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We present an explicit procedure to compute '-invariants. This also yields a
topological formula for adiabatic limits and simplifies the calculation of Kreck�
Stolz-invariants detecting components of the space of positive scalar curvature metrics.
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1. INTRODUCTION

Let M be a Riemannian Spin-manifold of positive scalar curvature carry-
ing a free and isometric action of the circle S1 with geodesic orbits. We
compute the '-invariant of twisted Dirac-operators on M. We list as an
example the explicit result for the (generalized) Berger spheres of dimension
�11 (i.e., the odd dimensional spheres with a metric obtained by rescaling the
standard metric in direction of the orbits of the circle action given by complex
multiplication). As a second application we derive a formula for the adiabatic
limit of '-invariants.

The '-invariant of such an operator D is an analytic regularization of the
asymmetry of the spectrum of D. It is obtained by evaluating the meromorphic
extension of the Dirichlet series � |*|&s sign(*), which converges for large
Re s, at s=0 (cf. [10, 3]). In the Atiyah�Patodi�Singer index formula [1]
for manifolds W with boundary M it arises as the contribution of M to the
index of D on W.

In fact our calculation will be based on the index theorem. We prove a
vanishing theorem for the index of Dirac operators on disc bundles. To this
end we construct a Riemannian metric gDE and a connection {:DE on the
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canonical bundle of an appropriate Spinc-structure :DE on the disc bundle
DE associated to M, such that the scalar curvature of gDE exceeds the
absolute value of the smallest eigenvalue of the curvature endomorphism of
{:DE. By the vanishing theorem of Hitchin�Lichnerowicz for the kernel of
Dirac-operators the index of the Dirac-operator on DE is trivial. It then
follows from the Atiyah�Patodi�Singer index formula that the '-invariant
of M is given by twice the integral over DE of the A� -form twisted with the
canonical line bundle of the Spinc-structure on DE.

The last section contains the formulae for the curvature form on DE,
followed by a recipe to compute this integral. As a direct application of the
vanishing theorem we finally derive a formula for the limit of '-invariants
of circle bundles when the orbits of the circle action are shrinked.

In some cases the '-invariant of the Dirac operator has been computed
directly out of the Dirac spectrum, e.g., by Hitchin [11] for the 3-dimen-
sional Berger spheres, by Seade and Steer [17] for quotients of PSL2(R)
by Fuchsian groups. Furthermore there are general formulae by Bismut
and Cheeger [7] and Dai [8] for the adiabatic limit of the '-invariant in
fibrations. This has been made explicit for S1-bundles by W. Zhang in [18]
thus also deriving the formula for the adiabatic limit of the '-invariant. The
vanishing Theorem 2.2 gives a straightforward computation of the invariants
used by Kreck and Stolz in [13] to find manifolds with a nonconnected space
of positive sectional curvature metrics (see also [9]). In contrast to [9]
our approach in computing these invariants avoids the roundabout
through '-invariants by giving an explicit geometric construction.

2. A VANISHING THEOREM FOR DISC BUNDLES

By (M, g) we will always denote a Riemannian manifold M of odd
dimension carrying a free isometric action of the circle S1 with geodesic
orbits, an equivariant Spinc-structure :, an equivariant Hermitian vector
bundle ` and unitary connections {: and {` on the canonical line bundle
!(:) of : and on ` respectively. We assume that the orbits of the circle
action on the vector bundles !(:) and ` are parallel with respect to these
connections. Furthermore let sM denote the scalar curvature of M and let
R: and R` be the curvature tensors of {: and {` respectively. Let D` be
the Spinc-Dirac operator twisted with the connection {`. We follow the
conventions in [14].

