)
= dy E»(b)

and therefore the diagram in (2.1) commutes. We know by (1.5.6) that F is equiv-
ariant with respect to the action of Coef(A,dy). Therefore E; is a j-crossed
homomorphism since we can apply the second equation in (1.3.4). q.e.d.

(2.3) Lemma. I (0y) is a well defined right mod(dy )-module.

Proof. Let g: BV dz — AV dx be a v-equivariant map in mod. We have to show
that

g* : Fl(ay)(AvaX)u - Fl(aY)(BvaZ)uv

defined by ¢g* v(z) = vg*(z) is a well defined homomorphism. Here we have z €
I'" = kernel(dy ). Since clearly g*(dy ). = (dy).g* we have also g*z € kernel(dy ).
so that y(g*z) is defined. Morover we have to check that for z = Fsy there is §
with g*z = E537. Here we have y € T(A,Y"” VY)2 with (dy,1).y = 0. On the
other hand F in (1.5.6) is full so that ¢ = F(g®v) with § € T(B, AV X)2. Assume
u = {f} is represented by f: X — Y. Then we have the following commutative
diagram in T

) i
B avx ¥l ynyy

x l(o,n l(ay,l)
!

X—Y
Here we see that § = (y, iy f)g satisfies (0y,1)y = 0 and

Es§ = E((y,iy f)§ © uv)
=E(you)E(Gov)
= 9" (E3y) = g"(z)

q.e.d.
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(2.4) Proposition. Each map (¢9",g) : Oy — 0w in Twist representing w = {g}
in Coef induces a map

(9",9)« : T1(0y) — w* I (0w)
of right mod(Jy )-modules.

Proof. By (1.1) the map (g”, ¢g) induces a chain map K(g”,9) = (g1,92) : dy —
dw. Hence we see that (g2). carries kernel(dy ). to kernel(dy )« so that

(9",9)« : (0 )(AV Ox)u — I (0w )(A V 9 ) wu (1)

is defined by

(9", 9)«vz = v(g2)s (2)

with go = E(¢g” ©® w). We have to check that for z = E3y there is § with (g2).z =
Es3y. Now the diagram

A—Y sy y D

(0y,1) (6w, 1)

Yy —2 s w

1

commutes so that we have for § = (¢”,iwg)y the equation (dw, 1),y = 0 and

Ezy = E(j © uw)
=E((9",iwg)y © wu)
=E(g" ow)E(y ®u)

= (92)+E3(y) = (92)«(2).

q.e.d.

(2.5) Lemma. Let (h",h),(9",9) : Oy — Ow be maps in Twist with h = g.
Then the maps

(9", 9)« = (", h). : 11(dy) — w* I (Bw)
coincide.

This lemma shows that each 0-compatible map g : ¥ — W induces a well
defined natural transformation g, : I1(dy) — w* (0w ). In fact, if T has “enough
objects and modules” then g, = w, : I1(0y) — w*I1(0w) depends only on the
induced map w = {g} in Coef, see (7.10) below.
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Proof. The condition h = g implies

(aWa 1)h” = (8W7 l)g”
and hence we get an element

6 — _h/I + g// E T(Y”,W” \/ W)2
with (Ow,1)€ = 0. Hence we get
(9", 9)xvz =vE(¢" © w).x

=y E((h" +&) 0w

=vyEMR ow)x+vE(E 6w

=yER" Ow).x

= (" h)ya

Here we use the following facts. Choose for z an element y with Eyy = z. Then
we get:

E(fOw).z = E(§ ©w)Ey
=E((Ow)E(y ©u)
= E((&,9)y © wu)
= E3((§, 9)y)

where the last equation holds since

=(0,9)y=0
q.e.d.
3 The Obstruction for the Twisted Realization
of a Chain Map
We consider the “realizability” of morphisms with respect to the functor
K : TWIST; — TWISTY (3.1)

in (2.8). Let A|0x and B|0y be objects in TWISTS and let (4,0x) = K(A|0x)
and (B, 0y) = K(B|0y) be the corresponding chain complexes in TWIST]. Let

f:(A,0x) — (B,0y)
be a u-equivariant map in TWISTS. A K-realization of f is a map
f: Alox — B|dy

in TWISTS with K(f) = f
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(3.2) Theorem. A K-realization of f exists if and only if an obstruction element
O{f} € H*(A,0x;u"T1(dy))
vanishes.

Here we use the cohomology of the chain complex (A, dx) with coefficients in
the right mod(dy )-module I (dy) in (2.1).

(3.3) Definition of the obstruction. Let f be the chain map f= (f>1,u). If fis
in TWISTY there exists a map (f”, f) : dx — Oy in Twist with u = {f} and
f1 = E(vf ©u). Hence we have

dafo = fide = fidx
= E(VfOu)dx
=dy E(f" ©Ou) =dy E(f" © u)

Therefore the element

—fo+ E(f" ®u) € mod(X"” VvV Ix,Y" Viy),
satisfies (dy )«(—f2 + E(f"” ®u)) = 0 so that

Br=v(=fa+ E(f"ou)} € I(Oy)(X" VOx)u

with X" = Ay is defined. In lemma (3.4) we show that §; is a cocycle so that (3¢
represents a cohomology class

O(f) = {85} € H*(A,0x,u" T (dy))
(3.4) Lemma. d56; = 0.

Proof. We consider the elements

& fo, SE(f" © u) € mod(As V dx, Y V By ). (1)
We have
(dy)sd3fo = dy fod3 = dydsf3 =0 (2)
since dy = dy. Since (dy )«(—f2 + E(f" ® u)) = 0 we also get
(dy)«d3E(f" ©u) =0 (3)

Hence the elements

Y(d3 f2), Y(d3E(f" ©u)) € I'(dy)(A3 V 9x)u (4)

are defined. We claim that both elements in (4) are trivial; this implies d33f = 0.
Let f3 € T(A3,B3VY)2 be an element with f3 = E(fs ® u); such an element
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exists since E is full. On the other hand we have by the cocycle condition in (1.8)

an element 93 with E(93 ® 1) = d3. Hence we get

d3 f2 = dsf3
= E(0; © 1)E(f3 © u)
= E((83,iy)f3 ©u)

Here (0y,1)05 = 0 implies that y = (35, iy)fg satisfies

(Oy, 1)«y = ((0y,1)03,1) f3
= (07 l)fS =0

Hence we get for E3 in (2.1)
d3fo = E(y ©u) = E3(y)
Since vE3 = 0 we thus have vydj fo = 0. Next we have

GE(f" ou)=E(f" ©u)E0;©1)
=E((f",iy f)03 ®u) where u = {f}.

Here 2z = (f",iy f)0s satisfies

(Oy,1)xz = By, 1)(f",iy )O3
= ((8y,1)f", f)0s
= (fox, f)03
= f(0x,1)03 =0

Here again we use the cocycle condition. Hence z € I'" and therefore
d;E(f" ©u) = E(y ©u) = E3(2)

satisfies Y diE(f" © u) = 0.

(3.5) Lemma. O(f) is well defined by f.

Proof. Let (¢”,g) be a further map in Twist with u = {g} and f; =
Since u = {g} = {f} there is « € T(X',Y"” VYY), with

g=1f+ (3}/, 1)a‘
This implies
E(Vgou)=E(Vfou)+dy E(a®u)

and hence since f1 = E(Vg O u) = E(vVf ©u) we get

(8)

q.e.d.

E(vg ®u).

(1)
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dy E(a®u)=0 (2)
so that v(E)(a @ u) is defined. Moreover we have

(8%1) (=(ayiy f)(vOx) — f" +4¢")

—(0y, (o, iy f)(VOx) — fOx + gOx

—((9y, Da, f)(VOx) — fox + (f + (Oy, 1)a)0x
=0

In the last equation we use the equation in (1.3.2). Now (3) shows that

y=—(a,iyf)vox —f"+g" (4)

satisfies (Oy,1)«y =0 or y € I'"'. Moreover we get

E3(y) = — E((a,iy f) v Ox O u)
—E(f"ou)+ E(g" ©u)

where

E((a,iy f) VOx ©Ou) = E(a ©u) E(VIx © 1)

= E(a@u)dx (6)

Now (5) and (6) show that 85 = y(—f2 + E(f” ®u)) and By = y(—fo+ E(¢" ®u))
satisfy

—Bf + By = dx¥(E(a © u)) (7

where we use (2). Hence 3y and , differ only by a cocycle so that the cohomology
classes {87} = {f,} coincide. q.e.d.

(3.6) Proof of (3.2). If f satisfies K(f) = f then one has by f a pair (f”, f) with
f2 = E(f" ®u) and hence O(f) = 0 by (3.3). Now assume f satisfies O(f) = 0. We
have to construct g = (g>3, Bg”,g) in TWISTS with K(g) = f. We first choose
(f",f) as in (3.3). Then O(f) = 0 implies that there is

B e Fl(ay)(X/ \ ax)u with (1)
(dx)"B=7(=f2+ E(f" ©u))
Using diagram (2.1) we choose
Bo € mod(X' V dx, Y"v 8y)u (2)

with (dy)«82 = 0 and v = 8 and we choose

B e T(X,Y"VY)s (3)
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with Fo3; = 32. We define

g=f+(0y,1).0 (4)

Then we have as in the proof of (1.5)

E(vgou)=E(VfOu)+dyE(B ©u)
= fi+dyEx5 (5)
=fi+dyf=fi

Moreover we find ¢” as follows. We have by (1) and (2)
V(=B2(VOx ©1) = E(f" ©u) + f2) =0 (6)
In fact, dy B2 = 0 and
dy f2 = fidx = E(Vf ®u)dx = dyE(f" ©u)

so that the left hand side of (6) is well defined. Using (6) we can choose by the
diagram in (3.3) an element

§eT(X",Y"VY), (7)
with
(Oy,1)«(6) =0
E3(8) = —B2E(vOx ©1) — E(f" ®u) + f2

Now we set

9" =f"+ (B ivf) v ox +0. (3)

Then (¢”,g) : x — Oy is a map in Twist since we have

(Oy,1)+g" = Oy, ) f" + 0y, 1)(B1,iv [) v Ix + (Ov,1)d
= fox + ((8y,1)B, f) v Ox
= (f+ (0y,1)$1)0x; see (3.3)
=g0x

Moreover we get by (8) and (3.3) and (7)
E(¢" ®u) = E(f" ©u) + E((B1,iy f) V Ox O u) + E3(9)

=FE($1 Ou)E(Vix ©1)+ fo — BE(VIx © 1) (9)
= f2

since E(f; ® u) = Ezp, = (2. Now we set g; = f; for i > 3. Then we have
constructed by (5) and (9) a map g with K(g) = f. q.ed.



182 Chapter II: Twisted Chain Complexes and Twisted Homology

4 Twisted Homotopies

We introduce the notion of homotopy for twisted chain maps and 9d-compatible
chain maps as defined in (1.7) and (1.9) and we compare the corresponding homo-
topy categories.

(4-1) Definition. Consider twisted chain maps f,g : A|0x — B|dy in TWIST$

with f = (f>1, Ef", f) and § = (9>1, Eg”,9). Then f is twisted-homotopic to g,
and we write (a>1, ) : f >~ g, if there exist

o € T(X’,Y” \Y Y)2
a1 (f>1,{f}) = (9>1,{9})

where a>; is an u-equivariant homotopy in chain with v = {f} = {g} such that

o =E(a®u) and
9= f+(0y,l)ain T(X,Y).

(4.2) Definition. Consider d-compatible chain maps f,g : (A,0x) — (B,0y) in
TWIST{ with f = (f>1,u) and § = (gzl,u). Then f is homotopic to g if there
exists an u-equivariant homotopy a>; : f ~ g in chain.

The homotopy categories for (4.1) and (4.2) are well defined and one obtains
by K in (1.10) the induced functor

TWISTS/~ X TWISTS/~ (4.3)

where TWISTY /~ is a subcategory of chain/~. The morphisms in the image of
the functor K in (4.3) can be characterized by the obstruction O in (3.2) since we
have the following result.

(4.4) Theorem. Let f,j : (A,8x) — (B,dx) be d-compatible chain maps in

TWIST]. If there is a homotopy f ~ g in chain one has O(f) = O(3). That

is O(f) depends only on the homotopy class {f}in TWIST{/~ and there exists
{g} in TWISTS/~ with K{g} = {f} if and only if O{f} = 0.

Proof. Let f = (f>1,u) and § = (g>1,u) and let a>; be a homotopy (f>1,u) =~

(9>1,u) in chain. Hence we have

- fit+tg =dvoy (1)
— fa + g2 = d3as + andx (2)

where oy, as are u-equivariant in mod. Since F is full we choose for a; an element
a € T(X',Y"VY), with a; = E(a ® u). Then we obtain with the choice (f”, f)
for (f>1,u) in (3.3) the following choice (g”, g) for (g>1,u).
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"= f"+(oiyf) v Ox

In fact (¢”,g) is a map in TWIST since

Oy, 1)g" = By, 1)(f" + (e, iy f) v Ox)
= Oy, D) f" + (0y,1)(a,iy ) v Ox
= fox + ((9v, Do, f) v Ox
= (f+ Oy, )a)0x
=g0x

Moreover we know by (3) that u = {f} = {g} and we get g1 = E(7g ® u) by the
following argument. As in the proof of (1.5) we know

E(vgou)=E(Vfou)+ E(vdy ©1)E(a®u)

_ _ (4)

=fi+tdvar =g
where we use (1). This completes the proof that (¢”,g) in (3) is a choice for
g = (g9>1,u) defining the obstruction O(g) as in (3.3). Now we get by (3) and (2)
n (3.3)

0(g) ={v(=g2 + E(¢" ©u))}
= {v(~f2 — dsaz — andx + E(f" ©u) + andx)}
={(- f2 +E(f" o u)} - {7(dsaz)}
= 0(f)
Here v(d3az) = 0 follows from the cocycle condition for dz in (1.8) by the same
argument as in (3.4) (5), (6). g.e.d.

The next lemma shows that the functor K from twisted chain complexes to
chain complexes has the homotopy lifting property; see (V1.§3). We describe the
lifting of homotopies in chain to obtain homotopies in TWIST%. Let A|dx, B|dy
be objects in TWISTS which are carried by the functor K to chain complexes
(A,0x) and (B, dy) respectively and consider maps

_ (4.5)

f:Alox — B|0y in TWIST;
f,9:(A,0x) — (B,0y) in chain

where f = K(f) is the chain map induced by f.

(4.6) Lemma on lifting homotopies. If for the maps above there is_a homo-
topy ax1 @ f =~ g in chain then there exists a homotopy (a>1,a) : f ~ g in
TWISTS where g is a K -realization of §; that is K§ = §
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Proof of (4.6). Let f = (f>1,u) and § = (g>1,u) and let a>1 : f ~ g be a
homotopy. For a7 and oy we choose elements

o € T(X/, Y"v Y)2
o € r.[‘()(”7 By Vv Y)2
with oy = E(a ® u) and ap = E(a’ ® u). Moreover since (B, dy) satisfies the

cocycle condition we choose 83 for d3 as in (1.8). Given f = (f>1, Ef", f) we now
define g = (g9>1, Eg¢", g) as follows: Let

g=f+ 0y, (2)
9" = f"+ (a,iy f) v Ox + (85,iy ) (3)

Moreover g>1 in g coincides with g1 in g. We have to check that g is a well defined
twisted chain map. Using the cocycle condition (1.8) we know

(ax, 1)(33,iy)0(’ = ((ax, 1)83, 1)(1’ = (0, 1)a’ =0

so that by the argument following (4.5) (3) the map (g”, g) is well defined in Twist.
Moreover we see g, = E(7g®u) as in (4.5) (4) and we have g, = E(¢” ®u) since
by (3)

E(¢" ®u) = E(f" ou) + E(a ®u)dx + E(93 ©1)E(a/ © u)
= f2 + aldx +d3a2
=go, see (4.5) (2).

Hence g is a well defined twisted chain map. Moreover (a>1, ) : f >~ g is a twisted
homotopy by (2) and the choice of « in (1); compare (4.1). q.e.d.

We now study the set of all K-realization of a given map f in TWISTY.

(4.7) Definition. Given a 0-compatible map f : X — Y in T representing u =
{f}: 0x — Oy in Coef we define the subset

I(0x,0y)s C T(X',Y)

as follows. Here I'(0,,dy ) consists of all elements A € T(X',Y) for which there
exist

aeT(X,Y'VY),
5 c T(X”,YN \Vi Y)Z

satisfying the equations

A= (0y,
0= dy E(a®u)
0=FE(0ou)

0=y, 1)(=&+ (a,ix f) V Ox)
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Here the last equation is equivalent to

(A7f> V3X = (8Y71)€

Given a twisted chain map f = (f>1, Ef", f) : A|0x — B|0y and X € I(9x,0y);
we define the twisted chain map

f+X=(g921,Eg",9): Alox — B|oy
by f>1 = g>1 and
g=f+A=f+ 0y,
g// — f”+€

where a and ¢ are chosen for A as above. As in (4.5) (3) we see that f+ X is a well
defined map in TWISTS. Given A € I'(0x, dy )y one can check that A" € T(X',Y)
satisfies A + X' € I'(0x, Oy )y if and only if A" € I'(Ox, Oy ) f4x.

(4.8) Proposition. Let f,5: A|ox — B|dy be maps in TWISTS. Then we have
K f = Kg if and only if there exists A € I'(Ox,0y)f with g = f + . In fact, the

function
I(0x,0y)s — {g;Kg = Kf}
which carries X to f + X is a bijection.

Proof. By definition we have K (f+\) = K(f). On the other hand since K f = K§
are the same chain maps we know that f and g represent the same morphism in
u and therefore there is @ € T(X',Y”VY) with g = f + (dy, 1)a. Moreover there
are (¢”,9), (f", f) : 0x — Oy in Twist with

E(g" ©Ou) =gz = fo = E(f" ©Ou).
Hence we get

(Oy,1)g" = gdx = (f + (dy,1)a)0x
= fox + ((Oy, 1), f) v Ox
= (Oy, D) f" + 9y, (e, iy f) v Ox.

Therefore £ = —f + ¢g"” with E(§£ ® u) = 0 satisfies
(Oy, D)€ = (Oy, D) (v, iy f) v Ox.
Moreover
E(Vgou) =g = fi=E(VfOu)
implies dy E(a ® u) = 0 since
E(vgou)=E(VfOu)+dy E(a ©u)
by (1.5) (1). q.ed.



186 Chapter II: Twisted Chain Complexes and Twisted Homology

(4.9) Definition. Given a map u : dx — Oy in Coef and chain complexes (A, dx)
and (B, dy) in TWISTY we define the subgroup

H(A,0x;B,0y), C T(X')Y)
which consists of all elements A € T(X’,Y) for which there exist « € T(X',Y" Vv
Y)2 and u-equivariant maps (i > 1)
o; AV Ox — i1 V Oy
such that
A= (ay, 1)a
a; = Ela®u)
0=djp104 + a;_1d; fori>1.
(4.10) Proposition. Let f : Al0x — B0y and let X € I'(Ox, 0y )s. Then there

ezists a twisted homotopy f ~ f + X\ if and only if X € H(A,dx; B,dy ). where
u={f} is represented by f.

Proof. Let (a>1,a) be a twisted homotopy f ~ f + A. Then we have
f+A=f+ 0y, Da

so that A = (Jy, 1)a by the affineness property of T. Now it is clear that a €
H(A,0x;B,0y), since Kf = K(f+ \). q.e.d.

We derive from (4.10), (4.8) and (4.6) the next result:

(4.11) Proposition. Let f,g : Aldx — B|0y be maps in TWISTS and as-
sume there exists a homotopy K(g) ~ K(f) in TWIST]. Then there exists
A € I'(0x,0v)f with g ~ f+ A in TWIST{. Moreover there is a bijection of
sets

fy: L(9x,0v)s/~ = {{g}; K{g} = K{f}}
where {g} denotes the twisted homotopy class of § and where the equivalence re-
lation ~ is defined for \,\' € I'(Ox, 0y ) by A ~ XN ifA—XN e H(A,0x; B,y )y
where u is represented by f. The bijection fi carries the equivalence class {A} to

{f+ 2}

Proof. 1f K(g) ~ K(f) we obtain by (4.6) a twisted homotopy g ~ ? = Kf so
that f = f + A with A € I'(Ox, dy) s by (4.8). Now consider the function

I'(0x,0v)s — {{g}; K{g} = K{f}}

which carries A to {f + A}. By the argument above this function is surjective. We
claim that f 4+ X ~ f+ )\’ if and only of A ~ ). In fact by (4.10) we have for \" =
—A+\ and g = f+ A a homotopy g ~ g+ A" if and only if \ € H(A,dx; B,y ).
where u is represented by g = f + A. Here u is also represented by f. q.e.d.
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(4.12) Definition. Given a 0-compatible map f : X — Y representing u : 0x —
Oy in Coef we obtain the canonical function

E;: F(ax,ay)f — Fl(ay)(X/ V Ox)u
which carries A = (dy, 1)« to
Ef(X) = AEz (o) = vE(a O u)

Here we choose for A the pair (o, £) as in (6.7) so that dy E(a®u) = 0 and hence
E¢(A) is well defined; compare the diagram in (2.1).

(4.13) Lemma. kernel Ey C H(A,Jx; B,0y)y.

Proof. Let Ef(A) = 0. Then we have A = (0y,1)a with E(a ©® u) = E36 with
§ € T(X,)Y’"VY)y and (9y,1)d = 0. Hence we get A = (Oy,1)(a — &) with
E(a — §) =0 and we can choose all o;; = 0 in (4.9).

Using (4.11), (4.13) and (4.4) we get

(4.14) Theorem. Assume the function Ey in (4.12) is trivial for all f. Then the
functor

K : TWISTS/~ — TWISTS /~

is faithful. Moreover if I'1(Oy) = 0 for all Oy then this functor is full and faithful.

5 Twisted Homotopy Equivalences

A chain map f : (A,0x) — (B,dy) in chain is a homotopy equivalence if there
exists a chain map g : (B,0dy) — (A,0x) and homotopies of chain maps gf ~ 1
and fg ~ 1 where 1 denotes the identity of (A4, 0x) and (B, dy) respectively. The
homotopy class {f} of f is then an equivalence in the homotopy category chain/~.

A map f: (A, 0x) — (B,0y) is a homotopy equivalence in TWIST{/~ if and
only if f is a homotopy equivalence in chain such that a homotopy inverse g of f
can be chosen to be a map in TWISTY.

A twisted chain map f : A|0x — Bl|0y in TWISTS is a twisted homotopy
equivalence if there exist a map g : B|0y — A|0x in TWISTS and twisted
homotopies gf ~ 1 and fg ~ 1 where 1 denotes the identity of the object A|0x
and B|0y respectively. Then the twisted homotopy class { f} of f is an equivalence
in the homotopy category TWISTS /~.

We say that a functor F': C — K reflects equivalences(or satisfies the “suffi-
ciency condition”) if the following property holds. A map f in C is an equivalence
in C if and only if the map F(f) is an equivalence in K.
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(5.1) Theorem. A twisted chain map f : A|dx — Bl|dy is a twisted homotopy
equivalence if and only if the induced chain map Kf : (A,0x) — (B,0y) is a
homotopy equivalence in TWISTS /~. Hence the functor

K : TWISTS/~ — TWISTY /~
reflects equivalences.

For the proof of the theorem we use the following lemma.

(5.2) Lemma. Let h: A|ox — A|0x be a map in TWISTS such that Kh ~ 1
where 1 is the identity of (A,dx). Then the function

I'(0x,0x ) _pe I'(0x,0x)n/~

defined by h.(\) = {hA} is surjective. The equivalence relation ~ on I'(Ox,0x)n
is defined by H(A,0x;A,0x )y as in (4.11) where u = {h} =1 is the identity of
Ox in Coef.

