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Stably hyperbolic e-hermitian forms
and doubly sliced knots

By Eva Bayer-Fluckiger*) at Genéve and Neal W. Stoltzfus at Baton Rouge

Introduction

Let A be a commutative Q-algebra, finite dimensional over Q. Let us consider a
Q-involution on A, which we shall denote with an overbar. Let A be an order of A4
which is stable under this involution. All modules in this paper will be finitely
generated and reflexive — but not necessarily projective. To a reflexive A-module M
we associate the hyperbolic e-hermitian (where ¢ =1 or —1) form H(M), see Section 1
for the definition. We shall say that a unimodular e-hermitian form h: LxL — A is
stably hyperbolic if the orthogonal sum of (L, h) with some hyperbolic e-hermitian form
is hyperbolic. The purpose of this paper is to study the following problem: are stably
hyperbolic e-hermitian forms hyperbolic? We prove that this is the case under suitable
hypothesis, see Section 6.

Our main motivation for the study of this problem is a knot theoretical question,
which involves the ring A =Z[X, X~']/(4), where A€ Z[X] is a polynomial such that
AX)=X%® 2 (X1), and A(1)=1, A(0)+0. Let us consider the Z-involution of
Z[X, X~ '] which sends X to X~ !. This induces an involution of A.

Theorem. Let A=Z[X, X ']/(X) as above. Then stably hyperbolic e-hermitian
Sforms are hyperbolic.

This theorem has the following

Corollary. Let g =2 be an integer. Then stably doubly sliced simple (2q —1)-knots
are doubly sliced.

We prove this in Section 8. This corollary gives a partial solution of Problem
23, [6].

Let A=7G, where G is a finite abelian group. Stably hyperbolic e-hermitian
forms over this order also arise in connection with topological problems (cf. M. Kreck
[11]). We prove the following

*) Supported by the “Fonds National de la Recherche Scientifique”.
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Theorem. Let A =27G, where G is a finite abelian group of order p", where p is an
odd prime. Then stably hyperbolic ¢-hermitian forms are hyperbolic.

The proofs une results of H.-G. Quebbemann, R. Scharlau, W. Scharlau and
M. Schulte, as well as strong approximation theorems in appropriate algebraic groups.

Although we do not prove that stably hyperbolic e-hermitian forms are
hyperbolic for arbitrary orders, we do not have any counter-examples either. On the
other hand, counter-examples exist for commutative rings of Krull dimension two. In
Section 7 we give such a counter-example, which has been communicated to us by
M. Ojanguren. '

We would like to thank M. Kneser for helpful suggestions, which have led to an
important simplification of the proofs. We also thank H.-G. Quebbemann for useful
conversations.

1. Definitions

Let A be a ring with an involution, which we shall denote with an overbar. Let
M be a finitely generated left A-module. Set M* =Hom , (M, A) with the left A-module
structure given by (1f) (m)=f(m)A. We shall say that M is reflexive if the evaluation
homomorphism i,: M — M**  defined by i), (m) (f) =f(m), is an isomorphism. Let
h: Mx M — A be an ¢-hermitian form. We shall say that (M, h) is unimodular if the
homomorphism ad (h): M — M* induced by 4 is an isomorphism. It is easy to check
that if (M, k) is a unimodular e-hermitian form, then M is reflexive. Let M be a
reflexive A-module. We associate to M the hyperbolic e-hermitian form H (M), defined
as follows:

MOM*xM®M*— A, (m, f)x(ng)— f(n)+eg(m).

As M is reflexive, H(M) is a unimodular ¢-hermitian form. Let A: Lx L — A be a
unimodular e-hermitian form. We shall say that (L, h) is stably hyperbolic if there exist
reflexive A-modules M and N such that (L hEHM)=H(N), where [ denotes
orthogonal sum.

We shall say that an g-hermitian form h: Lx L — A is even if there exists a
sesquilinear form g: L x L — A such that h=g +¢g*, where g*: Lx L — A is defined

by g*(n, m)=g(m, n).

