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ANNALS OF MATHEMATICS
Vol. 51, No. 3, May, 1950

THE VIETORIS MAPPING THEOREM FOR
BICOMPACT SPACES

By Epwarp G. BEGLE
(Received January 20, 1949)

As a means of proving the isomorphism of the homology groups of two spaces,
Vietoris’ well-known theorem [5]' has many applications in topology. In this
paper we show that this theorem can be extended from the case of compact
metric spaces to that of bicompact Hausdorff spaces. Since Vietoris’ original
proof is somewhat condensed, and also contains one minor slip, we present our
proof in some detail.

The statement of the theorem, for an arbitrary coefficient group, is found in
Section 3 below, as well as a simpler form of the theorem which holds when the
coefficient group is suitably restricted. Sections 1 and 2 are devoted to pre-
liminary material, and Section 4 to three lemmas which are used, in the last
two sections, in the proofs of the two forms of the theorem.

1. Terminology and Notation

We shall deal only with bicompact Hausdorff spaces. By a covering M of a
space X we shall always mean a finite covering by open sets, and if N is a re-
finement of M, we write N < M. If W is a subset of X, we denote by St(W; M )
the union of those sets of M which meet W. We denote by St(m; M) or M* the
covering whose elements are the sets St(M; M), where m runs through the ele-
ments of M. If St(N; N) = N* < M, we say that N is a star-refinement of M,
and we write N <* M. Every covering has a star-refinement [4, p. 47]. For each
covering M, we choose one of its star-refinements and denote it by *M.

An n-simplex ¢" of X is a set of n + 1 points of X, and these are the vertices
of ¢”. If M is a covering and W a subset of X, we write diam W < M if there
is an element of M which contains W. X (M) is the simplicial complex consist-
ing of all simplexes o such that diam ¢ < M. Clearly, if N < M, then X(N)
is a subcomplex of X(M). If W is again a subset of X, then X (M) n W is the
closed subcomplex of X(M) consisting of all simplexes of X (M) all of whose
vertices are in W.

We shall consider only finite chains on the complexes X (M). The coefficients,
unless otherwise indicated, are in an arbitrary abelian group. If C" is such a
chain, we denote by | C"| the finite simplicial complex consisting of all the
simplexes on which C” has non-zero coefficients together with all their faces.

In what follows we make frequent use of the Cartesian product of a simplicial
complex and*the unit interval, so we recall here the definition of this product
[1, p. 307]. Let K be a simplicial complex and let the vertices of K be simply
ordered in an arbitrary fashion. Let {4’} be a copy of the collection {A} of

1 Numbers in square brackets refer to the bibliography at the end of the paper.
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THE VIETORIS MAPPING THEOREM 535

vertices of K, ordered in thesame way. Eor each n-simplex ¢" = (49,4, -+, 4)
of K, with the vertices arranged in the chosen order, consider the n + 1 sim-
plexes of the form (4, Ay, ---, A:, Ai, ---, A2). The collection of allsuch
simplexes, together with all their faces, constitutes the product K X I. K
is called the base of K X I, and the set of all simplexes of K X I,
all of whose vertices are primed, is called the top of K X I.

For each simplex o¢" = (4o, A1, ---, A,) of K, let D(") =
Z::g (—1)'(A0 ’ 4, ] A ’ A: P A:t); and if C* = Z gi‘";l ’ let D(C") =
> 9;D(e]). For any chain C” of K, a direct calculation shows that

FD(C™ 4 DF(C™ = C' — C™,

where C’" is the chain in the top of K X I formed by replacing each vertex of
each simplex of C" by the corresponding primed vertex. Hence if Z" is a cycle
of K,

FD(Z™ =7 — 77,
ie,Z"~Z"onK X I.

In one place (Lemma 3) it will be convenient to consider K X I as a cell-
complex rather than a simplicial complex. This time the elements of K X [
are all the cells of the form ¢ X 0, ¢ X 1, or ¢ X I, where ¢ runs through the
simplexes of K. The boundary relations in K X I are: F(e¢ X 0) = (Fo) X 0,
F(eo X1) = (Fo) X 1,and F(¢ X I) = (Fo) X I 4+ (¢ X 1) — (¢ X 0). Then
for any cycle Z on K, wehave F(Z X I) = (Z X 1) — (Z X 0),ie,Z X1~
ZX0inK X1I.

