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PREFACE

The main problem and the hard core of algebraic topology is the classifica-
tion of homotopy types of polyhedra. Here the general idea of classification is
to attach to each polyhedron invariants, which may be numbers, or objects
endowed with algebraic structures (such as groups, rings, modules, etc.) in
such a way that homotopy equivalent polyhedra have the same invariants (up
to isomorphism in the case of algebraic structures). Such invariants are called
homotopy invariants. The ideal would be to have an algebraic invariant which
actually characterizes a homotopy type completely.

This book represents a new attempt to classify simply connected homotopy
types in terms of homology and homotopy groups and additional algebraic
structure on these groups. The main new result and our principal objective is
the classification theorem in Chapter 3 on `k-invariants' and `boundary invari-
ants' which supplements considerably the classical picture of homology and
homotopy groups in the literature.

The second part of the book (Chapters 6-12) displays a number of explicit
computations of homotopy types which are obtained by applying the classifi-
cation theorem. In particular J.H.C. Whitehead's classical theorem on 1-
connected 4-dimensional homotopy types follows immediately. The old
challenging problem of extending Whitehead's classification for 1-connected
5-dimensional homotopy types is solved in Chapter 12. We also classify 2-
connected 6-dimensional homotopy types and (n - 1)-connected (n + 3)-
dimensional homotopy types, n >- 4, which are in the stable range (so that the
classification does not depend on the choice of n). A complete list of all finite
stable (n - 1)-connected (n + 3)-dimensional homotopy types is described in
Chapter 10. For example, there are exactly 24 simply connected homotopy
types X with homology groups

H4(X)=Z/6, H5(X)=71/2, H6(X)=71/2, H7(X)=71

and Hi(X) = 0 otherwise. For n >- 2 we also compute the homotopy types Y
with at most three non-trivial homotopy groups zr,,, 7r + , and 7r + 2. For
example, there exist exactly seven homotopy types Y with

ar4(Y) = 71/6, 75(Y) = 71/2, ir6(Y) = 71/2

and iri(Y) = 0 otherwise. We point out that our results for the first time
provide methods to compute such homotopy types with three non-trivial
homology groups or homotopy groups.
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Such classification results involve computations of low-dimensional homo-
topy groups, Chapter 11. For this the results on homotopy groups of mapping
cones in the Appendix are needed. We obtain complete information on the
fourth homotopy group vr4(X) of a simply connected space X and more
generally on the homotopy group iri+2 of an (n - 1)-connected space, n > 2.
This continues the classical programme of Hurewicz, resp. J.H.C. Whitehead,
who achieved such results for the homotopy groups vra, resp. of an
(n - 1)-connected space, n >- 2.

The book is essentially self-contained; prerequisites are elementary topol-
ogy and elementary algebra and some basic notions of category theory. It can
be used as an introduction to the subject and as a basis of further research.
Moreover it provides methods and examples of explicit homotopy classifica-
tion for those who would like to use such results in other fields, for example
for the classification of manifolds.

We refer the reader to the survey article (Baues [HT]) for a general outline
of the theory of homotopy types in the literature.

I would like to acknowledge the support of the Institute for Advanced
Study in Princeton.

I am also grateful to the staff of Oxford University Press and to the
typesetter for their helpful cooperation during the production of this book.

Bonn H.-J.13.
June 1995
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INTRODUCTION

For each number n = 0, 1, 2,... one has the simplex A" which is the convex
hull of the unit vectors a°, e1, ... e" in the Euclidean (n + 1)-space I"+'
Hence i ° is a point, Ot an interval, O2 a triangle, 03 a tetrahedron, and so on:

'n,
e' A2 A3

The dimension of 0" is n. The name simplex describes an object which is
supposed to be very simple; indeed, natural numbers and simplexes both have
the same kind of innocence. Yet once the simplex was created, algebraic
topology had to emerge.

For each subset a C {0, 1, ... , n} with a = (a° < <a,) one has the
r-dimensional face Aa c An which is the convex hull of the set of vertices
ea0, ... , ea,. Hence the set of all subsets of the set [ n ] = (0, 1, ... , n) can be
identified with the set of faces of the simplex W. There are `substructures' S
of the simplex obtained by the union of several faces, that is,

S=Aa UAa,U...UAa,C0".

Finite polyhedra are topological spaces X homeomorphic to such substruc-
tures S of simplexes 0", n >t 0. A homeomorphism S = X is called a triangula-
tion of X. Hence a polyhedron X is just a topological space in which we do
not see any simplexes. We can introduce simplexes via a triangulation, but
this must be seen as an artifact similar to the choice of coordinates in a
vector space or manifold.' Finite polyhedra form a large universe of objects.
One is not interested in a particular individual object of the universe but in
the classification of species. A system of such species and subspecies is
obtained by the equivalence classes

homotopy types and homeomorphism types.

Recall that two spaces X, Y are homeomorphic, X = Y, if there are contin-
uous maps f : X -> Y and g: Y --> X such that the composites fg = 1 y and

t Compare H. Weyl, Philosopy of Mathematics and Natural Science, 1949: `The introduction of
numbers as coordinates ... is an act of violence...'
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gf = lx are the identity maps. A class of homeomorphic spaces is called a
homeomorphism type. The initial problem of algebraic topology-Seifert and
Threlfall called it the main problem-was the classification of homeomor-
phism types of finite polyhedra. Up to now such a classification was possible
only in a very small number of special cases. One might compare this
problem with the problem of classifying all knots and links. Indeed the initial
datum for a finite polyhedron is just a set {a1,...,ad of subsets a; c [n] as
above, and the initial datum to describe a link, namely a finite sequence of
neighbouring pairs (i, i + 1) or (i + 1, i) in [n], (specifying the crossings of
n + 1 strands) is of similar or even higher complexity. But we must emphasize
that such a description of an object like a polyhedron or a link cannot be
identified with the object itself: there are in general many different ways to
describe the same object, and we care only about the equivalence classes of
objects, not about the choice of description.

Homotopy types are equivalence classes of spaces which are considerably
larger than homeomorphism types. To this end we use the notion of deforma-
tion or homotopy. The principal idea is to consider `nearby' objects (that is,
objects, which are `deformed' or `perturbed' continuously a little bit) as being
similar. This idea of perturbation is a common one in mathematics and
science; properties which remain valid under small perturbations are consid-
ered to be the stable and essential features of an object. The equivalence
relation generated by `slight continuous perturbations' has its precise defini-
tion by the notion of homotopy equivalence: two spaces X and Y are
homotopy equivalent, X = Y, if there are continuous maps f: X - Y and
g: Y -> X such that the composites fg and gf are homotopic to the identity
maps, fg = ly and gf = 1x. (Two maps f, g: X -> Y are homotopic, f =g, if
there is a family of maps f,: X -> Y, 0 < t < 1, with fo = f, fl =g such that the
map (x, t) - fr(x) is continuous as a function of two variables.) A class of
homotopy equivalent spaces is called a homotopy type.

Using a category C in the sense of S. Eilenberg and Saunders Mac Lane
[GT] one has the general notion of isomorphism type. Two objects X, Y in C
are called equivalent or isomorphic is there are morphisms f : X -+ Y, g: Y - X
in C such that fg = ly and gf = lx. An isomorphism type is a class of
isomorphic objects in C. We may consider isomorphism types as being special
entities: for example, the isomorphism types in the category of finite sets are
the numbers. A homeomorphism type is then an isomorphism type in the
category Top of topological spaces and continuous maps, whereas a homo-
topy type is an isomorphism type in the homotopy category Top/= in which
the objects are topological spaces and the morphisms are not individual maps
but homotopy classes of ordinary continuous maps.

The Euclidean spaces l8" and the simplexes ", n >_ 1, all represent
different homeomorphism types but they are contractible, i.e. homotopy
equivalent to a point. As a further example, the homeomorphism types of
connected 1-dimensional polyhedra are the graphs which form a world of
their own, but the homotopy types of such polyhedra correspond only to
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numbers since each graph is homotopy equivalent to the one-point union of a
certain number of circles S'.

Homotopy types of polyhedra are archetypes underlying most geometric
structures. This is demonstrated by the following diagram which describes a
hierarchy of structures based on homotopy types of polyhedra. The arrows
indicate the forgetful functors.

real algebraic sets Kaehler manifolds

I I
semi-analytic sets complex manifolds Riemannian manifolds

(analytic isomorphism) (complex isomorphism) (isometry)

differentiable manifolds
(diffeomorphism)

polyhedra topological manifolds
(homeomorphism) (homeomorphism)

I

locally finite polyhedra
(proper homotopy equivalence)

polyhedra
(homotopy equivalence)

This hierarchy can be extended in many ways by further structures. Each kind
of object in the diagram has its own notion of isomorphism; again as in the
case of polyhedra not the individual object but its isomorphism type is of
main interest.

Now one might argue that the set given by diffeomorphism types of closed
differentiable manifolds is more suitable and restricted than the vast variety
of homotopy types of finite polyhedra. This, however, turned out not to be
true. Surgery theory showed that homotopy types of arbitrary simply con-
nected finite polyhedra play an essential role for the understanding of
differentiable manifolds. In particular, one has the following embedding of a
set of homotopy types into the set of diffeomorphism types. Let X be a
finite simply connected n-dimensional polyhedron, n > 2. Embed X into a
Euclidean space R"', k >_ 2n, and let N(X) be the boundary of a regular
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neighbourhood of X c Rk+ I This construction yields a well-defined func-
tion {X} ti {MX)} which carries homotopy types of simply connected n-
dimensional finite polyhedra to diffeomorphism types of k-dimensional
manifolds. Moreover for k = 2n + 1 this function is injective. Hence the set
of simply connected diffeomorphism types is at least as complicated as the set
of homotopy types of simply connected finite polyhedra.

In dimension >- 5 the classification of simply connected diffeomorphism
types (up to connected sum with homotopy spheres) is reduced via surgery to
problems in homotopy theory which form the unsolved hard core of the
question. This kind of reduction of geometric questions to problems in
homotopy theory is an old and standard operating procedure. Further exam-
ples are the classification of fibre bundles and the determination of the ring
of cobordism classes of manifolds.

All this underlines the fundamental importance of homotopy types of
polyhedra. There is no good intuition of what they actually are, but they
appear to be entities as genuine and basic as numbers or knots. In my book
[AH] I suggested an axiomatic background for the theory of homotopy types;
A. Grothendieck [PS] commented:

'Such suggestion was of course quite interesting for my present reflections, as I
do have the hope indeed that there exists a 'universe' of schematic homotopy
types...'.

Moreover J.H.C. Whitehead [AH] in his talk at the International Congress of
Mathematicians, 1950, in Harvard said with respect to homotopy types and
the homotopy category of polyhedra:

'The ultimate object of algebraic homotopy is to construct a purely algebraic
theory, which is equivalent to homotopy theory in the same sort of way that
'analytic' is equivalent to 'pure' projective geometry'.

Polyhedra are of combinatorial nature, but they often can only be de-
scribed by an enormous number of simplexes even in the case of simple
spaces like products of spheres. J.H.C. Whitehead observed that for many
purposes only the 'cell structure' of spaces is needed. In some sense `cells'
play a role in topology which is similar to the role of `generators' in algbera.
Let

D' {xEW,Ilxlls1}

D"=ix el",Ilxll<1},

dD" = D" _15n = S" - I

be the closed and open n-dimensional disk and the (n - 1)-dimensional
sphere. An (open) n-cell, n >- 1, in a space X is a homeomorphic image of the
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0

open disk D" in X; a 0-cell is a point in X. As a set a CW-complex is the
disjoint union of such cells. A CW-complex is not just a combinatorial affair
since the `attaching maps' in general may have very complicated topological
descriptions.

Definition A CW-complex X with skeleta X ° c X' C X'- c c X is a
topological space constructed inductively as follows:

(a) X° is a discrete space whose elements are the 0-cells of X.

(b) X' is obtained by attaching to X"-' a disjoint union of n-disks D" via
continuous functions cc;: d(D;')-->X"-I, i.e. take the disjoint union
X"-' - UD" and pass to the quotient space given by the identifications
x - p1(x), x E dD". Each D" then projects homeomorphically to an
n-cell e" of X. The map cpi is called the attaching map of a".

(c) X has the weak topology with respect to the filtration of skeleta.

A CW-space is a space homotopy equivalent to a CW-complex. Homotopy
types of polyhedra are the same as homotopy types of CW-spaces. The main
numerical invariants of a homotopy type are `dimension' and `degree of
connectedness'.

Definition The dimension Dim(X) < m of a CW-complex is defined by
Dim(X) <n if X =X" is the n-skeleton. The dimension dim(X) of the
homotopy type (X) is defined by dim(X) <_ Dim(Y) for all CW-complexes Y
homotopy equivalent to X.

Definition A space X is (path) connected or 0-connected if any two points
in X can be joined by a path in X; this is the same as saying that any map
dD' - X can be extended to a map D' - X where D' is the 1-dimensional
disk. This notion has an obvious generalization: a space X is k-connected if,
for all n < k + 1, any map dD" -p X can be extended to a map D" --> X
where D" is the n-dimensional disk. The 1-connected spaces are also called
simply connected.

The dimension is related to homology since all homology groups above the
dimension are trivial, whereas the degree of connectedness is related to
homotopy since below this degree all homotopy groups vanish. It took a long
time in the development of algebraic topology to establish homology and
homotopy groups as the main invariants of a homotopy type. The crucial
importance of homotopy groups and homology groups relies on the following
results due to J.H.C. Whitehead.

Theorem

(A) A connected CW-space X is contractible if and only if all homotopy groups
7r"(X ), n >_ 1, are trivial.
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(B) A simply connected CW-space X is contractible if and only if all homology
groups H (X ), n >_ 2, are trivial.

The theorem shows that homotopy groups, and in the simply connected
case also homology groups, are able to detect the trivial homotopy type. In
fact, homotopy groups and homology groups are able to decide whether two
spaces have the same homotopy type:

Whitehead theorem Let X and Y be simply connected CW-complexes and
let f: X -* Y be a map. Then f is a homotopy equivalence if and only if
condition (A) or equivalently (B) holds:

(A) the map f induces an isomorphism of homotopy groups, f,,: ir,,X =
for n > 2;

(B) the map f induces an isomorphism of homology groups, f * : H X = H,, Y
for n>_2.

Hence both homology groups and homotopy groups constitute systems of
algebraic invariants which, in a certain sense, are sufficiently powerful to
characterize simply connected homotopy types. This does not mean that there
is a homotopy equivalence, X = Y, between simply connected CW-spaces just
because there exist isomorphisms of abelian groups H,, X = (or ir X =
?r Y) for all n. The crux of the matter is not merely that H,, X =_ H" Y, but
that a certain family of isomorphisms, 4,,: H,, X = has a geometrical
realization f : X -p Y. That is to say, the latter map f induces all isomorphisms
4R via the functor H,,, namely 0 = for all n. Therefore the emphasis
is shifted to the following question (pointed out by Whitehead [AH] at the
International Congress in Harvard (1950)).

Realization problem of J. H. C. Whitehead

(A) Find necessary and sufficient conditions in order that a given set of
isomorphisms or, more generally, homomorphisims ¢,,: have
a geometrical realization X - Y.

(B) Find necessary and sufficient conditions in order that a given set of
homomorphisms, 4),,: H X -* H,,Y, have a geometrical realization X - Y.

This realization problem is far from being solved. Only for simply con-
nected rational CW-complexes does there exist satisfying solutions by the
minimal models of Quillen and Sullivan; compare Baues and Lemaire [MM].
In this book we describe new solutions for special classes of CW-complexes.
As a fundamental tool we obtain the classification theorem in Chapter 3 which
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shows that a homotopy type of a simply connected (n + 1)-dimensional
CW-space X is determined in two different ways, either by the invariants

P11-1X1 HnX, Hn+1X, bn+1X, knX (*)

or by the invariants

P.-1X, HnX, Hn+1X, bn+1X, $,,X. (**)

Here Pn _ 1 X is the (n - 1)-type of X and bn + 1 X is the secondary boundary
operator in the `certain exact sequence' of J.H.C. Whitehead [CE]. Moreover
k, ,X is the Postnikov invariant of X, while 6,X is a new invariant which we
call the boundary invariant of X. The classification theorem also describes all
invariants (*), resp. (* *), which are realizable by spaces. All morphisms
between such invariants which are realizable by maps are specified.

The classification theorem yields insight into how homology groups and
homotopy groups depend on each other. In fact, we classify all possible
abstract homomorphisms between abelian groups,

hn' 7Tn n>

which can be realized as the Hurewicz homomorphism of a space with a given
(n - 1)-type; compare Theorem 3.4.7. We also show that the Hurewicz
homomorphism hn can be deduced from either the Postnikov invariant knX
or the boundary invariant 6,,X (see Sections 2.5 and 2.6). The following
result makes clear that the Hurewicz homomorphism

h,,X:vrnX->HnX

has indeed a strong impact on homotopy types; compare Propositions 2.5.20
and 2.6.15.

Proposition Let X be a simply connected CW-space. Then (A) and (B) hold:

(A) the Hurewicz homomorphism hnX is split injective for all n if and only if X
has the homotopy type of a product of Eilenberg-Mac Lane spaces;

(B) moreover h n X is split surfective for all n if and only if X has the homotopy
type of a one point union of Moore spaces.

This result and the Whitehead theorem show that homotopy groups and
homology groups are indeed the basic invariants of a homotopy type. More-
over a classifying invariant of a simply connected homotopy type should
determine the Hurewicz homomorphism 7Tn - Hn for each non-trivial homol-
ogy group H.
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LINEAR EXTENSIONS AND MOORE
SPACES

In this chapter we describe some basic concepts used in this book. We first
introduce purely categorical notions like detecting functor, linear extension of
categories, and the cohomology of categories. Then we describe the proper-
ties of Whitehead's I'-functor which we shall need for the description of
homotopy classes of maps between Moore spaces in degree 2. In fact, the
homotopy category M2 of such Moore spaces is canonically embedded in a
linear extension of categories

Ext(-,f)»M2-.Ab

which represents a non-trivial cohomology class in H2 (Ab, Hom( -, F)). We
use Moore spaces for the definition of homotopy groups with coefficients.

1.1 Detecting functors, linear extensions, and the cohomology of
categories

A letter like C denotes a category, Ob(C) and Mor(C) are the classes of
objects and of maps (morphisms) respectively. The identity of an object A is
14 = 1 = id and C(A, B) is the set of morphisms A - B. The group of
automorphisms of A is Autc(A) = Aut(A). An isomorphism in C is written
f: A = B. An isomorphism is also called an equivalence. A natural equivalence
relation - on the category C is given by an equivalence relation - on each
morphism set C(A, B) such that for f, g c- C(A, B) and a, b E C(B, C) the
relations f - g, a - b imply the relation of - bg. In this case we obtain the
quotient category C/'- which has the same objects as C and for which a set of
morphisms is the set C(A, B)/- of equivalence classes. Hence a morphism
(f}: A -> B in C/- is the equivalence class of a morphism f: A - B in C.
Now let = be a natural equivalence relation on a category A which is called
homotopy. Then a homotopy equivalence f : A = B is the same as an isomor-
phism in the quotient category A/=-. The homotopy type {B} of B is the class
of all objects A homotopy equivalent to B.

Surfective maps, resp. injective maps, between sets are denoted by

(1.1.1) A - B, resp. A >-> B.

(The arrow >-> also describes a cofibration in a cofibration category, but the
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meaning of >-+ will always be clear from the context.) A functor A: A -+ B is
full, resp. faithful if the induced maps A:A(X,Y) -> B(AX, AY) are surjective,
resp. injective for all objects X, Y E A; we also write A: A -. B, resp. A: A' -> B
in this case. An equivalence between categories is denoted by A B. For a
functor A: A -> B let AA be the image category of A. Objects in AA are the
same as in A and morphisms X -> Y in AA are the maps f : AX - AY in the
image set AA(X, Y). Clearly A induces functors

A i

A -AA>-+B

where A is full and where i is faithful. We say that A is a quotient functor if i
is an isomorphism of categories. The following notation was introduced by
J.H.C. Whitehead, see for example §14 of Whitehead [CE].

(1.13) Definition Let A: A -* B be a functor. By the sufficiency and the
realizability conditions, with respect to A, we mean the following:

(a) Sufficiency: If A(f) is an isomorphism, so is f, where f is a morphism in
A. That is, the functor A reflects isomorphisms.

(b) Realizability: The functor is AA - B in (1.1.2) is an equivalence of cate-
gories. This is equivalent to the following two conditions (bi) and (b2).

(bl) The functor A is representative, that is, for each object B in B there is an
object A in A such that AA is isomorphic to B. In this case we say that
B is A-realizable.

(b2) The functor A is full, that is, for objects X, Y in A and for each
morphism f: AX -> AY in B there is a morphism fo: X -> Y in A with
Afo =f. In this case we also say that f is A-realizable.

In this book the 'Whitehead theorem' is often used for checking that a
functor satisfies the sufficiency condition. The proof of realizability condi-
tions is then the hard part in classification problems. Since the sufficiency
and realizability conditions appear frequently it is convenient to condense
these conditions in the following definition.

(1.1.4) Definition We call A: A -> B a detecting functor if A satisfies both the
sufficiency and the realizable conditions, or equivalently if A refects isomor-
phisms, is representative and full.

Clearly, a faithful detecting functor is the same as an equivalence of
categories. By a 1-1 correspondence we always mean a function which is
injective and surjective.

(1.15) Lemma A detecting functor A: A - B induces a 1-1 correspondence
between isomorphism classes of objects in A and isomorphism classes of objects
in B.
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Next we consider pairs (A, b) where A is an object in A and where
b: AA = B is an equivalence in B. We have an equivalence relation on such
pairs given by (A, b) - (A', b') if and only if there is an equivalence g: A' -A
in A with A(g) = b-'b'. The equivalence classes form the class of realizations
of B denoted by

(1.1.6) Reala(B) = {(A, b) I b: AA = B}/-

Let {A, b} be the equivalence class of (A, b).
We now consider functors which are embedded into linear extensions of

categories. Such linear extensions arise frequently in algebraic topology and
in many other fields of mathematics. In fact, once the reader has learnt about
this concept he will recognize many examples himself and soon the usefulness
and naturalness of the notion will become apparent. We first consider the
classical notion of an extension of groups by modules. An extension of a
group G by a G-module A is a short exact sequence of groups

0 -->A E P G-->0
i

where i is compatible with the action of G, that is i(g a) = x(ia)x-' for
x Ep-'(g). Two such extensions E and E' are equivalent if there is an
isomorphism e: E - E' of groups with p'e = p and ei = P. It is well known
that the equivalence classes of extensions are classified by the cohomology
H2(G, A). Linear extensions of a small category C by a `natural system' D
generalize such extensions of groups. We show that the equivalence classes of
linear extensions are equally classified by the cohomology H2(C, D). A
natural system D on a category C is the appropriate generalization of a
G-module. Recall that Ab denotes the category of abelian groups.

(1.1.8) Definition Let C be a category. The category of factorizations in C,
denoted by FC, is given as follows. Objects are morphisms f, g.... in C and
morphisms f --> g are pairs (a, /3) for which

A °-- A'
fT

19

B .- B'

commutes in C. Here a f 0 is a factorization of g. Composition is defined by
(a', f3'Xa, )3) = (a'a, We clearly have (a, f3) = (a, 1X1, 13) _
(1, 8 X a, 1). A natural system (of abelian groups) on C is a functor D: FC -
Ab. The functor D carries the object f to Df = D(f) and carries the
morphism (a, 0): f - g to the induced homomorphism

D(a,/3)=a* f3*:Df->Dafp=Dg.

Here we set D(a,1) = a* and D(1, f3) =,6 *.
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We have a canonical forgetful functor zr: FC -> C°P X C so that each
bifunctor D: C°P X C -* Ab yields a natural system D7r, also denoted by D.
Such a bifunctor is also called a C-bimodule. In this case Df = D(B, A)
depends only on the objects A, B for all f e C(B, A). As an example we have
for functors F, G: Ab ---* Ab the Ab-bimodule

Hom(F, G): Ab°P X Ab Ab

which carries (A, B) to the group of homomorphisms Hom(FA,GB). If F is
the identity functor we write Hom(-, G) for Hom(F, G). For a group G and
a G-module A the corresponding natural system D on the group G, consid-
ered as a category, is given by Dg =A for g E G and g * a = g a for a E A,
g *a = a. If we restrict the following notion of a `linear extension' to the case
C = G and D =A we obtain the notion of a group extension above.

(1.1.9) Definition Let D be a natural system on C. We say that

D+ NE P C

is a linear extension of the category C by D if (a), (b) and (c) hold.

(a) E and C have the same objects and p is a full functor which is the
identity on objects.

(b) For each f: A -* B in C the abelian group Df acts transitively and
effectively on the subset p-'(f) of morphisms in E. We write fo + a for
the action of a E Df on fo E p-'(f ).

(c) The action satisfies the linear distributii ity law:

(fo + a)(go + /3) =fogo +f* a+g*a.

Two linear extensions E and E' are equivalent if there is an isomorphism of
categories e: E = E' with p' e =p and with e(fo + a) = e(fo) + a for fo e
Mor(E), a e Dpf,. The extension E is split if there is a functor s: C -* E with
ps = 1. We obtain the canonical split linear extension

(d) D+ NCxD-.C
as follows. Objects in C X D are the same as in C and morphisms X - Y in
C X D are pairs (f, a) where f : X - Y E C and a E D(f ). The composition
law is given by

(e) (f, a)(g, /3) = (fg,f* P+g*a).

Clearly the projection C X D --* C carries (f, a) to f and the action D+ is
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given by (f, a) + a' = (f, a + a') for a' E D(f). A splitting functor s yields
the equivalence of linear extensions

(f) e:CXD - E

given by e(f, a) = s(f) + a. We say that D+ H E 4 F is a weak linear
extension if AE - F is an equivalence of categories and if D+ N E -> AE is a
linear extension. In this case A is not the identity on objects, but it is easy to
replace the objects in E by objects in F: for this we choose for each object X
in F a realization M(X) in E so that the functor A, carrying M(X) to X, is
considered as a functor which is the identity on objects. In a weak linear
extension the functor A is always a detecting functor. We also consider the
following maps between linear extensions

D+ NE PO F
(1.1.10) Id

!e ,

D' + >-> E'
P a F

Here e and cp are functors with p'e = cpp and d: Df -> D,,f is a natural
transformation compatible with the action +, that is

e(fo+a)=e(fo)+d(a)

for a E Df.

(1.1.11) Lemma If cp is an equivalence of categories and if d is a natural
isomorphism then also a is an equivalence of categories.

Let C be a small category and let M(C, D) be the set of equivalence classes
of linear extensions of C by D. Then there is a canonical bijection

(1.1.12) +/r: M(C, D) - H2(C, D)

which maps the split extension to the zero element, see IV §6 in Baues [AH].
Here H"(C, D) denotes the cohomology of C with coefficients in D which is
defined by the nerve of C, see Definition 1.1.15 below. We obtain a represent-
ing cocycle 0, of the cohomology class {E} = q'(E) E H2(C, D) as follows. Let
t be a `splitting' function for p which associates with each morphism f: A - B
in C a morphism fo = t(f) in E with pfo = f. Then t yields a cocycle 0, by the
formula

(1.1.13) t(gf) = t(g)t(f) + O,(g, f )

with O,(g, f) E D(g, f ). The cohomology class (E) = {p,} is trivial if and only
if E is a split extension.
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(1.1.14) Remark For a linear extension

D+ - E-.C

13

(1)

the corresponding cohomology class {E} = T(E) E H2(C, D) has the following
classifying property with respect to the groups of automorphisms in E: for an
object A in E the extension (1) yields the group extension

0 -,T- Autc(A) - Autc(A) --> 0 (2)

by restriction. Here a E Autc(A) acts on x E A = D(1A) by a x =
(a-')*a * (x). The cohomology class corresponding to the extension (2) is
given by the image of the class 'Ir{E} under the homomorphism

H2(C, D) H2(Autc(A), A).

Here i is the inclusion functor Autc(A) v C and t: i*D _A is the isomor-
phism of natural systems with t = (a-')*: D. -* D(1A) =X. Further results on
linear extension of categories can be found in Baues [AH], Baues and
Wirsching [CS] and Baues and Dreckmann [GL].

Next we define the cohomology of a category C with coefficients in a
natural system D on C. In order to get cohomology groups which are actually
sets we have to assume that C is a small category; by change of universe it is
also possible to define this cohomology in case C is not small.

(1.1.15) Definition Let C be a small category and let N,,(C) be the set of
sequences (Al, ... , An) of n composable morphisms in C (which are the
n-simplices of the nerve of C). For n = 0 let NO(C) = Ob(C) be the set of
objects in C. The cochain group F" = F"(C, D) is the abelian group of all
functions

c:N"(C)-( U Dg)=D
ge Mor(C) I

(1)

with c(A, , ... , An) E DA 0 ... OA.- Addition in F" is given by adding pointwise
in the abelian groups Dg. The coboundary S: F"-' -p F" is defined by the
formula

00(A'I...I An) _ (AdIC(A2,..., An)

n-1
+ (-1)'c(AI....,AiAi,J,--.,A")

i=l

+(-1)n(An)*c(A,,..., An-1). (2)

For n = 1 we have (Sc)(A) = A c(A) - A*c(B) for A: A - B E N,(C). One
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can check that Sc E F" for c E Frt-1 and that SS = 0. Hence the cohomology
groups

H"(C, D) = H"(F*(C, D), S) (3)

are defined, n >_ 0. These groups are discussed in Baues [AH]. A functor
0: C' -> C induces the homomorphism

(1.1.16) ¢*: H"(C, D) --> H"(C', 4*D)

where O*D is the natural system given by (4*D)f=DD(f). On cochains the
map 4* is given by the formula

where (A', ... , A;,) E N"(C'). In (IV.5.8) of Baues [AH] we show:

(1.1.17) Proposition Let 0: C - C' be the equivalence of categories. Then (A*
is an isomorphism of groups.

A natural transformation T: D -p D' between natural systems induces a
homomorphism

(1.1.18) T H"(C, D) -> H"(C, D')

by (T*fXA1...... ")=TAf(A1,...,A")where rA:D,-->DD with A=A1o oA,,
is given by the transformation T. Now let

r
D"

be a short extract sequence of natural systems on C. Then we obtain as usual
the natural long exact sequence

(1.1.19)

--> H"(C, D') - H"(C, D) - H" (C, D") _ is H" + 1(C, D')

where /3 is the Bockstein homomorphism. For a cochain c" representing a
class (c") in H"(C, D") we obtain /3(c") by choosing a cochain c as in (1) of
Definition 1.1.15 with rc = c". This is possible since T is surjective. Then
i-1Sc is a cocycle which represents /3{c" }.

(1.1.20) Remark The cohomology of Definition 1.1.15 generalizes the coho-
mology of a group. In fact, let G be a group and let G be the corresponding
category with a single object and with morphisms given by the elements in G.
A G-module D yields a natural system b: FG --> Ab by Dg = D for g e G.
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The induced maps are given by f *(x) =x and h * (y) = It y, f, It E G. Then
the classical definition of the cohomology H"(G, D) coincides with the
definition of H"(G, D) = H"(G, D) given by Definition 1.1.15.

1.2 Whitehead's quadratic functor IF

We describe the universal quadratic functor F: Ab --> Ab which was intro-
duced by J.H.C. Whitehead [CE] and which also was considered by Eilenberg
and Mac Lane [II]. The functor F is characterized by the following property:
a function 17: A -, B between abelian groups is called a quadratic map if
77( - a) _ q(a) and if the function A X A --+ B with (a, b) H q(a + b) -
-q(a) - q(b) is bilinear. For each abelian group A there is a universal
quadratic map

(1.2.1) y:A-'F(A)

with the property that for all B and all quadratic maps 71: A -p B there is a
unique homomorphism 170 : I'(A) -* B with 71'y=f. Now r is a functor
since a homomorphism cp: A -- B yields the quadratic map yqp which induces
a unique homomorphism F(op) = (yc)° such that the diagram

F(A) -
-.

- T(B)

1 1

A B
w

commutes.
We have the following examples of quadratic maps. Let a,: A -A (9 Z/2

be given by o,(a) = a ® 1. Then it is easily checked that a is quadratic.
Therefore we obtain the canonical surjective homomorphism

(1.2.2) with Qy=a .

We consider the function Ho: A -+A ®A with H0(a) = a ® a. Clearly, H. is
quadratic and yields the canonical homomorphism

(1.2.3) H:I'(A)-*A®A with Hy=Ho.

The cokernel of H is the exterior square A A A =A ®A/(a ®a - 0). Next we
obtain by the quadratic map y the bilinear pairing

(1.2.4)

[ , ] _ [1,1]: A ®A -' I (A) with [a, b] = y(a + b) - y(a) - y(b).
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We write [f, g] = [1,1X f ®g): X ®Y -*A ®A --* F(A) where f: X -+A,
g: Y->A are homomorphisms. Clearly, we have [a, b]=[b, a] and

(1.2.5) r[a,b]=0 and H[a,b]=a®b+b®a.

Moreover, the sequence

(1.2.6) A ®A [I''1 r(A) A ®7L/2 ---> 0

is exact and natural in A. By considering the equation [a + b, c] _ [a, c] +
[b, c] we see that the following relations are satisfied in F(A):

J y(-a) = y(a)
y(a+b+c)-y(a+b)-y(b+c)-y(a+c)+y(a)+y(b)+y(c)=0)

(*)

We can construct the group I'(A) as follows. Consider the map y: A -* A
where A is the free abelian group generated by the underlying set of A. The
map y is the inclusion of generators. We set r(A) =A/R where R denotes
the relations (*) with y replaced by y. Now y is the composite A -> A --' A/R
of y and of the quotient map. One easily checks that this composition has the
universal property in (1.2.1).

For a direct sum A ® A' we have the isomorphism

(1.2.7) I'(A (&A') = r(A) ®A (&A' e I'(A')

which is given by F(i), r(i'), and [i, i'], where i, i' are the inclusions of A and
A' into A ® A' respectively . A similar result is true for an arbitrary direct
sum where I is an ordered set:

1'( A) = ® F(A;) ®® A. ®AJ.
i<j

Moreover, I' commutes with direct limits of abelian groups. If A = 71 then
F(A) = 71 is generated by y1. This shows that for a free abelian group A, also
F(A) is free abelian. If B is an ordered basis of A then (y(b) I b E B) U
([b, b'] I b < b'; b, b' E B) is a basis of I'(A). For an arbitrary abelian group
we obtain a presentation of r(A) by the following crucial result:

(1.2.8) Lemma Let C
d-' D -' A - 0 be an exact sequence of abelian groups.

Then the sequence

r(C) ®C ®D -L F(D) -3 r(A) -> 0

is exact. Here d is defined by I= (F(d),[d,1]) where 1 is the identity of D.
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If we set a = b = -c in (*) above we get y(a) - y(2a) + 3y(a) = 0 and
therefore y(2a) = 4y(a). More generally we get y(na) = n2y(a). By definition
we see 2y(a) = [a, a]. Using these equations we derive from the lemma:

(1.2.9) Corollary For a cyclic group 7L/n = Z/nZ we have

r(7L/n) =7L/(n22,2n)

where (n2,2n) is the greatest common divisor. The group is generated by y(l)
where 1 is a generator of 7L/n, 1 = 1 + n7L.

Hence the surjective homomorphism

(1.2.10) H: I'UL/n) - 7L/n ® 7L/n = 77/n

has kernel Z/2 if n is even and is an isomorphism if n is odd. Clearly, H is
surjective since Hy(1) = 10 1 is a generator. We derive from the universal
property of y that the following diagram commutes since [1,1]Hy(a) =
[a, a] = 2y(a).

H A 0A [I

I'A
2

I'A

Here 2 is the multiplication by 2. This shows:

(1.2.11) Proposition Let A be an abelian group such that multiplication by 2 is
an isomorphism on A. Then multiplication by 2 on FA is an isomorphism and
H: I'A -A ®A is injective and admits a natural retraction, namely (1/2) [1, 1].

Proof Since 2 is an isomorphism, I'A -+ I'A is also an isomor-
phism. Since 4 = is also an isomorphism on I'A.

We finally describe an important example in topology. It is a classical result
of J.H.C Whitehead [CES] that the Hopf map 712: S3 -> S2 induces a quadratic
function

(1.2.12) 772:1r2X--+7r3X, 11 (a)=ail,
between homotopy groups of a space X. This function satisfies the left
distributivity law

772 (a+ J3) - 712* (a) - T12(13) = [a, J3]

where [a, (3 ] E 'T3 X is the Whitehead product of a, )SE 7r2 X. Clearly the
induced homomorphism 17 = (71z) ° ,

(2.1.13) 77:F7r2X-*7r3X with 7r(ya)=rr2(a),

carries the bracket [a, 13 ] E r7r2 X to the Whitehead product [a, (3 ] E 7r3 X.
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1.3 Moore spaces and homotopy groups with coefficients

We start with the definition of a Moore space. Let n > 2. A Moore space of
degree n is a simply connected CW-space X with a single non-vanishing
homology group of degree n, that is H;(X,7L) = 0 for i # n. We write
X = M(A, n) if an isomorphism A = H"(X,7L) is fixed. Let Mn be the full
homotopy category of all Moore spaces of degree n. We have the homology
functor H": M" -* Ab which carries M(A, n) to the abelian group A. The
(n - 1)-fold suspension of a pseudo projective plane Pq = S' Uq e2 is a Moore
space of the cyclic group 7L/q = 7L/q7L, that is

Y."-'Pq = M(7L/q, n).

Clearly a sphere S" is a Moore space S" = M(7L, n).

(13.1) Lemma The functor M" - Ab is a detecting functor, that is, for each
abelian group A there is a Moore space M(A, n), n >- 2, the homotopy type of
which is well defined by (A, n). Moreover, for each homomorphism cp: A - B
there is a map gyp: M(A, n) -> M(B, n) with H";P = cp.

One has to be careful since for two Moore spaces X, Y of type M(A, n)
there is no `canonical' choice for the homotopy equivalence X = Y, since the
homotopy class ;P is not uniquely determined by gyp. We can easily construct

d
M(A, n) as follows. Choose for A a short exact sequence C N D --.A where
C and D are free abelian. Then d yields, up to homotopy, a unique map
d: M(C, n) --> M(D, n) the mapping cone of which is M(A, n). For M(C, n)
and M(D, n) we can take one-point unions of n-spheres. This shows that
M(A, n) can be represented by a CW-complex with cells only in dimension n
and n + 1. The suspension of a Moore space of degree n is a Moore space of
degree (n + 1), that is Y.M(A, n) = M(A, n + 1). Also a Moore space of
degree 2 has the homotopy type of suspension M(A, 2) = Y. MA where MA for
example can be chosen to be the mapping cone of a map d': Mc --> MD where
Mc and MD are one-point unions of 1-spheres and Id' = d. The homotopy
type of MA is not determined by A.

(13.2) Definition Let U be a space with base point *. The homotopy set of
base-point preserving maps

(1.3.3) it"(A; U) = [M(A,n),UJ (n>:2)

is called a homotopy group with coefficients in A. For n > 3 this is an abelian
group. Also ir2(A; U) has a group structure which, however, depends on the
choice of MA. These homotopy groups are covariant functors in U. They are
not contravariant functors in A; but they are contravariant functors on the
homotopy category M' of Moore spaces of degree n. The following proposi-
tion is the `universal coefficient theorem' for homotopy groups.
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(13.4) Proposition For n > 2 there is the central extension of groups

Ext(A, 7r,1U) Nit"(A; U) Hom(A, it"U)

which is natural in U and which is natural in A in the following sense. Let
;p: M(A, n) -' M(B, n) be a map with H" 4P = cp: A -> B. Then we have 0 cp* _
;P*0 and A;p* = 9*µ.

Proof For the mapping cone M(A, n) of the map d above we have the exact
cofibre sequence of groups

Hom(D,7r" ,) -Hom(C,7r"+i) -> [M(A,n),U]

Hom(D, 70 ---> Hom(C, 7r"),

where 7r" = 7r"(U). For n = 2 the extension is central by (11.8.26) Baues [AH].
11

The universal coefficient sequence is compatible with the suspension
functor 1. In fact we have the following commutative diagram of homomor-
phisms between groups, n > 2.

Ext(A,7r"+,U) H 7r"(A; U) - Hom(A, 7r"U)
(1.3.5)

Ext(A,ir"+z ,U).

This follows easily by the naturality in U if we consider U-> J1 XU where
(1IU is the loop space of 1U. We now consider the categories M' of Moore
spaces. The suspension functor I yields the sequence of functors

(1.3.6) M'-
E.M3-M4-- .

which commute with the homology functor, that is H"+,Y. = H": M" - Ab.
The Freudenthal suspension theorem shows that I is full on MZ and that the
tlinctor 1: M' -> M"+ 1 is an equivalence of categories for n > 3. Therefore it
ik enough to compute M2 and M3. Let F be the quadratic functor of J.H.C.
Whitehead and let y: A -+ I'(A) be the universal quadratic function. Then we
have the suspension map o : F(A) -*A ®1/2 with o (ya) = a ® 1. We define
f Dr n >_ 2 the functor F,,': Ab - Ab by

(1.3.7) ri(A) = J r(A) for n = 2
A®71/2 forn3 .

/e have a natural isomorphism

17: 7r"+,M(A,n)
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which, for a E A = ir" M(A, n), is defined as follows. For n = 2 the isomor-
phism y(a) to riz (a) where 'rig: S3 - S2 is the Hopf map; in this way we
identify riz with the universal quadratic map

(1.3.8) y: A = 7r2M(a,2) '2 7r3M(A,2) =1'(A).

Moreover, for n >_ 3 the isomorphism carries a ® 1 to ri,*a where ri" =
I'- 2,n2: S"+ ` -> S" is the suspended Hopf map. The suspension I on
7r3M(A,2) is now identified with

(1.3.9) a-: F(A) = Tr3M(A,2) -L a4M(A,3) =A ® Z/2.

As a corollary of the universal coefficient theorem we get

(13.10) Corollary For n >_ 2 one has the binatural central extension of groups

N [M(A,n),M(B,n)] -µ. Hom(A,B)

where H" is given by the homology functor. We set P + a = + 0(a) for
(p:A -> B. Then the `linear distributwity law'

(41

is satisfied with 0: B -> C E Ab and a E Ext(A, r'B), 0 E Ext(B, r,,' 0.

The corollary shows that we have a linear extension of categories (n >_ 2)

(1.3.11) M"- Ab;

compare also (V.3a) in Baues [AH]. This implies that the group of homotopy
equivalences ( (X) for X=M(A,n) is embedded in the extension of groups

(1.3.12) Ext(A, r'A)>'*) (C(X) -. Aut(A).

Here Ext(A, r A) is an Aut(A )-module by cp a = p * (gyp-' )* (a ). The inclu-
sion homomorphism 1 + is defined by 1 '(a) = 1 + a where 1 is the identity
of M(A, n). The linear distributivity law shows that 1+ is actually a homo-
morphism. The extensions (1.3.11) and (1.3.12) in general are not split, see
Baues [AH].

Next we obtain, for gyp: A -b B and a E [M(A, n), M(B, n)], a e
Ext(A, F, B), the induced function

(1.3.13) (gyp + a)*: 77r"(B, U) - 17"(A, U)

which satisfies the formula, x E ir"(B, U),

(ijp + a)* (x) = ;p(x) + Aa * µ(x).
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Here defined
by the commutative diagram

B b ''
b) °

%'B

where y is the universal quadratic function for n = 2 and is o-y for n > 3.

(13.14) Definition For n >_ 3 let ir,(A, X) be the kernel of the homomor-
phism

A Hom(A,?rX) t1 - Hom(A,Trn+1X).

Then (1.3.13) shows that rr is actually a well-defined bifunctor

ir,,': Ab°P X Top/= --> Ab

together with a natural short exact sequence

Ext(A, rri+1X) X) - Hom(A, ir,,X).

Here denotes the kernel of 71,*: ir (X) 1T,, I(X).

1.4 Suspended pseudo-projective planes

Pseudo projective planes, P11 are the most elementary 2-dimensional CW-
complexes. They are obtained by attaching a 2-cell e2 to a 1-sphere S' by an
attaching map f : S' -> S' of degree f >_ 1, that is

(1.4.1) Pf=S'Ufe2=D/-.

Here D is the unit disk of complex numbers with boundary S' = dD and with
base point * = 1. The equivalence relation - on D is generated by the
relations x - y p xf = yf with x, y E S1. Clearly P2 = 118 P2 is the real projec-
tive plane. We obtain, for each pair 17) of natural numbers with g6 = rlf, a
map

(1.4.2) rt:Pf-->Pg by for xED.

The induced map -rr,T : 7L/f = rr Pf -+ Tr 1 Pg = 7L/g on fundamental groups is
given by the number q = ge/f which carries the generator 1 E 7L/f with
1 = 1 + f7L to r) 1 E 7Lg. We call the homotopy class of T£ in Top* a principal
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map between pseudo-projective planes. We point out that the homotopy class
of Tr is not determined by ?r1('rt ); see III Appendix B in Baues [CH] where we
compute the set [Pf, Pg]. We consider the suspensions

(1.4.3) I"-'Pf=S" Uf e"+' =M(7L/f,n)

of pseudo-projective planes, n >_ 2, which are Moore spaces of cyclic groups.

(1.4.4) Theorem For (p E Hom(7L/f,71/g) there is a unique element 45 =
B2(0 E [P1, ' Pg ] which induces cp = H2 and which is the suspension of a
principal map Pf -> Pg. Moreover for n > 3 there is a unique element ip =
Bn(cp) E [y" 'P1, 'Pg] which induces tp = H" and which is the (n - 1)-fold
suspension of a map Pf -> Pg.

This crucial fact is proved in III Appendix D of Baues [CHI. Let P" be the
full subcategory of Top*/= consisting of the sphere S" and the spaces
In-1pf, f > 1. Let

(1.4.5) H":P"_Cyc

be the homology functor where Cyc is the full subcategory of cyclic groups
i/n, n > 0, in Ab with 71/0 = Z.

(1.4.6) Corollary For n >_ 2 the homology functor in (1.4.5) admits a splitting
functor

B":Cyc--+ P"

with H" B" = 1.

For the proof of the corollary we only observe that the composition of
principal maps between pseudo-projective planes is principal. Hence the
corollary is an immediate consequence of the theorem. For 4n-1Pf= S" Uf
en+' we have the inclusion of the bottom sphere i and the pinch map q such
that

(1.4.7) S" ` " 'Pf 9 Sn+1

is a cofibre sequence. The function Bn: Hom(7L/f,Z/g) --* [In-1Pf, In-'P5]
in Theorem 1.4.4 is not additive. But we have the following rule:

(1.4.8) Theorem For cp, gyp' E Hom(7L/f,7L/g) we have

(p') =Bn(cc) +B,,(cp') +o(w, v')

L1(V' V') _ (f(f -

H e r e gyp,, Vi a r e numbers w i t h o(l) _ (pt1 and qp'(l) = (p'1 and 71n: Sn+' - Sn

is the Hopf map. In particular we get Bn(rcp) = Zr(r - cp).
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This result, together with the central extension of groups (see Proposition
1.3.4 and 1.3.7)

(1.4.9) Ext(7L/f,I','Z/g) H [Y."-'Ps,Y."-'PgJ y Hom(7L/f,71/g)

determines completely the group structure of [' -'Pf, I" -'Pg ] Here the
kernel of H" is a cyclic group generated by the element iq"q; recall that
for the cyclic groups 71/g we have 1'(7L/g) = Z/(g2 , 2g) so that
Ext(71/f, r(71/g)) = 71/(f, g2, 2g). Here (g2, 2g) and (f, g2, 2g) denote the
greatest common divisors.

(1.4.10) Corollary For all f, g the group [1Pf, 5,Pg] is abelian. Let a, b be
defined by f = 2°fo and g = 2bgo where fo and go are odd. Then the homomor-
phism (n > 2)

H": [I" 'Pf," 'Pg] -" Hom(7L/f,7L/g) = 7L/d

has an additive splitting of abelian groups if and only if (a, b) # (1, 1). Moreover
ford=(f,g), c=(f,g2,2g), ande=(f,g,2) we have

[IPf,IPgI
7L/d ®7L/c

7L/2d ®71/(c/2)
for (a, b) 0 (1, 1)
for (a, b) _ (1,1)

- (7L/d ®7L/e for (a, b) (1,1)
[12Pf'1'2p ]

7L/2d for (a, b) = (l, 1).

Compare also III Appendix D in Baues [CH] and Barratt [TG]. A restric-
tion of the linear extension (1.3.11) for M" yields the linear extension

NP"_Cyc

which is split by B" for n > 2. Hence Definition 1.1.9(f) yields the equivalence

(1.4.11)

Moreover for n > 3 Theorem 1.4.8 determines P" as a pre-additive category.
We use this fact in the following section.

1.5 The homotopy category of Moore spaces M', n >_ 3

In Section 1.4 we computed completely the homotopy category P" of sus-
pended pseudo-projective planes. Here we use this result for the computation
of the homotopy category M" of Moore spaces. We recall the following
notation:
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(1.5.1) Definition A category P is pre-additive or a ringoid if all morphism
sets P(A, B) are abelian groups such that the composition is bilinear. The
category of matrices over P is given as follows. Objects are tuples (A1,. .. , An)
of objects in P and morphisms from (A1, ... , A,,) to (B1, ... , B,n) are matrices

M=(MMiEP(A;,BJ)Ii=1,...,n;j=1,...,m).

Composition is defined for N: (B1..... (C...... Cs) by

(NM)ki= F, NkJoM,EP(Ai,Ck).M

i=1

The category of matrices over P is also called the additive completion
Add(P). A category A is called additive if A is pre-additive and if finite sums
exist in A. Each additive functor F: P - A has a unique additive extension
F: Add(P) --> A which carries (A 1, ... , A,,) to the sum of FA1,... , FA,, in A.
Recall that a functor between ringoids is additive if it is a homomorphism on
morphism sets.

We consider the full homotopy category FM' (n >_ 2) which consists of
Moore spaces M(A, n) where A is a finitely generated abelian group. For
each such group we have a direct sum decomposition

(1.5.2) A=7L/a1 ®... ®77/ar, a;>0,

of cyclic groups. Associated with this isomorphism there is a homotopy
equivalence

M(A, n) = Y"-1(P0 v ... V pa )

where P,, = S1 U,, e2 is a pseudo-projective plane if n > 0 and where P,, = S1
for n = 0. This leads to the following result:

(1.53) Proposition For n >_ 3 the category FM" is equivalent to the category of
matrices over the pre-additive category Pn.

Proof The inclusion P' c FM" yields the additive extension Add(P") -' FM"
which is an equivalence of categories.

There are certain subcategories of Mn which have a simple algebraic
characterization. We use the ring

R,= Iyn-1p,,yn-1P,1, n>3.

The ring structure is given by composition and addition of maps. In Section
1.4 we computed the rings R,.
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(1.5.4) Corollary The full subcategory in M" (n >- 3) consisting of Moore
spaces M(A, n) for which A is a finitely generated free 7L/t-module is equivalent
to the category of finitely generated free R,-modules.

(1.5.5) Remark Let FAb be the full subcategory of Ab consisting of finitely
generated abelian groups. Then we obtain the non-split linear extension
(n>-2)

H FM" - FAb (1)

which is the restriction of (1.3.11). Using (1.1.12) we thus have the non-trivial
element

0 (FM") EHZ(FAb,Ext(-,1:"')) (2)

which, however, restricted to the subcategory Cyc C FAb is trivial. On the
other hand M. Hard has shown that the cohomology

-7L/2 (3)

is a cyclic group of order 2. Hence (FM') is the generator of the group so that
the linear extension (1) is, up to equivalence, the unique extension of FAb by
Ext(-, which is not split. For n >- 2 this is a kind of fancy characterization
of the category FM'. Using Proposition 1.5.3 one can compute a cocycle
representing the cohomology class (FM"), n >- 3; for n = 2 we shall compute
such a cocycle below.

1.6 Moore spaces and the category G

In this section we describe an algebraic representation of the homotopy
category of Moore spaces Mn, n >- 3. Using homomorphisms between certain
abelian groups G(A) we define an algebraic category G and we describe an
equivalence of additive categories Mn = G for n z 3. This then leads to the
computation of the homotopy group ir"(A, X), n 3, with coefficients in A
in terms of the operator -q" ' 1r"(X) -* 1r"+ (X) induced by the Hopf map 71".
We identify

Ext(7L/q, A) = A ®7L/q = A/qA

Hom(7L/q, A) =A *7L/q = Ker(A -- »A).

The identification is natural in A, but clearly not natural in 7L/q. Moreover
we shall use the following natural transformation of functors

(1.6.2)
g=g9:Ext(A,B)->Hom(A*7L/q,B®7L/q)

Ig(a)(x) =x*(a).
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Here an element x EA *71/q = Hom(71/q, A) induces the homomorphism
x*: Ext(A, B) ---> Ext(Z/q, B) = B ® 7L/q.

(1.6.3) Lemma If A is a free 71/q-module then gq above is an isomorphism.

Compare (IX.52.2) in Fuch [1]. We now consider, for n >_ 3, the abelian
group

(1.6.4) G(A) = irn(71/2, M(A, n))

which does not depend on n >_ 3 since we have the suspension isomorphism.
The extension

A ® 71 2 > G(A) A * Z 2 (1)/ / ,

given by (1.6.1) and Corollary 1.3.10, thus yields an extension element

{G(A)} E Ext(A * Z/2, A (9 71/2) = Hom(A * l/2, A ® Z/2). (2)

The corresponding homomorphism

GA =g(G(A)): A *71/2 -A ® 71/2 (3)

carries x to A-'(2x) where x E G(A) is an element with Ai =x.

(1.6.5) Proposition The homomorphism GA coincides with composition

GA:A*Z/2CA -»A(9 71/2,

of the inclusion and projection.

In particular we have G(A ® B) - G(A) ® G(B) and

71/4 ifq2mod4,
G(l/q)- 71/2®71/2 if q0mod4,

0 otherwise.

This yields G(A) for each finitely generated abelian group A.

Proof of Proposition 1.6.5 For z E G(A) we have 2 x = (2 id)*x where 2 id is
given by the homotopy commutative diagram

In- IP zid
En - 'Pz z

19 I
Sn+ 1 Sn.

41
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Here n, is the Hopf map. Now the definition of 0 via q and rl" in (1.3.7), and
(1.6.03) yields the result.

We use the extension for the group G(A) above in the definition of the
following category.

(1.6.6) Definition of the category G Objects are abelian groups. A map from
A to B is a pair ((p, ip) with p E Hom(A, B) and 4 E Hom(GA,GB) such
that the following diagram commutes:

A®7L/2>->G(A)-*A*71/2
1'P®I to 1'.1

B ®7L/2 >-> G(B) -.B *71/2

We call (cp, qr) a proper map G(A) -), G(B). Let G(A, B) be the set of all
proper maps from G(A) to G(B). Then the naturality of the universal
coefficient sequence yields a function

G: [M(A, n), M(B, N)] --* G(A, B)
G(yp)=

where rp = H";P and ;P* = it"(71/2, gyp). Clearly, G is a functor; in fact:

(1.6.7) Theorem The functor G: M' -' G is an equivalence of additive cate-
gories (n >_ 3) and there is a commutative diagram of linear extensions of
categories

E" N Mn H Ab

F N G -pr
Ab

Here g is the isomorphism

g: E"(A, B) = Ext(A, B (9 71/2) = Hom(A *71/2, B ®7L/2) = F(A, B)

given by g2 above. The functor pr: G -p Ab is the projection (cp, r(r) >- p and the

action F N G is given by (cp, 40 + P (gyp, 4 + AjS µ) for J3 E F(A, B).

(1.6.8) Corollary Let n >_ 3 and let A be any abelian group. Then the group of
homotopy equivalences of the Moore space M(A, n) is the group of proper
automorphisms of G(A).
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Proof of Theorem 1.6.7 It is enough to show that the following diagram
commutes

Ext(A,B®Z/2) -g-iHom(A *Z/2,B(&71/2)

[M(A, n), M(B, n)] Hom(G(A),G(B))

where ;P+( a)= p +a is given by the universal coefficient theorem and
where we set ;P * (/3) = * + A 13 µ. Now we have, by the distributivity law for
Mn' the following equation, where x E [I"-'P2, M(A, n)] = G(A):

Theorem 1.6.7 yields a complete algebraic description of the additive
category M', n >_ 3, as an extension of Ab. Such a simple description is
unfortunately not available for the category M2 of Moore spaces of degree 2.

We now consider, for n >_ 3, the functorial properties in A of the homo-
topy groups

7r" (A, X) = [M(A,n),XI

with coefficient in an abelian group. Using the equivalence of categories G in
Theorem 1.6.7 we obtain, for each pointed space X, a functor

(1.6.9) G°p = (M-)'p , Ab

which carries A E G to the group 7r"(A, X). For the computation of this
functor we introduce the following notation.

(1.6.10) Definition Let A, 7r, 7r' be abelian groups and let -0: 7r ® 71/2 --p 7r'
be a homomorphism. We define the abelian group G(A,71) by the following
push-out diagram in Ab in which rows are short exact.

Hom(A*Z/2,7r(9 71/2) 11G(A,7r)-
Fi

Hom(A,7r)

fl

Ext(A, 7r ® 1/2) push

117

0 1 µ II

Ext(A,7r') =G(A,77)- Hom(A,7r)

The top row is given by the abelian group G(A, 7r) of morphisms A ---> 7r in
the category G (see Definition 1.6.6), with A (q, ir) = (p and A(0) = (0,A)3µ)
(see (1.6.01)). The isomorphism on the left-hand side is defined in (1.6.4)(2).
The diagram is in the obvious way functorial in A E G and hence we obtain
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by G(A, 71) a functor G(-, -q): G°P -> Ab. This functor is used in the next
result for the computation of the functor (1.6.9).

(1.6.11) Theorem Let n >- 3 and let X be a pointed space and let

rt= nn* :1rn(X) ® 71/2 -> am+,(X)

be induced by the Hopf map -qn. Then one has an isomorphism of groups

irn(A,X) =-G(A,71)

which is natural in A E G and for which the following diagram commutes:

Ext(A, irn+ IX) N -rrn(A, X) - Hom(A,

Ext(A, Tr,, 1X) ° G(A, rl) -3 Hom(A, nr,, X)

Here the top row is the universal coefficient sequence in Proposition 1.3.4
and the bottom row is given by the diagram in Definition 1.6.10. We point out
that G(A, -q) is not functorial in r) and that the isomorphism of Theorem
1.6.11 is not natural in X.

(1.6.12) Corollary Let n >- 3 and assume that irn(X) and A are finitely
generated abelian groups. Then the (0, µ)-extension for irn(A, X) is split if and
only if one of the following three conditions is satisfied:

(a) A has no direct summand 1/2;

(b) 7rn(X) has no direct summand 71/2;

(c) each element a e irn(X) generating a direct summand Z/2 satisfies q(a) _
ao71n=2a' for some a'Eirn+,(X).

Hence, if (a), (b), or (c) hold, one has an isomorphism of abelian groups

Ext(A,ir,, 1X)

which, however, is not natural in A or in X.

Proof of Corollary 1.6.12 If (a) or (b) hold the top row in the diagram of
Theorem 1.6.11 is split; if (c) holds the bottom row in the diagram of
Theorem 1.6.11 is still split.
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Proof of Theorem 1.6.11 We may assume that X is a connected CW-space.
Let f : Y - X be the (n - 1)-connected cover of X; this is the fibre of the
Postnikov map X --> P X, see Section 2.6. Then f induces isomorphisms
ir,(f) for i > n. For Tr = ir X we can choose a map g: M(-, n) -, Y
which induces the identity in homology. Such a map g
exists since Y is (n - 1)-connected, n >_ 3. The map f induces an isomor-
phism

and g induces the commutative diagram

Ext(A, rr (9 71/2) 7T,,(A, M(7r, n)) -» Hom(A, ir)

IExt(A,, )

Ext(A,7r,,,X) N -*Hom(A,Tr)

where ,1= 71,* is induced by the Hopf map. Since the rows are short exact this
is a push-out diagram of abelian groups. Therefore Theorem 1.6.11 is a
consequence of the isomorphism G in Theorem 1.6.7.
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INVARIANTS OF HOMOTOPY TYPES

The classical algebraic invariants of a simply connected homotopy type {X)
are the homotopy groups ir (X) and the homology groups H (X ), n >_ 2. They
are connected by the Hurewicz homomorphism

(1)

which is embedded in Whitehead's certain exact sequence
b,XH 1(X) b" ,X- I' X -> . (2)

It is well known that neither homotopy groups ar * (X) nor homology groups
H* (X) suffice to determine the homotopy type of X. However a simply
connected space X is contractible if and only if all homotopy groups 7T, ,X
vanish, or equivalently if all homology groups H X vanish. Moreover one has
the following facts which show that the Hurewicz homomorphism is indeed
significant for the characterization of homotopy types.

Proposition 2.5.20 A simply connected space X is homotopy equivalent to a
product of Eilenberg-Mac Lane spaces if and only if is split injective for
all n.

Proposition 2.6.15 A simply connected space X is homotopy equivalent to a
one point union of Moore spaces if and only if is split surfective for all n.

In addition to the Hurewicz homomorphism (1) and Whitehead's exact
sequence (2) we have to study deeper invariants of a homotopy type. There
are, on the one hand, Postnikov invariants or k-invariants which are related to
homotopy groups; they are nowadays explained in many textbooks on homo-
topy theory. On the other hand, we introduce new invariants of a simply
connected homotopy type which we call boundary invariants. They are related
to homology groups similarly to the way Postnikov invariants are related to
homotopy groups. The duality between Postnikov invariants and boundary
invariants is striking. The main results in this chapter describe properties of
Postnikov invariants and boundary invariants respectively. Our results on
boundary invariants are new and also some of the properties of k-invariants
described in this chapter seem to be new. We use Postnikov invariants and
boundary invariants for the classification of homotopy types. The fundamen-
tal classification theorem based on these invariants is obtained in Section 3.4.
We also consider unitary invariants of a homotopy type which are introduced
by G.W. Whitehead [RA].
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2.1 The Hurewicz homomorphism and Whitehead's certain
exact sequence

We consider the Hurewicz homomorphism which is embedded in Whitehead's
certain exact sequence and we define the operators in the sequence. We also
fix some notation for homotopy groups, (co)homology groups, and chain
maps. Let Top* be the category of topological spaces with base point * and
of base-point preserving maps. A homotopy H: f = g in Top* is given by a
map H: 1 * X - Y with Hi o =f, Hit = g. Here 1 * X = I X X/I X * is the
reduced cylinder on X (given by the unit interval I = [0, 1]) and i,: X -+ I * X
is the inclusion with i,(x) = (t, x) for t E I, x E X. Let

(2.1.1) [X, Y] = Top*(X, Y)/=

be the set of homotopy classes of maps f: X - Y in Top*. This is the set of
morphisms {f ): X -> Y in the quotient category Top*/=. We often denote
the homotopy class {f} simply by f. We have the trivial map 0: X --> * -s Y
which represents 0 E [X,Y]. The cone of X is CX = I* X/i1X and the
suspension of X is IX = CX/i°X. The n-sphere S" satisfies ES" = S"+ 1 and
homotopy groups are given by (n >_ 0)

(2.1.2)
zr"(X)= [S", X]
ir"+1(Y,X)=[(CS",S"),(Y,X)]

where (Y, X) is a pair in Top*. We have the long exact sequence of
homotopy groups (n >_ 0)

(2.1.3) 7rn+1X `''r"+1Y J'7T"+1(Y,X)--0ir"X
i

s7r"Y.

Here a is the restriction and j is induced by the quotient map (CS", S") -
(S"+ 1, * ). Clearly i is induced by the inclusion X c Y. The exact sequence is
natural with respect to pair maps (X,Y) - (X',Y') in Top*. We are mainly
interested in CW-spaces also termed spaces. These are spaces which have the
homotopy type of a CW-complex in Top*/=. Let X be a CW-complex with
skeleta X". A map F: X -+ Y between CW-complexes is cellular if F(X") c
Y". Let CW be the following category. Objects are CW-complexes X with
trivial 0-skeleton X ° = * and morphisms are cellular maps F: X --- Y. The
objects of CW are also called reduced CW-complexes. The cylinder 1* X of a
CW-complex X is again a CW-complex with skeleta

(2.1.4) (I*X)"=X"UI*X"-1 UX

1We call a cellular map H: I * X -* Y a 1-homotopy and we write H: f = g.
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Moreover we call H a 0-homotopy if Hi, is cellular for all t E I; in this case

we write H: f
o

g. The natural equivalence relations
o

and 1 yield the
quotient functors

(2.1.5) CW -> CW/
o

-> CW/
i

= CW/=

between the corresponding homotopy categories. The following cellular ap-

proximation theorem shows that actually CW/= = CW/ this is a full
subcategory of Top*/=.

(2.1.6) Cellular approximation theorem Let X0 be a subcomplex of the
CW-complex X and let f : X - Y be a map such that f I X0 is cellular. Then there
exists a cellular map g: X -> Y with g I X0 = f I X0 and with f = g rel X0.

For this recall that a homotopy H: f = g is a homotopy rel X0 (resp. under
X0) if f I X0 = (Hi,) I X0 for all t E I. We now associate with a CW-complex X
the cellular chain complex C* X; this is the chain complex defined by the
relative homology groups

(2.1.7) C"X = H"(Xn, X"-')

with the boundary

d=dn:Hn(Xn,X'-1) a.Hn 1(Xn-1)! H" 1(Xn-I,X"-2)

given by the triple (Xn,Xn-',Xn-2). Let Chains be the following category.
Objects are chain complexes C = (Cn, d, n E Z) of abelian groups and mor-
phisms F: C' --> C are chain maps. Two such chain maps are homotopic,
F = G, if there exists a homomorphism a : C' --> C of degree +1 with d a +
ad = -F + G. The chain map F is a homology isomorphism if F induces an
isomorphism F* : H* C' a H,k C. Here the homology of C is defined by the
quotient group

(2.1.8) H"C = Zn/Bn

where Zn = kernel{dn: Cn - Cn -1} is the group of cycles and where Bn =
image{dn+ 1: Cn+ I - C,,} is the group of boundaries. The cellular chain com-
plex above yields a functor

(2.1.9) C* : CW/
o

-+ ChainZ

Which determines the functor between homotopy categories C*:CW/=
ChainZ/=. For an abelian group A the homology of C. X ®A is the usual
homology with coefficients in A,

(2.1.10) H,,(X,A) =Hn(C*(X) ®A).
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Similarly the cohomology of the cochain complex Hom(C* X, A) is the
cohomology with coefficients in A,

(2.1.11) H"(X, A) = H"(Hom(C* X, A)).

For A = 71 we also write H"(X, 1) = H"(X) and H"(X, 7L) = H"(X ).
The Hurewicz homomorphism h is a natural homomorphism (n >- 1)

(2.1.12)
h:wr"(X)-4H"(X),
h:7r"+t(Y,X) -->H,j(Y,X).

We define h by h(a) = a * e" where e"is an appropriate generator in
H"( S") = Z or l-1" * ,(CS", S") = 71 such that h is compatible with the exact
sequences of the pair (Y, X); see (2.1.3). Now let X be a CW-complex with
* E X°. We obtain, for n >_ 1, Whitehead's F -groups by the image group

(2.1.13) 1'"(X)=image(i*:a"X"-1 _lr"X")

Here is X" - 1 C X, is the inclusion of the (n - 1)-skeleton into the n-
skeleton of X. Clearly r'"(X) = 0 for n = 1, 2 since it"(X" -1) = 0 in this case.
Hence I'"(X) is an abelian group for all n. A cellular map F: X ---> Y induces
a homomorphism f (F): I'"(X) - FM. The cellular approximation theorem
shows that 1'"(F) depends only on the homotopy class of F so that we obtain
a well-defined functor

(2.1.14) F,,: CW/= - Ab.

Recall that a space X is n-connected if ir,(X) = 0 for i <_ n. The following
lemma is well known.

(2.1.15) Lemma Let X be an n-connected CW-complex. Then there exists a
homotopy equivalence Y - X where Y is a CW-complex with a trivial n-skeleton
Y"=*.

The lemma implies for the 1-groups above the

(2.1.16) Corollary Let X be an (n - 1)-connected CW-complex. Then 1;(X) _
0 for i:5 n.

Now let X be a simply connected CW-complex. Then the Hurewicz map
h = h" is embedded in the following long exact sequence which is the certain
exact sequence of J.H.C. Whitehead, n >_ 2,

(2.1.17) ... ->H"+,X=-*FnX-'7r"X -_ H"X "I"X.

The sequence is natural with respect to maps in CW/ The operator i" is
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induced by the inclusion X" CX. Moreover, the secondary boundary b" is
defined by the following commutative diagram, where h is an isomorphism
for n >- 3.

Hn(X",X"-1) h
nTr(X",X"-') a >

Trrt-1(Xn-1)

dog

U

rn-1(x)

One readily checks that d h -' induces maps do and b" such that the diagram
commutes. Let Z" be the set of n-cells of X E CW. Then

(2.1.18) C"(X) =71[Z"]

is the free abelian group generated by the set Z". We obtain the basis
Z" C C"(X) by the Hurewicz map

h: 7r"(X", X"-') o H"(Xn, X"- 1) = C"(X )

which carries the element ce E it"(X", X"-'), given by the characteristic map
of the cell e, to the generator e E C"(X). We can choose a map

(2.1.19) f:A"= V S"-1 ->Xn-1

z"

and a homotopy equivalence c: Cf = X" under X". Here A" is a one-point
union of (n - 1)-spheres Se -' corresponding to n-cells e E Z" and Cf is the
mapping cone Cf= CAn Uf Xn - '. We call f the attaching map of n-cells in
X. The induced map

C"(X) =77[Z"] _ it"-1(An) ITn-1(X"

coincides with the boundary map dh - ' in the diagram above. This yields a
direct connection between the attaching map f and the secondary boundary
b0. The exactness of the sequence in (2.1.17) and Corollary 2.1.16 imply the
following result.

(2.1.20) Hurewicz theorem Let X be an (n - 1)-connected CW-complex,
n ? 2. Then

h: 7r"(X) =H"(X)

is an isomorphism and h: ir" + 1(X) H" + 1(X) is surjective.
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For an (n - 1)-connected space X we use the isomorphism h: 7rn(X) -
Hn(X) as an identification. In addition to the Hurewicz theorem we have the
following result due to J.H.C. Whitehead. For this we consider the functor

(2.1.21) r,: Ab - Ab

given by 1';(A) = F(A) and f, (A) =A 0 71/2 for n > 3. Here r denotes
Whitehead's quadratic functor and y: A -> f, (A) is the universal quadratic
map for n = 2 and the quotient map for n >_ 3; see (1.2.1).

(2.1.22) Theorem Let n >t 2 and let X be an (n - 1)-connected CW-complex.
Then there is a natural isomorphism

:In'(HnX)F +1(X).

Hence the certain exact sequence yields the natural exact sequence

Hn+2(X) b F'(H,, X)-I1iR+I(X)-aHn+l(X)-b0.

The homomorphism rr is induced by the Hopf map rin which is a generator
of Trn+ 1(Sn), n >: 2. In fact, for an element a E HX representing
a : Sn --X n CX the isomorphism i carries ya to the composite { a%}.
Moreover the homomorphism 71 carries ya to alto. We shall use the exact
sequence of Theorem 2.1.22 for the classification of (n - 1)-connected
(n + 2)-dimensional homotopy types. One readily derives from the theorem
the following isomorphisms for Eilenberg-Mac Lane spaces K(A, n) and
Moore spaces M(A, n).

(2.1.23) Corollary There are natural isomorphisms

6: 7r3 M(A, 2) = F(A) = H, K(A, 2),

0: rrn+, M(A, n) =A ® 71/2 = Hn+2K(A, n), n>3.3.

Clearly H K(A, n) = A = -rrn M(A, n) and Hn + i K(A, n) = 0 by the
Hurewicz theorem. We also use the operators in Whitehead's exact sequence
for the definition of the natural transformation (m > n)

(2.1.24) 0: irn M(A, n) --> Hm+ 1 K(A, n).

For this let k: M(A, n) -+ K(A, n) be the map which induces in homology the
identity Hn(k) = 'A of A. Then 0 is the composite 0=b,-+IF,n(k)tmt:

7rmM(A,n)-1'mM(A,n) k'->1'mK(A, n)-H,n+IK(A,n).
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Obstruction theory shows that the cohomology of X E CW can be described
by the natural isomorphism (n >_ 1)

(2.1.25) Hn(X, A) = [X, K(A, n)],

where [X, K(A, n)] is the set of homotopy classes in Top*/=. Let kA E
Hn(K(A, n), A) = Hom(A, A) be given by the identity of A. Then the
isomorphism carries the homotopy class 6 E [X, K(A, n)] to the cohomology
f*kA. We also have the natural isomorphism

(2.1.26) H"(X, A) = [C* X, C* M(A, n)].

Here the right-hand side is the set of homotopy classes in Chain,/=. Dually
we define the pseudo-homology

(2.1.27) Hn(A; X) = [C*M(A,n),C*X]

with coefficients in A, not to be confused with Hn(X, A) above. One has the
following homotopy classification of chain maps; see for example 10.13 in
Dold [AT].

(2.1.28) Theorem Let C and D be chain complexes in Chain, and assume Cn
is free abelian for all n. Then there is a natural short exact sequence

N _Ext(H*_1C,H*D) [C,D] -»Hom(H*C,H*D)

of abelian groups. Here [C, D] is the set of homotopy classes of chain maps and
Hom(H* C, H* D) is the group of degree 0 homomorphisms H* C -- H* D,
that is the product of all groups Hom(H,,C, HD) for n E Z. Moreover
Ext(H* _ 1C, H* D) is the product of all groups Ext(H,_ 1C, H, ,D) for n E Z.
The map µ carries a chain map F: C - D to the induced homomorphism
µ(F) = F* , The exact sequence is split (unnaturally).

As a special case of the theorem we get, for the cohomology Hn(X, A) and
pseudo-homology H,(A, X), the following universal coefficient formulas.

(2.1.29) Corollary For X E CW and n >_ 1 there are natural short exact
sequences

Ext(H,_ 1X, A) N Hn(X, A) Hom(H,, X, A)

Ext(A,Hrt+1X) ° Hom(A,H,,X).

The sequences are split (unnaturally).
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There are the following two ways of representing elements in the group
Ext(A, B) where A and B are abelian groups. On the one hand each short
exact sequence

B E-.A
of abelian groups represents an element {E} E Ext(A, B). On the other hand,
we use a free resolution of A; this is a short exact sequence

dA, -* Ao -A

where A0, A, are free abelian groups. Then d induces a homomorphism

d* = Hom(d,1): Hom(A0, B) --> Hom(A,, B)

and we may define Ext(A, B) to be the cokernel of d*. Thus homomorphisms
g1 E Hom(A1, B) represents elements {g1) E Ext(A, B). We have the well-
known

(2.1.30) Lemma The elements {E} and {g1} in Ext(A, B) above coincide, that
is {E} = {g1} if and only if there is a commutative diagram

A, >-* A0 -A
191 I go

II

B >-+E -'A

We shall also use the following facts about chain complexes; for a more
detailed discussion we refer the reader to XII §4 in G.W. Whitehead [EH].
Let C be a chain complex of free abelian groups. Then the universal
coefficient theorem asserts that there is a short exact sequence (see Theorem
2.1.28)

(2.1.31) 1C, A) % H"(C, A) - A)

which is natural with respect to both chain maps F: C -* C' and homomor-
phisms f: A --+A'. The sequence admits a splitting (unnaturally). Let u E
H"(C, A). If a: C -A is a cocycle representing u, then the restriction
a I Z,,: Z, -->A maps the group B of bounding cycles into zero and thereby
induces a homomorphism

u * = µ(u): H (C) -+A (1)

with "*(x)=a(x) for x E Z,,. This defines µ in (2.1.31). Now let e EE

Ext(H _ ,C, A). The group H,,_ 1C has the convenient free resolution

B, I -+ Z, I -" H, 1C. (2)
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Let b: B" _ 1 -A be a homomorphism representing e, see Lemma 2.1.30. Let
d: C,, -. B,, _ 1 be defined by the boundary in C. Then bd: C,, -A is a cocycle,
representing the element 0(e) = {bd}. This defines A in (2.1.31). For u E
H"(C, A) we have by (1) the exact sequence

H"(C) - A q
cok u * - 0 (3)

where q is the quotient map. Clearly qu * = 0. In view of the naturality of the
exact sequence (2.1.31) there is a commutative diagram

Ext(H"_ 1C, A) » H"(C, A) A Hom(H"C, A)

q.
14. 1q.

11

A µ
Ext(H" _ 1 C, cok u *) N H"(C, cok u *) - . Hom(H" C, cok u * )

Since q * µ(u) = q * u * = qu * = 0 we see that the element

U (4)

is well defined. Thus each element u E H"(C, A) determines canonically a
pair of elements (u *, ut). The operations u - u *, u H ut have naturality
properties which are explained in G.W. Whitehead [EH].

We need the following property of the element ut with respect to mapping
cones in the category of chain complexes. Let f: C --> D be a chain map
between chain complexes of free abelian groups. The mapping cone of f is
the free chain complex Cf with

(2.1.32)
(C1)"=C"-1 ®D"

d(x, y) = (dx, f(x) -dy).

We obtain the short exact sequence of chain complexes (cofibre sequence)

irD> Cf -sC. (1)

Here i is the obvious inclusion and sC is the suspension of C, that is the
mapping cone of C -> 0. Then ar is defined by ir(x, y) = x. We clearly have
H"sC = H"_ 1C. The short exact sequence (1) yields the exact homology
sequence

H C_LH D-.H C -H C H- if H
D (2)

" " f "_1
,,

"_1

which in turn gives rise, for each n, to a short exact sequence

cok(H,, f) H H"C f -. ker(H" _ 1 f) (3)

representing an element

{H"Cf}EExt(kerH"_1f,cokH"f). (4)
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We proceed to explain how the operator u H ut above leads to a description
of this extension element. A cohomology class u E H"(D, H D) is said to be
unitary if and only if the homomorphism u* is the identity of H"D. Let u be
such a unitary class and consider the element f *u E H"(C, H D). Then
(f*u)* =H"f so that

(f*u)t EExt(H"-1C,cokH"f).

For the inclusion j: ker(H"_ 1 f) c H, -1C inducing

j*: Ext(H"_,C,cok H" f) Ext(kerH"-1 f,cok H" f )

we get the equation:

(2.1.33) Theorem (H"CfI = -j*(f *u)t.

For a proof see XII.4.9 in G.W. Whitehead [EH]. We point out that the
theorem can be applied to topological mapping cones. In fact let f : X -* Y be
a cellular map. Then the mapping cone Cf is a CW-complex for which
C* (Cf) is the mapping cone of the chain map C* F: C* X --> C* Y.

2.2 F-Groups with coefficients

Using a Moore space M(A, n) we obtain the homotopy groups of a pointed
CW-complex X with coefficients in A by the group of homotopy classes
(n y 2) it"(A, X) = [M(A, n), X ]. Here M(A, n) _ V"-1 MA is an (n - 1)-fold
suspension. For the pseudo-homology H"(A, x) _ C. M(A, n), C,, X ] we thus
have the Hurewicz homomorphism

(2.2.1) hA: a"(A, X) --> H"(A, X)

which carries the homotopy class of a cellular map x: M(A, n) -* X to the
homotopy class of the induced chain map C. W: C* M(A, n) - C,, X. For
A = Z this Hurewicz homomorphism coincides with the classical homorphism
in (2.1.12) above. Moreover the universal coefficient sequences yield the
commutative diagram

Ext(A,irn+1X) H it"(A,X) : Hom(A,ir"X)

(2.2.2)

Ext(A,H"+,X) >'I H,(A,X) Hom(A,H"X)

The classical Hurewicz homomorphism h = hz is embedded in Whitehead's
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exact sequence. We want to show that also the homomorphism hA is part of
such an exact sequence. For this we introduce new `F-groups with coeffi-
cients'. As the classical F-groups F"(X) of J.H.C. Whitehead these new
groups are derived from the homotopy groups of the skeleta of a CW-
complex X. Recall that r ,,(X) is defined by the image

F" = r"X= image{i,, : ar"X"-' -> X"}

where is X"-' cX" is the inclusion.

(2.23) Definition Let A be an abelian group and let X be a 1-connected
CW-complex. We have the canonical inclusion and projection respectively

1: F"X>-a Tr"X",

p: 7r"+iX" -. F +,X.
(1)

We use these for the definition of the groups F"(A; X) for n >_ 3 as follows.
Consider the commutative diagram

Ext(A, F"+ 1X)
P.

Ext(A, arrt+ 1X")

push

F"(A;X)
I
P >--a ar"(A; X") (2)

Hom(A,F,,X) >-' Hom(A,ir"X")

Here `pull' and `push' denote a pull-back diagram and a push-out diagram
respectively in the category of abelian groups. Thus the F -groups with coeffi-
cients f,,(A; X) are embedded in the short exact sequence

Ext(A,F'n+1X) N F,, (A; X) -µ* Hom(A,F"X). (3)

Clearly, this sequence is natural with respect to cellular maps X -> Y since,
for the restriction X" --> Y" of such a map, all arrows are natural. Below we
show that cellular maps X -p Y which are homotopic induce the same
homomorphism r"(A; X) - r"(A;Y). This shows that (3) is actually a homo-
topy invariant of X. The group F"(A; X) is an abelian group for all n E Z.
For n < 1 we set F"(A; X) = 0 and we set

F2(A;X)=Ext(A,F3X) (4)
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since r2 X = 0. The group I'"(A; X) generalizes the r-group of J.H.C.
Whitehead since we clearly have [,,(Z; X) = Hom(Z, I'" X) = r,, X. If X is a
pointed CW-complex which is not simply connected we set

T"(A,X)=r,,(A,X) (5)

where X is the universal covering of X with a base point * mapping to the
base point of X. If X is just a pointed space we define

I'"(A,X)=r(A,ISX) (6)

where ISX I is the realization of the singular set of X. In this book, however,
we consider mainly 1-connected CW-complexes.

(2.2.4) Remark For an n-dimensional CW-complex X" with ir1X" = 0 we
have Whitehead's exact sequence

F" = r" X" N i" X" h# H" X" -' r._
1

where Z,, =H"X" is free. Therefore im(h) is free and thus i:I'" - 7r,, X'
admits a retraction. This shows that i * in (2) above is injective.

(2.2.5) Proposition Let F, G: X - * Y be cellular maps between simply con-
nected CW-complexes. If F and G are homotopic we have

F* = G* : F, (A; X) ---* F,(A;Y).

This shows that f'"(A;.) is a well-defined homotopy functor on the category
of simply connected spaces or more generally on Top*/=.

Proof of Proposition 2.2.5 Let y: M(A, n) -- X" be a map with µ(y) E im(i*).
Then we know that the restriction of y to the n-skeleton of M(A, n) actually
factors up to homotopy over X"'. Thus we can assume that y is a pair map

y: (M(A, n), M(A, n)") -* (X", X"- '). (1)

Since X is simply connected this map is a twisted map between mapping
cones; compare V.7.8 in Baues [AH]. We point out that y shifts the dimen-
sion; the n-skeleton of M(A, n) is mapped to the (n - 1)-skeleton of X. Next
consider the restrictions F", G": X" Y" of the cellular maps F and G.
Since F = G there is

a : M(C" X, n) --> M(C"+ 1Y, n) = M (2)

with

G"=F"+(gn+1)*(a) in [X",Y"]. (3)
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Here C,, X, C*Y are the cellular chain complexes and gn+ 1: M -+ Y" is the
attaching map of (n + 1)-cells in Y. By (3) we get in it (A,Y") the equation

G*{y) =y*(F" +gn+1{a)) (4)

=y*F" + Dy (gn+1{a}, F") (5)

where Vy is Et: with 6 associated with the twisted map y; see V.3.12 in Baues
[AH]. In (5) the addition is given by the mapping cone structure of M(A, n).
Therefore

/3 = {oy (gn+ 1{a}, F")} E Ext(A, irn+1Yn)

and (5) is equivalent to

G*{y}=F"(y)+0(/3) (6)

with 0 defined by the universal coefficient sequence; here + is the group
operation in 7rn(A, Y"). We claim that for p: r rn + 1Y -* 1 7 ,1 Y we have

p*/3=0 in Ext(A,rn+1Y) (7)

This shows that the term S vanishes in QA; Y); see (2) in Definition 2.2.3.
Thus Proposition 2.2.5 is a consequence of (7) and (6). We check (7) as
follows. We have the commutative diagram

77n+1(Mv Yn)2 n+1(Yn) Tin+1(Y"-1)

I

rn+ 1Y

where i * (gn+ 1) * = 0 since ign+ 1 = 0. This shows that p(gn + 1,1) * = 0.
Since by definition of /3 above /3 E image Ext(A, (gn+ 1, 1) we get p * /3 = 0.
This completes the proof of Proposition 2.2.5.

The I'-group rn(A, X) is natural in A in the following sense. Let cp: A -> B
be a homomorphism between abelian groups and let fp: M(A, n) --> M(B, n)
be a map between Moore spaces which induces 1P in homology. Then iP
induces a homomorphism

(2.2.6) fP*:I'n(B, X) -* rn(A, X)

since all arrows in Definition 2.2.3 are natural with respect to gyp. In particular
the following diagram commutes

Ext(B,I'n+1X) rn(B,X) -", Hom(B,r,,X)
(2.2.7) W. I ;V I ,F.

Ext(A,rn+1X) - rn(A,X) -. Hom(jA,r"X)
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For a E Ext(A, B ® Z/2) and n >_ 3 we obtain a map 4i + i(a): M(A, n) --
M(B, n) which induces cp in homology; here we identify B ® Z/2 =
rr, 1 M(B, n). Now we get the formula

(2.2.8) (;p+M(a))* = ip* + Act *A

where a *: Hom(B, r" X) --> Ext(A, r,, , X) is defined by

a*(y) = (77(y ® 71/2)) * (a).

Here the homomorphism 77: r"(X) ® Z/2 - F, (X) is induced by the Hopf
map q,,: Sn+1 -I S", that is, for 6: S" -*X"-' with E r"(X) we set

1) = (i677") where is X"-' cX" is the inclusion. The formula for
(i-p + A(a))* above is obtained in the same way as in (1.3.13).

(2.2.9) Definition We here define two natural subgroups F,, (A, X) and
F (A, X) of the group I'"(A, X). For n >_ 2 let

F, (X) = kernel(i: F ,,(X) --> rn+1(X))

where rl is induced by the Hopf map. Moreover let

r;;(X)=image(b"+ X: H"+1X--*F"X)

= kernel (.X: r"X--+ it"X).

In Lemma 2.3.4 below we show that we have the natural inclusions

r"(X) c rF(X) c r"(X).

These groups are trivial for n = 2. We obtain the corresponding binatural
inclusions

F, (A,X)cF,(A,X)cF,(A,X)

by the following pull-back diagrams in which the rows are short exact.

Ext(A,r"+1X) N r"(A,X) -A Hom(A,r"X)

Ext(A,rn±1X) N F,,(A,X) -. Hom(A,F,,X)

Ext(A,r"+,X) N r;;(A,X) - Hom(A,r;;X)
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All vertical arrows are inclusions. The advantage of I' is that a homomor-
phism cp: A ---b B induces a homomorphism

cp* = iP*: f,(B, X) - f,(A, X),

which by (2.2.8) above does not depend on the choice of irp; compare the
definition of 7r, ,(A, X) in Definition 1.3.14. Hence we get well-defined
bifunctors, n >: 2,

r,',, I;; : Ab°P x Top*/= -9 Ab

together with the natural short exact (A, µ)-sequences above. Clearly if
A = Z we have I,,(7L, X) = Fn(X) and I;,'(l, X) = F, (X). Below we shall see
that f, (A, X) is naturally isomorphic to a pseudo-homology group; see
Theorem 2.6.14(4).

2.3 An exact sequence for the Hurewicz homomorphism
with coefficients

We generalize Whitehead's certain exact sequence by introducing coefficients
in abelian groups. We describe the operators of the sequence explicitly in
terms of the CW-structure of a CW-complex X; in the next section we give
an alternative construction by a fibre sequence. Let X be a simply connected
CW-complex and let A be an abelian group. Then there is the long exact
sequence (x E Z)

(2.3.1)

--->H"+1(A,X)
b.,I f,,(A,X)=__0

Here h = It' is the Hurewicz map for homotopy groups with coefficients in
A, see (2.2.1), and i =iR is induced by the inclusion X" cX, see Definition
2.2.3. The boundary operator b" = is explicitly constructed in Definition
2.3.5 below. The universal coefficient sequences yield the commutative
diagram

(2.3.2)

Ext(A,Hn+2X) b- Ext(A,I'"+cX)=Ext(A,ar".,X)*Ext(A,H"+,X)

Hn+1(A,X) b I'n(A,X) = r"(A,X) H"(A,X)

Hom(A,Hn+1X) b'- Hom(A,I'"X) Hom(A,a"X) Hom(A,H"X)
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Here the top row and the bottom row are induced by the classical certain
exact sequence of J.H.C. Whitehead.

(233) Theorem The sequence (2.3.1) is exact and natural with respect to maps
ip: M(A, n) -> M(B, n) and X - Yin Top*/-. Moreover diagram (2.3.2) com-
mutes.

Clearly for A = Z the exact sequence (2.3.1) coincides with Whitehead's
exact sequence. For the definition of the boundary operator b,4 we need the

(2.3.4) Lemma Let 7: F,,- I(X) --> fn(X) be induced by the Hopf map
77" _ 1: S" -i S - 1 Then the composition

0 = 77b": H"(X) - r,,-1(X) -+ F,,(X)

is trivial.

Proof We consider the following commutative diagram

H,, X' -. HnX-b-4
F,

1X rnX
n n n

rln t 7TnXnC
- _

n`Y f lrn 1X n I n-1Xrt

where jfn = 0 and therefore qb" = 0. 0

(2.3.5) Definition For a 1-connected CW-complex X we define the bound-
ary operator

as follows, n ;-- 3. We may assume that X 1 = *. Let C = C * X be the cellular
chain complex of X and let Z" = ker d" and Bn = im dn+ 1 be the groups of
cycles and of boundaries in C respectively. Then

d
B. - Z. -' Hn (1)

is a free presentation of H" and we can choose the Moore space M(H", n - 1)
to be the mapping cone of

d:M(Bn,n-1)--*M(Z",n-1).

Here d is given by (1) and by the canonical bijection

[ M(G, n), X ] = Hom(G, ir,, X)

(2)

(3)



2 INVARIANTS OF HOMOTOPY TYPES 47

which exists whenever G is a free abelian group. We choose for the exact
sequence

Z" N Cn Bn t

a splitting t so that Cn = Zrt ® tBn -. Let

f, - ITrtXn

be the attaching map of (n + 1)-cells in X. Since the diagram

Cn+1

U

Zn+
P

f . 1T"Xn
U

Hn + 1 b rn

I

1r XI
n

(4)

(5)

(6)

commutes (where b is a lift of brt+ 1 p) we can assume that the attaching map
fn+, yields the commutative diagram

M(Cn+l,n) - Xn
fn*I

U U

M(Zn+1,n) b X"-1
(7)

Here we have by (4)

M(Cn+1,n) =M(Zrt+t,n) V M(tB,,,n). (8)

A crucial step for the construction of b' is the `principal reduction' of the
CW-complex X as described in (3.5.13) of Baues [OT], compare also VII 3.3
in Baues [AH]. The principal reduction yields a map

v:V-*X'-1 (n>:3) (9)

with the following properties (10) and (11): V is a CW-complex with cells in
dimension n - 1 and n together with a cellular homotopy equivalence

IV=: Xrt+ 11Xn-1 (10)

for the suspension IV. There is a cellular homotopy equivalence

Ct _ Xn+1
(11)
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under Xn-' which induces the identity on C,* Xn+'; Ct, denotes the mapping
cone of v in (9).

Now (2), (4), and (8) imply

V=M(Zn+1,n)VM(Hn,n-1)VM(tBn_1,n-1)
SlV"-1=M(Cn,n-1)=M(Z,,,n-1)VM(tBn_1,n-1).

(12)

Here the inclusion j: V"-' c V yields the identity on M(tBn_ 1, n - 1) and
yields the canonical inclusion M(Zn, n - 1) c Cd = M(Hn, n - 1) given by (2).
The restriction of the map v in (9) to the subspaces of V in (12) have the
following properties:

VIM(z., ,n)=b, (13)

see (7), and

VI = (14),n-I) ,n-1)'

Moreover, for 6 = v I M(H,,, n - 1) the diagram

M(Hn,n-1) 0X"-'
U U 15)

M(Zn, n - 1) b X"-2

commutes. This shows that the element 13 represents an element

{p}El'n_1(Hn,X) with µ{$}=bn. (16)

We use the element (p) for the definition of the boundary operator bn
above. Let {a) E H,,(A, X), that is

a chain map. Using a splitting C,,,, = Zn+
1

® tBn as in (4) we obtain from
a the commutative diagram

Cn+1M(A,n) Zn+I®tBn=Cn+)

I 1(°,d) Id

CnM(A,n) Q Zn C Cn
(18)

Here a,,
1

has the coordinates a,, 1 = (0/r°, a') where a' is the restriction of
an and where 1/, ° represents an element 4iQ E Ext(A, Hn+ I ). The chain map a
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induces a * = cpa E Hom(A, H,,) in homology. We choose a realization
lpa: M(A, n) - M(H,,, n) of rpa which induces

;aa:rn-1(H,,,X)->I'rt_(A,X).

Now we define the boundary operator bn above by the formula

bn(a)=cpQ{ }+0(bn+1)(20)
Here we use { ) in (16) and (b,, 1) * : Ext(A, H,, Ext(A, r,,). The ele-
ment (20) is well defined. In fact, for a different choice 4a + a which realizes
the homomorphism gyp, we have by (2.2.8)

(21)

where a *µ{ /3 } = a *bn = (i(bn ® Z/2)) *(a) with rtb,, = 0 by Lemma 2.3.4.
Similarly we see that b' (a) depends only on the homotopy class (a) of the
chain map a.

(2.3.6) Lemma The boundary operator bA is natural in X.

Proof Let F: X - Y be a cellular map between CW-complexes with
X1=*=Y1.Let

w:W-Yrt-1

be chosen for Y (with C. = Y"") in the same way as v in Definition 2.3.5 is
chosen for X. The cellular map F yields the map

F:(C,,,Xn-1)-,(CW,Y"-1)

between mapping cones which, by V.3.12 in Baues [AH], is a twisted map
since n z 3. Therefore, there is a homotopy commutative diagram

1,

-a WVYn-1
6o

Xn-1-00

1(w, 1)

Yn-1

(1)

which is associated with F, see V.3.12 in Baues [AH]. Here 710 is the
restriction of the cellular map F and fo is a map with the following
properties. Let

q:M(H,,,n-1)=Cd- M(Bn,n)
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be the quotient map. Clearly, q* induces the inclusion 0 in the universal
coefficient sequence. Now the restriction

f= = S01M(H,,,n-1) (2)

is the sum of the following four maps:

61:M(H",n - 1)
-q

M(B",n) ->M(Z;,+l,n) cW

2:M(H",n-1)--M(H,,n-1)cW
63:M(H",n-1) *M(B",n)->M(Bn_1,n-1)cW

Y2.

Here 63 factors over q since V -* W V Y'- ' - W induces the chain map
C. F on cellular chains. Moreover, , factors over q for dimensional rea-
sons, since 4 is trivial on M(H, n - 1) and on Y"-1; also 4 factors over q
and maps to the subspace M(C, n - 1) V Y2 C W V Y"-' for dimensional
reasons (compare the Hilton-Milnor theorem). The map lpn: H" -, H,, is
induced by F in homology, cpn = Hn(F).

Since X" is the mapping cone of fn we know that for is Xn-' cX" the
composition if,, = 0 is trivial. Therefore also the projection p with

7Tny"-' -* FFY
P

n
n

satisfies p(fn) * = 0. This shows that (w,1) * 63 and (w,1) * 64 vanish in
I'_ ,(H,,X, Y ); see Definition 2.3.5(2). Moreover 6, represents an element
{61) E Ext(H,,X, H,1Y) such that

A(bn+1)*{61) E rn-1(H"X,Y) (3)

is represented by (w,1) * 6',; here we use Definition 2.3.5(6) for Y. By
definition of the boundary bn we now have, on the one hand, (see Definition
2.3.5(20))

F*bR (a) =;paF*{/3}+A(bn+1)*F*(4/o). (4)

On the other hand, we get for b = (C * F)a, resp. {b) = F* (a),

b,'{b}=;Pb{l3'}+A(bn+1)*+#b (5)

Here 0' and 1(ib are chosen for Y as in Definition 2.3.5 and Pb = 4Pn gyp: A -.
H" X H"Y. Now we have, by the commutativity of (1) and by (2), (3),

F*( p) = ip,*(J3') +0(bn+1)*R1}. (6)
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Thus (4) = (5) since we get

F*(yia)+(pQ(61}_/b (7)

by definition of tlia, ilib and S1; see Definition 2.3.5(18).

Proof of Theorem 2.3.3 The naturality of the sequence (2.3.1) with respect to
maps X -* Y is obtained by Lemma 2.3.6 since one readily checks that also
iA and hA are natural with respect to such maps. Moreover it is easy to
derive the naturality of (2.3.1) with respect to maps ip: M(A, n) ---> M(B, n)
from the definition of the operators b A, i A, h A. Also the definitions show
readily that bAhA = 0, hAiA = 0, and iAbA = 0 and that diagram (2.3.2)
commutes. Thus it remains to check exactness. Since we give an alternative
proof in the next section we leave this to the reader.

2.4 Infinite symmetric products and Kan loop groups

In this section we compare the T-groups of J.H.C. Whitehead with the
homotopy groups of a certain space FX. This is related to results of Dold and
Thom on the infinite symmetric product of X and to results of Kan on the
loop group of X. The results here are useful background knowledge on the
r-groups and on Whitehead's exact sequence. In our proofs, however, we will
always use the more direct definition of the I'-groups in terms of the skeleta
of a CW-complex; see Sections 2.1 and 2.2. In particular our explicit construc-
tion of the secondary boundary b,A in Definition 2.3.5 is an essential step for
the proof of the boundary classification theorem below; a definition of b' as
given here by a fibre sequence is not appropriate for this proof.

Let X be a simply connected CW-complex with base point and let SPX
be the infinite symmetric product of X. This is the limit of the inclusion maps

(2.4.1) X=SP'XcSP2XcSP3Xc .

Here SP"X = (X x ... X X)/S(n) is the quotient space of the n-fold product
X x ... X X by the action of the symmetric group S(n) which permutes the
coordinates. By the result of Dold and Thom [SP] we have the natural
isomorphism

(2.4.2)

H is the integral homology of X. Moreover, the inclusion X - SPX
induces the Hurewicz homomorphism

(2.4.3) h:1rX-+zrSP=X=H(X).
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Let rX be the homotopy theoretic fibre of the inclusion is X c SPX. Then
the fibre sequence

(2.4.4) rX- X--SP'X
yields an exact sequence of homotopy groups which by (2.4.3) has the
following form

--
h-* Hn+1X--

This sequence is similar to Whitehead's exact sequence in Section 2.1. In fact,
since X is 1-connected we have a natural isomorphism

(2.4.5) -rXrnx
such that the diagram

H,,+IX- 'rnrX-+

(2.4.6)
it II I II

-H,,+IX_' f,X -irX_'HHX_* ...

commutes. Here the bottom row is Whitehead's exact sequence and the top
row is induced by (2.4.4) and (2.4.3).

A different approach is due to Kan [CW]. This result of Kan can be used
for the proof of (2.4.5) and (2.4.6). Let Y be a reduced simplicial set, for
example let Y = SX be the reduced singular set of the space X. Then Kan
defines the loop group GY which is a free simplicial group. The realization
IGYI is a topological group which is equivalent to the loop space [IIYI- For
F = GY denote by [F, F] C F the commutator subgroup, i.e. the simplicial
subgroup such that [ F, F In = [ F,,, F, ] for all n. Then Kan proves that there is
a natural equivalence

(2.4.7) 1[GY,GY] = rnIYI

if IYI is simply connected. Now consider the fibre sequence

(2.4.8) [GY,GY]

with AY = GY/[GY, GY]. Here AY is the simplicial group for which (AY)n
is the group (GY)n made abelian. The map i is the inclusion and p denotes
the projection. Kan proves that there is a natural equivalence 1r _ 1 AY =
and that p induces the Hurewicz homomorphism. Therefore the homotopy
sequence of the fibre sequence (2.4.8) is the top row in the following
commutative diagram

Hi + 1Y - vri _ 1 [ GY, GY ] -' Trn _ IGY -+ HnY

(2.4.9)
II II II II

Hn+ IIYI FnIYI -1rnjYI - HlYI.
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The bottom row is Whitehead's exact sequence. Commutativity of (2.4.9) was
proved by Kan. Now (2.4.7) yields (2.4.6) since there is the equivalence of
fibre sequences:

(2.4.10)

I[GY,GY]I -IGYI - IAYI

=1 =1 =1
flfX -> flX -> fiSP'°X.

The vertical rows in the commutative diagram are homotopy equivalences (X
is simply connected and Y = SX is the reduced singular set of X as above).

Next we consider homotopy groups of the space FX with coefficients in an
abelian group A. The natural equation ir rX = r X leads to the short exact
coefficient sequence (see (2.2.2))

(2.4.11) Ext(A,ri+1X) N

which by a construction similar to the one of Kan shows that we have a
natural isomorphism

(2.4.12) 1r (A, rX) - r (A, X).

Here the right-hand side is the IF-group with coefficients constructed in
Definition 2.2.3; the isomorphism is compatible with 0 and it in (4.1.11) and
Definition 2.2.3(3) respectively. For A = Z this is just the same isomorphism
as in (2.4.5). For our purposes the definition of r (A, X) by the skeleta of X
is more appropriate.

On the other hand we have the homotopy groups of the spaces SP'X with
coefficients in an abelian group A. The result of Dold and Thom (2.4.2) yields
the short exact coefficient sequence

(2.4.13)

as in (2.2.2) which, by the equivalence IAYI 11SPX in (2.4.10), shows that
we have a natural isomorphism

(2.4.14) ir,,(A, SPX) -

H (A, X) X ] is the pseudo-homology defined by
homotopy classes of chain maps; see (2.1.27). The isomorphism (2.4.14) is
compatible with A and µ in (2.4.13) and Corollary 2.1.29 respectively. For the
proof of (2.4.14) we also use the Dold-Kan theorem (see for example Dold
and Puppe [HN]) which shows that the simplicial abelian group AY in
(2.4.10) is completely determined by the singular chain complex C. IYI which
is equivalent to the chain complex C. X. The pseudo-homology groups
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SP=X) were also considered by Hilton [HT] (Chapter 5) who showed
that (2.4.13) is always split. We here point out that these groups can easily be
described by chain maps as in (2.4.14).

The fibre sequence (2.4.4) yields for homotopy groups with coefficients in
A an exact sequence which, by (2.4.12) and (2.4.14), has the following form

(2.4.15)

irn+l(A,SP-X)

II II

H"+(A,X) 6 > T'(A,X)

it" (A , X) ---p 7r" (A, SPSX )

,,,,,(A, X) h > H"(A,X)

Here the top row is the usual fibre sequence given by (2.4.4) and the bottom
row is our exact sequence constructed in (2.3.1). Using the construction of the
isomorphisms (2.4.12) and (2.4.14) one can check that the diagram commutes;
see for example (2.4.3) and (2.4.8).

2.5 Postnikov invariants of a homotopy type

We describe in this section the classical `k-invariants' which were introduced
by Postnikov in 1951; they were also studied by J.H.C. Whitehead [GD]. We
show that Postnikov's invariants of a homotopy type have properties which
are exactly analogous to the properties of the boundary invariants in Section
2.6 below. As pointed out by J.H.C. Whitehead [I] one has to consider the
hierarchy of categories and functors

(2.5.1) 1-types P- 2-types . P- 3-types

where n-types are connected CW-spaces Y with zriY = 0 for i > n and where
n-types is the full subcategory of Top*/= consisting of n-types. The functor
P which carries (n + 1)-types to n-types is given by the Postnikov functor

(2.5.2) CW/= -* n-types.

Here CW/= is the full homotopy category of CW-complexes X with
X ° = *. For X in CW we obtain P,, X by `killing homotopy groups'; that is,
we choose a CW-complex P,,X with (n + 1)-skeleton

(P"X)"`' =X"+' and

ir;(P"X)=0 for i>n.

For a cellular map F: X -- Y in CW we choose a map PF"+': P"X P"Y
which extends the restriction F"+': X"+' --- y"+i of F. This is possible by
usual arguments of obstruction theory since zr;(P" X) = 0 for i > n. The
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functor P" in (2.5.2) carries X to P" X and carries F to the homotopy class of
PF"+ t Different choices for P" X yield canonically isomorphic functors.

Since 1-types are the same as Eilenberg-Mac Lane spaces K(ir, 1) we can
identify a 1-type with an abstract group. In fact, let Gr be the category of
groups. Then the fundamental group 7r, gives us an equivalence of categories

(2.5.3) 7r,:1-types --> Gr

together with a natural isomorphism 7r 1(P, X) = 7r,(X) where P, X =
K(7r1X,1). From this point of view n-types are natural objects of higher
complexity extending abstract groups. Following up this idea Whitehead
looked for a purely algebraic equivalent of an n-type, n > 2. An important
requirement for such an algebraic system is realizability, in three senses. In
the first instance this means that there is an n-type which is in the appropri-
ate relation to a given one of these algebraic systems, just as there is a 1-type
whose fundamental group is isomorphic to a given group. The second kind is
the `realizability' of `homomorphisms' between such algebraic systems by
maps of the corresponding n-types. The third kind is a 1-1 correspondence of
such homomorphisms and the homotopy classes of maps between n-types.
For example the functor 7r, in (2.5.3), which carries a 1-type to its fundamen-
tal group, satisfies these three properties. We have further examples for
certain subcategories of the category of n-types. Let

(2.5.4) typeset m

be the full subcategory of n-types consisting of (m - 1)-connected n-types.
Then we have for m > 2 the equivalence of categories

(2.5.5) 7rm : types' -L- Ab

where Ab is the category of abelian groups. This equivalence is the higher-
dimensional analogue of the equivalence (2.5.3). An object in the category
types', that is an (m - 1)-connected m-type, is the same as an
Eilenberg-Mac Lane space K(A, m) which is determined by an abelian
group A.

(2.5.6) Definition A map

p": X->P"X (1)

which extends the inclusion X n + 1 c P" X in (5.2) is called the n-type or a
Postnikov section of X. Clearly p" induces isomorphisms of homotopy groups

(p"),,:1r;X-7r;P"X for i<n. (2)
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The map pn is natural with respect to the functor in (2.5.2). The Postnikov
tower {qn} is given by maps

(3)

with qn pn = pn _ 1. Such maps are well defined up to homotopy. For further
properties of the Postnikov tower we refer the reader to Baues [OT] and
Baues [AH]; compare also G.W. Whitehead [EH], Spanier [AT], Mosher and
Tangora [CO], and many other books on homotopy theory.

