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Chapter 0. About the course, and these notes.

0.1. Aims and prerequisites. This course will develop some concepts and results which occur
repeatedly throughout the various areas of algebra, and sometimes in other fields of mathematics as
well, and which can provide valuable tools and perspectives to those working in these fields. There
will be a strong emphasis on examples and instructive exercises.

I will assume only an elementary background in algebra, corresponding to an honors
undergraduate algebra course or one semester of graduate algebra, plus a moderate level of
mathematical sophistication. A student whose background included a presentation of free groups,
but who isn’t sure he or she thoroughly understood that construction, would be in an ideal position
to begin. On the other hand, anyone conversant with fewer than three ways of proving the
existence of free groups has something to learn from Chapters 1-2.

As a general rule, we will pay attention to petty details when they first come up, but take them
for granted later on. So students who find the beginning sections devoted too much to ‘‘trivia’’
should be patient!

In this first published version of these course notes, I have not removed remarks about
homework, course procedures etc. (mostly in this introductory chapter) aimed at students taking the
course from me. This is largely because there are some nonstandard aspects to the way I run the
course, which I thought would be of interest to others. Anyone teaching from this text should, of
course, let his or her students know which, if any, of these instructions apply to them. In later
revisions I may delete or reword such remarks. In the mean time, I hope you find this aspect of the
book more quaint than annoying.

0.2. Approach. Since I took my first graduate course, it has seemed to me that there is something
wrong with our method of teaching. Why, for an hour at a time, should an instructor write notes
on a blackboard and students copy them into their notebooks – often too busy with the copying to
pay attention to the content – when this work could be done just as well by a photocopying
machine? If this is all that happens in the classroom, why not assign a text or distribute duplicated
notes, and run most courses as reading courses?

One answer is that this is not all that happens in a classroom. Students ask questions about
confusing points and the instructor answers them. Solutions to exercises are discussed. Sometimes
a result is developed by the Socratic method through discussion with the class. Often an instructor
gives motivation, or explains an idea in an intuitive fashion he or she would not put into a written
text.

As for this last point, I think one should not be embarrassed to put motivation and intuitive
discussion into a text, and I will include a great deal of both in these notes. In particular, I shall
often first approach general results through very particular cases. The other items – answering
questions, discussing solutions to exercises, etc., which seem to me to contain the essential human
value of class contact – are what classroom time will be spent on in this course, while these
duplicated notes will replace the mechanical copying of notes from the board.

Such a system is not assured of success. Some students may be in the habit of learning material
through the process of copying it, and may not get the same benefit by reading it. I advise such
students to read these notes with a pad of paper in their hands, and try to anticipate details, work
out examples, summarize essential points, etc., as they go.

14/8/98 Math 245

5



0.3. A question a day. To help the system described above work effectively, I require every
student taking this course to hand in, on each day of class, one question concerning the reading for
that day. I strongly encourage you to get your questions to me, either by e-mail or my mailbox, by
an hour before class. If you do, I will try to work the answer into my lecture for that day.
Questions handed in at the start of the class hour will generally be answered at the next class. At
times, I will answer a question with a note to you.

On the sheet on which you submit a question, you should put your name, the point in these
notes that the question refers to, and the word ‘‘urgent’’, ‘‘important’’, ‘‘unimportant’’ or ‘‘pro
forma’’ – the first three to indicate how important it is to you to have the question answered, the
last if there was nothing in the reading that you really felt needed clarification. In that case, your
‘‘pro forma’’ question should still be one that some reader might be puzzled by; perhaps something
that puzzled you at first, but that you then resolved. If you give a ‘‘pro forma’’ question, you must
indicate the answer along with it!

You may ask more than one question; you may ask, in addition to your question on the current
reading, questions relating to earlier readings, and you are encouraged to ask questions in class as
well. But you must always submit in writing at least one question related to the reading for the
day.

I will show the format in which questions should be submitted in more detail on the first-day
handout.

0.4. Homework. These notes contain a large number of exercises. I would like you to hand in
solutions to an average of one or two problems of medium difficulty per week, or a correspondingly
smaller number of harder problems, or a larger number of easier problems. Choose problems that
are interesting to you. But please, look at all the exercises, and at least think about how you would
approach them. A minimum of 5 minutes of thought per exercise, except those for which you can
see a solution sooner, is a good rule of thumb. We will discuss many of them in class. The
exercises are interspersed through the text; you may sometimes prefer to think about them as you
come to them, at other times, to come back to them after you finish the section.

Grades will be based largely on homework. The amount of homework suggested above,
reasonably well done, will give an A. I will give partial credit for partial results, as long as you
show you realize that they are partial. I would also welcome your bringing to the attention of the
class related problems that you think of, or that you find in other sources.

It should hardly need saying that a solution to a homework exercise in general requires a proof.
If a problem asks you to find an object with a certain property, it is not sufficient to give a
description and say, ‘‘This is the desired object’’; you must prove that it has the property, unless
this is completely obvious. If a problem asks whether a calculation can be done without a certain
axiom, it is not enough to say, ‘‘No, the axiom is used in the calculation’’; you must prove that no
calculation not using that axiom can lead to the result in question. If a problem asks whether
something is true in all cases, and the answer is no, then to establish this you must, in general, give
a counterexample.

I am worried that the amount of ‘‘handwaving’’ (informal discussion) in these notes may lead
some students to think handwaving is an acceptable substitute for proof. If you read these notes
attentively, you will see that handwaving does not replace proofs. I use it to guide us to proofs, to
communicate my understanding of what is behind some proofs, and at times to abbreviate a proof
which is similar to one we have already seen; but in cases of the last sort there is a tacit challenge
to you, to think through whether you can indeed fill in the steps. Homework is meant to develop
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and demonstrate your mastery of the material and methods, so it is not a place for you to follow
this model by challenging the instructor to fill in steps!

Of course, there is a limit to the amount of detail you can and should show. Most nontrivial
mathematical proofs would be unreadable if we tried to give every step of every step. So truly
obvious steps can be skipped, and familiar methods can be abbreviated. But more students err in
the direction of incomplete proofs than of excessive detail. If you have doubts whether to
abbreviate a step, think out (perhaps with the help of a scratch-pad) what would be involved in a
more complete argument. If you find that the ‘‘step’’ is more complicated than you had thought,
then it should not be omitted! But bear in mind that ‘‘to show or not to show’’ a messy step may
not be the only alternatives – be on the lookout for a simpler argument, that will avoid the
messiness.

I will try to be informative in my comments on your homework. If you are still in doubt as to
how much detail to supply, come to my office and discuss it. If possible, come with a specific
proof in mind for which you have thought out the details, but need to know how much should be
written down.

There are occasional exceptions to the principle that every exercise requires a proof.
Sometimes I give problems of a different sort, such as ‘‘Write down precisely the definition of ...’’,
or ‘‘How would one motivate ...?’’ Sometimes, once an object with a given property has been
found, the verification of that property is truly obvious. However, if direct verification of the
property would involve 32 cases each comprising a 12-step calculation, you should if at all possible
find some argument that simplifies or unifies these calculations.

Exercises frequently consist of several successive parts, and you may hand in some parts
without doing others (though when one part is used in another, you should if possible do the former
if you are going to do the latter). The parts of an exercise may or may not be of similar difficulty
– one part may be an easy verification, leading up to a more difficult part, or an exercise of
moderate difficulty may introduce an open question. (Open questions, when given, are indicated as
such.)

Homework should be legible and well-organized. If a solution you have figured out is
complicated, or your conception of it is still fuzzy, outline it first on scratch paper, and revise the
outline until it is clean and elegant, before writing up the version to hand in.

If you hand in a proof that is incorrect, I will point this out, and it is up to you whether to try
to find and hand in a better proof. If, instead, I find the proof poorly presented, I may request that
you redo it.

If you want to see the solution to an exercise that we haven’t gone over, ask in class. But I
may postpone answering, or just give a hint, if other people still want to work on it. In the case of
an exercise that asks you to supply details for the proof of a result in the text, if you cannot see
how to do it you should ask to see it done.

You may also ask for a hint on a problem. If possible, do so in class rather than in my office,
so that everyone has the benefit of the hint.

If two or more of you solve a problem together and feel you have contributed approximately
equal amounts to the solution, you may hand it in as joint work. If you turn in a homework
solution which is inspired by results you have seen in another text or course, indicate this, so that
credit can be adjusted to indicate your contribution.
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0.5. The name of the game. The general theory of algebraic structures has long been called
Universal Algebra, but in recent decades, many workers in the field have come to dislike this term,
feeling that ‘‘it promises too much’’, and/or that it suggests an emphasis on universal constructions,
which, though a major theme of this course, is not all that the field is about.

The most popular replacement term is General Algebra, and I have used it in the title of these
notes; but it has the disadvantage that in some contexts it may not be understood as referring to a
specific area. Below, I mostly say ‘‘General Algebra’’, but occasionally refer to the older term.

0.6. Other reading. Aside from these notes, there is no recommended reading for the course, but
I will mention here some items in the list of references at the end that you might like to look at.
The books [3], [5], [9], [15] and [17] are other general texts in General (a.k.a. Universal) Algebra.
Of these, [9] is the most technical and encyclopedic. [15] and [17] are both, like these notes,
aimed at students not necessarily having great prior mathematical background; however [17] differs
from this course in emphasizing partial algebras. [5] has in common with this course the viewpoint
that this subject is an important tool for algebraists of all sorts, and it gives some interesting
applications to groups, skew fields, etc..

[26] and [28] are standard texts for Berkeley’s basic graduate algebra course. Though we will
not assume the full material of such a course, you may find them useful references. [28] is more
complete and rigorous; [26] is sometimes better on motivation. [20]-[22] include similar material.
(Incidentally, some subset of Chapters 1-6 of these notes can be useful supplementary reading for
students taking such a course.) A presentation of the core material of such a course at
approximately an honors undergraduate level, with detailed explanations and examples, is [23].

Each of [3], [5], [9], [15], [17] and [21] gives a little of the theory of lattices, introduced in
Chapter 5 of these notes; a thorough treatment of this subject may be found in [4].

Chapter 6 of these notes introduces category theory. [6] is the paper that created that
discipline, and still very stimulating reading; [14] is a general text on the subject. [7] deals with an
important area of category theory that our course leaves out. For the thought-provoking paper from
which the ideas we develop in Chapter 9 come, see [8].

An amusing parody of some of the material we shall be seeing in Chapters 4-9 is [13].

0.7. Numeration; advice; web access; request for corrections. These notes are divided into
Chapters, and each Chapter into Sections. In each Section, I use two numbering systems: one that
embraces lemmas, theorems, definitions, numbered displays, etc., and one for exercises. The
number of each item begins with the chapter-and-section numbers; this is followed by ‘‘.’’ and the
number of the result, or ‘‘:’’ and the number of the exercise. For instance, in §m.n, i.e., Section n
of Chapter m, we might have display (m.n.1), followed by Definition m.n.2, followed by
Theorem m.n.3; while interspersed among these will be Exercises m.n :1, m.n :2, m.n :3, etc.. The
reason for using a common numbering system for results, definitions, and displays is that it is
easier to find Proposition 3.2.5 if it is between Lemma 3.2.4 and display (3.2.6) than it would be if
it were Proposition 3.2.3, located between Lemma 3.2.1 and display (3.2.1). The exercises form a
separate system so that you can easily keep track of which you have and haven’t done. They are
listed in the ‘‘Index of Exercises’’ at the end of these notes, along with telegraphic descriptions of
their subjects.

To other instructors who may teach from these notes (and myself, in case I forget), I
recommend moving fast through the early, easy, material and more slowly through the later parts,
which include more concepts new to the students and more nontrivial proofs. Roughly speaking,
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this hard material begins with Chapter 7. (A finer description of the hard parts might be: the last
three sections of Chapter 6, §7.3, the latter halves of Chapters 7 and 8, and all of Chapter 9.)
However, this judgement is based on the last time I taught the course, Spring 1995, when a large
fraction of the students had relatively advanced backgrounds. For students who have not seen
ordinals or categories before (the kind of students I had in mind in writing these notes), the latter
halves of Chapters 4 and 6 might also be places to move slowly.

The last two sections of each of Chapters 6, 7 and 8 are sketchy (to varying degrees), so
students should be expected either to read them mainly for the ideas, or to put in extra effort to
work out details.

After many years of editing, reworking, and extending these notes, I know one reason why the
lecture-and-copy system has not been generally replaced by the distribution of the same material in
written form: A good set of notes takes an enormous amount of time to develop. But I think that
it is worth the effort.

I am grateful to the many students who have pointed out errata in these notes – in particular, in
the recent years, Arturo Magidin and David Wasserman.

Comments and suggestions on any aspect of these notes – organizational, mathematical or other,
including indications of typographical errors – are welcomed! They can be sent to me by e-mail at
the address gbergman@math.berkeley.edu , or by regular mail at Department of Mathematics,
University of California, Berkeley, CA 94720-3840.

I presently have PostScript files of these notes accessible through my web page,
http://math.berkeley.edu/~gbergman . I am not sure whether I will keep them there, but
as soon as I start accumulating important errata regarding these notes, I will put up a web-page of
these.
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Part I. Motivation and examples.

In the next three chapters, we shall look at particular cases of algebraic

structures and universal constructions involving them, so as to get some sense of the

general results we will want to prove in the chapters that follow.

The construction of free groups will be our first example. We will prepare for it

in Chapter 1 by making precise some concepts such as that of a group-theoretic

expression in a set of symbols; then, in Chapter 2, we will construct free groups by

several mutually complementary approaches. Finally, in Chapter 3 we shall look at

a large number of other constructions – from group theory, semigroup theory, ring

theory, etc. – which have, to greater or lesser degrees, the same spirit as the free

group construction, and, for a bit of variety, two examples from topology as well.
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Chapter 1. Making some things precise.

1.1. Generalities. Most notation will be explained as it is introduced. We will assume familiarity
with basic set-theoretic and logical notation: ∀ for ‘‘for all’’ (universal quantification), ∃ for
‘‘there exists’’ (existential quantification), ∧ for ‘‘and’’, and ∨ for ‘‘or’’. I will write =def for
‘‘equals by definition’’. Functions will be indicated by arrows →, while their behavior on
elements will be shown by flat-tailed arrows, → ; that is, if a function X → Y carries an element
x to an element y, this may be symbolized x → y (‘‘x goes to y’’).

We will (with rare exceptions, which will be noted) write functions on the left of their
arguments, i.e., f (x) rather than xf , and understand composite functions fg to be defined so
that ( fg)(x) = f (g(x)).

1.2. What is a group? Loosely speaking, a group is a set G given with a composition (or
multiplication, or group operation) μ : G × G → G, an inverse operation ι : G → G, and a
neutral element e ∈G, satisfying certain well-known laws. (We will make a practice of saying
‘‘neutral element’’ rather than ‘‘identity element’’ to avoid confusion with the other sense of
‘‘identity’’, meaning an equation that holds identically, which will be of great importance to us.)

The most convenient way to make precise this idea of a set ‘‘given with’’ three operations is to
define the group to be, not the set G, but the 4-tuple (G, μ , ι , e). In fact, from now on, a letter
such as G representing a group will stand for such a 4-tuple, and the first component, called the
‘‘underlying set’’ of the group, will be written |G |. Thus

G = ( |G |, μ , ι , e).

For simplicity, many mathematicians ignore this formal distinction, and use a letter such as G
to represent both a group and its underlying set, writing x ∈G, for instance, where they mean
x ∈ |G |. This is okay, as long as one always understands what ‘‘precise’’ statement such a
shorthand statement stands for. Note that to be entirely precise, if G and H are two groups, we
should use different symbols, say μG and μH , ιG and ιH , eG and eH , for the operations of
G and H. How precise and formal one needs to be depends on the situation. Since the aim of
this course is to abstract the concept of algebraic structure and study what makes these things tick,
we shall be somewhat more precise here than in an ordinary algebra course.

(Many workers in General Algebra use a special type-font, e.g., German or boldface, to
represent algebraic objects, and regular type for their underlying sets. Thus, where we will write
G = ( |G |, μ , ι , e), they would write something like G = (G, μ , ι , e).)

Perhaps the easiest exercise in the course is:

Exercise 1.2:1. Give a precise definition of a homomorphism from a group G to a group H,
distinguishing between the operations of G and the operations of H.

We will often refer to a homomorphism f : G → H as a ‘‘map’’ from G to H. That is,
unless the contrary is mentioned, ‘‘maps’’ between mathematical objects mean maps between their
underlying sets which respect their structure. Note that if we wish to refer to a set map not
assumed to respect the group operations, we can call this ‘‘a map from |G | to |H |’’.

The use of letters (μ and ι) for the operations of a group, and the functional notation
μ(x, y), ι(z) which this entails, are desirable for precisely stating results in a form which will
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generalize to a wide class of other sorts of structures. But when actually working with elements of
a group, we will generally use conventional notation, writing x.y (or xy, or sometimes in abelian
groups x +y) for μ(x, y), and z–1 (or – z) for ι(z). When we do this, we either may continue
to write G = ( |G |, μ , ι , e), or we may write G = ( |G |, . , –1, e).

Let us now recall the conditions which must be satisfied by a 4-tuple G = ( |G |, . , –1, e),
where |G | is a set, . is a map |G | × |G | → |G |, ‘‘–1’’ is a map |G | → |G |, and e is an
element of |G |, in order for G to be called a group:

(1.2.1)

(∀ x, y, z ∈ |G | ) (x.y).z = x.( y.z),

(∀ x ∈ |G | ) e.x = x = x.e,

(∀ x ∈ |G | ) x–1.x = e = x.x–1.

There is another definition of group that you have probably also seen: In effect, a group is
defined to be a pair ( |G |, .), such that |G | is a set, and . is a map |G | × |G | → |G | satisfying

(1.2.2)
(∀x, y, z ∈ |G | ) (x.y).z = x.( y.z),

(∃e ∈ |G | ) ((∀x ∈ |G | ) e.x = x = x.e) ∧ ((∀x ∈ |G | ) (∃y ∈ |G | ) y.x = e = x.y).

It is easy to see that given ( |G |, .) satisfying (1.2.2), there exist a unique operation –1 and
element e, such that ( |G |, . , –1, e) satisfies (1.2.1). (Remember the lemmas saying that neutral
elements and 2-sided inverses are unique when they exist.) Thus, these two versions of the concept
of group provide equivalent information. Our description in terms of 4-tuples may seem
‘‘uneconomical’’ compared with one using pairs, but we will stick with it. We shall eventually see
that, more important than the number of terms in the tuple, is the fact that condition (1.2.1) consists
only of identities, i.e., universally quantified equations, while (1.2.2) does not. But we will at times
acknowledge the idea of the second definition; for instance when we ask (imprecisely) whether
some semigroup ‘‘is a group’’.

Exercise 1.2:2. If G is a group, let us define an operation δG on |G | by δG (x, y) = x.y–1.
Does the pair G ′ = ( |G |, δG ) determine the group ( |G |, . , –1, e)? (I.e., if G1 and G2 yield
the same pair, G ′1 = G ′2, must G1 = G2?)

Suppose |X | is any set and δ : |X | × |X | → |X | any map. Can you write down a set of
axioms for the pair X = ( |X |, δ), which will be necessary and sufficient for it to arise from a
group G in the manner described above? (That is, given a set |X | and a map
δ : |X | × |X | → |X | try to find necessary and sufficient conditions for there to exist a group G
such that G ′ = (X, δ).)

If you get such a set of axioms, then try to see how brief and simple you can make it.

Exercise 1.2:3. Again let G be a group, and now define σG (x, y) = x.y–1.x. Consider the same
questions for ( |G |, σG ) that were raised for ( |G |, δG ) in the preceding exercise.

My point in discussing the distinction between a group and its underlying set, and between
groups described using (1.2.1) and using (1.2.2), was not to be petty, but to make us conscious of
the various ways we use mathematical language – so that we can use it without its leading us
astray. At times we will bow to convenience rather than trying to be consistent. For instance,
since we distinguish between a group and its underlying set, we should logically distinguish
between the set of integers, the additive group of integers, the multiplicative semigroup of integers,
the ring of integers, etc.; but we shall in fact call all of these ‘‘Z’’ unless there is a real danger of
ambiguity, or a need to emphasize a distinction. When there is such a need, we can write
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(Z , +, –, 0) = Zadd, (Z , ., 1) = Zmult , (Z , +, ., –, 0, 1) = Zring, etc.. Likewise, we may use
‘‘ready made’’ symbols for other objects, such as {e} for the trivial subgroup of a group G,
rather than interrupting a discussion to set up a notation that distinguishes this subgroup from its
underlying set.

The approach of regarding ‘‘sets with operations’’ as tuples, whose first member is the set and
whose other members are the operations, applies, as we have just seen, to other algebraic structures
than groups – to semigroups, rings, lattices, and the more exotic beasties we will meet on our
travels. To discuss the general case, we need to be clear about what we mean by such concepts as
‘‘n-tuple of elements’’ and ‘‘n-ary operation’’. We shall review these in the next two sections.

1.3. Indexed sets. If I and X are sets, an I-tuple of elements of X, or a family of elements of
X indexed by I, will be defined formally as a function from I to X, but we shall write it
(xi )i ∈I rather than f : I → X. The difference is one of viewpoint. We think of such families as
arrays of elements of X, which we keep track of with the help of an index set I, while when we
write f : A → B we are most often interested in some properties relating an element of A and its
image in B. But the distinction is not sharp. Sometimes there is an interesting functional relation
between the indices i and the values xi ; sometimes typographical or other reasons will dictate
the use of x(i ) rather than xi .

There will be a minor formal exception to the above definition when we speak of an n-tuple of
elements of X (n ≥ 0) in these beginning chapters. I will take this to mean a function from
{1, ... , n} to X, written (x1, ... , xn ) or (xi )i =1, ... , n , despite the fact that set theorists define the
natural number n inductively to be the set {0, ... , n –1}. Most set theorists, for consistency with
that definition, write their n-tuples (x0, ... , xn –1); and we shall switch to that notation after
reviewing the set theorist’s approach to the natural numbers in Chapter 4.

If I and X are sets, then the set of all functions from I to X, equivalently, of all I-tuples
of members of X, is written XI. Note that Xn will denote the set of n-tuples of elements of X,
defined as above.

1.4. Arity. An n-ary operation on a set S means a map f : Sn → S. For n = 1, 2, 3 the words
are unary, binary, and ternary respectively. If f is an n-ary operation, we call n the arity of f .
More generally, given any set I, an I-ary operation on S is defined as a map SI → S.

Thus, the definition of a group involves one binary operation, one unary operation, and one
distinguished element, or ‘‘constant’’, e. Likewise, a ring can be described as a 6-tuple R =
( |R |, +, . , –, 0, 1), where + and . are binary operations on |R |, ‘‘–’’ is a unary operation, and
0, 1 are distinguished elements, all satisfying certain identities.

One may make these descriptions formally more homogeneous by considering ‘‘distinguished
elements’’ as 0-ary operations of our algebraic structures. Indeed, since an n-ary operation on S
is something that turns out a value in S when we feed in n arguments in S, it makes sense that
a 0-ary operation should be something that gives a value in S without our feeding in anything.
Or, looking at it formally, S0 is the set of all maps from the empty set to S, of which there is
exactly one; so S0 is a one-element set, so a map S0 → S determines, and is determined by, a
single element of S.

We note also that constants show the right numerical behavior to be called ‘‘zeroary
operations’’. Indeed, if f and g are an m-ary and an n-ary operation on S, and i a positive
integer ≤ m, then on inserting g in the ith place of f , we get an operation f ( – , ... , – ,
g( – , ... , – ), – , ... , – ) of arity m+n –1. Now if, instead, g is a fixed element of S, then when
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we put it into the ith place of f we get f ( – , ... , – , g, – , ... , – ), an (m –1)-ary operation, as we
should if g is to be thought of as a ‘‘zeroary operation’’.

Strictly speaking, distinguished elements and zeroary operations are in one-to-one
correspondence, but are not the same thing: One can distinguish between a map S0 → S, and its
(unique) value in S. But we shall find it safe to ignore this difference in describing structures on a
set.

So we shall henceforth treat ‘‘distinguished elements’’ in the definition of groups, rings, etc., as
zeroary operations, and we will find that they can be handled essentially like the other operations.
I say ‘‘essentially’’ because there are some minor ways in which zeroary operations differ from
operations of positive arity. Most notably, on the empty set X = ∅ there is a unique n-ary
operation for each positive n, but no zeroary operation. Sometimes this trivial fact will make a
difference in an argument.

1.5. Group-theoretic terms. One is often interested in talking about what relations hold among
certain elements of a group or other algebraic system. For example, every pair of elements (ξ, η)
of a group satisfies the relation (ξ .η)–1 = η–1.ξ–1. Some particular pair (ξ, η) of elements of
some group may satisfy the relation ξ .η = η .ξ2.

In general, a group-theoretic relation in a family of elements (ξi )I of a group G means an
equation p(ξi ) = q(ξi ) holding in G, where p and q are expressions formed from an I-tuple
of symbols using formal group operations . , –1 and e. So to study relations in groups, we need
to define the set of all ‘‘formal expressions’’ in the elements of a set X under symbolic operations
of multiplication, inverse and neutral element.

The technical word for such a formal expression is a ‘‘term’’. Intuitively, a group-theoretic
term is a set of instructions on how to apply the group-operations to a family of elements. E.g.,
starting with a set of three symbols, X = {x, y, z}, an example of a group-theoretic term in X is
the symbol ( y.x).( y–1); or we might write it μ(μ( y, x), ι( y)). Whichever way we write it, the
idea is: ‘‘apply the operation μ to the pair ( y, x), apply the operation ι to the element y, and
then apply the operation μ to the pair of elements so obtained, taken in that order’’. The idea can
be ‘‘realized’’ when we are given a map f of the set X into the underlying set |G | of a group
G = ( |G |, μG, ιG, eG ), say x → ξ , y → η , z → ζ (ξ , η , ζ ∈ |G | ). We can then define the result
of ‘‘evaluating the term μ(μ( y, x), ι( y)) using the map f ’’ as the element
μG (μG (η , ξ), ιG (η)) ∈ |G |, that is, (η .ξ).(η–1).

Let us try to make the concept of group-theoretic term precise. ‘‘The set of all terms in the
elements of X, under formal operations . , –1 and e’’ should be a set T = TX, . , –1, e with the
following properties:

(aX ) For every x ∈X, T contains a symbol representing x.

(a.) For every s, t ∈T, T contains a ‘‘symbolic combination of s and t under .’’.

(a–1) For every s ∈T, T contains an element gotten by ‘‘symbolic application of –1 to s’’.

(ae ) T contains an element symbolizing e.

(b) Each element of T can be written in one and only one way as one and only one of the
following:

(bX ) The symbol representing an element of X.

(b.) The symbolic combination of two members of T under . .

(b–1) The symbol representing the result of applying –1 to an element of T.
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(be ) The symbol representing e.

(c) Every element of T can be obtained from the elements of X via the given symbolic
operations. That is, T contains no proper subset satisfying (aX ) - (ae ).

In functional language, (aX ) says that we are to be given a function X → T (the ‘‘symbol for
x’’ function); (a.) says we have another function, which we call ‘‘formal product’’, from T × T to
T ; (a–1) posits a function T → T, the ‘‘formal inverse’’, and (ae ) a distinguished element of
T. Translating our definition into this language, we get

Definition 1.5.1. By ‘‘the set of all terms in the elements of X under the formal group operations
μ , ι , e’’ we shall mean a set T which is:

(a) given with functions

symbT : X → T, μT : T 2 → T, ιT : T → T, and eT : T 0 → T,

such that

(b) each of these maps is one-to-one, their images are disjoint, and T is the union of these
images, and

(c) T is generated by symbT (X ), under the operations μT, ιT, and eT.

The next exercise justifies the use of the word ‘‘the’’ in the above definition.

Exercise 1.5:1. Assuming T and T ′ are two sets given with functions that satisfy
Definition 1.5.1, establish a natural one-to-one correspondence between the elements of T and
T ′. (You must, of course, show that the correspondence you set up is well-defined, and is a
bijection.)

Exercise 1.5:2. Is condition (c) of Definition 1.5.1 a consequence of (a) and (b)?

How can we obtain a set T with the properties of the above definition? One approach is to
construct elements of T as finite strings of symbols from some alphabet which contains symbols
representing the elements of X, additional symbols μ (or .), ι (or –1), and e, and perhaps
some symbols of punctuation. But we need to be careful. For instance, if we defined μT to take
a string of symbols s and a string of symbols t to the string of symbols s.t, and ιT to take a
string of symbols s to the string of symbols s–1, then condition (b) would not be satisfied! For
a string of symbols of the form x.y.z (where x, y, z ∈X ) could be obtained by formal
multiplication either of x and y.z, or of x.y and z. In other words, μT takes the pairs
(x, y.z) and (x.y, z) to the same string of symbols, so it is not one-to-one. Likewise, the
expression x.y–1 could be obtained either as μT (x, y–1) or as ιT (x.y), so the images of μT
and ιT are not disjoint. (It happens that in the first case, the two interpretations of x.y.z come
to the same thing in any group, because of the associative law, while in the second, the two
interpretations do not: ξ . (η–1) and (ξ.η)–1 are generally distinct for elements ξ , η of a group
G. But the point is that in both cases condition (b) fails, making these expressions ambiguous as
instructions for applying group operations. Note that a notational system in which ‘‘x.y.z’’ was
ambiguous in the above way could never be used in writing down the associative law; and writing
down identities is one of the uses we will want to make of these expressions.)

On the other hand, it is not hard to show that by introducing parentheses among our symbols,
and letting μT (s, t) be the string of symbols (s.t), and ιT (s) the string of symbols (s–1), we
can get a set of expressions satisfying the conditions of our definition.
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Exercise 1.5:3. Verify the above assertion. (How, precisely, will you define T ? What
assumptions must you make on the set of symbols representing elements of X ? Can we allow
some of these ‘‘symbols’’ to be strings of other symbols?)

Another symbolism that will work is to define the value of μT at s and t to be the string of
symbols μ(s, t), and the value of ιT at s to be the string of symbols ι(s).

Exercise 1.5:4. Suppose we define the value of μT on s and t to be the symbol μ st, and the
value of ιT at s to be the symbol ι s. Will the resulting set of strings of symbols satisfy
Definition 1.5.1?

A disadvantage of the strings-of-symbols approach is that, though it can be extended to other
kinds of algebras with finitary operations (such as rings, lattices, etc.), one cannot use it for
algebras with operations of infinite arities, because, even if one allows infinite strings of symbols,
one cannot string several infinite strings together. One can, however, for an infinite set I, create
I-tuples which have I-tuples among their members, and this leads to the more versatile set-theoretic
approach. Let us show it for the case of group-theoretic terms.

Choose any set of four elements, which will be denoted ∗, . , –1 and e. For each x ∈X,
define symbT (x) to be the ordered pair (∗, x); for s, t ∈T, define μT (s, t) to be the ordered
3-tuple (. , s, t); for s ∈T define ιT (s) to be the ordered pair ( –1, s), and finally, define eT
to be the 1-tuple (e). Let T be the smallest set closed under the above operations.

Now it is a basic lemma of set theory that no element can be written as an n-tuple in more than
one way; i.e., if (x1, ... , xn ) = (x ′1, ... , x ′n ′ ), then n ′ = n and xi = x ′i (i=1, ... , n). It is easy to
deduce from this that the above construction will satisfy the conditions of Definition 1.5.1.

Exercise 1.5:5. Would there have been anything wrong with defining symbT (x) = x instead of
(∗, x)? If so, can you find a way to modify the definitions of μT etc., so that the definition of
symbT (x) = x can always be used?

I leave it to you to decide (or not to decide) which construction for group-theoretic terms you
prefer to assume during these introductory chapters. We shall only need the properties given in
Definition 1.5.1. From now on, we shall often use conventional notation for such terms, e.g.,
(x.y).(x–1). In particular, we shall often identify X with its image symbT (X ). We will use the
more formal notation of Definition 1.5.1 mainly when we want to emphasize particular distinctions,
such as that between the formal operations μT etc., and the operations μG etc. of a particular
group.

1.6. Evaluation. Now suppose G is a group, and f : X → |G | a set map, in other words, an
X-tuple of elements of G. We wish to say how to evaluate a term in an X-tuple of symbols,

s ∈ T = TX, . , –1, e

at this family f of elements, so as to get a value sf ∈ |G |. We shall do this inductively (or more
precisely, ‘‘recursively’’; we will learn the distinction in §4.3).

If s = symbT (x) for some x ∈X we define sf = f (x). If s = μT (t, u), then assuming
inductively that we have already defined tf , uf ∈ |G |, we define sf = μG (tf , uf ). Likewise, if
s = ιT (t), we assume tf defined and define sf = ιG (tf ). Finally, for s = eT we define sf =
eG . Since every element s ∈T is obtained from symbT (X ) by the operations μT , ιT , eT , and
in a unique manner, this construction will give one, and only one, value sf for each s.

We have not discussed the general principles that allow one to make recursive definitions like
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the above. We shall develop these in Chapter 4, in preparation for Chapter 8 where we will do
rigorously and in full generality what we are sketching here. Some students might want to look
into this question for themselves at this point, so I will make this:

Exercise 1.6:1. Show rigorously that the procedure loosely described above yields a unique well-
defined map T → |G |. (Suggestion: If you are familiar with Zorn’s Lemma, consider partial
maps from T to |G | satisfying appropriate conditions, and apply that Lemma to get a maximal
one.)

In the above discussion of evaluation, we fixed f ∈ |G | X, and got a function T → G. If we
vary f as well as T, we get an ‘‘evaluation map’’,

(TX, . , –1, e ) × |G | X → |G |

taking each pair (s, f ) to sf . Still another viewpoint is to fix an s ∈T, and define a map
sG : |G | X → |G | by sG ( f ) = sf ( f ∈ |G | X); this represents ‘‘substitution into s’’. For example,
suppose X = {x, y, z}, let us identify |G | X with |G |3, and let s be the term ( y.x).( y–1). Then
for each group G, sG is the operation taking each 3-tuple (ξ , η , ζ) to the element (ηξ)η–1.
Such operations will be of importance to us, so we give them a name.

Definition 1.6.1. Let G be a group and n a nonnegative integer. Let T = Tn, –1, . , e denote the
set of group-theoretic terms in n symbols. Then for each s ∈T, we will let sG : |G | n → |G |
denote the map taking each n-tuple f ∈ |G | n to the element sf ∈ |G |. The n-ary operations sG
obtained in this way from terms s ∈T will be called the derived n-ary operations of G. (Some
authors call these term operations.)

Note that distinct terms can induce the same derived operation. E.g., the associative law for
groups says that for any group G, the derived ternary operations induced by the terms (x.y).z
and x.( y.z) are the same. As another example, in the particular group S3 (the symmetric group
on three elements), the derived binary operations induced by the terms (x.x).( y.y) and
( y.y).(x.x) are the same, though this is not true in all groups. (It is true in all dihedral groups.)

Some more examples of derived operations on groups are the binary operation of conjugation,
commonly written ξη = η–1ξη (induced by the term y–1.(x.y) ), the binary commutator
operation, [ξ , η] = ξ–1η–1ξη, the unary operation of squaring, ξ2 = ξ.ξ , and the two binary
operations δ and σ of Exercises 1.2:2 and 1.2:3. Some trivial examples are also worth noting:
the primitive group operations – group multiplication, inverse, and neutral element – are by
definition also derived operations; and finally, one has very trivial derived operations such as the
ternary ‘‘second component’’ function, p3, 2(ξ , η , ζ) = η , induced by y ∈T{x, y, z}, –1, . , e .

1.7. Terms in other families of operations. These concepts can be applied to more general sorts
of algebraic structures. Let Ω be an ordered pair ( |Ω |, ari ), where |Ω | is a set of symbols
(thought of as representing operations), and ari a function associating to each α ∈|Ω | a
nonnegative integer ari(α), the intended arity of α (§1.4). (For instance, in the group case
which we have been considering, we would take |Ω | = {μ , ι , e}, ari(μ) = 2, ari(ι) = 1, ari(e) = 0.
Incidentally, the commonest symbol, among specialists, for the arity of an operation α is n(α),
but I will use ari(α) to avoid confusion with other uses of the letter n.) Then an Ω-algebra will
mean a system A = ( |A|, (αA )α ∈|Ω | ), where |A| is a set, and for each α ∈|Ω |, αA is some
ari(α)-ary operation on |A|:

αA : |A| ari(α) → |A|.
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For any set X, we can mimic the preceding ideas to get a set T = TX , Ω , the set of ‘‘terms in
elements of X under the operations of Ω’’; and given any Ω-algebra A, we can get substitution
and evaluation maps as before, and so define derived operations of A.

The eventual aim of this course will be to study such general systems A. In order to discover
what kinds of results we want to prove about them, we shall devote Chapters 2 and 3 to looking at
specific situations involving familiar sorts of algebraic objects.

However, let me give here a few exercises based on these general concepts.

Exercise 1.7:1. On the set {0, 1}, let M3 denote the ternary ‘‘majority vote’’ operation; i.e., for
a, b, c ∈{0,1}, M3(a, b, c) is 0 if two or more of a, b and c are 0, and 1 if two or more
of them are 1. One can form various terms in a symbolic operation M3 (e.g., p(w, x, y, z) =
M3(x, M3(z , w, y), z)) and then evaluate these in the algebra ({0, 1}, M3) to get operations on
{0, 1} ‘‘derived from’’ M3.

General problem: Determine which operations (of arbitrary arity) on {0, 1} can be expressed
as derived operations of this algebra.

As steps toward such a result, you might try to determine whether each of the following can
or cannot be so expressed:
(a) The 5-ary majority vote function M5: {0, 1}5 → {0, 1}, defined in the obvious manner.
(b) The binary operation sup. (I.e., sup(a, b) = 0 if a = b = 0; otherwise sup(a, b) = 1.)
(c) The unary ‘‘reversal’’ operation r, defined by r (0) = 1, r (1) = 0.
(d) The 4-ary operation N4, described as ‘‘the majority vote function, where the first voter has
extra tie-breaking power’’; i.e., N4(a, b, c, d ) = the majority value among a, b, c, d if there is
one, while if a+b +c +d = 2 we set N4(a, b, c, d ) = a.

Advice: (i) If you succeed in proving that some operation is not derivable from M3, try to
formulate and prove this as a general result to the effect that all operations derived from M3
must have a certain property. (ii) A mistake that many students make is to think that a formula
such as s(ξ , η) = M3(0, ξ , η) defines a derived operation. In fact, since our system
({0, 1}, M3) does not include the zeroary operation 0 (nor 1), ‘‘M3(0, x, y)’’ is not a term.

Exercise 1.7:2. (Question raised by Jan Mycielski, letter dated 1/17/83.) Let C denote the set of
complex numbers, and exp the exponential function exp(x) = ex, a unary operation on C .
Does the algebra (C , +, . , exp) have any automorphisms other than the identity and complex
conjugation? (An automorphism means a bijection of the underlying set with itself, which
respects the operations.) I don’t know the answer to this question.

It is not hard to prove using the theory of transcendence bases of fields ([26, §VI.1], [28,
§VIII.1]) that (C , +, . ) has infinite automorphism group (cf. [26, Exercise VI.6(b)], [28,
Exercise VIII.1]). A couple of easy results in the opposite direction, which you may prove and
hand in, are (i) that this structure has no continuous automorphisms other than those mentioned,
and (ii) that if we write ‘‘cj’’ for the unary operation of complex conjugation, then the algebra
(C , +, . , cj) has no automorphisms other than id and cj. You will also find it easy to verify
that (iii) a map C → C is an automorphism of (C , +, . , exp) if and only if it is an
automorphism of (C , +, exp).

Exercise 1.7:3. Given operations α1, ... , αr (of various arities) on a finite set S, and another
operation β on S, describe a test that will determine in a finite number of steps whether β is
a derived operation of α1, ... , αr .

The arities considered so far have been finite; the next exercise will deal with terms in
operations of possibly infinite arities. To make this reasonable, let me give some naturally arising
examples of operations of countably infinite arity on familiar sets:

On the real unit interval [0, 1] :

(a) the operation lim sup (‘‘limit superior’’, defined by lim sup xi = limi→ ∞ supj ≥ i xj ),
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(b) the operation defined by s(a1, a2, ...) = Σ 2–i ai .

On the set of positive real numbers :

(c) the continued fraction operation c(a1, a2, ...) = a1+ 1 ⁄ (a2+ 1 ⁄ (...) ).

On the class of subsets of the set of all integers :

(d) the operation ∪ai ,

(e) the operation ∩ai .

Exercise 1.7:4. Suppose Ω is a pair ( |Ω |, ari ), where |Ω | is again a set of operation symbols,
but where the arities ari(α) may now be finite or infinite cardinals; and let X be a set of
variable symbols. Suppose we can form a set T of expressions satisfying the analogs of
conditions (a)-(c) (§1.5). For s, t ∈T, let us write s t if t is ‘‘immediately involved’’ in s,
that is, if s has the form α(u1, u2, ...) where α ∈|Ω |, and for some i, ui = t.
(i) Show that if all the arities ari(α) are finite, then for each s we can find a finite bound
B(s) on the lengths n of sequences s1, ... , sn ∈T such that s = s1 ... sn .
(ii) If not all ari(α) are finite, and X is nonempty, show that there exists s for which no
such finite bound exists.
(iii) In the situation of (ii), is it possible to have an infinite chain s = s1 ... sn ... in T ?
(iv) Show that one cannot have a ‘‘cycle’’ s1 ... sn s1 in T.
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Chapter 2. Free groups.

In this chapter, we introduce the idea of universal constructions through the particular case of
free groups. We shall first motivate the free group concept, then develop three ways of
constructing such groups.

2.1. Motivation. Suppose G is a group and we take (say) three elements a, b, c ∈ |G |, and
consider what group-theoretic relations these satisfy. That is, letting T be the set of all group-
theoretic terms in three symbols x, y and z, we look at pairs of elements p(x, y, z),
q(x, y, z) ∈T, and if pG (a, b, c) = qG (a, b, c) in |G |, we say that (a, b, c) satisfies the relation
p = q. We note:

Lemma 2.1.1. Suppose F and G are groups, a, b, c ∈ |F | are three elements generating F,
and α , β , γ are any three elements of G. Then the following conditions are equivalent:

(i) Every group-theoretic relation p = q satisfied by (a, b, c) in F is also satisfied by
(α , β , γ ) in G.

(ii) There exists a group homomorphism h : F → G under which a → α , b → β , c → γ .

Further, when these conditions hold, the homomorphism h of (ii) is unique.
If the assumption that a, b and c generate F is dropped, one still has (ii)⇒(i).

Proof. Suppose (ii) is satisfied. Then it is easy to see by induction on p that for all p ∈T ,

h( pF (a, b, c)) = pG (α , β , γ ).

Statement (i) follows. If, also, a, b, c generate F , then every element of |F | can be written
pF (a, b, c) for some p, so the above formula shows that an h as in (ii) is uniquely determined
on all of F.

On the other hand, suppose {a, b, c} generates F , and (i) holds. For each g =
pF (a, b, c) ∈|F |, define h(g) = pG (α , β , γ ). To show that this gives a well-defined map from |F |
to |G |, note that if we have two ways of writing an element g ∈ |F |, pF (a, b, c) = g = qF (a, b, c),
then the relation p = q is satisfied by (a, b, c) in F , hence by (i), it is satisfied by (α , β , γ ) in
G, hence the two values our definition would prescribe for h(g), namely pG (α , β , γ ) and
qG (α , β , γ ), are the same.

That this set map is a homomorphism follows from the way evaluation of group-theoretic terms
at (α , β , γ ) is defined. For instance, given g ∈ |F |, suppose we want to show that h(g–1) =
h(g)–1. We write g = pF (a, b, c). Then (ιT ( p))F (a, b, c) = g–1, so h(g–1) =def
(ιT ( p))G (α , β , γ ) =def pG (α , β , γ )–1 = h(g)–1. The same method works for products and for the
neutral element. �

Exercise 2.1:1. Show by example that if {a, b, c} does not generate F , then condition (i) of the
above lemma can hold and (ii) fail, and also that (ii) can hold but h not be unique. (You may
replace (a, b, c) with a smaller family, (a, b) or (a), if you like.)

Lemma 2.1.1 leads one to wonder: Among all groups F generated by 3-tuples of elements
(a, b, c), is there one such group in which these three elements satisfy the smallest possible set of
relations? We note what the above lemma would imply for such a group:
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Corollary 2.1.2. Let F be a group, and a, b, c ∈ |F |. Then the following conditions are
equivalent:

(i) a, b, c generate F, and the only relations satisfied by a, b, c in F are those relations
satisfied by every 3-tuple (α , β , γ ) of elements in every group G.

(ii) For every group G, and every 3-tuple of elements (α , β , γ ) in G, there exists a unique
homomorphism h : F → G such that h(a) = α , h(b) = β , h(c) = γ . �

Only one point in the deduction of this corollary from Lemma 2.1.1 is not completely obvious; I
will make it an exercise:

Exercise 2.1:2. In the situation of the above corollary, show that (ii) implies that {a, b, c}
generates F. (Hint: Let G be the subgroup of F generated by those three elements.)

I’ve been speaking of 3-tuples of elements for concreteness; the same observations are valid for
n-tuples for any n, and generally, for X-tuples for any set X. An X-tuple of elements of F
means a set map X → |F |, so in this general context, condition (ii) above takes the form given by
the next definition. (Though making this definition does not answer the question of whether such
objects exist!)

Definition 2.1.3. Let X be a set. By a free group F on the set X, we shall mean a pair
(F, u), where F is a group, and u a set map X → |F |, having the following universal property:

For any group G, and any set map : X → |G |, there exists a unique homomorphism
h : F → G such that = hu; i.e., making the diagram below commute.

X
________u → |F | F

��
�
�

↓

��
�
�

↓

∃1 h∀

|G| G

(In the above diagram, the first vertical arrow also represents the homomorphism h, there
regarded as a map on the underlying sets of the groups.)

Corollary 2.1.2 (as generalized to X-tuples) says that (F, u) is a free group on X if and only
if the elements u(x) (x ∈X ) generate F , and satisfy no relations except those that must hold in
any group. In this situation, one says that these elements ‘‘freely’’ generate F , hence the term
free group. Note that if such an F exists, then every X-tuple of members of any group G can be
obtained, in a unique way, as the image under a group homomorphism F → G of the particular
X-tuple given by u. Hence that X-tuple can be thought of as a universal X-tuple of group
elements, and so the property characterizing it is called a universal property.

We note a few elementary facts and conventions about such objects. If (F , u) is a free group
on X , then the map u : X → |F | is one-to-one. (This is easy to prove from the universal
property, plus the well-known fact that there exist groups with more than one element. The student
who has not seen free groups developed before should think this argument through.) Hence given a
free group, it is easy to get from it one such that the map u is actually an inclusion X ⊆ |F |.
Hence for notational convenience, one frequently assumes that this is so; or, what is approximately
the same thing, one often uses the same symbol for an element of X and its image in |F |.

If (F, u) and (F ′ , u ′) are both free groups on the same set X , there is a unique
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isomorphism between them as free groups, i.e., respecting the maps u and u ′. (Cf. diagram
below.)

|F | F

X

u ′

u ��
�
�

↓

↑
��
�
�

��
�
�

↓

↑
��
�
�

|F ′| F ′

(If you haven’t seen this result before, again see whether you can work out the details. For the
technique you might refer to the proof of Proposition 3.3.3 below.) As any two free groups on X
are thus ‘‘essentially’’ the same, one sometimes speaks of the free group on X.

One also often says that a group F ‘‘is free’’ to mean ‘‘there exists some set X and some
map u : X → |F | such that (F, u) is a free group on X ’’. (Here u can indeed be taken to be
the inclusion of a subset X ⊆ |F |.)

But it is time we proved that free groups exist! We will show three different ways of
constructing them in the next three sections.

Exercise 2.1:3. Suppose one replaces the word ‘‘group’’ by ‘‘finite group’’ throughout
Definition 2.1.3. Show that for any nonempty set X , no finite group will exist having the stated
universal property.

2.2. The logician’s approach: construction from group-theoretic terms. We know from
Corollary 2.1.2 that if a free group F on three generators a, b, c exists, then each of its elements
can be written pF (a, b, c) for some group-theoretic term p, and that two such elements,
pF (a, b, c) and qF (a, b, c) are equal if and only if the equation ‘‘p = q’’ holds for every three
elements of every group, i.e., follows from the group axioms. This suggests that we may be able to
construct such a group by taking the set of all group-theoretic terms in three variables, constructing
an equivalence relation ‘‘p ∼ q’’ on this set which means ‘‘the equality of p and q is a
consequence of the group axioms’’, taking for |F | the quotient of our set of terms by this relation,
and defining operations . , –1 and e on |F | in some natural manner. This we shall now do!

Let X be any set, and T = TX, . , –1, e the set of all group-theoretic terms in the elements of
X. What conditions must a relation ‘‘ ∼ ’’ satisfy for p ∼ q to be the condition ‘‘p = q ’’ for
some map of X into some group G ? Well, the group axioms tell us that it must satisfy:

(2.2.1) (∀ p, q, r ∈T ) (( p.q).r) ∼ ( p.(q.r)),

(2.2.2) (∀ p ∈T ) ( p.e) ∼ p ∧ (e.p) ∼ p,

(2.2.3) (∀ p ∈T ) ( p.( p–1)) ∼ e ∧ (( p–1).p) ∼ e.

Also, just the well-definedness of the operations of G tells us that:

(2.2.4) (∀ p, p ′ , q ∈T ) ( p ∼ p ′) ⇒ (( p.q) ∼ ( p ′.q) ∧ (q.p) ∼ (q.p ′) ),

(2.2.5) (∀ p, p ′ ∈T ) ( p ∼ p ′) ⇒ ( p–1) ∼ ( p ′ –1).
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Finally, of course, ∼ must be an equivalence relation:

(2.2.6) (∀ p ∈T ) p ∼ p,

(2.2.7) (∀ p, q ∈T ) ( p ∼ q) ⇒ (q ∼ p),

(2.2.8) (∀ p, q, r ∈T ) ( p ∼ q ∧ q ∼ r) ⇒ ( p ∼ r).

So let us take for ‘‘ ∼ ’’ the least binary relation on T satisfying conditions (2.2.1-8).
Let us note what this means, and why it exists: Recall that a binary relation on a set T is

formally a subset R ⊆ T × T ; when we write p ∼ q, this is understood to be an abbreviation for
( p, q) ∈R. ‘‘Least’’ means smallest with respect to set-theoretic inclusion. Our conditions (2.2.1-8)
are in the nature of closure conditions, and, as with all sets defined by closure conditions, the
existence of a least set satisfying them can be established in two ways:

We may capture this set ‘‘from above’’ by forming the intersection of all binary relations on T
satisfying (2.2.1-8) – the set-theoretic intersection of these relations as subsets of T × T. (Note,
incidentally, that if we think of such relations as predicates rather than as sets, this intersection ∩
becomes a (generally infinite) conjunction ∧.) The key point to observe is that these conditions
are such that an intersection of relations satisfying them again satisfies them. Hence the
intersection of all relations satisfying them will be the least such relation.

Or we can ‘‘build it up from below’’. Let R0 denote the empty relation ∅ ⊆ T × T , and
recursively construct the i+1st relation Ri+1 from the ith, by adding to Ri those elements that
conditions (2.2.1-8) say must also be in R, given that the elements of Ri are there. Precisely:

Ri+1 =def Ri
∪ {( ( p.q) .r, p .(q.r) ) � p, q, r∈T }

∪ . . .

∪ {( p, r) � (∃ q) ( p, q) ∈Ri ∧ (q, r) ∈Ri }.

(elements already constructed)

(elements arising by (2.2.1))

. . .

(elements arising by (2.2.8))

We now define R = ∪ i Ri . It is straightforward to show that R satisfies (2.2.1-8), and that any
subset of T × T satisfying (2.2.1-8) must contain R; so R, looked at as a binary relation ∼ on
T , is the desired least relation.

By (2.2.6-8), ∼ is an equivalence relation; so define |F | = T ⁄ ∼ . We shall denote the typical
element of |F |, the equivalence class of an element p ∈T , by [p]. We now map X into |F |
by setting

u(x) = [x]

(or, if we do not identify symbT (x) with x in our construction of T , then u(x) = [symbT (x)]).
We define operations . , –1 and e on |F | by

[p].[q] = [p.q],

[p]–1 = [p–1],

e = [e].

That the first two of these are well-defined follows from the properties (2.2.4) and (2.2.5)
of ∼ ! (With the third there is no problem.) Also, from properties (2.2.1-3) of ∼ , it follows that
( |F |, . , –1, e) satisfies the group axioms. E.g., given [p], [q], [r] ∈ |F |, if we evaluate
([p].[q]).[r] and [p].([q].[r]) in |F |, we get [(( p.q) .r)] and [( p.(q.r))] respectively, which
are equal by (2.2.1). Finally, writing F for the group ( |F |, ., –1, e), it is clear from our
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construction of ∼ that the only relations satisfied by the images in F of the elements of X are
relations that follow logically from the group axioms; so by Corollary 2.1.2 (stated there for
3-tuples, but now generalized to X-tuples), F has the desired universal property.

To see this universal property more directly, suppose is any map X → |G |, where G is a
group. Write p ∼ q to mean p = q in G. Then clearly the relation ∼ satisfies conditions
(2.2.1-8), hence it contains the least such relation, our ∼ . So a well-defined map h : |F | → |G | is
given by h([p]) = p ∈ |G |, and it follows immediately from the way the operations of F , and
the evaluation of terms in G with respect to , are defined, that h is a homomorphism, and is
the unique homomorphism such that hu = .

Thus we have proven

Proposition 2.2.9. (F, u), constructed as above, is a free group on the given set X. �

So a free group on every set X does indeed exist!
Further notes:

2.2.10. There is a viewpoint that goes along with this construction, which will be helpful in
thinking about universal constructions in general. We are given a set X. Suppose we know that
G is a group, with a map : X → |G |. How much can we ‘‘say about’’ G from this fact alone?
We can name certain elements of G, namely the (x) (x ∈X ) and all the elements that can be
obtained from these by the group operations of G (e.g., (( (x) . (y))–1).(( (y)–1.e)–1. (z))
(x, y, z∈X )). A particular G may contain more elements than those obtained in such ways, but we
have no way of getting our hands on them from the given information. We can also derive from
the identities for groups certain relations that these elements satisfy, (e.g., ( (x) . (y))–1 =

(y)–1. (x)–1). The elements (x) may, in particular cases, satisfy more relations than these, but
again we have no way of deducing these additional relations. If we now gather together this
limited ‘‘data’’ that we have about such a group G – labels for certain elements, modulo certain
identifications among these – we find that this collection of ‘‘data’’ itself forms a group with a map
of X into it; and is, in fact, a universal such group!

2.2.11. At the beginning of this section, I motivated our construction by saying that ‘‘ ∼ ’’ should
mean ‘‘equality that follows from the group axioms’’. I then wrote down a series of eight rules,
(2.2.1-8), all of which are clearly valid procedures for deducing equations which must hold in all
groups. What was not obvious was whether they would be sufficient to yield all such equations.
But they were – the proof of the pudding being that (T ⁄ ∼ , . , –1, e) could be shown to be a
group.

This is an example of a very general type of situation in mathematics: Some class, in this case,
a class of pairs of formal group-theoretic terms, is described ‘‘from above’’, i.e., is defined as the
class of all elements satisfying certain restrictions (in this case, those pairs ( p, q) ∈T × T such that
the relation p = q holds on all X-tuples of elements of all groups). We seek a way of describing
it ‘‘from below’’, i.e., of constructing or generating all members of the class. Some procedure
which produces members of the set is found, and one seeks to show that this procedure yields the
whole set – or, if it does not, one seeks to extend it to a procedure that does.

The converse situation is equally important, where we are given a construction which ‘‘builds
up’’ a set, and seek a convenient way of characterizing the elements that result. Exercise 1.7:1 was
of that form. You will see more examples of both situations throughout this course, and in fact, in
most every mathematics course you take.
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Exercise 2.2:1. Show directly from (2.2.1-8) that for x, y ∈X , ((x.y)–1) ∼ ((y–1).(x–1)).

Exercise 2.2:2. Does the relation of the preceding exercise follow from (2.2.1-3) and (2.2.6-8)
alone?

Note that in our recursive construction of the set R (that is, the relation ∼ ), repeated
application of (2.2.1-3) was really unnecessary; these conditions give the same elements of R each
time they are applied, so we might as well just have applied them the first time and only applied
(2.2.4-8) from then on. Less obvious is:

Exercise 2.2:3. (A. Tourubaroff) Can the construction of R be done in three stages: First take
the set P of elements given by (2.2.1-3), then form the closure Q of this set under applications
of (2.2.4-5) (as before, by recursion or as an intersection), and finally, obtain R as the closure
of Q under applications of (2.2.6-8) (another recursion or intersection)? This procedure will
yield some subset of T × T ; the question is whether it is the R we want.

What if we do things in a different order – first (2.2.1-3), then (2.2.6-8), then (2.2.4-5)?

2.3. Free groups as subgroups of big enough direct products. Another way of getting a group
in which some X-tuple of elements satisfies the smallest possible set of relations is suggested by the
following observation. Let G1 and G2 be two groups, and let

α1, β1, γ1 ∈ |G1|, α2, β2, γ2 ∈ |G2|.

In the direct product group G = G1 × G2, define the three elements

α = (α1, α2), β = (β1, β2), γ = (γ1, γ2).

Then the set of relations satisfied by α , β , γ in G will be precisely the intersection of the sets of
relations satisfied by α1, β1, γ1 in G1 and by α2, β2, γ2 in G2. This may be seen from the
fact that for any s∈T ,

sG (α , β , γ ) = (sG1
(α1, β1, γ1), sG2

(α2, β2, γ2)),

as is easily verified by induction.
More generally, if we take an arbitrary family of groups (Gi )i ∈I , and in each of them three

elements αi , βi , γi , then in the product group G = I
��
I Gi we can define the three elements

α = (αi )i ∈I , β = (βi )i ∈I , γ = (γi )i ∈I ,

and the relations that these satisfy will be just those relations satisfied simultaneously by our
3-tuples in all of the groups.

This suggests that by using a large enough such family, we could arrive at a group with three
elements α , β , γ which satisfy a smallest possible set of relations.

How large a family (Gi, αi , βi , γi ) should we use?
Well, we could be sure of getting the least set of relations if we could use the class of all

groups and all 3-tuples of elements of these. But taking the direct product of such a family would
give us set-theoretic indigestion!

We can cut down this surfeit of groups a bit by noting that for any group Gi and three
elements αi , βi , γi , if we let Hi denote the subgroup of Gi generated by these three elements,
it will suffice for our product to involve the group Hi , rather than the whole group Gi , since the
relations satisfied by αi , βi and γi in the group Gi and in the subgroup Hi are the same.
Now a finitely generated group is countable (meaning finite or countably infinite), so we see that it
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would be enough to let (Gi, αi , βi , γi ) range over all countable groups, and 3-tuples of elements
thereof.

However, the class of all countable groups is still not a set. Indeed, even the class of one-
element groups is not a set, because we get a different (in the strict set-theoretic sense) group for
each choice of that one element. (For those not familiar with such considerations: In set theory,
every element of a set is a set. If we had a set of all one-element groups, then we could form from
this the set of all members of their underlying sets, which would be the set of all sets; and one
knows that this does not exist.) But this is clearly just a quibble – obviously, if we choose any
one-element set {x }, and take the unique group with this underlying set, it will serve as well as
any other one-element group so far as honest group-theoretic purposes are concerned. In the same
way, I claim we can find a genuine set of countable groups that, up to isomorphism, contains all
the countable groups. Namely, let S be a fixed countably infinite set. Then we can take the set of
all groups G whose underlying sets |G | are subsets of S. Or, to hit more precisely what we
want, let

(2.3.1) {(Gi, αi , βi , γi ) � i ∈I }

be the set of all 4-tuples such that Gi is a group with |Gi | ⊆ S, and αi , βi and γi are
members of |Gi |. Now for any countable group H and three elements α , β , γ ∈ |H |, we can
clearly find an isomorphism θ between one of the Gi ’s and H, such that θ(αi ) = α , θ(βi ) = β ,
θ(γi ) = γ .

So, having defined the set (2.3.1), let P be the direct product group I
��
I I Gi . Let a, b, c be

the I-tuples (αi ), (βi ), (γi ) ∈ |P|, and F the subgroup of P generated by a, b, and c. I claim
that F is a free group on a, b, and c.

We could prove this by considering relations satisfied by a, b, and c as suggested above, but
let us instead verify directly that F satisfies the universal property (2.1.3) characterizing free
groups. Let G be any group, and α , β , γ three elements of G. We want to prove that there
exists a unique homomorphism h : F → G carrying a, b, c ∈ |F | to α , β , γ ∈ |G | respectively.
Uniqueness will be no problem – by construction F is generated by a, b and c, so if such a
homomorphism exists it is unique. To show the existence of h, note that the subgroup H of G
generated by α , β , γ is countable, hence as we have noted, there exists for some j ∈I an
isomorphism θ : Gj =∼ H carrying αj , βj , γj ∈ |Gj | to α , β , γ ∈ |H |. Now the projection map pj
of the product group P = I

��
I Gi onto its jth coordinate takes a, b and c to αj , βj , γj , hence

composing this projection with θ , as shown in the diagram below, we get a homomorphism
h : F → G having the desired effect on a, b, c.

F a, b, c ∈ |F |
∩
�↓

∩
�↓

P = I
��
I Gi I

��
I |Gi |

pj �↓
�

↓
Gj αj , βj , γj ∈ |Gj |

θ ||∫ ||∫
H |H |

∩
�↓

∩
�↓

G α , β , γ ∈ |G|
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For a useful way to picture this construction, think of P as the group of all functions on the
base-space I , taking at each point i a value in Gi . F is the subgroup of functions generated by
a, b and c.

groups Gi
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. .

. .

.

. .

. .

.

.
.
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.

elements
of P = I

��
I Gi

Given α , β , γ in any group G, identify the subgroup of G that they generate with an
appropriate Gj ( j ∈I ). Then the homomorphism h that we constructed above may be thought of
as giving the value of each element of F at the point j, where a, b and c have the values α ,
β and γ . We have chosen our space I and values for a, b and c sufficiently eclectically so
that it is possible to choose points at which a, b and c take on any 3-tuple of values in (up to
isomorphism!) any group. Thus, the functions a, b and c are a ‘‘universal’’ 3-tuple of group-
elements.