2. Generalized Vietoris Cycles

As is the case with many problems involving continuous mappings, it is more
convenient here to use not the usual Cech cycles, but rather a generalized form
of Vietoris cycles. Such cycles have been defined by Spanier [2]. In this section
we give his definition in a notation more suited to our purposes.

A collection T'" = {I'"(M)} of n-cycles of X, one for each covering M of X,
is a generalized Vietoris n-cycle (n-V-cycle) if T™(M) is a cycle of X (M) and
if, whenever N < M, T"(N) ~ T™(M) on X(M). The cycles T"(M) are the
coordinates of I'"". If I'" and A" are two n-V-cycles, then T" + A" is the n-V-
cycle whose coordinate on X(M) is T"(M) 4+ A"(M). T" ~ 0if T"(M) ~ O on
X (M) for every M. The n-dimensional Vietoris homology group of X, H,(X),
is the factor group of the group of n-V-cycles of X by the subgroup of those
which bound.

Let X and Y be two spaces and f a mapping of X into Y. Let I'" be an n-V-
cycle of X. For each covering N of ¥, f(N) = M is a covering of X. Clearly
f maps each simplex of X (M) onto a simplex of Y (N), and hence is a simplicial
mapping of X (M) into Y (N). We define fT” to be the n-V-cycle of ¥ whose
coordinate on Y(N) is f(I'"(M)). The correspondence of fT" to I'" clearly in-
duces a homomorphism of H, (X) into H, (Y).
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The Vietoris homology groups defined above do not give any new homology
properties of X. If X is compact metric, it is easy to see that Hy(X) is isomor-
phic to the ordinary Vietoris homology group. In the general case, these groups
are isomorphic to the corresponding Cech groups, as we now show

Given a covering M, let N = *M. For each vertex A of X(N), choose an
element n of N which contains it and then choose an element m of M which
contains St(n, N). Denote this set m by ¢(A). The function { thus defined is a
simplicial mapping of X (N) into the nerve M of M.

Next, given a covering N, let P = *N. For each element p of P, let o(p) be
a point in p. Then ¢ is a simplicial mapping of P into X(NV).

Now let T'" be an n-V-cycle. For each covering M, let N = *M and define
Z"(M) to be {(T"(N)). We assert that Z" = {Z"(M)} is a Cech cycle and that
the correspondence of Z" to I'" induces an isomorphism of H;(X) onto H}(X),
the n-dimensional Cech homology group of X.

To see that Z" is a Cech cycle, let My < M; be two coverings of X. Let
N, = *M, and N, = *M,, and choose N to be a common refinement of N
and N, . By the definition of Z" , we have

Z"(M,) = 6T"(Ny),
Z"(M,) = {-I"(No).
Since N < N,,
T'"(N) ~ T'"(N,) on X(Ny).
Therefore
I (N) ~ HT"(Ny) on M, .
Similarly, since N < N,
&I (N) ~ £T™(N,) on M, ,
and hence
7 £ (N) ~ o &T"(N,) on My,

where x is a projection of M, into M, . Thus it will be sufficient to show that
(a) 7 £T(N) ~ HT"(N) on M, .

In order to show this, let K = | I'""(V) |. We define now a simplicial mapping
¥ of K X I into M; . For each vertex 4 of K, the base of K X I, let y(4) =
w $2(A), and for each vertex A’ of the top of K X I, let y(4') = £:1(4).

To see that this is indeed a simplicial mapping, let (4o, 4;, ---, 4;,
Al yoe, An) be a simplex of K X I. By the definition of ¢, thereis,for 0 < j < 4,
a set ny,; containing A;, and a set my,; = {2(4;) containing St(ns,j; N.). By
the definition of =, there is a set m;,; = = {2(4;) containing ms, i Slmﬂarly,
fori £ k = n, there is a set nq4 containing A, and a set mix = :l/(Ak)
containing St(n1x ; N1).
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Since (4q, - - - , 4,) isa simplex of X (), there is a set n containing Ao, - - - , 4, .
Therefore, since N < N, n is in St(ny; ; N2) for 0 < j < 1, and conse-
quently n is contained in my,; for 0 = 3 < 1. Similarly, since N < N, n is con-
tained in St(n, ks N,) and hence in mi; for i < k < n. Therefore mio 0 My N

A MiAMiN - N m; n is not vacuous. Thus y maps the vertices of
(Ao, Ay, ---, As, A: , e ,,) into the vertices of a simplex of M; and therefore
is simplicial.