Proof. One readily checks that h, is a well defined function. In fact, this is also a
consequence of (4.11). Let h = (h>1, ER”, h). Since Kh ~ 1 we know that {h} = u
is the identity in Coef. Hence there is 6 € T(X’, X" V X), satisfying

h=1+¢ with § = (9x,1)d. (1)
We have by (1.3.3) (2)

(ixd" 4+ a,ix) VOx = (ixd,ix) vV Ox + (ayix +ixd') v Ox

. . _ 2
:(Zxa/,lx)vax‘f-(aﬂxh)vax ( )
Now we observe that
ix0’®1=0 in premod so that (3)
E(ix8 ®1=0 and
E((ix(sl, ix)VOox 1) = E(ix(sl ©l)dx =0
Compare the definition of premod in 1.§5.
Now let A € I'(0x, 0x )n, that is
A= (aX7 1)a (4)
0=dx E(a®1) (5)
0=B(Eol) (6)
0= (9x, 1)(=¢ + (o, ixh) v Ox) (7

Then we obtain X' € I'(Ox, 0x )1 satisfying
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N = (0x,1)d (8)
0=dx E(d/ ®1) 9)
0=EE o1) (10)
0= (8x,1)(*£/+(al,ix)vax) (11)
as follows. Let
o =ixd +a (12)
¢ = (ixd,ix) v Ox +¢& (13)

Then (8) defines X and we check (9) by
de(ix(Sl + Ot) ®1= de(ix(sl ® ].) + de(C( ® 1) =0
where we use (3) and (5). Moreover we obtain (10) by (3) and (6). Finally we get

=&+ (dix) v Ox = =€ — (ix0',ix) v Ox
+(ix5’+a,ix)vax
=—¢+ (a,ixh) v Ox, see (2)

Therefore (11) is a consequence of (7). We now consider

AN — A= h(ax, 1)(’ix(5l + a) — (8){, 1)0(
= (0x,1)p with
p=(""ix)(ixd' +a) — (14)

Here we use the fact that (h”,h) : Ox — Ox is a map in Twist. We claim that:
((9x,1)(5€H(A,ax;A,ax)1. (15)

This shows by (14) that h, in the lemma is surjective.
For the proof of (15) we use the assumption that there is a chain homotopy

v>1: Kh=~1, thatis

—hi+1=dxm
—he+1=d3zv +mdx
— hl +1= di+1’}/i +’Yi~1di for 4 Z 2 (16)

where hy = E(\7h®1) and hy = E(h” ©®1). Now we define the 1-equivariant maps
pi s Ai VOx — A1V Ox

with
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p1=E(p®1l), see(14)
=EMh" 01)(E(ixd +a)©1) - E(a®1l)
=hE(@®l)—FEa®l), see (16) and (3)
=(1-dsy2 —mdx)E(a®1l)— E(a®1), see(16)
= —d31E(a®1), see (5) (17)

Moreover let

p2 =7E(a®1l)dx and
pn =0 forn >3. (18)

Then we have

dxp1 =0, see (17)
dzps + prdx = dg’)/QE(Ol ® l)dX — dg’)/QE(Oé ® l)dX =0
daps + p2ds =0+ 1 E(a®1)dsdx =0

This completes the proof that (15) is satisfied. q.e.d.

Proof of (5.1). Let g be a map in TWIST{ which is a homotopy inverse of Kf=
f,thatis fg~1 and gf ~ 1 in chain. We have by (3.2) and (4.4)

0=001)=0@Gf) = (/)o@ (1)

where f* is an isomorphism. Hence O(g) = 0 and therefore there exists g : B|0y —
A|dx with Kg = g. By (4.11) we obtain the commutative diagram with h = fg

F0(8Y76Y)1

lg* \
Ly(By,0x)g —— Lo{dy, Oy Jn/~
j!ﬂ zl(f'g»
K-Hgt —2—— K1(j3)
where (fg)y is a bijection. For h = fg we can use lemma (5.2) which shows that

hs in (2) is surjective. This implies that also f, is surjective. Therefore there exists
e € I'(0y,0x)4 with

(fg)+ f-(e) = {18} € K '{fg} = K {1} 3)
where 15 is the identity of B|dy. We define

g=g+¢e: Bloy — Alox (4)
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so that by (2) and (3) we have a twisted homotopy

k|

g~1lp and Kg=Kg=g. (5)

-

Let 14 be the identity o
twisted homotopy

A|O0x. Then we obtain by (4.11) an element A and a

gf~1a+X with X € I(0x,0x)1 (6)

since §f ~ 1 in chain. Now we replace above f by 14 + . Then (5) shows that
there exists h with

(la+ Nholy (7)

Since ~ is a natural equivalence relation on TWISTS we get by (5) and (6)

F=FF with (8)

GI=GFh~1a+Nh= 1,

Fo~ fGf~f andhence

§F~g7=~1a (9)
By (9) and (5) we see that g is a twisted homotopy equivalence. Therefore by (5)
also f is a twisted homotopy equivalence. q.e.d.

(5.3) Proposition. The functor
TWIST{/~ — chains; /~
reflects equivalences.
Combining (5.3) and (5.1) we thus get:

(5.4) Theorem. A twisted chain map f : A | Ox — B | 9y is a twisted homotopy
equivalence if and only if the induced chain map Kf : (A,0x) — (B,0y) is a
homotopy equivalence in chain>;. Hence

K : TWISTS/~ — chain>/~
reflects equivalences.

Proof of (5.3). Let f : (A,0x) — (B,dy) be a map in TWIST{ which is a
homotopy equivalence in chain. Then we have

fi=(Vh)Ou withu=f (1)

where u is an isomorphism in Coef with inverse v = {h}. Moreover we have a
v-equivariant map g : (B,dy) — (A4, 9x) and homotopies gf ~ 1 and fg ~ 1 in
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chain. We have to show that there is a map h : (B,dy) — (A,0x) in TWIST{
with h ~ ¢ in chain. Since vu = 1 we know that hf = 1+ (0x,1)3. Moreover h
is 0-compatible so that we have (h”, h) : 9y — Jx in Twist. Hence we get

(Vhov)fi = (VhOv)(Vf) Ou
=14+dEBO1)

Moreover fg ~ 1 implies that there is a; with da; = —1 + f191. Hence we get by
composing with \7h © v from the left

d(h" ®v)ay = (Yh ©v)doy
=—-—vVhov+(Vhov)fig
=-vhov+(1+dEL®1))g
=-VhOv+g +dESOLxn

Hence we get

—VhO®v+g =dy with
7= (h"Ov)s — (EFO 1)g

We now define the map h : (B,dy) — (A,dx) in TWISTS by h; = \vh ® v and
ha = go — vd and h,, = g, for n > 3. Then clearly h is well defined in TWISTS
and +y yields a canonical homotopy h ~ g.

6 The Augmentation Functor

All results in sections §1 ... §5 above are obtained if a theory T of coactions is
given. We now assume that T is augmented by X as in (I1.7.2) or weakly augmented
as in (I.7.11). Then we obtain a canonical augmentation functor

aug : TWIST{ — chain> (6.1)

which carries the chain complex (A>1,0x) in TWISTS to the following chain
complex aug(A>1,0x) = (A>o,0x) which coincides in degree > 1 with (A4, 0x)
and which satisfies

Ag=2X, A=X, Ay=X" (1)

and for which the differentials in degree < 2
X"V ox 2 X' vax 2 D vox (2)

are given by the operators in (1.7.9), that is

dy = E(V0x ©1)
dy = E(6x ©1)
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The functor (6.1) carries a chain map
f:(A>1,0x) — (B>1,0x) € TWIST{
to the induced chain map
aug(f) : (A>0,0x) — (B>0,0x) € chainx

which coincides in degree > 1 with f and which is 1 V u in degree 0 where f is
u-equivariant. By (1.7.9) and (1.7.10) or by (I.7.11) we see that the functor aug is
well defined. Here the assumption f; = E(7f ©® u) on f in (1.9) is needed.

The augmentation functor is compatible with homotopies in (4.2) so that we
obtain the induced functor

aug : TWIST{/~ — chains/~ (6.2)

While (6.2) is faithful the induced functor (6.2) needs not to be faithful. The
functor (6.2) is well defined since a homotopy a1 : f >~ g yields the homotopy
a>op @ aug(f) ~ aug(g) which coincides with a>1 in degree > 1 and which satisfies
Qo = 0.

7 Appendix: Homology of Coefficient Objects

We here introduce the cohomology and homology defined for objects in the cate-
gory of coefficients Coef of a theory T. This covers many classical notions of (co-)
homology in the literature. In special cases the cohomology and homology can be
described by certain Ext and Tor groups respectively.

(7.1) Definition. We say that a sequence
A plc

in an additive category M is ezact if Ba = 0 in M(A, C) and if for all objects K
in M and all morphisms £ : K — B with §¢ = 0 there is n: K — A with an = &.
Equivalently for all K the induced sequence of morphism sets

M(K, A) 2 M(K, B) 2= M(K, C)
is an exact sequence of abelian groups.

One readily checks that a chain complex (A, dx) in chain is exact in degree n,
that is

A1 VOx 5 A, vax 5 A,y vy
is exact in mod(0x), if and only if the homology
Hn(Aa aX) =0

is trivial; see (1.6.5).
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(7.2) Definition. A resolution of the object Ox € Coef is a chain complex (A, dx)
which is exact in degree n > 2 with the property

Air=X', Ay =X"
d2=dX:E(vax®1):X’lvax—*Xl\/aX

That is, a resolution of Ox is the same as a chain complex (A, dx) in the category
TWISTS which is exact in degree > 2. Compare the definition in (1.9). We do
not assume exactness in degree = 1.

(7.3) Lemma. Let (B,0y) be a chain complex in TWISTS and let (A,0x) be a
resolution of 0x € Coef. Given a morphism u : Oy — Jx € Coef there exists a
u-equivariant chain map

f:(B,0y) — (A,0x) € TWISTS
and two such u-equivariant chain maps are homotopic in TWISTY.

Proof. We know that w = {f} is represented by a 0-compatible map f:Y — X
so that there exists (f”, f) : 9y — Ox in TWIST. Hence we obtain the following
commutative diagram in mod

BiVdy «  Byvdy B Byvoy — ...

s | |

AV Oy < Ayvay B Ayvoy e——

where f; = E(vf ®u) and fo = E(f” ® u). Since dx,ds is exact and since
dx f2d3 = fidyds = 0 we can find f3 with d3f3 = f, = d3. In the same way we
can find inductively a u-equivariant map f, defining a chain map f = (f>1,u) in
TWISTY]; see (1.9). Now let § = (g9>1,u) be a further u-equivariant chain map

§:(B,8y) — (A,dx) € TWISTS

Then we know that there is a 9-compatible map g : Y — X representing u = {g}
with g1 = E(\7g ® u). Since

{f} =u={g}
we can find @ : Y’ — X" V X trivial on X with
9=17+ (0,1
Compare (1.4.1). Hence by the proof of (1.5) we obtain a3 = E(a ® u) satisfying
—fita=da

This implies
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d(—and — fo + g2) =
—dayd — dfs + dge =
(—fi+g1)d —dfz +dgo =0

Therefore by exactness there exists ap with —a1d — fo + g2 = aad. Inductively we
obtain this way the homotopy (a>1,u): f ~ g. q.e.d.

(7.4) Corollary. Let (A,0x) and (B,0x) be two resolutions of Ox. Then there
exists a canonical Ox -equivariant homotopy equivalence

(A,0x) ~ (B,dx)
in TWIST]/~.

Hence resolutions are up to canonical isomorphism unique. The following con-
dition on mod(0x ) implies that resolutions always exist.

(7.5) Definition. We say that an additive category M has enough ezract sequences
if for each morphism §: B — C in M there is an exact sequence

A B¢

in M; see (6.1). We say that mod has enough ezact sequences if mod(9x) has
enough exact sequences for all dx in Coef.

(7.6) Proposition. Assume mod has enough sequences. Then each object Ox in
Coef has a resolution R(0x) = (A,0x). By (7.3) the choice of such resolutions
yields a functor

R : Coef — TWIST]/~

which splits the coefficient functor ¢. Two such functors obtained by resolutions
are canonically isomorphic.

If T is an augmented theory of coactions we have in addition the composite of R
with the augmentation functor (6.1)

R, : Coef SN TWISTS/~ —, chainsq/~

The functors R and R, respectively lead to the definition of (co-) homology of
objects in Coef; see (7.7) below.

Proof. Clearly Ox defines
E(vox ©®1): X" Vvdx — X'V Ox
and using the property in (7.5) we can choose inductively a sequence
X'Vax < X"Vax <X A3V Ix — ...

which is exact in degree n > 2. Now the functor R is obtained by (7.3). q.e.d.
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(7.7) Definition. Let T be a theory of coactions and assume that mod has enough
exact sequences. Let N be a right (resp. left) mod(dx)-module as in (1.6.4). Then
the T -cohomology, resp. the T -homology, of an object dx in Coef is defined by
a resolution of dx; that is

H"(0x;N) = H*(R(0x); N), resp.
Hn(aXyN) :Hn(R(aX)aN)

Using the results (7.3), (7.4) and (7.5) one readily checks that the T-homology and
T-cohomology is well defined and natural in dx € Coef and in N. For n = 0 the
T-(co-)homology is trivial so that we obtain a reduced (co-)homology. Moreover
using (I.6.5) we obtain the right mod(dx)-module H, (0x) = Hp(R(Jx)) and the
left mod(dx )-module H"(9x) = H"(R(9x)).

In case T is an augmented theory of coactions we obtain the non-reduced (co-)
homology by replacing R by Ra,g; for example

H"(&X;N) = Hn(Raug(aX); N)
Hn(aX) = Hn(Raug(aX))

Clearly in degree > 2 the non-reduced (co-) homology coincides with the reduced
(co-) homology.

(7.8) Example. Let S be a single sorted theory of cogroups and let T = free(S).
Then the category mod = mod(U) is obtained by the enveloping functor U :
Coef — Rings. See (1.5.13). One readily checks that mod(U) has enough exact
sequences in the sense of (7.5). Therefore the T-(co-)homology of an object

G € model(S) = Coef (1)

is defined. Here we use the equivalence of categories in (I1.4.6). Hence the object G
is given by a presentation dx. The category mod(dx) coincides with the category
of free right U(G)-modules. Let Mg (resp. N¢) be a right (resp. left) U(G)-module.
Then Mg defines the right mod(9x)-module

M = HOmU(G)(—,Mg) : mOd(ax)Op — Ab (2)

which carries a free right U(G)-module Ag to the abelian group of U(G)-homo-
morphisms Ag — Mg. Moreover N defines the left mod(dx )-module

N =— ®U(G) NG : mod(@X) — Ab (3)

which carries Ag to the U(G)-tensor product Ag ®y(g) Ng. Now we denote the
T-(co-)homology by
H"(G,Mg) = H"(0x, M) (4)
H,(G,Ng) = H"(0x,N) (5)
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Here the right hand side is defined in (7.7). We define the functor (see (1.5.12))
D : model(S) — Mod(U) (6)
which carries G to right U(G)-module
D(G) = Hi(G,U(G)) = Hi(9x)

This is the cokernel of dx considered as a morphism in mod(U) where dx is
determined by the object Ox € Coef representing G. It follows from (7.3) that D
is a well defined functor. Now it is clear by definition of resolutions in (7.2) that
one has for n € Z:

H™(G, Mg) = Exty; ,(D(G), Mg) (7)

H,,(G, Mg) = Tor,{(D(G), Mc) (8)
If T = gr is the theory of free groups then

U(G)=2Z|G] and D(G)=I(G). 9)

Here I(G) is the augmentation ideal in Z[G] and hence (7), (8) is the classical (co-)
homology of the group G with coefficients in the G-module M¢. If T = nil,, then

U(G) = Z|G]/I(G)™ and D(G)=I(G)/I(G)"* . (10)
More generally if T = var is given by a variety of groups Var then
U(G) =Z|G]/V(G) and D(G)=I(G) ®z1q) U(G). (11)

Here U(Q) is the factor ring of Z[G] described by Leedham-Green and the func-
tor D in (11) coincides with the functor D considered in Leedham-Green [HV]
page 2.

Finally let R be a commutative ring which is a principal ideal domain and let
alg be the theory of free algebras over R. If G € Alg is free as an R-module we
have

UG)=G?®G and D(G)=kernel(p: GG — G) (12)

where p is the multiplication of G. In this case (7), (8) coincide with the classical
Hochschild-(co- )homology of the algebra G, see Mac Lane [H].

8 Appendix: Twisted Homology of Coefficient Objects
We study a further concept of (co-) homology defined for objects in the category

Coef of coefficients of a theory T. We proceed similarly as in Appendix A where
we used resolutions in the category TWIST]. We now define resolutions in the
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category TWISTS termed twisted resolutions which yield canonically the twisted
homology. Let T be a theory of coactions. We say that a sequence of morphisms
A o X"vX X (81)

is ezact in T if A and X" are cogroups and « is trivial on X such that for all
cogroups B in T the induced sequence

(BX 71)
—5

(a,1x)« (0x,1).
0, SN AN

T(B,AV X), T(B, X"V X), T(B, X) (8.2)

of group homomorphisms is exact.

(8.8) Definition. A twisted resolution of the object Ox € Coef is an object A|0x
in TWISTS with the following properties. For ds : A3V dx — X"V 0x in A|0x
there exists an exact sequence

Ay~ xryx @D (1)

in T such that ds = E(935 ® 1). Moreover for n > 3 the sequences

A1 VOx I A vy —% s A, vox (2)

are exact. The sequence (2) needs not to be exact for n = 2; the “exactness
condition” for n = 2 is described by (1).

(8.4) Lemma. Let B|Oy be an object in TWISTS and let A|Ox be a twisted
resolution of Ox € Coef. Given a morphism u : Oy — Ox € Coef there exists a
u-equivariant twisted chain map

f: B|dy — A|0x € TWIST
and two such are homotopic in TWISTS.

Proof. We know that u = {f} is represented by a d-compatible map f so that
there is (f”, f) : Oy — Ox in Twist. Now consider the following diagram in T.

B % , ynyy D,y
fl l(f”,ixf) lf (1)
Agv X 00X) ey x Oy

where 03 in the top row is given by the cocycle condition for B|dy in (1.8). Since
(8.2) (1) is exact we can find f” trivial on X such that the diagram commutes. We
define the map f = (f>1, f) in the proposition by f; = E(Vf® 1), f2 = (f" ©1)
and f3 = E(f"” ®1). Then the diagram

B4 V Oy L B3 V 0y L) By V Oy

‘| [T g

Ay VIOx —— A3VOx —— AV Oy
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commutes so that by exactness of (8.2) (2) there exists f4 extending the diagram
commutatively. Inductively we obtain this way f, for n > 4. Now let

g=(9>1,9) : Bloy — B|0x

be a further u-equivariant twisted chain map. Then we know {g} = u = {f} so
that there exists a : Y — X” V X trivial on X with

9=1[+00x,1)a (3)

Compare (4). Moreover g is 0-compatible with (¢”, g) : 0y — 0x € Twist. Hence
we get

(Ox, D(=f"+9" = (a,ixf) v Oy) =0 (4)
so that by exactness (8.1) (1) there is o’ : Y” — A3V X trivial on X with
(03,ix)a’ = —f" +g" — (a,ix f) V Oy (5)

We now define a twisted homotopy (see (4.1)) of the form (a>1,a) : f ~ g as
follows. Let oy = E(a ® 1) and a2 = E(a’ ® 1) then equation (5) shows

—fot+g2=daz+ aid (6)
Moreover we get

d(—dod — f3+g3) =

7
—dasd — fod+ g2d =0 (M

so that by exactness (8.2) (2) there exists ag with
dog = —azd — f3+ g3 (8)
Inductively we obtain this way o, for n > 3. q.e.d.

(8.5) Corollary. Let A|0x and B|0x be two twisted resolutions of Ox . Then there
exists a canonical Ox -equivariant twisted homology equivalence

A|3X jad B|8X
in TWISTS/~.
Hence twisted resolutions are unique up to canonical isomorphisms.

(8.6) Definition. We say that T has enough exact sequences if for all dx € Coef
there exists an exact sequence

A2, xryx D x

in T and if mod has enough exact sequences in the sense of (7.5).
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(8.7) Proposition. Assume T has enough eract sequences. Then each object
Ox € Coef has a twisted resolution Q(0x) = A|Ox. By (8.4) the choice of such
twisted resolutions yields a functor

Q : Coef — TWIST;/~

which splits the coefficient functor c. Two such functors obtained by twisted reso-
lutions are canonically isomorphic.

The composition of the functor @) and the chain functor K in (5.1) yields the
notion of twisted (co-) homology below. Again if T is an augmented theory of
coactions we also have the composite of functors

(KQ)aug : Coef —2— TWISTS/~ —X TWISTS/~ —**, chainsg/~

(8.8) Definition. Let T be a theory of coactions with enough exact sequences and
let N be a right (resp. left) mod(dx)-module as in (I1.6.4). Then the twisted T
-cohomology, resp. the twisted T -homology is defined by a twisted resolution A|0x
of Ox; that is
H{ist(0x; N) = H"(KQ(0x); N)
H"(0x; N) = Hn(KQ(x); N)
Moreover using (I.6.5) we then obtain the right mod(Jy )-module Htst(9y) =
H,(KQ(0x)) and the left mod(Jx)-module H} . (0x) = H"(KQ(0x)).
In case T is an augmented theory of coactions we obtain the non-reduced
twisted (co-) homology by replacing KQ by (KQ)aug; for example
tw1st (8X’ ) Hn((KQ)aug (6)(); N)
Htwm( ) Hn((KQ)aUg(aX))

In degree > 2 this coincides with the corresponding reduced twisted (co-) homology
above.

(8.9) Proposition. Assume T has enough exact sequences. Using (7.3) we obtain
a canonical natural transformation

0 : KQ(ax) - R(ax)
in chain/~. This shows that we have natural transformations

0~ :Hn(aX7 ) - thwmt(aX7N)
0, :H™S"(0x,N) — H,(dx,N)

which are isomorphisms for n < 1. Moreover 0, is surjective and 0* is injective in
degree 2.
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Proof. The two dimensional parts of R(0x) and KQ(0x ) coincide. They are given
by dx. q.e.d.

The mod(dy )-module I'1 (3y ) in § 2 has a new interpretation by the next result.

(8.10) Proposition. Assume T has enough exact sequences. Then we have the
natural isomorphism of right mod(dy )-modules

HE"™(9y) = I1(y)

This follows readily from the definition of exactness in (8.1) and the definition
of Fl in § 2.

(8.11) Example. Let S be a single sorted theory of cogroups and let T = free(S).
Then it is easy to see that T has enough exact sequences. With the notation in
(7.8) the twisted (co-) homology of G € model(S) = Coef is defined by

{ thvist (G7 MG) = thwist (8X7 M)

) . 1
HY(G, Ng) = HE*!(9x, N) W

where Ox is a presentation of G. We also write I'1(G) = I'1(dx) so that by (8.10)
I(G) = Hy"™(G,U(G)) 2)
is a right U(G)-module. One readily obtains the exact sequences

H3(G,Mg) — I'(G) ®u(q) Mc — H5"™ (G, Mg) 2 Hy(G,Mg) — 0 (3)
H*(G, M) «— Homy ) (I'(G), Mg) «— HZ(G, Mg) <= H*(G,Mg) — 0 (4)

Remark. If S = var? is a theory defining a variety of groups model(S) = Var
then the exact sequences (3), (4) are exactly those of 3.2 II in Leedham-Green
[HV]. For this use (8.8) (7), (8).

The Leedham-Green (co-) homology on the category Var is a special case
of the Quillen (co-) homology which we denote by H((G, Mg) and HR(G, Mg)
respectively. Compare Quillen (2.1) [CR]. Here G is an object in model(S) and
My is a right (resp. left) U(G)-module as above. We claim that there are natural
transformations

™ :Hl (G, Me) — Hy ™Y (G, M) (5)
7 :HY (G, M¢) — HYSY(G, M) (6)

which are isomorphisms in degree n < 2 and for which 7* is injective and 7, is
surjective in degree 3. Compare (V1.12.10).