The same argument works if we replace ‘‘3-tuple’’ by ‘‘X-tuple’’, where X is any countable
set. Here we use the observation that a group generated by a countable family of elements is
countable. For X of arbitrary cardinality, one can easily show that any group H generated by an
X-tuple of elements has cardinality ≤ max(card(X ), ℵ0). Hence we get:

Proposition 2.3.2. X be any set. Take a set S of cardinality max(card(X ), ℵ0), and let
{(Gi, ui ) � i ∈I } be the set of all pairs such that Gi is a group with |Gi | ⊆ S, and ui is a map
X → |Gi | (i.e., an X-tuple of elements of Gi ). Let P = I

��
I I Gi, and map X into P by defining

u(x) (x ∈X ) to be the element with component ui (x) at each i. Let F be the subgroup of P
generated by {u(x) � x ∈X }.

Then the pair (F, u) is a free group on the set X. �

Digression: Let S3 be the symmetric group on three letters. Suppose we had begun the above
investigation with a less ambitious goal: merely to find a group J with three elements a, b, c
such that

(2.3.3)
For every choice of three elements α , β , γ ∈ |S3|,
there exists a unique homomorphism h : J → S3
taking a, b, c to α , β , γ respectively.

a, b, c ∈ |J | J

�↓h �↓
α , β , γ ∈ |S3| S3

Then we could have performed the above construction just using 4-tuples (S3, α , β , γ ) (α , β ,
γ ∈ |S3|) as our (Gi, αi , βi , γi ). There are 63 = 216 such 4-tuples, so P would be the direct
product of 216 copies of S3, and a, b, c would be elements of this product which, as one runs
over the 216 coordinates, take on all possible combinations of values in S3. The subgroup J they
generate would indeed satisfy (2.3.3). This leads to:
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Exercise 2.3:1. Does condition (2.3.3) characterize (J, a, b, c) up to isomorphism? If not, is
there some additional condition that (J, a, b, c) satisfies which together with (2.3.3) determines
it up to isomorphism?

Exercise 2.3:2. Investigate the structure of the group J, and more generally, of the analogous
groups constructed from S3 using different numbers of generators. To make the problem
concrete, try to determine, or estimate as well as possible, the orders of these groups, for 1, 2, 3
and generally, for n generators.

The two methods by which we have constructed free groups above go over essentially word-
for-word with ‘‘group’’ replaced by ‘‘ring’’, ‘‘lattice’’, or a great many other types of mathematical
objects. The determination of just what classes of algebraic structures allow this and related sorts
of universal constructions is one of the themes of this course. The next exercise concerns a
negative example.

Exercise 2.3:3. State what would be meant by a ‘‘free field on a set X ’’, and show that no such
object exists for any set X. If one attempts to apply the two methods of this and the preceding
section to prove the existence of free fields, where does each of them fail?

Exercise 2.3:4. Let Z[x1, ... , xn ] be the polynomial ring in n indeterminates over the integers
( = the free commutative ring on n generators – cf. §3.12 below). Its field of fractions
Q(x1, ... , xn ), the field of ‘‘rational functions in n indeterminates over the rationals’’, looks in
some ways like a ‘‘free field on n generators’’. E.g., one often speaks of evaluating a rational
function at some set of values of the variables. Can some concept of ‘‘free field’’ be set up,
involving perhaps a modified universal property, or some concept of comparing relations in the
field operations satisfied by n-tuples of elements in two fields, in terms of which Q(x1, ... , xn )
would indeed be the free field on n generators?

Exercise 2.3:5. A division ring (or skew field or sfield) is a ring (associative but not necessarily
commutative) in which every nonzero element is invertible. If you a find a satisfactory answer to
the preceding exercise, you might consider the question of whether there exists in the same sense
a free sfield on n generators. (This was a longstanding open question, which was finally
answered in 1966. I can refer interested students to papers in this area.)

There are many hybrids and variants of the two constructions we have given for free groups.
For instance, we might start with the set T of terms in X , and define p ∼ q (for p, q ∈T ) to
mean that for every map of X into a group G, one has p = q in G. Now for each pair
( p, q) ∈T ×T such that p ∼ q fails to hold, we can choose a map up, q of X into a group Gp, q
such that pup, q

≠ qup, q
. We can then form the direct product group P = I

��
I Gp, q , take the

induced map u : X → |P|, and check that the subgroup F generated by the image of this map will
satisfy condition (i) of Corollary 2.1.2. Interestingly, for X countable, this construction uses a
product of fewer groups Gp, q than we used in the version given above.

Finally, consider the following construction, which suffers from severe set-theoretic difficulties,
but is still interesting. (I won’t try to resolve these difficulties here, but will talk sloppily, as
though they did not occur.)

Define a ‘‘generalized group-theoretic operation in three variables’’ as any function p which
associates to every group G and three elements α , β , γ ∈G an element p(G, α , β , γ ) ∈ |G |.
We can ‘‘multiply’’ two such operations p and q by defining

( p.q)(G, α , β , γ ) = p(G, α , β , γ ) . q(G, α , β , γ ) ∈ |G |.

for all groups G and elements α , β , γ ∈|G |. We can similarly define the multiplicative inverse of
an operation p, and the constant operation, e. We see that the class of generalized group-
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theoretic operations will satisfy the group axioms under the above three operations. Now consider
the three generalized group-theoretic operations a, b and c, defined by

a(G, α , β , γ ) = α , b(G, α , β , γ ) = β , c(G, α , β , γ ) = γ .

Let us define a ‘‘derived generalized group-theoretic operation’’ as one obtainable from a, b and
c by taking products, inverses, and the neutral element. Then the set of derived generalized
group-theoretic operations will form a free group on the generators a, b and c. (This is really
just a disguised form of our naive ‘‘direct product of all groups’’ idea.)

Exercise 2.3:6. Call a generalized group-theoretic operation p functorial if for every
homomorphism of groups f : G → H , one has p(H , f (α), f (β), f (γ )) = f ( p(G, α , β , γ ))
(α , β , γ ∈ |G | ). We will see the reason for this term in Chapter 6. Show that all derived group-
theoretic operations are functorial. Is the converse true?

Exercise 2.3:7. Same problem for functorial generalized operations on the class of all finite
groups.

2.4. The classical construction: free groups as groups of words. The constructions discussed
above have the disadvantage of not giving very explicit descriptions of free groups. We know that
every element of a free group F on the set X arises from a term in the elements of X and the
group operations, but we don’t know how to tell whether two such terms – say (b(a–1b)–1)(a–1b)
and e – yield the same element; in other words, whether (β(α–1β)–1)(α–1β) = e is true for all
elements α , β of all groups. If it is, then by the results of §2.2 one can obtain this fact somehow
by the procedures corresponding to conditions (2.2.1-8); if it is not, the ideas of §2.3 suggest we
should seek some particular elements for which it fails, in some particular group in which we know
how to calculate. But these approaches are hit-and-miss.

In this section, we shall construct the free group on X in a much more explicit way. We will
then be able to answer such questions by calculating in the free group itself.

We first recall an important consequence of the associative identity: that ‘‘products can be
written without parentheses’’. For example, given elements a, b, c of a group, the elements
(a(c(ab))), (a((ca)b)), ((ac)(ab)), ((a(ca))b) and (((ac)a)b) are all equal. It is conventional, and
usually convenient, to say, ‘‘Let us therefore write their common value as acab.’’ However, we
will soon want to relate these expressions to group-theoretic terms; so instead of dropping
parentheses, let us agree to take (a(c(ab))) as the common form to which we shall reduce all of
the above five expressions, and generally, let us note that any product of elements can be reduced
by the associative law to one with parentheses clustered to the right: (xn (xn –1 ( . . . (x2 x1)...))).

In particular, given two elements written in this form, we can write down their product and
reduce it to this form:

( (xn ( . . . (x2 x1)...)) . (ym ( . . . (y2 y1)...)) )

= (xn ( . . .(x2 (x1 (ym ( . . .(y2 y1)...))))...)).

If we want to find the inverse of an element written in this form, we may use the formula
(x y)–1 = y–1 x–1, another consequence of the group laws. By induction this gives
(xn ( . . .(x2 x1)...))–1 = ((...(x1

–1x2
–1). . . ) xn

–1), which we reduce to (x1
–1 ( . . .(x–1

n –1 xn
–1)...)).

More generally, if we started with an expression of the form

(x±1
n ( . . . (x±1

2 x±1
1 )...))
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(where each factor is either xi or xi
–1, and the exponents are independent), then the above

method together with the fact (x–1)–1 = x (another consequence of the group axioms) allows us to

write the inverse as (x+–1
1 ( . . . (x+–1

n –1 x+–1
n )...)), which is of the same form as the expression we started

with; and likewise, the product of two expressions of the above form reduces to an expression of
the same form.

Note further that if two successive factors x±1
i and x±1

i+1 are respectively x and x–1 for
some x ∈X, or are respectively x–1 and x for some x ∈X, then by the group axioms on
inverses and the neutral element (and again, associativity), we can drop this pair of factors – unless
they are the only factors in the product, in which case we can rewrite the product as e.

Finally, easy consequences of the group axioms tell us what the inverse of e is (namely e),
and how to multiply anything by e. Putting these observations together, we conclude that given
any set X of elements of a group G, the set of elements of G that can be written in one of the
forms

(2.4.1)
e, or (x±1

n ( . . .(x±1
2 x±1

1 )...)),

where n ≥ 1, each xi ∈X , and no two successive factors are an
element of X and the inverse of the same element, in either order,

is closed under products and inverses. So this set must be the whole subgroup of G generated by
X . In other words, any member of the subgroup generated by X can be reduced to an
expression (2.4.1).

In the above paragraphs, X has been a subset of a group. Now let X be an arbitrary set, and
as in the preceding section, let T be a set of all group-theoretic terms in elements of X
(Definition 1.5.1). For convenience, let us assume T chosen so as to contain X, with symbT
being the inclusion map. (If you prefer not to make this assumption, then in the argument to
follow, you should insert ‘‘symbT ’’ at appropriate points.) Let Tred ⊆ T denote the set of terms
of the form (2.4.1) (‘‘red’’ standing for reduced). If s, t ∈Tred, we can form their product s.t in
T , and then, as we have just seen, rearrange parentheses to get an element of Tred which is
equivalent to s.t so far as evaluation at X-tuples of elements of groups is concerned. Let us call
this element s�. t. Thus s�. t has the properties that for any map : X → |G |, (G a group) one
has (s.t) = (s�. t) , and that s�. t ∈Tred. In the same way, given s∈Tred, we can obtain from
s–1∈T an element we shall call s(–) ∈Tred, such that for any map : X → |G |, one has
(s )–1 = (s(–)) .

Are any further reductions possible? In a particular group there may be various equalities
among the values of such expressions; but we are only interested in reductions that can be done in
all groups. No more are obvious; but can we be sure that some sneaky application of the group
axioms wouldn’t allow us to prove some two distinct terms of the form (2.4.1) to have the same
evaluations at all X-tuples of elements of all groups? (In such a case, we should not lose hope, but
should introduce further reductions that would always replace one of these expressions by the
other.)

Let us formalize the preceding observations, and indicate the significance of this question:

Lemma 2.4.2. For each s∈T, there exists an s ′ ∈Tred (i.e., an element of T of one of the
forms shown in (2.4.1)) such that

(2.4.3) for every map of X into any group G, s ′ = s in |G |.
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Moreover, if one of the following statements is true, all are:

(i) For each s∈T, there exists a unique s ′ ∈Tred satisfying (2.4.3).

(ii) If s, t are distinct elements of Tred , then ‘‘s = t’’ is not an identity for groups; that is,
for some G and some : X → |G|, s ≠ t .

(iii) The 4-tuple F = (Tred, �. , (–), eT ) is a group.

(iv) The 4-tuple F = (Tred, �. , (–), eT ) is a free group on X.

Proof. We get the first sentence of the lemma by an induction, which I will sketch briefly. The
assertion holds for elements x ∈X : We simply take x ′ = x. Now suppose it true for two terms s,
t ∈T. To establish it for s.t ∈T , define (s.t)′ = s ′ �. t ′. One likewise gets it for s–1 using s(–),
and it is clear for e. It follows from condition (c) of the definition of ‘‘group-theoretic term’’
(Definition 1.5.1) that it is true for all elements of T.

The equivalence of (i) and (ii) is straightforward. Assuming these conditions, let us verify that
the 4-tuple F defined in (iii) is a group. Take p, q, r ∈Tred. Then ( p�. (q�. r)) and
(( p�. q)�. r) are two elements of Tred, call them s and t. For any : X → |G |, s = t by
the associative law for G. Hence by (ii) s = t, proving that �. is associative. The other group
laws for F are deduced in the same way.

Conversely, assuming (iii), we claim that for distinct elements s, t ∈Tred, we can prove, as
required for (ii), that the equation ‘‘s = t’’ is not an identity by getting a counterexample in F
itself. Indeed if we let be the inclusion X → Tred = |F |, we can check by induction on n in
(2.4.1) that for all s∈Tred, s = s. Hence s ≠ t implies s ≠ t , as desired.

Since (iv) certainly entails (iii), our proof will be complete if we can show, assuming (iii), that
F has the universal property of a free group. Given any map : X → |G |, we map |F | = Tred →
|G | by s → s ∈ |G |. From the properties of �. and (–), we know that this is a homomorphism
h such that h�X (the restriction of h to X ) is ; and since X generates F , h is the unique
homomorphism with this property, as desired. �

Well – are statements (i)-(iv) true, or not??

The usual way to answer this question is to test (iii) by writing down precisely how the
operations �. and (–) are performed, and checking the group axioms on them. Since a term of
the form (2.4.1) is uniquely determined by the integer n (which we take to be 0 for the term e)

and the n-tuple of elements of X and their inverses, (x±1
n , ... , x±1

1 ), one describes �. and (–) as
operations on such n-tuples. E.g., one multiplies two tuples (w, ... , x) and (y, ... , z) (where
w, ... , z are each an element of X or a symbolic inverse of such an element) by uniting them as
(w, ... , x, y, ... , z), then dropping pairs of factors that may now cancel (e.g., x and y above if y
is x–1); and repeating until no such cancelling pairs remain.

But checking the associative law for this recursively defined operation turns out to be very
tedious, involving a number of different cases. (E.g., you might try checking associativity for
( , w, x).(x–1, w–1, y–1).(y, w, z), and for ( , w, x).(x–1, z–1, y–1).(y, w, z), where w, x, y and z
are four distinct elements of X. Both cases work, but they are different computations.)

But there is an elegant trick, not as well known as it ought to be, which rescues us from the
toils of this calculation. We construct a certain G which we know to be a group, in which we can
verify condition (ii) – rather than condition (iii) – of the above lemma.

To see how to construct this G, let us go back to basics and recall where the group identities
we are trying to verify come from. They are identities which are satisfied by permutations of any
set A, under composition of permutations, inverses of permutations, and the identity permutation.
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So let us try to describe a set A on which the group we want to construct should act by
permutations in as ‘‘free’’ a way as possible, by specifying the permutation of A that should
represent the image of each x ∈X.

To start our construction, let a be any symbol not in X. Now define A to be the set of all
strings of symbols of the form:

(2.4.4)
x±1
n x±1

n –1... x±1
1 a

where n ≥ 0, each xi ∈X , and no two successive factors x±1
i and

x±1
i+1 are an element of X and the inverse of that same element, in

either order.

In particular, taking n = 0, note that a ∈A.
Let G be the group of all permutations of A. Define for each x ∈X an element (x)∈ |G |

as follows. Given b ∈A,

if b does not begin with the symbol x–1, let (x) take b to the
symbol x b, formed by putting an x at the beginning of
the symbol b;

if b does begin with x–1, say b = x–1c, let (x) take b to the
symbol c, formed by removing x–1 from the beginning
of b.

It is immediate from the definition of A that (x)(b) belongs to A in each case. To check
that (x) is invertible, consider the map which sends a symbol x b to b, and a symbol c not
beginning with x to the symbol x–1 c; we find that this is a 2-sided inverse to (x).

So we now have a map : X → |G |. As in §1.6, this induces an evaluation map s → s taking

the set T of terms in X into |G |. Now consider any s = (x±1
n ( . . .(x±1

2 x±1
1 )...))∈Tred. It is easy

to verify by induction on n that the permutation s ∈ |G | takes a∈A to the symbol x±1
n ... x±1

1 a.
(In particular, for s = e, s (a) = a.) It follows that if s and t are distinct elements of Tred,
s (a) and t (a) are distinct elements of A, so s ≠ t in G, establishing (ii) of Lemma 2.4.2.
By that lemma we now have

Proposition 2.4.5. F = (Tred, �. , (–), e) is a group; in fact, letting u denote the inclusion
X → Tred , the pair (F, u) is a free group on X.

Using parenthesis-free notation for products, and identifying each element of X with its image
in F, this says that every element of the free group on X can be written uniquely as

e, or x±1
n . . . x±1

2 x±1
1 ,

where in the latter case, n ≥ 1, each xi ∈X, and no two successive factors x±1
i and x±1

i+1 are
equal to an element of X and the inverse of that same element, in either order. �

We have obtained what is called a normal form for elements of a free group on X – a unique
expression for each member of the group, to which we can algorithmically reduce an arbitrary
expression. This indeed allows us to calculate explicitly in the free group; e.g., you should find it
straightforward to do
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Exercise 2.4:1. Determine whether each of the following equations holds for all elements x, y, z
of all groups:
(i) (x–1y x)–1(x–1z x)(x–1y x) = (yx)–1z (yx).
(ii) (x–1y–1xy)2 = x–2y–1x2y.

In the next exercise, we use the group theorists’ abbreviations xy = y–1x y for the conjugate of
an element x by an element y in a group, and [x, y] = x–1y–1x y for the commutator of x and
y. Recall also that if H1, H2 are subgroups of a group G, then [H1, H2] denotes the
subgroup of G generated by all commutators [h1, h2] with h1 ∈H1 and h2 ∈H2.

Exercise 2.4:2. (i) Prove a group identity of the form

[[x±1, y±1], z±1] x±1
[[z±1, x±1], y±1] z±1

[[y±1, z±1], x±1] y±1
= e

for some choice of the exponents ±1. (There is a certain amount of leeway in these exponents;
make your final choice to get maximum symmetry. The result is known as Phillip Hall’s
identity; however its form may vary with the text, depending on whether the above definition of
[x, y] preferred by most contemporary group theorists is used, or the less common definition
x y x–1 y–1.)
(ii) Deduce that if A, B and C are subgroups of a group G such that two of [[A, B], C],
[[B, C], A], [[C, A], B] are trivial, then so is the third. (The ‘‘three subgroups theorem’’.)
(iii) Deduce that if A and B are two subgroups of G, and [A, [A, B]] is trivial, then so is
[[A, A], B]. Is the converse true?

The idea of finding normal forms, or other explicit descriptions, of objects defined by universal
properties is a recurring one in algebra. The form we have found is specific to free groups. It
might appear at first glance that corresponding forms could be obtained mechanically from any
finite system of operations and identities; e.g., those defining rings, lattices, etc.; and thus that the
results of this section should generalize painlessly (as those of the two preceding sections indeed
do!) to very general classes of structures. But this is not so. An example we shall soon see (§3.5)
is that of the Burnside problem, where a sweet and reasonable set of axioms obstinately refuses to
yield a normal form. Other nontrivial cases are free Lie algebras [62] and free lattices [4, §VI.8],
for which normal forms are known, but complicated; free modular lattices, for which it has been
proved that the word problem is undecidable (no recursive normal form can exist); and groups
defined by particular families of generators and relations (§3.3 below), for which the word problem
has been proved undecidable in some cases, while nice normal forms exist in others. In general,
normal form questions must be tackled case by case, but for certain large families of cases there
are interesting general methods (cf. [37]); I hope eventually to add a chapter on that subject to
these notes.

The trick that we used to show that the set of terms Tred constitutes a normal form for the
elements of the free group is due to van der Waerden, who introduced it in [102] to handle the
more difficult case of coproducts of groups (§3.6 below). Though the result we proved is, as we
have said, specific to groups, the idea behind the proof is a versatile one: If you can reduce all
expressions for elements of some universal structure F to members of a set Tred , and wish to
show that these give a normal form, look for a ‘‘representation’’ of F (in whatever sense is
appropriate to the structure in question – in the group-theoretic context this was ‘‘an action of the
group F on a set A’’) which distinguishes the elements of Tred. A nice twist which often
occurs, as in the above case, is that the object on which we ‘‘represent’’ F may be the set Tred
itself, or some closely related object.
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My development of Proposition 2.4.5 was full of motivations, remarks, etc.. You might find it
instructive to write out for yourself a concise, direct, self-contained proof that the set of terms
indicated in Proposition 2.4.5, under the operations described, forms a group, and that this has the
universal property of the free group on X.

Exercise 2.4:3. If X is a set, and s ≠ t are two reduced group-theoretic terms in the elements of
X (as in Proposition 2.4.5(ii)), will there in general exist a finite group G, and a map

: X → |G |, such that s ≠ t ? (In other words, are the only identities satisfied by all finite
groups those holding in all groups?)

If you succeed in answering the above question, you might try the more difficult ones in the
next exercise.

Exercise 2.4:4. (i) If X is a set, F the free group on X, H a subgroup of F, and s an
element of F such that s∈ |H |, will there in general exist a finite group G, and a
homomorphism f : F → G, such that f (s) ∈f ( |H | )?
(ii) Same question, under the assumption that the subgroup H is finitely generated.

Free groups can also be represented by matrices:

Exercise 2.4:5. Let SL(2, Z ) denote the group of all 2 × 2 matrices of integers with determinant

1, and let H be the subgroup thereof generated by the two elements x = �
�

1
0

3
1
�
	

and y =

�
�

1
3

0
1
�
	

. Show that H is free on {x, y}. (Hint: Let c be the column vector �
�

1
1
�
	

. Examine

the form of the column vector obtained by applying an arbitrary reduced group-theoretic word in
x and y to c.)

If you do the above, you might like to think further about what pairs of integers, or for that
matter, pairs of real or complex numbers, can replace the two ‘‘3’’s in the above matrices. For
integers, the answer is known; for the general case there are many partial results (see [54]), but
one is far from a complete answer.
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Chapter 3. A Cook’s tour of other universal constructions.

We shall now look at a number of other constructions having many similarities to that of free
groups. In each case, the construction can be motivated by a question of the form, ‘‘Suppose we
have a structure about which we know only that it satisfies such and such conditions. How much
can we say about it on the basis of this information alone?’’ In favorable cases, we shall find that
if we collect the ‘‘data’’ we can deduce about such an object, this data itself can be made into an
object F, which satisfies the given conditions, and satisfies no relations not implied by these (cf.
remark 2.2.10). This F is then a ‘‘universal’’ example of these conditions, and that fact can be
translated into a ‘‘universal mapping property’’ for F.

Although the original ‘‘What can we say?’’ question and the ‘‘least set of relations’’ property
are useful as motivation and intuition, the universal mapping property gives the characterization of
these constructions that is most useful in applications. So, though I will sometimes refer explicitly
to the motivating ideas, and other times leave them for you to see, we will always characterize
these objects by universal properties.

The existence of these universal objects may in most cases be proved from scratch by either of
the methods of §§2.2 and 2.3: construction from below, as sets of terms modulo necessary relations,
and construction from above, as subobjects of big direct products. But often we will, alternatively,
be able to combine previously described universal constructions to get the new one.

Where possible, we will get explicit information on the structure of the new object – a normal
form or other such description. It is a mark of the skilled algebraist, when working with objects
defined by universal properties, to know when to use those properties, and when to turn to an
explicit description.

As we move through this chapter, I shall more and more often leave standard details for the
reader to fill in: the precise meaning of an object ‘‘universal for’’ a certain property, the
verification that such an object exists, etc.. In the later sections, commutative diagrams illustrating
universal properties will often be inserted without explanation. These diagrams are not substitutes
for assertions, but aids to the reader in visualizing the situation of the assertion he or she needs to
formulate.

Constructions of groups will receive more than their rightful share of attention here because
groups give a wide range of interesting examples, and are more familiar to many students than
lattices, noncommutative rings (my own love), Lie algebras, etc..

Let us begin by noting how some familiar elementary group-theoretic constructions can be
characterized by universal properties.

3.1. Subgroup and normal subgroup of G generated by S ⊆ |G|. Suppose we are explicitly
given a group G, and a subset S of |G |.

Consider a subgroup A of G about which we are told only that it contains all elements of the
set S. How much can we say about A ?

Clearly A contains all elements of G that can be obtained from the elements of S by
repeated formation of products and inverses, and also contains the neutral element. This is all we
can deduce, for it is easy to see that the set of elements which can be so obtained will form the
underlying set of a subgroup of G, called the subgroup < S > generated by the set S. This
description builds < S > up ‘‘from below’’. We can also obtain it ‘‘from above’’ as the
intersection of all subgroups of G containing S. Whichever way we obtain it, the defining
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universal property of < S > is that it is a subgroup which contains S, and lies in every subgroup
A of G that contains S :

S ⊆ | < S > | < S >
|∩ |∩
|A| A

(In the second part of the above display, we denote the group homomorphism given by an inclusion
map of underlying sets by an inclusion sign between the symbols for the groups; a slight abuse of
notation.)

We know a somewhat better description of the elements of < S > than the one I just gave:
Each such element is either e or the product of a sequence of elements of S and their inverses.
A related observation is that < S > is the image of the map of the free group F on S into G
induced by the inclusion-map S → |G |. One may get still better descriptions in particular cases.
For instance, if S = {a, b, c} and a, b and c commute, then < S > consists of all elements
ambncp; if G is the additive group of integers, then the subgroup generated by {1492, 1974} is
the subgroup of all even integers; if G is the permutation group Sn and S consists of the two
permutations (12) and (12 ... n), then < S > is all of G.

There is likewise a least normal subgroup of G containing S. This is called ‘‘the normal
subgroup of G generated by S’’, and has the corresponding universal property, with the word
‘‘normal’’ inserted before ‘‘subgroup’’.

Exercise 3.1:1. Show that the normal subgroup N⊆G generated by S is the subgroup of G
generated by {gsg–1 � g∈ |G |, s∈S}.

Can |N | also be described as {ghg–1 � g∈ |G |, h∈ | < S > | } ?

Exercise 3.1:2. Let G be the free group on two generators x and y, and n a positive integer.
Show that the normal subgroup of G generated by xn and y is generated as a subgroup by
xn and {xiyx– i � 0≤ i <n}, and is in fact a free group on this set. Also describe the normal
subgroup we get if we let n = 0.

3.2. Imposing relations on a group; quotient groups. Suppose next that we are given a group
G, and are interested in homomorphisms of G into other groups, f : G → H, which make
certain specified pairs of elements fall together. That is, let us be given a family of pairs of
elements {(xi , yi ) � i∈I } ⊆ |G |× |G | (perhaps only one pair, (x, y)) and consider
homomorphisms f from G into other groups, which satisfy

(3.2.1) (∀ i∈I ) f (xi ) = f (yi ).

Note that given one homomorphism f : G → H with this property, we can get more such
homomorphisms G → K by forming composites gf of f with arbitrary homomorphisms
g : H → K. It would be nice to know whether there exists one pair (H, f ) which satisfies (3.2.1)
and is universal for this condition, in the sense that given any other pair (K, h) satisfying it, there
is a unique homomorphism g : H → K making the diagram below commute.
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G
________f → H

��
�
�
↓

∃1 g∀h

K

It is not hard to prove the existence of such a universal pair, either by a ‘‘group-theoretic terms
modulo an equivalence relation’’ construction, as in §2.2, or by an ‘‘image in a big direct product’’
construction, as in §2.3. But let us look at the problem another way. Condition (3.2.1) is clearly
equivalent to

(3.2.2) (∀ i∈I ) f (xiyi
–1) = e.

So we are looking for a universal homomorphism which annihilates (sends to e) a certain family
of elements of |G |. We know that the set of elements annihilated by a group homomorphism is
always a normal subgroup, so this is equivalent to saying that f should annihilate the normal
subgroup N of G generated by {xiyi

–1 � i∈I }, mentioned at the end of the preceding section.
And in fact, the pair (G ⁄ N, q), where N is this normal subgroup, G ⁄ N is the quotient group,
and q : G → G ⁄ N is the quotient map, has precisely the universal property we want:

G
________q → G ⁄ N

��
�
�
↓

∃1 g∀h

K

So this quotient group is the solution to our problem.

If we had never seen the construction of the quotient of a group by a normal subgroup, an
approach like the above would lead to a motivation of that construction. We would ask, ‘‘What do
we know about a group H, given that it has a homomorphism of G into it satisfying (3.2.1)?’’
We would observe that it contains an image f (a) of each a∈G, and that two such images are
equal if they belong to the same coset of the normal subgroup generated by the xiyi

–1’s. We
would discover how the group operations must act on these images-of-cosets, and conclude that this
set of cosets, under these operations, was itself a universal example of this situation.

Let us assume even a little more naiveté in

Exercise 3.2:1. Suppose in the above situation that we had not been so astute, and had only noted
that f (a) = f (b) when a b–1 lies in the subgroup generated by {xiyi

–1}. Attempt to describe
the group operations on the set of equivalence classes under this relation, show where this
description fails to be well-defined, and show how this ‘‘failure’’ could lead us to discover the
normality condition needed.

The construction described above is called imposing the relations xi = yi on G. We can
abbreviate the resulting group G ⁄ (xi = yi � i∈I ).

For the next exercise, recall that if G is a group, then a G-set means a pair S = ( |S |, m),
where |S | is a set, and m : |G| × |S | → |S | is a map, which we shall abbreviate by writing
m(g, s) = gs, satisfying
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(3.2.3)
(∀g, g ′∈ |G|, s∈ |S | ) g(g ′s) = (gg ′)s,

(∀s∈ |S | ) es = s,

in other words, a set on which G acts by permutations [28, §I.5], [26, §II.4] [23, §1.7]. (We
remark that this structure on the set S can be described in two other ways: first, as a
homomorphism from G to the group of permutations of |S |, and secondly, as a system of unary
operations g on |S |, one for each g∈ |G |, satisfying identities corresponding to all the relations
holding in G.)

A homomorphism S → S ′ of G-sets (for a fixed group G) means a map a : |S| → |S ′|
satisfying

(3.2.4) (∀g∈ |G |, s∈ |S | ) a(gs) = ga(s).

If H is a subgroup of the group G, let |G ⁄ H | denote the set of left cosets of H in G. We
shall write a typical coset as [g] = gH. Then |G ⁄ H | can be made the underlying set of a left
G-set G ⁄ H, by defining g[g ′] = [gg ′].

Exercise 3.2:2. Let H be any subgroup of G. Find a universal property characterizing the pair
(G ⁄ H , [e]). In particular, what form does this universal mapping property take in the case
where H = <xi

–1yi � i∈I > for some set {(xi , yi ) � i∈I } ⊆ |G| × |G | ?

With the concept of imposing relations on a group under our belts, we are now ready to
consider

3.3. Groups presented by generators and relations. To start with a concrete example, suppose
we are curious about groups G containing two elements a and b satisfying the relation

(3.3.1) a b = b2a.

One may investigate the consequences of this equation with the help of the group laws. What we
would be investigating is, I claim, the structure of the group with a universal pair of elements
satisfying (3.3.1).

More generally, let X be a set of symbols (in the above example, X = {a, b}), and let T be
the set of all group-theoretic terms in the elements of X. Then formal group-theoretic relations in
the elements of X mean formulae ‘‘s = t’’, where s, t ∈T. Thus, given any set R ⊆ T × T of
pairs (s, t) of terms, we may consider groups H with X-tuples of elements : X → |H |
satisfying the corresponding set of relations

(3.3.2) (∀ (s, t)∈R) s = t .

(For example, when X = {a, b} and R is the singleton {(ab, b2a)}, (3.3.2) becomes (3.3.1).) In
this situation, we have

Proposition 3.3.3. Let X be a set, T the set of group-theoretic terms in X, and R a subset of
T ×T. Then there exists a universal example of a group with an X-tuple of elements satisfying the
relations ‘‘s = t ’’ ((s, t)∈R ). I.e., there exists a pair (G, u), where G is a group, and u a
map X → |G| such that

(∀ (s, t)∈R ) su = tu,

and such that for any group H, and any X-tuple of elements of H satisfying (3.3.2), there
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exists a unique homomorphism f : G → H satisfying = fu (in other words, such that the
X-tuple of elements of H is the image under f of the X-tuple u of elements of G ).

X
________u → |G| G

��
�
�
↓

∀
��
�
�
↓

∃1 f

|H | H

Further, the pair (G, u) is determined up to canonical isomorphism by these properties, and the
group G is generated by u(X ).

Methods of Proof. On the one hand, the constructions of §2.2 and §2.3 can be applied essentially
word-for-word; all we do is add condition (3.3.2) to the group axioms throughout. (Note that
unlike (2.2.1-8), the set of equations (3.3.2) involves no universal quantification over T ; it is only
assumed to hold for the particular specified X-tuple of elements.)

However, we can get the pair (G, u) now with less work. Let (F, uF ) be the free group on
X, let N be the normal subgroup of F generated by {suF

tuF

–1 � (s, t)∈R}, i.e., by the set of

elements of F that we want to annihilate. Let G = F ⁄ N, let q : F → F ⁄ N be the canonical
map, and let u = q uF . That (G, u) has the desired universal property follows immediately from
the universal properties of free groups and quotient groups.

X
____uF→ |F |

____q → |G | F
____q → G

∀
��
�
�
↓

��
�
�
↓

∃1 f

|H | H

If (G ′ , u ′ ) is another pair with the same universal property, then by the universal property of
G there exists a homomorphism i: G → G ′ such that iu = u ′, and by the universal property of
G ′, an i ′: G ′ → G such that i ′u ′ = u. These are inverses of one another; indeed, note that
i ′ i u = u, hence by the uniqueness condition in the universal property of G, i ′ i equals the
identity map of G; by a like argument, i i ′ is the identity of G ′, so i is invertible, and gives
the asserted isomorphism.

That G is generated by u(X ) can be seen from our construction, but let us also show from
the universal property that this must be so. Consider the subgroup < u(X ) > of G generated by
u(X ). The universal property of G gives a homomorphism j : G → < u(X ) > which is the
identity on elements of u(X ). Following it by the inclusion of < u(X ) > in G yields an
endomorphism of G which agrees with the identity map on u(X ), and so, by the universal
property, is the identity. So the inclusion of < u(X ) > in G is surjective, as desired. �

Though in the above proof, we spoke of getting our construction by combining two known
constructions as being ‘‘less work’’ than constructing it from scratch, a more important advantage
in seeing that a new construction can be obtained from known constructions is that results proved
about the known constructions yield results about the new one.

The group G of the preceding proposition is called the group presented by the generators X
and relations R. A common notation for this is
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G = < X � R >.

For example, the universal group corresponding to (3.3.1) is written

< a, b � ab = b2a >.

In a group presented by generators and relations, one often uses the same symbols for the
elements of X and their images in |G |, even if the map u is not one-to-one. For instance, from
the well-known lemma saying that if an element η of a group (or monoid) has both a right inverse
ζ and a left inverse ξ , then ξ = ζ , it follows that in the group < x, y, z � xy = e = yz >, one
has u(x) = u(z). Unless there is a special need to be more precise, we may express this by saying
‘‘in < x, y, z � xy = e = yz >, one has x = z’’.

Recall that the concept of group-theoretic term was introduced both for the consideration of
what relations hold among families of elements of all groups, and to write specific relations that
hold among particular families of elements of particular groups. For the purpose of discussing
identities holding in all groups, it was necessary to distinguish between expressions such as (xy)–1

and y–1x–1, between (xy)z and x(yz), etc.. But in considering relations in particular groups we
can generally take for granted the group identities, i.e., not distinguish pairs of expressions that
have the same evaluations in all groups. For example, in (3.3.1), the right hand side could be
replaced by b(ba) without changing the effect of the condition. Hence in considering groups
presented by generators and relations, one often considers the relations to be given by pairs, not of
terms, but of their equivalence classes under the relation of having equal values in all groups – in
other words pairs (s, t)∈ |F | × |F |, where F is the free group on X. For such (s, t), an X-tuple

of elements of a group G is considered to ‘‘satisfy s = t’’ if h(s) = h(t), for h the
homomorphism F → G induced by , as in Definition 2.1.3.

Whether s and t are group-theoretic terms as in Proposition 3.3.3, or elements of a free group
as in the above paragraph, we should note that there is a certain abuse of language in saying that a
family of elements of a group G ‘‘satisfies the relation s = t’’, and in writing equations
‘‘s = t’’ in presentations of groups. What we mean in such cases is that a certain equation
obtained from the pair (s, t) and the X-tuple holds in G; but the equation s = t among our
terms or free group elements is itself generally false! As with other convenient but imprecise
usages, once we are conscious of its impreciseness, we may use it, but should be ready to frame
more precise statements when imprecision could lead to confusion (for instance, if we also want to
discuss which of certain terms or elements of a free group are really equal).

We have noted that a relation (s, t) is satisfied by an X-tuple of elements of a group G if
and only if (s t–1) = e in G; in other words, if and only if satisfies the relation (s t–1, e).
Thus, every presentation of a group can be reduced to one in which the relations all have the form
(r, e) for terms (or free-group elements) r. The elements r are then called the relators in the
resulting presentation, and one may express the group in question by listing the relators, rather than
the relations. E.g., in this notation, the group we wrote earlier as < a, b � ab = b2a > would be
written < a, b � aba–1b–2 >. However, I will stick to our original notation in these notes.

Exercise 3.3:1. Show that the three groups described below are isomorphic (i.e., isomorphic as
groups, ignoring the maps ‘‘X → |G |’’ coming from the presentations of the first two.)
(i) G = < a, b � a2 = e, ab = b–1a >.
(ii) H = < s, t � s2 = t2 = e >.
(iii) The group of all distance-preserving permutations of Z , i.e., all translation-maps
n → n+c (c∈Z ) and all reflection-maps n → – n+d (d∈Z ).
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The universal property of a group presented by generators and relations is extremely useful in
considerations such as that of

Exercise 3.3:2. Find all endomorphisms of the group of the preceding exercise. Describe the
structure of the monoid of these endomorphisms.

Returning to the example with which we started this section –

Exercise 3.3:3. Find a normal form or other convenient description for the group presented by two
generators a, b and the one relation (3.3.1) : ab = b2a.

The following question, suggested by a member of the class some years ago, is harder, but has a
nice solution:

Exercise 3.3:4. (D. Hickerson.) Do the same for < a, b � a b = b2 a2 >.

Any group G can be presented by some system of generators and relations. E.g., take |G |
itself for generating set, and the multiplication table of G as a set of relations. But it is often of
interest to find concise presentations for given groups. Note that the free group on a set X may be
presented by the generating set X and the empty set of relations!

Exercise 3.3:5. Suppose f (x, y) and g(y) are group-theoretic terms in two and one variables
respectively. What can you prove about the group with presentation

< w, x, y � w = f (x, y), x = g(y) > ?

Generalize if you can.

Exercise 3.3:6. Consider the set Z × Z of ‘‘lattice points’’ in the plane. Let G be the group of
‘‘symmetries’’ of this set, i.e., maps Z × Z → Z × Z which preserve distances between points.
(i) Find a simple description of G. (Cf. the description of the group of symmetries of Z in
terms of translations and reflections in Exercise 3.3:1(iii).)
(ii) Find a simple presentation for G.
(iii) Find a normal form for elements of G, in terms of the generators used in your
presentation.

Exercise 3.3:7. Suppose G is a group of n elements. Then the observation made above, on
how to present any group by generators and relations, yields bounds on the minimum numbers of
generators and relations needed to present G. Write down these bounds; then see to what extent
you can improve on them.

The above observations show that every finite group is finitely presented, i.e., has a presentation
in terms of finitely many generators and finitely many relations. Of course, there are also finitely
presented groups which are infinite. The next two exercises, of which the first should not be
difficult, while the second requires some ingenuity or experience with infinite groups, concern this
property of finite presentability.

Exercise 3.3:8. Show that if G is a finitely presented group, and < x1, ... , xn � R > is any
presentation of G using finitely many generators, then there is a finite subset R0 ⊆ R such
that < x1, ... , xn � R0 > is also a presentation of G.

Exercise 3.3:9. Find a finitely generated group that is not finitely presented.

Another kind of question one can ask is typified by
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Exercise 3.3:10. Is the group

< x, y � xyx–1 = y2, yxy–1 = x2 >

trivial (= {e}) ? What about

< x, y � xyx–1 = y2, yxy–1 = x3 > ?

(If you prove either or both of these groups trivial, you should present your calculation in a
way that makes it clear at each stage which defining relation you are applying, and to what part
of what expression.)

For the group-theory buff, here are two harder, but still tractable examples.

Exercise 3.3:11. (J. Simon [83].) (i) Is either of the groups

< a, b � (b–1a)4a–3 = e = b10(b–1a)–3 > or < a, b � (ba–1)–3a–2 = e = b9(ba–1)4 >

trivial?
(ii) In the group < a, b � ba– 4bab–1a = e >, is the subgroup generated by ba(b–1a)2 and
a3b–1 free abelian?

An interesting text on groups presented by generators and relations, which assumes only an
undergraduate background, but goes deep into the techniques of the subject, is [27].

Let us observe a consequence of the universal property of Proposition 3.3.3, characterizing the
group G with presentation < X � R >: For any group H, the set of homomorphisms
Hom(G, H ) is in natural one-to-one correspondence with the set of X-tuples of elements of H
satisfying the relations R.

For instance, if n is a positive integer, we observe that < x � xn = e > is Zn , the cyclic
group of order n; hence for any group H, we get a natural bijection between Hom(Zn , H ) and
{a∈ |H | � an = e}, each such a∈ |H | corresponding to the unique homomorphism Zn → H
carrying x to a. (Terminological note: A group element a∈ |H | which satisfies an = e is said
to have exponent n. This is equivalent to its having order dividing n.)

Similarly, one finds that < x, y � xy = yx > is isomorphic to Z × Z , hence Hom(Z × Z , H )
corresponds to the set of all ordered pairs of commuting elements of H.

Thus, presentations of groups by generators and relations provide a bridge between the internal
structure of groups, and their ‘‘external’’ behavior under homomorphisms. This will be of
particular importance when we turn to category theory, which treats mathematical objects in terms
of the homomorphisms among them.

The last exercise of this section describes one of my favorite groups, though most of its
interesting properties cannot be given here.

Exercise 3.3:12. Let G = < x, y � y–1x2y = x–2, x–1y2x = y–2 >.
(i) Find a normal form or other convenient description for elements of G. Verify from this
description that G has no nonidentity elements of finite order.
(ii) Calling the group characterized in several ways in Exercise 3.3:1 ‘‘D’’, show that G has
exactly three normal subgroups N such that G ⁄ N =∼ D, and that the intersection of these three
subgroups is {e}.
(iii) It follows from (ii) above that G can be identified with a subgroup of D ×D ×D. Give a
criterion for an element of D ×D ×D to lie in this subgroup, and prove directly from this
criterion that no element of this subgroup has finite order.

Though group presentations often yield groups for which a normal form can be found, it has
been proved by Novikov, Boone and Britton that there exist finitely presented groups G such that
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no algorithm can decide whether an arbitrary pair of terms of G represent the same element. A
proof of this result is given in the last chapter of [29].

3.4. Abelian groups, free abelian groups, and abelianizations. An abelian group is a group A
satisfying the further identity

(∀x, y∈ |A| ) xy = yx.

The discussion of §2.1 carries over without essential change and gives us the concept of a free
abelian group (F, u) on a set X ; the method of §2.2 establishes the existence of such groups by
constructing them as quotients of sets T of terms by appropriate equivalence relations, and the
method of §2.3 yields an alternative construction as subgroups of direct products of large enough
families of abelian groups. We may clearly also obtain the free abelian group on a set X as the
group presented by the generating set X and the relations st = ts, as s and t range over all
elements of T. This big set of relations is easily shown to be equivalent, for any X-tuple of
elements of any group, to the smaller family xy = yx (x, y∈X ), so the free abelian group on X
may be presented as

< X � xy = yx (x, y∈X ) >.

To investigate the structure of free abelian groups, let us consider, say, three elements a, b, c
of an arbitrary abelian group A, and look at elements of A that can be obtained from these by
group-theoretic operations. We know from §2.4 that any such element g may be written either as
e, or as a product of the elements a, a–1, b, b–1, c, c–1. We can now use the commutativity of
A to rearrange this product so that it begins with all factors a (if any), followed by all factors
a–1 (if any), then all factors b (if any), etc.. Now performing cancellations if both a and a–1

occur, or both b and b–1 occur, or both c and c–1 occur, we reduce g to an expression
aib jck, where i, j and k are integers (positive, negative, or 0; exponentiation by negative
integers and 0 being defined by the usual conventions). It is easy to describe the group operations
on the set Tab-red of such expressions, and to check that under these operations, Tab-red forms
an abelian group F. It follows as in §2.4 that this F is the free abelian group on {a, b, c}, and
thus that the set Tab-red of terms aib jck is a normal form for elements of the free abelian group
on three generators. In this verification, we do not need any analog of ‘‘van der Waerden’s trick’’
(§2.4). Rather, the result that Tab-red is an abelian group under the induced operations,

(aib jck)�. (ai ′b j ′ck ′) =def ai+i ′b j+j ′ck+k ′,

(aib jck)(–) =def a– ib– jc– k

e =def a0b0c0

follows from the known fact that the integers form an abelian group under +, –, and 0. (Note
that the symbols �. , (–) represent different operations from those represented by the same symbols
in §2.4, though the idea is the same as that of that section.)

This normal form is certainly simpler than that of the free group on {a, b, c}. Yet there is a
curious way in which it is more complicated: It is based on our choice of ‘‘alphabetic order’’ for
the generating set {a, b, c}. Using different orderings, we get different normal forms, e.g., b jckai,
etc.. If we want to generalize our normal form to the free abelian group on a finite set X without
any particular structure, we must begin by ordering X, say writing X = {x1, x2, ... , xn }. Only
then can we speak of ‘‘the set of all expressions x1

i1 ... xn
in ’’. If we want a normal form in the free
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abelian group on an infinite set X, we must again choose a total ordering of X, and then either
talk about ‘‘formally infinite products with all but finitely many factors equal to e’’, or modify the
normal form, say to ‘‘e or xi(x) yi(y) ... zi(z) where x < y < ... < z ∈X, and all exponents
shown are nonzero’’ (the last two conditions to ensure uniqueness!).

We may be satisfied with one of these approaches, or we may prefer to go to a slightly different
kind of representation for F, which we discover as follows: Note that if g is a member of the
free abelian group F on X, then for each x∈X, the exponent i(x) to which x appears in our
normal forms for g is the same for these various forms; only the position in which xi(x) is
written (and if i(x) = 0, whether it is written) changes from one normal form to another. Clearly,
any of our normal forms for g, and hence the element g itself, is determined by the X-tuple of
exponents (i(x))x∈X . So let us ‘‘represent’’ g by this X-tuple; that is, identify F with a certain
set of integer-valued functions on X. It is easy to see that the group operations of F correspond
to componentwise addition of such X-tuples, componentwise additive inverse, and the constant
X-tuple 0; and that the X-tuple corresponding to each generator x∈X is the function δx having
value l at x and 0 at all other elements y∈X. The X-tuples that actually correspond to
members of F are those which are nonzero at only finitely many components. Thus we get the
familiar description of the free abelian group on X as the subgroup of Z X consisting of all
functions having finite support in X. (The support of a function f means { x � f (x) ≠ 0}.)

Exercise 3.4:1. If X is infinite, it is clear that the whole group Z X is not a free abelian group
on X under the map x → δx , since it is not generated by the δx . Show that Z X is not a free
abelian group on any set of generators.

(For further results on Z X and its subgroups when X is countably infinite, see Specker

[97]. Among other things, it is shown there that the uncountable group Z X has only countably
many homomorphisms into Z , though its countable subgroup F clearly has uncountably many!
It is also shown that the subgroup of bounded functions on X is free abelian, on uncountably
many generators. This fact was generalized to not necessarily countable X by Nöbeling [87].
For a simpler proof of this result, using ring theory, see [36, §1].)

The concept of an abelian group presented by a system of generators and relations may be
formulated exactly like that of a group presented by generators and relations. It may also be
constructed analogously: as the quotient of the free abelian group on the given generators by the
subgroup generated by the relators st–1 (we don’t have to say ‘‘normal subgroup’’ because
normality is automatic for subgroups of abelian groups); or alternatively, as the group presented by
the given generators and relations, together with the additional relations saying that all the
generators commute with one another.

Suppose now that we start with an arbitrary group G, and impose relations saying that for all
x, y∈ |G |, x and y should commute: ‘‘x y = y x’’. That is, we form the quotient of G by the
normal subgroup generated by the elements (y x)–1(x y) = x–1y–1x y. These elements are known as
commutators, and often abbreviated

x–1y–1x y = [x, y].

(Another notation is (x, y), but we will not use this to avoid confusion with ordered pairs.
Incidentally, it is to conform to group-theorists’ usage that I am using (y x)–1(x y) = x–1y–1x y,
rather than the choice (x y)(y x)–1 = x y x–1y–1 that our habit of converting a relation s = t to a
relator s t–1 would have led to.) The normal subgroup that they generate is called the commutator
subgroup, or derived subgroup of G, written [G, G], and often abbreviated by group theorists to
G ′. The quotient group, Gab =def G ⁄ [G , G], is an abelian group with a homomorphism q of
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the given group G into it, which is universal among homomorphisms of G into abelian groups
A, the diagram for the universal property being

G
________q → Gab

��
�
�
↓

∃1 f∀

A.

This group Gab (or more precisely, the pair (Gab, q), or any isomorphic pair) is called the
abelianization or commutator factor group of G.

Suppose now that we write down any system of generators and relations for a group, and
compare the group G and the abelian group H, that these same generators and relations define.
By the universal property of G, there will exist a unique homomorphism r : G → H taking the
generators to corresponding generators. It is easy to check that (H, r) has the universal property
characterizing the abelianization of G. So this gives another way of describing abelianization.
Note, as a consequence, that given an arbitrary system of generators and group-theoretic relations,
the group these present will determine, up to natural isomorphism, the abelian group that they
present (but not vice versa).

Exercise 3.4:2. Find the structures of the abelianizations of the groups presented in Exercises
3.3:1, 3.3:3, 3.3:4, 3.3:10 and 3.3:11.

Exercise 3.4:3. Show that any group homomorphism f : G → H induces a homomorphism of
abelian groups f ab: Gab → Hab. State precisely the condition relating f and f ab. Show that
for a composite of group homomorphisms, one has ( fg)ab = f abgab. Conclude that for any
group G, there is a natural homomorphism of monoids, End(G) → End(Gab), and a natural
homomorphism of groups Aut(G) → Aut(Gab).

Exercise 3.4:4. For G as in Exercises 3.3:1 and 3.3:2, is the natural homomorphism
Aut(G) → Aut(Gab) of the above exercise one-to-one?

Exercise 3.4:5. If H is a subgroup of G, what can be said about the relation between Hab and
Gab? Same question if H is a homomorphic image of G.

Exercise 3.4:6. Let K be a field, n a positive integer, and GL(n, K ) the group of invertible
n × n matrices over K. Determine as much as you can about the structure of GL(n, K )ab.

Exercise 3.4:7. If G is a group, will there exist a universal homomorphism of G into a solvable
group, G → Gsolv? What if G is assumed finite?

Does there exist a ‘‘free solvable group’’ on a set X, or some similar construction?

Exercise 3.4:8. Show that the free abelian group on n generators cannot be presented as a group
by fewer than n generators and n(n–1) ⁄ 2 relations.

3.5. The Burnside problem. In 1902, W. Burnside [46] asked whether a finitely generated group,
all of whose elements had finite order, must be finite. This problem was hard to approach because,
with nothing assumed about the values of the finite orders of the elements, one had no place to
begin a calculation. So Burnside also posed this question under the stronger hypothesis that there
be a common finite bound on the orders of all elements of G.

The original question with no bound on the orders was suddenly answered negatively in 1964,
with a counterexample arising from the Golod-Shafarevich construction [60]; there is a short and
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fairly self-contained presentation of this material in the last chapter of [25]. In the opposite
direction, Burnside himself proved that if G is a finitely generated group of matrices over a field
and all elements of G have finite order, then G is finite [47].

Turning to the question of a general group G with a common bound on the orders of its
elements, note that if m is such a bound, then m! is a common exponent for these elements;
while if n is a common exponent, it is also a bound on their orders. So ‘‘all elements are of
bounded order’’ is equivalent to ‘‘all elements have a common exponent’’. The latter condition is
more convenient to study, since the statement that x has exponent n has the form of a single
identity. So for any positive integer n, one defines the Burnside problem for exponent n to be
the question of whether every finitely generated group satisfying

(3.5.1) (∀x) xn = e

is finite.
For n = 1, the answer is obviously yes, for n = 2 the same result is an easy exercise, for

n = 3 it is not very hard to show, and it has also been proved for n = 4, 6. On the other hand, it
has been shown in recent years that the answer is negative for all odd n ≥ 665 [31], and for all
n > 8000 [78]. This still leaves a large but finite set of open cases: all odd values strictly between
3 and 665, and all even values strictly between 6 and 8000. We won’t get involved in these
hard group-theoretic problems here. But the concept of universal constructions does allow us to
understand the nature of the question better. Call a group G an n-Burnside group if it satisfies the
identity (3.5.1). One may define the free n-Burnside group on any set X by the obvious universal
property, and it will exist for the usual reasons. In particular, it can be presented, as a group, by
the generating set X, and the infinite family of relations equating the nth powers of all terms in
the elements of X to e. I leave it to you to think through the following relationships:

Exercise 3.5:1. Let n and r be positive integers.
(i) What implications hold among the following statements?

(a) Every n-Burnside group which can be generated by r elements is finite.
(b) The free n-Burnside group on r generators is finite.
(c) The group < x1, ... , xr � x1

n = ... = xr
n = e > is finite.

(d) There exists a finite r-generator group having a finite presentation in which all relators are
nth powers, < x1, ... , xr � w1

n = ... = ws
n = e > (where each wi is a term in x1, ... , xr . Cf.

Exercises 3.3:7 and 3.3:8.)
(e) There exists an integer N such that all n-Burnside groups generated by r elements have
order ≤ N.
(f) There exists an integer N such that all finite n-Burnside groups generated by r elements
have order ≤ N (‘‘the restricted Burnside problem’’).

(ii) What implications hold among cases of statement (a) involving the same value of n but
different values of r? involving the same value of r but different values of n?

Note that if for a given n and r we could find a normal form for the free n-Burnside group
on r generators, we would know whether (b) was true! But except when n or r is very small,
such normal forms are not known. For further discussion of these questions, see [24, Chapter 18].
For recent results, including a partial solution to the restricted Burnside problem ((f) above), and
some negative results on the word problem for free Burnside groups, see [71], [84], [101], and
references given in those works.

A group G is called residually finite if for any two elements x ≠ y∈ |G |, there exists a
homomorphism f of G into a finite group such that f (x) ≠ f (y).
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Exercise 3.5:2. Investigate implications involving conditions (a)-(f) of the preceding exercise,
together with
(g) The free n-Burnside group on r generators is residually finite.

Exercise 3.5:3. (i) Restate Exercise 2.4:3 as a question about residual finiteness (showing, of
course, that your restatement is equivalent to the original question).
(ii) If G is a group, does there exist a universal homomorphism G → Grf, of G into a
residually finite group?

3.6. Products and coproducts. Let G and H be groups. Consider the following two situations:

(a) a group P given with a homomorphism pG : P → G and a homomorphism pH : P → H,
and

(b) a group Q given with homomorphisms qG : G → Q, and qH : H → Q (diagrams below).

Note that if in situation (a) we have any homomorphism a of any other group P ′ into P,
then P ′ also acquires homomorphisms into G and H, namely pG a and pH a; and similarly,
if in situation (b) we have any homomorphism b of Q into a group Q ′, then Q ′ acquires
homomorphisms b qG and b qH of G and H into it:

pG G G qG
P ′ ____a→ P Q

____b→ Q ′ .
pH H H qH

So we may ask whether there exists a universal example of a P with maps into G and H, that
is, a 3-tuple (P, pG , pH ) such that for any group P ′, every pair of maps p ′G : P ′ → G and
p ′H : P ′ → H arises by composition of pG and pH with a unique homomorphism a : P ′ → P;
and, dually, whether there exists a universal example of a group Q with maps of G and H into
it.

In both cases, the answer is yes. The universal P is simply the direct product group G × H,
with its projection maps pG and pH onto the two factors; the universal property is easy to
verify. The universal Q, on the other hand, can be constructed by generators and relations. It has
to have for each g∈ |G | an element qG (g) – let us abbreviate this to g – and for each h∈ |H |
an element qH (h) – call this h

∼
. So let us take for generators a set of symbols

(3.6.1) {g, h
∼
� g∈ |G|, h∈ |H |}.

The relations these must satisfy are those saying that qG and qH are homomorphisms:

(3.6.2) g g ′ = gg ′
___

(g, g ′∈ |G | ), h
∼
h
∼
′ = hh ′ (h, h ′∈ |H | ).

It is immediate that the group so presented has the desired universal mapping property. (We

might have supplemented (3.6.2) with the further relations eG
___

= e, eH = e, g–1
____

= g –1, h–1 =
h
∼–1. But these are implied by the relations listed, since as is well known, any set map between
groups which preserves products also preserves neutral elements and inverses.) More generally, if
G is a group which can be presented as < X � R >, and if similarly H = < Y � S >, then we may
take for generators of Q a disjoint union X Y, and for relations the union of R and S. For
instance, if

G = Z3 =
< x � x3 = e > and H = Z2 = < x � x2 = e >,
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then Q may be presented as

< x, x ′ � x3 = e, x ′ 2 = e >,

with qG and qH given by x → x and x → x ′, respectively. You should be able to verify the
universal property of Q from this presentation.

(If you were not familiar with the concept of a ‘‘disjoint union’’ X Y of two sets X and Y,
I hope that the above discussion suggests the meaning. Explicitly, it means the union of a bijective
copy of X and a bijective copy of Y, chosen to be disjoint. So, if X = {a, b, c}, Y = {b, c,
d, e}, where a, b, c, d, e are distinct, then their ordinary set-theoretic union is the 5-element set
X∪ Y = {a, b, c, d, e}, but an example of a ‘‘disjoint union’’ would be any set of the form
X Y = {a, b, c, b ′ , c ′ , d ′ , e ′}, where a, b, c, b ′ , c ′ , d ′ , e ′ are distinct, given with the obvious
maps taking X to the 3-element subset {a, b, c} of this set, and Y to the disjoint 4-element
subset {b ′ , c ′ , d ′ , e ′}. Though there is not a unique way of choosing a disjoint union of two sets,
the construction is unique in the ways we care about; e.g., note that in the above example, any
disjoint union of X and Y will have |X | + |Y | = 7 elements. Hence one often speaks of ‘‘the’’
disjoint union. We will see, a few sections from now, that disjoint union of sets is itself a
universal construction – of set theory.)

To see for general G and H what the group determined by this universal property ‘‘looks
like’’, let us again think about an arbitrary group Q with homomorphisms of G and H into it,
which we abbreviate g → g and h → h

∼
. The elements of Q which we can name in this situation

are, of course, the products

x±1
n x±1

n–1 . . . x±1
1 with xi ∈ {g, h

∼
� g∈ |G |, h∈ |H | } and n ≥ 0.

(Notational remark: In §2.4, I generally kept n ≥1, and introduced ‘‘e’’ as a separate kind of
expression. Here I shall adopt the convenient convention that the product of the empty (length 0)
sequence of factors is e, so that the case ‘‘e’’ may be absorbed in the general case.)

But for any g∈ |G | or h∈ |H | we have noted that g –1 = g–1
____

and h
∼–1 = h–1 in Q; so the

inverse of any member of the generating set {g � g∈|G|} ∪ {h
∼
� h∈|H |} is another member of

that set; hence we may simplify the above product so that no exponents –1 occur. We also know
that e = ẽ = e, so wherever instances of e or ẽ occur in our product, we may drop them.
Finally, the relations (3.6.2) allow us to replace any occurrence of two successive factors from
{g � g∈ |G | } by a single such factor, and to do the same if two factors from {h

∼
� h∈ |H | } occur

together. So the elements of Q that we can construct can all be reduced to the form

(3.6.3)
x1 ... xn

where n ≥ 0, xi ∈ {g � g∈ |G | – {e}} ∪ {h
∼
� h∈ |H | – {e} }, and no

two successive x’s come from the same set, {g � g∈ |G | –{e} } or
{h
∼
� h∈ |H | –{e} }.

We can express the product of two elements (3.6.3) as another such expression, by putting the
sequences of factors together, and reducing the resulting expression to the above form in the
obvious way; likewise it is clear how to find expressions of that form for inverses of elements
(3.6.3), and for the element e. In any particular group Q with homomorphisms of G and H
into it, there may be other elements than those expressed by (3.6.3), and there may be some
equalities among such products. But as far as we can see, there don’t seem to be any cases left of
two expressions (3.6.3) that must represent the same element in every such group Q. If in fact
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there are none, then, as in §2.4, the expressions (3.6.3) will correspond to the distinct elements of
the universal Q we are trying to describe, and thus will give a normal form for the elements of
this group.

We can use the same stratagem as in §2.4 to show that there are in fact no undiscovered
necessary equalities – it was for this situation that van der Waerden devised it!

Proposition 3.6.4 (van der Waerden [102]). Let G, H be groups, and Q the group with a
universal pair of homomorphisms G → Q, H → Q, written g → g, h → h

∼
. Then every element

of Q can be written uniquely in the form (3.6.3).

Proof. Let us introduce an additional symbol a, and denote by A the set of all symbols

(3.6.5) xn ... x1 a, where x1, ... , xn are as in (3.6.3).

We would like to describe actions of G and H on this set. It is clear what these actions should
be, but an explicit description is a bit messy, because of the need to describe separately the cases
where the element of A on which we are acting does or does not begin with an element of the
group we are acting by, and if it does, the cases where this beginning element is or is not the
inverse of the element by which we are acting. This makes still more messy the formal verification
that the ‘‘actions’’ give homomorphisms of G and of H into the permutation group of A.