Now I'"(N) ~ I"*(N) in K + I. By the definition of y, y(T"(N)) = n¢»(I'™(N))
and ¢(I""(N)) = £(I*(N)), and this proves (a).

If " ~ 0, then clearly 2" ~ 0 also. Suppose now that Z" ~ 0. We shall
show that I'" ~ 0. Given any covering M, let N = *M and let P = *N. Since
T"(P) ~ T"(M) on X (M), it will be sufficient to show that I'"(P) ~ 0 an X (M).
Now Z"(N) = ¢T™(P) ~ 0 on N. Hence o{T"(P) ~ 0 on X (M), so we are re-
duced to proving

®) I*(P) ~ ¢(I"(P)) on X ().

Let K = | I'"(P) |. We define a simplicial mapping w of K X I into X(M) as
follows: For each vertex A in the base of K X I, let w(4) = A, and for each
vertex A’ in the top of K X I, let w(4’) = ¢§'(A)

To see that w is simplicial, let (4,, A4, -- A, ,Ai, -, A) bea snmplex
of K X I. By the definition of ¢, there is a set px containing Ak and a set n;, con-
taining St(ps; P). By the definition of ¢, ¢(ni) is a point in n .

Since (4o, 41, -+, A,) is a simplex of X (P), there is a set p containing
(45, 4,, - n) Hence P is contained in St(px; P) fori £k = nand therefore
pisinn . Thus nn meets ng for i < k < n, so St(n.; N) containseach n; . Since
N = *M, there is an element m of M which contains St(na; N) and hence each
ni . Consequently m contains ¢§‘(Ak) fori < k < n. But p is in n,, and hence in
m, so m contains (Ag, Ay, - -+ , 4;). Hence all the vertices of (4o, 41, -+, 4s,
Ai,---,A%) are carried by o into vertices contained in one element of M and
hence into the vertices of a simplex of X (M), and therefore w is a simplicial
mapping.

Now I'"(P) ~ I'""(P) on K X I. By the definition of w, w(I'"*(P)) = I'*(P)
and w(I'™*(P)) = ot(I'"(P)), so we have proved ().

Thus far we have shown that the correspondence of Z" to I'" induces an iso-
morphism of H, (X) into H;(X). To complete the proof we must show that this
isomorphism is onto, i.e., that for every Cech cycle Z" there is an n-V-cycle
I'" such that {T" ~ Z". But, given Z" and a covering M, let N = *M. Define
I'"(M) to be ¢(Z"(N)). Then I'" = {I'"(M)} is an n-V-cycle and {T" ~ Z".
We omit the proofs of these last two statements since they are analogous to
those above.

3. The Vietoris Mapping Theorem

Let X and Y be two spaces. A mapping f of X onto Y is a Vietoris mapping
of order n if for each covering M of X and each point ¥ of ¥ there is a cov-



538 EDWARD G. BEGLE

ering P = P(M, y) of X, with P < M, such that any k-cycle, 0 < k£ = n, on
X(P) nf*(y) bounds on X(M) n f(y).

TueoreM 1. If f is a Vietoris mapping of order n of X onto Y, then the homo-
morphism of Hy (X) into H,' (Y) induced by f is an isomorphism and s onto.

The hypothesis of this theorem can be put in a more convenient form if the
coefficient group is restricted to lie in either of two classes of groups, the class of
fields and the class of elementary compact topological groups [3, p. 672]. The
latter class consists of the character groups of discrete groups with finite bases,
and hence contains all finite groups as well as the group of real numbers mod 1.

THEOREM 2. If the coefficient group is an elementary compact topological group
or is a field, and if f is a mapping of X onto Y such that for each point y of Y, and
for each integer k, 0 < k < n, He(f *(y)) = O, then the homomorphism of H;(X)
into Hy(Y) induced by f is an isomorphism and ts onto.