2. Local cancellation

Let R be a commutative ring. We shall say that a ring A is an R-algebra if there
exists a ring homomorphism f: R — Z(A), where Z(A) is the center of A, such that
f(1)=1. Moreover, we shall assume that an R-algebra is finitely generated as R-
module.
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The following theorem is essentially a consequence of results of H.-G. Quebbe-
mann, R. Scharlau, W. Scharlau and M. Schulte:

Theorem 1. Suppose that A is either a left artinian ring or an R-algebra, where R is
a complete local ring. Let M,, M, and M be finitely generated left A-modules, and let
(M, hy), (M,, hy) and (M, h) be unimodular, even e-hermitian forms. Assume that

(My, hy) B(M, h)=(M,, h,) B (M, h).

Then (M,, hy) =~ (M,, h,).

Proof. Let .# be the category of finitely generated reflexive left A-modules. Let
us define a duality *: # — .# by M* =Hom, (M, A). We shall apply the cancellation
results of Quebbemann, Scharlau and Schulte (cf. [19], § 3, or [22], Chapter 7, § 10).
In order to do this, we have to check that the conditions (i), (ii) and (iii) of [19], §3
are satisfied. Condition (i) clearly holds as .# is a category of modules. The
endomorphism rings of the indecomposable objects of .# are local by Reiner [20], § 2,
(10). This implies that condition (ii) is satisfied. Finally, let us check condition (iii). We
have to show that for every M in ./#, the ring of endomorphisms End (M) of M is
J(M)-adically complete, where J(M)=rad End(M). If A is artinian, then End (M) is
also artinian, so J(M)™ =0 for some positive integer m. Let R be a complete local ring
with maximal ideal p, and let A be an R-algebra. Then J(M)" < p End(M) for some
positive integer m, cf. [20], § 2, (9). Therefore condition (iii) is satisfied in both cases.
The assertion of Theorem 1 follows from [19], 3.4, (1) or [22], Chapter 7, Theorem
10.9. (iv). O

3. Locally hyperbolic ¢-hermitian forms are hyperbolic:
the case of a semi-simple algebra with a strongly non-trivial involution

Let 4 be a commutative Q-algebra, finite dimensional over Q. Let us consider a
Q-involution on 4 which we shall denote with an overbar. Let A be an order of 4 such
that A=A. If p is a prime number, we shall denote by Z, the ring of p-adic integers.
Let A,=A4®;Z,. For any A-module N, we shall denote N,=N®, Z,.

Let L be a finitely generated A-module, and let h: L x L — A be a unimodular e-
hermitian form. Then (L, k) induces a unimodular e-hermitian form h,: L,x L, — A,.
We shall say that (L, k) is locally hyperbolic if there exists a reflexive A-module M such
that for every prime number p, the e-hermitian forms (L,, #,) and H(M,) are isometric.

Let rad(4) be the radical of the Q-algebra 4. Then rad(A4)=rad(4), because
rad (4) is the maximal nilpotent ideal of 4. Therefore we also obtain an involution on
Ay = A/rad (4). We have 4,=A4, x -+ x A,, where the A,’s are algebraic number fields.
We shall say that the involution is strongly non-trivial if for all 4; such that 4; = 4, the
restriction of the involution to A; is non-trivial.
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The following example is particularly important for topological applications (cf.
Section 8).

Example 1. Let 4=Q[X, X ']/(4), where AeZ[X] is a polynomial which
satisfies A(X) = X4#@ (X ~1) and A(1) =1, 1(0) 0. Let us consider the Q-involution of
Q[X, X~'] which sends X to X~ !. This induces a Q-involution of 4 which is strongly
non-trivial. '

In Sections 3—5, we shall study the following problem: when are locally
hyperbolic e-hermitian forms hyperbolic? We shall begin by proving that this is the
case when A is semi-simple and the involution is strongly non-trivial (see Theorem 2).
Then in Section 4 we shall generalize this result to other semi-simple Q-algebras.
However, the proof of Theorem 2 is much simpler, and as Example 1 shows the case of
a strongly non-trivial involution is of special interest.