(2.5.7) Definition Let X be a simply connected CW-complex and let A be
an abelian group. We define the abelian group

$n_ 1(X, A)= Hn+1(Pn_1X, A) (1)

by use of the Postnikov functor 1, see (2.5.2), and by the cohomology with
coefficients in A. Thus 13,,-, is a bifunctor

$n_1:spaces'xAb-*Ab (2)

where spaceS2 is the full homotopy category of simply connected CW-spaces.
The (n - 1)-Postnikov section pn - 1: X - + P - 1 X induces the following com-
mutative diagram for Whitehead's exact sequence (see also 11.4.8 in Baues
[CH])

HnPn-1X = rnpn-1X ' 0 H,,P.-1X"rn-1Pn-1X
(3)

Hn + 1 X -b rn X - irr X - HH X --+ r.-,X

Here the vertical arrows are induced by p,,-,. Thus we have natural isomor-
phisms ® = (pn_ 1)*1b

6:HHPn_1X=F,_IX
©: Hn+1Pn-1X =rFX (4)

where r,,'- 1 X = ker(i n _ 1 X) is the image of the operator bn X : H X -+ r,, _ 1 X.
We use these isomorphisms as identification. Thus the universal coefficient
formula for the cohomology group (1) leads to the commutative diagram of
short exact sequences

Ext(HnPn_1X,A) >%* Hn+1(Pn-1X,A) - Hom(Hn+IPn-1X,A)

II II II (5)
Ext(rn_1X,A) 1(X,A) A Hom(rnX,A)
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The diagram is natural in X and A. Given an element k E 3 n _ 1(X, A) we
obtain elements (see (1.2.31))

k* = µk E Hom(FnX, A)

kt = A-'q* (k) E Ext(r,;_,X,cok k* ).

Here q: A --p cok k * is the projection for the cokernel of k * and

(6)

q.: I(X, A) - $n-,(X,cok k*) (7)

is given by the functor in (1). Since clearly µq * (k) = q,, µk = q k * =
qk * = 0 we see that kt in (6) is well defined. We use the for
the following definition of Postnikov invariants of X.

(2.5.8) Definition Let X be a simply connected CW-complex. Then we
obtain the Postnikov invariant or k-invariant (n ;-> 3)

k =knXE $n_1(X,ir,,X) (1)

as follows. For A = Tr X we have the fibre sequence

K(A,n)i.

--* (2)

where qn is defined by the Postnikov tower of X, see Definition 2.5.6(3). It is
clear that the fibre of qn is an Eilenberg-Mac Lane space K(A, n). We thus
obtain the classifying map k in (2) which represents k in (1) by the
transgression element

kn = (q*) -'dA- 1 (1,,X) (3)

where E Hom(A, A) is the identity of A = Trn X. Here we use the
homomorphisms

Hom(A,A)H"(K(A ,n),A) Hn+1(Pn 1X, A)

vl _ (4)

Hn+'(P,,_1X, *,A)

where d is the boundary for the pair P,, X, K(A, n) given by jn in (2). The
map q*, induced by qn in (2), is an isomorphism since X is simply connected.
Compare (5.2.9) and (5.3.2) in Baues [OT]. Using the notation in Definition
2.5.7(6) we obtain by knX the homomorphism

X (5)
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which, as we shall see in Theorem 2.5.10, coincides with the operator i,,X in
Whitehead's exact sequence. We thus get by Definition 2.5.7(6) the element

(k"X)t E Ext(f, _,X,coki"X)

where r," X = ker(i"_ , X). On the other hand, the exact sequence

I',X->ir,,X-*H,,X-rn-1X `_IX in -IX

yields the short exact sequence of abelian groups

(6)

cok(i"X) H H"X -» ker(i"_,X) (7)

which also represents an element

{H"X} E Ext(ker(i"X),cok(i"X)). (8)

Theorem 2.5.10 below shows that the elements in (6) and (8) coincide.

(2.5.9) Addendum Let X be a CW-complex with 1r, X = 0. Using the
CW-structure we obtain the following alternative definition of the Postnikov
invariant knX; compare VI.8.13 in Baues [AH]. We can choose P"_,X with
X" = (P" _ , X)' in such a way that the attaching map of (n + 1)-cells in
P" _ 1 X, given by a homomorphism

fn+ I : Cn+ I(Pn- IX) -'TnX"

as in (2.1.19), is surjective. Then the composition i * fn+

Cn+1(Pn-IX) -. rr,X" -' 1T. X,

is a cocycle which represents the Postnikov invariant

knX= {r*fn+I} EHn+I(P"-1X,ir X).

Here i * is induced by the inclusion X" CX.

(2.5.10) Theorem on Postnikov invariants With each 1-connected CW-
complex X there is canonically associated a sequence of elements (k3, k4,...)
with

kn =knXE 143"_,(X,rrnX)

such that the following properties are satisfied:

(a) Naturality: for a map F: X - Y we have

(1rnF)*(knX) =F*(k"Y) E4n_,(X,1rnY).
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(b) Compatibility with in X:

(knX)* =inXEHom(rnX,irnX).

(c) Compatibility with

(knX)t = (H,,X) E Ext(ker in_ 1X,cok inX).

(d) Vanishing condition: all Postnikov invariants are trivial, that is kn = 0 for
n 3, if and only if X has the homotopy type of a product of Eilenberg -Mac
Lane spaces K(?rn, n), n >_ 2.

This theorem is the precise analogue of the corresponding theorem for
boundary invariants; see Theorem 2.6.9 below.

Remark Postnikov invariants kn (also called k-invariants) were invented by
Postnikov in 1951. From a different point of view J.H.C. Whitehead [GD]
studied them in the context of the certain exact sequence. Nowadays Post-
nikov invariants are discussed in many textbooks on algebraic topology and
homotopy theory. While the naturality of the invariants is a classical result
which appears in many textbooks I could not find the compatibility properties
of Theorem 2.5.10(b), (c) in the literature. In fact, G.W. Whitehead [EH] in
1978 discussed Postnikov invariants and also the elements u,, and ut associ-
ated with a cohomology class u, see (2.1.31); the compatibility properties
directly related to these elements are not explained although the certain
exact sequence is described. Compare also the remark following Theorem
4.4.4.

Proof of Theorem 2.5.10 The naturality is an easy consequence of the
description of kn X as a transgression element; see Definition 2.5.8(3). The
naturality is also proved in IX.2.6 of G.W. Whitehead [EH]. The vanishing
condition (d) is well known; it is an easy consequence of the fibre sequence of
Definition 2.5.8(2). We now prove the compatibility with in X. For this we use
the explicit construction of k,,X by the attaching map f°+, in Addendum
2.5.9. Recall that Z,, X denotes the cycles in Cn X. We have the commutative
diagram

Cn+1Pn-1X
f,t!I-

(2.5.11)

Here q

'Tn
Xn

U

rn X

=To

?rnX

Hn+IPn-IX

is the quotient map and µ(kn X) is defined by the cocycle i * f n01 1
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(representing k,,X) as in (2.1.31)(1). This shows that the outside of the
diagram commutes. On the other hand, the Hurewicz homorphism yields the
composite

h': ir"X" -. H"X" C C"X = CP"_ IX

for which h' f,°+ 1 is the boundary in C * P" _ ,X. This shows that the inside of
the diagram commutes. Hence we get the compatibility (b) which is equiva-
lent to the equation

(2.5.12) (i"X)® = µ(k"X).

For the intricate proof of the compatibility (c) we use the properties of the
cellular boundary 13 described in (11.4.6) of Baues [CH]. For this we recall the
following notation.

(2.5.13) Definition For a chain complex C we consider the commutative
diagram

Cn+1-* C. - Cn-1 -

-*

I q 1qn- I ...

0 -'Cn/dCn+]- ''Cn-1 -

Here qn is the quotient map and qi is the identity for i < n. The bottom row
is a chain complex C(") which we call the n-type of C. Clearly q: C -> C(") is a
chain map which induces isomorphisms q,: H;C - Hi C(") for i:5 n. More-
over q is natural with respect to chain maps and chain homotopies.

The cellular map p" -1: X -> P" _ 1 X induces the chain map

f3:C=C*X C.P_1,q (C*Pn-1X)(n+1) =P

where P is the (n + 1)-type of C * P" _ 1 X. Since pn _ I restricted to n-skeleta
is the identity of X" we see that also )9j: C; = Pi is the identity for i:< n. Thus
only f3" + 1: Cn + I - Pn + 1 is relevant. The chain map S represents the cellular
boundary invariant explained in more detail in (11.4.6) of Baues [CHI. In
particular we prove in (II.4.12)(4) of Baues [CH].

(2.5.14) Lemma For i * f °+ 1 in (2.5.11) there is a commutative diagram

Cn+1Pn-IX i-a TrnX

lq" . i a Tg.

Pn + I
q

cok fan . I

where qn + 1 and q are the quotient maps and where O' is an isomorphism.
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Thus by Addendum 2.5.9 the composite O'q is a cocycle which represents
k X; see also (11.4.14) in Baues [CHI. We now consider for the chain map 0
above the cofibre sequence of R in the cofibration category of chain
complexes; see Baues [AH]. For this we choose first a factorization

/3:CNZs->P

of A where C N Zs is a cofibration so that Za and the quotient D = Z,3/C
are free. The short exact sequence C N Zs - D induces the long exact
homology sequence in the top row of the following commutative diagram

(2.5.15)

H., IC 0. HHP -0

II

H + 1X ---> F. X --a 7T, ,X --- H X -T;; -1 X

The bottom row is given by Whitehead's exact sequence and O' is induced by
O' in Lemma 2.5.14. The isomorphisms O are described in Definition
2.5.7(4). Compare 11.4.11 in Baues [CH] where the diagram is also obtained
for the case that X is not simply connected.

We are going to apply Theorem 2.1.33 for the top row of (2.5.15); this
yields the proof for the compatibility (c) of Theorem 2.5.10. For the quotient
map r: Z. -, D we have the mapping cone C, as defined in (2.1.32). Moreover
by (II.8.24X *) in Baues [AH] the diagram

D , sZs

I- `1--

commutes. Here the top row is defined as in (2.1.32)(1) and the bottom row is
part of the cofibre sequence for G. Thus we obtain the commutative diagram

Hn+1ZP Hn+1Cr -a'
(2.5.16)

1 D
a # H P

_1I=

Here the top row corresponds to (2.1.32)(2) and the bottom row is given by
the top row of (2.5.15).
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(2.5.17) Lemma There exists a unitary class u in H"+ 1(D, H"+ 1D) such that
the composite

H"+1(D H"+ 1D) r. H"+1(Zjs,Hn+D)=H"+I(p"-1X,H"+1D)

satisfies O'*(r*u) = kX E H"+'(P"_ 1X, -rrX).

For the proof of the lemma we observe that we can choose Z. such
that (Z's)Y"+11 =P(n+1) and D,("+') = cok/3n+1, so that u is represented by
D" + -* D,', +i') = cok /3n + 1 - Hn + 1 D. Finally we are ready to apply Theorem
2.1.33 which shows

(2.5.18) - (r*u)t = ( Hn+1Cr) E Ext(H"Z.,cok Hn+1r).

Hence we get, by Lemma 2.5.17, Definition 2.5.13, and (2.5.15) the equivalent
equation

(2.5.19) (k,, X)t = {H"X} E Ext(F, _1X,coki"X).

Hence the proof of Theorem 2.5.10 is complete.

We derive from Theorem 2.5.10 on Postnikov invariants the following
criterion for products of Eilenberg-Mac Lane spaces.

(2.5.20) Proposition A simply connected space X is homotopy equivalent to a
product of Eilenberg-Mac Lane spaces if and only if the Hurewicz homomor-
phism

h: 7r,, X->H,, X

is split injective for all n.

The proposition has a nice dual; see Proposition 2.6.15 below.

Proof Since h is injective we see that i, X: F" X -* ar,, X is trivial, i,, X = 0,
for all n. Hence by Theorem 2.5.10(b), (c) we see that k"X = 0{H" X} with
{ H" X) E Ext(F,, _ 1 X, an X) given by the extension

h
7rnX N H,, X- rnX.

Since h is split injective we get (H,, X) = 0 and hence knX= 0 for all n.
Hence the Proposition is a consequence of Theorem 2.5.10(d)

Remark There is a simple direct proof of Proposition 2.5.20. Using a



2 INVARIANTS OF HOMOTOPY TYPES 63

retraction r": H" X - rr" X of the Hurewicz homorphism we can choose an
element

r;, EH"(X,ir"X) _ [X,K(ir,, X, n)] with

A(rr) = r" .

The collection of the elements r,, yields a map from X into a product of
Eilenberg-Mac Lane spaces which, by the Whitehead theorem, can be seen
to be a homotopy equivalence.

(2.5.21) Example There exists a space Y for which the Hurewicz homomor-
phism h"Y is injective for all n but not split injective. In fact, such a space is
the (n + 2)-type Y= PP+2X(217) where s >_ 2 is a power of 2. Here X(2, ) is a
space in the list in Definition 12.5.3 with homotopy groups ir"Y = 7L, 7r" + 1Y =
0 = H" + 1Y, and a" + ZY = 7L/s. The Hurewicz homomorphism satisfies
h"+ 2Y:7L/s N 7L/2s. This example shows that the condition `split injective' in
Proposition 2.5.20 cannot be replaced by the weaker condition `injective'.

2.6 Boundary invariants of a homotopy type

In this section we introduce fundamental new homotopy invariants of a
simply connected CW-space which we call boundary invariants. There are two
possible ways of defining these invariants: on the one hand, we obtain them
by use of the boundary operator in the f-sequence with coefficients; on the
other hand, they can be defined via the Postnikov tower and pseudo-
homology groups.

We first consider the boundary operator in the f-sequence with coeffi-
cients. Let A be an abelian group and let X be a simply connected
CW-space. Using the boundary operator bA in (2.3.2) one gets the following
commutative diagram with short exact rows.

Ext(A,Hn+1X) N H"(A,X) -µ- Hom(A,H"X)

(2.6.1)

1(b_ I X).

Ext(A, I'"X)

push

lbw

f,,_,(A,X) -. Hom(A,f"_,X)

Ext(A,cokb"+,X) '-' rm(bA' Hom(A,f _1X)
"+1 X)
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The left-hand column is exact. Moreover im(bn+1X)* is the image of the
homomorphism (bn + 1 X) * in the diagram and i # is the quotient map;
equivalently i # is the projection for the cokernel of A(bn + 1 X) * . On the
other hand is I'X-' cok is the projection for the cokernel of
bn + 1 X: H,, X -* I' X. Hence i # and i * in the diagram are surjective and
one readily checks that the subdiagram `push' is a push-out diagram of
abelian groups. Using Definition 2.2.9 one gets the binatural inclusions

(2.6.2)
r"-1(A,X) rn-1 (A, X) rii-1(A,X)

Aim(bn+1X)*
C

iim(bn+1X)*
C

Aim(bn+1X)*

Here and IF,, _ I are actually functorial in A E Ab while rn -1 is not. Let
spaces2 be the homotopy category of simply connected CW-spaces. Then
the left-hand group in (2.6.2), which we denote by

(A,
( 2.6.3) *n I(A,X)= Aim(bn+IX)

yields a bifunctor

O,,_ 1: Ab°P x spaces2 -> Ab.

Moreover we have a binatural short exact sequence

Ext(A,cokbi+1X) ln_1(A,X) _W Hom(A,f, _1X)

where F,"- 1 X = image(bn X : H X -* Fn _ 1 X).

(2.6.4) Definition We define the boundary invariant 6n X, n Z 3, of a simply
connected CW-space X as follows. Consider diagram (2.6.1) where we set
A = H X. Then we get

rn
inXEsfln

Mrn(brt+1X)*

by

RnX = i#bAµ-1(1H,X).

Here 1 H,x E Hom(A, H X) is the identity of H X. Since image(b + 1X). _
kernel(i) we see that the element pnX = i#bA(a) does not depend on the
choice of a r=- H,,(A, X) with µ(a) = lynx. The commutativity of the diagram
implies the equation

(A"X)* =A(PnX)=bnX.
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This shows that is actually an element of the subgroup 1(H X, X);
compare the definition of F."_ , in Definition 2.2.9. We have chosen the
name `boundary invariant' for since, on the one hand, the equation
µ( /3 X) = b,, X shows that 8 X is a refinement of the secondary boundary
operator b,,X of J.H.C. Whitehead. On the other hand the boundary opera-
tor b' in the r-sequence with coefficients is the crucial ingredient in the
definition of /3 X.

(2.6.5) Addendum We can define the boundary invariant 0 X by use of the
element (/3) E F,,_ X) with z( /3) = b,,X in Definition 2.3.5(16),
namely

13,, X = i 0{ /3 }

where i,, is the quotient map in (2.6.1). This follows readily from the
definition of the boundary operator b A in terms of (3) in Definition
2.3.5(20). The formula i,,((3) shows the direct connection of 6,, X with
the attaching maps in the space X; this connection will be heavily used in
proofs below.

Given an element 13 E 1(A, X) we obtain elements

(2.6.6)

0* =A(0)EHom(A,F._1X)
Qt = 0-1j*( f3) E Ext(ker( /3*),cok(bi+1X)).

Here 0 and µ are given by the binatural short exact sequence in (2.6.3).
Moreover j: ker(/3 *) C A is the inclusion and j*: e,,_ 1(A, X) -

1(ker(Q* ), X) is induced by the bifunctor 1. As in (2.1.31)(4) one
readily checks that the elements in (2.6.6) are well defined. As an example,
we obtain, for A = 0,, X, the element

where b X: H,,X --. l,,_ 1 X is the surjective homomorphism given by
b,, X: H,, X -+ F,, _ 1 X. Moreover we get by (2.6.6) the element

(2.6.7) (8,, X)t E Ext(ker(b,,

which can be compared with the element

(2.6.8) Or,, X) E Ext(ker(b,,

Here is given by the extension

N ir,, X-*ker(b,, X)
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obtained by the exact sequence

Hn+tX b_IX
H.X b"X X.

The next result shows that the elements (/3 X )t and {if,, X) actually coincide.
In fact the next result is the precise analogue of Theorem 2.5.10 on Postnikov
invariants. The similarity of Theorem 2.5.10 and the following Theorem 2.6.9
emphasizes the duality between k-invariants and boundary invariants.

(2.6.9) Theorem on boundary invariants With each 1-connected CW-complex
X there is canonically associated a sequence of elements ('63,/34,...) with

J3

such that the following properties are satisfied:

(a) Naturality: for a map F: X -* Y we have

F* ( 6,X) = E Cn- 1(H,X,Y)

(b) Compatibility with bn X:

()3,X)*

(c) Compatibility with (w,, X):

()3,X)t = {arX} E Ext(ker(bnX),cok(bn+1X)).

(d) Vanishing condition: all boundary invariants are trivial, that is Nn = 0 for
n >_ 3, if and only if X has the homotopy type of a one point union of Moore
spaces M(H,, n), n >_ 2, with H,, = H,(X).

Proof The naturality is an easy consequence of the naturality of the opera-
tors i # and b and µ. In fact

F* F,K i#b,, A-1(1H"X)

=i#bnµ-1((Hn F)*1H"X

=i#b,, µ-1((H,F)*1H"Y)

= (H,F)*i#bn A-1(1H"Y)

= (H,F)*J3,Y.
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Compatibility with b, ,X was already obtained in Definition 2.6.4. Finally we
prove compatibility with {ir" X} by the definition of 0" X in Addendum 2.6.5
above. We use the notation in Definition 2.3.5. We have the commutative
diagram

d P
B" Z. -' H"

11

Ui U;

B" N kerb" p) - kerb"

with exact rows. The inclusion i yields a map i for which the following
diagram homotopy commutes

M(B", n)
?q

M(K,n-1) M(H",n-1) 9 Xrt-1

U U U

X"-z

Here q is the quotient map for M(K, n - 1) = C. Since by definition of b in
Definition 2.3.5(6) we know ibj = 0 there is a map it for which the composi-
tion

B"
7r> 7r"X"-` - F, -> cok b"+1

represents

{7r}=0-11*(i3+1X) EL 11*(Yn+1X). (1)

We show that also represents the extension class {ir"}. Let X be the
mapping cone of the restriction u I M(z,, ,, n) v M(tB _,, n -1), see Definition 2.3.5(9)
and (7). Then 8 in Definition 2.3.5(15) yields the map

13:M(Hn,n-1)-'Xn-1 cX

with Cs=X"'. Therefore we have the following diagram of cofibre
sequences

M(K,n-1) M(B",n)-0 M(L,n)-4 M(K,n)

l1 l- I lyt
M(H,,,n-1)s X -b Cs 4 M(H",n)
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We apply the functor irn to this diagram and we get the commutative diagram

B" N L -» K

(2)

1rnX -b irn -h H.

Here it"C,, = 7r,, X"+' = ar" is the homotopy group of X and h = it"(q) is the
Hurewicz map. Therefore we have the group

h (irn) = ker bn = K.

Since the top row of (2) is a free presentation of this group the map
jir: Bn -* ker h represents {7r"), see Lemma 2.1.30. In fact, fir is the same as it
in (1). This completes the proof of (c). Finally the definition of the boundary
invariants shows that all j3n(X) are trivial if X is a one-point union of Moore
spaces; here we use the definition in Addendum 2.6.5 and Definition 2.3.5.
On the other hand, the classification theorem in Chapter 3 below yields the
inverse; namely the vanishing of all j3, J implies that X has the homotopy
type of a one-point union of Moore spaces. This completes the proof of
Theorem 2.6.9.

In our second definition of the boundary invariants we use the (n - 1)-type

(2.6.10) PX 1:X-Pn-1X

of the simply connected space X; see Definition 2.5.6. Using pseudo-
homology groups with coefficients in A we obtain the following diagram
which resembles diagram (2.6.1); in fact we show below that the following
diagram is naturally embedded in diagram (2.6.1).

(2.6.11)

Ext(A, Hn+1X)

IM", I
X

Ext(A, Hn+1Pn-1X)

push

H,,(A,X) Hom(A,H"X)

y(P; i).
111I

H,,(A,P,, -1X)

-µ+Hom(A,H"P"_,X)

II

xExt(A,cok H N
H"(A,P" X)

Hom(A,H"Pn_jX)n+1Pn-1)
Aim(Hn+ 1Pn-1).
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The rows are short exact and the left-hand column is exact. Moreover
im(HR + 1 ph I) * is the image of the homomorphism (Hn + i Pn I) * in the
diagram and i# is the quotient map; equivalently i, is the projection for the
cokernel of the composition z( Hn + 1 p,-d,,. On the other hand,
i s HR+

1
PR _ 1 X -* cok Hn + 1 p, , is the projection for the cokernel of

Hn + 1 Px I: HR + 1 X -HR + 1 PR - IX. Hence i * and i in the diagram are
surjective and hence the subdiagram `push' in (2.6.11) is a push-out diagram
of abelian groups. The naturality of the (n - 1)-type (2.6.10) shows that the
group

(2612) c' (A X) =
HR(A,P.-1X)

n 1 , xAim(HR+1Pn-1)

yields a functor

R -1: Ab°P x spaces, - Ab

together with a binatural short exact sequence given by the bottom row of
(2.6.11).

(2.6.13) Definition We define the (homological) boundary invariant f3nX,
n >_ 3, of a simply connected CW-space X as follows. Consider diagram
(2.6.11) where we set A = Hn X. Then we get

HR (A,PR

X)
1f3rtXii-1(A, X) = XA im(Hn+IPn-1)

f3rtX=i#(Pn 1)*,u-1(lx,x).

Here 1H,x E Hom(A, HR X) is the identity of HX. As in Definition 2.6.4 we
see that f3;, X is a well-defined element. The naturality of the diagram (2.6.11)
immediately yields the naturality of the invariant A,, X, that is, for f : X -* Y
in spaces2 we have f( fart X) = f *( f3rtY). Hence on 'X is a well-defined
invariant of the homotopy type of X. The next result shows that we can
identify the homological boundary invariant 9,,X with the boundary invariant
$, X in Definition 2.6.4.

(2.6.14) Theorem For a simply connected CW-space X and an abelian group A
there is a binatural isomorphism

0: Z'-,(A, X)=Cn_1(A, X)

compatible with 0 and A. Moreover for A = HR X the isomorphism O carries the
homological boundary invariant 6,,X to the boundary invariant /3n X, that is
0(13;,X)= f3RX.
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Proof By Definition 2.5.7 there are natural isomorphisms

(1)

(2)

such that the diagram

HH+1X

H + IX 1' X

(3)

commutes. Hence (b + 1 X) * in (2.6.1) corresponds to (H + 1 Px 1) * in
(2.6.11). We now show that in addition there is a binatural isomorphism

(4)

such that the following diagram with short exact rows commutes

Ext(A,Hi+1PiX) H

110. Ile 11 0.

Ext(A,FX) > F,_1(A,X) Hom(A,F,_1X)

(5)

Moreover O in (4) makes the diagram

1b^ 11 9 (6)

1;;-,(A, X)

commutative, where b'' is the boundary operator in (2.6.1). Hence (3), (5),
and (6) show that 0 in (4) induces an isomorphism as in the Theorem for
which 0,6'X = 13 X, this is readily seen by comparing diagram (2.6.1) with
diagram (2.6.11). We obtain 0 in (4) as follows.

Using the boundary operator bA in (2.3.2) and Definition 2.3.5 for the
space Y = P - , X we obtain the commutative diagram with short exact rows:

Ext(A, H (A,Y) -* Hom(A,
J1I0_,Y). IbA pull 10,Y).

Hom(A,I'i_2Y)

= =1a. =1(r.-,P).

Hom(A,1'i_1X)
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Here p =p' ,: X --> Y is the (n - 1)-type of X in (2.6.10). We know that p
induces isomorphisms r p, p,,. and r _ , p as shown in the diagram. Also b A
in the diagram is injective by (2.3.2) since 1r"(A,Y) = 0. Moreover is
an isomorphism and is injective by Definition 2.5.7(3). This shows that
the top part of the diagram is a pull-back diagram. Hence we obtain the
isomorphism © in (4) by the composite (p *)-' bA In fact, by (1) the injection

above corresponds to the inclusion F,1 X c r _ , X since the diagram

H"Y > --> r"_,Y

ell IIr-P

F,"-,X C r,,-,x

commutes; compare the definition of r,"_ , in Definition 2.2.9. The definition
of O by (p *)-' bA shows that diagram (5) and diagram (6) commute.

Finally we derive from the theorem on boundary invariants the following
criterion for one-point unions of Moore spaces.

(2.6.15) Proposition A simply connected space X is homotopy equivalent to a
one point union of Moore spaces if and only if the Hurewicz homomorphism

h:

is split surjective for all n.

This is the precise dual of the criterion for products of Eilenberg-Mac
Lane spaces in Proposition 2.5.20.

Proof Since h is surjective we see that b X: H X - r _ , X is trivial, b X =
0, for all n. Hence by Theorem 2.6.9(b), (c) we get with

E r,, X) given by the extension

hI,,x>1rX HHX.

Since h is split surjective we get {1r X} = 0 and hence 0,, X = 0 for all n.
Hence the proposition follows from Theorem 2.6.9(d).

Remark There is a simple direct proof of Proposition 2.6.15. Using a
splitting s": H. X --> 1r X of the Hurewicz homomorphism we can choose an
element

(s;, E

with lL(s;,) =s,,.
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The collection of these elements s' yields a map from a one-point union of
Moore spaces to X which, by the Whitehead theorem, can be seen to be a
homotopy equivalence.

(2.6.16) Example There exists a space X for which the Hurewicz homomor-
phism h,,X is surjective for all n but not split surjective. In fact, such a space
is given by X = "- ' RP , n > 4, as we show in (8.1.11). Hence the condition
`split' in Proposition 2.6.15 is necessary.

2.7 Homotopy decomposition and homology decomposition

In this section we describe both the `homotopy decomposition' and the
`homology decomposition' of a simply connected CW-space. These concepts
are Eckmann-Hilton dual to each other. The homotopy decomposition is
also called the Postnikov decomposition or Postnikov tower associated with a
space X. The homology decomposition was obtained by Eckmann and Hilton,
and Brown and Copeland.

The `homotopy decomposition' describes a construction of spaces using
Eilenberg-Mac Lane spaces K(ir, n) as building blocks. This is explained
more precisely in the following definition and theorem.

(2.7.1) Definition A homotopy decomposition (1-connected) is a system of
the form

Here 7x2,113, ... is a sequence of abelian groups and X2, X3, ... is a sequence
of CW-spaces which fit into the following diagram (n >_ 3).

K(7rn, n) Xn K(7rn I, n + 2)

I
K(trn_1,n - 1)- 1)

K(7r3, 3) -> X3
,

K(7r4, 5)

1

K(7rz, 2) = Xz -- K(7r3, 4)

Each vertical arrow is a fibration in Top such that, for n z 3, the sequences

K(7rn,n)=+Xn (2)
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are fibre sequences. That is, q is a principal fibration with classifying map k
and fibre K(7r,,, n) = fZK(7r,,, n + 1). The classifying map k represents the
cohomology class

k,, E=- H" +(X. - 1, 7r.) (3)

which, for n >_ 3, yields the sequence of elements k3, k4, ... in (1). The fibre
sequences (2) imply that 7rjX = 0 for j > n so that X,, is a simply connected
n-type. Hence the map k,,: X,, _ 1 -* K(7r,,, n + 1) is 7r * -trivial, that is, the map
k induces the trivial homomorphism on homotopy groups. Let be
the inverse limit in Top of the sequence of fibrations X2 .- X3

(2.7.2) Theorem For each simply connected CW-space X there exists a homo-
topy decomposition, together with a map f : X - lim (X,,), which induces isomor-
phisms of homotopy groups f.: 7r X = 7r,,. 4---

Compare, for example, G.W. Whitehead [EH]. The theorem shows that the
homotopy type of X is determined by the homotopy decomposition of X
which essentially is unique. Moreover an important feature of the homotopy
decomposition is its naturality with respect to maps X-*X'; see G.W.
Whitehead [EH] or Baues [OT]. In particular the homotopy type of X in
Theorem 2.7.2 is an invariant of the homotopy type of X.

Proof of Theorem 2.7.2 We replace inductively the maps P X --> P, _ 1 X
in Definition 2.5.6 by fibrations so that we get a sequence of fibrations as in
Definition 2.7.1 together with commutative diagrams

P IX P,, X
=1

1

xn
*

xn -1

in which the vertical arrows are homotopy equivalences. Moreover we can
choose inductively maps f,,: X -> X with q f = f such that X -p P X -
X given by p,, in Definition 2.5.6 is homotopic to f,,. Then induces the
weak equivalence f in the statement of the theorem. The naturality of the
homotopy decomposition can be derived from the functorial properties of
the Postnikov section X - P X in Definition 2.5.6 and the naturality of the
Postnikov invariants in Theorem 2.5.10.

Next we explain the concept of a homology decomposition which uses
Moore spaces M(H,,, n) as building blocks.

(2.73) Definition A homology decomposition (1-connected) is a system of
the form

(1)
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Here Hz, H3,... is a sequence of abelian groups and X2, X3,... is a
sequence of CW-spaces which fit into the following diagram (n z 3).

M(H,,,n)"- X

I

I

M(H3,3)E- X3

I

"" M(H,,,
, n)

I
M(H,,,n-1)

--M(H4,3)

k'

M(H2, 2) = X2 - M(H3, 2)

Each vertical arrow is a cofibration in Top such that, for n >- 3, the sequences

M(H,,,n)+-X" 4 (2)

are cofibre sequences. That is, in is a principal cofibration with attaching map
k;, and cofibre M(H, n) = I M(H,,, n - 1); equivalently X is the mapping
cone of the map k;,. This map represents the homotopy class

k;, E (3)

which, for n >- 3, yields the sequence of elements k3, k4',... in (1). We require
that these elements are H,, -trivial, that is, the map k', induces the trivial
homomorphism on homology groups. Let be the direct limit in Top
of the sequence of cofibrations X2 >-+ X3 >-->

(2.7.4) Theorem For each simply connected CW-space X there exists a homol-
ogy decomposition, together with a map f : lim X, which induces isomor-
phisms of homology groups f.: H,, _- H,, X.

Since the direct limit in Theorem 2.7.4 is a CW-space the map f is actually
a homotopy equivalence. Thus we may construct any 1-connected homotopy
type with homology groups H2, H3, ... by a process of successively attaching
cones CM(H,,, n - 1) via homologically trivial maps. Conversely, any such
construction produces a homotopy type with homology groups H2, H3,... .
The homotopy classes k' of the attaching maps in Definition 2.7.3(3) are
`k'-invariants' of the homology decomposition. These are dual to the k-
invariants in the Postnikov decomposition. In fact, the homology decomposi-
tion was introduced by Eckmann and Hilton as a dual of the Postnikov



2 INVARIANTS OF HOMOTOPY TYPES 75

decomposition. The homology decomposition turned out to have a disadvan-
tage, namely it fails to be natural. In particular, the homotopy type of the
section Xn of a homology decomposition is not an invariant of the homotopy
type of X. Therefore, also, the k' invariants do not have the desired property
of naturality. For this reason we have introduced in Section 2.6 above new
invariants which we call the boundary invariants of X. The boundary invari-
ants can be thought of as being exactly the ingredient of the k'-invariants
which is natural. Moreover, these boundary invariants determine the homo-
topy type in the same way as the Postnikov invariants. We shall prove this in
Chapter 3. For the proof of Theorem 2.7.4 we use the principal reduction in
Definition 2.3.5(4). This proof also shows how the attaching map k,, above is
related to the boundary invariant 13 X.

Proof of Theorem 2.7.4 Let X be a 1-connected CW-complex. We may
assume that X' = *. We choose splittings t for the short exact sequences

d
Zn_Cn-'Bn-1

where Bn _ 1 = dC, C = C* X. Then we have C,, = tBn ® Z,,. The attaching
map f of n-cells in X yields maps fB and f2 for which the following diagram
commutes

M(Zn, n - 1) C M(C,, n - 1) J M(tB" _ 1, n - 1)

f If
Xn- 1

Let X,_
1

be the mapping cone of fB and let is X"-' cXn_ 1 be the
inclusion. Assume now Xn _ 1 admits a homology decomposition as in the
theorem. Then X,, admits one also since Xn is homotopy equivalent to
the mapping cone of a map

k' =i(3: M(H,,, n - 1) )Xn_1

which is homologically trivial. We obtain /3 as in Definition 2.3.5(15) by the
map v: V - X"-' with mapping cone C,. = X"+' This completes the proof of
Theorem 2.7.4.

Remark The map /3 in the proof above is also used for the construction of
the boundary invariant 6,,X in addendum (2.6.8). On the other hand, we
obtain 6,,X directly by the homology decomposition as follows. Let X
= lim X. be given by a homology decomposition as in Definition 2.7.3. Then
X can be chosen to be a CW-complex for which the skeleta X" satisfy

Xn-1 CXn_1 CX".



76 2 INVARIANTS OF HOMOTOPY TYPES

Moreover k;, admits a factorization R for which the following diagram
homotopy commutes.

X"-,

U

(2.7.5) M(H",n - 1) =a X' 1

U U

M(Z",n-1) -X"-2

Hence 0 represents an element 13"X in Z"_ 1(H", X) by definition of
I'"_,(A,X) in Definition 2.2.3; see Definition 2.2.9, Lemma 2.3.4 and the
definition of C"_ ,(A, X) in (2.6.2). Hence diagram (2.7.5) describes exactly
how to deduce from k', the boundary invariant 6,,X.

We would like to emphasize that the classical concepts of homotopy
decomposition and homology decomposition above do not have a strong
impact on the classification of homotopy types. They only provide instructions
on how to build a 1-connected CW-space with prescribed homotopy groups
and homology groups respectively. The main problem is to decide whether
two such constructions are actually homotopy equivalent.

A further deep problem is connected with the relationship between the
homotopy decomposition and the homology decomposition of a given space
X. In fact, the homotopy decomposition of a Moore space M(A, n) (for
example a sphere) involves the computation of all homotopy groups of the
Moore space. Conversely the homology decomposition of an Eilenberg-Mac
Lane space K(A, n) requires the computation of all homology groups of
K(A, n) as achieved by the work of Eilenberg and Mac Lane, and Cartan. A
basic result concerning the connection between the homotopy decomposition
and the homology decomposition is given by the compatibility properties of
Postnikov invariants and boundary invariants respectively; see Theorem
2.6.9(b, c) and Theorem 2.5.10(b, c). Rationally, that is for 1-connected ratio-
nal spaces X, the connection between the homotopy decomposition and the
homology decomposition of X is completely understood; see Baues and
Lemaire [MM].

2.8 Unitary invariants of a homotopy type

We here describe the `unitary invariants' of a homotopy type which were
introduced in (V.1.7) of G.W. Whitehead [RA]. The definition of these
invariants is similar to the definition of the boundary invariants jB,, in
Definition 2.6.13. We show, however, that unitary invariants are not suitable
for the classification of homotopy types; in fact there are spaces which can be
distinguished by boundary invariants but not by unitary invariants.
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In the definition of unitary invariants we use again the (n - 1)-type

(2.8.1)

77

of the simply connected space X. Using the cohomology groups with coeffi-
cients in an abelian group A we obtain the following diagram which
resembles (2.6.11).

(2.8.2)

A) - Hn+t(Pn X, A) -. Hom(Hn+,P,, 1X, A)

x

A) > Hn+'(X, A) - Hom(H,+ 1X, A)

push

n+1

Ext(kerb,,X, A) >-*
H (X, A)*

Hom(Hn+1X, A)
Dim(HnPn_I)

The rows are given by the short exact coefficient sequences. For the inclusion
j: ker(bn X) c Hn X the left-hand column is exact since we can identify

Hn X H°P°' Hn Pn _ 1 X

11

9

6-X, F, 1X Cr, 1X

Moreover we can identify

Hn+ 1X Hn+1Pn_IXH

II b,X
II6

Hn+1X rfX

(1)

(2)

Compare the proof of Theorem 2.6.14. Let

im(HnPn ,)*=(H p, 1)*Ext(H.P._1X, A)

be the image of the homomorphism (Hn px )* in diagram (2.8.2) and let j*
be the quotient map; equivalently j* is the projection for the cokernel of the
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composite 0(H" px , ). Hence j* and j# are surjective and one readily checks
that the subdiagram `push' in (2.8.2) is a push-out diagram of abelian groups.
The naturality of the (n - 1)-type (2.8.1) shows that the group

(283) 21n+ '(X A)=

yields a functor

Hn+'(X, A)

21"+ I : spacesOp x Ab Ab,

together with a binatural short exact sequence given by the bottom row of
(2.8.2).

(2.8.4) Definition We define the unitary invariants u'+ '(X), n >_ 2, of a
simply connected CW-space X as follows. Consider diagram (2.8.2) where we

set A = H,,+, P" _ , X 1'" X. Then we get

H"+'(X,1'"X)
u"+I(X) E 21n+I(X,f X) _

un+I(X) =j*(Pn I)*9-I(1r^x).

Here 1 rrtx E Hom(Fn X, A) = Hom(Hn + I Pn _ , X, A) is the identity of I'n X,
hence an element u E µ-'(1rTx) is a unitary class (see (1.2.32)), which via
j#(PxI)* yields the invariant u'+ 1M. One readily checks that u"+ 1(X) is
well defined. Given an element u E ll"+'(X, A) we obtain elements

(2.8.5)
u * = µ(u) E Hom(H"+ I X, A)

u t = 0 -' q * (u) E Ext(ker bn X, cok(u * )) .

Here A and µ are defined by the binatural short exact sequence in (2.8.2).
Moreover q: A - cok(u *) is the quotient map and

q*: 21"+'(X, A) - 21n+'(X,cok(u * ))

is induced by the bifunctor 21"+' As in (2.1.31X4) one readily checks that the
elements in (2.8.5) are well defined. As an example we obtain for u = u` 1X
the element

(U"+IX)* =A(un+IX)=bn+IX

and the element

(u"+' X )t E Ext(ker bn X, cok bn + , X)

which can be compared with (1rnX) in (2.6.8).
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(2.8.6) Theorem on unitary invariants With each 1-connected CW-complex X
there is canonically associated a sequence of elements (u4, u5, ...) with

un+ I = un+ IX E 21 n+' (X, r" X), n > 3,

such that the following properties are satisfied:

(a) Naturality: for a map F: X --> Y we have

F*(un+ 1Y) = (rnF) * (un+ 1X) E can+I(X, I'nY).

(b) Compatibility with b,, - I X:

(un+1X)* =bn+1XEHom(Hn+1X,rnX)

(c) Compatibility with {ir"X}:

-(u"+'X)t = {irnX} E Ext(ker(b"X),cok(b"+1X)).

(d) Vanishing condition: all unitary invariants are trivial, that is u"+' = 0 for
n - 2, if and only if X has the homotopy type of a one point union of Moore
spaces M(H, n), n > 2, H,, = H"(X).

Proof Propositions (a) and (b) are clear by construction. Moreover (c) is a
consequence of Theorem 2.1.33, compare (V.1.7) in G.W. Whitehead [RA].
Now assume u"+'X = 0 for n > 3. Then bn+ I X = 0 for all n and also
{i7, X) = 0. Hence h: 7rn X -' H,, X is split surjective and therefore we obtain
(d) by Proposition 2.6.15. 0

The theorem shows that unitary invariants have almost the same properties
as boundary invariants in Theorem 2.6.9. The unitary invariants, however, are
not suitable for classification as we show by the following example.

(2.8.7) Example Let X and Y be (n - 1)-connected (n + 3)-dimensional
spaces defined as follows. The space X is the mapping cone of the map

i17l,,q+i277: M(7L/2,n + 1) -S" VM(7L/r, n).

Here q: M(7L/2, n + 1) --* Sn+2 is the pinch map and q"2: Sn+2 -* S" is the
double Hopf map. Moreover i1, i2 are the inclusions and

n = %2: M(7L/2, n + 1) --* M(7L/r, n)

is a map which is non-trivial on the (n + 1)-skeleton. Let Y be the mapping
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cone of 71. The homology of X and S" V Y coincide and we have the injective
maps

bn+2(X) = bn+2(S" V Y): Hn+2X = 7 1 / 2 N I;, _,X = 71/2 ® 71/2

with H"X=71®71/r and fn_,X=H,,(X)®Z/2. Since Hrt+3X=0 the in-
jectivity implies that un+3(X) = un+3(S" V Y) = 0. Hence the unitary invari-
ants do not suffice to distinguish between X and S" V Y. In Chapter 8 we
show via boundary invariants that X and S" V Y are not homotopy equiva-
lent. In fact, we have X =X(e2rl,) and Y=X(2rt,) in the notation of Chapter
12, and X is not decomposable.

(2.8.8) Remark If X is (n - 1)-connected, n >- 2, then

un+2XEHn+2(X,f,H,X)

is the Pontrjagin-Steenrod element; compare (V.1.9) in G.W. Whitehead [RA]
and (1.6.8) in Baues [CHI. Thus formula (5.3.5) below can be derived from
Theorem 2.8.6(c).

(2.8.9) Remark A crucial property of the bifunctors 3 n _ , in Definition
2.5.7 and C n _ I in (2.6.3) is the fact that the (n - 1)-type pn 1: X - Pn_ 1 X
induces isomorphisms

(pn1)*: n-1(Pn-1X,A)=' rt_1(X,A),

(p,_ 1)*:

These isomorphisms allow the definition of the detecting functor in the
classification theorem (3.4.4). For the functor 1"+' we do not have such an
isomorphism.
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ON THE CLASSIFICATION OF
HOMOTOPY TYPES

In this chapter we describe fundamental new results on the classification of
homotopy types. On the one hand, we get a classification by Postnikov
invariants (k-invariants); on the other hand, we obtain a classification by
boundary invariants. The general properties of these invariants lead us to
introduce algebraic concepts which we call `kype functors' E and `hype
functors' F, respectively. Here kype is a new word derived from the words
k-invariant and type and similarly hype is derived from boundary invariant
and type. A kype functor E and a bype functor F determine categories which
we denote by

Kypes(E), kypes(E)

and

Bypes(F), bypes(F).

Our classification theorem shows that the objects of such categories are
models of homotopy types. Hence a classification of homotopy types can be
achieved by the computation of kype functors and bype functors, respectively.
In later chapters we describe various examples of such computations which
lead to optimal algebraic descriptions of certain classes of homotopy types.
As a simple example we obtain the old results of J.H.C. Whitehead on the
classification of 1-connected 4-dimensional homotopy types, see Section 3.5.
The classification theorem of this chapter is the core of the book. We shall
describe many applications and explicit examples of this theorem.

3.1 kype functors

The properties of k-invariants of a simply connected CW-space lead to the
notion of `kype'. Here kype is an amalgamation of the words k-invariant and
type. In Section 3.4 we describe a classification theorem which shows that
kypes are fundamental models of homotopy types.

(3.1.1) Definition Let C be a category. A kype functor on C is a functor

E:C°PxAb->Ab (1)
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together with a binatural short exact sequence (X E C, IT (=- Ab)

Ext(EoX, ,7r) E(X, Tr) -µ* Hom(E1X, ir) (2)

where E0, E,: C -> Ab are functors. We call (Eo, El, 0, µ) the `kype struc-
ture' of the functor E. We say that that the kype functor E is split if the exact
sequence (2) admits a binatural splitting in Ab. In this case E is completely
determined by the pair of functors (E0, E1) since we can identify

E(X, Tr) = Ext(E0X, ir) ® Hom(E1X, ir) (3)

by the splitting of (2). Moreover we say that E is semitriuial if E0 = 0 is the
trivial functor. Clearly in this case E is determined by El. All kype functors E
are semisplit in the following sense: for each object X E C there is a splitting
homomorphism

sX: Hom(E1X, 7r) - E(X,TT) (4)

with usx = 1 which is natural in 7r; that is for cp: it -> ?r' in Ab we have
(P * sX = sx cp * . We obtain sX since the functor Ab -> Ab carrying Tr to
Hom(E1 X, ir) is projective in the functor category of functors Ab -+ Ab. In
Section 3.5 we describe examples of semitrivial kype functors and in Section
3.6 we deal with split kype functors.

Using a kype functor E we introduce the following category of E-kypes
which is a kind of extended Grothendieck construction, see Remark 3.1.3.

(3.1.2) Definition Let E be a kype functor on the category C. An E-kype

X=(X,ir,k,H,b)

is a tuple consisting of an object X in C, abelian groups it and H, and
elements

kEE(X,vr),

b E Hom(H, E, X)

such that the sequence

H E,(X) µ(k)
IT (1)

is exact. A morphism

(f, gyp,4PH):

between such E-kypes is given by a morphism f: X -+X' in C and by
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homomorphisms (p: it - 7r', (pH: H -> H' such that the following properties
(2) and (3), are satisfied:

f *(k') = p * (k) E E(X, Tr')

Here the induced homomorphisms

E(X',,7r')
f.

EM 7r') EM 1T)

are given by the bifunctor E. Moreover the diagram

H E,(X)

If* =El(f)

H' E,(X')

(2)

(3)

commutes. E-kypes and such morphisms form the `category of E-kypes'. If
the kype functor E is clear from the context we call an E-kype simply a
kype.We say that an E-kype (X, ar, k, H, b) is injective if b is an injective
homomorphism. Let

kypes(C, E) (4)

be the full subcategory of injective E-kypes. Moreover an E-kype

(X, ir, k, H, b) is free if H is a free abelian group. Let

Kypes(C, E) (5)

be the full subcategory of such free E-kypes. We have the forgetful functor

0: Kypes(C, E) -> kypes(C, E) (6)

which carries the free E-kype (X, ,;r, k, H, b) to the injective E-kype
(X, Tr, k, H', b') where H' is the image of b and where b' is the inclusion of
this image.

Lemma The functor 0 is full and representative.

Proof It is clear that each E-kype has a realization by choosing a
surjection H -. ker µ(k) where H is free abelian. Hence 0 is representative.
Moreover 0 is full since, by Definition 3.1.2 (2) the homomorphism f.
carries ker µ(k) to ker µ(k') and hence we can choose a homomorphism KPH
for which Definition 3.1.2 (3) commutes since H is free abelian. 0

(3.13) Remark Any bifunctor

E:C°PxK-*L (1)
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yields a category Gro(E) which is called the Grothendieck construction on E.
Objects are triples (X, ar, k) where X E Ob(C), it E Ob(K), and

kEE(X,Tr). (2)

Morphisms (f, cp): (X, ?r, k) --> (X', ir', k') are given by morphisms f: X -* X'
in C and (p: Tr -- Tr' in K such that the equation

f *(k') = cp* (k) E E(X, ir') (3)

is satisfied; see Definition 3.1.2(2) above. Hence the category of E-kypes
above is a kind of enriched Grothendieck construction. Moreover we have,
for a kype functor E, the forgetful functor

* : kypes(C, E) - -> Gro(E)

which carries the injective E-kype (X, ir, k, H, b) to (X, vr, k). This functor +y
is easily seen to be an equivalence of categories. This way we identify an
injective E-kype with an object in the Grothendieck construction of E.

(3.1.4) Remark Let E be a kype functor on C and let a: K -* C be a
functor. Then we obtain a kype functor a *E on K as follows. We define a *E
by the composite

a*E: K°P XAb 0Xi_C°P xAb_Ab (1)

and we obtain the kype structure of a *E by (E0 a, E1 a, 0, µ) where
(E0, E 0, µ) is the kype structure of E. Moreover a induces functors

a: kypes(K, a*E) -> kypes(C, E) (2)

a: Kypes(K, a*E) Kypes(C, E) (3)

which carry (Y, ?r, k, H, b) to (a Y, ir, k, H, K The induced functors a in (2)
and (3) are equivalences of categories if a is an equivalence of categories.
_ We now use the kype structure of the functor E in an essential way. Let
X = (X, ir, k, H, b) be an E-kype as above. Then we obtain elements

k* = A(k) E Hom(E1X, ar)
(3.1.5)

kt = A-'q*(k) E Ext(EOX,cok(k*)).

as follows. The homomorphism k * = µ(k) is given by k in X and by the
natural transformation µ in Definition 3.1.1. For the quotient map

q: ir-» 7r' =cok(k*) (1)
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(to the cokernel of k *) we get via naturality a commutative diagram

Ext(EoX,ir) N E(X,ar) - Hom(E,X,ir)
1q. Iq. Iq.

Ext(E0X, 7T 1) N E(X, ir') -µ-> Hom(E1X, IT')

(2)

Here q*p(k) = 0 implies that the element kt = 0-'q*(k) in (3.1.5) is well
defined. Let

cok(k*): ` >H(kt) b°»EoX (3)

be an extension of abelian groups which represents the element k-,.. Hence we
obtain by X the exact sequence

H___
b4 E, X ' H(kt) b Eo X -> 0 (4)

which we call the f-sequence of the E-kype X. This sequence is in the
following sense natural with respect to morphisms between E-kypes. We say
that a morphism f: X --> X' together with a commutative diagram in Ab

H - E,X -* 7r -*H(kt)-4 E0X --0

I If.

I if.
H'-E,X'-->7r'-*H(kt)- E0X'-+0

(5)

is a weak morphism between f-sequences if there is a homomorphism
H(kt) ---> H(kt) which extends the diagram commutatively. Similarly we de-
fine a weak isomorphism. Each morphism (f, gyp, !pH) between E-kypes clearly
induces a weak morphism between f-sequences for which the vertical arrows
in (5) are lpH, E,(f ), cp, and Eo(f ), respectively.

3.2 bype functors

The properties of boundary invariants of a simply connected CW-space give
rise to the notion of `bype'; here bype is the amalgamation of the words
boundary invariant and type. A hype is the true Eckmann-Hilton dual of a
kype discussed in Section 3.1. To stress the duality between bypes and kypes
this section is organized in the same manner as Section 3.1. Indeed the
strength of this duality is amazing and new; see also Section 3.3. In Section
3.4 we describe a classification theorem which shows that bypes are funda-
mental new models of homotopy types where bypes are related to homology
groups similarly to the way kypes are related to homotopy groups.
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(3.2.1) Definition Let C be a category. A hype functor F on C is a functor

F:Ab°PxC-->Ab (1)

together with a binatural short exact sequence (X E C, H E Ab)

Ext(H, F1 X) N F(H, X) Hom(H, Fo X) (2)

where F0, F1: C -> Ab are functors. We call (F0, F,, 0, µ) the `bype structure'
of the functor F. We say that the bype functor F is split if the exact sequence
(2) admits a binatural splitting in Ab. In this case F is completely determined
by the pair of functors (F(,,F1) since we can identify

F(H, X) = Ext(H, F, X) e Hom(H, Fo X) (3)

by the splitting of (2). Moreover we say that F is semitrivial if F0 = 0 is the
trivial functor. Clearly in this case F is determined by F1. Each bype functor
F is semisplit in the following sense: for each object X E C there is a splitting
homomorphism

sx: Hom(H,FoX) -->F(H, X) (4)

with ,2sx = 1 which is natural in H E Ab. For this we use a similar argument
to that in Definition 3.1.1 (4).

We study bype functors in more detail in Section 3.3 where we show that
they are actually `equivalent' to kype functors by a duality isomorphism. We
consider an example of a semitrivial bype functor in Section 5 and in Section
6 we describe an example of a split bype functor. Up to a few changes a bype
functor is the exact analogue of a kype functor in Definition 3.1.1. We now
introduce categories of bypes and Bypes respectively which are the analogues
of the corresponding categories of kypes and Kypes in Section 3.1. In Sections
3.5 and 3.6 we describe such categories in case the bype (resp. kype) functors
are semitrivial or split. It is interesting to have these simple cases in mind
when reading the following definitions.

(3.2.2) Definition Let F be a bype functor on the category C. An F-bype

X=(X,Ho,H1,b,,O)

is a tuple consisting of an object X in C, abelian groups H0, H1, and
elements

b E Hom(H,, F1X),

/3 E F(H0, X, b)

with the following properties. Using the homomorphism b and the bype
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structure of F we define the abelian group F(H0, X, b) by the push-out
diagram

Ext(H0, Fl X) N F(Ho,X) -µ- Hom(Ho,F0X)

Ii. push
1

II

Ext(Ho,F,X/K) » F(HO,X,b)IU Hom(Ho,F0X)

Here is F,X -. cok(b) =F,X/K is the quotient map for the cokernel of b
with K = image(b). The element R E F(Ho, X, b) has the property that the
sequence

Ho
µcs)

FOX-->0

is exact, that is µ( (3) is surjective. A morphism

(f, wo, API ): (X, Ho, H1, b, !3) , (X', Hl', b', 83')

(1)

between such F-bypes is given by a morphism f: X - X' in C and by
homomorphisms po: Ho - Ho, cp,: HI -+ Hl' such that the following proper-
ties (2) and (3), are satisfied. The diagram

H1

I1P,

H;

(2)

is commutative. Hence f* induces a homomorphism f,,: cok(b) -p cok(b')
between cokernels so that the bype functor F yields induced homomorphisms

F(Ho, X, b) f;. F(H0, X', b') P0* F(HO, X', b')

with

po(p') EF(H0,X',b'). (3)

F-bypes and such morphisms form the `category of F-bypes'. If the bype
functor F is clear from the context we call an F-bype also simply a bype.

We say that an F-bype (X, H0, H b, 0) is injective if b is an injective
homomorphism. Let

bypes(C, F) (4)
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be the full subcategory of injective F-bypes. Moreover an F-bype
(X, H0, H1, b, /3) is free if H, is a free abelian group. Let

Bypes(C, F)

be the full subcategory of free F-bypes. We have the forgetful functor

¢: Bypes(C, F) ---> bypes(C, F)

(5)

(6)

which carries the free F-bype (X, H0, H,, b, )3) to the injective F-bype
(X, H0, H b', /3) where H,' is the image of b and where b' is the inclusion
of this image. Hence cokernels cok(b) = cok(b') coincide so that /3 E
F(H0, X, b) = F(H0, X, b'). As in Definition 3.1.2 we see

(3.23) Lemma The functor 0 is full and representative.

(3.2.4) Remark Let F be a bype functor on C and let a: K - C be a
functor. Then we obtain similarly as in Remark 3.1.4 the bype functor a *F on
K and the induced functors

a: bypes(K, a*F) -> bypes(C, E)

a: Bypes(K, a*F) - Bypes(C, F).

The induced functors are equivalences of categories if a is.

Now let X = (X, H0, Ht, b, /3) be F-bype as above. Then we obtain ele-
ments

/3* =µ(/3)EHom(Ho,FOX)
(3.2.5)

(3t =0-'i*PEExt(ker/3*,cokb)

as follows. The homomorphism /3 * is given by /3 in X and by the natural
transformation µ in the bottom row of Definition 3.2.2 (*). By the assump-
tion in Definition 3.2.2 (1) the homomorphism /3* is surjective. Now let

is ker( /3*) = Ho - Ho (1)

be the inclusion of the kernel of 6*. Then i yields by naturality a commuta-
tive diagram

Ext(H0,cokb) 4* F(HO,X,b) - Hom(H0,FOX)
1;. µl,. l,. (2)

Ext(HH,cokb) No F(Ho,X,b) -. Hom(Ho,F0X)
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Here i *iL( f3) = 0 implies that the element /3t = 0 - I i *( 13) in (3.2.5) is well
defined. Let

cokb> rr(Ot)-.ker(p*) (3)

be an extension of abelian groups which represents the element fat. Hence
we obtain by X the exact sequence

HI -b ).FIX--i# ir( f3t)-h
* Ho9-

.
>FOX-->0 (4)

which we call the F-sequence of X. Here i is the composite of the quotient
map and the inclusion in (3), and h is given by the projection in (3). The
sequence is natural with respect to morphisms between F-bypes in the
following sense. We say that a morphism f: X --> X' in C, together with a
commutative diagram in Ab,

H, - FIX -7T(Pt) _ Ho -* FOX --' 0

1
if.

1
If.

He --,FIX' -,r(f3t) -Ho- FOX'- 0
(5)

is a weak morphism between F-sequences if there is a homomorphism
ir( f3t) - ir( f3) which extends the diagram commutatively. Similarly we
define weak isomorphisms. A morphism (f, cpo, cp) between F-bypes as in
Definition 3.2.2 clearly induces a weak morphism between f-sequences for
which the vertical arrows in (5) are cp F, f, cpo, and Fo f, respectively.

3.3 Duality of bype and kype

Kype functors (E, E0, EI) form an abelian group kextc(E,, Eo) and similarly
bype functors (F, F0, F,) form an abelian group bextc(F0, F,). We show for
F0 = E0 and F, = EI that there is a duality isomorphism

D: kextc(E Eo) = bextc(E0, EI).

Hence a kype functor E determines up to equivalence a bype functor
F = D(E) and vice versa. We say in this case that E and F are dual to each
other, see (3.3.6). Given n e Z and a functor

K* : C - Chain1/=

we obtain induced kype and bype functors E and F, respectively, with

E(X,A)=H^+'(K*X,A)

F(A,X)=H(A,K*X)
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for A E Ab and X E C. These turn out to be dual to each other; in particular
E is split if and only if F is split, see Theorem 3.3.9. Hence the computation
of the functor F also yields a computation of the dual functor E. This fact is
of crucial importance in our main result on the classification of homotopy
types in the next section.

Let C be a category. (We assume also that C is a small category so that the
cohomology of C is an abelian group. There is, however, a canonical way to
extend the following results to the case when C is not small.) Let

(3.3.1) E,, E,: C -* Ab

be two functors. We now consider kype functors E and bype functors F
which are both associated with the functors E0 = F0 and E, = F,.

(3.3.2) Definition A kype extension E of E, by E0 is a semisplit kype functor
E with structure (E0, E,, A, A), that is, E is embedded in the binatural short
exact sequence

Ext(EoX,Tr)
11 E(X,1r)-Hom(E,X,7r)

with X E C, 7T (=- Ab. Two such extensions E, E' are equivalent if there is a
binatural isomorphism r: E(X,?r) -E'(X, ir) with Ar= µ and TA = A. Let

kextc(E,,E0)

be the set of all equivalence classes of such kype extensions. Dually we
define:

(3.3.3) Definition A bype extension E of E0 by E, is a bype functor E with
structure (E0, E,, A, µ) that is, E is embedded in the binatural short exact
sequence

Ext(H,E,X) ° E(H,X)-µ Hom(H,EOX)

with X E C, H E Ab. Two such extensions E, E' are equivalent if there is a
binatural isomorphism T: E(X, 70 __ E'(X, 7r) with µT= µ and TA = A. Let

bextc (Eo , E1)

be the set of such bype extensions.

We introduce for E0, E, in (3.3.1) the bifunctor

(3.3.4) Ext(E0, E,): COP X C - Ab

which carries the pair (X, Y) of objects in C to the abelian group
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Ext(E(,X, E,Y). Hence Ext(E0, E,) is a C-bimodule which we use as coeffi-
cients in the cohomology groups H *(C, Ext(E°, E, )); compare Definition
1.1.15.

(33.5) Theorem There are canonical bijections

kextc(E,, E°) =H'(C,Ext(E°,E,))=bextc(E°,E,)

which carry the split extension to the zero-element in H' (C, Ext(E°, E,)),

The bijections in Theorem 3.3.5 yield an abelian group structure for the
sets kextc(E,, E°) and bextc(E°, E,) such that we obtain an isomorphism

(3.3.6) D: kext c (E, , E°) = bext c (E° , E,)

which we call the duality isomorphism. We say that a semisplit kype functor
E is dual to the semisplit bype functor F if E0 = F0, E, = F,, and
D{E} = {F). Here (E) and {F} denote the corresponding equivalence classes.
Indeed using Theorem 3.3.5, each E yields up to equivalence a dual F and
vice versa, showing that kype functors and bype functors are actually equiva-
lent to each other. We point out that the bijections in Theorem 3.3.5 are
reminiscent of Corollary 3.11 in Jibladze and Pirashvili [CA].

The elements in the first cohomology H'(C, D) of the category C are
represented by derivations as follows.

(3.3.7) Definition Let C be a (small) category and let D be a natural system
on C, for example D = Ext(E°, E,) that is D(f) = Ext(E0 X, E,Y) for f: X
Y E C. A derivation

d: C -D (1)

is a function which associates with each f: X - Y E Can element d(f) E D(f )
such that for composites gf in C we have the derivation formula

d(gf) =g*d(f) +f*d(g) (2)

where g* and f * are defined by D. Suppose that there exists a function
a E F°(C, D), which carries an object X (=- C to an element a(X) E D(lx),
such that

d(f) = f* a(X) -f *a(Y). (3)

Then d is called an inner derivation induced by a; we also write d = da in this
case. Let Der(C, D) and Ider(C, D) be the abelian groups of derivations and
inner derivations respectively. Then we obtain the canonical isomorphism

H'(C, D) = Der(C, D)/Ider(C, D) (4)
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where the right-hand side is the quotient group, compare (IV.7.6) in Baues
[AH].

Proof of Theorem 3.3.5 We define functions

H'(C,Ext(E°,E,)) (1)
Tk

as follows. Let E be a kype extension of E, by E0 and choose splittings sX as
in Definition 3.1.1 (4). For f: X - YE C we consider the diagram

E(X,E,X) (Elf)` E(X,ElY) f' E(Y,EIY)

I,- IIX I'll (2)
Hom(E,X,ElX) Hom(E,X,Ely) Hom(EIY,E,Y)

(Elf)* (Elf).

where the left-hand square commutes. We now get a derivation ds: C -b
Ext(E°, E,) by

ds(f)=0-'((Elf)*sX(1EX)-f*sv(1EY)). (3)

For a different choice s' of splitting functions we obtain

a EF°(C,Ext(E°,E,))

by

a(X) =A -'(SX(1EX) -s.(1E X)) (4)

and we immediately see that ds - ds. = d,, is the inner derivation induced by
a. Moreover, if T: E -> E' is an equivalence we define splitting functions sX
for E' by s' = TSX so that in this case ds = ds.. This shows that the function
Tk in (1) is well defined by

Tk(E} = {ds}. (5)

Next we construct the function Tk in (1). For derivation d: C -p Ext(E0, E,)
we define a kype functor Ed with structure (E0, E1, 0, µ) as follows. For
XEC,TrEAblet

Ed(X, Tr) = Ext(E° X,,7r) ® Hom(E1X, 7r) (6)

with A = inclusion and µ = projection. For g: Tr - 1r' E Ab we define

g* =Ed(X,g)=Ext(E°X,g)ED Hom(E1X,g).
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Moreover for f: X - Y E C we define

f * = Ed (f, 1r): Ed (Y, Tr) --, Ed (X, 7T)

by the conditions

93

z Ext(E°f, 7T)=f*0

µf*=Hom(E,f,ir)

and by the following condition. Let sx: Hom(E1X, a) -+ Ed(X, 7r) be the
inclusion of the second summand in (6). Then we set, for (p E Hom(E1Y, 1r),

f*sy(cp) =sx(cpE,(f )) - 0(ww*d(f )). (7)

The derivation formula for d shows that Ed is a well-defined kype functor
with structure (E0, E,, 0, µ). For a E F°(C, Ext(E0, E,)) we construct below
an equivalence of kype extensions

0,,: Ed Ed, 1 (8)

This shows that the function Tk in (1) given by

Tk{d} = {Ed} (9)

is well defined. One readily checks that Tk is the inverse of r . The
equivalence Oa is determined by the conditions µoa = µ, 00a = 0, and by

(10)

for cp e Hom(E, X, v). We clearly have g,, ¢a = 0,,g.. Moreover we get
f *#a = Y'a f *, with f * induced by Ed,,., by the following equations where
w E Hom(E1Y, 7r).

f*casy((p) =f *(sy((p) - 0cp*a(Y))

=f *sy(cP) - A f *cp* a(Y)

=sx(cPE,(f))-i(cp*(d+da)(f))-Of*cp*a(Y)

=sx(cpE,(f))+0(cp*[-d(f)-aa(f)-f*a(Y)})

=sx(gPE,(f)) +Op*[-d(f) -f*a(X)}

Oaf *sy(0 = 46a(sx(cpE,(f)) - A(cP*d(f )))

= OcP* d(f )

=sx(cpE,(f))-0(cp*(E,f)*a(X))-Ocp*d(f)
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This completes the proof that Tk in (1) is a bijection. In a completely
analogous fashion we obtain the bijection

Tb: bextc(EO, E,) - H'(C,Ext(EO, E,)). (11)

For this let F be a bype extension of E0 by E, and choose a splitting sX as in
Definition 3.2.1 (4). For f: X -o YE C consider the diagram

F(EOX, X)

SX

f. F(E0X,Y)
(Eof).

F(E0Y,Y)

Hom(EoX,EoX)
(Euf).`

Hom(E0X,EOY):(Eof), Hom(EOY,EOY)

where the right-hand square commutes. We obtain a derivation ds: C -,
Ext(E0, E) by

ds(f)=I -f*sX(lEOX)+(Eof)*sy(lEQY)). (12)

The bijection Tb is now defined by

Tb{F} = (ds). (13)

We leave it to the reader to show that Tb is well defined and a bijection.

The following definition yields many examples of kype functors and bype
functors respectively.

(3.3.8) Definition Recall that Chains denotes the category of chain com-
plexes (C* , d) of abelian groups. We say that (C* , d) is a free chain complex
if all chain groups C,,, n E Z, are free abelian. Now let C be a category and
let

K* : C --+ Chains/=

be a functor which carries each object X E C to a free chain complex
K * M. Using cohomology and pseudo-homology we define, for X E C,
AEAb,

E(X,A)=Hn+'(K*X,A),

Then E is a kype functor and F is a bype functor with the structure given by
the universal coefficient sequences

Ext(H,, K*X,A) H Hn+'(K*X,A) -P Hom(H,, +IK*X,A)

K,, X).
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Here the functors E0 = F0 and E, = F, are given by the homology groups

E0(X) = H"(K* X), E,(X) = H"+1(K* X).
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(33.9) Theorem The kype functor E with E(X, A) =H"- `(K,, X, A) and the
hype functor F with F(A, X) = H"(A, K * X) are dual to each other in the sense
of (3.3.6). In particular, E is split if and only if F is split.

Proof For the chain complex K,, = K* X let Z" = kernel(d: K" --* K" - 1)

and B" = imaged: K"+, --> K") so that the homology H" = H" K,* X has a
short free resolution

B"NZ" - H". (1)

In fact, since we assume K. X to be free we see that also B" and Z" are free
abelian groups. Moreover, the short exact sequence

H,I K"+I/B"+i B" (2)

admits a splitting sX of d and a retraction rX of j since B" is free abelian.
Putting (1) and (2) together we obtain the exact sequence

- - + (3)

Let A be an abelian group with short free resolution

A,>A0 --A
and let s"dA be the corresponding chain complex concentrated in degrees n
and n + 1. Moreover let sA be in the chain complex concentrated in degree
n with (s"A)" =A. Then we obtain

E(X,A) =H"+(K*X,A)K,kX,s"+'A]=[dx,sA]

with

[dx, sA,] = Hom(Z", A).

On the other hand we get

F(A, X) = H"(A, K. X) = [s"dA, K,* X1 = [dA, dx ].

Here dX is the chain complex concentrated in degrees 0, 1 given by dx in (3).
Moreover [-, -] denotes the group of homotopy classes of chain maps. We
now define a splitting function

resp. s, :Hom(A,H")-1F(A,X)
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by use of rx, resp. sx, above. We set, for cp: H+ 1 -A,

E [dxISA]. (4)

Since i in (1) is a short free resolution of H we obtain the isomorphism

Hom(A, [dA,i]

which carries the homomorphism cp to the chain map (cpo, (p1). Then sY is
given by

sx, (0 = {(sx'0, p l)) E [dA,dx]. (5)

One readily checks that sX and sX are both natural in A.
We now consider the derivation d: C -p Ext(E0, E1) given by sX, resp. sX;

compare Theorem 3.3.5 (3). Let f: X -* YE C and let

f*: K*X=K* ->K*Y=K*'

be a chain map representing K,, (f ). We obtain by (1) the equation

Ext(H,,,H, 1)=Hom(B,,,H; (6)

Moreover we obtain the following diagrams

rx
Hl =Hn+1K*X

lI .1 I(f .1).

Kn+1/Bn+1 ry- H,+1 =Hn+IK*Y

sXB - Kn+1/Bn+1

-s *

These diagrams need not commute. They define, however, factorizations df,
resp. 8f, given by

{'(Elf )rx-rrf,,+1 =dfd:
a

(7)

-f,lsx+sYf,, i Kn+1/Bn+1. (8)

One readily checks that the derivation ds defined in Theorem 3.3.5 (3) by
s = SE satisfies

ds(f) = {df). (9)
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Similarly the derivation ds defined in Theorem 3.3.5 (12) by s = sX satisfies

ds(f) _ (Sf). (10)

The right-hand sides of (9) and (10) denote the cosets in (6) given by (7) and
(8) respectively. We claim that rx can be chosen via sx such that df= Sf.
This implies that E and F are dual and the proof of Theorem 3.3.9 is
complete. In fact, we can define rx above by the formula

rx(z)=j-'(z-sxd(z)) (11)

where we use j and d in (2), z E Now (11) implies df = Sf since
we get the following equations.

j dfd(z) =j((E, f)rx(z) -rrfn ,(z))

=jE,(f)j-'(z-sxd(z))-jj-'(frt

=fr+,(z) +syf,, d(z)

=j 8fd(z).

(33.10) Remark If E and F are dual to each other there should be a
connection between the corresponding categories of E-kypes and F-bypes,
respectively, which we do not know in general. The detecting functors A, A'
in the classification theorem of the next section, for example, yield such a
connection. Also if E and F are both split we describe in Section 3.6 the
relation between E-kypes and F-bypes.

3.4 The classification theorem

We describe in this section fundamental results on the classification of
homotopy types by using kype functors and bype functors as defined
in Sections 3.1 and 3.2. These results are the main motivation to study
such functors. Recall that types,, denotes the full homotopy
category of (m - 1)-connected (m + r)-types and that spaces, denotes the
full homotopy category of (m - 1)-connected CW-spaces X with dim X- m
+ r. For any full subcategory C c typesM'- I let

types(C) c typeset ,

spaces' '(C) c spacesM '

be the full subcategories of objects X for which the (n - 1)-type P -,X is an
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object in C, n = m + r. If C is the whole category typeset ' then the
inclusions in (3.4.1) are equations; in this case we can omit C in the notation.
We always assume that m >_ 2. We now introduce a kype functor E and a
bype functor F on C with the property E0 = F0 and E, = Fl. We obtain the
kype functor

(3.4.2) E: COP x Ab --> Ab

by the cohomology group (n = m + r)

E(X,ir)=H"(X,zr) (1)

for X E C, 7r E Ab. The kype structure of E is given by the universal
coefficient sequence

N H"+'(X,ir)

H X X = H X are the homology groups. On the
other hand, we define the bype functor

(3.4.3)

in two ways, by the functor F;;_ , or by the pseudo-homology,

F(H, X) = F,,'- IM, X) (1)

(2)

with H E Ab and X E C. Recall that F,,'- ,(X) = ker (i _ , X) =
image (b X) c r. _ , X leads to the definition of F,"-,(H, X) by the pull-back
diagram, see Definition 2.2.9,

N

(3)

N F;;_,(H,X) -.

Moreover we have by Theorem 2.6.14 (5) the commutative diagram

H

II 6,
o

110

µ
11 e.

(4)

N F;;_(H,X) - Hom(H,I'_,X)
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Here O is a natural isomorphism. The short exact sequences of this diagram
describe the hype structure of the bype functor F with

FOX=F;;_,X=H"X=EOX, (5)

(6)

Since X E C is a 1-connected (n - 1)-type the isomorphisms in (5) and (6) are
given by the secondary boundary

F X,

b,, X: H"XaI;;_,XcF,X (7)

which we use as identification.

Remark The kype functor E in (3.4.2) and the bype functor F in (3.4.3) are
examples of functors as defined in Definition 3.3.8. In fact, for C c types, '
we have the functor

K,,: C --> Chain_,/=

which carries an object X in C to its singular chain complex. Then clearly

E(X,Tr) =H"+'(K,*X,ir) =Hn+'(X,Tr)

F(H,X)=H"(H,K,,X)=H"(H,X).

Hence Theorem 3.3.9 implies that E and F are dual to each other, in
particular E is split if and only if F is split. In fact, the duality can be used
for the computation of the functor E as follows. First compute I;, _ (H, X) in
(3.4.3) (3) and then form the pull-back r,;_,(H, X) which, by (3.4.3) (2), yields
F(H, X) together with its functorial properties. Next use duality to derive
from F the functor E. We shall apply this method in various examples.

We are now ready to state our main general result on the classification of
homotopy types. For this recall that a detecting functor A: A - B reflects
isomorphisms, is full, and representative. In particular A induces a 1-1
correspondence between isomorphism classes of objects in A and isomor-
phism classes of objects in B. A `good classification theorem' in algebraic
topology can often be stated by saying that a certain functor A: A - B is a
detecting functor. Here B is supposed to be a category which is appropriate
for computation and A is a more intricate topological category. The next
result is crucial for this book; it was announced in Baues [HT].
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(3.4.4) Classification theorem Let m > 2 and let C be a full subcategory of
types'' ' and let E and F be defined as in (3.4.2) and (3.4.3). Then there are
detecting functors

A: spaces' '(C) --> Kypes(C, E)

A': spaces' '(C) -> Bypes(C, F).

Moreover the F-sequences of both A(X) and A'(X) with X E spaces, ' (C)
are naturally weakly isomorphic to the part

F,,X-> 0

of Whitehead's exact sequence, n = m + r. In addition one has detecting functors

A: types,,(C) - kypes(C, E) = Gro(E),

A': types,,(C) -> bypes(C, F).

We give an explicit definition of the detecting functors as follows.

(3.4.5) Definition Recall that m > 2 and n = m + r. For the definition of A
and A we use the Postnikov invariants k, X and for the definition of A' and
A' we use the boundary invariants &X. Let

X E spaces' '(C).

Then the (n - 1)-type P _ , X of X is an object in C and we set

A'(X) = (P, X, H, X, H»+ IX, X,

Next let

XE types (C).

Then we again have P,, X E C and we set

A(X) _ see(1.3)

A'(X) _

Since X is a 1-connected n-type we see that

F, XcF.X=F,(X)

(1)

(2)

is injective.
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On the proof of Theorem 3.4.4 Only the detecting functor

A: Gro(E)

is a classical result, due to Postnikov. The other detecting functors A, A', A'
have not appeared in the literature. We prove that A, ,k', and A are detecting
functors in Section 3.7. The proof that A' is a detecting functor is highly
sophisticated; it involves most of the theory in the chapter of CW-towers, see
Section 4.7.

The functors of the theorem are part of the following diagram which
commutes up to canonical natural isomorphisms.

Kypes(C, E) *-"- spaces;, '(C) - - Bypes(C, F)

(3.4.6)

kypes(C, E) types,,(C) bypes(C, F)

Here Pm+r is the Postnikov functor. All functors in the diagram are full and
representative. But 0 and Pm+r are not detecting functors since they do not
reflect isomorphisms. We deduce from Theorem 3.4.4 the next result on the
realizability of r-sequences. Recall that an n-equivalence X - Y is a map
which induces isomorphisms 7r; X = 7r;Y for i < n.

(3.4.7) Theorem on the realizability of the Hurewicz homomorphism Let Y
be a simply connected (n - 1)-type and let

Hl b >FY it -> Ho-
be an exact sequence of abelian groups where H, is free abelian and where

and are given by Y. Then there exists an
(n + 1)-dimensional CW-complex X, an (n - 1)-equivalence p: X - Y, and a
commutative diagram

H,,,, X -- F,, X -- 7r X -- H X -- ker(i - i X) - 0
=10 P.P.

H, ---> -b 7r Ho ---a -p 0

in which all vertical arrows are isomorphism.

We can prove Theorem 3.4.7 either by the detecting factor A or by the
detecting functor A' in Theorem 3.4.4. In the following proof we use A'.
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Proof Let the bype functor F be defined as in Theorem 3.4.4 with
C = types;, r + 2 = n - 1. Then we find an F-bype

Here Ho and HI are given by the exact sequence and K is the kernel of
7r and b is given by b1. Let (7r) be the element

{7r} E Ext(ker(bo), FRY/K)

determined by the extension fRY/K N 7r -* ker(bo) which we deduce from
the exact sequence in the theorem. Then there exists an element 8 with

(3* = bo and /3t = {7r},

This follows since µ in (3.2.5) is surjective and since for the inclusion is
ker(bo) cHo also the induced map i*: Ext(H0, FIX/K) --> Ext(ker(bo),
F1X/K) in (3.2.5) (2) is surjective. Hence the r-sequence of Y is weakly
isomorphic to the exact sequence (3.4.7). Now let X be a A'-realization of Y.
Thus we obtain the proposition by the natural isomorphism of r-sequences in
Theorem 3.4.4.

(3.4.8) Remark Theorem 3.4.7 shows that each exact sequence

H,

is realizable. We do not know however what morphisms between such
sequences are realizable. More precisely let X, X' be 1-connected (n + 1)-
dimensional CW-complexes with (n - 1)-types Y = P _ , X and Y' = P _ 1 X'
respectively. Then we consider the commutative diagram in Ab

H, --b 1'Y ---> 7r ---> Ho -i ker i _ IY ----> 0

11P, If. I90 I'o If.

H,' -- F,, Y' --> 7r' - Ho - ker i _,Y' ----> 0
(1)

where f E [Y, Y'] and where the top row and the bottom row are Whitehead's
exact sequence for X and X' respectively. The detecting functor A shows
that (f, co, q'1) is realizable by a map f : X -* X' if and only if

f (.P,r) * (2)

On the other hand, the detecting functor A' in Theorem 3.4.4 shows that
(f, cpo, (p1) is realizable by a map X -> X' if and only if

(3)
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What is the condition that (f, cpo, p 1, is realizable by a map X -'X'?
Clearly (2) and (3) must be satisfied but is this a sufficient condition?
Moreover what pairs of invariants are realizable? Hence we are
searching for an unknown category U for which the diagram of detecting
functors

spacesm 1(C)
A A'

(4)

Kypes(C, E) F- U ---a Bypes(C, E)

commutes and for which U is given by an algebraic structure like E, F on C.
This is the unification problem. Since A and A' are detecting functors we see
that they induce a 1-1 correspondence between isomorphism classes of
objects in Kypes(C, E) and Bypes(C, F) respectively. In this sense the
k-invariant k"(X) determines the boundary invariant 9"(X) and vice versa,
but it is unclear how this connection between kn(X) and 9"(X) could be
described algebraically. Below we show that k, ,X is `orthogonal' to 8,(X).
Moreover, in the case that E and F are split, we describe a possible
candidate for the category U in Definition 3.6.1 (6), namely U = S(E0, E,).

(3.4.9) Definition Let X be a space and let C. X be the singular chain
complex of X. Then we know that the cohomology and pseudo-homology can
be described by sets of homotopy classes of chain maps

Hn+ 1(X, A) _ [C,k X, C, M(A, n + 1)]

H"(B,X) _ [C.M(B,n),C.X].

Hence we get by composition of chain maps a pairing

H"(B, X) ®Hn+I(X, A) --> Ext(B, A)

which carries /3 (9 k to ( )3, k) = k ° /3 in

[C,, M(B, n), C,, M(A, n + 1)] = Ext(B, A).

(3.4.10) Proposition Let X be a simply connected CW-space with (n - 1)-type
pn_,: X->Y=Prs_1Xand let

knXEHn+1(Y,-rr"X), resp. /i"XEH"(H"X, Y)/A image (p,,-,)

be the k-invariant, resp. boundary invariants, of X. Then k" X and /3,, X are
orthogonal with respect to the pairing (,) in Definition 3.4.9, that is

(/3,k"X)=0

for all / E H"(H" X, Y) representing /3" X.
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Proof Let H = H X and 7r = ir X and consider the composite

k k (X ). The Postnikov tower shows that k p_ I - 0 is
null homotopic. We now obtain the following commutative diagram

H H H H (H K11 n + 1))n nH, OT
Since /3 E 8,, X is in the image of b and (p_ I) * respectively, we see that

/3=0

since k p _ , - 0. Here /3 represents (,B, k X ).

3.5 The semitrivial case of the classification theorem and
Whitehead's classification

In this section we describe the homotopy classification of (m - 1)-connected
(m + 2)-dimensional CW-spaces by simple algebraic invariants. This corre-
sponds to well-known results of J.H.C. Whitehead [CE], [SC], [HT]. We
obtain the classification by applying the classification theorem 3.4.4 to
the simple case r = 1; in fact, for r = 1 only semitrivial kype functors
and semitrivial bype functors are relevant. Recall that for an Eilenberg-
Mac Lane space K(A, m), m >: 2, one has natural isomorphisms

(3.5.1)
Hm+,K(A, m) = Fm+IK(A, m) =
Hm+IK(A,m) = rmK(A,m) = 0.

Here Ab -> Ab is the algebraic functor with r2(A) = r(A) (given by
Whitehead's quadratic functor r) and with Fm(A) =A ® Z/2 for m > 3. For
an (m - 1)-connected space X we have a natural isomorphism (see Theorem
2.1.22)

(3.5.2) Fm +,X-r,,(HmX)

so that Whiteheads sequence yields the exact sequence

(3.5.3) Hm+2X b>rm(HmX)-L1Tm+1X-'Hm+iX 40

which is natural for maps between (m - 1)-connected spaces. Here Hm+2X
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is free abelian if dim X< m + 2. We now introduce the following categories
with objects being exact sequences as in (3.5.3).

(35.4) Definition Let C be a category and let G: C --> Ab be a functor. A
G-sequence is an object H in C together with an exact sequence of abelian
groups

H, -U G(H) -- 7r --+ Ho -* 0. (1)

A morphism between G-sequences is a morphism cp: H --> H' in C together
with a commutative diagram

H, ---> G (H) -- p 7r ---> Ho ---> 0

IW.
I 1,,-

(2)

H, --b G(H') ---b 7r' -a Ho -0

A weak morphism between G-sequences is a triple (cp,, Po, cp) for which there
exists 4 such that the diagram commutes. The G-sequence (1) is free if H, is
free abelian and is injective if H, - G(H) is injective. Let

K(G), resp. k(G) (3)

be the categories consisting of free, resp. injective G-sequences and
morphisms as above. Clearly k(G) = Gro(Hom(G, - )) is the Grothendieck
construction of the bifunctor

Hom(G,-): C°P X Ab -->Ab

which carries (H, a) to the abelian group of homomorphisms Hom(G(H),ir).
Moreover let

B(G), resp. b(G) (4)

be the categories consisting of free, resp. injective G-sequences and weak
morphisms. The proof of the next lemma is left as an exercise.

(3.5.5) Lemma Let E be a semitrivial kype functor with E0 = 0 and E, = G.
Then one has canonical equivalence of categories

Kypes(C, E) = K(G),

kypes(C, E) = k(G).

Let F be a semitrivial bype functor with F. = 0 and F, = G. Then one has
canonical equivalences of categories

Bypes(C, F) = B(G),

bypes(C, F) = b(G).
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In the next result we consider the case when G = F,,,: Ab -* Ab is the
functor given by (3.5.1). Recall that spacesm is the full homotopy category of
(m - 1)-connected (m + 2)-dimensional CW-spaces.

(3.5.6) Theorem of J.H.C. Whitehead For m > 2 one has detecting functors

A: spaces' -

A': spacesm B(F,n)

These functors carry a space X to the exact sequence in (3.5.3).

Proof Consider Theorem 3.4.4 for the special case r = 1 and C =typeset.
Then one has an equivalence of categories C = Ab and by (3.4.2) and (3.5.1)
the kype functor E on Ab is given by

E(A,Tu) = ir) (1)

with E0 = 0 and El = F,,,. Hence one has, by Lemma 3.5.5, an equivalence of
categories

Kypes(C, E) = K(F,,) (2)

and the detecting functor A in Definition 3.4.5 corresponds to the functor A
in Lemma 3.5.5.

We now consider the detecting functor A' in Theorem 3.4.4 for the special
case r = 1 with C as above. Then we have by (3.5.1) and (3.4.3) the hype
functor F on Ab given by

F(H, A) = Ext(H, F,,,(A)) (3)

with F0 = 0 and FI = Moreover we have by Lemma 3.5.5 an equivalence
of categories

Bypes(C, F) = B(r,',). (4)

Thus the detecting functor A' in Definition 3.4.5 yields the functor A' in
Lemma 3.5.5. 0

(3.5.7) Remark One has a forgetful functor

': K(G) -, B(G)

such that for G = F,,, the functors in Lemma 3.5.5 satisfy 4A = A'. Since 0
and A are both detecting functors this also shows that A' is a detecting
functor.
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Recall that types' is the full homotopy category of (m - 1)-connected
(m + 1)-types.

(3.5.8) Theorem For m >- 2 one has detecting functors

A: types' - k(F ;) =

A': types' -,, b(F,;,).

These functors carry X E types' to the exact sequence (3.5.3).

Proof For the kype functor E in Theorem 3.5.6 (1) we have by Lemma 3.5.5

kypes(C,E) = k(I ;)

and for the bype functor F in Theorem 3.5.6 (3) we have an equivalence of
categories

bypes(C, F) = b(I',' )

Hence Theorem 3.5.9 is a consequence of the classification result Theorem
3.4.4.

3.6 The split case of the classification theorem

We here discuss the classification theorem 3.4.4 in case the bype functor F
and the kype functor E are split with E0 = F0, E, = F,. In this case E-kypes
and F-bypes can both be described by chain complexes

H, -->E1(X) ->R ->E0(X) - 0

which are exact at E,(X) and E0(X). This simplifies the description of the
corresponding categories of E-kypes and F-bypes considerably. Hence for
split functors E, F we get a new kind of classification theorem derived from
Theorem 3.4.4. As an illustration we consider the homotopy classification of
(m - 1)-connected (m + 3)-dimensional polyhedra X with trivial homotopy
groups IT,,, + , X = 0, m > 4. In this case the bype and kype functors are split
and are of a particularly easy form. Various other examples of split hype and
kype functors are described in Chapter 6.

(3.6.1) Definition Let C be a category and let E0, E,: C - Ab be two
functors. An (E0, E, )-sequence is an object X in C together with a chain
complex

H,- b-)I E,(X) -1), R- 84 EO(X) -o 0 (1)
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of abelian groups which is exact in E,(X) and E0(X). A morphism between
such sequences is given by a morphism f: X --'X' in C and by a commutative
diagram in Ab

HI - E1(X) R 5 Eo(X)
Ij

IW1 If. Ir if.
H; -b--a EI(X') L R' -s-> E0(X')

(2)

The (E0, El)-sequences and such morphisms form a well-defined category.
We say that the sequence (1) is free if H, is free abelian and we say that (1)
is injective if b is injective. Let

S(E0, EI ), resp. s(E0, EI) (3)

be the full subcategories of free, resp. injective (E0, E,)-sequences. We

introduce two natural equivalence relations
k

and
b

as follows. Let
((pl, f, r) and (,f', r') be morphisms as in (2). We set ((p f, r)

k (,f', r')
if cp, = Bpi, f =f' and if r and r' induce the same homomorphism.

r* =r*': kernel(8) --> kernel(S'). (4)

On the other hand, we set (cp,, f , r)
b

(V f', r') if cpl = cp,, f = f' and if r
r' induce the same homomorphism

and

r* = r*': cokernel(d) -> cokernel(d').

One has the obvious quotient functors

(5)

S(E0,E,)/b 4-S(E0,EI)-->S(E0,E,)/k (6)

s(E0,EI)/b F-s(E0,El)--.s(E0,E,)/k (7)

all of which are easily seen to be detecting functors, in fact linear extensions
of categories. We associate with an object (1) the following exact sequence

HI - E,(X) -'-a ker(b) a cok(d) b0. Eo(X) -->0

Iff Ho

(8)

Here bo is induced by S and i is induced by d. Moreover j is the composite

j : ker(5) c R -. cok(d )
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of the inclusion and the quotient map. Morphisms between(E0, E,)-se-
quences clearly induce morphisms between the corresponding exact se-
quences in (8) which we call I'-sequences.

(3.6.2) Lemma Let E be a split kype functorgiven by E0, E, and let F be a split
hype functor given by F0, F,; see Definitions 3.1.1 and 3.1.2. Then there are
canonical equivalences of categories

-r: S(Eo, E,)1! -> Kypes(C, E)

,r: s(E0, E,)/ k -+ kypes(C, E)

T':S(Fo,F,)/b -Bypes(C,F)

T': s(F0, F,)/ b -+ bypes(C, F).

Proof The equivalence T carries the (Eo, E, )-sequence

S={H, 2-41 E,(X)__d;IR8Eo(X)--,0}

to the kype

T(S)=(X,ir,k,H,,b) with or=ker(b)

where k E E(X, ir) = Ext(E0X, 7r) x Hom(E,X, ir) is given by is E,(X) ---' ?r
in Definition 3.6.1 (8) and by the extension

0-+1r-*R-->EOX->0

given by 3. Now one readily checks that T in the statement of the lemma is an
equivalence of categories.

Next let S' be the (F0,F,)-sequence

S' _ {H, -F,(X) _24 R '+F0(X) -+0}.

Then T' carries S' to the bype

with Ho=cok(d).

Here $ E F(H0, X, b) = Ext(Ho, cok b) x Hom(H0, FOX) is given by bo: Ho
- FOX as in Definition 3.6.1 (8) and by the extension

0-'cok(b)L,R- Ho -'0

where d' is induced by d. Again one readily checks that T' in the statement
of the lemma is an equivalence of categories.
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We are now ready to formulate an addendum to the classification theorem
3.4.4 which deals with the case when the bype and kype functors are split.

(3.6.3) Classification theorem Let m >_ 2 and let C be a full subcategory of
types,, ' and let E and F be defined as in (3.4.2) and (3.4.3). Then the kype
functor E on C is split if and only if the bype functor F on C is split. If E and F
are split we obtain, with the homology functors (n = m + r)

Hn,Hn+1:C-*Ab,
the following detecting f inctors:

A: spaces;,'(C) _ S(Hn, Hn+1)/

A': spaces, '(C) -* S(H,,, H,+ 1)/

A: types' (C) -> s(Hn, Hn+ 1)/
k

,V: typesm(C) -> s(Hn,Hn+I)/b

Moreover the F-sequences of A(X) or A'(X) given by Definition 3.6.1 (8) are
natural weakly isomorphic to the part

Hn+1X-FnX--*

of Whitehead's exact sequences. Here we use F,, X = Hn + , Pn -,X and
ker(in_,X)=H,, P._1X.

Proof We apply the remark below (3.4.3X7). Hence the theorem is a
consequence of Lemma 3.6.2 and the classification theorem 3.4.4.

Remark We do not see that there is a functor

spaces; 1(C) 2S(E0,E1)

which induces the functors A and A'. Theorem 3.6.3, however, suggests that
there might be such a functor in case E and F are split.

We now consider an example for the classification theorem 3.6.3. For any
abelian group A we have the exact sequence

(3.6.4) 0-A*l/2->A- .A-A®71/2--*0
where A *Z/2 is the 2-torsion of A and where A/2A =A ® 1/2 is the
tensor product of A with 71/2. Thus we obtain functors *71/2, ®71/2:
Ab -i Ab which carry A to A * 71/2 and A 0 71/2 respectively. The next
result is an application of the classification theorem 3.6.3. Let

spaces(m, m + 2). c spaces,



3 CLASSIFICATION OF HOMOTOPY TYPES 111

be the full homotopy category of (m - 1)-connected (m + 3)-dimensional
CW-spaces X with 7Tm+ 1 X = 0.

(3.6.5) Theorem Let m > 4. Then there are detecting functors

spaces(m, m + 2) - We ZL/2, * Z/2)/
k

spaces(m, m + 2) -"* S(®71/2, *71/2)/

Moreover the F-sequences of A(X) and A'(X) with A = ITm X = HX are
natural weakly isomorphic to the part

Hm+3X* rm+2X- 7rm+2X -'Hm+2`Y-'rm+1X--* 0

of Whitehead's exact sequence.

Theorem 3.6.5 implies by Definition 3.6.1 (6) that there is a 1-1 correspon-
dence between (m - 1)-connected (m + 3)-dimensional homotopy types X
with 7rm+

1
X = 0 and m >- 4 and isomorphism classes of objects

H1 -*A*Z/2-R->A®Z/2-*0

in S((&71/2, *Z/2); see Definition 3.6.1. This is indeed a simple description of
such homotopy types.

Proof of Theorem 3.6.5 We consider the case r = 2 in the classification
theorem 3.6.3 where we set

C = types= Ab

Eilenberg and Mac Lane [II] show that the kype functor E is split with

E0X =Hm+2K(A,m) =A ®Z/2

E1X =Hm+3K(A, m) =A *71/2

for X = K(A, m) E C. Hence, by Theorem 3.3.9, also the bype functor F is
split with F0 = E0 and F1 = E1. Below we shall prove that the bype functor F
is split independently of Theorem 3.3.9. Now the application of Theorem
3.6.3 completes the proof. 0

3.7 Proof of the classification theorem

We assume that m z 2, n = m + r, and

(3.7.1) C = typeset '.



112 3 CLASSIFICATION OF HOMOTOPY TYPES

The kype functor E and the bype functor F on C are given by E(X, vr) =
Hn+ 1(X, 7r) and F(H, X) = Fi _ 1(H, X) with X E C, 7r, H E Ab; see (3.4.2)
and (3.4.3). We first show the classical result of Postnikov:

(3.7.2) Proposition The functor

A: types, , Gro(E)

A(X) = (P,-1X,ir,X,k,X)

is a detecting functor.

Proof The functor A reflects isomorphisms by the Whitehead theorem.
Moreover an object (Y, ir, k) in Gro(E) with k e E(Y, Tr) is A-realizable by
choosing X with d(X) = (Y, r, k) as follows. Let X = Pk be the fibre of a
map k: Y --> K(vr, n + 1) which represents the cohomology class k. Each
morphism (f, cp): A(X) - A(X') is A-realizable since the diagram

y k
K(IT, n + 1)

Y'
kLK(7r',n+1)

homotopy commutes by condition (3) of Remark 3.1.3. Hence there is an
associated principal map

X = Pk - Pk' = X'

which realizes (f, (p), see (V. §6) in Baues [AH].

Next we consider the functor A in Theorem 3.4.4.

(3.7.3) Proposition The functor

A: spacesm 1 -+ Kypes(C, E)

A(X) = (Pn+1X,ir,X,Hn+1X,bn+1X)

is a detecting functor.

Here we use (Pn _ , X, 9rn X, kn X) E Gro(E) as in Proposition 3.7.2 and

bn+1X: Hn+1X-1',X=Hn+1Pn-1X

is given by the secondary boundary operator and the isomorphism 0. By
Theorem 2.5.10 (c) we see that bn+ , surjects to the kernel of p.(kn X) =
(k,X), =inX. Hence naturality of k,X shows that the functor A in
Proposition 3.7.3 is well defined.
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Proof of Proposition 3.7.3 It is clear by the Whitehead theorem that A
reflects isomorphisms. We now show that A' is representative, that is, each
kype (Y, 7r, k, H, b) = Y has a A-realization X with A'(X) __ Y. For the
construction of X we first choose an n-type U with k(U) = (Y, 7r, k); we can
do this by Proposition 3.7.2. Here we may assume that U is a CW-complex.
We now construct X together with a map X- U which induces isomor-
phisms of homotopy groups 7r, for i >_ n so that AX = AU. For the cellular
chains C* U and the skeleton U" of U we obtain the following commutative
diagram with exact columns

H - ker(kI) c FnY k*. 7r

sl r J II

Cn+1U' ker(i*) c7r"Un ,,TnUn+l

K cC"U

Here I'"Y= F"U is a subgroup of 7r"U" and µ(k) = k* is a restriction of i *

by Theorem 2.5.10 (b). This shows that the quotient K = ker(i *)/ker(k * )
injects into the free abelian group CnU and hence K is free abelian.
Therefore we can choose a splitting t of the surjection C" + 1 U - K given by
the attaching map f of (n + 1)-cells in U. We define the CW-complex
X = X"+' by the n-skeleton X" = U" and by the attaching map of (n + 1)-
cells g: C"+ 1 X -* 7r" X". Here C" + 1 X is the free abelian group H ®K and g
is the composite

g: Cn+1X=H®K- *C"+1U111 7r"U" (2)

where s: H -> C"+ 1U is any homomorphism for which diagram (1) commutes.
Since g =f o(s, t) we obtain a map X -+ U which is the identity on the
n-skeleton and which induces (s, t) on cellular chains C,,,,. Since by con-
struction of g

image(g) = ker(i *) (3)

we get 7r" X = 7r,, U = IT. Moreover the construction of g shows H,, X = H
and b" 1 X = b so that X in fact is a A-realization of Y above.

It remains to show that the functor A is full. For this let X, Y be
CW-complexes in spacesm 1 and let

(f, cp, cpH): A'(X) - A'(Y) (4)

be a morphism between kypes. Let U = P" X with U"+' = X"' = X and in
the same way let V = P"Y with V"+' = Y"+ 1 = Y. Since (f, cp): A(X) --> A(Y )
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is a map of Gro(E) we obtain by Proposition 3.7.2 a cellular map g': U--> V
which realizes (f, q ). Hence the map g' restricted to the (n + 1)-skeleton
yields a map g: X -> Y which realizes (f, (p) but which need not realize (pH.
We obtain the following diagram, where the left-hand side is defined by X
and the right-hand side is defined by Y; compare diagram (1).

H
wH H'

II (*) II

H,,, IX CC,,,,X g
lb Ifx Ifr ib'
rn

X C
iT,,

X "
g. - rr"Y"

r,,
Y

r,g = r,J

All subdiagrams commute except possibly subdiagram (*). We have however
by Definition 3.1.2 (3) the equation

b',PH = (F g)b. (6)

The maps fX, fY are the attaching maps of (n + 1)-cells in X and Y
respectively. Now (6) and (5) imply that the difference PH-g*: H-->Cn+,Y
given by diagram (*) satisfies

fY((pH g*)=O. (7)

Since H is free abelian and since the sequence

n+l
7r

Trn+1(Yn+1,Yn)

11

Cn+1X

1 ,7r"Yn

fy

is exact we can choose by (7) a homomorphism

a: H- ir,, 1Yn+l with j(a)=coH-g*. (8)

Now H is a direct summand of Cn+,X for which we choose a retraction r so
that we get a map

h=g+ar: X -->Y (9)

by the action in (4.2.5). The map h is cellular and satisfies h" =g" on the
n-skeleton. We claim that h is in fact a A-realization of (f, gyp, (PH) above.
Indeed since h" =g" the map h realizes (f, cp) and we compute Hn+ 1(h) by

Cn+1(h)=(g+ar)* =g* +jar=g* +(cpH-g*)r (10)

so that the restriction of C"+ 1(h) to H yields pH. Hence h realizes also cpH.
Therefore the proof of Proposition 3.7.3 is complete. 0
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Finally we consider the functor A' in the classification theorem 3.4.4.

(3.7.4) Proposition The functor A': types, - bypes(C, F) with

A'(X)=(Pn X,HnX,Hn1 X,bn+1X,R»X)
is a detecting functor.

We here only show that Proposition 3.7.4 is a corollary of the correspond-
ing result:

(3.7.5) Proposition The functor

A': spaces; 1 -* Bypes(C, F)
with

A'(X)=(Pn X,bn+1 X,OnX)

is a detecting functor.

The highly sophisticated proof of Proposition 3.7.5 involves most of the
theory of Chapters 2 and 4. In particular the new concept of towers of
categories is crucial for this proof. The final proof of Proposition 3.7.5 is
given in Section 4.7.

Proof of Proposition 3.7.4 We derive Proposition 3.7.4 from Proposition
3.7.5. Again the Whitehead theorem shows that the functor A' reflects
isomorphisms. In fact, recall that /in X determines (7r,,X) in Theorem 2.6.9
(c). Hence the five lemma shows that an isomorphism between bypes yields
an isomorphism on zr* X. Next we consider realizability of objects. For this
we use the commutative diagram of functors in (3.4.6). In this diagram it is
easy to see that each bype T has a 4-realization T'. Since A' is a detecting
functor we find a A'-realization T" of T'. Hence P,n+,T" is a A'-realization
of T since diagram (3.4.6) commutes.

Similarly we see that the functor A' is full: let T1, T2 be objects in types'.
and let f: A71 --> A72 be a morphism between bypes. Let T1', T2 E spaces'.
be the (m + r + 1)-skeleta of T1 and T2 respectively. Then clearly PT,' = T1
and PT2 = T2. Moreover we can choose a morphism f': AT; - AT2 with
Of = f. For this we only choose a homomorphism f' such that the diagram

Hn+1T1' - bHn+1T1

Hn+1T2 bHn+1T2

commutes. This is possible since the horizontal arrows are surjective and
since H,,, ,T,' is free abelian. Now, since A' is a detecting functor, we find a
A'-realization f": T1 - T2 of f and hence Pf" is a A'-realization of f. This
completes the proof that A' is a detecting functor.
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THE CW-TOWER OF CATEGORIES

A CW-complex X is obtained inductively by constructing the skeleta X",
n >- 0. Since we here only consider homotopy types of simply connected
CW-complexes we may assume that X is reduced in the sense that the
1-skeleton of X consists of a single point, X' = *. However, the skeletal
filtration has the disadvantage that the homotopy type of X" is not well
defined by the homotopy type of X. For this reason J.H.C. Whitehead
introduced the (n - 1)-type of X which is also the (n - 1)-type of X" and
which can be obtained from X" by `killing' homotopy groups lrm X", m >- n.
The (n - 1)-type is the (n - 1)-section of the Postnikov tower of X which we
denote by P,, _ 1M. It is a classical result that the homotopy type of P" _ 1(X )
is well defined by the homotopy type of X. This fact justifies the con-
struction of Pn_1(X), though it is to some extent absurd to replace a nice
n-dimensional CW-complex X" by a CW-complex P" - 1(X) which in general
is infinite dimensional, and the homology of which is hard to compute.

We here study the skeletal filtration of a CW-complex X rather than the
Postnikov decomposition. We deduce from the skeletal filtration the object

rn+ 1(X) = (C,fn+1,X")

which is a triple consisting of an algebraic part C (which is the cellular chain
complex of X) and of a topological part X" (which is the n-skeleton of X).
Moreover fn+ 1

is the homotopy class of the attaching map of (n + 1)-cells of
X given by a homomorphism C,, + 1 - ir,, X. We call such a triple a homotopy
system of order (n + 1). The crucial point is that homotopy systems of order
(n + 1) form a homotopy category Hn+ 1/= and that the homotopy type of
the object rn±1(X) in Hn±1/= depends only on the homotopy type of X.
Hence enriching the n-skeleton X" by an algebraic part (C, fn+ 1) yields a
new invariant rrt+1(X) of the homotopy type of X which has the same kind
of naturality as the Postnikov section P"_ 1(X). We consider the sequence

r3(X),r4(X),...,r"+1(X),...

of homotopy systems to be the true Eckmann-Hilton dual of the sequence

P2(X), P3(X),..., P"_ 1(X),...

of Postnikov sections of the simply connected CW-space X. It is Postnikov's
result that the homotopy type of P,,(X) is determined by the pair

(Pn_ 1(X),k"(X))
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where kn(X) is the nth k-invariant of X. Our main result here shows that, on
the other hand, the homotopy type of r, 1(X) is determined by the triple
(see Theorem 6.6.4)

(r (X), f3n(X),bn+1(X)).

Here bn+ 1(X) is the second boundary homomorphism in Whitehead's certain
exact sequence and $n(X) is the boundary invariant introduced in Chapter 2.
Since f3n+ 1(X) determines 1(X) we see that the sequence of boundary
invariants

/33(X),134(X),...

determines the homotopy type of X in a similar way as the sequence of k-
invariants

Moreover each simply connected homotopy type can be built by the
inductive construction of either sequence. Further dual properties of bound-
ary invariants and k-invariants are described in Chapters 2 and 3. The
categories Hn+ 1/" of homotopy systems of order (n + 1) yield the CW-tower
of categories. This is a sequence of functors (n >t 3)

spaces2 '- Hn+ 1/'
x . H3/=

which approximates the homotopy category spaces2 of simply connected
CW-spaces. Each functor A is embedded in an exact sequence

H"f + - Hn+1/= ->Hn/= a H°+1rR.

Here Hmfn denotes an Hn/~-bimodule. In Section 4.1 we recall the useful
language concerning such exact sequence. (The CW-tower of categories is
studied for non-simply connected spaces in Baues [AH] and [CH]. We here
deal only with the simply connected case. This simplifies these towers
considerably; compare also the final chapter in [AB]).

The proofs of our main results are based on properties of the CW-tower of
categories. In particular in Section 4.6 we relate the obstruction operator 61
in the CW-tower with the secondary boundary operator of Whitehead and
the boundary invariants in Chapter 2. This leads in Section 4.7 to a proof of
the classification theorem in Chapter 3. Moreover we prove a theorem on the
action H'F,,+ in the CW-tower which is useful for the classification of
homotopy classes of maps; see Section 4.8.

4.1 Exact sequences for functors

The concept of exact sequences for groups is well known in algebraic
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topology. We can consider a group to be a category with a single object in
which all morphisms are equivalences. Therefore there might be a more
general notion of an exact sequence for categories and functors. Motivated by
the CW-tower of categories we introduce in this section an exact sequence
for a functor A of the form

D+ -A------ 4

Here, however, D and H are not categories but natural systems of abelian
groups on B, for example B-bimodules. Such natural systems serve as coeffi-
cients of cohomology groups H"(B, D) of the (small) category B. Special
exact sequences are the linear extensions of B by D. Exact sequences for a
functor A and linear extensions arise frequently in algebraic topology and in
many other fields of mathematics; see Baues [AH], [CH]. The examples here
are mainly derived from the CW-tower of categories.

As usual let Ab be the category of abelian groups. For a category B a
B-module M is a functor M: B --> Ab and a B-bimodule D is a functor

D:B°PxB-->Ab.

Here BP is the opposite category and B°P X B is the product category. For
objects X, Y in B the set D(X, Y) is an abelian group contravariant in X and
covariant in Y. For example if B C Top*/= is a subcategory of the homotopy
category of pointed spaces we have the B-bimodule D,

(4.1.1) D(X,Y) = H"(X, 77;,, Y),

given by the nth cohomology of X with coefficients in the mth homotopy
group of Y. This bimodule arises often in obstruction theory. The following
notion of a `natural system of abelian groups on B' generalizes the notion of
a B-bimodule. For this recall that the category of factorizations in B, denoted
by FB, is given as follows. Objects are morphisms f, g in B and morphisms
f -* g are pairs (a, b) for which

Y b 4 Y'

ff f9

X a X'

commutes in B. Thus bfa is a factorization of g. A natural system (of abelian
groups) on B is a functor

(4.1.2) D: FB - Ab

that is, an FB-module. This functor carries the object f to Df = D(f) and
carries (a, b) to D(a, b) = a*b* with a* = D(a,1) and b* = D(1, b). A B-
bimodule D is also a natural system by setting Df = D(X, Y) for f: X - Y,
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that is, in this case Df depends only on the source and the target of f. A
functor A: A --> B induces the function

A:A(X,Y) -* B(AX, AY)

between morphism sets; here X and Y are objects in A. For a morphism
fo: X - Y in A with f = Afo we thus have the subset

(4.1.3) A-'(f)cA(X,Y) with foEA-'(f).