4. Preliminary Lemmas

LemMa 1. If f is a Vietoris mapping of order n of X onto Y, then for each covering
M of X and each covering N of Y there is a refinement @ = Q(M, N) of N such
that if B is a subset of Y with diam B < Q, then there is a point y in Y such that

1) St(y; N) DO B

2) St(f™); *P) D f(B),
where P = P(M, y).

Proor.” Foreachy ¢ Y, let 4, = X — St(f~(y); *P), where P = P(M,y). Then
A, is closed, hence compact, so f(4,) is closed and does not contain y. Since ¥
is a normal space, there is an open set B, containing y which does not meet
f(A4,). We may choose B, to be in a set of N which contains y. Now a finite
number of the sets B, cover Y, and these constitute the covering Q.

LemMA 2. If f is a Vietoris mapping of order n of X onto Y, then for each covering
M of X and each covering Y of N there is a covering R = R(M, N) of Y, with
R < N, and a chain-mapping T of the (n + 1)-skeleton of Y (R) into X(M) such
that for any k-simplez ¢ of Y(R), 0 < k < n + 1, fTe"* is a barycentric sub-
division, 86", of ¢, with diam | 8" | < N.

Proor. Let M,u = M and N,y = N. Let Q. be Q(Mnt1, *Naya) and let
N. = *Q, . For each element g,,; of Q., diam ¢»,: < @, so, by Lemma 1,
there is an associated point, y.,: . Let Pn,; = P(Mni1, ¥a,s) and let M, be a
common refinement of the coverings *P,, ;. Next let Q... = Q(M., *N,) and
let Nooy = *Q._,. Let {y._1,:} be the points associated, by Lemma 1, with
the elements of Q,_;, and let P,y,; = P(Mn, Yn,:). Let M., be a common
refinement of the coverings *P, i, .

2 This proof was suggested by the referee and is somewhat shorter than our original
proof.

Vietoris proves [5, p. 465], an analogous lemma, for the metric case, but weaker in that
2) is replaced by St(f~(y); M) D f~(B). That this is not sufficient will be seen after an
inspection of the proof of the next lemma.
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Proceeding in this fashion, we construct a sequence {M;} of coverings of X

and a sequence {N;} of coverings of Y, together with the associated sets {y, i},
so that

1) Niwy = *Qir 5 Qe = QM , *Ny)
2) My < *P(My, Yr-1.9)-

We assert that the covering N, will serve for R(M, N).

To prove this assertion, we must construct the chain mapping 7T'. First let
¢* be a 0-simplex of ¥ (V). Let =° be an arbitrary point of f~'(¢°), and define
T (") to be =°. Then T(c) is a O-chain of X(M,), and fT¢" = ¢°.

Now suppose that 7 has been defined for all simplexes ¢ in Y(N,) with
m < k in such a way that T(¢™) is a chain of X(M.) and fT¢™ is a barycentric
subdivision d¢™ of ¢™, with diam | 8¢™ | < Nm .

Let ¢* be a k-simplex of ¥ (N,). Then T is defined on Fo*, and TFs" is a chain
of X(M;_,). Now consider f| TFs*|. Since ¢* is in Y (o), there is an element
ne of N, which contains ¢*. If ¢* " appears in Fo*, then fT¢* ' = 66" contains
a vertex of ¢*. But diam | 8" | < Ni, so St(ne, Niy) contains f |TFo" |.
But Ny < N <* Qi1 , so diam f | TFs* | < Qi1 = @My, *Ni). Let yir,,
say, be the corresponding point of Y, so that St(yi_s ; *Ni) contains f | TF¢" |
and St(f (¥e-1.1); *P) contains f7f | TF¢* |, which in turn contains | TF¢" |,
where P = P(My, Yx-1.,1)-

Denote now the cycle TFs* by Z**, and let K = | Z*™ |. We define a simplicial
mapping u of K X I into X(P) by first setting u(4) = A for each vertex 4 in
the base of K X I. Next let A’ be a vertex in the top of K X I, and let 4 be
the corresponding point in the base, so that A is a vertex of | TFo* |. Since
St(f " (yk—1,1); *P) contains | TFe" |, there is a set *p of *P which meets /™ (yx-1.1)
and also contains A. Let u(4’) be a point in this set *p and in f(y4—1.1). If now
(Ao, - ,As, A%, -+, As) is a simplex of K X I, then (4o, ---, Ax) is &
simplex of | TF¢" | and hence is in some element mi— of M, . For each
J, i S 7 =k — 1, u(4)) is a point of *p; , where *p; contains 4, and therefore
u(do, - -- )Ai)Aév tee 7A7:-1) = (Ao, - yAi,u(dy), - ’/‘(Ak—l)) is in

St(mi—s ; *P)

and hence in some element of P, since Mi—; < *P. Thus p maps K X I simpli-
cially into X (P).