But we shall get around these annoyances (which are in any case minor compared with the
difficulties of doing things without van der Waerden’s method) by another trick. Let us describe a
set AG which is in bijective correspondence with A : For those elements b∈A which already
begin with a symbol g (g∈|G| – {e}), we let AG contain the same element b. For elements b
which do not, let the corresponding element of AG be the expression e b. Thus every element of
AG begins with a symbol g (g∈ |G | ), and we can now describe the action of g ′∈ |G | on AG
as simply taking an element g c to g ′g

___
c. It is trivial to verify that this is a homomorphism of G

into the permutation group of AG . This action on AG now clearly induces an action on the
bijectively related set A. Likewise, an action of H on A can be defined, via an action on an
exactly analogous set AH .

Thus we have homomorphisms of both G and H into the permutation group of A; this is
equivalent to giving a homomorphism of the group Q we are interested in into this permutation
group. Further, given any element (3.6.3) of Q, it is easy to see by induction on n that its
image in the permutation group of A sends the ‘‘starting point’’ element a to precisely
xn ... x1 a. Hence two distinct expressions (3.6.3) correspond to elements of Q having distinct
actions on a, hence these elements of Q are themselves distinct. So not only can every element
of Q be written in the form (3.6.3), but distinct such expressions correspond to distinct elements
of Q, proving the proposition. �

For a concrete example, again let G = Z3 = < x � x3 = e > and let H = Z2 = < y � y2 = e >.
Then A will consist of strings like a, ya, xyx2a, etc.. (We can drop ‘‘ ’’ and ‘‘˜’’ here
because |G | – {e} and |H | – {e} use no symbols in common.) G = Z3 will act on this set by

b

x b

x2b

(for strings b not beginning with x), while H = Z2 acts by permuting pairs of

symbols b →← y b (b not beginning with y). If we want to see that say, y x y x2 and x2 y x y
have distinct actions on A, we simply note that the first sends the symbol a to the symbol
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y x y x2a, while the second takes it to x2 y x y a. A picture of the Q-set A, for this G and H,
looks like some kind of seaweed:

.a

.ya

.

.

. .
.

..
.

.
.

.
.

you
are here

. .
. . .

. .
.

.

. . .
.

. .

.
xa .

.
.

. .

. . .. .

. . .

. .
.x2a

.
yx2a

.xyx2a .
.

. .

. .
. . . . .

. .

(G acts by rotating

the triangles, H by

transposing pairs of

points marked .). .

We recall that the universal group ‘‘P’’ considered at the beginning of this section turned out to
be the direct product of G and H. Since Q is characterized by the dual universal property, we
shall call it the coproduct of G and H.

Because of the similarity of the normal form of this construction to that of free groups, group-
theorists have long called it the free product of the given groups in these notes. However, the
constructions for sets, commutative rings, abelian groups, topological spaces, etc. characterized by
this same universal property show a great diversity of forms, and have been known under different
names in the respective disciplines. The general name ‘‘coproduct’’ introduced by category theory
(Chapter 6 below) unifies the terminology, and we shall follow it in these notes. On the other
hand, the ‘‘P’’ constructions look very similar in all these cases, and have generally all had the
name ‘‘direct product’’, which is retained (shortened to ‘‘product’’) by category theorists.

In both our product and coproduct constructions, the pair of groups G and H may be
replaced by an arbitrary family (Gi )i∈I . The direct product I

��
I I Gi with its I-tuple of projection

maps again gives the universal example of a group P given with an I-tuple of maps pi : P → Gi .
The coproduct Q = I��I I Gi , generated by the images of a universal family of maps of the Gi ’s
into Q, can be constructed, just as above, using strings of nonidentity elements from a disjoint
union of the underlying sets of these groups, such that two factors from the same group Gi never
occur consecutively. (Note that the coproduct symbol I��I is the direct product symbol I

��
I turned

upside-down.)

Exercise 3.6:1. If X is a set, then a coproduct of copies of the infinite cyclic group Z , indexed
by X, I��I X Z , will be a free group on X. Show this by universal properties, and describe the
correspondence of normal forms. Can you find any other families of groups whose coproduct is
a free group?

Exercise 3.6:2. Let us (following group-theorists’ notation) write coproducts of finite families of
groups as Q = G∗H, Q = F∗G∗H, etc.. Prove that for any three groups F, G and H, one
has (F∗G)∗H =∼ F∗G∗H =∼ F∗(G∗H ), using (a) universal properties, and (b) normal forms.

Exercise 3.6:3. For any two groups G and H, show how to define natural isomorphisms
iG, H : G × H =∼ H × G, and jG, H : G∗H =∼ H∗G. What form do these isomorphisms take when
G = H ? (Describe them on elements.)

It is sometimes said that ‘‘We may identify G × H with H × G, and G∗H with H∗G, by
treating the isomorphisms iG, H and jG, H as the identity, and identifying the corresponding
group elements.’’ Is this reasonable when G = H ?
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Exercise 3.6:4. Show that in a coproduct group G∗H, the only elements of finite order are the
conjugates of the images of elements of finite order of G and H. (First step: Find how to
determine, from the normal form of an element of G∗H, whether it is a conjugate of an element
of G or H.)

Can you similarly describe all finite subgroups of G∗H ?

There is a fact about the direct product group which one would not at first expect from its
universal property: It also has two natural maps into it: fG : G → G × H and fH : H → G × H,
given by g → (g, e) and h → (e, h). (Note that there is no analogous construction on direct
products of sets.) To examine this phenomenon, we recall that the universal property of G × H
says that to map a group A into G × H is equivalent to giving a map A → G and a map
A → H. Looking at fG , we see that the two maps it corresponds to are the identity map
idG : G → G, defined by idG (g) = g, and the trivial map e: G → H, defined by e(g) = e. The
map fH is characterized similarly, with the roles of G and H reversed.

The group G × H has, in fact, a second universal property, in terms of this pair of maps. The
3-tuple (G × H, fG, fH ) is universal among 3-tuples (K, a, b) such that K is a group,
a : G → K and b : H → K are homomorphisms, and the images in K of these homomorphisms
centralize one another:

(∀g∈ |G|, h∈ |H | ) a(g) b(h) = b(h) a(g) ,

equivalently:

[a(G), b(H )] = {e}.

If P = I
��
I I Gi is a direct product of arbitrarily many groups, one similarly has maps

fi : Gi → P, but if the index set I is infinite, the images of the fi will not in general generate
P, and it follows from this that P cannot have the same universal property. But one finds that
the subgroup P0 of P generated by the images fi (Gi ) is again a universal group with maps of
the Gi into it having images that centralize one another. This subgroup consists of those elements
of P having only finitely many coordinates ≠ e.

Exercise 3.6:5. Prove the above new universal property of G × H.
Describe the map

m : G∗H → G × H

which the universal property of G × H associates to the pair of maps fG, fH and deduce that
this map is surjective, and that its kernel is the normal subgroup of G∗H generated by the
commutators [g, h

∼
] (g∈ |G |, h∈ |H | ).

Generalize this construction to products and coproducts of arbitrary families (Gi )i∈I .

One may wonder why commutativity suddenly came up like this, since the original universal
property by which we characterized G × H had nothing to do with it. The following observation
throws a little light on this. The set of relations that will be satisfied in G × H by the images of
elements of G and H under the two maps fG and fH defined above will be the intersection of
the sets of relations satisfied by their images in K under a : G → K, b : H → K, in the two
cases

(i) K = G; a = idG, b = e,

(ii) K = H; a = e, b = idH . (Why?)

And what are such relations? Clearly a(g)b(h) = b(h)a(g) holds in each case. The above
second universal property of G × H is equivalent to saying that no relations hold in both cases
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except this family of relations and their consequences.
A coproduct group G∗H similarly has natural maps uG : G∗H → G and uH : G∗H → H,

constructed from the identity maps of G and H and the trivial maps between them, but uG and
uH have no unexpected properties that I know of.

Exercise 3.6:6. If G is a group, construct maps G → G × G and G∗G → G using universal
properties, and the identity map, but not using the trivial map of G. Describe how these maps
behave on elements.

Exercise 3.6:7. Suppose (Gi )i∈I is a family of groups, and we wish to consider groups G
given with homomorphisms Gi → G such that the images of certain pairs Gi, Gi ′ commute,
while no condition is imposed on the remaining pairs. To formalize this, let J ⊆ I × I be a
symmetric antireflexive relation on our index set I (antireflexive means (∀ i∈I ) (i, i )∈J ); and
let H be the universal group with maps ri : Gi → H (i∈I ) such that for (i, i ′)∈J,
[ri (Gi ), ri ′ (Gi ′ )] = {e}.

Study the structure of this H, and obtain a normal form if possible. You may assume the
index set I finite if this helps.

3.7. Products and coproducts of abelian groups. Let A and B be abelian groups. Following
the model of the preceding section, we may look for abelian groups P and Q having universal
pairs of maps:

pA A A qA

P Q .
pB B B qB

Again abelian groups with both these properties exist – but this time, they turn out to be the
same group, namely A × B ! (The reader should verify both universal properties.) To look at this
another way, if we construct abelian groups P and Q with the universal properties of the direct
product and coproduct of A and B respectively, and then form the homomorphism m : P → Q
analogous to that of Exercise 3.6:5, this turns out to be an isomorphism.

Note that though A × B is the universal abelian group with homomorphisms of A and B
into it, this is not the same as the universal group with homomorphisms of A and B into it – that
group, A∗B, constructed in the preceding section, will generally not be abelian when A and B
are. Thus, the coproduct of two abelian groups A and B as abelian groups is generally not the
same as their coproduct as groups. Rather, we can see by comparing universal properties that the
coproduct as abelian groups is the abelianization of the coproduct as groups: A × B = (A∗B)ab.

Hence, in using the coproduct symbol ‘‘ I��I ’’, we have to specify what kind of coproduct we are
talking about, I��I gp Ai or I��I ab gp Ai , unless this is clear from context. On the other hand, direct
products of abelian groups as abelian groups are the same as their direct products as groups.

For a not necessarily finite family (Ai )i∈I of abelian groups, the coproduct still embeds in the
direct product under the map ‘‘m’’. It can in fact be described as the subgroup of that direct
product group consisting of those elements almost all of whose coordinates are e. When abelian
groups are written additively, this coproduct is generally called the ‘‘direct sum’’ of the groups, and
denoted �+I Ai ; in the case of two groups we write this A �+ B.

Notes on confused terminology : Some people extend the term ‘‘direct sum’’ to mean
‘‘coproduct’’ in all contexts – groups, rings, etc.. Other writers, because of the form that ‘‘direct
sum’’ has for finite families of abelian groups, use the phrase ‘‘direct sum’’ as a synonym of
‘‘direct product’’, even in the case of infinite families of groups! The coproduct of an infinite
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family of abelian groups is sometimes called their ‘‘restricted direct product’’ or ‘‘restricted direct
sum’’, the direct product then being called the ‘‘complete direct product’’ or ‘‘complete direct
sum’’. In these notes, we shall stick with the terms ‘‘product’’ and ‘‘coproduct’’, as defined above
(except that we shall often expand ‘‘product’’ to ‘‘direct product’’, to avoid possible confusion with
meanings such as a product of elements under a multiplication).

What is special about abelian groups, that makes finite products and coproducts come out the
same; and why only finite products and coproducts? One may consider the key property to be the
fact that homomorphisms of abelian groups can be ‘‘added’’; i.e., that given two homomorphisms
f, g : A → B, the map f + g : A → B defined by ( f + g)(a) = f (a) + g(a) is again a
homomorphism. (This is not true for nonabelian groups.) Temporarily writing ∗ab gp for the
coproduct of two abelian groups, one finds, in fact, that the inverse of the map m : G∗ab gp H →
G ×H is given by the sum

qG pG + qH pH : G ×H → G∗ab gp H.

For coproducts of noncommutative groups, the corresponding map is not a group homomorphism,
while for coproducts of infinite families of abelian groups, no analog of the above map can be
constructed because one cannot make sense of an infinite sum. So only when the coproduct is
taken in the class of abelian groups, and the given family of groups is finite, do we get our inverse
to m.

3.8. Right and left universal properties. The universal property of direct products differs in a
basic way from the other universal properties we have looked at so far. In all other cases, we
constructed an object (e.g., a group) F with specified ‘‘additional structure’’ or conditions (e.g., a
map of a given set X into |F | ), such that each structure of the same sort on any other object U
could be obtained by a unique homomorphism from the universal object F to the object U. A
direct product P = G × H is an object with the opposite sort of universal property: all groups with
the specified additional structure (a map into G, and a map into H ) are obtained by mapping
arbitrary groups U into the universal example P. Thus, while the free group on a set X, the
abelianization of a group G, the coproduct of two groups G and H, etc., can be thought of as
‘‘first’’ or diagrammatically ‘‘leftmost’’ groups with given kinds of structure, the direct product
G × H is the ‘‘last’’ or ‘‘rightmost’’ group with maps into G and H. We shall refer to these two
types of conditions as ‘‘left’’ and ‘‘right’’ universal properties respectively. (This terminology is
based on thinking of arrows as going from left to right, though it happens that in most of the
diagrams in preceding sections, the arrow from the universal object was drawn downward.)

The philosophy of how to construct objects with properties of either kind is in broad outline the
same: Figure out as much information as possible about an arbitrary object (not assumed universal)
with the given ‘‘additional structure’’, and see whether that information can itself be considered as
a description of an object. If it can, this object will in general turn out to be universal for the given
structure! In the case of ‘‘left’’ universal constructions (free groups, coproducts, ... ), this
‘‘information’’ means answers to the question, ‘‘What elements do we know exist, and what
equalities must hold among them?’’ (Cf. remark 2.2.10.) In the right universal case, on the other
hand, the question is, ‘‘Given an element of our object, what data can we describe about it in terms
of the additional structure?’’

Let us illustrate this with the case of the direct product of groups. Given groups G and H,
consider any group P with specified homomorphisms pG , pH into G and H. What data can
we find about an element x of P using these maps? Obviously, we can get from x a pair of
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elements (g, h)∈ |G | × |H |, namely

g = pG (x)∈ |G |, h = pH (x)∈ |H |.

Can we get any more data? We can also obtain elements pG (x2), pH (x–1), etc.; but these
can be found by group operations from the elements g = pG (x) and h = pH (x), so they give no
new information about x. All right then, let us agree to classify elements of P according to the
pairs (g, h)∈ |G | × |H | which they determine.

Now suppose x∈ |P| gives the pair (g, h), and y gives the pair (g ′ , h ′). Can we find from
these the pair given by xy∈ |P| ? the pair given by x–1? Clearly so: these will be (gg ′ , hh ′),
and (g–1, h–1) respectively. And we can likewise write down the pair that e∈ |P| yields:
(eG, eH ).

Very well, let us take the ‘‘data’’ that classifies elements of our arbitrary P, namely the set of
pairs (g, h) (g∈ |G |, h∈ |H | ) – together with the law of composition we have found for these
pairs, (g, h).(g ′ , h ′) = (gg ′ , hh ′), the inverse operation (g, h) → (g–1, h–1), and the neutral
element pair (eG, eH ) – and ask whether this forms a group. It does! And, because of the way
this group was constructed, it will have homomorphisms into G and H, and be universal for this
property. It is, of course, the product group G ×H.

Here is a pair of examples we have not yet discussed. Suppose we are given a homomorphism
of groups

f : G → H.

Now consider

(a) homomorphisms a : A → G, from arbitrary groups A into G, whose composites with f are
the trivial homomorphism, i.e., which satisfy fa = e; and

(b) homomorphisms b : H → B, from H into arbitrary groups B, whose composites with f are
the trivial homomorphism, i.e., which satisfy bf = e.

Given a homomorphism of the first sort, one can get further homomorphisms with the same
property by composing with homomorphisms A ′ → A, for arbitrary groups A ′; so one may look
for a pair (A, a) with the right universal property that every such pair (A ′ , a ′) arises from
(A, a) via a unique homomorphism A ′ → A. For (ii), one would want a corresponding left
universal B.

To try to find the right-universal A, we ask: Given an arbitrary homomorphism A → G with
fa = e as in (i), what data can we attach to any element x∈ |A|? Its image g = a(x), certainly.
This must be an element which f carries to the neutral element, since fa = e; thus the set of
possibilities is {g∈ |G | � f (g) = e}. We find that this set forms a group (with a map into G,
namely the inclusion) having the desired universal property. This is the kernel of f.

We get the left universal example of (ii) by familiar methods: Given arbitrary b : H → B with
bf = e as in (ii), B must contain an image h = b(h) of each element h∈ |H |. The fact that
bf = e tells us that the images in B of all elements of f (G) must be the neutral element, and we
quickly discover that the universal example is the quotient group B = H ⁄ N, where N is the
normal subgroup of H generated by f (G). This group is called the cokernel of the map f.

Right universal constructions are not as conspicuous in algebra as left universal constructions.
When they occur, they are often fairly elementary and familiar constructions (e.g., the direct
product of two groups; the kernel of a homomorphism). However, we shall see less trivial cases in
later chapters; some of the exercises below also give interesting examples.
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Exercise 3.8:1. Let G be a group, and X a set. Show that there exist
(i) a G-set S with a universal map f : |S | → X, and
(ii) a G-set T with a universal map g : X → |T |.
First state the universal properties explicitly.

(Hint to (i) : Given any G-set S with a map f : |S | → X, an element s∈ |S | will
determine not only an element x = f (s)∈X, but for every g∈ |G | an element xg = f (gs)∈X.

From the family of elements, (xg )g∈ |G | determined by an s∈S, can one describe the family

associated with hs for any h∈ |G | ?)

One can carry the idea of the above exercise further in several directions:

(a) Given a group homomorphism f : G1 → G2, note that from any G2-set S one can get a
G1-set Sf , by taking the same underlying set, and defining for g∈ |G1|, s∈ |S |

gs =def f (g) s.

Now given a G1-set X, one can look for a G2-set S with a universal homomorphism Sf → X,
or for a G2-set T with a universal homomorphism X → Tf . The above exercise corresponds to
the case G1 = {e}. (An {e}-set is essentially a set with no additional structure. You should verify
that for G = {e}, the above universal questions reduce to those of the exercise.)

(b) Instead of looking at sets S on which a group G acts by permutations, one can consider
abelian groups, vector spaces, etc., on which G acts by automorphisms. In this case, the
analogous universal constructions are still possible, and give the important concept of ‘‘induced
representations’’ of a group.

(c) The preceding point introduced extra structure on the sets on which our groups act. One can
also consider the case where one’s groups G have additional structure, say topological or
measure-theoretic, and restrict attention to continuous, measurable, etc., G-actions on appropriately
structured spaces S. The versions of ‘‘induced representation’’ that one then obtains are at the
heart of the modern representation theory of topological groups.

Exercise 3.8:2. Formulate right universal properties analogous to the left universal property
defining free groups and the abelianization of a group, and show that no constructions exist
having these properties. What goes wrong when we attempt to apply the general approach of this
section?

Exercise 3.8:3. If X is a set and S a subset of X, then given any set map f : Y → X, one gets
a subset of Y, T = f –1(S). Does there exist a universal pair (X, S), such that for any set Y,
every subset T ⊆ Y is induced in this way via a unique set map f : Y → X ?

Exercise 3.8:4. Let A, B be fixed sets. Suppose X is another set, and f : A × X → B is a set
map. Then for any set Y, and map m : Y → X, a set map A × Y → B is induced. (How?)
Does there exist, for each A and B, a universal set X and map f as above, i.e., an X and
an f such that for any Y, all maps A × Y → B are induced by unique maps Y → X ?

Exercise 3.8:5. Let R be a ring with 1. (Commutative if you like. If you consider general R,
then for ‘‘module’’ understand ‘‘left module’’ below.) Before attempting each of the following
questions, formulate precisely the universal property desired.
(i) Given a set X, does there exist an R-module M with a universal set map |M | → X ?
(ii) If M is an R-module, let Madd denote the underlying additive group of M. Given an
abelian group A, does there exist an R-module M with a universal homomorphism of abelian
groups Madd → A ?
(iii) and (iv) : What about the left universal analogs of the above right universal questions?
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3.9. Tensor products. Let A, B and C be abelian groups, which we shall write additively.
Then by a bilinear map β : (A, B) → C we shall mean a set map β : |A| × |B| → |C | such that

(i) for each a∈ |A|, the map β(a, –) : |B| → |C | (that is, the map taking each element b∈ |B|
to β(a, b)∈ |C | ) is a linear map (homomorphism of abelian groups) from B to C, and

(ii) for each b∈ |B|, the map β(–, b) : |A| → |C | is a linear map from A to C.

This is usually called a bilinear map ‘‘from A × B to C’’ (I usually call it that myself).
However, that terminology misleads many students into thinking that it has something to do with
the group A × B. In fact, although the definition of bilinear map involves the group structures of
A and B, and involves the set |A| × |B|, it has nothing to do with the structure of direct product
group that one can put on this set. This is illustrated by:

Exercise 3.9:1. Show that for any abelian groups A, B, C, the only map |A| × |B| → |C | which
is both a linear map A × B → C, and a bilinear map (A, B) → C, is the zero map.

As an example to keep in mind, take any ring R = ( |R|, +, ., –, 0, 1), and let R+ denote the
additive group ( |R|, +, –, 0). Then the maps (x, y) → x + y and (x, y) → x – y are group
homomorphisms R+× R+ → R+ (but not bilinear maps), while the multiplication map
(x, y) → x .y is a bilinear map (R+, R+) → R+ (but not a group homomorphism
R+× R+ → R+).

I am speaking about abelian groups to keep the widest possible audience, but everything I have
said and will say about bilinear maps among such groups applies to bilinear maps of modules over
a commutative ring, and in particular, to bilinear maps of vector spaces over a field, with the
adjustment that ‘‘linear map’’ in (i) and (ii) above is interpreted to mean module homomorphism.
(There are also extensions of all these concepts to left modules, right modules, and bimodules over
noncommutative rings, which we will look at with the help of a more sophisticated perspective in
§9.7; but these are not obvious if you haven’t seen them before.)

Given two abelian groups A and B, let us construct an abelian group A �× B (called the
tensor product of A and B) as follows: We present it using a set of generators which we write
a�× b, one for each a∈ |A|, b∈ |B|, and defining relations which are precisely the conditions
required to make the map (a, b) → a�× b bilinear; namely

(a +a ′)�× b = a�× b + a ′�× b,
(a, a ′∈ |A|, b, b ′∈ |B| ).

a�× (b + b ′) = a�× b + a�× b ′

(If we are working with R-modules, we also need the R-module relations

(ra)�× b = r(a�× b) = a�× (rb) (a∈ |A|, b∈ |B|, r∈ |R| ).

To indicate that one is referring to the module so constructed, rather than the tensor product as
abelian groups, one often writes this object A �× R B.)

Then by construction, A �× B will be an abelian group with a bilinear map �× : (A, B) →
A �× B, and the universal property of the abelian group presented by these generators and relations
translates to say that this map will be universal among bilinear maps on (A, B).
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(A, B)
_________(a, b)→ a�× b→ A �× B

��
�
�
�
↓

∃1 h∀β

C

We can get simpler presentations of this group if we are given presentations of A and B. A
presentation of A can be looked at as a representation A = F (X ) ⁄ < S >, where F (X ) is the free
abelian group on the given set of generators, and < S > is the subgroup of F (X ) generated by the
family S of relators (elements that are required to go to 0). If A is so presented, and likewise
B is written as F (Y ) ⁄ < T >, then it is not hard to show (and you may do so as the next exercise)
that

(3.9.1) A �× B =∼ F (X )�× F (Y ) ⁄ < S �× Y ∪ X �× T >

where S �× Y means {s�× y � s∈S, y∈Y } ⊆ |F (X )�× F (Y ) |, and X �× T is defined analogously.
One finds that F (X )�× F (Y ) is a free abelian group on the family X �× Y (precisely: a free
abelian group on X × Y via the mapping (x, y) → u(x)�× (y), where u : X → |F (X ) | and :
Y → |F (Y ) | are the universal maps associated with the free groups F(X ) and F(Y )). Hence
(3.9.1) is equivalent to a presentation of A �× B by the generating set X × Y and a certain set of
relations.

In the following exercises, unless the contrary is stated, you may substitute ‘‘R-module’’ for
‘‘abelian group’’ and get the results for this more general case.

Exercise 3.9:2. Prove (3.9.1), and the assertion that F (X )�× F (Y ) is free abelian on X �× Y. Can
the ‘‘denominator’’ of (3.9.1) be replaced simply by < S �× T > ?

Exercise 3.9:3. (i) Given abelian groups A and C, is there a universal pair (B, β), of an
abelian group B and a bilinear map β : (A, B) → C ?
(ii) Given an abelian group C, is there a universal 3-tuple (A, B, β), such that A and B
are abelian groups and β a bilinear map (A, B) → C ?

Before answering each part, say what the universal property would be and whether it would
be a right or left universal property. Try the approach suggested in the preceding section for
finding such objects.

Why have we defined bilinear maps only for abelian groups? This is answered by

Exercise 3.9:4. Let F, G and H be not necessarily abelian groups (so this exercise has no
generalization to R-modules), and suppose β : |F | × |G | → |H | is a map such that

(3.9.2)
(∀ f ∈ |F | ) the map g →β( f, g) is a group homomorphism: G → H ;
(∀g∈ |G | ) the map f →β( f, g) is a group homomorphism: F → H.

(i) Show that the subgroup H0 of H generated by the image of β is abelian.
(ii) Deduce that the map β has a natural factorization

|F | × |G | → |Fab | × |Gab |
___β′→ |H0| ⊂_→ |H |,

where β′ is bilinear. Thus, the study of maps satisfying (3.9.2) is reduced to the study of
bilinear maps of abelian groups. This makes it easy to do
(iii) For general groups F and G, deduce a description of the group H with a universal
map β satisfying (3.9.2) in terms of tensor products of abelian groups.
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Remark: the above exercises, together with the observation that the multiplication map of a ring
is a bilinear operation with respect to the ring’s additive group structure, show why, though one
often deals with rings having noncommutative multiplication, one does not have a natural concept
of ‘‘ring with noncommutative addition’’.

(Nonetheless, there are sometimes ways of generalizing a concept other than the obvious ones,
and some group-theorists have introduced a version of the concept of bilinear map which does not
collapse in the manner described above in the noncommutative case. The student interested in this
can look at [45] and other papers referred to there.)

Although the image of a group homomorphism is a subgroup of the codomain group, this is not
generally true of the image of a bilinear map:

Exercise 3.9:5. (i) Let U, V, W be finite-dimensional vector spaces over a field, and consider
composition of linear maps as a set map Hom(U, V ) × Hom(V, W ) → Hom(U, W ). Note that if
we regard these hom-sets as additive groups, this map is bilinear. Suppose V is one-
dimensional; then describe the range of this composition map. Is it a subgroup of Hom(U, W )?
(ii) If A and B are abelian groups, does every element of A �× B have the form a�× b for
some a∈ |A|, b∈ |B|? (Prove your answer, of course.)

Another important property of tensor products is noted in

Exercise 3.9:6. If A, B and C are abelian groups, show that there is a natural isomorphism
Hom(A �× B, C) =∼ Hom(A, Hom(B, C)).

State an analogous result holding for sets A, B, C and set maps.

To motivate the next exercise, let n be a positive integer, and Zn the cyclic group of order
n, which can be presented by one generator y and one relation n y = 0. (Since we are now using
additive notation, n y means y + ... + y, with n summands.) If A is any abelian group, you
should not find it hard to verify that A �× Zn is isomorphic to A ⁄ nA, where nA is the subgroup
of A consisting of all elements na (a∈ |A| ); i.e., that the homomorphism x → x �× y is
surjective, and has kernel nA.

To generalize this observation, let us replace Zn by an arbitrary abelian group B with a
presentation

(3.9.3) B = F (Y ) ⁄ < T >,

where F (Y ) is the free abelian group on Y. Given any abelian group A, one finds that
A �× F (Y ) is a direct sum of copies of A, indexed by Y, �+Y A. I claim now that we can get
A �× B from this group by dividing out by another sum of homomorphic images of A, indexed by
T. To describe this sum, we need a way of specifying certain maps of A into �+Y A. Because
the latter group is a coproduct, it has associated with it a universal Y-tuple of maps,

qy : A → �+Y A (y∈Y ).

Since Hom(A, �+Y A) is an abelian group, this Y-tuple of elements determines a homomorphism
ψ : F (Y ) → Hom(A, �+Y A), such that for each y∈Y, ψ(y) = qy . Having defined this
homomorphism ψ , we can now apply it to other elements of F (Y ); in particular, we can define

(3.9.4) C = (�+Y A ) ⁄ Σt∈T ψ(t)(A),

where the denominator means the subgroup of �+Y A generated by the images of A under all the
homomorphisms ψ(t) : A → �+Y A, as t ranges over the relator-set T of (3.9.3). Now for any
f ∈ |F (Y ) |, let [ f ] denote its image in B (cf. (3.9.3)), and for any x∈ |�+Y A| , let [x] denote

10/8/98 G. M. Bergman

58 Chapter 3. A Cook’s tour



its image in C (cf. (3.9.4)). The rest I leave to you:

Exercise 3.9:7. Show that the formula τ (a, [ f ]) = [ψ( f )(a)] gives a well-defined map
τ : |A| × |B| → |C |, that this map is bilinear, and that the pair (C, τ) has the universal property
of (A �× B, �× ). Conclude that the right hand side of (3.9.4) is isomorphic to A �× B.

Apply this to the case B = Zn , and recover the description of A�× Zn given in the
motivating remarks above.

Another interesting task is

Exercise 3.9:8. Investigate conditions on abelian groups (or R-modules) A and B under which
A �× B = {0}.

Note: In subsequent sections, we shall occasionally refer again to bilinear maps. In these
situations, we may use either the notation ‘‘(A, B) → C ’’ introduced here, or the more standard
notation ‘‘A × B → C ’’. (Of course, if all we have to say is something like ‘‘this map
|A|× | B| → | C| is bilinear’’, we will not need to use either notation.)

3.10. Monoids. So far, we have been moving within the realm of groups. It is time to broaden
our horizons. We begin with semigroups and monoids, objects which are very much like groups in
some ways, yet quite different in others.

We recall that a semigroup means an ordered pair S = ( |S |, .) such that |S | is a set and . a
map |S | × |S | → |S | satisfying the associative identity, while a monoid is a 3-tuple S = ( |S |, ., e)
where |S | and . are as above, and the third component, e, is a neutral element for the operation
. . As with groups, the multiplication of semigroups and monoids is most often written without
the ‘‘.’’ when there is no need to be explicit. A homomorphism of semigroups f : S → T means a
set map f : |S | → |T | which respects ‘‘.’’; a monoid homomorphism is required to respect neutral
elements as well: f (eS ) = eT .

(Incidentally, I have long considered the use of two unrelated terms, ‘‘semigroup’’ and
‘‘monoid’’, for these very closely related types of objects to be an unnecessary proliferation of
terminology. In most areas of mathematics, distinctions between related concepts are made by
modifying phrases, e.g., ‘‘commutative group’’ versus ‘‘not necessarily commutative group’’, ‘‘ring
with 1’’ versus ‘‘ring without 1’’, ‘‘manifold with boundary’’ versus ‘‘manifold without
boundary’’. The author of a paper considering one of these concepts will generally begin by
setting conventions, such as ‘‘In this note, unless the contrary is stated, rings will have unit
element, and ring homomorphisms will be understood to respect this element’’. In papers of mine
where monoids have come up, I have followed the same principle, and called them ‘‘semigroups
with neutral element’’ or, after saying what this would mean, simply ‘‘semigroups’’. I did the
same in these notes through the 1995 edition. However, it looks as though the term ‘‘monoid’’ is
here to stay; so starting with the 1998 edition of these notes, I am following standard usage, given
above.)

The concept of monoid seems somewhat more basic than that of semigroup. If X is any set,
then the set of all maps X → X has a natural monoid structure, with functional composition as the
multiplication and the identity map as the neutral element, and more generally, this is true of the
set of endomorphisms of any mathematical object. Sets whose natural structure is one of
semigroup and not of monoid tend to arise as subsidiary constructions, when one considers those
elements of a naturally occurring monoid that satisfy some restrictions that exclude the neutral
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element; e.g., the set of maps X → X having finite range, or the set of even integers under
multiplication. However, ‘‘semigroup’’ is the older of the two terms, so the study of semigroups
and monoids is called ‘‘semigroup theory’’.

If ( |S |, ., e) is a monoid, one can, of course, look at the semigroup ( |S |, .), while if ( |S |, .)
is a semigroup, one can ‘‘adjoin a unit’’ and get a monoid ( |S | {e}, ., e ). Thus, results on
monoids yield results on semigroups and vice versa. To avoid repetitiveness, we will focus here on
monoids, and mention semigroups only when there is a contrast to be made. Most of our
observations on monoids have obvious analogs for semigroups, the exceptions being those relating
to invertible elements.

The concept of a free monoid (F, u) on a set X is defined by the expected universal property
(diagram below).

X
________u → |F | F

��
�
�
↓

∀
��
�
�
↓

∃1 f

|S | S

Free monoids on all sets exist, by the general arguments of §2.2 and §2.3. One also has a normal
form in the free monoid on X, analogous to that of §2.4, but without any negative exponents.
That is, every element can be written uniquely as a product,

xn ... x1,

where x1, ... , xn∈ |X |, and n ≥ 0 (the product of 0 factors being understood to mean the neutral
element). Multiplication is performed by juxtaposing such products. ‘‘Van der Waerden’s trick’’
is not needed to establish this normal form, since there is no cancellation to complicate a direct
verification of associativity. Note that the free monoid on X is isomorphic to the submonoid
generated by X within the free group on X.

If X is a set, and R a set of pairs of monoid terms in the elements of X, there will likewise
exist a monoid determined by ‘‘generators X and relations R’’, i.e., a monoid S with a map
u : X → |S | such that for each of the pairs of terms (s, t)∈R, one has su = tu in S, and which
is universal for this property. As in the group case, this S can be obtained by a direct
construction, using terms modulo identifications deducible from the monoid laws and the system of
relations R, or as a submonoid of a large direct product, or by taking the free monoid F on the
set X, and imposing the given relations.

But how does one ‘‘impose relations’’ on a monoid? In a group, we noted that any relation
x = y was equivalent to xy–1 = e, hence to study relations satisfied in a homomorphic image of a
given group G, it sufficed to consider which elements of G go to e; so the construction of
imposing relations on G reduced to that of dividing out by a normal subgroup. But for monoids,
the question of which elements fall together does not come down to that of which elements go to
e. For instance, let S be the free monoid on {x, y}, and map S homomorphically to the free
monoid on {x} by sending both x and y to x. Note that any product of m x’s and n y’s
goes to xm+n under this map. Thus the only element going to e is e itself, though the
homomorphism is far from one-to-one.

So to study relations satisfied in the image of a monoid homomorphism f : S → T, one should
look at the whole set
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Kf = {(s, t) � f (s) = f (t)} ⊆ |S | × |S |.

We note the following properties of Kf :

(3.10.1) (∀ s ∈S) (s, s)∈Kf .

(3.10.2) (∀ s, t ∈S) (s, t)∈Kf ⇒ (t, s)∈Kf .

(3.10.3) (∀ s, t, u ∈S) (s, t)∈Kf , (t, u)∈Kf ⇒ (s, u)∈Kf .

(3.10.4) (∀ s, t, s ′ , t ′ ∈S) (s, t)∈Kf , (s ′ , t ′)∈Kf ⇒ (ss ′ , tt ′)∈Kf .

Here (3.10.1-3) say that Kf is an equivalence relation, and (3.10.4) says that it ‘‘respects’’ the
monoid operation.

I claim, conversely, that if S is a monoid, and K ⊆ |S | × |S | is any subset satisfying
(3.10.1-4), then there exists a homomorphism f of S into a monoid T such that Kf = K.
Indeed, since K is an equivalence relation on |S |, we may define |T | = |S | ⁄ K and let
f : |S | → |T | be the quotient map x → [x]. It is now easy to see from (3.10.4) that the formula
[s].[t] = [st] defines an operation on equivalence classes; and it is straightforward that this makes
T = ( |T |, ., [e]) a monoid such that f is a homomorphism, and Kf = K.

Exercise 3.10:1. (i) Compare this construction with that of §2.2. Why did we need the
conditions (2.2.1-3) in that construction, but not the corresponding conditions here?
(ii) Given two monoid homomorphisms f : S → T and f ′: S → T ′, show that there exist
isomorphisms between their images making the diagram below commute if and only if
Kf = Kf ′ .

f (S) ⊆ T
S ||∫

f ′(S) ⊆ T ′

Definition 3.10.5. For any monoid S, a binary relation K on |S | satisfying (3.10.1-4) above is
called a congruence on S. The equivalence class of an element is called its congruence class
under K; the monoid T constructed above is called the quotient or factor monoid of S by K,
written S ⁄ K.

Given a set R of pairs of elements of a monoid S, it is clear that one can construct the least
congruence K containing R by closing R under four operations corresponding to conditions
(3.10.1-4). The quotient S ⁄ K has the correct universal property to be called the monoid obtained
by imposing the relations R on the monoid S. We shall sometimes denote this S ⁄ R, or
S ⁄ ( s = t � ( s, t)∈R), or, if the elements of R are listed as (si , ti ) (i∈I ), as S ⁄ ( si = ti � i∈I ).

In particular, by imposing relations on a free monoid, we can get a monoid presented by any
families of generators X and relations R. As for groups, this is written < X � R >. If there is
danger of ambiguity, the group- and monoid-constructions can be distinguished as < X � R >gp
and < X � R >md.

Exercise 3.10:2. Given congruences K and K ′ on a monoid S, will there exist a least
congruence containing both K and K ′ ? A greatest congruence contained in both? Will set-
theoretic union and intersection give such congruences? If not, what useful descriptions can you
find for them? Is there a least congruence on S? A greatest?

If K is a congruence on S, characterize congruences on T = S ⁄ K in terms of congruences
on S.
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Exercise 3.10:3. If X is a subset of |S | × |S |, will there be a largest congruence contained in X ?
If not, will this become true under additional assumptions, such as that X is an equivalence
relation on |S |, or that X is the underlying set of a submonoid of S × S ?

One can speak similarly of congruences on groups, rings, lattices, etc.. They are defined in
each case by conditions (3.10.1-3), plus a family of conditions analogous to (3.10.4), one for each
operation of positive arity on our algebras.

The fact that is special about groups can now be reformulated: ‘‘A congruence K on a group
G is uniquely determined by the congruence class of the neutral element e∈ |G |, which can be
any normal subgroup N of G. The congruence classes of K are then the cosets of N in G.’’
Hence in group theory, rather than considering congruences, one almost always talks about normal
subgroups.

Since a ring R has an additive group structure, a congruence on a ring will in particular be a
congruence on its additive group, and hence will be determined by the congruence class J of the
additive neutral element 0. The possibilities for J turn out to be precisely the ideals of R, so in
ring theory, one works with ideals rather than congruences. However, historically, the congruence
relation ‘‘a ≡ b (mod n)’’ on the ring of integers Z was talked about before one had the concept
of the ideal n Z . Ring theorists still occasionally find it suggestive to write a ≡ b (mod J ) rather
than a – b∈J.

For objects such as monoids and lattices, congruences cannot be reduced to anything simpler,
and are studied as such.

As usual, questions of the structure of monoids presented by generators and relations must be
tackled case by case. For example:

Exercise 3.10:4. Find a normal form or other description for the monoid presented by two
generators a and b and the one relation ab = e.

(Note that in the above and the next few exercises, letters a through d denote general monoid
elements, but e is always the neutral element. If you prefer to write 1 instead of e in your
solutions, you may do so.)

Exercise 3.10:5. (i) Same problem for generators a, b, c, d and relations

ab = ac = dc = e.

(ii) Same problem for generators a, b, c, d and relations

ab = ac = cd = e.

Exercise 3.10:6. Same problem for generators a, b, c and relations

ab = ac, ba = bc, ca = cb.

Exercise 3.10:7. Same problem for generators a, b and the relation ab = b2a.

One may define the product and the coproduct of two or of an arbitrary family of monoids, by
the same universal properties as for groups,

S S
S × T S∗T .

T T

These also turn out to have the same descriptions as for groups: The direct product of an I-tuple of
monoids consists of all I-tuples of elements of the given monoids, with componentwise operations;
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the coproduct consists of formal products of strings of elements other than the neutral element
taken from the given monoids, such that no two successive factors come from the same monoid.
Van der Waerden’s method is used in establishing this normal form, since multiplication of two
such products can involve ‘‘cancellation’’ if some of the given monoids have elements satisfying
ab = e.

On monoids, as on groups, one has the construction of abelianization, gotten by imposing the
relations ab = ba for all a, b∈ |S |.

One may also define the kernel and cokernel of a monoid homomorphism f : S → S ′ as for
groups:

(3.10.6) Ker f = submonoid of S with underlying set {s∈ |S | � f (s) = e},

(3.10.7) Cok f = S ′ ⁄ ( f (s) = e � s∈ |S | ).

But since, as we have seen, the structure of the image of a monoid homomorphism f is not
determined by the kernel of f, and, likewise, not every homomorphic image T of a monoid S ′
can be written as the cokernel (3.10.7) of a homomorphism of another monoid S into S ′ (e.g.,
the image of S under a non-one-to-one homomorphism with trivial kernel cannot), these are not
such important concepts in the theory of monoids as in group theory.

We have seen that for f a homomorphism of monoids, a better analog of the group-theoretic
concept of kernel is the congruence

(3.10.8) Kf = {(s, t) � f (s) = f (t)} ⊆ |S | × |S |.

Note that this set Kf is the underlying set of a submonoid of S × S, which we may call Cong f.
Likewise, since to impose relations on a monoid we specify, not that some elements should go to
e, but that some pairs of elements should fall together, it seems reasonable that a good
generalization of the cokernel concept should be, not an image q(S) universal for the condition
qf = e, where f is a given monoid homomorphism into S, but an image q(S) universal for the
condition qf = qg, for some pair of homomorphisms

(3.10.9) f, g: T → S.

Such a homomorphic image is called a difference cokernel of the pair of maps f and g (because
in the case of abelian groups, it can be described as the cokernel of the difference-map f – g).

This in turn suggests a dual construction: Given f, g as in (3.10.9), one can get a universal
map p into T such that fp = gp; its domain monoid is called the difference kernel of f and g.

Explicitly, the difference cokernel of f and g is the quotient of the monoid S by the
congruence generated by all pairs ( f (t), g(t)) (t∈ |T | ), and the difference kernel is the submonoid
of T whose underlying set is {t � f (t) = g(t)}.

Exercise 3.10:8. Let f : S → T be a monoid homomorphism.
(i) Note that there is a natural pair of monoid homomorphisms from Cong f to S.
Characterize Cong f and these two maps by a universal property.
(ii) What can be said of the difference kernel and difference cokernel of this pair of maps?
(iii) Can you construct from f a monoid CoCong f with a pair of maps into it, having a dual
universal property? If so, again, look at the difference kernel and difference cokernel of this
pair.
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Exercise 3.10:9. The definition of difference kernel can be applied to groups as well as monoids.
If G is a group, investigate which subgroups of G can occur as difference kernels of pairs of
homomorphisms on G.

3.11. Groups to monoids and back again. If S is a monoid, we can get a group Sgp from S
by ‘‘adjoining inverses’’ to all its elements in a universal manner. Thus, Sgp is a group G
having a map q : |S | → |G | which respects products and neutral elements, and is universal among
all such maps from S to groups.

But what kind of a map, exactly, is q ? Since S = ( |S |, ., e) is a monoid and Sgp = G =
(G, ., –1, e) is a group, we cannot call it a group homomorphism or a monoid homomorphism
from S to G. But it is more than just a set map, since it respects . and e. The answer is that
q is a monoid homomorphism from S to the monoid ( |G |, ., e) (i.e., ( |G |, μG , eG )). So for an
arbitrary group H, let us write Hmd = (|H |, μH , eH ), that is, ‘‘H considered as a monoid’’.
We can now state the universal property of Sgp and q neatly: Sgp is a group G, and q is a
monoid homomorphism from S to Gmd, such that for any group H and any monoid
homomorphism a : S → Hmd, there exists a unique group homomorphism f : G → H such that
a = fq : S → Hmd.

S
________q → Gmd G

��
�
�
↓

∀a
��
�
�
↓

∃1 f

Hmd H

We shall call Sgp the universal enveloping group of the monoid S. It may be presented as a
group by taking a generator for each element of S, and taking for defining relations the full
multiplication table of S. More generally, if we are given some presentation of S by generators
and relations as a monoid, G will be a group presented by the same generators and relations.

Exercise 3.11:1. Show that a monoid S is ‘‘embeddable in a group’’ (meaning embeddable in the
monoid Hmd for some group H ) if and only if the universal map q : S → Sgp is one-to-one.

Exercise 3.11:2. Describe the universal enveloping groups of the monoids of Exercises 3.10:4-7,
and also of the monoid presented by generators a, b, c and the one relation ab = ac.

The last part of the above exercise reveals one necessary condition for the one-one-ness referred
to in the preceding exercise to hold: The monoid S must have the ‘‘cancellation’’ property
xy = xy ′ ⇒ y = y ′. An interesting way of obtaining a full set of necessary and sufficient
conditions for the universal map of a given monoid into a group to be one-to-one was found by
A. I. Mal’cev [80], [81] (see also [5, §VII.3]).

Exercise 3.11:3. Let G be a group and S a submonoid of Gmd, which generates G as a
group. Observe that the inclusion of S in Gmd induces a homomorphism Sgp → G. Will
this in general be one-to-one? Onto?

If you have done Exercise 3.3:3, consider the case where G is the group of that exercise,
and S the submonoid generated by a and ba. Describe the structure of S and of Sgp.

Suppose S is an abelian monoid. In this situation, important applications of the universal
enveloping group construction have been made by A. Grothendieck; the group Sgp for S an
abelian monoid is therefore often called ‘‘the Grothendieck group K(S)’’. This group is also
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abelian, and has a simple description: Using additive notation, and writing a for q(a), one finds
that every element of K(S) can be written a – b (a, b∈ |S | ), and that one has equality a – b =

a ′
__

– b ′
__

between two such elements if and only if there exists c∈ |S | such that a+b ′+c =
a ′+b +c [28, p.40]. (If you have seen the construction of the localization RS –1 of a
commutative ring at a multiplicative subset S, you will see that these constructions are closely
related. In particular, the multiplicative group of nonzero elements of the field of fractions F of a
commutative integral domain R is the Grothendieck group of the multiplicative monoid of nonzero
elements of R.) The application of this construction to the abelian monoid of isomorphism classes
of finite-dimensional vector bundles on a topological space X, with monoid operation
corresponding to the operation ‘‘�+ ’’ on vector bundles, is the starting point of ‘‘K-theory’’. But
perhaps this idea has been pushed too much – it is annoyingly predictable that when I mention a
monoid of isomorphism classes of modules under ‘‘�+ ’’, people will say, ‘‘Oh, and then you go to
its Grothendieck group!’’, when in fact I wanted to talk about the monoid itself.

Given a monoid S, there is also a right-universal way of obtaining a group: The set of
invertible elements (‘‘units’’) of S can be made a group U(S) in an obvious way, and the
inclusion U(S) → S is universal among ‘‘homomorphisms of groups into S’’, in the sense
indicated in the diagram below.

Gmd G

��
�
�
↓

∀ h
��
�
�
↓

∃1 f

U(S )md
________i → S U(S)

Exercise 3.11:4. Let S be the monoid defined by generators x, y, z and relations xyz = e,
zxy = e. Investigate the structures of S and its abelianization Sab. Describe the groups U(S),
U(S)ab, and U(Sab).

The constructions that relate semigroups and monoids, mentioned near the beginning of the
preceding section, are related in a way paralleling ( )gp and ( )md:

Exercise 3.11:5. (i) If S = ( |S |, .) is a semigroup, describe how to extend the multiplication
‘‘.’’ to |S | {e} so that ( |S | {e}, ., e ) becomes a monoid.

Let us call the monoid resulting from the above construction Smd, while if S ′ = ( |S ′ |, ., e)
is a monoid, let us write S ′sg for the semigroup ( |S ′ |, .).
(ii) Show that given a semigroup S, the monoid Smd is universal among monoids T given
with semigroup homomorphisms S → Tsg.
(iii) Given a monoid S = ( |S |, ., e), what is the relation between the monoids S and
(Ssg)md? Is there a natural homomorphism in either direction between them?

3.12. Associative and commutative rings. An associative ring R means a 6-tuple

R = ( |R|, +, ., –, 0, 1)

such that ( |R|, +, –, 0) is an abelian group, ( |R|, ., 1) is a monoid, and the monoid operation
. : |R| × |R| → |R| is bilinear with respect to the additive group structure. (Dropping the ‘‘1’’ from
this definition, one gets a concept of ‘‘ring without 1’’, but we shall not consider these in this
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section, except in one exercise.) A ring homomorphism is a map of underlying sets respecting all
the operations including 1. (Some writers, although requiring their rings to have 1, perversely
allow ‘‘homomorphisms’’ that may not preserve 1; but we shall stick to the above definition.) An
associative ring is called commutative if the multiplication . is so.

‘‘Commutative associative ring’’ is usually abbreviated to ‘‘commutative ring’’. Depending on
the focus of a given work, either the term ‘‘associative ring’’ or the term ‘‘commutative ring’’ is
usually shortened further to ‘‘ring’’; an author should always make clear what his or her usage will
be. Here, I shall generally shorten ‘‘associative ring’’ to ‘‘ring’’; though I will sometimes retain
the word ‘‘associative’’ when I want to emphasize that commutativity is not being assumed. When
one deals with nonassociative rings – which we shall not do here – it is the associativity condition
on the multiplication that is removed; frequently one then considers other identities (for instance,
the identities of Lie or Jordan rings, which involve both the addition and the multiplication) in its
place. The assumption that ( |R|, +, –, 0) is an abelian group, and that multiplication is a bilinear
map with respect to this group structure, is made in all versions of ring theory: commutative,
associative and nonassociative.

If k is a fixed commutative ring, then k-modules form a natural generalization of abelian
groups, on which a concept of bilinear map is also defined, as noted parenthetically in §3.9 above.
Hence one can generalize the definition of associative ring by replacing the abelian group structure
by a k-module structure, and the bilinear map of abelian groups by a bilinear map of k-modules.
The result is the definition of an associative algebra over k. The reader familiar with these
concepts may note that everything I shall say below for rings remains valid, mutatis mutandis, for
k-algebras. (An associative k-algebra is sometimes defined differently, as ring R given with a
homomorphism of k into its center; but the two formulations are equivalent: Given a k-algebra R
in the present sense of a ring with appropriate k-module structure, the map c → c 1R (c∈k) is a
homomorphism of k into the center of that ring; while given a homomorphism g of k into the
center of a ring, the definition c . r = g(c) r gives an appropriate module structure; and these
constructions are inverse to one another. For algebras without 1, and for nonassociative algebras,
this equivalence does not hold, and the ‘‘ring with k-module structure’’ definition is the useful
one.)

The subject of universal constructions in ring theory is a vast one. In this section and the next,
we will mainly look at the analogs of some of the constructions we have considered for groups and
monoids.

First, free rings. Let us begin with the commutative case, since that is the more familiar one.
Suppose R is a commutative ring, and x, y, z are three elements of R. Given any ring-theoretic
combination of x, y and z, we can use the distributive law of multiplication (i.e., bilinearity
of . ) to expand this as a sum of products of x, y and z (monomials) and additive inverses of
such products. Using the commutativity and associativity of multiplication, we can write each
monomial so that all factors x come first, followed by all y’s, followed by all z’s. We can then
use commutativity of addition to bring together all occurrences of each monomial (arranging the
distinct monomials in some specified order), and finally use distributivity again to combine
occurrences of the same monomial using integer coefficients. If we now consider all ring-theoretic
terms in symbols x, y and z, of the forms to which we have just shown we can bring any
combination of elements x, y and z in any ring, we see, by the same argument as in §2.4, that
the set of these ‘‘reduced terms’’ should give a normal form for the free commutative ring on three
generators x, y and z – if they form a commutative ring under the obvious operations. It is, of
course, well known that the set of such expressions does form a commutative ring, called the
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polynomial ring in three indeterminates, and written Z[x, y, z].
So polynomial rings over Z are free commutative rings. (More generally, the free

commutative k-algebra on a set X is the polynomial algebra k[X ].) The universal mapping
property corresponds to the familiar operation of substituting values for the indeterminates in a
polynomial.

X
________u → |Z[X ] | Z[X ]

��
�
�
↓

∀
��
�
�
↓

∃1 f

| R | R

When we drop the commutativity assumption, and look at general associative rings, the situation
is similar, except that we cannot rewrite each monomial so that ‘‘all x’s come first’’ etc.. Thus we
end up with linear combinations, with coefficients in Z , of arbitrary products of our generators.
We claim that formal linear combinations of such products give a normal form for elements of the
free associative ring on the set X. This ring is written Z< X >, and sometimes called the ring of
noncommuting polynomials in X.

We were sketchy in talking about Z[X ] because it is a well-known construction, but let us
stop and sort out just what we mean by the above description of Z< X >, before looking for a way
to prove it.

We could choose a particular way of arranging the parentheses in every monomial term (say,
nested to the right), a particular way of arranging the different monomials, and of arranging the
parentheses in every sum or difference, and so obtain a set of ring-theoretic terms to which every
term could be reduced, which we would prove constituted a normal form for the free ring. But
observe that the question of putting parentheses into monomial terms is really just one of how to
write elements in a free monoid, while the question of expressing sums and differences of such
monomials is that of describing an element of the free abelian group on a set of generators. Let us
therefore assume that we have chosen one or another way of calculating in free abelian groups –
whether using a normal form, or a representation by integer-valued functions with only finitely
many nonzero values, or whatever – and likewise that we have chosen a way of calculating in free
monoids. Then we can calculate in free rings! Indeed, formalizing the above ideas, we get

Lemma 3.12.1. Let Z <X > denote the free ring on the set X. Then the additive group of
Z <X > is a free abelian group on the set of products in Z <X > of elements of X, and this set
of products forms a free monoid on X.

Proof. Let S denote the free monoid on X, and F( |S | ) the free abelian group on the
underlying set of this monoid. We shall begin by describing a map F( |S | ) → |Z <X >|.

If we write u for the universal map X → |Z <X >|, then by the universal property of free
monoids, it induces a homomorphism u ′ from the free monoid S into the multiplicative monoid
of Z <X >. Hence by the universal property of free abelian groups, there exists a unique abelian
group homomorphism u ′ ′ from the free abelian group F( |S | ) into the additive group of Z <X >
which acts by u ′ on elements of |S |. (Note that our considerations so far are valid for any ring
R given with a set map X → |R|.) Clearly the image of the monoid S in Z <X > is closed under
multiplication and contains the multiplicative neutral element; it is easy to deduce from this and the
distributive law that the image of the abelian group F( |S | ) is closed under all the ring operations.
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Since this image contains X, and Z <X > is generated as a ring by X, the image is all of
Z <X >, i.e., u ′ ′ is surjective. (The above argument formalizes our observation that every
element of the subring generated by an X-tuple of elements of an arbitrary ring R can be
expressed as a linear combination of products of elements of the given X-tuple.)

We now wish to show that u ′ ′ is one-to-one. To do this it will suffice to show that there is
some ring R with an X-tuple of elements, such that under the induced homomorphism
Z <X > → R, elements of Z <X > which are images of distinct elements of F( |S | ) are mapped to
distinct elements of R.

How do we find such an R ? Van der Waerden’s trick for groups suggests that we should
obtain it from some natural representation of the desired free ring. We noted in §2.4 that the
group operations and identities arise as the operations and identities of the permutations of a set, so
for ‘‘representations’’ of groups, we used actions on sets. The operations and identities for
associative rings arise as the natural structure on the set of all endomorphisms of an abelian group
A – one can compose such endomorphisms, and add and subtract them, and under these operations
they form a ring End(A). So we should look for an appropriate family of endomorphisms of some
abelian group to represent Z <X >.

Let us, as in (2.4.4), introduce a symbol a; let Sa denote the set of symbols xn ... x1 a
(xi∈X, n ≥0); and this time let us further write F(Sa) for the free abelian group on this set Sa.
For every x∈X, let x : Sa → Sa denote the map carrying each symbol b∈Sa to the symbol
x b. This extends uniquely (by the universal property of free abelian groups) to an additive group
homomorphism x : F(Sa) → F(Sa). Thus (x )x∈X is an X-tuple of elements of the associative
ring End(F(Sa)).

Taking R = End(F(Sa)), the above X-tuple induces a homomorphism

f : Z <X > → R.

Now given any element of F( |S | ), which we may write

(3.12.2) r = Σs∈ |S | ns s (ns∈Z , almost all ns = 0),

we verify easily that the element f u ′ ′( r )∈End(F(Sa)) carries a to Σ ns sa. Hence distinct
expressions (3.12.2) give distinct elements u ′ ′( r )∈Z <X >, which proves the one-one-ness of u ′ ′
and establishes the lemma. �

For many fascinating results and open problems on free algebras, see [50]. For a smaller dose,
you could try my paper [35], which answers the question, ‘‘When do two elements of a free algebra
commute?’’ The problem is not of great importance itself, but it leads to the development of a
number of beautiful and useful ring-theoretic tools.

Exercise 3.12:1. Let α denote the automorphism of the polynomial ring Z[x, y] which
interchanges x and y. It is a standard result that the fixed ring of α , i.e., {a∈Z[x, y] �
α(a) = a}, can be described as the polynomial ring in the two elements x+y and xy.
(i) Consider analogously the automorphism β of the free associative ring Z< x, y >
interchanging x and y. Show that the fixed ring of β is generated by the elements x +y,
x2+y2, x3+y3, ... and is a free ring on this infinite set.
(ii) Observe that the homomorphism Z< x, y > → Z[x, y] taking x to x and y to y must
take the fixed ring of β into the fixed ring of α . Will it take it onto the fixed ring of α ?
(iii) If G is the free group on generators x and y, and if γ is the automorphism
interchanging x and y in this group, describe the fixed subgroup of γ . Same question for the
free abelian group on x and y.
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Our description of the free ring on a set X involved the free monoid on X, and the
description of the free commutative ring (the polynomial ring) can be seen to have an analogous
relationship to the free commutative monoid. These connections between rings and monoids can be
explained in terms of another universal construction:

If R = ( |R|, +, ., –, 0, 1) is an associative ring, let Rmult denote its multiplicative monoid,
( |R|, ., 1). Then for any monoid S, there will exist, by the usual arguments, a ring R with a
universal monoid homomorphism u : S → Rmult .

S
________u → Rmult R

��
�
�
↓

∀
��
�
�
↓

∃1 f

R ′mult R ′

To study this object, let us fix S, and consider any ring R ′ with a homomorphism
S → R ′mult . The elements of R ′ that we can capture using this map are the linear combinations of
images of elements of S, with integer coefficients. (Why is there no need to go on to products of
such elements?) One finds that the universal such ring R will have as additive structure the free
abelian group on |S |, with multiplicative structure determined by the bilinearity condition, and the
condition that the given map |S | → |R| respect multiplication. The result is called the monoid
ring on S, denoted Z S.

Given a presentation of S by generators and relations (written multiplicatively), a presentation
of Z S as a ring will be given by the same generators and relations. In particular, if we take for S
the free monoid on a set X, presented by generators X and no relations, then Z S will be
presented as a ring by generators X and no relations, and so will be the free ring on X, which is
just what we saw in Lemma 3.12.1. If we take for S a free abelian monoid, then S may be
presented as a monoid by generators X and relations xy = yx (x, y∈X ), hence this is also a
presentation of Z S as a ring. Since commutativity of a set of generators of a ring is equivalent to
commutativity of the whole ring, the above presentation makes Z S the free commutative ring
on X.

If S is a monoid and A an abelian group, then a ‘‘linear action’’ or ‘‘representation’’ of S
on A means a homomorphism of S into the multiplicative monoid of the endomorphism ring
End(A) of A. By the universal property of Z S, this is equivalent to a ring homomorphism of
Z S into End(A), which is in turn equivalent to a structure of left Z S-module on the abelian
group A. In particular, to give an action of a group G by automorphisms on an abelian group A
corresponds to making A a left module over the group ring Z G. Much of modern group theory
revolves around linear actions, and hence is closely connected with the properties of Z G (and
more generally, with group algebras k G where k is a commutative ring, so that left k G-modules
correspond to actions of G on k-modules). For some of the elementary theory, see [28,
Chapter XVIII]. A major work on group algebras is [88].

Above, we ‘‘factored’’ the construction of the free associative or commutative ring on a set X
into two constructions: the free (respectively, free abelian) monoid construction, which universally
closes X under a multiplication with a neutral element, and the monoid-ring construction, which
brings in an additive structure in a universal way. In fact, these free ring constructions can also be
factored the other way around! Given a set X, we can first map it into an abelian group in a
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universal way, getting the free abelian group A on X, then form a ring (respectively a
commutative ring) R with a universal additive group homomorphism A → Radd. For any abelian
group A, this universal associative ring is called the tensor ring on A, because its additive group
structure turns out to have the form

Z �+ A �+ (A �× A) �+ (A �× A �× A) �+ ... ,

though we shall not show this here. The corresponding universal commutative ring is called the
symmetric ring on A; its structure for general A is more difficult to describe. For more details
see [28, §§XVI.7, 8] or [41]. Thus, a free associative ring can be described as the tensor ring on a
free abelian group, and a polynomial ring as the symmetric ring on a free abelian group.

On to other constructions. Suppose R is a commutative ring, and ( fi , gi ) (i∈I ) a family of
pairs of elements of R. To impose the relations fi = gi on R, one forms the factor-ring R ⁄ J,
where J is the ideal generated by the elements fi – gi . This ideal is often written ( fi – gi )i∈I .
Another common notation, preferable because it is more explicit, is Σi∈I R( fi – gi ), or, if we set
U = { fi – gi � i∈I }, simply RU. It consists of all sums

(3.12.3) Σ ri ( fi – gi ) (ri∈ |R|, nonzero for only finitely many i∈I ).

The construction of imposing relations on a noncommutative ring R is of the same form, but
with ‘‘ideal’’ taken to mean ‘‘two-sided ideal’’ – an additive subgroup of R closed under both left
and right multiplication by members of R. The two-sided ideal generated by { fi – gi � i∈I } is
also often written ( fi – gi )i∈I , but again there is a more expressive notation, Σi∈I R( fi – gi )R,
or simply RUR. This ideal consists of all sums of products of the form r ( fi – gi )r ′ (i∈I,
r, r ′∈R), but in the noncommutative case, it is not in general enough to have, as in (3.12.3), one
such summand for each i∈I. For instance, in Z< x, y >, the ideal generated by the one element x
contains the element yxy2 + y2xy, which cannot be simplified to a single product rxr ′.