Now recall the definition of a linear extension of categories in Definition
1.1.9:

(4.1.4) D+ N A B.

The next definition of an exact sequence for a functor A generalizes the
notion of a linear extension in two ways. On the one hand, A needs not to be
full but its image can be described by an obstruction operator ®; on the other
hand, the action of Df on A-'(f) need not be effective.

(1.4.5) Definition Let A: A - B be a functor and let D and H be natural
systems of abelian groups on B. We call the sequence

D-iA-pB-H
an exact sequence for A if the following properties are satisfied.

(a) For each morphism fo: X - Y in A the abelian group Df, f = Afo,
acts transitively on the set of morphisms A -'(f ) c A(X, Y). Let I f _
{a e Df, fo + a = fo) be the isotopy group.

(b) The linear distributivity law (Definition 1.1.9) (c) is satisfied.

(c) For all objects X,Y in A and for all morphisms f: AX -> AY in B an
obstruction element ®X. y(f) E H(f) is given such that ®X. y(f) = 0 if and
only if there is a morphism fo: X - Y with Afo =f.

(d) ® is a derivation, that is ®X, z(gf) = g * ®X, y(f) + f *®y. z(g) for f : AX -
AY, g: Ay- * AZ.

(e) For all objects X in A and for all a E H(lAX) there is an object Y in A
with AY= AX and ®X,y(l,AX) = a; we write X = Y+ a in this case.
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A tower of categories is a diagram (i E Z)

I
D, --+ Hi -'ri+1

(f) I
A

D,,-1 -> Hi-1 --' 1,

1

where D. - H; -> Hi- 1 -+ f1 is an exact sequence.
We say that D acts on A if Definition 4.1.5(a) above is satisfied. Moreover,

D acts linearly on A if (a) and (b) are satisfied. We say that D acts effectively if
all isotropy groups in (a) are trivial. A linear extension as in (4.1.4) yields an
exact sequence

± -bD ,E- C0
where 0 is a trivial natural system. On the other hand, each exact sequence as
in Definition 4.1.5 yields a linear extension of categories

(4.1.6) D/INA-r AA.

Here AA is the image category of A: A - B. The natural system D/I on AA
is given by (D/I )(f) = Df/I fo, fo E A-' (f ); see Definition 4.1.5(a).

Next, we consider the groups of automorphisms in an exact sequence. Let
A be an object in A. Then we obtain by the properties in Definition 4.1.5 the
exact sequence

(4.1.7) D(1AA) _ AutA(A) -k > AutB(AA) IF H(lAA).

Here A is the homomorphism of groups induced by A and 1 + is the
homomorphism of groups given by 1+(a) = 'AA + a. Moreover, the function
® is defined by ®(f) _ (f -') * ®A_ A(f ). In fact, ® is a derivation of groups
with ®(fg) = ®(f )8 + ®(f ). Here we set xg = g*(g-') * (x) for x E H(11A)-
Compare (IV.4.11) Baues [AH].

(4.1.8) Lemma A functor A in an exact sequence (Definition 4.1.5) reflects
isomorphisms.

Compare (IV.4.11) in Baues [AH]. The lemma implies that a weak linear
extension is a detecting functor. Recall that RealA(B) for an object B in B
denotes the class of realizations of B in A; see (1.1.6).

(4.1.9) Lemma Let A be a functor in an exact sequence as in Definition 4.1.5
and assume RealA(B) is not empty. Then the group H(1B) acts transitively and
effectively on RealA(B) by Definition 4.1.5(e). In particular RealA(B) is a set.
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Compare (IV.4.12) in Baues [AH].

4.2 Homotopy systems of order (n + 1)

Homotopy systems of order (n + 1) are triples (C, fn+ 1, X) consisting of a
chain complex of free abelian groups C, an attaching map and an
n-dimensional CW-complex X". Such homotopy systems (defined more pre-
cisely below) are motivated by the following properties of CW-complexes. Let
X be a CW-complex with trivial 1-skeleton X' _ *. Then the cellular chain
complex C = C * (X) is given by

Cn = C"(X) = H"( X", X"-')

with the boundary d: C,, Cn _ , defined by the triple (X", X"- 1, X n " 2).
Since X1 = * we have the Hurewicz isomorphism h in the composition

(4.2.1)

h
1mn+1(Xn+1,Xn)_aIrn(Xnl

where d is the boundary in the homotopy exact sequence of the pair
(Xn+', X"). One readily checks that fn+, satisfies fn+1d = 0. The set Zn+1
of (n + 1)-cells in X is a basis of the free abelian group Cn+

1
of cellular

(n + 1)-chains. Therefore fn+, describes the homotopy class of a map

f"+1: M(C,, +1,n) = v S" -)I X" (1)

which is the attaching map of (n + 1)-cells in X; in fact one has a homotopy
equivalence under X"

c: Xn+1 -C
f (2)

where the right-hand side is the mapping cone of f =fn+ 1. By definition of
fn+, and d we see that the diagram

f., I
1Tn(X")Cn+1 --

dl 11 (3)

C. "(X",X"

commutes, where h again is the Hurewicz isomorphism and where j is from
).the homotopy exact sequence of the pair (X", X").

Recall that CW is the category of CW-complexes with trivial 0-skeleton
and of cellular maps. Let CW" be the full subcategory consisting of n-
dimensional CW-complexes. Moreover morphisms in the quotient category



122 4 THE CW-TOWER OF CATEGORIES

CW/= are 0-homotopy classes of cellular maps, where a 0-homotopy is a
homotopy running through cellular maps.

(4.2.2) Definition Let n >_ 2. A (reduced) homotopy system of order (n + 1) is
a triple (C, fn+,' X") where X" is an n-dimensional CW-complex with trivial
1-skeleton and where C is a chain complex of free abelian groups which
coincide with C,, X" in degree s n. Moreover

n+P n+I 7r"Xn 1)

is a homomorphism of abelian groups which satisfies the cocycle condition

fn+1d=0 (2)

and for which diagram (4.2.1X3) commutes. A map between homotopy
systems of order (n + 1) is a pair (f, 71),

(y,O:(C, fn+,,X")- (C',gn+1,Y") (3)

with the following properties. The map 71: X" ---> Y" is a morphism in CW/=
and 6: C -> C' is a chain map which coincides with C,,, 71 in degree s n and
for which the following diagram commutes:

Cn+1 --a Cn+1

If .I 1a-1 (4)

1T"Xn - 7r"Yn

Let Hn+, be the category of such (reduced) homotopy systems of order
(n + 1). Clearly composition is defined by Q, inX e', 7') = (W', ,,TM,). By
(4.2.1) we have the obvious functors

(4.2.3) CW2/= Hn+I a * H.

with Ar"+ 1 = r". Here CW2 is the full subcategory in CW consisting of
CW-complexes with trivial 1-skeleton. Clearly the functor rn+, takes X to
the triple

rn+IX=(C.X,fn+1,X")

see (4.2.1), and the functor A carries (C, to (C, f",X"-') where
X"-' is the (n - 1)-skeleton of X" and where f" is the attaching map of
n-cells in X". For the definition of the homotopy relation on the category
Hn+, we need the coaction µ which is a map under X"-'

(4.2.4) µ: X" -+X" V M(C",n).
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Here M(C,,, n) is the Moore space of C, in degree n. The coaction µ is
obtained by the corresponding coaction on the mapping cone Cf with f= f",
see (4.2.1)(2), that is µ = (c V 1)µf c' where c' is a homotopy inverse of c
under X'- 1. The coaction µ induces an action + on the set of homotopy
classes [X",Y] in Top* /=, namely

(4.2.5) [X",Y] X E(X",Y) --- [X",Y]

with F + a = p.*(F, a). Here we set

E(X",Y) = [M(C",n),Y] = Hom(C",,7r"Y). (1)

Since we assume that X" has trivial 1-skeleton the action (4.2.5) induces an
action

[X",Y] X H"(X", ar"Y) -- [X",Y] (2)

with F + {a} = F + a. The isotropy groups of this action are considered in
Section 4.8 below.

(4.2.6) Definition Let

(6,17),(f',,'):(C,fn+,X") - (C',gn+1'Y")

be maps in Hn+ 1. We set Q, 17) = (i', n') if there exist homomorphisms a,+,:
C1 --* Cj+ 1, j >_ n, such that:

(a) {71} + gn + 1 an + 1 = {171; and

(b) fk-ek=akd+dak+1, k>n+1.

The action + in (a) is defined by (4.2.5) above; {71} denotes the homotopy class
of q in [X", Y'], that is in Top*/=. We call a: (t=, ii) = (e', 71') a homotopy
in Hn+1

One can check that the homotopy relation is a natural equivalence relation
on Hn+ 1 and that the functors in (4.2.3) induce functors

(4.2.7) CW2/= - Hn+1/= -y Hn/=.

(We refer the reader to Baues [AH] where we actually study homotopy
systems in any cofibration category. Reduced homotopy systems as in Defini-
tion 4.2.2 are considered in the final chapter of Baues [AH].) Let Chain2 be
the category of chain complexes C of free abelian groups with C; = 0 for
i 5 1. We observe that the forgetful functor

(4.2.8) C* : H3 - Chain2 , (C, f3, X 2) _ C/Co
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is actually an isomorphism of categories and that H3/= = Chaln2/= is
given by the usual homotopy relation for chain maps. This way we can
identify r3 with the classical cellular chain functor (reduced)

(4.2.9) (f. = r3: CW2/- -+ Chain2 = H3.

Hence the functors r"+
1

and A in (4.2.7) lead to a sequence of functors which
decompose the chain functor. We study the properties of this sequence in the
next section.

4.3 The CW-tower of categories

The categories of homotopy systems introduced in Section 4.2 above form a
sequence of categories and functors (n >- 3)

C* : CW2/= ---* H.,11= A ' H"/= - ... A H3/= = Chainz/=

such that the composite is the cellular chain functor C*. We now show that
each functor A is embedded in an exact sequence as discussed in Section 4.1.
We call the collection of these exact sequences the CW-tower of categories.
We first observe that the Postnikov functor P" which carries X to its n-type
P, ,X admits a factorization

(4.3.1) P": CW2/= r- - H"+,/= P n-types.

This is clear since P" X = P" X"+' is given by the (n + 1)-skeleton of X and
r"+1X determines the homotopy type of X"+' under X" by (4.2.1X2).

Next we consider Whitehead's functor F. which carries a CW-complex X
to the group 1'" X = image(ir" X" -' - ir" X" ). This functor admits a factoriza-
tion through r". In fact, there is a functor

(4.3.2) F,,: H"/= -> Ab

with I' r, X = r,, X. We define I' Y for an object Y = (C', g", Y") in H" as
follows. Let Y" be a CW-complex such that g" is the attaching map of
n-cells in Y". Then Y" is well defined by (g",Y"-') up to homotopy
equivalence under Y"-'. Hence T"Y= 1'"Y' is well defined. A map Q, rt):
X - Y in H,, admits an extension rl: X" - Y" of 31 so that also the induced
map r"(f, -q) = I'"ij is well defined. It is clear that F,, in (4.3.2) factors
through the functor

P. - 1: H"/= -+ (n - 1)-types
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given by (4.3.1), that is rnY= rn Pn -, Y for an object Y in H. We use the
functor F,, in (4.3.2) for the definition of the bimodule

(4.3.3) H-F,,: (H,,/=)°P X H"/= -> Ab

which carries a pair (X, Y) of objects in H,, to

Ht F,,(X,Y) = Hm(X, FY).

Here we set Hm(X, -) = H n(C, -) for the object X = (C, f", Xn-1) in H".
We are now ready to state the following theorem which establishes the
CW-tower of categories.

(43.4) Theorem The functors A in (4.2.3) and (4.2.7) are part of the following
commutative diagram in which the rows are exact sequences in the sense of
Section 4.1, n >- 3.

H"r,, +-' H"+1 -L H" -®Hn+1I'"

11 lq,,, I

Iq"
11

H"r,, + -->H"+1/= -A->H"/- "' H"+,rm

Here q,, is the quotient functor and 1 denotes the identity. The functor qn + 1

is equivariant with respect to the action of H"rn. We describe the action and
the obstruction operator explicitly below. (The theorem is proved in a more
general form in VI.5.11 of Baues [AH], see also 11.3.3 in Baues [CH].)

With the notation in Definition 4.1.5(f) the exact sequences in Theorem
4.3.4 yield towers of categories which approximate CW2/-- and CW2/=
respectively. In particular we obtain the tower of homotopy categories

CW2/=

I

H"rn -'Hn+1/=
IA

H,,/= ® Hn+1rn

I

H3r3 ---+-4 H4/-

lA

H3/=
14, H4r3
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which somehow resembles the Postnikov tower of a space since we have
obstructions and actions as we are used to in Postnikov towers. We now
describe the obstruction operator. Let X,Y be objects in H"+, and let
(6, r)): AX - AY be a map in H. Then an element

(4.3.5) ®x.Y(,71)EHn+I(X,I'"Y)

is defined such that ®x 71) = 0 if and only if there exists a map (e, rl):
X --* Y in H"+ 1 with A(6, ii) = ( -rl). We define the obstruction &x, r(71) in
(4.3.5) as follows. Since (f, rl) is a map in H" we can choose a map
F: X" _ Y" in CW/= which extends i and for which C* F coincides with
in degree < n. The diagram

C"+1

f-.l
7rnX"

,jgn+ i

ITnYnF.

(1)

need not be commutative. The difference

6F(F) _ -g"+I 6n+I +F*fn+l (2)

maps C"+ to the subgroup f"YC -rr"Y" and this difference is a cocycle in
Hom(C,, + F,,Y). The obstruction

rl) = (®(F)} E Hn+ 1(X, FY) (3)

is the cohomology class represented by the cocycle ®(F). This class does not
depend on the choice of F in (1). Moreover, ®x'y(f, rl) depends only on the
homotopy class of (6, il) in H,,/=. In addition the properties in Definition
4.1.5 (c), (d), (e) are satisfied.

Next we consider the action + in Theorem 4.3.4. Let X, Y be CW-
complexes with trivial 1-skeleton or objects in H",. For n < m we denote by
[X,Y]" the set of all morphisms X0 - Yo in H"/= where X0 and Yo are the
images of X and Y respectively in the category H". Here we use the functors
in the CW-tower. The functor A yields the function

(4.3.6) A:
[X,Y]n+l -a [X,Y]".

Now let X and Y be objects in H"+ I. Then the action + in the bottom row of
the commutative diagram of Theorem 4.3.4 is of the form

(4.3.7) [X,Y]n+ 1 X H"(X, I'"Y) +- [X,Y]n+l

and satisfies A f = Ag if and only if g =f + a for an appropriate a. We
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describe the action as follows. Let -q): X -> Y be a map in H"+ 1 and let
{a} E H'(X, r,,Y) be the class represented by the cocycle

a E Hom(C", r"Y). (1)

Then we obtain by i: F Y c it"Y" the composite i s such that 71 + i a with

i+ia:X""' X"vM(C",n) Y" (2)

is a map in CW/_ defined by µ in (4.2.4). We now set

{(6, r )} + {a} _ {(C,,q +ia)) (3)

where ,1)} E [X, Y]"+' is the homotopy class of (6, rl) in H"+ 1. In Baues
[AH] we check that (3) yields a well-defined action in (4.3.7). Moreover we get
the action in the top row of the commutative diagram of Theorem 4.3.4 by

(6, {a} = (f, 19 + i a ). (4)

Here in fact (f, 71 + ia) depends only on the cohomology class { a). The
actions in (3) and (4) satisfy the properties of Definition 4.1.5(a), (b). In
Section 4.8 we study the isotropy groups of the action + in (3).

For CW-complexes X,Y with trivial 1-skeleton the CW-tower yields the
following diagram of exact sequences of sets

[X,Y]

1

H"(X,r"Y) [X, Y]"+'

lA
(4.3.8) [X,Y]" ® H"+'(X, FY)

1

H3(X,r3Y) [X,Y]`

IA
[X,Y]3 H4(X,r3Y)

Here [X, Y]3 is the set of homotopy classes of chain maps e* X Y.

Exactness means that

(4.3.9) kernel(69) = image(A)
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and A(f) = A(g) if and only if there is an a with g = f + a. Moreover, for an
N-dimensional CW-complex X = X ' the map

rn: [X,Y] _,..+ [X,Y]n

is bijective for n = N + 1 and is surjective for n = N. This follows from the
definition of Hn/=.

Next we derive from the CW-tower a structure theorem for the group of
homotopy equivalences. For a CW-complex X in CW2 let Aut(X) _ (F(X) c
[X, X] be the group of homotopy equivalences of X. Moreover, let E,,(X) C
[X, X]', n >_ 3, be the group of equivalences of rnX in Hn/=. Then the CW-
tower yields the following tower of groups where the arrows ® denote
derivations and where all the other arrows are homomorphisms between
groups.

Aut(X)

(4.3.10)

Hn(X,rnX) " E,,+1(X)

IA

E,,(X) s- Hn+'(X, rnx)

1

H3(X,r3X) -' . E4(X)

IA
E3(X) f- H4(x,r3x)

Here we define the derivation ® by the obstruction ® as in (4.1.7) and we set
1 +(a) = 1 + a where 1 is the identity and where 1 + a is given by (4.3.7). We
have exactness

image(1+) =kernel (A), image(A) = kernel(®).

Moreover, as in (4.3.9) we see that for X = X ^' the homomorphism

(4.3.11) rn:Aut(X)-+E,,(X)

is an isomorphism for n = N + 1 and is an epimorphism for n = N. Finally we
derive from Lemma 4.1.8 the following Whitehead theorem for homotopy
systems.
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(4.3.12) Lemma A map Q,'q): X - Y in H,, is a homotopy equivalence in
H"/= if and only if C* : H. X - H*Y is an isomorphism. Here we set H" X =
H,,C for X = (C, f", X -I)'

4.4 Boundary invariants for homotopy systems

We have seen that Whitehead's groups r,,X are also defined for homotopy
systems X in H". In the same way we obtain the r-groups with coefficients
in A

r,"_ (A, X) C I'" _,(A, X)

for such homotopy systems, see Section 2.2. Here r,, _ , is a bifunctor

(4.4.1) r,;_,: Ab°P X H,, --+Ab

which fits into the binatural exact sequence

Hom(A,r;;_,X).

Recall that r,",- , is the kernel of i,, _ ,X: r" _ , X - ir"_ , X, see Definition
2.2.9. Here we define r,, - , X for a homotopy system X = (C, f", X" -') by
r,,_ , x = r" _ , X" -1. We define the homology of X by the homology of C,
that is H,,X = H"C. Let b"+,: H"+,X -> r,,X be a homomorphism and let i
be the quotient map in the exact sequence

H., IX
b="r"X `-.ir"X-.O.

Then we define C"_ (A, X) by the push-put diagram (compare (2.6.6))

(4.4.2)

Ext(A,ir"X)}-°- C."_,(A,X) - Hom(A,r;;_,X)

Hence C"_,(A,X) is functorial in A and functorial in X for those maps
F: X - Y in H,, for which the diagram

H"+IX CH"+IY

r" x
F. .

111

r" Y

commutes. We call such maps b"+, proper. Now let X = (C, f"+,, X") be a
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homotopy system of degree (n + 1) in H,,,, and let AX = (C, f", X"-') be
the corresponding homotopy system of degree n in H,, given by the functor
A: H,, + I --> H,,; see (4.2.3). We associate with X boundary invariants

bn+1 =bn+IX EHom(H,+1X,1'"(AX)),

(4.4.3) 16n = )3,XE Cn_1(H,,X, AX) with
µ/3nX=b"X:H,, X-->AX cFn_IAX.

The abelian group Hom(H,, + 1 X, T" AX) is determined by AX and the abelian
group E n _ I(H" X, AX) is determined by the pair (AX, bn + I X) as in (4.4.2).
We define the secondary boundary homomorphism bn+IX by the following
commutative diagram where Z, I is the group of (n + 1)-cycles in C.

C11+1
f

iTrtXn

U U
Zn+ I - - - 1711(Ax) (1), l',.1

Hn+1X

Here q is the quotient map for the homology H,, + I X = H,, + IC. We observe
that brt+1 is well defined by the cocycle condition of Definition (4.2.1)(3),
since the kernel of j in (4.2.1X3) is I'n(AX).

We can choose a CW-complex X" with n-skeleton X" and attaching
maps frt+1, that is, Xn+' is the mapping cone of f, 1: M(Cn+1,n)- X", see
(4.2.1). Then bn+ 1q above coincides with Whitehead's secondary boundary
bn+1X"+' of Xn+'; compare (2.1.17). Using the CW-complex X"+' we
define the boundary invariant )3,,X in (4.4.2) by the corresponding boundary
invariant AX` + 1 in (2.6.7), that is

13,X =
(3,Xn+1 E Cn_1(HX, AX). (2)

Here the right-hand group coincides with Cn_ 1(HX"+', X"+') used in
(2.6.7) for the definition of f3nX"+' By naturality of boundary invariants we
get:

(4.4.4) Proposition Let F: X - Y be a map in H,, + I /= and let F: AX -I Y be
the induced map in Hn/=. Then we have the equations

(a) (F,F)*b,,+1X=(Hn+1F)*bn+1Y;

(b) F * IB,X = (H,F)*/3,,Y.

Here (a) shows that F is b -proper so that F* in (b) is well defined; see (4.4.2).
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Proof For F = Q, 71) there is a map F"+': X"+' -> Y"+' which extends r)
and for which C,, F"+ 1 coincides with l; in degree < n + 1. Thus the
naturality of boundary invariants with respect to Fn+ I yields the result, see
Theorem 2.6.9.

We now study the realizability of boundary invariants.

(4.4.5) Theorem Let X be an object in H" with secondary boundary bnX:
H" X --> 1;;_ 1 X C Fn _ 1 X. Then for each element

bn+1 E Hom(Hn+1X,r,,X)

and for each element

'6nEC"_1(H"X,X) with µf3"=b"X

there is an object X in H" + with A X = X and b" + 1 X = b,,, and fan X = /3n.

Proof Let X = (C, f X" -'). For b1 and f3" we find a map v: V --> X"-'
as in the construction of the boundary operator in Addendam 2.6.5 and
Definition 2.3.5(16). We choose v compatible with bn+

1
and /3" in the

statement of the theorem, see Definition 2.3.5(16). Then the mapping cone
of v yields the CW-complex X' = C,, with bn+ 1 X"+' = bn + i q and
'enX"+' _ /3n. Now let fn+1 be the attaching map of (n + 1)-cells in X"+

Then X = (C, fn+ 1, X") satisfies the proposition where X" is the n-skeleton
of X"+' By definition of v the skeleton X" is also obtained by the attaching
map fn in X so that AX = X.

4.5 Three formulas for the obstruction operator

We show that the boundary invariants in Section 4.4 can be used to compute
the obstruction operator in the CW-tower. Let X and Y be objects in Hn+,
and let F: AX -)- AY be a map in H,,. Then the obstruction element

(4.5.1) ®X.y(F)EH"+I(X,T,Ay)

is defined with the property that 1 (F) = 0 if and only if there is a map
FO: X --> Y with AFo = F; compare (4.3.5). The cohomology group in (4.5.1) is
embedded in the universal coefficient sequence

(4.5.2)

Ext(HnX,F,, AY) N H"+'(X,1'nAY) - Hom(H,+1X,r,,AY).

We use the operators 0 and µ in this short exact sequence in the next
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theorem in which two formulas describe the relation between the obstruction
element (4.5.1) and the boundary invariants (4.4.3).

(4.5.3) Theorem Let X and Y be objects in H" + I and let F: AX --9 AY be a
map in Hn/=. Then the element µ®x.y(F) is the difference of homomorphisms
in the diagram

(a)

that is

H+1X
H,tF

H., 1Y

b"+tX1

r"AX - r"AY

µ®x,y(F) = (r"F)(b"+1X) - (b"+1Y)(H"+,F).

If diagram (a) commutes then the following equation holds in Ext(H" X, i t" AY)
where

H"+1Y r,, AY `- ir"AY-0

is exact:

(b) - i,k0-I ex,y(F) = 0-'(F* R"X - (H"F)*p"Y).

Here the left-hand side is given by A in (4.5.2) and is well defined since we
assume that diagram (a) commutes. The right-hand side is obtained by 0 in
(4.4.2) and is well defined since F is b,,-proper by Proposition 4.4.4(a).

Proof Let X = (C, f"+,, X") and let Y= (C', and let

71':X"-Y"

be a map associated with F = (r;, ij): AX --b AY, that is, 71' extends rl and
C*(-q') coincides with 6 in degree <n. Then the cohomology class ®x.y(F)
is represented by the cocycle

®(F)= -g"+IS"+I+7*fn+I (1)

in Hom(C"+ ir"Y"). This cocycle actually maps to the subgroup r"Y c Tr"y".
Moreover µ®x y(F) is represented by the restriction

µ®x.y(F)q = ®(F) i Z"+ I (2)

where q: Zn+ I -,, H"+,X is the quotient map. Now (a) is an easy consequence
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of the following diagram in which all subdiagrams except the one in the
middle commute.

Zn+l n+1

C11+1 ---------4c,
IIf I8- (b,,1Y)q

(3)

nXn 17I

? 7TfY"

1'nX r,, Y

Now assume that the diagram in (a) commutes. This implies that the exterior
square of (3) commutes. Hence we get via the exact sequence

0 --Zn+1-Cn+1-Bn-'0 (4)

the diagram

B,,

f-11
7TnXnIfn+1Zn+1

_4
B,,n

419
S 14,l

inYn/gn+lZ,
(5)

as a quotient of diagram (3). Here and gii+1 are induced by frt+1 and

gn+ 1 respectively since we use (4). The difference

A_ -gn+1 CSnB +q*fn+1 (6)

maps to the subgroup

ir,,AY =cokbn+lYC7Ynlgn+1Z;,+1 (7)

Moreover, A represents the element

(A) =i*A-1®x Y(F) E Ext(H,,X,i1'nAY). (8)

Now let X' and Y' be the mapping cones of

.fn+1 I Zn+1:M(Zn+1,n)- Xn

and

gn+I I
Zn+1'M(Znr+I, n - Y n

respectively. Since the exterior square of diagram (3) commutes we can find
an extension

1711 : X' -+ Y' (9)
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of 17' such that Cn+ (-q") = Moreover we have isomorphisms

.7T,, X' = irrX'/fn+IZn+I and

7T" Y, = ,7'X 1gn + 1 Zn + I
(10)

Using (5) and (10) we have the following diagram in which cp is a map
between Moore spaces which induces H F in homology

M(H,,,n - 1) ° -M(H,,,n - 1)

M(Bn,n) £B M(B;,,n) (11)

13

71

Here q: M(H,,, n - 1) -- M(B,,, n) is the
M(H,,, n - 1) by the presentation

Y

Yn-1

pinch map since we obtain

0 - Bn-->Zn-->H, .0

where Bn and Zn are free abelian groups. Moreover fi (resp. f3') is chosen
for X (resp. Y) as in Definition 2.3.5(15). By (2.6.8) the map /3 (resp. /3')
represents the boundary invariant f3X (resp. 8,,Y). All small subdiagrams of
(11) except the one in the middle homotopy commute. This shows that -0,
with A in (b), also represents the right-hand side of the equation in (h) and
hence the proof of this formula is complete by (8).

Let X = (C,fn+1, Xn) and Y= (C',gn+1,Yn) again be objects in Hn+1 and
let F = 6,,q): AX - AY be a map in H. Thus : C - C' is a chain map and
-q: X ' -> Yn -' is given by a cellular map for which C. 11 coincides with f
in degree < n - 1. Let

(4.5.4) (q6) E Ext(HnX, Hn+1Y)

be represented by a homomorphism 3 which is part of the following
composition

d s
Cn+I -. Bn -LZ'+I - Cn+

Here d is the boundary in C and i is the inclusion of cycles in C'. Moreover
q: I - Hn + 1Y is the quotient map so that q6 represents an element in
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the Ext-group (4.5.4). Using S we define the following Sdeformation + S of
the chain map f, namely let f + S be the chain map

(4.5.5)

+ S : C -+ C' with
and

Sl (f+ S ); otherwise.

One readily checks that (6+ S, -q): AX - AY is again a well defined map in
H. for all S. Our third formula describes the obstruction for this map. Recall
that F = (f,,q) is a bn+ 1-proper map if the diagram in Theorem 4.5.3(a)
commutes.

(4.5.6) Proposition Let X and Y be objects in Hn+, and let (,=, r1): AX- ,1Y
be a bn+ 1 proper map in H. Then also + 6, r)) is a bn+ 1 proper map and one
has the formula

0-'®x,yQ+ S, 71) _ 71) - (bn+,Y) * (4S)

in Ext(H,, X, rn AY). Here 0 is the operator in (4.5.2).

Proof Clearly (f+6,71) is bn+-proper since Hn+1(6)=Hn+i(6+S). Now
the formula is an easy consequence of the fact that the following diagram
commutes

n

j+' gn

nT

Zn+1 --t Hn+1 bn.it'
rnY

0

Remark In Baues [CH] 11.5.4 and (11.5.6) we have shown that the formulas
of Theorem 4.5.3(a) and Proposition 4.5.6 have a generalization for the
non-simply connected case. The formula of Theorem 4.5.3(b), however, is not
available in the non-simply connected case. The formula in Baues [CHI
11.5.4(2) corresponds via Theorem 2.6.9(c) to the formula in Theorem 4.5.3(b).

4.6 A-Realizability

Using the formula in Section 4.5 we obtain a crucial result on the A-
realizability of maps in H. This leads to a classification of homotopy types of
objects in Hn 1.
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(4.6.1) Theorem Let X and Y be objects in Hn+ and let F = (, ii): AX- AY
be a map in H. Moreover assume that F satisfies the equations

(a) (FnF)*bn+iX=(Hn+,F)*bn+IY; and

(b) F* f3nX = (HnF)*ppY.

Then there exists (qS) E Ext(HnX, H, Y) such that the S-deformation Fs =
( ,= + S, 71) of F in (4.5.5) is A-realizable by a map F: X --> Y with AF = FS.

In Proposition 4.4.4 we have seen that (a) and (b) are always true if F is
A-realizable. Now Theorem 4.6.1 shows that these equations are the criterion
for the A-realizability up to 8-deformation.

Proof of Theorem 4.6.1 The exact sequence

Hn+tY
b,,, Y};

rfAY (1)

induces the exact sequence of Ext groups

Ext(H,,X, Hn+,Y) = rrAY) --> Ext(H,,X,iFFAY) -* 0.

(2)

Now (a) implies by Theorem 4.5.3(a) that µ®x y(F) = 0 and (b) implies by
Theorem 4.5.3(b) that for i * in (2) the element

i * 0-`®x,y(F) = 0 (3)

is trivial. Hence by exactness of (2) there is an element (qS) E
Ext(H,, X, Hn+,Y) with

0(bn+IY)*(q8} =®x,r(F). (4)

Now Proposition 4.5.6 shows that the S-deformation of (i;, q) satisfies

®x,r(f+S,T1)

and this element is trivial by (4). Hence the obstruction property in (4.3.5)
shows that there is a map F = ( + X -* Yin Hn+ i with AF = ( + S, rl).

0

We use the equations (a) and (b) in Theorem 4.6.1 for the definition of the
following category.
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(4.6.2) Definition Objects in the category Hb/= are triplets
where X is an object in H. and where bi+1 and /i are elements

X), (1)

with (2)

The groups in (1) and (2) are defined in (4.3.2) and (4.4.2) above. A morphism
F: (X, (Y, b;+ 1, 0;,) between such triples is a map F: X - Y in
H,,/= for which the equations

(Hn+1F)*bn+1

and

F*/3R=(H,, F)*/3,, (3)

are satisfied. By Proposition 4.4.4 we have the functor

(4.6.3) Ab: Hn/=

which carries X in H + 1 to the triple Ab(X) = (AX, b + 1 X, /3 X) given by
the boundary invariants of X in (4.4.3). This functor is not full but satisfies by
Theorem 4.6.1 the realizability condition for maps up to S-deformation.
Moreover by Theorem 4.4.5 this functor satisfies the realizability condition
for objects. This yields the following classification of equivalence classes of
objects in the category

(4.63) Theorem The homotopy type of an object X in 1/= is completely
determined by the triple (AX, b,,,, X, (3 X). In fact, the functor Ab above
induces a 1-1 correspondence between equivalence classes of objects in H,,,/=
and equivalence classes of objects in Hb/=.

Proof Surjectivity of the correspondence follows from Theorem 4.4.5. We
now check injectivity. Let X and Y be objects in and let

F= (e,71): (AX, ,8»X) ->

be an equivalence in Hb/-, that is F: AX - AY is a homotopy equivalence in
H,,/= which satisfies the equations (a) and (b) in Theorem 4.6.1. Then
Theorem 4.6.1 shows that there is an element 6 and a map F = (%+ S, i):
X - Y with AT = (6+ S, q). Here in fact F is a homotopy equivalence in

1
since F induces an isomorphism in homology; see Lemma 4.3.12. In

fact we have

H*F=H*( +5,i)=H*(C+6)=H*(4)=H*(f,ii)=H*F
where H* F is an isomorphism since F is a homotopy equivalence.
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4.7 Proof of the boundary classification theorem

In this section we complete the proof of the classification theorem 3.4.4. It
remains to prove that A' in Proposition 3.7.5 is a detecting functor. We again
assume that m >: 2 and that

(4.7.1) C = typeset

with n = m + r. The bype functor F on C is given by F(H, X) X).
We consider the functor

(4.7.2)
A': spacesm ' -, Bypes(C, F) with

A'(X) _ (P"-,X, H,, X, Hn+I X, b"+I X, #rtX )

(4.7.3) Theorem The functor A' is a detecting functor.

This is the reformulation of Proposition 3.7.5. It is enough to consider the
case m = 2. Then we get the equivalence of categories

(CW2
)"+ ' /_

-+ spaces2+

Here (CW2)"+' is the category of CW-complexes X with X' and
dim X:5 n + 1 and of cellular maps. We obtain a proof of Theorem 4.7.3 by
use of the following commutative diagram of functors.

(CW2)"+ I/_ n'-0 Bypes(C, F)

(4.7.4) l JA
b(Hrt+1/=)n+1 x (Hn/=)

Here (Hrt+,/=)"+' denotes the full subcategory of Hrt+I/= consisting of
objects X = (C, with dim(X) 5 n + 1 or equivalently with C, = 0 for
i > n + 1. Similarly the category (H,'/=)"+' consists of (n + 1)-dimensional
objects in Hb. The functor Ab in the bottom row of (4.7.4) is a restriction of
the corresponding functor Ab in (4.6.3). Moreover the functor r in (4.7.4) is
the restriction of the functor rrt+, in (4.2.7). The CW-tower shows that r is a
detecting functor. Finally we obtain the functor A" in (4.7.4) as follows. For
this we use the functor

(4.7.5) P"-,: H"/= -+ (n - 1)-types

defined as in (4.3.1). Then A" carries an object (X, b"+,, in Hb/= to the
object

(4.7.6) A"(X,brt+ ,")=(P"-IX,H"X,,B",H"+1X,brt+d.
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The definition of A' in the classification theorem and the definition of Ab
in (4.6.3) show that diagram (4.7.4) commutes. For this we use identifications

f,XF,Pii-1X for i<n (1)

rn-1(A,X) rn-1(A,PiiX) (2)

which are available for objects X in H,, in the same way as for spaces X. Now
it is obvious by (4.7.5) and (4.7.6) how to define A" on maps, namely

A" (F) = (P, -, F, H,, F, H,,,, F). (3)

Using the naturality of the identifications (1) and (2) we see that A" as a
well-defined functor. Below we show

(4.7.7) Theorem The functor A" is a detecting functor.

Using the proposition and the results in Section 4.6 we can show that also
A' in (4.7.4) is a detecting functor as follows.

Proof of Theorem 4.7.3 Let X0 be an object in Bypes(C, F). We first find a
A"-realization X1 by Theorem 4.7.7, then we find a A"-realization X, of X1
by Theorem 4.4.5, and then we get an r-realization X3 of X2 since r is a
detecting functor. Hence X3 is a A'-realization of X0 by the commutativity
of (4.7.4). The Whitehead theorem shows that A' reflects isomorphisms
hence it remains to show that A' is a full functor. For this let X3, Y3 be
objects in (CW2)n+ 1/= and let X, = r(X3), X1 = A'(X,), X0 = A"(X,) =
A'(X3), and let Y2, Y1, and Yo be given accordingly by Y1. Then any map
FO: X0 -* Yo admits a A"-realization F, = (6, rl): X1 -> Y. By Theorem 4.6.1
there exists S such that F,' = (C+ S, q) admits a Ab-realization F,: X2 - Y,
which in turn admits an r-realization F3: X3 -> Y3. Since e + 6 induces the
same homology homomorphism as 6 we see that

A"(C+3,i)=A"(6,17).

Hence we get A'F3 = F0 and thus A' is full. 0

Proof of Theorem 4.7 We first consider the A"-realizability of objects. For
this let Y be a 1-connected (n - 1)-type, and let H", H"+, be abelian groups
with H"+, free abelian. Moreover let b,, be a homomorphism for which the
sequence

H"Fn-IYY "Y (1)
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is exact; compare Definition 3.2.2(1). We construct an object X =
(C, f", X"-') in (H"/=)"+' which realizes the tuple (Y, H", H, 1, b") that is,
there are isomorphisms

H"+1= Hn+1C (2)

Hn = H"C (3)
Y= P"+1X (4)
b"= b,, X:H"X-- Fn-1X=I'rs-1Y. (5)

We construct X as follows. Let Z,, be a free abelian group and let q: Z" -* Hn
be a surjection with kernel B. Then we define by the cellular chain complex
C,,Y of Y with cycles Z,,Y and boundaries BY the chain complex C as
follows:

Cn+1 = H"+1 ®B"
Cn= Z"®B"-1Y
Cf=CJY for j<n-1

(6)

(7)

(8)

The boundary d: C,,+, -- C" is trivial on H,, 1 and is the inclusion B,, C Z" if
restricted to B,,; moreover d: C" - C,, - I is trivial on Z,, and is the inclusion
on B,, -,Y. Then clearly (2) and (3) are satisfied. Next we define X"-' by the
(n - 1)-skeleton of Y, that is X" - ' = Y" '

For the construction of

f. : -1 (9)

we make the following choices. Let d y be the boundary in C. Y. We choose a
splitting t,

yC"YOd B"-IY
t

(10)

with dt = 1. Moreover we choose a homomorphism b' for which the following
diagram commutes

Bn C Z" -i Hb b= 1"-,Y

1
b'I

B"(Y) C Z"(Y)

Here b' exists since b,,Y is injective and since the image of b"Y is the kernel
of i"-,Y in (1) which in turn is the image of bn by exactness in (1). Hence b
in the diagram is well defined and surjective. Therefore the lift b' exists since
Z" is free abelian. In fact we can choose Z,, in such a way that b' is
surjective. For this choose a surjection Z,, -A where A is the pull back of q'
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and b, where q' is the quotient map in (11). Using b' and t we get the
surjective homomorphism

qp: C,, = Z. ® Bn 1(Y) -. Cn(Y)

for which cp I Zn is the composite

Z b Z"(Y)CC"(Y)

(12)

for which rp I Bn _ 1(Y) = t.
Now let (C,, Y, g,, Y"-') be the homotopy system of order n given by Y

with

gn:C"(Y) - 1Tn-IY'

We define fn in (9) by the composite

Jn (13)

Then X = (C, fn,Yrt-1) is a well-defined homotopy system of order n. In fact,
fn satisfies the cocycle condition since gn does and since b'(Bn) C Bn(Y).
Moreover h a = jfn in (4.2.1X3) is satisfied since we know that hd y = jgn is
satisfied.

We now observe that irn _ 1 X = in _ IY since tp above is surjective. Hence
we get the homotopy equivalence (4). Moreover we get (5) by the definition of
bnX in (4.4.3X1) and by the commutative diagram (11). This completes the
proof that X = (C, fn, X"-') is a realization of (Y, Hn, Hn+ 1, bn). This, how-
ever, also implies that (X, bn+ 1, 13") is a A"-realization of the object
(V. Hn, Yn, Hn + 1, bn + ). For this we use the natural identifications in (4.700,
(2).

By the homological Whitehead theorem it is clear that A" reflects isomor-
phisms. Therefore it remains to show that A" is full. For this let X b =
(X, bn+ 1, h'n) and Yb = (Y, b;,+ , /3) be objects in (Hb/'')"+' with X =
(C, fn, X"-') and Y= (C', gn,Y"-') and let (F; fin, (pn+ 1): Xb --> Yb be a
map in Bypes(C, F), that is

fin' H. -Hn, n+l' Hn+l Hn+1 (14)

are homomorphisms (with H, = H,, X and H* = H. Y) and

(15)

is a map which we can assume to be cellular. Recall that the n-skeleton of
Pn+ 1 X coincides with X" where X" is the mapping cone of fn; in the same
way the n-skeleton of P,,_ 1Y coincides with Y" where Y" is the mapping
cone of gn. Thus the cellular map F in (15) yields a restriction
(F", F" - '): (X", X" -') --> (Y", Y" - '). We now show that there exists a A'-
realization

(6, Fn-'): X -> Y (16)
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of (F, p", For this we choose splittings of Ck -. Bk_ land Ck -. Bk_,.
Hence we get

Ck=Zk®Bk-1, Ck=Zk®Bk-1 (17)

with Zn+ I = Hn+ 1, Z;,+, = H;,+ 1 since C and C' are (n + 1)-dimensional. We
consider the following diagram

t
q

Cn Z" -*

(*)if.

C;, Z', -'

H" -b " F. - ix
lip" IF.

c 7T 1 X
n 1

H;, b rn -1 Y C

Here C= Cn(F") is induced by F". This implies that the exterior square of
the diagram commutes. Therefore & admits the restriction ,: Zn -+ Z;,, also
denoted by f,. Since (F,cpn,(pn+1) is a map between bypes we see that for
bn = µf3n and b;, = µ/3;, the equation

F* bn = b;,'pn (18)

is satisfied. In fact, (18) is a consequence of the equation F*(8(,
compare Definition 3.2.2(3). Hence all subdiagrams of the diagram above
commute except possibly diagram (* ). We have however F* b" q = b' q' 6 so
that the difference

->kernel b,,cH,, (19)

maps to the kernel of b,,. Since b;,q' = bnY" we see that we have surjections

q'q" : ar,,Y"
q0

kernel bnY"
q

kernel b;,

and hence we can choose a homomorphism

/3: Zn -* n,Y" with q'q" /3 = 0. (20)

Let p: Cn --> Z,, be the projection. Then we obtain by the action in (4.2.5) a
cellular map F" + /3p: X" -> Y" which extends F"-'. We can therefore
replace f in the diagram by

Sn = C"(F" + pp) (21)
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with the effect that then all subdiagrams of the diagram are commutative. In
particular we get for subdiagram (*)

q-4'C"(F"+13p)IZ"

=

=gyp"q-q'1;,,-4'q"(3=0-Q=0.
Hence the restriction &B: B" -* B.', of " is well defined and we can set

4111 = 9n+ 1 ®
SntB (22)

by use of (17). Moreover coincides with C* F` in degree < n - 1 so that
a chain map ,=: C --> C' is well defined. Moreover it is clear that (6, P- 1) is a
A"-realization of (F, rp", cp"+1) since we have the natural isomorphisms
(4.7.6)(1), (2).

The proof of Theorem 4.7.7 above completes the proof of the classification
theorem 3.4.4; compare Theorem 4.7.3.

4.8 The computation of isotropy groups in the CW-tower

We consider two different actions of abelian groups on certain sets of
homotopy classes and we describe a general method for the computation of
isotropy groups of these actions. For an n-dimensional simply connected
CW-complex X" and a space Y we have the action

(4.8.1) [Xn,Y] x Hn(X", ir"Y) ± [X",Y]

defined in (4.2.5)(2). Here [Xn,Y] is the set of homotopy classes in Top*/=.
The cofibre sequence for j: Xn-1 cX" shows that j*: [Xn,Y] _ [Xn-1,Y]
satisfies for elements 71,7)' E [ X", y ]

j*(71) = j*(r)') - 3a E H"(X", 7r"Y) with + a = ii'. (1)

Thus the action (4.8.1) is useful for the inductive computation of the sets
[X",Y] with n z 1. Let 1(71) cH"(X 7rnY) be the isotropy group of the
action in 71, that is

1(71) _ (a E H"(X", 7rnY); 71 + a = 71) . (2)

Hence by (1) the orbit of 71 is given by

71E (j*)-1(710) -H"(X",7rY)/1(71) (3)

where 710 = j*71 and where the right-hand side is the quotient group. The
bijection carries (a} to 71 + a. The group I(q) depends actually only on 710.
For the computation of 1(71) in (2) one needs a spectral sequence; compare
Baues [AH] VI.5.9 (4).
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On the other hand, let now X and Y be homotopy systems of degree n + 1
and let [X, Yin + 1 be the set of homotopy classes of maps X -' Yin Hn+ /=.
Then we have by (4.3.7) the action

(4.8.2) [X,Y]n+I xH"(X,1'Y) + [X,Y]"+l

The functor A: H"+ I/= -* H"/= yields the function A: [X, Y]"+' - [X,Y]"
which satisfies for elements F, F' E [X,Y]"+'

A(F)=A(F')p3aEH"(X,F,,Y) with F+a=F'. (1)

Thus (4.8.2) is useful for the inductive computation of the sets [X, Y]", n >_ 1;
compare for this the tower of homotopy sets in (4.3.8). Let I(6, 77) c
H"(X, F"Y) be the isotropy group of the action in ((6,71))=F where
6: C -> C' is a chain map and where 77: X" -+ Y" is a cellular map with
X=(C, f"+,,X") and Y=(C',gn+1,Y"). We have

10,77)_{aEH"(X,fY);F+a=F}. (2)

Hence the orbit of F = {(f,17)} is given by

FE A-'(Fo) =H"(X,rnY)/I(1;,-0) (3)

where F0 = AF. The bijection carries the coset {a) to F + a. The group
I( f, 77) depends only on F0. For the computation of IQ,,q) we have the
following result. Let

j: H"(X,FRY) cH"(X",FnY) -->Hn(X",7rnY") (4)

be induced by the inclusions C* X" c C and I'nYC 7r, Y" respectively. More-
over let

Hn+IY
b_jY F,,Y--- iF"Y->0 (5)

be an exact sequence defined by the secondary boundary homomorphism
bn+ 1 of Y and let

0 -> i FnY > 7rnY -> ker b,,Y --> 0 (6)

be the short exact sequence given by Whitehead's exact sequence. Compare
Theorem 2.6.9(c) where we show that the extension element (7r,,Y) given by
(6) satisfies

,,Y) E Ext(ker(bnY),iFY) (7)( /3nY)t = OT

so that the extension (6) is determined by the boundary invariant F'nY. Let

T: Hom(Hn_ 1X,ker(b,,Y)) - Ext(Hn_1X,iF,,Y) (8)

be the boundary homomorphism associated to the extension (6), that is

T(a) = a"{7rnY} (9)
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for a: Hn_,X -- ker(b,,Y). As usual the sum of subgroups U U2 in an
abelian group U is given by U, + U2 = (x + y; x c- U,, y E U2).

(4.83) Theorem The isotropy group A6,77) is the following sum of three
subgroups in H"(X, I''Y):

Here I(-q) c H"(X",1rnY") is the isotropy group of 19 E [X", Y"] in (4.8.1X2)
and j is the homomorphism in (4) above. The homomorphism i* and A,

Ext(Hn_,X,ir,,Y):" Ext(H,,-,X,r,,Y) H"(X,r y)

are given by the surjection i in (5) and by the universal coefficient theorem
respectively. This shows that for the boundary r in (9) the subgroup
i(i*' imageT) is well defined. Moreover (bn+,Y)*H"(X,HH_,Y) is the
image of the coefficient homomorphism (bn+,Y)*: H"(X, Hn+,Y)
H"(X,rnY) induced by bn+1Y in (5) above.

Proof of Theorem 4.8.3 The result in Baues [AH] VI.5.16 shows that

1(6,71) =j-'(I('q)+An(X,Y))

where A71) C image j so that

I(, r1) =j- 11(77) + j-'An(X,Y).

We now show

j-'An(X,Y) = (bn+,Y) * H"(X, H, Y) + O(i *' image -r). (1)

This implies the proposition of the theorem. For the proof of (1) we first
recall the definition of the subgroup A,,(X, Y) c H"(X", irnY"). Let
gn+1: Cn+1 - irnY" be the attaching map in Y. Then An(X,Y) is the set of
all cohomology classes (gn+ 1 a,, + 1) for all which there exist

a,+1:Cj->Cj+1, j?n with
akd+d'ak+1 =0 for k>_n+1.

Compare Baues [AH] VI.5.16(7). Consider the diagram

d d
Cn+1 _a Cn+1 Cn

Cn+3 d Cn+2 d Cn+1 g irnY"

(2)

(3)
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Let t: B" --> C"+t be a splitting of d with B" =dC"+,. A sequence of maps
(aj, j > n) satisfying (2) exists if and only if there exists a commutative
diagram

d
tBn N C.

(4)

C"+2
d'

---a Cn+l

or equivalently if and only if a"+,(B,,)CB,,+I with B',+, =d'Cn+2. Clearly
this condition is necessary by (2) where we set k = n + 1. On the other hand,
this condition is sufficient since Cn+, = Z" ® tB,, and since we can define
aj, j>-n +2, by

art + 2 1 tBn = - a

an+2 1 Z"+I = 0

a,=0 for j>n+3.
Hence (4) shows

A,,(X,Y) = {{gn+lan+I}; an+I E Hom(C",C;,+,)

(5)

and an+IB" cB;,+,).

(6)

The attaching map g"+ I is embedded in the following commutative diagram

Z",

Sn+, n qy
Cn+, w y TrnY

Id' Id' I
B,, >`ea ker(b,Y") -p» ker(b,,Y)

r"Y ' » it"Y

n n

Z;, -- H"Y
P.

(7)

The vertical arrows are the obvious inclusions and surjections respectively.
The row i8, p is short exact and hence a free resolution of the group
ker(b,,Y). The map qy is induced by the inclusion Y" cY"+I where Y"+' is
the mapping cone of gn+, and ir,Y= ir,Y"+'. All rows of the diagram are
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exact. Moreover all columns contain short exact sequences in the upper part.
We now choose splittings t, and to,

it"Y^
d"

ker(bnY)
rl

Cn' -,-d
B,'+1 "

to0

of the surjective homomorphisms d" and d' respectively in diagram (7)
above. We define

-8 =ir'(tlie-gn+l to)EHom(B,',,rnY) (8)

Hence the following diagram commutes.

irfy

I r, I
ker(bn Y")

9r
---- 1rn Y

ker(b,,Y) = ker(b,,Y)

(9)

This is clear since gygn+I = 0. By (9) we see that i/i represents the extension
{i"Y} E Ext(ker(bnY), irnY).

We now consider j -'An(X, Y) where

j: H"(X, rnY) N H"(X", Ir,Y") (10)

is actually an inclusion defined by C. X" cC and by ir: rnYc 1rnY"; see
(4.8.2X4). A map an+ 1 as in (6) induces a map an +, for which the following
diagram commutes

Cn /Bn ~- Cn

la"., lg".,Q..,

Cn + I /Bn + 1

g--
77n Y" (11)

Ito a It,

Hn+1(Y) ®B;, M> rn(Y) ED ker(b,Y")

Here p is the quotient map and gn+1 is induced by gn+,. The isomorphisms
to, t1 are induced by the corresponding splittings above. Moreover (7) and (8)
show that the matrix M in (11) is given by

M= I b"0,1Y
i J. (12)
a
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The isomorphism t, in (11) yields the following diagram with j as in (10) and
where we set K = ker(b"Y").

H"(X", 1T"Y")

H"(X, K) .- H"(X,I'"Y®K) K H"(X,I'"Y) (13)

TM T(b_ ,Y,-s).

H"(X,H"_,Y®B;,) K ker(O,iB)*

The definition of M in (11) together with (6) show

A"(X,Y) = image(jM*). (14)

Hence we get by a diagram chase in (13) the formula

j-'A"(X,Y) _ (b"+lY, ker(O,iB)1 (15)

Since 'B is injective one gets

ker(0,'B) * = H"(X, H"1Y) ®0 ker(i,,) (16)

where i 4, = Ext(H" - , X, i B). Moreover (9) and the six-term exact sequence for
the boundary T in (4.8.2)(8) yield the following commutative diagram

Hom(H"_,X,kerb"Y) = Hom(H"_,X,kerb"Y)

Ext(H"- ,X, B;,) Ext(H"_,X,il'"Y) (17)

Ext(H"_,X,K) Ext(H"_,X,f,,Y)

The left column is exact. A diagram chase in (17) shows

f3*kerit =i-V(imageT) (18)

Thus (15), (16) and (18) yield formula (1) and the proof of Theorem 4.8.3 is
complete.



5

SPANIER-WHITEHEAD DUALITY AND
THE STABLE CW-TOWER

We consider some aspects of combinatorial homotopy theory which arise in
the stable range. In particular, we use Spanier-Whitehead duality which
carries homotopy groups to cohomotopy groups. Whitehead's certain exact
sequence for homotopy groups corresponds in this way to a dual sequence for
cohomotopy groups. The secondary boundary in the dual sequence is related
to cohomology operations which appear in the Atiyah-Hirzebruch spectral
sequence. Moreover we describe the Spanier-Whitehead dual of the stable
CW-tower.

5.1 Cohomotopy groups

We introduce cohomotopy groups and we describe the dual of Whitehead's
certain exact sequence which embeds cohomotopy groups and cohomology
groups in a long exact sequence. To stress the duality we develop the theory
along parallel lines which are dual to each other.

Let X be a CW-complex with base point. Homotopy groups and cohomo-
topy groups are defined by the set of homotopy classes in Top*/-

it"X=[S",X],

7r"X= [X,S"].

Here 7r"X in general is not a group, but in the stable range, dim X< 2n - 1,
we have the suspension isomorphism 1: [X, S" ] = [ EX, S"" 1 ] which yields an
abelian group structure for 7r"X. The dual of the skeleton X" is the
coskeleton X" which is the quotient space

(5.1.2) X" =X/Xn-1

Hence the coskeleton of the m-skeleton, m >- n, is X,, = X n' /X n -1 which is
also the m-skeleton of X" with X" cX". We point out that X is a
one-point union of n-spheres or equivalently a Moore space of a free abelian
group

(5.1.3) X = V S" = M(C"X, n).
Z"
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Here Z,, is the set of n-cells in X and C" X is given by the cellular chain
complex C,, X of X. Let C*X be the cellular cochain complex of X, that is

CnX = H"(Xn, Xn-')= H"(X,")
(5.1.4)

C"X = Hom(C"X,71).

The coboundary d: C"X -> C"+ 1X is induced by the boundary d: C"+ 1 X --
C" X. We have the attaching map of n-cells

(5.1.5) f": V S"-' =M(C"X,n - 1) ->Xn-t

zn

Dually we have the coattaching map

f": Xn+1 -' V Sn+1 =M(CnX,n + 1).
zn

This map is obtained by the cofibre sequence

X,n -Xn -Xn+, f Ix - ...
given by the inclusion X c X, of the n-skeleton. We clearly have
7rn- IM(C,, X, n - 1) = CnX and 7rn+'M(C"X, n + 1) = C" X. Hence by apply-
ing the functors 7rn - and 7r"+' to fn and fn respectively we get the induced
homomorphisms

(5.1.6) f":C,,X-'7Tn-1X"-1, resp. f":C"X- Tn+1Xn+1

which actually determine the homotopy classes of the corresponding maps in
(5.1.5). Therefore we denote the homomorphisms (5.1.6) and the correspond-
ing maps in (5.1.5) by the same symbol. We write

X = XN (X is an AN - N-polyhedron)

if X is an M-dimensional CW-complex with trivial (N - 1)-skeleton
X" -' = *. If M < 2N - 1 we obtain the following two exact sequences of
abelian groups which are `dual' to each other.

(5.1.7)
0--+rMX-' 7fMX-'HMX-Fm-IX_' ... -HN+IX-'0-+lrNX=HNX,

0-+FIX_ 7TNX--+HNX_IF N+IX _._, ... -'HM+'X-0,7rMX=HMX.
i h b

The top row is the exact sequence of J.H.C. Whitehead. The bottom row is
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defined as follows: Let M < n < N. The inclusion X n -' --> X" and the
projection X. -* X" + I yield the F- groups

(5.1.8)

F, X = Im(ir"X"-' - IT,, X'),

F"X = Im(Tr"X"+ t - ITnX,,).

Now the inclusion X" -> X and the projection X - X" induce the maps

i = !" : I'" X C 7r,,X" - 7r,, X and i - i" : f"X C ex,, -- 7r "X (1)

respectively. Moreover, we have the Hurewicz homorphism

h = h" : 7r"X -> H" X= Hn(X, Z), (2)

h =h":7r"X -H"X =H"(X,71)

by hn(a) = a*(e"}, h"(/3) = f3*{e"}. Here {en} E H"( S", 71) and {e"} E
H"(S",71) are generators which are dual to each other. Next we obtain the
secondary boundaries

b=bn:H"X--+rn-IX,

b = b": H"X _ F,1 IX
(3)

by the maps in (5.1.6) as follows. Let Z"X and Z"X be the group of n-cycles
and n-cocyles respectively. Then we have commutative diagrams

Z,,XCC,,X 7rrs_1Xn-'

H"X --- '=- I'n-1X,

Z"X C C"X '7Tn+1Xn+I

H"X --- n'---- r"+1X.

(5.1.9) Proposition For X = XN and M:5 2 N - 1 the sequences in (5.1.7) are
exact.

Proof The sequences of J.H.C. Whitehead is extracted from the homotopy
exact couple of X. In the same way we extract the bottom row of (5.1.7) from
the cohomotopy exact couple which is available in the stable range.
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5.2 Spanier-Whitehead duality

We recall some facts about Spanier-Whitehead duality which carries homo-
topy groups in the stable range to cohomotopy groups. Moreover
Spanier-Whitehead duality carries Whitehead's exact sequence to the dual
sequence for cohomotopy groups described in Section 5.1. Let AN-N be the
full homotopy category of all finite AN -N -polyhedra or equivalently of all
finite CW-complexes X = XN with dim X:5 M and trivial (N - 1)-skeleton
XN- '= *. This is a full subcategory of Top*/=. In the stable range
M < 2 N - 1 Spanier-Whitehead duality is a contravariant isomorphism of
additive categories

(5.2.1) D: AN N AN-N

This isomorphism carries X to DX = X* and carries the homotopy class of
f : X -' Y to the homotopy class Df = f * : Y* --* X*. The isomorphism D
satisfies DD = identity, that is

X** =X f** = f

The functor D is determined by (N + M)-duality maps as follows. Recall
that for pointed CW-complexes X, Y we have the smash product X A Y =
X X Y/X V Y which satisfies S" A S' = S"+m and S' A X = T.X.

(5.2.2) Definition Let X = XN , M < 2 N - 1. An (N + M)-duality map is a
CW-complex X* = (X*)'

N
in A

N
- N together with a map

Dx: X* AX- SN+M (1)

such that the following compositions are isomorphisms for N< q < M:

7'N+q(X*) AX, [SN+gAX,X* AX]

a i(Dx).

2N.4,jrM q(X) = [SN+q AX,SN+M]

IrN+q(X) X*A_ [X* ASN+q,X* AX]

4 FN+Q

,TM-q(X*)

(2)

I(Dx).
(3)

[X* ASN+q,SN+M]

Spanier and Whitehead have shown that for each X in AN- N there exists an
(N + M)-duality map; compare Spanier and Whitehead [DH] and Chapter 8,
Exercises F in Spanier [AT].

Remark Geometrically one obtains an (N + M)-duality map D. in Defini-
tion 5.2.2 as follows. Let X be embedded in S"+', n = 2M, and let Y be a
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finite CW-complex which is a strong deformation retract of the complement
S"+' - X with YcS"+' X. Then pick a point a c= S"+' - X U Y and con-
sider the inclusion

XUYcS"+'-(aI= R^+1
Since X n Y= 0 is empty we have

X x Y c R xR +i-0

(1)

(2)

where A = ((x, x) I x E R"+'} is the diagonal of OR"+'. We obtain a deforma-
tion retraction r with ri = 1,

S"-' -,,aR"+lxR"+1 r,S" (3)

given by i(x) = (x, 0) for x E Sn = (x E 6R"+ 1 Ilxll = 1) and r(x, y) = (x -
y)/Ilx -yll The composition of r and (2) yields the map

XxY- S"
which is null-homotopic on X V Y. Hence this map induces a map

D:XAY=C1-S"

(4)

(5)

where C1 is the mapping cone of the inclusion j: X V Y c X x Y. The map D
is then an n-duality map in the sense of Definition 5.2.2. There is a
CW-complex X* in AN-N together with a homotopy equivalence

IM NX* =Y. (6)

Moreover there is a map

DX:XAX* SM+N (7)

for which the (M - N)-fold suspension I M_ NDX is homotopic to

yM N(XAX*) XA Y-, S" =S2M.
The map DX is the duality map in Definition 5.2.2; compare Cohen [SH]. We
are now ready for the definition of the duality functor D in (5.2.1).

(5.23) Definition of D Choose for X =A" N an (N + M)-duality map and
set DX = X * . For X* we can choose DX* =X and for a sphere S N+ q we
choose DSN+q = (SN+q)* = SM-q. Moreover, D is defined on maps by the
following commutative diagram

[X,Y]- D a [Y*,X*]
Y- V \n X

[Y* AX,Y* AY] 7 [Y* AX,X* AX]
(DY).\ /Dx)[Y*

AX,SM+N]
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in which the compositions (DX) * (AX) and (D y) * (Y* A) are isomorphisms.

The inductive construction of X* in Chapter 8, Exercises F, in Spanier [AT],
shows that the functor D can be chosen such that the following properties
are satisfied. In the following let 0 < q < M - N. For X = XN the cells eN+q
form a basis of CN+qX. Let eN+q be given by the dual basis in CN+qX =
Hom(CN+q,7L). Now each cell eN+q in X is in 1-1 correspondence to a cell
eM_q in X*. This correspondence yields the identification

(5.2.4) CN+qX=CM-qX*,eN+q'-"
eM-q.

We call eM-g the dual cell of eN+q. Moreover, for skeleta and coskeleta the
following equation holds:

(5.2.5) (XN+q)* = (X* )M-q;

compare the notion in (5.1.2). The attaching and coattaching maps yield the
commutative diagram

M(CN+q,N+q-1)* rf- (XN+q-1)*

(5.2.6)

M(C,y_gX*,M-q+ 1)4 - (X*)M-q+l
fM-q

Here M(A, k) denotes the Moore space of A in degree k; we use the fact
that for a finitely generated free abelian group A we have M(A, N + q)* =
M(A*, M - q), A* = Hom(A,7L). By Definition 5.2.3 and (5.2.4) the dual of a
map a: SN+q , SN+q' between spheres is a* _ I ka. SM-q' -> S'"-q with
k = M - N - q' - q. Hence by (5.2.6) the dual of the mapping cone C.=
SN+q U. eN+q+ 1 is the mapping cone of a* = Vu or equivalently

(5.2.7) (Ca)* = rL.kCa.

If a: SN+q _ SN+q is a map of degree n we obtain the Moore space
Ca = M(7L/n, N + q) of the finite cyclic group 7L/n. Hence the dual of this
Moore space is, by (5.2.7), again a Moore space

(5.2.8) M(7L/n, N + q)* = M(7L/n, M - q - 1).

From (5.2.4) and (5.2.6) we derive the commutative diagram

CN+qX d CN+q+1X

(5.2.9) II II

CM-qX* d
CM_q+IX*
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Here d is the boundary in the cellular chain complexes of X and X*
respectively. This yields for any coefficient group the isomorphism

(5.2.10) HM_q(X*,G) =HN+9(X,G)

which is natural in X and G. For example if X = M(A, N + q) is the Moore
space of a finitely generated abelian group A then we have H8+9(X) =
Hom(A,71) and HN+q+'(X) = Ext(A,7L) so that the homology groups of the
dual X* = M(A, N + q)* are by (5.2.10)

Hom(A,71), i=M-q
H;M(A,N+q)*= Ext(A,7L), i=M-q-1

0 otherwise

This implies that we have a homotopy equivalence

(5.2.11)

M(A,N+q)* = M(Hom(A, Z), M - q) vM(Ext(A,7L),M-q- 1)

where the right-hand side is a one-point union of Moore spaces.

For homotopy and cohomotopy groups we have by Definition 5.2.3 the
isomorphism D:

(5.2.12) ?rM_v(X*) = 7rN+q(X)

which we use an identification. Similarly we get for the F-groups the isomor-
phism

(5.2.13) FM_Q(X*) = rN+9(X).

Now the exact sequences in (5.1.7) have the following property.

(5.2.14) Proposition For X = XN in AN -N with M < 2 N - 1 there is the
natural commutative diagram of exact sequences:

0->FMX* - irMX* -+HMX* . ... -,HN+1X* - 0 -7rNX* =HNX*

II II II II II

0 - r NX --a 7rNX - HNX - ... -+ HM -' X -+ 0 --- it NX = H NX

This shows that each result on the operators in the exact sequence of
J.H.C. Whitehead yields a dual result on the dual operators. Similarly, it is
well known that homology and cohomology operations behave well with
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respect to the isomorphism in (5.2.10); see 27.23 in Gray [GT] and Maunder
[CO]. For example the Steenrod squares have the property that for X = XN
(M < 2N - 1) the following diagram commutes

HN+q(X,l/2)
Sq'

HN+q+i(X,71/2)

(5.2.15)

HM-q(X*,7L/2) - HM-q_i(X*,7L/2)
sq;

Since H*(X,l/2) and H,, (X,71/2) are dual vector spaces over Z/2 we can
consider the 1/2-dual operation (Sqi)* = Hom(Sgi,7L/2). This operation
does not coincide with Sq'. The connection is defined by the automorphism X
of the Steenrod algebra: X(Sgi) = (Sqi)*; see for example Gray [HT]; how-
ever, (Sq2)* = Sq2. We denote by Sqg, Sqg the integral operations which are
the composites

(5.2.16)

Sqa: H"(X,71) H"(X,71/2)
Sq H"+i(X,Z/2),

SqH"(X,71) P. H"(X,71/2) - H"-i(X,71/2)

where p: 71 - 7/2 is the quotient map. The Adem relation Sg2Sg2 = 0 yields
the secondary operations 4)* and 4*; see Mosher and Tangora [CO],

H"(X,7D D kerSg2 - HN+3(X,71/2)/Sg2Hn+'(X,71/2),

(5.2.17)
H"(X,7L) :) kerSg2 -b H"_3(X,71/2)/Sg2H"_1(X,7/2).

Again these operations satisfy Spanier-Whitehead duality, that is for X =
XN, M < 2 N - 1, we have the commutative diagram

HN+q(X,7) DkerSq' -> HN+q+3(X,71/2)/Sg2HN+q+'(X,Z/2)

HM-q(X*,Z) DkerSg2 HM-q-3(X*,7L/2)/Sg2HM-q-t(X*,7L/2)

compare Maunder [CO].

5.3 Cohomology operations and homotopy groups

There are some old results which relate the operators in the stable
F-sequence of J.H.C. Whitehead with homology operations. Using
Spanier-Whitehead duality one has the dual results for cohomotopy groups
and cohomology operations.
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Let Y be an (n - 1)-connected CW-space. Then 7r"Y, it" + lY, 7r" + 2Y, ... are
called the first, second, third,... non-vanishing groups of Y respectively.
Dually we have for an n-dimensional CW-space X the first, second, third....
non-vanishing cohomotopy groups given by ?r "X, 7r"-1 X, Tr"- 2X, ... respec-
tively. It is a classical problem to compute for small values of k = 1, 2,3,...
the kth non-vanishing homotopy groups and cohomotopy groups in terms of
homology and cohomology. We here consider this problem in the stable
range. Since we apply Spanier-Whitehead duality we assume that all CW-
complexes considered are finite. Recall that we write Y = YN if Y is a
CW-complex with trivial (N - 1)-skeleton and that we write X = X M is X is
a CW-complex of dimension < M. The first non-vanishing homotopy group
was computed by Hurewicz and the first non-vanishing cohomotopy group
was considered by Hopf. Their results yield isomorphisms

(5.3.1)

arNY=HN(Y,7L) for Y=YN,N>2,

arMX=HM(X,Z) for X=XM,M>:I.

These isomorphisms are also consequences of the exact sequences in (5.1.7).
For the second non-vanishing group we have by (5.1.7) the following exact
sequences (Y = YN, X = X')

(5.3.2)

bN+2 i

HN+2Y FN+ 1Y ITN+IY- HN+ 1y,

HM-2X bm- rM-1X->7TM-1X-.HM11-1X.

(Here it is enough to consider Y = YN + 2 and X = XM_ 2, M = N + 2, so that
X and Y are AN-polyhedra.) In the stable range there is the isomorphism

(5.3.3) 7) * : HN (Y, 71/2) = IrNY ® Z/2 - rN+ 1, N > 2,

where q is the Hopf element. Since 71 is detected by Sq 2 it is easy to see that
the secondary operator in (5.3.2) is determined by the commutative diagram

bN+.

HN+2Y rN+1Y

(a)

H"(Y,1 /2)

(N> 2)

By Spanier-Whitehead duality (see (5.2.15)) the secondary coboundary oper-
ator is given by the commutative diagram

HM-2X b"'-2-

FM-1X

(b)
(M> 3)

HM(X,7L/2)



158 5 SPANIER-WHITEHEAD DUALITY

Hence we obtain by (5.3.2) the classical results (5.3.4) and (5.3.4)' below on
the second non-vanishing groups. These results are due to J.H.C. Whitehead
[CE] and Steenrod [PC] respectively and the results are dual to each other by
Spanier-Whitehead duality.

For Y = Y,, N > 2, there is the natural short exact sequence (see also
Theorem 15 in 8.5 of Spanier [AT])

(5.3.4)
HN(Y,71/2)

Sg2HN+2Y
"7TN+1Y-HN+IY.

For X = X M, M > 3, we have the natural exact sequence

H"'(X,Z/2)
(5.3.4)' SgaHM 2Z

It remains to solve the extension problem for these sequences. Recall that
for any coefficient group G the map q: G -> G ® 71/2 yields the squaring
operation:

Sq2=SgG:HN(Y,G) 9'HN(Y,G®71/2)
S92®G HN+2(Y,G ® 71/2).

Let H; = H,(Y,71) and let H,(2) = H1(Y,71/2). For the fundamental class
i = id E HN(Y, 7rNY) = Hom(HN, HN) we have the element

Sq2(i) E HN+2(Y, HN(2))

where HN(2) = HN ® 71/2 = 7rNY ® 71/2 since Y is (n - 1)-connected. For
the projection p: HN(2) - cok Sq2 the universal coefficient theorem yields
the commutative diagram

Ext(HN+ 1, HN(2)) - HN+2(Y, HN(2)) - Hom(HN+2,HN(2))

1P. 1P. 1P.

Ext(HN+,,cok Sq2) N HN+2(Y, cok Sq2) - Hom(HNI2,cok Sq2)

where ILSg2(i) = Sq2. Thus p* ASg2(i) = 0. This shows that the element
A-1p* Sg2(i) is well defined. Now the extension class of (5.3.4) is given by the
formula (see Remark 2.8.8)

(5.3.5) (7rN+1Y) = A-1 p*Sg2(i) E Ext(HN+1,cok Sq2).

If we put Y = DX we get by Spanier-Whitehead duality the extension class
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of (5.3.4)' as follows. We have for any coefficient group G the squaring
operation

Sq2 = Sq2: HM(X,G) -- HM(X,G ® 71/2) S9z®G
HM-2(X,G ® 71/2).

Let H' = H'(X,71) and let H'(2) = H'(X,71/2). For the fundamental class
i=idEHM(X,7TMX)=HM(X,HM)=Hom(HM,Z)®HM=Hom(HM,HM)
we have the element

Sg2(I) E HM-2(X, HM(2))

where HM(2) = HM ® 71/2 = ,M ® Z/2 since dim X< M. Now the universal
coefficient theorem yields for the projection p: HM(2) - cok Sq2 the com-
mutative diagram

Ext(HM- 1 HM(2)) * Htif-2(X, HM(2)) µ Hom(HM-2 HM(2))

I 111

I P. IP.

Ext(HM-',cok Sq2) N HM_,(X,cok Sgt) --> Hom(HM-2,cok Sgt)

Here we use the fact that C*X is the dual of C*X, that is C*X=
Hom(C*X,71), since X is a finite CW-complex. Now we have µSg2(i) = Sq2
so that p * µSg2(i) = 0. Therefore the element A-'p* Sq,(i) is well defined.
Dually to (5.3.4) we get the extension class of (5.3.4)' by the formula

(5.3.5)' {7.M-'X} = A-1 p*Sg2(i) E Ext(HM-',cok Sq2).

Remark The equation in (5.3.5) is due to J.H.C. Whitehead, see §18 in
J.H.C. Whitehead [CE]. G.W. Whitehead reformulated this result in V.1.9 of
G.W. Whitehead [RA], see also page 570 in G.W. Whitehead's book.
Also Chow [SO] considers the extension problem (5.3.5). Again Shen [NH]
considers the extension element (5.3.5)' which, as we have seen, is dual to
(5.3.5). A proof of (5.3.5) is also given for the unstable case in Baues [CH].

Next we describe the third non-vanishing group. This group was consid-
ered by Hilton [GC] who computed the homotopy group 7rN+ 2 of an AN
polyhedron, N > 2. On the other hand, Shen [NB] computed the third
non-vanishing cohomotopy group. We obtain these results as follows. By
the exact sequences (5.1.7) and (5.3.3)(a),(b) we get the exact sequences
(Y=YN'X=XM):

(5.3.6)

bN

HN+3Y
3

rN+2Y- 7rN+2Y-' kerSgz

HM-3X bm 3rM-2X-,7rM-2X- kerSg2 (cHM-2X),

where N > 2, M > 3. Here the groups rN+ 2Y and FM-2 X depend actually
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only on the AN polyhedra XM_ 2 where we set N = M - 2. These groups can
be computed by the following result.

(53.7) Theorem The groups rN12 Y and r M- 2X With Y = YN, X = X M and
N = M - 2 > 3 are embedded in the natural diagrams (a) and (b) below in
which the column and each row is a short exact sequence

HN+ IY (&Z/2 ) µ . HN+ I(Y, 7 1 / 2 ) , ° . HNY * 7L/2

(a) 'TN+ IY ®7L/2 ) >

I
HN(Y,7L/2)

Sg2HN+2(Y,7L/2)

rN+2Y -a HNY *7L/2

HM-'X (&1/2 ) ) HM-'(X,71/2) - HMX *Z/2

(b) 7r M-'X ®7L/2

I
HM(X,1/2)

Sg2HM-2(X,71/2)

17. rM-2X --+. HMX *7L/2

The columns are induced by (5.3.4) and (5.3.4)' respectively and the top
rows are given by the universal coefficient theorem; in (b) we again use the
assumption that X is a finite CW-complex. The maps q* and q* are induced
by the Hopf maps. Clearly (b) is the Spanier-Whitehead dual of (a). J.H.C.
Whitehead considers diagram (a) in 1.12 of [GD] and 1.18 of [NT]. The
extension problems for the groups rN+2Y and ]FM-2X in (a) and (b) respec-
tively are solved. We shall describe the extension by use of the computation
of the homotopy group 'rN+ 2 M(A, n) of a Moore space.

For the computation of TrN+ 2Y and 7r M- 2X one has also to consider the
secondary boundary operators bN+2 and bM-3. These operators are studied
in the next result.
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(53.8) Theorem Let Y = Y. and let X = X M for N = M - 2 > 3. Then the
secondary boundary operators bN+ 3 and b M-3 are embedded in the commutative
diagrams (a) and (b) respectively where 4* and 4* are the secondary opera-
tions of Adem in (5.2.17).

ker SqZ c HN+3Y

(a) I 0.
I brt+3

H, (Y.Z/2) n*;

Sq2 HN+2(Y,71/2)

(b)

a'N+2Y *HN+i(Y,/L/l)

ker SqZ C HM 3X

146.
IbM3

HM(X,Z/2) 17*i

Sg2HM-2(X,71/2) --a FM 2X HM-'(X,1/2)

The exact rows of these diagrams are obtained by Theorem 5.3.7. Again (b)
is Spanier-Whitehead dual to (a); in fact we can assume Y = YN+3 and

=X _ 3, N = M - 3 >- 4. Then we are in the stable range so that we canX M

apply duality. The result remains true for N = 4 by the suspension isomor-
phism. We see that 0* in (b) is actually the Adem operation since both
and bM-3 detect the double Hopf map; see also Section 8.5.

(53.9) Corollary Let Y = YN and let X = X M and let N = M - 2 > 3. Then
the Hurewicz homomorphism maps the fourth non-vanishing group surjectively to
the kernel of the Adem operation:

'TN+3Y-" ker4i* CHN+3Y,

7rM-3X--kerdi*CHM 3X.

We can proceed in a similar way in the discussion of the groups and
operators of the F-sequences (5.1.7). The secondary boundaries bM-4 and
b,,,, however, involve six different cohomology operations in the stable
range. This is seen by the following spectral sequence which corresponds to
the Atiyah-Hirzebruch spectral sequence for the stable cohomotopy groups;
see Hilton [GC].

(53.10) Remark Let M be large and assume X is a CW-complex of
dimension M, X = X M. For q < (M - 1)/2 we have the suspension isomor-
phism

?rM-q(X) _ [X,SM-q] = [jgX,SM' (1)
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which allows us to replace the cohomotopy group irM-Q(X) by the group
[jqX, SM ] The latter group can be computed for q > 0 by a spectral sequence

(E,`, d,: E,'` _ E,+r'`+r+1,r> 1).

The E2-term is given by the cohomology groups of X

Es,'=Hs(X,Ir,(SM))

(2)

(3)

with coefficients in homotopy groups of spheres. Let Ks,q c [y,q X, SM ] be
the kernel of the restriction map

[lgX,SMI -> [IgxS,SM]

given by the inclusion XS cX of the s-skeleton. Then we have the filtration

... cKs qc ... cKO,q=[IgX,SM].

The associated graded group of this filtration is the --term of the spectral
sequence, that is

Ez,q+s =
KS-1,q/K5,q (4)

This spectral sequence is a special case of the homotopy spectral sequence, see
(III. §2) case (A) and (111.5.10) in Baues [AH]. We picture the E2-term Ez'9+S
in the following diagram; by (4) the qth row in the diagram contributes to the
group (1).

t-s = q

4

3

2

H:(X,x, (SM))

q=I

q=0

2 24

2 - -2 74

q2

2 2

2

}bM-4

} bM-3

i bM-2

}bM-I

_ I I I I i
M-4 M-3 M-2 M-1 M s

The coefficients in low degrees are

i
7TM+i(SM)

0 1 2 3 4

71 1/2 1/2 71/24 0
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Therefore the EZ-term yields the diagram above in which we describe the
coefficients by -,2,4,24,0. The diagram indicates the possible differentials.
The differentials in the row b"-q are those (higher-order) cohomology
operations which are involved in the secondary boundary operator bM-q
(q=0,1,2,...). For example the row bM- ` in the diagram corresponds
exactly to the result in (5.3.5)(b) and the row bM- 3 in the diagram corre-
sponds to the result in Theorem (5.3.8)(b). Therefore the spectral sequence
above is the precise extension of the classical results described in (5.3.2) and
Theorem (5.3.8). The six differentials in the row q = 4, however, do not
correspond to classical cohomology operations in the way that those in the
rows q = 2 and q = 3 do.

Spanier-Whitehead duality yields a dual spectral sequence consisting of
homotopy groups and homology operations which can be used for the
computation of stable homotopy groups of a finite CW-complex; this extends
the duality discussed in (5.3.2) and Theorem (5.3.8).

5.4 The stable CW-tower and its dual

Let N < M < 2 N - 1. The stable CW-tower is the restriction of the CW-tower
of categories to the subcategory of CW-complexes X = XN with dim X:5 M
and trivial (N - 1)-skeleton XN-' = *. The stable CW-tower is defined by
homotopy systems which consist of a chain complex C and a CW-complex X"
which realizes C in degree _< n. We now consider dually cohomotopy systems
which consist of a cochain complex D and a CW-complex Y" which realizes
D in degree >- n. Cohomotopy systems yield a tower of categories which is
Spanier-Whitehead dual to the stable CW-tower.

We fix N and M as above. Let AN - N be the full homotopy category of
finite CW-complexes of the form X = XN ; see Section 5.2

(5.4.1) Definition We define an (N, M)-homotopy system of order (q + 1)
and an (N, M)-cohomotopy system of order (q + 1) to be triples

(C, f,XsN,+q), resp. (D,g,Y q)

with the following property (a), resp. (a') where (a') is the dual of (a). As
usual let C* and C* be the reduced cellular chain complex and cochain
complex respectively.

(a) C = (C, d) is a chain complex of finitely generated free abelian groups
with C; = 0 for i < N and i > M and C coincides with C * XsN, + q in
degree 5 N + q. Moreover

f: C N+q
N+,+1 N+qX



164 5 SPANIER-WHITEHEAD DUALITY

is a homorphism such that fd = 0 and such that

d: CN+q+I ITN+qXN+q h HN+qXN+q CCN+q

is the differential of C.

(a') D = (D, d) is a cochain complex of finitely generated free abelian groups
with Di = 0 for i < N and i > M and D coincides with C* YM q in
degree >_ M - q. Moreover,

g: DM-q- I , .M-qyM q

is a homomorphism such that gd = 0 such that

d: DM-q- I _-g--), .M-qYM q -L HM-qY,y
q CDM-q

is the differential of D.

We obtain maps

(b) (r , n): (C, f, XN+q) - (C', F', UN +q)

(b') (D',g',VMq) - (D,g,YM-q)

between such homotopy systems, resp. such cohomotopy systems, as follows.
In (b) the map : C - C' is a chain map and 71: XN+q -> UN+q is a map in

CW/
0
= such that t: coincides with C * rl in degree < N + q and such that

f'Z: = 7.f on CN+q+ 1.

In (b') the map t : D - D' is a cochain map and : VM q YM q is a map

in CW/
o

such that 6 coincides with C*-q in degree >_ M - q and such that
g'6= -1*g on DM-q- I. Let H(q+l) and H(q+1) be the category of such
homotopy systems and cohomotopy systems respectively.

Remark An (N, M)-homotopy system of order (q + 1) is a special homotopy
system of order N + q + 1 in the sense of Chapter 4. We recall above the
definition of homotopy system so that the duality between homotopy systems
and cohomotopy systems becomes evident.

(5.4.2) Definition We define the homotopy relation = on H(q). For maps
as in (b) we set (1,,1) = (, i) if there exist homomorphisms aj + : CC -+

Ci' + 1, j >_ N + q, such that in the abelian group [XN+q, UN+q] we have the
equation

IV - {77) =p*(f'aN+q+1)
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where p: XN+q XN+q is the quotient map and where p* is defined on

Hom(CN+q, 1TN+q UN +q) = [ XN+q , UN+q

compare the convention in (5.1.2). Moreover:

Sk - 6k = akdk +dk+Iak+I, k> N+q.

Dually we define the homotopy relation = on H(q). For maps as in (b') we set
i) = il) if there exist homomorphisms

ai-I: D'- (D')i-I 1 <M-q,

such that in the abelian group IVM q, YMq ] we have the equation

('n) - (71) _ i*(g(aM-q-I )).

Here is X1 q -> XM -q is the inclusion and i * is defined on

Hom(DM 9, irM 4(VM q))
= [V q' XM-q J .

Moreover,

k-0 = a k d k +dk- lak- k <M - q.

The categories H(0, H(q)/=, H(q), and H'q'/= are additive categories by the
addition law on morphisms: (6, rl) + rl') 6+ C', 77 + rl'). Moreover we
have functors

A: H(q+1) H(q)I (C, f, XN+q) - (C, f', XN+q-
(5.4.3)

A: Hcq+n -* H(q), (D,8,YM q) (D, 8', 1'N q+,).

Here f is the attaching map of (N + q)-cells in XN+q and g' is the
coattaching map of (M - q)-cells in YM q; see (5.1.5). These functors induce
functors between the corresponding homotopy categories. We have obvious
isomorphisms of categories

HOII = FChainN-N (covariant),
(5.4.4)

H' )= FCochainN-N (contravariant).

Here FChainN - N is the category of finitely generated free chain complexes
C with C, = 0 for i < N and i > M. Similarly FCochainN N is the category of
finitely generated free cochain complexes D with D' = 0 for i < N and i > M.
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The next theorem describes the stable CW-tower and its dual. The stable
CW-tower is just the restriction of the CW-tower in Section 4.3 to the stable
subcategory AN-N; the new feature is the dual of the stable CW-tower
obtained in this theorem.

(5.4.5) Theorem Let N < M < 2 N - 1. The categories H(q) form a tower of
categories. Dually the categories H(q) form a tower of categories. Both towers
approximated the homotopy category AN - N. Moreover Spanier-Whitehead dual
ity yields a contravariant isomorphism between these towers of categories as
indicated in the following diagram.

AM-N
D

AM-N
N N

1 1

H(.M-N+ l)

HN+qrN+q-----?----.aHM-qFM q

HO)

11

H(M-N+l)

HN+q+lrN+q ----T -;----> HN-q-lrM-q

H(1)

II.
FChainN-N/= FCochainN N/=

The Spanier-Whitehead duality isomorphism D on AN-' is defined in
(5.2.1). We now define D on H(q+!) by

(5.4.6)

DC is given by (DC)M-q = CN+q. Thus b is a
covariant functor by (Dr )M-q =N+q We define D on maps Q,71) by
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DQ, 71) = (De, D-q). The properties of Spanier-Whitehead duality in Section
5.2 show that D is a well-defined contravariant isomorphism

D: H = H(q+1)

of categories. We obtain the obstruction operator ® on H(q) and the action
+ on H(q+1) in the same but dual way as in Section 4.3. For this we use the
H(q )-bimodules H, _ e I''° with m = M - q, e > 0, which are defined by the
homology groups

(5.4.7) (Hm_eI''")(V,Y)=H,,,-e(D*,FmV)

where Y = (D, g, YZ) and V = (D', g', V,M) are objects as in Definition
5.4.1(b). The chain complex D* = Hom(D,7L) is the dual of the cochain
complex D and Im(V) = Fm(V) is defined as in (5.1.8) by the space V which
realizes the coattaching map g. Hence (5.4.7) is contravariant in V and
covariant in Y. The natural isomorphism T in the diagram of Theorem 5.4.5
is given by (X,YE H(q))

(5.4.8) HM-q-e (DX, rM-qDY) T
HN+q+e(X rN+qV)

where we use (5.2.10) and (5.2.13).

Using Theorem 5.4.5 each result on the stable CW-tower corresponds to a
dual result for the dual tower. In particular the results on boundary invariants
in Chapter 4 have interesting dual formulations.
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EILENBERG-MAC LANE AND MOORE
FUNCTORS

A EILENBERG-MAC LANE FUNCTORS

We consider three types of Eilenberg-Mac Lane functors given by homology,
cohomology, and pseudo-homology of Eilenberg-Mac Lane spaces. While the
homology and cohomology of Eilenberg-Mac Lane spaces is extensively
studied (see Eilenberg and Mac Lane [I], [II], Cartan [HC], and Decker [IH]),
the pseudo-homology of Eilenberg-Mac Lane spaces is not treated in the
literature. In our theory of boundary invariants, however, the pseudo-
homology arises naturally in the same way as the cohomology in the theory of
k-invariants. For this reason we describe the cohomology and pseudo-
homology of Eilenberg-Mac Lane spaces along parallel lines. We classify
(m - 1)-connected (n + 1)-dimensional homotopy types X with

ir,(X)=0 for m<i<n.

Such homotopy types X have an (n - 1)-type ,(X) which is an
Eilenberg-Mac Lane space. Therefore our classification theorem (Section
3.4) yields explicit algebraic models of such homotopy types in terms of the
Eilenberg-Mac Lane functors.

6.1 Homology of Eilenberg-Mac Lane spaces

For m > 2 the homotopy category typeset of (m - 1)-connected m-types is
equivalent to the category Ab of abelian groups. In fact, each (m - 1)-
connected m-type X is an Eilenberg-Mac Lane space and one has the
equivalence of categories

(6.1.1) Ab -4 typeset

which carries the abelian group A to the space K(A, m). The inverse of this
equivalence carries X to the abelian group Trm(X). Using this equivalence of
categories we identify homomorphisms A -- B in Ab with homotopy classes
of maps K(A, m) - K(B, m), that is

Hom(A, B) = [K(A, m), K(B, m)]. (1)
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In particular, the homomorphism µ: A X A -A given by addition in A (with
µ(x, y) = x + y for x, y E A) yields up to homotopy a map

µ: K(A, m) X K(A, m) = K(A xA, m) -. K(A, m) (2)

which gives K(A, m) the structure of a homotopy commutative H-space. The
multiplication µ can also be obtained by loop addition since we have a
canonical homotopy equivalence

K(A, m) = 0 K(A, m + l) (3)

where SOX denotes the loop space of X. The loop space functor

fl: types' + i -' types' (4)

is an equivalence of categories compatible with the equivalence (6.1.1).

Remark We point out that the equivalence of categories in (6.1.1) is actually
induced by a functorial construction of the space K(A, m) as follows. For a
topological monoid M let B(M) be the classifying space of M; the space
B(M) is obtained as the realization of a simplicial space as for example in
Baues [GL]. If M is abelian then B(M) turns out to be again an abelian
topological monoid in a canonical way so that in this case iteration is possible.
Hence one obtains a functorial construction of the Eilenberg-Mac Lane
space by the m-fold iterated classifying space K(A, m) = BB . . . B(A). Here
the abelian group A is an abelian topological monoid with the discrete
topology. Compare also Segal [CC].

(6.1.2) Definition The (classical) Eilenberg-Mac Lane functor m):
Ab -> Ab is the composite

Ab -> typeset
H

Ab

of the equivalence (6.1.1) and the homology functor H of degree n. Hence
the functor m) carries the abelian group A to the homology group
H (A, m) = H (K(A, m)) of the Eilenberg-Mac Lane space K(A, m). The
total homology

H(A, m) = H,, (K(A, m))

is a graded commutative ring via the multiplication

H(A, m) ®H(A, m) H. (K(A, m) x K(A, m)) H(A, m).

Here we use the cross-product in homology and the multiplication µ in
(6.1.1X2).

(6.13) Definition We also define Eilenberg-Mac Lane bifunctors

Him>, Ab°P X Ab - Ab
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be the cohomology H(" ,,)(A, B) = H"(K(A, m), B) and the pseudo-homology
H (B, K(A, m)) respectively. Here B is the group of coeffi-

cients.

The universal coefficient sequences yield short exact sequences

(6.1.4)

/A

(6.1.5) Ext(B, H m))

which are natural in A, B E Ab.

(6.1.6) Proposition The functor H +' is, by (6.1.4), a kype functor on Ab and
the functor H,(,'") is, by (6.1.5), a bype functor on Ab. Moreover H(n.+) ' is dual to

in particular the kype functor H(,n) 1 is split if and only if the hype functor
is split.

Proof Let K* : Ab -b Chainz/= be the functor which carries an abelian
group A to the singular chain complex K,, (A) = C* K(A, m). Then we have

H(nm)'(A,B)=H"+ 1(K*(A),B)

H,(,m'(B, A) = K,, (A)).

Hence the proposition is a consequence of Theorem 3.3.9.

The next result is due to Decker [IH].

(6.1.7) Theorem Let k < m for m odd, and for m even let k:5 m. Then the
kype functor H(m j k is split.

Using Proposition 6.1.6 we get the corresponding result for the dual bype
functor:

(6.1.8) Theorem Let k < m - 1 form odd, and form even let k:5 m - 1.
Then the hype functor Hmm )k is split.

6.2 Some functors for abelian groups

In order to give explicit descriptions of some Eilenberg-Mac Lane functors
we have to introduce various basic functors and constructions on abelian
groups, some of which are quite bizarre. We start with the classical torsion
product.
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(6.2.1) Definition The torsion product is a functor

Tor: Ab X Ab --> Ab.

For abelian groups A and B let Tor(A, B) be the abelian group whose
generators are the symbols Th(a, b) for all positive integers h and all pairs of
elements a E A, b E B such that ha = 0 and hb = 0. These generators are
subject to the relations

Th(a,b,+b2)=Th(a,b,)+Th(a,b,), ha=0=hb1=hb2

Th(a,+a2,b)= rh(a,,b)+Th(a2,b), hat=ha,=0=hb

Thk(a, b) = rh(ka, b), hka = 0 = hb

Thk(a, b) = r,(a, kb), ha = 0 = hkb.

The torsion product, so defined by Eilenberg and Mac Lane [II], agrees
with the usual definition derived from the tensor product of abelian groups.
For this we choose a short exact sequence

(6.2.2) 0-9R-F->A ->0
where F and hence R are free abelian. We call d = dA a short free resolution
of A. Then A * B is the kernel of d ® B in the exact sequence

0->A*B-- R®B- F®B->A®B->0.
This kernel is independent, up to a canonical isomorphism, of the choice of
the short free resolution dA. In particular we choose F = 7L[A] to be the free
abelian group with generators [a], for all a E A, and R to be the subgroup of
F generated by all [a,] - [a, + a,] + [a2], for a,, a2 EA. Then the correspon-
dence [a] -a induces an isomorphism F/R A. Using this standard resolu-
tion of A we obtain

(6.2.3)
Tor(A,B)-A*BcR®B

Th(a, b) H (h[a]) ® b.

To justify the definition of the isomorphism we observe that h[a] E R since
ha = 0 in A and that

(d ® B)(h[a]) ® b = h[a] ® b = [a] ® hb = 0

since hb = 0. For a further discussion of the binatural isomorphism (6.2.3)
compare 11.3 in Eilenberg and Mac Lane [II].

Next we consider functors which we derive from Whitehead's I'-functor
and the exterior square A2 in Section 1.2. We have natural homomorphisms

(6.2.4) r(A)"A®A I'(A)
A2(A)-A®A-iA2(A).
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Here H in the top row is defined by Hy(a) = a ® a and P is the Whitehead
product defined by P(a ®b) = [a, b] = y(a + b) - y(a) - y(b) where y:
A - IF(A) is the universal quadratic map. On the other hand, H in the
bottom row is given by H(a A b) = a ® b - b ® a and we set P(a (& b) = a A b.
The homomorphisms H, P satisfy

PHP=2P and HPH=2H
so that (6.2.4) describes quadratic 77-modules in the sense of Definition 6.13.5
below. Recall that Chainz denotes the category of chain complexes C. _
{C", d"}" E r A cochain complex C* = {C", d ,l,, E z is identified with the chain
complex C,, given by C" = C-", d,, = d-".

(6.2.5) Definition Whitehead's quadratic functor IF and the exterior square
A2 induce chain functors

r,, , M. : Ab -* Chainz/= (1)

as follows. We choose for each abelian group A a short free resolution d
denoted by d = dA: X1 -> X0. Then we define for F = I' or F = A2 the chain
complex F. WA) by

F2(dA) F,(dA) FQ(dA)

II
z

II

'
II

X1 ®X1
sF(X,)

®X, ®Xo s F(Xo)
(2)

31 = (F(dA), P(dA (9 X0)),

52=(P,-XI0 dA).

The chain functors F* = IF,, M. are examples of the quadratic chain
functors in Definition 6.14.3 below. We consider dA as a chain complex
concentrated in only two degrees. The homology of dA is the abelian group
A. For a homomorphism gyp: A - B we can choose a chain map

dA -->dB,

which induces P in homology. This chain map induces

F*(dA)---,F*(dB)

given by (qpo, cp,)* (p, 0 cpo, 91 ®9,). The homotopy class
of (qpo, (PI) * depends only on the homomorphism gyp. Hence we obtain
well-defined functors F* and AA* in (1) which carry A to F*(dA), resp.
A2*(dA) and which carry a homomorphism 9 to the homotopy class of
(cPo,PI)*-
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We now consider the homology of the chain functors. As usual we define
for a chain complex C * = (C,,, d"), resp. cochain complex C (C", d ") the
homology groups

H"(C*) = kernel(d")/image(d"+,)

H"(C*) = kernel(d")/image(d"-1)

We leave it to the reader to show

(6.2.6) Proposition One has Her*(dA) = 0 and H2AA*(dA) = 0. Moreover
one has natural isomorphisms r(A) = Hor*(dA) and A2(A) = HO AZ. WA).

The remaining homology is used in the following definition.

(6.2.7) Definition Using the chain functor in Definition 6.2.5 we define the
torsion functors

rT,A2T:Ab-*Ab

by I'T(A) =H,I'*(dA) and AZT(A) = H,A2,k(dA). These are quadratic func-
tors with cross-effect rT(A I B) =A * B = AZT(A I B) given by the torsion
product in Definition 6.2.1. Compare Section 6.13 below.

(6.2.8) Remark Using the notation in Section 6.14 we have FT(A) =A *,Zr
and AZT(A) =A *71A so that the cross-effect in Definition 6.2.7 are obtained
by 7.7 in Baues [QF].

The torsion functors above yield an interpretation of the bizarre functors
fl and R introduced by Eilenberg and Mac Lane [II], §13 and §22.

(6.2.9) Theorem One has a natural isomorphism rT(A) = R(A).

Proof We here recall the definition of the functors R and we define the
isomorphism in terms of generators. Let R(A) denote the quotient group

R(A) = Tor(A, A) ®r(2A)/L5(A) (1)

with 2 A = kernel(2: A --*A) =1 /2 * A. Here L5(A) is the subgroup gener-
ated by the relations (h E 7L, a, s, t E A)

T,, (a,a)=0 ha=0 (2)

[s, t ] = T2(s, t) 2s = 2t = 0 (3)

where [s, t] = y(s + t) - y(s) - y(t) E r(2A) is the Whitehead product. We
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construct special cycles (4) and (5) below in T,(dA). Let a, b, x E A and let dA
be the standard resolution so that X0 = Z[ A] is freely generated by elements
[a], a E A. We then define for ha = hb = 0 the element

0h(a, b) _ (h[a]) ®[b] - (h[b]) ®[a] E F,(dA) (4)

where h[ah[b] EX, cX0. The element (4) is obviously a cycle, that is
518h(a, b) = 0. Moreover we obtain for 2x = 0 the element

02(x) = y(2[x]) - (2[x]) ® [x] E I',(dA) (5)

which is a cycle since y(2[x]) = 4y([x]) = 2[[x],[x]] in I'(X0). Using the
elements (4) and (5) we define the isomorphism

0: R(A) - FT(A) (6)

by O{-rh(a, b)) = (0h(a, b)) and 0(y(x)) = {02(x)}, see (1). We study the
I'-torsion fT(A) in more detail in Section 11.2.

(6.2.10) Theorem One has a natural isomorphism AZT(A) = [1(A).

Proof We recall the definition of 11(A); see Eilenberg and Mac Lane [II],
§13. We define the group 11(A) to be the abelian group generated by the
symbols wh(x), for positive integers h and elements x EA with hx = 0,
subject to the relations

Whk(x) = kwh(x) hit = 0 (1)

kwhk(x) = wk(kx) hkx = 0 (2)

wh(kxly)=whk(xly) hkx=hy=0 (3)

Wh(XIyIZ)=0 hx=by=hz=0. (4)

Here we use for a function f: A -' B the notation

f(xIy)=f(x+y)-f(x)-f(y), (5)

f(xlylZ) =f(x+y+z) -f(x+y) -f(x+Z) -f(y+Z)
+f(x) +f(y) +f(z). (6)

Hence f(x I y) is bilinear in x, y if and only if f(xl yl z) = 0. Now let dA:
X, -> Xo be the standard resolution of A so that Xo = l[ A] is freely
generated by elements [a], a EA. We then define for x EA with hx = 0 the
element

Oh(x) _ (h[x]) ®[x] EXI ®XO cA;(dA) (7)
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where h[x] EX, cX0. One readily checks that ©h(x) is a cycle, that is
S,©h,(x) = 0. Using the element (7) we define the isomorphism

O: f2(A) - AZT(A) (8)

by ©(wk(x)) = {Oh(x)}. For a cyclic group 7L/m7L, m > 1, generated by x we
obtain the cyclic group

fl(Z/mZ) = 7L/m7L

generated by wm(x).

We now use the chain functors for the definition of torsion bifunctors. For
this recall that [C*,K*] denotes the set of homotopy classes of chain maps
C * - K*. For an abelian group B let

dB: X, -+X0, sdB: Y2 -> Y,

be short free resolutions of B considered as chain complexes.

(6.2.11) Definition We introduce the torsion bifunctors

FT*,FT*,AZT*,AZT*: Ab°P xAb ->Ab.

Here we use for F = t or F = AZ the pseudo-homology and cohomology of
F. dA with coefficients in B which defines:

FT*(B,A) = [dB,F*dA]=Ho(B,F*dA)

FT*(A,B) = [F*dA,sdB] =H'(F*dA, B).

Using the universal coefficient sequences one has the following natural
short exact sequences.

Ext(B,FT(A)) >-> FT*(B, A) -. Hom(B, F(A))

Hom(fT(A),B)
Ext(B, AZT(A)) >-> AZT*(B, A) - Hom(B, AZ(A))

Ext(AZ(A), B) >-> AZT*(A, B) -. Hom(AZT(A), B).

Hence FT* is a bype functor dual to the kype functor FT# and AZT* is a
bype functor dual to the kype functor AZT*. These functors are linear in B
and quadratic in A; see Section 6.13 below.

Next we describe a further pair of bifunctors L*, L* which are dual to
each other.
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(6.2.12) Definition As in Eilenberg and Mac Lane [II] §27 one obtains a
bifunctor

L#:Ab°PxAb- Ab

as follows. Let L#(A, B) be the abelian group consisting of all pairs (a, b)
where b: AZ(A) -> B is a homomorphism and where a: A -> B ® 2/2 is a
function satisfying the condition

a(x+y)-a(x)-a(y)=b(xAy)®1

for x, y E A. One has the natural short exact sequence

Ext(A®71/2, B) ° L#(A,B) Hom(M(A),B)

with µ(a, b) = b and A(a) = (Oa, 0) where

0: Ext(A ® 2/2, B) = Hom(A (9 Z/2, B ® 71/2) = Hom(A, B ® Z/2).

Hence L# is a kype functor. There is a different definition of L# by use of
the `quadratic Hom functor' in Definition 6.13.14 below. For this we use the
`quadratic 2-module'

L'(B)=(71/2(9 B-0-4B-2-1 2/2®B)

where q is the quotient map. Then we have a canonical binatural isomor-
phism

L#(A, B) = Hom7(A, L'(B)).

(6.2.13) (A) Definition We introduce the bifunctor

L#: Ab°P x Ab - Ab

as follows. If A and B are finitely generated let L#(A, B) be the abelian
group generated by elements (b, a) and (,8) with b E B, a E Hom(A, 71/2),
and 19 E Ext(A, A2(B)). The relations are

(/3+P')=(0)+(/3')
(b, a+a')=(b,a)+(b,a')
(b+b',a)= (b, a)+(b',a)+(bAb')*(da).

Here d: Hom(A, Z/2) -> Ext(A/2) is the natural connecting homomorphism
induced by the short exact sequence 71 2 - 71/2. Moreover (b A Y).:
Ext(A,71) - Ext(A, AZB) is induced by the homomorphism 2 -* A2B which
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carries 1 to b A b'. It is obvious how to define induced maps for the bifunctor
L.. One has the natural short exact sequence

Ext(A, A2B) N L#(A, B) Hom(A, B (9 71/2)

with 0(/3) _ 0 and A(,6) = 0, µ(b, a) = b * (a) where b * is induced by the
homomorphism Z/2 - B ® 71/2 which carries the generator 1 to b 0 1. The
exact sequence shows that L. is a bype functor on Ab. The definition of L.
can also be obtained by the quadratic tensor product in Definition 6.13.13. In
fact, we have the binatural isomorphism

L#(A, B) = B ®z L(A)

where

L(A) = (Hom(A,71/2) - Ext(A,71) -L Hom(A,71/2)).

Here d is the connecting homomorphism induced by the exact sequence
Z-z->Z-'71/2.

(6.2.13) (B) Definition For arbitrary abelian groups A and B we have to
use the following more intricate definition of the bifunctor L,, above. Let
71[B] be the free abelian group generated by the set B. We have the following
commutative diagram with short exact rows

K2(B) >
i 71[B] ®71/2

P2,
B ® 71/2

IYB

A2(B)®71/2r=_1'_1r(B)®71/2 °OB®71/2

compare Section 1.2. Here K2(B) is the kernel of the canonical projection
P2 with p2([b] ® 1) = b ® 1 and y' is the homomorphism defined by
y'([b] (9 1) = (yb) ® 1 for b c- B. Using the natural transformation yB we
obtain the following push-out diagram

Hom(A,K2(B)) N Hom(A,71[B] (&71/2)

Yl push

Ext(A, A2B) >'
I

L4,(A, B) 00 Hom(A, B ® 71/2)

where y(a) = a*ye with yB E Hom(KB, AZ(B) (9 Z/2) = Ext(KB, AZ(B)) as
above. This completes the definition of the bifunctor L, in Definition
6.2.13(A). One can check that Definition 6.2.13(A) coincides with the one
here since we have the isomorphism of quadratic 11-modules

L(71/2) = (71/2 _1 # 71/2 -0 Z/2) = Zr ® 71/2

so that B 0 L(Z/2) = r(B) 0 71/2.
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(61.14) Theorem The functors Lv and L* above are dual to each other.

Proof Our proof is indirect. In fact, Eilenberg and Mac Lane [II] show

H(63)(A, B) = L*(A, B) ®Hom(A *7L/2, B).

On the other hand, we show below

H53)(B, A) = L4,(B, A) ® Ext(B, A *Z/2).

This implies that L" and L,1, are dual to each other since we know that H(3)
and H531 are dual to each other; see Proposition 6.1.6.

6.3 Examples of Eilenberg-Mac Lane functors

Many cases of Eilenberg-Mac Lane functors are computed explicitly in the
literature. Compare Eilenberg and Mac Lane [II], Cartan [HC], Serre [CM],
and Decker [IH] for the computation of the groups

H,,(A,m) =H"(K(A,m)),

H(m)(A, B) = H"(K(A, m), B).

The pseudo-homology

H,1,m)(B, A) =H"(B, K(A,m))

is not treated in the literature. By the work of Cartan one has a small model
of the chain complex C* K(A, m) which can be used for the computation of

A) as a functor in A and B. On the other hand, we can use the
duality of Proposition 6.1.6 which shows that the functors H(mj 1 and
determine each other; see Section 3.3. The duality, however, does not give us
an appropriate formula for Him) if we know such a formula for H(' n' )1 or vice
versa.

We now describe, for small values of m and r = n - m, some of the
Eilenberg-Mac Lane functors above. For the classical Eilenberg-Mac Lane
functor Hm+,(-, m) one has the following list of natural isomorphisms,
AEAb,m>2.
(6.3.1) Hm(A,m)=A and Hm+1(A,m)=0

(6.3.2) Hm+z(A,m)=(A(®7L/2 m>-3.

Here I is Whitehead's functor (see Section 1.2).

FT(A) m=2
(6.3.3) Hm+3(A,m)= A2(A)®A*Z/2 m=3

A*7L/2 mz4.
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Here A * B is the torsion product of abelian groups and AZ(A) is the exterior
square. Moreover FT(A) is the F-torsion of A (see Section 6.2); this is R(A)
in the notation of Eilenberg and Mac Lane [II]; see Theorem 6.2.9.