Now let =% = u(DZ"™), so that F2} = u(Z"*™) — u(Z*™) = w(2™™ - 2%
The cycle u(Z*™) is on X(P) n f(ys—1.1), and since P = P(My, yi_1,1), there
is a chain =% on X(M:) n f (yx_1.1) such that Fzh = u(Z™*™).Set =% = = — =t
and set To* = =*. Then FT¢* = TFq*, so T is a chain-mapping.

Finally, observe that each vertex of | =¥ | is either a vertex of | TFo" | or is
a vertex in f(yi—1.1), and f maps all the latter on the single point ;1. Hence
f=* is the join of yz_y1 with fTF¢* = 8Fs" and thus is a barycentric subdi-
vision 8¢* of ¢*. Since St(ys_1.1 ; *Ni) contains f | TFe" |, diam | 8" | < Ny .
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Thus we can continue extending the definition of T until it is finally defined
on all of the (n + 1)-skeleton of ¥ (), and we have therefore completed the
proof of the lemma.

LemMA 3. Let M and M be coverings of X, with M < M, and let N and N be
coverings of Y. Let R = R(M, N) and R = R(M N). Let T and T be the corre-
sponding chain-mappings. Then there is a common refinement S of R and R such
that for any cycle Z" on Y (S), TZ* ~ TZ" on X(M).

Proor. We first recall the sequences {M;} and {Ni} of coverings which were
constructed in the proof of Lemma 2. Suppose now that we construct new se-
quences {M;} and {Ni} by first choosing M, ; to be any refinement of M and
N1 to be any refinement of N. Then, at each step, choose Q; to be a common
refinement of @ and of Q(M;H.l , Nk+1), and Ny to be a common refinement

of *Qk and of Ni. Let {yx.:} be the set of points of Y associated with Qy , and
let M{ be a common refinement of M; and of the coverings *Py.;, where
Pks = P(Mk-i-l,ykt)

Now we can repeat the argument of Lemma 2 to obtain a chain-mapping 7"
of Y(Ng) into X (M 1) such that for ¢* in Y(No), T'(¢*) is a chain of X (M).
We assert that for any cycle Z" of Y(No), T(Z") ~ T'(Z") on X(M).

Before provmg this assertlon, we show that our lemma follows from it. For we
can choose M L and My to be the same covering of X for each %, and similarly
for Ni, and Ni . Then Ny = N, , and we take this to be S. Now, if Z" is a cycle
on Y(S), T(Z™) ~ T'(Z") on X(M) by our assertion. Slmllarly, T(Z”) ~ T'(Z™
on X (). But T” and T” are the same chain-mapping, and X (#7) is a subcomplex
of X(M), so T(Z"™) ~ T(Z™) on X(M).

Returning now to our assertion, let Z” be a cycle of ¥ (No) and let K = | 2" |
We shall define a chain-mapping 6 of the cell-complex K X I into X(M). For a
cell of K X I of the form ¢ X 0, let 6(c X 0) = T'(o), and for a cell of the form
o X 1,let 0(0 X 1) = T(c¢). Now consider a 0-complex, @, of K. T(e") = =° and
T'(") = =" are, by construction, vertices of (%) and fT(a) = fT"(°) = "
Thereis a pomt Say .2, such that St(ys.2); No) contains ¢’ and St( f‘l(yo 2); *P)
contains f(¢°), where P = P(M;, y.). Let B° be the cycle T — T'd°
and let Ly = | B’|. We map the simplicial complex L, X I into X (P) by a
mapping wy such that w(4) = A for any vertex A in the base of Ly X I and
wo(A’) is a point of f (3o ,2) such that St(wo(A’); *P) contains A. That there exists
such a point follows from the fact that St(f '(y.); *P) contams Ly . It is clear
that w is a simplicial mapping of Ly X I into X(P). Let E] = wo(DB ), so that
E1 is a chain of X(P) and F(5}) = wo(B'°) — B°. Now wy(B’ ) is a O-cycle of
X (P) n f~ (yo 2), SO there 1s a 1 chain = of X(My) n f~ (yo 2) such that
FE3 = wy(B"). Then %' = Hj — Ei is a chain of X (M,) and F&' = B°. Clearly
f1E" | is the join of ¢’ and .. . We define 8(¢° X I) tobe . Then Fo(s" X I)=
B =T¢ — T = 0(c° X 1) — 6(c" X 0) = 6F(c° X I).