Exercise 3.12:2. Let R be a commutative ring. Will there, in general, exist a universal
homomorphism of R into an integral domain R ′ ? If not, can you find conditions on R for
such a homomorphism to exist? Consider in particular the cases R = Z , Z6, Z4.

Exercise 3.12:3. (i) Obtain a normal form for elements of the associative ring A presented by
two generators x, y, and one relation yx – xy = 1.
(ii) Let Z[x]add be the additive group of polynomials in one indeterminate x. Show that
there exists a homomorphism f of the ring A of part (i) into the endomorphism ring of this
abelian group, such that f (x) is the operation of multiplying polynomials by x in Z[x], and
f (y) the operation of differentiating with respect to x. Is this homomorphism one-to-one?

The ring of the above example, or rather the corresponding algebra over a field k, is called the
Weyl algebra. It is of importance in quantum mechanics, where multiplication by the coordinate
function x corresponds to determining the x-coordinate of a particle, and differentiating with
respect to x corresponds to determining its momentum in the x-direction. The fact that these
operators do not commute leads, via the mysterious reasoning of quantum mechanics, to the
impossibility of measuring those two quantities simultaneously, the simplest case of the
‘‘Heisenberg uncertainty principle’’.

Direct products I
��
I I Ri of associative rings and of commutative rings turn out, as expected, to

be gotten by taking direct products of underlying sets, with componentwise operations.
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Exercise 3.12:4. (Andreas Dress) (i) Find all subrings of Z × Z . (Remember: a subring must
have the same multiplicative neutral element 1. Try to formulate your description of each such
subring R as a necessary and sufficient condition for an arbitrary (a, b)∈Z × Z to lie in |R |.)

A much harder problem is:
(ii) Is there a similar characterization of all subrings of Z × Z × Z ?

Exercise 3.12:5. Show that the commutative ring presented by one generator x, and one relation
x2 = x, is isomorphic (as a ring) to the product ring Z × Z .

Exercise 3.12:6. Given generators and relations for two rings, R and S, show how to obtain
generators and relations for R × S.

Exercise 3.12:7. Describe
(i) the commutative ring A presented by one generator x, and one relation 2x = 1, and
(ii) the commutative ring B presented by one generator x and two relations 4x = 2,
2x2 = x. (Note that both of these relations are implied by the relation of (i).)

Are these isomorphic? Show that each of them has the property that for any ring R
(commutative if you wish) there is at most one homomorphism of the presented ring
(A, respectively B) into R.

Exercise 3.12:8. Suppose R is a ring whose underlying abelian group is finitely generated. Show
that as a ring, R is finitely presented. (You may use the fact that every finitely generated
abelian group is finitely presented.)

If you are comfortable with algebras over a commutative ring k, try to generalize this result
to that context.

In discussing universal properties, I have neglected to mention some trivial cases. Let me give
these in the next two exercises. Even if you do not write them up, think through the ‘‘ring’’ cases
of parts (i) and (iii) of the next exercise, since some later exercises use them.

Exercise 3.12:9. (i) Consider the free group, monoid, associative ring, and commutative ring on
the empty set of generators. Reformulate the universal properties of these objects in as simple a
form as possible. Display the group, monoid, ring, and commutative ring characterized by these
properties, if they exist.
(ii) State, similarly, the universal properties that would characterize the product and coproduct
of an empty family of groups, monoids, rings, or commutative rings, and determine these objects,
if any.
(iii) Give as simple as possible a system of defining generators and relations for the rings Z
and Zn .

The next exercise concerns semigroups and rings without neutral elements. Note that when we
say ‘‘without 1’’ etc., this does not forbid the existence of an element 1 satisfying (∀x) 1x =
x = x1. It just means that we don’t require the existence of such elements, and that when they
exist, we don’t give them a special place in the definition, or require homomorphisms to respect
them.

Exercise 3.12:10. Same as parts (i) and (ii) of the preceding exercise, but for semigroups and for
rings without 1. Same for sets. Same for G-sets for a fixed group G.

Now back to rings with 1.

3.13. Coproducts and tensor products of rings. We have noted that the descriptions of
coproducts vary from one sort of algebraic object to another. We shall see below that they are
different for commutative and for noncommutative rings. Let us again start with the commutative
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case.
Suppose S and T are fixed commutative rings, and we are given homomorphisms s → s and

t → t∼ of these into a third commutative ring R. What elements of R can we capture?
Obviously, elements s (s∈ |S | ) and t∼ (t∈ |T | ); from these we can form products st∼, and we
can then form sums of elements of all these sorts:

(3.13.1) s + t∼+ s1 t∼1 + ... + snt∼n .

We don’t get more elements by multiplying such sums together, because a product (s t∼ )(s ′ t ′ )

reduces to ss ′
___

tt ′ . Let us note that the lone summands s and t∼ in (3.13.1) can actually be

written in the same form as the others, for since 1S

___
= 1T = 1R , we have s = s 1T and t∼= 1S

___
t∼.

So the subring of R that we get is generated as an additive group by the image of the map

(3.13.2) (s, t) → s t∼

of |S | × |T | into |R|. If we look for equalities among sums of elements of this form, we find

(s+s ′)
______

t∼ = s t∼+s ′ t∼, and s (t +t ′) = s t∼+s t
∼
′,

in other words, relations saying that (3.13.2) is bilinear. These relations and their consequences
turn out to be all we can find, and one can show that the universal R with ring homomorphisms
of S and T into it, that is, the coproduct of S and T as commutative rings, has the additive
structure of the tensor product of the additive groups of S and T. Its multiplication is determined
by the formula

(3.13.3) (s�× t)(s ′�× t ′) = ss ′ �× t t ′

describing how to multiply the additive generators of this tensor product group. For a proof that
this extends to a bilinear operation on all of S �× T, and that this operation makes the additive
group S �× T into a ring, see Lang [28, §XVI.6]. (Note: Lang works in the context of algebras
over a commutative ring k, and he defines such an algebra as a homomorphism f of k into the
center of a ring R – what I prefer to call, for intuitive comprehensibility, a ring R given with a
homomorphism of k into its center; cf. parenthetical remark near the beginning of §3.12 above.
Thus, when he defines the coproduct to be a certain map, look at the codomain of the map to see
the ring that he means.) Of course, you can try writing down such a proof yourself, using the
universal property of the tensor product, and perhaps some version of van der Waerden’s trick.

This coproduct construction is called ‘‘tensor product of commutative rings’’. The universal
maps of S and T into S �× T which make it their coproduct are given by

s → s�× 1, t → 1�× t.

Exercise 3.13:1. If m and n are integers, find the structure of the tensor product ring Zm�× Zn
by two methods:
(i) By constructing the tensor product of abelian groups, and describing multiplication defined
above.
(ii) By using the fact that a presentation of a coproduct can be obtained by ‘‘putting together’’
presentations for the two given objects. (Cf. Exercise 3.12:9.)

Exercise 3.13:2. Let Z[i ] denote the ring of Gaussian integers (complex numbers a+bi such
that a and b are integers). This may be presented as a commutative ring by one generator i,
and one relation i2 = –1. Examine the structures of the rings Z[i ] �× Zp ( p a prime). E.g.,

10/8/98 G. M. Bergman

72 Chapter 3. A Cook’s tour



will they be integral domains for all p ? For some p ?

The next two exercises concern tensor products of algebras over a field k, for students familiar
with these concepts. Such tensor products are actually simpler to work with than the tensor
products of rings described above, because every algebra over a field k is free as a k-module
(since every k-vector-space has a basis), and tensor products of free modules are easily described
(cf. lines following (3.9.1) above).

Exercise 3.13:3. Let K and L be extensions of a field k. A compositum of K and L means a
3-tuple (E, f, g) where E is a field extension of k, and f : K → E, g : L → E are k-algebra
homomorphisms such that E is generated by f ( |K | )∪ g( |L| ) as a field (i.e., under the ring
operations, and the partial operation of multiplicative inverse).
(i) Suppose K and L are finite-dimensional over k, and we form their tensor product
algebra K �× k L, which is a commutative k-algebra, but not necessarily a field. Show that up to
isomorphism, all the composita of K and L over k are given by the factor rings K �× L ⁄ P,
for prime ideals P ⊆ K �× L. (First write down what should be meant by an isomorphism
between composita of K and L.)
(ii) What if K and L are not assumed finite-dimensional?

Exercise 3.13:4. (i) Determine the structure of the tensor product C�×RC , where C is the
field of complex numbers and R the field of real numbers. In particular, can it be described as
a nontrivial direct product of R-algebras?
(ii) Do the same for Q(21 ⁄ 3)�×Q Q(21 ⁄ 3).
(iii) Relate the above results to the preceding exercise.

You can carry this exercise much farther if you like – find a general description of a tensor
product of a finite Galois extension with itself; then of two arbitrary finite separable extensions (by
taking them to lie in a common Galois extension, and considering the subgroups of the Galois
group they correspond to); then try some examples with inseparable extensions ... . In fact, one
modern approach to the whole subject of Galois theory is via properties of such tensor products.

If S and T are arbitrary (not necessarily commutative) associative rings, one can still make
the tensor product of the additive groups of S and T into a ring with a multiplication satisfying
(3.13.3). It is not hard to verify that this will be universal among rings R given with
homomorphisms f : S → R, g: T → R such that all elements of f (S) commute with all elements
of g(T ) (cf. the ‘‘second universal property’’ of the direct product of two groups, end of §3.6
above. In fact, some early ring-theorists wrote S × T where we now write S �× T, considering
this construction as the ring-theoretic analog of the direct product construction on groups.)

Exercise 3.13:5. Show that if S and T are monoids, then Z S �× Z T =∼ Z (S × T ).

Exercise 3.13:6. Suppose S and T are associative rings, and we form the additive group
Radd = Sadd �× Tadd. Is the multiplication described above in general the unique multiplication
on Radd which makes it into a ring R such that the maps s → s�× 1T and t → 1S �× s are
ring homomorphisms? You might look, in particular, at the case S = Z[x], T = Z[y].

We shall encounter tensor products again in §9.7.

Let us now look at coproducts of not necessarily commutative rings. These exist, by the usual
general nonsense, and again, a presentation of S∗T can be gotten by putting together presentations
of S and T. But the explicit description of these coproducts is more complicated than for the
constructions we have considered so far. For S and T arbitrary associative rings, there is no neat
explicit description of S∗T. Suppose, however, that as abelian groups, S is free on a basis
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{1S }∪ BS , and T is free on a basis {1T }∪ BT . (For example, the rings Z[x] and Z[i ] have

such bases, with the B parts being {x, x2, ... } and {i } respectively.) Then we see that given a
ring R and homomorphisms S → R, T → R, written s → s and t → t∼, the elements of R
that we get by ring operations from the images of S and T can be written as linear combinations,

with integer coefficients, of products xn ... x1 where xi∈BS

___
∪ BT (i.e., {b � b∈BS } ∪

{b
∼
� b∈BT } ), such that no two elements from the same basis-set occur successively. (In thinking

this through, note that a product of two elements from BS

___
can be rewritten as a linear combination

of single elements from BS

___
∪ { 1S

___
}, and that occurrences of 1S

___
can be eliminated because in R,

1S

___
= 1R ; and the same considerations apply to elements from BT . In this description we are

again considering 1R as the ‘‘empty’’ or ‘‘length 0’’ product.) In fact, the coproduct of S and
T as associative rings turns out to have precisely the set of such products as an additive basis.

Exercise 3.13:7. Verify the above assertion, using an appropriate modification of van der
Waerden’s trick.

Exercise 3.13:8. (i) Examine the coproduct ring Z[i ] ∗Z[i ] (where Z[i ] denotes the
Gaussian integers, as in Exercise 3.13:2). In particular, try to determine its center, and whether it
has any zero-divisors.
(ii) In general, if S and T are rings free as abelian groups on two-element bases, of the
forms {1, s} and {1, t}, what can be said about the structure and center of S∗T ?

The next part shows that the above situation is exceptional.
(iii) Suppose as in (ii) that S and T each have additive bases containing 1, and that neither
of these bases consists of 1 alone; but now suppose that at least one of them has more than two
elements. Show that in this situation, the center of S∗T is just Z .

Some surprising results on the module theory of ring coproducts are obtained in [38]. (That
paper presumes familiarity with basic properties of semisimple artin rings and their modules. The
reader who is familiar with such rings and modules, but not with homological algebra, should not
be deterred by the discussion of homological properties of coproducts in the first section; these are
applications of the main result of the paper, but that result and its proof do not require homological
methods.)

3.14. Boolean algebras and Boolean rings. Let S be a set, and let P(S) denote the power set
of S, that is, {T � T ⊆ S}. There are various natural operations on P(S) : union, intersection,
complement (i.e., cT = {s∈S � s∈T }), and the two zeroary operations, ∅∈P(S) and S =
c∅∈P(S). Thus we can regard P(S) as the underlying set of an algebraic structure

(3.14.1) (P(S), ∪, ∩ , c, ∅, S).

This structure, and more generally, any 6-tuple consisting of a set given with five operations of
arities 2, 2, 1, 0, 0 satisfying all the identities satisfied by structures of the form (3.14.1) for S a
set, is called a Boolean algebra.

Such 6-tuples do not quite fit any of the pigeonholes we have considered so far. For instance,
neither of the operations ∪, ∩ is the composition operation of an abelian group, hence a
‘‘Boolean algebra’’ is not a ring.

However, there is a way of looking at P(S) which reduces us to ring theory. There is a
standard one-to-one correspondence between the power set P(S) of a set S and the set of
functions 2 S, where 2 means the 2-element set {0, 1}; namely, the correspondence associating
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to each T∈P(S) its characteristic function (1 on elements of T, and 0 on elements of cT ).
If we try to do arithmetic with these functions, we run into the difficulty that the sum of two
{0, 1}-valued functions is not generally {0, 1}-valued. But if we think of {0, 1} as the underlying
set of the ring Z2 rather than as a subset of Z , this problem is circumvented: 2 S becomes the
ring Z2

S – the direct product of an S-tuple of copies of Z2. Moreover, it is possible to describe
union, intersection, etc., of subsets of S in terms of the ring operations of Z2

S. Namely, writing
a for the characteristic function of a⊆ S, we have

(3.14.2) a∩ b
_____

= a b, a∪ b
_____

= a +b + a b, ca

___
= 1 + a, ∅

__
= 0, S = 1.

Conversely, each ring operation of Z2
S, translated into an operation on subsets of S, can be

expressed in terms of our set-theoretic Boolean algebra operations. The expressions for
multiplication, for 0, and for 1 are clear from (3.14.2); additive inverse is the identity operation,
and + is described by

(3.14.3) a + b = (a∩ cb) ∪ (ca∩ b) .

__________________

(The above set (a∩ cb) ∪ (ca∩ b) is called the ‘‘symmetric difference’’ of the sets a and b.)

Now the ring B = Z2
S = (2 S, +, ., –, 0, 1) will clearly, like Z2, satisfy

(3.14.4) (∀x ∈ |B| ) x2 = x,

from which one easily deduces the further identities,

(3.14.5)
(∀x, y ∈ |B| ) xy = yx,

(∀x ∈ |B| ) x + x = 0 (equivalently: 1 + 1 = 0 in B).

An associative ring satisfying (3.14.4) (and so also (3.14.5)) is called a Boolean ring. We shall see
below (Exercise 3.14:2) that the identities defining a Boolean ring, i.e., the identities of associative
rings together with (3.14.4), imply all identities satisfied by rings Z2

S. Hence Boolean rings and
Boolean algebras are essentially equivalent – one can turn one into the other using (3.14.2) and
(3.14.3).

Exercise 3.14:1. The free Boolean ring F(X ) on any set X exists by the usual general
arguments. Find a normal form for the elements of F(X ) when X is finite. To prove that
distinct expressions in normal form represent distinct elements, you will need some kind of
representation of F(X ); use a representation by subsets of a set S.

Exercise 3.14:2. Assume here the result implicit in the last sentence of the preceding exercise, that
the free Boolean ring on any finite set X can be embedded in the Boolean ring of subsets of
some set S.
(i) Deduce that all identities satisfied by the rings Z2

S (S a set) follow from the identities by
which we defined Boolean rings.
(ii) Conclude that the free Boolean ring on an arbitrary set X can be embedded in the
Boolean ring of {0, 1}-valued functions on some set (if you did not already prove this as part of
your proof of (i)).
(iii) Deduce that there exists a finite list of identities for Boolean algebras which implies all
identities holding for such structures (i.e., all identities holding in sets P(S) under ∪, ∩, c,
0 and 1).
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Exercise 3.14:3. An element a of a ring (or semigroup or monoid) is called idempotent if
a2 = a. If R is a commutative ring, let us define

Idpt(R) = ({a∈R� a2 = a}, +
.
, ., –

.
, 0, 1),

where a +
.

b = a + b – 2ab and –
.

a = a.
(i) Verify that each of the above operations carries the set | Idpt(R) | into itself.
(ii) Show that if a∈ | Idpt(R) |, then R can (up to isomorphism) be written R1 × R2, in such
a way that the element a has the form (0, 1) in this direct product. Deduce that if
a1, ... , ai∈ | Idpt(R) |, then R can be written as a finite direct product in such a way that each
ai has each coordinate 0 or 1. This result can be used to get a proof of the next point that is
conceptual, rather than purely computational:
(iii) Show that for any commutative ring R, Idpt(R) is a Boolean ring.
(iv) Given any Boolean ring B, show that there is a universal pair (R, f ) where R is a
commutative ring, and f : B → Idpt(R) a homomorphism.
(v) Investigate the structure of the R of the above construction in some simple cases, e.g.,
B = Z2, B = Z2

2, B = Z2
X.

(Students familiar with algebraic geometry will recognize that the idempotent elements of a
commutative ring R correspond to the continuous {0, 1}-valued functions on Spec(R), showing
that the Boolean rings Idpt(R) of the above exercise are analogous to Boolean rings of
{0, 1}-valued functions on sets.)

Exercise 3.14:4. (i) If f : U → V is a set map, what sort of homomorphism does it induce
between the Boolean rings Z2

U and Z2
V ?

(ii) Let B be a Boolean ring. Formulate universal properties for a ‘‘universal representation
of B by subsets of a set’’, in each of the following senses:

(a) A universal pair (S, f ), where S is a set, and f a Boolean ring homomorphism
B → Z2

S.
(b) A universal pair (T, g), where T is a set, and g a Boolean ring homomorphism
Z2

T → B.
(iii) Investigate whether such universal representations exist. If such representations are obtained,
investigate whether the maps f, g will in general be one-to-one, or onto.

Exercise 3.14:5. (i) Show that every finite Boolean ring is isomorphic to one of the form 2 S

for some finite set S.
(ii) For what finite sets S is the Boolean ring 2 S free? What will be the number of free
generators?

Exercise 3.14:6. A subset T of a set S is said to be cofinite in S if cT (taken relative to S,
i.e., S – T ) is finite. Show that {T ⊆ Z � T is finite or cofinite} is the underlying set of a
Boolean subring of 2Z, which is neither free, nor isomorphic to a Boolean ring 2 U for any
set U.

Above, I have for purposes of exposition distinguished between the power set P(S) of a set S
and the function-set 2 S. But these notations are often used interchangeably, and I may use them
that way myself elsewhere in these notes.

3.15. Sets. The objects we have been studying have been sets with additional operations. Let us
briefly note the forms that some of the constructions we have discovered take for plain sets.

Given a family of sets (Si )i∈I , the object with the universal property characterizing products
is the usual direct product, I

��
I I Si , which may be described as the set of functions on I whose
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value at each element i belongs to the set Si . The ith projection map takes each such function to
its value at i. Note that the product of the vacuous family of sets (indexed by the empty set!) is a
one-element set.

The coproduct of a family (Si )i∈I is their disjoint union I Si , to which we referred in
passing in §3.6. If the Si are themselves disjoint, one can take for this set their ordinary union;
the inclusions of the Si in this union give the universal family of maps qj : Sj → I Si ( j∈I ).
A construction that will work without any disjointness assumption is to take

(3.15.1) I Si = {(i, s) � i∈I, s∈Si }

with universal maps given by

(3.15.2) qi (s) = (i, s) (i∈I, s∈Si ).

A frequent practice in mathematical writing is to assume (‘‘without loss of generality’’) that a
family of sets is disjoint, if this would be notationally convenient, and if there is nothing logically
forcing them to have elements in common. In such cases one can, as noted, take the universal
maps involved in the definition of a coproduct of sets to be inclusions. But in other cases, for
instance if we want to consider a coproduct of a set with itself, or of a set and a subset, a
construction like (3.15.1) is needed. Note that when a construction is described ‘‘in general’’ under
such a disjointness assumption, and is later applied in a situation where one cannot make that
assumption, one must be careful to insert qi ’s where appropriate.

Exercise 3.15:1. Investigate laws such as ‘‘associativity’’, ‘‘distributivity’’, etc.. which are
satisfied ‘‘up to natural isomorphism’’ by the constructions of pairwise product and coproduct of
sets.

Show that some of these laws are also satisfied by products and coproducts of groups, while
others are not.

Sets can also be constructed by ‘‘generators and relations’’. If X is a set, then relations are
specified by a set R of ordered pairs of elements of X, which we want to make fall together.
The universal image of X under a map making the components of each of these pairs fall together
is easily seen to be the quotient of X by the least equivalence relation containing R.

The constructions examined in this section – direct product of sets, disjoint union, and quotient
by the equivalence relation generated by a given binary relation – were, of course, already used in
earlier sections. So the point of the above observations was not to introduce those constructions,
but to show their relation to our general concepts.

3.16. Some structures we have not looked at. ... Lattices, modular lattices, distributive lattices;
cylindric algebras; partially ordered sets; heaps, loops; Lie algebras, Jordan algebras, general
nonassociative algebras; rings with polynomial identity, rings with involution, fields, division rings,
Hopf algebras; modules, bimodules; filtered groups, filtered rings, filtered modules; ordered groups,
lattice-ordered groups, ... .

We’ll look at some of these in later chapters.
On the objects we have considered here, we have only looked at basic and familiar universal

constructions. Once we develop a general theory of universal constructions, we shall see that they
come in many more varied forms.

For diversity, I will end this chapter with two examples for those who have had a little
topology.
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3.17. The Stone-Čech compactification of a topological space. As is well known, the real line
R is not compact. It is frequently convenient, when studying the limit-behavior of R-valued
functions or sequences, to adjoin to R an additional point, ‘‘∞’’. The resulting compact space,
R∪ {∞}, is shown below.

R∪ {∞} :

–2 –1 0 1 2

∞

At other times, one adjoins to R two points, +∞ and –∞, getting a space

R ∪ {+∞, –∞} :
. .
–∞ +∞–2 –1 0 +1 +2

Note that R∪ {∞} may be obtained from R∪ {+∞, –∞} by an identification. Hence
R∪ {+∞, –∞} can be thought of as making ‘‘finer distinctions’’ in limiting behavior than
R∪ {∞}.

One might imagine that R∪ {+∞, –∞} makes ‘‘the finest possible distinctions’’. A precise
formulation of this would be a statement that for any continuous map f of R into a compact
Hausdorff space K, the closure of the image of R should be an image of R∪ {+∞, –∞}; i.e.,
that the map f should factor through the inclusion R ⊆ R∪ {+∞, –∞}. Here is a picture of an
example where this is true:

R R∪ {+∞, –∞}
⊆ . .

�
�
�
�
↓

f

.
.f (R)

____ K.

But from the following pictures we can see that this will not hold in general:

We can nevertheless ask whether there is some compactification of R which makes ‘‘the most
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possible distinctions’’. Let us raise the same question with R replaced by a general topological
space X, and give the desired compactification a name.

Definition 3.17.1. Let X be a topological space. A Stone-Čech
compactification of X will mean a pair (C, u), where C is a
compact Hausdorff space and u a continuous map X → C,
universal among all continuous maps of X into compact Hausdorff
spaces K (diagram at right ).

X
________u → C

��
�
�
↓

∀ ∃1 g

K

Exercise 3.17:1. Show that if a pair (C, u) as in the above definition exists, then u(X ) is dense
in C. In fact, show that if (C, u) has the stated universal property but without the condition of
uniqueness of factoring maps g (as in the above diagram), then
(i) uniqueness of such maps holds if and only if u(X ) is dense in C; and
(ii) if C ′ is the closure of u(X ) in C, the pair (C ′ , u) has the full universal property.

We want to know whether such compactifications always exist.
The analog of our construction of free groups from terms as in §2.2 would be to adjoin to X

some kinds of ‘‘formal limit points’’. But limit points of what? Not every sequence in a compact
Hausdorff space K converges, nor need every point of the closure of a subset J ⊆ K be the limit
of a sequence of points of J (unless K is first countable); so adjoining limits of sequences would
not do. The approach of adjoining limit points can in fact be made to work, but it requires
considerable study of how such points may be described; the end result is a construction of the
Stone-Čech compactification of X in terms of ultrafilters. We shall not pursue that approach here;
it is used in [100, Theorem 17.17 et seq.]. (NB: The compactification constructed there may not be
Hausdorff when X is ‘‘bad’’, so in such cases it will not satisfy our definition.)

The ‘‘big direct product’’ approach is more easily adapted. If 1: X → K1 and 2: X → K2
are two continuous maps of X into compact Hausdorff spaces, then the induced map
( 1, 2) : X → K1 × K2 will ‘‘make all the distinctions among limit points made by either 1 or

2’’, since the maps 1 and 2 can each be factored through it; further, if we let K ′ denote the
closure of the image of X in K1 × K2, and ′: X → K ′ the induced map, then all these
distinctions are still made in K ′, and the image of X is dense in this space. We can do the same
with an arbitrary family of maps i : X → Ki (i∈I ), since Tychonoff’s Theorem tells us that the
product space I

��
II Ki is again compact.

As in the construction of free groups, we now have to find some set of pairs (Ki, i ) which
are ‘‘as good as’’ the class of all maps of X into all compact Hausdorff spaces K. For this
purpose, we want a bound on the cardinalities of the closures of all images of X under maps into
compact Hausdorff spaces K. To get this, we would like to say that every point of the closure of
the image of X ‘‘depends’’ in some way on images of elements of X, in such a fashion that
different points ‘‘depend’’ on these differently; and then bound the number of kinds of
‘‘dependence’’ there can be in terms of the cardinality of X. The next lemma establishes the
‘‘different points depend on X in different ways’’ idea, and the corollary that follows gives the
desired bound.

Lemma 3.17.2. Let K be a Hausdorff topological space, and for any k∈ |K |, let N(k) denote
the set of all open neighborhoods of k (open sets in K containing k). Then for any map
from a set X into K, and any two points k1 ≠ k2 of the closure of (X ) in K, one has
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–1(N(k1)) ≠ –1(N(k2)) (where by –1(N(k)) we mean { –1(U ) � U∈N(k)}, a subset of
P(X )).

Proof. Since ki (i = 1, 2) is in the closure of (X ), every neighborhood of ki in K has
nonempty intersection with (X ), i.e., every member of –1(N(ki )) is nonempty. Since N(ki )
is closed under pairwise intersections, so is –1(N(ki )). But since K is Hausdorff and k1 ≠ k2,
these two points possess disjoint neighborhoods, whose inverse images in X will have empty
intersection. If the sets –1(N(k1)) and –1(N(k2)) were the same, this would give a
contradiction. �

Thus, we can associate to distinct points of the closure of (X ) distinct sets of subsets of X.
Hence,

Corollary 3.17.3. In the situation of the above lemma, the cardinality of the closure of (X ) in

K is ≤ 22card X
. �

So now, given any topological space X, let us choose a set S of cardinality 22card |X |
, and

let A denote the set of all pairs a = (Ka, ua ) such that Ka is a compact Hausdorff topological
space with underlying set |Ka | ⊆ S, and ua is a continuous map X → Ka . (We no longer need

to keep track of cardinalities, but if we want to, card A ≤ 2222card |X |

, assuming X infinite. The
two additional exponentials come in when we estimate the number of topologies on a set of

≤ 22card |X |
elements.) Thus, if is any continuous map of X into a compact Hausdorff space

K, and we write K ′ for the closure of (X ) in K, then the pair (K ′ , ) will be ‘‘isomorphic’’
to some pair (Ka, ua )∈A, in the sense that there exists a homeomorphism making the diagram
below commute.

K ′ ⊆ K
X ||∫ homeomorphism

ua Ka

We now form the compact Hausdorff space P = I
��
I a∈A Ka , and the map u : X → P induced

by the ua ’s, and let C ⊆ P be the closure of u(X ). It is easy to show, as we did for groups in
§2.3 that the pair (C, u) satisfies the universal property 3.17.1. Thus:

Theorem 3.17.4. Every topological space X has a Stone-Čech compactification (C, u) in the
sense of Definition 3.17.1. �

Exercise 3.17:2. Show that in the above construction, u(X ) will be homeomorphic to X under
u if and only if X can be embedded in a compact Hausdorff space (where an ‘‘embedding’’
means a continuous map f inducing a homeomorphism between X and f (X ), the latter set
being given the subspace topology). Examine conditions on X under which these equivalent
statements will hold. Show that for any topological space X, there exists a universal map into a
space Y embeddable in a compact Hausdorff space; that this map is always onto, but that it may
not be one-to-one. Can it be one-to-one and onto but not a homeomorphism?

Note: Most authors use the term ‘‘compactification’’ to mean a dense embedding in a compact
space. Hence, they only consider a space X to have a Stone-Čech compactification if the map u
that we have constructed is an embedding.
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Exercise 3.17:3. Suppose we leave off the condition ‘‘Hausdorff’’ – does a space X always have
a universal map into a compact space C ? A compact T1 space C ? ...

Exercise 3.17:4. Let C be the Stone-Čech compactification of the real line R , and regard R as
a subspace of C.
(i) Show that C – R has exactly two connected components.

(The above shows that there was a grain of truth in the naive idea that R∪ {+∞, –∞} was
the universal compactification of R . Exercise 3.17:5 will also be relevant to this idea.)
(ii) What can you say about path-connected components of C – R ?
(iii) Show that no sequence in R converges to a point of C – R .

A continuous map of R into a topological space K may be thought of as an open curve in
K. If K is a metric space one can define the length (possibly infinite) of this curve.

Exercise 3.17:5. Show that if : R → K is a curve of finite length in a compact (or more
generally, a complete) metric space K, then factors through the inclusion of R in
R∪ {+∞, –∞}.

Is the converse true? I.e., must every map R → K which factors through the inclusion of
R in R∪ {+∞, –∞} have finite length?

Exercise 3.17:6. (Exploring possible variants of Exercises 3.17:4-3.17:5.) It would be nice to get
a result like the first assertion of the above exercise with a purely topological hypothesis on the
map , rather than a condition involving a metric on K. Consider, for instance, the following
condition on a map of the real line into a compact Hausdorff space K :

(3.17.5)
For every closed set V ⊆ K, and open set U ⊇ V, the set

–1(U ) ⊆ R has only finitely many connected components that
contain points of –1(V ). (Suggestion: draw a picture.)

(i) Can we replace the assumptions in Exercise 3.17:5 that K is a metric space and has
finite length by (3.17.5) or some similar condition?
(ii) Let X be the open unit disc, C the closed unit disc, and u : X → C the inclusion map.
Does the pair (C, u) have any universal property with respect to X, like that indicated for
R∪ {+∞, –∞} with respect to R in the preceding exercise?
(iii) Does the open disc have a universal path-connected compactification?
(iv) In general, if C is the Stone-Čech compactification of a ‘‘nice’’ space X, what can be
said about connected components, path components, homotopy, cohomotopy, etc. of C – X ?

One can also consider universal constructions for objects which mix topological and algebraic
structure:

Exercise 3.17:7. Let G be any Hausdorff topological group (a group given with a Hausdorff
topology on its underlying set, such that the group operations are continuous). Show that there
exists a universal pair (C , h), where C is a compact Hausdorff topological group, and
h: G → C a continuous group homomorphism. This is called the Bohr compactification of G.
Show that h(G) is dense in C. Is h generally one-to-one? A topological embedding? What
will be the relation between C and the Stone-Čech compactification of the underlying
topological space of G ?

If it helps, you might consider some of these questions in the particular case where G is the
additive group of the real line.

In §2.4 we saw that we could improve on the construction of the free group on X from
‘‘terms’’ by noting that a certain subset of the terms would make do for all of them. For the
Stone-Čech compactification, the ‘‘big direct product’’ construction is subject to a similar
simplification. In that construction, we made use of all maps (up to homeomorphism) of X into
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compact spaces of reasonable size. I claim that we can in fact make all the ‘‘distinctions’’ we need
using maps into the closed unit interval, [0, 1] ! The key fact is that any two points of a compact
Hausdorff space K can be separated by a continuous map into [0, 1] (Urysohn’s Lemma). I will
sketch how this is used.

Let X be any topological space, let W denote the set of continuous maps w : X → [0, 1], let
u : X → [0, 1]W be the map induced by (w)w∈W , and let C ⊆ [0, 1]W be the closure of u(X ).
It is immediate that C has the property

(3.17.6)
Every continuous function of X into [0, 1] factors uniquely through a
function C → [0, 1] (namely, one of the projections of [0, 1]W).

To show that C has the universal property of the Stone-Čech compactification of X, let K
be a compact Hausdorff space. We can separate points of K by some set S of continuous maps
s : K → [0, 1], hence we can embed K in a ‘‘cube’’ [0, 1] S. (The map K → [0, 1] S given by
our separating family of functions is one-to-one; hence it will be a topological embedding by the
properties of compact Hausdorff spaces.) Let us therefore assume, without loss of generality, that
K is a closed subspace of [0, 1] S. Now given any map : X → K, we regard it as a map into
the space [0,1] S containing K, and get a factorization = gu for a unique map g : C → [0,1] S

by applying (3.17.6) to each coordinate. Because K is compact, it is closed in [0, 1] S, so g
will take C, the closure of u(X ), into K, establishing the required universal property. Cf. [70,
pp. 152-153].

Another twist: Following the idea of Exercise 2.3:6, we may regard a point c of the Stone-
Čech compactification of a space X as determining a function c̃ which associates to every
continuous map of X into a compact Hausdorff space K a point c̃( )∈K – namely, the
image of c under the unique extension of to C. This map c̃ will be ‘‘functorial’’, i.e., will
respect continuous maps f : K1 → K2, in the sense indicated in the diagram below.

K1 ⊃– c̃( )
X ↓ f

f K2 ⊃– c̃( f )

By Urysohn’s Lemma, c̃ will be determined by its behavior on maps w : X → [0, 1], hence, more
generally, by its behavior on maps w of X into closed intervals [a, b] ⊆ R . We carry this
observation further in

Exercise 3.17:8. (i) Show that although R is not compact, one may obtain from c̃ (by the
‘‘functoriality’’ property) a well-defined map from the set B(X ) of all bounded real-valued
continuous functions on X to the real numbers R .
(ii) Show that this map is a ring homomorphism (under the obvious ring structure on B(X ) ).

One can show, further, that every ring homomorphism B(X ) → R is continuous, and deduce
that each such homomorphism is induced by a point of C. So one gets another description of the
Stone-Čech compactification C of X, as the space of homomorphisms into R of the ring B(X )
of bounded continuous real-valued functions on X. The topology of C is the function topology
on maps of B(X ) into R .

Perhaps I have made this approach sound too esoteric. A simpler way of putting it is to note
that every bounded continuous real function on X (i.e., every continuous function which has range
in a compact subset of R) extends to a bounded continuous real function on its Stone-Čech
compactification C, so B(X ) =∼ B(C); and then to recall that for any compact Hausdorff space
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C, the homomorphisms from the function-ring B(C) into R are just the evaluation functions at
points of C.

One can use this approach to get another proof of the existence of the Stone-Čech
compactification of a topological space [58, Chapter 6]. This homomorphism space can also be
identified with the space of all maximal ideals of B(X ), equivalently, of all prime ideals that are
closed in the topology given by the sup norm.

Exercise 3.17:9. Suppose B ′ is any R-subalgebra of B(X ). Let C ′ denote the set of all
maximal ideals of B ′. Show that there is a natural map m : C → C ′. Show by examples that
this map can fail to be one-to-one (even if B ′ separates points of X ), or to be onto. Try to
find conditions for it to be one or the other.

In [77, §41], the Bohr compactification of a topological group G (Exercise 3.17:7 above) is
obtained as the maximal ideal space of a subring of B(G), the subring of ‘‘almost periodic’’
functions.

Most often, complex- rather than real-valued functions are used in these constructions.

3.18. Universal covering spaces. Let X be a pathwise connected topological space with a
basepoint (distinguished point) x0.

A covering space of X means a pair (Y, c), where Y is a pathwise connected space with a
basepoint y0, and c is a continuous basepoint-preserving map Y → X, such that every x∈X
has a neighborhood V for which c–1(V ) is a disjoint union of open subspaces, each mapped
homeomorphically onto V by c. (Draw a picture!) Such a c will have the unique path-lifting
property : Given any continuous map p : [0, 1] → X taking 0 to x0, there will exist a unique
continuous map p̃ : [0,1] → Y taking 0 to y0 such that p = cp̃; and further, p̃ depends
continuously on p in the appropriate function-space topology.

Given X, consider any covering space (Y, c) of X, and let us ask what points of Y we can
‘‘describe’’ in a well-defined manner.

Of course, we have the basepoint, y0. Further, for any path p in X starting at the basepoint
x0, we know there will be a unique lifting of p to a path p̃ in Y starting from y0; so Y also
has all points of this lifted path. It is enough, however, to note that we have the endpoint p̃(1),
since all the other points of p̃ can be described as endpoints of liftings of ‘‘subpaths’’ of p. In
fact, every y∈Y will be the endpoint p̃(1) of a lifted path in X. For Y was assumed pathwise
connected, hence for any y∈Y we can find a path q in Y with q(0) = y0, q(1) = y. Letting
p = cq, a path in X, we see that q = p̃, so y = p̃(1).

Suppose p and p ′ are two paths in X; when will p̃(1) and p̃ ′(1) be the same point of
Y ? Clearly, a necessary condition is that these two points have the same image in X : p(1) =
p ′(1) = x. Assuming this condition, note that if p and p ′ are homotopic in the class of paths in
X from x0 to this point x, then as one smoothly deforms p to p ′ in this class, the lifted path
in Y will vary continuously, hence its endpoint in c–1(x) will vary continuously. But c–1(x) is
discrete, so the endpoint must remain constant. Thus, p’s being homotopic to p ′ in the class of
paths with these fixed endpoints implies p̃(1) = p̃ ′(1).

So in general, we get a point of Y for every homotopy class [p] of paths in X with initial
point x0 and common final point. In a particular covering space Y, there may or may not be
further equalities among these points; but we can ask whether, if we write U for the set of such
homotopy classes of paths, and u for the map from U to X defined by u([p]) = p(1), we can
make U a topological space in such a way that the pair (U, u) is a covering space for X. Under
appropriate assumptions on the topology of X (the hypotheses used in [64] are: connected, locally
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pathwise connected, and semi-locally simply connected), this can indeed be done. The resulting
covering space U has a unique continuous map onto each covering space Y of X, which
respects basepoints and the maps into X. Hence (U, u) is called the universal covering space
of X.

The universal covering space is a versatile animal – like the direct product of groups, it has, in
addition to the above left universal property, a right universal one:

It is not hard to show that U is simply connected. Consider, now, pairs (S, c) where S is a
simply connected pathwise connected topological space with basepoint, and c : S → X a
basepoint-respecting continuous map. Let us ask, for such a space S, the question that we noted
in §3.8 as leading to right universal constructions: If s is an arbitrary point of S, what data will
it determine that can be formulated in terms of the given space X ? Well, obviously s determines
the point c(s)∈X. To get more information, note that since S is pathwise connected, there will
be some path q in S connecting s0 to s; and since S is simply connected, all such paths q
are homotopic. Applying c to these paths, we see that s determines a homotopy class of paths in
X from x0 to c(s). But as we have just noted, the set of homotopy classes of paths from x0 to
points of X can (under appropriate conditions) itself be made into a simply connected space, the
universal covering space of X. One deduces that this space U is right universal among simply
connected spaces with basepoint, given with maps into X (diagram below).

U
________u → X

↑
��
�
�

∃1 d

∀c

S

Exercise 3.18:1. Show that the universal covering space of the pathwise connected space X (if it
exists) is, more generally, right universal among pathwise connected spaces S with basepoint,
given with basepoint-preserving maps c into X such that the group homomorphism
π1(c) : π1(S) → π1(X ) is trivial. Give an example showing that such a space S need not be
simply connected.

We could also look for a right universal covering space for X, or a simply connected space
with basepoint having a left universal map into X. But these turn out to be uninteresting: They
are X itself, and the one-point space.

There are many other occurrences of universal constructions in topology. Some, like the
constructions considered in this and the preceding section, can be approached in the same way as
universal constructions in algebra. Others used in algebraic topology are rather different, in that
one is interested, not in maps being equal, unique, etc., but homotopic, unique up to homotopy,
etc.. We shall see that these conditions can be brought into the same framework as our other
universal properties via the formalism of category theory. But the tasks of constructing and
studying the objects these conditions characterize require different approaches, which we will not
treat in this course.
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Part II. Basic tools and concepts.

In the next five chapters we shall assemble the tools needed for the development

of a general theory of algebras and of universal constructions among them.

We begin with two chapters on ordered sets, lattices, closure operations and

related concepts, since these will be used repeatedly. Because of the relation

between well-ordering and the Axiom of Choice, we also take this occasion to

review briefly the Zermelo-Fraenkel axioms for set theory, and several statements

equivalent to the Axiom of Choice.

Clearly, the general context for studying universal constructions should be some

model of ‘‘a system of mathematical objects and the maps among them’’. This is

provided by the concept of a category. We develop the basic concepts of category

theory in Chapter 6, and in Chapter 7 we formalize universal properties in

category-theoretic terms.

Finally, in Chapter 8 we introduce the categories that will be of special interest

to us: the varieties of algebras.
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Chapter 4. Ordered sets, induction, and the Axiom of Choice.

4.1. Partially ordered sets. We began Chapter 1 by making precise the concept of a group. Let
us now do the same for that of partially ordered set.

A partial ordering on a set is an instance of a ‘‘relation’’. This is a different sense of the word
from that of the last two chapters. In these notes, we will be dealing with both kinds of
‘‘relations’’ extensively; which we mean will generally be clear from context. When there is
danger of ambiguity, I will make the distinction explicit, as I do, for instance, in the index.

Intuitively, a relation on a family of sets X1, ... , Xn means a condition on n-tuples
(x1, ... , xn ) (x1∈X1, ... , xn ∈Xn ). Since the information contained in the relation is determined by
the set of n-tuples that satisfy it, this set is taken to be the relation in the formal definition, given
below. That the relation is viewed as a ‘‘condition’’ comes out in the notation and language used.

Definition 4.1.1. If X1 , ... , Xn are sets, a relation on X1 , ... , Xn means a subset R ⊆
X1 × ... × Xn . Relations are often written as predicates; i.e., the condition (x1 , ... , xn )∈R may be
written R(x1 , ... , xn ), or Rx1 ... xn, or, if n =2, as x1 R x2 .

A relation on X, ... , X, i.e., a subset R ⊆ Xn, is called an n-ary relation on X.
If R is an n-ary relation on X, and Y is a subset of X, then the restriction of R to Y

means R ∩ Yn, regarded as an n-ary relation on Y.

We now recall

Definition 4.1.2. A partial ordering on a set X means a binary relation ‘‘ ≤ ’’ on X satisfying the
conditions

(∀ x∈X ) x ≤ x (reflexivity),

(∀ x, y∈X ) x ≤ y, y ≤ x ⇒ x =y (antisymmetry),

(∀ x, y, z∈X ) x ≤ y, y ≤ z ⇒ x ≤ z (transitivity).

A total ordering on X means a partial ordering which also satisfies

(∀ x, y∈X ) x ≤ y or y ≤ x.

A partially (respectively totally) ordered set means a set X given with a partial (total )
ordering ≤ .

If X is partially ordered by ≤ , and Y is a subset of X, then Y will be understood to be
partially ordered by the restriction of ≤ , which will be denoted by the same symbol unless there is
danger of ambiguity. This is called the induced ordering on Y.

A total ordering is also called a linear ordering. The term ordered without any qualifier is
used by some authors as shorthand for ‘‘partially ordered’’, and by others for the stronger condition
‘‘totally ordered’’; we will generally specify ‘‘partially’’ or ‘‘totally’’. A subset C of a partially
ordered set P which is totally ordered under the induced ordering is called a chain in P.

A more formal definition would make a partially ordered set a pair P = ( |P |, ≤) where ≤ is a
partial ordering on |P |. But for us, partially ordered sets will in general be tools rather than the
objects of our study, and it would slow us down to always maintain the distinction between P and
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|P |, so we shall usually take the informal approach of understanding a partially ordered set to
mean a set P for which we ‘‘have in mind’’ a partial ordering relation ≤ . At times, however, we
shall be more precise and refer to the pair ( |P |, ≤).

Standard examples of partially ordered sets are the set of real numbers with the usual relation
≤ , the set P(X ) of subsets of any set X under the partial ordering ⊆ , and the set of positive
integers under the relation ‘‘�’’, where m�n means ‘‘m divides n’’.

We remark that in addition to the order-theoretic meaning of ‘‘chain’’ noted above, there is a
nonspecialized use of the word; for instance, one speaks of a ‘‘chain of equalities x1 = x2 = ... =
xn ’’. We shall at times use the term in this nontechnical way, relying on context to avoid
ambiguity.

The versions of the concepts of homomorphism and isomorphism appropriate to partially
ordered sets are given in

Definition 4.1.3. If X and Y are partially ordered sets, an isotone map from X to Y means a
function f : X → Y such that x1 ≤ x2 ⇒ f (x1) ≤ f (x2).

An invertible isotone map whose inverse is also isotone is called an order isomorphism.

Exercise 4.1:1. Give an example of an isotone map of partially ordered sets which is invertible as
a set map, but which is not an order isomorphism.

Some obvious notation: When ≤ is a partial ordering on a set X, one commonly writes ≥
for the opposite relation; i.e., x ≥ y ⇔ y ≤ x. Clearly the relation ≥ satisfies the same conditions
of reflexivity, antisymmetry and transitivity as ≤ .

This leads to a semantic problem: As long as ≥ is just an auxiliary notation used in
connection with the given ordering ≤ , one thinks of an element x as being ‘‘smaller’’ (or
‘‘lower’’) than an element y ≠x if x ≤ y. But the preceding observation shows that one can take
the opposite relation ≥ as a new partial ordering on the set X, i.e., consider the partially ordered
set (X, ≥), and one should consider x as ‘‘smaller’’ than y in this partially ordered set if the
pair (x, y) belongs to this new ordering. Such properties as which maps X → Y are isotone (with
respect to a fixed partial ordering on Y ) clearly change when one goes from considering X under
≤ to considering it under ≥ .

The set X under the opposite of the given partial ordering is called the opposite of the original
partially ordered set. When one uses the formal notation P = ( |P |, ≤) for a partially ordered set,
one can write Pop = ( |P |, ≥). One may also replace the symbol ≥ by ≤ op, writing Pop =
( |P |, ≤ op). Thus, if x is smaller than y in P, i.e., x ≤ y, then y is smaller than x in Pop,
i.e., y ≤ opx. (‘‘Dual ordering’’ is another term often used, and * is sometimes used instead
of op.)

In these notes we shall only rarely make use of the opposite partially ordered set construction.
But we remark that (once one has gotten past the notational confusion) the symmetry in the theory
of partially ordered sets created by that construction is a very convenient tool.

One also commonly uses x < y as an abbreviation for (x ≤ y) ∧ (x ≠ y), and of course x > y
for (x ≥ y) ∧ (x ≠ y). These relations do not satisfy the same conditions as ≤ . The conditions
that they do satisfy are noted in

Exercise 4.1:2. Show that if ≤ is a partial ordering on a set X, then the relation < is transitive
and antireflexive, i.e., satisfies (∀ x∈X ) x /<x. Conversely, show that any transitive antireflexive
binary relation < on a set X is induced in the above way by a unique partial ordering ≤ .
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A relation < with these properties (transitivity and antireflexivity) might be called a ‘‘strict
partial order’’. One can thus refer to ‘‘the strict partial order < corresponding to the partial order
≤’’, and ‘‘the partial order ≤ corresponding to the strict partial order <’’. Of course, for a
partial ordering denoted by a symbol such as ‘‘ � ’’ (‘‘divides’’), or R (a partial ordering written
as a binary relation), there is no straightforward symbol for the corresponding strict partial order.

Exercise 4.1:3. For partially ordered sets X and Y, suppose we call a function f : X → Y a
strict isotone map if x <y ⇒ f (x) < f (y). Show that

one-to-one and isotone ⇒ strict isotone ⇒ isotone,

but that neither implication is reversible.

In contexts where ‘‘≤’’ already has a meaning, if another partial ordering has to be considered,
it is often denoted by a variant symbol such as . One then uses corresponding symbols , ,

for the opposite order, the strict order relation, etc.. (However, order-theorists dealing with a
partial ordering ≤ sometimes write y x to mean ‘‘y covers x’’, that is ‘‘y > x and there is no
z between y and x’’. When the symbol is used this way, it cannot be used for the strict relation
associated with a second ordering. We shall not use the concept of ‘‘covering’’ in these notes.)

A somewhat confused case is that of symbols for the subset relation. Most often, the notation
suggested by the above discussion is followed; that is, ⊆ is used for ‘‘is a subset of’’, ⊇ for the
opposite relation, and ⊂ , ⊃ for strict inclusions; and we follow these conventions here.
However, many authors, especially in Eastern Europe, write ⊂ for ‘‘is a subset of’’, a usage based
on the view that since this is a more fundamental concept than that of a proper subset, it should be
denoted by a primitive symbol and not one obtained by adding an extra mark to the symbol for
‘‘proper subset’’. Those authors use ⊂≠ for ‘‘proper subset’’ (and the reversed symbols for the
reversed relations). There was even at one time a movement to make ‘‘<’’ mean ‘‘less than or
equal to’’, with <≠ for strict inequality. Together with the above set-theoretic usage, this would
have formed a consistent system, but the idea never got off the ground. Finally, many authors, for
safety, use a mixed system: ⊆ for ‘‘subset’’ and ⊂≠ for ‘‘proper subset’’. (That was the notation
used in the first graduate course I took, and I sometimes follow it in my papers. However, I only
rarely need a symbol for explicit strict inclusion, so the question of how to write it seldom comes
up.)

Although partially ordered sets are not algebras in the sense in which we shall use the term,
many of the kinds of universal constructions we have considered for algebras can be carried out for
them. In particular

Definition 4.1.4. Let (Xi )i∈I be a family of partially ordered sets. Then their direct product will
mean the partially ordered set having for underlying set the direct product of the underlying sets of
the Xi , ordered so that (xi )i∈I ≤ (yi )i∈I if and only if xi ≤ yi for all i∈I.

Exercise 4.1:4. (i) Verify that the above relation is indeed a partial ordering on the product set,
and that the resulting partially ordered set has the appropriate universal property to be called the
direct product of the partially ordered sets Xi .
(ii) Let X be a set and R a binary relation on X. Show that there exists a universal
example of a partially ordered set (Y, ≤) with a map u : X → Y such that for all (x1, x2)∈R
one has u(x1) ≤ u(x2) in Y. This may be called the partially ordered set presented by the
generators X and the relation-set R. (Cf. presentations of groups, monoids, and rings, §§3.3,
3.10, 3.12.) Will the map u in general be one-to-one? Onto?
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(iii) Determine whether there exist constructions with the universal properties of the coproduct
of two partially ordered sets, and of the free partially ordered set on a set X. Describe these if
they exist.
(iv) Discuss the problem of imposing a set R of further relations on a given partially ordered
set (X, ≤); i.e., of constructing a universal isotone map of X into a partially ordered set Y
such that the images of the elements of X satisfy the relations comprising R, and examine the
properties of this construction, if it can be carried out.

We have noted that for any set X, the set P(X ) of subsets of X is partially ordered by ⊆ .
Given a partially ordered set S, we may look for universal ways of representing S by subsets of
a set X. Note that if f : X → Y is map between sets, then f induces, in natural ways, both an
isotone map P(X )→P(Y ) and an isotone map P(Y )→P(X ), the first taking subsets of X to
their images under f , the second taking subsets of Y to their inverse images. Let us call these
the ‘‘direction-preserving construction’’ and the ‘‘direction-reversing construction’’ respectively.
Thus, given a partially ordered set S, there are four universal sets we might look for: a set X
having an isotone map S → P(X ) universal in terms of the direction-preserving construction of
maps among power sets, a set X with such a map universal in terms of the direction-reversing
construction, and sets X with isotone maps in the reverse direction, P(X )→ S, universal for the
same two constructions of maps among power sets.

Exercise 4.1:5. (i) Write out the universal properties of the four possible constructions
indicated.
(ii) Investigate which of the four universal sets exist, and describe these as far as possible.

Definition 4.1.5. Let X be a partially ordered set, S a subset of X, and s an element of S.
Then s is said to be minimal in S if there is no t∈S with t < s, while s is said to be the least
element of S if for all t∈S, s ≤ t. The terms maximal and greatest are used for the dual
concepts.

There was really no need to refer to X in the above definition, since the properties in question
just depended on the set S and the induced order relation on it; but these concepts are often
applied to subsets of larger partially ordered sets, so I included this context in the statement.

Part (iii) of the next exercise is a caution against an error that I have too often caught myself
making.

Exercise 4.1:6. Let X be a partially ordered set.
(i) Show that if X has a least element x, then x is the unique minimal element of X.
(ii) If X is finite, show conversely that a unique minimal element, if it exists, is a least
element.
(iii) Give an example showing that if X is not assumed finite, this converse is false.

Exercise 4.1:7. Let (X, ≤) be a partially ordered set. Then the pair (X, ≤) constitutes a
presentation of itself as a partially ordered set in the sense of Exercise 4.1:4(i); but of course,
there may be proper subsets R of the relation ≤ such that (X, R) is a presentation of the same
partially ordered set. (I.e., such that R ‘‘generates’’ ≤ in an appropriate sense.)
(i) If X is finite, show that there exists a least subset of R which generates ≤ .
(ii) Show that this is not in general true for infinite X.

Point (i) of the above exercise is the basis for the familiar way of diagramming finite partially
ordered sets. One draws a picture with vertices representing the elements of the set, and edges
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corresponding to the members of the least relation generating the partial ordering; i.e., the smallest
set of order relations from which all the others can be deduced. The higher point on each edge
represents the larger element under the partial ordering. For example, the picture below represents
the partially ordered set of all nonempty subsets of {0, 1, 2} . The relation {1} ≤ {0, 1, 2} is not
shown explicitly, because is a consequence of the relations {1} ≤ {0, 1} ≤ {0, 1, 2} (and also of
{1} ≤ {1, 2} ≤ {0, 1, 2}).

{0, 1, 2}
�

{0, 1} {0, 2} {1, 2}
� �

{0} {1} {2}

The next definition lists a few more pieces of terminology commonly used in connection with
partial orderings.

Definition 4.1.6. Let ≤ be a partial ordering on a set X.
If x, y are elements of X with x ≤ y, then the interval [x, y] means the subset {z∈X �

x ≤ z ≤ y} , with the induced partial ordering ≤ .
Elements x and y of X are called incomparable if neither x ≤ y nor y ≤ x holds. A subset

Y ⊆ X is called an antichain if every pair of distinct elements of Y is incomparable.
An element x∈X is said to majorize a subset Y ⊆ X if for all y∈Y, y ≤ x. One similarly

says x majorizes an element y if y ≤ x.
A subset Y of X is said to be cofinal in X if every element of X is majorized by some

element of Y.

We remark that there are no standard terms for the opposite concepts to ‘‘majorize’’ and
‘‘cofinal’’. One occasionally sees ‘‘minorize’’ and ‘‘coinitial’’, but these are awkward; it seems
best to say ‘‘majorizes (or is cofinal) under the opposite ordering’’.

The concept of cofinality defined above probably originated in topology: If s is a point of a
topological space S, and N(s) the set of all neighborhoods of s, then a neighborhood basis of
s means a subset B ⊆ N(s) cofinal in that set, under the ordering by reverse inclusion. The
virtue of this concept is that one can verify that a function on S approaches some limit at s by
checking its behavior on members of such a B. E.g., one generally checks continuity of a function
at a point s of the real line using the cofinal system of neighborhoods {(s –ε , s+ε) � ε > 0} .

Exercise 4.1:8. (i) Show that if X is a finite partially ordered set, then a subset Y is cofinal
in X if and only if it contains all maximal elements of X.
(ii) Show by example this is not true for infinite partially ordered sets. Is one direction true?

Exercise 4.1:9. Let X be a finite partially ordered set. One defines the height of X as the
maximum of the cardinalities of all chains in X, and the width of X as the maximum of the
cardinalities of all antichains in X.
(i) Show that card(X ) ≤ height(X ) . width(X ).

(That the above result fails for infinite partially ordered sets will be shown in Exercise 4.6:8.)
(ii) Must every (or some) chain in X of maximal cardinality have nonempty intersection

with every (or some) antichain of maximal cardinality?
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Definition 4.1.7. Let ≤ and be partial orderings on a set X. Then one says ≤ is an
extension or strengthening (or sometimes, a refinement) of if it contains the latter as subsets of
X × X; that is, if x y ⇒ x ≤ y.

The relation of ‘‘extension’’ is itself a partial ordering on the set of partial orderings on X.
This fact can be looked at as follows. If we regard each partial ordering on X as a subset
R ⊆ X × X, and partially order the class of all subsets of X × X by inclusion (the relation ⊆ ),
then the relation of ‘‘extension’’ is the restriction of this partial ordering to the subclass of those
R ⊆ X × X which are partial orders. This observation saves us the work of verifying that
‘‘extension’’ satisfies the conditions for a partial order, since we know that the restriction of a
partial order on a set to any subset is again a partial order. Many of the partial orderings that arise
naturally in mathematics are similarly restrictions of the inclusion relation, or some other natural
partial ordering, on a larger set.

Exercise 4.1:10. Let us consider the set of all partial orderings on a set to be partially ordered as
above.
(i) Show that the maximal elements in the set of all partial orderings on a set X are precisely
the total orderings.
(ii) How many maximal elements does the set of partial orderings of a set of n elements
have?
(iii) How many minimal elements does the set of partial orderings of a set of n elements
have?
(iv) Show that every partial ordering on a finite set X is the set-theoretic intersection of a set
of total orderings.
(v) Given a partial ordering on a set of n elements, what can you say about the smallest
number of total orderings that must be intersected to get ? (This is called the ‘‘order
dimension’’ of the given partially ordered set.)

Here is an outstanding open problem.

Exercise 4.1:11. Let (X, ) be a finite partially ordered set. Let N denote the number of total
orderings ‘‘≤’’ on X extending (‘‘linearizations of ’’) and for x, y∈X, let Nx, y
denote the number of these extensions ‘‘≤’’ which satisfy x ≤ y.
(i) Prove or disprove, if you can,

Fredman’s conjecture : For any (X, ) such that is not a total order, there exist
elements x, y∈X such that

(4.1.8) 1 ⁄ 3 ≤ Nx, y ⁄ N ≤ 2 ⁄ 3.

If you cannot settle this open question, here are some special cases to look at:
(ii) Let r be a positive integer, and let X be the partially ordered set consisting of a chain of
r elements, p1 ... pr , and an element q incomparable with all the pi . What are N and
the Npi, q in this case? Verify Fredman’s conjecture for this partially ordered set.

(iii) Is the above example consistent with the stronger assertion that if X has no greatest
element, then an x and a y satisfying (4.1.8) can be chosen from among the maximal elements
of X? With the assertion that for every two maximal chains in X, one can choose an x in one
of these chains and a y in the other satisfying (4.1.8)? If one or the other of these possible
generalizations of Fredman’s Conjecture is not excluded by the above example, can you find an
example that does exclude it?
(iv) Let r again be a positive integer, and let X be the set {1, ... , r} partially ordered by the
relation such that i j if and only if j – i ≥ 2 (where ≥ has the usual meaning for
integers). Verify the conjecture in this case as well. How many pairs (i, j) satisfy neither i j
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nor j i, and of these, how many satisfy (4.1.8)?
(v) If X is any partially ordered set such that the function Nx, y ⁄ N never takes on the value
1 ⁄ 2, define a relation ≤! on X by writing x ≤! y if either x =y, or Nx, y ⁄ N > 1 ⁄ 2.
Determine whether this is always, sometimes or never a (total) ordering on X. Show that for
any X which is a counterexample to the conjecture of (i), ≤! is indeed a total ordering on X.

My feeling is that it may be possible to get a proof of Fredman’s conjecture by assuming we
had a counterexample, and considering the peculiar place the relation ≤! of point (v) above would
have to have among the total orderings on X extending . One can see something of the
structure of the set of all total orderings on a set from the next exercise.

Exercise 4.1:12. Define the distance between two total orderings ≤ i , ≤ j on a finite set X as

d(≤ i , ≤ j ) = number of pairs of elements (x, y) such that x <i y, x >j y.

Show that d is a metric on the set of all total orderings, and that for any partial ordering on
X, any two total orderings extending can be connected by a chain (not meant in the order-
theoretic sense!) ≤1, ... , ≤n where each ≤ i is a total ordering extending , and the distance
between successive terms of the chain is 1.

Here is another open question.

Exercise 4.1:13. (Reconstruction problem for finite partially ordered sets.) Let P and Q be
finite partially ordered sets with the same number n > 3 of elements, and suppose they can be
indexed P = {p1, ... , pn } , Q = {q1, ... , qn } in such a way that for each i, P – {pi } and
Q – {qi } are isomorphic as partially ordered sets. Must P be isomorphic to Q ?

(Note that nothing is assumed about what bijections give the isomorphisms P – {pi } =∼
Q – {qi } . We are definitely not assuming that they are the correspondences pj ←→ qj ( j ≠ i ); if
we assumed this, the question would have an immediate positive answer. A way to state the
hypothesis without referring to such a correspondence is to say that the families of isomorphism
classes of partially ordered (n –1)-element subsets of P and of Q, counting multiplicities, are
the same. If this is true, then ‘‘one can reconstruct P from its (n –1)-element partially ordered
subsets’’, hence the name of the problem.)

(The corresponding question for graphs with n > 2 vertices is also open, and perhaps better
known.)

Readers interested in ordered sets and related structures should note that there is a journal,
Order, devoted to these subjects, which regularly includes lists of open questions and reviews of
books in the field.