I'6(A) m=2

(6.3.4) Hm+4(A,m)= 3 AZT(A)®A®71/3 m=3
I'(A)®A®71/3 m=4
A(9 (71/2®71/3) m;-> 5.

Here A2T(A) is a AZ-torsion of A (see Section 6.2); this is fl(A) in the
notation of Eilenberg and Mac Lane [II]; see Theorem 6.2.10. Moreover
I76(A) is part of the free algebra with divided powers IF,, A generated by A;
see Eilenberg and Mac Lane [II].

see Decker [IH] m=2
AOA ®71/2®A®Z/3 m=3

(6.3.5) Hm+s(A, m) = I'T(A) ®A *71/3 m=4
AZ(A) ®A * (71/2 ® 71/3) m=5
A*(71/2(D 71/3) m>_6.

The results of (6.3.1)-(6.3.5) were essentially obtained by Eilenberg and Mac
Lane [II]. One can find further explicit functorial descriptions of Hm+,(A, m)
in Decker [IH], in particular, in the metastable range r < 2m. Next we
consider for r< 4 the bifunctors

(6.3.6) H(m) +.+', H(, ,'"+)r: Ab°P x Ab -+ Ab

which are dual to each other with kype and bype structure given by (6.1.5)
and (6.1.4) respectively. Hence we have in the split case, see for example
Theorems 6.1.7 and 6.1.8, the natural isomorphisms

(6.3.7)

Hcmj'+'(A, B) = Ext(H,(A, m), B) ®Hom(Hm+,+(A, m), B)

Ext(B,Hm+r+i(A,m)) ® Hom(B,Hm+,(A,m))

where the right-hand side is determined by the functors in (6.3.1)-(6.3.5). We
now describe formulas for the functors in (6.3.6) in the following lists, where
split means that one has to apply formula (6.3.7); moreover 'ED split' means
that one has to use formulas as in (6.3.7) for the remaining terms described in
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10 and H95) in (6.3.12) below.the same line; compare the example on H(5)

(63.8)

H(m+ 2(A, B) Hm(m+)I(B, A) Hm+,(A, m) Hm+2(A, m)

m=2
m3

Hom(I'A,B)
Hom(A®7L/2, B)

Ext(B,FA)

Ext(B,A®7L/2)
0

0

f(A)
A®Z/2

(63.9)

H(mj 3(A, B) A) Hm+2(A, m) Hm+3(A, m)

M = 2 rT#(A, B) rT#(B, A) F(A) FT(A)

m=3 L#(A,B)® L#(B,A)® A®7L/2 A2(A)®
Hom(A *7L/2, B) Ext(B, A *7L/2) A *7L/2

m>4 4 split split A ® 71/2 A *Z12

For the definition of the torsion bifunctors FT* and FT#, see Definition
6.2.11 and for the definition of L#, L. see Definition 6.2.13 and Theorem
6.2.14.

(63.10)

H(mj 4(A, B) Hm+)3(B, A) Hm+3(A, m) Hm+4(A, m)

m=2 FT(A) T6(A)

m=3 A2T#(A, B) A2T#(B, A) A2(A) A2T(A)
® split ® split ®A * 71/2 ®A ® 71/3

m=4 split split A *7/2 T(A) ®A ® 71/3

m >_ 15 split split A *7/2 A ® 71/6

The split cases are consequences of Theorems 6.1.7 and 6.1.8.

(63.11)

H(m+)5(A, B) A) Hm+4(A, m) Hm+5(A, m)

m=2 r'6(A) see Decker [IH]

m=3 A2T(A) A®A®7L/2
®A ® 71/3 ®A *Z/3

m = 4 1'T#(A, B) FT#(B, A) T(A) FT(A)
® split ® split ®A 0 Z/3 ®A * Z/3

m= 5 L#(A, B) L#(B, A) A® 71/2 A2(A)
® split ® split ®A o 2/3 ®A * Z/6

m >_ 6 split split A 0 71/6 A *Z/6
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The split case m >_ 6 is again a consequence of Theorem 6.1.7 and 6.1.8.
For example the case m = 5 in the list means that one has natural isomor-
phisms of kype functors and bype functors respectively:

(6.3.12)

H(S0)(A, B) = L#(A, B) ®Ext(A (9 71/3, B) ®Hom(A *Z/6, B),

H95)(B, A) = L#(B, A) ® Ext(B, A *71/6) ® Hom(B, A (9 1/3).

For the definition of L# and L# see Definitions 6.2.12 and 6.2.13.

Proof for the lists (6.3.8)-(6.3.11) One finds all computations of the cohomol-
ogy H°'+,+ 1 for r< 4 in §27 of Eilenberg and Mac Lane [II]. The case HHj is
not treated by Eilenberg and Mac Lane. This case is obtained as follows. We
shall show in Theorem 9.4.2 that H42) = FT#. Since FT* is dual to FT# and
since H(2) is dual to H42) this also implies H(2) = FT #. Hence we use here
duality in a crucial way. We also use duality for the computation of
For example H150 in (6.3.11), m = 5, is known by Eilenberg and Mac Lane
[II]. This yields H95> since we have the duality of L# and L. in Theorem
6.2.14. The cases H(3), H63), H(4), and H84 are treated in the Diplomarbeit of
J. Wendelken [KEM].

6.4 On (m - 1)-connected (n + 1)-dimensional homotopy types
with7r;X=0 for m <i <n

We consider homotopy types of (n + 1)-dimensional spaces X for which the
(n - 1)-type P -,(X) is an Eilenberg-Mac Lane space K(A, m), m > 2. For
such homotopy types the classification theorem in Chapter 3 can be applied
effectively since the category C in this case is just the category of (m - 1)-
connected m-types which is equivalent to the category of abelian groups.
Moreover the bype and kype functors in question are the Eilenberg-Mac
Lane bifunctors discussed in Section 6.1; explicit examples of Eilenberg-Mac
Lane functors are described in Section 6.3 above.

Let spaces(m, n), be the full homotopy category of (m - 1)-connected
(n + 1)-dimensional CW-spaces X with Tri(X) = 0 for m < i < n. Moreover
let types(m, n), be the full homotopy category of (m - 1)-connected n-types
Y with iri(Y) = 0 for m < i < n. Hence Y has at most two non-trivial
homotopy groups aY and ir,,Y. Recall that we have the Eilenberg-Mac
Lane functors H(m+) ' and H,1,') in Sections 6.1 and 6.3 which are kype
functors and bype functors respectively. The next result is an immediate
application of the classification theorem 3.4.4; it gives us explicit algebraic
models of homotopy types.
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(6.4.1) Classification theorem Let 2< m < n. Then one has detecting functors

A : spaces(m, n) . -> Kypes(Ab, H('mj'

A': spaces(m, n),- Bypes(Ab, H,m')

A: types(m, n),r kypes(Ab, H( ') = Gro(H(,,,)'

A': types(m, n),r -> bypes(Ab, H,,,'")).

Here the categories on the right-hand side are the purely algebraic cate-
gories given by the kype functor H(,,,)' and the bype functor H, m ; see
Sections 3.1 and 3.2. The detecting functor A in the classification theorem is
well known in the literature. The more sophisticated detecting functors A,
A', and A', however, yield new results on the algebraic classification of
homotopy types.

Proof of Theorem 6.4.1 Consider Theorem 3.4.4 where we take m + r = n
and

Then we have

C = typesO - Ab. (*)

spaces'm ' (C) = spaces(m, n)

typesm(C) = types(m, n)

and E, resp. F, in Theorem 3.4.4 coincide with H(m 1, resp. Him), by use of
the equivalence (*). This immediately yields the proposition of Theorem 6.4.1.

11

Recall that the used in Theorem 6.4.1 are tuples

X=(A,ir,k,H,b)

where A, zr, H are abelian groups and

(6.4.2)
kEH(1'I(A,ir)
b E

H- I(A, m)
'_

it is exact. The kype X is free
if H is free abelian; then X is an object in Kypes(Ab, H(,,,+)1) and thus X
determines via A in Theorem 6.4.1 a unique homotopy type X in
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spaces(m, n)" with A(X) _- X. In (3.1.5) we associate with X the exact
r-sequence which is the top row in the commutative diagram, A = lrm X,

(6.4.3)

H H"+i(A,m) µ(k) IT - H(kt)->H"(A,m)--0

II II II
1 --

II

H"+,X ---> r,,X - vr"X H"X - I'" _,X -' 0

which is a natural `weak' isomorphism of exact sequences. The bottom row is
part of Whitehead's certain exact sequence for X; compare Theorem 3.4.4. In
particular we get:

(6.4.4) Theorem Let X be an (m - 1)-connected space, m >: 2, with Tr;X = 0
for m < i < n. Then the homology H,, X is determined as an abelian group by the
k-invariant k e H(m '(7rm X, ir,, X) of X since we have the isomorphism H,, X
H(kt) in (6.4.3).

Remark The main theorem of Eilenberg and Mac Lane [RH] shows that the
cohomology H"(X, G) of a space X as in (6.4.4) is determined up to
isomorphism by the k-invariant k of X. Their description of H"(X,G) relies
on a choice of a cocycle representing k. The direct computation of H"(X) =
H(kt) in terms of k in Theorem 6.4.4, however, was not achieved and seems
to be new; compare the remark following the theorem of Postnikov invariants
in Theorem 2.5.10. Using Theorem 6.4.4 we obtain H"(X,G) as an abelian
group by

H"(X,G) = Ext(H,,_,(ir"X, m),G) ® Hom(H(kt),G)

where we use the universal coefficient formula.

On the other hand, recall that the H,,(')-bypes in Theorem 6.4.1 are tuples

(6.4.5)

Here A, H0, H, are abelian groups and

(b E Hom(H1, H"+,(A,m)),

S1 0 E H,(,m)(H0, A, b) = cok(D Ext(Ho, b)),

A Ext(H0, b): Ext(Ho, H,) -> Ext(Ho, H,,, (A, m)) -'H,(,m'(H0, A),

such that µ( j3): Ho -+ H,,(A, m) is surjective. The bype X is free if H, is free
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abelian; then X is an object in Bypes(Ab, and thus X determines via
A' in Theorem 6.4.1 a unique homotopy type in X in spaces(m, n) with
A'(X) - X. In (3.2.5) we associate with X the exact f-sequence which is the
top row in the commutative diagram, A = Hm X,

(6.4.6)

H1 b Tr(pt)-> Ho

II b_IX II 1 II II

F,,-1X ->0.

This is a natural `weak' isomorphism of exact sequences; compare Theorem
3.4.4. Dually to Theorem 6.4.4 we thus get:

(6.4.7) Theorem Let X be an (m - 1)-connected space, m >_ 2, with 7ri(X) = 0
for m < i < n. Then the homotopy group ir X is determined as an abelian group
by the boundary invariant /3 E H,1, m)(H X, Hm X, b + 1 X) of X since we have the
isomorphism ir,, X =- ar{ /3t} in (6.4.6).

6.5 Split Eilenberg-Mac Lane functors

We describe Eilenberg-Mac Lane sequences. Such sequences are algebraic
models of (m - 1)-connected (n + 1)-dimensional homotopy types X with
iri(X) = 0 for m < i < n in the case when the Eilenberg-Mac Lane functors

and H,(,m) are split.

(6.5.1) Definition Let n > m >_ 2. An Eilenberg-Mac Lane (m, n)-sequence
S is an abelian group A together with a chain complex of abelian groups

S={H1

which is exact in H, 1(A, m) and H (A, m). Here we use the classical
Eilenberg-Mac Lane functors H,(-,m) in Definition 6.1.2. A proper mor-
phism between (m, n)-sequences is a homomorphism f: A-A' together
with a commutative diagram

H1

1W1 If. 1Ifs

Hi

We call an (m, n)-sequence S free if H1 is free and injective if b is injective.
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Let S(m, n), resp. s(m, n) be the categories consisting of free, resp. injective,
(m, n)-sequences and proper morphisms. These categories coincide with the
categories S(EO, E,), resp. s(E0, E,) in Definition 3.6.1 where we set E0 =

H . ,(-, m). As in Definition 3.6.1 we have the natural

equivalence relations
k

and
b

on these categories.

(6.5.2) Classification theorem Let 2 < m < n = m + r and assume or
equivalently H,(,m) are split; this is the case for r < m or for m even and r < m; see
Theorems 6.1.7 and 6.1.8. Then one has detecting functors

A: spaces(m, n) -> S(m, n)/

A': spaces(m, n )T - S(m, n) /

A: types(m, n) - s(m, n)/

,1':types(m,n), -*s(m,n)/ .

Proof We apply the classification theorem 3.6.3; compare the proof of
Theorem 6.4.1 above.

As a special case of Theorem 6.5.2 one obtains for m >: 4, n = m + 2, the
example discussed in Theorem 3.6.5. The theorem shows that (m, n)-
sequences are algebraic models of homotopy types in case H,(,'°) or H(mj' are
split. In fact, proper isomorphism classes of free (m, n)-sequences in S(m, n)
are in 1-1 correspondence (via A or A') with homotopy types in
spaces(m, n),. On the other hand, proper isomorphism classes of injective
(m, n)-sequences in 9(m, n) are in 1-1 correspondence (via A or A') with
homotopy types in types(m, n), Here we use the detecting functors in
Definition 3.6.1(6), (7).

Let X be the unique homotopy type in spaces(m, n) corresponding via
A (or A') to a free (m, n)-sequence S as in Definition 6.5.1, so that A(X) = S
(or A'(X) - S). In Definition 3.6.1(8) we associate with S the exact (-
sequence which is the top row in the commutative diagram (A = H,,, X)

(6.5.3)

H1 -+ 0

II II at at II

,X -p [' X -p H,, X - 0.

This is a natural `weak' isomorphism of exact sequences. The same diagram is
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available in case S is an injective (m, n)-sequence and X is a homotopy type
in types(m, n),.

(6.5.4) Example For m = 4 and n = 7 we know that H(4) and H(8 are split
and that

H7(A,4) =A *Z/2

H8(A,4) = r(A) ®A ® Z/3;

see (6.3.3) and (6.3.4). Hence 3-connected 8-dimensional homotopy types X
with ir5X = 1r6X = 0 are in 1-1 correspondence with proper isomorphism
classes of chain complexes in Ab

S= (Hl

which are exact in A * 7/2 and r(A) ®A ® 71/3 and for which H, is free
abelian. If X is the homotopy type corresponding to S then one has the
commutative diagram of exact sequences

H, ->r(A)®A®Z/3-ker(S) cok(d)-*A*7/2-*0

II II at =1 II

H8 X - r, X - ir, X -> H7X - r6 X -0

which is a natural `weak' isomorphism of exact sequences. For example, for
A = 2/2 with r(71/2) = 71/4 the (4,7)-sequence

S = {7171/4 -L 71/16171/2 -+ 0}

corresponds to a 3-connected 8-dimensional homotopy type X with

71
2 *

71/4
4 0

71/8 71/8 71/2 , 0

II II II II II

H8 X -> r, x - it7 X --* H7 X ---> r6 X -)'0

and ir6X= ir5X=0 and ir4X=H4X=71/2 and H6X=r5X=71/2, H5X=
r4x=0.

6.6 A transformation from homotopy groups of Moore spaces to
homology groups of Eilenberg-Mac Lane spaces

There is a connection between the homotopy groups of Moore spaces and the
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homology groups of Eilenberg-Mac Lane spaces. For example, it was ob-
served by Eilenberg and Mac Lane, and J.H.C. Whitehead that

7r3M(A, 2) = FA = H4 K(A, 2).

We here describe further results of this kind. We have the canonical map

k: M(A,n)->K(A,n) (n>2)

which induces the identity on ir = A. This map induces a natural transforma-
tion Q which carries the homotopy groups of a Moore space to the homology
groups of an Eilenberg-Mac Lane space (N > n):

(6.6.1)

7rNM(A,n)
Q-b (CNk)i'-HN+1K(A,n)

= Ti = J,b

TNM(A, n)
rN(k)

FNK(A, n).

Here i and b are operators of the exact sequence of J.H.C. Whitehead which
are isomorphisms for N> n. We call an element a E irNM(A, n) strictly
decomposable if there is a homotopy commutative diagram

SN - M(A,n)
(6.6.2)

XnN+-1 1

where X, i1 is a CW-complex which is n-connected and (N - 1)-dimensional.

(6.63) Lemma If a E ITNM(A, n) is strictly decomposable then Qa = 0.

Proof If a admits a factorization as above the composition

X11.11_1' ->M(A,n) -->K(A,n)N-1 cK(A,n)N

is null-homotopic since [X, ,1, K(A, n) = 0]. This implies the lemma.

(6.6.4) Lemma Let a E irNM(A, n) with N > n. Then Q[ a,,61 = 0 for any
Whitehead product [a, 13 ].

Proof Let /3 E IrM M(A, n), M >- n. Then the composite

[a, p]: SN+M-1 __, SN V SM -M(A,n) -
K(A,n)N+M-1

is trivial since n < N < N + M - 1, (n >- 2).
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For a, 13 EA = irnM(A, n), however, the element Q[a, 6] is not necessar-
ily trivial. This follows from Theorem 6.6.6 below.

(6.6.5) Theorem For N > 2n - 1 we have a commutative diagram:

TrN(Sn) xA -> ¶¶N(S n) ®A

ICI
C2

vrNM(A,N) --HN+1
IK.

(A, n)

TrN(M(A,n),M(A,n n
D j7TNM(A, n) -- cok c2.

Here j is defined by the n-skeleton M(A, n)n of M(A, n). Moreover, for
a EA = 7rnM(A,n) and 6E ITNSn we define the function c1 by the com-
posite c1Q, a) = a a 6. We show that Qc1 is bilinear, therefore we obtain the
factorization c2. Moreover, we show that for the projection p above the
composition pQ factors through j.

Proof of Theorem 6.6.5 Qcl is bilinear. This follows from the left distributiv-
ity law and from Lemmas 6.6.4 and 6.6.3. Clearly by definition of j we have
jc1 = 0. Moreover, by the Hilton-Milnor formula for irnM(A, n)n we see that
the kernel of j is spanned by the image of c1 and by composites WW where W
is a Whitehead product. Now we obtain the result by Lemmas 6.6.3 and 6.6.4
since N > 2n - 1.

For N = n + 2 the kernel of Q is actually generated by elements as in
Lemma 6.6.4 and Theorem 6.6.5. The image of Q is a subfunctor which
carries A to QirNM(A,n)cHN+1K(A,n). While the homology groups
HJK(A, n) were extensively studied, the groups QIrNM(A, n) seem to be
unknown. These groups are non-trivial since we get:

(6.6.6) Theorem For n >- 2 we have the isomorphism

FA forn=2Q: n+iM(A,n)-Hn+2K(A,n)= A®l2 forn>-3

and the surjection

I'T(A) for n = 2
Q: irrt+2M(A,n)-.Hn+3K(A,n)= A*Z2®A2(A) forn=3

A*772 forn - 4.
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Proof The isomorphism is obtained since, by a result of J.H.C. Whitehead,
r(HX) for any (n - 1)-connected space X. Below in Chapters 7,

8, and 11 we shall compute for any (n - 1)-connected space X. This
yields the surjection, n >- 2.

The operator Q is available for F-groups with coefficients as follows
(n <N):

(6.6.7)

TrN(B, M(A, n))
1

HN+,(B, K(A, N))Q-b k.i
i 1=

FN(B, M(A, n))
k.

lb

FN(B,K(A,n)).

Here the isomorphisms i and b are given by the exact sequence in Section
2.3. The pseudo-homology is the group of homotopy classes of chain maps

(i) HN(B, K(A, n)) = [C* M(B, N),C* K(A,n)].

This is a bifunctor on pairs (B, A) of abelian groups. The operator Q is
embedded in the following commutative diagram, the rows of which are short
exact sequences:

(ii)

Ext(B,arN+,M(A,n)) >_+ 7rN(B,M(A,n)) µ Hom(B,ITNM(A,n))
IQ. IQ IQ.

Ext(B,HN+2K(A,n)) ° HN+,(B,K(A,n)) Hom(B,HN+,K(A,n)).

Here Q * is induced by Q in (6.6.2). This diagram is easily obtained from the
definition in (6.6.7), compare Section 2.3. For N = n + 1 the right column of
(ii) is an isomorphism and the left column is surjective by Theorem 6.6.6.
Therefore we get the

(6.6.8) Corollary For N = n + 1 diagram (ii) is a push-out diagram and

Q: 7rz+i(B,M(A,n))

is surjective, n >- 2.
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The fundamental importance of the subfunctors

QIrNM(A,n) cHN+,K(A,n),

QorN(B; M(A,n)) cHN+,(B; K(A,n))

is described by the following fact. Let X be any (n - 1)-connected CW-
complex with 7r,, X = H,, X = A. Then we have the homotopy commutative
diagram

M(A,n) -k -K(A,n)

(6.6.9)

where kX is the fundamental class of X and where i induces the identity on
H,,. The map k is the one in (6.6.1). The map kX induces homomorphisms

Q: FNX-*FNK(A,n)=HN+IK(A,n)

Q: FN(B; X) -+ FN(B; K(A, n)) = HN+ l(B, K(A, n))

and (6.6.9) immediately implies:

(6.6.10) Proposition For all (n - 1)-connected CW-complexes X with ir,, X =
H X =A, n > 2, we have inclusions

Q-rrNM(A, n) c QFNX c HN+,K(A, n),
i j

QTrN(B; M(A, n)) c QI'N(B; X) C HN+,(B; K(A, n)).
i j

Here i is the identity if X = M(A, n) and j is the identity if X = K(A, n).

This fact clearly shows that a computation of I'NX involves the computa-
tion of QlrNM(A, n). For example we derive from (6.6.7) and Corollary 6.6.8.

(6.6.11) Theorem For all (n - 1)-connected CW-complexes X with
H,, X =A, n >- 2, we have surjective maps

Q: rR+2X-"H,,+3K(A,n),

Q: X) -. H,,, 2(B; K(A,n)).

In fact, we will compute the groups F,, + 2 X and F,, + ,(B; X) for any
(n - 1)-connected space X, n >: 2.
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B MOORE FUNCTORS

Moore functors are dual to Eilenberg-Mac Lane functors. We used
Eilenberg-Mac Lane functors for the classification of (m - 1)-connected
(n + 1)-dimensional homotopy types X which have trivial homotopy groups

7r,(X)=0 for m<i<n. (*)

Now we use Moore functors for the classification of (m - 1)-connected
(n + 1)-dimensional homotopy types X which have trivial homology groups

H,(X)=0 for m <i <n. (**)

We assume that m > 2 and n = m + r >- 4. For r = 2 such spaces are part of
the classification in Chapters 8, 9, and 12. In both cases (*) and (* *) we use
the classification theorem (Section 3.4). If we want to apply this theorem we
have to choose a full subcategory C c typeset 1. In case (*) the category C is
the category of Eilenberg-Mac Lane spaces K(A, m) which is equivalent to
the category of abelian groups. In case (* *) the category C is the full
homotopy category of `(m, n)-Moore types' which can be described in terms
of the homotopy category M'" of Moore spaces M(A, m). There are algebraic
categories equivalent to the category M"', for example for m >- 3 we have the
equivalence G = M'" in Theorem 1.6.7. The classification theorem Section 3.4
describes bype and kype functors on C which in case (*) are the
Eilenberg-Mac Lane functors and which in case (* *) are functors which we
call 'Moore functors'. They are given by homotopy groups of Moore spaces.
In the stable and metastable range we describe various algebraic properties
of such Moore functors. For the metastable range we need the basic theory of
quadratic functors which we describe in Sections 6.13 and 6.14.

6.7 Moore types and Moore functors

Let n=m+r with m,r>2.

(6.7.1) Definition An (m - 1)-connected (n - 1)-type X is an (m, n)-Moore
type if the homology groups of X satisfy Hi(X) = 0 for m < i < n. Let
Moore(m, n) be the full homotopy category of (m, n)-Moore types in
Top*/=.

In this section we describe an algebraic category equivalent to the category
of (m, n)-Moore types and we study kype and bype functors on the category
Moore(m, n) which we call Moore functors. Recall that Mm denotes the full
homotopy category consisting of Moore spaces M(A,m) of degree m. Alge-
braic models of this category are studied in Chapters 1 and 10. We now use
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homotopy groups 1M(A, m) to define an `enriched' category of Moore
spaces which is equivalent to Moore(m, n).

Definition Let M(m, n) be the following category. An object is a pair
(M(A, r n), i ), also denoted by (A, i ), where

is it (1)

is a surjective homomorphism. For r >- 3 a morphism

(ilp, i/r): (M(A,m),i) -' (M(A',m),i) (2)

is given by a homotopy class

;P E [M(A, m), M(A', m)] (3)

(which is a morphism in Mm) and by a homomorphism r/r: 7r- 7r' such that
the diagram

'nrt-1M(A,m)
`'.7rii-1M(A',m)

1i

41

li,

7r 7r'

(4)

commutes. For r = 2 a morphism is an equivalence class {ip, 41} of a pair
(irp, ii) as above. Here we need the action + of Ext(A,7rm+1M(A', m)) on the
set (3); see Section 1.3. Since for r = 2 we have m + 1 = n - 1 we thus get an
action of Ext(A, ker i') on the set (3). Now we set (4p, 41) - if 1/i = 4io
and if there is a E Ext(A, ker i') with irp = ipo + a. This equivalence relation
defines the class (rlp, ip) which is a morphism in M(m, m + 1).

(6.7.3) Proposition For n = m + r with m, r >- 2 there is an equivalence of
categories

0: Moore(m, n) -- M(m, n).

This result is a consequence of proposition (111.8.8) of Baues [CH]. We
obtain the equivalence in Proposition 6.7.3 as follows. For each Moore type
X in Moore(m, n) choose a map

is M(A,m) -*X (1)

which induces the identity A = H. X in homology. Then the functor 8 in
Proposition 6.7.3 carries X to the pair

i . : 1M(A, m) -. 7r,,_ 1X) (2)
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where i * is surjective since H - 1 X = 0. Since r > 2 we can assume that i is
the (n - 1)-skeleton of X. Then 0 carries a map f : X -> X' to (;p, 7r f)
where fP is the restriction of f to the (n - 1)-skeleton.

We now introduce functors on the category in Proposition 6.7.3 which we
call 'Moore functors'.

(6.7.4) Definition The Moore functors

Mo,M1:M(m,n)-+Ab

are defined as follows. For an object (A, i) = (M(A, m), i) let

M0(A,i) = kernel(i: 7ri_1M(A,m) -. rr)

and

M1(A,i) = cokernel('q: M0(A, i) - m)).

Here q is the restriction of the map q,*,: in _ 1 M(A, m) - ir,, M(A, m) in-
duced by the Hopf map n,,,. The function 77,* is a homomorphism since
n = m + r >: 4. It is clear how to define Mo and M1 on morphisms.

We can describe the Moore functors also by use of homology groups. For
this let X(A, i) be the (m, n)-Moore type corresponding to (M(A, m), i) via
the equivalence 0 in Proposition 6.7.3.

(6.7.5) Proposition There are isomorphisms

M0(A,i)

M1(A, i) i) = i)

which are natural in (A, i) _ (M(A, m), i) E M(m, n).

Proof Since M(A, m) is the (n - 1)-skeleton of X(A, i) we have

rn-1X(A,i) _ -rri_1M(A,m).

Moreover the operator in-, in Whitehead's exact sequence coincides with i,
that is

in-1: ri_1X(A,i)= iriM(A,m) ir= 7ri_1X(A,i).

This implies H,, X(A, i) = ker(i) = MO(A, i) since 7r X(A, i) = 0. In a similar
way we get X(A,i)-M1(A,i).
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Next we define bifunctors

(6.7.6)
M#: M(m, n)°P x Ab -> Ab
M#: Ab°P X M(m,n) -> Ab,

which we also call Moore functors. We define these functors by cohomology
and pseudo-homology groups with coefficients:

M#(A,i; B) =H"+'(X(A,i), B)

M#(B; A,i) =H"(B,X(A,i)).

Here again we use the equivalence in Proposition 6.7.3. Hence M# and M#
are kype and bype functors respectively with structure (M0, MI, 0, µ); see
Proposition 6.7.5 and Theorem 3.3.9. Moreover M. and M# are dual to each
other. We can describe the bype functor M# together with its bype structure
(M0, M1, 0, µ) by the following push-out-pull-back diagram in which the
rows are short exact.

(6.7.7)

Ext(B,lr"M(A,m)) H it"_i(B,M(A, m)) Hom(B,7r"_,M(A,m))

19s push
1

II

Ext(B, M1(A, i)) I'"_i(B,X(A,i)) - Hom(B,vr _1M(A,m))

II 1

Ext(B,M,(A,i)) H M#(B;A,i) - Hom(B,M0(A,i)).

Here q is the projection and j is the inclusion; see Definition. 6.7.4. One
obtains this diagram similarly as in the proof of Proposition 6.7.5 by the exact
sequence in Section 2.3. The diagram shows that M. can be computed by the
homotopy groups of a Moore space with coefficients,

v,, _,(B, M(A, n)) = [M(B, n - 1), M(A, m)]. (1)

The top row in the diagram is the universal coefficient sequence. Though (1)
is not a functor in B one can check that the push-pull group M#(B; A, i) in
(6.7.7) is a functor in B, so that diagram (6.7.7) can be used to define the
bifunctor M# in Proposition 6.7.6 in an alternative way. Diagram (6.7.7) yields
a method of computation for M. Using duality the functor M# then
determines the cohomology functor M# which in general by the definition in
(6.7.6) cannot be easily computed.

As we mentioned already the category Moore(m, n) - M(m, n) can be
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considered to be an algebraic category. For example we can use the equiva-
lence M' = G for m >- 3, see Theorem 1.6.7. Then one has to compute the
functor ir,, _,: Mm = G -+ Ab in terms of G; this leads to an explicit descrip-
tion of M(m, n). We shall describe explicit examples below. For m >- 2 we
compute the Moore functors on M(m, m + 2) in Chapters 8, 9, and 11.

6.8 On (m - 1)-connected (n + 1)-dimensional homotopy types
X with H; X= 0 form < i< n

Let m, r >- 2 and n = m + r. The homology decomposition (Section 2.7) shows:

(6.8.1) Lemma Let X be an (m - 1)-connected (n + 1)-dimensional CW-space
with Hi(X) = 0 form < i < n. Then there exists a map

f: V 1) ->M(HmX,m)

such that X is homotopy equivalent to the mapping cone off.

We get the following application of the classification theorem (Section 3.4)
for homotopy types as in the lemma. Let spaces(m, n)H be the full homo-
topy category of (m - 1)-connected (n + 1)-dimensional CW-spaces X with
H, X = 0 for m < i < n. Moreover let types(m, n)H be the full homotopy
category of (m - 1)-connected n-types Y with H,Y = 0 for m < i < n.

(6.8.2) Classification theorem Let n = m + r with m, r >- 2. Using the Moore
functors M* and M* on M(m, n) in Section 6.7 one has detecting functors:

A: spaces(m, n) H -+ Kypes(M(m, n), M*)

A': spaces(m, n) H - Bypes(M(m, n), M*)

A: types(m, n)H -+ kypes(M(m, n), M*)

A': types(m, n) H -, bypes(M(m, n), M*).

Here the categories on the right-hand side are purely algebraic in case one is
able to compute the Moore functors M* and M* respectively.

(6.83) Addendum For a space X in spaces(m, n)H the algebraic F-
sequences associated with A(X) and A'(X) respectively are weakly isomor-
phic to the following part of Whitehead's exact sequence

-F.X f,,-,X ,n-I ir - , X- 0

M,(A,i) 1ri_1M(A,m) `- IT
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where A = Hm X. The map i,, -I corresponds to the homomorphism i given
by the (n - 1)-type P, _ 1(X) = X(A, i) of X; see Proposition 6.7.5. In particu-
lar it"X is determined by the object A(X) in Bypes(M(m, n), M#); see
Remark 3.2.4.

Proof of Theorem 6.8.2 and Addendum 6.8.3. Consider Theorem 3.4.4 where
we take

C = Moore(m, n) = M(m, n). (*)
Then we have

spacesm 1(C) = spaces(m, n)H

types,;,(C) = types(m, n)H

and E, resp. F, in Theorem 3.4.4 coincide with the Moore functors M#, resp.
M# by use of the equivalence (*). Hence we get the theorem and the
addendum by Theorem 3.4.4.

(6.8.4) Remark The classical Postnikov technique would use the detecting
functor A for the classification of spaces X in types(m, n)H. Hence X is
obtained as the fibre of a map

X(A,i) - K(ir',n + 1)
where X(A, i) = P - (X). This method, however, is not suitable for computa-
tion since it is very hard to compute the cohomology of the space X(A, i).
The detecting functor A' in the theorem, however, needs only the Moore
functor M. which is easier to understand and for which more methods of
computation are available.

6.9 The stable case with trivial 2-torsion

We consider a special case of the classification theorem 6.8.2 for which the
Moore functors are completely determined by stable homotopy groups of
spheres. Let

(6.9.1) Qk= lim1r"+kS"= rr"+k S" for k<n-1
be the stable k-stem and let

fl*: 0k-1 -Qk

be induced by the Hopf element. Using -q* we define for an abelian group A
the natural homomorphism (r > 2)

q A®n* irj: A*Qr_Z®A®o-r_1 -'A®r-I -'A®Q-,CA ®A®or.
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Here q is the projection and i is the inclusion and A * B denotes the torsion
product. Using this notation we define the following category.

(6.9.2) Definition A stable r-sequence S is a chain complex in Ab of the form

b A*o,,_,®A®or , sH- p
q image(S)

------- >R--_4 A*0r-2®A®a,

satisfying image(b) = kernel(a). Moreover all groups are finitely generated
and A * 11/2 = 0 and cok(a) * 11/2 = 0. A morphism (cp, f, r) between such
stable r-sequences consists of homomorphisms (p E Hom(H, H'), f E
Hom(A, A'), and r E Hom(R, R') compatible with b, a, and S. We obtain
natural equivalence relations k and b on morphisms in the same way as in
Definition 3.6.1. Let S(r) be the full category of stable r-sequences for which
H is free and let s(r) be the full category of stable r-sequences for which b is
injective.

We now give an explicit result which is a split case of the classification
theorem 6.8.2; see Theorem 3.6.3.

(6.93) Theorem Let m > 3, r >_ 2, and n = m + r < 2m - 2. Then the homo-
topy types of (m - 1)-connected (n + 1)-dimensional finite CW-complexes X with
H,(X) = 0 form < i < n and 11/2 * H* X = 0 are in 1-1 correspondence with
isomorphism classes of stable r-sequences in S(r).

Let spaces(m, nYH be the full homotopy category of CW-complexes X as
in the theorem and let types(m, nYH be the full homotopy category of
n-types of such CW-complexes.

(6.9.4) Theorem Let m >: 3, r > 2, and n = m + r < 2 m - 2. Then one has
detecting functors

A: spaces(m, n)H -p S(r)/
k

A': spaces(m, n)H --> S(r)/b

A: types(m, n)H -> s(r) /

A':types(m,n)H->s(r)/b

.

Here the categories on the right-hand side are purely algebraic additive

categories, the sum being given by the direct sum of chain complexes. Also

the categories on the left-hand side are additive categories since they are in
the stable range. Moreover all functors in Theorem 6.9.4 are additive.
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(6.9.5) Addendum Given a CW-complex X = Xs corresponding to the sta-
ble r-sequence S in Definition 6.9.2 there is a commutative diagram with
exact rows, A = Hm X,

H,,X - F,_,X

II 11 11 I II 11

H ->
A*or ,®A®Q

--+ ker(6)-cok(d)->A*0,_20A0o_, -. cok(S).
17 image 6

The top row is Whitehead's exact sequence and the bottom row is deduced
from the stable r-sequence S.

Proof of Theorem 6.9.4 We consider the Moore functors M0, M,, M#
on subcategories given by finitely generated abelian groups A, B with
7L/2 * A = Z12 * B = 0. Then we show in Theorem 6.12.15 below that the
bype functor M. is split and hence also the kype functor M# is split.
Moreover by Theorem 6.12.15 one has the natural isomorphisms

m) =A * or-2 ®A ®or-,

n) =A * or_, ®A ®or.

Hence the Moore functors M0, M, are given by

M0(A, i) = kernel(i: A * 0r- 2 ®A ® (Tr_, -. ir)

M,(A,i) = cokernel(ri: M0(A,i) -*A* or_, ®A (9 or).

Here r) is the restriction of rr in (6.9.1). Now one readily checks that
S(r) a S(Mo, Ml) and S(r) - s(M0, M,) so that the results above follow from
Section 3.6.

6.10 Moore spaces and Spanier-Whitehead duality

The Spanier-Whitehead dual of a Moore space M(A,n) is again a Moore
space in the case A is a finite abelian group. We here study the functorial
properties of this duality between Moore spaces.

Recall that Am m denotes the full homotopy category of all finite CW-
complexes X = X," with dim X< n and trivial (m - 1)-skeleton X m
In the stable range n < 2m - 1 Spanier-Whitehead duality is a contravariant
isomorphism of additive categories

(6.10.1) D: A m -* A"m m.
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This functor carries X to DX = X * and carries the homotopy class f E [ X, Y ]
to Df =f * E [Y*, X*1 such that

D: [X,Y] = [Y*, X*]

is an isomorphism of groups for X, Y E Am The isomorphism D satisfies
DD = identity, that is X * * = X and f * * = f. The definition of D depends on
the choice of (n +m)-duality maps DX: X* AX -> S"+m; compare Section
5.2.

The dual of a sphere S°' is DS' = S" and the dual of the Moore space
M(7L/t, m) of the cyclic group 7L/t is again such a Moore space,

(6.10.2) DM(7L/t, m) = M(7L/t, n - 1).

For the pseudo-projective plane P, = S' U, e2 we have I."- 'P, = M(7L/r, n).
This yields the function

I"-': [P, P,] [M(7L/r, m), M(Z/t, m)]

between sets of homotopy classes. For cp E Hom(7L/r, Z/t) the element

(6.10.3) cp = B(q,) E [M(7L/r, m), M(7L/t, m)], m >- 3,

is uniquely determined by the following two properties. First B(op) induces rp
in homology and second B((p) lies in the image of the function I` above;
see Theorem 1.4.4. We want to describe the dual of the map B(q'). For this
we use the canonical identification

(6.10.4) 7L/t = Ext(7L/t,7L)

which yields the isomorphism Hom(7L/r,7L/t) _ Hom(7L/t,Z/r) carrying cp
up to p * = Ext(gp, 7L).

(6.10.5) Proposition The duality map DX with X = M(7L/t, m) and t > 1 can
be chosen such that the isomorphism

D: [M(7L/r, m), M(7L/t, m)] _ [M(7L/t, n - 1), M(7L/t, n - 1)]

carries B(q) to B(qp*).

Proof Given the duality map DX for all t > 1 one gets a derivation S:
FCyC --* Ext(-, ®1/2) by setting with i and q as in (1) below

S(rp)i71"- iq

One can check by Theorem 1.4.8 that S: Hom(Z/r,7L/t) -+ Ext(l/t,7L/r ®
7L/2) is a homomorphism and that 5(ip)=8(ep*). This shows that the
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derivation S is completely determined by the values 6(X,) E 1/2 where X,:
7L/2'+ 1 .7L/2' is the projection, r >_ 1. We now alter the duality map DX
with X=M(7L/2',m) by the element er= where q: X* AX-
Sn+m+1 is the pinch map for the top cell. Then we see that these new duality
maps D' yield a derivation S' with

S'(X,)=s(X,)+X*er+l -(Xi)*e,=0.

In fact, we have S( X,) = (X,) * er by definition of er and X,*--,,, = 0. Hence
also S' = 0 and the proposition is proved.

For the Moore space M(7L/t, m) = Sm U, em+1 we have the inclusion i and
the pinch map q such that

Sm >+M(7L/t m) (1)

is a cofibre sequence. The Spanier-Whitehead dual of the inclusion is the
pinch map and the dual of the pinch map is the inclusion. Hence the cofibre
sequence

S"+ 7 M(7L/t, n- 1)aS"-1 (2)

is the dual of the sequence (1) above. This shows that D in (6.10.4) satisfies

(3)

where 17m E lrm
1
Sm is the Hopf map. This formula determines the isomor-

phism D (Proposition 6.10.5) completely. We now consider more generally
Moore spaces of abelian groups A.

Recall that for an abelian group A we have the group

(6.10.6) G(A) _ [M(7L/2, n), M(A,n)], n >- 3

together with the extension

A ® 71/2 ° G(A) A *7L/2 (1)

given by A *7L/2 CA ->A ® Z/2; see Definition 1.6.6. The extension is used
for the definition of the category G; objects in G are abelian groups and
morphisms A -* B are pairs (V, fir) with gyp: A -+ B E Ab and iJr: G(A) -->
G(B) E Ab such that A((p ® 7L/2) = /iO and (gyp * Z 12)A = p4,. For the abelian
group G(A, B) of such pairs (V, r/i ): A -- B we have by Theorem 1.6.7 the
isomorphism

[ M(A, n), M(B, n)] = G(A, B), (2)
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which in fact is given by an equivalence of categories Mn a G, n >_ 3. We
define the group

(6.10.7) G(A) = [M(A, n), M(7/2, n)]

which plays a similar role to that of G(A) in (6.10.6).

(6.10.8) Proposition There is a natural isomorphism

G(A) = Hom(G(A),71/4)

for which the following diagram commutes.

Ext(A,71/2)r--°>G(A) µ-» Hom(A,Z/2)

II II II

Hom(A *7/2,7/4) N Hom(G(A),l/4) µ» Hom(A (9 7/2,7/4).

In the bottom row we set A = Hom( p., 7/4) and µ = Hom(O, 7/4).

Proof By (6.10.6X2) we have

[M(A, n), M(7/2, n)] = G(A,7/2) __ Hom(G(A), Z/4)

where the right-hand isomorphism carries ((p, i) to +G. In fact, 0 determines
cp by the composite

gyp: A ->A ®7/2 A G(A) -L7/4

which clearly maps to the subgroup Z/2 of 7/4. Compare also Lemma 8.2.7.

We use the isomorphism in Proposition 6.10.8 as an identification.

(6.10.9) Proposition For a finite abelian group A and A* = Ext(A, 7) there is
a duality isomorphism of abelian groups

,r: G(A*) = Hom(G(A).7/4)

for which the following diagram commutes.

A* ®7/2) AOG(A*)
µ *A* *7/2

II 11 1 µ II

Ext(A,7/2) -% Hom(G(A),Z/4) -- Hom(A,7/2).
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The left- and right-hand side are the canonical isomorphisms; see also
(6.11.4) below.

Proof We have by (6.10.1) and (6.10.7) the sequence of isomorphisms

G(A#) _ [M(Z/2,n),M(A*,n)]

T D

Hom(G(A),Z/4) _ [M(A,m - 1),M(Z/2,m - 1)].

Since D is compatible with 0 and µ by Proposition 6.10.5(2) we get the
commutative diagram in the statements of the proposition.

Let fAb c Ab be the full subcategory of finite abelian groups. Then

(6.10.10) #: fAb -- 14 fAb, A --A# = Ext(A,71)

is a contravariant isomorphism of categories with (A#)# =A. On the other
hand, we have the subcategory f M" c M" of Moore spaces of M(A, n) with
finite A. For this category we obtain by (6.10.1) the duality isomorphism

(6.10.11) D: 1M"' = 1Mn-'
which carries M(A, m) to M(A#, n - 1); see (5.2.11). The isomorphism of
categories G = M', n >t 3, thus yields the composite

D: fG =1M" fMn-' =fG
where fG c G is the full category given by finite abelian groups A. This
duality functor for fG is computed in the next result.

(6.10.12) Theorem The duality functor D: fG - fG carriesA to A* and carries
(gyp, 40: A --> B to the morphism (cp#, T-' Hom(+i, Z/4)T): B# -A* where T is
given by Proposition 6.10.9.

Proof Let F: M(A, m) --> M(B, m) correspond to ((p, 41) and let (cp *, q * )
correspond to F*: M(B#, n - 1) --> M(A#, n - 1). Then we compute 4*:
G(B#) --), G(A*) as follows. Let 8 G(B#) = [M(Z/2, n - 1), M(B#, n - I.A.
Then i * (/3) = F* -,8. Now F *P = (13 *F )* with /3 * = T(8) yields the result
since $ *F = Hom(#, Z/4X T (/3 )).

6.11 Homotopy groups of Moore spaces in the stable range

We consider the homotopy groups and cohomotopy groups of Moore spaces

it"M(A,m) = [S", M(A,m)],
(6.11.1)

irmM(B,n - 1) = [M(B,n - 1),Sm]
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in the stable range m < n < 2m - 1. If A is finite abelian and B =
Ext(A,7L) =A# these homotopy groups are Spanier-Whitehead dual to each
other, since we have the isomorphism

D: [S",M(A,m)] = [M(A#,n - 1),Sm] (1)

by Theorem 6.4.1. More generally we get the isomorphism

D: [X, M(A,m)] = [M(A#,n - 1), X*] (2)

for X E Am m. Here the right-hand side is a homotopy group with coefficients
in A# which we described as a functor in Theorem 1.6.4. Hence we are able
to obtain the dual result for the functor M(A, n) - [X, M(A, n)]. We first
obtain the following dual of the universal coefficient sequence.

(6.11.2) Proposition Let X be a CW-complex with dim X< 2m - 1 and let A
be an abelian group. Moreover suppose that X is finite or that A is finitely
generated. Then there is the binatural short exact sequence:

A® [X,Sm] [X,M(A,m)] -µ31A*[X,Sm+1 ]

Here A * B = Tora(A, B) is the torsion product of abelian groups.

d
Proof Let C N D -A be a short exact sequence where C and D are free
abelian. Then the cofibre sequence

M(C,n) d M(D,n)->M(A,n)-*M(C,n+1)-+ (1)

induces for dim X < 2n - 1 the exact sequence

C®[X,S"] dot D®[X,S"]->[X,M(A,n)]
_+ C®[X,S"+1] doI D®[X,S"+']

This sequence is obtained by applying the functor [ X, -I to the cofibre
sequence (1). For this we use the fact that we have a natural isomorphism

[ X, M(C, n)] = C ®[ X, S" ] (2)

in case C is free abelian. Here we need the assumption that X is finite or
that A, and hence C, is finitely generated.

If A is a finite abelian group and X E AR -" we get by (6.11.1X2) the
commutative diagram of `coefficient sequences':

.1 9
A#®zr"(X) '-1 [X,M(A#,n)] -3 A#,,"+1(X)

(6.11.3) s to a ID zIo

Ext(A,TrmX*) H 7rm_,(A,X*) --w Hom(A,TrnX*).
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Here the left-hand side and the right-hand side are given by the duality
isomorphisms 7 r nX - 7 rm X *, 7r n + 1(X) = 1rm _ 1 X * and by the binatural iso-
morphisms l

(6.11.4)

where A is finite, A, B E Ab.

A# ®B = Ext(A, B),
A#*B=Hom(A,B)

Proof of (6.11.3) For a mapping cone Cf we obtain the dual DCf = Cg by a
map g respresenting f *. We can apply this to the mapping cone of d in
Proposition 6.11.2(1). This now yields (6.11.3) since pinch map and inclusion
behave as in Proposition 6.10.5(1), (2).

Let FM' be the subcategory of Mm consisting of Moore spaces M(A, m)
with A finitely generated. Then FG is the corresponding subcategory of G.
We consider the functor

(6.11.5) 17X: FG = FM' -> Ab

which carries A to [X, M(A, m)]. Here we assume that X is m-connected
and dim X < 2m - 1. The functor is the analogue of the functor 7rn(-, X) in
(1.6.9). We can compute the functor 7TX up to natural isomorphism in terms
of the homomorphism

71: 1rm+1(X)®71/2-->7rm(X) (1)

induced by the Hopf map qm E 7rm + (S'), that is 71(a ® 1) _ qm a for a E
7rm+1(X)=[X,Sm+11.

(6.11.6) Definition We define for A E FAb the abelian group G(71, A) with
71: 7r ® 71/2 -> 7r' by the push-out diagram:

Ext(7r*, A (9 71/2) N G(7r*, A) ---> Hom(7r*, A)

II

A®7r®7 l/2
1Ion

A®7r'

push

G(71, A) µ > A * 7r.

Here we assume that 7r is a finite abelian group so that we get for
7r* = Ext(7r,71) the binatural identification in the diagram by (6.11.4). More-
over G(7r *,A) is the group of morphisms 7r * --*A in the category G. The
diagram is natural in A E FG and hence yields a functor G(71, -): FG -* Ab.
The next result shows that this functor is naturally isomorphic to 7r x in
(6.11.5).
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(6.11.7) Theorem Let X be a finite CW-complex with dim X< 2m - 1, m >: 3,
and let rl: 7Tm+'(X) ®71/2 -> 7rm(X) with rl(a (g1) _ ima be given by the
Hopf map 7Im. Moreover assume 7rm+'X is finite. Then one has for a finitely
generated abelian group A an isomorphism

[X,M(A,m)]=G(q,A)
which is natural in A E FG and for which the following diagram commutes.

A ®7rm(X) [X, M(A,m)] A * irm+I (X)

II -1 µ II

A®lrm(X) G(q,A) .A*,rm+1(X).

The isomorphism is not natural in X. We point out that 7r m +'(X) in
Definition 6.11.6 is automatically finite if X is (m + 1)-connected. We can
apply Theorem 6.11.7 in particular for the case that X = S" is a sphere. Thus
we can compute it"M(A,m) for n < 2m - 1 in terms of r,*: Ir"Sm+'
only.

Proof of (6.11.7) Since we assume 7r"'+'X to be finite the group G(-q, A) is
well defined. If A is finite then the theorem is the Spanier-Whitehead dual
of the result in Theorem 1.6.11. In fact in this case we have the commutative
diagram

Ext(7r*, A (9 11/2) N G(

II

A®7r(& Z1/2

II

, A) -> Hom(Ir*, A)

11

D A*ir

11

Ext(A*,7r(9 71/2) N G(A*, ir) -. Hom(A*, ir)

where D is the duality isomorphism of Theorem 6.10.12. This diagram is
natural in A E 1G. Now we can apply an argument as in the proof of
Theorem 1.6.11. This proves the proposition for finite A; moreover it is easy
to extend the isomorphism to the case of finitely generated A.

(6.11.8) Corollary Let X be a finite CW-complex with dim X< 2m - 1, m >- 3,
and 7rI+'X finite. Then the extension in Theorem 6.11.7 is split if and only if one
of the following three conditions is satisfied:

(a) A has no direct summand Z/2;

(b) 7T' "X has no direct summand 71/2;
(c) each element a E 7r'"+'X, generating a direct summand Z/2, satisfies

elm a = 2 a' for some a'.



206 6B MOORE FUNCTORS

Hence, if (a), (b), or (c) hold, one has an isomorphism of abelian groups
(unnaturally)

[X, M(A, m)] =A * vrin+ 1(X) ®A ®am(X ).

Proof If (a) or (b) is satisfied the top row in the diagram of Definition 6.11.6
is split; if (c) holds the bottom row in Definition 6.11.6 is still split, hence the
corollary is a consequence of Theorem 6.11.7.

6.12 Stable and principal maps between Moore spaces

We describe some properties of the stable homotopy groups (m < n < 2m - 1)

(6.12.1) 1r,m)(A,B)=-rr(A,n,B,m)=[M(A,n),M(B,m)].

We assume that A and B are finitely generated abelian groups. Using the
universal coefficient sequences one has the following commutative diagram in
which rows and columns are exact sequences and in which

(6.12.2)

1T= lrnsm =
7r n+1sm+1

m

7r-= 1rn-1sm = rnsm+

are stable homotopy groups of spheres.

(6.12.3)
0 0

Ext(A,B®a+) - B®irmM(A,n)e
Hom(A, B ®ir) - 0

0 -Ext(A,irn+,M(B,m)) -L ar(A,n,B,m) µ Hom(A,ar,,M(B,m))-"0

0

lµ. 1" lµ
Ext(A,B*a) --B*orm+'M(A,n)-----* Hom(A,B*lr_)

1 1

0 0

The column in the middle is obtained as a special case of Proposition 6.11.2.
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Since A and B are finitely generated abelian groups we have natural
isomorphisms:

Ext(A,B®ir,)=B(& Ext(A,Tr,) (1)

B(9 Ir)=B®Hom(A,7r)Hom(A (2)
(6.12.4)

,

EWA, B * ar) =B *Ext(A,zr) (3)
Hom(A, B * Tr_) = B * Hom(A, ;r_) . (4)

Proof of (6.12.4) It is clear how to obtain these isomorphisms in the case
that all groups involved are cyclic groups. In order to prove naturality we give
the following definition of the isomorphisms in (6.12.4). Let A, - A0 -* A
and B, >- B0 -. B be short free resolutions of A and B respectively, where
A0, A, B0, B, are finitely generated. For (2) let

41: B ® Hom(A, ir) --> Hom(A, B ®Tr)

be defined by $b 00 _'Pb with cpb(a) = b ® rp(a). We obtain (1) be the
commutative diagram

Hom(A,,B®7r,)
= B®Hom(A'Tr,)

Ext(A,B(& a,) - B®Ext(A,a,).

Next we get (3) by the commutative diagram

B, ®Ext(A , Tr) = Ext (A , B, (9 7T)

U
I

B *Ext(A, ir) .-- EWA, B * ar).

Similarly we get (4) by the commutative diagram

Hom(A, B, (9 7r_)
=

B, ®Hom(A , a_ )

i U

Hom(A,B*a_) --. B*Hom(A,ir_).

We use the isomorphisms in (6.12.4) as identifications. This way we get the

(6.12.5) Lemma Diagram (6.12.3) commutes. In fact, the top row and the
bottom row are induced by the (A, µ)-extension for irmM(A, n) and
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7rn'+ 1M(A, n) respectively. The left-hand column and the right-hand column are
induced by the (A, µ)-extension for 1rn+

1
M(B, m) and irn M(B, m) respectively.

Moreover diagram (6.12.3) is natural in M(A, n) E Mn and M(B, m) E Mm
respectively.

(6.12.6) Definition Let 7r, 7r' be abelian groups and let 71: 7r --> 7r' be a
homomorphism with 71(27x) = 0. We associate with a homomorphism

T(7)): Hom(A, B * 7r) -* Ext(A, B (9 7T')

which is binatural for A, B E Ab. Let T(71) be the composite

Hom(A, B * 7r) -* B * Hom(A, 7T)

IT(17) la

Ext(A, B (& 7r') F- B ®Ext(A, Ir').

Here the horizontal arrows are defined as in the proof of (6.12.4); they are
isomorphisms if A and B are finitely generated. Moreover d is the boundary
in the six-term exact sequence of homological algebra induced by the exten-
sion

Ext(A, 7r') >- G(A, 71) -. Hom(A, 7r )

in Definition 1.6.10.

Now consider again diagram (6.12.3). We want to describe the kernel of
A * in Ext(A, B (9 7r+) and the image of A,, in Hom(A, B * 7r_ ). The Hopf
maps induce homomorphisms, see (6.12.2),

71_: 7r_-> 7r, 71_= 71n-1 = (7)m)*

71+ 7r- 7t++7)+= In = (11m)*

which satisfy the condition on 71 in Definition 6.12.6 so that T(71_) and T(71+)
are defined. Now the exact sequences in diagram (6.12.3) show by Definition
6.11.6 and Theorem 1.6.11 respectively:

(6.12.7) Lemma The kernel of A * in Ext(A, B (& 7r+) is the image of T67+)
and the image of µ * in Hom(A, B * 7r_) is the kernel of T(7) _ ).

In the lemma we again assume that A and B are finitely generated. The
operator r(71) has a natural interpretation as a Toda bracket. To this end we
recall the classical definition of Toda brackets as follows.

(6.12.8) Definition Let

/ IIy
W Y>X-iY-'Z
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be a diagram in Top* where H: 0 and G: a/3 = 0 are homotopies. Then
the map

TH.G:'W- Z

is defined by the addition of homotopies, that is TH G = - aH + G(I x y)
where I = [0, 1] is the unit interval. The Toda bracket (a, /3, y) is the subset
of [YEW, Z] consisting of all TH.G with H: a/3 = 0 and G: /3y = 0. If the group
[1W, Z] is abelian the Toda bracket (a,/3, y) is a coset of the subgroup

G = a* [XW,Y ] + (Yy)*[Y',X, Z] C [I.W, Z]

or equivalently (a, /3, y) is an element of the quotient group [LW, Z]/G.
The element (a, /3, y) depends only on the homotopy classes of a, /3, and y.
The subgroup G is called the `indeterminancy' of the Toda bracket (a, /3, y ).

We consider the following example which is associated with stable maps
between Moore spaces.

(6.12.9) Example Let A and B be abelian groups and let

Al>- A0 -. A,
B,)

d,
>Bo-.B

(1)

be short free resolutions. For an abelian group it we have the exact sequence

B*7r>- (2)

where the homomorphism in the middle is dB ® Tr. We now consider maps
between Moore spaces (m < n < 2m + 1)

M(A1,n) -M(A0,n) a M(B,,m) d,
MOO, m)

where a is an element

aEHom(A0,B, (9 7r)=[M(A0,n),M(B,,m)] (3)

with 1r = lrSm. We have adA = 0 iff dA a = 0 in Hom(A,, B, ®a) and we
have dBa - 0 if (dB ® 7r)* a = 0 in Hom(A0, B0 0 77-). This shows that the
Toda bracket (dA, a, dB) is defined if and only if there is an element
a E Hom(A, B * -rr) with

a=iaq: a--4 B*ir>B,®ir. (4)
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Moreover (dA, iaq, dB) is an element in the group

Ext(A, B ®rr') = [M(A1, n + 1), M(Bom)]/G (5)

with 7r' = ii + 1 Sm. Here the indeterminancy G is the sum of the images of

(dB (&1r') * : Hom(A1, B1 ®ir') -- Hom(A1, Bo ®vr') and

(dA)*: Hom(A0, B0 (9 ir') --> Hom(A1, B0 (9 ?r')

so that the definition of Ext yields equation (5). Hence the Toda bracket
-r(a) _ (dA, iaq, dB) defines the function

T:Hom(A,B*ir)-*Ext(A,B®ir') (6)

which is a homomorphism and natural in A, B E Ab.

(6.12.10) Proposition Let

-a = q, : Tr= TrTSm -> 7r' = ?r.Sm

be induced by the Hopf map rt with m < n < 2m - 1. Then the Toda bracket r
in Example 6.12.9 coincides with the natural transformation T(77) in Definition
6.12.6. Here we restrict T and T(17) to finitely generated abelain groups.

The proposition yields a further interpretation of the operators T(,q_) and
T(rj+) in Lemma 6.12.7. We shall not make use of the result in Proposition
6.12.10 so that we can omit here its somewhat elaborate proof. We do not
know whether the restriction to finitely generated abelian groups is necessary.

Next we want to study `principal maps' between Moore spaces. To this end
we recall the definition of mapping cone and principal map; see Baues [AH].
For a pointed space U let CU be the reduced cone of U, that is CU is the
quotient space CU = I x U/(I x * U {1} x U). The mapping cone Cg of a
map g: U V in Top* is defined by the push-out diagram

CU - Cg

with io(x) _ (0, x) for x E U.

(6.12.11) Definition Consider a diagram

x U

I jg

Y `-a V
(1)
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in the category Top* of pointed spaces where H: of = gu is a homotopy. Then
the triple (u, v, H) yields the map between mapping cones,

C(u, V, H): Cf --> Cg. (2)

This map carries y E Y to igv(y) and carries (t, x) E CX, 0< t:5 Z, to
g z 5 t < 1 to irg(2t - 1, u(x)).iH(2t,x). Moreover (2) carries (t, x) E CX with

We call this map and any map homotopic to (2) a principal map. Let

PRIN(f, g) c [C1,Cg] (3)

be the subset of all homotopy classes represented by principal maps. The
properties of principal maps are studied in Baues [AH].

Again let AI) -d" )A0 -.A and BIB>B0 -*B be short free resolutions of
A and B respectively. Then the Moore spaces M(A, n) and M(B, m) are
mapping cones of the maps

dA: M(A1,n)- M(A0,n) and de:

respectively. Hence we get by Definition 6.12.11 the subset

(6.12.12) PRIN(dA, dB) c [M(A, n), M(B, m)]

of principal maps between Moore spaces. This subset is a subgroup which is
natural for maps a: M(A, n) -* M(A', n) and b: M(B, m) - M(B', m) since
such maps are always principal and since the composition of principal maps is
principal. We consider dA as a chain complex concentrated in degree 0 and 1.
Similary

dB ®ir:B,®Ir-+B0®Ir

is a chain complex concentrated in degree 0 and 1. Hence we have the
abelian group of homotopy classes of chain maps [dA, dB ® 1r] which in an
obvious way yields a bifunctor in A, B E Ab.

(6.12.13) Lemma For all abelian groups A, B, IT one has an isomorphism of
abelian groups

[dA,dB ®Ir]=Ext(A,B*Ir)ED Hom(A,B®a).

This isomorphism is natural in A, B, IT provided A or B are finitely generated or
IT is a field.

Proof The classification of chain maps yields the natural short exact se-
quence

Ext(A,B*ar) N [dA,dB®-rrI -*Hom(A,B(9 1r)
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which is split as a sequence of abelian groups. For finitely generated A or B
we obtain a natural splitting by the commutative diagram (see (6.12.4))

[ dA, -rr ] ®[7L, dB ] = Hom(A, ir) ® B

is

[dA,dB ® ,r]
=1

->Hom(A,B(9ir).

Here it and Z denote chain complexes concentrated in degree 0. The
function s carries { } ® {a} to the homotopy class of the composite of chain
maps

A, 0 B,® -rr

I I I

Ao- £ 7r=7L®7r -Bo®7r.
a®a

If zr is a field we consider the following diagram where 7L[B] is the free
abelian group generated by B. Moreover dB is obtained by B, N Bo =

Z[B] Pw B.

K(A, B, ir) c [dA,7L[B] ® -rr] = Hom(A,7L[B] ® ar)

eI push
I

I(P®ar).

Ext(A,B*ir) C [dA,dB®7r] - Hom(A,B(&ir).

Here K(A, B, ir) = kernel(p (9 1r)* is a functor in A, B, ir. Since IT is a field
p 0 -rr is split surjective and therefore the subdiagram push is a push-out
diagram. One can now use naturality of 0 to show that 0 is trivial. Hence by
naturality of the diagram we obtain a natural splitting which, if A or B are
finitely generated, coincides with s above.

(6.12.14) Theorem Let A and B be finitely generated abelian groups and let 71_
and q+ be given as in Lemma 6.12.7 with m < n < 2 m - 1. Then one has the
following two exact sequences which are natural in A and B E G.

PRIN(dA,dB)>-' rr(A,n,B,m)-Hom(A,B*a_) T( Ext(A,B®7r)

Hom(A,B*zr) T(ni)-Ext(A,B®irt)LPRIN(dA,dB) A-0[dA,dB ®ir].
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Here µ = µ* p. and 0 = A * 0 are given by the operators in (6.12.3).
Moreover A carries the principal map C(u, v, H) to the chain map d,, -* dB
IT given by u and v. The homotopy class of this chain map is well defined by
the homotopy class of C(u, v, H). The results in chapter V of Baues [AH]
yield a proof of Theorem 6.12.14.

(6.12.15) Theorem Let m < n < 2m - 2 and let A and B be direct sums of
cyclic groups with A *71/2 = 0 and B *71/2 = 0. Then one has an isomorphism

0: [M(A,n),M(B,m)] Ext(A,B(9 7r+)ED Ext(A,B*7r)

®Hom(A,B(9 7r)®Hom(A,B*7r_)

which is natural in A and B. Here 7r+ = 7r"+, S'", 7r = 7r" S'", and 7r_ = 7r" _ , S'"
are stable homotopy groups of spheres as in (6.12.2). Equivalently all rows and
columns in (6.12.3) are short exact and naturally split provided A and B satisfy
the assumptions above.

As usual we write A = (71/k)a if A is a cyclic group of order k with
generator a EA. An element a (-= IT in a finite abelian group IT generates the
subgroup (71/1 a I) a where I a I is the order of a. A subset E c IT is a basis if
I a I is a prime power for a e E and

(D (l/1 a1)a- 7r
aEE

is an isomorphism. For the proof of Theorem 6.12.15 we introduce the
following elements.

(6.12.16) Notation Let E, c o,, be a basis of the stable group Q, = 7r"S'n
= m + r < 2n - 1. Moreover let a c- Er be an element of order I a I = p`("'

where p is a prime. We choose for a stable maps --(a), (a ), 77(a), and
p(a) between elementary Moore spaces with the properties below, where
A = and where i is the inclusion and q is the pinch map.

eo(a)=a:S"-Sm

88(a) =ia: S" -S' - M(A,m) (1)

e°(a) = aq: M(A, n - 1) - S" -> S°'

e(a) =iaq: M(A,n - 1) -+S" -VS' - M(A,m).

We choose a map 6'(a): S"+' - M(A, m) with q,, °(a) = la and let

6(a) _ C°(a)q: M(A,n) -S"+' - M(A,m). (2)
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Let 770(a): M(A, n) --> S' with i *i0(a) = a be the Spanier-Whitehead dual
of 6°(a) and let

n(a)=iii0(a):M(A,n)->S'-M(A,m). (3)

Moreover we denote by p(a) a map

p(a): M(A,n+1)-*M(A,m) (4)

satisfying i * p(a) = t; °(a) and q,, p(a) = a ,q0(a ). The element p(a) exists if
and only if for A = B = (7L/p`(°))a c Q, we have

A=Hom(A,A* A) cimage iicHom(A,A*

see Theorem 6.12.14. In particular, if I a l * 2 the element p(a) exists.
Moreover for I a I * 2 we choose the elements (1)-(4) to be elements of order
I a 1; for I a I = 2 we choose such elements with minimal order. Now let B, B'
be Z or cyclic groups of prime power order and let X E Hom(B, A) and
x' E Hom(A, B') be the canonical generators which yield maps between
Moore spaces, also denoted by X and X' respectively, see Theorem 1.4.4.

(6.12.17) Lemma Appropriate compositions of X, X' and elements (1)-(4)
above generate the abelian group [M(B, d), M(B', d')] ford < 2d' - 2.

(6.12.18) Lemma I f a l is odd the element p(a) is Spanier-Whitehead
self-dual, that is Dp(a) = p(a ).

Proof Since f °(a) is the dual of r70(a) we see that p(a) - Dp(a) is in the
image of 2i = AA * in Theorem 6.12.14, that is, there is a E Ext(A, A ® it+)
with A = Z/I a I such that p(a) - Dp(a) = 0(a). This implies

DA(a) =D(p(a) -Dp(a)) =Dp(a) - p(a)

On the other hand, 0(5) = i aq:

M(A, n + 1) 1 Srt+2 --5-1. S"` M(A, m)

is self-fual, that is D(iaq) = iaq, so that we get 27100 = 0. If Ial is odd this
implies a = 0.

Proof of Theorem 6.12.15 We have a basis E,+, c it+, E, C IT, resp. E,_, C
Tr_ in the groups of the theorem. Then there is a unique natural isomor-
phism 0 in the theorem which carries (for A, B (=- (7L,Z/p`(°)} and a (-=
E,+ E E, _ ,) the elements chosen in (6.12.16) to the corresponding basis
elements of the right-hand side in 6.12.15 given by a. Hence the isomorphism
0 is determined by the choice of elements in (6.12.16).
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6.13 Quadratic 71-modules

We here introduce the `quadratic algebra' which is needed for the metastable
range of homotopy theory; for a more extensive treatment see Baues [QF]. A
ringoid R is a category for which all morphism sets are abelian groups and for
which composition is bilinear (a ringoid is also called a 'pre-additive category'
or an `Ab-category'). A biproduct in a ringoid is a diagram (see Mac Lane [C])

(6.13.1) X 1XvY r_Y
r, j,

which satisfies rl i, = 1, r2'2 = 1, and i, r, + i, r, = 1. Both sums and products
in a ringoid are canonically equipped with the structure of a biproduct. An
additive category is a ringoid in which biproducts exist. Clearly the category
Ab of abelian groups is an additive category with biproducts given by direct
sums A ® B of abelian groups. A functor F: B -> S between ringoids is
additive if

(6.13.2) F(f +g) = F(f) + F(g)

for morphisms f, g E R(X, Y). Moreover we say that F is quadratic if the
function A defined by

(6.13.3) A(f,g)=F(f+g)-F(f)-F(g)
is bilinear. It is clear that an additive functor carries a biproduct to a
biproduct.

Let Add(7L) be the full subcategory in Ab consisting of finitely generated
free abelian groups. Additive functors F: Add(7L) --> Ab are in 1-1 correspon-
dence with abelian groups; the correspondence is given by F - F(7L). In fact
one readily obtains the following equivalence of categories.

(6.13.4) Lemma The category of additive functors Add(Z) - Ab with natural
transformations as morphisms is equivalent to the category Ab. The equivalence
carries F to F(7L) and the inverse of the equivalence carries an abelian group A to
the functor ®A: Add(7L) - Ab, B - B ®A, given by the tensor product of
abelian groups.

We now introduce `quadratic Z-modules' which are in 1-1 correspondence
with quadratic functors Add(7L) - Ab. In this sense a quadratic 7L-module is
just the `quadratic analogue' of an abelian group. Moreover quadratic Z-
modules allow precisely the quadratic generalization of Lemma (6.13.4)
above; see Theorem 6.13.12.

(6.13.5) Definition A quadratic 7L-module

M = (Me H > Me P + Me)
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is a pair of abelian groups Me, MeC together with homomorphisms H, P
which satisfy the equations

PHP = 2 P and HPH = 2 H.

A morphism f: M -* N between quadratic 7L-modules is a pair of homomor-
phisms f.: Me - Ne, fCe: MCe -f Nee which commute with H and P respec-
tively. Let QM(77) be the category of quadratic 71-modules. This is an abelian
category.

For a quadratic 7L-module M we define the involution

(6.13.6) T=HP-1: M1e-'Mee

Then the equations for H and P in Definition 6.13.5 are equivalent to
PT=P and TH=H. We get TT=1 since 1+T=HP=HPT=T+T2. We
define for n c- Z the function

(6.13.7)
n*: ML->MM

n * (x) = nx + (n(n - 1)/2)PH(x), x E Me.

One can check that (n m). = n * m * and (n + m),, = n,, + m * + nmPH.
Let i/n = i/ni by the cyclic group of order n >: 1. We call M a quadratic
(i/n)-module if n MeC = 0 and n * Me = 0. Let QM(i/n) c QM(i) be the
full subcategory of quadratic (71/n)-modules.

We identify a quadratic 7L-module M satisfying Me = 0 with the abelian
group Me. This yields the full inclusion of categories

(6.13.8) Ab c QM(Z)

which carries an abelian group A to the quadratic 7L-module (A --> 0 -A)
which we also denote by A. Moreover we have the following canonical
functors on QM(i).

(6.13.9) Definition There is a duality functor D: Qm(Z) - QM(i) with
D(M) given by the interchange of the roles of H and P respectively, that is

D(M) = ((DM), 2"_110 (DM),, P' (DM),) (1)

with (DM), = MeC, (DM)ee = M, H° = P, and P° = H. Clearly DD(M) = M.
Moreover an additive functor A: Ab --* Ab induces a functor A: QM(i) -
QM(i). Here we define A(M)11=A(Mfe) and A(M), =A(ML) with H and P
given by A(H) and A(P) respectively. For example the functor ® C: Ab -> Ab,
C E Ab, carries M to

M®C=(ML®C H®l
)
Mee®C P®1*Me®C).

(2)
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This tensor product should not be confused with the quadratic tensor product
C ® M = C ®Z M defined in Definition 6.13.13 below.

The following construction yields many examples of quadratic 7L-modules.

(6.13.10) Definition Let F: R -' Ab be a quadratic functor and let X V Y
be a biproduct in R. The quadratic cross-effect F(X I Y) is defined by the
image group, see (6.13.3),

F(X I Y) = image(A(i1r,,'2 r2): F(X V Y) --> F(X V Y)}. (1)

If R is an additive category this yields the biadditive functor

F(I) ): R X R -* Ab. (2)

Moreover we have the isomorphism

( D( D (3)

which is given by F(il), F(i2) and the inclusion i12: F(X I Y) c F(X V Y). Let
r12 be the retraction of i12 obtained by r/r-' and the projection to F(X I Y).
For the biproduct X V X one has maps µ ='I + i 2: X -i X V X and V = r1 +
r2: X V X --- X. They yield homomorphism H and P with

F{X} = (F(X)'" F(X I X) -F(X)) (4)

by H=r12F(µ) and P=F(V)i12. Nowwe derive from f+g=V(fVg)µ the
formula

F(f+g)=F(f)+F(g)+PF(flg)H (5)

or equivalently A(f, g) = PF(f I g)H.

(6.13.11) Proposition Let F: R -> Ab be a quadratic functor where R is an
additive category. Then F{X}, X (=- R, is a well-defined quadratic 7L-module and
X - F{X} defines a functor R - OM(7L).

Proof We define the interchange map

t=i2r1 +i1r2: XvX->XVX.

Then tµ = µ and Vt = V. Moreover t induces an isomorphism

T:

with F(t)i12 = i12T and r12F(t) = Tr12. Hence we get TH = H and PT = P.



218 6B MOORE FUNCTORS

Moreover we obtain HP = 1 + T be applying F to the commutative diagram
in R

X v X -°-> x µ X v X

1µvµ Ivvv

XvXvXvX xvxvxvx.IvTvl

Here we use the biadditivity of F(l).

The significance of quadratic 7L-modules is now described by the following
quadratic generalization of Lemma 6.13.4; see Baues [QF].

(6.13.12) Theorem The category of quadratic functors Add(7L) - Ab with
natural transformations as morphisms is equivalent to the category QM(7L) of
quadratic 7L-modules. The equivalence carries F to F{71) and the inverse of the
equivalence carries the quadratic 7L-module M to the functor ®Z M: Add(7L) -
Ab, A -A ® M, given by the quadratic tensor product below.

Hence we have a 1-1 correspondence between quadratic functors F:
Add(7L) -> Ab and quadratic 7L-modules. In particular any quadratic functor
F: Add(7L) --> Ab is completely determined (up to isomorphism) by the fairly
simple algebraic data of a quadratic 7L-module M = F(7L). Theorem 6.13.12 is
one of the reasons to study the following quadratic tensor product and the
corresponding quadratic Hom functor.

(6.13.13) Definition Let A be an abelian group and let M be a quadratic
7L-module. Then the quadratic tensor product A ®d M is the abelian group
generated by the symbols a ® m, [a, b] ® n with a, b E A, m E M, n E M«.
The relations are:

(a+b)®m=a®m+b®m+ [a, b]®H(m);
[a, a]®n=a®P(n);
a ® m is linear in m;

[a, b] ® n is linear in a, b and n respectively.

These relations imply

[a, b] ®n = [b, a] ®T(n) (*)

where T = HP - 1 is the involution on M«. The quadratic tensor product is a
functor

®Z : Ab x QM(i) - Ab.

Induced functions

f®g:A®ZM-A'®ZM'
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are defined by (f®g)(a(&m)=(fa)®(gem) and (f®gX[a,b]®n)=
[fa, fb] (9 (g,,n). We point out that the quadratic tensor product is compati-
ble with direct limits in Ab and QM(71) respectively. We also write A ® M =
A (&z M.

Proof of (*)

[b, a] ®T(n) = [b, a] ®HP(n) - [b, a] ®n

=(b+a)®P(n)-b®P(n)-a®P(n)-[b, a] ®n
=[b+a,b+a]®n-[b,b]®n- [a,a]®n-[b,a]®n
= [a, b] ®n. 11

(6.13.14) Definition Again let A be an abelian group and let M be a
quadratic 7L-module. A quadratic form a = (ae, aL,): A -> M is a pair of
functions

ae: aee:AxA -'Mee
with the following properties (a, b C= A):

ae(a + b) = ae(a) + ae(b) +PaCe(a, b)
aee(a,a) =Hae(a)
a,C is 77-bilinear.

These properties imply

a,,(a, b) = Taee(b, a) (*)

where T = HP - 1 is the involution on Mee. Let Hom1(A, M) be the set of
all quadratic forms A -i M. This is an abelian group by

(a,a,,)+(j3
Hence we obtain the quadratic Horn functor

Hom1: Ab°P x QM(77) -* Ab.

Induced functions are given by the formula Hom(f, g X a) = /3 with fe = g, ae f

and Pee-gee aee(fxf).

Proof of (*)

Taee(b, a) = HPaee(b, a) - aC1(b, a)

=H(ae(b+a) - ae(b) - ae(a)) - aeC(b,a)

= aef(b + a, b + a) - aeC(b, b) - aee(a, a) - aee(b, a)

= aCe(a, b).
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Restricted to the subcategory Ab c OM(71) the quadratic tensor product
and the quadratic Hom functor coincides with the classical (linear) tensor
product and Hom functor respectively. The next lemma is well known in the
linear case.

(6.13.15) Lemma Let C be a finitely generated free abelian group. Then one
has for *C = Hom(C, Z) the isomorphism

X: (*C) ®z M= Homg(C, M)

which is natural in C E Add(71) and M E OM(71).

Proof We define X as follows. For a, b E *C let X(a (9 m) = a = (ae, aec) be
given as follows (x, y E C)

ae(x) = a(x)m + (a(x)(a(x) -1)/2)PH(m),

aPe(x, y) = a(x)a(y)H(m).

Moreover let X([a, bJ ® n) = 6 = ( Ne, / a) be defined by

13e(x) =a(x)b(x)P(n),

/3Ce(x, y) =a(x)b(y)n +a(y)b(x)Tn.

The lemma shows the next result which is an addendum to Theorem
6.13.12.

(6.13.16) Proposition For each quadratic functor F: Add(7L) --> Ab one has a
canonical natural isomorphism

F(C) = C ® M, C E Add(71).

Here M = F(71) is a quadratic 7L-module. For each quadratic contravariant
functor F: Add(7L) - Ab one has a canonical natural isomorphism

F(C) = Hom5(C, M), CE Add(Z),

with M = F*(71). Here F* is the covariant functor defined by F*(C) = F(*C)
with *C = Hom(C, Z).

The ring 71 of integers in the discussion above can be replaced by any ring
R or even by a small ringoid R; this is done in Baues [QF]. For example, we
get for the ring R = 71/n the following result corresponding to Theorem
6.13.12. Let Add(7L/n) be the full subcategory of Ab consisting of finitely
generated free 71/n-modules.
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(6.13.17) Theorem The category of quadratic functors Add(77/n) - Ab with
natural transformation as morphisms is equivalent to the category OM(771n) of
quadratic i/n-modules. The equivalence carries F to F{7L/n} and the inverse of
the equivalence carries the quadratic Z/n-module M to the functor 0 M:
Add(Z/n) -b Ab, A -A 0 M given by the quadratic tensor product.

We observe that the quadratic tensor product A ®z M and the quadratic
Homz(A, M) are both additive in M and quadratic in A. The quadratic
cross-effects are given as follows. We obtain the inclusion

(6.13.18) A®B®Mee=(AI B) ®z M="' >(A(D B)®z M

by it2(a ®b ®m) = [ila, i2b] ®m. Moreover we get the induced maps

A®B®MeC-LB®A®M,,, (1)

A® M A®A®M P>A® M (2)0 ee 1 .

Using the involution T = HP - 1 on MeC they are defined by

H(a®m)=(a®a)®H(m),

H([a,b]®n)=(a®b)®n+(b®a)®T(n),
T(a®b(9 n)=b®a®T(n)

P(a®b®n)=[a,b]®n.
Clearly (2) is the quadratic 7L-module {A} ®z M defined in Definition
6.13.10(4). On the other hand, we have the projection

(6.13.19)

Hom(A®B,Mef)=Homz(AIB,M) Homz(A®B,M)

which carries a = (ae, a,,) to /3: A ®B - Mee with 6(a ® b) = aef(i,a, i,b).
Now the structure maps for the cross-effect (6.13.19) are the homomorphisms

Hom(A ® B, Mee)
T-4 Hom(B ®A, M,,), (1)

Homz(A, M) H-
Hom(A ®A, MCe) Homz(A, M). (2)

Again using the involution T = HP - 1 on Met they are defined by

(T$)(a ®b) = T(/3(b ®a))

(Ha)(a 0 b) = a,(a, b) + Taee(b, a)

(PI3)e(a) = H13(a ®a)

(P/3),(a,b) = f3(a (9 b).
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Here (2) is the quadratic 7L-module Hom7({A}, M) defined in Definition
6.13.10(4). Any quadratic functor F: R - Ab satisfies by Definition 6.13.10(3)
the formula

(6.13.20) F(XI V V Xr) = ® F(X;) ® ®F(X; I X.).
i «j

Using this formula we get by (6.13.18) and (6.13.19) similar formulas for
(A)ED ®Ar)®eMand Homg(AtED (D Ar,M).Since Z®dM=Me and
Homp(7L, M) = Me we in particular get the following isomorphisms of abelian
groups where Tr" = 7r ® ... ® Tr denotes the n-fold direct sum.

(7L") ®z M = (M') - ® (MCe)"(" -1)/2 = Hom(7L", M).

Not every quadratic functor F: Ab - Ab is of the form A -A ® M. We
always have, however, the canonical natural transformation

(6.13.21) A: A ®P F{7L} - F(A), A E Ab,

defined as follows. For a E A let a: Z -A be the homomorphism with
a(1) = a. Then we get for m E F(7L) and n E F(7L 17L) the formulas
A(a (9 m) = F(aX m) and A([a, b] (9 n) = PF(a I LX n). By (6.13.20) and (6.13.16)
the map A is an isomorphism if A is a finitely generated free abelian group.
We call A the tensor approximation of the quadratic functor F: Ab - Ab.
Similarly we obtain a Hom-approximation of any quadratic functor G:
Ab°P - Ab. This is a natural transformation

(6.13.22) A: G(A) -),Hom,(A,G(7L}), A E Ab,

which is an isomorphism if A is finitely generated and free. Here G{7L} is
defined for R = Ab°P as in Definition 6.13.10; equivalently we have G{7L} _
G*{7L} with G* as in Proposition 6.13.16.

We now consider the important classical quadratic functors

(6.13.23)

which appear frequently in the literature. Here ®2 is the tensor square
defined by the tensor product in Ab

®2(A) =A ®A. (1)

The functor S2 is the symmetric square given by

S2 (A) =A ®A/{a (9b - b ®a -- 0). (2)

Moreover A2 is the exterior square

AF (A)=A®A/{a®a-0} (3)

and

(i2(A) =A 0 A/{a 0 b +b 0 a - 0}. (4)



6B MOORE FUNCTORS

Next P2 is the quadratic construction defined by the quotient

P2(A) = 0(A)/A3(A)

223

(5)

where .(A) is the augmentation ideal in the group ring 71[ A] and A3(A) its
third power. We can define Whitehead's F functor as a quotient

F(A) = P2(A)/{y(a) - y(-a) - 0) (6)

where y: A --> P2(A) carries a to the element represented by a - 1 E A(A).
The composite y: A - P2(A) -» F(A) coincides with the universal quadratic
map y in (1.2.1). We say that a function f: A - B between abelian groups is
weak quadratic if

[a,b]f=f(a+b)-f(a)-f(b) (7)

is bilinear for a, b E A. Moreover f is quadratic if in addition f(-a) = f(a)
for a, b E A. The function y is universal weak quadratic; that is, each weak
quadratic function f: A - B admits a unique factorization f = f °y where
f ° : P2(A) --> B is a homomorphism. On the other hand y is universal
quadratic, that is, each quadratic function f: A --> B' admits a unique factor-
ization f =f °y where f ° : F(A) - B is a homomorphism.

Each quadratic functor F: Ab - Ab determines the quadratic 7L-module
F{7L} by Definition 6.13.10(4). For the functors F in (6.13.22) we in particular
get the following isomorphisms of quadratic 71-modules:

®2{71} 7L®(71
(8)

p2(Z)

Here 7LP = D71® is the dual of 7L®; see Definition 6.13.9. Moreover we get

S-{Z) = ZS = (Z -' 7L 7L)
(9)

F{71} a Zr = (7L I Z 2 7L)

which are again dual quadratic 7L-modules. Next we obtain

A2{71} 71^ =(0-*Z->0)

id(Z) Z).
(10)

Here id is the identity functor of Ab and Z is the quadratic 7L-module given
by the inclusion (6.13.8). Hence 7L is the dual of V. Finally we get

®2{7L} -P(1) = (71/2 -° Z - 71/2). (11)
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The following result gives a new interpretation of the classical functors above.

(6.13.24) Theorem For each functor in (6.13.22) the tensor product approxima-
tion is an isomorphism. Hence for A E Ab one has natural isomorphisms

®2(A) =A ® l®,

S2(A) =A ® is,

A2(A) =A (2) _7A,

®2(A) =A ®P(1),

P2(A) =A ®71P,

T(A) =A ®71r.

The torsion functor F: Ab --> Ab with F(A) =A * A, however, is a functor
for which the tensor approximation is not an isomorphism, in fact F(Z) = 0 in
this case.

The theorem above raises the question of classifying all indecomposable
quadratic 11-modules. For this recall that an object X in an additive category
is indecomposable if X admits no isomorphism X = A ® B with A * 0 and
B * 0. It is an interesting problem of representation theory to classify all
indecomposable quadratric 71-modules which are finitely generated as abelian
groups. There is the following result where we say that a quadratic 71-module
M is of cyclic type if Me and M« are cyclic groups.

(6.13.25) Proposition The quadratic 11 modules below together with their duals
furnish a complete list of indecomposable quadratic 71-modules of cyclic type. Let
s, t -- 1 and let C = 71 or C = 71/p` where p = prime, i >_ 1.

M H M P M
e

« e

C 0 C

C C
2

C
2'- 01 1/2' 1
2'- 0

71/2' Z/2' 11/2' s+t> 1
2'-2'- 2-

71/2' Z/2' Z/2' s+t> 1
2s+ t

11 Z 2' 2 2s+ IZ/ / /
2s+ 1l 2'-'+12'-'+ Z 2' 2 2$+Z >1/ / /

s
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With respect to the two tensor products of Definitions 6.13.13 and 6.13.9(2)
we have the following rule.

(6.13.26) Proposition For a quadratic Z-module M and for abelian groups
A, B we have the natural isomorphism

A®Z(M®B)=(A(81M)®B.

Here ®d is the quadratic tensor product and M 0 B is defined in
Definition 6.13.9(2). Moreover ® on the right-hand side denotes the usual
tensor product of abelian groups.

6.14 Quadratic derived functors

In this section we associate with a quadratic functor F a quadratic chain
functor F* . The definition of F* is motivated by properties of homotopy
groups of Moore spaces which we exploit in the following section (6.15). The
chain functor F. is used here for the definition of derived functors. The
F-chain functor F,, in Definition 6.2.5 is a special case of F* . We obtain two
`quadratic torsion products', A *'M and A*" M, which are derived from
the quadratic tensor product in Section 6.13. For a further discussion of such
quadratic derived functors we refer the reader to Baues [QF].

Let R be a ringoid with a zero object denoted by 0. A chain complex
X * = (X*, d) in R is a sequence of maps in R

(6.14.1) Xn-1
d ... (nEi)

with dd = 0. A chain map F: X* -+ Y* is given by maps F = F,,: X -a Y
with dF = Fd and a chain homotopy a: F = G is given by maps a = a,,:
Xi _ 1 - + Y, with -F + G = a,, d + d ai + 1. Let Chain(R) be the category of
chain complexes in R and let Chaln(R)/ = be its homotopy category. A chain
complex X * is concentrated in degree n, n + 1, ... , m with n< m if X, = 0
for i < n and i > m. We also need the category Pair(R) of pairs in R; objects
are morphisms dA: Al -*A0 in R and morphisms are pairs F = (F1, FO) for
which the diagram

(6.14.2)

commutes. Hence Pair(R) is a full subcategory of Chain(R) consisting of
chain complexes concentrated in degree 0 and 1. A homotopy a: F = G of
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maps F, G: dA -> de in Pair(R) is a map a: A0 --> B, with -F, + G, = adA
and -Fo+Go=dB a.

(6.143) Definition Let R be an additive category and let F: R - Ab be a
quadratic functor. Then we define the induced quadratic chain functor

F* : Pair(R) --> Chain, = Chain(Ab). (1)

For an object dA: A, - A0 in Pair(R) let F*(dA) be the following chain
complex of abelian grops concentrated in degree 0, 1, 2

F(A, IA,) -- F(A,) ®F(A, IAo) a F(A0)

F2(dA) F,(dA) Fo(dA).

The boundary maps d,, d2 are given by P in the quadratic Z-modules F{A1)
and F{Ao} respectively, see Definition 6.13.10(4), namely

d, = (F(dA), PF(dA IA0)), (2)

d2 = (P, -F(AI I dA)). (3)

One readily checks d, d2 = 0. In Baues [QF] (6.4) we show:

(6.14.4) Theorem The quadratic chain functor F. in Definition 6.14.3 induces
a functor

F* : Pair(R)/= -* Chain1/=

between homotopy categories.

We now consider the case R = Ab. Using short free resolutions we obtain
the full and faithful functor

(6.14.5) is Ab -> Pair(Ab)/=

as follows. We choose for each abelian group a short exact sequence

Al - A0 -.A

where A0 and A, are free abelian. For a homomorphism gyp: A - B we
choose a map F,,: dA --> dB in Pair(Ab) which induces (p. Then the functor i
carries A to dA and carries cp to the homotopy class {F,) which depends only
on gyp. Using (6.14.5) and Theorem 6.14.4 we are now ready to define derived
functors of a quadratic functor Ab - Ab.
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(6.14.6) Definition Let F: Ab --> Ab be a quadratic functor. Then one ob-
tains the derived functors

L,F:Ab--' Ab (t=0,1,2)

as follows. We define L,F by the homology group (L,FX A) = H,(F* dA)
where dA = iA is chosen as in (6.14.5). That is, L, F is the composite of the
functors

Ab.Ab Pair(Ab)/= F'-> Chain1/=
H

The remarks (6.5), (7.5) in Baues [QF] show that L,F coincides with the
derived functor considered by Dold and Puppe [HN].

We now obtain derived functors of the quadratic tensor product as follows.

(6.14.7) Definition Let A be an abelian group and let M be a quadratic
7L-module. Then we have the quadratic functor

®M:Ab-+Ab

which carries A to the quadratic tensor product ((&M) (A) =A ®Z M. Hence
the derived functors L,(®M) are defined by Definition 6.14.6 above. We call

A *"M= (L2(®M))A (1)

and

A *'M = (L,(®M))A (2)

the quadratic torsion products. Using (6.14.11) below we get ®M = LO(OM),
that is

A ®M= (Lo(®M))A (3)

is the quadratic tensor product. The quadratic tensor products are obtained
more explicitly by the following definition where dA: A, -A, is a short free
resolution of A. Consider the chain complex (0 M) * dA:

A, ®A, ®M« -az A, ®Z M ®A, ®Ao ®M« . `'' .> A0 ®Z M (4)

which is defined by the boundary operators

d2=(P,-A, ®dA®M«) and d, _(dA®z M,P(dA(9A0®M«)).
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Here P is given as in (6.13.18X2). Then we have

A ®M = cokernel(d,) (5)

A *'M = kernel(d,)/image(d2) (6)

A *" M = kernel 02)
-

(7)

All functors in (5), (6), (7) are additive in M and quadratic in A. The
quadratic cross-effects are:

(AIB)®M=A®B®Mee (1)

(6.14.8) (A I B)*'M=H,(dA (9 dB I Me,) (2)

(A IB)*'M=A* B * MeC. (3)

Here dA ® dB is the tensor product of chain complexes. The Kiinneth
formula yields a natural exact sequence

(A*B)®MCe> H,(dA®dB,Mee)-"(A(9 B)*Mee (4)

which is split (unnaturally). There is a natural isomorphism

H, WA ® dB, Mee) = Trip(A, B, MeC) (5)

where the right-hand side is the triple torsion product of Mac Lane [Ti'].
Moreover one has a natural injective homomorphism

(6.14.9) A*"MNA*A*Mee.

The results in Remark 6.2.8 and Theorem 6.2.9 are proved in 7.7 and 7.8 of
Baues [QF].

We shall need the following `right exactness' of the quadratic tensor
product. Let M, - Mo -* M -* 0 be an exact sequence of quadratic Z-
modules in QM(71) and let A be an abelian group. Then the induced
sequence

(6.14.10) A®IM, '0 i A®ZM,, "'A®aM,0

is exact. Here, however, 1 ® i need not be injective in case i is injective.
Moreover let A, d A0 -A - 0 be an exact sequence of abelian groups.
Then the induced sequence

(6.14.11) A,®M®A,0A00Me1_____*Ao®Mg® A®M-0

is exact where d, = (d ® M, P(d (D A0 (D MCe)). For example for M = 7Lr we
obtain the exact sequence in Lemma 1.2.8 by (6.13.24).



6B MOORE FUNCTORS 229

We point out that for any quadratic functor F: Ab -p Ab the derived
functors L, F, t >- 1, depend only on the restriction of F to the subcategory of
free abelian groups. If F commutes with direct limits we have F(A°) =A° 0 M
for any free abelian group A0. Here M = F{7L} is the quadratic Z-module in
Definition 6.13.10(4). Hence we obtain in this case

(6.14.12)
(L,F)(A) =A *'M
(L2F)(A) =A *"M

so that the quadratic torsion products suffice to describe the derived functors
of Dold and Puppe. The equations in (6.14.8) hold for any quadratic functor
F if A is finitely generated.

6.15 Metastable homotopy groups of Moore spaces

We consider homotopy groups ?rmM(A, n) of a Moore space M(A, n), n >- 2.
In the stable range m < 2n - 1 these groups are computable in terms of
stable homotopy groups of spheres. We are here mainly interested in the
metastable range m < 3n - 1. In general it is an unsolved problem to de-
scribe the groups ormM(A, n) only in terms of properties of homotopy groups
of spheres. In addition one has the problem of describing these groups as a
functor on the category M' of Moore spaces in degree n. For the stable range
we describe partial solutions in Section 6.6; moreover for m = n + 2, we
obtain complete solutions in Chapters 8, 9, and 11.

More generally we shall deal with the homotopy groups

(6.15.1) ir,, M(A, n) = [F,mK, M(A, n)1

where EmK is the m-fold suspension of a CW-complex K and m >: 2 so that
(6.15.1) is an abelian group. Clearly for K=S° this is the homotopy group
Trm M(A, n). The group (6.15.1) yields the functor

Trm : Mn --> Ab (1)

where the homotopy category M', n >- 3, of Moore spaces is an additive
category with the sum given by

M(A,n)VM(B,n)=M(A(D B,n). (2)

The left distributivity law of homotopy theory shows that the functor ;rm is
additive for dim(lmK) < 2n - 1. Moreover the functor 1rm is quadratic for
dim(Y.mK) < 3n - 2. We now consider the quadratic cross-effect of this
functor. To this end we need for CW-complexes X, Y the Whitehead product
map

w:IXAY-- 1XV Y (3)
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where X A Y = X X Y/X V Y is the smash product. This map induces on
homotopy sets the operation

[XX, U] X [MY, U] -> [I(X n Y),U] (4)

which carries (a, /3) to the Whitehead product [a, /3 ] = w*(a,,6). For the
inclusions i 1: 1X c I X V I Y and i 2: l Y c I X v MY we thus have 1'11'21 = w.
We define the space

M(A I B, n) = IM(A, n - 1) A M(B, n - 1). (5)

Since M(A, n) = MM(A, n - 1) we thus have, as a special case of (3), the
Whitehead product map

[i1,i2J: M(A I B, n) -->M(A,n) V M(B,n). (6)

Now the Hilton-Milnor theorem shows that in the metastable case the
functor 1r,, has the following cross-effect.

(6.15.2) Lemma For dim(Y.mK) < 3n - 1 there is a binatural isomorphism

1rm M(A I B, n) = 1rm (M(A, n) I M(B, n))

which carries a to the composite [i1, i, ]a. Using this isomorphism the quadratic
7L-module an {M(A, n)} in Definition 6.13.10(4) coincides with

1T,nM(A,n) H'1T'M(AIB,n)

Here H = y2 is the Hopf invariant and P = [1, 1] * is induced by the Whitehead
product [1, 11 where 1 is the identity of M(A, n), that is P(a) = [1,1]a.
Moreover T = - (I T,1) * is induced by the interchange map T21.

This lemma yields many interesting examples of quadratic 7L-modules. In
particular we get for spheres the quadratic 71-modules (m < 3n - 2)

(6.15.3) lrm{Sn} = (1TmS" H 7rmS2n-1 P irSn)

Here H is the classical Hopf invariant for homotopy groups of spheres and
P = [ in, tn ] * is induced by the Whitehead square [ t,,, t,, ] of the identity
t E 1rSn. The operators H and P in (6.15.3) are known in many cases. For
example we get by inspection of Toda's book [CM] the following list. Let
be the direct sum in QM(77), that is

M®N=(M,®N, H®N,Me,®N« P®P M,®N,)
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and recall that an abelian group A yields the quadratic 2-module A = (A -
0->A).

(6.15.4) List of am{Sn}:

(n m) s2n-1 P snsnH, TTrm

(2,3) yr

(3,5) 71^ ®71/2

(3 6) (7L 4 -L 71 2 0 1 4)s 7 3, / / - / /
(4 7) 4-' 071(71®71 2' 7®71 4)®7 3, / / /
(4,8) Z P (9 71/2

(4,9) 71P®71/2

(5 9) 2 -°-)- 71(71 71 2), / /
(5,10) 71s 71/2

(5,11) 71^ ® 71/2 (D Z/2

(5,12) (71/4--2/8-°71/2) ®71^ ®71/3 ®Z/3 ®Z/5
(6,11) is

(6,12) 71A(& 71/2®71/2

13)(6 4)(71 4 -° 71 2 71 3 ® 716) 71 5, / // //
(6,14) Zr ®71/8 ®7Ls ®Z/3 ®71/2

(6,15) 2/2 ® Z/2 ® Z/2

Similarly we get as in (6.15.4) the quadratic 71-module

7rm
mK(Sn) = (1rKSn VmKS2n-1 P 1rmKSn)

for dim(ImK) < 3n - 1; see Lemma 6.15.2. Using the quadratic tensor
product in (6.13.13) one has the following crucial result.

(6.15.5) Theorem Let A be a free abelian group and let dim(EmK) < 3n - 1
with m, n 2- 2. Then there is an isomorphism

irn M(A, n) =A ®Z irn (Sn)

which is natural in A and K.

Proof Since both sides are compatible with direct limits it is enough to
consider finitely generated free abelian groups A. For these the proposition
is a special case of Proposition 6.13.16. 0
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We can extend the isomorphism in Theorem 6.15.5 in an appropriate way
to all abelian groups. For this we define a functor I',, as follows.

(6.15.6) Definition Let K be a finite dimensional CW-complex and m, n >- 2.
Then we obtain a functor

which carries an abelian group A to the abelian group F, (A, n). If A is free
abelian we have f,K (A, n) = irnM(A, n). If A is not free abelian we choose a

d
short free resolution A 1 '-' A0 -.A which yields the cofibre sequence

M(AI,n) - _ M(A0,n) -M(A,n)

where M(A, n) is the mapping cone of d = dA. Consider the maps

(d, 1)
7rnM(A16) A0,n)

(0.t).,7rnM(A0,n)

where 1 is the identity of M(A0, n) and 0 is the rivial map. Then we get the
quotient group

r,n(A, n) = ir, M(A0, 01(d, 1) * kernel(0, 1)

which defines the functor above. As in (6.14.5) let F, = (F1, F0): dA - dB be a
pair map which induces c : A --> B. Then F, induces the homomorphism cp * :
r,, (A, n) - F,n(B, n) which carries the coset of 6 E irnM(A0, n) to the coset
of Fol:.

(6.15.7) Lemma The induced map cp * is well defined.

Proof We have to check that cp * does not depend on the choice of F". If
F; = (F;, Fo) is also a map which induces (p we have a homotopy a: F,o = F,o
and hence Fo -- F0 + dB a. Now the left distributivity law of homotopy theory
(see Section A.9 in the appendix) yields the formula

E c"(F0,dBa)y"f
n22

which shows that F, 'C - F0 C is an element of (dB,1)* kernel(0,1)..

The next result is a corollary of Theorem 6.15.5.

(6.15.8) Corollary LetA be an abelian group and let dim(Y.mK) < 3n - 1 with
m, n > 2. Then there is an isomorphism

F,n (A, n) =A ®z irn($")

which is natural in A and K.
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The corollary indicates that it should be possible to generalize the quadratic
tensor product in such a way that an isomorphism as in (6.13.7) is also
available if dim(TmK) 3n - 1. Then, however, r, (A, n) need not be
quadratic in A.

Proof of (15.8) Since 7r"k, is quadratic we have the commutative diagram

7r,n M(A0, n) ® 7r, M(A1 IA0, n) = ker(0,1),,
(d, 1),

) 7r,nM(A0, n)

II 9, KA0 ® 7rn{S"} ®A1 ®A0 1 A0 ® 7rn {S").

Here dl coincides with dl in (6.14.11). Hence quadratic right exactness in
(6.14.11) yields the result.

(6.15.9) Notation Let k z 0 and n >_ 2. We obtain as a special case the
functor

F,,': Ab - Ab.

Here we set rk(A) = rR (A, n) where K = Sk is the k-sphere. Hence (6.15.8)
yields for k < 2n - 1 the natural isomorphism

F (A) =A ®7r"+k(S").

Now the list in (6.15.4) makes it easy to identify these functors. For example
we get for m = 11, n = 5, k = 6 the natural isomorphism

F56(A)=A®(71A®Z/2®Z/2)

=A2(A)®71/2®A®71/2

where A2(A) =A ® 71^ is the exterior square; see Proposition 6.13.26. For
k = 0 we get F,°(A) =A and for k = 1 we have

F,1 (A) = I r(A) for n = 2
A®71/2 forn_3.

This is Whitehead's functor. Whitehead proved that an (n - 1)-connected
CW-space X satisfies r" + 1 X = r (H" X), n >_ 2. We compute in Chapter 11
the functor F2 which is not quadratic. This is needed for the computation of
the homotopy group ir4 M(A, 2); see Theorem 11.1.9.

The relevance of the functor F, in Definition 6.15.6 arises by the following
result.
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(6.15.10) Theorem Let K be finite dimensional and let n, m > 2. Then there is
a homomorphism

A: F',' (A, n) - ir, M(A, n)

which is natural in M(A, n) and K and which maps surjectively to the image of
the map

i: ir,, M(A0, n) - iTm M(A, n)

induced by the inclusion i in Definition 6.15.6.

Proof Let X1 = M(A1, n) and X0 = M(Ao, n) such that M(A, n) is given by
the push-out diagram

C X 1 - - M(A,n)
U U1

X1 e X0
where CX1 is the cone of X1. This yields the following commutative diagram
with exact rows

vrRK+1 M(A n) -2-1

ir,K 1(CX1 v Xo, X1 V Xu)

I(Vd,1).

ir,R (M(A,n),X.)

a

a

im(X1vXo)2

I(d,1).

,.M(A,n)

1 a

F.K, (A, n).

Here we set

ir,, (X1 VXo)2 =kernel{(0,1) irn (X1 vXa) - zrn(X0)}.
The boundary a in the homotopy exact sequence of a pair yields the
isomorphism in the top row. Hence (d, 1). carries kernel (0, 1). to the image
of d which is the kernel of i. Therefore the factorization A of i exists.

Using the diagram in the proof we define the functor

I
(6.15.11)

1'T,,,(A, n) = (Trd,1) * a-' kernel(d,1),

One has the inclusion

FT,R (A,n) cjirm 1M(A,n) (1)

which is natural in M(A, n). Using Theorem 6.15.10 we see that

F'R (A ) A M(A )i M(A )-0 (2), +1 ,n 7r, +I ,n jiTn 1 ,n



6B MOORE FUNCTORS 235

is exact, so that jirm IM(A,n) can be identified with the cokernel of A in
Theorem 6.15.10.

(6.15.12) Lemma The functor (6.15.11) is well defined.

Proof Let ip: M(A, n) -> M(B, n) be a realization of gyp: A - B. Let y E
Trn IM(A, n) with jy E n). Then there exists x EE im (X, v X0), with

(dA,1)*x = 0 (1)

and

Ed(x)=jx where Ed=(lyd,l)*d"'. (2)

Here Ed is the `functional suspension' considered in (II. §11) of Baues [AH].
Using proposition (11.12.3) in Baues [AH] we get 43= iB a, a EE

Ext(A,

(P*y=y*(4P+iBa)

= y* ip + (Ex) * G,, a, 'B FO)

where Ex is the partial suspension of x and where FO: M(A0, n) - M(B0, n)
is the restriction of gyp. Since j(i B) 0 is trivial, we see that j (p * y = j cp * y =
cp* jy and hence cp*(jy) does not depend on the choice of the realization ia.

11

If A is free abelian we know that k in (6.15.11) is an isomorphism and
hence F T,, (A, n) = 0 in this case. We are now ready to state the main
theorem in this section.

(6.15.13) Theorem Let K be a CW-complex with dim(l:mK) < 3n - 1 and
m, n >- 2 and let A be an abelian group. Then there is an exact sequence

h A*,,

j7rm M(A, n) - 0.

Moreover we have for dim(ImK) < 3n - 2 the isomorphisms

F,K(A,n)=A®-rrm(Sn)

FTm (4,n)=-A*'7rm (S").

All morphisms are natural in A and K. The quadratic torsion products *' and *"
are defined in Section 6.14.
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We point out that the case dim(Y.mK) = 3n - 2 in the theorem is the first
case outside the `quadratic range'. In this case n) is not quadratic in A
and we have

(6.15.14) n) = n) for dim lmK < 3n-2.

Here L1 is the derived functor in the sense of Dold and Puppe [HN]. In fact
the theorem has an extension to arbitrary dimensions of YmK by a spectral
sequence of W. Dreckmann. The E2 -term of this spectral sequence consists
of the derived functors Lj F, ( -, n), j >- 0, with n) = n). The
spectral sequence converges to ir,, M(A, n) and is natural in M(A, n) and K.
We now take K = S° in Theorem 6.15.13. Then we see by the inclusion
(6.14.9),

A *"lTm-,(S^) CA * A * 1Tm_t(S2"-1),

that A *" lTm _ {S"} = 0 is trivial for t n< 2n. Hence we obtain the following
special cases.

(6.15.15) Corollary For n >- 2 one has the short exact sequences (k < 2n - 1)

0 -A(& lrkS" ->'TkM(A, n) -A * rrk_,(S") -0
0 -A(& ?T2n_,{S"} - lT2n- 1M(A, n) -A* ir2n_2(S") - 0
0 - r' (A) -> Tr2,,M(A, n) -A *'Tr2n_ 1(S") - 0

with r' (A) = A ® vr2n{S"} for n >: 3. Moreover one has the exact sequence

-,r',"+'(A) A ir2"+1M(A,n) -*L1F,"(A) -*0.

Here we have L1F,"(A) =A *'7r2 ,(S") and L2f,"(A) =A *"7r2n{S"} for n >- 3
and I', "+'(A) =A ®1T2n+,(S") for n>3. All sequences are natural in
M(A, n) E Mn.

The naturality implies that the exact sequence of Theorem 6.15.13 induces
a corresponding exact sequence for cross-effects. Restricting to the quadratic
range dim(l'"K) < 3n - 2 we hence get the following corollary where

I B, n) is the image of the map

j: I B, n) - ir,n (M(A I B, n), M(A° I B°, n))

given by the pair EiA A 1B; see Definition 6.15.6 and (6.15.1)(5).

(6.15.16) Corollary Let dim(!mK) < 3n - 2 with m, n >- 2 and let A and B
be abelian groups. Then there is the following exact sequence of cross-effects of
the functors in Theorem 6.15.13.