The module I (G) in (2) for the variety of groups of nilpotency degree n can
be described by the relative dimension subgroup, that is

I(G) = Dp41(H,B) N B/Bs (7)
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for T = nil, and G € Nil,. Here H is an object in nil, which surjects to G by
B : H - G with kernel(3) = B and B, the commutator subgroup of B. Moreover
Dp1(H,B)y=HN (1 +I1I(B)-I(H)+ I(H)"1).

For n = 2 the group (7) was functorially computed by Hartl [H] namely

I (G) = G® x G* /diagonal elements = (L, $?)(G?") (8)

for T = nil, and G € Nil,. Here * denotes the torsion product of abelian groups
and G is the abelianization of G. Moreover S? : Ab — Ab is the symmetric
square functor with S?(A) = A® A/(a® b~ b® a) and L,5? is the first derived
functor of S2.

It is a classical result of J.H.C. Whitehead [CHII] that for the variety of groups
we have

I(r)=0 (9)

for T = gr and 7 € Gr. Moreover we prove in VI.4.11 Baues [AH] that one gets a
non trivial Iy for the theory T = gr(G) where G is a group. In this case an object
in coef = Gr¥ is a homomorphism 7 : G — 7 € Gr and we get

(G -5 1) = Z[iG \ 7] ® (keri)*® (10)
Here iG \ 7 denotes the set of left cosets of iG in the group 7 and (ker4)2P is the

abelianization of the kernel (i : G — 7). If G = 0 is trivial then (10) implies (9).
The enveloping functor U on Gr® is given by U(G — ) = Z[r].
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In this chapter we describe most elementary properties of a homotopy theory.
These properties are used to define the axioms of a cofibration category. We also
describe basic results which can be deduced from these axioms and which are
used in this book. We recall these results from Baues [AH]. In the applications
we shall consider numerous different homotopy theories which satisfy the axioms
of a cofibration category. This shows that all results in this chapter and in the
following chapters can be applied in each of these examples of homotopy theories.

1 Cofibration Categories

Here we introduce the notion of a cofibration category; compare Baues [AH]. This
is a category together with two classes of morphisms, called cofibrations and weak
equivalences, such that four axioms C1,...,C4 are satisfied.

(1.1) Definition. A cofibration category is a category C with an additional struc-
ture

(C, cof , we),

subject to axioms C'1,C2,C3 and C4. Here cof and we are classes of morphisms
in C, called cofibrations and weak equivalences respectively.

Morphisms in C are also called maps in C. We write i : B C A or B — A for a
cofibration and we call u | B = ui : B — U the restriction of u : A — U. We write
X =5 Y for a weak equivalence in C. An isomorphism in C is denoted by 2. The
identity of the object X is 1 = 1x =id. A map in C is a trwial cofibration if it is
both a weak equivalence and a cofibration. An object R in a cofibration category C
will be called a fibrant model (or simply fibrant) if each trivial cofibration i : R"™Q
in C admits a retraction r: Q — R,7i = 1g.

The axioms in question are:

(C1) Composition axiom: The isomorphisms in C are weak equivalences and are
also cofibrations. For two maps

A-L.B 9% ¢

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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if any two of f,g and gf are weak equivalences, then so is the third. The
composite of cofibrations is a cofibration.

(C2) Push out aziom: For a cofibration ¢ : B > A and a map f : B — Y there
exists the push out in C

——f—> AUBYZAUfY

[
B 1 vy

and 7 is a cofibration. Moreover:
(a) if f is a weak equivalence, so is f,
(b) if 7 is a weak equivalence, so is 7.
(C3) Factorization azxiom: For a map f : B — Y in C there exists a commutative
diagram

f
B——Y
\ 7
i g
A
where i is a cofibration and g is a weak equivalence.

(C4) Aziom on fibrant models: For each object X in C there is a trivial cofibration
X5 RX where RX is fibrant in C. We call X>%RX a fibrant model of X.

In the book Baues [AH] we describe a rich homotopy theory which is available in
any cofibration category. In the following sections we recall some basic definitions
(like homotopy groups) and results from Baues [AH] needed in this book.

(1.2) Definition. Let * be the initial object of the cofibration category C. An
object X in C is cofibrant if the unique morphism * — X is a cofibration. Let
C. be the full subcategory of C consisting of cofibrant objects. Then C. with
cofibrations and weak equivalences as in C is again a cofibration category. Let
C.s be the full subcategory of C consisting of cofibrant and fibrant objects in C.

In the following we are mainly concerned with cofibration categories in which
all objects are cofibrant. In this case (C2) (a) is equivalent to (C2) (b) by 1.1.4
Baues [AH]. Moreover it is convenient to assume that all objects in C are fibrant.
In this case the complication arising from choosing fibrant models is avoided. The
theory in the following chapters is available also for cofibration categories in which
not all objects are fibrant; for example in the spiral cofibration category (AQ);s in
Chapter D.

(1.3) Ezample. Let M be a Quillen model category and let C be the full subcat-
egory of cofibrant objects in M with weak equivalences and cofibrations defined



1 Cofibration Categories 205

by M. Then C is a cofibration category in which all objects are cofibrant; compare
1.2.6 in Baues [AH]. This shows that all the results of the following chapters also
hold in Quillen model categories. There are, however, many cofibration categories
which have not the structure of a Quillen model category. For example the cat-
egory Topp of compact maps or the category End of compactifications. This is
the reason why we do not restrict to Quillen model categories.

(1.4) Definition. Let C be a cofibration category. Then Pair(C) is the following
category of pairs in C. Objects are maps i : B — A in C also denoted by (A, B)
and morphisms (A, B) — (X,Y’) are commutative diagrams

A%X

By

in C. The morphism (f, f') is a weak equivalence if f and f’ are weak equivalences
in C. Moreover (f, f') is a cofibration if f’ and

(f,i): AUgY - X

are cofibrations in C. Then Pair(C) is again a cofibration category. Compare I1.1.5
in Baues [AH]. An object (A, B) is fibrant if and only if A and B are fibrant in C.
Given an object Y in C we obtain the subcategory

CY C Pair(C).

Objects in CY are maps Y — X and maps are maps under Y in C. Weak equiva-
lences and cofibrations in C yield the structure of a cofibration category for CY .
The cofibrant objects in CY are the cofibrations ¥ »— X in C.

(1.5) Definition. Let f : Y — B be a map in C then we obtain the push foward
functor

(€"). L (CB).

which carries Y »— X to the induced cofibration B — B Us X. If f is a weak
equivalence then f, induces an isomorphism of homotopy categories, see 11.4.5 in
Baues [AH]. For example let i : * — R+ be a fibrant model of the initial object
* in C then the push forward functor

iv: C. = (C". — (C*).=C'

is an equivalence of homotopy categories. Here the initial object in C’ is fibrant. For
this reason we may assume below that the initial object in a cofibration category
is always fibrant.
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We now describe basic properties of a cofibration category used in this book.
for cofibrant objects X,Y there exists the sum

XVY=XU,Y (1.6)

in C which is the push out of X < % — Y. Let (1,1) : X VX — X be the folding
map. A cylinder IX of X is obtained by choosing via axiom (C3) a factorization
of the folding map

(0,%1)

(1L,1): XvX - IX -5 X (1.7)

where (ig, 1) is a cofibration and p is a weak equivalence. Two maps o, 3 : X — U
in C are homotopic if there exists a commutative diagram

XvX ¢ IX

Here H : a ~ 3 is termed a homotopy. If X is cofibrant and U is fibrant then ~ is
an equivalence relation. For a cofibrant object X in C and an object Y let

[X,Y] = C(X,RY)/~ (1.8)

be the set of homotopy classes. Here RY is a fibrant model chosen by (1.1) (C4).
An element g € [X,Y] is represented by a map g : X — Y in C if Y is fibrant
and is represented by a diagram g : X — RY <Y if Y is not fibrant. The context
will always make clear whether g denotes a map in C or a homotopy class. The
set [X,Y] is the set of morphisms X — Y in the homotopy category Ho(C) which
is obtained from C by inverting weak equivalences; see 11.3.6 in Baues [AH]. Ho-
motopy =~ is a natural equivalence relation on C.s in (1.2) so that the quotient
category C.f/~ is defined. The inclusion C.y C C induces the equivalence of
homotopy categories

C.f/~ 5 Ho(C)

We point out that the cylinder I(X VY') of a sum X VY of cofibrant objects can
be chosen to be IX V IY. This shows that the sum X VY in C is also a sum in
the homotopy category Ho(C).

We also need the relative cylinder Iy X of a cofibration Y »— X. Let X Uy X
be the push out of X «~ Y »— X and let (1,1) : X Uy X — X be the folding map.
Then Iy X is obtained by a factorization

(10,i1)

(L) : XUy X o IyX =5 X (1.9)
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Two maps f,g : X — U with f |Y = g | Y are homotopic relative Y if there
exists a map Iy X — U with Hig = f and Hi; = g. Clearly Iy is a cylinder in the
category (CY).. Let [X,U]Y be the set of homotopy classes in Ho(CY). If X — X
is a cofibration and if Y — U is a map into a fibrant object U of C then

(X,U]Y =CY(X,U)/~relY (1.10)

where CY (X, U) is the set of maps X — U under Y in CY; see (1.4).

2 Homotopy Groups

Let C be a cofibration category as in (1.1). A based object A in C is a cofibrant
object A together with a map

A% (2.1)

termed the trivial map on A. This defines the trivial map 0: A — x — U for all
objects U in C representing 0 € [A, U]. Given a based object we define the cone
C A and the suspension XA by the push out diagrams

IA cA 2 xA
(io,ilﬁ Tio T (2.2)
AV A A *
1,0 0

Here C A and X' A are based objects by use of Op : A — A — *. Hence the iterated
suspensions X" A, n > 0, are defined. We introduce the homotopy group

2 (U) = [Z"A, U] (2.3)

n

by use of the homotopy set (1.8). This is a pointed set for n = 0, a group for n = 1
and an abelian group for n > 2; see I1.§ 6 Baues [AH]. Moreover, if A is a cogroup
in Ho(C) then 72(U) is a group for n = 0 and an abelian group for n > 1. The
pair (C'A, A) is a based object in Pair(C) so that for an object (U, V) in Pair(C)
also the relative homotopy groups

T (U, V) = [E™(CA, A), (U, V)] (2.4)

are defined. As usual one obtains the exact sequence (n > 0)

j a i
1 (U) == m (U V) == 7 (V) = i (U)

which is an exact sequence of groups if A is a cogroup in Ho(C). Compare I1.7.8
Baues [AH].
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Given a based object B and an object Y in C we consider the retraction
(0,1): BVY — Y which defines

T (BVY)y =[E"A,BV Y]y =kernel{(0,1), : 4 (BVY) - 7 (Y)}  (2.5)

If A is a cogroup in Ho(C) we see that the operators 7 and 9 of the exact sequence
above induce isomorphisms j and 9 in the following diagram (n > 1):

o
7A(CBVY,BVY) = 72 (BVY),

| movas.
TA(XBVY)sy é TA(XBVY)Y)
The partial suspension
E:n2 (BVY)y »712(ZBVY), (2.6)

is defined by the composite E = j~!(my V 1y ).0~ . Here m is the map in (2.2). If
Y = x this is the suspension

Tinf (B) - A (EB)

Compare II.§ 11 in Baues [AH| where it is shown that E and X are homomor-
phisms of groups.

(2.7) Lemma. If the based object A is a cogroup in Ho(C) then the group [A,Y]
acts from the right on the group wA(D VY )y for m > 0 and the partial suspension
E in (2.6) is equivariant with respect to the action of [A,Y].

Proof. Since A is a cogroup we can define the element
p=—ig+i +iz € [A, AV Al
The m-fold partial suspension
Empe XA XAV Ay
defines the action of a € [4,Y] on £ € 7A(D VYY), by
£ = (E™)"(§ )

Then clearly E(£%) = (E€)®; compare the properties of the partial suspension in
II.§ 11 Baues [AH]. g.e.d.
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3 Principal Cofibrations

We here describe principal cofibrations which are called principal since they are
defined by an attaching map. The dual of a principal cofibration is a principal
fibration obtained by a classifying map. In this sense an attaching map is a “co-
classifying map”.

Given a based object B and an object Y in C we define for a map g: B —» Y
the mapping cone Cy4 by the push out diagram

cBvy ™Y o —cBuU,Y

Ti()\/l ng (31)

where ipV1lisa cofibration so that also ¢4 is a cofibration. We call a cofibration
Y — Y a principal cofibration with attaching map g € [B,Y] if there is a map

B -2 RYEY in C representing g together with a weak equivalence
Cy=CBU, RY — RY underY. (1)

At this point it is convenient to assume that all objects in C are fibrant so that
we can choose RY = Y. In particular i, in (3.1) is a principal cofibration. It is
clear that for all g € [B, Y] there exists a principal cofibration with attaching map
Y and up to equivalence in Ho(CY) this cofibration in uniquely determined by
g € [B,Y]. The composite of pair maps

(CB,B) = (Cy,Y) ~ (Y,Y)
given by (mg, 1) in (3.1) and by (1) represents the characteristic element
Tg € 7I'IB (Y’ Y) (2)

of the principal cofibration (Y, Y). Clearly the boundary operator 0 : 72(Y,Y) —
78 (Y) carries this element to the attaching map, that is om, = g.
By (3.1) we obtain the following commutative diagram of groups where A is a

cogroup in Ho(C), n > 1.

TA(CBVY,BVY) —2 74 (BVY),

o

l(ng,m l(g’”*
A

TA(Cy,Y) —2 . A (3.2)

Wf(f/, Y)

n—1
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We define the operator (n > 1)

By 72 (BVY)y - m{(Y,Y) by
Ey = (14,1),071

For an element f € 7/2(C,) we write
feEy (&) withéen] ((BVY)s (2)

if j(f) = Ey(§). Here j : n(C,) — w(C,,Y) is the operator from the ex-
act sequence of a pair. Clearly E,(§) = j~'Ey(€) is non empty if and only if
(9,1)«(&) = 0. We also call f with f € E4(§) a functional suspension of £&. Com-
pare I1.§ 11 in Baues [AH]. If ¢ = 0 then Cy = ¥B VY and (mg, 1), coincides
with (7 V 1y ). in (2.6). A principal cofibration has the following crucial property
I1.8.5 Baues [AH]:

(3.3) Lemma. Let (Y,Y) be a principal cofibration with attaching map g € [B, Y]
and let uw :' Y — U be a map in C where U is fibrant. Then there exists an

extension u in C
Y
N
BT>YT>U

with @ig = w if and only if the element g*{u} € [B,U] is the trivial element 0 in
the homotopy set B, U].

For each principal cofibration (Y,Y) with attaching map g : B — Y we have
the coaction p which is an element

p€[Cy,CyVv EB)Y =[V,YVEBY (3.4)
The coaction u defines the action + of 8 € [Y'B,U] on & with
§E+Be(Cy, U =V, u)”
{ £+ 0= p(£,0)
If U is fibrant and € : Y — U, 3: ¥B — U are maps in C then
E4+B8:Y -U

denotes any map in C representing the element £ + 3 € [Y,U]Y. In particular the
restrictions of £ + 3 and £ to Y coincide, thatis (E+8) | Y =& | Y.

(3.5) Lemma. Assume the set [Y,U]Y is non empty. Then the action + of the
group [X'B,U] on the set [Y, U)Y is transitive and effective. That is for £,& €
[Y,U]Y there is a unique B € [YB,U] with & = £+ 3.
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Compare I1.8.9 in Baues [AH]. We use p in (2.4) also for the definition of the
action

[C,, U] x [£B,U] = [C,, U] (3.6)

which carries (£,8) to £ + 8 = u*(£,3). This action, however, is in general not
transitive or effective. In topology the action + is the well known action used in
the Puppe sequence of a cofibration.

The element p in (3.4) induces the map p. in the following diagram where i1,
resp. 42, denote the inclusions of Cy, resp. X'B, into the sum C, V ¥'B.

P (Cy,Y) —— 7P(C, Vv ZB,Y) O

T

(X B, )

P (Cy,Y)

(3.7) Lemma. The characteristic element 7, € m2(Cy,Y) satisfies the formula
pe(g) = (i1)s7g + (i2)xT0
where Ty € T2 (X B, *) is represented by the quotient map (CB, B) — (X B, *).

Using the coaction (3.4) we define for a cogroup A in Ho(C) the difference
operator

v ﬂf(Cg) —m(ZBV Cy)2
V(f) = —iaf + (i2 +i1)f (3.8)

where i; : ¥B C ¥BV Cy and iy : Cy C XBV C, are the inclusions; compare
(I.3.2). Clearly 7(f) is trivial on Cy. The difference operator 5/ is part of the
following commutative diagram; compare I1.§ 12 in Baues [AH].

T(Cy) — s 7 (Cy,Y) 2 pasB Y €, Y) (3.9)

e b Js

T2 (EBVC,), —i» TA(EBVC,,C,)

Here ¢ is induced by the inclusion of pairs given by ¢ : ¥ C C, and j is the
isomorphism already used in (2.6). Using the operators in (3.2) and (2.6) also the
following diagram commutes.

r8(BVY)y —2— rA(ZBVY),
lEy l(lw)* (3.10)

ﬂf(Cg,Y) —7 Wf(EB \% Cg)z
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Compare I1.12.5 in Baues [AH]. This diagram shows for a functional suspension f
the following conclusion holds.

feE&) = vf=(1Vi).E®)
Compare (3.2) (2).

(3.11) Definition. Let (X,X) and (Y,Y) be principal cofibrations with attaching
maps f: A — X and g : B — Y where A is a cogroup in Ho(C). Then we consider
the diagram

Eend(BVY)y < zAB)s¢

o
mpenf(X,X) —=—  af(Y,Y)

where F': (X, X) — (Y,Y) is a pair map in Pair(C) and 7 is the characteristic
element in (2.8) (2). We say that F' is a twisted map associated to & € [A, BV Y],
if the equation

F*(Wf) = Ey (&)

holds. Moreover F is a principal map associated to &' € [A4, B] if

Fi(mp) = By (i1)«(£).

(3.12) Lemma. Let (X,X) and (Y,Y) be principal cofibrations with attaching
maps f € [A, X]| and g € [B,Y] respectively. Given ¢ map n: X — Y in C and
an element € € [A, BV Y]y such that the diagram

A —S . Bvy
7| |
X 1> v
commutes in Ho(C), that is (g,1).§ = n«(f), there exists a twisted map
F:(X,X)— (Y,Y) in Pair(C)
extending n and associated to €.

For a proof see V.§2 in Baues [AH]. Even in topology this lemma is not so
well known. The usual construction used in topology is described by the following
special case of (3.12).

(3.13) Addendum. Givenn:X — Y in C and an element § € [A, B] such that
the diagram
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§

A—— B
O
X —21>vY
commutes in Ho(C), that is g.& = n.f, there exists a principal map
F:(X,X)— (Y,Y) inPair(C)
extending 1 and associated to &.

(3.14) Definition. Let (X, X) and (Y,Y) be principal cofibrations with attaching
maps f € [4,X] and g € [B,Y] respectively. Then any map

F:(X,X)— (Y,Y) in Pair(C)
yields the difference element
V(F) = VF.(nf) € [EA, ZBVY],

by use of the operators
mp e (X.X) I n (YY) L s (ZBVY),

Here 7 is the characteristic element (3.1) (2) and v is the difference operator in
(3.9).

In I1.12.7 of Baues [AH| we show that the following diagram commutes
X £, Y
7:2+l'1J( J{igﬂk’il (3.15)

(V(F),i2F)
- — T

YAV X YBVY

in the homotopy category Ho(C). This corresponds exactly to the diagram in
(1.3.3). The map is + i1 is up to an interchange of summands the same as the
coaction p in (3.4). Using (3.10) and (3.11) we get

(3.16) Lemma. Let F: (X, X) — (Y,Y) be a twisted map associated to & then
V(F) = (1Vi).E(§)

where i : Y C Y is the inclusion.
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4 The Cylinder of Pairs

Let X be a cofibrant object in the cofibration category C and let
XVXr—IX - X

be a cylinder as in (1.9). If X X is a cofibration then we can choose the cylinder
IX and IX in such a way that we have cofibrations in C

XVX—IX—XUIXUX —IX (4.1)

Here X UIX U X is the pushout of X VX «— XV X — IX.In fact, we know by
(1.4) that Pair (C) is again a cofibration category and that (X, X) is a cofibrant
object in Pair (C). The cylinder I(X, X) in Pair (C) yields the cofibration

(X, X)V (X, X)— I(X,X) = (IX,IX)

with the properties in (4.1). For this compare the definition of cofibration in
Pair (C) in (1.4).

(4.2) Lemma. Let (X,X) be a principal cofibration with attaching map f €
[A, X]. Then

XUIXUX — IX
is a principal cofibration with attaching map wy € [YA, X UIX U X]. Moreover
iX +wp=i¥ € [X,XUIXUX]
where + z's_deﬁned by (3.4). Here i§ and z{( are the two inclusions of X into
XUIXUX.

Compare I1.8.12 in Baues [AH].

We now consider a triple (X, X,7T) where (X,X) and (X,T) are principal
cofibrations with attaching maps f € [4, X] and h € [Q, T] respectively. Then we
obtain via (4.1) cofibrations

XUITUX 5 XUIXUX 51X (4.3)

Here (4.2) shows that i is a principal cofibration with attaching map wy € [¥' A, Xu
IX UX]. Moreover (4.2) shows also that j is a principal cofibration with attaching
map

W = (i f,wn, iy f) E[AVIYQV A, X UIT U X (4.4)

Here if, i{* are the two inclusions of X and wy, is obtained for (IX, X UIT U X)
as in (4.2). The next result shows the surprising fact that in this situation the map
wy is often a functional suspension; see (3.2).
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(4.5) Theorem. Let A = XA’ be a suspension in C. Then there is an element
Ee[A,(AVXQVA)V(XUITUX),
such that wy € Ew (§). In fact, £ can be chosen to be
§=—if +(Vf) (=isq,i) +1if

Here the inclusions of the three summands in AV XQV A are termed i}, ng,i{‘.
Moreover

6]‘. € [A72Q \ X]2

satisfies /f =ix f+ 7(f) —ixf where \7(f) is the difference element in (3.8).

We point out that the inclusion i : X C X yields

Vi) v(f) = AVi) v (f) €[4, 2QV X] (4.5)

Theorem (4.4) is proved in I1.1.37 Baues [AH].

5 Homotopy Cogroups and Homotopy Coactions

Recall that we defined in (I.1.3) the notions of a cogroup and a coaction in a cate-
gory. If C is a cofibration category we introduce the following additional concepts.

(5.1) Definition. Let C be a cofibration category with an initial object *. A ho-
motopy cogroup in C is a cofibrant object A in C which is a cogroup (4,0, u,v)
in homotopy category Ho(C) such that 0 : A — % in Ho(C) can be represented by
amap A — * in C and such that y: A — AV A can be represented by a map
u:A— R(AV A) in C such that

(i, 1) : AV A 5 R(AV A)

is a weak equivalence in C. A homotopy coaction in C is a cofibrant object X in
C which has the structure (X, A, ) of a coaction in Ho(C). Here A is a homotopy
cogroup and i : X — X V A € Ho(C) can be represented by a map p : X —
R(X V A) in C such that

(i1, ) : X VX 5 R(X V A)
is a weak equivalence in C.

We know by (I.1.12) that for any coaction (X, A, i) in Ho(C) the map (i, u) :
X VX — XV AeHo(C) is an isomorphism in Ho(C). For a homotopy coaction
we require that this isomorphism is actually induced by a weak equivalence.
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(5.2) Proposition. Each suspension A = XA’ in C is a homotopy cogroup and
each principal cofibration (X, *) in C with attaching map f € [Q,*] yields a ho-
motopy coaction (X, XQ, 1) where p is the coaction in (3.4).