Theorem 2. Assume that A is semi-simple, and that the involution is strongly non-
trivial. Then locally hyperbolic ¢-hermitian forms are hyperbolic.

Proof. Let (L,h) be a locally hyperbolic ¢-hermitian form, and let M be a
reflexive A-module such that (L, h,) and H(M,) are isometric for every prime number
p.- Let V=L ®Q, and W= M ® Q. By Landherr’s theorem (cf. [12]) we may assume
that (V, h) = H(W). For every prime number p, there exists an automorphism ¢, in
U(V,, h,) such that L,=¢,H(M,). We may assume that ¢,=1 for almost all p,
because L,= H(M,) for almost all p. Let x,=det(¢,). Then x,x,=1, and x,=1 for
almost all p. By Hilbert’s theorem 90, there exists an element y, of A4, such that

xp=££ Let a, be an endomorphism of W, such that det(x,)=y,. This induces an
p
element ¥, = H(x,) of U(V,, h,) with det(y,) =x,. Set

M= a,(M,) if x,+1,
@ M if x,=1.

p

There exists a A-lattice M’ on W such that M, =M, for every prime number p (cf.
[20], §3, (5). Notice that L,=(¢,¥,"') H(M,) and that det(¢,y,')=1. Strong
approximation in the special unitary group (cf. M. Kneser [9] or G. Shimura [23])
then yields an element ¢ of SU(V, h) with L=cH(M'). [

4. Locally hyperbolic forms are hyperbolic: more about the semi-simple case

We shall use the same notations as in Section 3, but we shall not assume that the
involution of the Q-algebra A is strongly non-trivial. We can write 4 under the form
A=BxC, where B and C are Q-algebras which are stable under the involution, and
such that the restriction of the involution to B is strongly non-trivial, whereas the
restriction of the involution to C is trivial. Moreover let C=C; x --- x C,,, where the
C/’s are algebraic number fields.
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Let h: Lx L — A be a unimodular e-hermitian form, and let V=L ®, Q. We
have an orthogonal splitting

V=W, ")YBFV, h) B - BV by,

where V' is a B-module, V; is a C;-vector space and h': V'x V' — B, h;: V;x V,— C; are
unimodular ¢-hermitian forms for all i=1,..., m. Let Aut(V, k) be the set of A4-linear
automorphisms ¢: V' — V such that h(¢pu, ¢pv)=h(u, v) for all u,v in V. We have

Aut(V, )y=UWV", K)yx O(V,, h))x - x OV, hy,).

Let ¢ =, ¢y,..., ¢,) be an element of Aut(V,h), and let det(d)=(x, e,,...,e,),

where x=det(y), e;=det(¢;). Notice that det(¢) det(¢)=1. Therefore xx=1, and
e;,=1or —1 for all i=1,..., m.

Let p be a prime number, and let Q, be the field of p-adic numbers. For all Q-
algebras D and D-modules U we shall set D,=D®,Q,, U,=U®,Q,. If ¢, is an
element of Aut(V,, h,), we clearly have a splitting

det(¢,) =(x, ey,...,€,)

with x in B,, ¢,=1 or —1 as above.
If e=1, we shall make the following hypothesis:

(*) There exists a prime number g which has the following property: for every
prime number p+q¢ and for every m-uple (e,,.. ., e,), there exists an element ¢, of
Aut(L,, h,) such that det(¢,) =(x, e,,..., e,) for some x in B,.

Theorem 3. Let h: Lx L — A be a locally hyperbolic e-hermitian form. If e=1,
assume that () holds. Then (L, h) is hyperbolic. /

Proof. As (L, h) is locally hyperbolic, there exists a reflexive A-module M such
that for every prime number p, (L,, h,) and H(M,) are isometric. Let W=M ®, Q.
Then by Hasse-Minkowski’s theorem (cf. for instance [22]) and Landherr’s theorem
(cf. [12]), we may assume that (V, h)= H(W). Let ¢, be an element of Aut(V,, h,)
such that L,=¢,H(M,). Let det(¢,) =(x, e,,...,e,) where xe B, and ¢;=1 or —1
depend on p. Notice that if ¢=—1, then ¢;=1 for all i=1,..., m and for all p.