0-->Trp(A,B,_7rnxS2n 1S2n

d A ®B ® irnKS 2" -' --> irnKM(A I B, n) -* jirm M(A I B, n) -+ 0.
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Here we use the formulas for quadratic cross-effects in (6.14.8); in particu-
lar Trp is the triple torsion product of Mac Lane; see (6.14.8)(5). We leave it
to the reader to write down the cross-effect sequences for Corollary 6.15.15.

Proof of Theorem 6.15.13 The proof relies on the exact EHP-sequence for
mapping cones obtained in Theorem A.6.9. For this we use the fact that the
Moore space M(A, n) = Cd is the mapping cone of a map

d: X1=M(A1,n)-VXo=M(A0,n)

where X1 = Y.X,' with X,' = M(A1, n - 1). The following commutative dia-
gram extends the diagram in the proof of Theorem 6.15.10. The operator Em
is (7rd,1)* d-' in Theorem 6.15.10.

kernel(d,1) * c 77m (X1 V X0)2

I

11
TmK+1Cd

E,
K L

C 7rm + I(CdI ,XO)

Hm1

7rn 1(XXI' AX;)

IPm I11

7r,
I(X1vX0).

`

Here Pm _ I = [i I, i l - iod ] * is induced by the Whitehead product

[i1,i1 -iod]: Y.X,'AX; -9X1 VX0 (1)

where ie is the inclusion of X. in X1 V Xo for e = 0, 1. If dim(F,mX) < 3n - 2
then the kernel of Em is the image of Pm. For dim(Y,mX) = 3n - 2 the kernel
of Em is the image of

Pm: Xj' AX,' VX1)2- 7r1K (XI VXo), (2)

with Pm =([i1,iI -iod], -i1)*. Hence we get by (6.15.11)

I T,, (A, n) =Em kernel(d,1)* = kernel(d, 1),, /image Pm. (3)

This formula can be used to compute the functor n) in Theorem
6.15.10. In fact for dim(ImK) < 3n - 2 we can identify (d,1)* with dl as in
the proof of (6.15.8); similarly we can identify Pm with d2 in Definition 6.14.7.
This shows

n) =A *'7rm (S") for dim(YmK) < 3n - 2. (4)
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Finally an easy diagram chase yields the exact sequence in Theorem 6.15.13
since the row and the column of the diagram above are exact. In fact the map
e is induced by Em and h is induced by Hm since the kernel of Pm -I = d2 is

kernel Pm_ 1 =A = image Hm (5)

by Definition 6.14.7(7). Moreover 6 is induced by

d: image Hm -> cokernel(d,1)

in the diagram where the cokernel of (d,1)* is F,n (A, n). The maps A and j
are considered in (6.15.11).

Theorem 6.15.13 is slightly more general than the corresponding result
(9.5) in Baues [QF] where we deal only with the quadratic part of Theorem
6.15.13. For the classification of 1-connected 5-dimensional homotopy types
in Chapter 12 we also need the non-quadratic part of Theorem 6.15.13.



THE HOMOTOPY CATEGORY OF
(n - 1) -CONNECTED (n + 1) -TYPES

We have to consider the hierarchy of categories and functors (n >- 2)

types.' types.' FP-- types F-- (1)

where types is the full category of (n - 1)-connected (n + k)-types, that is,
of CW-spaces Y with 7riY = 0 for i < n and i > n + k. The functor P is the
Postnikov functor which carries an (n + k)-type to its (n + k - 1)-type, k >- 1.
Since (n - 1)-connected n-types are the same as Eilenberg-Mac Lane spaces
K(A, n), we can identify them with abelian groups. In fact one has an
equivalence of categories, see (6.1.1),

ir,,: types.' -a Ab. (2)

From this point of view (n - 1)-connected (n + k)-types are natural objects of
higher complexity extending abstract abelian groups. Following up this idea
J.H.C. Whitehead looked for a purely algebraic equivalent of an (n - 1)-
connected (n + k)-type, k > 0. An important requirement for such an alge-
braic system is `realizability' in three senses. In the first instance this means
that there is an (n - 1)-connected (n + k)-type which is in the appropriate
relation to a given one of these algebraic systems, just as there is an
Eilenberg-Mac Lane space K(A, n) whose nth homotopy group is isomor-
phic to the given abelian group A. The second kind is the realizability of
morphisms between such algebraic systems by maps between the correspond-
ing (n + k)-types, and the third kind is the uniqueness up to homotopy of
such realizations of a given morphism. Thus we are searching for a category
C of algebraic models equivalent to the category types' as achieved in (2)
above for k = 0. Given such a category C the computation of bype and kype
functors on C would give us then algebraic models of homotopy types by use
of the classification theorem in Chapter 3. J.H.C. Whitehead classified the
objects in types' by homomorphisms

r,,' (A) --, B. (3)

A suitable category of algebraic models, equivalent to types;,, however, is not
given in the literature. Using results on the category Mn of Moore spaces of
degree n we shall describe such algebraic categories. This will be important
for the classification of (n - 1)-connected (n + 3)-dimensional homotopy
types, n 2- 2, in the following chapters.
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7.1 A linear extension for typesn'

We show that the homotopy category types' (n - 1)-connected (n + 1-
types can be described as a linear extension of the category I'Ab" consisting
of quadratic functions for n = 2 and of stable quadratic functions for n >- 3.

Recall that a function q7: A -b B between abelian groups is quadratic if
71(-a) = rl(a) for a c =A and if [a, b],, = q(a + b) - -q(a) - -q(b) is bilinear in
a, b EA. The universal quadratic function y: A - I'A has the property that
there is a unique homomorphism ° : FA -> B with q ° y = q. This way we
identify a quadratic function 71: A -. B and a homomorphism q ° : TA - B.
Let I'Ab be the category of quadratic functions. Objects are quadratic func-
tions and morphisms cp = ((po, cpl): r, -> q' are pairs of homomorphisms for
which the diagram

A Vo - A'
17 117,

B - B'
commutes or for which equivalently (71') ° F(cp0) = cplq 0. A quadratic func-
tion 71: A -> B is stable if [a, b],7 = 0 for all a, b E A, that is, i1 is a homomor-
phism with q(2 a) = 0 so that a stable function 71 can be identified with a
homomorphism q': A ®1 /2 - B. Let SI'Ab = TAb" (n >- 3) be the full
subcategory of I'Ab = FAbz consisting of stable functions. We have the full
inclusion Ab c FAb which carries the abelian group A to the universal
quadratic map yA: A - I'A. We also have the full inclusion Ab c SI'Ab
which carries A to the universal stable quadratic map o-yA: A -A ®1 /2.
Here oyA is the quotient map.

(7.1.2) Remark The functor F,,: Ab - Ab is given by I'z = IF and F,,' = ®1 /2
for n z 3. The Grothendieck construction of the bifunctor

Ab°P X Ab - Ab

is the following category. Objects are homomorphisms f: B with
A, B E Ab and morphisms (cpo, (p, ): f -p g are pairs of homomorphisms in Ab
with gT `(cpo) = cp, f. There is a canonical isomorphism of categories

FAb" = Gro(Hom(F,,,-))

which carries the quadratic function 17 to

Let 'r E ir3S2 be the Hopf map and let ii" E iri+,S" be the (n - 2)-fold
suspension of 71. Then for any space X in Top* the induced function 71,*,:
it"(X) - ir,, + ,M, 17, (a) = a - n", is quadratic; moreover q,*, is stable for
n > 3. Since rl,*, is natural in X we thus obtain the functor

k" : types;, --> FAb"
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which carries an (n - 1)-connected (n + 1)-type X to 71,* and which
carries a map f : X --> Y in types;, to the induced map (a (f ), 'n + ,(f ))
between homotopy groups.

(7.13) Proposition The functor k is a detecting functor, n >- 2.

Proof For X in types' let A = ir X and B = 7r + I X. Then the Postnikov
decomposition of X shows that X is the fibre of a classifying map

kx: K(A,n)-->K(B,n+2)

which is the first k-invariant of X. The homotopy class of kX is an element

kXE [K(A,n),K(B,n + 2)] =Hn+2(K(A,n),B)=Hom(F, (A),B)

and thus kx corresponds to a quadratic map A -> B which actually is ij,*.
The second isomorphism is obtained by the universal coefficient theorem for
cohomology since we have isomorphisms (n >- 2) H,, K(A, n) = A,
H,, + I K(A, n) = 0, and Hi+2 K(A, n) - F,, (A). Hence each quadratic map
7) E Hom B) is realizable by a space X in types;, with classifying map
kx = 71. Moreover each morphism gyp: kx - ky in I'Ab corresponds to a
homotopy commutative diagram

K(A,n) K(A',n)

kX1
Ikr

K(B, n + 2)
w, . K(B', n + 2)

which thus yields a principal map between fibre spaces, gyp: X --> Y, which

realizes gyp. 11

(7.1.4) Remark In Definition 2.5.8 we describe a detecting functor (n >t 2)

A: types' -*

which by the identification of categories in Remark 7.1.2 coincides with the
detecting functor k in Proposition 7.1.3 above; see also Theorem 6.4.1.

(7.1.5) Definition For each abelian group A we have the Eilenberg-Mac
Lane space K(A, n). Extending this notation we introduce quadratic spaces

n) as follows. Let n >: 2 and let q: A - B be a quadratic function which
is stable for n 3. Then we write X = K61, n) if X is an (n - 1)-connected
(n + 1)-type for which isomorphisms A =- ir,, X, B = 1 X are fixed such
that

q:A=7r,, X n"-Ir"+IX=B
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coincides with rl,*. The proposition above shows that the homotopy type of
K(rl, n) is well defined by 71. Moreover each morphism cp = (rpo, rp,): n -> 71'
in I'Ab has a realization ;p: K(,q, n) --> K(-q', n) with rp. Here is not
uniquely determined by gyp. The loop space of an Eilenberg-Mac Lane space
is cIK(A, n) = K(A, n - 1), n >- 2. Similarly we have for n z 3

SZK(,1, n) = K(,q, n - 1)

where q is stable. Hence K(q, 2) is a loop space if and only if i is stable. In
the next result we classify maps.

(7.1.6) Proposition Let rl: A -> B and r)': A' - B' be quadratic functions
which are stable for n >: 3. Then we have for n >: 2 the exact sequence

Ext(A,B') N

This is an exact sequence of abelian groups if q' is stable. For n = 2 the group
Ext(A, B') acts freely on the set [K(i, 2), K(-q', 2)] with orbits given by k2.
Moreover for n > 2 we have the linear distributivity law

(+1r+ /3)(cp+ a) = a/np+ q*(a) + (p*(j3).

Here is the composite

K(q,n)-- K(7',n)-' K(71", n)

and a e Ext(A, B'), 0 E Ext(A', B") and we set 4* = (/r,)*, rp* _ (cpo)*.

We point out that the loop space functor Cl is compatible with the exact
sequence in the proposition. Therefore we get a sequence of functors:

(7.1.7) types' 2 types' types'

where Cl on types' is full and faithful and where Cl: typesn - types,',-, is
an equivalence of categories for n >_ 4. Hence we see that types;, for n 3 is
equivalent to the full subcategory of typesZ consisting of all K(17, n) for
which i is stable. Moreover the proposition shows that we have a linear
extension of categories

(7.1.8)

k

E >- types;, fl.. rAb,,

where E is the bimodule on FAb given by E(q,,U') = Ext(A, B') for q':
A -' B, n: A' - B'. The functor k,, carries K(77, n) to 77.

For the group CE(K(r1, n)) of homotopy equivalences of the space K(q, n)
we obtain by (7.1.8) the extension of groups

(7.1.9) Ext(A,B)-C(K(i1,n))-»Aut(n)
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where Aut(rl) is the group of automorphisms of the object 17 in FAb with
Aut(,q) c Aut(A) x Aut(B). The extension (7.1.9) is split if A is cyclic or
Ext(A, 77/2 = 0.

Proof of Proposition 7.1.6 We have the fibre sequence (n >_ 2)

K(B',n+1)-K(q',n) PK(A',n)K(B',n+2)
and the action

µ: K(,q',n)xK(B',n+1)- K(i',n)
on the fibre. For X = K(,q, n) we thus obtain the action

A* : [X, K(rl', n)l X H" +'(X, B') -> [X, K(ij', n)]

which carries (x, a) to µ*(x, a). The projection p: X = K(11, n) --* (A, n)
induces the inclusion (see for example (3.3) in Baues [MHH])

p*: Ext(A, B') = H"+'(K(A,n), B') N H+'(X, B')

so that we can define the action in the proposition by

x+a=µ*(x,p*a) for aE Ext(A,B').
By (V.10.7)-(V.10.9) in Baues [AH] we see that all elements in

[K(rl, n), K(rl ', n)l = PRIN(ij, r1')

are given by principal maps between fibre spaces. Therefore the proposition
is a very special case of (V.10.19) in Baues [AH].

For an abelian group A we have the universal quadratic function yA = YA:
A -> FA and the universal stable quadratic function QyA = -y;: A -A ®1 /2
which is the quotient map, n >_ 3. The (n + 1)-type of a Moore space M(A, n)
is K(y,;, n) for n z 2 and we have

p"+i: M(A,n) -+P"+IM(A,n) =K(y" ,n)

inducing the isomorphisms 7r,, M(A, n) =A and zr"+,M(A, n) = r(A). The
Postnikov functor P"+, yields a full embedding of homotopy categories

P,, , : Mn c types;,

which is compatible with the linear extension in (7.1.8) and Section 1.3. That
is, for n 2- 2 we have the commutative diagram of linear extensions

Ext(-, N Mn Ab
(7.1.10) n n n

E types;,

where the full inclusion Ab c I'Ab" carries A to y,; . In fact, we can describe
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the category types' completely in terms of the category M"; for this we
introduce the enriched category of Moore spaces in the next section.

(7.1.11) Remark For a CW-space X and n >- 2 we have the natural isomor-
phism of groups

H"(X, A) = [X, K(A, n)]

where the left-hand side is the reduced singular cohomology with coefficients
in A and where [ X, Y ] denotes the set of homotopy classes of maps X --> Y.
Now let i be a stable quadratic function, that is a homomorphism 17:
A ®1 /2 -' B. Then we define for a CW-space X the cohomology

H"(X, r7) = [X, K(1, n)1, n >- 2,

with coefficients in q. This is an abelian group and a functor in X. The fibre
sequence for K(i, n) yields the following exact sequence of abelian groups
where SqA: Hm(X, A) -' H'°+2(X, A ®1/2) is the Steenrod square (which is
trivial for m = 1):

H"-1(X,A) n.sg ,H"+1(X,B) -H"(X,77)

>H"(X,A) *7.s A,H"+2(X,B).

One can check that q* SqA is also induced by the map 77: K(A, m) -->
K(B, m + 2) given by 17. The cohomology H"(X, q) is not functorial in r7 but
for 9: q - r)' a map gyp: K(77, n) --> K(17', n) induces a homomorphism ilp * :
H"(X,,y7) --> H"(X, i7') which is not well defined by gyp. We clearly have

H"(K(ij, n), q') = [K(r), n), K(i1', n)].

This group can also be computed by the proposition above. An algebraic
description of this group is given in Theorem 7.2.9 below. The cohomology
groups H"(X, 71) were recently studied in quite different terms by Bullejos,
Carrasco, and Cegarra [CC].

7.2 The enriched category of Moore spaces

The full homotopy category M" of Moore spaces M(A, n) is studied in
Chapter 1. We here use the category M' to obtain an algebraic description of
the category types;, of (n - 1)-connected (n + 1)-types, n >- 2. The linear
extension of categories

(7.2.1) Ext(-,F,)NM"- Z Ab

is given by the homology functor H" and by the action + of Ext(A, F, (B)) on
the set of homotopy classes [M(A, n), M(B, n)] where 7r"+IM(B, n);
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compare Section 1.3. We use the action in the following definition of the
`enriched' category of Moore spaces.

(7.2.2) Definition The enriched category TM" of Moore spaces is defined as
follows (n >- 2). Objects are pairs (M(A, n), 77) where 77: A -+ B is a quadratic
function which is stable for n > 3. A morphism

{(PI _Fo}: (M(A,n),i1) -> (M(A',n),7)')

in FM', with 77': A' -* B', is represented by a tuple

API E Hom(B, B')

E Ext(A, B')

;Po E [M(A, n), M(A', n)]

where ;Po induces po: A - A' in homology such that (c , (p, ): 17 - 71' is a
morphism in I'Ab, that is n' cpo = cp, r7. The equivalence class {(ps, ", ;30) is
given by the equivalence relation

for SE Ext(A,F'A').

Here we use the homomorphism r7': ,,A' - B' given by r7' and we use the
action + of Ext(A, F, A') on the set [M(A, n), M(A', n)] which yields ;Po - 8.
We define the composition in FM" by

1011 I1 f 4,(pi,01+P0* o'Po}

Here trio ipo is the composition of maps between Moore spaces. For n >: 3 we
obtain an additive structure of FM" by the formula

This shows that FM" is an additive category for n >: 3. Moreover the
suspension yields the canonical isomorphism FM" _- I M"+' for n >- 3.

We have the full inclusion of categories

(7.2.3) M" c FM"

which carries M(A, n) to (M(A, n), y,,) where y,,: A - F'A is the universal
quadratic map (stable for n >- 3). Moreover the inclusion carries a map 'Po in
M" to the map (f((po),0, fPo} in FM". The linear extension (7.2.1) has the
following generalization for the category I'M".

(7.2.4) Lemma There is a linear extension of categories (n >- 3)

E-+FM" k FAb"
where E is the bimodule on I'Ab given by E67,10 = Ext(A, B') as in (7.1.8).
Moreover k" is the forgetful functor which carries the object (M(A, n), 17) to 17.
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T h e action + o f E i s given i n the obvious w a y b y ((pl, , 4 p o) + a = (cpI, + a,

The lemma is readily obtained by use of the linear extension (7.2.1).
Moreover a cocycle for the extension (7.2.1) yields a cocycle which determines
the extension I'M" in the lemma.

(7.2.5) Definition Let spaces" be the full subcategory of (n - 1)-connected
CW-spaces in Top*/~. We define a functor (n >- 2)

K: spaces" 1' M"

as follows. For an (n - 1)-connected CW-space X let A = H" X = 7T,, X and
let 71= 71,*,: A = 7T" X -> ir" +, X = B be induced by the suspended Hopf map.
Then K" carries X to the object (M(A, n), ii). We now choose for each X a
map

a: M(A,n)->X (1)

which induces the identity H"(a) of A = H" X. For a map F: X --' X' be-
tween (n - 1)-connected CW-spaces we thus obtain the diagram

M(A, n) -

IF
WoIl I 111F (2)

M(A',
n) X'

where ;Po realizes the homomorphism cpo = H" F: A --.,-A'. Thus the diagram
commutes if we apply the homology functor H, but in general cannot be
chosen such that the diagram actually commutes in Top*/=. Let ii': A' =
H,, X' _ X' -->B = it,, ,X' be given by X'. Then

Ext(A,B') (3)

is determined by the universal coefficient sequence for [M(A, n), X'] _
77"(A, X'). We now define the functor K,, on F: X - X' by

K,,(F) = ( p,,0(;?o), ;o): (M(A',n),77') (4)

where cp, = -rr"+,(F).

(7.2.6) Lemma K,, is a well-defined functor.

Proof The definition of K,,(F) depends on the choice of iPo. A different
choice is of the form iGo - S with S E Ext(A, F, A'). Now we get

O(;po-8)=0-'(Fa-a(fP"- S))

=O(ilpo)+'q*S.

This shows that we have an equivalence

(Bp1,0(450),;po)-('PI,0(;Po-6),oo-8)
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and therefore K,,(F) is well defined. Now it is easy to check that K" is a
well-defined functor which clearly depends on the choice of the maps a
above.

We now restrict the functor K" to the category of (n - 1)-connected
(n + 1)-types.

(7.2.7) Theorem The functor K" above yields for n >_ 2 an equivalence of
categories

K,,: types;, -a FM".

Proof The functor Kn induces a map between linear extensions of cate-
gories

E H types;,
k,

I'Abn

II

E N I'M" - I Ab,,

This implies that Kn is an equivalence of categories.

The theorem shows that we can use all results on the category M" for
computation in the category types;,. In particular since we have algebraic
models of M" we obtain in this way algebraic categories equivalent to the
category types,',. For example we have for n > 3 the equivalence of categories
M" = G where G is the algebraic category in Section 1.6. Using this equiva-
lence we obtain in the same way as in Definition 7.2.2 the enriched category
FG as follows.

(7.2.8) Definition Recall that we have for each abelian group A the exten-
sion in Ab

A ®Z/2 HG(A) -*A*7L/2

associated with A *71/2 cA -A ® 71/2. Objects in the enriched category 1'G
are stable quadratic functions 17: A -B or equivalently homomorphisms rt:
A ®7L/2 -+ B with A, B E Ab. Let r,': A' -> B' be a further object in FG. A
morphism

C, 'Po' ;Po}: rl --'
11, (1)
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in rG is represented as follows. Let C E Ext(A, B') and let gyp,, go, 4P0 be
homomorphisms in Ab for which the following diagram commutes.

77

B A(& Z/2 - G(A) -. A* Z/2

I P) Iwo®I IiGo I

B' F- A' ®7L/2 » G(A') A'*
Z/2

n' µ

(2)

Then the equivalence class ( g1, , go, iPo) is given by the relation

(3)

for S E Ext(A, A' (&7L/2) = Hom(A * Z/2, A' ®7L/2). Composition is de-
fined by

{gi, , go' ;00) o {Qi, go, iPo} = (91pl,(91) * + go go, 4P0;000

Also we obtain the structure of an additive category for rG as in Definition
7.2.2 by

Recall that SFAb is the category of stable quadratic functions. We obtain as
in (7.1.8) a linear extension of categories.

E
+

rG : SrAb. (4)

Here 0 is the identity on objects and carries (1) to (g1, c'0): rt - if in SrAb.
The action of E is given for a E Ext(A, B') = E(-q, 70 by

( a, go,iPo).

One readily checks that (4) is a well-defined linear extension. We derive from
Theorem 7.2.7 the next result which provides us with an algebraic model of
the category types' for n -- 3.

(7.2.9) Theorem For n > 3 one has equivalences of additive categories

types'=rM' =rG

which are compatible with the linear extensions in the proof of Theorem 7.2.7 and
Definition 7.2.8(4).

Using the equivalence we identify a map K(q, n) --> K(rl', n), n >: 3, with an
algebraic morphism r) -> if in G.
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ON THE HOMOTOPY CLASSIFICATION
OF (n - 1) -CONNECTED

(n + 3)-DIMENSIONAL POLYHEDRA,
n>-4

J.H.C. Whitehead in 1948 classified (n - 1)-connected (n + 2)-dimensional
homotopy types. Since then it has been a challenging problem to consider the
next step in the classification of (n - 1)-connected (n + 3)-dimensional homo-
topy types. Various authors have worked on this problem in the stable range
n > 4, for example Shiraiwa [HT], Uehara [HT], Chang [PI], [HT], [AS], [NH],
and Chow [HG]. They use a complicated method of primary and secondary
cohomology operations; compare Section 8.5 below. We here apply the new
method of boundary invariants which, via the classification theorem 3.4.4,
yields fairly simple classifying data for (n - 1)-connected (n + 3)-dimensional
homotopy types. In this chapter we deal only with the stable case n > 4. In
Chapters 9 and 12 we describe the considerably more intricate unstable cases,
n=3 and n=2.

8.1 Algebraic models of (n - 1)-connected (n + 3)-dimensional
homotopy types, n >- 4

We introduce the purely algebraic category of A3-systems. Then we formu-
late the main result of this chapter which shows that A3-systems are algebraic
models of certain homotopy types. Recall that we have for an abelian group
A the short exact sequence

(8.1.1) A®Z/2NG(A)-.A*71/2

associated with

TA: A*Z/2HA-.A®71/2.

Here i is the inclusion and p is the projection. The abelian extension (8.1.1)
is determined up to equivalence by the property A- 1(2 A- '(x)) = TA(x) for
x (H A * 71/2. For each homomorphism gyp: A --* B there is a homomorphism
: G(A) - G(B) compatible with A and µ in (8.1.1), that is j. = (gyp *71/2)A
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and A ((p (9 1/2) = ;pA. We have the dual extension, see Lemma 8.2.7,

(8.1.2)

Ext(A,71/2)>' >Hom(G(A),Z/4) Hom(A,Z/2)

II II II

Hom(A *Z/2,71/4) - Hom(G(A),7L/4) -> Hom(A ®1/2,1/4)

Here the bottom row is obtained by applying the functor Hom(-,1/4) to
extension (8.1.1). The isomorphism at the left-hand side is given by Lemma
1.6.3. We now use the extension (8.1.1) and (8.1.2) for the definition of the
following extensions G(q) and G(A,,q) respectively.

(8.13) (A) Definition For a homomorphism q: H ®1/2 L in Ab let
G(71) be defined by the push-out diagram in Ab

L ®1/2 >A+ G('q) - H * 1/2
17011 push Iii

II

H®1/2 » G(H) -» H*1/2

where the bottom row is given by (8.1.1). Hence G(rl) in the short exact top
row is the abelian extension associated with the homomorphism

TcfTH: H*1/2cH-.H®1/2-- L*1/2cL -.L ®1/2.

(8.13) (B) Definition Recall that objects in the category G are abelian
groups A and morphisms ;P = (gyp, ;p): A -> B are pairs

((p, irp) E Hom(A, B) X Hom(G(A),G(B))

compatible with A and µ in (8.1.1); see Section 1.6. Next let

srAb' c sfAb

be the full subcategory of stable quadratic functions 71: H ®1/2 - L for
which there exists a factorization 77: H 0 1/2 - G(H) - L; see (7.1.1).
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Morphisms (ip a/ro): 71 -* r)' with rt': H' ® 71/2 -* L' are pairs (iJr,, R(io) E
Hom(L, L') ® Hom(H, H') compatible with ri and if. We define an alge-
braic functor

G:G°PxSI'Ab'->Ab

as follows. If A or H is finitely generated let G(A, rl) be given by the
push-out diagram in Ab

Ext(A,L) ° ' G(A,77) µ °° Hom(A,H(9 71/2)--*0

a.1 push

Ext(A,H(& 71/2) Ti.

II

Ext(A, 71/2) ® H -* Hom(G(A), 71/4) ® H -- Hom(A, 71/2) ® H 0

Here the bottom row is obtained by applying the functor -®H to the
extension (8.1.2). Induced homomorphisms are defined by

(cp, ;p)* = Ext((p, L) ® Hom(;p,71/4) ® H

(.#i,4o)* =Ext(A,01)ED Hom(G(A),Z/4)®1Iro.

(8.13) (C) Addendum In the general case we have to use the following
more intricate definition of the group 6(A, 71) which canonically coincides
with the definition (8.1.3) (B) if A or H are finitely generated. For n z 0 let
7L/n[H] be the free 71/n-module generated by the set H. We have the
canonical map

p,,:71/n[H] H®71/n

which carries E; a;[x;] with a; E 71/n, x; E H to the corresponding sum
E; x; ® a,. Clearly p is a surjective homomorphism which is natural in
H E Ab. Let K(H) be the kernel

K(H) = kernel{71/4[ H ] P-* 71/2[ H ]
P2 H ® 71/2}

where p is reduction modulo 2. Naturality shows that K is a functor
Ab - Ab. We now define the natural transformation

OH : K(H) * 7L/2 -> cok(rf )
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where TH is defined as in (8.1.1). For y = E, a;[x;] E K(H)*7L/2 with a, (-=Z
there is x E H such that E, a;x, = 2x in H. Now 0 carries y to the element
in cok(TH) represented by x. One readily checks that 0 is a well-defined
homomorphism natural in H E Ab. In fact, OH is obtained by the following
commutative diagram

K(H) H 71/4[H]
PzP

10, 10,

cokTHNH®7L/4 -. H®7L/2

in which the bottom row is short exact. The map 0' carries [h] to h ® 1 and
the restriction of 0" to K(H)*7L/2 is OH. For abelian groups A, H we
define A * Ext(A, H 0 71/2) by the image of

A*:Ext(A,H(& 71/2)-->Ext(A,G(H))

induced by A in (8.1.1). Clearly A * Ext(A, H (& 71/2) is functorial in A, H E
Ab. If K is a 1L/2-vector space we get

A * Ext(K, H ®7L/2) = Hom(K, cok TH ).

Using K = K(H) * 1/2 and OH above we thus obtain a homomorphism

0: Hom(A*Z/2,K(H)*7L/2)- A*Ext(A,H®71/2)
0(a)=a*OH

which is natural in A and H. We are now ready to define 6(A, 71) by the
push-out diagram:

Hom(A*7L/2,K(H)*7L/2) N Hom(G(A),7L/4[H]) -. Hom(A®71/2,7L/4[H])

8! II

0*Ext(A,H®71/2) push Hom(IA,7L/2[H])

Ext(A,L)% G(A,71) µ .,
Here 71* is well defined since 77 factors through A: H ® Z/2 -> G(H). The
inclusion j carries a to the composition

j(a): G(A) -A*71/2--K(H)*71/2c7L/4[H].
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We observe that image(j) = kernel(P2) * 0*, so that the bottom row is short
exact since (p2)* A* is surjective. Induced maps on G(A, r1) are now defined
by

(cp, ip)* = Ext(cp, L) ® Hom(4p,71/4[H1)

(+6i,#0)* = Ext(A,+G,) ® Hom(G(A),71/4[4rol).

This completes the definition of the functor G in Definition 8.1.3 (B).

Using the notation on the groups G(71) and G(A, 71) in Definitions 8.1.3 we
are now ready to define algebraic models of (n - 1)-connected (n + 3)-
dimensional homotopy types which we call A3-systems.

(8.1.4) Definition An A3-system

S=(Ho,H,,H3,ir1,b,,r1,b3,/3)

is a tuple consisting of abelian groups H0, H H3, rr, and elements

b2 E Hom(H2, Ho (9 Z/2),

11 E Hom(H0 (9 71/2, rr, )

b, E Hom(H3,G(r1)),

/3EG(H7,i1#).

Here 71., = gO(71® 1) is the composition

(1)

(2)

r,#: Ho ® 71/2 710I1 rrt ®Z/2
G(11)

-* cok(b3) (3)

where q is the quotient map for the cokernel of b3. These elements satisfy
the following conditions (4) and (5). The sequence

H2 ----+ Ho (9 Z/2
77

is exact and 03 satisfies

µ(0) = b2

where µ is the operator on G in Definition 8.1.3. A morphism

(cpo, 92, 93, (Pn, (P F): S -S'

between A3-systems is a tuple of homomorphisms

q : H; --, H; (i = 0, 2,3)

cp,,: rr, -> >r,

9r: G61) - G(r1')

(4)

(5)

(6)



254 8 (n - 1)-CONNECTED (n + 3)-DIMENSIONAL POLYHEDRA

such that the following diagrams (7), (8), (9) commute and such that the
equation 10 holds.

H2 b * Ho ® 71/2 -- zr,
1Vz 1(P0®1 1lpr

H'
V

Ho ® 71/2 -1 ir,
(7)

ir, ® 71/2 N G(7) --o Ho *71/2

1 (8)

1rj ® 7/2 » G(-1') -µ" Ho' * Z/2

H3 -, G(q)

1Vr (9)

H3 b G(7)

Hence 'pr induces 'pr: cok(b3) -> cok(b3) such that g067 (9 1) -p
g0(77' 0 1) is a morphism in SFAb' which induces (pr)* as in Definition
8.1.3. We have

OPo,Qr)*(/3(p2.'p2)*((10)
in G(H2, g0(7j' ® 1)). In (10) we choose 'P2 for '02 as in (8.1.1). The right-hand
side of (10) does not depend on the choice of ;D2.

An A'-system S as above is free if H3 is free abelian, and S is injective if
b3: H3 -+ G(q) is injective. Let A3-System resp. A3-system be the full
category of free, resp. injective, A3-systems. We have the canonical forgetful
functor

0: A3-System -A 3 -system (11)

which replaces b3: H3 - G(q) by the inclusion b3(H3) c G(,7) of the image
of b3. One readily checks that this forgetful sk is full and representative.

(8.1.5) Definition We associate with an A3-system S as in Definition 8.1.4
the exact I'-sequence

H3 b, G(-l) 'r2 H2 Ho (9 7L/2 7 1r1 - H, - 0.

Here H, = cok67) is the cokernel of r7 and the extension

cok(b3) > a2 - ker(b2) (1)
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is obtained by the element 63 in Definition 8.1.4, that is, the group 7T2 = Tr( (3t)
is given by the extension element Rt E Ext(ker(b2),cok(b3)) defined by

Rt=A-1(j, j)*(,8)
(2)

Here j: ker(b2) c H2 is the inclusion. The element Rt does not depend on
the choice of (j, j) in G. Compare (2.6.7).

Recall that spaces,', denotes the full homotopy category of (n - 1)-
connected (n + 3)-dimensional CW-spaces X and that types,2, is the
full homotopy category of (n - 1)-connected (n + 2)-types. We have the
Postnikov functor

P: spacesrt -+ typesn

which carries X to its (n + 2)-type.

(8.1.6) Theorem In the stable range n >_ 4 there are detecting functors:

A': spaces -A3-System

A': types -A3-system.

Moreover there is a natural isomorphism 4A(X) = A'P(X) for the forgetful
functor 0 in Definition 8.1.4(11) and for the Postnikov functor P above.

Remark Theorem 8.1.6 is an application of the detecting functors A', A' in
the classification theorem 3.4.4. These detecting functors are defined by
boundary invariants. There should also be a similar result to Theorem 8.1.6
above concerning the detecting functors A, A in Theorem 3.4.4 given by
k-invariants. It turns out, however, that the computation of boundary invari-
ants is simpler than the corresponding computation of k-invariants. The
analogue of Theorem 8.1.6 for k-invariants remains an open problem though
for ir,, + I = 0 we have discussed the functors A, A in Theorem 3.6.5; for
'r,, + i = 0 Theorem 8.1.6 above corresponds exactly to the detecting functor
A' in Theorem 3.6.5. The result there was based on the computation of

n) and K(B, n)). In Theorem 8.1.6 we treat the case
'r + 1 X * 0 which is based on the computation of H + 3 K(q, n) andr + 1(A, K(i, n)) in Section 8.3 below.

Let S be a free A3-system. The detecting functor A' in Theorem 8.1.6
shows that there is a unique (n - 1)-connected (n + 3)-dimensional homotopy
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type X =Xs, n >: 4, with A'(X) = S. Then the F-sequence for S is the top
row of the following commutative diagram

(8.1.7)

H3 - G('q) 7T2
- H2 -'Ho ®Z/2-'-7-* 'iT 1 -' H,

II II at II II II II

kin +3X - r"+2X -i"+2X-H"+2X- I'"+1X --' 1r"+1X -" H"+tX

The bottom row is Whitehead's certain exact sequence for X. The diagram
describes a weak natural isomorphism of exact sequences. This shows that
the homotopy group it"+2(X) is completely understood in terms of the A3-
system S.

(8.1.8) Example For an abelian group A let SA be the unique A3-system
with Ho =A and H, = H2 = H3 = 0. That is

_
SA

Ho, H2, H3, ir1, b2, r, b3,,8
A,0,0,A®7L/2,0,1,0,0

Then the space X with A'(X) = SA is the Moore space X = M(A, n), n > 4.

As an application we now derive from Theorem 8.1.6 the following result
on maps into spheres.

(8.1.9) Theorem Let Xs be the (n - 1)-connected (n + 3)-dimensional homo-
topy type associated with the A3-system S in Definition 8.1.4 with n >: 4. Then a
homomorphism po: Ho = H"(Xs) -> H"(S") = 7L is realizable by a map Xs -+ S"
if and only if there exist homomorphisms

gyp,,: i1 = rr"+1(Xs) -3 l/2 and 0r: r(ui) = r"+2(Xs) -* Z/2

such that q' 'i = cpo ® 71/2, (cpo (9 1)b2 = 0, cprO = cp ® 1, (Prb3 = 0, and
((Po, rpr)*( G) = 0.

Proof The conditions show that

('po 1010, gyp,,, , (Pr): S -> Sz

is a morphism between A3-systems which is realizable by a map Xs -> S"
since A' in Theorem 8.1.6 is a detecting functor; see Example 8.1.8.

Remark The problem treated in Theorem 8.1.9 has an old tradition in
algebraic topology, starting with a theorem of Hopf. Many authors considered
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maps from an (n + k)-dimensional polyhedron into the sphere S" for k =
0, 1, 2. An explicit criterion like in Theorem 8.1.9 for k = 3 was not achieved
in the literature. Clearly Theorem 8.1.9 is only a simple application of the
classification theorem 8.1.6 since more generally this theorem can be used to
decide what homology homomorphisms H,, (Xs) - H,, (Xs,) are realizable by
a map Xs -*Xs..

The stable nth homotopy group of a space X is the direct limit

llm{Ir,, X - 7rn+11 X -' ITn+2y2X ... }

given by the suspension homomorphism 1: 7Tn+k("X) - Trn+k+ 1(y.k+'X) for

k > 0. As a simple application of Theorem 8.1.6 and (8.1.7) we now obtain a
well-known result; see for example G.W. Whitehead [RA]:

(8.1.10) Proposition The third stable homotopy group of the real projective
space R P. is ir3 (If8 P) =71/8.

This result follows also from the proof of the well known Kahn-Priddy
theorem. For the proof we consider the following explicit example of an
A3-system; see also Section 12.6 below.

(8.1.11) Example Ler R P4 be the real projective 4-space. Then the space

X= -'RP4 with n>-4, (1)

is an (n - 1)-connected (n + 3)-dimensional complex for which the A3-system
A'(X) = S is given by

H0, H2,H3,ir 1,b2,r7,b3,f3
S

(71/2,71/2,0,71/2,0,1,0,0(1)
(2)

Hence S determines the homotopy type of Xs = X = 1,n-1R P4. We derive S
from the following facts. It is well known that the homology groups of X are
k X = 71/2 = H" 12 X and that H, X = 0 otherwise, i > 0. Since the generator
Y E H2(R P4, 71/2) has a non-trivial cup square y U y E H4(f8 P4, 71/2) the
space X has a non-trivial Steenrod square. Hence X is not a one-point union
of Moore spaces. Moreover, for the real projective 3-space R P3 we know, for
n>3,

In-1RP3=M(7Z/2,n)VSn+2 (3)

compare (IV.A.11) in Baues [CH]. This does not hold for n = 2. We now
prove (2). By (3) we know that b2 = 0. Since H1 = 0 we obtain ?r, = Z/2 and
r1= 1. Hence G(i7) = 71/4. Since H3 = 0 also b3 = 0. Now f3 is in the image of

A: Ext(H2, F(l1)) = Z/2 - r(H2, A(i7 (& 1))



258 8 (n - 1)-CONNECTED (n + 3)-DIMENSIONAL POLYHEDRA

since µ( 0) = b2 = 0. Moreover /3 9L 0 since X is not a wedge of Moore
spaces. Hence /3 = .(1). Therefore the extension in Definition 8.1.5(1)

G(i)=71/4H7re-.H2=Z/2

is non-trivial and thus yr"+ 2X = Z/8. This proves Proposition 8.1.10.

8.2 On irn+2M(A, n)

Moore functors are dual to the Eilenberg-Mac Lane functors; see Chapter 6.
While many computations on Eilenberg-Mac Lane functors can be found in
the literature there is only a little known on Moore functors. In this section
we describe explicit examples of Moore functors which are needed for the
proof of the classification theorem 8.1.6. We compute the homotopy groups
'fin 12 M(A, n) and am + 1(A, M(B, n)) of Moore spaces and we determine the
functorial properties of these groups, n >- 4.

Let M' be the full homotopy category of Moore spaces M(A, n). Mor-
phisms in M' are homotopy classes of maps -ip: M(A, n) - M(B, n). For
n >- 3 we have the algebraic category G which is equivalent to Mn. Objects in
G are abelian groups and morphisms A -> B are proper homomorphisms
((p, ii): G(A) - G(B) where G(A) is part of the extension (8.1.1); compare
Section 1.6. There is for each A an isomorphism, compatible with 0 and

(8.2.1) G(A) = 7r"(71/2, M(A, n));

see (1.6.4). Using this isomorphism we obtain the equivalence of categories

(8.2.2) M- :;G G for n>: 3

which carries M(A, n) to A and carries ; to (gyp, i/r) with qp = H" P and
,,= ar"(71/2, gyp). Hence a proper homomorphism (gyp, ur): G(A) - G(B) deter-
mines a unique element

ipE [M(A,n),M(B,n)]

with H"fp = cp and lr"(71/2, ip) We use (8.2.2) as an identification of
categories. The Moore functor

(8.2.3) arm(-,n): G=M"->Ab

carries A to arm(A, n) = arm M(A, n) and carries ((p, qi): A --> B to arm(4p).
Moreover there is the Moore bifunctor

(8.2.4) ar,;,"): GOP X G = (Mm)°P X M" - Ab

which carries (A, B) to the homotopy group

ar,;,")(A, B) = arm(A, M(B, n)) = [ M(A, m), M(B, n)].
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Induced maps are defined as in (8.2.4). Since G and Ab are algebraic
categories it should be possible to obtain purely algebraic descriptions of
these Moore functors. For small values of m one has the following examples
of such algebraic functors. For m = n the functor it"( -, n) carries A to A
and (cp, rp) to gyp. For m = n + 1, n >_ 3, the functor 7t"+ (- , n) carries A to
A ®1/2 and ((p, i/i) to cp ® 71/2. We get up to a canonical natural isomor-
phism the Moore functor Trn+2( -, n), n > 4, as follows.

(8.2.5) Theorem For n > 4 the functor 7rn+2(-,n) carries A to G(A) and
(cc, i/i) to iir, that is, there is an isomorphism irn + 2(M(A, n)) - G(A) of groups
which is natural in A (=- G.

Proof Let E irn + 2 M(71/2, n) = 71/4, n >- 4, be a generator. Then f induces
an isomorphism

C*: G(A) = irn(Z/2, M(A, n)) = irrt+2M(A,n) (1)

which is natural in M(A, n) E M'. In fact for the pinch map q the composite

qC=71n+l: Sn+2- (2)

is the Hopf map. This shows that the following diagram commutes

Ext(71/2, A ® 71/2) N Trn(71/2, M(A, n)) - Hom(Z/2, A)
(3)

A®71/2 7rn+2M(A,n) A*Z/2

Here the top row is the universal coefficient sequence and the bottom row is
induced by the inclusion of the n-skeleton M(A, On c M(A, n); compare
Proposition 6.11.2. The commutativity of the diagram shows that 6 * is an
isomorphism, hence we obtain the theorem by (8.2.1).

Next we consider the cohornotopy group

(8.2.6) -rrn+(A, S") = [M(A, n + 1), S" ], n > 3.

This group, as a functor in A E G, can be characterized as follows.

(8.2.7) Lemma For n >: 3 there is an isomorphism

0: irn+,(A,S") = Hom(G(A),Z/4)

which is natural in A E G, that is 0 o Hom(ir, 71/4) ° 6; see (8.2.2).
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Moreover the isomorphism 0 makes the following diagram with short exact
rows commutative.

(8.2.8)

Ext(A,7L/2)) ° ' irrt+1(A,S") ' * Hom(A,Z/2)

Hom(A *71/2,72/4) H Hom(G(A),7L/4) -* Hom(A ® 72/2,72/4)

The top row is the universal coefficient sequence and the bottom row is given
by (8.1.2), hence this is a topological interpretation of the exact sequence in
(8.1.2).

Proof of Lemma 8.2.7 We can derive the result from Theorem 1.6.4. Here
we give an independent proof which defines the isomorphism 0 explicitly as
follows. Since we are in the stable range we may assume n >_ 4. Let

i): M(7L/2,n+1)-'S"

be the Spanier-Whitehead dual of 6 in Theorem 8.2.5. Then the composite

rl,: SN+ 1 - M(71/2, n + 1) S",
17

where i is the inclusion of the bottom sphere, is the Hopf map. This shows
that r, induces an isomorphism U*

Trn+ I(A, S)
17. [ M(A, n + 1), M(7L/2, n + 1)]

II

Hom(G(A),G(71/2)) G(A,71/2)

where GUL/2) = 72/4.

Finally we consider examples of Moore bifunctors We clearly have
binatural isomorphisms (A, B E G, n >_ 3)

inn11(A, B) = Ext(A, B)
(8.2.9)

1T,1"'(A, B) = G(A, B)

where G(A, B) is the abelian group of morphisms A -* B in G. The next
result yields an algebraic characterization of ir,,I+11, n >_ 4.

(8.2.10) Theorem Let 0G: G - SI'Ab' be the functor which carries B to
the inclusion OG(B) = A: B ® 72/2 C G(B) and let n >_ 4. Then there is an
isomorphism

[M(A,n + 1), M(B,n)] _ B) =G(A,OG(B))
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which is natural in A, B E G and which is compatible with A and µ in the
universal coefficient sequence. Here G is the functor in Definition 8.1.3(B) and
Addendum 8.1.3(C).

We point out that the natural isomorphism in Theorem 8.2.10 is available
for all abelian groups A, B.

Proof of Theorem 8.2.10 If A or B are finitely generated we obtain the
following commutative diagram which is natural in M(A, n + 1) E M"' and
M(B, n) E Mn.

Ext(A,Z/2)®B '®'1 it"+1(A,S")®B -0
1

>Hom(A,71/2)®B

11

Ext(A,B(9 71/2)

I'ls

Ext(A, ir"+,M(B, n)) N

k

'1 » Hom(A,B®71/2)

Here k is given by composition, that is for a c 7r" .. ,(A, S') and be B =
7r,M(B, n) we have k(a ® b) = b a a. The top row, induced by (8.2.8), is exact
though 0 ® 1 need not be injective. Moreover the bottom row is the universal
coefficient sequence. Since the rows are exact the left-hand square of the
diagram is a push-out diagram of abelian groups.

Using (8.2.8) this push-out diagram corresponds exactly to Definition
8.1.3(B) with r) = AG(B). Hence we obtain the isomorphism in the theorem.
If A and B are arbitrary abelian groups we use the following construction.
For a space Y and the set B we have the one-point union

Y[ B ] = V Yb with Yb = Y
bEB

which is a functor in Y and in B. The map -q: p,",- = M(Z/2, n + 1) -> S" in
the proof of Lemma 8.2.7 induces the map

?I: M(71/2[BJ,n + 1) =p,'-[B] n[B] S"[B] =M(71[B],n)

which is natural in B. Moreover we have the inclusion

is M(Z[B],n) cM(B,n)
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which is natural in M", that is ;pi = i(S"[cp1). We now consider the following
diagram which is again natural in M(A, n + 1) and M(B, n).

Hom(G(A),71/4[B])

II

K(A, B) C Tr"+,(A, M(7Z/2[B], n + 1)) -A Hom(A,Z/2[B])
71.1 push 1077). 1(n2).

Ext(A,G(B)) Tr"+,(A,M(B,n)) Hom(A,B(&71/2)

Here K(A, B) = kernel(p-,)1, µ is a functor in A, B E Ab and we identify
G(B) = Tin + 2 M(B, n) by Theorem 8.2.5. The map i'q above induces (P2) *

such that the diagram commutes. We observe that (P2)* p. can be identified
with the map (P,) * A* in the diagram of Addendum 8.1.3(C). This yields the
identification of bifunctors

K(A, B) = Hom(A *11/2, K(B) *Z/2)

via the inclusion j in Addendum 8.1.3(C). For the computation of -q# we first
apply the natural map

Q=A: ar"+,(A,M(B,n))=PRIN(dA,dB)->[d,,df®Z/2]

to the diagram above; see Theorem 6.12.14 and (8.2.12) below. The second
part in the proof of Lemma 6.12.13 shows that the composite

K(A, B) Ext(A,G(B)) µ'-4 Ext(A, B *71/2)

is trivial and hence i admits a factorization

Tj,: K(A,B)-_% A*Ext(A,B®71/2)=ker(µ*).

It remains to show that for A = K(B)*7/2 the element %G) = 0(1) coin-
cides with the homomorphism eB in Addendum 8.1.3(C). For this consider
A =1/2 and y E K(Z/2, B) given by y E K(B) *71/2 as in Addendum
8.1.3(C). Then we have a subgroup j: B' c B generated by x; E B and we
have y = j * y'. Now B(y') can be computed by Definition 8.1.3(B). This in fact
shows that 6(1) = O.

We have the commutative diagram

(8.2.11)

Ext(A,G(B))) .1 o 6(A, AM) µ -» Hom(A,B®71/2)

Ext(A,ar"+,M(B,n)) N Tr"+,(A,M(B,n)) - Hom(A,ir"+,M(B,n))

The left-hand side is the isomorphism given by Theorem 8.2.5. We now apply
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the push-out diagram (6.6.7Xii) to the bottom row of (8.2.11). This yields a
connection of the Moore bifunctor 7T,,(+), with the Eilenberg-Mac Lane
bifunctor 2, namely one has the binatural push-out diagram (A, B E G)

Ext(A,G(B)) B) - Hom(A, B (9 71/2)

(8.2.12) 1µ. push IQ
11

Ext(A, B *Z/2) >-+ B) -. Hom(A, B (9 71/2)

Here the bottom is naturally split since ,i = 0. Hence we can identify
(n>-4)

(8.2.13) H,,,+),(A, B) = Ext(A, B *71/2) ® Hom(A, B (9 71/2).

The operator Q coincides with Q in Corollary 6.6.8 and H,(, +', is the
Eilenberg-Mac Lane functor which we already know to be split since H( 3

is split; see r = 2, m z 4 in (6.3.9).

8.3 The group rn+2 of an (n - 1)-connected space, n >_ 4

Whitehead's F-groups T X appear in the certain exact sequence. For a
CW-complex X they are defined by the image

(8.3.1) rmX=image( 7T Xm - t - TrmXm}

where Xm is the m-skeleton of X. If X is (n - 1)-connected, then clearly
I'm X = 0 for m < n. Whitehead computed the first non-vanishing group

(8.3.2) n>_3.

Here we do the next step and compute F,,, 2(X) for n > 4 Moreover we
compute the F-group with coefficients (A, X) and we describe the
functorial properties of these groups. The groups I' ,(X) and 1(A, X)

depend only on the (n + 1)-type of the (n - 1)-connected space X.
This (n + 1)-type is of the form

(8.3.3)

where K(71, n) is the quadratic space associated with the quadratic map

71 _ (71,X:

compare Definition 7.1.5. For n 3 this is a stable quadratic map given by a

homomorphism is 71/2 -> The Postnikov map X -+K(ri, n)

induces a natural isomorphism

(8.3.4)
rF+ZX=r,,+,K(i,n)
r,+,(A, X) = rrt+i(A , K('h, n)).
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Hence as an abelian group rn+2(X) and rn+,(A, X) are determined by rr
and (A, 71) respectively. The computation of the functor rn+2 is based on the
following short exact sequence; see Theorem 5.3.7.

(8.3.5) Proposition Let n > 4 and let X be (n - 1)-connected. Then one has
the natural short exact sequence

it 1(X) ® Z1/2 N F2(X) - Hn(X)*71/2

where 0(a ®1) = a'qn+ 1 is induced by the Hopf map -%,1.

Proof We may assume that X is a CW-complex with dim(X) :!- n + 3 and
X` -1 = *. Using Lemma (1.7.5) in Baues [CH] we obtain a map g: A -> B
where A and B are both one-point unions of n-spheres and (n + 1)-spheres
such that the mapping cone of g is homotopy equivalent to X. Moreover Hng
is injective. Since we are in the stable range we thus have the following
commutative diagram with exact rows.

' 'rn+2B - In+2Cg
U

Trn+1A
g.-4 7Tn+1B

U U

1rn+2A - irn+2B -> rn+2X -> H,, (A) ®71/2 -> H,, (B) ®71/2q, 92

The cokernel of g1 = g * is irn+ 1(X) ® 1/2 and the kernel of g2 = H,(g) ® 1
is H,,(X) * 71/2. This yields the required exact sequence which is natural
since 0 is natural.

(83.6) Corollary Let n >- 4 and let X be an (n - 1)-connected space with
B = Hn(X). Moreover let f3: M(B, n) - X be a map such that H,,(,8) is the
identity on B. Then one has the commutative diagram with short exact rows

'rn+l(X)®71/2 rn+2(X) H,(X)*71/2
I':

T0. µ II

B®71/2 N irn+,M(B,n) - B*71/2

where in carries b ®1 with b e B = an X to (brl,,) ®1.

The bottom row is, on the one hand, the exact sequence in Theorem
8.2.5(3); on the other hand it is the exact sequence in Proposition 8.3.5 for
X = M(B, n). We observe that the diagram in Corollary 8.3.6 is a push-out
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diagram of abelian groups which determines the group F., 2(X). The isomor-
phism C* in Theorem 8.2.5(1) has the following generalization.

(83.7) Theorem Let X be an (n - 1)-connected space. Then there is a natural
isomorphism * for which the following diagram commutes

µExt(Z/2, X) H X) - Hom(71/2, 7r X )

11
11

"rn+,(X)®71/2 r,,+,(X) -_4

Here irn(Z/2, X) is the homotopygroup with coefficients in Z/2 and the top row
is the universal coefficient sequence. The left- and the right-hand side denote the
canonical identifications. Moreover, we obtain for 71 in (8.3.3) the isomorphism
of groups

0: G(rt) = Irs+2(X)

which is compatible with A and I.L. Here G(TI) is the group in Definition
8.1.3(A).

Proof The isomorphism carries a: M(71/2, n) _C14 X" ' C X to the ele-
ment of

2 X given by the composite

Sn+2 , M(71/2, n) _,

As in the proof of Theorem 8.2.5 we see that the diagram in Theorem 8.3.7
commutes. Moreover we define 0 by Oi = A and 0i =13 * * where ;r * is the
isomorphism in Theorem 8.2.5(3) and where we use f3,, in Corollary 8.3.6.
Compare also Theorem 1.6.11 where G(71/2, -q) = G(rt).

(83.8) Remark By putting X = K(B, n) in Corollary 8.3.6 we readily get, for
n>4,

Hi+3K(B,n)=f,,,2K(B,n)=B*71/2

and the operator

Q: n) = G(B) - Hi+3K(B, n) = B *71/2

in Theorem 6.6.6 is surjective and coincides with µ in Corollary 8.3.6.
We use the next result for the computation of F,,. (A, X)- Here 0 in

Corollary 8.3.6 induces an isomorphism r,, I( /3 ).
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(8.3.9) Lemma Let X and r8 be given as in Corollary 8.3.6. Then one has the
commutative diagram

Ext(A,rn+2X) 11

' rn+1(A,X) µ *
Ext(A,0.) push 0.

Ext(A,ir,,,.2M(B,n)) "'I 7rn+1(A,M(B,n)) -. Hom(A,B®7L/2)

The top row is the universal coefficient sequence (Definition 2.2.3) which is
natural in X. The bottom row is the universal coefficient for X = M(B, n)
which was algebraically characterized in Theorem 8.2.10. Since the diagram in
Lemma 8.3.9 is a push-out diagram we obtain by composing this diagram and
diagram (8.2.11) the isomorphism

(8.3.10) G(A,A(-n® 1))-I'i+1(A,X).

Here we use the composite

irn(X) ®1/2
,1®11

irn+1(X) ®1/2 ° G(71).

The left-hand side of (8.3.10) is defined by the bifunctor G in Definition
8.1.3. By putting X = K(B, n) in (8.3.10) one has rl = 0 and hence one has the
binatural isomorphism

Hn+,(A, K(B,n)) = I'n+1(A, K(B,n))

= Ext(A, B * Z/2) ® Hom(A, B ®1 /2).

Here the second equation is a consequence of (8.3.10). We discussed this
already in (8.2.13). We now study the functorial properties of Theorem 8.3.7
and (8.3.10). For this we need the operator f - 6,, given as follows.

(8.3.11) Definition Let A, B, R be abelian groups. Then one has a homo-
morphism

R),6-6#,

which is natural in A and B. If A I -A0 -A is a short free resolution
of A then 6 E Ext(A, B) is represented by 1 E Hom(A1, B) and 1:,, is the
composite

,1, : A * R cA 1 ®R - 11 B 0 R.-
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Let B > E -.A be an extension of abelian groups representing i;. Then there
is the classical six-term exact sequence

0->B* R-->E*R--)-A*R4 B®R->E®R-A®R-*0
where 6# is the boundary operator. Using the inclusion 0: Ext(B, ir , , X) >-->
ir (B, X) we define for /3 E 7rn(B, X) and r` E Ext(B, ir +, X) the difference
homomorphism

(/3+Ai:)*

where /3* is the same as in Corollary 8.3.6. On the other hand we have

(/3+A6)* -/3*:

where /3 * is the same as in Lemma 8.3.9.

(8.3.12) Proposition The homomorphism (*) coincides with the composite

ir , , +2M(B,n) -. B *7L/2
f*

®71/2 N F,, ,(X).

Moreover (* *) coincides with the composite

it JA, M(B, n)) Q1 Ext(A, B *7L/2)

17,,(A,X)

where Q, is the first coordinate of Q in (8.2.12); see (8.2.13).

We leave the proof as an exercise; compare the more sophisticated un-
stable version of Proposition 8.3.12 in Theorem 11.4.7 below.

8.4 Proof of the classification theorem 8.1.6

We apply the classification theorem 3.4.4 where we set r = 2 and C =
types;, = I'G, n >- 4; compare 7.2.9. Since spaces,3, = spaces,3,(C) we obtain
the detecting functor

A': spaces -- Bypes(FG, F)

where F is the following bype functor on FG. For r): Ho ® Z/2 - 7r, let

F,(i7) = G(,1)

as in (8.1.3) and

(1)

(1)

F0(rl) = kernel(rl: Ho (9 71/2 - ir,) (3)
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Moreover we define the bype functor_F on 1'G by the following pull-back
diagram where we use the functor G in (8.3.10) and where we use the
inclusion j: Fo(rd) c Ho ® Z/2.

Ext(A,F(i7)) 6(A,O(r7 (& 1)) -µ, Hom(A, Ho (9 Z12)

II
pull Ji.

F(A,-q) `0 Hom(A,Fo,7)

(4)

Now Lemma 8.3.9 and the classification theorem 3.4.4 yield the detecting
functor A' in (1). We claim that we have a forgetful functor

0: Bypes(l'G, F) -> A3-System (5)

which is also a detecting functor. This yields the result in Theorem 8.1.6 by
use of the detecting functor ¢A'. The functor ¢ is essentially the identity on
objects; compare for this the definition of F-bypes in Section 3.2 and the
definition of A3-systems in Definition 8.1.4. Let (P;: H; -> H; be homomor-
phisms. Then 0 carries the morphism (X, (P2, 453) in Bypes(FG, F) with
X = {(P,r, , coo,'Po}: -q - 77' in 1'G to the morphism (P = ((POI (P21 (P3, (P,,, (Pr) in
A3-System with

cPr = X* : F = F'= G(,q'). (6)

We have only to check that ¢ is a full functor, that is, for (Pr there always
exists X such that (Pr = * as in (6). For this we consider the diagram

G(i) G(H0) ® ir, ® 1/2

wr

y

I o1(450. P- ). (7)

G07') ' ) -G 0 7 ' )- -' G(Ho) ®ir', ®71/2

where (cpo, (P,,, ) * has the coordinates

;PO: G(H0) -, G'(Ho),
7r,®71/2->7r,®71/2,

µ: G(H0) Ho *l/2 -> rr, ® 71/2.

The definition in (8.3.11) shows that the right-hand side of (7) induces X* in
(6). We claim that for 'Pr there is (;po, (P,,, ) such that diagram (7) com-
mutes. To see this we first choose a map ;PO: G(H0) - G(Ho) compatible
with (Po. Then ;Po ®(P ® 1 induces a map (Pr: G(q) -* G(71') compatible with
0 and A. Since also (Pr is compatible with A and µ in Definition 8.1.4(8)
there is

5 E Hom(Ho *l/2, rrl ® 71/2)
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with cpr = (pr + ASµ. Since the operation H # is given by the surjection

Ext(H0, iri) Q-- Ext(Ho, ir, (& 71/2) = Hom(H0 *71/2, ir' (9 71/2)

we see that there exists with = S. This implies that diagram (7)
commutes for Therefore 4 is a full functor and hence a detecting
functor. Similarly we get the detecting functor A' in Theorem 8.1.6 by use of
A' in Theorem 3.4.4.

8.5 Adem operations

Algebraic data which classify homotopy types are by no means well deter-
mined or unique. It is, however, suitable to search for such data which
directly refer to basic invariants like homology groups and homotopy groups.
For example, the A3-systems in Section 8.1 which classify (n - 1)-connected
(n + 3)-dimensional polyhedra X use the homology groups H* X of X with
71-coefficients, and the homotopy groups 7r" + i X, 'rn 12 X can easily be com-
puted by the A3-system associated with X.

On the other hand, there is a classical approach to classifying homotopy
types X by cohomology groups with coefficients in various abelian groups
and by cohomology operations. It is a kind of old belief that at least in the
stable range it is possible to find such cohomological data which classify
homotopy types. The use of cohomology requires the restriction to spaces
with finitely generated homology groups. Given such cohomological data it is
then a hard problem to determine the homotopy groups irn X for n < dim X
in terms of these data; see for example (5.3.5).

Actually only a very few complete results are known on the classification
of homotopy types via cohomology and cohomology operations. J.H.C.
Whitehead [HT] for example used Steenrod squares for the classification of
(n - 1)-connected (n + 2)-dimensional polyhedra, n > 3. Such Steenrod
squares are primary cohomology operations. It is not possible to classify
(n - 1)-connected (n + 3)-dimensional polyhedra only by primary cohomol-
ogy operations. In fact for the double Hopf map 77,1: S"+' S" we have the
mapping cone

X= Sn U,72 en+3

and all primary cohomology operations on X are trivial. It is a classical result
of Adem that there is a non-trivial secondary cohomology operation for X
showing that -qz is essential. This suggested the classification of (n - 1)-
connected (n + 3)-dimensional homotopy types, n > 4, by primary and
secondary cohomology operations; compare the papers of Shiraiwa, Chang,
and Chow. The results turned out to be very intricate and unclear. Here we
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follow the work of my student S. Jaschke [AO} who shows that indeed a
classification via primary and secondary cohomology operations is possible.
For this one needs the notion of an A3-cohomology system which is
a modification of the concept of Chang and which relies on secondary
cohomology operations of Adem type.

(8.5.1) Notation We describe some fundamental concepts of homotopy
theory, concerning extensions, coextensions, lifts, and colifts, respectively.
Consider maps

A 14B 9 Y with gf = 0 in Top*. (1)

Given the null homotopy H: gf = 0 we obtain the following maps depending
on H

Cf -L Y, extension of g, (2)

E A L Cg, coextension of f, (3)

A f Pg, lift off, (4)

Pf - fIY, colift of g. (5)

Here Gg = Y Ug CB is the mapping cone given by the push-out

119
CB Cg

101 push Ti8 (6)

B -- Y
9

where CB = I X B/I X * U (1) x X is the cone on X. On the other hand,
Pg = B Xg WY is the fibre of g given by the pull-back

(7)

where WY is the contractible path object of Y, that is, WY= {o Y', Q(1) =
* } and go(o,) = o-(0). A null homotopy H: gf = 0 as above can be identified
with maps

H: CA Y and H: A - WY (8)
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respectively. The extension g is the map with gig = g and girg = H; the lift f
is the map with qgf =f and 7rg f = H. Moreover for the suspension 1A and
the loop space fly we obtain the coextension f and the colift g above
follows. Consider the commutative diagrams

T I T

A --> B -- Y

1 H
CA

w(g)
WY

I I I
A- B --- p Y

jY

(9)

(10)

These diagrams yield the maps

(irgC(f),igH)f: IA=CAuACACg (11)

(W(g)lrf, H )
g: Pf WY x,, WY= fY. (12)

Here the homeomorphisms are chosen such that

If (13)

fig=gio: flBcPf-->fly. (14)

The map q0 is the pinch map Cq --, Cg/Y= EB and io is the inclusion of the
fibre SZ B = (qg)-' ( *) c Pf. More generally extension and coextension can be
defined in any cofibration category and lift and colift are the strictly dual
constructions in a fibration category; see Baues [AH].

The Steenrod operations are homomorphisms

(8.5.2) Sq": H"(X,71/2) +H"+"(X,71/2)

which are natural in X. They determine up to homotopy maps

Sq": K(71/2,k)- K(71/2,k+n) (1)



272 8 (n- 1)-CONNECTED (n+3)-DIMENSIONAL POLYHEDRA

which induce (8.5.2) via the isomorphism Hm(X, ar) = [X, K(zr, m)]. The
operator Sq' coincides with the Bockstein homomorphism associated with the

2 4

exact sequence 71/2 1/4--1/2 so that
2 4

H"(X,71/2) µ°_H"(X,71/4) AZ-H"(X,7L/2)-H"+'(X,71/2)-µ-°

(2)

is a long exact sequence; in particular p4Sq' = 0 and A2Sq' = 0. Hence also
Sq'µ°2 = 0 where µz: 71-> 71/2 is the quotient map. The Adem relations

(8.5.3)
Sq3

= Sq'Sg2

Sg3Sq' + Sq2Sq2 = 0

give rise to the following composites gf which are null homotopic (compare
for example Mosher and Tangora [CO]).

(Sq',Sg2) (Sg3,Sg2)
K(71/2, n) - K(71/2, n + 1) x K(71/2, n + 2) - K(71/2, n + 4)

(1)

(Sq'Sq',Sg2)
K(71/2, n) K(7112, n + 3) x K(71/2, n + 2)

(sg'.sg2)
K(71/2, n + 4) (2)

K(71, n)
Sg3'2-

K(71/2, n + 2)
sqZ

- K(71/2, n + 4) (3)
sq2

K(71/2, n) ---> K(7/2, n + 2) µ4sg2
K(71/4, n + 4) (4)

K(71/4, n)
Sg 2) K(71/2, n + 2)

sq2
0 K(71/2, n + 4). (5)

Given a composite gf: A -> B -> Y, gf = 0, as in (1)-(5) we choose a colift
of g as in (8.5.1) and we define the secondary operation 0 associated with

gf = 0 as follows: Consider the diagram

Pf
s fly

X1 f
X A -a B - Y

where fu = 0. Then we choose a lift u of u and gu represents cb(u). Hence
given {u} E [ X, A] with f,, {u} = 0 we obtain the well-defined subset

4i{u} C [X, flY]

consisting of all composites gu where g and u are given by homotopies
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fu = 0 and gf = 0 respectively. For the maps in (1)-(5) above this subset is
actually a coset of a subgroup of [X,11Y]. This way one derives from (1)-(5)
the following well-defined Adem operations (1)'-(5)'

Hn+3(X,71/2)
H"(X,71/2) z) ker(Sq') n ker(Sgz) -->

im(Sg3 +Sqz)
(1)

Hn+3(X,71/2)
(2)H"(X,71/2) D ker(Sq-) n ker(SgzSq') --- im(Sg' + Sq 2)

62o
Hn+3(X,71/2)

H"(X,71) ker(Sq µ°) - (3)
im(Sgz)

6,2
Hn+3(X,71/4)

(4)H"(X,71/2) 3 ker(Sgz) z zSim( )4

asZ
Hn+3(X,71/2)

H"(X,71/4) D ker(Sgzµ2)
im(Sgz)

(5)'

where im(Sq' + Sqs) = im(Sq') + im(Sgs) is the sum of subgroups. Originally
Adem used `chain maps' for the definition of such operations. In (3) we also
write Sgzµ° = Sq2 and 0° coincides with the operation used in Theorem
5.3.8(b). One can check that the following diagrams commute, where the
arrows i and q denote inclusions and quotient maps respectively

(8.5.4)

ker(Sq 2AO )

µz

ker(Sq z) n ker(Sq' )

0°
H"+3(X,71/2)/im(Sg2)

iq
H"+3(X,71/2)/im(Sg3 + Sqz )

1t 1q
46*

ker(Sgz) n ker(Sg2Sq') Hn+3(X,71/2)/im(Sq' +Sqz)

ker(Sq 2A4 H" +3(X, 2)

µz lq

(8.5.5) ker(Sgz) n ker(Sq') H"+3(X,71/2)/im(Sg3 +Sqz)

z

µs

m Hn+3(X,71/4)/im( µa Sq 2)

We are now ready to introduce the notion of an A3-cohomology system
which describes further properties of the Adem operations 04 and 0z.
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(8.5.6) Definition An A3-cohomology system is a tuple

S= (H*(0), H*(2), H*(4), 0(2), 0(4),µ(2),µ(4),µ4> Sqo, 592, 04 > 02 )

with the following properties.

(a) H*(O), H*(2), H*(4) are graded finitely generated abelian groups concen-
trated in degree 0, 1, 2, 3, and H°(0) is free abelian.

(b) µ4: H*(2) - H*(4) and µ2: H*(4) -H*(2) are homomorphisms of
degree 0.

(c) A(2), z(4) and µ(2), µ(4) are homorphisms of degree 0 and 1 respectively
for which the following diagram commutes

H*(0) ®7L/2;
o(2)) H*(2) µM H*(0) *7L/2

11®µy

H*(0)®71/4-> H*(4) µc4)_ H*(0)*71/4

l+2 1µz µ2

H*(0) ® 71/2 > H*(2)
µc2)

4 H*(0) *7L/2

The rows are split short exact sequences and splittings can be chosen
which extend the diagram commutatively, hence µ2 µ4 = 0.

(d) Sqo: H *(2) - H *(0) and Sq 2: H *(2) - H *(2) are homomorphisms of
degree 1 and 2 respectively.

(e) For r= 2,4 we define µ°: H*(0) -> H*(r) by µ,°(x) = o(-rXx ® 1) and we
set

Sq' = Ao Sqo

With this notation the following diagram commutes and has exact rows.

H'(0) 2 H'(0) µ2 H'(2) s`'° . H'+'(0) 2

I A02 I I-01 I µi

H'(2) µ` H'(4) µz * H'(2) Sq H'+'(2) µ

(f)
H°(2) Dker(Sg2) --H3(4)/im( µ4Sg2)

H°(4) D ker(Sg2µ2)
mz - H3(2)/im(Sg2)
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are homomorphisms of degree 3 such that the following three diagrams
commute.

ker(Sg2µ2) z. H3(2)/I im(Sg2)

IF,4

ker (Sq2) -
04

H3(4)/im( µ4Sg2)

ker(Sg2)
m<

H3 (4)/im( µ4Sg2)

lii

H3(2)

H°(2)
sq2

H2(2)
µ4 jsq'

ker(Sg2µ2 b H3(2)/im(Sg2)

A morphism f: S -* S' between A3-cohomology systems is given by a tuple of
homomorphisms of degree 0

f(0): H*(0) 3H*(0)'

f(2): H*(2) -4H*(2)'

f(4): H*(4) _H*(4)'

such that f is compatible with all operators and diagrams above. Let
A3-cohomology be the corresponding category. This is an additive category
with the obvious notion of direct sum of A3-cohomology systems given by the
direct sum of abelian groups.

Recall that A3 is the full homotopy category of (n - 1)-connected (n + 3)-
dimensional polyhedra which are finite.

(8.5.7) Theorem Let n >: 4. One has a detecting functor

A: AR -A 3-cohomology

which carries a space X to the A3-cohomology system A(X) given by H'(T) =
H"+`(X,7L/T) for r= 0, 2, 4 and i E Z. Moreover A(T) and µ(T) are operators
of the universal coefficient sequence and µ2, µ4, Sqo', Sq2 are defined in (8.5.2)



276 8 (n- 1)-CONNECTED (n+3)-DIMENSIONAL POLYHEDRA

and 04, ¢z are the Adem operations in (8.5.3)(4)', (5)'. The functor A is an
additive functor.

Hence isomorphism types of A3-cohomology systems are in 1-1 correspon-
dence with homology types of finite (n - 1)-connected (n + 3)-dimensional
polyhedra, n >_ 4. The theorem was essentially obtained by Chang. Jaschke
[AO] wrote down a complete proof. It shows that the classification via
cohomology operations is considerably more complicated than the classifica-
tion via boundary invariants in Section 8.1. The examples in (10.2.16) show
that the pair of operations 464, 04 is needed for the classification. The
classical Adem operations q5', 0", 0z do not suffice to detect all possible
homotopy types in A;,.
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ON THE HOMOTOPY CLASSIFICATION
OF 2-CONNECTED 6-DIMENSIONAL

POLYHEDRA

In this chapter we describe algebraic models which characterize the homo-
topy types of 2-connected 6-dimensional polyhedra. Such polyhedra are in the
metastable range so that diverse features of `quadratic algebra' are involved
in the classification. We proceed in a similar way as in Chapter 8 where we
classified (n - 1)-connected (n + 3)-dimensional homotopy types which are in
the stable range n >_ 4. We apply boundary invariants which, via the classifica-
tion theorem 3.4.4, yield algebraic classifying data for 2-connected 6-
dimensional homotopy types.

9.1 Algebraic models of 2-connected 6-dimensional
homotopy types

We introduce the purely algebraic category of A3-systems. The main result of
this chapter shows that A3 -systems are algebraic models which classify
2-connected 6-dimensional homotopy types. Recall that we have the exterior
square which is the functor

(9.1.1) A2:Ab-->Ab

defined by A2(A) =A ®A/(a ® a - 0). Let H and L be abelian groups. A
quadratic A-map is a homomorphism

A:H®7L/2ED A2(H)-*L

which admits a factorization

A: H®7L/2ED A2(H)

Here we use (9.1.2) below. Let AAb be the category of such maps; objects are
quadratic A-maps and morphisms (qi, alro): A -b A' are pairs (i/rl, 4,0) E

Hom(L, L') ® Hom(H, H') for which the diagram

H®7L/29A2(H)
c4'°>

H'®7L/2®A2(H')

IA
IA,

L
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commutes. Here we set ('Iio) * = 1#® ® 71/2 ® A2(00). We have for any abelian
group A the extensions

(9.1.2) A ® 71/2 H G(A) - A *1/2

(9.1.3) Ext(A,l/2) N Hom(G(A),71/4) Hom(A,71/2)

as in (8.1.1) and (8.1.2). We use (9.1.2) for the definition of morphisms in the
category G; see Section 1.6. Recall that QM(71) denotes the category of
quadratic 71-modules; see Section 6.13. We introduce a functor

(9.1.4) A,: GOP -, GM(71)

as follows. Let d: Hom (A, 71/2) -> Ext(A,71) be the connecting homomor-
phism induced by the exact sequence Z 71 - 71/2. Then we define for an
object A in G

A1(A) _ (Hom(G(A),71/4) dµ Ext(A,71) -L Hom(G(A),71/4))

where H = dµ is given by µ and d above and where P = 0 is trivial. The
functor A, carries a morphism (cp, ip): A ---> B in G to the map ((p, ilp)*:
A1(A) -* A,(B) in QM(71) given by Hom (;p,Z/4) and Ext

We observe that the exact sequence (9.1.3) induces the following short
exact sequence of quadratic 71-modules

(9.1.5) A0(A) >- A,(A) -µ Hom(A,71/2)

which is natural in A E G. Here we set

A0(A) _ (Ext(A,71/2) -o - Ext(A,71) -s--i Ext(A,l/2))

1° 1° 11 1°
A1(A) _ (Hom(G(A),71/4) H- Ext(A,Z) - Hom(G(A),71/4))

Hom(A,71/2) _ (Hom(A,71/2) -i 0 Hom(A,71/2))

The quadratic 71-module corresponding to an abelian group D is given by
D = (D --> 0 -* D). Hence one has the isomorphism of quadratic 71-modules.

(9.1.6) A0(A) = Ext(A,71/2) ® 71^ ® Ext(A,71)
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where 7L° = (0 --> Z -* 0) is the quadratic 7L-module associated with the exte-
rior square functor A2 in (9.1.1). We now apply the quadratic tensor product
which is a functor

®: Ab x GM(7L) -* Ab.

Then (9.1.6) shows that for an abelian group B we have the isomorphism in
the top row of the following diagram

(9.1.7)

B ®AQ(A) = B ®Ext(A,LL/2) ®A2(B) ®Ext(A,LL)

16

Ext(A,B®7L/2®A2B)=
161 ®

C2

Ext(A, B ® Z/2) ® Ext(A, A2B)

Here e,, e2 on the right-hand side are the evaluation maps with e,(x ®y) =
(x®7L/2)*(y) and e2(u®v)=u*(v) where x: 7L-*B and u: 7L-->A2(B)
denote the homomorphisms given by x E B and u E A2(B) respectively. We
are now ready for the definition of the bifunctor G which replaces the
bifunctor G in Definition 8.1.3.

(9.1.8) (A) Definition We define a functor

G: GOP X AAb - Ab

as follows. If A or H are finitely generated let G(A, A) with A as in (9.1.1) be
given by the push-out diagram with exact rows:

Ext(A, L) G(A, A) - Hom(A, H ®7L/2) - 0

A* T push

Ext(A, H ®7L/2 ®A2H) )i. 11

1
H° He.

H®A0(A) -H®A(A) ® H ®Hom(A,7L/2) - 0

Here the bottom row is obtained by applying the quadratic tensor product
He to the short exact sequence (9.1.5). The bottom row need not be short
exact. For a morphism ((p, ipp): A -+ B in G we obtain

(,P,;P)':G(B,A),d(A,A)
H®A,('p, )
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and for a morphism (1/rl, 1/ro): A -A' in AAb as in (9.1.1) we get

(+61, 4io) * : A1(A, A), A1(A, A')

(iri,iro)* =Ext(A,r/i1)®,/ro®G(A).

(9.1.8) (B) Definition In general we have to use the following intricate
definition of the group G(A, A) which canonically coincides with Definition
(9.1.8) (A) if A or H are finitely generated. Here we use notation as in
Addendum 8.1.3 (C). The short exact sequence of quadratic 71-modules in
(9.1.5) yields for A = Z/2 the following commutative diagram

K(H) >-* 71/4[H]
1B" jo P2P

cok(TH) ®A2HHH® A1(Z/2) -+H®1/2

in which the bottom row is short exact. Here the homomorphism 0' carries
[x] with x e H to 0'[x] =x ® 1 where 1 E 1/4. For this recall that A1(71/2) _
(1/4 -L Z/2 -° Z/4). Let

6H: K(H)*71/2 -* cok(TH) ® A2H

be the restriction of O. One can check that BH = (OH, yHp) is given by 8H in
Addendum 8.1.3 (C) and by yH in Definition 6.2.13(B). We now obtain
G(A, A) by the following push-out diagram

Hom(A *7L/2, K(H)*7L/2) H Hom(G(A),71/4[H])

el

0*Ext(A, H®71/2 ® A2H) push

A.I

Ext(A, L) G(A,A) µ » Hom(A,H®71/2)

Compare the diagram in Addendem 8.1.3 (C). The natural transformation 0
is defined by

0(a)=a*OH

with

BH E A * Ext(K, H ® 1/2 ® A2H) = Hom(K, Cok(TH) ® A2H )
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where K = K(H) * 7L/2. This completes the definition of the bifunctor G in
Definition 9.1.8 (A).

Using the notation on the group G(,7) in Definition 8.1.3 and the group
G(A, A) in Definition 9.1.8 above we are now ready to define algebraic
models of 2-connected 6-dimensional homotopy types which we call A 3
systems.

(9.1.9) Definition An A3-system

is a tuple consisting of abelian groups H3, H5, H6, Tr4 and elements

b5 E Hom(H5, H3 (9 71/2)

E Hom(H3 ® 71/2, ir4 )

b6 E Hom(H6,G(rl) ® A2H3)

E G(H5,71, ).

Here X10 = q(A(n (9 1) ® AzH3) is the composite

(1)

(2)

770: H3®1/2®AZH3-->G(77)®AzH3- cok(b6) (3)

where q is the quotient map for the cokernel of b6 and where the first arrow,
A(r, ® 1) e AZH3, is induced by A(i (9 1): H3 ® 71/2 - vr4 ® Z/2 --b G(,1);
compare the definition of G(71) in Definition 8.1.3. These elements satisfy the
following conditions (4) and (5). The sequence

H5 b, H3 ®7L/2 17 > 1r4

is exact and /3 satisfies

A(/3)=b5

where µ is the operator in Definition 9.1.8. A morphism

(4)

(5)

(6)

between A3-systems is a tuple of homomorphisms

,p;: H, H, (i = 3,5,6)

Pn 'T4 - 74
cpr: G(7) --> G(rt')
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such that the following diagrams (7), (8), and (9) commute and such that
equation (10) holds.

H5 b, H3 ® 71/2 IT4

l'Ps 1Wn

H5' b H3 ® 71/2 1r4

7r4®71/2 G(i1) --->H3*Z/2

wn®1 I (P r I w3.1

1r4' ® 71/4 N G(ri') - H3 *Z/2

H6 - GOO ®A2H3

1'P6 I(Pre A2('P3)

H6 b G(l') ®AZH3

(7)

(8)

(9)

Hence 'Pr ® A2(!p3) induces (Pr ® A2(4)3): cok(b6) - cok(b6) such that
A2(43)): 771 - rla is a morphism in AAb which induces (P31 'Pr (B

A2((p3)) * as in Definition 9.1.8. We have

('P3,4PrED A2((P3))*(/3)=(43,43)*0') (10)

in G(H3, rro ). Here we choose irp3 for cp3 as in (8.1.1). The right-hand side of
(10) does not depend on the choice of ;P3; compare Definition 9.1.8. An
A3-system S as above is free if H6 is free abelian, and S is injective if b6:
H6 - I'(-q) ® A2(H3) is injective. Let A3-System, resp. A3-system, be the
full category of free, resp. injective, A3-systems. We have the canonical
forgetful functor

0: A 3-System -* A 3-system (11)3 3

which replaces b6 by the inclusion b6(H6) C G(q) ® A2(H3) of the image of
b6. One readily checks that the forgetful functor 0 is full and representative.

(9.1.10) Definition We associate with an A3-system S as in Definition 9.1.9
the exact r-sequence

H6-G(7I)®A2(H3)-.IT5-s H5b,H3®71/217ir4-
114->0.

Here H4 = cok(q) and the extension

cok(b6) - IT5 -. ker(bs) (1)
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is obtained by the element /3 in Definition 9.1.9, that is the group -rrs = ir( /3t)
is given by the extension element /3t E Ext(ker (b5), cok(b6)) defined by

of = A-t (j, j)"( /3). (2)

Here j: ker(bs) c H5 is the inclusion. The element /3t does not depend on the
choice of (j, j) in G. Compare (2.6.7).

Recall that spaces3 is the full homotopy category of 2-connected 6-
dimensional CW-spaces X and that types; is the full homotopy category of
2-connected 5-types. We have the Postnikov functor

P: spaces3 , types3

which carries X to its 5-type.

(9.1.11) Theorem There are detecting functors

A': spaces3 --> A3-Systems3 3

A': rypes3 -A3-systems.

Moreover there is a natural isomorphism 4A'(X) = A'P(X) for the forgetful
functor 46 in Definition 9.1.9 (11) and for the Postnikov functor P above.

Let S be a free A3-system. The detecting functor A' in Theorem 9.1.11
shows that there is a unique 2-connected 6-dimensional homotopy type
X = Xs with A'(X) = S. Then the r -sequence for S is the top row of the
following commutative diagram

(9.1.12)

H6 --,G(el)®AZ(H3)-.Tr(St)- H5 ->H3®7L/2 '7 7r4 - H4

II II =1 II II II II

H6X f5X 7r5X-'H5X-=F4X ' 1r4X-.H4X

The bottom row is Whitehead's certain exact sequence for X. The diagram
describes a weak natural isomorphism of exact sequences.

Proof of Theorem 9.1.11 Using similar arguments as in Section 8.4 one gets
the theorem by the results in the following sections 9.2 and 9.3. In particular
one has the canonical forgetful functor

0: Bypes(FG, F) ->A3-Systems
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which is a detecting functor so that A' in the statement of the theorem is the
composite of 46 and the detecting functor A' in the classification theorem
3.4.4.

Remark In Theorem 6.4.1 we describe the detecting functor

A': spaces(3,5),r Bypes(Ab, H53)) (1)

where H53> is the Eilenberg-Mac Lane functor which we compute in 9.2.11
below and which satisfies

H53'(A, B) = G(A, A). (2)

Here A: B ®Z/2 ®A2B - B * Z/2 ®A2B is given by A = 0 E ) see Re-
mark 9.2.12. One readily checks that the functor A' in Theorem 9.1.11
actually yields a commutative diagram

spaces; n-,,
A3-Systems

U U

spaces(3, 5) Bypes(Ab,

In fact, bypes in Bypes(Ab, H53)) can be identified via (2) with free A3-
systems for which ir4 = 0. In Theorem 6.4.1 we also describe the detecting
functor

A: spaces(3,5),, Kypes(Ab, H(s))

by use of k-invariants. The corresponding detecting functor A for spaces3
which also uses k-invariants, however, is not known.

(9.1.13) Definition We define the suspension functor

Y.: A 3-Systems --> A 3-Systems (1)

as follows. First we obtain the natural map I between quadratic Z-modules
given by

A,(A) = (Hom(G(A),l/4) dµ EWt(A,7) -°+ Hom(G(A),Z/4))

£1 1I I
II

Hom(G(A),//4) = (Hom(G(A),7L/4) 0 - Hom(G(A),Z/4))
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Now let S be an A3-system as in Definition 9.1.9. Then we have for i EJ the
commutative diagram

-qa:H30 71/2(D AZH3->G(i7)a) A`H3 cok(b6)

I P I IPI l-
71# : H3 (9 71/2 --> G(q) cok(p,b6)

where p, is the projection and where i1# = g061(9 1) as in Definition 8.1.4(3).
Using I and if above we obtain the homomorphism

E: G(H3, rlo) --> G(H3, 17*)

I=Ext(H3,o,)®H3®1. (2)

For this compare the definition of the bifunctors G and G respectively. The
suspension functor I above is now defined by XS) = S' where S' is the
A3-system given by

(3)

Moreover the suspension functor is the identity on morphisms.

We now obtain for n >_ 4 the following diagram of functors

spaces3 spaces,3,

(9.1.14) A 1 IA'

A3 Systems A3-Systems

Here E" - 3 is the (n - 3)-fold suspension functor for spaces and is the
algebraic suspension functor in Definition 9.1.13. Moreover A' denotes the
detecting functor in Theorems 9.1.11 and 8.1.6 respectively.

(9.1.15) Theorem Diagram (9.1.14) commutes up to a natural isomorphism,
that is, for a 2-connected 6-dimensional polyhedron X one has an isomorphism
of A3-systems

A'(1n-3X) =I(A'X)

which is natural in X, n >- 4.

Since by the Freudenthal suspension theorem the functor I" - 3 is repre-
sentative, also the algebraic functor I is representative; this also can be
readily seen by the definition of I. As an application we get
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(9.1.16) Corollary Let X be a 2-connected 6-dimensional polyhedron with
H3X cyclic. Then the homotopy type of X is determined by the suspension EX,
that is IX= Y.Y implies X= Y.

Proof Since H3 X is cyclic we have A2H3 X = 0. Hence p, b6 = b6 in S' of
Definition 9.1.13 (3). Moreover I in Definition 9.1.13 (2) is an isomorphism
since I is compatible with A and A.

Similarly we derive from (9.1.12) the

(9.1.17) Corollary Let X be a 2-connected polyhedron with H3 X cyclic. Then
the suspension Y.: vr5 X = ir6I X is an isomorphism.

For example we get by Proposition 8.1.10

(9.1.18) ir5(y(y.2R P) = Z/8.

9.2 On ir5 M(A, 3)

We compute the homotopy groups ir5M(A,3) and 7r4(A,M(B,3)) of Moore
spaces and we determine the functorial properties of these groups. As special
cases of (8.2.3) we consider the functors

(9.2.1) TT5(-,3): G = M3 -' Ab

(9.2.2) ir43): GOP x G = (M4)OP X M3 - Ab

which carry A to 7r5M(A,3) and (A, B) to ir4(A,M(B,3)) respectively. We
want to describe the functors above up to a canonical natural isomorphism
by purely algebraic functors defined via the algebraic structure of the
category G.

(9.2.3) Lemma One has a natural short exact sequence

A®1l/2®AZ(A) >* 7r5M(A,3) -.A*l/2.

Moreover the suspension Y yields the following short exact sequence which is
naturally split.

A2(A) ° ir5M(A,3) - ir6M(A,4)

Proof We apply the second sequence in Corollary 6.15.15 for n = 3. Since
ir5{S") = 1/2 9 l^ we get A 0 ir5(S") =A 0 11/2 9 AZ(A). Moreover
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Ir4(S") = 1/2 so that the first sequence of the lemma is a special case of
Corollary 6.15.15. Next the Freudenthal suspension theorem shows that the
second sequence is short exact. Moreover this sequence is naturally split since
the composite I ir4 M(A, 2) c Ir5 M(A, 3) -i a6 M(A, 4) is an isomorphism.

The lemma yields by Theorem 8.2.5 the following result.

(9.2.4) Theorem The functor ir5(-,3): G -* Ab carries A to G(A) ® A2(A)
and carries (gyp, l') to ® A2(cp ), that is, there is an isomorphism 7r5(M(A, 3)) _
G(A) ® A2(A) which is natural in A E G.

This is the purely algebraic description of the functor 7T5(-,3) in (9.2.1).
Let Add(Z) be the category of finitely generated free abelian groups. We
consider the quadratic functor

(9.2.5) 7r4: Add(Z) -> Ab

which carries B to the homotopy group with coefficients A, vr4(A, M(B, 3)).
This functor is determined by the quadratic 11-module

Trq {S3} _ (7r4(A, S3) 7r4 (A, SS) --> 7r4(A, S')) (1)

as in Definition 6.13.10 (4). Here we have

ir4(A,S5) = Ext(A,71) (2)

ir4(A,S3) = Hom(G(A),71/4). (3)

Both isomorphisms are natural in A E G; compare Lemma 8.2.7. For the
quadratic 71-module A,(A) in (9.1.4) we obtain the following topological
interpretation:

(9.2.6) Proposition There is an isomorphism vr4 (S3} = A1(A) of quadratic
71-modules which is natural in A E G

Proof Using the isomorphism rl * in the proof of Lemma 8.2.7 we see that
each element x E ir4(A, S3) is a composite

x: M(A,4)

y is a suspended map. Hence H in (9.2.5) (1) is determined by the left
distributivity law (a, 13 E or3U)

x*(a+/3)=y*n*(a+/3)=y*(rl*a+rl*f3+[a,/31y2'1)

=x*a+x*13+ [a, P ](y217)y
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with H(x) = (Y2 77)y. Here y2 is the James-Hopf invariant and [ , ] is the
Whitehead product; compare Lemma 6.15.2. For the computation of y2,q we
consider the adjoint iq: M(77/2,3) -1153 =J(S2) of 17 where J(S2) is the
infinite reduced product of James with 4-skeleton S2 U

W e4. Here w = [i2, i2]
is the Whitehead square. Hence i yields a map is S3 U2 e4 _ S2 U. e4
which extends the Hopf map 712: S3 - S2. Since 2712 = w we see that 1 is a
principal map between mapping cones associated with

S3 I - S3

21 1w

S3_--- S2
I2

This implies that q = y217: M(77/2,4) -> S5 is the pinch map. In fact Y2 -q is
the composite of i and the James map J(S2) -J(S4), which is of degree 1 in
dimension 4. Therefore H in (9.2.5) (1) carries x = 71y to qy E Ext(A,Z).
Using the isomorphism (9.2.5) (3) the element x corresponds to 41 E

Hom(G(A), Z/4) with ii = 7r4(Z/2, y) and µ(40 = H4(y) E Hom(A, Z/2).
Let (y yo): dA -> d2 be a chain map representing H4(y) = µ(4i). Then
qy E Ext(A,77) is represented by y, e Equivalently we have
qy = aµ(41) and hence we get H = Bµ in A,(A). We clearly have P = 0 since
S3 is an H-space.

We are now able to characterize the functor ir43> in (9.2.2) similarly as in
Theorem 8.2.10.

(9.2.7) Theorem Let AG: G -> AAb be the functor which carries B E G to the
inclusion AG(B): B ®1/2 ® A2(B) C G(H) ® A2(B) which is a A-quadratic
map. Then there is an isomorphism

[M(A,4), M(B, 3)] = 1r43)(A, B) = G(A, AG(B))

which is natural in A, B E G and which is compatible with A and µ in the
universal coefficient sequence. Here d is the bifunctor in Definition 9.1.8.

We point out that the isomorphism in Theorem 9.2.7 is available for all
abelian groups A, B.

Proof of Theorem 9.2.7 If A or B are finitely generated we obtain the
following commutative diagram which is natural in M(A,4) E M4 and
M(B,3) E M3.

B ®A0(A) 16A B ®ir4 (S3) 16A ° B ®Hom(A,Z/2)

lk 11

Ext(A,ir5(B,3))r--° - r4(A,M(B,3)) µ 10 Hom(A,B®l/2)
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Using Proposition 9.2.6 as an identification the top row is defined by applying
the quadratic tensor product to the short exact sequence (9.1.5); compare also
Definition 9.1.8 (1). We define k in the diagram by composition of maps, that
is, for b, b' E B = n), a E ir4(A, S3), and c E ir4(A, S5) let

k(b ®a) = b o a and k([b, b'] ®c) = [b, b'] o c.

On the right-hand side [b, b'] denotes the Whitehead product. The bottom
row is the universal coefficient sequence where we have the identification
ir4 M(B, 3) = B ® ZL/2 and

ir5M(B,3) = zr5(B,3) = G(B) ®A2(B);

see Theorem 9.2.4. We obtain by A: B 0 Z/2 >-> G(B) and e in (9.1.7) the
composite A * e,

B®AO(A) Ext(A,B®71/2(DA2B) Ext(A,7rs(B,3))

where A * = Ext(A, A ® A2B). Now one can check that the diagram above
commutes. Since the rows are exact this diagram is actually a push-out
diagram. This proves the theorem if A or B are finitely generated. In the
general case we proceed similarly as in the proof of Theorem 8.2.10.

We have the commutative diagram

(9.2.8)

Ext(A,G(B)®A2B) 4* G(A,AG(B)) : Hom(A,B®71/2)

Ext(A,ir5M(B,3)) >- > vr4(A,M(B,3)) -. Hom(A, ir4M(B,3))

The left-hand side is the isomorphism given by Theorem 9.2.4. The diagram is
the metastable analogue of the corresponding stable result in (8.2.11).

We now apply the push-out diagram (6.6.7) (ii) to the bottom row of (9.2.8).
This yields the connection of the Moore bifunctor 1i 3) with the
Eilenberg-Mac Lane functor H53). For the operator Q, n = 3, in Theorem
6.6.6 one has the simple description

ir5(B,3)= lr5M(B,3) H6K(B,3) =H6(B,3)

(9.2.9)
II II

G(B)®A2(B) µ - B*71/2®A2B

where the bottom row is induced by the map µ in (9.1.2); see Theorem 9.3.5
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below. Using (6.6.7) (ii) and (9.2.8) we now obtain the binatural push-out
diagram with short exact rows

(9.2.10)

Ext(A, G(B) 0 A`B) H r43)(A, B) Hom(A, B ®7L/2)

Ext(A,Q)J, push
1Q

Ext(A, H6(B,3)) N H53)(A, B) -µ, Hom(A, HS(B,3))

This push-out diagram in connection with Theorem 9.2.7 leads to the follow-
ing computation of the Eilenberg-Mac Lane functor H53); compare (6.3.9),
m = 3.

(9.2.11) Theorem There is a binatural isomorphism (A, B E Ab)

H531(A, B) = L#(A, B) 9 Ext(A, B *7L/2)

where L,,, is the bifunctor in Definition 6.2.13. Moreover the isomorphism is
compatible with 0 and µ.

Proof We combine the push-out (9.2.10) and Theorem 9.2.7. For this we
need the composite

Ext(A,µ91)O*B=Ext(A,(gA)ED 1)982 (1)

where gA = 0. Hence HS (A, B) is the direct sum of Ext(A, B * Z/2) and the
push-out of the top row in the following diagram

Ext(A,A2B)B®A0(A) B®A,(A)

II 1Pr, 1Be (µ, 1) (2)

Ext(A, A2B) (A2B) ®Ext(A,Z) B ®L(A)

Here (A, 1): A1(A) - L(A) is the natural map between quadratic Z-modules
given by

A1(A) = (Hom(G(A),71/4) dµ Ext(A,Z) -°a Hom(G(A),7L/4))

IL 11 lµ
L(A) = (Hom(A,7L/2) -'-* Ext(A,Z) -- Hom(A,7L/2))

compare the definition of A1(A) in (9.1.4). We now observe that the push-out
of the top row of (2) is via diagram (2) isomorphic to the push out of the
bottom row of (2). This follows since

11

Ext(A,7L/2) A1(A) - L(A) (3)
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is a short exact sequence of quadratic 7L-modules and since the quadratic
tensor product is left exact. Now the push-out of the bottom row of (2) is
L,,(A, B). Here we assume that A or B are finitely generated.

(9.1.2) Remark Using the quadratic A-map

,1=0®A2B: B®7L/2®A2B->B*7L/2®AFB

we get the binatural isomorphism

L,(A, B) = G(A, .1).

Here the right-hand side is defined in Definition 9.1.8.

9.3 Whitehead's group F5 of a 2-connected space

We here compute the groups r5 X and r4(A, X) of a 2-connected space X
and we determine the functorial properties of these groups; we proceed
similarly as in the stable case; see Section 8.3. Since the groups depend only
on the 4-type of X we have for 1, = r)3 : 1r3(X) ® 71/2 -p ir4 X

(9.3.1)

and

(9.3.2)

r5(X) = r5K(1,,3)

F4(A, X) = r5(A, K(11,3)).

The computation of these groups is based on the next result.

(933) Proposition Let X be a 2-connected space. Then one has the natural
exact sequence

1r4(X) ®7 L/2 ® A2(H3X) N r5X - . H3(X)*7L/2.

Here A is given by the Hopf map 1]3 and by the Whitehead product that is
O(a(& 1)=a113 for aca lr4(X)and O(xAy)=[x,y] for x,yE1r3X=H3 X.

Proof The proof is similar to the proof of Proposition 8.3.5. We again
consider the mapping cone Cg with n = 3. Here, however, we use the exact
EHP sequence for the mapping cone C5; see Theorem A.6.9.

(93.4) Corollary Let X be a 2-connected space. Then one has a short exact
sequence

Az(H3X) N I5(X) 11'6('X)
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which is naturally split. Here I is the suspension operator and A is defined as in
Proposition 9.3.3.

Proof The suspension maps the sequence in Lemma 9.2.3 surjectively to the
sequence in Proposition 8.3.5. Moreover E: ir4X -> ir5Y' X is an isomorphism.
Hence we obtain the required exact sequence. Now let 13: M(B, 3) -> X be a
map which induces the identity H3 /3 with B = H3 X. Then Lemma 9.2.3 and
Proposition 9.3.3 yield the push-out diagram

ir4X®71/2®A2B A
I'SX

17,* 1 0.1

B®7L/2®A2B rr6M(B,4)ED A2B ar5M(B,3)

This shows that AZB is a direct summand of I'5X. Moreover Q in Theorems
6.6.6 and 6.6.11 yields a natural retraction of A in the Corollary.

More generally than in Theorem 9.2.4 we now get the following result
which is an unstable version of Theorem 8.3.7.

(9.3.5) Theorem Let X be a 2-connected space. Then there is a natural
commutative diagram

X) ® A2 XE t(Z 2
1

0 (7L 2 X) ® A2 X µ®0 Hom(7L 2 X)x / , zr5 173 ir4 ,/ 7r3 / , ir3

II
Iltt w>

II

(X) ® Z 2 ® A2H X µ-) F (X) H (X) *7L 23/i5 3 /
Here the top row is given by the universal coefficient sequence for 1T4(7L/2, X).
The left- and the right-hand side denote the canonical identifications. Moreover,
we obtain for 17 in (9.3.1) the isomorphism of groups

0: G(-q) ® A2(H3X) = F(X)

which is compatible with A and A. Here G(q) is the group in Definition 8.1.3
(A).

Proof The isomorphism Q*, w) is defined by the map C* in Theorem 8.3.7
and by the Whitehead product w in Proposition 9.3.3 above.

(93.6) Remark By setting X = K(B, 3) we readily get

H6K(B, 3) = I'5K(B,3) = B *7L/2 ® AZB.

Moreover since /3 is used for the definition of the operator Q in Theorem
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6.6.6, we deduce from the diagram in the proof of Corollary 9.3.4 that
diagram (9.2.9) commutes.

We now study the group F4(A, X) in a similar way as in Lemma 8.3.9.

(93.7) Lemma Let X be 2-connected with B = H3 X and let /3: M(B, 3) --> X
be a map which induces the identity H3( /3 ). Then one has the commutatuwe
diagram

Ext(A, FSX) >') F4(A, X) Hom(A,F4X)

TExt(A.0,) ja. I (r4JS).

Ext(A, 7r5M(B,3)) - a4(A, M(B,3)) -µ» Hom(A, B (9 71/2)

The top row is the universal coefficient sequence (Definition 2.2.3) which is
natural in X. For X = M(B, 3) the top row yields the bottom row which also
coincides with the exact sequence in (9.2.8). Since the diagram is a push-out
diagram we can compute the group I'4(A, X) by use of (9.2.8) and Theorem
9.3.5.

A homomorphism rl: B (& Z/2 -> it yields the quadratic A-map

(9.3.8) A=O(rl® 1)®AZB: B®Z/2®MB - G(rl)®AFB =L

given by O(i(9 1):

(9.3.9) Theorem For the abelian group A and for lj: B 0 Z/2 - it one has
the isomorphism

0': G(A, O(r, (9 1) (D AZB) = r4(A, K(-q, 3))

which is compatible with 0 and µ.

Compare the isomorphism in (8.3.10). The theorem extends Theorem 9.2.7.
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DECOMPOSITION OF HOMOTOPY
TYPES

In this chapter we describe explicit results on the classification of homotopy
types. For example we give a complete list of (n - 1)-connected (n + 3)-
dimensional homotopy types X, n >- 4, for which all homology groups H;(X)
are cyclic. We also obtain a complete list of all homotopy types X for which
1rn X, 7r + i X, 7r + 2 X, n >- 4, are cyclic groups and for which 7ri X is trivial
otherwise. These results are obtained by describing the corresponding inde-
composable homotopy types. The indecomposable (n - 1)-connected (n + 3)-
dimensional polyhedra were found in Baues and Hennes [HC]. The complete
solutions of classification problems in this chapter show that the prospect of
homotopy types is not so dim.

10.1 The decomposition problem in representation theory and
topology

Let C be a category with an initial object * and assume sums, denoted by
A V B, exist in C. An object X in C is decomposable if there exists an
isomorphism X = A V B in C where A and B are not isomorphic to * .
Hence an object X is indecomposable if X -=A V B implies A or B = * .
A decomposition of X is an isomorphism

(10.1.1)

in C where A; is indecomposable for all i E (1,..., n). The decomposition of
X is unique if B, V ... v Bm - X = A, V V A,, implies that m = n and that
there is a permutation o, with B,. A. A morphism f in C is indecompos-
able if the object f is indecomposable in the category PaIr(C). The objects of
Pair(C) are the morphisms of C and the morphisms f -p g in Pair(C) are the
pairs (a, f3) of morphisms in C with ga = /3f. The sum of f and g is the
morphism f V g = (i, f, i 2 g). The decomposition problem in C can be de-
scribed by the following task: find a complete list of indecomposable isomor-
phism types in C and describe the possible decompositions of objects in C.
We now consider various examples and solutions of such decomposition
problems. These examples originated in representation theory and topology.

First let R be a ring and let C be a full category of R-modules (satisfying
some finiteness restraint). The initial object in C is the trivial module 0 and
the sum in C is the direct sum of modules, denoted by Me N. With respect
to the decomposition problem for modules in C, Gabriel states in the
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introduction of [IR]: `The main and perhaps hopeless purpose in representa-
tion theory is to find an efficient general method for constructing the
indecomposable objects by means of simple objects, which are supposed to be
given'. Various results on such decomposition problems are outlined in
Gabriel [IR]. We shall use only the following examples.

(10.1.2) Example For R = 77 let C be the category of finitely generated
abelian groups. In this case the indecomposable objects are well known; they
are given by the cyclic groups 77 and Z/p' where p is a prime and i >_ 1.

(10.1.3) Example Let k be a field and let R be the quotient ring R =
k (X, Y)/(X 2, y2). Here (X 2, Y2) stands for the ideal generated by X2 and
y2 in the free associative algebra k (X, Y) in the variables X and Y. Let C
be the full category of R-modules which are finite dimensional as k-vector
spaces. C.M. Ringel [RT] gave a complete list of indecomposable objects in C.
These objects are characterized by certain words which are partially of a
similar nature as the words used in Section 10.2 below.

(10.1.4) Example In topology we also consider graded rings like the Steen-
rod algebra and graded modules like the homology or cohomology of a space.
Let R = 21 P be the mod p Steenrod algebra and let k >_ 0. We consider the
category C of all graded R-modules H for which H; is a finite Z/p-vector
space and for which H; = 0 for i < 0 and i > k. It is a hard problem to
compute the indecomposable objects of C; only for k< 4p - 5 is the answer
known by the work of Henn [CP]. In fact, Henn's result is closely related to
the result of Ringel in Example 10.1.3 above; to see this we consider the case
p = 2. The restriction k < 3 then implies that the 21-module structure of H is
completely determined by Sq, and Sq2 with Sq, Sq, = 0 and Sq2 Sq2 = 0.
Hence, forgetting degrees, the module H is actually a module over the ring
77/2(X, Y)/(X 2, Y 2) with X = Sq1, Y = Sq2 and such modules were classi-
fied by Ringel.

Next we describe the fundamental decomposition problem of homotopy
theory. Let Top*/= be the homotopy category of pointed topological spaces.
The set of morphisms X - Y in Top*/= is the set of homotopy classes
[X,Y]. Isomorphisms in Top*/= are called homotopy equivalences and
isomorphism types in Top*/= are homotopy types. Let An be the full
subcategory of Top*/= consisting of finite (n - 1)-connected (n +k)-
dimensional CW-complexes; the objects of A' are also called At-polyhedra,
see J.H.C. Whitehead [HT]. The suspension Y_ gives us the sequence of
functors

(10.1.5) A; AZ ... -A F
Ak+1 - ...

which is the k-stem of homotopy categories. The Freudenthal suspension
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theorem shows that for k + 1 < n the functor 1: A,, -> Ak+ I is an equiva-
lence of categories; moreover for k + 1 = n this functor is full and a 1-1
correspondence of homotopy types. We say that the homotopy types of AR
are stable if k + 1 < n; the morphisms of An, however, are stable if k + 1 < n.

The computation of the k-stem is a classical and principal problem of
homotopy theory which, in particular, was studied for k < 2 by J.H.C.
Whitehead [SC], [HT], [CE]. The k-stem of homotopy groups of spheres,
denoted by 7n+k(S"), n z 2, is now known for fairly large k; for example one
can find a complete list for V<, 19 in Toda's book [CM]. The k-stem of
homotopy types, however, is still mysterious even for very small k. The initial
object of the category AR is the point * and the sum in A,, is the one-point
union of spaces. The suspension I in (10.1.5) carries a sum to a sum and E:
Ak -> yields a 1-1 correspondence of indecomposable homotopy types
for k + 1 < n. As in the case of modules we use a finiteness restraint: we
consider the decomposition problem in the stable k-stem of homotopy
categories only for finite (or equivalently compact) CW-complexes.

The following results on the decomposition problem in the category AR are
known. Recall that the elementary Moore spaces of AR are the spheres S"',
n < m < n + k, and the Moore spaces M(71/p', m) where p' is a prime power
and n < m < n + k. These are indecomposable objects in A. The next result
is classical and follows by use of the Hurewicz theorem from Example
(10.1.2).

(10.1.6) Proposition (A) For n >_ 1 the sphere S" is the only indecomposable
homotopy type of A° and each object in A°, has a unique decomposition.

(B) Let n >_ 2. The elementary Moore spaces of A' are the only indecomposable
homotopy types in A;, and each object in At,, has a unique decomposition.