Proof. We have CQ Uy x = Cy — RX and hence Cy V Cy — R(X V X). Since
QL
is null homotopic we obtain the weak equivalence
YQV Cy = R(CyV Cy)

Therefore also (i1,u) : X VX — R(X V XQ) is a weak equivalence. Compare also
(3.5). q.e.d.

(5.3) Lemma. Let (X, A, ) be a homotopy coaction in C. Then the cylinder
(IX,XV X) is a principal cofibration with attaching map wx € [A, X V X]. More-
over

i +wx =i € X, XV X]

where + is defined by the coaction y. Here iy and i are the two inclusions of X
into X V X.

This lemma is an analogue of lemma (4.2) above.

Proof of (5.3). Since (ix,u): X VX — R(X V A) is a weak equivalence there is
a weak equivalence p: R(X V A) — R(X V X) such that p(ix, ) is homotopic to
XV XS5R(X V X). Hence we obtain the composite in C

w:ACXVASRXVA) S RXVX)

This map represents wx in (5.2). Since * — CA is a weak equivalence we see
that j : X — R(X V X) U, CA is a weak equivalence. Moreover we choose h as in
the commutative diagram

(i0,%1)
_—

XVvX IX
| |
R(XVX) —— RIX
Since h.(w) = 0 € [A, I X] we see by (3.3) that there exists an extension
h:R(XVX)U, CA — RIX

of h with hj = ig. Since j and iy both are weak equivalences also 7 is one. This
proves (5.3); compare the definition of principal cofibration in (3.1). q.e.d.
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We now consider a principal cofibration (X, X) with attaching map f € [A, X]
where (X, Q, 1) is a homotopy coaction. Then we obtain via (4.1) cofibrations

XVX L XUIXUX S IX (5.4)

Here (4.2) shows that ¢ is a principal cofibration with attaching map wy¢. Moreover
(5.3) shows that j is a principal cofibration with attaching map

W = (if fiwx,iy f) €[AVQV A X V X] (5.5)

Here again i and iy are the two inclusions of X in X V X. The map W is the
analogue of W in (4.4). Also the following analogue of theorem (4.5) holds.

(5.6) Theorem. Let A be a homotopy cogroup in C. Then there is an element
€A (AVQV AV (X VX)),

such that wy € Ew (§) is a functional suspension of §&. In fact, § can be chosen to
be

&= =il +(Vf) (—ig, i) + it

Here the inclusion of the three summands in AV Q V A are termed if,ig,if.
Moreover

vfelAQvX],
satisfies Jf =ixf+ 7(f) +ixf where \7(f) is the difference element (1.3.2).
Again we have for the inclusion i : X € X
(Vi) vf=1Vi). vfe[AQUX] (5.7)

Theorem (5.6) is proved by a slight modification of the arguments in the proof of
11.13.7 Baues [AH].

6 The Theories susp(*) and cone(*)

Let C be a cofibration category with an initial object *. For each based object
B={x— B-5x} (6.1)

in C we obtain the suspension X' B which is a homotopy cogroup in C. by (5.2).
If B and B’ are based objects then also the sum B V B’ is a based object and we
have

S(BVB')=XBVXB (1)
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Let susp(*) be the homotopy category of suspensions in C, this is the full subcat-
egory

susp(*) C Ho(C,) (2)

consisting of all suspensions X'B where B is a based object in C. Then (1) and
(5.2) show that susp(x) is a theory of cogroups; compare (I.1.9). Subtheories of
susp(*) yield many examples of theories of cogroups. For example for C = Top*
the theory susp(*, D) consisting of one point unions of 1-spheres in (1.2.4) is such
a subtheory of susp(*). In Top* the initial object x is also the final object.

In general, however, we do not assume that * is the final object of the cofibration
category C. For each based object B in (6.1) we therefore may have maps g : B —
which do not coincide with the trivial map 0 in (6.1). In this case we obtain the
mapping cone, termed *-cone,

Cy=+U,CB (6.2)

where the cone C'B is defined by the trivial map 0 in (6.1). If g = 0 is the trivial
map then Cy = Y'B is the suspension of B. Using a cylinder object IB of B we
obtain C; also by the push out diagram in C

IB —— C,

(40,91) T T

BvB 2%,
Hence C,; may also be considered to be a “double mapping cylinder” in C in which
one of the glueing maps is specified to play the role of the trivial map. One needs
this specification to define the coaction map

uw:Cy—CyVvIB (1)

in Ho(C,); see (3.4). In fact, this is a homotopy coaction by (5.2). Moreover if
(g,9') : BV B’ — % is defined on a sum of based objects then

Clg.9) =CyVCy (2)

This is a generalisation of (6.1) (1). Moreover (2) is compatible with the coaction
maps at both sides of the equation. Let cone(x) be the homotopy category of -
cones in C, this is the full subcategory in Ho(C,) consisting of #-cones as in (6.2).
Then we have inclusions of full subcategories

susp(x) C cone(x) C Ho(C,) (6.3)

Using (6.2) (1), (2) we see that cone(x) is actually a theory of coactions. In
fact, (3.5) shows that the affine property holds in cone(*); compare (I1.1.11). The
cogroups in cone(x) are exactly the suspensions in susp(*). Subtheories of cone(x)
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yield many examples of theories of coactions. Such subtheories T C cone(x) yield
examples of “cofibration categories C under T” considered in (IV.2.1) below.

Now let D be a cofibrant object in C. Then the category CP of objects under
D is again a cofibration category with initial object D. We denote by

susp(D) C cone(D) C Ho(CP), (6.4)
the full subcategories of suspensions and D-cones in CP respectively. Hence (6.4)
coincides with (6.3) if we replace C by CP. In CP we have the special based object

50 =2 pvp -1, py (6.5)

so that the suspension X(£%) = X, (D) is defined in CP”. We also write X% =
X9D. The based object
$.(D) = (D — 5.0 D) (1)

in CP can be obtained more directly by the push out diagram

D —.xp-".D

(z‘o,z‘l)T L (2)

pvp -V, p

Here p'! is defined by p'm = p where p is the projection of the cylinder and p'i = 1p.
For example if C = Top then we have X, D = S! x D where the right hand
side is the product of the 1-sphere S* and D.
The homotopy category Ho(CP), has sums which are given by

(X,D)v(Y,D)=(XUpY,D)

Here (X, D) denotes an object in (CP), and X Up Y is a push out inC. Using the
homotopy extension property of the cofibration D — X (see I1.2.17 and 11.5.7 in
Baues [AH]) we define the augmentation map

ex : (X,D) — (X,D) V (2.D, D) (6.6)

in Ho(CP),, as follows. Let I(X, D) = (IX, ID) be the cylinder of the pair (X, D)
in (4.1). Then we have the cofibration

j:XUpID —IX

which is ig on X. Since j is a weak equivalence there exists a map r for which the
following diagram commutes where R(Y) is a fibrant model of Y in C.

X "5 1x " R(X Up ID) —" R(X Up Z.D)

RNy |

XUID—>——XUp XD
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Here v = 1 U is given by 7 in (6.5) (2) and v is an extension of V on fibrant
models; see I1.1.6 Baues [AH]. The composite # i defines the map e x in Ho(CP),
in (6.6).

(6.7) Lemma. The map €x is a coaction and for all f : (X,D) — (Y, D) in
Ho(CP), the diagram

(X,D) —* (X,D)Vv (2,.D,D)

] [

(Y,D) —— (Y,D)V (Z.D,D)
commutes in Ho(CP)...

This is a consequence of 11.5.9, 11.5.10 in Baues [AH]. The lemma shows that
the category Ho(CP).. is a Y-augmented theory where ¥ = (X, D, D); see (1.7.2).
Moreover we get the following result which yields many examples of augmented
theories of coactions; compare the notation in (I1.7.4).

(6.8) Proposition. The category cone(D) is a theory of coactions which is aug-
mented by ¥ = (X.D, D).

Proof. A cogroup in cone(x)(D) is a suspension X A of a based object A in (CP)...
Hence one has maps
A={D— A% D}
in C. The trivial map 0 yields the suspension XA by the push out diagrams in C
IA —— IpA —— XA

| I | 1)
AVA —— Aup A 29, p

Here I A is the cylinder of A in C and IpA is the cylinder of D — A in CP. As in
I1.2.10 Baues [AH] we obtain for the map 0: A — D the map I0 between cylinder
in C such that the following diagram commutes

JA —— AvaA %Y. p

o [wo s

ID—— pvp XY, p

This diagram induces a linear map
€x(A,D) : (EA,D) — (XD, D) 2)

of cogroups in Ho(CP),; for this use (1) and (6.5) (2). Now IL.5.15 Baues [AH]
shows that the maps in (2) and (6.6) satisfy a formula as in (1.7.4) (4). q.e.d.
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Proposition (6.8) shows that each full subtheory of cone(D) which contains
the D-torus X, D is actually an augmented theory of coactions.

(6.9) Example. Let C = Top and let D be a discrete space. Then the D-torus
¥ = (S'x D, D) is an object in the subtheory cone(D, D) of cone(D); see (1.2.11).
Here cone(D, D) is an augmented theory of coactions by (6.8) above. In this case
the augmentation in (6.6) and (6.8) (2) above coincides with the corresponding
augmentation already described in (1.7.6).

7 Appendix: Categories with a Cylinder Functor

The cylinder I X of a cofibrant object X in a cofibration category is obtained by
the factorization axiom C3; see (1.7). Therefore there are many choices of such
cylinders of X and X +— IX is not a functor in X. There are, however, many
examples of homotopy theories (in particular the homotopy theory of topological
spaces) which are defined by a cylinder functor. In the following definition we
describe the basic properties of a cylinder functor which are needed to obtain the
structure of a cofibration category.

(7.1) Definition. An I-category is a category C with the structure (C, cof, I,0).
Here cof is a class of morphisms in C, called cofibrations, I is a functor C — C
together with natural transformations ig,7; and p, § is the initial object in C. The
structure satisfies the following axioms (I1), ..., (I5).

(I1) Cylinder axiom: I : C — C is a functor together with natural transformations
1o, i1 1idc — I, p:I —idc,

such that for all objects X the composite pi. : X — IX — X is the identity
of X fore =0and e =1.

(I2) Push out axiom: For a cofibration ¢ : B — A and a map f there exists the
push out

A —— Aup X

1 T.

B —— X
!

where 7 is also a cofibration. Morover, the functor I carries this push out
diagram into a push out diagram, that is [(AUp X) = TAU;p I X. Moreover,
I = 0.

(I3) Cofibration axiom: Each isomorphism is a cofibration and for each object X
the map ) — X is a cofibration. We thus have by (12) the sum XUgY = X VY.
The composition of cofibrations is a cofibration. Moreover, a cofibration ¢ :
B — A has the following homotopy extension property in C. Let € € {0,1}.
For each commutative diagram in C
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B —“ . IB

i| |

A— X
f

there is E : A — X with F(li) = H and Fi. = f.
(I4) Relative cylinder axiom: For a cofibration i : B — A the map j defined by
the following push out diagram is a cofibration:

BvB Y, AvA

(iO’iI)J, push la

IB — AUIBUA —2— 1A

where j3 = Ii and ja = (ig,41). Equivalently (IB,BV B) — (IA,AV A) is
a cofibration in Pair(C), see (1.4).

(I5) The interchange axiom: For all objects X there exists amap T : ITX — IIX
with T, = I(ic) and TI(i.) = i. fore = 0and e = 1. We call T an interchange
map.

We sketch the double cylinder 17X by

i1

Iig 7/ Iy

s 20
Ve
/
The interchange map T restricted to the boundary I%2X is the reflection at

the diagonal.

(7.2) Example. Let Top be the category of topological spaces and let I = [0,1] C
R be the unit interval. The cylinder of a space X is defined by the product I(X) =
I x X with the product topology. Cofibrations in Top are the maps which have
the homotopy extension property in Top and the interchange map

T IIX=IxIxX—->IxIxX=I1IX

carries (t1,t2,x) to (t2,t1,2) for t1, to € I and © € X. Clearly this interchange
map is natural in X. It is not hard to see that (Top, I, cof,() satisfies all the
axioms of an I-category. We prove this by (8.2) and (8.3) below. Compare 1.4.2 in
Baues [AH].
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(7.3) Definition. Let C be an I-category. We say fo, f1 : A — X are homotopic
if there is G : TA — X with Gip = fp and Gi; = fi1. We call G a homotopy and
we write G : fo ~ fi. Amap f: A — X is a homotopy equivalence if there is
g:X — Awith fg~1x and gf ~ 14.

The next result shows that actually all the properties and results for a cofibra-
tion category are available in an I-category.

(7.4) Theorem. Let (C, cof,I,0) be an I-category. Then C is a cofibration cat-
egory with the following structure. Cofibrations are those of C, weak equivalences
are the homotopy equivalences and all objects are fibrant and cofibrant in C.

This theorem was originally proved in 1.3.3 of Baues [AH]. In an I-category C
the projection IX — X is a homotopy equivalence (see 1.3.13 Baues [AH]). Hence
by (I4) with B = * we see that IX is a cylinder in the sense of (1.7).

For a map i : B — A in an I-category C and ¢ € {0,1} we obtain the push
out diagram

IB —— IBU.A —%= . 1A

iET push T

B —— A

with jo | IB = Ii and j | A = i.. Here i, is a cofibration by (14).

(7.5) Lemma. The map i: B — A satisfies the homotopy extension property in
C if and only if there exist maps re : A — IB U, A with r.j. = 1 fore € {0,1}.

8 Appendix: Natural Cylinder Categories
and Homotopy Theory of Diagrams

We first introduce the notion of a “natural I-category” and we then show that the
category of diagrams in a natural [-category is again a natural I-category.

(8.1) Definition. A natural I-category (C,I,0) is a category C with an initial
object ) and a cylinder functor I such that (I1) and (I2) in (7.1) hold. Here cofi-
brations are defined to be exactly the maps which satisfy the homotopy extension
property in C; see (I3). Moreover (14)" and (I5)’ below are satisfied.

(I4)" For € € {0,1} and B — A there exists a commutative diagram in C where
Je is defined as in (7.5).

1A’ 2, ITA

i Tum

IB'U. A = [(IBU. A)
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Here B = AUIBUA — JA = A’ is the map j in (I4). Moreover a. and 3.
are natural in (A, B) € Pair(C). and f; is an isomorphism in C.

(I5)" There exists an interchange map T : I/X — IIX as in (I5) which is natural
in X.

(8.2) Proposition. A natural I-category is an I-category.

Proof. One readily checks (I3). Moreover (I4) holds by use of (7.5) since for a
cofibration B — A with retraction r. the composite

[1A —°< 114 = JIBU. A) 2 [B'U. A
is a retraction for j.. Clearly (I5) is satisfied by (I5)". q.e.d.

(8.3) Example. The category Top of topological spaces with the cylinder in (7.2)
is a natural I-category. We define the natural homeomorphism

e =T(ax1): IxIxX—IxIxX

by T in (7.2) and a homeomorphism « : I x I — [ x I which is given on a boundary
by the sketches

u

| v | w
T B

b a ! b ! c
Compare 1.4.2 in Baues [AH]. One can check that the restriction (. is well defined.

(8.4) Definition. Let J be a small category and let C be a category. A J -diagram
in C is a functor

X:J—-C

A morphism between such J-diagrams X, Y is a natural transformation f : X — Y
in C. Hence f is given by a collection of maps

f:X;—Y;, inC

where j € Ob(J) is an object in J. Here we write X (j) = X;. Let C’ be the
category of such J-diagrams and morphisms.

(8.5) Theorem. Let C be a natural I-category and let J be a small category.
Then also the category C? of J-diagrams in C is a natural I-category.
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Proof. The cylinder of a diagram X is defined by the composite of functors
1x:35%cLc (1)

where I is the cylinder in C. Hence we have (IX); = I(X;) for j € Ob(J). The
natural transformation 4o, é,p for I(X;) in C yield such transformation for I.X.
Hence (I1) is satisfied. Now cofibrations B ~— A are defined by the homotopy
extension property in C?. Hence we have by (7.5) the retraction

re: IA— IBU; A (2)

in the category of diagrams. Push outs of diagrams are obtained by push outs
in C. Hence by (2) we obtain for each j € Ob(J) the retraction in C

Te ! IA7 — IB; Ue Aj (3)

showing that B; — A; is a cofibration in C and hence the push outs in (I2) for
diagrams exist. Since I is compatible with push outs in C by (I2) we see that I
is also compatible with push outs of diagrams. Hence (I2) holds for the category
of diagrams; (it is easily seen that i has again the homotopy extension property).
Now (I4)" and (I5)" are clearly satisfied for diagrams since a., B and T are natural
in C. q.e.d.

9 Appendix: Homotopy Theory of Chain Complexes

Let A be an additive category with sums A® B. A chain complex in A is a graded
object V.= {V;, i € Z} in A together with a map d : V — V of degree —1
satisfying dd = 0. A chain map f: V — W is a map of degree 0 with df = fd and
a homotopy « : f ~ g between chain maps is a map a : V — W of degree 1 with
—f+g=da+ad. A chain map ¢ : V — W is a cofibration if the underlying graded
object of W is a direct sum W = V@ W and i : V — V@ W is the inclusion; then
V is a subcomplex of W; see (1.§6).

(9.1) Definition. For a graded object V let sV be the suspension of V with
(sV)p =Vy—1 and let s : V — sV be the map of degree +1 given by the identity.
We define the cylinder I1(V') of a chain complex V by the graded object

IV)=V'aV"&sV

Here V! = V" = V are two copies of the graded object V. Let ig : V — I(V),
i1 : V. — I(V) be the inclusions given by V =V’ and V = V" respectively. Then
the differential d of I(V') is defined by dip = iod, di; = i1d and

ds = —ig + i1 — sd.

One readily checks that a homotopy « corresponds to the chain map H : I(V) —
V' with Hs = a, Hig = f,Hi; = g. A chain map f : V — W induces the chain
map If: IV — IW given by f & f @ sf. Let p: I(V) — V be the chain map with
pip =pip =1 and p| sV = 0.
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(9.2) Proposition. The category chainz of chain complexes in A which are
bounded below and the cylinder I and cofibrations as above form an I-category in
the sense of (7.1).

This is an example of an I-category which is not a natural I-category. For the
proof of (9.2) we use the tensor product functor

®:ab’ x A - A (9.3)

where ab? is the category of finitely generated free abelian groups denoted by
@y Z, E a finite set. For A € A the tensor product is defined by

(@z) o=@

There is an obvious way to define ® on morphisms. If V' is a chain complex in A
and C is a chain complex in ab’ then C ® V is the chain complex in A given by

CeV).= @ cieV; (9.4)

i+j=n

The differential on C; ® V; is given by d ® V; 4+ (—1)'C; ® d. Let I be the chain
complex in ab? (concentrated in degree 0 and 1) which is generated by {0} and {1}
in degree 0 and by s in degree 1 with the differential d{s} = —{0} + {1}. Then we
identify the chain complexes

Ww=I®V (9.5)

by V' ={0} @V, V" ={1} ® V and sV = {s} ® V. Using (9.1) we see that this is
an isomorphism of chain complexes.

Proof of (9.2). Tt is easy to see that (I1) and (I2) and (I4) are satisfied. For the
proof of (I3) we have to check that a cofibration V' »— W has the homotopy
extension property, ¢ = 0. For W = V @ W we define the subchain complex
Wy =V6& Wgn. We define inductively the homotopy extension

E(n) : IW(n) uw — X
by E(n+1) | SWn+1 =0 and
E(n+1)i1 | V—Vn+1 = f | Wn+1 + E(n)sd | Wn+1.

One readily checks that ) is a well defined chain map; see the proof of .6.10 in
Baues [AH]. Since we assume that W is bounded below we can start the induction.
Hence E = lim E,,) is defined and therefore (I3) holds. Finally we obtain a natural
interchange map

T=t®1:IIQV —IQI®V

where t : I ® I — I ® I is defined by t(z ® y) = (—1)I*I¥ly ® z. q.e.d.
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Recall that the homology and cohomology of chain complexes is defined as in

(L§6).

(9.6) Theorem. LetV, W be chain complezes in A which are bounded below and
let f: V. — W be a chain map. Then (a) and (b) are equivalent.

(a) f is a homotopy equivalence.
(b) f induces an isomorphism

fo : Ho(V,M) — H, (W, M)

for all left A-modules M = Homp (A, ) where A is an object in A andn € Z.

Moreover if A is the additive subcategory of an abelian category B such that all
objects of A are projective in B then (a) is equivalent to (c).

(¢) f induces an isomorphism
f*: H'(W,N) — H"(V,N)

for all right A-modules N = Hompg( ,B) where B is an object in B and
n € 7Z.

Theorem (1.6.6) is an easy consequence of this result. The equivalence (a) < (b)
in the theorem is a special case of the general Whitehead theorem in the next
chapter.

Proof of (9.6). By (9.2) we know that chain} is a cofibration category; see (7.4).
Hence we can use the Puppe or cofiber sequence of f. Since f is a homotopy
equivalence if and only if the suspension X' f is a homotopy equivalence we see
via the Puppe sequence that this is the case if and only if the mapping cone
U = Cy is contractible. On the other hand the (co-) homology of U with coefficients
M (resp. N) is trivial if and only if the maps f. in (b) (resp. f* in (c)) are
isomorphisms for all n. This shows that it suffices to prove (9.6) if W is the trivial
chain complex. It is clear that (a) = (b) and (a) = (c) holds. We now show
(b) = (a). For this we need the assumption that v is bounded below with V; = x
for i < ng. Since Hp(V, M) = 0 with M = Hom(V,,,, —) we see that there exists
Ong ¢ Vng = Vine+1 with day, = 1. Now assume o, : V;, — V41 is constructed
with 1 = day,, + ap—1d. Then d(1 — a,d) = d — da,d = a,—1dd = 0 and hence
1 — a,d represents an element in H,;(V,M) = 0 with M = Hom(V,41,—).
Hence there exists ay,4+1 with day4+1 = 1 — apd. This completes the proof that V
is contractible.

Next we show (¢) = (b). For this let H*(V,N) = 0 for n € Z and all N as
in (¢). In (c) we have A C B where B is an abelian category. (We may assume
that A and B are small and that B is a subcategory of the category of modules
over some ring; see Borceaux [CA]). Consider in B the diagram

Vier =2 v L cok(dnor) > im(dp) & Vies
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where cok = cokernel and im = image.

Since gd,+1 = 0 we see that ¢ represents an element in H"(V, N) = 0 with
N = Hom(—,cokd,+1). Hence there exists p : V,,_1 — cokd,y1 with pd, = ¢
or pijqg = q and hence pij = 1. Hence j is a monomorphism. Since j is also an
epimorphism we see that j is an isomorphism. This implies im d,,+; = ker d,, so that
V is exact. Since the objects of A are projective in B we see that also Homa (4, V)
is exact for all objects A in A and therefore (b) holds. This completes the proof
of (9.6). q-e.d.
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We introduce “complexes” and “cellular objects” in cofibration categories which
correspond to CW-complexes in algebraic topology. We prove a general Whitehead
theorem for complexes and for cellular objects. This theorem yields as specializa-
tion most of the various Whitehead theorems proved independently in different
fields of the literature. We also study the general concepts in cofibration categories
which in algebraic topology correspond to the “cellular approximation theorem”
and the “Blakers-Massey theorem”.

1 Filtered Objects

We consider filtered objects in a cofibration category C and we define 0-homo-
topies and 1-homotopies for maps between filtered objects. In the next section
we introduce complexes in a cofibration category which are examples of filtered
objects.