There exists an element ¢ of Aut(V, k) such that det(¢) and det(¢,) coincide in
their last m components: in other words, such that

det(¢) det(¢p,) =(x",1,...,1)
for some x’ in B,. We have (¢L),=(p¢,) H(M,) for all p, and
det(¢pp) =(x',1,...,1).
Clearly L is hyperbolic if and only if ¢ L is hyperbolic, therefore we may assume that

det(¢,)=(x',1,...,1). But using hypothesis (*) we may also assume that
det(¢,)=(»,1,...,1) for some ye B, if p*gq.
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As in the proof of Theorem 2, we see that there exists a A-lattice M’ together
with an element ¢, of Aut(V,, 4,) such that L,=¢,H(M,) and

det(¢p)=(1,1,...,1).

If e=1, let 0=(0,,..., 0,) be the spinor norm of ¢,. There exists an element y,
of Aut(V,, h,) such that det(y,)=(1,...,1), y,(W,)=W, and that the spinor norm of
Y, is 0, (cf. for instance [17], Example 55:1). Let M” be a lattice on W such that

M7= M, if 6,=(1,...,1),
P y,(M,) otherwise.

Such a lattice exists by [17], 81:14.

Now we have L,=0,H(M,), with o,=¢,¥,=(5,,0,,,...,0,,), Wwhere
¢'e SU(V,, h,) and o;,€ SO(V,,, h;,) have spinor norm 1. If e= —1 or if n;+2 for all
i=1,..., m, then we can apply strong approximation (cf. M. Kneser [9]) and conclude
that (L, &) and H(M") are isometric. Let us assume that e=1 and that n; = --- =n,=2,
n;+2 for i>k. Let us apply strong approximation to obtain ¢’ e SU(V’, h’) and
06;€ SOV, by), i=k+1,..., m which approximate ¢,, g;, for the finitely many prime
numbers p such that 6,+1 or ¢;,+1 for some i=k+1,...,m. Let

2=, 1,...,1, 00115 -s Op)-

If p is a prime number, we shall denote by Z, the localisation of Z at p. Let us
choose p such that A4,=4®,7, is Dedekind. Set L, =L®;Z,. Then
L,=L,HL,, where L, is a A, lattice on (V}, h,)B---BH W, h) and L, is a A,
lattice on (V', A" YEB Vis1s bis1) B - B ¥, h,). Let m: L— L/pL be the projection.
Notice that L/pL =L, /pL,.

Let N be the intersection of L with X (W), and let N’ be the intersection of L
with X (W*). We want to prove that L and H(N) are isometric. Clearly
h(N, N)=h(N', N')=0. It suffices to prove that N@ N'=L: then an easy argument
(cf. for instance Bass [2], Chapter V, Lemma 2.1) shows that L= H(N).

It is enough to check that n(N@® N')=L/pL. We have L, =H(N,), L,=H(N,)
where Ny=NnL; and N,=Nn L,. Indeed, L,=H(N,) by construction. On the
other hand, recall that if i=1,...,k then dim,(V)=2, and the restriction of the
involution to C; is trivial. This implies that (¥;, h,) contains exactly two isotropic lines.
Using this, it is easy to see that L, = H(N,). Notice that

T(N@® N')=n(N, ® Nf ® N, ® Ny).
Therefore n(N @ N')=L/pL. This concludes the proof of Theorem 3. []

Corollary 1. Let G be an abelian group of order q", where q is a prime number. Let
A=2ZG. Let h: LxL— A be a locally hyperbolic e-hermitian form. Then (L, h) is
hyperbolic.