The orbit space B=M�S1 then is a manifold and there is a metric gB on
B such that the quotient map ?: M � B becomes a principal S 1-bundle and
a Riemannian submersion with totally geodesic fibres. The Spinc-structure
:, the vector bundle ` and the connections are induced from a Spinc-struc-
ture :B , a vector bundle `B and connections over B.
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For a 2-form + # 02(X; u(S�`)) with values in the skew-Hermitian
endomorphisms of the twisted spinor bundle S�` over a manifold X we
define &+& # C�(X) by

&+& (x) :=&min[(E (+)s | s) | s # (S�`)x , &s&=1],

where the Hermitian endomorphism E (+) of S�` is given as

E (+)(_�=)= 1
2 :

j, k

+(ej , ek)(ejek_�=)

for _ # Sx , = # `x and an orthonormal basis [e1 , ..., en] of TxX. For 2-forms
+, & # 02(X; u(S�`)) we have the triangle inequality &+&+&&&�&++&&.
For x # M let [e1 , ..., en] be such that R:=�i�(n&1)�2 * iei 7 e[i+(n&1)�2] .
Then (see [11, 14])

&R:�1&= :
i�(n&1)�2

|* i |. (2.1)

On the disc bundle DE of the associated complex line bundle E=M_S1 C
we then have an equivariant vector bundle `DE and an equivariant Spinc-
structure :DE both extending the corresponding data on M=�DE. We
consider the Spinc-structure induced from :B and the Spinc(2)-structure on
the vector bundle E. Assume that gDE is a Riemannian metric on the
manifold DE and {`DE and {:DE are connections on `DE and on !(:DE) such
that in a suitable collar neighbourhood U of M they are induced from a
product structure U$M_]&=, 0]. In this setting there is defined a Spinc-
Dirac operator D`DE

acting on twisted spinors satisfying the Atiyah�
Patodi�Singer boundary conditions and whose tangential operator is D` ,
cf. [1]. For the index of the operator D`DE

we have the following vanishing
theorem:

Theorem 2.2. If

1
4 sM (x)>& 1

2 R: �1+1�R`& (x) for all x # M

then the index of the Dirac operator D`DE
vanishes.

The Atiyah�Patodi�Singer Index Theorem [1] then gives

Corollary 2.3.

'(D`)=2 |
DE

ch({`DE) 7 ec1({ : DE)�2 7 A� ( p(gDE)). (2.4)
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The last section contains a recipe to explicitly compute the '-invariant of
certain homogeneous spaces, by calculating the integral in (2.4).

If ` is the 0-bundle, M carries a Spin-structure and : is its complexifica-
tion, then R:=0 and the condition is just sM>0. The corresponding Dirac
operator has the same spectrum as the Dirac operator of the Spin-structure.

The Bochner formula for twisted Dirac operators (see [11, 15, 14])
states that the Dirac�Laplacian satisfies the formula

D2
` :={*{+ 1

4 s+E( 1
2 R: �1+1�R`). (2.5)

The condition of the theorem thus is positivity of the order 0 term in this
formula on M.

Proof of Theorem 2.2. Since the index does not depend on the metric
nor on the curvature form in the interior of DE it suffices to construct a
metric gDE on DE and a connection {:DE on !(:DE) extending the metric
g and the connection {: on M, such that the estimate 1

4 sDE>& 1
2 R:DE �1+

1�R`DE & holds, where sDE is the scalar curvature of gDE and R:DE and R`DE

are the curvature tensors of {:DE and {`DE. In [2] before Theorem 3.9 it is
shown that the usual Lichnerowicz argument then also shows that the
index of the Dirac-operator vanishes.

Since the fibres of M are assumed totally geodesic, they are all isometric
to a circle S 1

\
/�C of radius \. For some $ # R+ to be determined later the

disc D2/C of radius $ will be endowed with a metric such that �D2 is
isometric to S\

1. The map M_[0, $] � DE=M_S1 D2 is a Diffeomorphism
when restricted to M_]0, $]. Let u~ be the fundamental vector field of the
S1-action, u :=u~ �|u|, and v be the radial derivative, i.e., the derivative with
respect to the interval-factor. Let g{ be the canonical variation of M, i.e., the
family of metrics on M defined by rescaling the orbits of the circle action:
g{(x, y) :=g(x, y)+({2&1) g(x, u~ ) g( y, u~ ). For an odd smooth function f
on R with f $(0)=1 mapping [0, $] � [0, \] and constant \ on [#, $] the
metric g f ({)_d{2 on M_]0, $]/�DE extends to give a metric gDE on all
of DE such that ?: DE � B is a Riemannian submersion with totally
geodesic fibres and DE carries a product metric near its boundary M.