(1.1) Definition. Let C be a cofibration category. Then Filo(C) is the following
category of filtered objects in C. Objects are diagrams

Aso=(Ap— A1 — ... Ay > Api1 — ...)

of maps i : A, — Apy1 in C, n > 0. A morphism f : A>9 — B> is a sequence
of maps f, : A, — By, with if, = fn+17. We say that f is a weak equivalence if
each f, is a weak equivalence in C. Moreover, f is a cofibration if each map

(fn+1,fn) : (An+1;An) - (Bn+laBn)
is a cofibration in Pair(C); see (IT1.1.4). We have the full inclusion of categories
C C Filp(C)

which carries A € C to the constant filtered object with A,, = A for n > 0 and
i = 1. The initial object of Fily(C) is the constant filtered object given by =
in C. Moreover we say that X>¢ is of dimension < n if X;;, = X,, for m > n and
if ©: X, = Xyt is the identity. Let

Fil; (C) C Fily(C)

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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be the full subcategory of objects X>q with Xy = the initial object of C. We also
write X>; € Fil;(C) where X>; = (X; — X — ...) is given by X>¢ = (x —
X1 - X2 ... )

(1.2) Lemma. The category Fily(C) with weak equivalences and cofibrations in
(1.1) is a cofibration category. An object A>q is fibrant if and only if all objects A;,
1 >0, are fibrant in C. Moreover A>q is coftbrant if Ay is cofibrant in C and all
i: A, — Apy1 are cofibrations in C.

Compare II1.1.2 in Baues [AH].

(1.8) Definition. In the category Filo(C) we consider two notions of homotopies.
Given a cofibrant object A>( the cylinder

IAZ():(IAoCIAlC...) (1)
consists of a sequence of cylinders I A, in C, n > 0. Two maps f, g: A>¢o — Uxo
are homotopic if there exists a map H : IA>¢g — Usg in Filo(C) with Hig = f,
Hi; = g. We call such a homotopy a 0-homotopy H : f 2 g. Let

7 UZO — 8_1U20 (2)

be the canonical shift map in Fily(C). Here we set (s 'Usq),, = Up41 for n > 0so
that s71Us¢ = (Uy — Uy — ...). Then (2) in degree n is the map i : U, — Uy4;.

The maps f, g are 1-homotopic, f o g; if there exists a 0-homotopy i f 2 1g. We
define the cylinder object for 1-homotopies I A>q € Fily(C) by

{ (IAso)o = Ao V Ag

_ 3
(IA>0)n = A, UIA,_1UA, forn>1 3)

where the right hand side is the push out of A, VA, «— A,_1VA,_1 — TA,_1.

Hence we have the cofibration A>o V A>g — TAsq and a 1-homotopy H : f L g
is the same as a map H : IA>9 — Uso with Hig = f and Hi; = g. Compare also
(II1.4.3).

Ezample. If C = Top and if A> is the filtration of skeleta of the CW-complex A
in C then IAs is the filtration of skeleta of the cylinder I x A. Moreover if
C = Top” is the category of pointed spaces and if A>; is the filtration of skeleta
Al C A% C ... of areduced CW-complex A with A® = * then I A>, is the filtration
of skeleta of the reduced cylinder I x A/I x {*}.

Let Filo(C).s be the full subcategory of cofibrant and fibrant objects in
Fily(C). For objects X>0, Uso in Filg(C).s we have the quotient map

(X0, Usol/~ — [X50, Usol/~ (1.4)

where the left hand side is the set of 0-homotopy classes and the right hand side
is the set of 1-homotopy classes. Accordingly one has the quotient functor
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: 0 . 1
Fllo(C)Cf/E — FllO(C)Cf/Z

of homotopy categories. Compare also Baues III.1.5 [AH].

In general we do not assume that for an object X>¢ the direct limit (also termed
colimit) lim(X>¢) exists in C. Later we shall, however, use the following property
of an object in Fily(C)e,.

(1.5) Definition. We say that a cofibrant object A>o in Filo(C) has the limit
property if the direct limits A = lim(A>¢) and JA = lim(JA>¢) exist and if TA is
a cylinder object for A. That is, A is a cofibrant object in C and the maps

(iO&il)

AZO V AZU [AZO S N AZO

in Filg(C) induce maps on direct limits

Ava o) pa Py

where (ig,%1) is a cofibration and p is a weak equivalence in C. It is clear that
each finite dimensional object A>; in Fily(C) has this limit property. Moreover
the object A>o in (1.3) (3) satisfies

2 Complexes Associated to Theories of Coactions

Let T be a theory of coactions as in (I.§ 1). Given T we have all the notation
and results in chapter I and chapter II at hand. We now combine T with the
homotopy category of a cofibration category C with initial object *. Recall that
this homotopy category is given by Ho(C.) or by C.s/~ and that we have the
equivalence of categories

R: HO(CC) = Ccf/:

which carries X to a fibrant model RX with X>>RX. Sums X VY exist in C,
and X VY is also a sum in Ho(C,) so that R(X VY) is the sum of RX and RY
in Cep/~.

(2.1) Definition. Let T be a theory of coactions. A cofibration category under T
is a cofibration category C together with a full embedding of categories

T C Ho(C.) ~ Cf/~ (1)

which carries sums in T to sums in Ho(C,) such that objects in T are homotopy
coactions in C; see (IIL.5.1). Given an object X in T we denote the corresponding
object in C.y as well by X.
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For each cofibration category C with initial object * we obtain canonically full
subcategories

susp(*) C cone(x) C Ho(C,) (2)
as described in (II1.§ 6). Here the objects of cone(x) are the *-cones of the form

Cy=%+U,CB (3)

where % — B - * is a based object in C and where g : B — * is a map in C. If
g = 0 is the trivial map then Cy = X'B is the suspension of B. Such suspensions
X' B of based objects B in C are the objects of susp(x). By (I11.5.2) we see that
C is always a cofibration category under the theory of coactions cone(x).

In many examples the theory T of coactions in (2.1) will be a subtheory of
susp(*) or cone(x) above. There are however examples (like the categories of
differential algebras or simplicial groups) where T is not a subcategory of cone(x).

(2.2) Definition. Let C be a cofibration category under T. A complex or more
precisely a T -complex in C is a cofibrant object

Xle(X1CX2C...)

in Fil; (C) with the following properties. The object X is an object in T and the
pair (Xp4+1,Xn), n > 1, is a principal cofibration (see (II1.3.1)) with attaching
map

an-lrl S [En—lAn«)—h Xn]

Here A, 41 is a cogroup in T for n > 1. In particular 0x = 0> € [A3, X;] is given
by a map in T which represents an object 0x in Coef and X is given by the
mapping cone of dx. Let

Complex C Fil; (C).

be the full subcategory consisting of T-complexes X>1 = (X>1, A>1,0>2). Here

A; is the cogroup associated to the coaction on X;. We write Complex =
Complex(T). We also call a T-complex a reduced complex. In chapter VIII we
shall discuss “non-reduced” complexes in a cofibration category.

(2.3) Remark. If C is a cofibration category under T then Pair(C) is a cofibra-
tion category under T(2). Here T(2) is the following theory of coactions. Objects
(X1,Y1) in T(2) are inclusions

Vi =Y VX=X,

given by the sum of objects Y7, X; in T. Morphisms in T(2) are commutative
diagrams
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Y —— B

Lo

Yl\/Xl:Xl R A1=Bl\/le1

in T. The coaction for ¥; and X; in T yields the coaction for (X;,Y;) in T(2) in
the obvious way.

(2.4) Definition. We say that a T-complex Y>; is a subcomplez of the T-complex
X>1 if a T(2)-complex

(X>1,Y51) = ((X1,Y1) C (X2,Y2) C...)

in Pair(C) is given with the following properties. The pair (X;,Y1) € T(2) is
obtained by an inclusion

icX,=v1vX, (1)

where Y, and X, are objects in T; see (2.3). Moreover the attaching maps are of
the form

an-{-l : En—l(An-{-laBn—f—l) B (XnaYn)
Here (A1, Bny1) is a cogroup in T(2) given by an inclusion
Bnt1 C Ant1 = Bny1 V Apia (2)

where B, ;; and A, are cogroups in T. As a special case one obtains for n > 1
the n-skeleton X™ C X>; which is a subcomplex of X>;. Here (X™); = X; for
i <nand (X"); = X" for j > n. We define the dimension of a complex X>; by
dim X>; <nif X>; = X" is an n-skeleton. Then A; = * for ¢ > n + 1.

(2.5) Proposition. Let X>; be a complex and let I X, be the cylinder object for
1-homotopies in (1.3) with

(IXs>1)n =X, UIX, 1 UX,
Then I_X21 is a complex and X>1 V X>1 is a subcomplex of I:le.

Proof. If X>;1 has attaching maps 9,41 : X" 14,41 — X, then szl has the
attaching maps (n > 2)

5n+1 : ZnylAn_i_l V Zn_lAn V En_lAnJrl — (IX>1)n

obtained by (II1.4.4) and (II1.5.5). q.e.d.

(2.6) Example. Let C = Top™ be the cofibration category of pointed topological
spaces. Weak equivalences are homotopy equivalences in Top and cofibrations are
defined by the homotopy extension property in Top. All objects in C are fibrant.
The cofibrant objects in C are also termed “well pointed” spaces. Let
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T = susp(*, D) C (Top™)./~

be the full subcategory consisting of one point unions A = VS?! of 1-spheres S?
where E' is an index set. Then T is a theory of cogroups isomorphic to the cat-
egory gr of free groups and Top™ is a cofibration category under T. A CW-
complex X is reduced if the O-skeleton X° = % is the base point. Each reduced
CW-complex X yields a filtered object X2! = (X! C X2 C ...) given by the
skeleta X™ of X. This filtered object is a T-complex in the sense of (2.2). In fact
X! is a one point union of 1-spheres so that X' € T and there exists a map
g: X" A - X" in Top® with A € T such that X"*! is homotopy equivalent
under X" to the mapping cone Cy. The homotopy class of g in Top™ is determined
up to the action of 71 (X™) by the CW-complex X. If the reduced CW-complex X
is normalized (in the sense that all attaching maps a : S — X™ of (n + 1)-cells
in X carry the basepoint of S to {*} = X°) then the structure of X as a T-
complex is well defined. A reduced CW-complex X has the additional property
that

X =lim(X=1)

is the direct limit of the filtered object X 2! in the category Top*. We point out
that in the general definition of a T-complex in (2.2) we do not assume that the
direct limit lim(X>1) of the complex X>; exists in C. One readily checks that
a subcomplex Y of a reduced CW-complex is also a subcomplex in the sense of
(2.4). Moreover IX="! in (2.5) corresponds to the skeletal filtration of the cylinder
I x X/I x {x}.

3 The Whitehead Theorem

The classical Whitehead theorem shows that a weak equivalence between CW-
complexes is also a homotopy equivalence in the category Top. We here study
the analogue of this theorem for T-complexes in a cofibration category C under
T. This leads to the following notions of lifting map, elementary lifting map, T-
equivalence and weak T-equivalence.

(8.1) Definition. We say that a map f :Y>; — X1 in Fil; (C).y is a lifting map
if for all T-complexes K>; with subcomplex L>; and commutative diagrams

Ly; —— Y3
| |7
Ksp —2— X5y
in Fil; (C), (where j is the inclusion) there exist a map

d: Kzl — Yzl S Fill(C)c
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with dj = b and a 1-homotopy fd ~ arel L>,. This map d is termed a lift of the
diagram.

(3.2) Definition. We say that a map f : Y51 — X>1 in Fil;(C).y is an elementary
lifting map if for all cogroups A and objects Z in T the following properties hold,
n > 1.
(ifpa1)s : T [ (Ya1) — 72 [(Xpy2) s injective. 1)
(ifns1)e s T2 (Yny1) — 72 (Xnio) is surjective. (i1)

(iii) For the maps between homotopy sets

[Z, Yl} (lfl)*

(2, Xo] —=— [Z, X))
we have image(if1). = image(i.).
(3.3) Proposition. An elementary lifting map f is also a lifting map.

Proof. We first show that it is sufficient to prove (3.3) for the case that f is a
cofibration in Fil; (C). To see this we choose a factorization

f:Y_l [—)le %le

by (C3) in Fil; (C) where )_(21 is fibrant. Then we consider the diagram in Fil; (C),

/b —
LZI f—> le

T

a
Kzl — le

By use of I1.1.11 (b) in Baues [AH] there exists a’ : K»; — X>1 with a’j = f'b

0 .
and pa’ ~ a relative L>;. Since f is an elementary lifting map one readily checks
that also f’ is an elementary lifting map. Below we show that f’ is a lifting map
so that there is a lift d for the diagram

b
L21 — Yzl

T

’
a —
Ky —— X1

with dj = b and f'd & a'rel L;. Hence fd = pf’d ~ pa’ ~ a. This shows that also
f is a lifting map.

Now let f in (3.3) be a cofibration in Fil;(C). We observe that the assumption
on f in (3.2) imply that for any cogroup A in T the relative homotopy groups



236 Chapter IV: Complexes in Cofibration Categories

er?(Xn+2v Yot1) =0 (1)
are trivial for n > 1. To see this we consider the following exact sequence:
Wf(YnH) — 7} (Xnt2) — Wf(XnH’ Yog1) — ﬂ-;?fl(yn+1) - ”;4—1(Xn+2)

Here the right hand side is injective by (3.2) (i) and the left hand side is surjective
by (3.2) (ii). Hence exactness implies (1).

We now construct the lift d and the 1-homotopy H : fd ~ arel L, inductively.
To start the induction we use (3.2) (iii) for Z = K;. For this recall that for
Ls; C K>, we have by (2.4) (i) in degree 1 the inclusion L, C L1V K; = K;. Now
(3.2) (iii) shows for {a; = a; | K1} € [Ki, X1] that there exists {d1} € [K1,Y}]
with (if1).{d1} = {@}. Hence we have a map in C

dy: K — Y; (2)
and a homotopy in C
H : ifidy ~iaq, H,: IK, — Xo,
where 7 : X; — X5 is the inclusion. We define

di = (b1,d1): K1 =L1 VK, — Y,
H, = (ibl,ﬁl) : ILl(Kl) =1 VII—{l — X5

Now let n > 1 and assume that

d,: K, —Y,
H,: I K,— Xnn (4)

H, :if,d, ~ia, relative L,
are defined. Let A’ be a cogroup in T and let
g:A=x""1"4A S K,
be the attaching map of the principal cofibration (K, , K,) for which

L — K, Kl (5)

l l

Lyji ———— Ko

is a push out diagram; see (2.4). Then we get the commutative diagram
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Q41

CTA—>K;L+1 ——)Kn+1 —*—>Xn+2 (6)
A g Kn fan Xn+1
TA—25 1, Ky = Xpt1
io/]\ Tfn+1

g

A : ’ Kn Yn+1
Diagram (6) yields a map of pairs
(C(,ldng) . (CA \/1‘1 IA,A) I (Xn+2,Yn+1) (7)

and hence an element in the group
T (Xng2, Yot1) = 72 (Xnt2s Yoi1) = 0
which is trivial by (1). Therefore the map (7) admits an extension
(8',8) : (C(CAU;, TA),CA) — (Xnt2, Ynt1) (8)
where the left hand side is the cone in Pair(C). We now obtain the diagram

Cy =K, U, CA 1Py

| |

’ d;z+1
n+1 n+1

where the extension d;,,; exists since Y41 is fibrant. Let

dnv1 = (dpy1,bn41) s Knpr — Yaqa 9)

be obtained by the push out (5). Then (8) shows that one gets a homotopy
Hy,i1 ¢ ifny1dng1 ~ iany4q relative L,4q extending H,. Here we use (111.4.2).
This completes the proof of (3.3). g-e.d.

(3.4) Definition. A map f:Y>; — X>; in Fil;(C).y is a T -equivalence if for all
T-complexes K>; the induced map
1 1
fe i [K>1, Y]/~ — [K>1, X51]/~ (1)

is a bijection. Here we use the sets of 1-homotopy classes in (1.4). Moreover f is
a weak T -equivalence if for all cogroups A and objects Z in T and n > 1 the
induced maps f, below are bijections, where im = image.
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im{[Z,Y1] - (2, Y]} L5 im{(Z, X)) -5 |2, X,]} (2)
im{ﬂ';;‘Yn+1 — W?Yn+2} A? im{TrT’:‘Xle — ﬂ',;?X,H_Q} (3)

One readily checks that a T-equivalence is also a weak T-equivalence. For this let
K>, be the constant object given by Z. Then (1) implies (2). Moreover choosing
for K> the complex with trivial n-skeleton of dimension n given by X" A shows
that (1) implies (3).

(3.5) Proposition. A lifting map f is a T-equivalence.

Proof. Using L = * in (3.1) we see that f. in (3.4) (1) is surjective. Moreover if

1
a,b: K>; — Y>, are maps for which H : fa ~ fb then one gets the commutative
diagram

a,b
K1 VEs, 22 vy,

l s

jKZl L’ XZI

A lift of this diagram yields a 1-homotopy a ~ b. This shows that frin (3.4) (1)
is also injective. q.e.d.

Using (3.3), (3.4) and (3.5) we have the following implications in a cofibration
category under T:

elementary lifting map

I

lifting map

ﬂ (3.6)

T-equivalence

I

weak T-equivalence

The converse of these implications are true if we assume that X, ¥>; have an
additional property as follows.

(3.7) Definition. We say that X>; € Fil;(C).s is T -good if for all cogroups A in
T and n > 1 the groups 72 (X142, Xp41) = 0 are trivial and 7§ (X;) — 78 (X2)
is surjective.

(3.8) Proposition. Assume that Y>1 and X>, are T-good. Then a weak T-
equivalence f : Y>1 — X1 is also an elementary lifting map.
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Proof. First we observe that (3.4) (2) implies (3.2) (iii). Moreover since ¥>1, X>1
are T-good we see that (3.4) (3), (2) imply

LA =~ A
o i Yrs T X

is an isomorphism for n» > 0 and all cogroups A in T. Here we use the exact
homotopy sequence. Moreover the diagram (n > 1)

A i A
Yoy —— 7w Y —— 0
zlf,
A
7Tan+2

with exact row shows that (3.2) (ii) holds. Finally the diagram (n > 1)
777?_1Yn+1
s
0 —— T Xpp1 — T 1 Xnpo
with exact row shows that (3.2) (i) holds. q.e.d.
Now (3.8) and (3.6) imply the following result

(3.9) Theorem. Let C be a cofibration category under T and let f : Y>; —
X>1 be a map in Fil;(C).s between T-good objects. Then we have the following
equivalences:

f is elementary lifting map

I

f is lifting map

I

f is T-equivalence
f is weak T-equivalence

(3.10) Proposition. Let f : X>1 — Y>1 be a map between T-complexes which
is a T-equivalence. Then f is a 1-homotopy equivalence (that is an isomorphism

in the category Complex(T)/é).
Proof. Since

for Vo1, Xo1]/2 — [Yor, Yau] />

is bijective we see that there is g : Y>1 — X>1 with fg ~ 1. Since fe(gf) = f(1)
the injectivity of f. shows gf ~1. q.e.d.
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As a corollary of (3.10) and (3.9) we get the following generalization of the
classical Whitehead theorem.

(3.11) General Whitehead Theorem (I). Let X>1, Y>1 be T-complezes which
are T-good. Then a map f : X>1 — Y>1 is a weak T-equivalence if and only if
f is a 1-homotopy equivalence.

(3.12) Example. Let A be an additive category and let C be the full subcategory
of the I-category chainZ in (II1.9.2) consisting of chain complexes concentrated
in degree > 1. Then C is a cofibration category under A where A C Ho(C) carries
the object A € A to the corresponding chain complex concentrated in degree 1.
One readily checks that

Ho(C) = Complex(A)/é

Moreover the Whitehead theorem (3.11) yields for chain complexes in C the equiv-
alence (a) < (b) in theorem (I1.6.6) or theorem (II1.9.6).

There are many generalizations of the Whitehead theorem in various homotopy
theories. A general form of this theorem is (3.11) above which by specialization
yields most of the Whitehead theorems in the literature. Using the cellular ap-
proximation we see in the next section that the classical Whitehead theorem is a
consequence of (3.11).

4 Cellular Approximation

We first consider the classical cellular approximation theorem for reduced CW-
complexes in C = Top”*. Compare example (2.6). A map f : K — X between
reduced CW-complexes is termed cellular if f carries the m-skeleton K™ of K
to the n-skeleton X™ of X. Hence a cellular map f is equivalent to a filtered
map f2!: K2! — X2! with lim(f2!) = f. The classical cellular approximation
theorem shows that each map g : K — X in C which restricted to a subcomplex
L of K is cellular is homotopic relative L to a cellular map f : K — X. We
can reformulate this by considering the following commutative diagram of filtered
objects

jl lp (4.1)

K2l — X

Here X is the constant filtered object and p is the canonical map given in degree n
by the inclusion X™ C X. The filtered map g in the diagram is given in degree n
by the composite K ¢ K -2 X. Now the cellular approximation theorem is
equivalent to the existence of a lift f of diagram (4.1) with fj = g | L and
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pf ~ grel L=1; compare (3.1). Hence using the notion of lifting map in (3.1) we
get:

(4.2) Cellular approximation theorem. Let X be a reduced CW-compler.
Thenp: X2 — X in (4.1) is a lifting map.

Here a lifting map is defined as in (3.1) for the cofibration category C =
Top* under T = susp(*,D); compare (2.6). Theorem (4.2) leads to the following
definition.

(4.8) Definition. Let C be a cofibration category under T. We call a cofibrant and
fibrant object X in C weakly cellular if there exists a T-complex X>; and a lifting
map

p:Xs1 — X (1)

where X is the constant filtered object given by X. Moreover X is cellular if there
exists a lifting map as in (1) for which X'>; has the limit property in (1.5) and the
induced map

p:lim(X>) — X (2)
is a weak equivalence in C. Let
Cell C Well C C,¢ (3)

be full subcategories where Cell consists of cellular objects and Well consists of
weakly cellular objects.

Remark. Consider the cofibration category C = Top* under T = susp(x,D) as
in (2.6). Then each reduced CW-complex X is cellular since X=! has the limit
property and since the cellular approximation theorem (4.2) holds. In fact the
notion of “cellular object in a cofibration category C under T” is the appropriate
generalization of the classical notion of CW-complex in algebraic topology. Each
path connected space U in Top™ is weakly cellular since there exists a reduced
CW-complex X and a map p : X — U inducing isomorphisms p, : 7, X = 7, U
for n > 1. Such a map is by (3.9) a lifting map. The CW-complex X is termed a
CW-approximation of U; for example we can choose X to be the realization of the
reduced singular set of Y'; see Fritsch-Piccinini [CW]. Homology of U is defined by
the homology of the CW-approximation of U.

(4.4) Proposition. There is a canonical functor
p: Well/~ — Complex/é

which carries a weakly cellular object X to the T-complex X>, chosen for X as in
(4.3). Moreover X1 is T-good in the sense of (3.7).
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Proof. Given f:Y — X in Well we obtain

A G (1)

| |

Y5, —)YT>X

and a lift f : Y>1 — X>1. The functor ¢ carries the homotopy class of f to the
1-homotopy class of f. Let H : IY — X be a homotopy f ~ g in C.s. Then we
obtain the commutative diagram

Yor VY, 29 xo,

(ioﬁil)l lp (2)
Ivs, . x

in Fil; (C).y as follows. Let i : Y, — s7'Y>; be the shift map with (s71Y51), =
Y,,+1 so that i in degree n is the inclusion Y;, C Y, 41; see (1.3).
Then we get p: s7'Y>; — Y with pi = p. Hence we get the composite

Hy IYsey L Is'vey 2y o x (3)
where j is the inclusion and Ip is obtained in the cofibration category Fil;(C) as

in (11.2.10) of Baues [AH]. Clearly Hyip = fp and Hyi1 = gp. Moreover we have

1-homotopies Hp : pf & fpand Hs : gp & pg. We can add the homotopies Hy, Hy
and Hs and get a map H representing Hy + H; + Hy such that (2) commutes.

A lift of (2) gives us a 1-homotpy f ~ g. This shows that the functor ¢ is well
defined.