4.2. Digression: preorders. One sometimes encounters binary relations which, like partial
orderings, are reflexive and transitive, but which do not satisfy the antisymmetry condition. For
instance, although the relation ‘‘divides’’ on the positive integers is a partial ordering, the relation
‘‘divides’’ on the set of all integers is not antisymmetric, since every n divides – n and vice
versa. More generally, on the elements of any commutative integral domain, ‘‘divides’’ is a
reflexive transitive relation, but for every element x and invertible element u, x and ux each
divide the other. Similarly, on a set of propositions (sentences in some formal language) about a
mathematical situation, the relation P⇒Q is reflexive and transitive, but not generally
antisymmetric: Distinct propositions can each imply the another, i.e., represent equivalent
conditions.
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Definition 4.2.1. A reflexive transitive (not necessarily antisymmetric) binary relation on a set X
is called a preorder on X.

The concept of a preordered set can be reduced in a natural way to a combination of two other
sorts of structure that we already know.

Proposition 4.2.2. Let X be a set. Then the following data are equivalent.

(i) A preorder on X.

(ii) An equivalence relation ∼∼ on X, and a partial ordering ≤ on the set of equivalence
classes, X ⁄ ∼∼ .

Namely, to go from (i) to (ii), given the preorder , define x ∼∼ y to mean x y ∧ y x, and
for any two elements [x], [y]∈X ⁄ ∼∼ , write [x] ≤ [y] in X ⁄ ∼∼ if and only if x y in X.

Inversely, given, as in (ii), an equivalence relation ∼∼ , and a partial ordering ≤ on X ⁄ ∼∼ ,
one gets a preorder as in (i) by defining x y to hold in X if and only if [x] ≤ [y] in
X ⁄ ∼∼ . �

Exercise 4.2:1. Prove the above proposition. (This requires one verification of well-definedness,
and some observations showing why the two constructions, performed successively in either
order, return the original data.)

This is neat: A reflexive transitive relation (a preorder) decomposes into a reflexive transitive
symmetric relation (an equivalence relation) and a reflexive transitive antisymmetric relation (a
partial ordering).

As an example, if we take the set of elements of a commutative ring R, preordered by
divisibility, and divide out by the equivalence relation of mutual divisibility, we get a partially
ordered set, which can be identified with the set of principal ideals of R partially ordered by
reverse inclusion.

In view of the above proposition, there is no need for a theory of preorders – that is essentially
subsumed in the theory of partial orderings. But it is useful to have the concept available, to refer
to such relations when they arise.

The remainder of this section consists of some exercises on preorders which will not be used in
subsequent sections. Exercises 4.2:2-4.2:9 concern a class of preorders having applications to ring
theory, group theory, and semigroup theory. (The later exercises in that group all depend on 4.2:2
and 4.2:3; also, 4.2:5 is assumed in 4.2:6-4.2:9. If you wish to hand in one of these exercises
without writing out the details of others on which it depends, you should begin with a summary of
the results from the latter that you will be assuming. You might check this summary with me first.)
The last two exercises of the section are independent of that group.

Exercise 4.2:2. If f and g are nondecreasing functions from the positive integers to the
nonnegative integers, let us write f g if there exists a positive integer N such that for all i,
f (i ) ≤ g(Ni ).
(i) Show that is a preorder, but not a partial order, on the set of nondecreasing functions.
(ii) On the subset of functions consisting of all polynomials with nonnegative integer
coefficients, get an explicit description of , and determine its ‘‘decomposition’’ as in the
above proposition.
(iii) Do the same for the set of functions consisting of the polynomials of (ii), together with the

exponential functions i→ni for all integers n >1.
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(iv) Show that (when not restricted as in (ii) or (iii)) the partial ordering ≤ induced by the
preordering is not a total ordering.

Exercise 4.2:3. Let S be a monoid and x1, ... , xn elements of S, and for each positive integer
i, let gx1 , ... , xn

(i ) denote the number of distinct elements of S which can be written as words

of length ≤ i in x1, ... , xn (with repetitions allowed). This is a nondecreasing function from
the positive integers to the nonnegative integers, the growth function associated with x1, ... , xn .

Show that if S is generated by x1, ... , xn , and if y1, ... , ym is any other finite family of
elements of S, then in the notation of the preceding exercise, gy1 , ... , ym

gx1 , ... , xn
. Deduce

that if x1, ... , xn and y1, ... , ym are two generating sets for the same monoid, then
gx1 , ... , xn

∼∼ gy1 , ... , ym
(where ∼∼ is the equivalence relation determined as in Proposition 4.2.2

by the preorder ).
Thus, if S is finitely generated, the equivalence class [gx1 , ... , xn

] is the same for all finite

generating sets x1 , ... , xn of S. This equivalence class is therefore an invariant of the finitely
generated monoid S, called its growth rate. We see that if a finitely generated monoid S is
embeddable in another finitely generated monoid T, then the growth rate of S must be ≤ that
of T.

Exercise 4.2:4. (i) Determine the growth rates of the free abelian monoid on n generators and
the free monoid on n generators.
(ii) With the help of the result of (i), show that the free abelian monoid on m generators is
embeddable in the free abelian monoid on n generators if and only if m ≤ n.
(iii) Verify that for any positive integer n, the map from the free monoid on n generators
x1 , ... , xn to the free monoid on 2 generators x, y taking xi to xyi (i =1, ... , n) is an
embedding. Is this consistent with the results of (i)?

The concept of growth rate is more often studied for groups and rings than for monoids. Note
that elements x1 , ... , xn of a group G generate G as a group if and only if x1 , x1

–1, ... , xn,
xn

–1 generate G as a monoid, so the group-theoretic growth function of G with respect to
{x1 , ... , xn } may be defined to be the growth function of G as a monoid with respect to the
generating set {x1 , x1

–1, ... , xn, xn
–1} . The equivalence class of such growth functions is called the

growth rate of the group G, which is thus the same as the growth rate of G as a monoid. The
concept of growth rate has been used, in particular, in studying fundamental groups of manifolds
[106].

If R is an algebra over a field k, then to get the ring theoretic concept of the growth rate of
R, one considers, not the number of elements which can be written as a product of ≤ i generators,
but the dimension of the k-vector space spanned in R by such products. The remainder of the
development is analogous to that of the monoid case.

Though we are digressing a bit from the subject of preorders, let us sketch in the next few
exercises an important invariant obtained from these growth rates, and some of its properties.

Exercise 4.2:5. If S is a monoid with finite generating set x1, ... , xn , the Gel’fand-Kirillov
dimension of S is defined as

(4.2.3) GK(S) = lim supi ( ln(gx1 , ... , xn
(i )) ⁄ ln(i )).

(Here ‘‘ln’’ denotes the natural logarithm function, and lim supi a(i ) means
limj→∞ supi ≥ j a(i ). Thus, if a is a nonnegative function, lim supi a(i ) will be a
nonnegative real number or +∞.)
(i) Show that the right hand side of (4.2.3) is a function only of the growth rate [gx1 , ... , xn

],

hence does not depend on the choice of generators x1 , ... , xn , so that the Gel’fand-Kirillov
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dimension is well defined.
(ii) Determine the Gel’fand-Kirillov dimensions of the free abelian monoid and the free
monoid on n generators.

Exercise 4.2:6. (i) In the early literature, it was often stated (in effect) that for monoids S1,
S2, one had GK(S1 × S2) = GK(S1) + GK(S2). Find the fallacy in this claim, and if you can,
find a counterexample. (Actually, the statement was made for tensor products of algebras rather
than direct products of monoids, but one case can be reduced to the other.)

Exercise 4.2:7. (i) Show that if S is a finitely generated monoid and GK(S) < 2, then
GK(S) = 0 or 1.
(ii) Show, on the other hand, that there exist finitely generated monoids having for Gel’fand-
Kirillov dimensions all real numbers ≥ 2, and +∞. (Suggestion: Show that for any finite or
infinite set S of elements of a free monoid F, one can construct a homomorphic image of F
in which all elements not having members of S as subwords are distinct, while all elements that
do have subwords in S have a common value, ‘‘0’’.)
(iii) Show that there exist finitely generated monoids with distinct growth rates, but the same
finite Gel’fand-Kirillov dimension.

We haven’t seen any exercises on growth rates of k-algebras yet. If, as in the preceding
exercise, one is only concerned with what growth rates occur, there is essentially no difference
between the cases of k-algebras and of monoids, as shown in

Exercise 4.2:8. Let k be any field.
Show that for every monoid S with generating set s1, ... , sn , there exists a k-algebra R

with a generating set r1, ... , rn such that gr1 , ... , rn
= gs1 , ... , sn

. Similarly, show that for every

k-algebra R with generating set r1, ... , rn , there exists a monoid S with a generating set
s1, ... , sn+1 such that gs1 , ... , sn+1

= gr1 , ... , rn
+ 1 (where ‘‘1’’ denotes the constant function

with value 1).

However, if one is interested in the growth of algebras with particular properties, these do not
in general reduce to questions about growth of monoids. For instance, students familiar with the
theory of transcendence degree of field extensions might do

Exercise 4.2:9. Show that if k is a field and R a finitely generated commutative k-algebra
without zero-divisors, then the Gel’fand-Kirillov dimension of R as a k-algebra equals the
transcendence degree over k of the field of fractions of R.

For more on Gel’fand-Kirillov dimension in ring theory, see [73].

For students familiar with the definitions of general topology, another important instance of the
concept of preorder is noted in:

Exercise 4.2:10. (i) Show that if X is a topological space, and if for x, y∈X, we define
y ≤ x to mean ‘‘the closure of {x } contains y’’, then ≤ is a preorder on X.
(ii) Show that if X is finite, the above construction gives a bijection between topologies and
preorders on X.
(iii) Under the above bijection, what classes of preorders correspond to T0, respectively T1,
respectively T2 topologies?
(iv) If X is infinite, is the above map from topologies to preorders one-to-one? Onto? Can
one associate to every preorder on X a topology having a left or right universal property with
respect to this construction?
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Exercise 4.2:11. The standard topology on the real line R can be defined in terms of open
intervals (a, b), which are in turn defined in terms of the standard ordering of R . Can you
generalize this topologization to arbitrary totally ordered, partially ordered, or preordered sets?
Is it related to the construction of the preceding exercise?

4.3. Induction and chain conditions. The familiar principle of induction on the natural numbers
(nonnegative integers) that one learns as an undergraduate is based on the order properties of that
set. In this and the next two sections, we shall examine more general kinds of ordered sets over
which one can perform inductive proofs and constructions.

Any students to whom the distinction between ‘‘minimal’’ and ‘‘least’’ elements in a partially
ordered set was new should review Definition 4.1.5 before going on.

Lemma 4.3.1. Let (X, ≤) be a partially ordered set. Then the following conditions are
equivalent:

(i) Every nonempty subset of X has a minimal element.

(ii) For every descending chain x0 ≥ x1 ≥ ... ≥ xi ≥ ... in X indexed by the natural numbers,
there is some n such that xn = xn+1 = ... .

(ii′) Every strictly descending chain x0 > x1 > ... indexed by an initial subset of the natural
numbers (that is, either by {0, 1, ... , n } for some n, or by the set of all nonnegative integers) is
finite (that is, is in fact indexed by {0, 1, ... , n } for some n).

(ii′ ′) X has no strictly descending chains x0 > x1 > ... indexed by the full set of natural numbers.

Proof. (i)⇒(ii′ ′)⇔(ii′)⇔(ii) is straightforward. Now assume (ii′ ′), and suppose we had a
nonempty subset Y ⊆ X with no minimal element. Take any x0 ∈Y. Since this is not minimal,
we can find x1 < x0. Since this in turn is not minimal, we can find x2 < x1. Continuing this
process, we get a contradiction to (ii′ ′). �

Definition 4.3.2. A partially ordered set X is said to have descending chain condition
(abbreviated ‘‘DCC’’; called ‘‘minimum condition’’ by some authors) if it satisfies the equivalent
conditions of the above lemma.

Likewise, a partially ordered set X with the dual condition (every nonempty subset has a
maximal element, equivalently, X has no infinite ascending chains) is said to have ascending
chain condition (‘‘ACC’’ or ‘‘maximum condition’’).

A well-ordered set means a totally ordered set with descending chain condition.

Remark: A chain in X, as defined following Definition 4.1.2, is a totally ordered subset, and
it is meaningless to call such a subset ‘‘increasing’’ or ‘‘decreasing’’. In the above lemma and
definition, the phrases ‘‘descending chain’’ and ‘‘ascending chain’’ are used as shorthand for a
totally ordered subset which can be indexed in a descending, respectively in an ascending manner
by the natural numbers. (One may consider this a mixture of the order-theoretic meaning of
‘‘chain’’, and the informal meaning, namely a sequence of elements indexed by a set of consecutive
integers with a specified relation holding between consecutive terms.) But note that though this
shorthand is used in the convenient phrases ‘‘ascending chain condition’’ and ‘‘descending chain
condition’’, we made explicit what we meant by such ‘‘chains’’ in Lemma 4.3.1(ii)-(ii′ ′).

That the natural numbers are well-ordered has been known in one form or another for millennia,
but the importance of ACC and DCC for more general partially ordered sets was probably first
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noted in ring theory, in the early decades of the twentieth century. Rings with these conditions on
their sets of ideals (partially ordered by inclusion) are called ‘‘Noetherian’’ and ‘‘Artinian’’
respectively, after Emmy Noether and Emil Artin who studied them.

One does not need to formally state a ‘‘principle of induction over partially ordered sets with
ACC (or DCC)’’. Rather, when one wishes to prove a result for all elements of a partially ordered
set X with, say, DCC, one can simply begin, ‘‘Suppose there are elements of X for which the
statement is false. Let x be minimal for this property’’ (since, if the set of such elements is
nonempty, it must have a minimal member). Then one knows the statement is true for all y <x,
and if one can show from this that it is true for x as well, one gets a contradiction, proving the
desired result. Since this is a familiar form of argument, one often abbreviates it and says,
‘‘Assume inductively that the statement is true for all y <x’’, proves from this that it is true for x
as well, and concludes that it is true for all elements of X.

In the most familiar sort of induction on the natural numbers, one starts by proving the desired
result for 0 or 1. Why was there no corresponding step in the schema described above? The
analog of the statement that our desired result holds for 0 would be the statement that it holds for
all minimal elements of X. But if one can prove that a statement is true for x whenever it is true
for all smaller elements of X, then in particular, one must be able to prove it in the case where
the set of smaller elements is empty. Depending on the situation, the proof that a result is true for
x if it is true for all smaller elements may or may not involve different arguments in the minimal
and nonminimal cases.

Exercise 4.3:1. A noninvertible element of a commutative integral domain C is called irreducible
if it cannot be written as a product of two noninvertible elements. Give a concise proof that if
C is a commutative integral domain with ascending chain condition on ideals (or even just on
principal ideals), then every nonzero noninvertible element of C can be written as a product of
irreducible elements.

In addition to proofs by induction, one often performs constructions in which each step requires
that a set of preceding steps already have been done. The construction of the Fibonacci numbers fi
(i = 0, 1, 2, ...) from the defining conditions

(4.3.3) f0 = 0, f1 = 1, fn+2 = fn + fn+1

is of this sort. These are called recursive definitions or constructions, and we shall now see that,
like inductive proofs, they can be carried out over general partially ordered sets with chain
conditions.

Let us analyze what such a construction involves, and then show how to justify it. Suppose X
is a partially ordered set with DCC, and suppose that we wish to construct a certain function f
from X to a set T. To say that for some x∈X the value of f has been determined for all y <x
is to say that we have a function f<x : {y � y <x} → T. So ‘‘a rule defining f at each x if it is
defined for all y <x’’ can be formalized as a T-valued function r on the set of all pairs (x, f<x )
consisting of an x∈X and a function f<x : {y � y <x} → T. In most applications, our rule
defining f at x in terms of the values for y <x actually requires that these values satisfy some
good conditions, and we verify these conditions inductively, as the construction is described
recursively. But to avoid complicating our abstract formalization, we may assume r defined for
all pairs (x, f<x ) where x∈X and f<x is a function {y � y <x} → T. For if we have a
definition of r in ‘‘good’’ cases, we can extend it to other cases in an arbitrary way (e.g., assume
0∈T and send (x, f<x ) to 0 if f<x is not ‘‘good’’). Then the inductive proof that f is
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‘‘good’’ can be formally considered to come after the recursive construction of f .
We see that the property characterizing an f constructed recursively as above is that for each

x∈X, f (x) is a certain function of the restriction of f to {y � y <x }. Let us recall a common
notation for restrictions of functions: If f : X → Y is a function, and Z is a subset of X, then
the restriction of f to Z, a function Z → Y, is denoted f � Z. (A variant symbol which we will
not use is f Z.)

We can now justify recursive constructions by proving

Lemma 4.3.4. Let X be a partially ordered set with descending chain condition, T any set, and
r a function associating to every pair (x, f<x ) such that x∈X, and f<x is a function {y∈X �

y <x} → T, an element r (x, f<x )∈T. Then there exists a unique function f : X → T such that
for all x∈X, f (x) = r (x, f �{y� y <x}).

Proof. Let X ′ ⊆ X denote the set of all x∈X for which there exists a unique function
f≤ x : {y � y ≤ x } → T with the property that

(4.3.5) (∀y ≤ x) f≤ x (y) = r ( y, f≤ x�{z� z <y } ).

We claim, first, that for any two elements x0, x1 ∈X ′, the functions f≤ x0
, f≤ x1

agree on

{y � y ≤ x0 ∧ y ≤ x1} . For if not, choose a minimal y in this set at which they disagree. Then by
(4.3.5), f≤ x0

(y) = r (y, f≤ x0
�{z� z <y }), and f≤ x1

(y) = r(y, f≤ x1
�{z� z <y }). But by choice of

y, the restrictions of f≤ x0
and f≤ x1

to {z� z <y } are equal, hence by the above equations,

f≤ x0
(y) = f≤ x1

(y), contradicting our choice of y.

Next, suppose that X ′ were not all of X. Let x be a minimal element of X – X ′. Since, as
we have just seen, the functions f≤y for y <x agree on the pairwise intersections of their
domains, they piece together into one function f<x on the union of their domains. (Formally, this
‘‘piecing together’’ means taking the union of these functions, as subsets of X × T.) If we now
define f≤x to agree with this function f<x on {y� y <x } , and to have the value r (x, f<x ) at
x, we see that this function satisfies (4.3.5), and is the unique function on {y� y ≤ x } which can
possibly satisfy that condition. This means x∈X ′, contradicting our choice of x.

Hence X ′= X. Now piecing together these functions f≤x defined on the sets {y� y ≤ x } , we
get the desired function f defined on all of X. �

Example: The Fibonacci numbers are defined recursively by using for X the ordered set of
nonnegative integers, and defining r (n, ( f0, ... , fn –1)) to be 0 if n = 0, to be 1 if n = 1,
and to be fn –2 + fn –1 if n ≥ 2.

The next exercise shows that recursive constructions are not in general possible if the given
partially ordered set does not satisfy descending chain condition.

Exercise 4.3:2. Show that there does not exist a function f from the interval [0, 1] of the real
line to the set {0, 1} determined by the following rules:
(a) f (0) = 0.
(b) For x > 0, f (x) = 1 if for all y∈[0, x), f (y) = 0; otherwise, f (x) = 0.

If you prefer, you may replace the interval [0, 1] in this example by the countable set
{0}∪ {1 ⁄ n � n = 1, 2, 3, ...} .

Actually, solving a differential equation with given initial conditions is somewhat like a
‘‘recursive construction over an interval of the real numbers’’. But since the real numbers do not
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have descending chain condition, the conditions for existence and uniqueness of a solution, and the
arguments needed to prove these, are more subtle. (A key fact that often plays a role like induction
in such arguments is the connectedness of the real line.)

There is a situation at the very foundation of mathematics which can be interpreted in terms of
a partially ordered system with descending chain condition. The Axiom of Regularity of set theory
(which will be stated formally in the next section) says that there is no ‘‘infinite regress’’ in the
construction of sets; that is, that there are no left-infinite chains of sets under the membership
relation:

... ∈ Sn ∈ ... ∈ S2 ∈ S1 ∈ S0.

This is not a difficult axiom to swallow, since if we had a set theory for which it was not true,
we could pass to the ‘‘smaller’’ set theory consisting of those sets which admit no such chain to the
left of them. The class of such sets is closed under all the constructions required by the remaining
axioms of set theory, and the ‘‘new’’ set theory would satisfy the Axiom of Regularity.

To interpret Regularity in the terms we have just been discussing, let us write A B, for sets
A and B, if there is a chain of membership-relations, A = S0 ∈ S1 ∈ ... ∈ Sn = B (n > 0). This
relation is clearly transitive. The Regularity Axiom implies that is antireflexive (if we had
A A, then a chain of membership relations connecting A with itself could be iterated to give an
infinite chain going to the left), hence is the strict partial ordering corresponding to a partial
ordering ; and Regularity applied again says that this partial ordering has descending chain
condition. (Well, almost. We have only defined the concepts of partial ordering and chain
condition for sets, and the class of all sets is not a set. To get around this problem we can translate
these observations more precisely as saying that for each set A, {B � B A} is itself a set, and
has descending chain condition under .) This allows one to prove set-theoretic results
inductively, and make set-theoretic definitions recursively.

We had another such situation in Chapter 1, when we talked about the set T = TX, μ , ι , e of
group-theoretic terms in a set of symbols X. These also satisfy a principle of regularity, in terms
of the relation ‘‘s occurs in t’’, which we denoted t s in Exercise 1.7:4. To show this, let T ′
denote the set of elements of T admitting no infinite descending -chains to the right of them.
One verifies that T ′ is closed under the operations of conditions (a) and (b) of the definition of T
(in §1.5), and concludes that if T ′ were properly smaller than T, one would have a contradiction
to condition (c) of that definition. We only sketched the construction of T in Chapter 1, but in
§8.3 below we will introduce the concept of ‘‘term’’ for general classes of algebras, and the above
argument will then allow us to perform formal recursion and induction over such terms.

One can, of course, do inductive proofs and recursive constructions over partially ordered sets
with ascending as well as descending chain condition. These come up often in ring theory, where
Noetherian rings, i.e., rings whose partially ordered set of ideals has ACC, are important. In
proving that a property holds for an arbitrary ideal I of such a ring, one may, as we have noted,
assume inductively that it is true for all strictly larger ideals. To get the result allowing us to
perform recursive constructions in such situations, i.e., the analog of Lemma 4.3.4 with >
replacing < , it is not necessary to repeat the proof of that lemma; we can use duality of partially
ordered sets. I will give the statement and sketch the argument this once, to show how an
argument by duality works. After this, I shall consider it sufficient to say ‘‘by duality’’, or ‘‘by the
dual of Proposition #.#.#’’ etc., if I want to invoke the dual of an order-theoretic result previously
given.
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Corollary 4.3.6. Let X be a partially ordered set with ascending chain condition, T any set,
and r a function associating to every pair (x, f>x ) consisting of an element x∈X and a
function f>x : {y � y >x} → T an element r (x, f>x )∈T . Then there exists a unique function f :
X → T such that for all x∈X, f (x) = r (x, f�{y� y >x}).

Sketch of Proof. The opposite of the partially ordered set X (the structure with the same
underlying set but the opposite ordering) is a partially ordered set Xop with descending chain
condition, and r can be considered to be a function r ′ with exactly the properties required to
apply Lemma 4.3.4 to that partially ordered set. That lemma gives us a unique function f ′ from
Xop to T satisfying the conclusions of that lemma relative to r ′, and this is equivalent to a
function f from X to T satisfying the desired condition relative to r. �

Exercise 4.3:3. Above, the Fibonacci numbers fn were defined for n ≥ 0. Show that there is a
unique way of defining fn for all integers n so that, again, f0 = 0, f1 = 1, and so that the
equation fn = fn–2 + fn–1 now holds for all n.

Often the key to making an inductive argument or a recursive construction work is a careful
choice of a parameter over which to carry out the induction or recursion, and an appropriate
ordering on the set of values of that parameter. The next definition describes a way of constructing
partial orderings that is frequently useful for such purposes. The well-ordered index set I in that
definition can be something as simple as {0, 1}.

Definition 4.3.7. Let (Xi )i∈I be a family of partially ordered sets, indexed by a well-ordered set
I. Then lexicographic order on I

��
I I Xi is defined by declaring (xi ) ≤ (yi ) to hold if and only if

either (xi ) = (yi ), or for the least j∈I such that xj ≠ yj , one has xj < yj in Xj.

Note that if I = {1, ... , n} with its natural order, then this construction orders n-tuples
(x1, ... , xn )∈ I

��
I I Xi by the same ‘‘left-to-right’’ principle that is used to arrange words in the

dictionary; hence the name of the construction.

Exercise 4.3:4. Let (Xi )i∈I be as in Definition 4.3.7.
(i) Verify that the relation described in that definition is indeed a partial order.
(ii) Show that if each Xi is totally ordered, then so is their direct product under that ordering.
Show, on the other hand, that this is not true of the product ordering, described in
Definition 4.1.4.
(iii) Show that if I is finite and each of the Xi has descending (or ascending) chain
condition, then so does their product under lexicographic ordering.
(iv) Comparing lexicographic ordering with the product ordering, deduce that a direct product
of finitely many partially ordered sets with descending chain condition satisfies descending chain
condition under the product ordering as well.
(v) Show that the product of countably many copies of the two-element ordered set {0, 1}
(with 0 <1) does not have descending chain condition under the product ordering. Deduce that
lexicographic ordering on products of infinite families of partially ordered sets with descending
chain condition also fails, in general, to have descending chain condition.

In the next exercise, lexicographic ordering is used to give a concise proof of a standard result
on symmetric polynomials.
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Exercise 4.3:5. Let R be a commutative ring, and R[x1, ... , xn ] the polynomial ring in n

indeterminates over R. Given any nonzero polynomial f = Σ ri(1), ... , i(n) x1
i(1) ... xn

i(n) (almost

all ri(1), ... , i(n) zero), let us define the leading term of f to be the nonzero summand in this

expression with the largest exponent-string (i(1), ... , i(n)), under lexicographic ordering on the
set of all such strings. (Since the set of nonzero summands is finite, no chain condition is needed
to make this definition.)
(i) Let f and g be nonzero elements of R[x1, ... , xn ], and suppose that the coefficient of
the leading term of f is not a zero-divisor in R. (E.g., this is automatic if R is an integral
domain.) Show that the leading term of fg is the product of the leading terms of f and of g.

An element of R[x1, ... , xn ] is called symmetric if it is invariant under the natural action of
the group of all permutations of the index set {1, ... , n} on the indeterminates x1, ... , xn . For
1 ≤ d ≤ n, the dth elementary symmetric function fd is defined to be the sum of all products of
exactly d distinct members of {x1, ... , xn } .
(ii) Show that the following sets are the same: (a) The set of all n-tuples (i(1) , ... , i(n)) of
nonnegative integers such that i(1) ≥ ... ≥ i(n). (b) The set of all exponent-strings

(i(1), ... , i(n)) of leading terms ri(1), ... , i(n) x1
i(1) ... xn

i(n) of symmetric polynomials. (c) The

set of all exponent-strings of leading terms of products of elementary symmetric polynomials,

f1
j(1) ... fn

j(n). With what coefficient does the leading monomial occur in this product?
(iii) Deduce that any nonzero symmetric polynomial can be changed to a symmetric polynomial
with lower exponent-string-of-the-leading-term, or to the zero polynomial, by subtracting a scalar
multiple of a product of elementary symmetric polynomials. Conclude, by induction on this
exponent-string, that the ring of symmetric polynomials in n indeterminates over R is
generated over R by the elementary symmetric polynomials.

(For standard proofs of the above result, see [26 pp. 252-255], or [28, Theorem IV.6.1,
p.191]. For some related results on noncommutative rings, see [43].)

Exercise 4.3:6. For nonnegative integers i and j, let ni, j be defined recursively as the least
nonnegative integer not equal to ni, j ′ for any j ′< j, nor to ni ′ , j for any i ′< i. (What
ordering of the set of pairs (i, j) of nonnegative integers can one use to justify this recursion?)

Find and prove a concise description of ni,j . (Suggestion: Calculate some values and note
patterns. To find the ‘‘pattern in the patterns’’, write numbers to base 2.)

4.4. The axioms of set theory. We are soon going to look at some order-theoretic principles
equivalent to the powerful Axiom of Choice. Hence it is desirable to review the statement of that
axiom, and its status in relation to the other axioms of set theory. For completeness, I will record
in this section the whole set of axioms most commonly used by set theorists.

Let us begin with some background discussion. In setting up a rigorous foundation for
mathematics, one might expect the theory to require several sorts of ‘‘entities’’: ‘‘primitive’’
elements such as numbers, additional sets formed out of these, ordered pairs, functions, etc.. But as
the theory was developed, it turned out that one could get everything one wanted from a single
basic concept, that of set, and a single relation among sets, that of membership. The result is a set
theory in which the only members of sets are themselves sets.

As an important example of how other ‘‘primitives’’ are reduced to the set concept, we recall
the case of the natural numbers (nonnegative integers). The first thing we learn in our childhood
about these numbers is that they are used to count things; to say how many objects there are in a
collection. The early set theorists observed that one can formalize the concept of two sets having
the ‘‘same number’’ of elements set-theoretically, as meaning that there exists a bijection between
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them. This is clearly an equivalence relation on sets. Hence the natural numbers ought be some
entities which one could associate to finite sets, so that two sets would get the same entity
associated to them if and only if they were in the same equivalence class. Their original idea was
to use, as those entities, the equivalence classes themselves, i.e., to define the natural numbers 0, 1,
2, etc., to be the corresponding equivalence classes. Thus, the statement that a finite set had n
elements would mean that it was a member of the number n. (Cardinalities of infinite sets were to
be treated similarly.) This is good in principle – don’t create new entities to index the equivalence
classes if the equivalence classes themselves will do. But in this case, the equivalence classes
turned out not to be a good choice: they are too big to be sets. So the next idea was to choose one
easily described member from each such class, call these chosen elements the natural numbers 0,
1, 2, ... , and define a set to have n elements if it could be put in bijective correspondence with
the ‘‘sample’’ set n.

Where would one get these ‘‘sample’’ finite sets from, using pure set theory? At least there is
no problem getting a sample 0-element set – there is a unique set with 0 elements, the empty set
∅. Having taken this step, we have one set in hand – ∅. This means that we are in a position to
create a sample one-element set, the set with that element as its one member, i.e., {∅} . Having
found these two elements, ∅ and {∅} , we can define a 2-element set {∅, {∅}} to use as our
next sample, and so on. After the first few steps, we are not so limited in our options. However,
the above approach, of always taking for the next number the set of numbers found so far, due to
John von Neumann, is an elegant way of manufacturing one set of each natural-number cardinality,
and it is taken as the definition of these numbers by modern set theorists:

(4.4.1)

0 = ∅, 1 = {∅} , 2 = {∅, {∅}} , 3 = {∅, {∅}, {∅, {∅}}} ,
. . .

i+1 = i ∪ {i } = {0, 1, 2, ... , i }
. . .

Another basic concept which was reduced to the concepts of set and membership is that of
ordered pair. If X and Y are sets, then one can deduce from the axioms (shortly to be listed)
that X and Y can each be determined uniquely from the set {{X }, {X, Y } } . Since all one needs
about ordered pairs is that they are objects which specify their first and second components
unambiguously, one defines the ordered pair (X, Y ) to mean the set {{X }, {X, Y } } .

One then goes on to define the direct product of two sets in terms of ordered pairs, binary
relations in terms of direct products, functions in terms of relations, etc.. From natural numbers,
ordered pairs, and functions, one constructs the integers, the rational numbers, the real numbers, the
complex numbers, etc., by well-known techniques, which we won’t review here.

(One also wants to define ordered n-tuples. The trick by which ordered pairs were defined turns
out not to generalize in an easy fashion; the most convenient approach is to define an ordered
n-tuple to mean a function whose domain is the set n. However, this conflicts with the definition
of ordered pair! To handle this, a careful development of set theory must use different symbols,
say < X, Y > for the concept of ‘‘ordered pair’’ first described, and (X0, X1, ... , Xn –1) for the
ordered n-tuples subsequently defined.)

The above examples should give some motivation for the ‘‘sort’’ of set theory described by the
axioms which we shall now list. Of course, a text on the foundations of mathematics will first
develop language allowing one to state these axioms precisely, and, since a statement in such
language is not always easy to understand, it will precede or follow many of the precise statements
by intuitive developments. I have tried below to give formulations that make it as clear as possible
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what the axioms assert, and have added some further remarks after the list. But for a thorough
presentation, and for more discussion of the axioms, the student should see a text on the subject.
Two recommended undergraduate texts are [10] and [18]. Written for a somewhat more advanced
audience is [16].

Here, now, are the axioms of Zermelo-Fraenkel Set Theory with the Axiom of Choice,
commonly abbreviated ZFC.

Axiom of Extensionality: Sets are equal if and only if they have the same members, i.e.,
X = Y if and only if for every set A, A∈X ⇔ A∈Y.

Axiom of Regularity (or Well-foundedness , or Foundation): For every nonempty set X,
there is a member of X which is disjoint from X.

Axiom of the Empty Set: There exists a set with no members. (Common notation: ∅.)

Axiom of Separation: If X is a set and P is a condition on sets, there exists a set Y whose
members are precisely the members of X satisfying P. (Common notation: Y = {A∈X � P (A)}.)

Axiom of Doubletons (or Pairs): If X and Y are sets, there is a set Z whose only
members are X and Y. (Common notation: Z = {X, Y }.)

Axiom of Unions: If X is a set, there is a set Y whose members are precisely all members
of members of X. (Common notation: Y = ∪ X or ∪A∈X A.)

Axiom of Replacement: If f is an operation on sets ( formally characterized by a set-
theoretic proposition P (A, B) such that for every set A there is a unique set f (A) such that
P (A, f (A)) holds) and X is a set, then there exists a set Y whose members are precisely the sets
f (A) for A∈X. (Common notation: Y = { f (A) � A∈X } . When there is no danger of confusion,
this is sometimes abbreviated to Y = f (X ).)

Axiom of the Power Set: If X is a set, there exists a set Y whose members are precisely all
subsets of X. (Common notations: Y = P(X ) or 2 X.)

Axiom of Infinity: There exists a set having ∅ as a member, closed under the construction
i → i∪ {i} (cf. (4.4.1)), and minimal for these properties. (Common name: The set of natural
numbers.)

Axiom of Choice: If X is a set, and f is a function associating to every x∈X a nonempty
set f (x), then there exists a function g associating to every x∈X an element g(x)∈ f (x).

Explanations of some of the names: Extensionality means that a set is determined by its extent,
not its intent. Separation says that one can form new sets by using any well-defined criterion to
‘‘separate out’’ certain elements of an existing set. The Axiom of Infinity is so called because if
we did not assume it, the collection of all sets which can be built up from the empty set in finitely
many steps would satisfy our axioms, giving an example of a set theory in which all sets are finite.
So the axiom is equivalent to the statement that there exists an infinite set.

We described Regularity earlier as saying that there was no infinite regress under ‘‘∈’’. That
formulation requires one to have the set of natural numbers to index such a regress, so we chose a
formulation that can be expressed independently of the Axiom of Infinity. In the presence of the
other axioms one can prove the two formulations equivalent. (Roughly, if one had an infinite chain
... ∈ S2 ∈ S1 ∈ S0, then {Si } would be a counterexample to Regularity, while if a set X were a
counterexample to Regularity, one could select such a chain from its elements.)

Actually the Axiom of Regularity makes little substantive difference for areas of mathematics
other than set theory itself (e.g., see [18]). Without it, one can have sets with exotic properties
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such as being members of themselves, but the properties of set-theoretic concepts used by most of
mathematics – bijections, direct products, cardinality arguments, etc. – are little affected. Its
absence would simply make it a bit trickier to construct, say, a family of disjoint copies of a given
set. The Regularity Axiom seems to have crept into the Zermelo-Fraenkel axioms by the back
door: It was not in the earlier formulations of those axioms, and still does not appear in some
listings, such as that in [10]. But it is generally accepted, and we will count it among the axioms
here, and rely on the convenience it provides. It gives one a comforting assurance that sets are
built up from earlier sets with no ‘‘vicious circles’’ in the process; hence the name ‘‘Well-
Foundedness’’. (By extension, set-theorists often call the property of descending chain condition
on any partially ordered set ‘‘well-foundedness’’.)

Observe that the Axioms of Extensionality and Regularity essentially clarify what we intend to
mean by a ‘‘set’’. The next seven axioms each say that certain sets exist; in each case these are
sets which are uniquely determined by the conditions assumed.

The last axiom, however, that of ‘‘choice’’, asserts the existence of an object not uniquely
defined by the given data: a function that chooses, in an unspecified way, one element from each of
a family of sets. It was very controversial in the early decades of the twentieth century, both
because it led to consequences which seemed surprising then (such as the existence of
nonmeasurable sets of real numbers), and because of a feeling by some that it represented an
unjustifiable assumption that something one could do in the finite case could be done in the infinite
case as well. It is a standard assumption in modern mathematics; such basic results as that every
vector space has a basis, that a direct product of compact topological spaces is compact, and that a
countable union of countable sets is countable cannot be proved without it. But there have been,
and still are, mathematicians who reject it: the intuitionists of the early part of this century, and the
constructivists today.

Even accepting the Axiom of Choice, as we shall, it is at times instructive to note whether a
result or an argument depends on it, or can be obtained from the other axioms. (This is like the
viewpoint that, even if one does not accept the constructivists’ extreme claim that proofs of
existence that do not give explicit constructions are worthless, one may consider constructive
proofs to be desirable when they can be found.)

In the next two sections we shall develop several powerful results about sets whose proofs
require the Axiom of Choice, and we will show that these are each, in fact, equivalent to that
Axiom, in the presence of the other axioms. Hence, in those sections, we shall not assume the
Axiom of Choice without stating this assumption explicitly, and the arguments we give to show this
equivalence will all be justifiable in terms of the theory given by the other axioms, called
‘‘Zermelo-Fraenkel Set Theory’’, abbreviated ZF. (However, we shall not in general attempt to
show explicitly how the familiar mathematical techniques that we use are justified by those axioms
– for that, again see a text in set theory.) In all later chapters, on the other hand, we shall freely
use the Axiom of Choice, i.e., we will assume ZFC.

In the handful of results proved so far in this chapter, we have implicitly used the Axiom of
Choice just once: in Lemma 4.3.1, in showing (ii′ ′)⇒(i). Hence for the remainder of this chapter,
we shall forgo assuming that implication, and will consider descending chain condition to be
defined by condition (i) of that lemma (which still implies (ii)-(ii′ ′)).

Let us note explicitly one detail of set-theoretic language we have already used: Since the sets
satisfying a given property may not together form a set, one needs a word to refer to ‘‘collections’’
of sets that are not necessarily themselves sets. These are called classes. An example is the class
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of all sets. One can think of classes which are not sets, not as actually being mathematical objects,
but as providing a convenient language to use in making statements about all sets having one or
another property.

Since classes are more general than sets, one may refer to any set as a ‘‘class’’, and this is
sometimes done for reasons not involving the logical distinction, but just to vary the wording. E.g.,
rather than saying ‘‘the set of those subsets of X such that ... ’’, one sometimes says ‘‘the class of
those subsets of X such that ... ’’. And, for some reason, one always says ‘‘equivalence class’’,
not ‘‘equivalence set’’.

4.5. Well-ordered sets and ordinals. Recall (Definition 4.3.2) that a partially ordered set (X, ≤)
is called well-ordered if it is totally ordered and has descending chain condition. In a totally
ordered set, a minimal element is the same as a least element, so the condition of well-ordering
says that every nonempty subset of X has a least member.

This condition goes a long way toward completely determining the structure of X. Applied
first to X as a subset of itself, it tells us that if X is nonempty, it has a least element, x0. If X
does not consist of x0 alone, then X – {x0} is nonempty, hence this set has a least element,
which we may call x1. We can go on in this fashion, and, unless X is finite, we will get a
uniquely determined sequence of elements x0 < x1 < x2 < x3 < ... at the ‘‘bottom’’ of X. This
list may exhaust X, but if it does not, there will necessarily be a least element in the complement
of the subset so far described, which we may call x1,0, and if this still does not exhaust X, there
will be a least element greater than it, x1,1, etc.. We can construct in this way successive
hierarchies, and hierarchies of hierarchies – I will not go into details – on the single refrain, ‘‘If
this is not all, there is a least element of the complement’’.

A couple of concrete examples are noted in

Exercise 4.5:1. If f and g are real-valued functions on the real line R , let us in this exercise
write f ≤ g to mean that there exists some real number N such that f (t) ≤ g(t) for all t ≥ N.
(i) Show that this relation ≤ is a preordering, that its restriction to the set of polynomial
functions is a total ordering, and that on polynomials with nonnegative integer coefficients, it in
fact gives a well-ordering. Determine, if they exist, the elements x0, x1, ... , xn, ... , x1,0, x1,1
of this set, in the notation of the preceding paragraphs.
(ii) Show that the set consisting of all polynomials with nonnegative integer coefficients, and
also the function et, is still well-ordered under the above relation.
(iii) Find a subset of the rational numbers which is order-isomorphic (under the standard
ordering) to the set described in (ii).

To make precise the idea that the order structure of a well-ordered set is ‘‘unique, as far as it
goes’’, let us define an ‘‘initial segment’’ of any totally ordered set X to mean a subset I ⊆ X
such that x ≤ y∈I ⇒ x∈I. Then we have

Lemma 4.5.1. Let X and Y be well-ordered sets. Then exactly one of the following conditions
holds:

(i) X and Y are order-isomorphic.

(ii) X is order-isomorphic to a proper initial segment of Y.

(iii) Y is order-isomorphic to a proper initial segment of X.

Further, in each case, the isomorphism in question is unique; in particular, in (ii) and (iii) the
initial segments in question are unique.
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Proof. We shall construct an order isomorphism of one of these three types by a recursive
construction on the well-ordered set X. Let us first see the idea intuitively: We start by pairing
the least element of X with the least element of Y; and we go on, at every stage pairing the least
not-yet-paired-off element of X with the least not-yet-paired-off element of Y, until we run out
of elements of either X or Y or both.

Now in our formulation of recursive constructions in Lemma 4.3.4, we said nothing about
‘‘running out of elements’’. But we can use a trick to reduce the approach just sketched to a
recursion of the sort characterized by that lemma.

Form a set consisting of the elements of Y and one additional element which we shall
denote DONE. Given any x∈X, and any function f<x : {x ′ ∈X � x ′<x} → Y ∪ {DONE} , we
define r (x, f<x )∈Y∪ {DONE} as follows:

If the image of f<x is a proper initial segment of Y, let r (x, f<x ) be the least
element of Y not in that segment. Otherwise, let r (x, f<x ) = DONE.

By Lemma 4.3.4 this determines a function f : X → Y∪ {DONE} . It is straightforward to verify
inductively that for those x such that f (x) ≠ DONE, the restriction f≤x of f to {x ′ ∈X � x ′ ≤ x}
will be the only order isomorphism between that initial segment of X and any initial segment of
Y. From this we easily deduce that if the range of f does not contain the value DONE, exactly
one of conclusions (i) or (ii) holds, but not (iii); while if the range of f contains DONE, (iii)
holds but not (i) or (ii). In each case, f determines the unique order isomorphism with the
indicated properties. �

Exercise 4.5:2. Give the details of the last paragraph of the above proof.

Since the well-ordered sets fall into such a neat array of isomorphism classes, it is natural to
look for a way of choosing one ‘‘standard member’’ for each of these classes, just as the natural
numbers are used as ‘‘standard members’’ for the different sizes of finite sets. Recall that in the
von Neumann construction of the natural numbers, (4.4.1), each number arises as the set of all
those that precede it, so that we have i <j if and only if i∈j, and i ≤ j if and only if i⊆ j. In
particular, each natural number is a well-ordered set under this ordering. Let us take the von
Neumann natural numbers as our standard examples of finite well-ordered sets, and see whether we
can extend this family in a natural way to get models of infinite well-ordered sets.

Following the principle that each new object should be the set of all that precede, we use the set
of natural numbers as the standard example chosen from among the well-ordered sets which when
listed in the manner discussed at the beginning of this section have the form X = {x0 , x1, ... }
(with subscripts running over the natural numbers but nothing beyond those). Set theorists denote
this object

ω = {0, 1, 2, ... , i, ... } .

The obvious representative for those sets having an initial segment isomorphic to ω , and just one
element beyond that segment, is denoted

ω +1 = ω ∪ {ω} = {0, 1, 2, ... , i, ... ; ω } .

We likewise go on to get ω+2, ω+3 etc.. The element coming after all the ω+i’s (i∈ω) is
denoted ω+ω or ω2. (We will see later why it is not written ‘‘more naturally’’ as 2ω .) After
the elements ω2+i comes ω3; ... after all the elements of the form ω i (i∈ω) one has
ωω = ω2. In fact, one can form arbitrary ‘‘polynomials’’ in ω with nonnegative integer
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coefficients, and the set of these has just the order structure that was given to the polynomials with
such coefficients in Exercise 4.5:1 (though the integer coefficients in our ‘‘polynomials’’ in ω are
written on the right). Then the set of all these polynomials in ω is taken as the next standard
sample well-ordered set ... .

So far, we have been sketching an idea; let us make it precise. A terminological observation
first. If X is any well-ordered set, and α is the ‘‘standard’’ well-ordered set order-isomorphic to
it, then we have a natural way to index the elements of X by the members of α – i.e., by the
‘‘sample’’ well-ordered sets smaller than α . Thus, the well-ordered sets less than α serve as
generalizations of the sequence of words ‘‘first, second, third, ...’’ which are used in ordinary
language to index the elements of finite totally ordered sets. Hence, the term ordinals, used by
grammarians for those words, is used by mathematicians for the ‘‘standard samples of isomorphism
types of well-ordered sets’’. Now for the formal definition.

Definition 4.5.2. An ordinal (or von Neumann ordinal) is a set α such that γ ∈β∈α ⇒ γ∈α ,
and such that if β∈α and γ ∈α , then either β = γ, or β∈γ, or γ ∈β .

Observe that the first part of the definition says that the relation ‘‘∈’’ on the elements of an
ordinal is transitive; by the Regularity Axiom it is antisymmetric, hence it is a ‘‘strict partial
order’’ in the sense of the paragraph following Exercise 4.1:2; thus the weakened relation ‘‘∈ or
=’’ will be a partial order. The second condition in the above definition makes that relation a total
ordering, and by the Regularity Axiom, this will be a well-ordering. (If one does not assume the
Regularity Axiom, one adds to the definition of ordinal the two conditions we have just deduced
using that axiom.)

The ordinals themselves almost form a well-ordered set under the relation ‘‘∈ or =’’. The only
trouble is that they do not form a set! Here are the basic facts.

Proposition 4.5.3. (i) The class of all ordinals is not a set.

(ii) Every member of an ordinal is an ordinal.

(iii) If α and β are ordinals, then the following conditions are equivalent:

(a) α = β or α∈β ,

(b) α ⊆ β .

(iv) For any two ordinals α and β one has either α ⊆ β or β ⊆ α , and every nonempty
class of ordinals has a ‘‘⊆ -least’’ member. (In other words, the class of ordinals satisfies the
analog of the set-theoretic property of well-orderedness under ⊆ .) In particular, every ordinal,
and more generally every set of ordinals, is well-ordered under ⊆ .

(v) If α and β are ordinals, and α ⊆ β, then α is an initial segment of β. If it is a
proper initial segment, it is also the least element of β not in that initial segment.

(vi) The union of any set of ordinals is an ordinal.

(vii) Every well-ordered set has a unique order isomorphism with an ordinal.

Proof. We will put off (i) till near the end. (ii) follows immediately from the definition, as does
the implication (a)⇒(b) of (iii). To get the reverse implication, suppose the ordinal α is a proper
subset of the ordinal β , and let us show that it is a member of β . We observed above that β is
well-ordered under ‘‘∈ or =’’, so as α is closed under ∈, it will form an initial segment of β .
Let γ ∈β be the least element not belonging to this initial segment. By definition of the ordering
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of β , the members of γ are the elements smaller than it. But these are the elements of α , so
α = γ , proving (a). Note that we have also proved (v).

To show the first assertion of (iv), we shall show that given two ordinals α and β , their
intersection γ = α ∩β will coincide with one of them. If it did not, it would be a proper initial
segment of each, and by (v), it would then be a member of each, namely the first element not
belonging to that initial segment. But this would make γ a member of each of α and β but not
a member of α ∩β , an absurdity. To get the final assertion of the first sentence of (iv), let C be
a nonempty class of ordinals, take any β∈C, note that C ′ = {α ⊆β � α∈C} is a set of ordinals,
and apply Regularity to this set. The last sentence of (iv) is immediate.

From the first assertion of (iv) we easily see that the union of a set of ordinals will satisfy the
definition of an ordinal, i.e., (vi) holds. We can now get (i) : If there were a set of all ordinals, its
union would be an ordinal, hence a member of itself, contradicting Regularity.

To show (vii), let S be a well-ordered set. For convenience, let us form a new ordered set T
consisting of the elements of S, ordered as in S, and one additional element z, greater than
them all. It is immediate that T will again be well-ordered. I claim that for every t∈T, there is
a unique order-isomorphism between {s� s <t} and some (unique) ordinal. Indeed, if not, there
would be a least t for which this failed, and it is easy to check that the set of ordinals associated
with all the elements < t would then be order-isomorphic to {s� s <t} and would be the unique
ordinal with this property, again by a unique isomorphism, contradicting our assumption. In
particular, there is a unique order-isomorphism between {s� s <z } = S and an ordinal, as
required. �

Exercise 4.5:3. State the version of our definition of ordinal that one would use if one did not
assume the Regularity Axiom, and show how each use of that axiom in the proof of
Proposition 4.5.3 could be eliminated if that definition were assumed.

Exercise 4.5:4. Let α and β be ordinals. Show that if there exists a one-to-one isotone map
f : α → β , then α ≤ β .

Exercise 4.5:5. If P is a partially ordered set with DCC, let the height ht( p) of an element
p∈P be defined, recursively, as the least ordinal greater than the height of every element q < p,
and define the height of P to be the least ordinal greater than the height of every element of P.
(i) Show that the height function is the least strict isotone ordinal-valued function on P, and
that it has range precisely ht(P).
(ii) Show that for every ordinal α there exists a partially ordered set containing no infinite
chains, and having height α .
(iii) Suppose we define the chain height of P, chht(P), to be the least ordinal which cannot
be embedded in P by an isotone map, and chht( p) for p∈P as chht({q∈P � q <p}). What
can you establish about the relation between this function and the height function, defined above?

Since one considers ordinals to be ordered under the relation ⊆ , equivalently, ‘‘∈ or =’’, one
has the choice, in speaking about them, between writing ≤ and ⊆ , and likewise between < and
∈. Both the order-theoretic and the set-theoretic notation are used, sometimes mixed together.

For every ordinal α , there is a least ordinal greater than α , namely α ∪ {α} . This is called
the successor of α , and written α +1. ‘‘Most’’ ordinals are successor ordinals. Those, such as
0, ω , ω2, etc., which are not, are called limit ordinals. (Although 0 is, as I have just said,
logically a limit ordinal, and I will consider it such here, it is sometimes treated as a special case,
neither a successor nor a limit ordinal.)
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Exercise 4.5:6. Show that an ordinal is a limit ordinal if and only if it is the least upper bound of
all strictly smaller ordinals; equivalently, if and only if, as a set, it is the union of all its
members.

Now that we understand why ordinals in general, and natural numbers in particular, are defined
so that each ordinal is equal to the set of smaller ordinals, let us rescind the convention we set up
in §1.3, where, for the sake of familiarity, we said that an n-tuple of elements of a set S would
mean a function {1, ... , n} → S :

Definition 4.5.4. Throughout the remainder of these notes, n-tuples will be defined in the same
way as I-tuples for other sets I. That is, for n a natural number, an n-tuple of elements of a set
S will mean a function n → S, i.e., a family (s0 , s1 , ... , sn –1) (si ∈S). The set of all such
functions will be denoted Sn.

We have referred to ordinals denoted by symbols such as ω2, ω2+1, etc.. As this suggests,
there is an arithmetic of ordinals. If α and β are ordinals, α+β represents the ordinal which
has an initial segment α , and the remaining elements of which form a subset order-isomorphic to
β . This exists, since by putting an order-isomorphic copy of β ‘‘above’’ the ordinal α , one gets
a well-ordered set, and we know that there is a unique ordinal order-isomorphic to it. Similarly,
αβ represents an ordinal which is composed of a family of disjoint well-ordered sets, each order-
isomorphic to α , one above the other, with the order structure of the set of copies being that of
β . These operations are (of course) formally defined by recursion, as we will describe below.

Unfortunately, the formalization of recursion that we proved in Lemma 4.3.4 is not quite strong
enough for the present purposes, because in constructing larger ordinals from smaller ones, we will
not easily be able to give in advance a codomain set corresponding to the T of that lemma, and as
a result, we will not be able to precisely specify the function r required by that lemma either.
However, there is a version of recursion based on the Replacement Axiom (Fraenkel’s contribution
to Zermelo-Fraenkel set theory) which gets around this problem. Like that axiom, it assumes we
are given a construction which is not necessarily a function, because its range and domain are not
assumed to be sets, but which nonetheless uniquely determines one element given another. I will
not discuss this concept, but will state the result below. The proof is exactly like that of
Lemma 4.3.4, except that the Axiom of Replacement is used to carry out the final step of ‘‘piecing
together’’ the partial functions.

Lemma 4.5.5 (Cf. [18, Theorem 7.1.5, p.74]). Let X be a partially ordered set with descending
chain condition, and r a construction associating to every pair (x, f<x ), where x∈X and f<x
is a function with domain {y∈X � y <x}, a uniquely defined set r (x, f<x ). Then there exists a
unique function f with domain X such that for all x∈X, f (x) = r (x, f �{y� y <x}). �

We can now define the operations of ordinal arithmetic. For completeness we start with the
(nonrecursive) definition of the successor operation. Note that in each of the remaining (recursive)
definitions, the ordinal α is taken as ‘‘constant’’, and the ordinal over which we are doing the
recursion is written β or β +1.

Definition of the successor of an ordinal:

(4.5.6) β +1 = β ∪ {β} .
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Definition of addition of ordinals:

(4.5.7) α+0 = α , α+(β +1) = (α+β)+1, α+β = ∪γ <β α+γ for β a limit ordinal > 0.

Definition of multiplication of ordinals:

(4.5.8) α0 = 0, α(β +1) = (αβ)+α , αβ = ∪γ <β αγ for β a limit ordinal > 0.

Definition of exponentiation of ordinals:

(4.5.9) α0 = 1, α (β +1) = (αβ)α , αβ = ∪γ <β αγ for β a limit ordinal > 0.

Exercise 4.5:7. Definitions (4.5.7) and (4.5.8) do not look like the descriptions of ordinal addition
and multiplication sketched informally above. Show that they do in fact have the properties
indicated there.

Although the operations defined above agree with the familiar ones on the finite ordinals
(natural numbers), they have unexpected properties on infinite ordinals. Neither addition nor
multiplication is commutative:

1+ω = ω , but ω +1 > ω ,

2ω = ω , but ω2 > ω .

Exponentiation is also different from exponentiation of cardinals (discussed later in this section):

2ω = ω .

Students who have not seen ordinal arithmetic before should do:

Exercise 4.5:8. Prove the three equalities and two inequalities asserted above.

The formulas (4.5.7)-(4.5.9) define pairwise arithmetic operations. We can also define
arithmetic operations on families of ordinals indexed by ordinals. Let us record the case of
addition, since we will need this later. Given (αγ )γ ∈β , the idea is to define Σγ∈β αγ to be the
ordinal which, as a well-ordered set, is the union of a chain of disjoint subsets of order types αγ
(γ ∈β), in that order.

Definition of infinite ordinal addition:

(4.5.10)
Σγ∈0 αγ = 0, Σγ∈β +1 αγ = (Σγ∈β αγ ) +αβ ,

Σγ∈β αγ = ∪δ <β Σγ∈δ αγ for β a limit ordinal > 0.

Taking the αγ ’s all equal, we see that our recursive definition of Σβ αγ reduces to our
definition of multiplication or ordinals; thus

(4.5.11) Σγ∈β α = αβ .

Exercise 4.5:9. (i) Given an ordinal-indexed family of ordinals, (αγ )γ ∈β , let δ denote the
ordinal ∪γ∈β αγ (the supremum of the αγ ’s). Let P be the set β ×δ , lexicographically
ordered. Show that the ordinal Σγ∈β αγ is isomorphic as a well-ordered set to {(γ , ε) �
ε ∈αγ } ⊆ P.
(ii) Deduce from this a description of a well-ordered set isomorphic to the ordinal product α β
of two arbitrary ordinals.

This description clearly extends inductively to finite products I
��
I γ ∈β αγ (β<ω), leading,
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incidentally, to an easy proof of associativity of multiplication of ordinals. The extension of
these ideas to infinite products will be developed in a later exercise in this section.

We have seen that every well-ordered set is indexed in a canonical way by an ordinal, but we
do not yet know whether we can well-order every set. It turns out that we can do so if we assume
the Axiom of Choice. This is stated in the second point of the next lemma; the first point gives a
key argument (not requiring the Axiom of Choice) used in the proof.

Lemma 4.5.12. Let X be a set. Then

(i) There exists an ordinal α which cannot be put in bijective correspondence with any subset
of X; equivalently, such that for any well-ordering ‘‘ ≤ ’’ of any subset of Y ⊆ X, (Y, ≤) is
isomorphic to a proper initial segment of α .

(ii) Assuming the Axiom of Choice, X itself can be well-ordered.

Proof. The class of well-orderings of subsets of X is easily shown to be a set, hence by the
Replacement Axiom, the (unique) ordinals isomorphic to these various well-ordered sets form a set,
hence the union of this set is an ordinal β . Take α = β +1. By construction, any well-ordering of
a subset of X induces a bijection with an initial segment of β , which is a proper initial segment
of α , yielding the second formulation of (i). To get the first formulation of (i), note that if α
could be put in bijective correspondence with a subset of X, then the ordering of α would
induce a well-ordering of that subset, such that α was the unique ordinal isomorphic to that well-
ordered set, giving a contradiction to our preceding conclusion.

Assuming the Axiom of Choice, let us now take a function c which associates to every
nonempty subset Y ⊆ X an element c(y)∈Y. Let us recursively construct a one-to-one map from
some initial subset of the ordinal α of part (i) into X as follows: Suppose we have gotten a
function fβ from a proper initial segment β ⊂ α into X. If its image is X, we are done. If
not, we map the next element of α to c(X – image( fβ)). It is easy to verify by induction that
each map fβ is one-to-one. If this process went on to give a one-to-one map fα of α into X,
that would contradict (i). So instead, the construction must terminate at some step, which means
we must get a bijection between an initial segment of α and X, and hence a well-ordering of X,
proving (ii). (As in the proof of Lemma 4.5.1, our use of a recursion that terminates before we get
through all of α can be formalized by adjoining to X an element DONE.) �

Let us assume the Axiom of Choice for the rest of this section (though at the beginning of the
next section, we will again suspend this assumption).

Recall that two sets are said to have the same cardinality if they can be put in bijective
correspondence. We have shown that (assuming the Axiom of Choice), every set has the same
cardinality as an ordinal. This means we can use an appropriately chosen ordinal as a ‘‘standard
example’’ of each cardinality. In general, there are more than one ordinals of a given cardinality
(e.g., ω , ω +1, ω2 and ω2 are all countable), so the ordinal to use is not uniquely determined.
The obvious choice is that of the least ordinal of the given cardinality; so one makes

Definition 4.5.13. A cardinal is an ordinal which cannot be put into bijective correspondence with
a proper initial segment of itself.

For any set X, the least ordinal with which X can be put in bijective correspondence will be
denoted card(X ). Thus, this is a cardinal, and is the only cardinal with which X can be put in
bijective correspondence.
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There is an arithmetic of cardinals: If and λ are cardinals, +λ is defined as the
cardinality of the union of any two disjoint sets one of which has cardinality and the other
cardinality λ , λ as the cardinality of the direct product of a set of cardinality and a set of
cardinality λ , and λ as the cardinality of the set of all functions from a set of cardinality λ to
a set of cardinality . Unfortunately, if we consider the class of cardinals as a subset of the
ordinals, these are different operations from the ordinal arithmetic we have just defined! To

compare these arithmetics, let us temporarily use the notations α +ord β , α .
ord β and α

ordβ for

ordinal operations, and +cardλ , .
card λ and

cardλ for cardinal operations. A positive
statement we can make is that for cardinals and λ , the computation of their cardinal sum and
product can be reduced to that of their ordinal sum and product, by the formulas

(4.5.14) +card λ = card( +ord λ) and .
card λ = card( .

ord λ).

These are, in fact, cases of an equality true for any family of ordinals (αγ)γ ∈β :

(4.5.15) Σγ∈β
card card(αγ ) = card(Σγ∈β

ord αγ ).

On the other hand, the cardinality of an infinite ordinal product of ordinals is not in general
equal to the cardinal product of the cardinalities of these ordinals; in particular, cardinal

exponentiation does not in any sense agree with ordinal exponentiation: 2
cardω gives the

cardinality of the continuum, which is uncountable, while 2
ordω = ω . There is no standard

notation for distinguishing ordinal and cardinal arithmetic; authors either introduce ad hoc
notations, or say in words whether cardinal or ordinal arithmetic is meant, or rely on context to
show this.

Exercise 4.5:10. In this exercise we shall extend the results of Exercise 4.5:9, which characterized
the order-types of general sums and finite products of ordinals, to general products. (I have put
this off until now mainly so that we would have the notation to distinguish the ordinal product
I
��
I ord αγ from the set-theoretic product.) We will also note at the end a relation with cardinal

arithmetic. We need to begin with a generalization of lexicographic ordering.
Suppose (Xi )i∈I is a family of partially ordered sets, indexed by a totally ordered set I;

and let each Xi have a distinguished element, denoted 0 (or 0i if there is danger of
ambiguity). Define the support of (xi )∈ I

��
I I Xi as {i∈I � xi ≠ 0}, and let I

��
I I

w.o.s. Xi denote

the set of elements of I
��
I I Xi having well-ordered support. Similarly, let I

��
I I

f.s. Xi denote the
set of elements of finite support.
(i) Show that lexicographic order, which in Definition 4.3.7 was defined on I

��
I I Xi only for

I well-ordered, may be defined on I
��
I I

w.o.s. Xi for arbitrary totally ordered I, and that the
resulting ordering is total if each Xi is totally ordered.
(ii) Show that if I is reverse-well-ordered (has ascending chain condition) and if each Xi
has descending chain condition, and has 0 as least element, then I

��
I I

f.s. Xi has descending
chain condition under lexicographic ordering.
(iii) Let us now be given an ordinal-indexed family of ordinals, (αγ )γ ∈β . Write down the
definition of I

��
I ord
γ ∈β αγ analogous to (4.5.10). Verify that if any αγ is 0, your definition

gives the ordinal 0. In the contrary case, show that this ordinal is isomorphic to I
��
I f.s.
γ ∈βop αγ .