Since v commutes with all basic vectorfields of DE we get

{vv={vu=0, {u v=
f $
f

u, {uu=&
f $
f

v, and {av=0,

(2.6)

for every horizontal vector field a. We will need the scalar curvature of gDE .
By O'Neill's formulae (see [6]) this is given by

sDE=sF+sB&&A&2,
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where Ax y=V {HxHy= 1
2 V[x� , y� ], V and H denoting the vertical and

horizontal projections of the Riemannian submersion respectively. Let e=
(m, {) # DE. From (2.6) we get the scalar curvature of the fibre F=D2 of
the submersion DE � B as

sF (e)=&2
f "({)
f ({)

.

Furthermore we compute

&A&2(e)=:
i, j

&Ah� i (e)h� j (e)&2=:
i, j

1
4 &V[h� i , h� j](e)&2

=:
i, j

1
4 f ({)2 &V[h� i , h� j](m)&2= f ({)2 &A&2 (m),

because the map M � DE, m=(m, $) [ (m, {) preserves the vectorfields h� i

and maps u to f ({)u. The scalar curvature of DE is thus estimated by

sDE (e)=sF (e)+sB(?(m))&&A&2 (e)

=&2
f "({)
f ({)

+sM (m)+(\2& f ({)2) &A&2 (m)

�&2
f "({)
f ({)

+sM (m). (2.7)

The equivariant Spinc-structure :M bounds the Spinc-structure :DE on
the disc bundle DE. The canonical bundle of :DE is !(:DE)=?*(!(:B)�E).
Now we proceed to suitably extend the connection {:. By equivariance we
find a connection {:B on !(:B) such that {:=?* {:B. Denote by {E the
connection on E induced from the Riemannian metric on M and let {0 be
the flat connection on the pull back of E over DE"B induced from its
canonical trivialization. Now pick a smooth decreasing function

�: R+
0 � [0, 1]

which is constant 0 in the intervall [#, $] and 1 in [0, :] for suitable
: # ]0, #[ . The function obtained by composing with the distance d( } , B)
from the 0-section is also denoted by �.

Define a connection on !(:DE) by

{:DE=(?* {:B �1+1� (�?* {E+(1&�) {0).
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The curvature tensor of this connection is

R:DE =?*R:B+d� 7 (?* {E&{0)+�?*RE

=?*R:B&i
�$
f

u 7 v+�?*RE, (2.8)

where we have written u and v for the 1-forms u=(u | } ) , v=(v | } ).
In view of (2.7) we search functions f and � such that for every
e=(m, {) # DE we have

4 "1
2

R:DE �1+1�R`DE" (e)�&2
f "({)
f ({)

+sM (m).

By the triangular inequality for & }& we estimate using (2.1) and substituting
R:=?*R:B :

"1
2

R:DE �1+1�R`DE"�"1
2

(?*R:B �1+1�R`DE"
&

�$
2 f

+
�
2

&?*RE�1&.

By the assumption of the theorem

s := 1
2 min(sM&4 & 1

2 R: �1+1�R`&)

is positive. Let m be a real number with m>s�2 and m>&RE�1& (b) for
all b # B. Then the theorem is proved if we can solve the differential
estimate

&
f "
f

+s�2 \&
�$
2f

+
�
2

m+=&
�$
f

+�m (2.9)

for functions f and � as before.
For every *, ; with 0<*<\ and 0<;<*?�2 let $ be a real number and

f : R+
0 � [0, \] be function such that

f (r)=* sin(r�*), if r # [0, ;],

f "(r)�0 for all r,

f (r)�*, if r�*?�2,

f (r)#\ near $, i.e., for some #<$ we have f#\ on [#, $].