Proof. If p+gq, then A, is the maximal order of A4,. Therefore condition (*) of
Theorem 3 is satisfied. [
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5. Locally hyperbolic ¢-hermitian forms are hyperbolic:
the case of a non-semi-simple algebra

Let A=Q[X, X ']/(4), where AeZ[X] is a polynomial which satisfies
AX) =XM1 (x )

and A(1)=1, A(0) % 0. Let us consider the Q-involution of Q[X, X '] which sends X to
X ~!. This induces a Q-involution of 4 which is strongly non-trivial. Let A be an order
of A such that A= A. We shall prove the following:

Theorem 4. Locally hyperbolic e-hermitian forms are hyperbolic.

We shall use some results of H.-G. Quebbemann, R. Scharlau, W. Scharlau and
M. Schulte (cf. [19] or [22], Chapter 7). We shall begin by recalling these results in the
special case which we are interested in. Some of these results already follow from
J. Milnor [14] or G. E. Wall [27].

Let .# be the category of finitely generated, reflexive 4-modules, and let # be
the radical of the category .#. Let H*(.#) be the category of unimodular g-hermitian
forms over .#. Let (V, h) be an object of H*(.#). We shall denote by U(V, h) the set of
A-linear automorphisms of ¥ which are isometries for h. Let us denote by
ad (h): V — V* the adjoint of the ¢-hermitian form A. Let U and W be 4-modules and
let f be an element of Hom (U, W). Then we shall denote by f* the element of
Hom (U*, W*) induced by f. Let (U/Z) (V, h) be the set of fe End(}V) such that
f*ad(h)f=ad(h) mod Z(V, V*). Then the natural homomorphism

UV, h)— (U/R)(V, h)

is surjective (cf. [19], Theorem 2.2 (2) or [22], Chapter 7, Theorem 4.4 (ii). Recall
that we have already checked the validity of conditions (i), (ii) and (iii) of [19] for the
category .# in Section 2, in the proof of Theorem 1).

There exists an orthogonal decomposition (V, h) = [+] (V;, h;), where V; is of type

i=1
{U;, U¥} with U; indecomposable and U, % U;, U¥* for i+j. Moreover, this de-
composition is unique up to isometry (cf. [19], Theorems 3.2 and 3.3 or [22],
Theorems 10. 8 and 10.9). We have

(U/R) (V, h) = (U/R) V1, hy) x -+ X (U/R) (Vs biyn)-

In the special case which we are “dealing with, the endomorphism rings of the
indecomposable modules are very simple. Let A=A%---A with 4; irreducible. Let
A;=Q[X, X~']/(4;). The structure theorem for finitely generated torsion Q[X, X~ ']-
modules shows that if U is an indecomposable A-module, then U is isomorphic to
QLX, X~ '7/(4}) for some 1=<j<r, and 1= n=e;. Therefore

End (U) = Q[X, X 'J/(A).
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Let J(U)=rad End (U). We have
End (U)/J(U)=Q[X, X~ ']/(4) = 4;.

Assume that 4;=4;, or equivalently that A;(X)=X%*%4,(X""). Then there
exists a unimodular hermitian form h,: A;x A;— A. Indeed, let i: 4;— A be the
inclusion of 4; in A: i(x)=(4/4;)) (x). Set hy(x, y)=i(xp). If A;+ A4;, then we obtain a
unimodular hermitian form h,: (4;® A;)) x(4;® 4;) — A in a similar way. We shall
apply the principle of transfer (cf. [19] or [22], Chapter 7) using these hermitian
forms. We obtain the following:

Lemma 1 (“Hasse-Minkowski’s theorem™). Let h: VxV —A4 and h': V'x V' — A4
be unimodular e-hermitian forms. Assume that (V,, h,) and (V,, h,) are isomorphic for
every prime number p. Then (V, h) and (V', h’) are isomorphic.