It is known that there are 2-dimensional complexes in A, which admit
different decompositions, see for example Dyer and Sieradski [TH]. Next we
consider the decomposition problem in the category A2, n >_ 3. For this we
define in the following list the elementary complexes X of Chang which are
mapping cones of the corresponding attaching maps in the list. Let i1, resp. i2
be the inclusions of Sn+', resp. S", into the one-point union S"+' V S" and
let i be the Hopf map and p, q be powers of 2.

(10.1.7) Elementary complexes of Chang

X
X(71)=S"Ue"+2
X67q)=S"vS"+'Uen+2
X(F17) = S" U e"+ 1 Uen+2
X(71q)=S" VSn+l Uen+' Uen+2

attaching map

fin'
Sn+I - Sn

qiI +i2T)n: Sn+I _ Sn+I VSn

(i , p): Sn+' VSn -) Sn

(qi1 +i2r1,,,Pi2): Sn+I V V Sn
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These complexes are also discussed in the books of Hilton [IH], [HT]. Our
notation of the elementary Chang complexes above in terms of the `words'
7r, 71q,,71,,?7q is compatible with the notation on elementary A3,-complexes in
Section 10.2. These words can also be realized by the following graphs where
vertical edges are associated with numbers p, q and where the edge connect-
ing level 0 to 2 is denoted by 71.

bUd
lid bit It

Equivalently these are all subgraphs (or subwords) of p,lq which contain 7r. In
Section 10.2 we shall describe the elementary by subgraphs (or
subwords) of more complicated graphs.

(10.1.8) Theorem of Chang [HI] The elementary Moore spaces and the
elementary Chang complexes above are the only indecomposable homotopy types
in A;,, n >_ 3, and each homotopy type in A;, has a unique decomposition.

Proof We use Theorem 3.5.6 which shows that each homotopy type X in
A2 n >_ 3, is given by a (&Z/2-sequence

H, b H (9 71/2 ` 7r -h -, Ho - 0 (1)

with H = H X, Ho = Hn +, X, H, = Hn + 2 X finitely generated, H, free
abelian, and 7r= 7rn+,X. The elementary Moore spaces and the elementary
Chang complexes yield the G Z/2-sequences in the following list where p
and q are powers of 2 and I is a power of an odd prime.

X

Sn

Sn+I

sn+ 2

M(7L/q, n)

M(7L/q, n + 1)

M(7L/1, n)

M(71/l, n + 1)

X(,7 )

X(719)

X(pr1)

X(p7lq)

H,
-b - H®1/2 `-I, IF _L Ho

-4
-a-

--a

7/2
0

0

Z/2
0

0

0

Z/2
7L/2

7/2
Z/2

I

------ 41

-a

2

2

Z/2
z
0

2/2
71/q

0

7L/l

0

7L/2q

0

7L/2q

-
-a

H

2
0

0

71 /q

0

Z/1

0

z
7
71/P

71/P
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We have to show that each sequence (1) is a direct sum of sequences as in
the list. Then the additive detecting functor A' in Theorem 3.5.6 yields the
proposition in Theorem 10.1.8. We choose a basis B(ar) c ar where B(ar)
yields a decomposition of ar as in Example 10.1.2. For x E B(ar) we get
hx E Ho and the orders satisfy either I hxl = Ixl S - or I xI = 2Jhxl = 2q+'.
Moreover the elements x in the second case yield a system of generators 2qx
of image i. The elements hx with x E B(a) and hx * 0 form a basis of Ho.
We choose a basis B(H) c H1 and B(H ® 71/2) c H ® 71/2 such that i
carries elements of B(H (9 1/2) to elements of the form 2qx, x e B(ar), and
such that b carries an element y E B(H) to an element in B(H (9 Z/2) or to
0. Using these generators all homomorphisms b, i, h are given by diagonal
matrices. Finally we choose a basis B(H ® Z/2). These generators now yield
a direct sum decomposition of (1) such that each summand is one of the
sequences in the list above. Moreover this decomposition is unique in the
sense of (10.1.1).

Spanier-Whitehead duality yields the following equations which we easily
derive from the definitions:

(10.1.9) Proposition The Spanier-Whitehead duality functor D: AR - A2
satisfies

DX(q) =X(aq)

DX(,qq) =X(9,1)

DX(prl) =X(ip)

DX(palq) =X(gfP).

Hence the Spanier-Whitehead duality turns the graphs in (10.1.7) around by
180°; see also Definition 10.2.3 and Theorem 10.2.10 below.

10.2 The indecomposable (n - 1)-connected (n + 3)-dimensional
polyhedra, n >- 4

We here describe all elementary (n - 1)-connected (n + 3)-dimensional poly-
hedra in terms of certain words, or graphs. This extends the results of Chang
in Theorem 10.1.8. The fundamental results in this section are deduced from
the classification of stable (n - 1)-connected (n + 3)-dimensional polyhedra
in Chapter 8; compare Baues and Hennes [HC].

For the description of the indecomposable objects in A3., n z 4, we use
certain words. Let L be a set, the elements of which are called `letters'. A
word with letters in L is an element in the free monoid generated by L. Such
a word a is written a= a1a2 a with a; E L, n z 0; for n = 0 this is the
empty word 46. Let b = b 1 bk be a word. We write w = ... b if there is a
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word a with w = ab, similarly we write w = b if there is a word c with
w = be and we write w = ... b if there exist words a and c with w = abc. A
subword of an infinite sequence a a _ , a0 a, a2 with a; E L, i E Z, is
a finite connected subsequence anan an+k, n c- Z. For the word a =
a, ... a we define the word -a = an an a, by reversing the order in a.

(10.2.1) Definition We define a collection of finite words w = w,w2 W.
The letters w; of w are the symbols f, 77, e or natural numbers t, s;, r;, i E Z,
which are powers of 2. We write the letters s; as upper indices, the letters r,
as lower indices, and the letter t in the middle of the line since we have to
distinguish between these numbers. For example 774f 2718 is such a word with
t = 4, r, = 8, s, = 2. A basic sequence is defined by

S1 1r, cS27lr, (1)

This is the infinite product a(1)a(2) of words a(i) = i > 1. A basic
word is any subword of (1). A central sequence is defined by

175 f'27"2 (2)

A central word w is any subword of (2) containing the number t. Whence a
central word w is of the form w = atb where -a and b are basic words. An
e-sequence is defined by

5 6r-"qs (3)

An e-word w is any subword of (3) containing the letter e; again we can write
w = aeb where -a and b are basic words. A general word is a basic word, a
central word, or an a-word.

A general word w is called special if w contains at least one of the letters
77, or a and if the following conditions (i), DO), (ii), and D(ii) are satisfied

in case w = aeb is an a-word. We associate with b the tuple

( (s...... sm ,

s(b) = (sb, sb,...) = St (s,....,

r,,

ifb = t=

otherwise

ifb = 17

otherwise

where s, sn, and r, rr are the words of upper indices and lower indices
respectively given by b. In the same way we get s(-a) = (s,-°, s2 , ...) and
r(-a) = (r, °, r2 °, ..) with S ° E (s;, x,1) and r,- ° E {r_1, x, 1), i e N. The
conditions in question on the a-word w = aeb are:

(i)

D(i)

b=4-a062

a=(k -b#277.
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Moreover if a * 4) and b * 4) we have

(ii) s,=2=* r_1>_4

and

(2r b b b b b b b,, -S2r2,-S3,r3,...,-Si,r,, ..

< (rl -S, r2 -s2 a, r3 °, -S3 °, .. r, °, -S! °,... )

D(ii) r_ 1 = 2 s, >_ 4

and

(-sb, rb, -sz, rz , -s , rj , ... I -sb, rb, .. )

<2'S,°,r2°,-S2°,r3°,-S3°,...,ri °,-S1 °, ..).

The index i runs through i = 2,3.... as indicated. In (ii) and D(ii) we use the
lexicographical ordering < from the left, that is (n,, n2, ...) < (m,, m2,...) if
and only if there is t >: 1 with nj = mi for j < t and n, < m,.

Finally we define a cyclic word by a pair (w, (p) where w is a basic word of
the form (p >- 1)

W = S
71,

eS2,gr ... e SP
77r,

(4)

and where cp is an automorphism of a finite dimensional 1/2-vector space
V = Two cyclic words (w, cp) and (w', cp') are equivalent if w' is a cyclic
permutation of w, that is,

w' = tsi'Ir, ... 01Ir, fs1 Ir' ... 6S j'7r(-',

and if there is an isomorphism 'I': V(rp) = V(cp') with p = Y'-' V. A cyclic
word (w, cp) is a special cyclic word if p is an indecomposable automorphism
and if w is not of the form w = w'w' w' where the right-hand side is a
j-fold power of a word w' with j > 1.

The sequences (1),(2),(3) can be visualized by the infinite graphs sketched
below. The letters s;, resp. r;, correspond to vertical edges connecting the
levels 2 and 3, resp. the levels 0, 1. The letters 71, resp. 6, correspond to
diagonal edges connecting the levels 0 and 2, resp. the levels 1 and 3.
Moreover e connects the levels 0 and 3 and t the levels 1 and 2. We identify
a general word with the connected finite subgraph of the infinite graphs
below. Therefore the vertices of level i of a general word are defined by the
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vertices of level i of the corresponding graph, i E (0, 1, 2, 3}. We also write
JxJ = i if x is a vertex of level i.

3

2

basic sequence

3

2

0

3

2

0

s_Z s_1 S1

r 2 r-t rl

E-sequence

(10.2.2) Remark There is a simple rule which creates exactly all graphs
corresponding to general words. Draw in the plane l 2 a connected finite
graph of total height at most 3 that alternatingly consists of vertical edges of
height one and diagonal edges of height 2 or 3. Moreover endow each vertical
edge with a power of 2. An equivalence relation on such graphs is generated
by reflection at a vertical line. One readily checks that the equivalence classes
of such graphs are in 1-1 correspondence to all general words.

(10.2.3) Definition Let w be a basic word, a central word, or an a-word. We
obtain the dual word D(w) by reflection of the graph w at a horizontal line
and by using the equivalence defined in Remark 10.2.2. Then D(w) is again a
basic word, a central word, or an e-word respectively. Clearly the reflection
replaces each letter f in w by the letter 71 and vice versa; moreover it turns a
lower index into an upper index and vice versa. We define the dual cyclic
word D(w, q) as follows. For the cyclic word (w, (p) in (10.2.1) (4) let
D(w, cp) = Here we set

W' = 6"1752 f r2 ... sv t rp%,

and we set q' = Hom(c,7L/2) with V(cp) Up to a cyclic
permutation w' is just D(w) defined above. We point out that the dual words
D(w) and D(w, (p) are special if and only if w and (w, cp) respectively are
special.

S-1 SI

IV'r_3 - rl rl

central sequence
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As an example we have the special words w =2r14e2ij8 4,q and D(w) _
54_q862-145 2 which are dual to each other. They correspond

Sto
the graphs

3

2

1

0

3

2

I

0

W =

0(W) =b417%,742

Hence the dual graph D(w) is obtained by rotating the graph of w.
We are going to construct certain A3,-polyhedra, n >_ 4, associated with the

words in Definition 10.2.1. To this end we first define the homology of a
word.

(10.2.4) Definition Let w be a general word and let rQ rr and sµ ... s be
the words of lower indices and of upper indices respectively given by w. We
define the torsion groups of w by

To(w)=7L/r, 6) 71/rs, (1)

T,(w) = 7L/t if w is a central word, (2)

T2(w)=7L/sµ® ®7L/s,,, (3)

and we set Ti(w) = 0 otherwise. We define the integral homology of w by

Hi(w) = Z',(*) ED Ti(w) 6) ZR,(w). (4)

Here /3;(w) = L;(w) + R;(w) is the Betti number of w; this is the number of
end-points of the graph w which are vertices of level i and which are not
vertices of vertical edges; we call such vertices x spherical vertices of w. Let
L(w), resp. R(w), be the left, resp. right, spherical vertex of w in case they
occur. Now we set L;(w) = 1 if IL(w)I = i and R;(w) = 1 if IR(w)I = i;
moreover L;(w) = 0 and R;(w) = 0 otherwise.

Using the equation (4) we have specified an ordered basis B; of H;(w). We
point out that

Po(w) + /3,(w) + 132(w) + 93(W) S 2. (5)

For a cyclic word (w, gyp) we set

H,(w, gyp) _ ® T(w) (6)
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where v = dim V('p) and where the right-hand side is the v-fold direct sum of
T(w). As an example we consider the special words

w =02 1184

The homology of these words is:

w _2n844iJ16

W=8 327)8 w'=2 778 5 41716

H3 z 0
H2 1/32 Z/4
H1 0 71/2
Ho 71®1/8 Z/8,@ 7l/16

Here w has two spherical vertices while w' has no spherical vertex. We point
out that the numbers 2k attached to vertical edges correspond to cyclic
groups Z/2k in the homology. We describe many further examples in
Sections 10.5 and 10.6.

For the construction of polyhedra X(w) associated with words w we use
the following generators; see Definition 11.6.3 below.

(10.2.5) Generators of homotopy groups Let r, s be powers of 2. We have
the Hopf maps

77 _ . Sn+1 Sn . Sn+2 Sn+1 e= 2: Sn+2--aSn.

We use the composites

71=177n:
Sn+l -M(71/r,n), 6=77n+19: M(71/r,n + 1) --Sn+l

which are (2n + 1)-dual. Moreover we have the (2n + 2)-dual groups, n >_ 4

=
[Sn+z, M(71/r, n)]= {l/2+i/2

for r 2

e, forr4
71/417z for s = 2

[M(7L/s,n+1),SR]= Z/2775+7L/2es fors-4

where e, = i-q and es = il, and , = XZJ z and 775 = 772Xz Next we use

®71/2r1z fors=r=2
Z/441'L/s,),( /r,n)J-1M(lln+1M Q 2 =2 r>4f471/2 g, ®71/ Fir ors I

7L/2 f; ® 71/271,5 9 ll/2 e, otherwise.
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Hence we have Irs = X2 f2 q, rl; = i'n2X2, and e, = We have the (2n +
2)-dualities D(,') _ -q5 and D(e,) = es.

(10.2.6) Definition Let n >_ 4 and let w be a general word. We define the
A3,-polyhedron X(w) = Cf by the mapping cone Cf of a map f = f(w): A - B
where

A = M(H3, n + 2) v M(H2, n + 1) V Sn+'

B=M(Ho,n)VS.+'VSb+' (1)

Here Hi = Hi(w) is the homology group in Definition 10.2.4 above. We set
S +' = S"+' if w is a central word and we set SC +' otherwise; moreover
we set Sb +' = S"+' if w is a basic word of the form w = ... and we set
Sb ' otherwise. We now obtain the attaching map

f=f(w): M(H3,n+2)VM(H2,n+1)vSC+'-*M(Ho,n)V SC+' VSb+'

(2)

as follows. We first describe B and A in (1) as one-point unions of elemen-
tary Moore spaces. For each letter rs of r, rr (see Definition 10.2.4) we
have the inclusion

j(rs): M(77/rs,n)cB. (3)

Moreover for each spherical vertex x of w with 41 :5 1 we have the inclusion

j(x): S"+lxl cB. (4)

This is the inclusion of Sb+' if Ixl = 1. The space B is exactly the one-point
union of the subspaces (3), (4) and of j,: S°+' cB. Next we consider the
space A in (1). For each letter s, of sµ s (see Definition 10.2.4) we have
the inclusion

j(s,): 1) cA. (5)

Moreover for each spherical vertex x of w with Ix1 >_ 2 we have the inclusion

j(x): S""xH-' cA. (6)

The space A is exactly the one-point union of the subspaces (5), (6) and of jc:
Sn'' cA.

We now define f = f(w) by the following equations. For a letter s, as above
and for 6 = T - 1 we set

j(rs)rfi +1(r,)ij'

j(rs)rla +j(rr)r;'
fj(s,) _

jcfl"+,q +j(r, )7l ;'
j(r_,)e;' +j(rl)71;'

if W= .rn s'71r,...

if w= ...ryr)5'fr,...

if w= t e 3 7 r a n d

if w = r_ Ies'l7r and T=

(7)
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The first equation also holds if the letters rs are empty, that is if w = f s-77
or if w = 65'71 respectively. In this case we set j(rs) =j(x), if x = L(w),
resp. j(rT) =fly), if y = R(w); see Definition 10.2.4. We use a similar conven-
tion for the other equations in (7). Using (2) and (7) we see that fj(sT) is well
defined for all general words w. Next we define fj(x) where x is a spherical
vertex of w with Ixl = 2.

fj(x) = (8)

j(ra)4Q if w = r;,o ..., Ixl = 3, x = L(w)

j(ra)i71n if w = 71r...., Ixl = 2, x = L(w)

if w= r E,Ixl=3,x=R(w).

Using (8) and (2) the element fj(x) is well defined for all general words w.
Finally we define fjr by

j(r-I )i7jn +jr(h) if w = ... r 71t ...fj,

= j(x)'gn +j,(ti) if w = 71t..., x =L(w) (9)

j,(ta) if w=t" .

Here a is the identity of S". This completes the definition of f = f(w) and
hence the definition of X(w) = Cf.

We point out that the construction of f(w) follows exactly the pattern
given by the word w or the graph of w. For this we subdivide the graph of w
by a horizontal line between levels 1 and 2; all edges crossing this line are
summands in the attaching map f(w). For example consider the graphs
E32718 C, 2% i; 47116, and 27146 2,n8 64,n above. Then we get

t
M(7L/32, n+ 11)) v Sn e 2

f(e3271a6)=
IE

I e

S" v M(7L/8, n)

Sn+ I V M(7L/4, n + 1)
rr _

f(27I86 47716)- 1 2 16
S"+ I v M(l/8, n) V M(7L/16, n)

tt tt

S"+ t v M(7L/2, n+ 1) V M(7L/4, n+ 1)

f(2 745 2718 5 471)= li'7 If if
M(l/2, n) V S"+ I V M(71/8, n) v S"

Here , 71, e are the corresponding generators in (10.2.5).
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(10.2.7) Definition Let n > 4 and let (w, (p) be a cyclic word. We define the
A3,-polyhedron X(w, cp) = Cf by the mapping cone of a map f = f(w, (p)
where

f: M(H2,n + 1) -*M(Ho,n) (1)

with H; = Hi(w, cp); see Definition 10.2.4 (6). For u e (1.... , v} we have the
inclusion (m = n, n + 1 and i = 0, 2)

j,,: M(T(w),m) cM(H,,m) (2)

by the direct sum decomposition in Definition 10.2.4 (6). Moreover we have
for each letter rs and s., of r, r,, and s, sp (see Definition 10.2.1 (4)) the
inclusions

j(rs): M(7L/2rs,n) cM(T0(w),n), (3)

j(s,,): M(7L/25-, n + 1) c M(T2(w), n + 1). (4)

Compare (10.2.5) (3) and (5). We choose a basis (b1,...,b1.} of the vector
space V(qp) and we define < E {0, 1) by E" .I (p,,be. This yields a
definition of f by the following formulas (5) and (6).

+j(rr)rl, ] (5)

If w = ,3 6 T E (2,..., p), and 6 = r - 1; see Definition 10.2.1 (4).
Moreover we set

(Pujej(rp)Sro'.
e=1

(6)

The spaces X(w) and X(w, gyp) are constructed in such a way that the
integral homology is given by

(10.2.8) H,,,X(w) = Hi (w), (p) = H1(w, (p)

where we use the homology of the words w and (w, (p) in Definition 10.2.4.

The next result solves the decomposition problem in the category A3
n >_ 4. This result generalizes the theorem of Chang (10.1.8) for the next
dimension. Its proof, however, is considerably more intricate than the fairly
direct proof of Theorem 10.1.8 above.

(10.2.9) Decomposition theorem Let n >_ 4. The elementary Moore spaces in
A',, the complexes X(w) where w is a special word, and the complexes X(w, q,)
where (w, qp) is a special cyclic word furnish a complete list of all indecomposable
homotopy types in A',. For two complexes X, X' in this list there is a homotopy
equivalence X = X' if and only if there are equivalent special cyclic words
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(w, q,) - (w', gyp') with X = X(w, (p) and X' = X(w', gyp'). Moreover each homo-
topy type in Art has a unique decomposition.

The proof of the decomposition theorem relies on the classification theo-
rem (8.1.6). Given this theorem one can solve the decomposition problem in
the algebraic category of A3-systems. For this an intricate generalization of
the representation theory of Ringel and Henn is needed; see (10.1.3) and
(10.1.4). We refer the reader to Baues and Hennes [HC] for the complete
proof of the decomposition theorem. Spanier-Whitehead duality of indecom-
posable complexes in A3 is completely clarified by the next result.

(10.2.10) Theorem Let n >_ 5. For a general word w and for a cyclic word
(w, q') let Dw and D(w, (p) be the dual words defined in Definition 10.2.3. Then
X(Dw) is the Spanier-Whitehead (2n + 3)-dual of X(w) and X(D(w, (P)) is the
Spanier-Whitehead (2n + 3)-dual of X(w, cp).

Proof The result essentially follows from the careful choice of generators in
(10.2.5) which is compatible with Spanier-Whitehead duality. This implies
that there are (2n + 2)-dualities f(w)* =f(Dw) and f(w, (p)* =f(D(w, gyp)).
Hence the proposition is a consequence of the fact that Spanier-Whitehead
duality carries a mapping cone of f to the mapping cone of D(f ).

We point out that X(w) in (10.2.5) coincides with the corresponding
elementary complex in (10.1.7) if w is one of the words n, ijq, P71, p77q.
Moreover the suspensions of such complexes are given by

(10.2.11)

Y.X(rl) =X(C), IX(qq) .X(P71) =X(pi; ),

EX(p7lq)

The words prlq and pf4 correspond to the two possible subgraphs in a
central sequence which both look like the graph in (10.1.7). Hence the Chang
complexes yield only the following elementary A3,-polyhedra

3-

2-

1-

0-

q

PT19 P44

This precisely describes the embedding of indecomposable Am-polyhedra
(m = n, n + 1) into the much larger set of indecomposable A,3,-polyhedra. In a
similar way we expect horrendous complexity if one considers the embedding
of indecomposable (m = n, n + 1) into the unknown set of
indecomposable AR-polyhedra. As a corollary of the decomposition theorem
we get the following surprising result.
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(10.2.12) Theorem Let n >- 4 and let X be an (n - 1)-connected (n + 3)-
dimensional finite polyhedron with Betti numbers /3,(X). If

2<0n(X)+Yn+1(X)+10n+2(X)+Rn+3(X)

or if Hn + 1(X) contains the direct sum of two cyclic groups then X is decompos-
able.

Proof A general word has at most two spherical vertices and hence an
indecomposable homotopy type X in A;, satisfies dim(H,, X ® Q) < 2. More-
over Hn+ 1w is non-trivial only for central words w and general words
w = 6 ... and in these cases Hn+ 1w is Z/2' or 71 respectively. Hence, X is
indecomposable, implies H,,+ 1 X is cyclic of prime power order or Z.

(10.2.13) The A'-system of X(w) By Theorem 8.1.6 we have the detecting
functor

A': spaces -A 3-System.

This is an additive functor between additive categories. Hence the indecom-
posable complexes X(w) in the decomposition theorem 10.2.9 correspond via
A' to indecomposable A3-systems

S(w) = A'X(w). (1)

We here compute the A3-system

S(w) = (Ho,H2,H3,1 1,bz,rlw,b3,/w) (2)

explicitly in terms of w. Here we have the homology

H, = H,(w) = Hn+r(X (w)), i E (0,1, 2, 3), (3)

as defined in Definition 10.2.4 and we have the homotopy groups

Tr, _ ir,(w) _ ?rn+,(X(w)), i E {1,2}, (4)

which are part of the exact F-sequence of S(w) given by w as in Definition
8.1.5:

H3 G(rt) --> 2 -- H, H®® 71/2 -'-> ir, -L H1 -* 0. (5)

This sequence is isomorphic to the corresponding part of Whitehead's exact
sequence for X(w); see (8.1.7). We first describe bZ; for this we denote the
basis of Hi(w) in Definition 10.2.4 (4) by

B0 = (L0(w),r,,,...,rr, Ro(w)) cHo
B1 = (L,(w),t,R1(w)) cH,

(6)
B2 = {L2(w), sµ..... s.., R2(w)} cH2

B3 = (L3(w), R3(W)) cH3.
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We also write Lo(w) = rQ_ 1, Ro(w) = r,,+, and we set L2(w) = sµ_, and
R2(w) =

I in case there are spherical vertices of w; see Definition 10.2.4.
With this notation we define

bz:H, - H0®71/2 (7)

rs®1
a

b;' (s,r) = rr ® 1 if w = ...
0 otherwise.

Hence bz carries basis elements to basis elements or to the trivial element so
that the cokernel of bz is

cok(bz) = ED {(Z/2)rr,rr(9 1 e image bz). (8)

We now define 7r1(w) by

(71/20i ® cok(bw)/(Z/2)r_, if w = r 77t7T'

(9)
H, ® cok(b; otherwise

with H, = H1. The homomorphism -q' in (5) is given by the composite

,q': Ho ®71/2_*cok(b,)clr, (10)

where the inclusion i carries the basis element to t i if w= r _ lrit
and carries it to Pr otherwise. Clearly h in (5) is trivial on the second
summand of 7r,(w) and satisfies h(i) = t and h I H, = id respectively. Now
(10) induces the homomorphism

r7' 0 1: Ho ® 71/2 - ar, ® 71/2 (11)

which carries r_ 1 ® 1 e image b"' to the trivial element if w = r_ , r7t and
carries rr ® 1 t image b2' to 1'r ® 1 otherwise. Hence qw (9 1 carries basis
elements to basis elements or to the trivial element. Using (11) we obtain the
group G67') together with the short exact sequence

7r,0 Z/2 ° G(rl"')-'Ho *7/2 (12)

by the push-out of Definition 8.1.3. The basis of Ho * Z/2 is {rr/2, a < r< B)
and we have the basis elements

r,/2EG67w) with µ(rr/2/2)=rr/2. (13)

Here the order of rr/2 is 4 if the number rr is 2 and if (ri' 0 1Xrr 0 1) 0 0; in
this case one has

2rr/2=i 67"®1)(rr(9 1). (14)
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Otherwise the order of rT/2 is 2. A complete basis of G(rl'") is given by all
elements (13) and all 0-images of basis elements in 7r,(w) ® 71/2 which are
not of the form (14). This describes the short exact sequence (12) completely.
We now obtain

b3 : H3 * G(,1'"). (15)

Here L3(w) is a spherical vertex, and hence a basis element in H3, if
w = and in this case we get

b3(L3(W))=rQ/2 if w=,~,o

On the other hand, R3(w) is a spherical vertex if w or w = e and in
these cases we get

b3 (R3(w)) _
r,8/2 if w =

0[r_t ®1] if w =

These formulas define b3. Given b3 we obtain the composite homomorphism

g0(,,'° ® 1): Ho ® 71/2 --+ irl ® 71/2 - G(77w) - cok(b3) (16)

where q is the quotient map. As in Definition 8.1.3 we obtain the group
G(H2, 71#) by the following push-out diagram

Ext(H2, cok b3 w))
A- µ Hom(H2, Ho ® 71/2)

push

Ext(H2, Ho ® 71/2) v

II

Ext(H2,71/2) ®Ho
°®L, Hom(G(H2),71/4) ®Ho µ - Hom(H2,71/2) ® Ho

Finally we define the element (3 W in (2) by

/3"'=0(q*13iW)+V(13z)EG(H2,r1 ) (17)

where

/3i E Ext(H2,G01w))

j62 " E Hom(G(H2),Z/4) (9 Ho

are the following elements. Given the canonical direct sum decomposition of
G(H2), see Proposition 1.6.5, the element /32 w is the canonical `lift' with

(µ®1)p =b2. (18)
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That is, via (7) the element b2 is a sum of basis elements and /3 is exactly
the same sum of the corresponding basis elements in Hom(G(H2), 71/4) ® Ho.
Here only Hom(G(71/2),71/4) ® 71/r = 71/4 with r 4 is a non-split exten-
sion of Hom(Z/2, 71/2) ® 7l/r = 71/2 and in this case the basis element of
71/4 corresponds to the basis element of Z/2. Hence the element (3Z
corresponds to all TI-summands in the attaching map f(w) I M(H2, n + 1) in
Definition 10.2.6. Next we define 01 similarly by all -summands and
e-summands in the attaching map f(w) I M(H2, n + 1). Let 71sT be the sub-
group of H2 generated by the basis element s, E B2. Then the inclusion
jsr 71/s, c H2 induces

(js)*:Ext(H2,G(if ))=Zs,®G(f').

Now we define 01 by the coordinates

s,®rs/2 ifw=
h

6s= ST-1

(j )*pi =
s, ®r,/2 ifw = ... Sle,

(19)5r
s3®O(t®1) ifw= tes' ,z=1
S, 1) if w = , Esc . , z= 1.

This completes the definition of f3'. Using Addendum 2.6.5 and the attach-
ing map f(w) in Definition 10.2.6 we see that R w is actually the boundary
invariant of X(w). As in Definition 8.1.5 the element f3 ' yields the extension
element (Tr2(w)) and hence we are now able to compute ir2(w)= 7ri+2X(w).

Now let (w, (p) be a cyclic word and let H* = H* (w, cp) = H* X(w, gyp) be
the homology, with H. = H, = 0. Moreover since b, is surjective also
or, X(w, (p) = 0. Hence we get the f-sequence

0-+Ho *l/2--*ir2->HZ-Ho ®71/2--0 (20)

and the boundary invariant

f3EG(H2,71#)=Ext(H2,Ho *Z/2)ED Horn(H,,Ho ®71/2) (21)

with 6 = ( p1, b2). Similarly as above b2 is given by the 71-summands in the
attaching map f(w), and 0, is given by the -summands in the attaching map
f(w); see Definition 10.2.7 (5), (6). This way we obtain the A3-system
S(w, cp) = A'X(w, (p). The isomorphism (21) is natural in H2 hence the
extension

Ho*Z/2N

is given by (7r2) = j *( fi,) where j: ker(b2) c H2 is the inclusion.
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(10.2.14) Steenrod squares for X(w) For finite (n - 1)-connected (n + 3)-
dimensional polyhedra X we have the Steenrod squaring operations

(a) Sq2: H2(2) -> H°(2)

(b) Sq2: H3(2) --> H1(2)

where H;(2)=H"+;(X,71/2) is the homology with coefficients in 71/2. For
cohomology groups H'(2) = H"+'(X,71/2) = Hom(Hi(2), Z/2) one has the
dual operations

(a)' Sq2: H°(2) -> H3(2)

(b)' Sq2: H'(2) - H3(2)

which are given by Sq2 = Hom(Sg2,71/2); see (5.2.15). If X = X(w) is given
by a word we have a basis of H; = H"+;(X) and the isomorphism

H;(2)=H;®71/29H;_,*Z/2

yields a basis of H;(2); see Definition 10.2.4. In terms of this basis

(a) Sq2: H2®Z/2ED H,*71/2->Ho ®Z/2

is determined in the obvious way by the letters r) in the word w. That is the
restriction H2 ® 71/2 -, H° ® Z/2 is defined as b2 in (10.2.13) (7) and the
restriction H, * Z/2 --> H° ®1 /2 carries the generator t/2 E H, * Z/2 to
r_ 1 ® 1 if w = , ijt , where r-, denotes the spherical vertex if w =
'qt . Similarly

(b) Sq2: H3 ® 1/2 ® H2 *71/2 -> H1 ® 1/2 ® H° *71/2

is determined by the letters 6 in the word w. For X = X(w, (P) we obtain Sq2
by similar formulas as in the definition of the attaching map f(w, (p)
in Definition 10.2.7; in fact, in this case we have /3 = ( R1 = Sq2, b2 = Sq2)
where /3 is defined as in (10.2.13) (21) with Ext(H2, H° *71/2) =
Hom(H2 *Z/2, H° *71/2).

(10.2.15) Adem operations for X(w) We first consider w where
r and s are powers of two or empty (= 0). Then the Adem operations
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4)00,042,04 in Section 8.5 are computed in the following table.

X(r e' )

4)'

O

00

o4

(P2

0,(r,s) = (2, >_ 0)

St X2 , otherwise

0,(r,s)=(>_0,2)
X2 , otherwise

iX2,(r,s)_(0,>0)
0, otherwise

f 0,(r,s)=(>_0,2)
t` X4 , otherwise

0, (r, s) = (2, >_ 0)
Xz, otherwise

r00
X( S)

0

0

0

,V22, (r, s) = (2, >_ 0)

0, otherwise

0

so0
X(51r)

0

0

313

0, otherwise

0

I X22,(r,s)=(>_0,2)
0, otherwise

Here X E Hom(Z/n,71/m) is the canonical generator. In the general case
we can compute the Adem operations in the same way for X(w) and X(w, P)
by using the attaching map f in Definitions 10.2.6 and 10.2.7 and the table
above.

(10.2.16) Example For the indecomposable space X(22 e8) we have

46' = 0 since ker(Sq') = 0,

0" = 0 since ker(Sg22Sq') = 0,

¢° = 0 by (10.2.15),

4) =0 by(10.2.15),

and only 04 * 0. On the other hand, the indecomposable space X(8 e ` 712)
satisfies

0'=O since im(Sg3) = H3(2),

0"=O since im(Sq') = H3(2),

.0i = 0 by (10.2.15),

442 = 0 by (10.2.15),

and only 0z * 0. These examples show that the classical Z/2-Adem opera-
tions 0', ¢", 00 do not suffice to classify (n - 1)-connected (n + 3)-
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dimensional polyhedra. One has to use both operations 04 and 02. This is
done in the definition of A3-cohomology systems in Section 8.5.

10.3 The (n - 1)-connected (n + 3)-dimensional polyhedra with
cyclic homology groups, n >- 4

We here give an application of the classification theorem 10.2.9. We describe
explicitly all indecomposable (n - 1)-connected (n + 3)-dimensional homo-
topy types X, n >- 4, for which all homology groups Hi X are cyclic, i >- 0. Let
H. = (Ho, H1, H2, H3) be a tuple of finitely generated abelian groups with
H3 free abelian and let N(H*) be the number of all indecomposable
homotopy types X as above, with homology groups H; for i E
{0, 1, 2, 3).

(10.3.1) Theorem Let n >t 4. The indecomposable (n - 1)-connected (n + 3)-
dimensional homotopy types X, for which all homology groups H; (X) are cyclic,
are exactly the elementary Moore spaces in A;,, the elementary Chang complexes
in (10.2.11), and the spaces X(w) where w is one of the words in the following
list.

The list describes all w of the theorem ordered by the homology H. s
H,,(X(w)). Below we also describe all graphs of such words w; the attaching
map for X(w) is obtained by Definitions 10.2.6 and 10.2.7. Let r, t, s be
powers of 2.

H. = (Ho H, H2 H3) N(H*) w with H,K X(w) a H,,

71/r 71/t 71/s 71

71/r 71/t 71/s 0

71/r 71/t 0 71

Z/r 71 71/s 71

71/r Z 71/s 0

71/r 0 71/s 71

71/r 0 71/s 0

71/r 0 71 71

71/r 0 0 71

71 71/t 71/s 0

71 77/t 0 71

71 71 71/s 0

71 0 71/s 0

7L 0 0 71

3

3

2

1

1

12, r=s=2
3, rs-8

f 3,
l 4,

r = s = 2
8

2

77 s, tSSnryrS> S6r7tS

Tilt s, terlr,
55r7,t

rftS, ?rr?lt
f s tfs

T

'lr5, sere and

fires forrs>>8

r S s, 71r, (n Sr, 1), and
res fours-8

'irS
re

'itCCSs, ttSs'i

7,tf
6 5/

71
r

,e
r

1 6



'V
'V

'V
'V

'V

I 4,
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(103.2) Remark Let n >_ 4 and let H. = (Ho, H1, H2, H3) be a tuple of
cyclic groups with H3 E {1, 01. Then it is easy to describe, by use of Theorem
10.3.1, all (n - 1)-connected homotopy types X with H; for
0< i< 3 and dim X:5 n + 3. In fact all such homotopy types are in a
canonical way one-point unions of the indecomposable homotopy types in
Theorem 10.3.1. For example for H* _ (1/6,1/2,1/2, 0) there exist exactly
nine such homotopy types X which are

M(1/6, n) V M(7L/2, n + 1) v M(1/2, n + 2)

M(1/6, n) V X(2 6 2)

M(1/3, n) V X(2-q2) V M(1/2, n + 2)

M(1/3, n) v X(2 2) v M(1/2, n + 1)

M(7L/3, n) V X(2, q2) V M(7L/2, n + 1)

M(1/3, n) V X(17''2,1) V M(7L/2, n + 1)

M(1/3, n) vX(277 2f 2)

M(1/3, n) vX(262712)

M(1/3, n) V X(262ii2).

It is easy to compute the homotopy groups Trn , Trn + 1 f 'Tn + 2 of these spaces; see
(10.2.13). Similarly we see that there are 24 homotopy types X for H* =
(71/2,11/2,71/2,1). We leave this as an exercise; compare the list in Baues
[HCJ, p. 24.

10.4 The decomposition problem for stable types

A simply connected CW-space X is of finite type if equivalently (a) or (b) are
satisfied: (a) all homology groups of X are finitely generated, (b) all homo-
topy groups of X are finitely generated. Let aR be the full subcategory of
Top*/= consisting of CW-spaces X of finite type with trivial homotopy
groups zr, X = 0 for i < n and i > n + k. Hence the objects of a are (n - 1)-
connected (n + k)-types of finite type which we also call a,-types; compare
the notation in (10.1.5). The loop space functor gives us the sequence of
homotopy categories (n >_ 2)

(10.4.1) a; =o-a24- an_,ilan
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which is Eckmann-Hilton dual to the k-stem of homotopy categories in
(10.1.5). For k + 2 < n the functor fl: an --> an _ is an equivalence of
categories, and for k + 2 = n this functor is full and faithful but not represen-
tative. We have the Postnikov functor

(10.4.2) P Ak+ 1 -- k
n+k n an

which is full and representative; see (2.5.2). This is the restriction of the
Postnikov functor in (3.4.6) which is compatible with the detecting functors in
the classification theorem (3.4.4). In the stable range k + 2 < n we have the
commutative diagram

Ak+1+ Ak+1
n n-1

P+kII P,+k-I

Moreover we get:

an k
an-1

(10.43) Lemma In the stable range k + 2 < n the Postnikov functor Pn + k :

An+ 1 --> an is an additive functor between additive categories. The biproduct in
An+' is the one point of spaces and the biproduct in an is the product of spaces.
In particular, one has a canonical isomorphism

Pn+k(X V Y) = Pn+k(X) X Pn+k(Y)

forX,YEAn 1

The `decomposition problem for stable types' asks for the complete classifi-
cation of indecomposable objects in the additive category an, k + 2 < n.
There is a relationship between the decomposition problem in An+' and an
respectively. For this we recall the following classical `theorem on trees of
homotopy types' due to J.H.C. Whitehead [SH]; see also II.§6 in Baues [CHI.

(10.4.4) Theorem Let X, Y be two finite m-dimensional CWcomplexes, m >: 2,
and assume X and Y have the same (m - 1)-type, that is Pn, _ , X = Pm _ , Y. Then
there exist natural numbers A, B such that the one point unions

X V V Sm = Y v V S-
A B

are homotopy equivalent.

The theorem shows that each (m - 1)-type Q determines a connected tree
HT(Q, m) which we call the tree of homotopy types of (Q, m). The vertices of
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this tree are the homotopy types (X) of finite m-dimensional CW-complexes
with P,n_,(X) = Q. The vertex {X) is connected by an edge to the vertex {Y}
if Y has the homotopy type of X V S'". The roots of this tree are the
homotopy types (X) as above which do not admit a decomposition
X= X' V S'.

(10.4.5) Example We describe simply connected 4-dimensional CW-
complexes X1, X2 with X, X2 but X, v S4 = X2 v S4. Let

X, = (S2 U. e3), X2 = (S2 U5 e3) U21,, e4

where rl = 'q2 in the Hopf map. Using the detecting functor of Theorem 3.5.6
we see that

A(X,)=(Z-1»I'(71/5)-*O-0,Ho=71/5)

A(X2) = (71 -23 I'(71/5) -> 0 - 0, Ho = 1/5)

where F(l/5)=1/5. A homotopy equivalence f: X1 =X2 would give us a
commutative diagram

z - 1 Z/5

71 2 Z/5

Here r(f *) has to be a square number (see Corollary 1.2.9) and hence
1'(f) = ± 1 modulo 5. This yields the contradiction, so that X, * X2. On the
other hand, the following commutative diagram shows by Theorem 3.5.6 that
X1vS4-X2vS4,

71®71 (0' 1) 7L/5

2, 1)1
(5, 3®

(0, 2)- 71 Z/5

Let Ind(A"') and Ind(al) be the sets of indecomposable homotopy types
in An+' and aR respectively. Then Theorem 10.4.4 gives us the following
comparison between indecomposable objects in A"' and a'.



10 DECOMPOSITION OF HOMOTOPY TYPES 319

(10.4.6) Theorem Let k + 2 < n. Then the Postnikov functor yields a
surjection between sets

Pn+k: (Sn+k+1) Ind(ak)

and for Q E Ind(ak) the inverse image P, + k(Q) is the set of roots in HT (Q, n + k ).

There is only one root in HT(Q, n + k) in case the objects in Ak+' have a
unique decomposition. Therefore the theorem of Chang (10.1.8) and the
decomposition theorem 10.2.9 show:

(10.4.7) Theorem For k = 0, 1, 2 the Postnikov functor yields a bijection
(n>k+2)

Ind(AR+') _ (Sn+k+1) = Ind(ak).

Hence the decomposition theorem 10.2.9 for A;, actually also solves the
decomposition problem in a.. We say that K(A, n) is an elementary
Eilenberg-Mac Lane space if A is an elementary cyclic group, that is A = Z
or A = 71/p` where p' is a prime power. Using Example 10.1.2 and Proposi-
tion 10.1.6 we get for k = 0:

(10.4.8) Proposition Let n >_ 2. The elementary Eilenberg-Mac Lane spaces
are the only indecomposable homotopy types in ao and each object in ao has a
unique decomposition. Moreover, the Postnikov functor A;, - art carries an
elementary Moore space to the corresponding elementary Eilenberg-Mac Lane
space; see Proposition 10.1.6.

For k = 1 the situation is more complicated.

(10.4.9) Definition Let p, q be powers of 2 and n >_ 3. Then there is a
unique indecomposable space K(71,7L/q, n) in a' with homotopy groups
-7rn = Z and irn+ , = 71/q. Moreover there is a unique indecomposable space
K(Z/p,7L/q,n) in an with homotopy groups ir, =7L/p and irn+, =7L/q. In
fact, K(7L,7L/q, n) = K(77, n) and K(l/p,7L/q, n) = K(77', n) where ri: Z
71/q and 77': i/p -* 71/q are the unique non-trivial stable quadratic func-
tions, that is, 77(1)=q/2 and r7'(1)=q12. We call K(71,7L/q, n) and
K(71/p,71/q, n) the elementary Chang types.

In addition to the theorem of Chang (10.1.8) we now get:

(10.4.10) Proposition Let n >_ 3. The elementary Eilenberg-Mac Lane spaces
in a;, and the elementary Chang types are the only indecomposable homotopy
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types in a;, and each object in an has a unique decomposition. Moreover, the
bijection in Theorem 10.4.7,

{Sn+2) Ind(an),

is given by the following list where we use the elementary Chang complexes in
Theorem 10.1.8. Let p and q be powers of 2.

X
Sri

S"+i
M(7L/p, n)
M(7L/q, n + 1)
X(3t)
X(P'7)
X(>7R)
X(pgq)

PR+]X
K(7L,7L/2, n)
K(7L, n + 1)
K(7L/p, Z/2, n)
K(7L/q, n + 1)
K(7L, n)
K(7L/p, n)
K(Z,7L/2q, n)
K(7L/p, 7L/2q, n)

Moreover carries an elementary Moore space of odd primes in A;, to
the corresponding elementary Eilenberg-Mac Lane space.

10.5 The (n - 1)-connected (n + 2)-types with cyclic homotopy
groups, n >- 4

We describe explicitly all indecomposable (n - 1)-connected (n + 2)-types X,
n z 4, for which all homotopy groups ir X, aR +, X, vr + 2 X are cyclic. We use
the bijection of Theorem 10.4.7 and the computation of homotopy groups
iri+2X via A3-systems in (10.2.13). The elementary Eilenberg-Mac Lane
spaces and the elementary Chang types in Definition 10.4.9 have cyclic
homotopy groups. They correspond to spaces X(w) as follows.

(10.5.1) Theorem The elementary Eilenbeig-Mac Lane spaces and the elemen-
tary Chang types in a., n >- 4, correspond via the bijection

PR+2: Ind(an) = Ind(A.) - (S"+3)

to the indecomposable homotopy types in A; described in the following list.

Here Pri+2 carries odd elementary Eilenberg-Mac Lane spaces to the
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corresponding odd elementary Moore spaces. Let r, s, t be powers of 2.

Y Pn+2(Y) E Art

K(Z, n + 2)
K(7L, n + 1)

Sn+2

X( )

K(7L, n) X(2'1)

K(7L/s, n + 2) M(7L/s, n + 2)
K(7L/t, n + 1) X(tt= )

K(7L/r, n) X(21r6)

K(7L, 7L/s, n + 1)

K(Z/t,7L/s, n + 1)

K(7L,7L/t, n)

Sn+1, s=2
X( C), s=2s'>4
M(7L/t, n + 1), s = 2

X(tEs'), s = 2s'-2:4

X(e), t=2
X(art'f ), t = 2t' >_ 4

X(26), t=2,r=2
K(7L/r, 7L/t, n) X(ere), t=2,r>4

X(frflt'f), t=2t'>4

321

The space P,,+2(Y) describes the (n + 3)-skeleton of Y up to a one-point
union of spheres Sn+3, that is

(10.5.2) Y"+3 = V V ,Sn+3
A

where A is an appropriate number >_ 0. Part of the list above corresponds to
Proposition 10.4.10; see (10.2.11).

Proof of Theorem 10.5.1 The right-hand side of the list describes indecom-
posable objects, hence we have only to show that these objects have the
appropriate homotopy groups. This is done by the A3-systems in (10.2.13).
For example we have to show that X = X(e'r a,t'4) satisfies jr,, X = 7L/r,
iri+1X=7L/2t', and irn+2X=0. We obtain am+,X by (10.2.13) (9) and we
get 1rn+ 2 X = are by the exact sequence

H3=7L(B 7L-b

where b3 is surjective by (10.2.13) (15). We leave it to the reader to check the
other cases.
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Let ir* = (aro, 7r 11
7r2) be a tuple of finitely generated abelian groups and

let NOT *) be the number of all indecomposable homotopy types X with
homotopy groups i = 0,1,2 and 1r1(X) = 0 otherwise, n -> 4.

(10.5.3) Theorem Let n >- 4. The indecomposable (n - 1)-connected (n + 2)-
types X for which all homotopy groups ir;(X) are cyclic, are exactly the
elementary Eilenberg-Mac Lane spaces in a2, the elementary Chang types in
Theorem 10.5.1, and the spaces Pi+2X(w) where w is one of the words in the
following list.

The list describes all w of the theorem ordered by the homotopy groups
Tr* = 7r* X(w). Below we describe also all graphs of such words w. Let
r, t, s > 2 be powers of 2 and for t, s > 4 let 2t' = t and 2s' = s.

7r* =0r0 7r1 7r2) N(7r*) w with 7T * X(w) _ it *

7L 0 7L

7L/r 0 7L

7L 0 7L/s

7L/r 0 7L/s

7L 7L Z/s
7L/r 7L Z/s

7L 7L/t 7L/s

7L/t 7L/s
t>-4 s>_4

7L /t
7L/r

t > 4
7L/2

71/2
Z/s
s>-4

71/2 71/2
Z/s
s>4

71/2 7L/2

3

1

1

1

2

1

2

2

2

11

17, 6
2s

11

2r1r frors=2,271r s fors=2s'4
2?1r S , (71 Sr, 1)

t Si

tt
S s7,r S

P"+,S",t=s=2
-qt', t=2t'4,s=2
e",t=2,s=2s'>4

t=2t'>4,s=2s'>4

6rntr ,
s' s61t,

>;

with t = 2t', s = 2s'

4rit', t = 2t'

s

s =

s and

and

rS

71/2 71/2 71/2 1 26
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For all tuples of cyclic groups ir,, = (ire, Try, 70, aro * 0, 7T2 # 0 which are
not in the list we have N(Tr, ) = 0. If ir0 = 0 or 7r2-0 we use the list in
Theorem 10.5.1. All words in the list are special words, except the word
(1r' 1) which is a special cyclic word associated with the identity automor-
phism 1 of Z/2. We now show the list of graphs:

n

r

nr

4117, S '7r4

lgrnfl

v

2sn

of E'

24s M(72,n)

re r
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Here s and t satisfy the conditions described in the list of words above.

(10.5.4) Remark Let n >_ 4 and let ir* _ (Ir0, 7r Ir2) be a tuple of cyclic
groups. Then it is easy to describe, by use of Theorem 10.5.3, all homotopy
types X with 7T,, j (X) = 7ri for i = 0, 1, 2 and 7rjX = 0 for j < n and j > n + 2.
In fact all such homotopy types are in a canonical way products of the
indecomposable homotopy types in Theorem 10.5.3. For example for ?r * =
(7/6,1/2,1/2) there exist exactly seven such homotopy types X, which are

K(1/6, n) x K(1/2, n + 1) x K(1/2, n + 2)

K(1/6, n) x K(1/2,1/2, n + 1)

K(1/3, n) x K(1/2,1/2, n) x K(1/2, n + 1)

K(1/3, n) x K(1/2, n + 1) x

K(1/3, n) x K(1/2, n + 1) x Pi+2X(712

K(1/3, n) x K(1/2, n + 1) x Pi+2X(r12C2,1)

K(1/3, n) x

It is clear how to compute the homology H,,, and Hi+2 of these spaces
and, in fact, we can easily describe the A3-system of these spaces. We leave it
to the reader to consider other cases, for example for ir,, = (14,7110,1) there
exist exactly three homotopy types X with 7r * = IT * X.

Proof of Theorem 10.5.3 Let 7r * = (7r0, ir,, ir2) be a tuple of cyclic groups 0,
1, or 1/2k and assume 7r0 * 0 and vr2 * 0. We want to describe all indecom-
posable X in A;, with 7ri for i = 0, 1, 2. We clearly have 7r0 = H0
and the exact sequence

H3-G(7'")-->TT2-->H2b2 H00 7112'7Tr,-->H,-->0 (1)

where H0 ® Z/2 =1/2 and we have the extension

7T , ®1/2 --s G(714') -. H0 * 1/2.

Moreover 7r2 is determined by /3 as in (10.2.13).

(2)

First case, ar, = 0

Then also H, = 0 and b2 * 0; moreover H2 is cyclic or H2 = cyclic ®71/2
since ''r2 is cyclic. We have G(ri') = H0 *Z/2 since IT, = 0. Hence H3 =1 or
H3 = 0. The only special cyclic word with these properties is X = X(,11,,1)
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satisfying aro = 71/r, are = Z/s; see (10.2.13) (21) for the computation of are.
An e-word w for X = X(w) is not possible since b2 0, also a central word is
not possible since H, = 0. Hence it suffices to consider basic words with the
homological properties above. The basic words w are

71,
77, ir, sr, 17r6, qrS 2, 1r S,

s
qlS 2 and 2T1r5 S. (3)

We obtain are = by the remark following (10.2.13) (19). For w in
(3) we get (2s' = s)

are = 71, 71/s', 1 ® 71/2, Z/s' ® 71/2, 71, 71 ®71/4, 71/s',

l/s' ®71/4 and 71/2s respectively.

Hence the cyclic cases of IT, are those in the list with ar, = 0. For this we
replace s' resp. 2s by s. This completes the first case.

Second case, -rr, 0 and b2 * 0

Since b, 0 we have -q' = 0 and Ir, = H, * 0 is cyclic and G(77'") = ir,
Z/2 ® Ho *71/2. If H, = 11/t then w has to be a central word, but since
b2 * 0 and Ho cyclic, this is not possible. If H, = 1, w has to be a basic word
of the form 'r7 for Ho = 7, or one of e'a7, and 6'17, and a1, 6 2 and 6 271,6'
for Ho = 71/r. However for Ho = 71/r we have H3 0 since G(77w) is not
cyclic. Hence only e71,6 and 6'a7 remain. For X( q) we have or, = H, = Z =
Ho. are is a non-trivial extension and hence or, = 71/s. For X('77, ) we have
ar, = H, = Z and Ho = 71/r and ore is a non-trivial extension with ar, = 71/s.
This completes the second case.

Third case, rr I * 0 and b2 = 0 and H, * 0

Then H2 is cyclic and we see that ar, is a non-trivial extension of H, by 71/2
and hence w has to be a central word with H, = 71/t. Moreover for H, * 0
and Ho = 71/r we have H3 * 0 since G(if) is not cyclic. Hence we get the
possible words o7t, aitC, qt;r', t=,ait, e,,7te, ,a7tC', or '6,-7tC. Here r7tC and
S,olt5 appear in the list of Theorem 10.5.1 with are = 0. For rit we get
ar, = 71/21 and ore = Z/2. For 1716' we get Ir, = 71/21 and are = i/2s. For
,ait we get or, = i/2t and ore = 71/2. For 6r7jt4' we get Ir, = 71/2t and
ore = 71/2s. For6,o71 we get ar, = l/2t and or, = 71/2s. This completes the
third case.

Fourth case, o:I * 0 and b2 = 0 and H, = 0

Then H2 is cyclic and 17": 71/2 = ar, is an isomorphism. Now w has to be a
basic word of the form , f 6 ' (since b2 = 0) or an ---word of the form e, , e,
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e-s, res (rs > 8), C,_- (r We compute?r2(w)=rri+2X(w)
as follows: 7r2(, 6) = 0 for r = 2 and = 11/2 for r >_ 4, 71/4s for
r = 2 and non-cyclic otherwise, 1r2(e) = 0, -rr,(, e) = 71/2, zr2(es) = l/2s,
1r2(res)=71/2®71/2s, 7r,Qre)=0 for r * 2. 1r2() =71/2s, 7r,(5 e)=
71/2s. This completes the fourth case.

Final case

We finally have to consider indecomposable spaces X in A;, which are not of
the form X(w), X(w, cp) and for which 0, iri+2X* 0 are
cyclic. The only possibilities for X are the elementary Moore spaces S' and
M(Z/2, n).

(10.5.5) Remark on k-invariants Let n > 4 and let a* _ Oro, 1T 1, 7T2) be a
tuple of abelian groups. The classical approach to classify homotopy types Y
with homotopy groups ir; for i = 0, 19 2 and 0 for j < n,
j > n + 2 uses the Postnikov tower and the k-invariants of Y. For this we first
choose a homomorphism

71: Tro®Z/2-7T,

and then we choose an element

k E H"+3(K(i, n), ire)

Then there is a unique homotopy type Y(rt, k) with k-invariants -1 and k
respectively. We have the split short exact sequence

Ext(Hi+,K(i,n),a,) N H'n+3(K(rt,n),IT2) -_3P

Ext(ker(i1), ar,) Hom(G(q), a2)

where G(q) is determined by 77 as in Definition 8.1.3 and ker(-7) c iro ® 71/2.
The split exact sequence, however, does not show us how the group of
homotopy equivalences '(K67, n)) acts on the direct sum Ext(ker(rl), ire)
Hom(G(71), 7r, ). This action is needed if we want to classify the homotopy
types Y above since for a c= 9'(K67, n)) the spaces Y(i7, k) and Y(q, a*k) are
homotopy equivalent. Using the `theorem on k-invariants' (2.5.10) we have
relations between the Postnikov invariant k and the exact sequence

H3 - G(
_q)

* 7r, -, H2 -4 7ro 0 71/2 a, -> H, - 0
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which is Whitehead's F-sequence for the (n + 2)-skeleton X of Y(ri, k). Here
k * = µ(k) is given by µ above and the element

kt = A-'q* (k) E Ext(ker(q), cok(k * ))

determines the extension

cok(k *) N H2 -s ker(b)

given by the exact sequences. We can apply these facts to get some hold on
the k-invariant of the spaces described in the list of Theorem
10.5.3. For example for

w = t = 2t', s = 2s',

we have 'ro = 71/r, ir, = l/t, 7r2 = 71/s and

71 = if : l/2 `-a71/t

is the inclusion. Hence µ above is an isomorphism and the k-invariant is

k=µ-'(k) EH"+3(K(rr,n),jr,) = Hom(G(rl),?r2)
kG(rr)=ir, ®71/2®77)*71/2=Z/2ED 71/2-X71/s=ir2.

Here k* is trivial on 770 *71/2 =1/2 and is the inclusion s': 7/2 71/s on
7r, ® 1/2 = 1/2. This follows from the A3-system associated with w in
(10.2.13). For w' we obtain 77 = 17" as above and k = µ-'(k * )
where k * is trivial on 7r® (9 1/2 and the inclusion on 770 *71/2. By Theorem
10.5.3 the spaces Y=Pi+2X(w) and Y' =Pi+2X(w') are the only indecom-
posable homotopy types which realize 7r* _ (71/r,Z/t,l/s), t, s >_ 4. The

X(w) and X(w') correspond to the (n + 3)-skeleton of Y and
Y' respectively; see (10.5.2).

10.6 Example: the truncated real projective spaces LF P+ 4/If8 P

The real projective space RP is a CW-complex with n-skeleton RP,, and
with exactly one cell in each dimension. Hence the quotient spaces

(10.6.1) P3 = O I

are (n - 1)-connected (n + 3)-dimensional spaces. We here show how these
spaces fit into the classification. For n >_ 4 the spaces P3 are stable; moreover
since the homology groups of P3 are cyclic, the 2-connected 6-dimensional
spaces p,3, y.P,, ,2P, with P, = RP4 are determined by their stabilization;
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see Corollary 9.1.16. Hence it suffices to consider the stabilization of p,,3,

n > 1, and the simply connected 5-dimensional spaces I(IRP4) and RP5/S1
where S 1 = U8 P1. We say that two finite CW-complexes X, Y are stably
(E')-equivalent if there exists a homotopy equivalence Y .'X = I ' Y for some
n,m - Owith In - ml=r.

(10.6.2) Theorem One has stable equivalences, n >_ 1,

X(2 6 2) forn = 1(4)

3
for n = 2(4)

P"
-

X(2172 for n = 3(4)

S" V Sn +3 v M(Z/2, n + 1) forn = 0(4).

Hence the graphs of these stable spaces are (k > 0)

3 3
P4k+1 P4k+2 P4k+3 P4k

where P4k with k >_ 1 is a one-point union of Moore spaces. For the stable
homotopy groups it X= "M .kX we get the list below which we derive
from the equivalence in Theorem 10.6.2. Let

(10.6.3) P = 1ESP /R P,, -I.

Then we have for k:!5; 2 the isomorphism i +k(P,) = +k(P3) and this
group is computed in the following table.

(10.6.4)

n>_1 7r's(P,-) + 1(P
n=4k+1
n=4k+2
n = 4k + 3

n=4k

71/2 71/2 71/8
71 Z/4 0

71/2 0 Z/2
71 1/2 ® 1/2 Z/2 ® 1/2

Proof of (10.6.4) The case n = 4k + I is considered in Example 8.1.11 or in
Theorem 10.5.3. The case n = 4k + 2 is obtained by Theorem 10.5.1 since
Pi+2X(r)t) = K(71,Z/2t, n), t>2. 2. Moreover for n = 4k + 3 see again
Theorem 10.5.3.
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P r o o f o f T h e o r e m 10.6.2 Let U E H2(!F P, ,71/2) Z/2 be the generator.
Then the n-fold cup product u" e H"(IRP ,71/2) = Z/2 is a generator and
the Steenrod square Sq' satisfies

Sq`(u")= (n)un+1 (1)

compare 2.4 in Steenrod and Epstein [CO]. The formula also yields the action
of Sq2 on H*(P3,Z/2). Now one readily checks that the equivalences in
Theorem 10.6.2 correspond to isomorphisms of homology groups compatible
with the action of Sq2. The classification of homotopy types with cyclic
homology groups in Theorem 10.3.1 and (10.2.14) now shows that the first
three equivalences hold. The case P 4k is more complicated since Sq 2 acts
trivially. Hence we get either an equivalence as in the theorem or

P4k M(71/2,4k+1)VX(e). (2)

Considering Pk as a Thom space shows readily that (2) does not hold. We
also refer to Davis and Mahowald [CS] where all truncated spaces Pk are
classified up to stable equivalence.

We now consider the unstable spaces 1:R P4 and IF P5/S' which are simply
connected and 5-dimensional.

(10.6.5) Theorem The space I R P4 is the mapping cone of

2 + y22: P- - PZ .

Moreover the space 111 PS/S' is the mapping cone of

(13713 + [13,12],213 +12'112): S4 V S3 - S3 V S2.

(1)

(2)

Here i3 and i2 are the inclusions of S3 and S22 respectively and [i3,i,] is
the Whitehead product. In (1) we use the generators 6z , y; defined in
(11.5.16) with (y2) = 0. We point out that II P4 = T,(4) is one of the
Brown-Gitler spaces in Goerss, Lannes, and Morel [VW].

Proof of Theorem 10.6.5 We know that II1 P4 is stably X(2 f 22), therefore the
attaching map has to be f= fi + Sy2; see (11.5.9), with S E (+1, -1). In
Baues [CHI IV.A.11 we have seen that Y. P3 is the mapping cone of
(2712, -2): S3 V S2 - S2. This shows that S = +1. On the other hand, we
proved in Baues [CH] IV.A.9 that Fl P4/S' is the mapping cone of

12712+213: S3-S2 VS3=FlP3/S'.
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We therefore get the following F-sequence for RP.,/S':

H5 - F4 - zr4 -* H4 - FH2 " Ir3 ---> H3 -+ 0

II II it II II II II

71 1/2 (B 71/2 11/2 0 71
2

71 Z/2

Since H2 = 71 we get

F4 = F4(l P5/S') = 17226q) = 71/2(i3r13) ® 71/2[i3"21

compare Section 11.3. Now b5: H5 - F4 is non-trivial since 48 P5/S' is stably
X(7120). In fact this implies b5(1) = i3713 + 5[i3, i2] with o E (1, -11. Since
there is a non-trivial cup product (71/2-coefficients) H3(2) ® H2(2) -> H5(2)
we see that S = +1. The boundary invariant f3 is trivial since H4 = 0 and
hence the homotopy type of I}BP5/S' is determined by the exact sequence
above. This yields the required homotopy equivalence for ll P5/S'.

(10.6.6) Corollary We obtain the homotopy groups 7r3(YIRP4) = 71/2 and
7r4(E18P4) = Z/4 and 7r3(1 P5/S') = 71 and ir4(RP5/S') = Z/2.

Proof The F-sequence for 11 P5/S' is described in the proof of Theorem
10.6.5. We now consider the F-sequence for 7fl P4:

H5 -- F4 -> Ir4 -_L H4 - FH2 - 'r3 --> H3 -* 0

II II II II II II II

0 Z1/4 = Z/4 Z/2 1/4 - Z/2 0

Here b4 is non-trivial and hence F4 = H4 is an isomorphism. Moreover we
have in (11.3.7) the isomorphism n.: F2 (H2) = 172 1(77) =1 /2 so that a,,:
Z/4 = ir4 M(H2, 2) = F4 is an isomorphism

(10.6.7) Corollary [Y-RP4,S2] =1/2. We leave this as an exercise, use
(11.5.25).

10.7 The stable equivalence classes of 4-dimensional polyhedra
and simply connected 5-dimensional polyhedra

In the decomposition theorem 10.2.9 we determine for n > 4 the set 1 of
homotopy types of finite (n - 1)-connected (n + 3)-dimensional polyhedra.
The homotopy types (I"-'X), where X is a finite connected 4-dimensional
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polyhedron, forma subset X(4) c.3. Moreover the homotopy types {fin-'Y},
where Y is a finite 1-connected 5-dimensional polyhedron, form a subset
X(5) with

(10.7.1) 3r (4) C X (5) c X.

We now describe these subsets explicitly in terms of the spaces X(w) and
X(w, cp) used in the decomposition theorem.

(10.7.2) Definition Let r, t, s >_ 2 be powers of 2. The 4-dimensional words
are , C' with r >_ s, and t6 s, te, s, . The corresponding graphs are

The next result describes the set 1(4) in terms of 4-dimensional words.

(10.7.3) Theorem Let n >_ 4 and let X be a finite connected 4-dimensional
CW-complex. Then there is a decomposition (unique up to permutation)

In - IX _ XI V . V Xk .

Here the complexes Xi for i = 1, ... , k are elementary Moore spaces or spaces
X(w) where w is a 4-dimensional word. Moreover for each 4-dimensional word
w there is a finite connected 4-dimensional complexA(w) with En-IA(w) = X(w).

Compare (V.A.4) in Baues [CH] where we call the spaces A(w) 'elemen-
tary cup square spaces'.

(10.7.4) Definition Let w be a special word as defined in Definition 10.2.1.
We say that w is a 5-dimensional special word if w satisfies the following
properties (1) and (2):

(1) w * 71s and w 0 il
(2) for each subword of the form ruls or hlr of w (that is w = rhs or

w = Sflr ... ) we have 2r <s.

Moreover a special cyclic word (w, 'p) in Definition 10.2.1 is 5-dimensional if
w satisfies (2).

Now the next result describes the set 1(5) in (10.7.1) in terms of such
5-dimensional words.
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(10.7.5) Theorem Let n > 4 and let X be a finite 1-connected 5-dimensional
CW-complex. Then there is a decomposition (unique up to permutation)

In-2X=XI V ... VXk.

Here the complexes Xi for 1 = 1,... ,k are elementary Moore spaces or spaces
X(w) and X(w, gyp) where w and (w, gyp) are 5-dimensional special words and
5-dimensional special cyclic words respectively. Moreover for each 5-dimensional
special word w and for each 5-dimensional special cyclic word (w, go) there exist
finite 1-connected 5-dimensional CW-complexes B(w) and B(w, gp) respectively
such that 1n-2B(w)=X(w) and In-2 B(w, tp) = X(w, (p).

Proof The existence of B(w) and B(w, (p) follows from Theorem 11.6.6
below by desuspension of the attaching map f(w) and f(w, (p) in Definitions
10.2.6 and 10.2.7. Now let X be a finite 1-connected 5-dimensional CW-
complex. Then the decomposition theorem 10.2.9 yields an equivalence
yn 2X - X, V V Xk where the Xi are elementary Moore spaces or X(w)
or X(w, go). We have to show that w satisfies (1) and (2) in Definition 10.7.4.
For this we use the Pontijagin square p for which we have the following
natural commutative diagram of homomorphisms; see (1.5.3) in Baues [CHI
and J.H.C. Whitehead [CE].

FH2(X,A) P H4(X,FA)

I- I
H22(X, A) ® 71/2 H4(X, A (9 Z/2)

II II

H2(X,7L/2) ®A 592®A H4(X,7L/2) ®A

Here A is any abelian group of coefficients. Now the commutativity of this
diagram implies that w has to satisfy conditions (1) and (2) in Definition
10.7.4. In fact, assume w = ,,7s . Then r and s correspond to basis
elements (see Definition 10.2.4)

e,EHn(yn-2X), e5EHn+2(jn-2X)

of order r and s respectively. For n = 2 we obtain by e, the dual basis
element e* E H2(X, A) and es E H4(X) determines a direct summand
Hom(Z/s, FA) c H4(X, FA) with A = 7L/r, F(A) = 7L/2r. Now by (10.2.14)
W = ... ,1]s implies that (Sq2 ®A)o,(e*) # 0 and therefore the coordinate
cp E Hom(7L/s, FA) of p(ye*) E H4(X, FA) satisfies o- (go) # 0. This implies
s >_ 2r. Here y and o are the functions in (1.2.1), (1.2.2). In a similar way we
see that w satisfies (1) in (10.7.4).
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HOMOTOPY GROUPS IN DIMENSION 4

The computation of the homotopy groups irn X, n >_ 1, of a connected space X
is a fundamental problem of algebraic topology. It is well known how to
determine the fundamental group 7T, X in terms of the attaching maps of
2-cells in X. For n >_ 2 we may assume that X is simply connected since zr X
coincides with the corresponding homotopy group of the universal cover of
X. For a simply connected space the Hurewicz theorem shows that 7r2 X is
isomorphic to the homology H2 X and that the Hurewicz homomorphism
7r3X -> H3 X is surjective. J.H.C. Whitehead considered the homotopy group
7r3(X) and showed that one has an exact sequence

H4 X b`-> I'(H2 X) ----i ?r3X -> H3 X -O.

For this he computed the group r3(X) by the natural formula F3(X) _
I'(H2 X ). The corresponding computation of or4(X ), however, was not
achieved in the literature. In this chapter we compute I'4X = F4(rl) in terms
of the homomorphism rl: r(H2 X) --> ir3 X so that ir4 X is now embedded in
the exact sequence

b4

HSX

which extends the sequence of J.H.C. Whitehead above. The formula
r4(X) = r4(ri) relies on the computation of the homotopy group IT4 M(A, 2)
of a Moore space of degree 2. Here A is an arbitrary abelian group. The
results in this chapter are crucial for the classification of simply connected 5-
dimensional homotopy types in Chapter 12 below where we also study the
functorial properties of r4(71).

11.1 On 7r4(M(A, 2))

Let A be an abelian group. In this section we embed the homotopy group
ir4M(A,2) in a natural short exact sequence. For this we need the following
algebraic functors which carry abelian groups to abelian groups. First we
recall from Definition 6.2.7 the definition of the r-torsion FT(A) of A. If
dA:A, -A0 is a short free resolution of A, then we have

(11.1.1) rT(A) = kernel(5,)/image(5,)

with

A, ®A, r(A,) ®A, ®A0
s,-r(A0)
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given by 61 _ (F(dA), [dA,1]) and 52 =(11,11, -1 ®dA). Let I'* (dA) be the
chain complex given by (82, 6,) and which is concentrated in degree 0, 1, 2;
see Definition 6.2.5.

(11.1.2) Proposition We have FT(A) =A *Z/2 ifA is cyclic, and

FT(AED B)=FT(A)a) FT(B)

These formulas easily allow the computation of TT(A) for all direct sums of
cyclic groups A since I'T is compatible with direct limits.

Proof of Proposition 11.1.2: Clearly FT(7L) = 0. For A= 7L/n let dA =
n: 71 - 7L so that T * dA is

7L-7Lgi-4Z

with 62(1) = (2, 0) - (0, n) and 6,(x, y) = n2x + 2ny. This shows FT(7L/n) =
i/n * i/2. Next we prove the cross-effect formula FT(A I B) =A * B.
For this we consider the cross-effect F,, (d, I dB) in the chain complex
r* (dA ® dB). We readily see that F* (dA I dB) is given by

A,®B,ED B, (&A,
d' A,®B,®(A,(&B0®B0®A,).9,

A0®B0.

We map this chain complex to the chain complex dA ® B concentrated in
degree 0 and 1. Let q: B0 -> B be the map of the resolution of B. Then
we map F*(d,. I dB) to dA ®B by l 0q on A0 ®B0 = Fo(dA I d,) and by
(0,1 ® q, 0) on F,(dA I dB). This chain map h: I'* (dA I dB) -+ d® ® B induces
isomorphisms in homology in degree 0 and 1. Hence

FT(AIB)=H,1'*(dAIdB)=H,(dA®B)=A*B.

Compare the more general proof in Baues [QF] 7.3. O

Whitehead's F-functor is endowed with natural homomorphisms, see Section
1.2,

(11.1.3) A®71/2- FA-LA®A

given by o, (y(a)) = a 0 1 and H(y(a)) = a ® a for a EA. Similarly we obtain
natural homomorphisms

(11.1.4) A*Z/2 °--FTA- H A*A

as follows. We define chain maps

dA ®7L/2 F* dA
h

dA ® A
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by Qo = o,, ho = (1 ® q)H, o,, = (o,, 0), and h, = (0,1 ® q). These chain maps
induce (11.1.3) and (11.1.4) in homology. We have for a, b, d E A with
ha = hb = 0 and 2d = 0 the formulas

HTh(a, b) = Th,(a, b) - Th,(b, a)

Hy(d)=TZ(d,d)

crrh(a, b) = 0

uy(d) =d.

Here y(d), Th(a, b) E I'T(A) are the generators in the proof of Theorem
6.2.9. We may assume that h is a power of a prime. Next we need the
following notation on Lie algebras.

(11.1.5) Definition Let T(A, 1) be the free graded tensor algebra generated
by the abelian group A where A is concentrated in degree 1. Thus T(A, 1) is
a graded 71-module for which

T(A,1)" =A (& ... ®A =A®" (1)

is the n-fold tensor product of A. We define the structure of a graded Lie
algebra on T(A, 1) by

[x,y] =xy- (2)

for x, y E T(A, 1). Let L(A, 1) be the sub-Lie algebra generated by A in
T(A, 1) and let L"(A,1) = L(A, 1) n A®". Clearly, L"(A,1) is a functor
which carries abelian groups to abelian groups. For L3(A, 1) we have a
further characterization as follows: consider the triple Lie bracket homomor-
phism

[[1,1],1]: A ®A ®A A ®A ®A (3)

which carries a®b®c to [[a,b],c]=(a®b+b(ga)®c-c®(a®b+
b(9 a).

Lemma The image of [[1,1],1] is L3(A,1) and the kernel of [[1,1],1] is the
subgroup W3 in A ® A ® A which is generated by the following elements

(a) a®b®c+c®a®b+b®c®a

(b) a®b®c-b®a®c
(c) a ®a ®a.
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Therefore we have the natural isomorphisms

L3(A, 1) _ [[A, A], A] =A ®A ®A/W3. (4)

Here [[A, A], A] denotes the image of [[1,1],1] above. Moreover we derive
from Whitehead's quadratic functor IF the following functor F2: Ab -p Ab

(11.1.6) Definition Let F2(A) be the quotient group

r 22(A) = (T(A) ® Z/2 ®1'(A) (&A)/M(A)

where M(A) is the subgroup generated by the elements

y(x) ®x (1)
[x,y]®1+y(x)®y+[y,x]®x (2)

with x, y E A. A homomorphism gyp: A --> B induces F2(A) -- F2(B) by
F((p) ® 7/2 ® F(cp) ®cp. The relation (2) implies that

[x,x']®y+[y,x]®x'+[y,x']®xEM(A). (3)

For this replace x in (2) by x + x' E A.

(11.1.7) Lemma There is a natural isomorphism

F22 (A) = f(A) ® 71/2 9 L3(A,1)

which carries u ® 1 with u E F(A) to the equivalence class of u ® 1 in r22(A)
and which carries [[x, y], z] E L3(A,1) to the equivalence class of [x, y] ® z.

We define a homomorphism

(11.1.8) A: 1722 (A) -> 7r4M(A,2)

as follows. Using the identification A = 7r2 M(A, 2) and r(A) = ar3 M(A, 2)
the function A carries u ® 1 E r(A) ® 7/2 to the composite u'13 where
773: S4 - S3 is the Hopf map. Moreover A maps [[x, y], z] E L3(A,1) to the
triple Whitehead product [[x, y], z] E ir4M(A,2) and maps u ®x E F(A) ®A
to the Whitehead product [u, x] E 7r4 M(A, 2). The relation (1), (2), and (3) in
Definition 11.1.6 correspond to the following classical formulas so that A is
well defined:

(1) the equation [173, 62] = 0 where 62 E ir2S2 is the generator;

(2) the Barcus-Barratt formula which for a, b E are X yields the equation
[Q113, b] = [a, b]174 - [[b, a], a];
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(3) the Jacobi identity for Whitehead products which for a, b, c E 7r2 X yields
[[a,b],c]+[[c,a],b]+[[b,c},a]=0.

(11.1.9) Theorem There is a natural short exact sequence (A E Ab)

I2 (A)> A ) 1r4M(A,2) A rT(A).

Moreover AL3(A,1) is a direct summand of 7r4M(A, 2), unnaturally.

In the proof of Theorem 11.1.9 we need the following notation for mapping
cones. Let f: X1 -->X0 be a map in Top* and let Cf be the mapping cone of
f. Hence Cf is the push-out

CX1 -L Cf
(11.1.10) U U if

X1 f'Xo

where CX1 is the cone of X1. Let

7r (X1 V X0), = kernel(0,1).: 7r (X1 V Xo) - 7r (Xo ).

Then we obtain the following commutative diagram with exact rows

7T,, , 1(CX1 V Xo, X1 V Xo)
a

7r (X1 V Xo)2

1(rf,1). 1(f, l).

7rR+1Cf - 7f»+1(Cf,X0)
d 7r,(Cf)

The bottom row is the exact homotopy sequence of the pair (Cf, X0). We call

Ef= (7rf, 1). d-' : 7T,, (XI V X0)2 -* nrn+1(Cf, XO)

the functional suspension. The operator EE is part of the EHP-sequence in
Section A.6 in the appendix; see also Baues [AH] and Baues [OT].

Proof of Theorem 11.1.9 Compare the proof of Theorem 6.15.13. Let

f: X1 =M(A1,2) -X0 =M(Ao,2) (1)

be a map which induces the resolution dA: Al -A 0, that is dA = H2(f ). Then
the mapping cone of f is the Moore space Cf = M(A, 2). We now obtain the
commutative diagram

7r3(X1 VX0)2 = F(A1) ®A1 ®Ao

EEl 1b,

7r4M(A,2) -- 7r4(Cf, Xo)
d
- 7r3Xo = I'A0

(2)
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where S, is the operator in (11.1.1). The EHP sequence shows that
kernel(EE) = image(82). Hence we obtain a well-defined homomorphism.

kernel(S )
(Ef) j: 7r4M(A,2) - I T(A) = (3)

image(52)

This homomorphism is surjective since the EHP sequence shows that EE is
surjective. Moreover

kernel( µ) = kernel(j)

= image(ir4Xo --* ir4M(A,2)). (4)

We have to show that 0 in (11.1.8) induces an isomorphism

A: fz(A)-->kernel( µ).

For this we consider the diagram

?r4(X, vXo)2
(f,1).

or5(Cf, Xo) ---
a

ir4(Xo) - 7T4M(A,2)

(5)

where the EHP sequence shows that EE is surjective. Hence we get

kernel( A) = Tr4(Xo)/(f,1) * ir4(X, v X0)2. (6)

Now we can use the Hilton-Milnor formula for ir4(Xo) and 1r4(X, v Xo)
which shows by (6) that (5) is an isomorphism; we omit the somewhat tedious
computations. One readily checks this way that 0 in (5) is surjective. For this
injectivity of A in (5) we can use Lemma 11.1.7 and the following commuta-
tive diagram where y3 is the James-Hopf invariant.

r(A) ®Z/2 7r4M(A,2) 4 W L3(A,1)

1i

7r4lM,, AM,, AM,, = ®3A

Here i is the inclusion and w is the triple Whitehead product. The diagram
implies that w is injective and that the injectivity of A in (5) follows from the
injectivity of 17*. In 11.1.17 we show that OL3(A,1) is always a direct
summand. 0
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We consider the (n - 2)-fold suspension operator y" 2 which for n z 4 is
part of the following commutative diagram

(11.1.11)

r2(A) >-> Ir4M(A,2) 17T(A)

lif
1-

A OZ/2 - 7T,,-2M(A,n) -A *Z/2

Here o, on TT(A) is defined in (11.1.4) and ii on f2 (A) is defined by
(11.1.3) with 5; (FA ®A) = 0. Both maps o, and Q are surjective so that also

2 is surjective. If A is cyclic then o and Q are isomorphisms. Hence we
get

(11.1.12) Proposition For a cyclic group A one has the isomorphism (n >_ 4)

1n-2: 7r4M(A, 2) = ir,+2M(A, n).

This also shows that the sequence in Theorem 11.1.9 in general does not split
since we know the group it"+, M(A, n) = G(A) by Theorem 8.2.5.

We introduce two new functors

(11.1.13) ir4, 7r4 : M2 - Ab

given by the natural quotient groups

ir4M(A,2) = ir4M(A,2)/Al'(A) ® 71/2, (1)

ir4'M(A,2) = 1r4M(A,2)/OL3(A,1). (2)

Here we use Lemma 11.1.7 and Theorem 11.1.9. The exact sequence in
Theorem 11.1.9 induces the natural short exact sequences

L3(A, 1)
A-> a4M(A,2) - FT(A) (3)

1'(A) ®71/2 >s-> Tr4M(A,2) -`' 1'T(A). (4)

We shall prove that the extension (3) is split for all abelian groups A. Using
(3) and (4) we obtain the natural pull-back diagram

ir4M(A,2) - ir4M(A,2)

q1 pull (5)

ir4M(A,2) 1'T(A)
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in which q denotes the quotient map. This pull-back diagram shows that the
functor IT4 on M2 is completely determined by the functors i4 and 7r4 on
M2.

The functor i4 has the following natural interpretation. Let (I M(A, 2) be
the universal cover of the loop space 1 Z M(A, 2). Then one has the natural
Hurewicz homomorphism

ir4M(A,2) 7r3f1:M(A,2) = ir3,ilM(A,2) -_, H3SlM(A,2). (6)

Here the third homology H3 of A M(A, 2) is isomorphic to 7r4 M(A, 2). In
fact, there is an isomorphism

7r4M(A,2) H3,f1M(A,2) (7)

induced by hq-' where q is the quotient map in (5).

Proof of (7) The map h in (6) is embedded in Whitehead's exact sequence of
X=IZM(A,2)

FH2X----a 7r3X=4H2X-0.

Here H2 X = 7r3M(A,2) = IF(A) and j coincides with the composite

j: FA- F(A)®Z/2N7r4M(A,2)=ar3X.

Hence the kernel of h is f(A) 0 1/2 and therefore the isomorphism (7) is
well defined.

We now compute the group ir4M(A,2) for any abelian group A. For the
Moore space M(A,2) = IMA we have the James-Hopf invariant

y3: ar4M(A,2) - zr4IMA AMA AMA = ®3A

which satisfies y3OF(A) ® 1/2 = 0. Hence y3 induces the following commu-
tative diagram in Ab with short exact rows.

L3(A,1) N ir4M(A,2) - - FT(A)
(11.1.14)

L3(A,1) - `0 ®3A - Q - ®3A/L3(A,1)
11

I Y3 I Y3

Compare the proof of Theorem 11.1.9. This diagram is a pull-back diagram
which determines the group a4 M(A, 2) via the operator 'y3. This operator is
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not natural in A. For the computation of y3 we need the James-Hopf
invariant y2.

[IP2,IMA]
Yz

[Y. P,,IMAAMA]

(11.1.15)
1A II

A D Hom(Z/2, A) Ext(l/2, 0 2A) «- ®'-A

For dEA with 2d = 0 let y2(d) E ®2A be an element which represents y,(d)
with J C= µ-'(d). As usual we identify an element a EA with ha = 0 with an
element a (=- Hom(Z/h, A) carrying 1 E i/h to a.

(11.1.16) Theorem Let h be a power of a prime and let a, b, d c- A with
ha = hb = 0 and 2d = 0. Then we have y3(rh(a, b)) = 0 if h is odd and we get in
®3A/L3(A,1) the formulas

y3(rh(a, b)) _ (h/2)[a + b, a ®b] for h even,

y3(y(d)) = [d, y2(d)].

Here we use the Lie bracket in T(A, 1); see Definition 11.1.5.

Proof Let a, b E [XPh, 1MA], d E [XP,, I,MA] be elements which realize
a, b, and d respectively. Then we have for the generators 62, h.h in Section
11.5 the formulas

µ([1,1](a#b)1=h h) = rh(a, b) (1)

µ(d42) = y(d). (2)

Here [1, 1]: IMA A MA - >.MA is the Whitehead square; compare the nota-
tion in (11.5.10) below. If h is odd let Sh,h E 7r4XPh n Ph = i/h *7L/h be the
canonical generator. Now the James-Hopf invariant y3 satisfies the following
distributivity laws:

y3([1,1](a#b)Ch,h)

Y- T221+7- TI 21-Y' TI 12-Y.T212)a#41,h

= b#b#a(Y'T22I)Sh,htt + a#b#a(Y-T121 )6h.hCC

-a#a#b(1.T212)Sh.h -b#a#b(1T212)Sh.h

=(h(h-1)/2)(b®b®a+a®b®a-a®a®b-b(9 a®b).
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Here we have in (&3A the equation

a®b®b=b®b®a+[[a,b],b].

Hence we have proved the first formula in Theorem 11.1.16. Moreover we get

Y3(d42) = (d#y2(d) +

This yields the second equation in Theorem 11.1.16 since 2d=O. The
equations above for y3 are obtained by the results in Section 11.5 below and
the general distributivity laws in Section A.10.

We observe that 2y3 = 0. As an application we obtain the following result
which we already mentioned in Theorem 11.1.9.

(11.1.17) Theorem For any abelian group A the extension for ir4 M(A, 2) in
(11.1.13)(3) is split. This implies that L(A,1)3 is a direct summand of 7r4M(A, 2).

Proof For any abelian group A we have the commutative diagram

L3(A, 1)

®3A L3(A,1)
[[1,11,1]

where 3 denotes multiplication by 3. In fact, for x, y, E A we get

[[1,11,1]i[[x,yl, z]

= [[1,11,1](xyz +yxz - zxy -zyx)

= [[x,y],z]+[[y,x],zl - [[z,xl,yl- [[z,yl,x]
= 3[[x, y], z]

Here we use [y, x] = [x, y] and the Jacobi identity. The diagram shows that
the extension in the bottom row of (11.1.14) yields an element

( ®3A) E Ext(®2A/L3(A,1), L3(A,1))

of order 3, that is 3( (& 2A} = 0. On the other hand, the pull-back diagram
(11.1.14) shows that the extension in the top row satisfies

{7r4M(A,2)} = E Ext(fT(A), L3(A,1)).

Here y3 by Theorem 11.1.16 satisfies 253 = 0. Hence we get (ir4M(A, 2)) = 0
and therefore the extension for ir4M(A, 2) is split.
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(11.1.18) Definition We define for any abelian group A the retraction

r: 7r4M(A,2) - L3(A,1)

of the inclusion A by the formula

r(x) = [[1,11, lly3(x) - 2y3(X). (1)

Here we use the James-Hopf invariant y3 in (11.1.14). Since 2y3 = 0 we see
that 2y3(x) E L3(A, 1) C &A. Moreover for y E L3(A, 1) we get

rO(y) = [[1,11,11y3A(y) - 2y3A(y)

_ [[1,11,1]i(y) - 2y

=3y-2y=y
so that r is indeed a retraction for A. Here we need the commutative diagram
in the proof of Theorem 11.1.17. Using the retraction above we obtain the
isomorphism

(µ,r): a4M(A,2) a FT(A) ®L3(A,1). (2)

In case A is a direct sum of cyclic groups this isomorphism, however, is not
compatible with the direct sum decomposition given by the Hilton-Milnor
formula.

Next we compute the group is M(A, 2). For this we choose for each
abelian groups A a map

(16.1.19) 4: M(A, 2) -> M(A (9 71/2, 2)

which induces the quotient map q: A --> A ® 71/2 in homology. If A is a
direct sum of cyclic groups we choose 4 as a suspension. The map 4 induces
the commutative diagram

(11.1.20)

IF(A) ®Z/2 >--° + ir4M(A,2) µ - fT(A)
a 1q. 14. pull 1q.

F(A ®1/2) ®Z/2 >-- ir4M(A (9 Z/2,2) -. I'T(A ®1/2)

The rows of this diagram are the short exact sequences given (11.1.13X4).
Since q* on the left-hand side is an isomorphism this diagram is a pull-back
diagram. For a basis B of the Z/2 vector space A ® Z/2 we get

M(A(9 71/2,2)_ 'I XP2.
B
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Since 7r41P, = Z/4 and ir4EP2 A P2 = 1/4, see Section 11.5, the

Hilton-Milnor formula in Remark 11.5.3 below shows that 4( V 1 P2) = U

is a free Z/4 module generated by the disjoint union

B u ((b,b'),b <b',b,b' E=- B)

where we choose an ordering of B. This basis of U is also a basis of the
1/2-vector space FT(A 0 1/2). Therefore (11.1.20) and Theorem 11.1.17
and (11.1.13)(5) yield the next result which determines the abelian group
ar4 M(A, 2) for any A E Ab.

(11.1.21) Theorem For any abelian group A we obtain the abelian group
7r4 M(A, 2) by a pull-back diagram:

ir4M(A,2) U

I
pull

19

L3(A,1) ®fT(A) p FT(A) q I T(A ® 71/2)

Here P2 is the projection and q: A -A ® 1/2 is the quotient map. Moreover U
is a free 1/4-module for which there is an isomorphism 0: U ® 71/2 = I'T(A ®
Z/2). This isomorphism defines q' = 0,:U- U® 1 /2 = rT(A ®1 /2).

11.2 On ir3(A, M(B, 2))

We now consider the homotopy group ir3(A,M(B,2)) of a Moore space
M(B, 2) with coefficients in A where A, B E Ab. We have the universal
coefficient sequence which is compatible with the suspension operator:

(11.2.1)

Ext(A,ir4M(B,2)) vr3(A,M(B,2)) - Hom(A,IB)
1:

o
Ext(A, Ir6M(B,4)) >-* Tr5(A, M(B,4)) -* Hom(A, B (9 71/2)

If B = 71/k is a cyclic group we derive from Proposition 11.1.12 that .; is an
isomorphism. Hence in this case the diagram is a pull-back of abelian groups.
In (8.2.12) we computed the bottom row of (11.2.1), hence (11.2.1) yields the
group ir3(A, M(l /k, 2)) as a functor in M(A, 3) E M3. More generally we
can compute the group ir3(A, M(B, 2)) as follows.

(11.2.2) Definition For an abelian group B we have the surjective operator
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µ: 1r3(FB, M(B, 2)) --* Hom(FB, I'B) as in the top row of (11.2.1) where we set
A =1'B. A generalized Hopf map

rlB : M(IB, 3) --> M(B, 2)

is a map which satisfies µ(r18) = lre where 1rB is the identity of IB. If B is
free abelian then OB is well defined up to homotopy; in fact r)d = 02 is the
Hopf map for B = Z.

A generalized Hopf map 71B induces the commutative diagram

(11.2.3)

Ext(A,r(B)®71/2) ° rr3(A,M(rB,3))
IA. push f(77B) .

Ext(A,ir4M(B,2)) - 7r3(A,M(B,2)) -* Hom(A, FB)

which is a push-out of abelian groups. Here 0 * is induced by A in (11.1.8).
We know the group

(11.2.4) ir3(A, M(FB,3)) = G(A, FB)

by use of the category G in Definition 11.6.6. Hence the push-out diagram
(11.2.3) determines the extension in the bottom row completely. For example,
if B is cyclic then FB has no direct summand Z/2 and hence the top row of
(11.2.3) is split and therefore also the bottom row of (11.2.3) is split. We have
the composite

Ext(B,TZA) Ext(B, 7r4M(A,2))) ir3(B, M(A,2))

where F2A = F(A) ® 7 1 / 2 E D As in (11.1.13) we introduce two new
functors

(11.2.5) 7r3',ir3: (M3)°P X MZ -> Ab

7r3(B, M(A, 2)) = rr3(B, M(A, 2))/00 * Ext(B, F(A) (& 1/2)

7r3(B, M(A,2)) = rr3(B, M(A,2))/A0*Ext(B, L3(A,1)).

Here AA * for 7r3 need not be injective while 00 * for 7r3 is always injective
since L3(A,1) is a direct summand of vr4 M(A, 2). The operator k = Q in
Addendum 11.4.5 below, see also Section 6.6, yields the following natural
diagrams in Ab in which all rows are short exact.

II

Ext(B, L3(A,1)) N rr3(B, M(A,2)) - FT,(B, A). (1)
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This sequence is split for all A, B in Ab (unnaturally) as follows from the
push-out diagram (11.2.3) and the fact that (11.1.13X3) is split for all A.

Ext(B,ir4M(A,2)) ° 7r3(B,M(A,2)) Hom(B,FA)

lExl(B,µ)
IA (2)

Ext(B, rT(A)) N TT#(B, A) -- Hom(B, rA)

Ext(B, F(A) (& Z/2)/K ° 7r3(B, M(A, 2)) -A* rT,(B, A) (3)

Here K is the image of the boundary homomorphism

a: Hom(B, rT(A)) - Ext(B, r(A) ®1/2) (4)

associated by the extension (11.1.13X4) for ir4M(A,2). The exact sequence
(3) is a consequence of (2). As in (11.1.13X5) we have the binatural pull-back
diagram

q
ir3(B,M(A,2)) - 1r3(B,M(A,2))

lq
IA

ir3(B,M(A,2)) rT,(B,A)

(5)

where q denotes the quotient map. This shows that the induced maps on
ir3(B, M(A, 2)) are completely determined by the functors ir3 and 7r3 in
(11.2.5).

Similarly to (11.1.13) we have the following natural interpretation of the
functor 7r3 above. Again let C M(A, 2) be the universal cover of the loop
space of M(A, 2). Then we have the Hurewicz map with coefficients

ir3(B, M(A,2)) = ir2(B, f M(A,2))

= ir,(B,1 M(A,2)) h >H2(B,flM(A,2)). (6)

Here the right-hand side is the pseudo-homology with coefficients in B. We
obtain the isomorphism

hq-' : 7r3(B, M(A, 2)) = H2(B, f2M(A, 2)) (7)

which is natural in M(A,2) and B. A proof of (7) is deduced from the
generalized r-sequence with coefficients in the same way as in (11.1.13)(7).
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11.3 On F4X and r3(B, X)

We here study the groups r4X and r3(B, X) of a space X but we do not yet
determine the functorial properties of these groups. Recall that J.H.C.
Whitehead described the group r3X by use of the functor r, that is

(11.3.1) r3X r(7r2X).

Hence 173X depends only on the second homotopy group of X. We know that
174X (as an abelian group) depends only on the quadratic function

(11.3.2) 7IX-7I2:7r2X-7r3X

induced by the Hopf map 172 e ir3S2. In fact, 71x determines the 3-type
K(77x, 2) of the universal covering X of X, see Proposition 7.1.3, and hence
71x determines 174X = r4X = r4 K(71x, 2) as an abelian group. We now show
how to compute 174X in terms of the function 71x.

(1133) Definition Recall that rAb is the category of quadratic functions;
see (7.1.1). Objects are quadratic functions 71: A -> B between abelian groups
which we can identity with homomorphisms 77 r(A) --> B. We now define
the functor

F22: FAb - Ab (1)

which generalizes the functor r2 in Definition 11.1.6. The functor r2 carries
the object 77 to the abelian group 172(7,) given by the push-out diagram

B®Z/2®B®A 9 0 r;(11)
710 ®z/2o770 ®A1 push o. (2)

F(A) ® 71/2 ®r(A) ®A - 172(A)

Here the bottom row is given by the quotient map in the definition of r2(A).
A map p = ((po, pl): 71- q' in lAb with 77'Vo = (p,71 induces cp* : r2 (77) -
172(q') by gyp, ®7L/2 ®V, ®(po where (po: A -A' and gyp,: B -* B'. We can
describe 172(71) also by the quotient

r2(71)=(B®Z/2®B®A)/M(77) (3)

where M(71) is the subgroup generated by the following elements with
x,y,zeA:

(71x) ®x (4)

[x, y],, 0 1 + (71x) ®y + [y, x],, ®x. (5)
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Here we set [x, y],, = q(x + y) - q(y) E B and 1 E Z/2 is the generator.
Clearly the kernel of q in the top row of (2) coincides with the subgroup
M(71); this follows by the corresponding relations (1) and (2) in (11.1.6). If
B = I'A and if q = yA is the universal quadratic function then rl ° = 1 is the
identity of FA and hence T; (yA) = F2 (A) in this case by (2). Since 71x in
(11.3.2) is natural in X we obtain by (1) the functor

Top*/=-'Ab, XHF (fix) (6)

which carries the homotopy category of pointed spaces to abelian groups.

(113.4) Theorem Let X be a pointed space. Then one has the short exact
sequence

I; N I4X-. FT(7r2X)

which is natural in X.

Here we have

rz (W) = (7r3(X) ® Z/2 ® 7r3(X) (& 7r2(X))/M(71x)

and A carries x ® 1 to 0(x (& 1) = x74 and x ®y to the Whitehead product
A(x (9y) = [x, y] where x E 7r3X, y E 7r2X. We point out that for ig = 77x the
element [x, y], = [x, y] E 7r3(X) is the Whitehead product of x, y E 7r2(X).
Therefore the relations (4), (5) in Definition 11.3.3 which generate Mix)
correspond to the well-known formulas (11.1.8)(1X2). This shows that the
homomorphism 0 in (11.1.4) is well defined and natural. Injectivity of A in
Theorem 11.3.4 shows that the group F 2267x) is the subgroup

(11.3.5) F (71x)=7737r3X+[7r3X,7r2X]Cf4X

where + is the sum of subgroups (not the direct sum).
We derive from Theorem 11.3.4 the next result on the operator Q in

Theorem 6.6.6. For this we simply set X = K(A, 2).

(113.5) Corollary We have H5 K(A, 2) = I'4 K(A, 2) = FT(A) and

Q: 7r4M(A,2) -' H5K(A,2) = FT(A)

is surjective and coincides with A.

Clearly for X = M(A, 2) the exact sequence in Theorem 11.3.4 coincides with
Theorem 11.1.9. Therefore the naturality of the sequence in Theorem 11.3.4
yields for a simply connected space X the following commutative diagram.

F2(71x) >. F4X FT(HZX)
(11.3.7) n.1 push Ja. II

F (A) H ir4M(A,2) -'` FT(A)
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Here we have A = Hz X and a : M(A, 2) --> X is a map which induces the
identity 1 = H2(a) on A. Moreover for r1= 71x the induced map 71* in
(11.3.7) coincides with q,, in Definition 11.3.3(2). Since diagram (11.3.7) is a
push-out of abelian groups we can compute the abelian group r4 X by use of
7r4 M(A, 2). We determined the extension in the bottom row of (11.3.7) for
any abelian group A in Theorem 11.1.21. Therefore the push-out diagram
(11.3.7) shows how to compute the abelian group I'4X only in terms of 71x.

In a similar way we can compute the group F3(B, X) for a simply con-
nected space X since we have the commutative diagram

Ext(B,r4X) H f',(B,X) -.Hom(B,F3X)

(11.3.8) TExt(B, a,) T-.
II

Ext(B,7r4M(A,2))- 7r3(B,M(A,2))-* Hom(B,FA)

induced by a above. This is a push-out diagram of abelian groups and we
know the extension in the bottom row by (11.2.3). This yields also the
extension in the top row since we know how to compute a* in (11.3.7).

In the rest of this section we prove Theorem 11.3.4.

Proof of Theorem 11.3.4 Let H; = H; X and a; = 7r; X and let a be given as
in (11.3.7). We consider the homomorphism

M:Tr3®71/2®7r3®7T,->r4X

which satisfies M(x (9 1) =x714 and M(y ®z) = [y, z] for x, y E 7r3, Z E iT-,.
Only the 4-skeleton of X is involved in the definition of r4 X. Therefore we
may assume that X is a CW-complex with X 1 = * and dim X = 4. Let
C* = C,, X be the cellular chain complex with cycles Z; = ker(d: C, - C,-,)
and boundaries B; = dC;+,. Let t: B, -, C3 be a splitting of d so that
C3 = tB2 ® Z3. Then there is a map

(1) g: A =M(C4,3) VM(tB,,2) -+B=M(Z3,3) VM(C2,2)

such that the mapping cone Cg of g is homotopy equivalent to X, see 1.7.5 in
Baues [CH]. The map H2g coincides with the inclusion tB, - C; given by d.
Moreover the map Hag coincides with the map d: C4 - Z3 given by d. Hence
g is determined up to homotopy by the triple (C, t, g) where g: C4 - r(C,) is
a homomorphism given by the coordinate M(C4, 3) -i M(C2, 2) of g. We
consider the commutative diagram

7r5(Cg, B)
d

(2) E8fi

7r4(AvB)2

7r4 B r a 7r4 Cg / a 7r4(Cg, B)
a

E1
7r3(A V B)2

Tr3B
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the top row of which is the exact sequence of the pair (Cg, B). The operator
EE = (irg,1),, a-' is the functional suspension in (11.1.10).

(3) Lemma Both homomorphisms Eg in (2) are surjective

Proof The result is clear by Corollary A.6.3 for n = 3 since A is 1-connected
(a = 2). For n = 4 we consider the exact sequence in Theorem A.6.9 which is
the row in the following commutative diagram

ker(g,1) - jir4Cg

E8 HH P8 r Eg r
7r4(A V B)2 - 7r5(Cg, B) -s 1r3(A AA') 'r3(A V B)2 -+ a4(Cg, B)

(g, 1).

al

(B)

Here we have A = )A'. We show below that Pg is injective, therefore Hg = 0
and thus Eg on the left-hand side is surjective.

By definition of A and of Pg = [i1, i - i2g]* the following diagram com-
mutes

ir3(A AA') -- ir3(A V B)2

11 II

tB2 ®zB, - 8 - C4 ®r (tB2) 9 tB2 ®C2

with Pg = (0, [1, 1], - 1 ® d). Since d is injective also 10 d is injective and
thus Pg is injective.

(4) Corollary We have the short exact sequence

Vg- Tr4Cg-.Ug

where Vg = iir4 B = ir4 B/(g,1) 7r4(A V B)2 and

Ug = jir4Cg = ker(g,1) * /Pgir3(A A A').

(5) Lemma For 1r; = rrCg we have Vg = ia4B = ('13)`ir3 + [ir3, Tr2]. This is
the image of M above.

Proof of (5) Compare diagram (6) below. We know that ir3B --I- 7T3C9 and
ire B --> 1r2Cg are surjective. Therefore Image M C Vg. On the other hand, we
have by the Hilton-Milnor theorem the surjection

M=MB: ir3B®7L29 7r3B®a2B-.lr4B.
This shows Vg c Image M c 1r4Cg.
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We consider the diagram

(6)

Ir3Cg ® 711 ® Ir3Cg ®Tr,Cg M 7r4Cg

7r3B ®71, ®-rr3B ®1r,B -B»

T'a

7r4 B

351

Here i = i3 ® l2 +r3 ® i2 is surjective where r,,: rrnCg is induced by
BcCg.

(7) Lemma ker M = i ker MB.

This is the crucial fact which we use for the proof of Theorem 11.3.4.

Proof of (7) Consider the following commutative diagram with the notation
below.

(a) -7 7r3B®71291T3B®7T2B
M.

yr4B

1L (g.1).
1

G ---------------+ 7T4(AVB)2
n n

7T3(AVB)®Z2®7r3(AVB)07r2(AvB)* or4(AVB)
MA,8

Here (g,1)*=(g,1)* ®712®(g,1)* ®(g,1)*. Since

ker i4= (g,1)*ir4(A vB)2
the lemma follows from

(b) iL=O if 7T4(A V B)2.

In fact, we have by (6) the inclusion i ker R. c ker M. The inclusion
ker M c i ker MB follows from (b) by a diagram chase in (6) and (a). We
obtain G in (a) and (b) by

G=(zr3(AvB)2(& 712)ED (Tr3(AVB)2(& ir,(AvB))®(ir3B®ir2A).
Now iL = 0 follows from the following exact sequences:

1r3(A V B)2
(g, I).

7r3(B) --a ir3Cg,

ire (A) B 7T2( B) ---- a2Cg .

Next we show:

0

(8) Lemma The kernel of M is generated by the elements in Definition 11.3.3(4),
(5).



352 11 HOMOTOPY GROUPS IN DIMENSION 4

Proof of (8) For MB we have the following description as a direct sum of
homomorphisms:

Z3®71,

MB = Z3®C2
7r3B0®Z2®7r3B0®7r2 BO

I Z3 ® 712
1 z3®C2

M
7r4 B0

B0

Here B0 = M(C2, 2) and MB = 1 ® 1 ®MBo. This shows that

(9) kerMB = kerMB..

Now (7) and (9) show that it is enough to prove (8) for X = B0. This can be
done by use of the Hilton-Milnor theorem. In fact, we choose a basis Z in
C2 with

(10) X=Bo=M(C2,2)= V S2.
z

Moreover, we choose an ordering of the basis Z. Then 7r4 X is the sum of the
following cyclic groups with generators as indicated and 71= 712 E 7r3S2,

712 = 7r4(S2) E) a71(E71) with a E Z, b E Z

(11) 12 = 7r3(S3) E) [a, b](E71) with a <b,

71= 7r4(S4) E) [a, [b, all with b <a.

On the other hand, 7r3X = F(C2) is the free abelian group generated by y(a)
and [a, b] with a < b. Clearly, 7r2 X = C2 is the free abelian group generated
by the elements in Z. We have to compute the kernel of

M: I'(C2)®Z2®F(C2)®C2-'>7r4X

(12)

y(a) ®1 --i a71(En)

[a, b] ®1 -+ [a, ME77 (a < b)

y(a) ®b H [a71,b]

[a,b] ®c H [[a,b],c] (a <b).

The Barcus-Barratt formula yields

(13) [a71, b] = [a, b](E71) + [a, [b, all
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Since [r), i2] = 0 in 1r4(S2) we have [arl, a] = 0. Now (11), (12), and (13) imply
that ker M is actually generated by the elements in Definition 11.3.3(4), (5).
This is seen by expressing the values of M in (12) in terms of the generators
in (11). For this we use (13) and the Jacobi identity for Whitehead products.
This completes the proof of (8).

For the proof of Theorem 11.3.4 we show that we have the commutative
diagram

r2
z (,qX>

(14) Vg H

Ug = ker(g,1) * /Pgir3(A A A')

in which each row and each column is a short exact
Theorem 11.3.4 and (4). By (4) we have

(15)

where we use the following homomorphisms

PIr3(A AA') `
II

tB2 ® tB2

Here we have

1r3(A V B)z

r4Cg - rT(H2)

'r4 Cg Ug

1h 1h

ker b4 = ker b4

II

-> c4®r(tB2)6) tBZ®c2

(g. U.

-,

sequence; compare

Z3®rc2.

Pg, = (0,[1,1], - 1 ®d3)

(g,1) * _ (d4, g) ®(rd3, [d3,1]).

This shows by definition of rT(H2) in (11.1.1) that the kernel of h: Ug
ker b4 is rT(H2). Recall that b4 makes the diagram

C4 -8-a r(c2)

U
iP

Hob r(H2)

commute where ker p = im (rd3, [d3,1]) and where g is defined by g in (1).
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11.3A Appendix: Nilization of F4X

We consider the functor

(11.3A.1) nil: Gr - Gr

which carries a group G into its (second) nilization nil(G) = G/I'3G where
r3G is the subgroup of G generated by triple commutators in G. Clearly the
abelianization satisfies A = Gab = (nil G)ab. For a free group G we have the
natural short exact sequence

(11.3A.2) A2(A)rnil(G) ab»A

where ab is the abelianization and where w is the commutator map with
w((x) A [y)) = -x - y + x + y for x, y e nil(G) and {x) = ab(x). Clearly the
exact sequence (11.3A.2) fits into the commutative diagram of short exact
rows of groups

[G,G] H G
-a'--

A

(11.3A.3 ) Inil Inil
II

A2(A) Nnil(G) -. A

where nil is the quotient map and where [G,G] is the commutator subgroup
of G.