(Here βop denotes the set β , but with its ordering – used in defining lexicographic order on
our product – reversed. Note that ‘‘γ ∈βop’’ means the same as ‘‘γ ∈β’’. For the elements 0 in
the definition of I

��
I f.s., we take the ordinal 0∈αγ , which is why we need to assume all αγ

nonzero.)

(iv) Deduce a description of the order-type of α
ordβ , and conclude that card(α

ordβ) ≤
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α
cardβ .

You might also want to do
(v) Show by examples that (ii) above fails if any of the three hypotheses is deleted.

The concept of cardinality historically antedates the construction of the ordinals, so there is a
system of names for cardinals independent of their names as ordinals. The finite cardinals are, of
course, denoted by the traditional symbols 0, 1, ... . The least infinite cardinal is denoted ℵ0, the
next ℵ1, etc.. From our description of the cardinals as a subclass of the ordinals, we see that the
class of cardinals is ‘‘well-ordered’’ (which we write in quotes, as we did for the class of ordinals,
because this class is not a set). Hence today, having the concept of ordinal, one continues the
above set of symbols using ordinal subscripts: The α th cardinal after ℵ0 is written ℵα .

There is a further notation for cardinals ‘‘regarded as ordinals’’. Each ℵα , regarded as an
ordinal, is written ωα . Thus one writes ℵ0 = ω0 = ω , ℵ1 = ω1, etc..

Let us recall, without repeating the proofs here, some well-known properties of cardinal
arithmetic, though we will use them only occasionally.

Theorem 4.5.16. Letting , λ, etc., denote cardinals, and letting arithmetic notation denote
cardinal arithmetic , the following statements are true.

(i) For all , λ, μ,

+λ = λ + , λ = λ , ( +λ)μ = μ + λμ, λ+μ = λ μ, λ μ = ( λ)μ.

(ii) For sets Xi (i∈I ), card (∪ I Xi ) ≤ Σ card( Xi ).

(iii) If β ≤ λβ for all β∈α, then

Σα β ≤ Σα λβ , 0 1 ≤ λ0 λ1 , and, if 0 > 0, 0 1 ≤ λ0
λ1.

(iv) If ≤ λ and λ is infinite, then +λ = λ. If also > 0, then λ = λ. In particular,
ωω = ω, hence by (ii) and (iii), a countable union of countable sets is countable.

(v) 2 > . Equivalently, the power set of any set X has strictly larger cardinality than X.

Proof. See [26, pp. 17-21], or [28, appendix 2, §1 and exercises at the end of that appendix]. �

It is interesting that while the statement ωω = ω is easy to prove without the Axiom of
Choice (by describing an explicit bijection), its consequence, ‘‘a countable union of countable sets
is countable’’, requires that axiom, to enable us to choose bijections between the infinitely many
given countable sets, and the set ω .

Turning from arithmetic back to order properties, let me define a concept of interest in the
general study of ordered sets, and note a specific application to cardinals.

Definition 4.5.17. If X is a partially ordered set, then the cofinality of X means the least
cardinality of a cofinal subset Y ⊆ X (Definition 4.1.6).

A cardinal is called regular if, as an ordinal, it has cofinality . A cardinal that is not
regular is called singular.

Exercise 4.5:11. Show that if a partially ordered set X has cofinality , then every cofinal
subset Y ⊆ X also has cofinality .

10/8/98 Math 245

§4.5. Well-ordered sets and ordinals. 113



Exercise 4.5:12. Prove:
(i) Every cardinal of the form ℵα +1 (i.e., every cardinal indexed by a successor ordinal) is
regular.
(ii) The first infinite singular cardinal is ℵω .

The next exercise examines the class of regular cardinals within the class of ordinals.

Exercise 4.5:13. Let us call an ordinal α regular if there is no set map from an ordinal <α onto
a cofinal subset of α .
(i) Show that regular ordinals are ‘‘sparse’’, by verifying that the only regular ordinals are 0,
1, and the regular infinite cardinals.
(ii) On the other hand, we saw in point (i) of the preceding exercise that within the set of
infinite cardinals, the singular cardinals are sparse: They must be limit cardinals, i.e., cardinals
ωα such that α is a limit ordinal. (Nothing for you to do here – this point is numbered (ii)
only to show the sequence.)
(iii) Show that among the limit cardinals, regular cardinals are again sparse, by showing that if
ωα is regular and α is a limit ordinal, then α must be a cardinal; in fact, 0 or a cardinal
satisfying

= ω .

Show that the first cardinal satisfying that equation is the supremum of the chain (i ) (i∈ω)
defined by (0) = 0, (i+1) = ω (i ) , but that this cardinal is still not regular.

(Regular limit cardinals will come up again in §6.4.)

4.6. Zorn’s Lemma. Ordinals, together with the Axiom of Choice, give a powerful tool for
constructing non-uniquely-determined objects in most areas of mathematics. Consider the
following approach to such constructions:

Hoping to construct a certain kind of object, one considers ‘‘partial constructions’’. One
verifies that these form a set; hence there exists an ordinal α of greater cardinality than that of
this set. One then recursively maps an initial segment of α into the set of partial constructions.
The setting up of this recursion involves three tasks:

(i) Getting an ‘‘initializing’’ partial construction to which to map 0.

(ii) Specifying what to do at a successor ordinal: If one has built up one’s partial construction
through the stage indexed by α , and it is still not ‘‘finished’’, one shows that it can be extended
further, to give an α +1’st stage. The Axiom of Choice lets one choose, for each ‘‘unfinished’’
construction, an extension to use.

(iii) Specifying what to do at a nonzero limit ordinal α . In this case, one has a chain of
preceding partial constructions each extending the one before, and it is usually easy to verify that
their ‘‘union’’ (in the appropriate sense) is a (possibly partial) construction extending all of them.

Now note that if the resulting recursion did not lead to a ‘‘finished’’ construction at some step,
one would get a one-to-one map from α into the set of partial constructions, contradicting the
choice of α . Hence a finished construction must be obtained at some stage, as desired!

(Example: To show that an arbitrary vector space V has a basis B, one considers as ‘‘partial
constructions’’ arbitrary linearly independent subsets of V. One can begin with the linearly
independent subset B0 = ∅. If the subset Bα one has obtained at a given stage does not span
V, there will be some element ∈V outside the span of Bα , and we can take Bα+1 to be
Bα ∪ { } , and verify that this is linearly independent. If α is a limit ordinal, we let Bα be the
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set-theoretic union of the chain of subsets Bβ (β∈α), and verify linear independence for this set.
The preceding argument then shows that we will eventually get a linearly independent subset which
cannot be extended, i.e., which spans V, as desired.)

In view of the ubiquity of this pattern, it is natural to look for a lemma that will do the
repetitious part once and for all, and show us what needs to be proved separately for each case. In
formulating this lemma, let us render the set of all ‘‘partial constructions’’ by a partially ordered
set (X, ≤), where ≤ is thought of as the relation of one construction being a ‘‘part of’’ another.
The condition we need to initialize our recursion ((i) above) is that X be nonempty. To say that
we can extend a partial construction further if it is not yet ‘‘finished’’ ((ii) above) is to say that if
X has any maximal element, this is an object of the sort we desire. Finally, the condition we need
to be able to continue at steps indexed by limit ordinals, namely, that given a chain of partial
constructions we can pass to one which includes them all ((iii) above), is made the content of a
definition:

Definition 4.6.1. A partially ordered set X is called inductive if for every nonempty chain
Y ⊆ X, there is an element z∈X majorizing Y (i.e., ≥ all elements of Y ).

We can now state the desired result, Zorn’s Lemma, and show that it and a number of other
statements are equivalent to the Axiom of Choice.

Theorem 4.6.2. Assuming the axioms of Zermelo-Fraenkel set theory (but not the Axiom of
Choice), the following four statements are equivalent:

(i) The Axiom of Choice: If X is a set, and f is a function associating to every x∈X a
nonempty set f (x), then there exists a function g associating to every x∈X an element
g(x)∈ f (x). (Equivalently: the direct product of any family of nonempty sets is nonempty.)

(ii) Zorn’s Lemma: Every nonempty inductive partially ordered set (X, ≥) has a maximal
element.

(iii) The Well-ordering Principle: Every set can be well-ordered. (Equivalently: every set can
be put in bijective correspondence with an ordinal.)

(iv) Comparability of Cardinalities: Given any two sets X and Y, one of the sets can be put
in bijective correspondence with a subset of the other. (Loosely: the class of cardinalities is totally
ordered.)

Proof. The scheme of proof will be (iv)⇔(iii)⇔(i)⇔(ii). That the parenthetical restatement of
(iii) is equivalent to the main statement follows from Proposition 4.5.3(vii).

(iv)⇔(iii) : Assuming (iv), let X be any set and α an ordinal with the property stated in the
first assertion of Lemma 4.5.12. By (iv), there is either a bijection between X and a subset of α ,
or vice versa. By choice of α , the latter case cannot occur, so there is a bijection between X
and a subset S ⊆ α . Since α is well-ordered, so is every subset, and the well-ordering of S
induces a well-ordering of X, proving (iii). Assuming (iii), statement (iv) follows from the
comparability of ordinals (Proposition 4.5.3(iv)).

(iii)⇔(i) : We proved (i)⇒(iii) in Lemma 4.5.12. Conversely, assume (iii). Given X and f
as in (i), statement (iii) tells us that we can find a well-ordering ≤ on the set ∪x∈X f (x). We
now define g to take each x to the ≤-least element of f (x). (In terms of the axioms, we are
using the Replacement Axiom to construct {(x, y) � x∈X and y is the least element of f (x)} .
This set of pairs, regarded as a function, is the desired g.)
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(i)⇒(ii) : Let (X, ≤) be a nonempty inductive partially ordered set, and let us choose as in
Lemma 4.5.12 an ordinal α which cannot be put in bijective correspondence with any subset of
X. Note that the combination of conditions ‘‘inductive’’ and ‘‘nonempty’’ is equivalent to saying
that for every chain C ⊆ X, including the empty chain, there is an element ≥ all members of C.
By (i), we may choose a function g associating to every nonempty subset of X a member. We
will now recursively define an isotone map f : α → X. Assuming that for some β∈α we have
defined an isotone map f<β : β → X, observe that its image will be a chain Cβ ⊆ X. If the set
Yβ of elements of X greater than all members of Cβ is nonempty, we define f (β) = g(Yβ ). In
the contrary case, the hypothesis that X is inductive still tells us that there is an element ≥ all
members of Cβ . We conclude that such an element must be equal to some member of Cβ ,
which means that the chain has a largest element, c. In this case, we take f (β) = c. Note that in
this case c must be maximal in X, for if not, any element of X greater than it would be greater
than all elements of Cβ , contradicting our assumption that Yβ was empty.

By choice of α , the map f we have constructed cannot be one-to-one, but by the nature of
our construction, the only situation in which one-one-ness fails is if at some point we get a
maximal element of X. Thus X has a maximal element, as claimed.

(ii)⇒(i) : This will be a typical application of Zorn’s Lemma. Let X and f be given as in
(i). Let P be the set of all maps defined on subsets Y ⊆ X and carrying each x∈Y to an
element of f (x). Partially order P by setting g1 ≥ g0 if g1 is an extension of the map g0. P
is nonempty because it contains the empty mapping; it is easy to see that given any chain C of
elements of P under the indicated partial ordering, the union of C will be an element of P that
is ≥ all elements of C, hence P is inductive. Thus it has a maximal element g. This maximal
element must be a function defined on all of X (otherwise we could extend it further), completing
the proof of (i). �

Convention 4.6.3. Throughout the remainder of these notes, we shall assume the Axiom of
Choice along with the other axioms of ZFC, and thus freely use any of the equivalent statements of
the preceding theorem.

Of these equivalent formulations, Zorn’s Lemma is usually the most convenient.

Note that in the last paragraph of the above proof, our verification that P was nonempty was
by the same method used to show that every nonempty chain had an upper bound: To show the
latter, we used the union of the chain, while to get an element of P we took the empty function,
which is the union of the empty chain. It is my experience that in most proofs by Zorn’s Lemma,
the verification of nonemptiness may be achieved by the same construction that shows every
nonempty chain has an upper bound; i.e., the assumption ‘‘nonempty’’ is not really used in that
verification. Hence my personal preference would be to use a definition of ‘‘inductive’’ that
required every chain to have an upper bound, and eliminate ‘‘X nonempty’’ as a separate
hypothesis of Zorn’s Lemma. (Of course, in some exceptional cases, the verification that all chains
have upper bounds may have to treat empty and nonempty chains separately. But in fact, I notice
that even in the common situation where the same verification works for both cases, many authors
are apparently embarrassed to use the most trivial example to show the set is nonempty, and
unnecessarily give a more complicated one instead.) For conformity with common usage, I have
stated Zorn’s Lemma above in terms of the standard definition of ‘‘inductive’’. But we may, at
times, skip a separate verification that our inductive set is nonempty, and instead observe that some
construction gives an upper bound for any chain, empty or nonempty.
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Exercise 4.6:1. We saw in Exercise 4.1:10 that the maximal partial orderings on a set X were the
total orderings. Deduce now for arbitrary X (as we were able to deduce there for finite X )
that
(i) Every partial ordering can be extended to a total ordering.
(ii) Every partial ordering is an intersection of total orderings.

Exercise 4.6:2. (i) If X is a totally ordered set, show that X has a subset Y well-ordered
under the induced ordering, and cofinal in X (Definition 4.1.6).
(ii) Show that the Y of (i) can be taken order-isomorphic to a regular cardinal
(Exercise 4.5:12), and that this cardinal is unique. However show that, even under these
conditions, the set Y is not in general unique, and that if the condition of regularity is dropped,
uniqueness of the cardinal is also lost.
(iii) Prove that every partially ordered set has a cofinal subset with descending chain condition.

Exercise 4.6:3. For a partially ordered set X, show that the following conditions are equivalent:
(i) X has no maximal element.
(ii) X has two disjoint cofinal subsets.

The next exercise is an example where the ‘‘obvious’’ Zorn’s Lemma proof does not work.
The simplest valid proof in this case is by the well-ordering principle, which is not surprising since
it is a result about well-orderability. However, this can also be turned into a Zorn’s Lemma proof,
if one is careful.

Exercise 4.6:4. Let X be a set, let P be the set of partial order relations on X, partially
ordered by inclusion as in Exercise 4.1:10, and let Q ⊆ P consist of those partial orderings
having descending chain condition.
(i) Show that the maximal elements of Q (under the partial ordering induced from P) are
the well-orderings of X.
(ii) Show that Q is not inductive.
(iii) Prove nonetheless that every element of Q is majorized by a maximal element, and
deduce that every partial ordering with DCC on a set X is an intersection of well-orderings.
(Hint: Take an appropriate ordinal α and construct an indexing of the elements of X by an
initial segment of α , in a way ‘‘consistent’’ with the partial order.)

The next three exercises, though not closely related to Zorn’s Lemma, explore further the
relation between partially ordered sets and their well-ordered subsets.

Exercise 4.6:5. Let S be an infinite set, and P(S) the set of all subsets of S, partially ordered
by inclusion. Show by example that P(S) can contain chains of cardinality > card(S), but
prove that P(S) can never contain a well-ordered chain of cardinality > card(S).

Exercise 4.6:6. (i) Show that every infinite totally ordered set has either a subset order-
isomorphic to ω or a subset order-isomorphic to ωop.
(ii) Show that every infinite partially ordered set P contains either a subset order-isomorphic
to ω , a subset order-isomorphic to ωop, or an infinite antichain (Definition 4.1.6).
(Suggestion: If P has no infinite antichain, obtain a finite antichain B ⊆ P maximal for the
property that the set S of elements incomparable with all elements of B is infinite; then study
the properties this S must have. Alternatively, do the same thing with the roles of comparable
and incomparable elements reversed.)

This family of three partially ordered sets is essentially unique for the above property:
(iii) Show that a set F of infinite partially ordered sets has the property that every infinite
partially ordered set contains an isomorphic copy of a member of F if and only if F contains a
partially ordered set order-isomorphic to ω , a partially ordered set order-isomorphic to ωop,
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and a countable antichain.

An application of the preceding exercise is

Exercise 4.6:7. Let P be a partially ordered set.
(i) Show that the following conditions are equivalent:

(i.a) P contains no chains order-isomorphic to ωop.
(i.b) Every infinite subset of P contains either a subset order-isomorphic to ω , or an
infinite antichain.
(i.c) P satisfies the descending chain condition.

(ii) It is clear from (i) above that conditions (ii.a)-(ii.c) below are equivalent. Show that they
are also equivalent to (ii.d) :

(ii.a) P contains no chains order-isomorphic to ωop, and no infinite antichains.
(ii.b) Every infinite subset of P contains a subset order-isomorphic to ω .
(ii.c) P has descending chain condition, and contains no infinite antichains.
(ii.d) Every total ordering extending the ordering of P is a well-ordering.

A partially ordered set P with the equivalent properties of (ii) is sometimes called ‘‘partially
well-ordered’’.

The first part of the next exercise notes that for uncountable cardinalities, things are more
complicated.

Exercise 4.6:8. (i) Deduce from Exercise 4.6:5 that one can have a totally ordered set P of
some infinite cardinality which contains no well-ordered or reverse-well-ordered subset of
cardinality .
(ii) Suppose P is as in (i), and ϕ is a bijection between P and a well-ordered set Q of
cardinality . Consider {( p, ϕ( p)) � p∈P } , under the partial ordering induced by the product
ordering on P ×Q. Show that this has neither chains nor antichains of cardinality (in
contrast to the result of Exercise 4.1:9 for finite partially ordered sets).

But perhaps one can repair this deficiency. (I have not thought hard about the next question.)
(iii) Exercise 4.1:9 was based on defining the ‘‘height’’ of a partially ordered set as the

supremum of the cardinalities of its chains; but a different concept of ‘‘height’’ was introduced
for partially ordered sets with descending chain condition in Exercise 4.5:5. Can this definition
be extended in some way to general partially ordered sets, or otherwise modified, so as to get an
analog of Exercise 4.1:9 for partially ordered sets of arbitrary cardinality? (Or can the definition
of ‘‘width’’ be so modified?)

For a curious application of the well-ordering principle to the study of abelian groups, see the
first section of [36].

4.7. Some thoughts on set theory. I have mentioned that when the Axiom of Choice and various
equivalent principles were first considered, they were the subject of a heated controversy.

The Axiom of Choice is now known to be independent of the other axioms of set theory; i.e., it
has been proved that, assuming the consistency of the Zermelo-Fraenkel axioms without Choice,
both the full set of axioms including Choice, and the Zermelo-Fraenkel axioms plus the negation of
the Axiom of Choice are consistent. And there are further statements (for instance the Continuum
Hypothesis, saying that 2ℵ0 = ℵ1) which have been shown independent of Zermelo-Fraenkel set
theory with the Axiom of Choice, and which there do not seem to be any reasons either for
accepting or rejecting. This creates the perplexing question of what is the ‘‘true’’ set theory.

Alongside Zermelo-Fraenkel Set Theory with and without Choice, etc., there are further
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contenders for the ‘‘correct’’ foundations of mathematics. The Intuitionists objected not only to the
Axiom of Choice, but to the ‘‘law of the excluded middle’’, the logical principle that every
meaningful statement is either true or false. They claimed (if I understand correctly) that an
assertion such as Fermat’s Last Theorem (the statement that there are no nontrivial integer solutions
to xn + yn = zn, n > 2, which was unproven at the time) could be said to be false if a
counterexample were found, or true if an argument could be found (using forms of reasoning
acceptable to them) that proved it, but that it would be neither true nor false if neither a
counterexample nor a proof existed. They maintained that the application of the law of the
excluded middle to statements which involve infinitely many cases, and which thus cannot be
checked case by case, was a fallacious extension to infinite sets of a method correct only for finite
sets; in their words, that one cannot so reason about an infinite set such as the set of natural
numbers, because it cannot be regarded as a ‘‘completed totality’’.

Although this viewpoint is not current, note that the distinction between sets and proper classes,
which got mathematics out of the paradoxes that came from considering ‘‘the set of all sets’’,
leaves us wondering whether the class of all sets is ‘‘a real thing’’; and indeed one current textbook
on set theory refers to this in terms of the question of whether mathematicians can consider such
classes as ‘‘completed totalities’’.

During a painfully protracted correspondence with someone who insisted he could show that
Zermelo-Fraenkel set theory was inconsistent, and that the fault lay in accepting infinite sets, which
he called ‘‘mere phantasms’’, I was forced to think out my own view of the matter, and the
conclusion I came to is that all sets, finite and infinite, are ‘‘phantasms’’; that none of mathematics
is ‘‘real’’, so that there is no true set theory; but that this does not invalidate the practice of
mathematics, or the usefulness of choosing a ‘‘good’’ set theory.

To briefly explain this line of thought, let us understand the physical world to be ‘‘real’’. (If
your religious or philosophical beliefs say otherwise, you can nevertheless follow the regression to
come.)

Our way of perceiving the world and interacting with it leads us to partition it into ‘‘objects’’.
This partitioning is convenient, but is not a ‘‘real thing’’.

To deal intelligently with objects, we think about families of objects, and, as our thinking gets
more sophisticated, families of such families. Though I do not think the families, and families of
families, are ‘‘real things’’, they are useful, as descriptions of the way we classify the world.

Consider in particular our system of numbers, which are themselves not ‘‘real things’’, but
which give models that allow us to use one coherent arithmetic system to deal with the various
things in the world that one can count. Note that in spite of this motivation in terms of things one
can count, in developing the numbers we use a system that is not bounded by the limitations of
how high a person could count in a lifetime. A system with such a limitation arbitrarily imposed
would be more difficult to define, learn, and work with than our system, in which the behavior of
arithmetic is uniform for arbitrarily large values! Moreover, our unbounded system turns out to
have applications to situations that a system bounded in that way would not be able to deal with: to
demographic, geographical, astronomical and other data, which we compute from observations and
theoretical models of our world, though no one human being could have counted the numbers
involved unit by unit.

Now in thinking about our system of numbers, we are dealing with the concept of ‘‘all the
numbers in the system’’ – even those who refuse to call that family a ‘‘completed totality’’ do
reason about it – so, if possible, we want our set theory to be able to cover such concepts. Just as
we found it natural to extend the system of numbers beyond the sizes of sets a real person could
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count, so we may extend our system of ‘‘sets’’ beyond finite sets. This is not as simple as with the
number-concept. Some plausible approaches turned out to lead to contradictions, e.g., those that
allowed one to speak of ‘‘the set of all sets’’. Among those approaches that do not lead to
contradictions, some are more convenient than others. I think we are justified in choosing a more
convenient system to work in – one in which the ‘‘unreal objects’’ that we are considering are
easier to understand and generalize about.

It may seem pointless to work in a set theory which is to some extent ‘‘arbitrary’’, and to which
we do not ascribe absolute ‘‘truth’’. But observe that as long as we use a system consistent with
the laws of finite arithmetic, any statements we can prove in our system about arithmetic models of
aspects of the real world, and which can in principle be confirmed or disproved in each case by a
finite calculation, will be correct; i.e., as valid as those models are. This is what I see as the
‘‘justification’’ for including the Axiom of Choice and other convenient axioms in our set theory.

Note also that making one choice among set theories or systems of reasoning does not consign
all others to oblivion. Logicians do consider which statements hold if the Axiom of Choice is
assumed and which hold if its negation is assumed. (E.g., [63] shows that in a model of ZF
without Choice, one can have commutative rings with properties contradicting several standard
theorems of ZFC ring theory.) Even intuitionistic logic is still studied – not, nowadays, as a
preferred mode of reasoning, but as a formal system, related to objects called Brouwerian lattices
(cf. [4]) in the same way standard logic is related to Boolean algebras.
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Chapter 5. Lattices, closure operators, and Galois connections.

5.1. Semilattices and lattices. Many of the partially ordered sets P we have seen have a further
valuable property: that for any two elements of P, there is a least element ≥ both of them, and a
greatest element ≤ both of them, i.e., a least upper bound and a greatest lower bound for the pair.
In this section we shall study partially ordered sets with this property. To get a better
understanding of the subject, let us start by looking separately at the properties of having least
upper bounds and of having greatest lower bounds.

Recall that an element x is said to be idempotent with respect to a binary operation * if
x*x = x. The binary operation * itself is often called idempotent if x*x = x holds for all x.

Lemma 5.1.1. Suppose X is a partially ordered set in which every two elements x, y ∈X have a
least upper bound; that is, such that there exists a least element which majorizes both x and y.
Then if we write this least upper bound as x∨y, and regard ∨ as a binary operation on X, this
operation will satisfy the identities

(∀x) x∨x = x (idempotence),

(∀x, y) x∨y = y∨x (commutativity),

(∀x, y, z) (x∨y)∨z = x∨(y∨z) (associativity).

Conversely, given a set X with a binary operation ∨ satisfying the above three identities,
there is a unique partial order relation ≤ on X for which ∨ is the least upper bound operation.
This relation ≤ may be recovered from the operation ∨ in two ways: It can be constructed as

{(x, x∨y) � x, y ∈X },

or characterized as the set of elements satisfying an equation:

{(x, y) � y = x∨y}. �

Exercise 5.1:1. Prove the non-obvious part of the above lemma, namely that every idempotent
commutative associative binary operation on a set arises from a partial ordering with least upper
bounds. Show that uniqueness of this partial ordering follows from one of the ‘‘straightforward’’
parts of the lemma.

Hence we make

Definition 5.1.2. An upper semilattice means a pair S = ( |S |, ∨), where |S | is a set, and ∨
(read ‘‘join’’) is an idempotent commutative associative binary operation on |S |. Loosely, the
term ‘‘upper semilattice’’ will also be used for the equivalent structure of a partially ordered set in
which every pair of elements has a least upper bound.

Given an upper semilattice ( |S |, ∨), we shall consider |S | as partially ordered by the unique
ordering which makes ∨ the least upper bound operation (characterized in two equivalent ways in
the above lemma). The set |S | with this partial ordering is sometimes called the ‘‘underlying
partially ordered set’’ of the upper semilattice S.

The join of a finite nonempty family of elements xi (i ∈I ) (which by the associativity and
commutativity of the join operation ∨ makes sense without specification of an order or bracketing
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for the elements, and which is easily seen to give the least upper bound of {xi } in the natural
partial ordering) is denoted ∨i ∈I xi .

The confusion caused by the symmetry of the partial order concept is now ready to rear its
head! Observe that in a partially ordered set in which every pair of elements x, y has a greatest
lower bound x∧y, the operation ∧ will also be idempotent, commutative and associative (it is
simply the operation ∨ for the opposite partially ordered set), though the partial ordering is
recovered from it in the opposite way, by defining x ≤ y if and only if x can be written y∧z,
equivalently, if and only if x = x∧y. We have no choice but to make a formally identical
definition for the opposite concept (first half of the first sentence below):

Definition 5.1.3. A lower semilattice means a pair S = ( |S |, ∧), where |S | is a set and ∧ (read
‘‘meet’’) is an idempotent commutative associative binary operation on |S |; or loosely, the
equivalent structure of a partially ordered set in which every pair of elements has a greatest lower
bound. If ( |S |, ∧) is such a pair, regarded as a lower semilattice, then |S | will be considered
partially ordered in the unique way which makes ∧ the greatest lower bound operation.

The notation for the meet of a finite nonempty family of elements is ∧ i ∈I xi .

A partially ordered set (X, ≤) in which every pair of elements x and y has both a least
upper bound x∨y and a greatest lower bound x∧y is clearly determined by the 3-tuple L =
(X, ∨, ∧). We see that a 3-tuple consisting of a set, an upper semilattice operation, and a lower
semilattice operation arises in this way if and only if these operations are compatible, in the sense
that the unique partial ordering for which ∨ is the least-upper-bound operation coincides with the
unique partial ordering for which ∧ is greatest-lower-bound operation.

Is there a nice formulation for this compatibility condition? The statement that for any two
elements x and y, the element y can be written x∨z for some z if and only if the element x
can be written y∧w for some w would do, but it is awkward. If, instead of using as above the
descriptions of how to construct all pairs (x, y) with x ≤ y in terms of the operations ∨ and ∧,
we use the formulas that characterize them as solution-sets of equations, we get the condition that
for all elements x and y, y = x∨y ⇔ x∧y = x. But the best expression for our condition – one
that does not use any ‘‘can be written’’s or ‘‘⇔’’s – is obtained by playing off one description of
∨ against the other description of ∧. This is the fourth pair of equations in

Definition 5.1.4. A lattice will mean a 3-tuple L = ( |L|, ∨, ∧) satisfying the following identities
for all x, y, z ∈ |L|:

x∨x = x x∧x = x (idempotence),

x∨y = y∨x x∧y = y∧x (commutativity),

(x∨y)∨z = x∨(y∨z) (x∧y)∧z = x∧(y∧z) (associativity),

x∧(x∨y) = x x∨(x∧y) = x (compatibility),

in other words, such that ( |L|, ∨) is an upper semilattice, ( |L|, ∧) is a lower semilattice, and
these two semilattices have the same natural partial ordering. Loosely, the term will also be used
for the equivalent structure of a partially ordered set in which every pair of elements has a least
upper bound and a greatest lower bound.

Given a lattice ( |L|, ∨, ∧), we shall consider |L| partially ordered by the unique partial
ordering (characterizable in four equivalent ways) which makes its join operation the least upper
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bound and its meet operation the greatest lower bound. The set |L| with this partial ordering is
sometimes called the ‘‘underlying partially ordered set of L’’.

Examples: If S is a set, then the power set P(S) (the set of all subsets of S), partially
ordered by the relation of inclusion, has least upper bounds and greatest lower bounds, given by the
union and intersection operations on sets; hence (P(S), ∪, ∩) is a lattice. Since the definition of
Boolean algebra was modeled on the structure of the power set of a set, every Boolean algebra
( |B|, ∪, ∩, c, 0, 1) gives a lattice ( |B|, ∪, ∩) on dropping the last three operations; and since we
know that Boolean rings are equivalent to Boolean algebras, every Boolean ring ( |B|, +, ., –, 0, 1)
becomes a lattice under the operations x∨y = x+y+xy and x∧y = xy.

Every totally ordered set – for instance, the real numbers – is a lattice, since the larger and the
smaller of two elements will respectively be their least upper bound and greatest lower bound. The
set of real-valued functions on any set X may be ordered by writing f ≤ g if f (x) ≤ g(x) for all
x, and this set is a lattice under pointwise maximum and minimum.

Under the partial ordering by divisibility, the set of positive integers has least upper bounds and
greatest lower bounds, called ‘‘least common multiples’’ and ‘‘greatest common divisors’’. Note
that if we represent a positive integer by its prime factorization, and consider such a factorization
as a function associating to each prime a nonnegative integer, then least common multiples and
greatest common divisors reduce to pointwise maxima and minima of these functions.

Given a group G, if we order the set of subgroups of G by inclusion, then we see that for
any two subgroups H and K, there is a largest subgroup contained in both, gotten by intersecting
their underlying sets, and a smallest subgroup containing both, the subgroup generated by the union
of their underlying sets. So the set of subgroups of G forms a lattice, called the subgroup lattice
of G. This observation goes over word-for-word with ‘‘group’’ replaced by ‘‘monoid’’, ‘‘ring’’,
‘‘vector space’’, etc..

Some writers use ‘‘ring-theoretic’’ notation for lattices, writing x+y for x∨y, and xy for
x∧y. Note, however, that a nontrivial lattice is never a ring (its join operation cannot be a group
structure). We will not use such notation here.

Although one can easily draw pictures of partially ordered sets and semilattices which are not
lattices, it takes a bit of thought to find naturally occurring examples. The next exercise notes a
couple of these.

Exercise 5.1:2. (i) If G is an infinite group, show that within the lattice of subgroups of G,
the finitely generated subgroups form an upper semilattice under the induced order, but not
necessarily a lower semilattice, and the finite subgroups form a lower semilattice but not
necessarily an upper semilattice. (For partial credit you can verify the positive assertions; for
full credit you must find examples establishing the negative assertions as well.)
(ii) Let us partially order the set of polynomial functions on the unit interval [0, 1] by
pointwise comparison ( f ≤ g if and only if f (x) ≤ g(x) for all x ∈[0, 1]). Show that this
partially ordered set is neither an upper nor a lower semilattice.

Exercise 5.1:3. Give an example of a 3-tuple ( |L|, ∨, ∧) which satisfies all the identities defining
a lattice except for one of the two compatibility identities. If possible, give a systematic way of
constructing such examples. Can you determine for which upper semilattices ( |L|, ∨) there will
exist operations ∧ such that ( |L|, ∨, ∧) satisfies all the lattice identities except the specified
one? (The answer will depend on which identity you leave out; you can try to solve the problem
for one or both cases.)
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Exercise 5.1:4. Show that the two compatibility identities in Lemma 5.1.1 together imply the two
idempotence identities.

Exercise 5.1:5. Show that an element of a lattice is a maximal element if and only if it is a
greatest element. Is this true in every upper semilattice? In every lower semilattice?

A homomorphism of lattices, upper semilattices, or lower semilattices means a map of their
underlying sets which respects the lattice or semilattice operations. If L1 and L2 are lattices,
one can speak loosely of an ‘‘upper semilattice homomorphism L1 → L2’’, meaning a map of
underlying sets which respects joins but not necessarily meets; this is really a homomorphism
(L1)∨ → (L2)∨ , where (Li )∨ denotes the upper semilattice ( |Li |, ∨) gotten by forgetting the
operation ∧; one may similarly speak of ‘‘lower semilattice homomorphisms’’ of lattices. Note
that if f : |L1| → |L2| is a lattice homomorphism, or an upper semilattice homomorphism, or a
lower semilattice homomorphism, it will be an isotone map with respect to the natural order-
relations on |L1| and |L2|, but in general, an isotone map f need not be a homomorphism of
any of these sorts.

A sublattice of a lattice L is a lattice whose underlying set is a subset of |L| and whose
operations are the restrictions to this set of the operations of L. A subsemilattice of an upper or
lower semilattice is defined similarly, and one can speak loosely of an upper or lower
subsemilattice of a lattice L, meaning a subsemilattice of L∨ or L∧ .

Exercise 5.1:6. (i) Give an example of a subset S of the underlying set of a lattice L such
that every pair of elements of S has a least upper bound and a greatest lower bound in S under
the induced ordering, but such that S is not the underlying set of either an upper or a lower
subsemilattice of L.
(ii) Give an example of an upper semilattice homomorphism between lattices that is not a
lattice homomorphism.
(iii) Give an example of a bijective isotone map between lattices which is not an upper or
lower semilattice homomorphism.
(iv) Show that a bijection between lattices is a lattice isomorphism if either (a) it is an upper
(or lower) semilattice homomorphism, or (b) it and its inverse are both isotone.

Exercise 5.1:7. Let k be a field. If V is a k-vector space, then the cosets of subspaces of V,
together with the empty set, are called the affine subspaces of V.
(i) Show that the affine subspaces of a vector space form a lattice.
(ii) Suppose we map the set of affine subspaces of the vector space kn into the set of vector
subspaces of kn+1 by sending each affine subspace A ⊆ kn to the vector subspace of kn+1

spanned by {(1, x0, ... , xn–1) � (x0, ... , xn–1) ∈A}. We may ask whether this map respects
meets and/or joins. Show that it respects one of these, and respects the other in ‘‘most but not
all’’ cases, in a sense you should make precise.

(The study of the affine subspaces of kn is called n-dimensional affine geometry. By the
above observations, the geometry of the vector subspaces of kn+1 may be regarded as a slight
extension of n-dimensional affine geometry; this is called n-dimensional projective geometry. In
view of the relation with affine geometry, the 1-dimensional subspaces of kn+1 are called
‘‘points’’ of projective n-space, the 2-dimensional subspaces, regarded as sets of points, are
called ‘‘lines’’, etc..)

The methods introduced in Chapters 2 and 3 can clearly be used to establish the existence of
free lattices and semilattices, and of lattices and semilattices presented by generators and relations.
As in the case of semigroups, a ‘‘relation’’ means a statement equating two terms formed from the
given generators using the available operations – in this case, the lattice or semilattice operations.
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Exercise 5.1:8. (i) If P is a partially ordered set, show that there exist universal examples of
an upper semilattice, a lower semilattice, and a lattice, with isotone maps of P into their
underlying partially ordered sets, and that these may be constructed as semilattices or lattices
presented by appropriate generators and relations.
(ii) Show likewise that given any upper or lower semilattice S, there is a universal example
of a lattice with an upper, respectively lower semilattice homomorphism of S into it.
(iii) If the S of point (ii) above ‘‘is a lattice’’ (has both least upper bounds and greatest lower
bounds), will this universal semilattice homomorphism be an isomorphism?
(iv) Show that the universal maps of (i) and (ii) above are in general not surjective, and
investigate whether each of them is in general one-to-one.

Exercise 5.1:9. Determine a normal form or other description for the free upper semilattice on a
set X. Show that it will be finite if X is finite.

There exists something like a normal form theorem for free lattices [4, §VI.8], but it is much
less trivial than the result for semilattices referred to in the above exercise, and we will not develop
it here. However, the next exercise develops a couple of facts about free lattices.

Exercise 5.1:10. (i) Determine the structures of the free lattices on 0, 1, and 2 generators.
(ii) Show for some positive integer n that the free lattice on n generators is infinite. (One
approach: In the lattice of affine subsets of the plane R2 (Exercise 5.1:7), consider the
sublattice generated by the five lines x = 0, x = 1, x = 2, y = 0, y = 1.)

Exercise 5.1:11. (i) Recall (Exercise 4.1:5) that a set map X → Y induces maps P(X ) →
P(Y ) and P(Y ) → P(X ). Show that one of these is always, and the other is not always a
lattice homomorphism.
(ii) If L is a lattice (respectively, an upper semilattice, a lower semilattice, a partially ordered
set), show that there exists a universal example of a set X and a lattice homomorphism
L → (P(X ), ∪, ∩) (respectively an upper semilattice homomorphism L → (P(X ), ∪), a lower
semilattice homomorphism L → (P(X ), ∩), an isotone map L → (P(X ), ⊆)). (First formulate
the proper universal properties, bearing in mind the answer to part (i).) Describe the set X as
explicitly as you can in each case.
(iii) In which of the above cases can you show the map |L| → P(X ) one-to-one? In the
case(s) where you cannot prove this, can you find an example in which it is not one-to-one?

In Exercise 4.6:3, we saw that any partially ordered set without maximal elements has two
disjoint cofinal subsets. Let us examine what similar results hold for lattices.

Exercise 5.1:12. Let L be a lattice without greatest element.
(i) If L is countable, show that it contains a cofinal chain, that this chain will have two
disjoint cofinal subchains, and that these will be disjoint cofinal sublattices of L.
(ii) Show that in general, L may not have a cofinal chain.
(iii) Must L have two disjoint cofinal sublattices? (I don’t know the answer.)
(iv) Show that L will always contain two disjoint upper subsemilattices, each cofinal in L.

I could not end an introduction to lattices without showing you the concepts introduced in the
next two exercises, though this brief mention, and the results developed in the two subsequent
exercises, will hardly do them justice. I will refer in these exercises to the following two 5-element
lattices:

N5:
.
.

.
.

.

M5: .
.
.
.

.
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Exercise 5.1:13. (i) Show that the following conditions on a lattice L are equivalent:
(a) For all x, y, z ∈ |L| with x ≤ z, one has x∨(y∧z) = (x∨y)∧z.
(b) L has no sublattice isomorphic to N5 (shown above).
(c) For every pair of elements x, y ∈ |L|, the intervals [x∧y, y] and [x, x∨y] are

isomorphic, the map in one direction being given by z → x ∨z, in the other direction by
z → z ∧y.
(ii) Show that condition (a) is equivalent to an identity, i.e., a statement that a certain equation
in n variables and the lattice-operations holds for all n-tuples of elements of L. (Condition (a)
as stated fails to be an identity, because it refers only to 3-tuples satisfying x ≤ z.)
(iii) Show that the lattice of subgroups of an abelian group satisfies the above equivalent
conditions.

Deduce that the lattice of submodules of a module over a ring will satisfy the same
conditions. For this reason, a lattice satisfying these conditions is called modular.
(iv) Determine, as far as you can, whether each of the following lattices is in general modular:
the lattice of all subsets of a set; the lattice of all subgroups of a group; the lattice of all normal
subgroups of a group; the lattice of all ideals of a ring; the lattice of all subrings of a ring; the
lattice of all subrings of a Boolean ring; the lattice of elements of a Boolean ring under the
operations x∨y = x +y +xy and x∧y = xy; the lattice of all sublattices of a lattice; the lattice
of all closed subsets of a topological space; the lattices associated with n-dimensional affine
geometry and with n-dimensional projective geometry (Exercise 5.1:7 above).

Exercise 5.1:14. (i) Show that the following conditions on a lattice L are equivalent:
(a) For all x, y, z ∈ |L|, one has x∨(y∧z) = (x∨y)∧(x∨z).
(a*) For all x, y, z ∈ |L|, one has x∧(y∨z) = (x∧y)∨(x∧z).
(b) L has no sublattice isomorphic either to M5 or to N5.
Note that if one thinks of ∨ as ‘‘addition’’ and ∧ as ‘‘multiplication’’, then (a*) has the

form of the distributive law of ring theory. (Condition (a) is also a distributive law, though this
identity does not hold in any nonzero ring.) Hence lattices satisfying the above equivalent
conditions are called distributive.
(ii) Show that the lattice of subsets of a set is distributive.
(iii) Determine, as far as you can, whether lattices of each of the remaining sorts listed in
parts (iii) and (iv) of the preceding exercise are always distributive.
(iv) Show that every finitely generated distributive lattice is finite.

Exercise 5.1:15. Let V be a vector space over a field k, let S1, ... , Sn be subspaces of V, and
within the lattice of all subspaces of V, let L denote the sublattice generated by S1, ... , Sn .
(i) Show that if V has a basis B such that each Si is spanned by a subset of B, then L
is distributive.

Below we will prove the converse to (i); so for the remainder of this exercise, suppose L is
distributive. Clearly, it will suffice to prove that V contains a direct sum of subspaces, with the
property that each Si is the sum of some subfamily thereof; so this is what we will aim for.
You may assume the last result of the preceding exercise, that every finitely generated
distributive lattice is finite.
(ii) Let T = S1 + ... + Sn , the largest element of L. Assuming L has elements other than T,
let W be maximal among these. Show that there is a least element U ∈L not contained in W.
(iii) Let E be a subspace of V such that U = (U ∩ W ) �+ E. (Why does one exist?) Show
that every member of L is either contained in W, or is the direct sum of E with a member of
L contained in W.
(iv) Writing L ′ for the sublattice of L consisting of members of L contained in W, show
that the lattice of subspaces of V generated by {S1, ... , Sn, E } is isomorphic to L ′ × {0, E }.
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(v) Conclude by induction that there exists a family of subspaces E1, ... , Er ⊆ V such that
every member of L, and hence in particular, each of S1, ... , Sn , is the direct sum of a subset
of this family. Deduce that V has a basis B such that each Si is spanned by a subset of B.

Exercise 5.1:16. Let us show that the result of the preceding exercise fails for infinite families
(Si )i ∈I . Our example will be a chain of subspaces, so
(i) Verify that every chain in a lattice is a distributive sublattice.

Now let k be a field, and V the k-vector-space of all k-valued functions on the nonnegative
integers. You may assume the standard result that V is uncountable-dimensional. For each
nonnegative integer n, let Sn = { f ∈V � f (i ) = 0 for i < n}.
(ii) Show that V does not have a basis B such that each Si is spanned by a subset of B.
(Hint: Each Si has codimension 1 in the preceding, and their intersection is {0}, but
dim(V ) is uncountable.)

Incidentally, the analog of Exercise 2.3:2, with the finite lattice N5 in place of the finite group
S3, is worked out for n = 3 in [103].

5.2. 0, 1, and completeness. We began this chapter with the observation that many natural
examples of partially ordered sets have the property that every pair of elements has a least upper
bound and a greatest lower bound. But in fact, most of these examples have the stronger property
that such bounds exist for every set of elements. E.g., in the lattice of subgroups of a group, one
can take the intersection, or the subgroup generated by the union, of an arbitrary set of subgroups.
The property that every subset {xi � i ∈I } has a least upper bound (denoted ∨I xi ) and a greatest
lower bound (denoted ∧ I xi ) defines the class of nonempty complete lattices, which we shall
consider in this section.

Note that in an ordinary lattice, where every pair of elements x, y has a least upper bound
x∨y, it is also true for all positive integers n that every family of n elements x0, ... , xn –1 has
a least upper bound, namely, ∨xi = x0 ∨...∨xn –1. Hence, to get least upper bounds for all
families, we need to bring in the additional cases of infinite families, and the empty family.

Now every element of a lattice is an upper bound for the empty family, so a least upper bound
for the empty family means a least element in the lattice. Such an element is often written 0, or
when there is a possibility of ambiguity, 0L . Likewise, a greatest lower bound for the empty
family means a greatest element, commonly written 1 or 1L .

It is not hard to see that the two conditions of existence of pairwise joins and of existence of a
least element (a join of the empty family) are independent: A partially ordered set can satisfy
either, or neither, or both. On the other hand, existence of pairwise joins and existence of infinite
joins (joins indexed by infinite families, with repetition allowed just as in the case of pairwise
joins) are not independent; the latter condition implies the former. However, we may ask whether
the property ‘‘existence of infinite joins’’ can somehow be decomposed into the conjunction of
existence of pairwise joins, and some useful condition which is independent thereof. The next
result shows that it can, and more generally, that for any cardinal α , the condition ‘‘there exist
joins of families of cardinality ≤ α’’ can be so decomposed.

Lemma 5.2.1. Let P be a partially ordered set, and α an infinite cardinal. Then the following
conditions are equivalent:

(i) Every nonempty subset of P with ≤ α elements has a least upper bound in P.

(ii) Every pair of elements of P has a least upper bound, and every nonempty chain in P with
≤ α elements has a least upper bound.
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The dual statements concerning greatest lower bounds are likewise equivalent to one another.

Proof. (i)⇒(ii) is clear.
Conversely, assuming (ii) let us take any set X of ≤ α elements of P, and index it by an

ordinal β ≤ α : X = {xε � ε <β}. We shall prove inductively that for 0 < γ ≤ β , there exists a
least upper bound ∨ε<γ xε . Because we have not assumed a least upper bound for the empty set,
this need not be true for γ = 0, so we start the induction by observing that for γ = 1, the set
{xε � ε <1} = {x0} has least upper bound x0. Now let γ > 1 and assume our result is true for all
positive δ < γ . If γ is a successor ordinal, γ = δ+1, then we apply the existence of pairwise
least upper bounds in P and see that (∨ε<δ xε) ∨ xδ will give the desired least upper bound
∨ε<γ xε . On the other hand, if γ is a limit ordinal, then the elements ∨ε<δ xε where δ
ranges over all nonzero members of γ will form a chain, which by hypothesis has a least upper
bound in P, and this gives the desired element ∨ε<γ xε . So by induction, ∨ε<β xε exists,
proving (i).

The final statement follows by duality. �

Definition 5.2.2. Let α be a cardinal. Then a lattice or an upper semilattice L in which every
nonempty set of ≤ α elements has a least upper bound is said to be upper α-semicomplete . A
lattice or a lower semilattice satisfying the dual condition is said to be lower α-semicomplete . A
lattice satisfying both conditions is called α-complete .

When these conditions hold for all nonzero cardinals α , one calls L upper semicomplete,
respectively lower semicomplete, respectively complete.

Note that in a partially ordered set (e.g., a lattice) with ascending chain condition, all nonempty
chains have least upper bounds – since they in fact have greatest elements. Likewise in a partially
ordered set with descending chain condition, all chains have greatest lower bounds.

Exercise 5.2:1. Suppose β and γ are infinite cardinals, and X a set of cardinality ≥ both β
and γ . Let L = {S ⊆ X � card(S) < β or card(X – S) < γ }. Verify that L is a lattice, and
investigate for what cardinals α this lattice is upper, respectively lower α-semicomplete.

The upper and lower semicompleteness conditions, when not restricted as to cardinality, have an
unexpectedly close relation.

Proposition 5.2.3. Let L be a partially ordered set. Then the following conditions are
equivalent:

(i) Every subset of L has a least upper bound; i.e., L is (the underlying partially ordered set
of ) an upper semicomplete upper semilattice with least element.

(i*) Every subset of L has a greatest lower bound; i.e., L is (the underlying partially ordered
set of ) a lower semicomplete lower semilattice with greatest element.

(ii) L is (the underlying partially ordered set of ) a nonempty complete lattice.

Proof. To see the equivalence of the two formulations of (i), recall that a least upper bound for the
empty set is a least element, while the existence of least upper bounds for all other subsets is what
it means to be an upper semicomplete upper semilattice.

To show (i)⇒(ii), observe that the existence of a least element shows that L is nonempty, and
the upper complete upper semilattice condition gives half the condition to be a complete lattice. It
remains to show that any nonempty subset X of L has a greatest lower bound u. In fact, the
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least upper bound of the set of all lower bounds for X will be the desired u; the reader should
verify that it has the required property.

Conversely, assuming (ii), we have by definition least upper bounds for all nonempty subsets of
L. A least upper bound for the empty set is easily seen to be given by the greatest lower bound of
all of L. (How is the nonemptiness condition of (ii) used?)

Since (ii) is self-dual and equivalent to (i), it is also equivalent to (i*). �

Exercise 5.2:2. If T is a topological space, show that the open sets in T, partially ordered by
inclusion, form a complete lattice. Describe the meet and join operations (finite and arbitrary) of
this lattice. Translate these results into statements about the set of closed subsets of T.

(General topology buffs may find it interesting to show that, on the other hand, the partially
ordered set {open sets} ∪ {closed sets} is not in general a lattice, nor is the partially ordered set
of locally closed sets.)

Exercise 5.2:3. Which ordinals, when considered as ordered sets, form complete lattices?

Exercise 5.2:4. (i) Show that every isotone map from a nonempty complete lattice into itself
has a fixed point.
(ii) Can you prove the same result for a larger class of partially ordered sets?

Exercise 5.2:5. Let L be a complete lattice.
(i) Show that the following conditions are equivalent: (a) L has no chain order-isomorphic to
an uncountable cardinal. (b) For every subset X ⊆ |L| there exists a countable subset Y ⊆ X
such that ∨Y = ∨X.
(ii) Let a be any element of L. Are the following conditions equivalent? (a) L has no
chain order-isomorphic to an uncountable cardinal and having join a. (b) Every subset X ⊆ L
with join a contains a countable subset Y also having join a.

When we were motivating the statement of Zorn’s Lemma in the preceding chapter, we said that
in the typical construction where one calls on it, if one has a chain of partial constructions, one can
‘‘put them together’’ to get a partial construction extending them all. This means that the set of
partial constructions is a partially ordered set in which every chain has not merely an upper bound
but a least upper bound. This leads to the following question: Suppose we state a ‘‘weakened’’
form of Zorn’s Lemma, saying only that partially ordered sets with this property have maximal
elements – which is virtually all one every uses. Is this equivalent to the full form of Zorn’s
Lemma? This is answered in

Exercise 5.2:6. Show, without assuming the Axiom of Choice, that the statement ‘‘If P is a
nonempty partially ordered set such that all nonempty chains in P have least upper bounds, then
P has a maximal element’’, implies the full form of Zorn’s Lemma. (If possible, make your
proof self-contained, i.e., avoid using the equivalence of Zorn’s Lemma with Axiom of Choice
etc..)

Our proof in Lemma 5.2.1 that the existence of least upper bounds of chains made a lattice
upper semicomplete really only used well-ordered chains, i.e., chains order-isomorphic to ordinals.
In fact, one can do still better:

Exercise 5.2:7. Recall from Exercise 4.6:2 that every totally ordered set has a cofinal subset
order-isomorphic to a regular cardinal.
(i) Deduce that for P a partially ordered set and α an infinite cardinal, the following two
conditions are equivalent:

(a) Every chain in P of cardinality ≤ α has a least upper bound.
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(b) Every chain in P which is order-isomorphic to a regular cardinal β ≤ α has a least
upper bound.

(ii) With the help of the above result, extend Lemma 5.2.1, adding a third equivalent
condition.

There are still more ways than those we have seen to decompose the condition of being a
complete lattice, as shown in point (ii) of

Exercise 5.2:8. (i) Show that following conditions on a partially ordered set L are equivalent:
(a) Every nonempty subset of L having an upper bound has a least upper bound.
(b) Every nonempty subset of L having a lower bound has a greatest lower bound.
(c) L satisfies the complete interpolation property: Given two nonempty subsets X, Y of
L, such that every element of X is ≤ every element of Y, there exists an element z ∈L
which is ≥ every element of X and ≤ every element of Y.

(ii) Show that L is a nonempty complete lattice if and only if it has a greatest and a least
element, and satisfies the above equivalent conditions.
(iii) Give an example of a partially ordered set which satisfies (a)-(c) above, but is not a lattice.
(iv) Give an example of a partially ordered set with greatest and least elements, which has the
finite interpolation property, i.e., satisfies (c) above for all finite nonempty families X and Y,
but which is not a lattice.

This condition-splitting game is carried still further in

Exercise 5.2:9. If σ and τ are properties of sets of elements of partially ordered sets, let us say
that a partially ordered set L has the (σ , τ)-interpolation property if for any two subsets X and
Y of L such that X satisfies σ , Y satisfies τ , and all elements of X are ≤ all elements of
Y, there exists an element z ∈L which is ≥ every element of X and ≤ every element of Y.
Now consider the nine conditions on L gotten by taking for σ and τ all combinations of the
three properties ‘‘is empty’’, ‘‘is a pair’’ and ‘‘is a chain’’.
(i) Find simple descriptions for as many of these nine conditions as you can. (Note cases that
are equivalent to conditions we have already named.)
(ii) Show that L is a nonempty complete lattice if and only if it satisfies all nine of these
conditions.
(iii) How close to independent are these nine conditions? To answer this, determine as well as
you can which of the 29 = 512 functions from the set of these conditions to the set {true,
false} can be realized by appropriate choices of L. (Remark: A large number of these
combinations can be realized, so to show this, you will have to produce a large number of
examples. I therefore suggest that you consider ways that examples with certain combinations of
properties can obtained from examples of the separate properties.)

Exercise 5.2:10. (i) We saw in Exercise 5.1:2(ii) that the set of real polynomials on the unit
interval [0,1], partially ordered by the relation (∀x ∈[0,1]) f (x) ≤ g(x), does not form a
lattice. Show, however, that it has the finite interpolation property. (This gives a solution to
Exercise 5.2:8, but far from the easiest solution. The difficulty in proving this result arises from
the possibility that some members of X will be tangent to some members of Y.)
(ii) Can you obtain similar results for the partially ordered set of real polynomials on a general
compact set K ⊆ R n?

Although we write the least upper bound and greatest lower bound of a set X in a complete
lattice as ∨ X or ∨x ∈X x and ∧ X or ∧ x ∈X x, and call these the meet and join of X,
these ‘‘meet’’ and ‘‘join’’ are not operations in quite the sense we have been considering so far.
An operation is supposed to be a map Sn → S for some n. One may allow n to be an infinite
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cardinal (or other set), but when we consider complete lattices, there is no fixed cardinality to use.
Presumably, we should consider each of the symbols ∨ and ∧ to stand for a system of
operations, of varying finite and infinite arities. But how large is this system? In a given complete
lattice L, all meets and joins reduce (by dropping repeated arguments) to meets and joins of
families of cardinalities ≤ card(L). But if we want to develop a general theory of complete
lattices, then meets and joins of families of arbitrary cardinalities will occur, so this ‘‘system of
operations’’ will not be a set of operations. We shall eventually see that as a consequence of this,
though complete lattices are in many ways like algebras, not all of the results that we prove about
algebras will be true for them (Exercise 7.10:5(iii)).

Another sort of complication in the study of complete lattices comes from the equivalence of
the various conditions in Proposition 5.2.3: Since these lattices can be characterized in terms of
different systems of operations, there are many natural kinds of ‘‘maps’’ among them: maps which
respect arbitrary meets, maps which respect arbitrary joins, maps which respect both, maps which
respect meets of all nonempty sets and joins of all pairs, etc.. The term ‘‘homomorphism of
complete lattices’’ will mean a map respecting meets and joins of all nonempty sets, but the other
kinds of maps are also of interest. These distinctions are brought out in:

Exercise 5.2:11. (i) Show that every complete lattice can be embedded, by a map which
respects arbitrary joins (including the join of the empty set), in a power set P(S), for some set
S, and likewise may be embedded by a map which respects arbitrary meets in a power set.
(ii) On the other hand, deduce from Exercise 5.1:14(ii) that the finite lattices M5 and N5
considered there cannot be embedded by any lattice homomorphism, i.e., any map respecting
both finite meets and finite joins, in a power set P(S).

An interesting pair of invariants related to point (i) above is examined in

Exercise 5.2:12. (i) Show that for any complete lattice L, the following cardinals are equal:
(a) the least α such that L can be embedded, by a map respecting arbitrary meets, in the
power set P(S) of a set of cardinality α , (b) the least cardinality of a subset T ⊆ L such that
every element of L is the join of a subset of T.

Let us call the invariant α characterized above the upward generating number of L
(because of the relation with generation by joins). We dually define the downward generating
number.
(ii) Find a finite lattice L for which these two generating numbers are not equal.

We saw in the preceding section that the concept of lattice, though motivated by properties of
certain partially ordered sets, could be formalized purely in terms of two operations and some
identities. The concepts of (α-)complete lattice and semilattice can be similarly formalized in
terms of operations and identities; the interested reader will not find it hard to write down the
details. Just how the infinite associative and commutative laws are stated will depend on the way
one describes the infinitary operations, but once this is settled, the statements are straightforward.
The compatibility laws only need to be stated for meets and joins of pairs (why?), and so do not
need to be modified.

To motivate the next definition, let us consider the following situation. Suppose L is the
complete lattice of all subgroups of a group G, and let K ∈L be a finitely generated subgroup of
G, generated by elements g1, ... , gn . Suppose K is majorized by the join of a family of
subgroups Hi (i ∈I ), i.e., is contained in the subgroup generated by the Hi . Then each of g1,
... , gn can be expressed by a group-theoretic term in elements of ∪ |Hi |. But any group-theoretic
term involves only finitely many elements; hence K will actually be contained in the subgroup
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generated by finitely many of the Hi . The converse also holds: If K is a non-finitely generated
subgroup of G, then K equals (and hence is contained in) the join of all the cyclic subgroups it
contains, but is not contained in the join of any finite subfamily thereof.

The property we have just shown to characterize the finitely generated subgroups in the lattice
of all subgroups of G is analogous to the property characterizing compact subsets in a topological
space – that if they are covered by a family of open subsets, they are covered by some finite
subfamily. Hence one makes

Definition 5.2.4. An element k of a complete lattice (or more generally, of a complete upper
semilattice) L is called compact if every set of elements of L with join ≥ k has a finite subset
with join ≥ k.

By the preceding observations, the compact elements of the subgroup lattice of a group are
precisely the finitely generated subgroups. We will be able to generalize this observation when we
have a general theory of algebraic objects.

We noted in Exercise 5.1:2(i) that the finitely generated subgroups of a group form an upper
subsemilattice of the lattice of all subgroups. This suggests

Exercise 5.2:13. Do the compact elements of a complete lattice L always form an upper
subsemilattice?

Exercise 5.2:14. Show that a complete lattice L has ascending chain condition if and only if all
elements of L are compact.

There seems to be no standard name for an element of a complete lattice having the dual
property to compactness. Sometimes such elements are called co-compact.

We examined in Exercise 5.2:11 the embedding of semilattices and lattices in power sets P(S)
(and found that though there were embeddings that respected meets, and embeddings that respected
joins, there were not in general embeddings that respected both). Let us look briefly at another
very fundamental sort of complete lattice, and the problem of embedding arbitrary lattices therein.

If X is a set, and ∼∼0 and ∼∼1 are two equivalence relations on X, let us say ∼∼1 extends
∼∼0 if it contains it, as a subset of X ×X, and write ∼∼0 ≤ ∼∼1 in this situation. Let E(X ) denote
the set of equivalence relations on X, partially ordered by this relation ≤. (One could use the
reverse of this order, saying that ∼∼0 is a refinement of ∼∼1 when the latter extends the former,
and could justify considering the refinement to be ‘‘bigger’’ because it gives ‘‘more’’ equivalence
classes. So our choice of the sense to give to our ordering is somewhat arbitrary; but let us stick
with the ordering based on set-theoretic inclusion.)

Exercise 5.2:15. (i) Verify that the partially ordered set E(X ) forms a complete lattice.
Identify the elements 0E(X ) and 1E(X ) .
(ii) Let L be any nonempty complete lattice, and f : L → E(X ) a map respecting arbitrary
meets (a complete lower semilattice homomorphism respecting greatest elements). Show that for
any x, y ∈X, there is a least d ∈L such that (x, y) ∈ f (d). Calling this element d(x, y), verify
that the map d : X × X → L satisfies the following conditions for all x, y, z ∈X :

(a0) d(x, x) = 0L ,

(b) d(x, y) = d(y, x),

(c) d(x, z) ≤ d(x, y) ∨ d(y, z).
(iii) Prove the converse, i.e., that given a complete lattice L and a set X, any function
d : X × X → L satisfying (a0)-(c) arises as in (ii) from a unique complete lower semilattice-
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homomorphism f : L → E(X ) respecting greatest elements.
In the remaining parts, we assume that f : L → E(X ) and d : X × X → L are maps related

as in (ii) and (iii).
(iv) Show that the map f respects least elements, i.e., that f (0L ) = 0E(X ) , if and only if d
satisfies

(a) d(x, y) = 0L ⇔ x = y (cf. (a0) above).
(v) Show that f respects joins of finite nonempty families if and only if d satisfies

(d) whenever d(x, y) ≤ p ∨ q (x, y ∈X, p, q ∈ |L| ), there exists a finite ‘‘path’’
from x to y in X, i.e., a sequence x = z0, z1, ... , zn = y, such that for each
i < n, either d(zi , zi+1) ≤ p or d(zi , zi+1) ≤ q.