We will use the the following obvious fact about smooth functions:
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Lemma 2.10. Let F be a smooth real function such that F$�0 and let
b>a, 9b>9a>0 be real numbers with F(b)&F(a)>9b&9a>0. Then
there is a smooth real function 9 which is constant near a and near b with
9(b)=9b , 9(a)=9a and 0�9$�F$

We will show that one can find * # ]0, \], ; # ]0, *?�2[ and : # ]0, ;[
and a function �: R+

0 � [0, 1] with �#1 on [0, :] and �#0 near $ such
that ( f, �) solve (2.9). We get a solution of (2.9) on [0, :] if & f "�f=
1�*2>2m, so we impose the condition

2m*2<1. (2.11)

Clearly

0�&�$�& f "&mf (2.12)

implies (2.9) on [0, ;]. By Lemma 2.10 we can extend � to [0, ;] such
that � is constant near ;, �(;)<s�m and (2.12) holds if the condition

1&
s
m

<|
;

:
& f "&mf =(1&m*2)(cos(:�*)&cos(;�*)) (2.13)

is fulfilled. If we set �#�(;) on [;, *?�2] then ( f, �) solve (2.9) on
[0, *?�2]. In order to get a solution on [0, $] with �#0 near $ for some
$ we solve s�&�$�*+m�(;) on [*?�2, �[ for some extension of � which
is constant near *?�2 and $. Again applying Lemma 2.10 we need to find
$ such that

|
$

*?�2
s&m�(*?�2)�(s&m�(*?�2))($&*?�2)>�(*?�2) (2.14)

holds.
Now choose * sufficiently small such that 1&s�m<1&m*2. Then condi-

tion (2.11) holds and we can accomplish (2.13) by choosing : sufficiently
close to 0 and ; close to *?�2. The values of �(*?�2)<s�m and * now being
fixed we can take $ sufficiently large to ensure that (2.14) holds.

3. COMPUTATION OF THE ETA-INVARIANT

In this section we will show how to compute the integral in Corollary
2.3. For simplicity we will confine ourselves to the untwisted Spin-case. The
integral does not depend on the choice of the connection {:DE on ?*E in
the interior of DE, so we may take the vertical projection of the Levi-
Civita-connection of the Riemannian metric for {:DE, identifying the bundle
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along the fibres of DE with ?*E. This corresponds to choosing �= f $ in
the previous proof.

For the Riemannian curvature tensor on DE at a point e=(m, {) we get
from O'Neill's formulae [6], as before using the rescaling property of the
map (m, $) [ (m, {),

(RDE
u, v u | v)=

f "({)
f ({)

,

(RDE
a, u u | v)=0,

(RDE
a, v u | v)=0,

(RDE
a, v b | v)=0,

(RDE
a, b u | v)=({[a, b] v | u)=2 f $({) :(a, b),

(RDE
a, b c | v)=0,

(RDE
a, u u | a)=(Aau | Aau)(e)= f (r)2 (Aau | Aau) M (m),

(RDE
a, vu | b)=({v {ab | u)(e)=v ({a b | u)(e)= f $({) :(a, b),

(RDE
a, b u | c)=f (r)(RM

a, bu | c) M (m),

(RDE
a, b c | h)=(RM

a, b c | h) M (m)

+( f ({)2&1)(2:(a, b) :(c, h)&:(a, h) :(b, c)+:(a, c) :(b, h)),

where a, b, c, and h denote horizontal vectors in Te DE and the corre-
sponding vectors in TmM as well, and : (a, b ) := 1

\ ( Aa b | u ) ( m ) =
1

2\ ([a, b] | u)(m)=. Writing x for the 1-form (x | } ) , x # TDE, and a* for
the 1-form :(a, } ), we express the curvature 2-form as

(R } , } u | v) =
f "(r)
f (r)

u7 v+2 f $(r):, (3.1)

(R } , } u | a) =f (r)(RM
H } , H } u | a) M& f (r)2 u 7 (Aau | AH } u)