We still have to show that X, is T-good. For this we use the lifting map
p: X>1 — X which by (3.6) is a weak T-equivalence. Hence the maps

{ im([Z,X,] = (2, Xa]) 2 (2, X] (4)

: A A P _A
lIIl(’/l’n Xn41 — 7, Xn+2) = mn X
are bijections. We now show that

(2, X2] — 2, X]
{ a a ()
Ty Xnt2 = T X
are injective and hence by (4) bijective. Assume we have maps f, g : Z — Xo
and a homotopy H : if ~ ig where ¢ : Xo C X is given by p. Then we have the
commutative diagram in Fil; (C)
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zv 7% X — X5

l i

1z X

and a lift of this diagram yields a homotopy f ~ g. Thus the first map in (5)
is injective. A similar argument replacing Z by Y™ A shows that the second map
in (5) is injetive. Using (4) and (5) we see that 74'(X;) — 7§ (X2) is surjective.
Moreover for n > 1 we have the exact sequence
j d
ﬂg(Xn—H) s Wf(Xn+2) - Wf(Xn+2vXn+1) -
s A
- Wﬁvl(Xn-i-l) — W:fl(XnH)

where j is surjective and i is injective. In fact, j is surjective since the composite
J A ~
q: 75 (Xnt1) == 7 (Xnpa) —— 75 (X)
is surjective. Moreover i is injective since the composite
A i A A
Trn—l(X"H—l) — ﬂ'n—l(Xn-i-Q) - 71"n—l()()
is a bijection. q.e.d.

(4.5) Theorem. The restriction

p:Cell/~ — Complex/é
of ¢ in (4.4) is a full and faithful functor.

Proof. The functor ¢ is full since ¢(lim f>1) = f>1. The functor ¢ is faithful since
a 1-homotopy H : f> & g>1 yields by (1.5) a homotopy lim H : lim f>; ~ lim g>;.
q.e.d.

Using theorem (4.5) we obtain the following result which is a more direct
analogue of the cassical Whitehead theorem.

(4.6) General Whitehead theorem (II). Let C be a cofibration category un-
der T and let X and Y be cellular objects in C. Then f:Y — X is a homotopy
equivalence in C.f/~ if and only if for all cogroups A and objects Z in T and
n > 1 the induced maps

formi (V) = m(X)
fo:12.Y] = [2.X]

are bijections.
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Proof. We choose X>; — X and Y>; — Y as in (4.3) where X>; and Y>; are
T-good by (4.4). Since ¢ in (4.5) is full and faithful we have to show that f>; :
Y>1 — X>1 with o(f>1) = f is a 1-homotopy equivalence. By (3.9) it suffices
to show that f>i is an elementary lifting map. Now (3.2) (i), (ii) hold since we
have the following commutative diagrams where 4 is injective and ¢ is surjective;
compare (4.4) (4), (5).

A (Y1) - i (V)
. J
7r 1 (Xn+1) ; W;?—I(X)
W#—IXn-f-Q
T2 (Yos1) ! TA(Y)
f*J lz
A (Xns1) ’ > A (X)

/

W;? (Xny2)

Moreover (3.2) (iii) is a consequence of the following diagram where ¢ is surjective
and 7 is bijective.

(2,11 ! (Z,Y]
f{ q F
(Z, X1] 7, X]
\ p i
[Z, X>]

q.e.d.

(4.7) Example. Let C = Top™ and T = susp(*, D) asin (2.6). Then we obtain as a
specialization of (4.6) the following classical Whitehead theorem: Let f: X — Y be
a map between reduced CW-complexes in Top*. Then f is a homotopy equivalence
if and only if f induces isomorphisms

fo i X =, Y )
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for n > 1. Since all objects of susp(x, D) are one point unions of 1-spheres we see
that (*) is equivalent to the corresponding condition in (4.6). Clearly all reduced
CW-complexes are cellular by (4.2).

5 The Blakers-Massey Property

Let T be a theory of coactions and let C be a cofibration category under T. Using
the theory T we define below the notion of m-connected maps in C where m > 1.
We then describe the Blakers-Massey property of a cofibration category C which
for C = Top™ is equivalent to the classical Blakers-Massey theorem.

(5.1) Remark. We are not able to define a O-connected map in C since we do not
have the analogue of a discrete set in the cofibration category C. In most examples
of the cofibration category C the objects of T are actually “0O-connected”; consider
in particular C = Top™ and T = susp(*, D).

(5.2) Definition. A cofibration i : L — K in C, is 1-connected if for all objects Z
in T the induced map between homotopy sets in Ho(C)

1x - [Z,L] — [Z,K]

is surjective. Moreover ¢ : L »— K is m-connected with m > 1 if ¢ is 1-connected
and if the relative homotopy groups

mA(K,L) =0

are trivial for all cogroups A in T and 1 <r < m — 1. Here we use 7 < m — 1 since
a cogroup A in T has dimension 1. A cofibrant object K is m-connected if x — K
is m-connected; this implies that the induced map 72 (x) — 7A(K) is surjective
for < m — 1 and bijective for 0 < r < m — 2. We do not assume that 72 (x) is
trivial.

(5.3) Definition. We say that the cofibration category C under T has the Blakers-
Massey property if (a) and (b) are satisfied.

(a) For all cogroups A in T the n-fold suspension X" A is n-connected.
(b) Consider finite dimensional T-complexes

‘ J
Kzl — Lzl h— Yzl

where ¢ and j are inclusions of a subcomplex. By applying the direct limit we
obtain the induced cofibrations

KLy

for which the push out diagram
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K — KUY

o

is defined in C. Let m, n > 1 and assume (K, L) is m-connected and (Y, L)
is n-connected. Then (K Uy, YY) is m-connected and for all cogroups A in T
the induced map

Fo (K, L) — 72 (K UL Y,Y)
is surjective for 1 <r <n+m — 1 and bijective for 1 <r <n+m — 2.

(5.4) Exzample. Let C = Top™ and T = susp(*, D). Then (C,T) has the Blakers-
Massey property as follows from the Blakers-Massey theorem in algebraic topology;
see for example tom Dieck-Kamps-Puppe [HT] and Gray [HT].

In the next theorem we consider the map (mgy,1), in (II1.2.9). This result is
used in chapter V to show that the Blakers-Massey property implies that (C,T)
is “homological”.

(5.5) Theorem. Assume that (C,T) satisfies the Blakers-Massey property. Let
A, D be cogroups in'T and B = X" D withn > 0 and let Y>1 be a finite dimensional
T-complez with Y = lim(Y>1). Moreover let g : B — Yy,11 CY be a map in C.
Then the induced map

(g, 1)u : TH(CBVY,BVY) — 72(C,,Y)

is surjective for r < 2n + 1 and bijective for r < 2n. Moreover (Cy,Y) is (n + 1)-
connected.

Using the trivial map g =0: B — % — Y in (5.5) we obtain by the definition
of the partial suspension E in (II1.2.6) the next result.

(5.6) Theorem. Assume that (C,T) satisfies the Blakers-Massey property. Let
A, D be cogroups in T and let Y>1 be a finite dimensional T-complex with Y =
lim(Y>1). Then the partial suspension

E:72 (E"DVY)y — n2(Z"HDVY),

1s surjective for r < 2n + 1 and bijective for r < 2n. Using Y = x we see that the
suspension

Y.l (Z"D) — nA(Z"FID)
is surjective for r < 2n + 1 and bijective for r < 2n.

The second part of this theorem is the analogue of the Freudenthal suspension
theorem.
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Proof of (5.5). We consider the mapping cylinder Z, obtained by the push out

IB 2 Z, Y
p

S »

B 2 ., v

~

Here p is defined by pg = p and piy = 1. Hence

j:Bvy Yo, g (2)
is a cofibration and we obtain the push out

CBVY —— CBUpZ, —2» CBU,Y =C,

. T ®

BVY ——  Z, —— Y
J p

The composite of the top row is (mg,1) = (1 U p)7. We can apply the Blakers-
Massey property to the push out diagram in (3) since j is obtained by the inclusion
of a subcomplex; see (2.5). This yields the result in (5.5) since we show that
(CBVY,BVY)is (n+ 1)-connected and that (Z,, BV Y) is (n + 1)-connected:
We have the maps
(0,1): BVY — CBVY Y
(9,1): BVY — Z;, =Y

which both admit the splitting i : ¥ — BV Y. Hence (0,1) and (g,1) are 1-
connected; see (5.2). Moreover we have the push out diagram

B — BVY

I I

*x —— Y

Since B = X" D the Blakers-Massey property shows that Y — BVY is n-connected
so that 74(Y) — mA(BVY) is surjective and hence bijective for i < n—1. Therefore
the short exact sequences

0— m{(CBVY,BVY) — 7 (BVY) — 72 ,(Y) —0
0 —71Z,,BVY) — 1 (BVY) — 72 (V) — 0
show that 74 (CBUY,BUY) =0=n(Z,,BVY) for i <n. q.e.d.

(5.7) Proposition. Assume (C,T) satisfies the Blakers-Massey property and let
Y>1 be a T-complex. Then (Yy,Y,) is n-connected for k > n > 1 and thus Y>1 is
T-good.
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Proof. By (5.5) we see that for n > 1 the pair (Y41, Y,) is n-conneted. Hence
(Ynt1,Yn) is 1-connected and

ﬂf(yn) — 71':‘(Yn+1)

is surjective for » < n—1 and bijective for r < n—2. This shows that for k >n > 1
also (Y%, Y,) is 1-connected and

mf (Yn) — 7 (Vi)

is surjective for r < n—1 and bijective for r < n—2. Thus (Y%, Y,) is n-connected.
q.e.d.

(5.8) Proposition. Assume (C,T) satisfies the Blakers-Massey property and let
Y>1 be a finite dimensional T-complex with Y = lim(Y>1). Then

p:Ys — Y
is a lifting map so that 'Y is cellular.

Proof. 1t suffices to show that p is an elementary lifting map; see (3.3). Now (3.2)
(i), (ii) are satisfied for p by (5.7). Moreover (3.2) (iii) is satisfied since (Y,Y}) is
1-connected by (5.7). q.e.d.

Proposition (5.8) shows that the Blakers-Massey property implies the cellular
approximation theorem for finite dimensional complexes; see (4.2). In the case of
infinite dimensional complexes we need the following property of (C,T).

(5.9) Definition. Let C be a cofibration category under T. Then we say that
(C,T) has good limits if all T-complexes Y>1 have the limit property (1.5) and if
for all cogroups A and objets Z in T we have

[Z, lim Yzl] = liin[Z, Yk]
2 (limYs,) = lim T4y,

(5.10) Theorem. Assume (C,T) satisfies the Blakers-Massey property and has
good limits. Then the functor

¢:Cell/~ — Complex/é
in (4.5) is an equivalence of categories.

Proof. We have to show that ¢ is representative. For this let Y>; be a T-complex
with ¥ = lim(Y>1) and let Y »— Y’ be a fibrant model of Y. We show that Y’
is cellular with ¢(Y”) = Y>1. In fact ¥Y>; has the limit property since (C, T) has
good limits. Moreover the induced map

p:Y21—>Y—~->Y/

is an elementary lifting map by the argument in (5.7) and (5.9). Hence p is a lifting
map so that Y’ is cellular with ¢(Y>1) =Y. q.e.d.
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Given a theory of coactions T and a cofibration category C under T we intro-
duced in chapter IV the notion of a T-complex X>; in C which is the analogue
of the classical notion of CW-complex in algebraic topology. We now describe the
properties of C and T which are needed for the definition of homology and coho-
mology of a T-complex. These properties lead to the definition of a “homological
cofibration category under T” in §1. We define homology and cohomology by a
“chain functor”

C, : Complex — chain

where Complex is the category of T-complexes and where chain is the cate-
gory of chain complexes associated to the theory T in chapter I. The cohomology
obtained is sufficiently powerful to describe an obstruction theory for extension
problems on T-complexes which specializes to the classical obstruction theory
for CW-complexes. Moreover we obtain for T-complexes a generalization of the
Hurewicz homomorphism and we are able to embed this Hurewicz homomorphism
into an exact sequence which specializes to J.H.C. Whitehead’s certain exact se-
quence [CE] for CW-complexes.

1 Homological Cofibration Categories

In the following definition we describe the appropriate conditions on a cofibration
category C which will be used in the next section to obtain the chain complex
C.(X>1) of a complex X>1 in C. This chain complex yields the notion of homology
and cohomology of X>;.

(1.1) Definition. Let T be a theory of coactions and let C be a cofibration category
under T as in (IV.2.1). Then we say that C is a homological cofibration category
under T or that (C, T) is homological if all T-complexes are T-good as in (IV.3.7)
and if the following conditions (a) and (b) are satisfied for all cogroups A, B in T
and T-complexes X ;.

(a) For ¢ > 0 the inclusion X,, C X,,+1 induces the map
7A(X2'BV X,)2 — 7 (X'BV X, 1)z
which is surjective for n = 1 and bijective for n > 2; see (II1.2.5).

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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(b) Letg: D= X" 'A,.; — X, be the attaching map of the principal cofibration
(Xn+1,Xn) where A,4+1 is a cogroup in T. Then

(g, D) : TR(CDV X, DV X)) — 72 (X1, Xn)

is surjective for n = 1 and bijective for n > 2; see (IIL.3.2). The same holds
for the composite

(le)*
e

-1
Ex :71f_,(DV X)2 —— 7A(CDV X,, DV X,) A (X1, Xn)

where 0 is the isomorphism in (II1.3.2). We derive from (a) and (b) the fol-
lowing property (c).
(c) For m > 1 the partial suspension

E:72 [(E"'BV X;)s — 72(Z"BV Xp)2
is surjective for n = 1 and bijective for n > 2.

Proof of (¢). To derive (¢) from (a) and (b) we first choose in (b) the trivial
attaching map ¢ = 0 with D = X" 'B and X,, = X,, for m < n. This shows
that (c) holds for m < n; see (II1.3.2). Now (a) implies that (c) also holds for
m > n. qg.e.d.

Remark. The assumption above that all T-complexes are T-good is not needed
in chapter V and chapter IV if one considers only finite dimensional T-complexes.
For infinite dimensional T-complexes we apply in (VI.7.1) and (VI.8.4) the general
Whitehead theorem (IV.3.11) and this theorem requires that T-complexes are T-
good.

(1.2) Proposition. Assume (C,T) has the Blakers-Massey property. Then (C,T)
is homological.

This result yields many examples of homological cofibration categories under
T.

Proof of (1.2). Theorem (IV.5.5) shows that (1.1) (b) holds. Moreover we obtain
(1.1) (a) by the following push out diagram where B = X*B.

CBV X, —— CBV X,11

le /[
BVX, —2- BVX.

Here jo is n-connected since (Xp41,Xn) is n-connected by (IV.5.7) and since we
can use the Blakers-Massey property for X,,+1 <« X, — BV X,,. Moreover j; is
(i+1)-connected; compare the proof of (IV.5.5). Thus the Blakers-Massey property
shows that
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tA(CBV X,,BV X)) =712 (BV X,)»

l

7T;,4(CB V Xn+1,B \Y Xn+1) = 7T:1_1(B \Y Xn+1)2

is surjective for 1 < r < i 4+ n and bijective for r < i + n. Choosing 7 — 1 = i we
see that (1.1) (a) holds. Moreover all T-complexes are T-good by (IV.5.7). q.e.d.

(1.3) Proposition. Assume (C,T) is homological. Then one has the functor

c: Complex/:z_/ — Coef

which carries X>1 to the attaching map Ox of (X2, X1) and which carries f>;
to {f1}. Moreover the restriction of ¢ to the subcategory of 2-dimensional complexes
is a full functor.

Proof. We have to show that c is well defined for morphisms. Now (1.1) (b) implies
that for a map f>; the induced map

(f?afl) : (X27X1) — (YZaYI)
is a twisted map; see (II1.3.11). Hence f; is 0-compatible. Similarly each map

(IX1, X1V X)) — (Y2, Y1)

is a twisted map by (1.1) (b). This shows that f>; ~ g>1 implies that fi is
O-equivalent to g;. Thus the 0-equivalence class {f1} is well defined by the 1-
homotopy class of f>1. Given a J-compatible map { f1} in Coef one obtains an as-
sociated twisted map (f2, f1) as above. Hence ¢ is full if restricted to 2-dimensional
complexes. q.e.d.

(1.4) Proposition. Let (C,T) be homological and let A, B, Ay be cogroups and
Z, X1 be objects in T. Moreover let (Xo, X1) be a principal cofibration with attach-
ing map Ox : Ao — X;1. Then we have canonical bijections

im{[Z, X1] — [Z, Xg]} = Coef(Z,0x)
[A, BV Xz]z = Coef(A, Bv 3x)2
Recall that Coef(A, B V 0x)2 is used for the definition of morphisms in the

category premod. Hence the second bijection in (1.4) yields a new interpretation
of such morphisms.

Proof of (1.4). The first bijection is obtained by the same arguments as in the
proof of (1.3). The second bijection is a consequence of the first bijection and of

(1.1) (a). q.ed.

Using (1.4.7) we derive from (1.4) the following corollary.
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(1.5) Corollary. Let (C,T) be homological and let f : X>1 — Y>1 be a map in

Complex/.’l_*. Then ¢(f) : Ox — Oy is an isomorphism in Coef if and only if the
induced map

fe :im{[Z, X1] = [Z, X5]} — im{[Z, 1] — [Z,Y3]}
is a bijection for all objects Z in T.

The corollary describes exactly condition (IV.3.4) (2) for a weak T-equivalence.
Recall that a category of modules for T is a quotient category of the category
premod with certain additive properties.

(1.6) Definition. Let (C,T) be homological. Then we define the category of mod-
ules mod = mod(C) as follows: Objects are AV dx where A is a cogroup in T
and Jx € Coef and a morphism

a@u:AVIx — BV oy
is given by a morphism u : dx — dy in Coef and by an element
a €[ YA, YBVYss

where (Y,,Y7) is a principal cofibration with attaching map dy. Composition is
defined by

(BOv)(a®u) = (8,0)0 6 ()

where 7 is a map (Y2,Y]) — (Z2,7;) in Complex with ¢(7) = v by (1.3). Now
(1.1) (a) shows that the composition is well defined.

(1.7) Lemma. The category mod = mod(C) is a category of modules for the
theory T with the properties in (1.5.6). In fact, the functor E is given by the
following commutative diagram:

[A, BV YQ]Q ——— premod(AV dx,BV ay)u
‘| e

Here the left hand side is the partial suspension which is surjective by (1.1) (c).
The identification in the top row of the diagram is obtained by (1.4).

We have the commutative diagram of functors

premod (1.8)

N

E
premod™ - mod(C)
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where Ejy is a full functor which is the identity on objects induced by E; see (1.5.8).
For various examples of homological cofibration categories (C, T) the functor Ey
is actually an isomorphism. In general we do not assume that this is the case. This
is the reason for the definition of “categories of modules for T” in (I1.5.8) which
are not uniquely determined by T. In the following we always use the category
mod = mod(C) for the definition of categories like chain or TWISTS and
TWISTY, etc.

Proof of (1.7). One readily checks that the isomorphism in the top row is com-
patible with the action of the group

im{[A, 1] — [4,Ya]} = Coef(A, dy)

and (II1.2.7) shows that F is equivariant with respect to this action. Hence (1.5.6)
(ii) is satisfied. Next the first equation of (I.5.6) (iii) is obviously satisfied; we
obtain the second equation as follows. Consider the composite

1vm

CBy Vv CB, i, YBiVvCBy —— YXBV XBy

Bl\/Bg T BIVB2

Using the definition of the partial suspension we get the following diagram in which
the row is split exact with B = B, V By

TA(CBV X,BV X) = n{(BV X),

l

0 — Wf(EBl\/X)Q — Wf(EBl\/CBQVX,BQVX) — 71’64(B2\/X)2 — 0

l

T (ZBV X), =1 (¥BV X, X)

The exactness of the row is readily obtained by the exact homotopy sequence of a
pair. The composite of the morphisms in the column yields the partial suspension
which is surjective by (1.1) (c). Hence since the row is split exact we get

TN EBV X))y =a(EBVX), @ (EByV X),
This shows that also the second equation of (I.5.6) (iii) holds. q.e.d.

(1.9) Definition. For cogroups A, B in T and for a T-complex Y>; we can form
the double colimit of groups termed stabilization

{A,BV Y51} = limlim[X'A4, £'B V Yj]s. (1)
- 1>0452>1
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Here the limit over j > 1 is induced by the inclusions Y; C Y}, and the limit over
i > 0 is induced by the partial suspension E. Hence we have canonical maps

Tij * [21A7EZB \ }/J]Z - {AaB \v YZI}Q

which by the conditions in (1.1) are surjective for ¢ = 0 or j = 1 and are bijective
otherwise. In particular 71 2 is an isomorphism so that a morphism a®u in mod(C)
with a € [ZA, ¥BVY;), is determined by its stabilization 71 2(a) € {A, BVY>1}9;
see (1.6). Given elements

a € (XA, X'BV Y2

BE[ETA ZTBV Y,

we write a = ( if a and  have the same stabilization, that is
a= ﬂ — Ti’j(a) = Tryt(ﬁ) (2)

Here « is uniquely determined by g if ¢ > 0 and j > 1.

2 The Chains of a Complex

Assuming that the cofibration category C under T is homological we are able to
define the chain complex C,X>; of a T-complex X>;. Here a chain complex is
defined by the category mod = mod(C) in (1.7).

Given a T-complex Xs>; = (X>1,4>1,0>2) we have the attaching map
Ons1 € [Z" 1A, 11, X,] of the principal cofibration (X,+1,X,). Then we obtain
the difference element

VOnt1 € [Z" 1A, 11, ZV ALV X))o (2.1)

for n > 1. For n = 1 this element is defined by the coaction u : X; — X3 V A3
in T and for n > 2 we use the coaction p : X,, — X, V X" !4, of the principal
cofibration (X, X,,—1) so that

VOnt1 = —i20n41 + (i2 + 91)0ns1

Here iy + 77 is defined by u; compare (I11.3.8).
Moreover given a map f>1 : X>1 — Y>1 between T-complexes we obtain for
n > 1 the difference element

Ve €27 A, 2B, V Yy, (2.2)

as follows. For n = 1 this is the difference element defined by the map f; : X7 —
Y; € T; compare (1.3.3). For n > 2 we have the map

.fn : (Xn,Xn—l) — (Ynyyn——l)
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between principal cofibrations which induces the map (f,)« in the diagram

(fn)«
—

7“7),,( S ﬂ';?fl(Xnan71> TrAZl(YTMY'IL—l)

|+
An n—1
M _1(2 anYn)Q

Here 7 is the characteristic element of (X,,, X,,_1) and 17 is the difference oper-
ator; see (II1.3.1) (2) and (II1.3.9). We now define 7 f,, for n > 2 as in (I11.3.14)
by

Vin= V(fn)*(ﬂ-v)z()
(2.8) Definition. Let (C,T) be homological. Then we define the chain functor C,

for which the following diagram of functors commutes

Complex/ ~ —+ chain>,

N A

Coef

Here c is the coefficient functor in (1.3) and (1.6.3). The functor C, carries a
T-complex X>; = (X>1,A>1,0>2) to the chain complex

Ci(X21) = (Az1,0x). (1)

Here Ox = 02 € Coef is the attaching map of (X2, X;) and the cogroup A, € T
for A>1 is given by the attaching map 8,41 : X" 1A, 11 — X, of (X411, X,,) for
n > 1. Let A; be the cogroup associated to X; € T. The differential in the chain
complex (A, 0x)

dn+1 ®1: An+1vax — A, VOx € mod
dn+1 S [EAn+17 ZATL \ X2]2

is defined by

dn+1 = VOnt1 (2)

forn > 1;see (2.1) and (1.9). Amap f: X>1 — Y>1 between T-complexes induces
the chain map

Ci(f) : Cu(X21) = (4,0x) — Cu(Yz1) = (B, dy) (3)

which is u-equivariant. Here u = ¢(f) = {f1} is given by the coefficient functor c
n (1.3). In degree n the chain map
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Cn(f)=&Ou: A, VIx — B,V 0Oy € mod
fn S [ZAn, B, V YQ]Q

is defined by

én =V fn (4)

for n > 1; see (2.2) and (1.9). One can check that C, is a well defined functor. In
fact C, coincides with the functor K in II1.4.2 Baues [AH]. If T is an augmented
theory of coactions, then also the functor

aug C, : Complex/’g — chains (5)

is defined since C, above carries a T-complex to an object in the subcategory
TWIST] of chain>; see (II. §6). We call aug C,(X>1) the non-reduced chain
complex of X>i.