Now let G = GX be the simplicial loop group of Kan; see (11.4.7). Then
A = AX is the abelianization of GX as in Theorem 1.4.8 and in this case
(11.3A.3) is a diagram of simplicial groups which induces the natural operator

(11.3A.4) rr_,[G,G] -,AZ(A) = r,°il(X)

which we call the nilization of r (X). Here we assume that X is simply
connected. For n < 4 we compute the nilization r,"(X) as follows. We have
the exact sequence

(11.3A.5) F(H7X)-4 7r3X--,H3X->O

which is part of Whitehead's F-sequence. Here q ° is induced by r, = -1x in
(11.3.2). We therefore can identify the third homology H3X with the coker-
nel of i7x . The definition of r2 267x) in Definition 11.3.3 shows that the
sequence (11.3A.5) induces the exact sequence

(11.3A.6)

r2(H2X)-n`->FZ(n,,)" H3X®Z/2®H3X®H2X- 0
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where It * is given by h ® 1/2 ® h ® H2 X. Using h * we obtain the following
push-out diagram which defines r4''(X)

r4(X) rT(H2X)
(11.3A.7) ,h, push jh

II

H3X®Z/2®H3X(&H2X - I;"(X)-.rT(H2X)

The push-out (11.3.7) and (11.3A.6) show that the bottom row splits (unnatu-
rally). Moreover we have by (11.3A.6) the natural exact sequence

(11.3A.8) >I;''(X)->0.

(11.3A.9) Theorem Let X be simply connected. Then the nilization

nil * : r (x) -> I'"" (X)

is an isomorphism for n < 3 and for n = 4 one has a natural isomorphism 0 for
which the diagram

nil
r;i'(X)

r4(x) / e

1
r4i'(x)

commutes. In particular nil * on r4(X) is surjective and the kernel is determined
by (11.3A.8).

We think of diagram (11.3A.7) as the unstable analogue of the diagram in
Theorem 5.3.7(a), so that r4''(X) is the unstable analogue of the group
H3(X,71/2). Indeed the suspension o, yields the commutative diagram

(11.3A.10)

H3X®Z/2®H3X®HZX) rn"X rT(H2X)

l(l,0) 1-
to

H3X®71/2' ' -+H3(X,l/2) -. H2(Xy)*71/2

Here the bottom row is the universal coefficient sequence. All vertical arrows
are surjective. The unstable analogue of the diagram in Theorem 5.3.8(a) is
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the following commutative diagram for the secondary boundary b5 of X

ker Sq' N H5 X

(11.3A.11)
F (H,X), r
ker (rl*

r4 X n 4 aX

This diagram defines the natural maps Sq' and 0' for simply connected
spaces X. The stabilization of diagram (11.3A.11) is the diagram in Theorem
5.3.8(a). Therefore Sq' is a desuspension of the Steenrod square Sq2 and 0'
is a desuspension of the secondary Adem operation ¢* , that is rSq' = Sq2
and oo' = 0*.

11.4 On H3(B, K(A, 2)) and difference homomorphisms

We determine the pseudo-homology H3(B,K(A,2)) and we describe the
connection of this group with Tr3(B, M(A, 2)). This also leads to the computa-
tion of difference homomorphisms for induced maps on ir4M(A,2) and
'r3(B, M(A, 2)). The quadratic functor r: Ab - Ab yields the bifunctor

(11.4.1) rT#: Ab°P X Ab -p Ab

which carries a pair of abelian groups (B, A) to the set of homotopy classes of
chain maps

rT#(B, A) = [dB, r*dA]. (1)

Here dA: AI 'A0 is a short free resolution of A which is a chain complex
concentrated in degree 0 and 1. Moreover r* dA is the chain complex in
(11.1.1); see also Definition 6.2.11. We have FT,,(7L, A) = r(A). In fact, since
Hor* dA = F(A) and H, r,, dA = FT(A) we get the binatural short exact
sequence

Ext(B,rT(A))>-'->FT,(B,A) - Hom(B,r(A)) (2)

which is split (unnaturally). Here µ carries a chain map in (1) to its induced
map in homology. We now consider the pseudo-homology H3(B, K(A, 2)) of
an Eilenberg-Mac Lane space K(A, 2) given by the group of homotopy
classes of chain maps,

H3(B, K(A,2)) = [C* M(B,3),C* K(A,2)),

where C, is the singular chain complex.
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(11.4.2) Theorem There is a binatural isomorphism

H3(B, K(A,2)) = rT#(B, A)

for which the following diagram of short exact sequences commutes.

Ext(B,H5K(A,2)) * H3(B,K(A,2)) - Hom(B,H4K(A,2))

II II µ II

Ext(B,rT(A)) A H I'TT(B,A) -» Hom(B,I'(A))

Here we use the isomorphisms r(A) = H4 K(A, 2) and HS K(A, 2) = 17(A ).
In the proof of Theorem 11.4.2 we use the surjection Q in Corollary 6.6.8 and
we obtain a new interpretation of Q by use of twisted maps between mapping
cones. To this end we describe the following concept of twisted maps which
generalize the principal maps in Definition 6.12.11.

(11.4.3) Definition Let f: X --> Y and g: U - V be maps in Top*. A twisted
map

F=C(u,c,H,G): Cf->C5 (1)

between the mapping cones of f and g is obtained as follows. Consider a
diagram

X -UvV
fl

I(g,l)

Y--> V
(2)

together with homotopies H: rf = (g, 1)u and (0, 1)u = 0. Then there is a pair
map

G: (CX,X)-*(CUVV,UvV)
extending u. Here CU is the cone on U. Using the inclusion ig: V C Cg and
the projection (7rg,1): CU v V --i Cg, see (11.1.10), for the mapping cone Cg
we get F in (1) by the formulas:

F(y)=igr(y) foryEY
F(t, x) = igH(2t, x) for 0< t < 1/2, x E X

F(t, x) _ (rrg,1)G(2t - 1, x) for 1/2 < t < 1, x c= X.

Let

TWIST(f,g)c[Cf,Cg1 (3)
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be the subset of all homotopy classes represented by twisted maps. Moreover
let

Twist(f, g) c [ X , U v V12 X [ Y, V ] (4)

be the set of all pairs of homotopy classes (u), (v) as in (2) with (g, 1) * (u) =
f *{v} and (0, 1) * {u} = 0. We say that F in (1) is associated to the pair
({u}, (v}) E Twist(f, g). The properties of twisted maps are studied in Baues
[AH], Chapter V.

The Moore spaces M(A, 2), M(B, 3) are mapping cones of dA: M(A 1, 2) --
M(Ao, 2) and dB: M(B1, 3) -> MOO, 3) respectively. Now it is easy to see that

(11.4.4) Twist(dB, dA) = Chain(dB, r* dA)

where the right-hand side is the set of chain maps dB - I * dA. In addition to
Theorem 11.4.2 we show the

(11.4.5) Addendum There is a commutative diagram

[ M(B, 3), M(A, 2)] - H4(B, K(A, 2))

II II

3 2TWIST(dB,dA)
A

[dA,f*dB ] =FT#(A,B)

where k carries a twisted map F associated to (x, y) to the homotopy class of the
chain map (x, y) given by (11.4.4).

Proof of Addendum 11.4.5 and Theorem 11.4.2 The arguments in (V.§7) of
Baues [AH] show that all maps M(B, 3) - M(A, 2) are homotopic to twisted
maps. Moreover (V.7.17) in Baues [A]H] shows that k is well defined. The
push-out diagram in Corollary 6.6.8 yields the kernel of Q. Since A fits into a
push-out diagram of the same kind we see that kernel(A) = kernel(Q). We
now define the isomorphism in Theorem 11.4.2 by AQ-'.

We need the following purely algebraic notation.

(11.4.6) Definition Let A, ir, R be abelian groups and let CE Ext(A, ir) be
represented by 6, E Hom(A1, ir) where dA: A, -->A0 is a short free resolu-
tion of A. Then we obtain the composite

fi®Rt*: A*RcA,®R - rr®R (1)
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which depends only on ; see also Definition 8.3.11. Moreover we obtain the
commutative diagram

Ext(B, A * R)

[dB,dA ®R] Ext(B, a® R)

Here # in the bottom row is defined as follows. For a chain map F: dB -->
dA ® R the element 4{F} is represented by the composite

B, F^AR
The inclusion A in (2) is the usual one which carries (b) represented by
b E Hom(B1, A * R) to the chain map which is 0 in degree 0 and which. is
B, - b A * R cA, ® R in degree 1. Hence diagram 2 commutes. If A and B
are finitely generated we have a natural retraction

r: [dB, dA ®R] -4 Ext(B, A * R) (3)

of A in (4); see Lemma 6.12.13. In this case f,, in the bottom row of (2) is
simply Ext(B, C,)r. Using Addendum (11.4.5) we are able to prove the
unstable analogue of the deviation formula in Proposition 8.3.12. For this
consider the elements

a,a+D&E[M(.A,2),X]

with f E Ext(A, IT3X). Here a + A6 is defined by A: Ext(A, rr3X) -
ir2(A, X). We obtain the difference homomorphisms (a + A C) a *

r4(a+06)-r4a:
r3(B,a+ze)-r3(B,a): a3(B,M(A,2))- r3(B,X).

Here r4a = a * is the same as in (11.3.7). Let 7T;= zr; X and let a= ir,(a) E
Hom(A, ir2X) be induced by a.

(11.4.7) Theorem The difference homomorphisms above yield the following
commutative diagrams (11.4.8) and (11.4.9).

Tr4M(A,2) µ FT(A) o.H
A *(71/2 ®A)

I

lt.
(a+ A0* -a. 73 ® (Z/2 ®A)(11.4.8)

r4(x) ° -rZ(17X) 7r3®(/2®ir2)
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Here we use H) in (11.1.4) and the quotient map q in Definition 11.3.3(3);
moreover we set a * = 7r3 0 (Z/2 ® a).

(11.4.9)

7r3(B, M(A, 2)) FTO(B, A)

(a+A f). -a.

f3(B, X) A

(Q,h).
[dB, dA (9 U/20 A)]

Ext(B, 7r3 ® ( 7 1 / 2 ®A))

I Ext(B, A . )

Ext(B, F4X)

Here (o, h),, is induced by the chain map (Q, h): F* dA --> d® ® (71/2 ®A), see
(11.1.4). The surjective homomorphism A is defined in Addendum 11.4.5. If A
and B are finitely generated we can use the retraction r in Definition 11.4.6(3) for

Proof of Theorem 11.4.7 For the mapping cone Cd = M(A, 2), d = dA, we
know that each element x E 7r4(Cd) is functional in the sense that j(x) _
(7rd, I) * a- `Q) = see (11.1.10). Hence 11.12.3 in Baues [AH] shows

(1)

where ao = a I M(A0, 2) and where 6,: -I X represents . Moreover
E is the partial suspension for which the following diagram commutes

E 7T3(X, V XO)2 -> 7r4(Y'Xt V X0)2

(2)

FA, ®A, ®Ao (D A, ® 71/2 ®A, ®A0

Hence (1) shows that the first diagram of Theorem 11.4.7 commutes.

Next we know by Addendum 11.4.5 that F E 7r3(B, M(A, 2)) is a twisted
map associated to (u, v) E Twist(dB, dA) = Chain(d8, F dA). Hence we have
by 11.12.7 and V.3.12 (3) in Baues [AH] the formula

(3)

Now one can check as in (2) that Eu is given by (Q,T)A(F) with A(F)=
((u, v)). This yields the commutativity of the second diagram in Theorem
11.4.7.
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11.5 Elementary homotopy groups in dimension 4

Let PCyc° be the full subcategory of Ab consisting of elementary cyclic
groups 71 and 71/p` where p' is a prime power. We also write 71= 7/0. The
elementary Moore spaces are (d >_ 2)

(11.5.1) M(Z/n, d) _ 1d- `P with 71/n E PCyc°.

Here P = S' U nee is the pseudo-projective plane for n not equal to 0 and
P0 = S'. The quotient space X A Y = X X Y/X V Y is the smash product for
pointed CW-complexes X, Y. The elementary homotopy groups which we
consider in this section are for 71/k,71/n,71/m E PCyc° the groups

(11.5.2)

7r4Y.P,,, ir4Y.P APm, ir3(71/k,IP AP,,,).

The elementary homotopy groups arise in the following application of the
Hilton-Milnor theorem.

(1153) Remark Let A and B be direct sums of cyclic groups

A = (B (71/a;) a; and B = ® (71/b,)13i
i i

with 71/a1,71/bi E PCyc°. Then we obtain the Moore spaces

M(A,2) _ V IPa , M(B,3) _ V 12Pb,
i S

as one-point unions of elementary Moore spaces. The inclusions a;: IPa, C
M(A, 2) yield the Whitehead product [ a;, ai ]: Y.Pa A Pa -> M(A, 2). Then the
Hilton-Milnor theorem shows

Tr4M(A,2) (D ir,1Pa) ® (® ir4Y.Pa n Pa) ®L3(A,1).
«i

The isomorphism is given by 7r4(a;) on 1r4I Pa , by a4[ a;, ai ] on a, Pa A Pa ,

and by 0 in Theorem 11.1.9 on L3(A, 1). Similarly we get

ar3(B, M(A,2)) ® 7r3(B, Y- Pa )) ® 7r3(B, YPa A Pa ))
<i

a) Ext(B, L3(A,1)).

This shows that the groups ir4 M(A, 2) and rr3(B, M(A, 2)) are completely
determined by the elementary groups in (11.5.2).
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(11.5.4) Elementary exact sequences Let Z/n,7L/m E PCyc°. Then we have
short exact sequences:

F(71/n) ® Z/2 N 7r41 P, _g FT(71/n) = 7L/n *1/2 (1)

µ
71/n*i/m (2)

Ext(B, -rr4EP,,) N 7r3(B, -go Hom(B, I'(7L/n)) (3)

Ext(B, ir4IP A P H .Tr3(B,!,P A - Hom(B,7L/n ®7L/m). (4)

Here (1) is a special case of Theorem 11.1.9 and (2) is part of Whitehead's
exact sequence F4 X -* 1r4 X -> H4X for X= I P, A Pm . Moreover (3) and (4)
are for B E Ab the universal coefficient sequences. We solve the extension
problems for the elementary exact sequences as follows.

(11.5.5) Theorem Let 71/n,71/m E PCyc°. Then (1) is non-split if and only if
n = 2. Moreover (2) is non-split if and only if n = m = 2. Nert (3) is split for all
B E Ab. For B = 71/k E PCyc° the sequence (4) is non-split if and only if k = 2
and

(n, m) E {(2, 0), (0, 2), (2`, 2), (2, 2`), t > 1}.

(11.5.6) Remark Let A and B be direct sums of cyclic groups as in Remark
11.5.3. Then the extension in Theorem 11.1.9,

t2(A) ° 1r4M(A,2) - FT(A),

coincides via Remark 11.5.3 with the direct sum of elementary exact se-
quences. Hence Theorem 11.5.5 also solves the extension problem for
ir4 M(A, 2). Similarly Theorem 11.5.5 solves the extension problem for

Ext(B,Tr4M(A,2)) 4 ir3(B,M(A,2)) Hom(B,FA)

since this sequence via Remark 11.5.3 is a direct sum of elementary exact
sequences.

Proof of Theorem 11.5.5 We obtain the result on (1) by Proposition 11.1.12
and Theorem 8.2.5. Moreover for (2) we observe that ir4 X with X = I P A P.
is in the stable range so that we can apply (5.3.5) where we use the Cartan
formula for the computation of Sg2(i). Next the splitting of (3) is proved in
(11.2.4). Finally using Remark 11.5.3 we solve the extension problem for
(5.4X4) by the push-out diagram (11.2.3). Here we also can use Theorem
1.6.11. 0
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Theorem 11.5.5 determines the elementary homotopy groups (11.5.2) as
abelian groups completely.

(11.5.7) Remark The space P A Pm is also the mapping cone of n A 1: S' A
Pm --> S' A Pm where n: S' - S 1 is a map of degree n and where 1 is the
identity of Pm with n, m > 0. The identity I,,, of IPm with m a prime power
satisfies

in [Y.Pm,1Pm]

if m = 2 and (4, n) = 4 or if m not equal to 2 and (m, n) = m; see Corollary
1.4.10. In these cases we get the homotopy equivalence

P,, APm=IPm VI2Pm.

For n = 2 = m there is no such decomposition since then P2 A P, is the
mapping cone of

(2i,,!,i 2 + 213): S2 VS3 _* S2 V S3.

Here i, (t = 2,3) is the inclusion S` CS2 V S3 and n2 E= '7r3 S2 is the Hopf
map. Compare IV.A.13 in Baues [CH].

For the elementary Moore spaces we use the inclusion and the pinch map

(11.5.8) Sd `_i,, y d - q-9^Sd+l

and we use the inclusion

i=inm =Yi,, Aim: S3CYP APm.

Let . E 'nr+ IS be the Hopf map with 1r?, = n,+ 1 for n >_ 2. We write
C = (7L/t)x if C is a cyclic group isomorphic to Z/t with generator x, t > 0.
We know that

173
S2 = 7772, Tr.+ 1S'= (71/2)x1, for r >_ 3,

ir4S2 = (Z/2)172 with 112 =713712,

rr3Y-P =71/(n2,2n)ixlz and 7r4E2P=71/(n,2)i713,

[y2Pk,S2] =Zl(k,2)q2q and [12p" S3]

[12p", I2p, = G(71/k, Z/n);

see Theorem 1.6.7. Here we assume that n and k are powers of primes and
(a, b) denotes the greatest common divisor of a, b E Z. These groups together
with the groups in the next theorem yield a complete list of all elementary



364 11 HOMOTOPY GROUPS IN DIMENSION 4

homotopy groups in (11.5.2). For this we point out that the essential features
of the elementary homotopy groups in (11.5.2) only arise when k, n, m are 0
or powers of 2. This follows from the short exact sequences (11.5.4) above.

(11.5.9) Theorem Let n, m, k be powers of 2. Then one has generators
e, y, , r, for which the following equations hold. For the definition of these
generators see (11.5.16) below.

=
f 7/4)6 (26=e) forn=2aa"
SI (Z/2)60 (7L/2)e for n 4.

Here we write 6 = and e = e = i1722 is given by the double Hopf map.

f (7L/4)6 (2f=e) forn=m=2
(7L/2)e forn >_ 4 or m >_ 4.

Here 7L/r = 7L/n * 7L/m is the cyclic group of order r = (n, m). We write
and e = e m = L7j3 is obtained by the Hopf element.

(7L/2) C ®(7L/2) y (--=O) fork=n=2
[X2Pk,ypl _ (7L/4)C®(Z/4)y (e=2C) forkz4,n=2

(7L/2) C ® (7L/g)y (D (7L/2)e for k 2, n 4.

Here 7L/g = Hom(7L/k, fl/n)) is the cyclic group of orderg = (2n, k) and we
write y = y k. The elements f and a are given by C = rt = q and e = Lrl2q
[ 2Pk,Y,P APm]

(e=0)
(--=2,q)

(Z/4)6®(l/2)q (e=26)
(7L/e) f ® (i/d),q ® (7L/2)e

for (k, n, m) = (2,2,2)
for (k, n, m) _ (2, >_ 4, 2), (2, 2, >_ 4)

for (k, n, m) = (>_ 4, 2,2)
otherwise.

Here 7L/e = Ext(l/k,7L/n * Z/m) and 7L/d = Hom(7L/k,i/n (&7L/m) and
we write 77 = rtk m. The elements f and e are given by ,m = mq and

"73 q

We need the following notation and facts; see Appendix A. Let A and B
be finite dimensional connected CW-complexes with base point and let

(11.5.10) T,,: A AB ->B A A

be the interchange map. Moreover for maps f: !A --* IA', g: F,B -- EB'
between suspensions let f#g be the composite

Y,A A B
f AB

IA' A B T" IB AA' g- ,B' AA' I T21 ) Y.A' A B'. (1)
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Hence f #g = If ' A g' if f = If ' and g = I.g'. Moreover for a E [ IA, X]
and 16 E [IB, X] let

[a,f3IE[IAAB,X1 (2)

be the Whitehead product. We have the interchange rule

[a, /3] _ -(YT21)*[ 9, a] (3)

and for a E [A, Al b E [B, B'], v E [X, X'] we have naturality:

[(Ea)*a, (Ib)*f31 = (1a A b)*[ga, /3l

v* [a, f31= [v* a,v*,6 1. (4)

Moreover let A = AA: A -A AA be the reduced diagonal with A(x) =x Ax
for x (=-A. Then one has

[a, P, + 1621 =[a, 621 +1 a,1611 +[1 a,161 ],1621I (A A AB). (5)

[a1+a,,f31=[a,,161 -[a2,[a1,16 1]1(AAAB)+[a,,161. (6)

We also write A A AB = T122 and AA A B = T112.
Let A'"=AAA n ... n A be the n-fold smash product of A. For rp E

[IB,IA] let

yn(tp) E [IB, IAA"] (7)

be the nth James-Hopf invariant (defined with respect to the lexicographical
ordering from the left). The James-Hopf invariant is natural in A and B. As
an example one has Y2602) = 1 E 7r3S3 for the Hopf map rl2 and 21.12 = [1, 1].
We need the following formulas for the Whitehead square

which is the Whitehead product given by the identity 1 of IA. If A is
(r - 1)-connected and dim(A) < 4r - 3 we have

Y2[1,1] _ -IT21 + IT12 E [IA"2, IAA2] (9)

Y3[1,11=ET221+YT121-IT112-IT212E[IA n2,IA n3]. (10)

Here T,, is the identity of A A 2 and

T22,(a, A a2) = a2 A a, A a,, T121(al n ag) = a, A a2 A a,,

and T212(al A a2) = a2 A a1 A a2 for a,, a2 EA. See Section A.10.
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(11.5.11) Theorem The James-Hopf invariants

Y3. ir4(Y.PR) - ir4(EPR AP APR) =71/n

Y3
11Pk,1PR] , [ZPk,Y.PR APR APR =Ext(71/k,71/n)

are trivial for all n, k >_ 0.

Proof We may assume that n and k are powers of 2. Let X,, E [I P2, I PR ]
be defined as in (11.5.16). Then we have the following commutative diagram
with short exact columns

7r4S2

ir4Y- P2
fiX,2).

-IT4 Y' P.

I I
I'T(71/2) = FT(71/n)

Y3
1T4S4 = 71

7r4IP.AP.APR

Since Y3( it is hence enough to prove y3a4P2=0'
Now y3 is induced by the James map

n Y.P2 = JP2 - Y -> JPZ A P2 A P2 =11IP2 A P2 A P2

and we have the commutative diagram

ir3JP2

Y.1

'7r3JP2 A P2 A P2

.L H3CJP(P2) -- H3JP2

IY3

H3 JP2 A P2 A P2

Here we use as in Baues [CHI (111.6.6) the Hurewicz map for the universal
covering JP2 of JP2:

h : ar3 JP2 = ir3JP2 -. H3JP2 = H3CJp(P2 )

which is surjective since fP2 is 1-connected. Hence it is sufficient to prove
that the composite

H3CJp(P2) P,H3JP2- 11 H3JP2AP2AP2

is trivial. This is an exercise. Here CJp(P2) is a completely algebraic chain
complex; the map p corresponds to the projection JP2 --+ JP2 of the universal
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covering. Next we consider y3 on We obtain the following
commutative diagram.

Ext (7L k , rr41 P P A P,)

r
73.

II

;.3 `-

II

Y3

Here y3 is trivial on Therefore there exists the factorization y3
which is natural in Z. and in Z,,. For n < k the inclusion X: 7L --> 7Lk yields
the commutative diagram

Hom(7Lk, FZ) --Y-% Ext(7k, Z )

1X
3

1

HOm(Z,,,
Y3

Ext(i,,, Z,,)

Next consider the commutative diagram

[1,1]* =o
Ext(7Lk,1r4I,P A Ext(71k, ir4Y-

r a,tl. 2 I
[y2Pk,Y,Pn [E

1 "--W---4 !
Hom(Lk,7L (&

11,11.

Here [1, 1] * is trivial on ir4MP n P,, by Lemma 11.5.15 so that the map W is
defined. We observe that for k < n the map [1,1] * in the bottom row is
surjective. Hence 7Y3 = 0 is a consequence of the fact that 73[1,1] by (11.5.10)
(10) induces the trivial map on [ 2Pk,Y.P, A see Lemma 11.5.27.

We now consider the generators e, y, C, ,q in Theorem 11.5.9. First we
recall that the identity I2 = X2 of IP2 satisfies

(11.5.12) [YEP2, Y.P2] = (71/4)X2 with 2X2 = '1129

We choose the generators 2 and f2,2 as in the following theorem.

(115.13) Theorem Let f2 be a generator of

-rr4Y.P2 = (71/4)f2 (1)
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Then C2 induces the isomorphism of groups

z : [YP2,T-P21 = ir41P2. (2)

Moreover the James-Hopf invariant

Y2: 1r4EP2 = IT4I P2 A P2 (3)

is an isomorphism. Let z 2 = Y2 62 - Then the following formulas are satisfied:

713 and 262 = i7122 and 262,2 ='713

(IT21)*62,2=62,2 and

(4)

(5)

Proof The map in (2) is a homomorphism since the suspension I in
z = 1062)*E is an isomorphism. Hence 2 is an isomorphism with
z Xz = 62 Since q62 = 713 by (11.5.4) (1) we get

2f2=fz(2X2 _62* '712q=tg2g62 =1712713 =ii

2 2,2 = Y2(2i;2) = Y2 (1772 773) =1713

so that (4) is proved. We obtain (3) by the commutative diagram of elemen-
tary exact sequences

(11.5.14)

7r3(IP2 AP2) ®71/2 >-> 7r4IP2 AP2 -µ 71/2*71/2

ir3(1P2) ®71/2 N

;E 17z®1

Moreover (5) is a consequence of the next lemma.

(11.5.15) Lemma For n >_ 0 the interchange map T21 induces the identity

id=(IT21)*: -rr47. PnAPR-1r4I P,APR.

Moreover the Whitehead square induces the trivial map

0= [1,11*: 1r4IP,, APn - 7r4IPn.

Proof We consider the following commutative diagram obtained by applying
the suspension to Whitehead's exact sequence with n even

71/2n=F(H2P,,APn)
h

1T3PP AP. -' H3PP AP. =71/n

1r4I P2 - FT (71/2)

1Y=
s lh

1°
f

' h II

71/2=71/n®71/2 >-+ 2r4IP,, APn -' H4IP,APn
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Now T21: P A P -- P,, A P induces the identity on H3 P A P. and on
r(H2P Therefore there is a: 71/n -->71/2n such that

1r3(T21) = id + iah.

This implies 1r4(IT21) = id + i(oa)h where, however, a-a = 0. Hence the first
proposition is proved. We now prove 0 = [1, 1] * as follows. Since the genera-
tor c2 E 1r2S2 satisfies [[a2, i2], c2] = 0 we see that [[1,1],1] 0 = 0 for
13 E 1r4Y.P A P A P. Therefore we obtain for a E 7r41 P,, the equation

a = 2a - [1,1]y2(a) where I. = X,^ is the identity of Y,P,,. Here we
use (11.5.11) and id = (IT21) * above. Now let n = 2 and a = 62. Then we get
by Theorem 11.5.13(4) and (11.5.12).

(212) * 1tS2 = l7)2g C
S2 = 111283 = 2

C
62

This implies [1,1]y2 61 = 0 and hence 0 = [1,1] * for n = 2. Next let n = 21,
t > 1, and let X: 71/n - Z/2 be the surjective homomorphism. We choose
X: P --> P2 which induces X = Now we obtain the commutative dia-
gram of elementary exact sequences

1r4IP,, A
1

P,, ?r
qs ,

4S3
u

71/2 N 1r4I P -. 71/2

II
(ax).! pull 10

71/2 1r4IP2 -j Z/2

Here [1,1] * = 0 is trivial. In fact q* [1,1] * = [q, q] = 0 is trivial since S3 is an
H-space and ( X)*[1,1]* [1,11*(1XAX)* is trivial since 0=[1,1]* for
n=2.

(11.5.16) Definition of the generators Let k, n, m be powers of primes. The
canonical generator

X = X,,k E Hom(Z/k, Z/n) = Z/k *71/n

carries 1 to n/(k, n) where (k, n) is the greatest common divisor. Let

(1)

be given by B2 in Theorem 1.4.4 so that X,k induces X in homology. In the
following the context always shows whether X,k denotes a homomorphism or
a homotopy class. We choose S 2 E ir4 IP2 as in Theorem 11.5.13 and we set

1r4YP,,. (2)
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Then µ(4n) E FT(71/n) =71/2*71/n is the generator. Moreover let 62,2 =
72(62) as in Theorem 11.5.13. For (n, m) not equal to (2,2) let Sn m E
1r4IP,, A Pm be the unique element for which µ(fn m) E 71/n *71/m is the
canonical generator and for which

(X2#x2)*bn,m=0' (3)

See (11.5.10) (1) for the definition of x2 #X2 . Here Xz #X2 induces a
pull-back diagram between elementary exact sequences (11.5.4) (2) so that
Sn m is well defined since H4 Xz #X m = X * X = 0 for (n, m) not equal to (2, 2).
Using fn, m we define

f'jk

m = fn m q as in Theorem 11.5.9. Next we obtain

?lnmE[Y-2Pk,IP.APM 1by

in#Xm if m = (n, m)
k

71n,m = (4)
- (Y.T21) * rlm, n otherwise.

Here in: S2 c lPn is the inclusion and we use the product # in (11.5.10)(1).
One readily checks that µ(n, m) E Hom(l/k, 71/n ® 71/m) is the canonical
generator. In (4) the numbers n, m or k may also be 0.

We define yk E [y 2Pk, Y.Pn], n even, by setting

yk = y, "(1X2n) (5)

where yen is the following generalized Hopf map; see Definition 11.2.2. The
element ye" E [VP2n, F,Pn] is the unique element which is represented by a
twisted map; see (11.4.4), associated with the diagram

S3 I''''21 S2 V S2

2nI

S3 n2

(6)

and which satisfies

)'2(y2n) = 7Inn - Sn?n (7)

Here y2 is the James-Hopf invariant. Using (6) we see that %2" is a
generalized Hopf map and µ(yk) E Hom(71/k, I (71/n)) with r(71/n) = 71/2n
is the canonical generator. If n is odd let P = 2:1/n - 71/n be the isomor-
phism which is multiplication by 2. This isomorphism yields the homotopy
equivalence

B3(2). I2Pn = E2Pn

the homotopy inverse of which is B3(1/2); see Corollary 1.4.6. Then we set

Yn = [i,, 1]B3(1/2): E2Pn -Y..P,, (8)
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where [i",1]: IS' A P" -> I,Pn is the Whitehead product of the inclusion
i": I,S' c IP" and the identity 1 of IP". Again y,, is a generalized Hopf map
and yk = yields the canonical generator µ(yk). Compare the proof
of Lemma 11.5.19 below. For n odd we obtain the James-Hopf invariant of
yn by the formula

72(yn) = -1n,n - Sn,,B3(1/2). (9)

This follows from (A.10.2)(h) and (11.5.20)(1) below.

(11.5.17) Lemma The generalized Hopf map yen is well defined by the
conditions in (11.5.16)(6), (7).

Proof Using the exact sequence (11.2.5X3) and its cross-effect sequence we
obtain the following commutative diagram; for this recall that L3(A, 1) = 0 if
A = i/n is cyclic. Let k, n be powers of 2.

Ext(7L/k,7r3(lP")®7L/2)/K)-a [1ZPk1YP"] A 0 FT,(71/k,7L/n)

a1(Y201). 1r2
Ih

Ext(7L/k,ar3(EP"nP")(9 A V[dZ1k,A0d,]

CIX II

AP"]

(1)

Here we have K a i/2 if k = n = 2 and K = 0 otherwise. The map h * is
induced by h in (11.1.4) and C,, denotes cellular chains. Since (y2 (9 1)* is an
isomorphism this diagram is a pull-back.

Now let k = 2n. Then Addendum 11.4.5 shows that d(y2n) is the chain
map associated with diagram 11.5.16 and one can check

A(, n - SnZn) =h,, A(y2n).

For this we consider chain maps F = (FI, FO)

7L , Z ®7L/n

2n1 In®1-0

7 - - Z0i/n

(2)

(3)

Then h * k(y2n) is represented by F = (1, 1) and ) is represented by
F = (1, 2) and A(6 ?",) is represented by F = (0, 1). This proves (2) and there-
fore the pull-back (1) shows that d,2," is well defined. 0
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Next we consider the James-Hopf invariants

y2: ir4(Y.Pn) - 1T4(IP A Pn)

Y2: [i2p,, I.Pn AP }.

They satisfy on generators the following equations:

(11.5.18) Lemma Let k, n be powers of 2. Then

y2(en) = en,n

2 (ER) = en nY

y2(fn) _ (n/2)4n,n

y2(Sn) _ (n/2)n,n

2(n, k) k
yz(y, _ (2n,k) °'n (2n,k)

" n.

Proof We first check the formula on y2(6n). We have y2Qn) _
62 = (X,2#Xn)*Y2 62 = 2,2 Hence we get for n > 2

(X2#X2)*Y2Q)=0

since for n > 2 we have Xz X = 0. On the other hand, µy2( fn) = n/2 E
7L/n *7L/n = 7L/n since for the canonical generator X E Hom(7L/2,7L/n) we
have X(1) = n/2 and hence

l Y2(Sn)=i (Xn#Xn)*C2,2 =(X*X)µ(52,2)

with µG2,2) = 1 and X * X = X Next we check the formula on y2(y) We
have

yz(Yk) = y2(y2n )(EX2n)

_ Wren .X2 Sn2n`y X1 )n 2n

and now we can use Lemma 11.5.24(f). This yields the result since ez 2=0' 0
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In addition to Lemma 11.5.15 we now consider for the Whitehead square
[1, 1] the induced homomorphism

[1,1]*: [12Pk,1Pn AP ] , [c2Pk,1Pn]

On generators we get the formulas:

(11.5.19) Lemma Let k and n be powers of 2. Then

[1,1]*errn n=0

[1,1]*Srtkrt=0

(2n,k)
k k k1]#stn.n (n,k) Y. +tSnen.

Here let S,k = 1 for n = 4, k E {2, 4), and S,k = 0 otherwise. In particular we get
for the generalized Hopf map yen the formula

2,Y2n = [1, 1]7In,n

Proof The first two equations are consequences of Lemma 11.5.15. Since
-q, ,k,,, = in#X we have [1,1] * 7irt n = [in,1] (1 A X,k) where in: S2 C EPn is the
inclusion. Here the Whitehead product [in,1] E [ES' A Pn, EPn] is a twisted
map associated with the right-hand square of the diagram

S3 k/(k,n)
S3

[i1,i21
S2 V S2

kI

n/(k n) 2n

I(n,1)

S3 I S3
2

S2

The diagram represents A([in, 1](1 A X,k)) E I'T#(71/k, Z/n). Using
(11.5.16)(5), (6) we therefore have

(2n, k)
A([1,111n,n)=

(n, k)
A(yk).

Using the pull-back diagram in Lemma 11.5.17(1) it remains to show that the
James-Hopf invariants coincide. By Lemma 11.5.18 we have

(2n, k) k\ - (2n,k)
k k

Yz (n, k) Yn (n, k)
Y2(ynk ) = (n, k) f,,.n



374 11 HOMOTOPY GROUPS IN DIMENSION 4

On the other hand, we obtain by (11.5.10X9)

Y2(11,1= (Y2[1,11)Yln.n

IT21 +
k - k tk' kenk_

.
2 71n.n

(n,k) Snn + Srt'

where in the last equation we have used the next result (Lemma 11.5.20).

(115.20) Lemma Let k, n, m be powers of 2. Then the interchange map T21
on Pn A Pm induces the isomorphism

(I T21)*: [y2Pk,I.,Pn APm]
- [I.2Pk,IPm AP.

which on generators is given by the following equations:

(I T21)*Enkm-Emkn

T21)*Sn m - Sm,n

(ET ) k =21 74, n for m not equal to n

kk ttk k kin,rt=-?7n,n+ (n,k) Sn,n+snen

Here let 6,k = 1 for n = 4 and k E (2,4) and S = 0 otherwise.

Proof The first two equations follow from Lemma 11.5.15 and the third
equation is a consequence of Definition (11.5.16)(4). It remains to prove the
fourth equation. One readily checks that 'l: [j2P, I.P, A P,, ] -* A ® dA]
with A = 2/n carries both sides of the equation

(1 R n+SnEn,n (1)

to the same element. Hence the exact sequence in the bottom row of Lemma
11.5.17(1) shows that for appropriate Sn E Z equation (1) holds. We set S2 = 0
since E22,2 = 0. Since

XR)
-qn (2)T1n,n(I

by (11.5.16X4) and since

k
Cn, Xn) = (n, k) rt (3)

we see that (1) implies SR = Sn'k/(n, k) by a similar argument as in (3) where
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we replace 6 by e. We have to compute Sn in (1) for n > 2. For this we
compute in [ I2P,,, I P2 A P2 ]

(XZ#Xn) * (1 + (4)

=(1+IT)*(22*nn,n
= (1 + IT) * (5)

= 22(Y- X2) = 622(gI X2) (6)

= (n/2)C2 2 = (n/4)e2,2 for n > 2.

Here (5) is a consequence of the definition of qn n and (6) follows from (1)
since ez 2 = 0. On the other hand, we get by (1),

(4)X2#X2")*(A, n+snen,n)
rt n nX2#X2)*(4,nq)+sne2,2

= sne2,2 (7)

Here (7) is a consequence of (11.5.16)(3). Hence we have proved that
5,, = n/4 modulo 2 for n > 2 since ez 2 0 for n > 2. Hence we get S
nk/4(n,k)forn>2and 52 =0.

(11.5.21) Lemma Let n, m be powers of 2 and let

mm: y' 2m = E S'/ Pm c P n/ P m

be the inclusion given by S' cPn. Then we have in [E2Pm, EP, APm]

f"' ifmsn_ 7n m
in m

17rt,m + 6n mm if m > n.

Proof We use the short exact sequence, A = 7L/n, B = 7L/m

Ext(71/k,ir3(YPrtAPm)®7L/2)/K»[y2Pk,Y.PnA Pm]] [dz/k,d+®B]

C. II

[C*1,Pk,C*IPf APm]

where K = 7L/2 if k = n = m = 2 and K = 0 otherwise. For A = B this is the
bottom row in Lemma 11.5.17(1). Let k = m. By definition of i7nm the
equation in (11.5.21) is true if m = (n, m); see (11.5.16)(4) where X, is the
identity. Now assume m > n. Then we have by (11.5.16)(4)

' 7n,m = -($T21)*77m,n = (1)
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where ,q,, = y2P C Y.P A P,, is the inclusion. One can check that A
above satisfies AU,,) = A(rlrt + 6 , , m ). Moreover we have

( Xn #Xn )in m = 1n 7nn. (2)

On the other hand, we have by (1)

(Xn#Xn )('nom

Xn #Xn )tm (4Xn ) +r( Xn #Xn )Snm (3)

_ -(Y-T21)in n(1Xn)+.Z'nr#Xn )Snmm

_ n+(Xn#Xn )Snm (4)

M
gm

71n n - (m, n) Cm. + (Xn #Xn ) m (5)

1nn (6)

In (4) we use (2) and in (5) we use Lemma 11.5.20, Moreover (6) is a
consequence of Lemma 11.5.24(b) below since N( Xn * X,,) m/(m, n) =
m/n for m > n. Since X,"#X induces an isomorphism for the kernel of A
above this completes the proof of Lemma 11.5.21.

For cp E Hom(Z/n, Z/m) let

(11.5.22) E

be defined by Theorem 1.4.4. The context below always shows clearly whether
qp denotes a homomorphism or a homotopy class. Recall that B2(q') is the
suspension of a principal map P -* Pm inducing gyp.

Now let m, n, r, s, k, t be powers of 2 and let p E Hom(Z/n, i/s), ip E
Hom(l/m,71/r), and r c- Hom(71/t,77/k). Then we have induced homomor-
phisms

(a) rp* 74 Y- Pn -> 741P,

(b) cp#1(r)*: 7r4EP APm - 1r4 Y. P5 APr

(c) P*: [I2Pk,IP1

(d) [y2Pk,lPn AP. - .2Pk,Y. P., APrJ

(e) (IT)*: [E2Pk,y P

(f) (Y.T)*: [F,2Pk,IP APm] - A

These homomorphisms are computed on generators by the following result.
For this we use the notation:
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(11.5.23) Definition Let A = (7L/n)x and B = (7L/m)y be cyclic groups with
fixed generators x and y respectively and let cp a Hom(A, B). We choose a
number N(ip) which satisfies q (x) = N(cp)y and let N(ip) be the unique
number with 0:!5 N(cp) < m and p(x) =Rip) y. Moreover we define M((p)
by nN(rp) = mM(gp). For example 7L/n,7L/n ® Z/m, and 7L/n * 1/m are
cyclic groups with canonical fixed generators.

(11.5.24) Lemma The homomorphisms of Lemma 11.5.21 satisfy the following
equations (a)-(f).

(a)

(b)

(c)

(d)

,p. en = N(cp) es

P* n M(q)M(0 6s.

=N(tp(9 +I)es r

(cp#G)*Sn,m=N(cp*&Jr) s.r

cp en =N(ap)es

(P*4 =M(0M(,p)fsk.

(2s, k)
(p*Yk = N(cp)M(,p) ysk.

(2n, k)

(cp#,i)* e,km =N((p(9 +/)e5 r

((p#,p) * fn m = N((p * tp) &kr

r+ss,rSsrr)1(4'Xm)

N(W )(i r- sr,sCssr)G`cpxn )

form<n
for m > n.

Here we set e3 = 1 for r > s and 55 r = 0 for r >_ s. The right-hand side can be
computed by the formulas in (f) below.

(e)

(f)

(Y.T)*ee, =M(T)e'

(Y.T) *Ck =M(T) fn

(t, 2n)
(>T)*.k=N(T)(k,2n)

(!T)*errn,m =M(T)en.m

(1T)*Sn,m =M(T)

(t,a)
(ET)*71,k,m =N(T) (k, a) fn'm +

5,,"(N(7-)(N(T)
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Here we set a = min(m, n) and we set Sa ` = 1 for t = a = 2 and k < 4 and
So , ` = 0 otherwise.

Proof All formulas for --terms are clear since B2(gp) has degree N(cp) on
the bottom sphere S2 and has degree M(cp) on the 3-cell. Moreover one
readily checks the equation

cPX,, =Xs2(M(cp)Xz)

for homomorphisms. For a = M((p) we have in [Y.P2,1P21 the equations; see
Theorem 1.4.8

B2(ax2) =aX2
a(a - 1)

+ 2 'g24

= aX2 +a(a - 1)X2 = a2Xz2 2

where we use (11.5.12). Since B2 is a functor we thus obtain the second
formula of (a). Now we prove the second formula of (b). The operator µ
carries both sides of the formula to the same element. Next we obtain the
coefficient of es , by applying X2#X2; see (11.5.16) (2). We have X2 cP = (P2 X2
with P2 = cp ® 71/2 in Ab and hence we get the element

CC)&m

which is trivial for (n, m) not equal to (2,2) and which is X2,2 for
(n, m) = (2, 2). Here we have P2#412 = 0 for (s, r) not equal to (2,2) and
(n, m) = (2,2) since then cp2 = 0 or r(r2 = 0. On the other hand, the element
( X2#XZXN(rp * alr)S ,) is trivial for (s, r) not equal to (2,2) and is

2 for (s, r) = (2, 2). For (s, r) = (2,2) however we get p * 41 = 0 for
(n, m) not equal to (2, 2). This completes the proof of the second formula of
(b).

It is enough to prove the third equation in (c) for k = 2n since we can
apply (e) for k not equal to 2n. Hence let k = 2n. One readily checks for A in
the top row of Lemma 11.5.17(1) the equation

A( p*Yn1 n) = P* A(y2n) = aA('Yt2n)

with a = N(v)2(n, s)/s. Using the pull-back diagram of Lemma 11.5.17(1) it
hence remains to show that James-Hopf invariants satisfy

Yn") =
aY2(Y:2n).

On the one hand, we have

Y2('P*Yn2n) _ n -?n)

= N(W) rlssY.(9Xn n) - N((p * ,)C,,2; C,J2;
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Here we use (d). For P = (3Xzs with p = N( cXn, s)/s we have (Pyn " = XS2S

in Ab and one checks as in the proof of (e) that BXis) _ zs
Hence we get

Y2((p*Y2") = (p)e,2

with (3N((p) = a. On the other hand, we have

y2(ays2") = a(ys2siXzs)

zs 2s 2n
'S 2s

= a(nssS1Xs2s)1Xis -N((p)M(9)es2,

Here we use (f) and the definition of 77s?s. Hence it remains to show

(N((p)M(cp) -.N(qp * (p))es2s = 0. (*)

Here we have N((p * gyp) = N((p)M(g) modulo s, hence (*) holds for s > 2
since then 2 Ss2s = 0. For s = 2 and tp not equal to 0 we have N(tp) = 1,
M((p) = n/2, and N((p * gyp) = 0 for n > 2. Hence (*) holds for s > 2, n > 2.
Now it is clear that (*) holds for s = n = 2. This completes the proof of (c).

For the proof of (d) we may assume m = (n, m); see (11.5.16)(4). Then we
obtain by the composite in the top row of the commutative diagram

k
X y 2Pm I P" A Pm17n.m.

y2Pk

1N(©).10 IV#0

12P, Y.Ps A Pr
IJ.l

Here in, m and is , are the canonical inclusions. Let 8, , = 8 = 0 if r < s and
let 6 = 1 for r > s. Then Lemma 11.5.21 and the diagram show

=N(W)"(Tla

This yields the equations in (d).
For the proof of (e) we only consider (Yr)*yk. We have

(I T)*Yk = y2n(y y2n.( X2nT)

where X2"T = aX2n with a = N(TXt, 2n)/(k, 2n). Moreover we have by
Theorem 1.4.8

t 2n 2

1(aX2") = a(Y-Xzn) + (2)
2 ( (t 2n)) i1139
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Here the q3-term vanishes for t > 2 since 2713 = 0. Moreover for t = 2 we get
(;)n2j3q = 0. This shows that actually Y.(aX2) = a'XZn and the third

formula of (e) is proven.
For the proof of (f) we only consider the element (Y.T)*ri m for m 5 n.

Then we have

(I T)*71n.m m(Y' )G (yT))

=1n my.(XmT)

Now X,7- = ain Ab with a = N(T)(t, m)/(k, m). Therefore we get by
Theorem 1.4.8.

a(a-1) t
XmT)=aIxm'+

2 -2NZ'rl3q

with N = N( m/(t, m). This shows (1T)*71,k m = a7ln, m + Bs m where

/3=(mt/2(t,m))(a(a-1)/2) modulo2.

Hence we get

1N(r)(N(T)-1)/2 fort=m=2,k2! 4
0 otherwise

Next we consider the pinch map q: IPn - S3 which induces

q*: 'zr4YPn -* 17-4S'= (71/2)13

q* [jZPk,EP"I -, [ 2Pk,S3] =71/(k,2)rl3q

(11.5.25) Lemma

q*en=0

q* (n/2)773

q*ek=0

q 6,k =

qYk = 0.
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Proof We have q. ?;2 = r73 by Theorem 11.5.13 and hence q. & =
q* X where Moreover q*yk=0 by (11.5.16)
(6).

The reduced diagonal A: P, --> P, A Pn satisfies

(11.5.26) A = (n(n - 1)/2)iq: Pn - S2 --> Pn A P,

Therefore we can apply Lemma 11.5.25 for the computation of (IA)* on
7r4XP,, and (E2Pk, IP,,]. Moreover we have to compute the induced maps

Y.(1AA)*:7r4(IPrtnP,,)- ir4(Y-P, APAP,n)7L/n®7L/m

I(i AA),: [y 2Pk,I Pn nP] [y2pk,I Pn nPm nPml

= 7L/k ®7L/n ®7L/m

and similarly (A A 1)* where A is the reduced diagonal on Pm and Prt
respectively. Let 1,, E 7L/n be the canonical generator.

(11.5.27) Lemma Let k, m, n be powers of 2. Then E(1 A A) * and VA A 1) *

cany the elements em,n, ekCm,n, sm,n (m not equal to n) to 0. Moreover

X,(1 A A), Sn.rt = Y.(A A 1) * Sn,n = (n/2)1® ® 1,,

X(1 A A)* e, ,k =I(AA 1),e Snkn = (n/2)lk ® 1® ® In

nk
VA A I) *7)n,m = 5,,,,n 2(kn) lk ®ln ®lm

mk
(1 A ' ) * 1 7 , ,k, = (1 - Sn m) 2(k m)

lk ® In ® lm

where 8n, m = 1 form > n and Sn, m = 0 form 5 n.

Proof We have the commutative diagram

7r4(Y.PnAPm) ha H4y.1PnAPm =7L/n*7L/m

(FqA 1).1
1

n

7r4(ES2 APm) = H4(FS2APm)= 7L/m

where h is the Hurewicz map and q is the pinch map. Hence we obtain
VA A 1) * fin, m by (11.5.26) since h(fn, m) is the canonical generator. This
shows that the composite

l/n * 7L/m c 7L/m om 7L/m -. 7L/n 0 7L/m
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carries the canonical generator to X,(0 A 1)* Sn.m. This yields the result on
n m and s Next we consider q m for m < n so that by (11.5.26)

X(0n1)*fl,'m=0

1(1 A m = (m/2)M( X,f)lk 0 In ®lm

since 71rt m = i,,.mY.Xnk; see Lemma 11.5.21. For in > n we use (11.5.16)(4).

(11.5.28) Remark Let A and B be direct sums of cyclic groups and for
cp E Hom(A, B) let sip: M(A, 2) --> M(B, 2) be a map which induces rp. Then
the formulas in this section and in Section A.10 allow explicit computations of
the induced maps

(s(p) : ir4 M(A, 2) - ir4 M(B, 2)

(sip)*: [E2pk,M(A,2)] [Y2Pk,M(A,2)]

on generators in Remark 11.5.3 and Theorem 11.5.9. For this we need, in
particular, the left distributivity law of Theorem A.10.2(b).

11.6 The suspension of elementary homotopy groups
in dimension 4

Let X and Y be pointed spaces. We say that the set of homotopy classes
[ X, Y ] is stable if the suspension yields bijections for n >_ 1

4: [In-1X, Cn-1Y] = [G"X, 4nY].

For example we get

(11.6.1) Proposition The groups 7r4I Pn, ir4F,Pn n Pm, [EZPk, Y-Pn A Pm ], and
[ VPk, VPn ] are stable for k, n, m >_ 0.

We want to describe the suspension on elementary homotopy groups in
dimension 4. By Proposition 11.6.1 we only have to consider

(11.6.2) 1: [I2Pk,y PnI -
[13Pk,F2Pn].

For this we define generators in [E3Pk,12Pj as follows.

(11.63) Definition Let k, n be powers of 2 and r >_ 2. Then e, = e is the
composite

e,k : sr+ 2 ' . Sr -a jr-1Pn



11 HOMOTOPY GROUPS IN DIMENSION 4 383

where q is the pinch map and i is the inclusion. We also set e = i77, and
ek = 77r2q. Now we choose generators

= 77/4,2 E [ S°,
1P, ]

see Theorem 11.5.13 and

7772E
[13P2,S3J =71/4

which are stably Spanier-Whitehead dual to each other. Then we obtain the
composites

yr 2ck: irpk g .Sr+2 #2.Jr-Ip2 xR Ir ipn r>2,
jr-

71n . y 'Pk
2 rp2 Sr r-'P,,, r > 3,

- Here X = B,(X) is givenand we set ,, = X'(I' 2) and rlk = (y' '712
by the canonical generator )r = X,, E Hom(//k,71/n); see Corollary 1.4.6. We
also write e,k = e, (r), 6,k = 4k (r), and 7),k = 77n (r) if we want to specify the
dimension r. Hence ek(r) and 6,k(r) are just suspensions of the correspond-
ing elements in Theorem 11.5.9 and (11.5.16). The element 77,k(r), r 3,
however, is a new type of element which is Spanier-Whitehead dual to fa . If
k or n is odd we have [I3Pk, 0 for k, n >_ 0. If n = 0 we get the
Spanier-Whitehead dual of [S°, VPk] in Theorem 11.5.9 given by

(11.6.4)
[13PkS3J (77/4)77 with 277 = e k = 2

(77/2)77 ED (71/2)e k = 2` >_ 4

where 77 = 77k and e = ek. Moreover the suspension

I: [y2Pk,S2] =77/(k,2)772q-' [13Pk>S3]

carries the generator 77z4 to ek and hence 77k is not in the image of X.
Moreover we get

(11.6.5) Theorem Let k and n be powers of 2. Then C = f ,,k,
satisfy

l

e=en, n=77 n

(77/2)x® (71/2)77 with e= 0, (k, n) = (2,2)
(Z/4) f ® (77/2)7) with e = 2 6, (k, n) = (> 4,2)
(71/2) f ® (77/4)71 with e = 277, (k, n) _ (2, >_ 4)
(71/2)C® (Z/2) e (71/2)e, (k,n) = (z 4, z 4).
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(11.6.6) Theorem Let k and n be powers of 2. Then the suspension
.: {y2Pk, Pn} - carries e, to e, and R to and satisfies

0 k__<n

1(yk)_ ? + 6 e z (k,n)=(4,2),SE{0,1}
11'k otherwise.

We do not know whether S = 0 or S = 1 for (k, n) = (4, 2). Hence for k > n
the suspension is surjective while for k< n the suspension in Theorem 11.6.6
is not surjective.

Proof of Theorems 11.6.5 and 11.6.6 The definition of q,,k shows that the
diagram

k

j3Pk y2Pn

it 1i

S4
773

S3

homotopy commutes where 173 is the Hopf element. This follows by duality
from q1=2 = i in Theorem 11.5.13. Hence the operator

[ y3Pk , I2P, ] -* Hom(Z/k, 7r4Y.2P,,) = 7L/k * (7L/n (&71/2)

carries q1, to the generator. Hence using stability, Theorem 11.6.5 is a
consequence of Theorem 8.2.10; compare also Theorem 9.2.7. Next we prove
the formula for Yyk in Theorem 11.6.6. For k:!5; n we obtain £yk = 0 by
Lemma 11.5.19. We now consider jy2n Here Yy2rt is a principal map
associated with

s4 0a S3

2n1 I.
S4

113

S3

This implies that Iy2n = with S" E (0,1). Since (X2n)*en" = 0
for k > 2n we hence obtain Iyk = % for k > 2n. Next we get

n 2rt 2,
X2

=
2' =

2n
712 X2 en - e2

n 2n = y2n

X2 yn 2

by 11.5.24. This implies for n > 2

2n = ( n) ( 2n _ 2n\
6n e2 \ X2 yn Tin 1

=ly2n-n2n=0
so that 6n=0forn>2.
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ON THE HOMOTOPY CLASSIFICATION
OF SIMPLY CONNECTED

5-DIMENSIONAL POLYHEDRA

The classical result of J.H.C. Whitehead on simply connected 4-dimensional
homotopy types relies on the computation of the group I'3 X which fortu-
nately has the simple description

r3x=r(7r2x)

in terms of the r-functor. A homomorphism r(A) - B is given by a quadratic
function 77: A --+ B which is the algebraic equivalent of a simply connected
3-type, denoted by K(i1, 2). The homotopy classes of maps

K(i7,2) -->K(r/',2),

however, do not coincide with the obvious algebraic maps r/ -s 77' between
quadratic functions in the category lAb. In fact, the homotopy category
types'' of simply connected 3-types is a complicated linear extension of the
category FAb. We therefore introduce the diagram of functors

types' G- rAb(C)

rAb

where FAb(C) is an algebraic category which via G is a better approximation
of the category types2 than rAb. Our classification of simply connected
5-dimensional homotopy types X relies on the computation of the group

r4(X) = r,K01, 2) = I',(71)

as a functor in X or in 71 = Tjx E FAb(C). The algebra needed to describe the
functor r4 is somewhat bizarre. Given the functor r4 and also the bifunctor
r3 with

r3(H, K(77,2)) = r3(H, 7)

we are able to describe algebraic models of simply connected 5-dimensional
homotopy types X for which H2 X is finitely generated. We also consider
such homotopy types for which H2 X is uniquely 2-divisible or free abelian.
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12.1 The groups G(q, A)

Recall that Pq = S' u9 e2 is the pseudo-projective plane of degree q which
yields the Moore space M(7L/q, n) _ I"-'Pa, n >_ 2. Let X be a space. In this
section and in Section 12.2 we consider the homotopy group

(12.1.1) it"(7L/q,X)=[En lp" X]

with coefficients in the cyclic group 7L/q. Let f Cyc be the full subcategory of
Ab consisting of finite cyclic groups. Then (12.1.1) yields the functor

ir"(-,X):fCyc°P_*Gr (1)

which carries 7L/q to the group (12.1.1) and which carries a homomorphism
gyp: Z/q -* 71/t to the induced homomorphism

cp* = (B"cp)*: 7r"(71/t,X) --> ir"(l/q,X) (2)

given by the functor B" in Corollary 1.4.6. The group ir2(7L/q, X) in general
is not abelian; the universal coefficient sequence, however, yields the central
extension of groups (n > 2)

(12.1.2) Ext(Z/q, ir, ,X) >* 7t"(71/q, X) -µ' Hom(7L/q,1r"X)

which is natural in 7L/q. We use the following notation. For a small category
C a C-group is the same as the functor C°P -- Gr. Let C-groups be the
category of such functors; morphism are natural transformations. Hence
(12.1.2) is a central extension of fCyc-groups.

Let S" V"-'Pq q-I S"+' be the inclusion and pinch map respectively.
Then A in (12.1.2) carries 1 ®x E 71/q ®7r"+, X = Ext(7L/q, a" + 1 X) to A(1
x) = q*+,(x). Moreover p. in (12.1.2) carries an element y e 7r"(71/q, X) to
(i")*y E 7L/q * it"X = Hom(7L/q, 1r"X). Commutators in the group
ir2(7L/q, Z) satisfy the following rule

(12.13) Proposition For x, y E ir2(71/q, X) we have the formula

-x -y + x + y = (q(q - 1)/2)qs*[i*,izy]

where [ - , - ]: 7r, X ®a2 X - ir3 X denotes the Whitehead product.

This result is originally due to Barratt [TG].

Proof of Proposition 12.1.3 For pointed CW-complexes A, B let A A B =
A X B/A V B be the smash product and let A: A -+A AA be the reduced
diagonal. The commutator satisfies the formula

-x-y+x+y=(Y.A)*[x,y]
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where [x, y] E [1Pq A Pq, X] is the (generalized) Whitehead product; com-
pare Baues [CC]. By (III.D.20) in Baues [CH] we know that the reduced
diagonal 0 of P. is part of the homotopy commutative diagram

P9I -° > Pq A Pq

q2 l li, A i,

S2 --.S'AS'=S2

Here q2 is the pinch map and i i is the inclusion and v is a map of degree
q(q - 1)/2. This yields the result.

We now introduce a purely algebraic construction of a group denoted by
G(q, A). For this we use the properties of Whitehead's functor F in Section
1.2. The topological meaning of the group G(q, A) is described in Theorem
12.1.6 below.

(12.1.4) Definition Let A be an abelian group. We have the natural homo-
morphism between 1/2-vector spaces

H: F(A) ® 71/2 = F(A ®7L/2) ® 71/2 - ®2(A ® 7L/2) (1)

with H(y(a) ® 1) = (a ® 1) ® (a ® 1). This homomorphism is injective and
hence admits a retraction homomorphism

r: ®2(A ® 71/2) -> F(A) ® 71/2 (2)

with rH = id. For example, given a basis E of the 71/2-vector space A ® 7/2
and a well ordering < on E we can define a retraction r on basis elements
by the formula (b, b' E E)

y(b)®1 forb=b'
r(b (&b') _ [b, b'] ®1 forb > b'

0 forb < b'.

Now let q >_ 1 and let

(3)

JA: Hom(71/q, A) =A *7L/q cA -P. A ® Z/2 (4)

be given by the projection p with p(x) =x ® 1. Also let

PA: F(A) ® 7/2 -P F(A) ® Z/2 ® 7/q = Ext(Z/2 ® 71/q, F(A))

P + Ext(7L/q, F(A)) (5)
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be defined by the indicated projections p. Then we obtain the homomor-
phism

J A,: Hom(7L/q, A) ® Hom(Z/q, A) -- Ext(7L/q, TA)

Ar =pAr(JA OiA)
(6)

which depends on the choice of the retraction r in (2). Clearly Ar is not
natural in A since r cannot be chosen to be natural. However one can easily
check that Ar is natural for homomorphisms q :7L/q -> 7L/t between cyclic
groups, that is

®(p*) = P*L1r. (7)

We now define a group

Gr(q, A) = Hom(7L/q, A) X Ext(Z/q, f(A)) (8)

where the group law on the right-hand side is given by the cocycle tr, that is

(a, b) + (a', b') = (a + a', b + b' + Ar(a ®a')). (9)

This yields a functor

G,(-, A):fCyc°P_3Gr (10)

which carries Z/q to Gr(q, A). For w:7L/q -> 7L/t we define 4P*: Gr(t, A) -
Gr(q, A) by v* = A) x Ext((p, I'(A)). It is clear that v* is a group
homomorphism. In addition we get a central extension

Ext(7L/q, I'(A)) -°--+ G,(q, A) -' Hom(7L/q, A)

with ti(b) = (0, b) and µ(a, b) = a. This extension is natural in 7L/q so that
Gr( - , A) is a central extension in the functor category f Cyc-groups in the
same way as in (12.1.2). The next result shows that the extension Gr(-, A)
does not depend on the choice of the retraction r.

(12.1.5) Lemma For two retractions r, r2 in Definition 12.1.4(2) there is an
isomorphism of groups

X:Gr(q,A)=G,,(q,A)

which is natural in 7L/q and which is compatible with 0 and p., that is XO =
and µX =,u. We therefore omit r and write G(q, A) = Gr(q, A).

The lemma is also a consequence of Theorem 12.1.6 below. Since the proof
of this theorem is rather sophisticated we first give an independent algebraic
proof of the lemma.
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Proof of Lemma 12.1.5 Let v: ®2(A ® 7L/2) -- A2(A 0 71/2) be the quotient
map for the exterior square. Then the retractions r,, r2 yield a unique
homomorphism

m:A2(A®7L/2)-*1'(A)®71/2 with mv=r2-r1. (1)

Let the homomorphism

6: f(A (& 71/2) --> A2(A 0 Z/2) (2)

be defined on a 7L/2-basis E of A 0 7/2, namely Bye = 0 and 6[e, e'] = e A e'
for e, e' E E. One readily checks that B is well defined and that

B[a,b]=anb forall a,bEA®71/2.

We obtain by B the quadratic function

BA =PAmSyjA: Hom(71/q, A) - Ext(7/q, F(A)) (3)

where we use pA and jA in Definition 12.1.4. We again observe similarly as in
Definition 12.1.4(7) that BA is actually natural in 71/q. We use BA for the
definition of the isomorphism X in Lemma 12.1.5. We define the bijection

X: Hom(71/q, A) X Ext(71/q, I'A) -* Hom(71/q, A) X Ext(7L/q, rA) (4)

by X(a, b) = (a, b + SA(a)). Thus also X is natural in 71/q and X is an
isomorphism of groups (see Definition 12.1.4(9)) since we have

Ar(a, a') + BA(a +a') -pAri(jAa (&jAa') +PAm By(jAa +jAa')

=pA(r1 JAa (&IAa' + m6[jAa,jAa']) + BA(a) + BA(a')

= pA(r, + mv)QA a (& jAa') + B,(a) + BA (a')

= (PA r2jA (& jA)(a (9 a') + B,(a) + BA W)

= Ar,(a, a') + 3A(a) + BA (a').

This completes the proof of Lemma 12.1.5.

The next result shows that the algebraically defined group G(q, A) in
Lemma 12.1.5 is isomorphic to a homotopy group of a Moore space.

(12.1.6) Theorem There is an isomorphism of groups

X : G(q, A) = ire (7L/q, M(A, 2))

which is natural in 7L/q and which is compatible with 0 and µ, that is XD = A
and AX = t..,.
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Thus we can choose for each abelian group A a retraction r and an
isomorphism X as in the theorem. We will use this isomorphism as an
identification. The group G(q, A) in the theorem yields a purely algebraic
description of the homotopy group ir2(7L/q,M(A,2)). The suspension
j;" - 2, n > 3, induces a push-out diagram of groups

Ext(Z/q, F(A)) '7r2(Z/q, M(A,2)) -µ Hom(Z/q, A)

I-.
ly,

2 II

Ext(7L/q, A (9 Z/2) - ir"(Z/q, M(A, n)) -µ* Hom(Z/q, A)

(*)

Hence we can apply the theorem also for the computation of the group
1T,(7L/q, M(A, n)), n > 3. In particular, a cocycle for the group
ir"(7L/q, M(A, n)) is cr * 0,. The proof of Theorem 12.1.6 has several parts.
We first consider commutators.

(12.1.7) Lemma The commutator for x, y e G,(q, A) satisfies the same for-
mula as the commutator for x, y e ir2(77/q, M(A, 2)), namely

-x - y +x + y = (q(q - 1)/2)0([ Ax, Ay] ® 1).

Proof For x = (a, b) and y = (a', b') we get the commutator formula in
G,(q, A) as follows:

-x - y +x + y = O(O,(a, a') - O,(a', a)) _ APAr(JA (& IA)(a ®a' +a' (9 a)

= APArH[JAa,JAa']

= OPA[IAa,.IAa']

= (q(q - 1)/2)A([a, a'] (9 1).

Next we consider a splitting function s = sq for µ:

(12.1.8) (Z/q, M(A, 2)) 4 Hom(7L/q, A),

that is µs = id. Such a splitting function yields the cocycle

A,: Hom(Z/q, A) X Hom(Z/q, A) ---' Ext(7L/q, FA)

with A,(x,y)=0-`(s(x+y)-s(x)-s(y)). We say that s=sq is natural in
Z/q if for cp e Hom(Z/q,7L/t) we have sq cp* = B2(0*s1. Clearly for natural
splitting functions also the cocycle A, is natural in Z/q.

(12.1.9) Proposition Let A be a direct sum of cyclic groups. Then there exist
splitting functions sQ, q > 1, which are natural in 7L/q.
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Proof Let A = ®, (71/a,)ai with i E I, a; >- 0, and let < be an ordering of
I. Then x (=- Hom(Z/q, A) is given by coordinates x; E Hom(l/q,71/a,) with
xi non-trivial for only finitely many indices i. Hence we can define

sq(x) _ E a.B2(x,)
lEt

where the sum is the ordered sum in the group [lP9,M(A,2)] and where
ai: M(71/a 2) -- M(A, 2) is the inclusion; see (1.5.2). We clearly have for
rp:7L/t -> Z/q

B2((P)*sq(x) _ aiB2(x,)B2(c')

_ =syW*(x)
iEI

where (xi cp) = (x (c), is the coordinate of xc'. In the first equation we use the
fact that B2 is a suspended map and in the second equation we use the
functorial property of B,.

Proof of Theorem 121.6 We first assume that A is a direct sum of cyclic
groups (Z/a,)a i E I, as in the proof of Proposition (12.1.9). For the splitting
function s = s9 (which is natural in Z/q) in this proof we get the cocycle A,
by

z5(x,y) =Sq(x+y) -SQ(x) -sq(y)

aiB2(xi+y) -R

with

R = Y, a,B2(xi) + E aiB2(yi)
i i

_ a,B2(xi) + a,B2(y,)) +q0 E [n,a,,mia1] ® 1.

Here qo = q(q - 1)/2 and x = Y. , ni a y = X1 m1 aj, that is x,(1) = n,(1) and
yi(1) = m, 1 with ni, mj E Z. Compare the commutator rule in Proposition
12.1.3. Since by Theorem 1.4.8

ai(B2(x,)+B2(y,)) = a,B2(xi+y,)+gon,miy(a,) ® 1

we thus get

O.,(x, y) = qol Y_ nim1[ ai, aj ] + nim;y(a1)) ® 1
i>j

=PAr(JAX 0 JAY)
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where r is the retraction (for the basis of A ® Z/2 given by the elements
a, (9 1). We can thus define the isomorphism

X: G,(q, A) = ?r2(7L/q, M(A,2))

by (x, b) - sq(x) + 0(b). Next we consider the case when A is any abelian
group. Then A (& 7L/q is a bounded abelian group and hence a direct sum
A ®71/q = 0, ( /a,)a; of cyclic groups; compare for example Fuchs [I]. We
now choose for the projection p: A -3, A ® 7L/q, q(a) = a ® 1, a map
p: M(A, 2) - M(A (9 Z/q, 2). This map yields the following pull-back dia-
gram of abelian groups

Ext(7L/q, F(A)) N ir2(7L/q, M(A,2)) -- Hom(7L/q, A)

lr(P)' I6. 1P.

Ext(7L/q,F(A (9 7L/q)) N ir2(7L/q, M(A (9 71/q, 2)) - Hom(7L/q, A (9 /L/q)

Here F(p) * is an isomorphism. Hence a splitting function sq for A ® 7L/q
yields also a splitting function sq for A. This splitting, however, depends on
the choice of the basis in A ® /L/q above and hence we cannot use Proposi-
tion 12.1.9 for the naturality of sq. For the naturality of an isomorphism

X = X(qr G,(q, A) = ir2(7L/q, M(A,2))

it is enough to consider powers q = 2' of 2. Using the basis of A ® 7L/q
above we obtain a retraction rq and a splitting function sq together with an
isomorphism

Xq: G,y(q',A) = ir,(7L/q',M(A,2)), q' 5q,

which is natural in 7L/q' for q' < q, q' = 2". We set r = r2 and we define X(q)
inductively as follows. For q = 2 we set X(2) = X2 Now assume X(q') is defined
for q' = 2'> 2. Then we obtain X(q) for q = 2'+' by the composition

X(q) = Xq X: G,(q, A) = Go(q, A) = ?r2(7L/q, M(A,2)).

Here is the isomorphism given by rq - r as in the proof of Lemma 12.1.5.
Hence X is natural in l/q and X(q) is natural in 7L/q' for q' 5 q. This
completes the proof of Theorem 12.1.6.

12.2 Homotopy groups with cyclic coefficients

We compute the homotopy groups X) as functors in 7L/q. For this
we need the following modification of the group G(q, A) in Section 12.1.
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(12.2.1) Definition Let rl: A ---> B be a quadratic function which induces the
homomorphism 17': T(A) -p B. Then the group G(q,'r) is defined by the
product set

G(q,,7) = Hom(7L/q, A) x Ext(7L/q, B).

The group law

(a, b) + (a', b') = (a + a', b + b' + 17 °A,(a®a'))

is given by the cocycle A, in Definition 12.1.4. Since A, is natural in Z/q we
obtain in this way the functor

G(-,,i):fCyc°P-->Gr

which carries 71/q to G(q, 77). Moreover we have a central extension

Ext(7L/q, B) N G(7L/q, rl) -µ-4 Hom(Z/q, A)

of fCyc-groups as in (12.1.2). Clearly the universal quadratic function
yA: A - I'(A) yields the group G(q, A) = G(q, yA) in Definition 12.1.4.

(12.2.2) Theorem For a space X in Top* let 71= rte : rrn X -' vr + , X be the
quadratic map induced by the Hopf map rt,,, n > 2. Then one has an isomor-
phism of groups

X) a G(q, 17)

which is natural in Z/q EfCyc. Moreover this is an isomorphism of central
extensions compatible with A and A.

For the proof of Theorem 12.2.2 we need the following notation on central
push-outs.

(12.2.3) Definition The centre C of a group G is the subgroup of all
elements g e G which commute with all other elements in G, that is

for all x e G. A homomorphism a: A -* G is central if A is
abelian and if aA lies in the centre of G. A commutative diagram

Pl c-push 1R

B -- E
of groups is a central push out if a and a are central and if for any pair of
homomorphisms

f:G-9L, g:B-+L, fa=gf3,
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with g central, there is a unique homomorphism gyp: E --> G with cp# = f and
cpa =g. We obtain E = (G X B)/ - from the product group G X B by the
equivalence relation (x a(a), y) - (x, vi(a) y) with x e G, y e B, a E A.

For example the diagram

Ext(7L/q,1'(A)) N G(q, A) - Hom(Z/q, A)
(12.2.4)

1`17 " ) .

Ext(7L/q, B) N G(q, -q) - µ-> Hom(Z/q, A)

is a central push-out diagram.

Proof of Theorem 12.2.2 Let f: Y -* X be the (n - 1)-connected cover of X
and for A = 7T,,X let g: M(A, n) -> Y be a map which induces an
isomorphism Then we have the isomorphism

f*: X)

and the push-out diagram (B =

Ext(7L/q, F, (A)) >-> ;r (7L/q, M(A, n)) -p Hom(l/q, A)

11.
Ext(7L/q, B)

1g II

ir,,(Z/q,Y) Hom(7L/q, A)

This yields, via (12.2.4) and Theorem 12.1.6, the isomorphism in the proposi-
tion; see Theorem 12.1.6(*) for n >_ 3. Compare also the proof of Theorem
1.6.11 which, however, is only available for n >_ 3.

Theorem 12.2.2 motivates the definition of the following algebraic cate-
gory.

(12.2.5) Definition Let C be a full subcategory of JCyc. We define the
C-enriched category FAb(C) of quadratic functions as follows. Objects are
quadratic functions which are also the objects in FAb; see (7.1.1) For
quadratic functions rl: A - B, ii': A' -> B' a morphism

('Po,(FI,F): rt-->71'

in FAb(C) is given by a morphism Gpo, rp, ): n - rl' in TAb and by homomor-
phisms

1 II

F: G(7L/q, 17) --> G(7L/q, 77'), 7/q E C,
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for which the following diagram commutes and is natural in 71/q E C.

Ext 7L/q, B) N G(q, 71) - Hom(Z/q, A)

I F I(vo).

Ext(71/q, B') - G(q, r1') - Hom(7L/q, A')

Let SFAb(C) = FAb (C), n >- 3, be the full subcategory of stable quadratic
functions in FAb(C) = rAb2(C). We obtain for n > 2 the functor

(12.2.6) G = G,,: Top* ,

The functor G carries a space X to the quadratic function

W = Tr,,(X) -' 7TR+1(X).

Moreover G carries a map f: X - Y to the proper morphism
(7r .f, if, F): ijx - -qr given by

with 7L/q E C. Here the isomorphisms are obtained by Theorem 12.2.2.
Theorem 12.2.2 shows that G is a well-defined functor. The enriched
category is part of a linear extension of categories

(12.2.7) N N I'Ab (C) -L I'Ab,,.

Here ¢ is the forgetful functor which is the identity on objects and which
carries the morphism ((po, Cpl, F) to gyp,). The natural system N is the
bimodule on TAb given by

N(q, j') = Natc(Hom(-, A), Ext(-, B'))

where Hom(-, A), Ext(-, B'): C°P -* Gr are abelian C-groups and where
Nat denotes the abelian group of natural transformations. For an element
x E N(77, 77') with

x: Hom(Z/q, A) -* Ext(71/q, B'), 71/q E C,

we obtain the action + of N by

((po, gPl,F) +x= (P, F+0xµ).

Since G(q, r7) is part of a central extension we see that this is a well-defined
action. We need the following natural transformation g between natural
systems on TAb,,.

(12.2.8)

g: E(q, -q')=Ext(A,B')- N(r7,77')=Natc(Hom(-,A),Ext(-,B')).
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The map g carries x e Ext(A, B') to g(x) = y e N(-q, -q') where

y: Hom(Z/q, A) -> Ext(7L/q, B'), 7L/q E C,

SI with y(ip) = cp*(x) for p* = Ext((p, B').

Compare (1.6.2). The next result on g is crucial for applications below.

(12.2.9) Lemma LetA be a direct sum of cyclic groups in C. Then gin (12.2.8)
above is an isomorphism.

This is a slight generalization of Lemma 1.6.3. We are now ready to
compare the linear extension for types' in (7.1.8) with the linear extension
(12.2.7).

(12.2.10) Theorem Let n >_ 2 and let C be a full subcategory of fCyc. Then
one has a map between linear extensions

E
+

types;, k"' rAb

19+ 1G
0

II

N » rAb

Here g is the transformation in (12.2.8).

The functor G in the theorem is given by the functor G in (12.2.6).

Proof of Theorem 12.2.10 We have to show that the functor G is equivariant
with respect to g, that is

G(f+a)=G(f)+g(a)

for 0 E Ext(A, B') and f e [K67, n), K(77', n)]. For this we use the equiva-
lence of categories

types;, = I'M"

in Theorem 7.2.7. In fact, assume

f = E [ M(A, 2), M(A', 2)l = [ K(y, 2), K(y', 2)],

where y, y' are the universal quadratic maps. Then we have for a e
Ext(A, [A')

G(irp+a)=G(ip)+g(a)
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This follows since for i E G(q, A) _ [IP9, M(A,2)] we have the linear dis-
tributivity law in M2

(;p+a)1=;Px+x*(a) _;pz+Ag(a)p(z)
where x = px = HZ x. Compare the proof of Theorem 1.6. 7.

We immediately derive from Lemma 12.2.9 and Theorem 12.2.10 the follow-
ing results:

(12.2.11) Theorem The functor

G: types' -4 FAb (C)

is full and faithful on the subcategory of all K(rl, n), n: A - B, for which A is a
direct sum of a free abelian group and of cyclic groups in C.

(12.2.12) Corollary Let Tl: A ---, B be a quadratic map where A is a direct sum
of cyclic groups. Then the group of homotopy equivalences ((K(r),2)) is
isomorphic to the group of automorphisms of 'q in the category FAb(JCyc). If
77 = yA: A --> FA we have C(K(yA,2)) = LE(M(A,2)).

12.2A Appendix: Theories of cogroups and generalized
homotopy groups

The functor

(12.2A.1) G,,: Top* -

in (12.2.6) is a special case of a general concept of homotopy groups; see
Theorem 12.2A.11 below. To see this we introduce the following general
notation on theories. Recall that a contravariant functor F is the same as a
functor F: COP --> K where COP is the opposite category of C.

(12.2A.2) Definition A theory, T, is a small category with a zero object * and
with finite sums denoted by X V Y. Using * we have zero morphisms
0: X -p * -> Y for all objects X, Y in T. We say that T is a single-sorted theory
generated by X E=- ObT if all objects of T are finite sums of X. That is, any
object Y of T is of the form

Y= V Xe with Xe = X for e E E
e e E

where E is a finite set. This is the zero object if E is empty. Single-sorted
theories were introduced and studied by Lawvere [FS]. We need theories
which are not single sorted; they are also considered in Barr and Wells [TT].
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(12.2A.3) Definition Let T be a theory. A cogroup in T is an object X
endowed with morphisms A: X - X V X, v: X --, X for which the following
diagrams commute where 1 = lX. The morphism µ is the comultiplication
and v is the coinverse.

XIAN"'
X

X X
AL1 11 V µ

XvX-'XvXVX
µV1

X4 XVX -X
(1, V) (v.1)

(1)

(2)

(3)

The cogroup (X, µ, v) is commutative or abelian if the interchange map
T: with Tit = i2 and Tie = i1, satisfies Tp. = µ in T. We say
that T is a theory of cogroups if each object in T is a cogroup and if the
cogroup structure of a sum X V Y is given by the composition

XvY µv-- XvXvYvY=(XvY)v(XvY).

(12.2A.4) Definition Let T be a theory and let Set* be the category of
pointed sets. A model G for the theory T is a functor

G:T°P-*Set* (1)

which carries the zero object * in T to the zero object (0) in Set* and
which carries sums in T to products in Set*; that is,

G(X v Y) = G(X) x G(Y) (2)

is the product of sets where the inclusions i,: X -* X V Y, i2: Y -* X V Y
induce the projections p, = G(i,), P2 = G(i2) of the product set p,(x, y) =x,
p2(x, y) = y for x E G(X), y E G(Y). Let modeKT) be the category of such
models for T. Morphisms between models are the natural transformations of
the corresponding functors. One readily checks the

x

X
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(12.2A.5) Lemma Let T be a theory of cogroups and let G be a model for T.
Then G carries objects of T to groups. That is, for any object X in T the set
G(X) has the structure of a group which we write additwely. For x, y E G(X)
addition is given by x + y = p.*(x, y) where we use (2) above. The negative of x is
-x = v*(x) and the neutral element is the base point * of G(X).

For example for each object Y in a theory T one gets the model

Dy=T(-,Y):T°P-Set* with
it o (X)=T(X,Y), XEOb(T).

The base point of the morphism set T(X,Y) is the zero map 0. The universal
properties of sums show that 0 y satisfies Definition 12.2A.4(2). We call 0 y
the model presented by Y. For any model G E modeKT) we have the Yoneda
lemma

model(T)(Dy , G) = G(Y), (* )

that is, the natural transformations F: Dy --> G are in 1-1 correspondence
with the elements f c= G(Y). The correspondence carries F to f = F(ly) with
1y E Dy = T(Y, Y). Moreover the Yoneda lemma shows that one has a
faithful Yoneda functor

D : T -> model(T), (* * )

which carries an object Y to 0 y = T(-, Y) and which carries a morphism
g: Y -> Y' in T to the induced natural transformation g * : T(-, Y) -+ T(-, T')
given by g * f = g o f for g E T(X, Y). Now let T be a theory of cogroups. Then
T(X, Y) is a group. For a morphism the induced map

g*:T(X,Y)-->T(X,Y'), g*h=gh, (1)

is a homomorphism between groups. For f: X' - X the induced map

f*:T(X,Y)--,T(X',Y), f*h=hf, (2)

need not be a homomorphism. Here f * is a homomorphism between groups
for all Y if and only if the diagram

X'
f X

(3)

X'vX'

commutes. In this case we say that f is a morphism of cogroups in T or f is
linear. In a similar way we see that for any model G the induced map
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f G(X) --> G(X'), in general, is not a homomorphism between groups; but
f * is a homomorphism if f is linear. Moreover we observe that for a
morphism z: G - G' between models the induced map rx: G(X) -> G'(X) is
always a homomorphism between groups.

We now are ready to define `generalized homotopy groups'.

(12.2A.6) Definition Let £ be a class of spaces in Top* and let 1.EI be the
full subcategory of the homotopy category Top*/= consisting of all finite
one-points unions X, V ... V X, with X; E . for i = 1, ... , r. Moreover let
F,". be the class of n-fold suspensionsy3E" = {I"X; X E}. Then [E"] is
the homotopy category of all one-point unions

"(X,V...VX,)="X,V...VI"X,. (1)

The one-point union is the sum in the category [I" 1] for n 2t 0. Hence the
category [I" .£] is a theory, in fact, a theory of cogroups for n >- 1 since the
suspensions "X are cogroups by the classical comultiplication V X -
y," X V In X. Recall that [ X, Y ] is the set of homotopy classes of base-point
preserving maps X - Y. The generalized homotopy groups or 3-homotopy
groups are the functors (n > 0)

ir,, : Top*/= - model[ In X (2)

which carry a space X to the model Mx = 1r,,r(X) with

MX=[-,X]:[I".T]-Set* with
StMX(yn(X, V ... VX,))=[1"(X, V ... VX,),X]. (3)

Clearly MX carries a sum to a product. A map f: X - Y in Top*/= induces
in the obvious way a natural transformation f*: MX - My.

(12.2A.7) Example Consider the class . = (S°) which consists only of the
0-sphere S°. Then we have canonical isomorphisms of categories

model[{S°}] = Set*,

model[I(S°)] = Gr,

model[F,"(S°)] = Ab, n> 2,
where Gr and Ab are the categories of groups and abelian groups respec-
tively. Moreover the functor Rs°) can be identified with the classical homo-
topy groups

7'r0(s°) = a°: Top*/= - Set*,

,,Is') = ir, : Top*/= -* Gr,

s°7T,.'}= rr":Top*/-- Ab, n>_2.
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In this sense X-homotopy groups above generalize the well-known homotopy
groups ,7r,, with ar"(X) _ [E" S°, X1.

(12.2A.8) Example For .)` _ (S', S2, ...) consisting of all spheres S", n >_ 1,
the category model(I X] is the category of ir-modules used by Stover [KS],
Dwyer and Kan [irA]. Using the functor ir,;r Stover describes a generalized
Van Kampen theorem in terms of a spectral sequence; see also Artin and
Mazur [VK] and Dreckmann [DH].

(12.2A.9) Example For I = {SQ, St, ...1 consisting of all rational spheres
Sa, n z 1, the category modeK13() is equivalent to the category of graded
rational Lie algebras concentrated in degree >_ 1. This is the basic example
for rational homotopy theory. In Baues [CC] we also consider modeKY. I)
for I = (S',... SR',...) consisting of all localized spheres SR, n > 1, where
R c Q is a subring with 2, 3 E R.

Let C be a full subcategory of Cyc and let

(12.2A.10) 13 = $ (C) _ {S', S2, Pq; l/q E C)

be the class of spaces consisting of the 1-sphere, the 2-sphere, and the
pseudo-projective planes P9 for which 71/q is an object in C. In this case we
get the following result which shows that the functor G" in (12.2.6) can be
identified with i, ,.

(12.2A.11) Theorem There is a canonical full inclusion of categories (n >_ 2)

rAb"(C) c model[ I" - '

such that the diagram of homotopy functors

Top* '" 1 model[I"-''43]

it
U

Top* G" rAb"(C)

commutes.

Proof We observe by Theorem 12.2.11 that

G = G" : [ E" ' $1 -+ (1)
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is a full and faithful functor. Hence we obtain the functor

j: rAb"(C) --> model [X" '13]

which carries q to the model

M,,: [i"-''13] - set*
M,,(Y) = [G(Y),71] = [Y, K(ii,n)]

(2)

where y= yn-'(X, V VX,), X, E 13, and where [G(Y), q] is the set of
morphisms G(Y) in FAb"(C). Since G in (1) carries sums to sums we
see that Mn is a model and that the functor j in (2) is well defined. Now one
can check that j is full and faithful and that the diagram in Theorem
12.2A.11 commutes. In fact, for q: A --+ B the model M,, satisfies

M,,(I"-' S') =A,

M,,(l"-' S2) =B,

M, (!`1P,)
= G(q, ri). 11

(12.2A.12) Example Unsold [AP] studied the generalized homotopy groups
n >_ 1, for . = {S2, S3, S4, CP2} where CP2 is the complex projective

plane. This leads to the classification of homotopy types of (n - 1)-connected
(n + 4)-dimensional CW-complexes with torsion-free homology, n > 3.

12.3 The functor t4

In Section 11.3 we computed F4(X) as an abelian group in terms of the
quadratic function i = 71X: 1r, X - 1r3X induced by the Hopf map 712. Here
we describe the functorial properties of r4(X). For this it suffices to consider
X = K(r1, 2) where K(71,2) is the 1-connected 3-type given by 71. Let PCyc be
the full subcategory of Ab consisting of cyclic groups 7L/q where q is a power
of a prime. We consider the diagram of functors

(12.3.1)

typesZ -L FAb(PCyc)

r\ Ab /4

Here G = G, is the functor in (12.2.8) which carries K(r1, 2) to 11 and I'4 is
the functor in Whitehead's exact sequence.
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(123.2) Theorem There is a functor T4 in (12.3.1) together with a natural
isomorphism 0: T4G = I.

We shall describe the functor f4 purely algebraically by defining T4(q) in
terms of generators and relations. We have the short exact sequence

(12.3.3) 172267) -TT(A)

for n: A -b B E Ob(TAb). The sequence is natural in K(q, 2) E types; see
Section 11.3. We first describe the torsion functor FT in terms of generators
and relations, then we choose generators in I'4K(7,2) which map via µ to
generators in TT(A). This leads to the definition of T4 below.

(12.3.4) Definition We define the functor

PT: Ab -> Ab

as follows. The group rT is generated by the symbols

z x E Hom(7L/2, A)

[x,Y] ® ij E Hom(7L/n, A)

with 7L/n E PCyc. Induced maps for (p: A -A' E Ab are defined by

)0 e2

w*([x,y](D f )=[0X,9]®

The relations in question for the generators in (*) are given by the following
list (a)-(e):

(a) [i,XJ®=0;
(b) [x,X]®e,,, = -[9,i]®

Let x, : i/k - i/n be the canonical generator in Hom(Z/k, i/n). Then:

(C)
t

[X,(Xn n`)*y] ® Snm..nm = [(Xnm)*X, 9] ® 5n,n;

(d) (x+y)®e2=X®f2 +y0 [S2+[Z,y]®52,2;

(e) [x, y] is linear in z and y.

(1235) Lemma There is a natural isomorphism

FT(A) = FT(A).
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Proof The isomorphism carries z (& 62 to y(z) E I'(A *1/2) and carries
[X, y] ®4n.n to Tn(X, y) EA * A. Here we use the generators of FT(A) in the
proof of Theorem 6.2.7.

We now use the isomorphism G(n,,q) = [I Pn, K(,l, 2)] in Theorem 12.2.2
which is natural in Z/n E PCyc. Moreover we use the diagram

Ext(71/n, B) ° G(n,,]) Hom(71/n, A)
(12.3.6)

B A

where we identify Ext(l/n, B) = i/n (D B and Hom(Z/n, A) = i/n * A CA.
The generators in Definition 12.3.4 correspond to the following composites
which we consider as elements in F4 K(,t, 2),

(12.3.7) 4 [x,y] 3

62S4->y P2-->K('h,2)3

[X, y] ® n n: S -- 2 r APn - OK(f,2) .

Here [x, y] is the Whitehead product for x, y E G(n, rl). The elements
21 Sn.n are the maps described in Section 11.5. One readily checks that µ in
(12.3.3) satisfies

µ([x,y] ® n.n) _ [i,9] ® Sn.n

where i = µ(x) is given by µ in (12.3.6). Now the exact sequence (12.3.3) and
Lemma 12.3.5 show:

(12.3.8) Lemma The abelian group I'4 K(,l, 2) is generated by elements A( p)
with p c- I'2(71) and the elements x ®f2, [x, y] ®Sn. , above.

We want to describe the relations of the generators in Lemma 12.3.8. For
this recall that

(12.3.9) r2(,,)=(B®7L/2®B®A)/-
is obtained by the equivalence relation in Definition 11.3.3. For a E A, b r= B
we thus have the elements

{b ®1}, {b (9 a} E I'2(,1) (1)

represented by b® 1 E B ®1 /2 and b® a E B® A respectively. For x, y E
G(n,,t) we get i = µ(x), y = µ(y) EA by (12.3.6) and the quadratic function
,1 yields

[z, Y],, = ,t(z, y) -,q(i) - 77(y) E B (3)
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as in Definition 11.3.3(5). We now obtain the abelian group r4(q) by describ-
ing generators and relations.

(12.3.10) Definition We define the algebraic functor I'4 in (12.3.1) together
with a natural short exact sequence

)) " ) F ) FT(A)(F2( (*)71 4 rl

for q: A --> B. The group T4(77) is generated by the symbols

x®;t2, xEG(2,z)
[x,y]®Sn,n, x,yEG(n,rl), Z/nePCyc (**)
A( p), p E F q).

Moreover 0 in (*) carries p to A(p) and µ in (*) is given by (AA( p) = 0
and (12.3.7). A morphism

x = (po, (p1, F): n -* n' E I'Ab(PCyc)

as in Definition 12.2.5 induces the homomorphism

F4(X) = X* : r4(77) - F40')

defined on generators by

X* (X (& 2) _ (Fx)

X*([x,y]®fn,n)=[Fx,Fy]®Sn n (***)
x*o(p)=or2((Oo,co,)(p).

The relations in question for f4(,1) are given by the following list (a)-(f):

(a) [x, x] ®n,n = 0;

(b) [x, y]
-t

[y, x] ®

(c) [x,(X, m)*y] ®Snm.nm = [( Xnm) x, y] ® n. n'
For this compare Definition 12.3.4(c) and the functorial properties of
G(n, r)) in i/n in Section 12.2.

(d) (x+y)(& 62=xC2+y®1;2+[x,y]®f2,2+O(Pi)
where p, _ ([x, ],r ®y} E r2(77);

(e) IX
where P2 = 0 if n is odd and P2 = (n/2)([i, y],, (&y} E F2(i) if n is even;
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(f) A in (*) is an injective homomorphism and for b E B the element Ab
given by (12.3.6) satisfies
(Ab) A(b ® 1},
[Ab,x]® ,,,,,=A{b®z}.

This completes the definition of the functor r4 in (12.3.1) and Theorem
12.3.2. The exactness of (*) is a consequence of Lemma 12.3.5 since killing
the elements A( p) in the relations above yields exactly the relations in
Definition 12.3.4.

Proof of Theorem 12.3.2 We define the isomorphism

6: I7467) = f4K(71,2)

on generators in the obvious way by BA( p) = A( p), see (12.3.3), 0(x ® 2) _
X and 6[x, y] ®& _ [x, y] ®see (12.3.7). The formulas in Sec-
tions 11.5 and A. 10 show that 0 is a well-defined homomorphism compatible
with A and µ; this shows that 0 is an isomorphism since Definition 12.3.10(*)
is exact. In fact, 0 is well defined since we use Lemma 11.5.15 for (a) and (b)
and we use Lemma 11.5.24(b) for (c). Moreover (d) is obtained by Theorem
A.10.2(b) since [[x, y1, y]T212 62,2 corresponds to p,; see Lemma 11.5.27. Next
we get (e) by (11.5.10)(6), Lemma 11.5.27 since P2 corresponds to
-[y, [x, z]]X(A A 1)6,,,,, = [[x, z], y]E(A A Finally q* 12 = 73 in

(11.5.25) yields the first equation in (f) and the diagram in the proof of
Lemma 11.5.27 yields the second equation in (f ).

12.4 The bifunctor F3

In Section 11.3 we computed 173(H, X) as an abelian group in terms of the
quadratic function 71 = 71X: '2 X --> ir3 X induced by the Hopf map i 2. Here
we describe the functorial properties of r3(H, X) provided the homology
H2X is finitely generated. We proceed similarly as in Section 12.3. Again it
suffices to consider X = K(q, 2) where K('q, 2) is the 1-connected 3-type given
by 71. Recall that we have the equivalence of categories

G: M3 = G

where M3 is the homotopy category of Moore spaces in degree 3 and where G
is the algebraic category in Theorem 1.6.7. We now consider the diagram of
functors

(M3)°a x ti
2

cxc
GOP x rAb(PCyc)

(12.4.1)
,l

Ab
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where we use the functor G in (12.3.1) which carries K61,2) to rl. The
functor t3 carries (M(H, 3), K(rl, 2)) to the abelian group I'3(H, K(rl, 2)) in
Section 2.2.

(12.4.2) Theorem There is a functor P3 in (12.4.1) together with a natural
transformation 0: r3(G x G) - I', such that

0: F3(H,rl)->F3(H,K(r1,2))

is an isomorphism if the group A, given by rl: A - B, is finitely generated.

We shall describe the bifunctor T3 purely algebraically by defining P3(H, q)
in terms of generators and relations. For this we use the short exact sequence

(12.4.3) Ext(H, I'46l))>-°-a F3(H, K(71,2)) - Hom(H,1'(A))

given by the universal coefficient sequence and by Theorem 12.3.2. The
sequence is natural in K(rl, 2) E types'' and H E G = M3. We first describe
the bifunctor (H, A) - Hom(H, F(A)) in terms of generators and relations,
then we choose generators in r3(H, K(rl, 2)) which map via µ to the genera-
tors in Hom(H, I'(A)). This leads to the definition of F3 below.

(12.4.4) Definition We define the bifunctor

P: Ab°P X Ab -4 Ab

as follows. Let PCyC° be the full subcategory of Ab consisting of 71= 7L/0
and cyclic groups 71/q where q is a power of a prime. For 7L/n, 7L/m in
PCyc° we have the homomorphisms

T:71/n®7L/m=7L/m(9 71/n

I'(71/n) -H 71/n ® 71/n P I'(71/n)

where T is the interchange map and where H and P = [1, 1] are defined as in
Section 1.2. The group F(H, A) is generated by the symbols

X®yn®a

[i,$1 ® ln.m ®b
(*)

where i e Hom(7L/n, A) and a E Hom(H, I'(7L/n)), y E Hom(7L/m, A) and
b E Hom(H,Z/n ® 7L/m) with 7L/n,7L/m E PCyC°. Induced maps are de-
fined by

41*w*(x®yn®a)=((Pi)®y,,®(ut/r)

0*w*([X,y]®*In.m®b)=[ci,wy]®71n.m0 (b) (**)
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The relations in question are:

(a) ®b=.®yn ®(Pb);
(b) [.,y]®11n,m ®b= [9,x]®91m,n ®(Tb);
(c) for the generator x = xk E Hom(7L/k,7L/n) we have

(x*.)® yk®a=X® yn®r(x)*a

[x*z,Y]®71k,m®b=[i,9]®%.m®(x®1)*b;

(d) (.+y)®y,, ®a =.® yn ®a+y ® yn ®a+[i,y]®'nn (Ha);

(e) [1,9]® 71n m ®b is linear in ., y;

(f) i ® yn ® a and [X, y] ® 71n m ® b are linear in a and b respectively.

(12.4.5) Lemma There is a natural transformation

0:P(H,A)-+Hom(H,FA)
which is an isomorphism if A is a finitely generated abelian group.

Proof We define () by

0(.®yn®a)=r(.)a

0([i, 10 71"'M ®b) _ [X,Y]b

where [., y] _ [1,1x. ®y) is defined as in (1.2.4). The proposition now is a
very special case of 4.4. in Baues [QF]. 11

We now use G(n, r1) in (12.3.6) and Theorem 12.2.2 and we set G(0, r1) =A
for n = 0. The generators in Definition 12.4.4 correspond to the following
composites of maps which we consider as elements in 1'3(H, K(71,2)); see
(2.2.3)(2),
(12.4.6)

3) ° +M(r(7L 3) P® M(H ) x K( 2)3ny, ®a: , /n .x , i,
®71b M(H 3) b >M(7 3)

I -'YP -K(P 2)3: /n, /m,[x,y]®iln.m®
-

.A n, ,1,

Here [x, y] is the Whitehead product for x e G(n, q), y E G(m, r1) and 7L/n,
i/m E PCyc°. The maps yn and '11n, m are the generators in the correspond-
ing elementary homotopy groups, see (11.5.16). For this we identify in the
canonical way the groups r(i/n) and 7L/n ® Z/m with the corresponding
cyclic groups so that

M(I'(i/n),3) =12 Pk with k = (n2,2n), (1)

M(7L/n ® 7L/m, 3) = 2 Pk with k = (n, m). (2)
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Using these identifications we set y,, = yk and 71,, m = 9,, m. Clearly for n = 0
the map yo: S3 _ S2 is the Hopf map. One readily checks that µ in (12.4.3)
carries the elements (12.3.7) to the corresponding elements in Hom(H, I'A),
that is

(12.4.7)

µ(x®y,,®a)=O(z®y,,(9 a)

µ([x,y] ® 1n.m ON = o([x,y] ®11n m ®b).

Here we set i = µ(x) as in (12.3.6), and we set µ(a) = a and µ(b) = 6 where
we use µ in the universal coefficient sequence

(12.4.8)

Ext(H,7L/k(9 7L/2))° ;[M(H,3),V Pkj -Hom(H,7L/k)

which is natural in 7L/k E PCyc since we can use B3 in Corollary 1.4.6. Using
G in (12.4.1) we identify [M(H, 3), j,2Pk] = G(H,7L/k).

(12.4.9) Lemma The elements (12.4.6) and the elements 0( p) with p E
Ext(H, f4(,t)) generate the abelian group F3(H, K(i, 2)) provided the group A is
finitely generated with rt: A -> B.

This is a consequence of (12.4.7), Lemma 12.4.5 and (12.4.3). Below we
describe explicitly a complete set of relations for the generators in the
lemma. We need the following notation. Given a homomorphism f: H -+ 7L/k
in Ab and an element u E U = I'4(q) let

(12.4.10) f *u =f *(1 0 u) E Ext(H, ['4(77)).

Here 10 u E 7L/k ® U = Ext(7L/k, U) is represented by u.

(12.4.11) Definition We define the algebraic bifunctor I'3 in (12.4.1) to-
gether with a natural short exact sequence

Ext(H,I'4(rl))> *['3(H,i) -I'(H,A) (*)

for ,t: A ---> B. The group NH, n) is generated by the symbols (7L/n,7L/m E
PCyc)

x®yn®a, xEG(n,q), aEG(H,1'(7L/n))
[x,y]®,7n,m®b, xEG(n,rl), yEG(m,q), bEG(H,7L/n®7L/m)
0(p), p E Ext(H, F4(1])).

(**)
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Moreover A in (*) carries p to A(p) and µ in ( * ) is given by uA( p) = 0 and
(12.4.7). A morphism ip = ((p, ip): H' - H in G and a morphism X =
(90, (p,, F): 71 -> r ' in FAb(PCyc) induce the homomorphism

*X* r3(H,r)-I'3(H',71')

defined on generators by

ip*x(( p)) = A((p*r4(X) * (p))
rv*X*(x(9 yn®a)=(x*x)®yn®(;p*a) (***)
w*X*([x,yl ®1n.m(9 b)=[X*x,x*y]®77n,m® (;p*b).

Here we set X * x = Fx for n > 0 and X * x = (pox for n = 0 and x e G(n, q).
The relations in question for P3(H, r1) are given by the following list (a)-(g):

(a) [x, x] ®rt,,,,, ®b =x ®yn ®(P* b) + A(b*p,) where p, E ra(il) is given by

P, = 71(z) ® 1).

Here we set S = 1 for n = 4 and 6, = 0 otherwise.

(b) [x, yl ®qn,m ®b = [y, x] ®rlm,n ®(T* b) + A(b*P2) where p2 E r4(71) is
given by

P2 = -[y,x]®6n n+SnA{[x,9], ®1)

for n = m > 0 and p2 = 0 otherwise. Here we use k as in (a). We point
out that with the identification in (12.4.6)(2) the map T* is actually the
identity.

(c) For the generator X = Xk E Hom(7L/k,7L/n), n not equal to k, we have

(X*x) ® Yk ®a =x® y, ®(r(X)*a),

[x*x,y]® lk,m®b=[x,y]® 1n,m®((x®1)*b)+A(b*P3).

Let 8,,,,n = 1 if n and m are powers of the same prime and m > n and let
S m = 0 otherwise. The term p3 E r4(,1) in the second equation is given
by P3 = 0 if m = 0. Moreover for m, n not equal to 0 let

n

J

S [x,(Xn)*y]®fn,n+e fork=0or(k,m)=m
(k, n) n.m

P3 = -k t
sm,n[( X,, )*x,yl ®Sm,m otherwise

I. (k, n)

where

6 = A{[x,Y],, (& 1} E 17401)
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if m = 2 and n = 2k where k is a power of 2; moreover e = 0 otherwise.

(d)

+[x,y] (H*a)+A((Ta)#P4).

Here r: F(7L/n) -' F(7L/n) is the isomorphism 1/2 if n is odd and is the
identity otherwise. Moreover p4 E I'4(r7) is given by p4 = 0 for n = 0 and
p4 = -[x, y] ® + e for n not equal to 0 where e = (n/2)A{[z, fl,, (9y}
if n is a power of 2 and e = 0 otherwise.

(e)

[x +y, z] ®11n.m ®b= [x, z] ®7lr.m ®b+[y,z] ®fn.m 0 b+A(b#P5).

Here p5 E F4(i) is given by

p5 = (n/2)A{[z, ij,7 ®y}

if m = 0 and n a power of 2 or if m, n are powers of 2 with m > n.
Moreover p5 = 0 otherwise.

(f) x ® y ®a and [x, y] ®,q,, m ®b are linear in a and b respectively.

(g) A in (*) is an injective homomorphism and A in (12.3.6) satisfies for
x' EB,n>0,

(Ax') 0 ®a=0

Ax', y] 0 '1R.m ®b- A(b#P5)

where p5 E F4(q) is given by P5 = - A[x' ®y} if m > n or m = 0; and
p5 = 0 otherwise. Finally A in (12.4.8) satisfies for a' E Ext(H,7L/n ® 1/2)

x®y 0 (Aa') = A( p6)*(a')

where p6: 1/n 0 71/2 - r4(rl) carries the generator to A{i7(i) 0 1). More-
over for b' E Ext(H,71/n 0 71/m 0 71/2) we have

[x,y] ®rl,,.m ® (Ab') = A( P7) * (b')

where p,: 71/n 0 Z/m 0 71/2 --> 174(rl) carries the generator to
A{[X, yl,, ®1).

This completes the definition of the functor 1'3 in (12.4.1) and Theorem
12.4.2. The exactness of (*) above is a consequence of the definition of r in
Definition 12.4.4 since killing the elements A( p) in the relations above yields
precisely the relations in Definition 12.4.4.
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(12.4.12) Remark We have the exact sequence

Ext(H, F22(77)) --b P3(H, 17) --p FT,(H, A) -> 0

where we assume that A is finitely generated. Hence in this case we obtain
by (12.4.11) also generators and relations for the bifunctor FT,r(H, A). For
this we only need to kill all curly brackets in the relations of (12.4.11) above.

Proof of Theorem 12.4.2 We define the transformation

0: F3(H, i7) ---> F3(H, K(-q, 2))

on generators in the obvious way by OA( p) = 0( p); see (12.4.3), and (12.4.6).
The formulas in Sections 11.5 and A.10 show that 0 is a well-defined
homomorphism compatible with A and µ. If A is finitely generated this
shows by Lemma 12.4.5 that 0 is an isomorphism since (12.4.11X *) is short
exact. In fact, 0 is well defined since we use Lemma 11.5.19 for (a) and we
use Lemma 11.5.20 and (11.5.103) for (b). Next we obtain (c) by Lemma
11.5.24; for the second equation this is a somewhat nasty computation. We
derive (d) from Theorem A.10.2(b), (11.5.16X7), Lemma 11.5.24(e), Lemma
11.5.27. We derive (e) from (11.5.10X6) and Lemma 11.5.27. Finally we obtain
(g) by the definition of y and

12.5 Algebraic models of 1-connected 5-dimensional homotopy
types

We introduce the algebraic category of A3-systems and we describe a
detecting functor from the homotopy category of simply connected 5-
dimensional CW-spaces to the category of A3-systems. Hence isomorphism
types of Az-systems are in 1-1 correspondence with 1-connected 5-dimen-
sional homotopy types. The definition of A3-systems here depends on the
highly intricate functors F4 and 173 in Sections 12.3 and 12.4. In the following
sections we describe special cases for which these functors are obtained more
directly by algebraic constructions.

Recall that quadratic functions q: A --> B, or equivalently homomorphisms
F(A) -> B, are the objects of the category TAb; see (7.1.1). Moreover G is
the category equivalent to the homotopy category of Moore spaces M', n z 3,
in Section 1.6. The objects of G are abelian groups H E Ab.

We shall describe various examples of algebraic categories K and functors

k: K -+ TAb
(12.5.1) F4 : K - Ab

I73:G°PxK--Ab
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together with a short exact sequence

Ext(H, r4(,)) -L r3(H,17) - Hom(H, F(A))

which is natural in H E G and 71 E K. Here the objects r1 in K are also objects
of TAb and k: Ob(K) C Ob(T(Ab) is an inclusion. Given such data
(K, k, r4, r3, A, µ) we introduce the following algebraic objects.

(12.5.2) Definition An AZ-system over K

S = (H21 H41 H51 ir3, 64,71, 65, /3)

is a tuple consisting of abelian groups H2, H4, H5, 7T3 and elements

b4 E Hom(H4 , r(H2 ))

i1 E Hom(r(H2), Tr3) with 7E=-0b(K)

b5 E Hom(H5, r4(r1))

/3 (=-r3(H4, 7,)/0(65) * Ext(H4, H5).

The elements satisfy the following conditions (3) and (4). The sequence

(1)

(2)

H4 b4 FH2
-77

-0 7r3 (3)

is exact and

µ(f3) = b4 (4)

where µ is the operator given by µ: r3(H4, 71) -+ Hom(H4, r(H2)) in (12.5.1)
above. A morphism

(P2, P4 + V5, V , Vr) : S --> S' (5)

between A2-systems is a tuple of homomorphisms in Ab

cp,: H,-->H; (i=2,4,5)
9,: 7r3 -4 IT 3
9r: r4(71) -+74(11')
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such that the following properties are satisfied. The diagram

H4
b4 , I'(H2) n' 1r3

Iw< Ir(v,) IV,

H4 ----> r(HZ) - 1r3
b4 71

commutes and also

(6)

(7)

commutes. Moreover, there is a morphism x: ,q - 71' in K with k( x) =
(cp2, see (12.5.1), and there is a morphism ('4): H4 -> H4 in G such
that

(Pr=r4(x): f4('q)->I'4(0

is induced by x and such that

(8)

(9)

in I'3(H4,'q')/o(b5)* Ext(H4, H5). Here X. and ((p4, ip4)* are the homomor-
phisms induced by the functor I'3. There is an obvious composition of
morphisms so that the category of A;-systems over K is well defined.