+ f $(r) v 7 a*, (3.2)

(R } , } v | a) =&f $(r) u 7 a*, (3.3)

(R } , } a | b) =(RM
H } , H } a | b) M+ f (r)(RM

H } , ua | b) M 7 u

+2f $(r) :(a, b) u 7v+( f (r)2&1)(2:(a, b) :+a* 7 b*)

(3.4)

=(RB
H } , H } a | b) B+ f (r)(RM

H } , u a | b)M 7 u

+2f $(r) :(a, b) u 7v+ f (r)2 (2:(a, b):+a* 7 b*). (3.5)
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Recall that the A� -form is given by (see [5])

A� =det1�2 R�4?
sinh(R�4?)

.

The first Chern-form of the bundle along the fibres of DE is obtained from
(2.8), substituting �= f $ and RE=i:,

c1({
:DE) :=

1
2?i

?*R:B+
1

2? \
f "({)
f ({)

u 7v+2 f $({) ?*:+ . (3.6)

Now assume M=G�H homogeneous and that the circle action commutes
with the action of G. Using the above formulae we express the characteristic
form ec1 ({ : DE )�2A� ( p(gDE)) at a point e=(m, {) # DE as

ec1 ({ : DE )�2A� ( p(gDE))(e)=P \ f ({), f $({),
f "({)
f ({) + vol(DE, gDE)

with some polynomial P whose coefficients can be computed from (3.1) to
(3.4). The volume form vol(DE, gDE) at e is vol(DE, gDE)= f ({) vol(M) 7v
and we finally get

1
2

'(M)=|
DE

ec1({: DE )�2A� ( p(gDE))

=vol(M) |
$

0
P( f ({), f $({),

f "({)
f ({) + f ({) d{.

Now this integral can be calculated for a suitable function f.

Remark. Since the integral does not depend on the specific choice of f
the integrand fP( f, f $, f "� f ) is of the form

f P( f, f $, f "� f )=:
i, j

ai, j f i ( f $) j+ f " :
i, j

bi, j f i ( f $) j=\:
i, j

c i, j f i ( f $) j+$
,

hence ai&1, j+1 �i=bi, j&1 �j :=c i, j for i, j>0. The value of the integral then
is �i ci, 0 \i+� j c0, j .

The sum � j c0, j does not depend on \ and will be computed in the next
section on adiabatic limits from a topological formula.

The ci, 0 can be determined from the ai, 1 only. In order to compute the
ai, 1 we may replace the expressions on the right hand side in (3.1), (3.3),
and in (3.6) by 0, because in (3.1) to (3.4) the form v always occurs with
a factor f $.
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Thus terms involving f $ and not v contribute to the constant part (i.e.,
independent of \) only. If M also carries a Spin-structure which is not
equivariant but bounds a Spin-structure of DE then the conclusion of the
vanishing theorem holds if the scalar curvature of M is positive because we
only need to endow DE with a metric of positive scalar curvature to ensure
that the index of the Dirac operator on DE vanishes. But this can be achieved
as in the proof of that theorem. In order to compute the '-invariant we have
to compute the integral over the A� -form only, but by the discussion above,
this differs only by the term of order 0 in \ from the equivariant case.

Example. The (generalized) Berger spheres M\ are obtained from the
round sphere M1=Sn+1/Cl+1 of odd dimension n+1=2l+1 of curvature
1 by shrinking the orbits of the S1-action induced from complex multiplica-
tion. In this case we have (RH } , H } u | a) M=0 and (RH } , H } a | b)M=b7a.
The horizontal distribution in TM has a complex structure J (it is induced
from B=CPl) and we have that :(x, Jx)=1 for a unit vector x and
:(x, y)=0 if y and x are perpendicular over C.