(2.4) Proposition. The functor C, in (2.3) carries subcomplezes of T-complezes
to subcomplexes of chain complezes. Moreover C, is compatible with cylinders; that
is there is a canonical isomorphism of chain complezes

Cul(X51) 2 IC,(X>1)

Here I(X>1) is the cylinder for 1-homotopies in (IV.1.3) and IC.(X>1) is the
cylinder of a chain complex in mod(9dyx ) defined in (IIL.9.1).

Proof of (2.4). The 2-skeleton of I(X>1) is a principal cofibration with attaching
map

wx :AQ\/Al \/A2 — XVX
wx = (g Ox, wx, 17 Ox)

Here wx = W coincides with the attaching map W in (II1.5.5). We have the
canonical map

X
i »
Ox — wx — Ix

in the category Coef where i is given by the second inclusion X — X V X and
where p is given by (1,1) : X V X — X. We claim that i3* is an isomorphism in
Coef with inverse p. In fact piy = 1x. On the other hand we have

if(p:1va+(wx,1)Oé (].)

where a: A; VA — (A2 V A1 V Ay) vV (X V X) is the inclusion of A; on the first
summand of A; V A; and is trivial on the second summand of A; V A;. Then (1)
is a consequence of if +wyx = i7; compare (IIL.5.3). By (1) we see that iy p is
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0-equivalent to 1xv x. Hence p is an isomorphism in Coef. Using this isomorphism
we obtain the p-equivariant isomorphism

ﬁ:c*j(le)EIC*(le) (2)
as follows. Here C,I(X>1) is a chain complex (A4, wx) with 4,, € T given by

n =

i Ai1VA; forn=1
A, VA,_1VA, forn>2

Compare (IV.2.5). Now p is the p-equivariant chain map which is the identity on
A, that is

P Cul(Xs1) = Ay Vwyx —2s A,V x = (IC.(X31))n

It is a consequence of (II1.4.5) and (II1.5.6) that p is a well defined chain map.
Moreover p is an isomorphism since p is an isomorphism in Coef. q.e.d.

Proposition (2.4) implies that C, induces a functor

Cy: Complex/é — chain/~ (2.5)

between homotopy categories.
Using the category Well of weakly cellular objects in C we obtain the com-
posite chain functor

C, : Well/~ % Complex/é L, chain/~ (2.6)

as well denoted by C,; see (IV.4.4). This yields the chain complex of a weakly
cellular object in the cofibration category C. There are similar properties of the
non-reduced chain complex aug C, if T is augmented; see (2.3) (5) and (I1.§6).

3 The Homology of a Complex

Let C be a homological cofibration category under T. Then we can use the chain
complex in § 2 to define the homology and cohomology of a complex in C. We also
obtain this way the homology of a weakly cellular object in C.

(5.1) Definition. Let X>; be a T-complex in C with coefficients 0x = ¢(X>1) €
Coef. Moreover let M (resp. N) be a left (resp. right) mod(9x )-module. Then
the homology and cohomology
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is defined as in (I.§6). Here C4(X>1) is the chain complex in §2. If Y5 is a
subcomplex of X>; then C.Y>; is a subcomplex of the chain complex CyX>1 so
that similarly the relative (co-) homology groups H,,(X>1,Y>1; M) are defined by
(L.§6). If T is augmented we define accordingly the non-reduced (co-) homology by
the non-reduced chain complex aug C, in (2.3) (5).

We also have the left mod(Jx)-module H"(X>,) = H"(C.(X>1)) with

H"(X>1)(D) = H"(X>1; Homa, (—, D)) (3.2)

where D is a cogroup in T corresponding to the object DV 0x in mod(dx ). Dually
one obtains the right mod(dx)-module H,(X>,) = H,(C\(X>1)) with

Hp(X>1)(D) = Hp(X>1;Homg, (D, —)) (3.3)

Compare (1.§6). More explicitly H,(X>1)(D) can be obtained by the following
chain complexes of abelian groups. Consider

(dn+171)* (drul)*
_— —_—

[ED, ZAn+1 VX2]2 [ED,EA»,L \/Xg]z [ZD,EAn_l VX2]2

Here d,, is defined as in (2.3) and we set (d,,, 1) = (d,, i2) where i, is the inclusion
of XQ.

(3.4) Lemma. H,(X>1)(D) = kernel(d,, 1)./image(d,+1, 1)«

This follows readily from the definition of H,(X>1)(D).
The homology H,,(X>1)(D) can also be described for n > 3 by the formula in
the following lemma. For this we define the operators 4, n > 3, by the composites

83 : TP (X3, X3) -5 7P (X5) L 7P (5 A5V Xo)s

9 .

(3.5)
Ont1 ZWE(XnJrl’Xn) - ﬂ'r?—l(Xn) . 7r5)—1(Xan—1)

where 0 and j are the maps in the homotopy exact sequence of pairs and where
v is the difference operator in (III.3.8).

(3.6) Lemma. We have 6,,0,+1 = 0 and forn > 3 there is a natural isomorphism
H,(X>1)(D) = kernel(d,,)/ image(dp+1)-
Proof. The isomorphism is induced by the composite (n > 3)
A TR (BALV Xa)g — 7P (T 24,V Xpl1)y — 72 (X, Xn1)

of maps A\, = Ex(1Vi),E"2 where i : Xy C X,, is the inclusion and Ex is the map
in (1.1) (b). Using (1.1) (a), (b), and (c) we see that A, is an isomorphism. Using
(II1.3.2), (I11.3.9) and (II1.3.10) and (I.3.4) we show that the diagram (n > 3)
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671 1
WT?(XTL+17XH) _'; 7"'711341()(717)(n—l)

)\n+lTE ETM (1)

TP (S Apir V Xa)y 2D 2D (2 AL v Xy),

commutes. Moreover for n = 2 the diagram

5
Wé)(Xg;Xg) =, WP(EA2 V .X2)2

- | »

WID(EA;; vX2)2 —M ﬂ'f)(EAQ VX2)2

commutes. This proves (3.6) by use of (3.4). For the proof of (1) and (2) we first
observe that by (II1.3.10) the diagram with n > 2

7rrLL)—2(ZIn_214n \/Xn—l)2 L’ Wr?fl(XnaXn—l)

5| | (3)

7D (57 ALY Xy 1)y o pD(SM1A, VX ),

commutes. Here F, Ex and (1Vi), are isomorphisms for n > 3 by (1.1) so that also
¥ is an isomorphism. We now show (1) by proving V0, +1An+1 = VAn(dnt1, 1)«.
In fact we have

Vont1Ani1(6) = ViOEx (1 Vi) E" %
=V ((On41, 1) (1 V) E"2¢),  see (111.3.9) and (II1.3.2)
= (VOn+1,i2)(1 Vi)E" 2, see (4) below
= (1 V) E™ %dpy0,i)E"2€, see (2.1) (4).

V/\n(dn+lv 1)*(5) = VEX(1 \v Z')En_g(dn+lv 1)*6
= (LV)EQV)E"((dny1,1)€), see (3)
= ((1Vi)E" %d,1,i)E" 2.

Let n = E"~2¢. Since n = En’ we have for 7j = (1 V i)n by I1.11.17 in Baues [AH]
the equations

V((Ont1,1)7) = —i2(Onv1, 1) + (i2 + 1) (Opy1, )7
= (—i20n+1,12)7 + ((12 + 71)Ont1, t2 +11)7]
= (=120n+41, )7+ ((i2 +i1)0n41, 1)1 ()

= (VOn+1,1)7]

(4)

Here we get () since (i2 + 1)1 = i21.
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Finally we prove (2) by

82A3(§) = VOEx (1Vi).(€)
=v((03,1)§), sincei=1
= (Vv03,1)¢, by (4) above
= (ds, 1)§, see (2.1) (4).

Here we use the fact that there exists an element ¢ with & = (1 V 4)E¢ by (1.1)

(a), (¢)-

4 The Obstruction Cocycle

We first define homotopy groups for filtered objects and then we show that an ex-
tension problem is related to a cohomology class with coefficients in such homotopy
groups. For CW-complexes this is a classical result of obstruction theory.

(4.1) Definition. Let C be a cofibration category under T and let Us be a filtered
object in Fil; (C).¢. For each cogroup D in T and n > 0 we define the homotopy
group

W,?(Uzl) = image{i* : wf(Un_H) — WTLL)(U"+2)} (1)

Here ¢ : U, 41 C Uy is the cofibration in C given by Us;. It is easy to see that
homotopy groups yield a functor

72 Fil(C).;/~ — Gr (2)

where on the left hand side we use the quotient category defined by 1-homotopies.
For n > 1 the groups 72 (Us;) are abelian. If (C,T) is homological then the
collection of homotopy groups 72, ,(Us1) for all D has the following additional
structure.

(4.2) Definition. Let C be a homological cofibration category under T. Then Coef
and mod = mod(C) are defined and for 9x € Coef we have the additive category
mod(dx) of l-equivariant maps a ® 1 : AV dx — BV Ox. Here A and B are
cogroups in T and « is an element a € [YA, YB V Xs]s where (Xo,X;) is a
principal cofibration with attaching map dx : As — X; € T. Given an object
Us1 € Fil(C) s we say that

v:X; — U €C (1)

is 0 -compatible if ivdx ~ 0 where i : Uy — Us,. Equivalently v is 9-compatible if
and only if there exists a map v : (X3, X1) — (Us, Up) between pairs extending v.
We define for the pair (v, U>1) and n > 1 the right mod(9x )-module v*7,11(U>1)
termed the (total) homotopy group of (v,Us1). The functor
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V' Tpt1(Us1) : mod(0x)°® — Ab (2)
carries AV Ox to the homotopy group
U T1 (Us1)(A) = 7 (Us1)

defined in (4.1). Here we use a shift in degree since A has dimension 1. Hence
on objects the functor (2) does not depend on v. On morphisms we define the
functor (2) by the induced map

(@O 1) : 17 (Us1) — 7, (Uz1) ®3)
which carries ¢ € 72(Us1) to the composite
(@@ 1)*(€) = (£,0)(E" 'a): X"A — "BV Xy — Uy ya (4)

Here ¢ : Uy — U, is the inclusion and @ is chosen for v as in (1). By (1.1) (a)
a factors through B Vv X;. This implies that (4) depends only on v and hence
(3) is well defined. Using I1.11.16 in Baues [AH] we see that (2) is a well defined

functor. Clearly a map f : Us; — V>; in Fill(C)cf/é induces a morphism of
right mod(9x )-modules

fe "1 (Us1) — (f1v) mnt1(Var) (5)

If X>; is a T-complex we obtain as a special case the right mod(9x )-module
Tn+1(X>1) which is the total homotopy group of (v, X>1) wherev=1:X; - Xj
is the identity.

We now study the following extension problem in a homological cofibration
category C under T'. Let L>; be a subcomplex of the T-complex K>; and consider

the diagram in Fil; (C).;.

K>, (4.3)

[
K2
I f
>1 —— Us1
where i is the inclusion. Given f and ¢ does there exist a map ¢ such the diagram
commutes? If U>; = U is the constant filtered object this corresponds to the

classical extension problem of algebraic topology. For this problem one considers
inductively extensions g,, of f where

gn : LZI UK" — U21 € Fill(C)cf

with n > 1. Here K™ is the n-skeleton of K>, and L>; UK™ is the subcomplex of
K>, given by the union of L>; and K".
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(4.4) Theorem. Let n > 2 and assume an extension g, of f exists so that we
obtain the 0-compatible map v = g, | K1 : K1 — Uy as a restriction of g,. Then
a relative cocycle 6(gn) of the cochain complex C*(K>1, L>1) with coefficients in
the right mod(0k)-module v*7,(Us1) is defined. This cocycle has the property
d(gn) = 0 if and only if an extension g,4+1 of gn exists. Moreover an extension
Gn+1 Of gn—1 = gn | L>1 U K"~ exists if and only if the cohomology class

{6(gn)} € H" (K351, L>1;0*mn(Us1))
1s trivial.
The cocycle §(gy,) is termed the obstruction cocycle.

Proof. Since L>; C K>p is a subcomplex we see that (Ky,41,Ln41 U Ky) is a
principal cofibration with attaching map

5n+1 : 2n_1An+1 — Ln+1 U K‘n
Now the cocycle is given by the composite
5(gn) = 9n3n+1 € W;Lq—l(UZI)

with A = A, ;. Here we identify 72 | (U>1) with the group of relative cochains in
degree n + 1 of Ci(L>1) C Cy(K>1) with coefficients in v*m, (U>1). Now we can
use (II1.3.3) to see that g,4+1 exists if and only if §(g,) = 0. Moreover by (I11.3.5)
we know that two extensions gy, g;, of g, | L>1 U K™~ ! differ only by an element
a € m2(Us1) with B = A, that is g, = g, + . By definition of d,,+1 we get

(gn) = (9n7+ a)On41
= gnan+1 + (gna Oé) v arL-+-1
= 6(gn) + dpy1 ()

This implies the property of the cohomology class {§(g,)} in (4.4). q.e.d.

5 The Hurewicz Homomorphism
and Whitehead’s Exact Sequence

Let C be a homological cofibration category under T. Then we obtain for each
T-complex X>; the right mod(dx)-modules H,,(X>1) and m,(X>1) for n > 2;
see (4.2) and (3.3). The general Hurewicz homomorphism is a homomorphism of
right mod(0x )-modules

h:mp(X>1) — Hp(X>1) (5.1)
which is natural in X5 € Complex/é, n > 2. For the definition of h we observe

that for a cogroup B in T the (n — 1)-fold suspension £"~! B can be considered to
be an n-dimensional T-complex with trivial (n — 1)-skeleton. Then we can identify
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Tn(X31)(B) = [E"71B, X»1]/~

where the right hand side is a set of morphisms in the category Complex/é.
Therefore we can apply the functor C, in (2.2) which defines h by the commutative
diagram

T(X51)(B)  —"—  Hu(X51)(B)

| H

(2718, X1/~ —Z [CLZ7 1B, C, X5]

The isomorphism on the right hand side is given by (3.3) and (1.6.5). By applying
C, to the composite

srlg 2 iy X, —S0 xo,

in (4.2) (4) we see that h(a © 1)*¢ = (a ® 1)*(£). Hence h is a well defined
homomorphism between right mod(dx )-modules.

(5.2) Remark. For C = Top™ and T = susp(x, D) the Hurewicz homomorphism
(5.1) specializes to the classical Hurewicz homomorphism

h:mn(X) 2 mn(X) — Hy(X)
where X is the universal covering of the reduced CW-complex X. Here h is a
natural homomorphism of right Z[m; (X )]-modules.

(5.3) Definition. Let (C,T) be homological. Then we define for a T-complex X >,
and n > 1 the right mod(9x)-module I}, (X>1) as follows. For n =1 let

I (X>1) = I(9x) (1)
be defined by the module in (I1.§2). For n > 1 and a cogroup B in T we define
I'iy1(X>1) : mod(dx)°? — Ab (2)

by
image{ann — WEXTL+1} forn > 2

Ly (X>1)(B) =
@) {kernel{vZWFXQ_’W?(ZAZV)Q)?} forn =1

For n > 2 this definition is up to a shift in degree similar to the definition of
72(Us1) in (4.1) (1). For n = 1 we use the difference operator v/ in (I11.3.9). We
define the structure of a right mod(9dx)-module similarly as in (4.2). That is for
€ € I+1(X>1)(B) we define (o © 1)*(€) by the composite

(@@ 1)*(€) = (&)(E" ) : Z"A — X"BV Xo — X, 41

Here i : Xo — X,,41 is the inclusion which is well defined for n > 1. For n = 1
this is again an element in kernel 3/ since £ € kernel(y7) and since « is trivial on
X5. This shows that the functor (2) is well defined.
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We are now ready to describe the following ultimate generalization of J.H.C.
Whitehead’s [CE] certain exact sequence

(5.4) Theorem. Let (C,T) be homological. Then one has for each T-complex
X>1 the following long exact sequence of right mod(0x )-modules, n > 2,

— In(X>1) - Tn(X>1) L, H,(X>1) 2 n—1(X>1) SO

— I (X>1) - o (X>1) A, Hy(X>1) 2, IN(X>1) —0

. 1 . .
This sequence is natural in X>; € Complex/~. The operator h is the Hurewicz
homomorphism.

The theorem yields a new interpretation of the module I in (IL.§2) as the
cokernel of the Hurewicz map in degree 2. Various explicit computations of I are
described in (I1.8.11).

Proof of (5.4). We define the operator i for n > 2 by the inclusion X,, ;7 C X, 40;
compare (5.8) and (4.1) (1). It is clear that ¢ is a homomorphism of mod(dx)-
modules. We define a sequence of abelian groups and homomorphisms, n € Z,

e Cpy A, ey P, (1)

with the property image(j) = kernel(3). Then one obtains the exact sequence

b ] h b
—Hyyy — T, > m, — H, — ... (2)

as follows:

I, = kernel{j A, — Cn}
Tn = An//@CTH»l
H,, = kernel(d,,)/ image(d,,+1)

Here d = j3 : C,, — C,,_; satisfies dd = 0. The operator i is given by I, C A, —
h

7. Moreover h is induced by A’ with j : A,’ — kernel(d,) C C,. Finally b is
induced by ¥’ : kernel(d,,) — [,—; which is the restriction of 3 : C,, — A,_;. A
diagram chase shows that (2) is exact; compare J.H.C. Whitehead [CE]. We define
(1) by
Wflen for n > 2
A, = IN00x)(B) forn=1
0 forn<2

78 (Xp, Xn_1) forn>3
kernel(dz, 1), for n =2
0 forn<l1

2
I
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For the definition of C5 we use the homomorphism
(dz, 1)* : W:F(EAQ \/XQ)Q — WIB(ZAl V XQ)Q,

compare (3.4). For n > 2 we have the exact sequence A, 11 — Cry1 — A,, namely

78 (Xp1) = 7B (Xni1, Xn) 2 781 (X)

is given by the homotopy exact sequence. For n = 1 we obtain the exact sequence
Ag — C by the exact top row in the following diagram

B(X;) L kernel(d, 1), 2 I'(dx)(B) — 0

| n

7T63(A2 V X1)2 Ex, WlB(XQ,Xl) ~, 7'('{3(2142 \/Xg)g

al l(dz,m

”(J)B(Xl) TP (A1 V X3)o

Here Ex is surjective and the columns are exact. Moreover 0Ex = (9x,1).. Hence
this diagram corresponds exactly to the definition of I'j(9x)(B) in (I1.2.1) since
vVEx = (1Vi).E is given by the partial suspension E. By (3.6) we see that
H, = H,(X>1)(B) and one readily checks that m, = 7,(X>1)(B) and I, =
I,(X>1)(B). This completes by (2) the proof that the sequence in (5.4) is exact.
One can check that h in (2) coincides with A in (5.1). Moreover b in (2) is a
homomorphism of right mod(9x )-modules. q.e.d.

(5.5) Lemma. We have for n > 1 the equation
Fot1(X>1)(B) = kernel{/ : 77 X471 = 72(E"Ans1 V Xni1)2}
For n =1 this is exactly the definition in (5.3).

Proof. We observe that for n > 1 the following diagram commutes; see (II1.3.10)
and (I11.3.9).

T (Xnt1) — T (E" Ang1 V Xng1)2

jl T(l\/i)*E

T (Xnt1, Xn) e m7 (" Ang1 V X2
Ex

Here Ex and (1 Vi), FE are both isomorphisms for n > 2 by (V.1.1). Hence we get
forn > 2

image{n” X, — w2 X, 11} = kernel(j) = kernel(/)

q.e.d.



Chapter VI: Realization of Chain Maps

In this chapter we consider fundamental properties of the chain functor C, which
carries a T-complex X>; to a chain complex A = C,X>;. Then X>; is termed
a realization of the chain complex A. We introduce partial realizations of a chain
complex which are termed “twisted homotopy systems”; this generalizes the notion
of a twisted chain complex in chapter II. Using twisted homotopy systems we
study partial realizations of chain maps. This leads to an obstruction theory both
for the realization of a chain complex and for the realization of chain maps. To
discuss these properties we introduce some useful language on “linear extensions
of categories”, “exact sequences for functors” and “towers of categories”; see §5.
The homological tower of categories in §6 is a first main result which is needed to
prove the homological Whitehead theorem in § 7 and the “model lifting property”
of the twisted chain functor in §8. The model lifting property is a key point in the
proof of the Hurewicz theorem in § 10 and in the proof of the finiteness obstruction
theorem in the next chapter VII.

1 Twisted Homotopy Systems of Order n

Let C be a homological cofibration category under a theory T of coactions. Then
T-complexes X>; and the associated chain complex C,X >, are defined. In order
to construct a T-complex X>; which realizes a given chain complex (A, 0x) we
consider inductively twisted homotopy systems of order n > 2 as follows.

(1.1) Definition. Let C be a homological cofibration category under T and let
n > 1. A twisted homotopy system of order (n + 1) or equivalently an (n + 1)
-system for short is a triple

X = (A, 8nyr, X™) (1)

Here X™ = (X; C X3 C -+ C X,) is an n-dimensional T-complex, 9,41 is an
element 9,11 € [X" " 14,41,X,] and A = (A, dx) is a chain complex in chain.
For n =1 we have 0x = 05 and for n > 2 we obtain dx by the attaching map of
(X2, X1). Moreover for n > 2 the chain complex A coincides in degree < n with
C(X™); see (V.2.3), and

dnt1 = VOnt1 2)

H.-J. Baues, Combinatorial Foundation of Homology and Homotopy
© Springer-Verlag Berlin Heidelberg 1999
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holds as in (V.2.3) (2). Here d,+1 © 1 is the differential of A. Hence X is
a “partial realization” of A; in fact, the part of degree < m in A is realized
by X™ and in addition the differential d,y; ® 1 is realized by an attaching
map Op+1. We say that X in (1) satisfies the cocycle condition if there exists
(in+2 € [EnflA,H_Q, Z'n;lArH_l \ X1]2 with

dpio2 = dpyo, see (V.1.9), 3)

(an+17i)*Jn+2 =0 in [EnﬁlAn—i-Zan}

A map between (n + 1)-systems is a pair (£,7n) which we write
(6777) X = (A7a‘n+17 Xn) —Y = (B7a‘ﬂ+17Yn) (4)

Here n : X™ — Y™ is a map in Complex and £ : A — B is an n;-equivariant
chain map where 7; : Ox — Oy is defined by the restriction m; : X; — V)
of 1. Moreover ¢ coincides in degree < n with C.n and there exists an element
En+1 € [En_lAn+1, Zn_lB,H_l V Y1]2 with

Enr1 =&, see (V.1.9), (5)

such that the following diagram commutes in Ho(C),

214,04 i, 2B VY

8n+1l \[(an+1,i)

X, —_— Y,
Nn
that is:
(8n+1a7:)*f_n+l = (M)+Ony1 in [Zn—lArHlen]‘ (6)

We say that (£,n) in (4) is the inclusion of a subcomplez if both £ : A — B and
7 : X™ — Y™ are inclusions of subcomplexes in chain and Complex respectively;
see (IV.2.4).

Two maps (£,1) and (£,7) as in (4) are 0 -homotopic if £ = £ and if there
exists a 0-homotopy 7 2 7’ in Complex; see (IV.1.3).