An AZ-system S as above is free if H5 is free abelian and S is injective if
b5: H5 --* I74('q) is injective. Let A2'-Z Systems(K) resp. A23-systems(K) be the
full subcategories of free, resp. injective, A2'-systems. We have the canonical
forgetful functor

-Systems(K) -*A3-systems(K) (10)0: A32 2

which replaces b5 by the inclusion b5(H5) c F4(61). One readily checks that 4.
is full and representative.

(12.53) Definition We associate with an Az-system S the exact I'-sequence

H5
b,

I'4(77) - 1r4 '--b H4 bs a ['(H2) - + 1r3 -* H3 -+ 0.

Here H. = cok(7I) is the cokernel of 71 and the extension

cok(b5) H 1r4 ker(b4)
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is obtained by the element 8 in Definition 12.5.2(1), that is, the group
1r4 = Tr( ft) is given by the extension element

Pt E Ext(ker(b4),cok(b5))

defined by

Qt= (j,J)*(0)

Here j: ker(b4) c H4 is the inclusion and (j, j): ker(b4) - H4 is a morphism in
G which induces (j, j)* via the functor r3; compare (2.6.7).

Let types2(K) be the full subcategory of the category of 1-connected
3-types consisting of all K(i7, 2) with q7 E K. We say that the structure (12.5.1)
is good if there is a full functor

(12.5.4) r: types' (K) - K

which carries K(q, 2) to 17 such that the composite functors

typesZ(K) ---7
--* K r'-> Ab

- -- GOP x K
b--

Ab(M3)°P x types' (K) G

are naturally isomorphic to the homotopy functors F4 and r3 respectively,
that is

(a) f4K(ii,2) =1'4(7)

and

(b) r3(H, 2)) = r3(H, rl)

and these isomorphisms are compatible with A and µ in (12.5.1) and
Definition 2.2.3(3). Moreover the composite functor

types;(K) K -L fAb

is naturally isomorphic to the functor k2 which carries K(77,2) to 17; see
Proposition (7.1.3).

(12.5.5) Example Let K be the full subcategory

K c rAb(PCyc)

consisting of all objects 17: A -- B for which A is finitely generated. Then we
obtain by G in (12.3.1) the equivalence of categories

r: typesz(K) -:4 K
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where types2(K) is the homotopy category of all K(-q, 2) with 71 E K. More-
over using the functors F4 and r3 in Sections 12.3 and 12.4 we obtain a good
structure as above.

For a category K as in (12.5.1) or (12.5.4) let spaces'(K) be the full
homotopy category of 1-connected 5-dimensional CW-spaces X for which the
quadratic function

rlx=(12)*: '7r2X=H2X-> ir3X

is an object in K. Let typesz(K) be the corresponding category of 1-
connected 4-types. We have the Postnikov functor

(12.5.6) P: spacesz(K) types2(K)

which carries X to its 4-type. The next result can be applied to the example
in (12.5.5) above.

(12.5.7) Classification theorem Given a category K and a good structure as in
(12.5.4) and (12.5.1) there are detecting functors

A': spaces2(K) -->A;-Systems(K)

A': typesz(K) -Az-systems(K).

Moreover there is a natural isomorphism

4)A'(X) =,1'P(X)

for the forgetful functor ¢ in Definition 12.5.2(10) and the Postnikov functor P in
(12.5.6).

Proof Let C= types'' (K) be the category in the classification theorem
(3.4.4). The bype functor F on C defined in (3.4.3)(3), n = 4, leads via the
good structure on K to the following bype functor F' on K. Let

F': Ab°P X K - Ab

be defined by the pull-back diagram, H E Ab, -1 E K,

Ext(H, I74('q)) N F3(H, r,) - Hom(H, F(A))

(I U U

Ext(H,F,(rt)) NF'(H,71)- Hom(H,Fo-q)

where F,(rt) = r4(,,) and FF(rl) = ker(rt: r(A) - B). Induced maps for F' are
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defined via the induced maps for the functor F3 in (12.5.1) and (12.5.4). It is
clear that we have detecting functors

Bypes(C, F) - Bypes(K, F') -T-. A 3 -Systems(K).

The detecting functor T is induced by the full functor T in (12.5.4). Moreover
the detecting functor T' is the `forgetful' functor. The functors T and T' are
essentially the identity on objects and by definition they are both full
functors. Now the classification theorem 3.4.4 yields the proposition of the
theorem.

Using the isomorphisms (12.5.4)(a), (b) as identification we define the
detecting functor A' in Theorem 12.5.7 by

(12.5.8) A'(X)=(H2X,H4X,H5X,Ir3X,b4X,,qx,b5X,/3(X))

where b4 X, b5 X, -1x are part of Whitehead's exact F-sequence with r3(X) _
F(H2 X) and where /3(X) = /34(X) is the boundary invariant of X. Similarly
we define the detecting functor A'.

The detecting functor A' in Theorem 12.5.7 shows that for each free
AZ-system S over K there is a unique 1-connected 5-dimensional homotopy
type X = Xs with A'(X) a S. Then the F-sequence for S in Definition 12.5.3
is the top row in the following commutative diagram

H5 -* ir4 - H4 - I'(H2) -' ir3 - H3

II II 1 II II II II

H 5 X - F4 X - 7r 4 X - H4 X -' F3 X --> or3 X -* H3 X

The bottom row is Whitehead's exact f-sequence of X. The diagram de-
scribes a weak natural isomorphism of exact sequences; see (3.2.5)(5). If we
apply Theorem 12.5.7 to Example 12.5.5 we get the following crucial result.

(125.9) Classification theorem Let

K c FAb(PCyc)

be the full subcategory of all q: A -a B for which A is finitely generated and let an
AZ-system over K be defined by the functors T4 and I3 in Sections 12.3 and
12.4. Then there is a detecting functor from the full homotopy category of all
simply connected 5-dimensional CW-spaces X with H2 X finitely generated to the
category A 2-System(K).

Hence this result yields in particular algebraic models of all homotopy
types of finite polyhedra which are simply connected and of dimension 5 5. In
the following sections we describe applications of Theorem 12.5.7 for which
the functors I74, F3 are less complicated.
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12.6 The case ir3X = 0

We consider Az systems which correspond to simply connected 5-dimensional
homotopy types X with ir3 X = 0. They turn out to be the same as certain
bypes used in Theorem (6.4.1). Let K = Ab be the category of abelian groups.
Then we obtain the functors

(12.6.1)

k: K - FAb
r4=rT: K -->Ab

r3: GOP x K - Ab°P x K - Ab

as follows. Let k be the inclusion which carries an abelian group A to the
quadratic function rl: A -> B for which B = 0 is trivial. Moreover r4 = FT is
the I'-torsion functor and r3 is given by the projection G - Ab and by the
torsion bifunctor FT,,. See Definition 6.2.11 where one also finds the short
exact (0, µ)-sequence for FT#. Hence the functors in (12.6.1) form a struc-
ture as in (12.5.1) and the AZ-systems over K are defined by (12.6.1). Using
the equivalence

T: types' (K) -= K

which carries K(rl, 2) = K(A, 2) to A we see that this structure is good in the
sense of (12.5.4); compare Section 6.3. Hence we can apply Theorem 12.5.7.
For this we have the identification

Az-Systems(K) = Bypes(Ab, FT,)

of categories so that the following corollary of Theorem 12.5.7 is also a
consequence of Theorem 6.4.1.

(12.6.2) Theorem Let AZ-systems be defined by the structure on K = Ab in
(12.6.1) above. Then there is a detecting functor from the homotopy category of
simply connected 5-dimensional CW-spaces X with ir3X = 0 to the category
A Z-Systems(K).

12.7 The case H2 X uniquely 2-divisible

We here consider simply connected 5-dimensional homotopy types X for
which HZ X is uniquely 2-divisible. Our method is not the same as the
approach by `tame homotopy theory', see Dwyer [TH], Anick [HA], and Hess
[MT]. The results in this section yield new insights into why tame homotopy
theory works; moreover comparison of the results here with the case in
Theorem 12.5.9 sheds light on the kind of complexity appearing outside the
tame range.
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An abelian group A is uniquely 2-divisible if multiplication by 2 is an
isomorphism 2: A -A; the inverse of this isomorphism is denoted by 1/2.
Let 7[1/2] be the smallest subring of the rationals 0 containing 1/2 E Q.
Then A is uniquely 2-divisible if and only if A is a Z[1/2]-module or
equivalently if A *71/2 =A ® Z/2 = 0. Let Ab[1/2] be the full subcategory
of Ab consisting of uniquely 2-divisible groups. Moreover let M2[1/2] be the
full homotopy category of Moore spaces M(A, 2) with A E Ab[1/2].

(12.7.1) Proposition There is a functor

s: Ab[1/2] _ M2[1/2]

which is a splitting of the homology functor H2.

Proof Let rp E 2 Hom(A, B), say cp = 2 tli. We construct an element

s((p) E [M(A,2), M(B,2)] = G (1)

as follows. We choose homotopy equivalences M(A, 2) _ XX, M(B, 2) = Y.Y
for appropriate X = MA and Y = MB. Then the map - I I X : I X - F X in-
duces the inverse, - a, in the group [I X,1Y] = G. Now we set

s(ip)=a -(-1,,)+G (2)

where G is a map which realizes i/i. Then s(tp), clearly, realizes 2 it = W.
Moreover, s(w) does not depend on the choice of qi. For this we first remark
that we have the central extension of groups

Ext(A,FB)>G .Hom(A,B)

with i(a) = 0 + a. Moreover, we have

+ a = +1(a)

(3)

(4)

where + on the left is the action and where + on the right is the group
structure of G. Now consider a second realization i/r of 4. Then clearly
iP = i/i + a for appropriate a and we get with -1 = - lyy:

(-1)4i=(41+a)-1)(+/r+a) (5)

_(+/,+a)-[(-1)0 +(-1)*a] (6)

+ia-ia-1)r/r=+/i-(-1)aG. (7)

In (7) we use (4) and the fact that

(-1)* =id: iB-alB for -1: (8)

In (6) we use the linear distributivity law for the action +.
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Next we show that s in (2) is actually a functor. Let cpo E Hom(A0, A) with
cPo = 2 qio. Then we get:

s(W)°s(Wo) = (+/1- -(-1)k)
(9)

For a = 2 0*0 we have the realization

a=(iG-(-1)i/r)c1i .

Moreover, we get for the second summand in (9)

-((-1)r -¢r)i/ro= -(-1)a. (10)

Therefore (9) and (10) show

s(cp)°s(cpo)=a-(-1)a=s(wcP0)

since 2 a = cpcpo.

(12.7.2) Theorem The composite functor

Ab[1/2] - M2[1/2] 7r4 Ab

is naturally isomorphic to the functor which carries A to 1'T(A) ® L3(A, 1) and
(p: A -> B to FT(cp) ® L3(cp,1). The composite functor

(M3)°P X Ab[1/2] 1 X-so (M3)'P X M2[1/2] Ab

is naturally isomorphic to the functor which carries (M(B, 3), A) to
Ext(B, L3(A,1)) ®1'T#(A, B) and ( fir, cp) to Ext(r/i, L3(cp,1)) ®rT0(pi, cp).
The isomorphisms are both compatible with the corresponding operators A and

We do not describe the isomorphisms explicitly since we derive Theorem
12.7.2 from the following fact.

(12.7.3) Lemma H'(Ab[1/21, Hom(FT, L3(-,1))) = 0.

Proof Let 5:Ab[1/2] - Hom(TT, L3(-,1)) be a derivation. We have to



12 SIMPLY CONNECTED 5-DIMENSIONAL POLYHEDRA 421

show that 3 is an inner derivation. For cp: A --> B we have 2B cp = cp2A where
2A: A -A is multiplication by 2. Hence we get 3(2B (p) = 5((p2A) where

5(2BCp) = cp*5(2B) + (2B)* 5(0

= cp*3(2B) + 83(w)

6(cp2A) = cp* 3(2A) + (2A)*3(0

=cp*5(2A)+45(cp).

Hence we have

45((p) = cp* 3(2A) - cp*6(2B)

or equivalently

8(cp) = cP*(1/4)5(2A) - cp*(1/4)3(2B)

and hence cp is an inner derivation.

Proof of Theorem 12.7.2 Since A is uniquely 2-divisible also F(A) is uniquely
2-divisible and hence rr4 M(A, 2) = ir4 M(A, 2). By (11.1.17) the natural
sequence

L3(A, 1) >-> ir4s(A) -. FT(A)

is split for each A. We choose a splitting sA and obtain a derivation 8 as in
the proof of Lemma 12.7.3 by

S(cA) = or4s((p)sA -sBI T((p).

This derivation, by Lemma 12.7.3, is an inner derivation. Hence we can alter
the splitting in such a way that we obtain a natural splitting. In a similar way
one can prove the second part of Theorem 12.7.2.

Now let I'Ab[1/2] be the full subcategory of I'Ab consisting of all
quadratic functions 71: A -> B with A E Ab[1/2]. Moreover let types2'[1/2]
be the full homotopy category of all K67,2) with 71 E TAb[1/2]. Then there is
a functor

(12.7.4) s: I'Ab[1/2] - types2' [1/2]

which is a splitting of the functor k2 in (7.1.8). We obtain the functor s by the
equivalence K2: typesZ = I'M2 in Theorem 7.2.7 and by the functor s in
Proposition 12.7.1, that is, s in (12.7.4) carries to K2'{cp1,O,scpo}.
Using the splitting s and the linear extension (7.1.8) one obtains the equiva-
lence of categories

(12.7.5) r: types2' [1/2] -=a rAb[1/2] x E
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where the right-hand side is the canonical split extension for the natural
system E with E(n, n') = Ext(A, B'); see Definition 1.1.9(d). A morphism in
FAb[1/2] X E is given by a tuple X = (gyp,, po, t ; ): n --> 1' where (cp,, qPo):
n -> n' is a morphism in rAb and where C E Ext(A, B'). Now let K =
rAb[1/2] x E and let

k:
K

K - Ab

be the following structure on K, see (12.5.1). The functor k is the projection.
The functor r, carries n: A - B E Ob(K) to the direct sum

(a) r,(1) = r, (n) ® rT(A).

Moreover r, carries a morphism X = (gyp,, (po, ): n - n' to the induced map

r,(x): r2(,7)ED rT(A)- r2(,1')®rT(A')

given by the coordinates r; (p rT(Vo) and

10 rPp
rT(A) B'®A'-Lr2(ii').

Compare (11.4.8). Next the functor F3 in (12.7.6) carries the pair of objects
(H,,7) to the direct sum

(b) r3(H, n) = Ext(H, 1722(77)) ED rT,(H, A).

Now r3 carries a morphism (i/i, X) with +/!: H' - H E Ab to the induced map
ry *X * where

* = Ext(ii, r2 (n)) ® rT#(+G, A)

and where

X*: Ext(D, r2(,7)) ® FT*(D, A) - Ext(D, F2(77')) ® FT*(D, A')

has the coordinates Ext(D, F2(90' 9,)), FTO(D, go), and

rT,(D, A) h'-> [do, dA ®A] Ext(D, B' ®A) Ext(D, r2n').

Here we set ((po)* = Ext(D, q(1 ®cpo)) where q(1 ® qpo) is defined as in
(12.7.6). Compare (11.4.9). There is an obvious (0, A)-short exact sequence
for F3.
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(12.7.7) Lemma Using the equivalence r in (12.7.5) the structure (12.7.6) is
good in the sense of (12.5.4).

Proof This is a consequence of Theorem 12.7.2 and Theorem 11.4.7. See
(11.3.7) and (11.3.8).

The lemma shows that we can apply the classification theorem 12.5.7:

(12.7.8) Theorem Let AZ-systems be defined by the structure on K =
TAb[1/2] x E in (12.7.5) above. Then there is a detecting functor from the
homotopy category of simply connected 5-dimensional CW-spaces X for which
H2 X is uniquely 2-divisible to the category A 3 -Systems(K).

12.8 The case H2X free abelian

We here consider simply connected 5-dimensional homotopy types X for
which H2X is a free abelian group. Let Ab(free) be the full subcategory of
Ab consisting of free abelian groups and let M2(free) be the full homotopy
category of Moore spaces M(A, 2) with A E Ab(free). Then one has the
equivalence of categories

(12.8.1) Ab(free) = M2(free)

defined by the homology functor H2. We now consider the functors ?r4, 1r3 on
M2(free). Recall that we have the equivalence of categories G: M3 = G in
Theorem 1.6.7; for abelian groups A, B the group G(A, B) is the set of
morphisms A -. B in G.

(12.8.2) Theorem The composite functor

Ab(free) = M2(free) -` > Ab

is naturally isomorphic to the functor F22; see Lemma 11.1.7. Moreover the
composite functor

G°P x Ab(free) =
(M3)°P X M2(free)

is naturally isomorphic to the functor which carries (B, A) to the direct sum
Ext(B, L3(A,1)) ® G(B, T(A)) and cp) to Ext(r/r, G(t/r, r(q) )).
The isomorphism is compatible with 0 and A.

Proof Since FT(A) = Owe obtain 7r4 M(A, 2) = r2(A) by (11.1.9). Moreover
the generalized Hopf map

7lA [M(I'(A),3), M(A,2)]
is natural in A, therefore we obtain the result on 1r3 by (11.2.3).
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Let TAb(free) be the full subcategory of FAb consisting of all quadratic
functions ri: A --> B with A E Ab(free). Let typesz(free) be the full homo-
topy category of all K(q, 2) with 77 E FAb(free). Then the functor k2 in (7.1.8)
yields the equivalence of categories

(12.8.3) T: types;(free) -> FAb(free).

Now let K = rAb(free) and let

(12.8.4)

k: K -rAb
174: K --> Ab

r3:G°PxK- Ab

be the following structure on K; see (12.5.1). The functor k is the inclusion
and I'4 is defined by r; in Definition 11.3.3, that is r4(71) = r2 ('q). Moreover
r3 carries the pair of objects (H, r7) with q: A --> B to the abelian group
r3(H, ri) defined by the push-out diagram

Ext(D, r(A) ® 71/2) ° G(D, r(A))

Ext(D,q)I push 1

Ext(D, r267)) » r3(D, 17)

A morphism (ii, cp) with r l r E G and c p = (apt, W2) E FAb induces
Ext(i', r2(Qp)) ® G(i/i, r(cpa)).

4, ',p * =

(12.8.5) Lemma Using the equivalence T in (12.8.3) the structure (12.8.4) is
good in the sense of (12.5.4).

Proof We apply Theorem 11.3.4 and (11.3.8) and Theorem 12.8.2 above. 0

The lemma yields the following application of the classification theorem
12.5.7.

(12.8.6) Theorem Let AZ-systems be defined by the structure on K = rAb(free)
in (12.8.4) above. Then there is a detecting functor from the homotopy category of
simply connected 5-dimensional CW-spaces X for which H2 X is free abelian to
the category A Z-Systems(K).



Appendix A

PRIMARY HOMOTOPY OPERATIONS
AND HOMOTOPY GROUPS OF

MAPPING CONES

A CW-complex is built by attaching cells. The attaching maps yield elements
in homotopy groups, it (X"), where X" is a CW-complex of dimension< n.
Here X" is also formed by attaching cells, say X" = Y Ug em, so that we have
to consider homotopy groups of the form 7r,(YUg em). The computation of
such homotopy groups in terms of g is therefore one of the obstacles to
analysing the interior structure of a homotopy type. Very little is known
about such groups. For example groups of the form 7r"(Sk Ug em), given by
elements g E Trm _ 1(S") in homotopy groups of spheres, are very hard to
compute. The main results of this appendix yield a method to compute such
groups via an Eg Hg Pg sequence. This sequence generalizes the classical
EHP-sequence. In fact, James introduced the EHP-sequence to study homo-
topy groups it"(EA) of a suspension. We introduce the EgHgPg sequence to
study relative homotopy groups it (Cg, B) of mapping cones Cg where g:
A -+ B. If B = * is a point then Cg = Y.A is the suspension, and, in this case,
the Eg Hg Pg sequence coincides with the EHP-sequence. We describe the
operators Eg, Pg, Hg explicitly in terms of primary homotopy operations, in
particular, the operator Pg is induced by a complicated sum of Whitehead
products. This very explicit expression for the operator Pg is of great impor-
tance in applications.

The proof of the Eg Hg P8 sequence uses a new combinatorial model Ng of
the fibre of the inclusion ig: B c Cg. The sophisticated proof relies on the
geometric bar-construction and quasi-fibration techniques. We use the model
Ng also for the proof of the surprising homotopy equivalence

EP,a=(YEA)xflCg/(*) XflCg.

Here 11Cg is the loop space of the mapping cone Cg and P; is the fibre of
the inclusion ig: B c Cg with g: A -> B, A = IA'; see Theorems A.8.2 and
A.8.13.

In the first three sections we introduce and study primary homotopy
operations which satisfy intricate distributivity laws. With respect to addition

+: [Y.A,U] x [EA,U] - [EA,U]

we have for example the left distributivity law (obtained in Baues [CC])

(X+y)°f=X°f+y°f- E C"(X,y)y"f
n22



426 APPENDIX A HOMOTOPY GROUPS OF MAPPING CONES

where f E [IX, 1A]. More generally we deal in Section A.9 with the action

+: [Cg, U] x [IA, U] * [Cg, U]

and we describe for f e [ I X, Cg ] an expansion for (u + y) a f with u e [Cg, U ].
The distributivity laws of primary homotopy operations have a long pro-

gression in the literature starting with the work of Whitehead, Hilton,
Barratt, James, etc. In Baues [CC] we explored the connection of such
distributivity laws with classical commutator calculus of group theory.
Recently, in his thesis, Dreckman [DH] described for the first time the
complete list of distributivity laws of primary homotopy operations.

A.1 Whitehead products

We recall some basic definitions and facts. Throughout let a space be a
pointed space of the homotopy type of a CW-complex. Maps and homotopies
are base-point preserving. The set of homotopy classes X - Y is denoted by
[ X, Y ]; it contains the trivial class 0: X -> * E Y. The groups of homotopy
classes

1r,,'(X)=[E"A, X], n>_ 1,

are equipped with various operations. We here study the Whitehead product,
the cup products, the Hopf construction, and the partial suspension. For the
product A X B of spaces we have the cofibre sequence

AvB' AxB 7 AAB.
Here A V B= A x{*} u{*} X B is the one-point union and A AB=A X
B/A V B is the smash product. The n-fold products will be denoted by
All =A x x A and A ^ " =AA ... A A. The cofibre sequence of A v B c
A X B yields a short exact sequence of groups

(A.1.1)

0->[I(AAB),Z] Y. (AxB),Z]-[1A,Z]x[1,B,Z]-0.

Let PI, P2 be the projections of YE(A X B) onto EA,Y.B. The Whitehead
product

[ , ]: [IA,Z] x [IB,Z] - [E(A AB),Z] (1)

is defined by the commutator

(I7r)'([a,B])= -p*a-p*0+pia+pzP
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for a E [I A, Z], 9 E [IB, Z]. Compare Baues [CC]. Let i1, i2 be the inclu-
sions of YEA and 1B into Y.A V EB respectively. Then

wA,B=[i1,i2]E7r1 (2)

is the Whitehead product map for which we have [a, (3 ] = wA B(a, 16)-
We say that an element a E V B) is trivial on B if the retraction

r2 = (0,1): A V B -> B carries a to 0, that is (r2) *(a) = 0. For example the
Whitehead product map WA B is trivial on lB. Let

V B)2 = kernel (r2) * : V B) -> 77nxB

be the subgroup of all elements trivial on B. We have for n >_ 1 the partial
suspension

E: V B)2 1(.A V B)2 (3)

defined by E = j -1(7r V 1) * a-':

I(7rv 1).

J V B)2

Here 7r: (CA, A) - (MA, *) is the quotient map and the isomorphisms d and
j are obtained from the exact homotopy sequences of pairs of spaces; see
(2.1.3). The Whitehead product map is compatible with the partial suspen-
sion, that is

(A.1.2) Proposition EwA, B = wEA, B.

This is proved in (3.1.11) of Baues [OT]. From the definition of the
Whitehead product we obtain the following commutator rule in the group
[UX1 x xX'),Y]. For a ={a1 < <ar}cn=(1,...,n) let

Pa:Xtx...XXh- AX.=Xa A---AXa.

be the obvious projection. Then we have for a, b c n and a E [I A Xa, Y ] and
0 E [I A Xb, Y } the commutator rule

(A.1.3)

- a(lpa) -13(lpb) + a(1pa) + /3(lpb) = [a,16 }Ta,b(IP0U b)

where

Ta,b: I AX.Vb-Y.(AX,,) A(AXb)
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is defined by T,,, b(t, Xa u b) = (t, x Xb) with xa = (xa1, ... , X,,)- Clearly, if for
iE a n b, Xi is a co-H-space then Ta, b = 0 since the reduced diagonal
DA: A -A A A is null-homotopic if A is a co-H-space.

For any three elements a, b, c of a group G we have the Witt-Hall identities

(A.1.4) (a, b c) _ (a, c) (a, b) ((a, b), c)
((a, b), ca) ((c, a), b`) ((b, c), ab) = 1

where (x,y)=x-ly-'xy and
z, c = (z, x) the first equation in (A.1.4) yields the equation

(A.1.5) ((x, y), zz) _ ((x, y), (z, x)) ((x, y), z) ((x, y), z), (x, z).

For elements ai E [I Xi, Z] we define the element corresponding to (A.1.5)
by

(A.1.6) W'( a1, a2, a3) _ [[al, a2],[a3, al]]T1231 + [[al, a2], a3]

+ [[[a1, a2], a31,[a1, a3]]T12313

in the group [IX1 A X2 A X3, Z]. Here the shuffle

T = Tni....,,, : XI A ... A Xk -- Xn' A ...

for n,,...,n,E(1,...,k) maps the tuple (x1,...,xk) to x,,,). Clearly,
T1231 = 0 if X1 is a co-H-space and T12313 = 0 if X, or X3 is a co-H-space.
The suspension IT is also denoted by T We now derive from (A.1.4),
(A.1.5), and (A.1.3) the following Jacobi identities for Whitehead products.

(A.1.7) Proposition The general Jacobi identity for Whitehead products is

W(al, a2, a3) + W(a3, al, a2)T312 + W(a2, a3, al)T231 = 0-

(A.1.8) Corollary If Xl, X2, X3 are co-H-spaces the Jacobi identity is

[[a1, a2], a3] + [[a3, a1], a2IT312 + [[a2, a3], a1 ]T231 = 0.

(A.1.9) Corollary If X2, X3 are co-H-spaces the Jacobi identity is

al, a2], a3] + [[a3, al], a2]T312 + [[a2, a3], al]T231

[[ al, a2 ], [ al, a3 ]]T1213

Moreover, we need the following properties of the Whitehead product map
WA. B. For pairs of spaces (A c X, B c Y) we define the product

(A.1.10)
(X,A)x(Y,B)=(XxY,XxY)

XXY=XxBUAxY.
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We consider the mapping

(A.1.11) h: UAxB)- CAxCB=CAxBUAxCB
which is defined by adding the following homotopies:

Hl:

I x A X B (t, a, b) (t, b))

H3:IxAxB--'CAXB, (t,a,b)-((t,a),b)

H4:IxAXB-AXCB, (t,a,b)-(*,(t,b)).

Clearly,

h=-H,-H2+H3+H4

is defined on VA X B) and is null-homotopic on VA V B). Therefore h
defines, up to homotopy, a unique map h such that

(A.1.12)
YEA AB CAxCB

homotopy commutes. The map h is a homotopy equivalence which we call the
join construction. One easily checks that the quotient map jo: (CA, A)
(CA/A, *) = (IA, *) yields the composition

(A.1.13) WA,e=(joxjo)h:IAAB-->IAVlB

which is the Whitehead product map. We say that YcX is a principal
cofibration with attaching map g: A --> Y if there exists a homotopy equiva-
lence X = C. under Y where Cg = YUg CA is the mapping cone of g. Since
there is a homotopy equivalence C(CA X CB) = CA X CB under CA X CB
and since

CA X CB 'oxfo EA x l,B

I I
CAxCB IAvIB

is a push-out diagram one readily gets

(A.1.14) Lemma EA V lB C EA x lB is a principal cofibration with attach-
ingMap WA,B.
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We can iterate this process. Consider the product of cones

(CX1, X2) x ... X (CXn, Xn) = (Pn, PR ).

Then there is a homotopy equivalence

h

(A.1.15)
In-1X1 A...AXn=PR

which we obtain inductively by

(Pn-PR-X(CXn,X.)

(CPR-1,Pn_1) X(CXn,Xn)

= I(PRAX,,).
h

We call (A.1.15) the iterated join construction; see Baues [IJ]. Now the
product of suspensions

(EX1,*)x... x(IXn,*)_(Tn,7, )

yields the pair (7,, 7,,) where 7,, is called the `fat wedge'. As in Lemma
A.1.14 one can show that the inclusion 7,,° c Tn is a principal cofibration with
the attaching map

(A.1.16) wn : I n -1 X1 A ... A Xn --> Pn "- 7n
h to

This map is called the nth-order Whitehead product map. Here jo is the
restriction of the n-fold product jo x ... X jo: CX1 x ... x CXn --> IXl x ... x
IXn. Thus the mapping cone of w,, is homotopy equivalent to Tn.

Further operations we need are the (geometric) cup products. The exterior
cup products are pairings

(A.1.17) #,#:[IX,MAIx[MY,Y,B]-->[IXAY,Y.AAB]

defined by the composites

a#,8:Y.XAY °L>FAAY A- YEA AB

a#/3: Y.XAY XAPY.XAB °nB EAAB

where a A Y = a A l . and where A A 6 is the map 'A A 0, up to the shuffle
of the suspension coordinate.

The interior cup products are defined by composing with the reduced
diagonal Q: A -+ X A X,

(A.1.18) u, u : [.X, A] X [Y.X, B] --1, [IX, 1A A B]
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where a U 13= (a#13X0) and similarly a U /3 = (a#J3)(Y ). If a, /3 in
(A.1.17) are co-H-maps we have a#/3 = a#B and for a' e [YEA, Z] and
/3' E [IB, Z] we get in this case

(A.1.19) [ a'a, /3'/3 ] = [ a', /3'](a#/3 ).

If a and 0 are not co-H-maps we have to use, instead of (A.1.19), the
Barcus-Barratt formula. We now use the exact sequence (A.1.1) for the
definition of the Hopf construction Hf. Let f: A X B --' Z be given and let

(a,/3):AVBcAXB-f ).Z

be the restriction of the map f. Then by (A.1.1) there is a unique homotopy
class

(A.1.20) Hf E [ EA A B, F,Z ]

for which (ITr)*(Hf)= -pl(1a)-pZ(13)+(IfLet AL: 01, x fL -->
O L be the loop addition map for the loop space f1 L and let

(A.1.21) HAL E [IfIL A f1L,1SZL]

be its Hopf construction. Moreover, let

(A.1.22) R = RL : Ill L -" L

be the evaluation map with R(t, o-) = v(t). We have the following connection
with the Whitehead product.

(A.1.23) Proposition Let i1, i2 be the inclusions of 1K and L into (Y.K) V L
respectively. Then

[[i1,i2RL],i2RLl = [iI,i2RL]°(KAHAL)

in [Y.KAIlL A OL,1KvL].

This result can be proved in the same way as (3.1.22) in Baues [OT].

A.2 The James-Hopf invariants

For a connected space B let 1(B) be the infinite reduced product of James.
The underlying set of 1(B) is the free monoid generated by B - { * }. The
topology is obtained by the quotient map

U B" --->1(B)
nZ0
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mapping a tuple (b1, ... , bn) of the n-fold product B" = B X ... x B to the
word (7rb1) (irbn) where r(*) denotes the empty word and ?rb = b for
b E B - { * }. The subspace Jn(B) = nr(Bn) is the n -fold reduced product of B
and B =J1(B) generates the monoid J(B).

Let i: B -> SIB be the adjoint of the identity of I B. James [RP] has
shown that the map

(A.2.1) g=gB: J(B)--'fl1B

with g(b) = i(b) and g(x o b) = g(x) + i(b) for x E J(B), b e B - { * } is a
homotopy equivalence. The map g induces the isomorphism of groups

(A.2.2) [Y.A, IB] = [A, f11B] = [A, J(B)], a -* a.

There are mappings

(A.2.3)
gr: J(B) -->J(B ^ r)

gr(b1 ... bn) = fT ba A ... A ba.
a

where the product is taken in the lexicographical order from the left over all
subsets a = (a1 < < a,} of {1, ... , n}. The James-Hopf invariants are the
functions

(A.2.4) yr: [IA,jB]-*[IA,5:B^r]

induced by gr, that is y,(a) = (g,) where we use the operator a H a in
(A.2.2). Clearly y1 is the identity.

Remark The map g, in (A.2.3) can be defined with respect to any 'admis-
sible ordering' of the set of finite subsets of N = (1, 2, }, see (I.1.8) and
(11.2.3) in Baues [CC]. The lexicographical ordering from the left (resp. from
the right) is an example of an admissible ordering.

Let g: 1J(B) -> Y.B be the adjoint of g in (A.2.1). Then the composite

IMY.B) = IJ(B) _L>B

is homotopic to the evaluation map Ra8 in (A.1.22). Moreover,

8r=yr(g):IJ(B) -- Y..BAr

is the adjoint of g, in (A.2.3) and

(A.2.5) JB: ISZIB=Y.J(B) V EB^r
r2I
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is a homotopy equivalence. Here G = E, Z 1 j,8, is the limit of the finite
subsums and Jr is the inclusion of EB A r into the wedge. We will use the
following formulas.

(A.2.6) Proposition For a composite

fg:IX --

with A and L connected and X finite dimensional, we have in [12X,12 L" n] the
formula

E(yn(fg))=E( E rn(f)oYr(g))
r2-1

where

r.(f)= E Yi(f)#...#Yi,(f).

'I.... ,i,z 1

For the proof of this formula see Boardman and Steer [HI]. Proposition
A.2.6 corresponds to:

(A.2.7) Proposition Let K be a co-H-space and let B and L be finite
dimensional and connected spaces. For a map 13: EB --> IL and for the homo-
topy equivalences in (A.2.5) the diagram

EKA ,f1EB

=IKAJ,

V IKABAr

EKA0$

r($)

EKA SIEL

.
I

KAJL

V IKALAn
nz1r21

homotopy commutes where

r(0)1YKAB^'= E

in denoted the inclusion of EK A L A " into the wedge.
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(A.2.8) Proposition Let A be a co-H-space and let B be a connected space.
Then for the reduced diagonal 0 on 111B the diagram

V LAAB^" LAAfIB
nZI

(B
EA A i

V 4AABAmAB^n An(e-
J J)

EAAfY.B111AfIB

n,m2I

homotopy commutes. Here A is defined by

AiIA A B ^" = E i#a,#b(Y.A A Ta b)
aUb=n

where we sum over all pairs (a, b) of non-empty subset a, b c n = { 1, ... , n) with
a U b = n. The shuffle map Ta,b is described in (A.1.3) and im.n is the inclusion
of >AAB^mAB^"

(A.2.9) Proposition Let K be a co-H-space and let L be a connected finite
dimensional space. Then the Hopf construction HI AIL in (A.1.21) for the loop
addition map on 0EL makes the following diagram homotopy commute

Y.K A 111L A fIlL
KA HAIL

P Y,K A fUL

=IK^(JL#JL) =IKnJL

V YEKALArALAS V IKAL^`
r,sZ 1 t21

Here p is the folding map given by the identity L ^ r A L AS = L A ` for r + s = t.

We leave the proofs of Propositions A.2.8 and A.2.9 as exercises.

A.3 The fibre of the retraction A V B --i- B
and the Hilton-Milnor theorem

Let B + = { *) u B be the disjoint union of the base point * with the space B.
We have

(A.3.1) A>4B=AAB+=AxB/* xB.

If A is a co-H-space with comultiplication µ then also A >4 B is a co-H-space
with comultiplication

iL >4B: AxB-+(AVA)> B=A>4BvAXB.

This yields the homotopy equivalence

(A.3.2) ii: A A B --- A v A A B
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by µ = (pr V 7r)( µ >4 B). Here pr and Tr are the projections of A X B onto
A and onto A A B respectively.

Let q: P,-A be the principal fibration with classifying map f: A - B; the
space P, is also called the homotopy theoretic fibre off or simply the fibre off.
We have

P,= {(a,o-)EAxB'If(a)_o-(0), * =o(1))

where B' is the function space of all maps I = [0, 1] -- B. For the retraction
r2: A V B - B we have the following result.

(A.33) Proposition There is a canonical homotopy equivalence

7r:P,2-.Ax11B.

Proof By definition of P,2 we have

P,2=AxfIBu * xWBC(AvB)xWB

where WB = (c E B' I o (1) = * } is the contractible path object. Since f)B C
WB is a cofibration the quotient map ir: P,2 -- P2/WB =A >4 f2B is a homo-
topy equivalence. Compare also B. Gray's proof of the Hilton-Milnor
theorem in Gray [NH]. 0

Let

g0:A>4fB=P,,-AvB

be given by a homotopy inverse of 7r in Proposition A.3.3. We thus have the
fibre sequence

A>4flB -A VB- B

which yields a short exact sequence of homotopy groups

0 --+ ira (A A4 fIB) it (A V B) t-2-'' iro (B) - 0

where X is a suspension. This shows that q0 induces the isomorphism

(a) (q0) * : -rro (A >4 flB) _= iro (A V B)2 = kernel(r2)

We therefore get the following corollary of Proposition A.3.3.

(b) Corollary Let A be (a - 1)-connected and let Y be a subcompler of the
CW-complex X with X" C Y C X where X' is the d-skeleton of X. Then the
homomorphism

1rk(AVY)2- 7rk(AvX)2
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induced by Y c X is surjective for k < a + d - 1 and is an isomorphism for
k<a+d-2.

Proof We have cell decompositions

AX1IX=AXfl(YUed+1U...)

=A>4(f2YUedU ... )

=(A )1f1Y)Ue°+dU...

where we may assume that A is a CW-complex with A° -' _ * . Now the
result follows from the cellular approximation theorem by use of (a) above.

Using the isomorphism in (a) the partial suspension E, defined in (A.1.1X3),
can be expressed by the usual suspension 7. as follows.

(A.3.4) Proposition Let X be a suspension, then

rr0 (A>4f1B) Qo- 7ro (A VB)z

IF IE

a1(1A>4fB)
v

1r'(Y.AVB)2

commutes.

Proof We prove the result only in case A is a suspension. In this case
commutativity of the diagram is a consequence of Proposition A.3.5 below
and of Proposition A.1.2.

(a) Corollary Let A be (a - 1)-connected. Then

E: lrk(A V B)z -> 'Tk+1(EA V B)2

is surjective fork < 2a - 1 and is an isomorphism fork < 2a - 1.

This follows from Proposition A.3.4 by using the Freudenthal suspension
theorem. We remark that Corollary A.3.4(a) is also a consequence of Theo-
rem A.3.10 below. For the fibre of the retraction r2: (EA) V B -+ B we get:

(A.3.5) Proposition The diagram

Pre 1AXf1B
µ

1AVEAAf1B

(.A) V B
(ii.lil.i2 RB1)
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homotopy commutes. Here i,, i2 are the inclusions of L,A and B into LA V B,
and RB is the evaluation map in (A.1.22), [ , ) is the Whitehead product and
µ is defined in (A.3.2).

Proof Consider the diagram

CIIB -_-->WB

1i 1P

Y.SZB
R

B

where j is the pinch map and p(o,) = Q(0). There is a mapping r which
extends the inclusion II B C WB over the cone and for which the diagram
homotopy commutes relative to 0 B. With r we obtain the homotopy commu-
tative diagram

P,

yI

LA V B

lur

=LAXIIBUO,BWB F= LAxIIBuCIIB

f

1A >a 1 B jizPrUi.J

90

id v R1,
LA V EIIB

Proposition A.3.5 now follows from the general fact that

(LA) AB

LA XBU8 CB L.AVLAAB

LAVLB

homotopy commutes. Here j: CB -EB is the pinch map and p is the
quotient map.

In addition to Proposition A.3.5 we have the following result for the fibre
of the retraction r2: LA V L.B -+ Y.B.

(A.3.6) Proposition Let A be a co-H-space and let B be connected. Then the
diagram

P,,=1AVLAAfILB V SAAB
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homotopy commutes. Here 1r = µir as in Proposition A.3.5 and J = 1 V (A A JB)
as in (A.2.5). The mapping W is given by the r -fold Whitehead products

WIYA A B-= [... [i1,i2],...,i2].

Forr=O we set WIEA=i1.

Proof We have to show

W -(A AJB) = [i1,i2R$],

but this is a consequence of 11.3.4 in Baues [CC].

Proposition A.3.6 is the basic step in the proof of the Hilton-Milnor
theorem. To state the Hilton-Milnor theorem precisely, we need a certain
amount of formal algebra (we follow the excellent presentation of Boardman
and Steer [HI]). Let B = B1 V V Bk be a one-point union of co-H-spaces.
Take abstract symbols z1, z2, .... zk and let L be the free Lie algebra (over 7L)
generated by the letters z1,..., Zk. Let F be the free non-associative alge-
braic object generated by z1, ... , Zk with one binary operation [ , I. F is
the set of `brackets' or of `formal commutators' in the letters z1,..., zk. There
is an obvious map F - L which we suppress from the notation. The weight
wt(a) of an element a E F is the number of factors in it. By induction on
weight we define for each c E F the space

ACB =
B, if c =z,
(AQB)A(AbB) if c=[a,b]

and the iterated Whitehead product ww E [I Ac B, 1B] by

the class of the inclusion EB, c YB if c = Zrwc=

[wG,wb] if c=[a,b].

For a family of spaces (Pa) let na P. be the direct limit of the finite
subproducts. It is well known that the free Lie algebra L is a free abelian
group and that there exists a subset Q of F which yields a base of the free
abelian group L; such a set Q is called a set of basic commutators.

(A.3.7) Theorem (Hilton-Milnor): Let Q be a set of basic commutators and
give Q any total ordering. Then the map

fl f1wc: fl fl! A` B - 111B,
CEQ CEQ

defined by using the multiplication in 01B in the order indicated by Q, is a
homotopy equivalence.
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The following recipe for the construction of a set of basic commutators, Q, is
available. We define and order Q inductively. The elements of weight 1 in Q
are the elements z1, ... , Zk with z 1 < ... < zk. Now suppose that all elements
of weight < w in Q are defined and ordered. Then an element in Q of weight
w > 1 is a bracket [a, b] where wt(a) + wt(b) = w, a < b, and if b = [c, d] then
c S a. The elements of weight w are then ordered arbitrarily among them-
selves and are greater than any element of less weight.

Proof of Theorem A.3.7 We indicate the proof for the wedge A V B of two
connected co-H-spaces (B1 =A, B2 = B). Since r2: A V B -+ B is the retrac-
tion we obtain by Proposition A.3.6 the isomorphism

V IAAB^r
rZ0

1I (*)(!z), + W.

ir,,(IA V IB)

Here the group V SB') with A' = v (A A B ^ r I r,-> 1} and B'= A
has again a splitting as in (*). This way we obtain inductively the proposition
of the Hilton-Milnor theorem. Since we assume A and B to be connected
the connectivity of the fibres is raised by the inductive steps. Such considera-
tions are also valid if A and B are not co-H-spaces.

Let g: A - B be a map. The fibre of the retraction A V B - B is the first
approximation of the fibre Pig of the principal cofibration ig: B ti Cg. To see
this we consider the commutative diagram of unbroken arrows:

T

(A.3.8)

A >4 OB f-
rr Pri - Pio t ) Pia 0 R

` 19 I IAvB = AvB -4 B
(g,1)

1r2 h o O li,
B Z CA V B

(erg 1) Cg

Here all columns are fibre sequences. Clearly, the map a, induced by r2, is a
homotopy equivalence. Thus for the map To, induced by (7rg,1), we obtain
T = To a -11r 1 by homotopy inverses of a and ir. The subdiagram O is a
push-out diagram which defines the mapping cone Cg; the map io is given by
the inclusion A c CA.

For the inclusion V c: W we have the natural isomorphism of relative
homotopy groups

irj (W,V) Ira (Pi)
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where P; is the fibre of is V C W. This isomorphism carries the homotopy
class of a pair map F: (CX, X) - (W, V) to the homotopy class of the adjoint
map F: X -> P, with F(x) = (F(x), ox), ox(t) = F(t, x). Now diagram (A.3.8)
shows that the diagram of homotopy groups

7.

(A.3.9)

irX(CAvB,AvB)
`

i (Cg,B)
(7"0.

commutes. Here we assume that X is a suspension and a CW-complex. A
map is V- W is n-connected if the fibre P; is (n - 1)-connected or equiva-
lently if i * : ir;V -> zr;W is an isomorphism for i < n and an epimorphism for
i = n. If is V - W is n-connected we know that

i * : fro (V) -''moo(W)

is an isomorphism if dim X < n and an epimorphism for dim X 5 n. This is
easily seen by the cellular approximation theorem since we may assume that
V is a subcomplex of the CW-complex W and that V contains the n-skeleton
of W.

(A.3.10) Theorem Let g: A -+ B be a mapping where A is (a-1)-connected.
Then

T:AA12B-'P,,

is (2a - 1)-connected, or equivalently (7rg,1)* in (A.3.9) is an isomorphism for
dim X < 2 a - 1 and an epimorphism for dim X S 2 a - 1.

Using (A.3.9) this result is a special case of the general suspension theorem
(V.7.6) Baues [AH], see also (3.4.7) Baues [OT]. A different proof of Theorem
A.3.10 can be obtained by Corollary A.6.3 below.

We point out that the maps q and q0 in (A.3.8) can be replaced by the
corresponding maps in Propositions A.3.5 and A.3.6 provided A and B are
suspensions. Moreover, the map r in (A.3.8) has the following property.

(A3.11) Lemma The diagram

AAfIB p A

r1

pi"

it

-- f) 5:A
A
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homotopy commutes. Here i is the adjoint of the identity on YA and A is induced
by the pair map jg: (Cg, B) --* (Y. A, *).

A.4 The loop space of a mapping cone

The loop space l B is the subspace of B' consisting of all paths o : I - B
with u(0) = o-0) = *. The loop space is an H-space by the addition of paths;
this addition, however, is not associative. Therefore, we also use the following
loop space of Moore which is a topological monoid.

(A.4.1) Definition Let QB+= {r E QB j r >_ 0). The Moore loop space SIB is the
subspace of BR* x IR+ consisting of all pairs (o,, k, ) where o,: if - B is a
map with r(0) = o (t) for t >_ ko. The space SIB is a topological monoid
by addition

(Q,ko)+(T,k,)_(Q+T,ko+k,)

with (o+TXt)= r(t) for t<k0 and (Q+TXko+t)=T(t) for t>_0. The
inclusion is SIB C SIB, r - (0, 1) is an H-map and a homotopy equivalence.

We now consider the loop space 11C5 of a mapping cone Cg where
g: YA -+ B is defined on a suspension YA. In this case we have the following
commutative diagram

A -+ CA

(A.4.2) SIB flCg

n n
SIB

n`8.
SICg

Here g is the adjoint of g and 4rg is the adjoint of

agT : Y. CA -+ CY, A -* Cg

where T interchanges the Coordinate and the s-coordinate. The map irg is
given by the definition of a mapping cone, see (A.3.8), and ig: B C Cg is the
inclusion.
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We derive from (A.4.2) the following push-out diagram in the category of
topological monoids:

J(A)
!(t°

J(CA)

1(g). push
1

(A.4.3) fZB Mg

Here (g) and (erg) are the extensions of g and irg in (A.4.2) which are
homomorphisms of topological monoids; J(A) is the infinite reduced product
of James, see Section A.2. For the push-out Mg we have the unique map
m which is a homomorphism of monoids and for which diagram (A.4.3)
commutes.

(A.4.4) Theorem Assume that the space A is connected and that B is 1-
connected. Then the map m in (A.4.3) is a homotopy equivalence of spaces. We
call Mg -+ flCg the model of 12 Cg.

Proof Using the work of Adams and Hilton [CA] and Lemaire [AC] we see
that m induces an isomorphism in homology and hence is a homotopy
equivalence since Mg and fIC5 are connected. The theorem can also be
considered as a very special case of the model construction in Baues [GL].
Theorem A.4.4 is the basic step for the CW-models of loop spaces of
Husseini [TC], [CR] and Toda [CS].

We obtain the topology of Mg by the surjective quotient map

(A.4.5) ir: U f1BX(CAXf1B)n

-Mg
n20

with where b;E
S1B and a; E CA. The monoid multiplication on Mg is represented by

(b0, a,, b,,..., an, bn + b0, a,,..., dn bn).

Clearly, the spaces

(A.4.6) Mn=or(SZBX(CAXf1B)n)

give us the filtration

SIB=M0cM, c cM c CMg
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of Mg. We obtain M from by the push-out diagram of spaces in
(A.4.7) below. For the pairs of spaces (X, A), (Y, B) we define the product as
in (A.1.10). Moreover, let

((CA) n'
(CA)on) _ (CA, A) X X (CA, A)

be the n-fold product as in (A.1.15) and let

T: (CA)° X
(fZB)"+'-*

(d1B) x (CA X flB)n

be the canonical permutation of coordinates. The mapping zr in (A.4.5) yields
the commutative diagram

T((CA)*" X (S B)"+') C U1 B) X (CA x fl B)"

(A.4.7)

C
1-
M

This diagram is a push-out diagram of spaces. For example M, is given by the
push-out diagram

flBxAXhB'fBxCAXf2B
(A.4.8) l-

f2 B

I
M1

with ir(bo, a, b) = bo + (ga) + b, for a e A and with g as in (A.4.2).
The pinch map j: Cg -> Cg/B = 12 A has the following property:

(A.4.9) Proposition The diagram

Mg m fl f C9

J(Y.A) f SZyZ A

homotopy commutes. Here g is the equivalence in (A.2.1) and j is defined on Mg
by

j(ao,b,,...,b,,,

where jo: CA - CA/A = IA is the quotient map.
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A.5 The fibre of a principal cofibration

Let g: IA - B be a mapping as in Section A.4 where 0B and A are
connected. For the principal cofibration ig: B N Cg we have the fibre
sequence

-> 11B flCg P. -B-Cg;

compare (A.3.8). The map i is the inclusion of the fibre q ' (*) = fl Cg. In
Section A.4 we constructed the model

Mg -=a 11Cg

for the loop space 11Cg. We now consider the fibre Pi, and we define a model
Ng for the space P, as follows.

a

(A.5.1) Definition Let - be the equivalence relation on Mg which is
generated by x - i(b) x for b E fiB, x E Mg. We define Ng by the quotient
space Ng = Mg/ - . Let

v: Mg-Mg/'=Ng

be the quotient map.

(A.5.2) Theorem There is a canonical homotopy equivalence n such that the
diagram

Cg -. P;`
=Im =In

Mg Ng

homotopy commutes.

We prove this theorem, which is a basic result of this chapter, in (A.5.10)
below. The filtration of Mg in (A.4.6) induces the following filtration on P.
Let N,, = v(M,,) be the image of the subspace M,, of Mg in (A.4.6). Then
clearly we have the filtration

No= * cN,cN2c ... cN,,c ... cNg

on Ng. From (A.4.8) and Definition A.5.1 we derive

(A.5.3) N, = CA x fIB/A x f2B = (IA) x flB.
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(A.5.4) Proposition The mapping T in (A.3.8) makes the diagram

(IA) X flB = N, C Ng
=T(-1)bi =In

(IA) )4 SZB T P's
homotopy commutative.

We prove this result in (A.5.11) below.

(A.5.5) Theorem The inclusion

445

N. - I C N.

is a principal cofibration with attaching map

wn: In-1AAn X (flan) -An

where (1 Bn = f I B x ... x fl B is the n fold product.

Proof The mapping vir with v in Theorem A.5.2 and IT in (A.4.7) gives us
the push-out diagram of spaces (compare (A.4.7)):

(CA)°" X (11B") c (CA x (1B)"/(* x f1B)n

Nn-1 C
I

Nn

(1)

Here we use the fact that Pa(* x (IB)n = * by Definition A.5.1. We omit
the obvious permutation T in (1); see (A.4.7). Now i in (1) is a closed
cofibration into a contractible space. Therefore i is equivalent to the inclu-
sion into the cone. Moreover, we have the homotopy equivalence

(CA)onIn-1Ann

n (2)

which is the iterated join construction in (A.1.15). Now the mapping wn is
given by

(on = vir(hn X (S Bn)).

The results above are also available for the trivial map g = 0: IA - * = B.
In this case Ng is essentially the reduced product space J(IA) in (A.2.1). The
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reduced product filtration J"(Y.A) corresponds to the filtration of Ng above.
The inclusion

(A.5.6) J"_ ,(IA) CJ"(IA)

is a principal cofibration with attaching map

(A.5.7) W": y" 1Ann

Here W" factors through the higher-order Whitehead product map

W": In-'A _T° 'rJ" 1(.A)

where (Tn, 7 (I A, *)"; see (A.1.16). The map -7r is the projection in
(A.2.1). In particular

W2 =I' MAI 11A I: IA AA -1A

is the Whitehead product for the identity 1YA of Y.A. Theorem A.5.5 shows
that Ng has an iterated mapping cone structure which generalizes the
one of J(IA). We now compare Ng and J(IA) by using the quotient map
jg: (Cg, B) (1Z A,*).

We consider the homotopy commutative diagram

Ng n P;
8

(A.5.8) Ij lA

noJ(IA) ZEEA

where A is induced by the pinch map jg as in Lemma A.3.11 and where

no = (flT)gfA = (cl(-1))gEA

is given by the homotopy equivalence 9 Y A in (A.2.1). The map T: 12 A -> 12 A
with T(t1, t2, a) = (t2, t 1, a) is homotopic to - 1 where 1 is the identity on
2 A. We define j in (A.5.8) by

j(b1, al,..., bn, an) = (j0a1)..... (Joan)

where jo: CA - la is the pinch map; see Proposition A.4.9. We derive from
Proposition A.4.9 that (A.5.8) actually homotopy commutes. Moreover, by the
proof of Theorem A.5.5 we obtain:

(A.5.9) Proposition The map j in (A.5.8) is filtration preserving and the pair
map

j: (Nn,Nn-1) -+(Jn,Jn-1)
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with Jn =Jn(EA) is a canonical map between principal cofibrations, that is: the
attaching maps can be chosen such that the diagram

In -1AAnA1Bn Pr--'A
I W"

Nn-

Iw
Jn-1

commutes and there are homotopy equivalences for which the diagram

C., CWI

1s -1
Nn -' Jn

homotopy commutes relative to Nn _ 1. Here j is the map J= j U C(pr).

Recall that the map Cr: CU --> CV denotes the cone on r: U -p V with
(Cr)(t, u) = (t, ru) for t E 1, u E U.

(A.5.10) Proof of Theorem A.5.2 For a path-connected topological monoid M
let

BM: A°P -* Top (1)

be the geometric bar construction; see (1.1.5) in Baues [GL]. The realization
of this simplicial space, IBMI, is a classifying space for M. As in (1.1.6) in
Baues [GL] we have the quasi-fibration

M --->IEMI -->IBMI (2)

where I EM I is contractible. A space B gives us the homotopy equivalence

IBSIBI = B. (3)

For the inclusion is f2B c Mg of monoids we consider the pull-back

i'IE,yal c IEMRI

19 1 (4)
B=IBfBI C IBMgI

i

Clearly, we have a homotopy equivalence n1 for which

Mg -m-> S1Cg

(5)

i*IEM I -, pi
R nl x
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homotopy commutes. We now define a map n2 for which

(6)

Mg/' = Ng ? i* I EMgI

is commutative and we show that n2 is a homotopy equivalence. First we
observe that i* I EMSI is the realization of the following simplicial space F,

F: 0°P - Top

F(t(n)) _ (f1B)
n

xMg

F(do) =pr1: (SIB)" xMg - (c1B)n-1 xMg

F(di) = µi: (SIB)" x Mg -- (SZB)"-1 x Mg (7)

for i = 1,2,...,n
F(si) =Ji+1: (SIB)n 1 xMg - (1B)- xMg

for i = 0,1,...,n - 1.

Here di are the face operators and si are the degeneracy operators in the

simplicial category °P; see §1 in Baues [GL]. Moreover

AL'i(X1,...I XI) = (xi,...,xi'Xi+I,...,xn)

pri(x...... xn)= (xl,...,xi-1,Xi+l,...,x")

li(x1,...,xn)= (x1..... Xi-1, *,xi,...,xn).

We have by definition in the proof of 1.1.6 in Baues [GL] the canonical
equivalence

I FI = i* I EMSI (8)

of realizations. The projection q in (4) is the realization of the natural
transformation

q: F -'BSIB (9)

with

rt rt

q =prn+ 1: F(O(n)) = (SIB) X Mg --> (SIB) . (10)
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We now define n2 in (6). Let

n2: 1F1 -> Ng (11)

be induced by the projections

W x MB)n XMg ->Mg-v->Ng.

We have to check that n2 is well defined. In fact, this is clear by definition of
µn above and by Definition A.5.1. Moreover, it is clear that n2 makes (6)
commute since j in (6) is given by

Mg = Do x F(O(0)) c IFI.

We now claim that

IEnBI C IFI Ng (12)

is a quasi-fibration with fibre I En B I. Since I En B I is contractible we conclude
that n2 is a homotopy equivalence. Thus by (5) and (6) we have the
proposition in Theorem A.5.2.

For the proof of (12) we consider the restrictions:

IFIn-1 cIFIn c IFI

IPA-1 lPn
lnz

N.- 1

c 11N,, c Ng (13)

with IFIn = nZ'(N,). By definition of F in (7) and of n2 in (11) we see that

IFIn = IEiiBI. (14)

Now we assume that pn is a quasi-fibration with fibre I En B I. In (1) of the
proof for Theorem A.5.5 we obtained a push-out diagram for the inclusion
Nn _ 1 C N,, which gives us the push-out diagram

(CA)°n x (nB)
n

c (CA x
I1B)n

Vir I - (15)

N,, C N.

It is clear from the definition of F, that if we pull back IFI, over vir, we have

n

(vir)' IFIn = IEn8I x (CA x (IB). (16)
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Therefore we obtain a push-out diagram

I EfBI X (CA)°" x (flB)" C IEnBI X (CA X (B)"

1 I
IFI"- 1 c If 1.

lying over the push-out (15). The push-out property of quasi-fibrations (see
Hardie [QA]) gives us the result that p" in (13) is a quasi-fibration. Thus also
nZ is a quasi-fibration (see V. Puppe [RH]).

(A.5.11) Proof of Proposition A.5.4 Since the mappings in Proposition A.5.4
are equivariant with respect to the action from the right of f1B we obtain the
result by proving that the following diagram homotopy commutes:

Now T I )A corresponds to the map Y .A - WCI A which is adjoint to the
identity of CIA. However, nI EA corresponds to the map s: IA - WCIA
given by

s(T,a)(r) = (0,1 - 2r + 27-r, a) E=- CIA

for 0<T< 1 and

s(T, a)(r) _ (2T- 1, r, a) E CIA

for 1< T < 1, r E I, a c -A. In 7r A(CYEA, Y .A) the mapping s represents the
element -'CIA*

(A.5.12) Remark For the special case that g: Y .A -> B = Y .B' is a map
between suspensions we gave a different proof of Theorem A.5.2 in Baues
[RP]. This proof relies on a construction of Gray [HM] which is only available
if B is a suspension. All results in Baues [RP] are special cases of the results
in this chapter.

A.6 EHP sequences

For a map g: IA ---> B we have the isomorphism

(A.6.1) (7rg,1)*: 7r"(CIAVB,Y.AVB)-7r"(Cg,B)
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between relative homotopy groups. In this section we embed (1rg,1) * into a
long exact sequence which generalizes the EHP sequences of James. This
shall give us a fundamental tool for the computation of the groups 1r (Cg, B).
Ganea [GH] and Gray [HM] also studied the homotopy groups of a mapping
cone. The improvement here is the fact that the exact sequences below are
available in a considerably better range of dimensions. The map - 1: Y,A ->
)A induces an automorphism of 1r (I A) which we denote by (-1) * .

(A.6.2) Theorem Let A be connected and let B be 1-connected. Then we have a
commutative diagram

a.+i(Cg,B) -Y'

1).(j8). 1. vB)

(y2 A) - A,1.A)
v

'

NI) a+ 1r,(CMA V B, I.A V B)

I - lid

(n6. ))

E

-a

1).(18).

Y

in which the rows are long exact sequences. Here jg is the pinch map and
j: Ng -> J I A is defined in (A.5.8); r, : I A V B -,, I A is the retraction.

Clearly, if B = * is a point all vertical arrows in the diagram of Theorem
A.6.2 are isomorphisms. The bottom sequence in the diagram is the classical
suspension sequence of James [ST] which is given by the use of the equivalence
9Y,,: flY.I.A =JY.A in (A.2.1). The operator y is the composite

Y 2 A) = A) (g4 -) 7r (JEA) I A).

The operator d is the usual boundary operator and I is the suspension. We
now define the operator y by

B) = N)

Moreover, the operator a is the composite

1r

see (A.3.8). For N, = IA A 0 B the map -1: N, -+ N, is - 17A A 12 B.
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Proof of Theorem A.6.2 We consider the map of pairs

j: (Ng,N,) -> (JXA,LA)

which induces a map of the corresponding long homotopy sequences. Now
the proposition is a consequence of Theorem A.3.10, Proposition A.5.4, and
Theorem A.5.2.

This shows that a result as in Theorem A.6.2 is also available for the
hornotopy functor inx instead of Ir,,; compare (I1.7.8) in Baues [AH].

If 1A is (a - 1)-connected we derive easily from the iterated mapping
cone structure of JY.A in (A.5.6) that (JI.A, Y.A) is (2a-1)-connected.
Therefore the exactness of the James sequence gives us the classical suspen-
sion theorem of Freudenthal. More generally, (Ng, N,) is also (2a - 1)-
connected, therefore we obtain from the exact row in Theorem A.6.2 the
following special case of Theorem A.3.10.

(A.6.3) Corollary Let EA be (a - 1)-connected and let B be simply connected.
Then Or.,1), in (A.6.1) is epimorphic for n < 2a and an isomorphism for
n <2a.

We can apply this corollary to the principal cofibration N, c N2 in Theo-
rem A.5.5. The attaching map for N2 is

(A.6.4) C02: (YA AA) >4 (SZB)2 - (YA) >c fiB = N,

and thus we obtain (compare Theorem A.6.2):

(A.6.5) Corollary Let EA be (a - 1)-connected and let B be simply connected.
Then

Or.,, 1). d-': IT,-,(XA AA >a (flB)2 V EA >4 f1B)2 -> N,)

is epimorphic for n < 4a - 2 and is isomorphic for n < 4a - 2.

Clearly from the iterated cone structure of Ng we see that

(A.6.6) N,) --> N,)

is epimorphic for n:!5; 3a-1 and is isomorphic for n < 3a - 1 in case Y .A is
(a - 1)-connected. Thus in the appropriate range of dimensions we can
replace the group 7r (Ng, N,) in Theorem A.6.2 by the groups in Corollary
A.6.5. This leads to the following corollary of Theorem A.6.2.
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(A.6.7) Theorem Let YEA be (a - 1)-connected and let B be 1-connected and
let g: IA - B. For n < 3a - 1 we have the following commutative diagram with
exact columns:

7rn-I(Y.A X DB)

IEg
(- 1). pr.

1y

7rn(Cg, B) A)

IH8 1IH

7ri-2(X.A AA >a 1ZB2) P- ' 7rn-2(T.A AA)

IPS I P

7rn-2(>A >a SZB) 7Tn-2(Y.A)

IEg
(- I )* pr.

11

The map pr is the projection and we set

Pg=(-1)*(w2)*, P=[1YA,1EA1*

Moreover, for n = 3a - 1 the following commutative diagram extends the dia-
gram above such that the columns remain exact:

773a-2(Y.A AA >i OB2 V IA)2 (prv1)1).
7r3a-2(I A AA V IA)2

I(-1).('Z.id. 1([1%AI1fA' 11A).

IT3a-2(IA > fB)
(- 1). pr.

Addendum For the operator Eg the diagram

7r3a-2(EA)

7rn_ 1(Y.A >U SIB) µ 7rrt_ 1(IA v I,A A f1B)

I --g (g, [g, RBI).

7rn(Cg,B) 7T,-,(B)

commutes, where µ is defined in (A.3.2) and where [g,RBI is the Whitehead
product of g and of the evaluation map RB: I fl B - B. If B is a suspension we
can replace [g, RB) by use of Proposition A.3.6.
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Proof The operator Eg is defined by

iTn-,(Y.A >4 f1B)
E(arn).

7Tn 1(P,) = 7rn(CIA V B, 1A V B)

I (irg,1).

7rn(Cg, B)

or equivalently by

Eg: 7rn-,(1 A >i flB) - . 7rn- t(P,x) _ B)

where T and Ira are defined in (A.3.8). The operator Hg is defined for
n+1<3a-1by

7rn+,(Cg, B) _ ?fn(Pi,) n- iTn(Ng) j
Hg

x
7rn(Ng,NI)

7rn- I(IA AA >4 1ZB2) 7rn(N2, Nl)

where we use Corollary A.6.5 and (A.6.6). The operator H is similarly given
by

A) = 7rn(flY. A)
(g IA).

7T,,-,(Y.A AA) 7rn(J2GA, 1A)

7rn(JY.A, Y.A)

where we use the equivalence in (A.2.1). If B is a point all horizontal arrows
of the diagram in Theorem A.6.7 are isomorphisms and one easily checks that
in this case the diagram of Theorem A.6.7 commutes.

The proposition of Theorem A.6.7 is a consequence of Proposition A.5.9,
Theorem A.6.2, and Proposition A.3.5. We have

7r3a_2(Y.A AA >1 )B2 V IA)2 = 7r3a-2(Y.A AA >4 11B2 V EA >a ,fiB)2

since 7r3a-2(1A AA AA A fIB)=0. 0

(A.6.8) Proposition For the operator H in Theorem A.6.7 and for the
James-Hopf invariant 72 the following diagram commutes:

7r (1(IA)) - 7r (T.(F,A AYEA))r: n

H = I(-0.
7rn-2(111Y-A

AA) 7rn(Y.3A AA)

IH
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Here v(t1, t2, t3, a, b) = (t1, t2, a, t3, b) for t, E I and a, b EA. Since EA is
(a - 1)-connected and since n < 3a - 1 the operator II is an isomorphism.

By the isomorphism (q0)* in Proposition A.3.4 we derive from Theorem
A.6.7 the following exact sequence in which the operator Pg has a simple
description.

(A.6.9) Theorem Let g: IA - B and let IA be (a - 1)-connected and B be
(b - 1)-connected, b >- 2. Moreover, let A be a co-H-space. For n < min(3a -
1, 2 a + b - 1) we have the exact sequence

7r,-1(Y.AVB)2-
Eg Hg P" Eg

Here Hg is defined in Theorem A.6.7. Eg is given by

Eg = Eg(go.)-' = (7rg,1) * d-',

and the operator Pg is induced by a Whitehead product:

Ph = (q0) * Pg = [i1, i1 - i2g] *

where i 1 and i2 are the inclusions of Y .A and B respectively into 1A v B. If
n = 3a - 1 < 2a + b - 1 the exact sequence has a prolongation

7r3a-2(LA AA V ).A)2- 7r3a-2(LA V B),

with Pg = ([i1, i1 - i2g], -i1)*.
For the operator Eg the diagram

7rii-1(EA VB)2 C

IEa

7r,,(Cg , B) a-

7ri-1(Y.A vB)

I(g. 1).

7r, -1(B)

commutes. Here d is the boundary operator. As in Theorem A.6.7 the
(EE, P;, Hg)-sequence forms a commutative diagram with the (E, H, P)-
sequence.

Proof By the assumption on n we know

7ri_2(Y.A AA) = 7ri-2(1A AA >4 fB2).

Moreover, we use the isomorphism (q0)* in Proposition A.3.4. We have to
check that

(qo)*Pg=[i1,i1 -i,g]*.
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Here we use the formula for 0g2 in Theorem A.7.4(a) in the next section.
Now (q0) * Pg is induced by

(q0(-1)(02)I£A A A = (11, PI ,[2RB])w 2

= (i1, [i),i2RB])([a,a] -NIA A g))

= [i1,i1I - [i1,i2RB](EA Ag)

= [i1,i1] - [i1,i2g] _ [i1,i1 -i2g].

Here we use RB(Ig) =g in (A.1.19), and we use the bilinearity of the
Whitehead product.

A.7 The operator Pg

The operator Pg is induced by the mapping (-1)02. This mapping can be
described as follows. By the homotopy equivalence µ in (A.3.2) we obtain the
homotopy commutative diagram

(A.7.1)

)A AA X(flBxfIB) YEAAIB Y.AXfIB

Y.AAA A1AAA A(fIBXfIB)

-1µ

µ

LAAAA(S°vf2Bvf2BV(OB)n2) 8 i, L,AVL,AAf1B

where 02 is defined in Theorem A.5.5. The homotopy equivalence µ is given
by

(A.7.2)
µ0: XX1 XX2) =Y.X1 V Y.X2 V Y.X1 AX2

µ0 =i1(Y-p1) +i2(y'p2) +i3("r)

which we easily derive from the exact sequence (A.1.1). The homotopy
commutative diagram (A.7.1) defines up to homotopy the map 0g. This map
has the components

(A.7.3) Wg = (W12, 0g23, 0g24, 0g234)
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given by the restrictions of wg to the factors of the V -product. We denote by

a: IA c IA v LA A fIB and b: I.A A f1B c EA v IA A SIB

the inclusions and by

HB=HAB:

the Hopf construction on the loop addition map; see (A.1.21). Moreover, for
n1,...,n,E(ml < <m,j let

T.,,..., n,: Xm A ... AXmk -*X,, A ... AX,,

be the shuffle map mapping the tuple (Xm , ... , Xmk) to (xn , ... , xn) with
Xm _ E Xm.. In the following theorem we set

(A.7.4) Theorem Let A be a co-H-space. Then for a map g: Y. A -> B and its
adjoint g: A -* fIB the components of wg are given by the following formulas:

(a) for o2 e[1X1 AX2, IA VIA AfT1B] we have

w912=[a,a]-b(IAAt);

(b) for 1.823E[IX1AX2AX3,IAVIAASIB]we have

1.123 = [b, a]T b(A A H)(IA A SIB Ag-)Tg 132 B t32 ;

(c) for 1.824E [IX1 AX2 AX4, IA VIA A SIB] we have

(0824 = [b, a]T142 + [a, b] + [b, b]T1424 - b(A A HB)(IA A g A SIB);

(d) for (08234 E [1X1 AX2 AX3 AX4, EA V IA A SIB] we have

1.8234 = [b(A A HB ), a ]T1342 + [b(A A HB ), b ] T13424

+[b, bIT1324

-b(A AHB)(A Af1B AHB)(IA AfIB AgAfIB)T1324.

Thus, all components of 1.g are expressed solely in terms of the Whitehead
product, the Hopf construction HB, and the adjoint g. Clearly, by (A.7.1), we
can replace the operator Pg in Theorem A.6.7 by the operator (wg),, with wg
described in (A.7.1) and Theorem A.7.4.
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Proof of Theorem A. 7.4 For a product X = X, x ... x X of spaces and for
E { 1, ... , n} we denote a map

T: (Y.X)/- - (Y-(X; X ... Xx1 ))/= (1)

by T = T,... j, if

[t,x; ,...,xi.]=

for t E I, x; E X;. Here - and = are equivalence relations and [x]- is the
equivalence class of x in (M/=. Now let X =A xA x lB x 0B. We
derive from the definition of w2 in Theorem A.5.5 and from (A.1.12) that the
following diagram homotopy commutes

FX

1T,?,.

EX, AX-, > (X3 xX4)

Here we have

with

--- U = EX, V T.X, A (X2 X X3 X X4) V IX2 V EX2 AX4

I-

TA(- Ow,

m = (a,b(Y.A Amg),a,b)

mg:X,XX3XX4-+flB
mg(a,b,,b2)=b, +g(a)+b2.

The map is the sum

°P1 +P134 +P2 +P24 -P1234 -P1 -"P24 -P2

where p; is T followed by the inclusion into U. In particular
the composite

A(X2XX3XX4)CU.
T,34

Let j12: "I x X2) -> F,X be the inclusion. Then we have

G12 =P1 +P2 -P12 -P1 -P2

with P12 =P134j12.The commutator rule (A.1.3) shows that

tSj12 = (-P1, -P2) -P12 = (P1,P2) -P12-

Therefore we have

IAVIAASlB
(2)

(3)

(4)

P 134 is

(5)

Ti (wg2)=m*Sj12=T1*2([a,a]-b(IAAt)) (6)

and thus (a) is proven.
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We now compute Pg = Wg i1 fA A A,, Y with Y= flB x SIB; see (A.7.1). As
in (A.7.2) we have the equivalence

µo: Y'(X2 X Y) = Y-Uo
U0 =X2VYVX2AY.

This gives us

µo:U-_"U'=1X1 VY.XIAU0V1X2V1XZAX4.

We consider

Tz34Pg= -mG12+mf=m*(-6112+0 (7)

Let mo: U' - IA v IA A SIB be defined by

moµo=m. (8)

Then we derive from (7), (5), and (4)

T234Pg= (MO) * CO (9)

where

o= -NLo6J12+/l0

-(PI +P2 -P12 -P1 -P2) +P1 +P134 +P2 +P24

-(P12 +P134 +P1234) -"P1 -P24 -P2

Now the commutator rule (A.1.3) shows

6o = (P]341P2) + (P134,P24) -P1234 + (PI'P24)

(10)

where ( , ) denotes the commutator. Clearly, all these commutators corre-
spond to Whitehead products lying in the group [I X1 A X2 A Y, U']. Using
the definition of the Hopf construction H. = HAB in (A.1.20) we are able to
compute from (11) the term (mo)*(60). By (9) this yields the formulas (b),
(c), and (d) in Theorem A.7.4.

(A.7.5) Corollary Let g: IA -B be a map where A is a connected co-H-space
and where B is simply connected. For the mapping (dg in (A.7.3) the composi-
tion (g,[g, RB])wg is null-homotopic.

Proof The following diagram homotopy commutes

EAxSIB=-=F,AxfB µ IAVIAASIB
i r

n 4
Ng Pi,

I (g,[g. RB1)

B
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Compare Proposition A.3.5, (A.3.8), and Proposition A.5.4. Now the corollary
follows from Theorems A.7.4 and A.5.5.

The relation in Corollary A.7.5 is not a `new' homotopy relation since

(A.7.6) Theorem The formula

(g,[g,RB])*wg=0

can be proved by use of the Jacobi identity (Corollary A.1.9), the relation in
Proposition A. 1.23, and by (A. 1.19).

Proof Since g = RB(1g) we see from (A.1.19) that

(g, [g, RB ]) * &,g2 = [g, g] - [g, RB ](EA Ag)

is trivial. Moreover, we derive from Proposition A.1.23 and (A.1.19) the
equations

(g,[g,RB])* wg23 = [[g, RBI,g]T132

-[g, RB](A AHB)(Y.A A flB Ag)T132

= [g, [g, RB]] - [[g, RBI, RBI(Y.A A 11B Ag)TI32

= 0.

Similarly, we derive from Corollary A.1.9, Proposition A.1.23, and A.1.19 the
remaining two equations for (c) and (d) in Theorem A.7.4. For (d) we apply
Corollary A.1.9 with a3 = [g, RBI, a1 = RB, a2 =g.

We now consider the special case where g in (A.7.1) is a map between
suspensions. For a map

g: I.A -p lB (B connected)

we derive (A.7.1) the mapping Wg for which

(A.7.7)

IA AAAf1Afl 109
YEAAfl

= 1 T1324

IA A AA A fl

= I(A AJB)# (A AJB)

IA AB* AA AB*

AAJB

w IA AB*
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homotopy commutes. Here we set

S2=S°vf lB, B*= V B^",
n20

Bn0=S°.

The homotopy equivalence A A JB is described in Proposition A.3.6. Let

i":

for n 0 be the inclusion.

(A.7.8) Theorem Let A be a co-H-space. Then for n, m 0 the map Wg in
(A.7.7) satisfies the formula

WWIEAAB""'AAAB""= F, [im+#a, #b]va,b
aub=n

lr+m+n(A AB Ar A')'r(g) AB A ").
r2I

The first sum is taken over all pairs (a, b) of subsets a, b c n = (1, ... , n} with
a U b = h. 7he shuffle map

va b: Y.AABAm AAABAn-IA AB ^(m+ra)AA ABA#b

is defined by

V.,b(t, u, X, v, y) = (t, u, X A ya,V,Yb)

for t E I, u, v E A, x E B " M, y E B ^ "; compare (A.1.3). The James-Hopf
invariants yr(g) are defined in Section A.2.

If B is a co-H-space Va, b is trivial if a f b is non-empty. Theorem A.7.8 is
a corollary of Theorem A.7.4 by use of (A.1.19) and Propositions A.2.8 and
A.2.9. We proved Theorem A.7.8 in a slightly different way in Baues [RP].
Again we can replace the operator Pg in Theorem A.6.7 by (A.7.7) and by the
operator (Wg),R where Wg is given by the formula in Theorem A.7.8. This is of
great value for the study of the groups lr"(Cf, B) for n:5 3a - 1. Explicitly we
obtain the following result which is a special case of Theorem A.6.7.

(A.7.9) Theorem Let A be a co-H-space. Let YEA be (a - 1)-connected and
let I B be 1-connected and let g: I A -. EB be a map. For the relative homotopy
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groups of the mapping cone (Cg, 1B) we
diagram with exact columns, n 5 3a - 1.

fin- 1(Y.A A B*)

IF,

irn(Cg, EB)

In.
7rn-2(F.A A B* AA A B')

(W,)

'rn-2(IA A B*)

J E,

1rn-1(Cg, Y.B)

have the following commutative

(( 1). pr.

(- 1). (la).

'fin-1(1.A)

ly
in(12 A)

lH
'r,,-2(Y .A AA)

I P

1rn-2(Y.A)

lY
1rn-1(y 2 A)

The map pr is induced by the projection B* - S°; recall that B* = S° V B V
B A 2 V . The map Wg is defined in Theorem A.7.8. Moreover, for n = 3a - 1
the following commutative diagram extends the diagram above such that the
columns remain exact:

1r3.-2(LA AB* AA AB* V IA)2
(prvl)1). ` lr3a-2(Y 4 AA V 1A)

1(W8.-i0). I" 11,1).

IT3a-2(IA AB*) (- 1). pr ir3a-2(L'A),

Here i° is induced by S° c: B*.

Addendum For the operator Eg the diagram

1rn-1(Y.A A B*)
_a

WlE
7r,(Cg,F.B) -a 1rn_1(1B)

is commutative where

is the i-fold Whitehead product: clearly, for i = 0 we set WEA =g. Compare
Proposition A.3.6 and the addendum of Theorem A.6.7.
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Proof of Theorem A.79 We define Eg by the composition (see Theorem
A.6.7):

n B=) = >a f IB) E ir,,(Cg, B)
a

where the isomorphism is induced by µ in (A.7.1) and by A A JB in (A.7.7).
We define the operator Hg by the composition (see Theorem A.6.7):

$B) H iri-2(Y.A AA >4 f2(Y.B)2) __ iri-2(Y.A A B= AA A B=).

Here the isomorphism is induced by µ,µ in (A.7.1) and by

(A AJB)#(A AJB)T1324

in (A.7.7).

A.8 The difference map V

The difference operator V is of importance for the computation of the left
distributivity law for maps between mapping cones; see also (11.2.8) Baues
[AH]. Let g: A --> B be a map between connected spaces. Then the difference
operator V is induced by a map V0, namely, there is a commutative diagram

Trx(Cg, B) v ' ir; (:A V Cg)2

'II
iro (P,) ) -rroY(ft(Y,A v Cg))

The map Vo is constructed as follows. The inclusions i,: EA c IA v Cg and
i2: Cg c 1A V Cg yield the map

12+i1:Cg ->Y.AV Cg

which we defined by the cooperation on the mapping cone Cg. We consider
the diagram

f2(IA A flCg)
V/

(A.8.1) Pig v fZ(IA V Cg)

Inr2
f2Cg
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with V0(b,o-)_ -i2o+(i2+i1)o for (b,o-)EP, cBXWCg,o(0)=ig(b).
The element -i2 o-+ (i2 + i1)o is given by addition of paths in EA V Cg. It is
clear that this element is actually a loop in Y.A V Cg. We call V. the
difference map for the mapping cone Cg. It is easy to verify that Vo actually
induces the difference operator V as described above.

Since in diagram (A.8.1) the composition ((1r2)Vo is null-homotopic there
is by (A.3.1) up to homotopy a unique map V which lifts V0, that is
(flgo)V = V0. Let

V: Y.P,, -> Y. A A f)Cg

be the adjoint of V. We shall prove:

(A.8.2) Theorem If A= YEA' is a suspension and if A' and (B are connected
then V is a homotopy equivalence.

This result is proved in Theorem A.8.13. We point out that V is a
homotopy equivalence for any map g: A -* B where A and B are connected.

(A.83) Remark If B = * is a point we have Cg =1 A and P; = f Y.A. In
this case it is well known that there is a homotopy equivalence as in Theorem
A.8.2, namely

I
P ;

s
=Y. fl 1A - = + V EAAr=1AV AA(V AAr)

JIA r2I `r2I //

Iv(AAJIA)

Y.A V YEA A SlLA (1)

1AAf1Cg= YEAA[l A

compare (A.2.5) and (A.3.2). The equivalence, however, does not coincide
with the canonical map V. In fact, we have the homotopy commutative
diagram

ESZY. A YEA A f11A

=1J'-A

=1V 1AAr C a V 1AAr
r21 r2I

(2)

The vertical arrows are the homotopy equivalences which are defined by the
row and the column of diagram (1) respectively and c is the map with

Here cr(j1, ... , jr) is the element defined in the proof of
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Theorem A.9.5 below. By (6) in the proof of Theorem A.9.5 we see that c is a
homotopy equivalence.

We define the map A by the homotopy commutative diagram

D(Y.A x fly) x flY --A-;I l(IA x fly)
(A.8.4) =j =j

1(A x f1Y) x lY -- 1(A X fly)

where the homotopy equivalences are defined as in (A.2.1). The map A is
given by the formula

A((a1,o )...(an,a,,),a)=(a1,a1 +a)...(a,,,o +a)

where a1 E A, a;, a E fly. It is easy to see that A is a well-defined map. The
map A is used in the following diagram

P;8xfC5 yx1,l(IAX1lCg)xfCg

IA
IAsVi

flCg cP;` ffl A x flCg)

where µ is the operation and i is the inclusion. The map A ® Vi is defined by
(x, y) H A(x, y) + (Vi)y where + is the addition of loops in ft(Y. A x f2Cg).

(A.8.5) Theorem This diagram homotopy commutes.

Proof We consider

P', x lC
v°x 1,

MIA V C) X IICa 8 8 g

(1)

F;
R

yu

1, ®v,

f2(IA V Cg)

with I(x,a)= -i2a+x+i2a. We set (I®VoiXx,a)=I(x,a)+Voi(a).
Now (1) homotopy commutes as we see by the homotopies

Voµ((b, a), a') = -i2(a+ a') + (i2 +i1)(a+ a')

= -12a' -i2a+ (12 +11)a+ (i2 +i1)a'

-i20'+V0(b,a)+i2a'+V0(*,a').

Now f1g0 in (A.8.1) induces a monomorphism (lq0)* on homotopy sets.
Therefore Theorem A.8.5 follows from the following lemma and (1). 0
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(A.8.6) Lemma For a space Y the diagram

f2(MA >a IIflY) x OY tngo)x I SZ(EA V Y) x flY

lA 1,

11(EA >a f1Y) 09o f2(Y,A v Y)

homotopy commutes. Here I (XI o) = -'2 0 + x + i 2 o- and q0 is defined as in
Proposition A.3.3.

Proof Let is A x flY- 0Y.(A >G flY) be the adjoint of the identity and let

i": (A >c f2Y)" - ffl (A >4 f)Y)
i"(x...... x") =i"-'(x1,...,xn-,)+(ixn), i' =i.

It is enough to prove that for all n >: 1 we have

I((11go) x 1)(i" X 1) = (flgo)A(i" x 1). (1)

But if (1) holds for n = 1, then by definition of A we see that (1) holds for all
n. In fact, we derive this from the following homotopies with xi = (a;, o;) for
i = 1,...,n.

(f g0)A(i" x 1)(x,,...,x",Q)

(f q0)i"((a,,o,+o),...,(an,on+o)) (2)

+o) (3)

= -i20'+(nqo)(aI,o,)+i20'-i2o+(lgo)(a2,o2)+ (4)

-i2o+(1Zgo)i"(x,,...,xn)+i2o

= I(fIgo x 1)(i" x 1)(x,,..., xn, o).

(5)

Here (2) follows from the definition of A, (3) from the definition of i", and
(4) is a consequence of (1) with n = 1. (5) follows from the standard homo-
topy o - o = 0. For n = 1 (1) is a consequence of the following lemma. 0

(A.8.7) Lemma For a space Y the diagram

A >A lY A X OY

1Z(EA >c fY) 9 f2(IA v Y)
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homotopy commutes, where IT is the quotient map and where 10(a, o) _
-i2o+i,a+i2Q with a=iafori:AcflY.A.

Proof It is easy to see that

W AxflY) +i AxflY
Inµ

fl(Y.A V 1A A flY) IT

fl(EA v 10Y) - - A x flY

homotopy commutes with I1(a, o) = -'2 & +'14' + i 2 &; compare Proposition
A.1.2. Thus we conclude Lemma A.8.7 from Proposition A.3.5. Clearly,
Ry&= o and (f1(1 v Ry))I1 = Io.

For the mapping r in (A.3.8) we obtain the diagram

LA x flB c EA >4 flC5

(A.8.8)

7. Pi,

where the inclusion is 1 )4 flig.

Proposition (A.8.8) homotopy commutes.

Proof This follows from Theorem A.8.5 since

A x f1B - P;F x f2Cg
TlAxnitl lµX flB T P.

x

homotopy commutes and since Vo(r I A) is the inclusion of A. Clearly, Vo I fl B
and thus Vi I a B is null-homotopic.

We now replace A above by the suspension IA so that g: EA -+ B. We
assume that A and AB are connected. We want to give a combinatorial
description VN of the mapping V, that is we want to describe explicitly a map
VN for which the diagram

(A.8.9)

Ng -a J(IA>4Mg)

P, v fl(IIA A flCg)
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homotopy commutes. Here n is given in Theorem A.5.2 and m is defined by
(A.2.1) and by m in Theorem A.5.2. The mapping V on P;d is defined in
(A.8.1). Let

v : Mg - Ng

be a quotient map in Theorem A.5.2 and let

is Cg CMg

be the inclusion of the mapping cone of g: A - f1B given by i U ITICA in
(A.4.3). Each element in Mg is of the form

X, X"

where x; E Cg, i = 1, ... , n, n 1. Each element in Ng is of the form

[x1 ... v(x, ... X").

Let

.lo:C,- 5:A --I P Y.A

be given by the pinch map. We define VN in (A.8.9) by the formula

(A.8.10)

This is the product in the monoid J()A >4 Mg) of the elements

(Iox1, x1+ I *xi+2' ... E EA >4 Mg

with i = 1, ... , n. One can check that VN is a well-defined map.

(A.8.11) Theorem For the mapping VN in (A.8.10) diagram (A.8.9) homotopy
commutes.

It is easy_to see that (A.8.9) is homotopy commutative if we restrict to
N, = Y.A A4 fIB; compare (A.8.8). Moreover, VN in (A.8.9) yields the following
commutative diagram which corresponds to Theorem A.8.5:

(A.8.12)

Mg

NgXMg

1"
Ng

lA. VN

VN
J(Y.A >Mg)
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Here A is defined in the same way as A in (A.8.4) and we set

(A ® VNV)(X, Y) = A(X, Y) -VNVy

and

µ([X1...Xn],Xn+l ...Xm) _ [X1...Xm].

We deduce directly from the definition that (A.8.12) commutes.

Proof of Theorem A.8.11 We have to show that

Ng 7" J(Y.A A Mg )

=I-

Pi" Sl(1,1A >' ilCg) (1)

ID9n

H(12AVCg)

homotopy commutes. Let 11 X be the loop group of Kan which is the
topological group equivalent to the loop space 11X, X connected. (If SX is
the reduced singular complex and if GSX is the semi-simplicial loop group of
Kan [HT], then fl X = I GSX I is the realization.) In all considerations of this
chapter we can replace Cl or Cl by Cl. In particular, we can replace fl in (1)
by Cl. Let

is Y.A -+ fIVIA)

be the `adjoint' of the identity on E2A and let

m:CgcMg---ACg,g: A-->flB.

Then the composite in (1), namely

(Slgo)mON: Ng f((y2 AV Cg),

satisfies by Lemma A. 8.7 the formula

_1 -
1oX1.X2 ... Xnv[XI ... XJ =X2 ... X.

-1 -.X3 ... Xn .10X2.X3 ... Xn

--1 -
(2).Xn .IOXn-I*Xn*1oxn
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where we set x, ***X,_ (fli2Xin(x1)- - joxi= (fti1)ijox;. Since 1 is
a group we see

p[xl ... x ] = x1 ... zrt z, OXI)... x joz(3)
We have to show Van = V. We first give a characterization of
We consider the commutative diagram

l(12A vC) 4f)(C )

B

v

12+1,

1

Cg

112

12AVCg

Vp as follows.

(4)

where V is the map induced on fibres. Since igq = 0 there exists a map V0
which lifts V. Now V in (1) is up to homotopy the unique lifting of t with

W r2)70 - 0. (5)

Clearly, the inclusion i2: Cg c 12 A V Cg is the principal cofibration with
attaching map go: Y.A -p { *) c Cg. Therefore (D in (4) corresponds to

41

Mga = AY A) * ftCg

Iv

Ng --p Ng. = Mgo/fICg
6N

(6)

where Mg0, is the free product of monoids and where Ngo is given by the
action from the left of , Cg on Mgo. We claim

VN[xI ...xJ _ {x]'(joxd'...'xn'(jox.)] (7)

where z, = ma;. From (7) and (3) we derive that satisfies the characteriza-
tion of Vo in (5) and thus we have proven Von = V.

For the proof of (6) we remark that i/i in (6) is given by

t1Y1 ... y ] _ (P1Y1)_(P2Y1)'... (8)



APPENDIX A HOMOTOPY GROUPS OF MAPPING CONES 471

for y; E )A V SZ Cg , i = 1, ... , n. Moreover, V. is, by the naturality of the
construction Ng, induced by the map

X:Cg, EAVlCg
i2m +ilj0.

Thus VN[x, x" [(Xx,) ... (Xx")]. This and (8) proves (7).

(A.8.13) Theorem The adjoint of VN in (A.8.9)

VN:YNg -VAXMg

(9)

is a homotopy equivalence.

Proof From the combinatorial definition of VN in (A.8.9) we derive that

(ON),,: J(Ng) -->J(YE A AAMg)

induces an isomorphism in homology and thus is a homotopy equivalence.
Since (V N). corresponds to 1 VN also V. is a homotopy equivalence.

Similarly we get for the filtrations in (A.4.6) and Theorem A.5.5 the
following result.

(A.8.14) Theorem ON restricts to a homotopy equivalence

VN: i

for n z 1. With Mo = 11 B we have V, _ -1 on .N,; see (A.5.3).

A.9 The left distributivity law

In (11.2.8) of Baues [CC] we obtained the following left distributivity law. Let
X be finite dimensional and let Y be a co-H-space. Given f E [.X, X.Y] and
x, y c- [Y.Y, U] we have the formula

(A.9.1) xf+yf=(x+y)f+ E c"(x,y)oy"(f).
n22

Here ,,(f) is the James-Hopf invariant defined with respect to the lexico-
graphical ordering from the left, see (A.2.4), and the terms c"(x, y) E
[ Y.Y ^ ", U ] are given by

(A.9.2) c"(x, y) = F, [x,y]m(d)T,(d).
deD
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Here [x, yJ,1(d) is an iterated Whitehead product of weight n. The set Dn is
computed in (1.1.13), (1.1.16) of Baues [CC]. For the map f: IX -+ 1Y we
have the difference element (see Baues [AH] II112)

Vf= -i2f+(i2+i1)f:'.X-*Y-YV Y

which is trivial on the second YY, r2 *V f = 0. Therefore the fibre sequence in
Proposition A.3.6 yields the diagram

YY n n V J,Y A n
r

(A.9.3) "f

n>_1

/r 1
I w

YEY V Y,Y

// Of
1(0,1)-r2

Y. X IY

Since r2 *Vf = 0 and since r2 is a retraction there is a unique homotopy class Vf
which lifts the class Vf, that is W*Vf-= Vf. We define the element

.X,EY^"](A.9.4) Hnf=r,, VfE[Y

by the retraction rn in (A.9.3). The element Hnf is one of the Hilton-Hopf
invariants which, in particular, was considered by Barcus and Barratt [HC].
The advantage of definition (A.9.4) is the fact that Hnf depends only on the
definition of Vf since the map W in Proposition A.3.6 is defined canonically.
On the other hand, the James-Hopf invariants depend on the choice of the
`admissible ordering'. In (A.2.4) we have chosen the admissible ordering given
by the lexicographical ordering from the left. In fact this is a good choice
since we prove:

(A.9.5) Theorem Lei f E [IX, Y.Y] where X is finite dimensional and where Y
is a co-H-space. If the lames-Hopf invariant, % f, is defined with respect to the
lexicographical ordering from the left we have the formula

-Hnf=(-1)o(y,,f).

Here -1 E [lY ^ ", MY ^ "] is given by the identity 1 of MY ^ ". The formula
implies Y. Hnf = Y- ynf.

The result In 'Hnf = E" ' yn f is also proved in Theorem (4.18Xa) of
Boardman and Steer [HI].
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Proof of Theorem A.9.5 We deduce the theorem from formula (A.9.1). By
(A.9.1) we know

Vf=ilf- L Cn(i2,il)Yn(f) (1)
n22

where

cn(i2, i1) E [Y A ", YYv IY]

is given by (A.9.2) with r2 * cn(i2, i 1) r= 0. Therefore there is a unique

{
1'^kl (2)cn(j1,...,jn)E Y^n, V Y

I kz1 J

with W*cn(jt,..., jn)=cn(i2,i,). Here

.Y^mC V 1Y^kjm:Y
kal

is the inclusion and cn(j1, .. ., in) is a sum of iterated Whitehead products of
such inclusions. By the explicit formula for cn(i2, i1) in (A.9.2) it is possible to
derive an explicit formula for cn(j1,..., in) in (2). For example we have

-c2(jl,j2) =j2, (3)

c3(j1,j2,j3) =j3 + [j2,j1] + [j2,jl]T132 (4)

By (1), (2) and by the definition of Vf in (A.9.3) we see that

Of =J1f - E Cn(11, ,In)Yn(f) (5)
nz2

We claim that for the retraction rn in (A.9.3) we have rn * cm = 0 for m not
equal to n and

rn*Cn(I1,...,id _ -Jn, n > 2. (6)

This follows from the fact that the only bracket [x,Y]d.(d) with d E=- E D,, in
which y appears only once is

[x2,y1,x3,...,X1].

(For this compare the explicit description of Dn in (1.1.16) in Baues [CC].)
Now (5) and (6) yield the result in Theorem A.9.5. O

We now consider the partial suspension of the element Vf E [IX, JYv
IY]2; compare Proposition A.3.4 and (A.1.1)(3). By Theorem A.9.5 we get
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(A.9.6) Corollary Let f E [ I X, I Y ] where X is finite dimensional and where Y
is a co-H-space (it is enough to assume that Yis connected). With the inclusions

y, 5:Yy2Y,E2Yv y
i2

we have the formula in [12 X, I2 Y V I Y ]2

2
f)

n22

w h e r e [1" I2 ' ] = [ "" [i1> 12 ] "' , i2 B is an (n-1)-fold Whitehead product.

Proof We have

EVf =E(WVf-) = (EW)(EOf) (1)

where

E f-=I(E imHmf) (2)
mZl

by (A.9.3). By Proposition A.1.2 and by definition of W in Proposition A.3.6
we obtain the proposition in Corollary A.9.6 where we use the fact that
I Hm f = Iym f. Compare the proof of (3.3.19) in Baues [OT].

Corollary A.9.6 is of importance for the homotopy classification of maps.
From (II.13.10) in Baues [AH] we derive:

(A.9.7) Theorem Let C = Cf be the mapping cone off: IX - IY where X is
finite dimensional and where Y is connected. Moreover, let w: Cf - U be a map
with restriction u: I Y -+ U. Then we have the long exact sequence (k z 2):

[jk+1Y,U] W '
. .k(UcIw)

-` - [y2 Y, U] u'J - [I2 X, U] - [Cf, U] ---. [EY, U].

Here V"(u, f) is given by the formula

Vk(u, f)(a) = (EkVf)*(a, u)

=a(ykf)+ E [a,un-1](Ikynf)
n22

with ae[yk+1Y,U]andk>_1.WesetV=V'.
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The element [a, u" - ) ] = [ . [a, u], --- u]] denotes an (n - 1)-fold
Whitehead product. Exactness in Theorem A.9.7 implies that the image of
V(u, f) is the isotropy group in w E [Cf, U] of the action [E2 X, U] + on the
set [Cf, U], that is:

(A.9.8) image V(u,f)={f3E[12X,U]I{w}+/3={w}}.

Therefore we have the bijection

(A.9.9) [Cf, U] = U [V X, U]/image V(u, f ).
ue[£Y,U]

f"u=0

The bijection is defined by choosing elements w in each orbit of the action
[V X, U] + on the set [Cf, U]. This shows that Theorem A.9.7 yields an
explicit method for the enumeration of the set [Cf, U]. A first result of the
type in Theorem A.9.7 was obtained by Barcus and Barratt [HC], see also
Rutter [HC], however, in these papers only equation (A.9.8) and not the exact
sequence in Theorem A.9.7 is discussed.

For a mapping cone Cg, g: Y -. B, and for a map f: IX - C. we obtain a
diagram similar to (A.9.3) as follows:

(A.9.10)

Y.Y A UCg EY V IY A flCg

I H(f)
W_(ij,[i,,i,Rj)

XX Y.Yvo Cg

Ir2

Cg

Compare Propositions A.3.5 and A.3.6. Here Vf is again defined by f =
-'2f+ (i2 + i1)f. Since r2 Vf = 0 and since r2 is a retraction there is a
unique homotopy class Vf which lifts Vf. We call

(A.9.11) H(f)=r2*VfE[IX,IYAflCg]

the total Hopf invariant of f. If B = * is a point we can derive from H(f) all
invariants H f in (A.9.3). Clearly, we have

(A.9.12) rt * Vf-=jof E [I X, Y_Y]

where jo: Cg -- Cg/B = Y.Y is the pinch map. By the Hilton-Milnor theorem

(A.9.13) Y,Vf = i)(Ijog) + i2(Y.H(f ))

where it and i2 are the inclusions.
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(A.9.14) Problem Is it possible to express Vf solely in terms of jo f and
H(f)? If B = * is a point this is true by the left distributivity law described
above; see (6) in the proof of Theorem A.9.5. Theorem A.8.11 might be
helpful.

We now consider the partial suspension of the difference element Vf E
[IX, Y-Yv Cg 12. This generalizes Corollary A.9.6. By (A.9.10) we get:

(A.9.15) Proposition With the inclusions

12 Y--- 12 Y V Cg t 2 Cg
Jt J

we have the formula

(EVf) = j1E(jof) + [j1,j2RcB] ° (YHf ).

Thus EVf depends only on jo f and on the total Hopf invariant Hf.

Proof of Proposition A.9.15 We have

E(Vf) = E(WVf) _ (EW)(EVf )

and therefore the result follows from (A.9.13) and Proposition A.1.2.

Clearly, we can derive from Proposition A.9.15 an expression for the
operators V'(u, f) in the exact sequence (11.13.10) Baues [AH] in the same
way as in Theorem A.9.7:

(A.9.16) Proposition f [IX,Cg], u: Cg --> U, iB E [E"Y, U].

V"(u, f)(13) = (E"Vf)*( /3, u)q

1=G(I"jof)+[13 uRc](y."Hf)

where Rcx: If2Cg --> Cg is the evaluation map.

A.10 Distributivity laws of order 3

We here describe all distributivity laws of order 3 in homotopy theory. They
are needed in the proof of Chapter 9. We derive these distributivity laws from
2.51 in Dreckmann [DH]. Recall that a map f: X - Y is a phantom map if
for all finite dimensional CW-complexes K and for all maps g: K --> X the
composite g' is null-homotopic.
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(A.10.1) Notation Let . be a class of pointed spaces and consider the
homotopy group [MA,B) given by pointed spaces A, B. We define the
subgroup U(3) c [EA, B] to be the normal subgroup generated by all
composites

EA->X-B with XE.E

and all phantom maps EA - B. For f, g c- [I A, B] we write

f =g modulo I

if (f) = {g} in the quotient group [EA, B]/U(.).

In the following theorem we consider the primary homotopy operations

+: [EA, Z] X [Y.A, Z] -+ [MA, Z] (addition)
o: [EA,EB] X [EB,Z] MA, Z] (composition)

#,#: [EA,1.X]x[IB,IY]--i[IAnB,IXnY] (exterior cup products)

U, U: [IA, EX] x [IA,EY] --> [EA,EXAY1 (interior cup products)

y,,: (YEA, EB] - [EA, EB AM] (James-Hopf invariant)

[ , ]: [EA,Z] x [EB,Z] -p [EA AB,Z] (Whitehead product).

Here y,, = is defined with respect to an admissible ordering < (satisfying
(1) < (2), see (A.2.4)). Moreover, let 7 be the shuffle map in (A.1.6).

(A.10.2) Theorem Let A, A', B, B', C, Z bepath-connected pointed CW-spaces.
Then the primary homotopy operations above satisfy the following formulas
(a)-(h).

(a) Let < and be two admissible orderings and f E [EA, EB]. Then
we have for n = 2,3

modulo EB^',rz4.

(b) Let u, v c- [EB, Z] and f e [YEA, EB]. Then

of +vf = (u +v)f + ([u,v]T21 + [[u,v],v]T212)y2(f )

+ ([[u, vl , v]T213 + [[u, vl , vl T312 + [[u, v], u ]T231)y3(t)

modulo EB A r z 4.

(c) Let u E [EB, Z], v E ['EB', Z], f E [EA, EB], and g E [IA', IB']. Then

[uf,vg] = [u,vl(f#g) + [[u,v],v](f#y2(g)) + [[u,vLu]T132(y2(f)#g)

modulo EBArA(B')A',r+s>_4.
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(d) Let fE[Y.A,1B],gE[Y.A',IB']. Then f#g=f#g, and fug=fug
for A = A' where both equations hold modulo EB A (B') ^', r + s
4.

(e) Let f E [YA, EB]. Then

fUf=T11f+(T12+T21)y2(f)

f U y,(f) = (T112 + T212)y2(f) + (T123 + T213 + T312)73(f )

Y2(f) U f = (T121 + T122)y2(f) + (T123 + T132 + T231)y3(f )

where these equations hold modulo 1B A r, r >_ 4.

(f) Let f, g E [ I A, I B]. Then

y2(f+g) = 72(f)+ y2(g)+fUg

y3(f +g) = y3(f) + y3(g) +f U y2(g) + y2(f) u g.

These equations hold modulo Y.B ^', r >- 4.

(g) Let f E [1B, Y.C], g E [1A, Y.B]. Then

y2(fg) = y2(f )g + (f#f)y2(g)

y3(fg) = y3(f )g + (f #y2(f))y2(g) + (y2(f)#f)y2(g) + (f#f#f)y3(g).

These equations hold modulo Y.B A', r 4.

(h) Let f E [IA, AB1, g E [5A', IB']. Then

y2([f,g]) = (T12 - T21)(f#g)

y3([ f, g]) _ (T121 - T112 - 7,12 + T221)(f#g)

+(T123 - T213 - T312 + T321)(f#y2(g))

+(T132-T312-T213+T231)(y2(f)#g)

These equations hold modulo lB A r, r >- 4.

W. Dreckmann in 2.51 of [DH] described formulas as in Theorem A.10.2
which actually hold modulo the empty class of spaces; the reduction of these
formulas yields the formulas above.
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Autc(A) group of automorphisms
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COP opposite category Ak 295 AN-" 152 ak 316
FC category of factorizations 10 M" Moore spaces M(A n) 18
Palr(C) category of pairs 224

,

M2[1/2] 419 M2 (free) 423 FM" 24
C x D split linear extension 11 G 27

Set* category of pointed sets 398 Moore(m,n) 191 M(m,n) 192
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Ab category of abelian groups Gro(E) Grothendieck construction 84
Ab[1/2] 419 Ab (free) 423
FAb finitely generated abelian groups 25
fAb finite abelian groups 202
Cyc cyclic groups 22
fCyc finite cyclic groups 386
PCyc elementary cyclic groups 361 PCyc°

402
Add(Z) finitely generated free abelian groups

215
Add(P) 215 Add(l/n) 220
Chain_ = Chain chain complexes of abelian

groups 33
Chain(R) 225

Top category of topological spaces
Top* pointed topological spaces 32
Top'/= homotopy category 32
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0-skeleton 32

CW/= 33 CW" 121 CW2 122
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spaCes2 simply connected CW-spaces 56
n-types n-types 54
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rAb = rAb, quadratic functions 240, 347
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FAb(C) 385, 394 rAb,(C) 395
SrAb = rAb", n >- 3 stable quadratic func-
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A 3-Systems, A 3-systems 254
A3-Systems, A3-systems 282
AZ-Systems(K), AZ-systems(K) 414
model(T) models of a theory T 398
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Barcus-Barratt formula 336
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bimodule 11, 118
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Bockstein homomorphism 14
bottom sphere 22
boundaries in a chain complex 33
boundary invariants 64, 130
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boundary operator for 1-groups 46
Bullejos-Corrasco-Cegarra cohomology 244
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extension 90
functor 86
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cell 4
cellular approximation theorem 33
cellular chain complex 33
cellular cochain complex 150
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certain exact sequence 34, 150
chain maps, classification 37
Chang complex 296
Chang types 319
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cross-effect 217
cup product 430, 477
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decomposition 294
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derivation 91
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distributivity law of order 3, 476
Dold-Thorn result 51
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Eilenberg-Mac Lane functor 169
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split 184
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Chang types 319
Eilenberg-Mac Lane space 319
homotopy groups 361
Moore spaces 296, 361
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exact sequence for functors 119
extension 270
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with coefficients 41
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Grothendieck construction 84
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decomposition 73
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decomposition 72
equivalence 8
fibre 435
group 32, 149

with coefficients 18
with cyclic coefficients 392

rel X 33
system 122, 163
type 2, 8

homotopy groups, generalized 400

INDEX

Hopf construction 431
Hopf map 17, 36
Hurewicz homomorphism 7, 34, 40, 51, 52, 62,

71, 101, 151

indecomposable 294
injective bype 87
injective kype 83
infinite reduced product 431
infinite symmetric product 51
interchange map 364
isomorphism type 2
isotropy groups in CW-tower 143

Jacobi identity 428
James-Hopf invariant 365, 432, 477
join construction 429

k-invariant 57, 73, 326
k'-invariant 74
knot 2
kype 82

kype

extension 90

functor 81

split 82

left distributivity law 471
linear extension of categories 11

split 11
linear distributivity law 11
lift 270
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