A function d which satisfies (a)-(c) above might be called an ‘‘L-valued metric on X’’ ,
and (d) might be called ‘‘path connectedness’’ of the L-valued metric space X. Two other
properties of importance are noted in
(vi) Assuming that f respects finite nonempty joins, show that it respects arbitrary nonempty
joins if and only if

(e) for all x, y ∈X, d(x, y) is a compact element of L.
(vii) Show that f is one-to-one if and only if

(f) L is generated under (not necessarily finite) joins by the elements d(x, y)
(x, y ∈X ).

Thus, to embed a complete lattice L in a lattice of the form E(X ), it suffices to construct a
set X with an appropriate L-valued metric.

Exercise 5.2:16. (i) Given a complete lattice L and an upper subsemilattice K of L
containing 0L , show how to get a set X with an L-valued metric d such that {d(x, y) �
x, y ∈X } = K. (Hint: Consider a tree, in the graph-theoretic sense, with edges labeled by
elements of K.)
(ii) Given L, K, X and d as in (i), show that if either K = |L| or K is the set of compact
elements of L and generates L under not-necessarily-finite joins, then X can be embedded in
a ‘‘path-connected’’ L-valued metric space Y, with the extended function d still having values
in K. (Idea: First show that X can be embedded in an X ′ such that condition (d) holds in
X ′ for all x, y ∈X, then iterate this construction.) If possible, replace the pair of alternative
conditions I have assumed on K by some simple condition which is satisfied in both cases.
(iii) Deduce that a complete lattice L can be embedded in a lattice E(X ) by a map
respecting arbitrary meets and joins if and only if every element of L is a (possibly infinite)
join of compact elements. (Cf. Exercise 5.2:14.) Also deduce that every complete lattice can be
embedded in a lattice E(X ) by a map respecting arbitrary meets and finite joins.

We shall see in the next section that any lattice can be embedded by a lattice homomorphism in
a complete lattice, so by the result of the above exercise, any lattice can be embedded by a lattice
homomorphism in a lattice of equivalence relations.

If the lattice L is finite, the construction of the preceding exercise gives, in general, a
countable, but not a finite set X. It was for a long time an open question whether every finite
lattice could be embedded in the lattice of equivalence relations of a finite set. This was finally
proved in 1980 by P. Pudlák and J. Tu°ma [90]. However, good estimates for the size of an X
such that even a quite small lattice L (e.g., the 15-element lattice E(4)op) can be embedded in
E(X ) remain to be found. The least m such that E(n)op embeds in E(m) has been shown by

Pudlák to grow at least exponentially in n; the first upper bound obtained for it was 22
...

with
n2 exponents! For subsequent better results see [75] and [66, in particular p.16, top].
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5.3. Closure operators. We introduced this chapter by noting certain properties common to the
partially ordered sets of all subsets of a set, of all subgroups of a group, and similar examples. But
so far, we seem to have made a virtue of abstractness, defining semilattice, lattice, etc., without
reference to systems of subsets of sets. Neither abstractness nor concreteness is everywhere a
virtue; each makes its contribution, and it is time to turn to an important class of concrete lattices.

Lemma 5.3.1. Let S be a set. Then the following data are equivalent:

(i) A lower semicomplete lower subsemilattice of P(S) which contains S, that is, a system C
of subsets of S closed under taking arbitrary intersections, including the empty intersection, S
itself.

(ii) A function cl : P(S) → P(S) with the properties:

(∀ X ⊆ S ) cl(X ) ⊇ X (cl is increasing),

(∀ X, Y ⊆ S ) X ⊆ Y ⇒ cl(X ) ⊆ cl(Y ) (cl is isotone),

(∀ X ⊆ S ) cl(cl(X )) = cl (X ) (cl is idempotent).

Namely, given C, one defines cl as the operator taking each X ⊆ S to the intersection of all
members of C containing X, while given cl, one defines C as the set of X ⊆ S satisfying
cl(X ) = X, equivalently, as the set of subsets of S of the form cl(Y ) (Y ⊆ S ). �

Exercise 5.3:1. Verify the above lemma. That is, show that the procedures described do carry
families C with the properties of point (i) to operations cl with the properties of point (ii) and
vice versa, and are inverse to one another, and also verify the assertion of equivalence in the
final clause.

Definition 5.3.2. An operator cl on the class of subsets of a set S with the properties described
in point (ii) of the above lemma is called a closure operator on S. If cl is a closure operator on
S, the subsets X ⊆ S satisfying cl(X ) = X, equivalently, the subsets of the form cl(Y ) (Y ⊆ S),
are called the closed subsets of S under cl.

We see that virtually every mathematical construction commonly referred to as
‘‘the ... generated by’’ (fill in the blank with subgroup, normal subgroup, subring, sublattice,
submonoid, ideal, congruence, etc.) is an example of a closure operator on a set. The operation of
topological closure on subsets of a topological space is another example. Some cases are called by
other names: the convex hull of a set of points in Euclidean n-space, the span of a subset of a
vector space (i.e., the vector subspace it generates), the set of derived operations of a set of
operations on a set (§1.6). Incidentally, the constructions of subgroup and subring generated by a
set illustrate the fact that the closure of the empty set need not be empty.

A very common way of obtaining a closure operator on a set S, which includes most of the
above examples, can be abstracted as follows: One specifies a subset

(5.3.3) G ⊆ P(S) × S,

and then defines a subset X ⊆ S to be closed if for all (A, x) ∈G, A ⊆ X ⇒ x ∈X. It is
straightforward to verify that the class of ‘‘closed sets’’ under this definition is closed under
arbitrary intersections, and so by Lemma 5.3.1, corresponds to a closure operator cl on S.

For example, if K is a group, the operator ‘‘subgroup generated by’’ on subsets of |K | is of
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this form. One takes for (5.3.3) the set of all pairs of the forms

(5.3.4) ({x, y}, xy), ({x}, x–1), (∅, e)

where x and y range over |K |. To get the operator ‘‘normal subgroup generated by – ’’, we use
the above pairs, supplemented by the further family of pairs ({x}, yxy–1) (x, y ∈ |K | ). Clearly,
each of the ‘‘... generated by’’ constructions we mentioned above can be characterized similarly.
For a non-algebraic example, the operator giving the topological closure of a subset of the real line
R can be obtained by taking G to consist of all pairs (A, x) such that A is the set of points of
a convergent sequence, and x is the limit of that sequence.

Exercise 5.3:2. Show that for any closure operator cl on a set S, there exists a subset G ⊆
P(S) × S which determines cl in the sense we have been discussing.

Exercise 5.3:3. If T is a set, display a subset G ⊆ P(T × T ) × (T × T ) such that the equivalence
relations on T are precisely the subsets of T × T closed under the operator cl determined
by G. (The previous exercise gives us a way of doing this ‘‘blindly’’. But what I want here is
an explicit set, which one might show to someone who didn’t know what ‘‘equivalence relation’’
meant, to provide a characterization of the concept.)

In Chapter 2 we contrasted the approaches of obtaining sets one is interested in ‘‘from above’’
as intersections of systems of larger sets, and of building them up ‘‘from below’’. We have
constructed the closure operator associated with a family (5.3.3) by noting that the class of subsets
of S we wish to call closed is closed under arbitrary intersections; so we have implicitly obtained
these closures ‘‘from above’’. The next exercise constructs them ‘‘from below’’.

Exercise 5.3:4. Let S be a set and G a subset of P(S) × S. For X a subset of S and α any
ordinal, let us define clG

(α)(X ) recursively by:

clG
(0)(X ) = X,

clG
(α+1)(X ) = clG

(α)(X ) ∪ {x� (∃ A ⊆ clG
(α)(X )) (A, x) ∈G}.

clG
(α)(X ) = ∪β ∈α clG

(β)(X ) if α is a limit ordinal.

(i) Show that (for any S, G as above) there exists an ordinal α such that for all β > α
and all X ⊆ S, clG

(β)(X ) = clG
(α)(X ), and that clG

(α)(X ) is then cl(X ) in the sense of the
preceding discussion. (Cf. the construction in §2.2 of the equivalence relation R on group-
theoretic terms as the union of a chain of relations Ri .)
(ii) If for all (A, x) ∈G, A is finite, show that the α of part (i) can be taken to be ω .
(iii) For each ordinal α , can you find an example of a set S and a G ⊆ P(S) × S such that
α is the least ordinal having the property of part (i)?

We have seen that there are restrictions on the sorts of lattices that can be embedded by lattice
homomorphisms into lattices (P(S), ∪, ∩) (Exercise 5.1:14), or into lattices of submodules of
modules (Exercise 5.1:13). In contrast, we have

Lemma 5.3.5. (i) Every complete lattice L is isomorphic to the lattice of closed sets of a
closure operator cl on some set S.

(ii) Every lattice L is isomorphic to a sublattice of the lattice of closed sets of a closure
operator cl on some set S.

Proof. (i) : Take S = |L|, and for each X ⊆ S, define cl(X ) = {y � y ≤ ∨X }. Then L is
isomorphic to the lattice of closed subsets of S, by the map x → {y� y ≤ x}.
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(ii) : Again take S = |L|, but since joins of arbitrary families may not be defined in L, define
cl(X ) to be the set of all elements majorized by joins of finite subsets of X. Embed L in the
lattice of cl-closed subsets of S by the same map as before. �

Exercise 5.3:5. Verify that the above constructions give closure operators, and that the induced
maps are respectively an isomorphism of complete lattices and a lattice embedding.

The second of the two closure operators used in the above proof can be thought of as closing a
set X in |L| under forming joins of pairs of its elements, and forming meets of its elements with
arbitrary elements of L. In the notation that denotes join by + and writes meet as
‘‘multiplication’’, this is has the same form as the definition of an ideal of a ring. So lattice-
theorists often call sets of elements in a lattice closed under these operations ‘‘ideals’’. In
particular, {y� y ≤ x} is called the principal ideal generated by x.

Exercise 5.3:6. (i) Show that assertion (ii) of the preceding lemma can also be proved by
taking the same S and the same map, but taking cl(X ) ⊆ S to be the intersection of all
principal ideals of L containing X.
(ii) Will the complete lattices generated by the images of L under these two constructions in
general be isomorphic?

Exercise 5.3:7. Can the representation of a (complete) lattice L by closed sets of a closure
operator given in Lemma 5.3.5(ii) and/or that given in Exercise 5.3:6 be characterized by any
universal properties?

Exercise 5.3:8. Show that a lattice L is complete and nonempty if and only if every intersection
of principal ideals of L (including the intersection of the empty family) is a principal ideal.

The concept of closure operation is not only general enough to allow representations of all
lattices, it is a convenient tool for constructing examples. For example, recall that
Exercise 5.1:10(ii), if solved by the hint given, shows that a lattice generated by 5 elements can
be infinite. With more work, that method could have been made to give an infinite lattice with 4
generators, but one can show that any 3-generator sublattice of the lattice of affine subspaces of a
vector space is finite. However, we shall now give an ad hoc construction of a closure operator
whose lattice of closed sets has an infinite 3-generator sublattice.

Exercise 5.3:9. Let S = ω ∪ {x, y}, where ω is regarded as the set of nonnegative integers, and
x, y are two elements not in ω . Let G ⊆ P(S) × S consist of all pairs

({x, 2m}, 2m +1), ({y, 2m +1}, 2m +2),
where m ranges over ω in each case. Let L denote the lattice of closed subsets of S under
the induced closure operator, and consider the sublattice generated by {x}, {y, 0}, and ω .
Show by induction that for every n ≥ 0, this sublattice of L contains the set {0, ... , n}. Thus,
this 3-generator lattice is infinite.

Exercise 5.3:10. The lattice of the above exercise contains an infinite chain. Does there exist a
3-generator lattice which is infinite but does not contain an infinite chain?

Exercise 5.3:11. If A is an abelian group, can a finitely generated sublattice of the lattice of all
subgroups of A contain an infinite chain?

We now turn to a property which distinguishes the sort of closure operators commonly
occurring in algebra from those arising in topology and analysis.

10/8/98 G. M. Bergman

136 Chapter 5. Lattices, closure operators, and Galois connections.



Lemma 5.3.6. Let cl be a closure operator on a set S. Then the following conditions are
equivalent:

(i) For all X ⊆ S, cl(X ) = ∪finite X0 ⊆ X cl(X0).

(ii) The union of every chain of closed subsets of S is closed.

(iii) The closure of each singleton {s} ⊆ S is compact in the lattice of closed subsets.

(iv) cl is the closure operator determined by a set G ⊆ P(S) × S having the property that the
first component of each of its members is finite. �

Exercise 5.3:12. Prove Lemma 5.3.6.

Definition 5.3.7. A closure operator satisfying the equivalent conditions of the above lemma is
called finitary.

This is because the lattice of subalgebras of an algebra A has this property if the operations of
A are all finitary, i.e., have finite arity (§1.4). (Some authors call such closure operators
‘‘algebraic’’ instead of ‘‘finitary’’.)

Exercise 5.3:13. (i) Show that an abstract complete lattice L is isomorphic to the lattice of all
closed sets under a finitary closure operator if and only if every element of L is a join of
compact elements.
(ii) For what complete lattices is it true that every closure operator cl, on any set, whose
lattice of closed sets is isomorphic to L is finitary?

Exercise 5.3:14. Show that a closure operator cl is finitary if and only if the compact elements in
the lattice of its closed subsets are precisely the closures of finite sets. (For a not necessarily
finitary closure operator, what is the relation between these two classes of closed sets?)

Exercise 5.3:15. Consider the following three conditions on a closure operator cl on a set S.
(a) cl is finitary. (b) The union of any two cl-closed subsets of S is cl-closed. (c) Every
singleton subset of S is cl-closed.

For each subset of this set of three properties, find an example of a closure operator that has
the properties in that subset, but not any of the others. (Thus, 8 examples are asked for.)
Where possible, use familiar or important examples.

Exercise 5.3:16. Show that a closure operator cl on a set S is the operation of topological
closure with respect to some topology on S if and only if it satisfies (b) above, and: (c0) ∅ is
cl-closed in S. Assuming S has more than one element, show that cl is closure with respect
to a Hausdorff topology if and only if it satisfies (b) and (c).

(Since the operation of topological closure determines the topology, this shows that
topologies on a space are equivalent to closure operations satisfying the indicated conditions.)

Exercise 5.3:17. It is well known that if a group K is generated by ≤ γ elements (γ a
cardinal), then card( |K | ) ≤ γ + ℵ0.
(i) Deduce this fact from simple properties of the set G ⊆ P( |K | ) × |K | defined in (5.3.4).
(ii) Try to generalize (i) to a result on the way the cardinalities of sets increase when a closure
operator cl obtained as above from a set G is applied to them, in terms of the properties G.

When we described how to construct a closure operator cl from a subset G ⊆ P(S) × S, it
would have been tempting to call cl ‘‘the closure operator generated by G’’. This would not
quite have made sense, because a closure operator is not itself a subset of P(S) × S. However, we
can show what this is ‘‘trying to say’’ by setting up a correspondence between closure operators on
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S and certain subsets of P(S) × S :

Exercise 5.3:18. If cl is a closure operator on S, let us write σ(cl) = {(A, x) � A ⊆ S, x ∈cl(A)}
and let us call a subset H ⊆ P(S) × S a closure system on S if H = σ(cl) for some closure
operator cl on S.
(i) If S is a set, show that closure systems on S are precisely the subsets of P(S) × S

closed under a certain closure operator, cl S
sys (which you should describe).

(ii) Show that for any subset G ⊆ P(S) × S, if we let cl be the closure operator determined

by G in the sense discussed earlier, then σ(cl) = cl S
sys(G).

So although we cannot call cl the closure operator generated by G, it is the operator
corresponding to the closure system generated by G.

Of course, we cannot resist adding

(iii) Describe cl S
sys as the closure operator on P(S) × S determined (‘‘generated’’) by an

appropriate set GS
sys (of elements of what set?)

We now have three ways of looking at closure data on a set S: as certain families of subsets
of S, as certain operators on subsets of S, and as certain ‘‘systems’’ contained in P(S) × S. We
take a global look at this data in:

Exercise 5.3:19. Let S be a set. Call the set of all families of subsets of S that are closed under
arbitrary intersections Clofam(S), and order this set by inclusion. Call the set of all closure
operators on S Clop(S), and order it by putting cl1 ≤ cl2 if for all X, cl1(X ) ≤ cl2(X ). Call
the set of closure systems on S (in the sense of the preceding exercise) Closys(S), and order it
by inclusion.

Verify that Clofam(S), Clop(S) and Closys(S) are all complete lattices. Do the natural
correspondences between the three types of data constitute lattice isomorphisms? If not, state
precisely the relationships involved. Interpret in terms of closure operators the meet and join
operations of these lattices.

Exercise 5.3:20. Investigate the subset of finitary closure operators within the set Clop(S) defined
in the preceding exercise. Will it be closed under meets (finite? arbitrary?) – joins (ditto)?
Given any cl ∈Clop(S), will there be a least finitary closure operator containing cl? A greatest
finitary closure operator contained in cl?

Descending from the abstruse to the elementary, here is a problem on closure operators that
could be explained to a bright High School student, but which has so far defied solution:

Exercise 5.3:21. (Péter Frankl’s question) Let S be a finite set, and cl a closure operator on S
such that cl(∅) ≠ S. Must there exist an element s ∈S which belongs to not more than half of
the sets closed under cl?

(I usually state this conjecture in terms of ‘‘a system C of subsets of S which is closed
under pairwise intersections, and contains at least one proper subset of S’’. There are still other
formulations; for instance, as asking whether every nontrivial finite lattice has an element which
is join-irreducible (not a join of two smaller elements) and which is majorized by no more than
half the elements of the lattice.)

One occasionally encounters the dual of the type of data defining a closure operator – a system
U of subsets of a set S closed under forming arbitrary unions; equivalently, an operator f on
subsets of S which is decreasing, idempotent, and isotone. These conditions on f mean that the
operator X → c( f (cX )) (where c denotes complement relative to S) is a closure operator,
whose closed subsets are the complements of the members of U. Thus, when such an operator is
discovered, it is often convenient to change viewpoints and work with the dual operator cf c, to
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which one can apply the theory of closure operators. However, U and f may be more natural in
some situations than the dual family and map. In such cases one may refer to f as an interior
operator (though the term is not widely used), since in a topological space, the complement of the
closure of the complement of X is called the interior of X. Clearly, every result about closure
operators gives a dual result on interior operators.

(Péter Frankl’s question, introduced in the last exercise, is often stated in dual form, asking
whether, given a system C of subsets of a finite set S which is closed under pairwise unions and
contains at least one nonempty subset of S, there must exist a member of S belonging to at least
half the members of C. As such, it is called the ‘‘union-closed set’’ question, and papers on the
topic can be found by searching for the keyword ‘‘union-closed’’.)

5.4. Digression: a pattern of threes. It is curious that many basic mathematical definitions
involve similar systems of three parts. A group structure on a set is given by (1) a neutral element,
(2) an inverse-operation and (3) a multiplication; these must satisfy (1) the neutral-element laws,
(2) the inverse laws and (3) the associative law. A partial ordering on a set is a binary relation
that is (1) reflexive, (2) antisymmetric and (3) transitive, while an equivalence relation is
(1) reflexive, (2) symmetric and (3) transitive. The operation of a semilattice is (1) idempotent,
(2) commutative and (3) associative. A closure operator is (1) increasing, (2) isotone and
(3) idempotent. In a metric space, the metric satisfies (1) a condition on when distances are 0,
(2) symmetry and (3) the triangle inequality.

This parallelism is not just numerical. The general pattern seems to be that the simplest
condition or operation has to do with the relation of an element to itself; the intermediate one tells
us, if we know how two elements relate in one order, how they relate in the reverse order; and the
strongest tells us how to use the relation of one element to a second and this second to a third to
get a relation between the first and the third.

Let us see this in the examples listed above. We must distinguish in some cases between the
abstract structures and the ‘‘concrete’’ structures that motivated them.

The concrete situation motivating the concept of a group is that of a group of permutations of a
set. For a set of permutations to form a group, (1) it should contain the permutation that takes
every element of the set to itself, (2) if it contains a permutation x, it should also contain the
permutation x–1 which carries q to p whenever x carries p to q, and (3) along with any
permutations x and y it should contain the permutation xy, which carries p to r whenever y
carries p to q and x carries q to r. So this fits the pattern described.

When we look at the definition of an abstract group G, the above closure conditions are
replaced by operations of neutral element, inverse, and composition. The conditions on these
operations needed to mimic the internal properties of permutation groups say that when G acts on
itself by left or right multiplication, the three operations of G actually behave like the
constructions they are modeled on: left or right multiplication by the neutral element leaves all
elements of |G | fixed, left or right multiplication by x is ‘‘reversed’’ by the action of x–1, and
left or right multiplication by x followed by multiplication on the same side by y is equivalent to
multiplication by yx, respectively xy. These are the neutral-element, inverse and associative laws
(slightly reformulated). Finally, when we return from this abstract concept to its concrete origins
via the concept of a G-set X, we again have three conditions, saying that the actions of the
neutral element, of inverses of elements, and of composites of elements of G behave on X in the
proper manner. (However, the condition for inverses is a consequence of the other two plus the
group identities of G, and so can be, and usually is, omitted from the definition of a G-set.)
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In the definitions of partial ordering, of equivalence relation, and of metric, we do not have an
abstraction of a structure on a set, but such a structure itself. The reader can easily verify that
these 3-part definitions each have the form we have described.

In the cases of semilattices and closure operators, one can say roughly that closure operators
are the concrete origins and semilattices the abstraction. My general characterization of the three
components of these definitions does not, as we shall see, give quite as good a fit in this case. The
condition that a closure operator be idempotent, cl(cl(X )) = cl(X ), may be considered a
‘‘transitivity’’ type condition, since it says that if you can get some elements from elements of X,
and some further elements from these, then you get those further elements from X itself. The
‘‘reflexivity’’ type condition is the one saying cl(X ) ⊇ X, since it means that what one gets from
X includes all of X itself. But I cannot see a way of interpreting the remaining condition,
X ⊆ Y ⇒ cl(X ) ⊆ cl(Y ), as describing the relation between elements considered in two different
orders.

In the abstracted concept, that of a semilattice, the three conditions of idempotence,
commutativity, and associativity of the operation ∨ do fit the pattern described, but they do not
seem to come in a systematic way from the corresponding properties of closure operations.

When one looks at important weakenings of the concepts of group etc., the operation or
condition relating pairs of elements taken in one and the other order seems to be the one most
naturally removed: Monoids are a useful generalization of groups, and preorders are a useful
generalizations both of partial orders and of equivalence relations.

The folklorist Alan Dundes (Department of Anthropology, UC Berkeley) has argued that the
number ‘‘three’’ holds a fundamental place in the culture of Western civilization, in ways ranging
from traditional stories (three brothers go out to seek their fortune; Goldilocks and the three bears),
superstitions (‘‘third time’s a charm’’), verbal formulas (‘‘Tom, Dick and Harry’’) etc., to our
3-word personal names. (See essay in [52].) He has raised the challenge of how many of the
‘‘threes’’ occurring in science (archeologists’ division of each epoch into an ‘‘early’’, a ‘‘middle’’
and a ‘‘late’’ period; the three-stage polio vaccination; the three dimensions of physics, etc.)
represent circumstances given to us by nature, and how many we have imposed on nature through
cultural prejudice!

In the situation we have been discussing, I would argue that the pattern is natural. I don’t claim
that the way modern mathematics describes instances of this pattern is the only way possible. For
instance, if all basic textbooks first defined ‘‘monoid’’, and then defined a group as a monoid with
an inverse operation, and similarly first defined ‘‘preorder’’, then defined partial orders and
equivalence relations as preorders with certain properties, and so on, then, though we might still
find a recurring pattern, it would not appear as a pattern of ‘‘threes’’. In a different direction, if we
defined composition in a group or monoid as taking each ordered n-tuple of elements (n ≥ 0) to its
product, and formulated the associative law accordingly, then the neutral element would simply be
the empty product, and the neutral-element law a case of the associative law; and again, no
‘‘threes’’ would be apparent. But I don’t think the choices that lead to the way we currently
present these things are consciously or unconsciously aimed at bringing in the number ‘‘three’’;
they are certain decisions about pedagogy and motivation that happen to give a genuine natural
pattern this form.

Let me close this discussion by noting that many of the more complicated objects of
mathematical study arise by combining one structure that fits, or partially fits, the pattern we have
noted, with another. Thus, a lattice is a set with two semilattice structures that satisfy compatibility
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identities; a ring is given by an abelian group, together with a bilinear binary operation on this
group under which it is a monoid. Interestingly, various refinements of the concept of ‘‘ring’’
involve adding one (or more!) conditions that can be thought of as filling in the missing slot in the
multiplicative monoid structure, concerning ‘‘how elements relate in opposite orders’’: a
multiplicative inverse operation on nonzero elements gives a division ring structure; commutativity
of multiplication determines the favorite class of rings of contemporary algebra; both together give
the class of fields. Still another important ring-theoretic concept which can be thought of in this
way is that of a an involution on a (not necessarily commutative) ring, that is, an abelian group
automorphism *: |R| → |R| satisfying x** = x and (xy)* = y* x*. The complex numbers have
all three structures: multiplicative inverses, commutativity, and the involution of complex
conjugation.

The concept of a closure operator also has an important special case gotten by imposing an
additional condition on ‘‘how elements relate in opposite orders’’, namely the ‘‘exchange
property’’:

(5.4.1) y ∈cl(X ), y ∈cl(X ∪ {z}) ⇒ z ∈cl(X ∪ {y}) (X ⊆ S, y, z ∈S ).

This is the condition which in the theory of vector spaces allows one to conclude that bases have
unique cardinalities, and in the theory of transcendental field extensions yields a similar result for
transcendence bases. Closure operators satisfying (5.4.1) are called (among other names) matroids;
cf. [104].

The reader familiar with the definition of a Lie algebra over a commutative ring R will note
similarly that it is an R-module (a concept which fits into the above pattern in the same way as that
of G-set), with an R-bilinear operation, the Lie bracket, which satisfies the alternating identity
(which tells both the result of bracketing an element with itself, and the relation between
bracketings in opposite orders), and the Jacobi identity (which describes how the bracket of an
element with the bracket of two others can be described in terms of the operations of bracketing
with those elements successively).

I do not attach great importance to the observations of this section. But I have noticed them for
years, and thought this would be a good place to mention them.

5.5. Galois connections. Let us introduce this very general concept using the case from which it
gets its name:

Galois theory deals with the situation where one is given a field F and a finite group G of
automorphisms of F. Given any subset A of F, let A* denote the set of elements of the group
G fixing all elements of A, and given any subset B of G, likewise let B* be the set of
elements of the field F fixed by all members of B. It is not hard to see that in these situations,
A* is always a subgroup of G, and B* a subfield of F. The Fundamental Theorem of Galois
Theory says that the groups A* are all the subgroups of G, and similarly that the sets B* are
all the fields between the fixed field of G in F and the whole field F, and gives further
information on the relation between corresponding subgroups and subfields.

Some parts of the proof of this theorem use arguments specific to fields and their automorphism
groups; but certain other parts can be carried out without even knowing what the words mean. For
instance, the result, ‘‘If A is a set of elements of the field F, and A** is the set of elements of
F fixed by all automorphisms in G that fix all elements of A, then A** ⊇ A’’ is clearly true
independent of what is meant by a ‘‘field’’, an ‘‘automorphism’’, or ‘‘to fix’’!

This suggests that one should look for a general context to which the latter sort of arguments
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apply. Replacing the set of elements of our field F by an arbitrary set S, the set of elements of
the group G by any set T, and the condition of elements of F being fixed by elements of G
by any relation R ⊆ S × T, we get the following set of observations:

Lemma 5.5.1. Let S, T be sets, and R ⊆ S × T a relation. For A ⊆ S, B ⊆ T, let us write

(5.5.2)
A* = {t ∈T �

(∀ a ∈A ) aRt } ⊆ T,

B * = {s ∈S � (∀ b ∈B ) sRb } ⊆ S,

thus defining two operations written *, one from P(S) to P(T ) and the other from P(T ) to
P(S). Then for A, A ′ ⊆ S, B, B ′ ⊆ T, we have

(i) A ⊆ A ′ ⇒ A* ⊇ A ′* B ⊆ B ′ ⇒ B * ⊇ B ′* ( * reverses inclusions),

(ii) A** ⊇ A B** ⊇ B ( ** is increasing),

(iii) A*** = A* B*** = B* ( *** = * ).

(iv) ** : P(S) → P(S) and ** : P(T ) → P(T ) are closure operators on S and T respectively.

(v) The sets A* (A ⊆ S ) are precisely the closed subsets of T, and the sets B* (B ⊆ T )
are precisely the closed subsets of S with respect to these closure operators **.

(vi) The maps *, restricted to closed sets, give an antiisomorphism (an order-reversing,
equivalently, ∨ -and-∧ -interchanging, bijection) between the complete lattices of **-closed subsets
of S and of T.

Proof. (i) and (ii) are immediate. We shall prove the remaining assertions from those two.
If we apply * to both sides of (ii), so that the inclusions are reversed by (i), we get

A*** ⊆ A*, B*** ⊆ B *; but if we put B* for A and A* for B in (ii) we get B*** ⊇ B*,
A*** ⊇ A* . Together these inclusions give (iii). To get (iv), note that by (i) applied twice, the
operators ** are inclusion-preserving, by (ii) they are increasing, and by applying * to both sides
of (iii) we find that they are idempotent. To get (v) note that by (iii) every set B* respectively
A* is closed, and of course every closed set X has the form Y* for Y = X*. (vi) now follows
from (v), (iii) and (i). �

If for each t ∈T we consider the relation – R t as a condition satisfied by some elements
s ∈S, then for A ⊆ S we can interpret A** as ‘‘the set of elements of S which satisfy all
conditions (of this sort) that are satisfied by the elements of A’’. From this interpretation, the fact
that ** is a closure operation is intuitively understandable.

Definition 5.5.3. If S and T are sets, then a pair of maps * : P(S) → P(T ) and * : P(T ) →
P(S) satisfying conditions (i) and (ii) of Lemma 5.5.1 (and hence the consequences (iii)-(vi)) is
called a Galois connection between the sets S and T.

Exercise 5.5:1. Show that every Galois connection between sets S and T arises from a relation
R as in Lemma 5.5.1, and that this relation R is in fact unique.

Thus, a Galois connection on a pair of sets S, T can be characterized either abstractly, by
Definition 5.5.3, or as a structure arising from some relation R ⊆ S × T. In all naturally occurring
cases that I know of, the relation R is what we start with, and the Galois connection is obtained
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from it. On the other hand, the characterization as in Definition 5.5.3 has the advantage that it can
be generalized by replacing P(S) and P(T ) by arbitrary partially ordered sets.

Here is another order-theoretic characterization of Galois connections:

Exercise 5.5:2. If S and T are sets, show that a pair of maps * : P(S) → P(T ), * : P(T ) →
P(S) is a Galois connection if and only if for X ⊆ S, Y ⊆ T, one has

X ⊆ Y * ⇔ Y ⊆ X*.

More generally, you can show that given two partially ordered sets ( |P|, ≤) and ( |Q|, ≤), and
a pair of maps *: |P| → |Q|, *: |Q| → |P|, these maps will satisfy conditions (i)-(ii) of
Lemma 5.5.1 if and only if they satisfy the above condition (with ‘‘≤’’ in place of ‘‘⊆’’
throughout).

Exercise 5.5:3. Show that for every closure operator cl on a set S, there exists a set T and a
Galois connection between S and T, such that the closure operator ** on S induced by the
Galois connection is cl. Can one in fact take for T any set given with any closure operator
whose lattice of closed subsets is antiisomorphic to the lattice of cl-closed subsets of S ?

A Galois connection between two sets S and T becomes particularly valuable when the
**-closed subsets have characterizations of independent interest. Let us give a number of
examples, beginning with the one that motivated our definition. (The reader should not worry if he
or she is not familiar with all the concepts and results mentioned in these examples.)

Example 5.5.4. Take for S the underlying set of a field F, and for T the underlying set of a
finite group G of automorphisms of F. For a ∈F and g ∈G let aRg mean that g fixes a,
that is, g(a) = a. If we write K ⊆ F for the subfield G*, then, as noted earlier, the
Fundamental Theorem of Galois Theory tells us that the closed subsets of F are precisely the
subfields of F containing K, while the closed subsets of G are all the subgroups of G. One
finds that the properties of the field extension F ⁄ K are closely related to the properties of the
group G, and can be studied with the help of group theory ([26, Chapter V], [28, Chapter VI]).
These important further relations between group structure and field structure are not, of course, part
of the general theory of Galois connections. That theory gives the underpinnings, over which these
further results are built.

Example 5.5.5. Let us take for S a vector space over a field K, for T the dual space
HomK (S, K ), and let us take xRf to mean f (x) = 0. In this case, one finds that the closed
subsets of S are precisely all its vector subspaces, while those of T are the vector subspaces that
are closed in a certain topology. In the finite-dimensional case, this topology is discrete, and so the
closed subsets of T are all its subspaces. The resulting correspondence between subspaces of a
finite-dimensional vector space and of its dual space is a basic tool which is taught (or should be!)
in undergraduate linear algebra. Some details of the infinite-dimensional case are developed in an
exercise below.

Example 5.5.6. A superficially similar example: Let S = C n (complex n-space),
T = Q[x0, ... , xn –1], the polynomial ring in n indeterminates over the rationals, and let
(a0, ... , an –1)R f mean f (a0, ... , an –1) = 0. This case is the starting-point for classical algebraic
geometry, and still the underlying inspiration for much of the modern theory. The closed subsets of
C n are the solution-sets of systems of polynomial equations, while the Nullstellensatz says that the
closed subsets of T = Q[x0, ... , xn –1] are the ‘‘radical ideals’’.
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Example 5.5.7. Let S be a finite-dimensional vector space over the real numbers R , T the set
of pairs ( f , a) where f is a linear functional on S and a ∈R , and define xR ( f, a) to mean
f (x) ≤ a. Then the closed subsets of S turn out to be the closed convex sets.

If we restrict a to the value 1, so that we can regard T simply as the dual space of S, and
write xR f for the condition f (x) ≤ 1, we get a Galois connection between S and its dual space,
under which the closed subsets, on each side, are the closed convex subsets containing 0. For
instance, if we take S = R3 and identify it with its dual via the natural inner product, we find that
the dual of a cube centered at the origin is an octahedron centered at the origin. The regular
dodecahedron and icosahedron are similarly dual.

Example 5.5.8. Let M be an abelian group (or more generally, a module over a commutative ring
k), and S = T = the ring of endomorphisms of M (as an abelian group, respectively a k-module).
Let sRt denote the condition st = ts. It is easy to verify that the subsets of S = T closed under
the resulting Galois connection are certain subrings (respectively k-subalgebras). For every subring
X, the subring X * is called by ring-theorists the commutant of X. If, in this situation, we regard
M as an X-module, then X * is the ring (respectively, k-algebra) of X-module endomorphisms of
M. The ring X** ⊇ X, the commutant of the commutant, is called the bicommutant of X.

Example 5.5.9. Let S be a set of mathematical objects, T a set of propositions about an object
of this sort, and sRt the relation ‘‘the object s satisfies the proposition t’’ (in logician’s
notation, s t). Then the closed subsets of S are those classes of objects definable by sets of
propositions from T, which model theorists call axiomatic classes, while the closed subsets of T
are what they call theories. The theory B** generated by a set B of propositions consists of
those members of T that are consequences of the propositions in B, in the sense that they hold
in all members of S satisfying the latter.

(Actually, in the naturally occurring cases of this example, S is often a proper class rather than
a set of mathematical objects; e.g., the class of all groups. We will see how to deal comfortably
with such situations in the next chapter.)

There are, of course, cases where it is preferable to use symbols other than ‘‘*’’ for the
operators of a Galois connection. In Example 5.5.5, it is usual to write the set obtained from a set
A as Ann(A) or Ao or A (the annihilator or null space of A) because ‘‘*’’ is commonly
used for the dual space. More seriously, whenever S = T but R is not a symmetric relation on
S, the two constructions {s ′ � (∀ s ∈A ) s ′ Rs} and {s ′ � (∀ s ∈A ) sRs ′} will be distinct, so one
must denote them by different symbols, such as A* and A*. An example of such a case is

Exercise 5.5:4. If S = T = Q , the set of rational numbers, and R is the relation ≤,
characterize the two systems of closed subsets of Q . Describe in as simple a way as possible
the structure of the lattices of closed sets.

The next exercise gives, as promised, some details on the infinite-dimensional case of
Example 5.5.5. The one that follows it is related to Example 5.5.8.

Exercise 5.5:5. Let K be a field, S a K-vector-space, and T its dual space.
(i) Show that the subsets of S closed under the Galois connection of Example 5.5.5 are
indeed all the vector subspaces of S.

To characterize the subsets of T closed under this connection, let us, for each s ∈S and
c ∈K, define Us, c = {t ∈T � t(s) = c}, and topologize T by making the Us, c a subbasis of
open sets.
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(ii) Show that the resulting topology is the weakest such that for each s ∈S, the evaluation
map t → t(s) is a continuous map from T to the discrete topological space K.
(iii) Show that the subsets of T closed under the Galois connection described above are the
vector subspaces of T closed in the above topology.

(There is an elegant characterization of the class of topological vector spaces that arise in this
way. They are called linearly compact vector spaces. See [76, Chapter II, 27.6 and 32.1], or for
a summary, [2, first half of §24].)

Exercise 5.5:6. Let M be the underlying abelian group of the polynomial ring Q[t] in one
indeterminate t, let x: M → M be the abelian group endomorphism given by multiplication by
t, and d: M → M the endomorphism given by differentiation with respect to t. Find the
commutant and bicommutant (as defined in Example 5.5.8) of each of the following subrings of
End( M ) :
(i) Z[x].
(ii) Z[x2, x3].
(iii) Z<x, d > (the ring generated by x and d. Angle brackets are used to indicate generators
of not necessarily commutative rings.)

Exercise 5.5:7. If G is a group and X a subset of G, then {g ∈G � (∀ x ∈X ) gx = xg} is
called the centralizer of X in G, often denoted CG (X ). This is easily seen to be a subgroup
of G.
(i) Show that if H is a subgroup of a group G then the following conditions are equivalent:
(a) H is commutative, and is the centralizer of its centralizer. (b) H is the intersection of
some nonempty family of maximal commutative subgroups of G.
(ii) Give a result about Galois connections of which the above is a particular case.

(You may either state and prove in detail the result of (i), and then for (ii) formulate a
general result which can clearly be proved the same way, in which case you need not repeat the
argument; or do (ii) in detail, then note briefly how to apply your result to get (i).)

We recall that for a general closure operator on a set S, the union of two closed subsets of S
is not in general closed; their join in the lattice of closed sets is the closure of this union.
However, if we consider the Galois connection between a set of objects and a set of propositions,
and if these propositions are the sentences in a language that contains the operator ‘‘or’’, then the
set of objects satisfying the proposition (s or t) will be precisely the union of the set of objects
satisfying s and the set satisfying t:

{(s or t)}* = {s}* ∪ {t}*.

Likewise, if the language contains the operator ‘‘and’’, then

{(s and t)}* = {s}* ∩ {t}*.

In fact, the choice of the symbols ∨ and ∧ (modifications of ∪ and ∩) by logicians to
represent the operators ‘‘or’’ and ‘‘and’’ was probably suggested by these properties of the sets of
objects satisfying such relations. (At least, so I thought when I wrote this. But a student told me
he had heard a different explanation: that ∨ is an abbreviation of Latin vel ‘‘or’’, and ∧ was
formed by inverting it.) If we look at closed sets of propositions rather than closed sets of objects,
these are, of course, ordered in the reverse fashion: The set of propositions implied by a
proposition s ∨ t is the intersection of those implied by s and those implied by t, while the set
implied by s ∧ t is the closure of the union of the sets implied by s and by t. Thus the use of
the words ‘‘and’’ (which implies something ‘‘bigger’’) and ‘‘or’’ (which suggests a weakening) is
based on the proposition-oriented viewpoint, while the choice of symbols ∧ and ∨ corresponds
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to the object viewpoint.
The contrast between these two viewpoints explains the problem students in freshman math

courses have when they are asked, say, to describe by inequalities the set of real numbers x
satisfying x2 ≥ 1. We want the answer ‘‘x ≤ –1 or x ≥ 1’’, meaning {x � x ≤ –1 or x ≥ 1}.
But they often put ‘‘x ≤ –1 and x ≥ 1’’. What they have in mind could be translated as
‘‘{x � x ≤ –1} and {x � x ≥ 1}’’. We can hardly tell them that their difficulty arises from the
order-reversing nature of the Galois connection between propositions and objects! But the more
thoughtful students might be helped if, without going into the formalism, we pointed out that there
is a kind of ‘‘reverse relation’’ between statements and the things they refer to: the larger a set of
statements, the smaller the set of things satisfying it; the larger a set of things, the smaller the set
of statements they all satisfy; so that ‘‘and’’ for sets of real numbers translates to ‘‘or’’ among
formulas defining them.

I generally spend fifteen minutes talking about this ‘‘reverse relation’’ when discussing
mathematical notation at the beginning of Berkeley’s undergraduate algebra course. Whether this
helps, I don’t know.

Logicians often write the propositions (∀x ∈X ) P(x) and (∃x ∈X ) Q(x) as ∧ x ∈X P(x) and
∨ x ∈X Q(x). Here the universal and existential quantifications are being represented as (possibly
infinite) conjunctions and disjunctions, corresponding to intersections and unions respectively of the
classes of models defined by the given families of conditions P(x) and Q(x), as x ranges
over X.

We have noted that for many naturally arising types of closure operators, the closure of a set X
can be constructed both ‘‘from above’’ and ‘‘from below’’ – either by taking the intersection of all
closed sets containing X, or by ‘‘building’’ elements of cl(X ) from elements of X by iterating
some procedure in terms of which cl was defined. Closure operators determined by Galois
connections, however, are born with only a construction ‘‘from above’’: For X ⊆ S, cl(X ) is the
intersection of those sets {t }* (t ∈T ) which contain X; the definition of a Galois connection
does not provide any way of constructing this set ‘‘from below’’. Rather, this is a recurring type of
mathematical problem for the particular Galois connections of mathematical interest! Typically,
given such a Galois connection, one looks for operations that all the sets {t }* are closed under,
and when one suspects one has found enough of these, one seeks to prove that for every X, cl(X )
is the closure of X under these operations. For instance, the fixed set of an automorphism of a
field extension F ⁄ K is easily seen to contain all elements of K and to be closed under the field
operations; the Fundamental Theorem of Galois Theory says that under appropriate hypotheses, the
closed subsets of F are precisely the subsets closed under these operations. When one considers
mathematical objects and propositions, then the problem of finding a way to ‘‘build up’’ the closure
of a set of propositions is that of finding an adequate set of rules of inference for the type of
proposition under consideration, while to construct the closure operation on objects is to
characterize intrinsically the axiomatic model classes.

The definition of Galois connection is unfortunately seldom presented in courses, and many
mathematicians who discover examples of it have not heard of the general concept. Of course,
Lemma 5.5.1 is a set of easy observations which can be verified in any particular case without
referring to a general result. But it is useful to have the general concept as a guide, and having
proved the lemma, we can skip those trivial verifications from now on.
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Summary of §6.1 (read down each column, referring to headings at left, then compare across)
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Chapter 6. Categories and functors.

6.1. What is a category? Let us lead up to the concept of category by first recalling the
motivations for some more familiar mathematical concepts:

(a) Groups. The definition of a group is motivated by considering the structure on the set Aut(X )
of all automorphisms of a mathematical object X. Given a, b ∈Aut(X ), the composite map ab
lies in Aut(X ); for every a ∈Aut(X ), its inverse a–1 is a member of Aut(X ), and, of course,
the identity map idX always belongs to Aut(X ). Thus, Aut(X ) is a set with a binary operation
of composition, a unary operation ‘‘–1’’, and a zeroary operation idX . When one examines the
conditions these operations satisfy, one discovers the associative law, the inverse laws, and the
neutral-element laws.

These laws and their consequences turn out to be fundamental to a wide class of considerations
involving automorphisms, so one makes a general definition: A 4-tuple G = ( |G |, ., –1, 1), where
|G | is a set and . , –1, 1 are operations on |G | satisfying the above laws, is called a group.

Let me point out something which is obvious today, but took getting used to for the first
generation to see the above definition: The definition does not say that G actually consists of
automorphisms of an object X – only that it has certain properties we have abstracted from that
context. In fact, systems with these properties are also found to arise in other ways:

The additive structures of the sets of integers, rational numbers, and real numbers form groups.
If (X, x0) is a topological space with basepoint, the set of homotopy classes of closed curves

beginning and ending at x0 forms a group, π1(X, x0).
And there are groups that are familiar, not because of a particular way they occur, but because

of their importance as basic components in the study of groups in general. The finite cyclic groups
Zn are the simplest examples.

Despite our abstract definition, and the existence of groups arising in these varied ways, the
original motivation of the group concept should not be forgotten. A natural question is: Which
abstract groups can be represented concretely, that is, as families of permutations of a set X under
the operations of composition, inverse map, and identity permutation? As we learn in
undergraduate algebra, the answer is that every group can be so represented (Cayley’s Theorem).
Let us rederive the well-known proof.

The idea is to use the simplest nontrivial construction of a G-set X : Introduce a single
generating element x ∈X, and let all the elements gx (g ∈ |G | ) be distinct. Formally we may
define X to be the set of symbols ‘‘gx’’, where x is a fixed symbol and g ranges over |G |. We
let G act on X in the appropriate way to make this a G-action, namely by the law

h(gx) = (hg)x (g, h ∈ |G | ).

The permutations of the set X given by the elements of G are seen to form a ‘‘concrete’’
group isomorphic to G. One then observes that the symbol ‘‘x’’ is irrelevant to the proof.
Stripping it away, we get the textbook proof: ‘‘Let G act on |G | by left multiplication . . .’’.
([20, p. 62], [24, p. 9], [26, p. 90], [29, p. 52].)

(b) Monoids. Suppose we consider not just the automorphisms of a mathematical object X but all
its endomorphisms, that is, homomorphisms into itself. The set End(X ) is closed under
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composition and contains the identity map, but there is no inverse operation. The operations of
composition and identity still satisfy associative and neutral-element laws, and one calls any set
with a binary operation and a distinguished element 1 satisfying these laws a monoid. Like the
definition of a group, this definition does not require that a monoid actually consist of
endomorphisms of an object X.

And indeed, there are again examples which arise in other ways than the one which motivated
the definition. The nonnegative integers form a monoid under multiplication (with 1 as neutral
element), and also under the operation max (with 0 as neutral element). Isomorphism classes of
(say) finitely generated abelian groups form a monoid under the operation induced by ‘‘�+ ’’, or
alternatively under the operation induced by ‘‘�× ’’. (One may remove some set-theoretic
difficulties from this example by restricting oneself to a set of finitely generated abelian groups with
exactly one member from each isomorphism class.)

One has the precise analog of Cayley’s Theorem: Every monoid S is isomorphic to a monoid
of maps of a set into itself, and this is proved the same way, by letting S act on |S | by left
multiplication.

(c) Partially ordered sets. Again let X be any mathematical object, and now let us consider the
set Sub(X ) of all subobjects of X.

In general, we do not have a way of defining interesting operations on this set. (There are often
operations of ‘‘least upper bound’’ and ‘‘greatest lower bound’’, but not always.) However,
Sub(X ) is not structureless; one subobject of X may be contained in another, and this inclusion
relation is seen to satisfy the conditions of reflexivity, antisymmetry and transitivity.

Again we abstract the situation, calling an arbitrary pair P = ( |P |, ≤), where |P | is a set, and
≤ is a binary relation on |P | satisfying the above three laws, a partially ordered set.

Examples of partial orderings arising in other ways than the above ‘‘prototypical’’ one are the
relation ‘‘≤’’ on the integers or the real numbers, and the logical relation ‘‘⇒’’ on a family of
inequivalent propositions. Partially ordered sets are also natural models of various hierarchical and
genealogical structures in nature, language, and human society.

Given an arbitrary partially ordered set P, will P be isomorphic to a ‘‘concrete’’ partially
ordered set – a family of subsets of a set X, ordered by inclusion? Again, let us try to build such
an X in as simple-minded a way as possible. We want to associate to every p ∈ |P | a subset p
of a set X, so as to duplicate the order relation among elements of P. To make sure all these
sets are distinct, let us introduce for each p ∈ |P | an element xp ∈X belonging to p, and hence
necessarily to every q with q ≥ p, but not to any of the other sets q (q ≥/ p). It turns out that
this works – if we define X to be the set of symbols {xp � p ∈ |P |}, and if for p ∈ |P | we set
p = {xq � q ≤ p} ⊆ X, we find that {p � p ∈ |P|}, under the relation ‘‘⊆’’, forms a partially
ordered set isomorphic to P. Again, the symbol ‘‘x’’ is really irrelevant, so we can get a
simplified construction by taking X = |P | and p = {q � q ≤ p} ( p ∈ |P | ). Thus we have
‘‘Cayley’s Theorem for partially ordered sets’’.

(d) ‘‘Bimonoids.’’ Let us go back to the ideas that led to the definition of a monoid, but make a
small change. Suppose that X and Y are two mathematical objects of the same sort (two sets,
two rings, etc.), and we consider the family of all homomorphisms among them. What structure
does this system have?

First, it is a system of four sets:

Hom(X, X ), Hom(X, Y ), Hom(Y, X ), Hom(Y, Y ).
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Elements of certain of these sets can be composed with elements of others, giving us eight
composition maps:

μXXX : Hom(X, X ) × Hom(X, X ) → Hom(X, X ),

μXXY : Hom(X, Y ) × Hom(X, X ) → Hom(X, Y ),
. . .

μYYY : Hom(Y, Y ) × Hom(Y, Y ) → Hom(Y, Y ).

(There is no composition on the remaining eight pairs, e.g., Hom(X, Y ) × Hom(X, Y ).)
These composition operations are associative – we have sixteen associative laws; namely, for

every 4-tuple (Z0 , Z1 , Z2 , Z3) of objects from {X, Y } (e.g., (Y, Y, X, Y )) we get the law

(6.1.1) (ab)c = a(bc)

for maps:

Z0
__c→ Z1

__b→ Z2
__a→ Z3.

(We could write (6.1.1) more precisely by specifying the four μ’s involved.) We also have two
neutral elements, idX ∈Hom(X, X ) and idY ∈Hom(Y, Y ), satisfying eight neutral element laws,
which you can write down.

Cumbersome though this description is, it is clear that we have here a fairly natural
mathematical structure, and we might abstract these conditions by defining a bimonoid to be any
system of sets and operations

S = (( |S |i j )i, j ∈{0, 1}
, (μi jk )

i, j, k∈{0, 1}
, (1i )i ∈{0, 1}

)

such that the |S |i j are sets, the μi jk are maps

μi jk : |S |jk × |S |i j → |S |ik ,

satisfying associative laws (ab)c = a(bc) on 3-tuples (a, b, c) ∈ |S |jk × |S |i j × |S |hi for all
h, i, j, k ∈{0, 1}, and such that the 1i are elements of |S |ii (i ∈{0, 1}) satisfying

1j a = a = a1i (a ∈ |S |i j ).

Again, these objects can arise in ways other than the one just indicated:
We can get an analog of the ‘‘π1’’ construction for groups: If X is a topological space and

x0, x1 are two points of X, then the set of homotopy classes of paths in X whose initial and
final points both lie in {x0, x1} is easily seen to form a ‘‘bimonoid’’ which we might call
π1(X ; x0, x1).

Readers familiar with the ring-theoretic concept of a Morita context (R, S ; R PS , S QR ; τ , τ ′)
will see that it also has this form: The underlying sets of the rings R and S play the roles of
|S |00 and |S |11, the underlying sets of the bimodules P and Q give |S |10 and |S |01, and the
required eight multiplication maps are given by the internal multiplication maps of R and S, the
bimodule structures of P and Q, and the bilinear maps τ : P × Q → R, and τ ′: Q × P → S.

Finally, if K is a field and for any two integers i and j we write Mij (K ) for the set of i × j
matrices over K, then for any m and n, the four systems of matrices Mmm (K ), Mnm (K ),
Mmn (K ), Mnn (K ), form a ‘‘bimonoid’’ under matrix multiplication. (The astute reader will
notice that this is really a disguised case of ‘‘two mathematical objects and maps among them’’,
since matrix multiplication is designed precisely to encode composition of linear maps between
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vector spaces K m and K n. And the ring-theorist will note that this matrix example is also a
Morita context.)

Is there a ‘‘Cayley’s Theorem for bimonoids’’, saying that any bimonoid S is isomorphic to a
subbimonoid of the bimonoid of all maps between two sets X and Y ? Following the models of
the preceding cases, our approach should be to introduce a small number of elements in X and/or
Y, and use them to ‘‘generate’’ the rest of X and Y under the action of elements of S. Will it
suffice to introduce a single generator x ∈X, and let X and Y consist of elements obtained from
x by application of the elements of the |S |0j? In particular, this would mean taking for Y the set
{tx � t ∈ |S |01}. For some bimonoids S this will work; but in general it will not. For example,
one can define a bimonoid S by taking any two monoids for |S |00 and |S |11, and the empty set
for both |S |01 and |S |10. For such an S, the above construction gives empty Y, though if
|S |11 is nontrivial it cannot be represented faithfully by an action on the empty set. In the same
way, it will not suffice to take only a generator in Y.

Let us, therefore, introduce as generators one element x ∈X and one element y ∈Y, and let X
be the set of all symbols of either of the forms sx or ty with s∈ |S |00, t ∈ |S |10, and Y the set
of symbols ux or y with u ∈ |S |01, ∈ |S |11. If we let S ‘‘act on’’ this pair of sets by
defining

a(bz) = (ab)z,

whenever z∈{x, y}, and a and b are members of sets |S |i j such that these symbolic
combinations should be meaningful, then we find that this yields an embedding of S in the
bimonoid of all maps between X and Y, as desired. The interested reader can work out the
details.

(e) Categories. We could go on in the same vein, looking at maps among 3, 4, etc., mathematical
objects, and define ‘‘trimonoids’’, ‘‘quadrimonoids’’ etc., with larger and larger collections of
operations and identities.

But clearly it makes more sense to treat these as cases of one general concept! Let us now,
therefore, try to abstract the algebraic structure we find when we look at an arbitrary family X of
mathematical objects and the homomorphisms among them.

In the above development of ‘‘bimonoids’’, the index set {0, 1} that ran through our
considerations was the same for all bimonoids. But in the general situation, the corresponding
index set must be specified as part of the object. This is the first component of the 4-tuple
described in the next definition.

Definition 6.1.2 (provisional). A category will mean a 4-tuple

C = (Ob(C), Ar(C), μ(C), id(C)),

where Ob(C) is any collection of elements, Ar(C) is a family of sets indexed by the pairs of
elements of Ob(C) :

Ar(C) = (C(X, Y ))X, Y ∈Ob(C) ,

μ(C) is a family of operations

μ(C) = (μXYZ )X, Y, Z ∈Ob(C)

μXYZ : C(Y, Z ) × C(X, Y ) → C(X, Z ),
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and id(C) is a family of elements

id(C) = (idX )X ∈Ob(C)

idX ∈C(X, X ),

such that, using multiplicative notation for the maps μXYZ, the associative identity

a(bc) = (ab)c

is satisfied for all elements a ∈C(Y, Z ), b ∈C(X, Y ), c ∈C(W, X ) (W, X, Y, Z ∈Ob(C)); and the
identity laws

a idX = a = idY a

are satisfied for all a ∈C(X, Y ) (X, Y ∈Ob(C)).

This definition is labeled ‘‘provisional’’ because it avoids the question of what we mean by a
‘‘collection of elements Ob(C)’’. If we hope to be able to deal with categories within set theory,
we should require the family Ob(C) to be a set. Yet we will find that the most useful
applications of category theory are to cases where Ob(C) consists of all algebraic objects of a
certain type (e.g., all groups), which calls for larger ‘‘collections’’. We will deal with this
dilemma in §6.4. In the next section, where we give some examples of categories, we will interpret
‘‘collection’’ broadly or narrowly as the example requires.

I mentioned that the concept of an ‘‘abstract group’’ – a group given as a set of elements with
certain operations on them, rather than as a concrete family of permutations of a set – was
confusing to people when it was first introduced. The ‘‘abstract’’ concept of a category still causes
many people problems – there is a great temptation for beginning students to imagine that the
members of C(X, Y ) must be actual maps between sets X and Y.

One reason for this confusion is that the terminology of category theory is set up to closely
copy that of the situation which motivated the concept. The word ‘‘category’’ is suggestive to
begin with; ‘‘Ob(C)’’ stands for ‘‘objects of C’’, and this is what elements of Ob(C) are called;
elements of f ∈C(X, Y ) are called ‘‘morphisms’’ from X to Y, the objects X and Y are
called the ‘‘domain’’ and ‘‘codomain’’ of f, these morphisms are often denoted diagrammatically

by arrows, X
__f→ Y ; and objects and morphisms are shown together in the sort of diagrams that

are used to represent objects and maps in other areas of mathematics. In place of C(X, Y ), the
notation Hom(X, Y ) is very common. And μXYZ ( f, g) is generally written fg or f .g or f og,
and so looks just like composition of functions.

So I urge you to note carefully the distinction between the situation that motivated our
definition, and the definition itself. Within that definition, the collection Ob(C) is simply an
‘‘index set’’ for the families of elements on which the composition operation is defined. Hence in
discussing an abstract category C , one cannot give arguments based on considering ‘‘an element
of the object X ’’, ‘‘the image of the morphism a’’, etc.; any more than in considering an abstract
group G one can refer to such concepts as ‘‘the set of points left fixed by G ’’. (However, the
latter concept is meaningful for concrete groups of permutations, and the former concepts are
likewise meaningful for ‘‘concrete categories’’, a concept we will make precise later on.)

Of course, the motivating situation should not be forgotten, and a natural question is: Is every
category isomorphic to a system of maps among some sets? We can give a qualified affirmative
answer. The complete answer depends on the set-theoretic matters that we have postponed to §6.4.
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but if Ob(C) is actually a set, then we can indeed construct sets (X )X ∈Ob(C) , and set maps
among these, including the identity map of each of these sets, which form under composition of
maps a category isomorphic to C . The proof is the analog of the one we sketched for
‘‘bimonoids’’.

Exercise 6.1:1. Write out the argument indicated above – ‘‘Cayley’s Theorem’’ for a category
with only a set of objects.

Incidentally, we will now discard the term ‘‘bimonoid’’, since the structure it described was, up
to notational adjustment, simply a category having for object-set the two-element set {0, 1}.

6.2. Examples of categories. To describe a category, one should, strictly, specify the class of
objects, the morphism-set associated with any pair of objects, the composition operation on
morphisms, and the identity morphism of each object. In practice, some of this structure is usually
easy to guess from context. When one is dealing with the prototype situation – a family of
mathematical objects and all homomorphisms among them – the whole structure is usually clear
once the class of objects is named. In other cases the morphism-sets must be specified as well;
once this is done the intended composition operation is usually (though not always) obvious. As to
the identity elements, these are uniquely determined by the remaining structure (just as in groups or
monoids), so the only problem is verifying that they exist, which is usually easy.

Categories consisting of families of mathematical objects and the homomorphisms among them
are generally denoted by boldface or script names for the type of object (often abbreviated. The
particular abbreviations may vary from author to author.) Some important examples are:

Set , the category of all sets and set maps among them. (Another symbol commonly used for
this category is Ens , from the French word ensemble.)

Group , the category whose objects are all groups, and whose morphisms are the group
homomorphisms; and similarly Ab , the category of abelian groups.

Monoid , Semigroup , AbMonoid and AbSemigroup , the categories of monoids,
semigroups, abelian monoids and abelian semigroups.

Ring1, and CommRing1 the categories of associative, respectively associative commutative,
rings with unity. (One could denote the corresponding categories of nonunital rings – i.e., 4-tuples
R = ( |R|, +, ., –, 0), where |R| may or may not contain an element 1 satisfying the neutral law
for multiplication, and where, even if rings do happen to possess such elements, morphisms are not
required to respect them – by the same symbols with the superscripts ‘‘1’’ deleted; but we will not
refer to those categories often enough in these notes to want to fix names form them.)

If R is a unital associative ring, we will write the category of left R-modules R-Mod . (The
category of right R-modules is often written as Mod-R ; other notations for these two categories
are R Mod and ModR respectively.) Similarly, for G a group, the category of G-sets will be
written G-Set ; here the morphisms are the set maps respecting the actions of all elements of G.

Top denotes the category of all topological spaces and continuous maps among them.
Topologists often find it useful to work with topological spaces with basepoint, (X, x0), so we
also define the category Toppt of pointed topological spaces, the objects of which are such pairs
(X, x0), and the morphisms of which are the continuous maps which send basepoint to basepoint.
Much of topology is done under the assumption that the space is Hausdorff; thus one considers the
subcategory HausTop of Top whose objects are the Hausdorff spaces.

We shall write POSet for the category of partially ordered sets, with isotone maps for
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morphisms. If we want to allow only strict isotone maps, i.e., maps respecting the relation ‘‘<’’,
we can call the resulting category POSet< .

We have mentioned that our concept of ‘‘bimonoid’’ was a special case of the concept a
category. Let us make this precise. The definition of a category requires specification of the
object-set, whereas for bimonoids the implicit object-set was always {0, 1}. So given a bimonoid
S = (( |S |i j ), (μi jk ), (1i )), to get a category C , we throw in a formal first component Ob(C) =
{0, 1}. We can then define C(i, j) = |S |i j , and we have the category C = ({0, 1}, ( |S |i j ), (μi jk ),
(1i )), which we may denote Scat .

This works because the situation from which we abstracted the concept of a bimonoid was a
special case of the situation from which we abstracted the concept of a category. Now in fact, the
situations from which we abstracted the concepts of group, monoid, and partially ordered set were
also special cases of that situation! Can objects of these types similarly be identified with certain
kinds of categories?

The objects most similar to bimonoids are the monoids. Since they are modeled after the
algebraic structure on the set of endomorphisms of a single algebraic object, let us associate to an
arbitrary monoid S a one-object category Scat , with object-set {0}. The only morphism-set to
define is Scat (0, 0), we take this to be |S |; for the composition map on pairs of elements of
Scat (0, 0), we use the composition operation of S, and for the identity morphism, the neutral
element of S.