Proof. Let us apply reduction and transfer to (V, k), (V', i'), (V,, h,) and (V, h;)
as above. By hypothesis we have an isomorphism between the images of (V,, #,) and of
(V,, h;). Notice that reduction and transfer commute with localisation. Therefore by
Landherr’s theorem (cf. [12]) we have an isomorphism between the images of (V, h)
and of (V’, h’). This implies that (¥, A) and (V’, h’) are isomorphic, cf. [19], Theorem
2.2 (2) or [22], Theorem 4.4 (ii). O

Proof of Theorem 4. Let h: Lx L — A be a locally hyperbolic ¢-hermitian form,
and let M be a reflexive A-module such that (L,, h,) and H(M,) are isomorphic for
every prime number p. Set V=L ®; Q, W= M ®, Q. By Lemma 1 we may assume that
W, hy=HW).

Let B,=A; if A;=A;, and B;= A4, x A; otherwise. We shall use the notations of
the beginning of the section. We have an orthogonal decomposition

V. =B ¥ b,

where the Vs are of type {U;, U*}, U, indecomposable, and U;3 U;, U} if i+]j.

Let
P,=Hom 4 (U;, V)=Hom (U, V))/#(U,, V}) if A;=4,,
and let

P,=Hom 4 (U;® U*, V) if A+ A;.

Then P; is a projective B;=End(U;)/J(U;)-module. Using the hermitian form
hy: B;x B;— A which we have defined above, we obtain by transfer a unimodular e-
hermitian form A;: P,x P,— B;. The transfer also induces a canonical isomorphism
between (U/R) (V;, h;)) and U(P,, h;). Therefore we have a surjective homomorphism

UW, b) — U(P,, B,) % - x U(Py, ).



Bayer-Fluckiger and Stoltzfus, Hermitian forms and knots 137

We shall denote by SU(V, h) the inverse image of SU(P,, h})x --- x SU(P,,, h,,) by this
homomorphism. Let N be the kernel of the surjection

SUW, k) — SU(P,, B,) x - x SU(P,,, h.,).

Notice that N is a unipotent group. Therefore by M. Kneser [9], Hilfssatz 2.4 and
Hilfssatz 2.3, strong approximation holds for SU(V, k) if and only if it holds for
SU(P;, hy) for all i=1,..., m. But (P, h;) is hyperbolic, therefore by M. Kneser [9],
Satz 2, strong approximation holds for SU(P;, k).

For every prime number p, let ¢, be an element of U(V,, h,) such that
L,=¢,H(M,). Using reduction and transfer, we obtain a surjective homomorphism

U(I/p, hp) - U(Plp, hllp) Xoeee X U(Pmp, hrlnp)

We shall denote by x,=det(¢,) the determinant of the image of ¢, under this
homomorphism. Then x,x,=1, and x,=1 for almost all p. By Hilbert’s theorem 90,
there exists an element y, of 4, such that x,=y,/y,. We can also apply transfer to 4,-
modules, without e-hermitian forms. In this way we obtain a surjective homomorphism

End(Wp) — End (le) x -+ x End (Qmp)

for some B;,-modules Q;, which satisfy (P, h;,)=H(Q;,). Therefore there exists an
endomorphism «, of W, such that det(x,)=y,. We finish the proof with the same

argument as in the proof of Theorem 2. [J

6. Stably hyperbolic e-hermitian forms are locally hyperbolic

Let 4 be a finite dimensional Q-algebra, together with a Q-involution. Let A be
an order of 4 such that A =A.

Proposition 1. Let h: Lx L — A be a stably hyperbolic e-hermitian form. Then
(L, h) is locally hyperbolic.

Proof. There exist reflexive A-modules N and N’ such that
(L,hEHHNN)=H(N').

Let U=N®, Q and V=L ®, Q. Unique decomposition holds for finitely generated A-
modules (cf. for instance [20], § 2 (11)). Therefore there exists a reflexive 4-module W
such that

V,hEHU)=HW)BH{U).