Let TWIST;, | be the following category. Objects are (n + 1)-systems which
satisfy the cocycle condition and morphisms are maps (£,7n) as in (4) above. There

. s . 0 .
is an obvious composition of such morphisms. Let TWIST] ; /~ be the quotient

category obtained by 0-homotopies.

(1.2) Remark. Let TWISTS(T) be the category of twisted chain complexes in
chapter II defined by a theory T of coactions and by a category mod of modules
for T. If (C,T) is a homological cofibration category and mod = mod(C) then
one has an isomorphism of categories
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¥ : TWISTS(T) & TWISTS/~

where the right hand side is the category defined in (1.1) above for n = 1. From this
point of view twisted homotopy systems of order n are the canonical higher order
analogues of twisted chain complexes. The isomorphism 1 of categories carries the
twisted chain complex A | Ox to the 2-system (A,dx,X) with X = X! € T C
C.s/~ and carries the twisted chain map f = (f>1, Ef”, f) to the 0-homotopy
class of (§,n) with £ = f>; and f = {n}. The map f” corresponds to & in (1.1)
(6) where n = 1.
We now define a canonical commutative diagram of functors (n > 2)

Complex 1, TWIST:,,
c*l JA (1.3)
chain «X* TWISTS
with K, A = K41 and Ar,41 = r,. We obtain the restriction functor r,+1 by
Tnt1(X>1) = (A, Opy1, X™) (1)

where X" is the n-skeleton of X, 0,41 is the attaching map of (X,4+1,X,) and
A = C,X is the chain complex of X. Similarly we get

/\(A78n+17Xn) = (A787L7Xn_1) (2)

where 8, is the attaching map of (X,,X,_1) and X"~ ! is the (n — 1)-skeleton
of X™. Moreover K, is the forgetful functor with

Kn(A 0, X" 1) = A (3)
(1.4) Lemma. The functors in (1.3) are well defined.

Proof. Tt suffices to consider r,, 1. In fact, by (V.1.1) (b) we see that the attaching
map X" A9 — X1 of X5 is a functional suspension. Hence there exists dy2
so that the cocycle condition is satisfied. Moreover

frt1 1 (Xng1, Xn) — (Yog1, Ya)
is a twisted map by (V.1.1) (b). Hence there exists &, satisfying (1.1) (b). q.e.d.

One readily checks that the functors (1.3) are compatible with 0-homotopies.
We therefore obtain the infinite sequence of functors, n > 1,

Complex/~ — .- — TWISTS,, , /~ > TWISTS /% — .. — chain
(1.5)

where the functor A for n = 1 coincides with the functor K in (I1.1.10). The
sequence (1.5) is a factorization of the chain functor C,. Next we define the notion
of 1-homotopy for maps between twisted homotopy systems; compare (IV.1.3).
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(1.6) Definition. Let (§,7),(&',n") : X — Y be maps in TWIST;, ;, n > 1. Then
(&,m) and (&', ') are 1-homotopic and we write (£,7) & (&',n) if (a) and (b) hold.
(a) There is &, € [X""1A,, X" !B, VY1), and there is a 1-homotopy

/

N
H:n+ (Ong1,0)0n =1

of maps in Fil(C). Here the action + for maps in C is defined as in (II11.3.4).
We define o, € [X¥'A,,, ¥B,, V Ya]s by a,, = &,; compare (V.1.9).
(b) There are ay, € [Y Ay, X Bmi1 V Ya]e for m > n + 1 such that

é-'m - §;n = (am—l © u)dm + dm+l(am © U)

Here u : 9x — 9y € Coef is the map given by u = {m } = {n}}. The equation
{m} = {n}} is a consequence of (a).

(1.7) Lemma. Given a (n+1)-system X in TWIST;, ,, there is a cylinder object
IX in TWIST; | such that the functor r,,,1 satisfies

rnp1(IX>1) = I(X)

for X = r,1(X>1). Here IX>1 is the cylinder object for 1-homotopies in (1V.1.3).
Moreover the homotopy relation associated to the cylinder object I(X) coincides
with the relation of 1-homotopy in (1.6).

Proof. We have the isomorphism of chain complexes
1op: C*(szﬂ = IC*le =JA
defined in (V.2.4). Hence we can define for X = (A, 9,41, X™) the cylinder object

IX = (IA,0n41, IX™)™) with
5n+1 S [En—IAn+1 \Y EnilAn \Y En_lAn_;,_l,Xn ulX,_1U Xn]

Ont+1 = (110n+1,w,120,41)

Here w = wy for f = 0, as in (II1.4.2). By (II1.4.5) and (IIL.5.6) we see that 8,41
satisfies the cocycle condition. As in VIL.2.6 Baues [AH] we see that 1-homotopies
in (1.6) correspond to homotopies defined by IX. q.e.d.

C

One can check that 1-homotopy is a natural equivalence relation on TWIST;,
and by (1.7) the functors in (1.3) induce functors between homotopy categories

Complex/é SLAGIN TWIST%H/é

C*l P (1.8)

chain/~ X TWISTS/~
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Given an n-system X = (A4,0,,X" 1) in TWIST,, with n > 2 and a right
mod(9dx)-module M we obtain the cohomology

H™(X; M) = H™(K,X; M) = H™(A; M) (1.9)

for m € Z. We shall use the right mod(9x )-modules I, X of an n-system X, n > 2,
defined as follows. We choose a principal cofibration (X,,X,_1) with attaching
map 8, so that X"~ ! is the (n — 1)-skeleton of the T-complex X" = (X; C X C
-+ C X,). Then we set

X =rI,(X") (1.10)
where the right hand side is given by (V.5.3).

(1.11) Lemma. Letn > 2. Amap f: X = Y in TWIST%/é with ¢(f) = u
induces a well defined homomorphism of right mod(9x)-modules

fo = Ta(f) : T(X) — u* T, (Y).

That is fo = fy implies Tn(fo) = In(f1).

Proof. The result is clear for n > 3 by the definition of I, in (V.5.3). For n = 2
we use the following argument. Let 1X>; be the cylinder for 1-homotopies and
let ¢ : X>1 — sz1 be an inclusion. Then we obtain by the exact I'-sequence the
commutative diagram

m3X>1 —— H3X>1 —— [Xs1 —— mXs1 —— Hy Xy

| l l l I

7T3I_X21 — H3I_X21 — F2IX21 — 7T2.TX21 — HQI_XEI

Here the two arrows on the left hand side and also the two arrows on the right
hand side are easily seen to be isomorphisms. Hence the 5-lemma shows that also
the arrow in the middle is an isomorphism. q.e.d.

2 Obstructions for the Realizability of Chain Maps

We consider the following problem. Given T-complexes X>; and Y>; and a u-
equivariant chain map £ : C,X>; — C,Y>1 is there a map f>1 : X>1 — Y>1
with Cyf>1 = &7 We call f>1 a realization of €. Using the categories TWIST;,
we describe a sequence of obstructions for the realizability of £. In fact, if £ is a
map in the subcategory TWISTY then we have seen in (I1.3.2) that there is a
map & : 79 X>1 — r2Ys) in TWISTS with K5(€) = £ if and only if an obstruction
element
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01(§) € H*(X>1,u* 1Y) (2.1)

vanishes. We now obtain more generally the following result describing higher
order obstructions for the realizability of £. For this we use the functors ry,, 7,41
and A in (1.3).

(2.2) Theorem. Assume C is a homological cofibration category under T. Let
X>1,Y>1 be T-complexes and let

firnXs1 — Y
be a map in TWIST; , n > 1. Then there exists a map
FirnaXs1 — rpa Y
in TWISTS | with \(f) = f if and only if an obstruction element
On(f) € H" ™ (X51,u* I, Y>1)
vanishes. Here w = ¢(f) : Ox — Oy is induced by f.

For n =1 this is a consequence of (I1.3.2). For n > 2 we obtain (2.2) by (2.3)
below. It is clear that theorem (2.2) yields a sequence of obstructions for the realiz-
ability of a chain map £. The obstruction O, (€) is the subset {O,(f); Kn(f) = &}
of H" (X5, u I, (Y>1)). If all O, (&) are trivial, that is, if 0 € O, (&) for all
n > 1, then £ is realizable.

(2.3) Obstruction theorem. Let C be a homological cofibration category under
T and let X,Y be objects in TWIST;, | where n > 2. For f : AX — AY in
TWIST;, there exists f : X — Y in TWIST, | with \f = f if and only if an
obstruction element

Oxy(f) € H" (X, u" [L(Y))
vanishes. Here uw = ¢(f) : Ox — Oy s induced by f.
Proof. We first choose for f = (£,7""!) a map F : X" — Y" in Complex
extending "~ : X"~ ! — Y"1, We obtain

F: (Xn7Xn~l) I (Yn7Yn—1) (1)

as a twisted map associated to &, in (1.1) (6); compare (IT1.3.12). Then we know
by (II1.3.16) that the chain map C,F coincides with £ in degree < n. For the
map F we obtain the following diagram (2) where &, = &,41. This diagram
corresponds to (1.1) (6) so that (£, F') is a map in TWIST], ,, if and only if (2)
commutes in Ho(C).

TrlA, 4 mir, I B VY,
8n+1l l(3n+1yi) (2)

Xn, — Y,
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This diagram, however, needs not to commute in Ho(C). Hence we obtain the
obstruction

(F) ( m+1,7? )£n+1 + F8n+1- (3)
This is actually an element in
O(F) € Ln(Y)(An+1) C [E"7 Anta, V). (4)

Moreover O(F') is a cocycle representing the cohomology class Ox y(f) in (2.3).
By (V.5.5) we know that

I(Y)(B) = kernel(7) (5)

where 7 : 72 Y, — 7B | (X"71B,VY,),. Hence (4) is a consequence of yO(F) =
0 where we set B = An+1 We check this by

V(Fan+1) = —igF@nH + (7/2 + i])F8n+1

= —i2FOp 1 + (V(F),i2F)(i2 + 11)0n 41 (6)
( ( ),i2F") V Ont1
= (1 Vi) E&, ing) E™ 2dp s (7)
= (1V)LE"?((6n © u)dnt1)
= (1V)E"*((dnt1 © 1)&nt1) (8)
= (VOn+1,) E" *6nna (9)
= V((Ont1,1)ént1) (10)

For (6) we use (I11.3.16). For (7) we use (II1.3.16) and (V.2.3)(4). Moreover (8)
holds since £ is a chain map; see (1.1) (4). For (9) we use again (V.2.3) (4).
Moreover (10) is a consequence of the fact that E" 72, is a partial suspension
also for n = 2 by (V.1.1). Since v is a homomorphism we see that (6) ... (10)
imply s7O(F) = 0 and hence (4) holds.

Next we check that O(F') is a cocycle, that is

dy 42 O(F) = (11)
Here d}, ,O(F) € I,(Y>1)(An2) is represented by the composite

E" 2dpi2 (O(F),in2)

En_lAn+2 Zn—lAnJ,_l VXQ Yn

We consider the two summands of O(F') and get accordingly the composites (12)
and (13).

(FOpy1,im2)E" 2dpyo = F(Opy1,i)dnie =0 (12)

Here we use the cocyle condition (1.1) (7). On the other hand we get
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((Ons1, 1) E™ %6041, im2) E™ 2dyp i
= (Ont1, ) E"*((€n41 © u)dny2)
= (On11,1) E" 2 (dn12(fnt2 © u))
= (Ops1, 1) E" 2o (E" *Epqn,ing) =0

(13)

Here we again use the cocycle condition (1.1) (7). By (12) and (13) we get (11).

We can alter F in (2) by a € [¥""'4,,,Y,] so that we obtain the map F +a €
Complex as in (II1.3.4). The restriction of F+a to X, —1 coincides with n,_; and
we choose a such that C, F = C,(F +a) = . This is the case iff a« € I',(Y>1)(4y)
by (5) and (111.3.7); see (V.2.3) (4). We claim that

O(F + ) — O(F) = (dn11)"(a) (14)
is a coboundary. In fact by (3) we have
O(F + @) = =(0n41, 1) E" 26 + (F + a)0npa
= —(On41,)E" %61 + FOny1 + (0, F) ¥ O
= O(F) + (a,m2) E" *dp 1.

Here we use (V.2.3) (4). We now are ready to prove (2.3). If f exists then Ox y (f)
is trivial since for F' = 7, diagram (2) commutes in Ho(C) by the assumption on

f = (&,mn)- On the other hand if Ox y(f) = 0. Then by (14) there exists o such

that O(F + «) = 0 and hence we can choose f = (£, F + «) with A(f) = f. q.e.d.

In the following proposition we use the fact that the cohomology group in (2.3)
actually depends only on AX and \Y, that is

H" (X, u*T,(Y)) = H""' (AX, u* [, (\Y)) (2.4)
Hence the maps g, and f* are well defined.

(2.5) Proposition. Let n > 2. The obstruction element in (2.3) has the deriva-
tion property. That is, for objects X, Y, Z in TWIST;, | and maps gf : \X —
AY — \Z in TWIST;, we have the formula

Ox,z(9f) = 9:.0x,y(f) + f Oy ,z(9).

This is an easy consequence of the definition of O(F) in (2.3) (3).

(2.6) Proposition. Let n > 2. The obstruction element (2.3) depends only on
the homotopy class of f in TWISTfL/é. That is for X, Y and f, g : AX — \Y

with f A g we have

Oxy(f) =Oxy(9)
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Proof. Let IX be the cylinder object for X with A(IX) = I(AX); see (1.7). A
homotopy H : f ~ g is given by a map H : [(AX) — \Y with Hi; = f and
His = g. Hence we obtain by the derivation property
Oxy(f) =i10ixy(H) (1)
Ox,v(9) = 1501x vy (H) (2)
since Ox rx(i1) = 0 = Ox rx/(i2). Since the projection p : IX — X induces an

isomorphism in cohomology and since pi; = 1 = piy we see that (1) and (2) imply
the equation in (2.6). q.e.d.

The next result can be used for counting possible realizations of a chain com-
plex.

(2.7) Proposition. Let X be an object in TWIST], ., n > 1, and let a €
H™" (X, I,X). Then there exists an object Y in TWIST;, | with AX = \Y
such that

Oxyy(l) = Q.
Here 1 is the identity of AX = \Y and Ox y is the obstruction operator in (2.3).

Proof. Let X = (A,0,41,X") and let @ € I,(X)(An41) be a cocycle representing
—a and assume @& is given by amap @ : "1 A,, — X,,. Then we obtain the object

Y = (A, Opsr + &, X™)

which is well defined in TWIST;, ,,. Using the definition of Ox y (1) in (2.3) one
readily checks that Ox y (1) = a. q.e.d.

There is also a relative form of the obstruction theorem (2.3). For this we use
the notion of subcomplex in a twisted homotopy system of order n in (1.1).

(2.8) Obstruction theorem (relative form). Let n > 2, let X, Y be objects
in TWIST;, | and let X' C X be a subcomplex. Let f' : X' —Y be a map in
TWIST; , and let f : AX — XY be a map in TWIST;, which extends \f' and
which induces u in Coef. Then there exists a map f : X — Y extending [’ and

satisfying \(f) = f if and only if an obstruction
OX,Y(f, f’) € H"+1(X, X’;u*[‘nY)
vanishes.

The proof of (2.8) is an easy modification of the proof of (2.3).
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3 The Homotopy Lifting Property of the Chain Functor

Let C be a homological cofibration category under T. Then we show that the
chain functor

C, : Complex — chain
defined in (V.2.3) has the following homotopy lifting property.

(3.1) Theorem. Let f : X>1 — Y1 be a map in Complex with f = C,f and

let a>1 : f ~ g be a homotopy in chain. Then there exists a 1-homotopy H : f ~ g
satisfying

Here we use (2.4) so that H and a1 can be considered to be maps in Complex
and chain respectively. The theorem describes a homotopy lifting property anal-
ogous to the “homotopy lifting property” of a Hurewicz fibration in topology. In
lemma (I1.4.6) we have seen that the functor

K, : TWIST; — chain
has the homotopy lifting property. We now show that also for n > 2 the functor
A: TWIST; | — TWIST],
has the homotopy lifting property in the following lemma.

(3.2) Lemma. Let f: X — Y be a map in TWISTS | and let H : f A g

1-homotopy in TWISTS with f = A\f. Then there exists a 1-homotopy H : f
with

R~ &
e

S]]

Ag=g and
\H =H

Proof. Let IX be the cylinder of X in TWIST, ;. Then iy : X — IX is a
subcomplex and we can use the relative obstruction theorem (2.8) which yields
the obstruction

OTX,Y(H7 fT) S Hn+1(jX, X,U*FnY) =0
Here the cohomology group vanishes. Hence (3.2) is a consequence of (2.8). q.e.d.

Proof of (3.1). We construct inductively maps g, € TWIST,; and homotopies

H,:rof ~ gn With K9, = g and Ky H,, = a>1. For n = 2 we use (I1.4.6) and
we use (3.2) for n > 3. The sequence of maps H,, g, defines H,g in (3.1). q.e.d.
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4 Counting Realization of Chain Maps

Let C be a homological cofibration category under T. We can realize a chain
map inductively by use of the tower of categories in (1.5). Obstructions for this
realization are described in (2.3). We now describe the number of realizations
obtained in each step; see theorem (4.2).

Let X,Y be objects in TWIST; |, with n > 2 and let v : Ox — Oy be
a morphism in Coef. Then [X,Y], denotes the set of all 1-homotopy classes of
maps f : X — Y in TWIST;,, inducing c¢(f) = u. The functor X yields the
function

[X,Y]s =5 [AX, \Y].. (4.1)

The image of this function is the kernel of the obstruction operator Ox y in (2.3).

In the next theorem we consider inverse images A\~'A(f) which are subsets of
[X,Y]u.

(4.2) Theorem. There is an action of the group H™(X,u*I,Y) on the set
[X,Y]. such that the orbits of this action coincide with the subsets A" A(f).

We denote the action of & € H"(X,u*I,Y) on f € [X,Y], by f + «. Then
(4.2) shows that maps f, g € [X, Y], satisfy A(f) = A(g) if and only if there exists
a with ¢ = f + «. Hence we obtain the exact sequence of sets

H' (X, 0" I,Y) =5 [X,Y]u 25 AX,AY]e 2% gt (X, u Ly)  (43)

Here the arrow —— denotes the action in (4.2) and Ox y is the obstruction operator
n (2.3). We define the action in (4.2) as follows.

(4.4) Definition. Let X = (A4,0n+1,X™) and Y = (B, 0p41,Y™) and let

f=En:X-Y (1)

be a map in TWIST;, , , inducing v = {n}. Here n: X™ — Y™ is a filtered map
in Complex. Given a € H"(X,u*I,Y") we choose a cocycle

ael,(Y)(A,) (2)

which is represented by a map & : X"~ !4, — Y,,. Using the action in (I11.3.4) we
can alter 77 by & so that we obtain a map n+a& : X” — Y™ in Complex extending
n| X" . Then f+a = ({,n+a) is a map in TWIST;, ; and for the 1-homotopy
class {f} € [X,Y], we define the action in (4.2) by

{ft+a={f+a} (3)

Proof of (4.2). We first check that (§,74 &) is a well defined map in TWISTY, , ;.
Since n > 2 and since (n + @) | Xp—1 = n | Xn—1 we see that n + & induces
u = {m} in Coef and that
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A&m+a)= A n) (4)
We show that

Ci(n+a)=Ci(n) =€ in degree <n (5)
and that for &,4; in (1.1) (6) we have
(i + @0ns1 = (Ons1,ensa in Ho(C). (6)

Then (2) and (3) imply that (§,7 4 @) is a well defined map in TWIST;, ;. Now
(5) is clear in degree < n — 1 and in degree n we have C,(n + a) = Cyn by (2.3)
(5), (II1.3.4) (2); compare (V.2.3) (4). This argument was already used in (2.3)
(14). Next we have

(nn + &)an—{—l = nn8n+l + (C_V7 nn) \V4 an+1~

Here (&, 1,) \/ On+1 s trivial since @& is a cocycle. Hence (6) holds since (1.1) (6) is

satisfied for (£,n). This completes the proof of (5) and (6). A homotopy H : f A g
yields a homotopy f + @ ~ g + & since + is defined by the coaction map p and
the cylinder of a sum is a sum of cylinders.

Now assume that the cocycle @& is a coboundary. This is the case if and only if
@ in (2) admits a factorization

JH

a:xm-14, —dn, ym-1g vy, J29,

Y

where d,, = d,, and 3 € I,(Y)(A,_1). Using the argument in VI1.2.12 (3) (4) (5)

Baues [AH] we see that in this case f + & L f. This completes the proof that the
action in (3) above is well defined.
Finally we have to show

Mfy =My} < Jawith {g} = {f} +a. (7)

The direction < is clear by (4). Now assume that we have a homotopy H : \f ~
Ag. Then by the homotopy lifting property of A in (3.2) we see that we obtain

a l-homotopy f & f' with Af’ = Ag. Hence (II1.3.5) shows that there exists
B: X" 1A, =Y, with n’ + 8 ~n" rel X,,_1 where f' = (¢,7/) and g = (¢/,7"").
Hence f'+ 3 is a well defined map in TWIST, | which is 0-homotopic to g. This
implies that 8 € I,(Y)(4,) and that § is a cocycle by arguments as in (5) and
(6). Hence g represents « in (7). q.e.d.

(4.5) Proposition. The action + in (4.4) has the linear distributivity law, that
s for f € |X,Y]u,g € [Y, Z], we have
(g+0)(f +a)=gf +g.a+ [0
o H"W (Y, v, Z) — H (X, (vu)* T, Z)
g« : H"PY (X, u*I,Y) — H" (X, (vu)* T, Z)
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We point out that f* and g. in (4.5) actually depend only on Af and Ag
respectivly, that is f* = (Af)* and g. = (A\g)« by (2.4).

Proof. This is a consequence of V.3.4 Baues [AH] since all maps n: (X,, X,,—1) —
(Y,,Y,_1) are twisted. q.ed.

5 Linear Extensions and Towers of Categories

The results on the obstruction operator in §2 and the action in §4 lead to certain
concepts in category theory like “linear extensions of categories” and “exact se-
quence for a functor”. In the next section we apply these concepts to the categories
TWIST;, of twisted homotopy systems of order n.

The concept of exact sequences for groups is fundamental in algebraic topol-
ogy. We can consider a group to be a category with a single object in which all
morphisms are equivalences. Therefore we might try to find a more general notion
of an exact sequence for categories and functors. In this section we introduce for
a functor \ exact sequences of the form

D+ —A 2B H

Here, however, D and H are not categories but “natural systems” of abelian groups
on B. Special exact sequences are the linear extensions of B by D denoted by

D+ —A-5B

the equivalence classes of which are classified by the cohomology group H?(B, D).
See Baues [AH]. This fact generalizes the classical result on extensions of a group B
by a B-module D which are classified by the cohomology H?(B, D).

Exact sequences for a functor A and linear extensions arise frequently in alge-
braic topology and in many other fields of mathematics. In fact, once the reader
learned about these concepts he shall recognize many examples himself and soon
the usefulness and naturality of such notions will become apparent.

(5.1) Definition. Let C be a category. The category of factorizations in C, denoted
by F'C, is given as follows. Objects are morphisms f, g, ... in C and morphisms
f — g are pairs («, ) for which

A2 A
fT Tg
B _p

commutes in C. Here aff is a factorization of g. Composition is defined by

(o, 8)(, 8) = (d, B3'). We clearly have (o, 8) = (o, 1)(1,8) = (1,8) (e, 1).
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A natural system (of abelian groups) on C is a functor D : FC — Ab. The func-
tor D carries the object f to Dy = D(f) and carries the morphism (o, 3) : f — g
to the induced homomorphism

D(a, ﬂ) = Oé*,B* : Df — Dafﬁ = Dg.

Here we set D(a, 1) = a., D(1,3) = B*.
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