Now suppose that 6 has been defined on every cell of K X I of the form
" X I,forallm < k, in such a way that 8(¢™ X I) is a chain of X(Mm4,) and
diam f| 6(¢™ X I)| < Nm41. Let ¢* be a simplex of Y(Ng). Then 6 is defined
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on F(¢* X I), and we wish to consider the set f | 0F(¢* X I) |. But F(c* X I) =
((Fo*) X I) + (" X 1) — (¢* X 0), 501 | 6F(c* X I) | is contained in

FIO(F") X D |uf| To* |uf| T'd* .

Let no be an element of Ng which contains ¢*. Since diam flTe*| < Ni,
St(no ; Ni) contains f | T¢" |. Similarly, since Ni < Ni , St(ne ; Ni) contains
f| T'¢"|. Also, for any simplex ¢*~ in Fo*, diam f | 6(c*" X I)| < Ny and
f16(*™ X I) | contains a vertex of ¢*, so St(ng ; N&) also contains

fle(Fa*) X 1) |.

But Ni < *Q , where Qc = Q(Mi41, *Ni1), so diam f| 6F(c* X I) | < Qx.

Therefore there is a point, say yx,. , such that St(yi.2 ; *Ni11) contains f | 6F (¢*
X I) | and St(f (ys.2); *P) contains f7'f | 6F(¢* X I) |, which in turn contains
| 6F(¢* X I) |, where P = P(Myy1 , yi.s).

Now denote the cycle 6F(¢* X I) by B, and let L, = | B*|. We can define
a simplicial mapping w; of the simplicial complex L; X I into X(P) in the same
way that we defined wy, so that Fw(DB*) = w(B*) — B, and w(B™) is a
cycle of X(P) nf(yi.2). Let E5™ = wi(DB") and let Z5™ be a chain of X(My41) n
f(yx.2) such that FE5™ = wi(B™). Then set 6(c* X I) = 5" = gkt _ gh#t
We have Fo(c" X I) = FE**' = B* = 6F(¢* X I), so 6 commutes with F.
Also, f| 6(c" X I) | is the join of f| 6F(¢* X I)| and ., . Since St(yx.2 ; *Ni41)
contains f | 6F(¢* X I) |, diam f | 6(c* X I) | < Ni41 . By construction, 8(c* X I)
is on X(My41).

We can therefore continue extending the definition of ¢ until it is defined on
all the cells of K X I. Now F(Z" X I) = (Z" X 1) — (Z" X 0)in K X I, so
OF(Z" X I) = FO(Z" X I) = 6(Z" X 1) — 6(Z" X 0) = TZ"™ — T'Z". Since
6(Z™ X I) is a chain of X(May1) = X(M), TZ" ~ T'Z" on X(M), which com-
pletes the proof of the lemma.

6. Proof of Theorem 1

We show first that under the homomorphism induced by f, each element of
H;(Y) is the image of an element of H (X).

With each covering M of X we associate a covering N of Y such that M is a
refinement of f(N), and if M = f*(N) for some N , we associate this N with
M. Now let Z" = {Z"(N)} be an n-V-cycle of Y. For each covering M of X, we
define I'"(M) to be TZ"(R), where R = R(M, N), N being the covering asso-
ciated with M as above, and T being the chain-mapping of Y(R) into X (M)
given by Lemma 2.