If n=4k+1 the M\=(M, g\) do not admit equivariant Spin-structures
because CP2k is not spin. If n=4k+3 there is one equivariant Spin-struc-
ture induced from a Spin-structure on CP2k+1. For k=0, 1, 2, a lengthy
but straightforward calculation gives

'(D, S 3
\)=&1

6+ 1
12 \2& 1

6 \4,

'(D, S 7
\)=& 11

360+ 11
90 \2& 11

60 \4+ 11
90 \6& 11

360 \8,

'(D, S 11
\ )=& 191

30240+ 191
5040 \2& 191

2016 \4+ 191
1512 \6& 191

2016 \8

+ 191
5040 \10& 191

30240 \12.

The first result was computed by Hitchin (see [11]) from the Dirac
spectrum of the classical Berger spheres.

4. ADIABATIC LIMITS

Consider the canonical variation of the metric on M as in the proof of
the vanishing theorem. We want to compute the limit \ � 0 of '(D` , g\).
The condition of Theorem 2.2 holds for small \ if the corresponding condi-
tion for the quotient manifold B is satisfied, because the scalar curvature of
M converges to that of B as \ � 0. The following theorem gives the limit
of integrals as in Corollary 2.3.

In general let K be the multiplicative sequence associated to a power
series k (see [12, 14]), f an arbitrary power series in one variable starting
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with 1, { a connection on ?*E extending {0 with first Chern form
c1({) # 02(DE; R) and ; # 0*(B; R) arbitrary.

Theorem 4.1.

lim
{ � 0 |DE

K( p(g{
DE)) f (c1({)) ?*

=�K( p(TB)) ;
(k( y2) f ( y)&1)

y } y=c1 (E) } [B]� .

For the signature operator S(g{
M) (see [1]) we get at once:

Corollary 4.2.

lim
{ � 0

'(S(g{
M)))=�L( p(TB)) \ 1

tanh(c1(E))
&

1
c1(E)+ } [B]�&sign(DE, M).

By Theorems 2.2 and 4.1 the Atiyah�Patodi�Singer index theorem
applied to the manifold (DE, M) yields for K=A� , f (x)=ex�2, k(x)=
x1�2�(2 sinh(x1�2�2)) and ;=ch(`B) ec1 (!(:B ))�2 :

Corollary 4.3.

lim
\ � 0

'(D` , g\)+dim ker(D` , g\)
2

=�A� (B) ec1 (!(:B ))�2ch(`B) \ ec1 (E)�2

2 sinh(c1(E)�2)
&

1
c1(E)+ } [B]� mod Z.

If in addition

sB(b)>4 &R:B �1+1�R`B & (b)

for all b # B, then the identity holds in R, i.e., without reducing modulo Z and
lim\ � 0 dim ker(D` , g\) is trivial.

This formula was also obtained by W. Zhang [18] relying on the work
in [7]. It follows that these limits do not depend on the metrics and
connections involved but can be computed from the bundles only.
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Proof of Theorem 4.1. By the formulae (3.1) to (3.4) and (3.5) for the
Riemannian curvature tensor on DE we have

lim
\ � 0

RDE
x, y=\

0 z
&z 0

0

?

?*RB+
with

z :=
f "({)
f ({)

u 7 v+2 f $({) ?*:.

The invariant polynomial P defining the Pontrjagin forms from the curvature
tensor is p(R)=det(1+ R

2?) and has the property that p( A
0

B
C)= p(A) p(C).

Because of the multiplicativity of K we therefore have

lim
\ � 0

K( p(g\
DE))=?*K( p(gB)) 7 k(z2�4?2).

As \ � 0 the integral in the theorem converges to

|
DE

?*(K( p(TB)) ;) k(z2�4?2) f (z�2?)

=|
DE

?*(K( p(TB)) ;)(k(z2�4?2) f (z�2?)&1).

The last factor is divisible by z�2?. So we can perform integration along the
fibre and get

|
B

K( p(TB)) ;
k(c1(E)2) f (c1(E))&1

c1(E)
,

since

?!(zl )=l?! \ f "({) f $({) l&1

f ({)
u 7 v 7 (2:) l&1+=(2:) l&1

and :�? represents c1(E).
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