By Theorem 1, this implies that (V, )y~ H(W). Let M'=L W, and M"=L n W*. As
L and M'® M” are modules of maximal rank on the same vector space, their
localisations coincide for almost all p. Let p,,...,p, be prime numbers such that
L,=M,®M,] if p*p,,...,p, Clearly h(M,, M,)=0 for all p. It is easy to check that
this implies that (L,, h,) = H(M,) if p*p,,...,p,, see for instance Bass [2], Chapter
V, Lemma 2. 1.
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Let p be one of the prime numbers p,,..., p,. Unique decomposition holds for
finitely generated A,-modules (cf. [20], § 2 (11)). Therefore there exists a reflexive A,-
module M, such that

(L,, h,) B H(N,)= H(M)HH(N,).

By Theorem 1 this implies that (L,, h,) =~ H(M,). Moreover, by possibly exchanging
some of the indecomposable factors of M, and of M, we may assume that M, is
contained in W,.

Let M be a A-lattice on W such that M,=M, if p+p,,...,p, and that
M, =M,, for i=1,...,n. Such a lattice exists by [20], §3 (5). Therefore (L, h) is
locally hyperbolic. []

Corollary 2. Let h: L x L — A be a stably hyperbolic e-hermitian form, and assume
that the hypotheses of Theorem 2, 3 or 4 are satisfied. Then (L, h) is hyperbolic.

The following corollary will be important for topological applications:

Corollary 3. Let A=Z7[X, X '1/(A) with A€ Z[X] such that A(X)= XM (X™),
A(1)=1 and A(0)+0. Let us consider the Z-involution of Z[X, X '] which sends X to
X ™. This induces a Z-involution of A. Let h: LxL— A be a stably hyperbolic -
hermitian form. Then (L, h) is hyperbolic.

Proof. Let A=Q[X, X ']/(A)=Q(r), where t is the image of X in A4. Set
o= _1_1 and let I'=Z[a]. Then A =T [(a&)"!]. Notice that I' is an order of 4, and
that F=T.

Proposition 1 implies that (L, h) is locally hyperbolic. Hence there exists a
reflexive A-module M such that for every prime number p, (L,, h,) and H(M,) are
isometric.

Let V=L®;,Q and W=M ®, Q. If P is a prime I'-ideal, we shall denote by I',
the localisation of I' with respect to the multiplicative subset ' \P of I'. Let P,,.. ., P,
be the prime ideals of I' which contain (x&)I". For all i=1,...,k, let Np_be a free I'p-
lattice on W. We shall denote by H(Np,) the hyperbolic I'p-lattice associated to Np,.
Then H(Np,) is a lattice on (V, h). Let us denote by L’ the intersection of L with the
H(Np)s for i=1,..., k. Notice that Ap=Tp if P%P,,..., P,.

Therefore (L', k) is a unimodular I'-lattice on (V, ). Clearly (L', h) is also locally
hyperbolic. But I' is an order of 4 which is stable under the involution, and A satisfies
the hypothesis of Theorem 4. Therefore (L', h) is hyperbolic. Recall that L is the
localisation of L’ with respect to the multiplicative subset of I' consisting of the powers
of a&. Therefore (L, k) is also hyperbolic. []

Corollary 4. Let G be an abelian group of order p", where p is a prime number. Let
A=2ZG. Then stably hyperbolic forms are hyperbolic.

In the special case where G is a cyclic group of odd prime order, Corollary 4
follows from a result of J. Alexander, P. Conner and G. Hamrick, cf. [1], Chapter VI,
4.3).
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7. An example

We thank M. Ojanguren for the following example. Let A be the ring of algebraic
functions on the real 2-sphere. Then there exists a projective A-module L and a
unimodular symmetric bilinear form h: L x L — A which is stably hyperbolic but not
hyperbolic. The form (L, h) is constructed as follows. Let P be a projective A-module
of rank 2 which is not stably free. Let L =End(P), and let g: L — A be defined by
q(F)=det(F). Let h: Lx L — A be the associated symmetric bilinear form. Let 4 be
the field of fractions of A, and set L,=L ®,A. Then L,~M,(4), and (L4, h,) is
hyperbolic. Therefore by M. Ojanguren [16], Theorem 17, (L, h) is stably hyperbolic.
But (L, k) is not hyperbolic. Indeed, notice that (L, &) represents 1. On the other hand,
(L, h) does not represent —1 (cf. M. Ojanguren [15], § 4). But a hyperbolic form which
represents 1 also represents — 1, therefore (L, 4) is not hyperbolic.