We assert that the collection {I'"(M)} is an n-V-cycle. For let 3 be a refine-
ment of M, and let N be the covering of Y associated with M. Then T"(M) =
TZ"(R) and T"(#) = TZ(R), where R = R(M, N). Let S be the common
refinement of R and B given by Lemma 3. Then TZ™(S) ~ TZ"(S) on X(M ).
Since Z" is an n-V-cycle, Z"(S) ~ Z"(R) on Y(R). Hence TZ™(S) ~ TZ"(R)
on X(M). Similarly, TZ"(S) ~ TZ"(R) on X (). But X (M) is a subcomplex
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of X(M), so T"(M) = TZ"(R) ~ TZ"(R) = I'"(M) on X(M), which proves
that {T"(M)} is an n-V-cycle.

Next we assert that fT™ ~ Z". For a given covering N of Y, let M = f~(N).
Then T"(M) = TZ"(R), where R = R(M; N). Also, fT"(M) = fTZ"(R) =
8Z"(R), a barycentric subdivision of Z"(R) such that for each simplex ¢" of
| Z"(R) |, diam | 8¢" | < N. The standard argument for showing that a cycle
is homologous to its barycentriec subdivision applies here to show that Z"(R) ~
8Z"(R) on Y(N). But Z" is an n-V-cycle, so Z"(R) ~ Z"(N) on Y(N). Therefore
Z"(N) ~ 8Z™(R) = fTZ"(R) = fT"(M) on Y(N).

Thus we have shown that f induces a homomorphism of H, (X) onto H, (Y).
To complete the proof, it is only necessary to show that if fT" ~ 0, then I'" ~ 0.

Let then M be a covering of X, and let N be the associated covering of Y, so
that M < f'(N). Let R = R(M, N) and let U = f(R). Now recall the se-
quence {M;} of coverings of X constructed in the proof of Lemma 2, and choose
a common refinement, V, of U and of M, .

Since I'" is an n-V-cycle, T"(V) ~ I'*(U) on X(U). Hence fT*(V) ~ fI"(U)
on Y(R). Butif Z" = fT" ~0in Y, then Z"(R) = fT"(U) ~ 0 on Y(R). There-
fore, fT"(V) ~0on Y(R) and TfT"(V) ~ 0 on X (M), since T is a chain-mapping.
We wish now to show that I'"(V) ~ T¥T"(V) on X(M).

Let L = |T™(V)], and let L X I be considered as a cell-complex. Define a
chain-mapping 6 on the base and the top of L X I by 8(+* X 0) = * and

6(+* X 1) = Tf

for any simplex 7* of L. If we now examine the proof of Lemma 3, we see that,
after the substitution of Tf7* for T¢* and +* for T’¢", this proof applies without
change to show that 6 can be extended to be a chain-mapping of all of L X I
into X(M). Thus §(T'"(V) X I) is a chain of X(M) such that F(T*(V) X I) =
o(r" (V) X 1) — o(r (V) X 0) = TfT™(V) — IT™(V), i.e. TT"(V) ~ IT™(V)
on X(M).

Now, since TfT"(V) ~ 0 on X(M), we have T"(V) ~ 0 on X(M). But I'"
is an n-V-cyele, so I"(V) ~ I'"(M) on X(M). Thus I'"(M) ~ 0 on X(M), so
T'" ~ 0. This completes the proof of Theorem 1.

6. Proof of Theorem 2

Let M be a covering of X and y a point of Y. Let N; = *M, and let ¢ be the
simplicial mapping, defined in Section 2 above, of N; into X(M). We now con-
sider N; as a covering of the compact set f'(y). Since the coefficient group is an
elementary compact group or a field, there is [3, p. 678] and [1, p. 216], a refine-
ment N, of N; such that if Z* is a cycle of N, on f'(y), then #Z" is the coordinate
on N; of a Cech cycle of f'(y). Let P = *N,. We assert that any cycle I'*,
0 <k < n,on X(P) nf'(y) bounds on X(M) n f ().

Let ¢ be the simplicial mapping of X(P) into N, defined in Section 2. Then
¢T* is a cycle of N» on f~'(y). Therefore, 7¢T" is the coordinate on N; of a Cech
cyele of f7'(y). Since He(f ™ (y)) = HE(GF'(y)) = 0, this Cech cycle bounds and
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7T* ~ 0 on N;. Then ¢m¢T* ~ 0 on X(M) nf(y). But it is easy to see, asin
Section 2, that on{T* ~ I'* in X(M) n f'(y). Now we can choose P(M, y) to
be P, and the hypothesis of Theorem 1 is satisfied. This proves Theorem 2.
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