8. Doubly sliced knots

An n-knot will be a smooth, oriented submanifold K" of the (n+ 1)-sphere S"*2
such that K" is homeomorphic to S". We shall say that K" is doubly sliced if there
exists a trivial (n+1)-knot Z"*! in $"*3 such that 2"*! n S"*2=K", where S$"*? is
identified with the equator of S"*3. This definition is due to D. Sumners, see [26]. If K
and K’ are two n-knots, we shall denote by K # K’ their connected sum (cf. [21] for the
definition). We shall say that an n-knot K is stably doubly sliced if there exists a doubly
sliced n-knot K’ such that K # K’ is doubly sliced. It is not known in general whether
stably doubly sliced knots are necessarily doubly sliced. In the present section we shall
show that this is the case for a certain type of knots:

Let K be a (2g—1)-knot with g=2. Let X be the complement of the knot

K: X=38%1*1\U, where U is a tubular neighborhood of K. We shall say that K is
simple if n;(X)=mn;(S') for all i<gq.

Theorem 5. Let K be a simple (2q —1)-knot, ¢ =2. Assume that K is stably doubly
sliced. Then K is doubly sliced.

Proof. Let X be any (2q —1)-knot. Let Y be the complement of X, and let ¥ be
the infinite cyclic cover of Y. Set M =Hq()7, Z). Then M is a finitely generated, torsion
Z[t, t~1]-module (cf. for instance [8], §3). M is called the knot module of X. Let us
consider the Q-involution of Q(¢) which sends ¢ to ¢~'. Blanchfield has associated to
any (2q —1)-knot £ an g¢=(—1)?"!-hermitian form

b:MxM—Q@)/Z[t,t™ 1]
(cf. [4] or [8], §4). For any torsion Z[t,t~']-module N, set
NO = Homl[r,t'll(N’ O([)/Z[t, t_l])'

.

We shall say that (M, h) is hyperbolic if and only if there exists a Z[t, t~!]-module N
such that (M, b) is isometric to the e-hermitian form

N®N°XxN@®N°—Q()/Z[t,t™'], (x,f)x(y, 8 — f(»)+eg(x).
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Let A€ Z[t] be a polynomial which annihilates M. We may assume that A(0) %0,
A(1)=1 and that A(t) =¢9#P ) (t71), cf. [13], p. 19. Set A=2Z[¢, t"']/(A). Then M is a
A-module, and b takes values in

(—}) Z[t,t71))Z[¢t, t )= A.

We can identify the Blanchfield form (M, b) to an e-hermitian form A: Mx M — A. Tt
is straight-forward to check that (M, b) is hyperbolic if and only if (M, k) is hyperbolic.

By hypothesis, there exist doubly sliced (2¢—1)-knots K, and K, such that
K #K, is isotopic to K,. Let L, L, and L, be the knot modules associated to K, K,
and K,. Let 1eZ[t] be a polynomial which annihilates L,. We may assume that
A(0)%0, that A(1)=1 and that A(t) = =W At~ ). Let A=2[t, t*1/(A), and let (L, h),
(Ly, h;) and (L,, h,) be the A-valued Blanchfield forms associated to K, K; and K,.
Then (L, k) B (L, hy)=(L,, hy). As K, and K, are doubly sliced, (L,, ;) and (L,, h;)
are hyperbolic (cf. D. Sumners [26], C. Kearton [7]).

Therefore (L, h) is stably hyperbolic. By Corollary 3, this implies that (L, &) is
hyperbolic. But D. Sumners (cf. [26]) and C. Kearton (cf. [7]) have proved that this
implies that K is doubly sliced. []
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