Conversely, if C is any category with only one object, X, then the unique morphism set
C(X, X ) will form a monoid S under the composition operation of C , such that the category
Scat formed as above is isomorphic to our original category C , the only difference being the
name of the one object. Thus, a category with exactly one object is ‘‘essentially’’ a monoid.

If we start with a group G, we can similarly form a category Gcat with just one object, 0,
whose morphisms are the elements of G and whose composition operation is the composition of
G. We cannot incorporate the inverse operation of G as an operation of the category; in fact,
what we are doing is essentially forgetting the inverse operation, i.e., forming from G the monoid
Gmd, and then applying the previous construction; thus Gcat =∼ (Gmd)cat . We see that via this
construction, a group is equivalent to a category which has exactly one object, and in which every
morphism is invertible.

Note that for G a group, the one member of Ob(Gcat ) should not be thought of as the group
G, but as a fictitious mathematical object on which G acts. Thus, morphisms in this category
from that one object to itself do not correspond to endomorphisms of G, as students sometimes
think, but to elements of G.

The case of partially ordered sets is a little different. In the motivating situation, though we
started with a single object X, we considered a family of objects obtained from it, namely all its
subobjects. Although there might exist many maps among these objects, the structure of partially
ordered set only reveals a certain subfamily of these: the inclusion maps. (In fact, since a
‘‘homomorphism’’ means a map which respects the kind of structure being considered, and we are
considering these objects as subobjects of X, one could say that a homomorphism as subobjects
should mean a set map which respects the way the objects are embedded in X, i.e., an inclusion
map; so from this point of view, these really are the ‘‘only’’ relevant maps.) A composite of
inclusion maps is an inclusion map, and identity maps are (trivial) inclusions, so the subobjects of
X and the inclusion maps among them form a category. In this category there is a morphism from
A to B if and only if A ⊆ B, and the morphism is then unique, so the partial ordering of the
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subobjects determines the structure of the category.
If we start with an abstract partially ordered set P, we can construct from it an abstract

category Pcat in the way suggested by this concrete prototype: Take Ob(Pcat ) = |P |, and for all
A, B ∈ |P |, define there to be one morphism from A to B if A ≤ B in P, none otherwise.
What should we take this one morphism to be? This is like asking in our construction of Gcat
what to call the one object. The choice doesn’t really matter. Since we want to associate to each
ordered pair (A, B ) with A ≤ B in P some element, the easiest choice is to take for that
element the pair (A, B ) itself. Thus, we can define Pcat to have object-set |P |, and for
A, B ∈ |P |, take Pcat (A, B ) to be the singleton { (A, B ) } if A ≤ B, the empty set otherwise.
The reader can easily describe the composition operation and identity elements of Pcat .

Exercise 6.2:1. Let C be a category. Show that C is isomorphic to Pcat for some partially
ordered set P if and only if ‘‘there is at most one morphism between any unordered pair of
objects’’; in the sense that each hom-set C( X, Y ) has cardinality at most 1, and the hom-sets
C( X, Y ) and C( Y, X ) do not both have cardinality 1 unless X = Y.

We mentioned that some groups, such as the cyclic groups Zn , are of interest as ‘‘pieces’’ in
terms of which we look at general groups. Thus, to give an element of order n in a group G is
equivalent to displaying an isomorphic copy of Zn in G, and to give an element satisfying
xn = e is equivalent to displaying a homomorphic image of Zn in G. Various simple categories

are of interest for essentially the same reason. For instance a commutative square ↓.
.→
→↓.

.
of objects

and morphisms in a category C corresponds to an image in C of a certain category with four
objects, which we can name 0, 1, 2 and 3:

0
___→ 1

��
↓

��
↓

2
___→ 3

whose morphisms are the four identity morphisms and the five arrows shown, where the diagonal
arrow is both the composite of the morphisms from 0 to 1 to 3 and the composite of the
morphisms from 0 to 2 to 3. Indeed, this ‘‘diagram category’’ might be conveniently named

‘‘ ↓.
.→
→↓.

.
’’.

A simpler example is the diagram category .→→. , with two objects and only two nonidentity
morphisms, going in the same direction. Copies of this in a category C correspond to the type of
data one starts with in the definitions of difference kernels and difference cokernels. Still simpler is
.→. , which is often called ‘‘ 2 ’’; an image of this in a category corresponds to a choice of two
objects and one morphism between them. (So the category 2 takes its place in our vocabulary
beside the ordinal 2, the Boolean ring 2, the lattice 2, and the partially ordered set 2 !) A
larger diagram category is

.→.→.→.→ . . .

images of which in C correspond to infinite chains of morphisms. The morphisms of this diagram
category are the identity morphisms, the arrows shown in the picture, and all composites of these
arrows, of which we have exactly one from every object to every object to the right of it. Finally,
one might denote by . a category having one object 0, and, aside from the identity morphism
of 0, one other morphism x, and all its powers, x2, x3, etc.. An image of this in a category
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C will correspond to a choice of an object and a morphism from this object to itself.
(In the above discussion I have been vague about what I meant by an ‘‘image’’ of one category

in another. In §6.5 we shall introduce the category-theoretic concept analogous to homomorphism,
in terms of which this can be made precise. At this point, for the sake of giving you some broad
classes of examples to think about, I have spoken without having the formal definition at hand.)

The various types of examples we have discussed are by no means disjoint. Three of the above
‘‘diagram categories’’ can be recognized as having the form Pcat , where P is respectively, a
4-element partially ordered set, the partially ordered set 2, and the partially ordered set of
nonnegative integers, while the last example is Scat , for S the free monoid on one generator x.

Many of the other ‘‘nonprototypical’’ ways in which we saw that groups, etc., arise also have
generalizations to categories:

If R is any ring, we see that multiplication of rectangular matrices over R satisfies precisely
the laws for composition of morphisms in a category. Thus, we get a category MatR by defining
the objects to be the nonnegative integers, the morphism-set MatR (m, n) to be the set of all
n × m matrices over R, the composition μ to be matrix multiplication, and the morphisms idn
to be the identity matrices In . This is not very novel, since as we observed before, matrix
multiplication is defined to encode composition of linear maps among free R-modules. But it is
interesting to note that the abstract system of matrices over R is not limited to serving that
function; if M is any left R-module, one can use n × m matrices over R to represent operations
which carry m-tuples of elements of M to n-tuples formed from these using linear expressions
with coefficients in R. This line of thought suggests similar constructions for other sorts of
algebraic objects. For instance, we can define a category C whose objects are again the
nonnegative integers, and such that C(m, n ) represents all ways of getting an n-tuple of elements
of an arbitrary group from an m-tuple using combinations of the group operations. Precisely, we
can define C(m, n ) to be the set of all n-tuples of derived group-theoretic operations in m
variables. The composition maps

C(n, p ) × C(m, n ) → C(m, p )

can be described in terms of substitution of derived operations.
Generalizing the construction of the fundamental group of a topological space X, one can

define a category π1(X ) whose objects are all points of the space X, and where a morphism
from the point x0 to the point x1 is defined to mean a homotopy class of paths from x0 to x1.

We can also define categories which have familiar mathematical entities for their objects, but
put unexpected twists into the definitions of the morphism-sets. Recall that in the category Set ,
the morphisms from the set X to the set Y are all functions from X to Y. Now formally, a
function is a relation f ⊆ X × Y such that for every x ∈X there exists a unique y ∈Y such that
(x, y) ∈f . Suppose we drop this restriction, and consider arbitrary relations R ⊆ X × Y. One can
compose these using the same formula by which one composes functions: If R ⊆ X × Y and
S ⊆ Y × Z, one defines

S oR = {(x, z) ∈X × Z � (∃y ∈Y ) (x, y) ∈R, (y, z) ∈S }.

This composition of relations is associative, and the identity relations satisfy the identity laws;
hence one can define a category RelSet , whose objects are ordinary sets, but such that
RelSet(X, Y ) is the set of relations in X × Y.

Algebraic topologists work with topological spaces, but instead of individual maps among them,
they are most concerned with homotopy classes of maps. Thus, they use the category HtpTop
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whose objects are topological spaces, and whose morphisms are such homotopy classes.
Composition of continuous maps respects homotopy, allowing one to define the composition
operation of this category.

In complex variable theory, one often fixes a point z of the complex plane and considers all
analytic functions defined in a neighborhood of z. Different functions in this set are defined on
different neighborhoods of z, so these functions do not all have any domain of definition in
common. Further, functions which are the same in a neighborhood of z may not agree on the full
intersection of their domains, if this intersection is not connected. E.g., the natural logarithm
function ln(z) with value zero at z = 1 extends to some connected regions of the plane so as to
assume the value +πi at the point –1, and to other such regions so as to assume the value –πi
at that point. To eliminate distinctions which are not relevant to the behavior of functions in the
vicinity of the specified point z, one introduces the concept of a germ of a function at z. This is
an equivalence class of functions defined on neighborhoods of z, under the relation making two
functions equivalent if they agree on some common neighborhood of z.

An apparent inconvenience of this concept is that for germs of functions at z, one does not
have a well-defined operation of composition. For instance, if f and g are germs of analytic
functions at z = 0, one cannot generally attach a meaning to g( f (z)) unless f (0) = 0, because
g does not have a well-defined ‘‘value’’ at f (0). (This is the analog of the algebraic problem that
given formal power series f (z) = a0 + a1 z+ ... and g(z) = b0 + b1 z+ ... , one cannot in general
‘‘substitute f into g’’ to get another formal power series in z, unless a0 = 0.) But this
behavior ceases to be problematic if we define a category GermAnal , whose objects are the
points of the complex plane, and where a morphism from z to w means a germ of an analytic
function at z whose value at z is w. Then for any three points z0, z1, z2, one sees that one
does indeed have a well-defined composition operation

GermAnal(z1, z2) × GermAnal(z0, z1) → GermAnal(z0, z2).

I.e., the partial operation of composition of germs of analytic functions is defined in exactly those
cases where it should be, to make these germs the morphisms of a category.

These examples allow endless modification as needed. A topologist may impose the restriction
that the topological spaces considered in a given context be Hausdorff, be locally compact, be given
with basepoint, etc., and modify the category he or she uses accordingly. The definition of a germ
of a function is not limited to complex variable theory, so analogs of GermAnal can be set up
wherever needed. Here is an interesting case:

Exercise 6.2:2. If G and H are groups, let us define an almost-homomorphism from G to H
to mean a homomorphism f : Gf → H, whose domain Gf is a subgroup of finite index in G.
Given two almost-homomorphisms f and g from G to H, with domains Gf and Gg , let
us write f ∼∼ g if the subgroup {x ∈ |Gf | ∩ |Gg | � f (x) = g(x)} also has finite index in G.
(i) Show that ∼∼ is an equivalence relation on the set of almost-homomorphisms from G
to H.
(ii) Construct a category C whose objects are all groups, and whose morphisms are the
equivalence classes of almost-homomorphisms, under ∼∼.
(iii) Describe the endomorphism-monoid C(Z , Z), where C is the category described above,
and Z is the additive group of integers.

We noted earlier that isomorphism classes of abelian groups formed a monoid under �× . The
reader with some ring-theoretic background might like the following generalization of this monoid
to a category.
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Exercise 6.2:3. Show that one can define a category C such that Ob(C) is the class of all rings,
C(R, S ) is, for each R, S ∈Ob(C), the family of all isomorphism-classes [P] of
(S, R)-bimodules P, and the composite [P][Q] is the isomorphism class of the tensor product,
[P �× S Q], for [P] ∈C(S, T ), [Q] ∈C(R, S ). (Either ignore the problem that the classes
involved in this definition are not sets, or modify the statement in some reasonable way to avoid
this problem.)

If you are familiar with Morita equivalence, verify that two objects are isomorphic in this
category if and only if they are Morita equivalent rings.

The following example shows that not every plausible definition works:

Exercise 6.2:4. Suppose one attempts to define a category C by taking all sets for the objects,
and letting C(X, Y ) consist of all equivalence classes of set maps X → Y, under the relation
that makes f ∼∼ g if {x ∈X � f (x) ≠ g(x)} is finite. Show that this does not work, and give an
example of the phenomenon that goes wrong (e.g., an example showing that something is not
well-defined, or whatever). Instead of sets and finite subsets, you can alternatively use measure
spaces and subsets of measure zero.

Here is an interesting variant on the construction Scat , for S a monoid. (For an application,
see [40].)

Exercise 6.2:5. Let S be a monoid, and X an S-set. We may define a category whose objects
are the elements of X, and such that a morphism x → y (x, y ∈|X | ) is an element s∈|S| such
that sx = y. However, to help remind us of the intended domain and codomain of each
morphism, let us, rather, take the morphisms x → y to be all 3-tuples (y, s , x) such that s∈|S|
and sx = y. We define composition by (z, t , y) (y, s , x) = (z, ts , x); the definition of the
identity morphisms should be clear.
(i) Show that the construction Scat is a special case of this construction.
(ii) In general, can one reconstruct the monoid S and the S-set X from the category Xcat ?

I don’t know the answer to
(iii) Is there a nice characterization of those categories expressible in the form Xcat for S a
monoid and X an S-set? What about those which are so expressible with S in fact a group?

6.3. Other notations and viewpoints. The language and notation of category theory are still far
from uniform. Let me note some of the commonest variations on the conventions I have presented.

I have mentioned that what we are writing C(X, Y ) is often written Hom(X, Y ); this may at
times be made more explicit as HomC (X, Y ); there is also the shorter notation (X, Y ). Even
though we shall not use the notation Hom(X, Y ), we shall often call these sets ‘‘hom-sets’’.

More problematically, the order in which the objects are written may be reversed: Some
authors write the set of morphisms from X to Y as C(Y, X ), Hom(Y, X ), etc.. There are
advantages to each choice: The order we are using matches the conceptual order of going ‘‘from
X to Y’’, and the use of arrows drawn from left to right, X

__a→ Y, but has the disadvantage that
composition of morphisms X → Y → Z must be described as a map C(Y, Z ) × C(X, Y ) →
C(X, Z ). Under the reversed notation, composition goes more nicely, C(Z, Y ) × C(Y, X ) →
C(Z, X ). A different cure for the same problem is to continue to think of elements of C(X, Y ) as
morphisms from X to Y (as we are doing), but reverse the way composition is written, letting the
composite of a ∈C(X, Y ) and b ∈C(Y, Z ) be denoted ab ∈C(X, Z ), rather than ba. However
if one does this, then when writing functions on sets, one is more or less forced to abandon the
conventional notation f (x), which leads to the usual order of composition, and write x f instead.

Note that the above difficulties in category-theoretic notation simply mirror conflicts of notation
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already existing within mathematics!
The elements of C(X, Y ), which we call ‘‘morphisms’’, are called ‘‘arrows’’ by some. (Our

notation Ar(C) for the system of morphism-sets is based on that word; some authors write Fl(C),
based on the French flèche (arrow).) Colloquially they are also called ‘‘maps’’ from X to Y,
and I may allow myself to fall into this easy usage at times, hoping that you understand by now
that they are not maps in the literal sense, i.e., functions.

The identity element in C(X, X ) which we are writing idX is also written IX (like an
identity matrix) or 1X (just as the identity element of a group is often written 1).

The student has probably noticed at some point in his or her study of mathematics the petty but
vexing question: If X is a subset of Y, is the inclusion map of X into Y the ‘‘same’’ as the
identity map of X? If we follow the convenient formalization of a function as a set of ordered
pairs (x, f (x)), then they are indeed the same. But this means that a question like ‘‘Is f
surjective?’’ is meaningless; one can only ask whether f is surjective as a map from X to X,
whether it is surjective as a map from X to Y, etc.. A formalization more in accord with the
way we think about these things might be to define a function f : X → Y as a 3-tuple (X, Y, | f | ),
where | f | is the set of ordered pairs used in the usual definition. Then f is surjective if and only
if the set of second components of members of | f | equals the whole set Y. (Since X is
determined by | f |, our making X a component of the 3-tuple is, strictly, unnecessary; but it
seems worth doing for symmetry. Note that if one wants to use a similar notation for general
relations |R | ⊆ X × Y, then neither X nor Y will be determined by |R |, so one needs both of
these in the tuple describing the relation. Having both in the tuple describing a function then
allows one to consider the functions from X to Y as a subset of the relations between these sets.)

The same problem arises in abstract form in developing the concept of category: Can an
element be a member of two different morphism-sets, C(X, Y ) and C(X ′ , Y ′), with (X, Y ) ≠
(X ′ , Y ′) ? Yes under our definitions; however some authors add to the definition of a category the
condition that the sets of morphisms between distinct pairs of objects be disjoint.

Let us note what such a condition would entail. In the category Group , as an example, a
group homomorphism f : G → H would have to specify not merely its set-theoretic domain and
codomain |G | and |H |, but the full group structures G = ( |G |, μG, ιG, eG ) and H = ( |H |, μH,
ιH, eH ). When one thinks about it, this makes good sense, not only in category theory but in
ordinary group theory; for without knowing the group structures on |G | and |H |, one cannot say
whether f is a homomorphism, let alone answer such group-theoretic questions as, say, whether its
kernel contains all elements of order 2.

Observe that in set theory, even if one does not define a function so as to determine its
codomain, certain things remain well-defined; for example, the composite fg of two composable
maps can be defined knowing only the set of ordered pairs by which the maps are defined. But
there is nothing in the axioms of a category that says that if g lies in both C(X, Y ) and
C(X ′ , Y ′), while f lies in both C(Y, Z ) and C(Y ′ , Z ′), then the composites μXYZ ( f, g) and
μX ′ Y ′ Z ′ ( f, g) need to be the same; so even the symbol ‘‘fg’’ is formally ambiguous.

On the whole, I think it desirable to include in the definition of a category the condition that
morphism-sets be disjoint. However, we shall not do so in these notes, largely because it would
increase the gap between our category theory and ordinary mathematical usage. So the difficulties
mentioned above mean that we have to be careful, understanding for instance that in a given
context, we are using fg as a shorthand for μXYZ ( f, g), which is the only really unambiguous
expression. Any structure which is a category C under our definition can be ‘‘translated’’ to a
category Cdisj with disjoint morphism-sets, by using the same objects, and letting Cdisj(X, Y )
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consist of all 3-tuples f = (X, Y, | f | ) with | f | ∈C(X, Y ).
Those who do require morphism-sets to be disjoint can play some interesting variations on the

definition of category. Instead of defining Ar(C) to be a family of sets, Ar(C) =
(C(X, Y ))X, Y ∈Ob(C) , they can take it to be a single set (or class), the union of all the C(X, Y )’s.
To recover domains and codomains of morphisms, one adds to the definition of a category two
operations, dom, cod: Ar(C) → Ob(C). One then makes composition of morphisms a single map

μ : {( f, g) ∈Ar(C)2 � dom( f ) = cod(g)} → Ar(C).

One can be even more radical and eliminate reference to objects, as sketched in the next
exercise:

Exercise 6.3:1. (i) Let C be a category such that distinct ordered pairs of objects (X, Y )
have disjoint morphism-sets. Let A = ∪X, Y C(X, Y ). Let μ denote the composition operation
in A, considered now as a partial map from A × A to A, i.e., a function from a subset of
A × A to A. Show that the pair (A, μ) determines C up to isomorphism.
(ii) Find conditions on a pair (A, μ), where A is a set and μ a partial binary operation on
A, which are necessary and sufficient for it to arise, as above, from a category C .

One gets a still nicer structure by combining the above approach with that of giving functions
specifying the domain and codomain of each morphism. Namely, given a category C with
disjoint morphism-sets, let A be defined as in (i), let dom: A → A be the map associating to
each morphism f the identity morphism of its domain, and similarly let cod: A → A associate
to each morphism the identity morphism of its codomain. Since the pair (A, μ) determines C
up to isomorphism, the same will be true of the 4-tuple (A, μ , dom, cod).
(iii) Find necessary and sufficient conditions on a 4-tuple (A, μ , dom, cod) for it to arise as
above from a category C .

So one could redefine a category as an ordered pair (A, μ) or 4-tuple (A, μ , dom, cod)
satisfying appropriate conditions.

However, these differences in definition do not make a great difference in how one actually
works with categories. If, for instance, one defines a category as a 5-tuple C = (Ob(C), Ar(C),
domC , codC , idC ), one then immediately makes the definition

C(X, Y ) = { f ∈Ar(C) � (dom( f ) = X ) ∧ (cod( f ) = Y )},

and works with these morphism sets as other category-theorists do. (But I will mention one
notational consequence of the morphisms-only approach that can be confusing to the uninitiated:
the use, by some categorists, of the name of an object as the name for its identity morphism as
well.)

Changing the topic from technical details to attitudes, category theory has been seen by some as
the new approach that would revolutionize, unify, and absorb all of mathematics; by others as a
pointless abstraction whose content is trivial where it is not incomprehensible.

Neither of these characterizations is justified, but each has a grain of truth. The subject matter
of essentially every branch of mathematics can be viewed as forming a category (or a family of
categories); but this does not say how much value the category-theoretic viewpoint will have for
workers in a given area. The actual role of category theory in mathematics is like that of group
theory: Groups come up in all fields of mathematics, because for every mathematical object, we
can look at its symmetries, and generally make use of them. In some situations the contribution of
group theory is limited to a few trivial observations, and to providing a terminology consistent with
that used for similar considerations in other fields. In others, deep group-theoretic results are
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applicable. Finally, group theory is a branch of algebra in its own right, with its own intrinsically
interesting questions. The same is true of category theory.

As with the concept of ‘‘abstract group’’ for an earlier generation, many people are troubled by
that of an ‘‘abstract category’’, whose ‘‘objects’’ are structureless primitives, not mathematical
objects with ‘‘underlying sets’’, so that in particular, one cannot reason by ‘‘chasing elements’’
around diagrams. I think the difficulty is pedagogic. The problem comes from expecting to be able
to ‘‘chase elements’’. As one learns category theory (or a given branch thereof), one learns the
techniques one can use, which is, after all, what one needs to do before one can feel at home in
any area of mathematics. These include some reasonable approximations of element-chasing, if one
wants them.

And there is no objection to sometimes using a mental image in which objects are sets and
morphisms are certain maps among them, since this is an important class of cases. One must
merely bear in mind that, like all the mental images we use to understand mathematics, it is
imperfect.

When one thinks of categories as algebraic entities themselves, one should note that the item in
the definition of a category that corresponds to the element in the definition of a group, monoid
etc., is the morphism. It is on these that the composition operation, analogous to the multiplication
in a group or monoid, is defined. The object-set of C , which has no analog in groups or
monoids, is essentially an index set, used to classify these elements.

While on the subject of terminology, I will mention one distinction among words (relevant to,
but not limited to category theory) which many mathematicians are sloppy about, but which I try to
maintain: the difference between composite and composition. If f and g are maps of sets, or
morphisms in a category, such that gf makes sense, it is their composite. The operation carrying
the pair ( f, g) to this element gf is composition. This is analogous to the distinction between
the sum of two integers, a +b, and the operation of addition.

6.4. Universes. Let us now confront the problem we postponed, of how we can both handle
category theory within set theory, and have category theory include concepts like ‘‘the category of
sets’’.

A first approach is the following. Formulate the general definition of a category C so that
Ob(C), and even the families C(X, Y ), are assumed to be classes. Do as much as we can in that
context – the resulting animals are called large categories. Then go on to consider those categories
in which the families C(X, Y ) are sets, and prove better results about these – they are called
legitimate categories, and most of the examples of §6.2 are of this sort. Finally consider categories
such that both Ob(C) and the families C(X, Y ) are sets. These are called small categories, and
in studying them one can use the full power of set theory.

Unfortunately, in conventional set theory one has one’s hands tied behind one’s back when
trying to work with large or even legitimate categories, for there is no mechanism for dealing with
collections of classes. To get around this, one might try extending set theory. One could remove
the assumption that every member of a class must be a set, so as to allow certain classes of proper
classes, and extend the axioms to apply to such classes as well as sets – and one would find
essentially no difficulty – except that what one had been calling ‘‘classes’’ are now looking more
and more like sets!

So let us change the names, and call our old sets small sets and the classes, collections of
classes, etc., large sets. (The word ‘‘class’’ itself we then restore to the function of referring to
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arbitrary collections of the sets in our set theory, large and small. This includes the collection of
all sets, which cannot itself be a member of that theory.) We shall not distinguish between large
and small sets in the axioms; we will use the axioms of ZFC for arbitrary sets, large and small. To
set up the distinction between large sets and small sets, we will use

Definition 6.4.1. A universe is a set U satisfying

(i) X ∈Y ∈U ⇒ X ∈U.

(ii) X, Y ∈U ⇒ {X, Y } ∈U.

(iii) X, Y ∈U ⇒ X × Y ∈U.

(iv) X ∈U ⇒ P(X ) ∈U.

(v) X ∈U ⇒ (∪A ∈X A ) ∈U.

(vi) ω ∈U.

(vii) If X ∈U and f : X → U is a function, then { f (x) � x ∈X } ∈U.

The axioms of ZFC introduced in §4.4 do not guarantee the existence of a set with the above
properties (though if we replace ‘‘a set U ’’ by ‘‘a class U ’’ in the above definition, the class of
all sets satisfies these conditions). Suppose, however, that a universe U exists, and suppose we
look at the members of U, and the relation ∈ among these. Then this subsystem of sets will
itself satisfy the ZFC axioms (we have set up the definition of universe precisely to guarantee this)
and the ‘‘operations’’ of power set, direct product, etc., will be the same for this ‘‘sub - set-theory’’
as for our given set theory. Hence we can call a member of U a ‘‘small set’’ and an arbitrary set
a ‘‘large set’’, and use the indicated concepts of ‘‘small category’’, ‘‘legitimate category’’ and
‘‘large category’’, as defined above, within this context. We define ‘‘group’’, ‘‘ring’’, ‘‘lattice’’,
‘‘topological space’’, etc., as we always did; we further define one of these objects to be ‘‘small’’
if it is a member of U. Then, although all groups still do not form a set, all small groups do
(though they do not form a small set). We can now define Set , Group , etc., to mean the
categories of all small sets, small groups, etc., make the tacit assumption that small objects are all
that ‘‘ordinary mathematics’’ cares about, and use large categories to study them! All that needs to
be added to ZFC is an axiom saying that there exists a universe, and such an axiom is considered
reasonable by set-theorists.

The above is the approach used by Mac Lane [14, pp.21-24]. However, we shall go a little
further, and, following A. Grothendieck [56, §1.1], use ZFC plus an assumption that seems no less
reasonable than the existence of one universe, and more elegant. Namely,

Axiom of Universes: Every set is a member of a universe.

We shall assume ZFC with the Axiom of Universes from now on.
Now we no longer have to imagine a 2-tiered set theory such that ordinary mathematicians work

in the lower tier of ‘‘small’’ sets, and category theorists have access to the higher tier of ‘‘large’’
sets. Rather, categories, just like other mathematical objects, can exist ‘‘at any level’’. But when
we want to use categories to study a given sort of mathematical object, we study the category of all
objects of that sort belonging to some fixed universe U.

Let us now state things more formally.

Definition 6.4.2. Category will be defined as in the provisional Definition 6.1.2, but with the
‘‘system’’ of objects Ob(C) explicitly meaning a set.
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Definition 6.4.3. If U is a universe, a set X will be called U-small if X ∈U. A mathematical
object (e.g., a group, a ring, a topological space, etc. – or a category) will be called U-small if it
is U-small as a set. In addition, a category C will be called U-legitimate if Ob(C) ⊆ U and for
all X, Y ∈Ob(C), C(X, Y ) ∈U. U-large will mean ‘‘not necessarily U-small’’.

The categories of U-small sets, U-small groups, etc., will be denoted Set(U ) , Group(U ) , etc..

Thus, Set(U ) , Group(U ) etc., are U-legitimate categories, and so for every universe U ′
having U as a member, they are U ′ -small categories.

But we don’t want to encumber our notation with these subscripts (U ) , so we make a
convention to suppress them:

Definition 6.4.4. When the contrary is not indicated, some chosen universe U will be understood
to be fixed, and the terms ‘‘small’’, ‘‘legitimate’’ and ‘‘large’’ will mean ‘‘U-small’’,
‘‘U-legitimate’’ and ‘‘U-large’’. When speaking of a collection of mathematical objects (sets,
groups, rings, topological spaces etc.), its members will be assumed small. As an exception,
‘‘category’’ will mean legitimate category. In particular, the symbols Set, Group, Top etc.,
will denote the legitimate categories of small sets, groups, topological spaces, etc..

(Note, incidentally, that our term ‘‘U-large’’ does not specify any conditions on a set; in
particular, it does not mean that it is a subset of U. It simply removes any assumption of
U-smallness.)

So things now look more or less as they did when we started, but we know what we are doing!
The distinctions between small and large objects will come into our considerations from time to

time. For instance, when we generalize the construction of free groups and other universal objects
as subobjects of direct products, we will see that the key condition we need is that we be able to
choose an appropriate small set of objects over which to take the direct product.

Exercise 6.4:1. (i) Show that a group G is small if and only if |G | is small.
(ii) Show that a category C is small if and only if Ob(C) is small, and for all
X, Y ∈Ob(C), the set C( X, Y ) is small.

Although, as we have seen, one uses non-small categories to study small objects of other sorts,
the tables can be turned. For instance, we may consider closure operators on classes of small (or
legitimate) categories, and the lattice of closed sets of such an operator will then be a large lattice.

The next couple of exercises show some properties of the class of universes. (The Axiom of
Universes is, of course, to be assumed if the contrary is not stated.)

Exercise 6.4:2. (i) Show that the class of universes is not a set.
(ii) Will this same result hold if we weaken the Axiom of Universes to the statement that there
is at least one universe (as in Mac Lane)? What if we use the intermediate statement that there
is a universe, and that every universe is a member of a larger universe?

Exercise 6.4:3. Let us recursively define the depth of a set by the condition that depth(X ) is the
least ordinal greater than all the ordinals depth(Y ) for Y ∈X, and the width of a set by the
condition that width(X ) is the least cardinal ≥ card(X ) and ≥ the cardinals width(Y ) for all
Y ∈X.
(i) Say briefly why we can make these definitions.
(ii) Show that for every universe U there exists a cardinal α such that U consists of all
sets of width < α , and/or show that for every universe U there exists a cardinal α such that
U consists of all sets of depth < α .
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(iii) Obtain bounds for the width of a set in terms of its depth, and vice versa, and if you only
did one part of the preceding point, deduce the other part.
(iv) Characterize the cardinals α which determine universes in this manner.

Do the arguments you have used require the Axiom of Universes?

Exercise 6.4:4. Show that if U ≠ V are universes, then either U ∈V or V ∈U. Deduce that the
relation ‘‘∈ or =’’ is a well-ordering on the class of universes. (You may wish to use some
results from the preceding exercise.)

Exercise 6.4:5. Suppose that we drop from our axioms for set theory the Axiom of Infinity, and in
our definition of ‘‘universe’’ replace the condition that every universe contain ω by the
condition that every universe contain ∅. Show that under the new axiom-system, one can
recover the Axiom of Infinity using the Axiom of Universes. Show that all but one of the sets
which are ‘‘universes’’ under the new definition will be universes under our existing definition,
and characterize the one exception.

Exercise 6.4:6. In Exercise 4.5:13 we found that ‘‘most’’ infinite cardinals were regular; namely,
that all singular cardinals were limit cardinals; but that among limit cardinals, regular cardinals
were rare; we found no example but ℵ0. Show now that the cardinality of any universe is a
regular limit cardinal.

Remarks: Set-theorists call a regular limit cardinal a weakly inaccessible cardinal, because it
cannot be ‘‘reached’’ from lower cardinals using either the cardinal successor operation or chains
indexed by lower cardinals. The inaccessible cardinals, which are the cardinalities of universes, are
the cardinals which cannot be reached from lower cardinals using all of the constructions of ZFC;
i.e., the above two constructions together with the power set construction and the Axioms of the
Empty Set and Infinity, which hand us 0 and ℵ0. Whether every weakly inaccessible cardinal is
inaccessible depends on the assumptions one makes on one’s set theory. The student familiar with
the Generalized Continuum Hypothesis will see that this assumption implies that these two concepts
do coincide. Discussions of inaccessible cardinals can be found in basic texts on set theory. (For
their relation to universes, cf. [74]; for some alternative proposals for set-theoretic foundations of
category theory, [79] and [55]; and for a proposal in the opposite direction, [12].)

Notice that introducing ‘‘large sets’’ has not eliminated the need for the concept of a ‘‘class’’ –
in discussing set theory, one still needs to refer to the class of all sets; and one of the above
exercises refers to the class of all universes. However, the need to refer to classes, and the
difficulty of not being able to use set-theoretic techniques in such considerations, is greatly reduced,
because for many purposes, references to large sets will do.

We cannot be sure that the axiomatization we have adopted will be satisfactory for all the needs
of category theory. It is based on the assumption that ‘‘ordinary mathematics’’ can be done within
any universe U, so that the set of all U-small objects is a reasonable substitute for what was
previously treated as the class of all objects. If some area of mathematics studied using category
theory should itself require the Axiom of Universes, then to get an adequate version of the set of
‘‘all’’ objects in that area, one might want to define a ‘‘second-order universe’’ to mean a universe
V such that every set X ∈V is a member of a universe U ∈V, and introduce a Second Axiom of
Universes, saying that every set belongs to a second-order universe! However, the fact that for
pre-category-theoretic mathematics, ZFC seemed an adequate set theory suggests that the set theory
we have adopted here should be good for a while.

Concerning the basic idea of what we have done, namely to assume a set theory that contains
‘‘sub-set-theories’’ which look like traditional set theory, let us note that these are ‘‘sub-set-
theories’’ in the best possible sense: They involve the same membership relation, the same power
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set operation, etc.. Set theorists often work with ‘‘sub-set-theories’’ in weaker senses; for example,
allowing certain sets X to belong to the sub-set-theory without making all subsets of X members
of the sub-set-theory. (E.g., they may allow only those that are ‘‘constructible’’ in some way.)
The resulting model may still satisfy general axioms such as ZFC, but have other properties
significantly different from those of the set theory one started with. This technique is used in
proving results of the sort, ‘‘If a certain set of axioms is consistent, so is a modified set of
axioms’’. The distinction between what we have done and this more general technique can be
compared with the difference between considering a sublattice of a lattice, which by assumption has
the same meet and join operations, and considering a subset which also has least upper bounds and
greatest lower bounds, and hence can again be regarded as a lattice, but where these least upper and
greatest lower bounds are not in general the same as in the original lattice, so that the object is not
a sublattice.

We will find the following concept useful at times.

Definition 6.4.5. A mathematical object will be called quasi-small if it is isomorphic to a small
object.

Here the meaning of ‘‘isomorphic’’ will be clear from the context. Thus, a quasi-small set will
mean a set with the same cardinality as a small set. A quasi-small group is easily seen to be a
group whose underlying set is a quasi-small set.

We shall now return to category theory proper. As we have indicated, our language will in
general be, superficially, as before, but there is now a fixed arbitrary universe assumed in the
background, and when the contrary is not stated, words such as ‘‘group’’ now mean ‘‘group that is
small with respect to our fixed universe’’, etc., while ‘‘category’’ means ‘‘category legitimate with
respect to that universe’’.

6.5. Functors. Since categories are themselves a sort of mathematical object, we should have a
concept of ‘‘subcategory’’, and some sort of concept of ‘‘homomorphism’’ between categories.
The first of these concepts is described in

Definition 6.5.1. If C is a category, a subcategory of C means a category S such that
(i) Ob(S) is a subset of Ob(C), (ii) for each X, Y ∈Ob(S), S(X, Y ) is a subset of C(X, Y ),
and (iii) the composition and identity operations of S are the restrictions of those of C.

Examples are clear: The category Ab of abelian groups is a subcategory of Group . Within
Monoid , we can look at the subcategory whose objects are monoids all of whose elements are
invertible (and whose morphisms are still all monoid-homomorphisms between these); this will be
isomorphic to Group . Lattice is likewise isomorphic to a subcategory of POSet ; here the
lattice homomorphisms form a proper subset of the isotone maps. A subcategory of POSet with
the same objects, but a smaller set of morphisms, is the one we called POSet< . Similarly, Set is
a subcategory of RelSet with the same set of objects, but a more restricted set of morphisms. The
empty category (no objects, and hence no morphisms) is a subcategory of every category.

The analog of homomorphisms between categories is given in
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Definition 6.5.2. If C and D are categories, then a functor F : C → D will mean a pair
(FOb , FAr), where FOb is a map Ob(C) → Ob(D), and FAr is a family FAr =
(F(X, Y ))X, Y ∈Ob(C) of maps

F(X, Y ) : C(X, Y ) → D(FOb(X ), FOb(Y )) (X, Y ∈Ob(C)),

such that

(i) for any two composable morphisms X
__g→ Y

__f→ Z in C, one has

F(X, Z )( fg) = F(Y, Z )( f ) F(X, Y )(g).

and

(ii) for every X ∈Ob(C),

F(X, X )(idX ) = idFOb(X ) .

When there is no danger of ambiguity, FOb , FAr , and F(X, Y ) are generally all abbreviated
to F. Thus, in this notation, the last three displays become (more readably)

F: C(X, Y ) → D(F(X ), F(Y )) (X, Y ∈Ob(C)),

F( fg) = F( f ) F(g),

F(idX ) = idF(X ) .

How do functors arise in the prototypical situation where C and D consist of mathematical
objects and homomorphisms among them? Since we must first specify the object of D to which
each object of C is carried, such a functor must be based on a construction which gives us for
each object of C an object of D . And indeed, most mathematical constructions, though often
discussed as merely associating to each object of one sort an object of another, also have the
property that to every morphism of objects of the first sort there corresponds naturally a morphism
between the constructed objects, in a manner which satisfies just the conditions of the above
definition.

Consider, for example the construction of the free group, with which we began this course. To
every X ∈Ob(Set) this associates a group F(X ), together with a map uX : X → |F(X ) | having a
certain universal property. Now if f : X → Y is a set map, it is easy to see how to get a
homomorphism F( f ) : F(X ) → F(Y ). Intuitively, this homomorphism acts by ‘‘substituting f (x)
for x’’ in elements of F(X ) and evaluating the results in F(Y ). In terms of the universal
property of F (X ), ‘‘substituting values in a group G for the generators of F (X )’’ means
determining a group homomorphism F(X ) → G by specifying its composite with the set map uX :
X → |F(X ) |. In this case, F( f ) is the unique group homomorphism F(X ) → F(Y ) such that
F( f )ouX = uY

o f :

X
_______f → Y

��
�
�

↓

uX

��
�
�

↓

uY

|F(X ) |
____F( f )→ |F(Y ) |.

It is easy to check that when F( f ) is defined in this way, one has F( fg) = F( f ) F(g) and
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F(idX ) = idF(X ) , as required.
Looking in the same way at the construction of abelianization, associating to each group G

the abelian group Gab = G ⁄ [G, G], we see that every group homomorphism f : G → H yields a
homomorphism of abelian groups f ab: Gab → Hab, describable either concretely in terms of
cosets, or using the universal property of the canonical homomorphism G → Gab. The
constructions of free semilattices, universal abelianizations of rings, etc., give similar examples.

Like most mathematical concepts, the concept of functor also has ‘‘trivial’’ examples, that by
themselves would not justify the general definition, yet which turn out to have important roles in
the theory. The ‘‘construction’’ associating to every group G its underlying set |G | is a functor
Group → Set , since homomorphisms of groups certainly give maps of underlying sets. One
similarly has underlying-set functors from Ring1, Lattice , Top , POSet , etc., to Set . These
all belong to the class of constructions called ‘‘forgetful functors’’. Those listed above ‘‘forget’’
all structure on the object, and so give functors to Set ; other forgetful functors we have seen are
the construction G → Gmd of §3.11, taking a group ( |G |, ., –1, e) to the monoid ( |G |, ., e),
which ‘‘forgets’’ the inverse operation, and the construction taking a ring to its underlying additive
group, or to its underlying multiplicative monoid.

The term ‘‘forgetful functor’’ is not a technical one, so one cannot say precisely whether it
should be applied to constructions like the one taking a lattice to its ‘‘underlying’’ partially ordered
set (where the partial ordering is not part of the 3-tuple formally defining the lattice); but in any
case, this is another example of a functor. I likewise don’t know whether one would apply the term
‘‘forgetful’’ to the inclusion of the subcategory Ab in the category Group , which might be said
to ‘‘forget’’ that the groups are abelian, but this too, and indeed, the inclusion of any subcategory
in any category, is clearly a functor. In particular, every category C has an identity functor, IdC ,
taking each object and each morphism to itself.

If, instead of looking at the whole underlying set of a group, we consider the set of its elements
of exponent 2, we get another example of a functor Group → Set ; the reader should verify that
every group homomorphism does indeed give a map between the corresponding sets.

If R is a ring, the opposite ring Rop is defined to have the same underlying set, and the same
operations +, –, 0, 1 as R, but reversed multiplication: x*y = y x. A ring homomorphism
f : R → S will also be a homomorphism Rop → Sop, and we see that this makes ( )op a functor
Ring1 → Ring1; one which, composed with itself, gives the identity functor. One has similar
opposite-multiplication constructions for monoids and groups. The definitions of the opposite (or
dual) of a partially ordered set or lattice give functors with similar properties.

Recall that HtpTop is defined to have the same objects as Top , but has for morphisms
equivalence classes of continuous maps under homotopy. Thus we have a functor Top → HtpTop
which preserves objects, and sends every morphism to its homotopy class.

We have mentioned diagram categories, such as the ‘‘commuting square diagram’’ ↓.
.→
→↓.

.

which is useful because ‘‘images’’ of it in any category C correspond to commuting squares of
objects and arrows in C . We can now say this more precisely: Commuting squares in C
correspond to functors from this diagram-category into C .

Let us note a few examples of mathematical constructions that are not functors. These tend to
be of two sorts: those in which morphisms from one object to another can destroy some of the
properties used by the construction, and those that involve arbitrary choices. We have noted that
the construction associating to every group G the set of elements of exponent 2, {x ∈ |G | �
x2 = e}, is a functor Group → Set . However, if we define T(G) to be the set of elements of
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order 2, {x ∈ |G | � x2 = e, x ≠ e}, we find that a group homomorphism f may take some of
these elements to the identity element, so there is no natural way to define ‘‘T( f )’’. Similarly, the
important group-theoretic construction of the center Z(G ) of a group G (the subgroup of
elements a ∈ |G | that commute with all elements of G ) is not functorial, because even if a is in
the center of G, when we apply a homomorphism f : G → H, some elements of H which are
not in the image of G may fail to commute with f (a). The construction Aut, taking a group G
to its automorphism group, is also not a functor, roughly because when we map G into another
group H, there is no guarantee that H will have all the ‘‘symmetries’’ that G does.

Some constructions of these sorts can be ‘‘made into’’ functors by modifying the choice of
domain category, so as to restrict the allowed morphisms to those that don’t ‘‘disturb’’ the structure
involved. Thus, the construction associating to every group its set of elements of order 2 does
give a functor Groupinj → Set , if we define Groupinj to be the category whose objects are
groups and whose morphisms are injective (one-to-one) group homomorphisms. The construction
of the center likewise gives a functor Groupsurj → Group , where the morphisms of Groupsurj
are the surjective group homomorphisms. One may make Aut a functor by restricting morphisms
to isomorphisms of groups.

An example of the other sort, where a construction is not a functor because it involves choices
that cannot be made in a canonical way, is that of finding a basis for a vector space. Even limiting
ourselves to finite-dimensional vector spaces, so that bases may be constructed without the Axiom
of Choice, the finite sequence of choices made is still arbitrary, so that if one chooses a basis BV
for a vector space V, and a basis BW for a vector space W, there is no natural way to associate
to every linear map V → W a set map BV → BW .

In the above discussion we have merely indicated where straightforward attempts to make these
constructions into functors went wrong. In several of the following exercises you are asked to
prove more precise negative results.

Exercise 6.5:1. (i) Show that there can be no functor F : Group → Set taking each group to
the set of its elements of order 2, no matter how F is made to act on morphisms.

On the other hand,
(ii) Show how to define a functor Group → RelSet taking every group to its set of elements
of order 2. (Since RelSet is an unfamiliar category, verify explicitly all parts of the definition
of functor.)

Exercise 6.5:2. (i) Show that there can be no functor F : Group → Group taking each group
to its center.
(ii) Can one construct a functor Group → RelSet taking every group to the set of its central
elements?

Exercise 6.5:3. (i) Give an example of a group homomorphism f : G → H and an
automorphism a of G such that there does not exist a unique automorphism a ′ of H such
that a ′ f = fa. In fact, find such examples with f one-to-one (but not onto) and with f onto
(but not one-to-one), and in each of these situations, if possible, an example where such a ′ does
not exist, and an example where such a ′ exists but is not unique. (If you cannot get an
example of one of the above combinations, can you show that it does not occur?)
(ii) Find similar examples involving partially ordered sets in place of groups.
(iii) Prove that there is no functor from Group (alternatively, from POSet) to Set (or even
to RelSet) taking each object to its set of automorphisms.
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Exercise 6.5:4. If K is a field, let K denote the algebraic closure of K. We recall that any field
homomorphism f : K → L can be extended to a homomorphism of algebraic closures, f :
K → L .
(i) Show, however, that there is no way to choose an extension f of each field
homomorphism f so as to make the algebraic closure construction a functor.
(ii) If we remove the restriction that f be an extension of f, can we make algebraic closure
a functor?

The next exercise is instructive and entertaining. A full solution to the second part is difficult,
but one can get many interesting partial results.

Exercise 6.5:5. Let FSet denote the subcategory of Set having for objects the finite sets, and
for morphisms all set maps among these.
(i) Show that every functor F from FSet to FSet determines a unique function f from
the nonnegative integers to the nonnegative integers, such that for every finite set X,
card(F(X )) = f (card(X )).
(ii) Investigate which integer-valued functions f can occur as the functions associated to such
functors. If possible, determine necessary and sufficient conditions on f for such an F to exist.

Note that given functors C
__G→ D

__F→ E between any three categories, we can form the

composite functor C
____F G→ E taking each object X to F(G(X )) and each morphism f to

F(G( f )). Composition of functors is clearly associative, and identity functors satisfy the identity
laws, so we have a ‘‘category of categories’’! This is named in

Definition 6.5.3. Cat will denote the (legitimate) category whose objects are all small categories,
and such that for two small categories C and D, Cat(C , D) is the set of all functors C → D,
with composition of functors defined as above.

You might be disappointed with this definition, since only a few of the categories we have
mentioned have been small (the diagram-categories, and the categories Scat and Pcat
constructed from monoids S and partially ordered sets P). Thus, Cat would appear to be of
limited importance. But here the Axiom of Universes comes to our aid. The universe U relative
to which we have defined ‘‘small category’’ is arbitrary. If we want to study the categories of all
groups, rings, etc., belonging to a universe U, and functors among these categories, we may
choose a universe U ′ having U as a member, and note that the abovementioned categories, and
indeed all U-legitimate categories, are U ′-small, hence are objects of Cat(U ′) . Thus we can apply
general results about the construction Cat to this situation.

For some purposes, it might also be useful to give a name to the category of all U-legitimate
categories, which lies strictly between Cat(U ) and Cat(U ′) , but we shall not do so here.

Considering functors as ‘‘homomorphisms’’ among categories, we should like to define
properties of functors analogous to ‘‘one-to-one-ness’’ and ‘‘onto-ness’’. The complication is that
a functor acts both on objects and on morphisms. We have observed that it is the morphisms in a
category that are like the elements of a group or monoid; this leads to the pair of concepts named
below. They are not the only analogs of one-one-ness and onto-ness that one ever uses, but they
are the most important:
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Definition 6.5.4. Let F : C → D be a functor.
F is called faithful if for all X, Y ∈Ob(C), the map F(X, Y ) : C(X, Y ) → D(F(X ), F(Y )) is

one-to-one.
F is called full if for all X, Y∈Ob(C), the map F(X, Y ) : C(X, Y ) → D(F(X ), F(Y )) is onto.
A subcategory of C is said to be full if the corresponding inclusion functor is full.

Thus, a full subcategory of C is determined by specifying a subset of the object-set, and using
all the morphisms among the specified objects; the subcategory Ab of Group is an example.
Some examples of nonfull subcategories are Set ⊆ RelSet and POSet< ⊆ POSet . The inclusion
of a full subcategory in a category is a full and faithful functor, while the inclusion of a nonfull
subcategory is a faithful functor, but is not full. The reader should verify that most of our
examples of forgetful functors are faithful but not full, as is, also, the free-group functor Set →
Group . The functor Top → HtpTop which takes every object (topological space) to itself, and
each morphism to its homotopy class, is an example of a functor that is full but not faithful. The
functor associating to every group the set of its elements of exponent 2 is neither full nor faithful.

Exercise 6.5:6. Show that the abelianization construction, Group → Ab is neither full nor
faithful.

Exercise 6.5:7. Is the functor Monoid → Group associating to every monoid its group of
invertible elements full? Faithful?

Exercise 6.5:8. (i) Show that the construction associating to each partially ordered set P the
category Pcat is a functor F : POSet → Cat , and that this functor is full and faithful.
Essentially, this says that the concept of functor, when restricted to the class of categories that
correspond to partially ordered sets, just gives the concept of isotone map between these sets!
(ii) Which isotone maps between partially ordered sets correspond under F to full functors?
To faithful functors?
(iii) Show similarly that the construction associating to each monoid S the category Scat is a
full and faithful functor E : Monoid → Cat . Which monoid homomorphisms are sent by E to
full, respectively faithful functors?

In §6.1 we sketched a way of ‘‘concretizing’’ any small category C (Exercise 6.1:1 and
preceding discussion). Let us make the details precise now. (Below, we will use ‘‘U ’’ for the
concretization functor, based on the primary example of underlying set functors on categories of
mathematical objects. Though we are still assuming a universe in the background, which we have
from time to time called ‘‘U ’’, we are not giving it any name here.)

Definition 6.5.5. A concrete category means a category C given with a faithful functor U : C →
Set (a ‘‘concretization functor’’ ). (More formally, one would say that the concrete category is the
ordered pair (C, U ) .)

So given any small category C , we want to prove the existence of a faithful functor U : C →
Set . The idea we sketched was to let the family of representing sets – in our present language, the
system of sets U(X ) – be ‘‘generated’’ by a family of elements zY ∈U(Y ), one for each
Y ∈Ob(C), so that the general element of U(X ) would look like U(a)(zY ) (Y ∈Ob(C),
a ∈C(Y, X )); and to impose no additional relations on these elements, so that they are all distinct.

Let us use the ordered pair (Y, a) for the element that is to become U(a)(zY ). Then we
should define U to take X ∈Ob(C) to {(Y, a) � Y ∈Ob(C), a ∈C(Y, X )}. Given b ∈C(X, W ),
we see that U(b) should take (Y, a) ∈U(X ) to (Y, ba) ∈U(W ). It is easy to verify that this
defines a faithful functor U : C → Set , proving
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Theorem 6.5.6 (Cayley’s Theorem for small categories). Every small category admits a
concretization, i.e., a faithful functor to the category of small sets. �

Exercise 6.5:9. Verify that the above construction U is a functor, and is faithful. Which
elements correspond to the zY of our motivating discussion?

Incidentally, if we had required that categories have disjoint morphism-sets, we could have
dropped the Y ’s from the pairs (Y, a), since each a would determine its domain. Then we could
simply have taken U(X ) = ∪Y ∈Ob(C) C(Y, X ).

It is natural to hope for stronger results, so you can try

Exercise 6.5:10. (i) Does every legitimate category admit a concretization – a faithful functor
into the (legitimate) category of small sets? (Obviously, most of those we are familiar with do.)

Since this question involves ‘‘big’’ cardinalities, you might prefer to examine a mini-version
of the same problem:
(ii) Suppose C is a category with countably many objects, and such that for all
X, Y ∈Ob(C), the set C(X, Y ) is finite. Must C admit a faithful functor into the category of
finite sets?
(iii) If the answer to either question is negative, can you find necessary and sufficient
conditions for such concretizations to exist?

Of course, a given concretizable category will admit many concretizations, just as a given group
has many representations by permutations.

In the construction used to prove Theorem 6.5.6, we introduced a generator in every U(Y ) to
insure that our functor would be faithful. However the construction we get by taking some
particular object Y and introducing just one generator zY ∈U(Y ), again with no relations imposed
among the elements U(a)(zY ), is also worth looking at. It will be the ‘‘part’’ of the above
construction consisting of elements U(a)(zY ) for the given Y. Since Y is fixed, each such
element is determined by a ∈C(Y, X ), so U may be described as taking each object X to the set
C(Y, X ). Although it is generally not faithful, this functor will play an important role in our
subsequent work, so let us give its standard name (coming from the term ‘‘hom-sets’’ for the sets
C(Y, X )).

Definition 6.5.7. For Y ∈Ob(C), the hom functor induced by Y, hY : C → Set, is defined on
objects by

hY (X ) = C(Y, X ) (X ∈Ob(C)),

while for a morphism b ∈C(X, W ), hY (b) is defined to carry a ∈C(Y, X ) to ba ∈C(Y, W ).

Examples: On the category Group , the functor hZ takes each group G to Group(Z , G ).
But a homomorphism from Z to G is determined by what it does on the generator 1 ∈ |Z |, so
the elements of hZ (G ) correspond to the elements of the underlying set of G ; i.e., hZ is
essentially the underlying set functor. You should verify that its behavior on morphisms also
agrees with that functor. Similarly, hZ2

may be identified with the functor taking each group to

the set of its elements of exponent 2.
Recalling that 2 ∈Ob(Set) is a 2-element set, we see that h2: Set → Set is essentially the

construction X → X2.
For a topological example, consider the category of topological spaces with basepoint, and
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homotopy classes of basepoint-preserving maps, and let (S1, 0) denote the circle with a basepoint
chosen. Then h(S1, 0)(X, x0) = |π1(X, x0) |. (Of course, the most interesting thing about π1(X, x0)
is its group structure. How this can be described category-theoretically we shall discover in
Chapter 9!)

In the last few paragraphs, we have said a couple of times that a certain functor is ‘‘essentially’’
a certain construction. What we mean should be intuitively clear; we will make these statements
precise in §6.9.

6.6. Contravariant functors, and functors of several variables. Consider the construction
associating to every set X the additive group Z X of integer-valued functions on X, with
pointwise operations. This takes objects of Set to objects of Ab , but given a set map
f : X → Y, there is not a natural map Z X → Z Y – rather, there is a homomorphism Z Y → Z X

carrying each integer-valued function a on Y to the function af on X.
There are many similar examples – the construction associating to any set X the Boolean

algebra (P(X ), ∪, ∩, c, ∅, X ) of its subsets, the construction associating to a set X the lower
semilattice (E(X ), ∩) of equivalence relations on X, the construction associating to a vector
space V its dual V*, the construction associating to a commutative ring the partially ordered set
of its prime ideals. All have the property that from a map going one way among the given objects,
one gets a map going the other way among constructed objects. It is clear that these constructions
take identity maps to identity maps and composite maps to composite maps (though the order of
composition must be reversed because of the reversal of the direction of the maps). These
properties look like the definition of a functor turned backwards. Let us set up a definition to cover
this:

Definition 6.6.1. If C and D are categories, then a contravariant functor F : C → D will mean
a pair (FOb , FAr), where FOb (written F when there is no danger of ambiguity) is a map
Ob(C) → Ob(D), and FAr is a family of maps

F(X, Y ) : C(X, Y ) → D(F(Y ), F(X )) (X, Y ∈Ob(C)),

such that (also abbreviating these maps F(X, Y ) to F ),

(i) for any two composable morphisms X
__g→ Y

__f→ Z in C, one has

F( fg) = F(g) F( f ) in D,

and

(ii) for every X ∈Ob(C), one has

F(idX ) = idF(X ) .

Functors of the sort defined in the preceding section will be called covariant functors when we
want to contrast them with contravariant functors. When the contrary is not indicated, however,
‘‘functor’’ will still mean covariant functor.

It is easy to see that a composite of two contravariant functors is a covariant functor, while a
composite of a covariant and a contravariant functor, in either order, is a contravariant functor.

Contravariant functors can in fact be expressed in terms of covariant functors, thus eliminating
the need to prove results separately for the two concepts. We shall do this with the help of
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Definition 6.6.2. If C is a category, then Cop will denote the category defined by

Ob(Cop) = Ob(C), Cop(X, Y ) = C(Y, X ),

μ(Cop)( f, g) = μ(C)(g, f ), id(Cop)X = id(C)X .

Thus, a contravariant functor C → D is equivalent to a covariant functor Cop → D . Of
course, one could also describe it as equivalent to a covariant functor C → Dop, and at this point
we have no way of deciding which reduction is preferable. However, we shall see soon that putting
the ‘‘op’’ on the domain-category is more convenient.

As in the theory of partially ordered sets, the ‘‘opposite’’ construction introduced above allows
us to dualize results. Whenever we have proved a result about a general category C , the
statement obtained by reversing the directions of all morphisms and the orders of all compositions
is also a theorem, which may be proved by applying the original theorem to Cop.

There is a slight notational difficulty in dealing with a category Cop, while referring also to
the original category C , for though in the formal definition given above we could distinguish the
two composition operations as μ(C) and μ(Cop), the usual notation for composition, f og or
fg, does not allow such a distinction. There are various ways of getting around this problem. One
can use a modified symbol, such as oop or *, for the composition of Cop. Or one can keep
‘‘multiplicative notation’’, but use different symbols for the same objects and morphisms when
considered as elements of C and of Cop; e.g., let the morphism written f ∈C(X, Y ) also be

written f
∼
∈Cop (Y

∼
, X

∼
), so that one can write fg = g̃ f

∼
, relying on the convention that the

operation denoted by juxtaposition is determined by context – specifically, by the structure to which
the elements being juxtaposed belong. Still other solutions are possible. E.g., one could be daring,
and denote the same composite by fg in both C and Cop, using different conventions, fg =
μ( f, g) in C and fg = μ(g, f ) in Cop; i.e., writing morphisms with domains ‘‘on the right’’ in
one category and ‘‘on the left’’ in the other.

Most often, one avoids the problem by not writing equations in Cop. One uses this category as
an auxiliary construct in discussing contravariant functors and in dualizing results, but avoids
dealing explicitly with objects and morphisms inside it.

In these notes, we shall regularly write a contravariant functor from C to D as F : Cop →
D , where F is a covariant functor on Cop, and shall take advantage of the principle of duality
mentioned; these are the main uses we shall make of the op construction. In the rare cases where
we have to work explicitly inside Cop, we will generally use modified symbols such as X

∼
, f

∼
(or

Xop, f op) for objects and morphisms in Cop.
Note that in the category of categories, Cat , the morphisms are the covariant functors.

Exercise 6.6:1. (i) Show how to make op a functor R from Cat to Cat . Is R a covariant
or a contravariant functor?
(ii) Let R : Cat → Cat be as in part (i), let R ′: POSet → POSet be the functor taking
every partially ordered set P to the opposite partially ordered set Pop, and let C : POSet →
Cat denote the functor taking each partially ordered set P to the category Pcat (§6.2). Show
that R C = C R ′. This means that the construction of the opposite of a partially ordered set is
essentially a case of the construction of the opposite of a category!
(iii) State the analogous result with monoids in place of partially ordered sets.

We noted in earlier chapters that given a set map X → Y, there are ways of getting both a map
P(X ) → P(Y ) and a map P(Y ) → P(X ) (where P denotes the power-set construction). The
next few exercises look at situations of this sort.
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Exercise 6.6:2. (i) Write down explicitly how to get from a set map f : X → Y a set map
P1( f ) : P(X ) → P(Y ) and a set map P2( f ) : P(Y ) → P(X ). Show that these constructions
make the power set construction a functor P1: Set → Set and a functor P2: Setop → Set
respectively. (These are called the covariant and contravariant power set functors.)
(ii) Examine what structure on P(X ) is respected by maps of the form P1( f ) and P2( f )
defined as above. In particular, determine whether each sort of map always respects the
operations of finite meets, finite joins, empty meet, empty join, unions of chains, intersections of
chains, complements, and the relations ‘‘⊆’’ and ‘‘⊂’’ in power-sets P(X ). (If you are familiar
with the standard topologization of P(X ), you can also investigate whether maps of the form
P1( f ) and P2( f ) are continuous.) Accordingly, determine whether the constructions P1 and
P2 which we referred to above as functors from Set , respectively Setop, to Set , can in fact
be made into functors from Set and Setop to ∨-Semilat , to Bool1, etc..

Exercise 6.6:3. Investigate similarly the construction associating to every set X the set E(X ) of
equivalence relations on X. I.e., for a set map f : X → Y, look for functorial ways of inducing
maps in one or both directions between the sets E(X ), E(Y ), and determine what structure on
these sets is respected by each such construction.

Exercise 6.6:4. (i) Do the same for the construction associating to every group G the set of
subgroups of G.
(ii) Do the same for the construction associating to every group G the set of normal
subgroups of G.

As with covariant functors, there is an important class of contravariant functors which one can
define on every category:

Definition 6.6.3. For any category C and any object Y ∈Ob(C), the contravariant hom functor
induced by Y, hY: Cop → Set , is defined on objects by

hY(X ) = C(X, Y ) (X ∈Ob(C)),

while for a morphism b ∈C(W, X ) the morphism hY(b ) : C(X, Y ) → C(W, Y ) is defined to carry
a ∈C(X, Y ) to ab ∈C(W, Y ). (The functor hY which we previously named ‘‘the hom functor
induced by Y’’ will henceforth be called ‘‘the covariant hom functor induced by Y’’.)

Examples: Let C = Set , and let Y be the set 2 = {0, 1}. Recall that every map from a set
X into 2 is the characteristic function of a unique subset S ⊆ X. Hence Set(X, 2) can be
identified with P(X ). The reader should verify that the behavior of h2: Set → Set on morphisms
is exactly that of the contravariant power-set functor.

Let k be a field, and in the category k -Mod of k-vector spaces, let k denote this field
considered as a one-dimensional vector space. Then for any space V, hk(V ) is the underlying set
of the dual vector space.

Let R∈Ob(Top) denote the real line. Then hR is the construction associating to every
topological space X the set of continuous real-valued functions on X. One can vary this example
using categories of differentiable manifolds and differentiable maps, etc., in place of Top .

Here are three examples for students familiar with more specialized topics:
In the category of commutative algebras over the rational numbers, if C denotes the algebra of

complex numbers, then hC is the functor associating to every algebra the set of its ‘‘complex-
valued points’’, its classical spectrum. In particular, if R is presented by generators x0, ... , xn–1
and relations p0 = 0, ... , pm–1 = 0, then hC(R) can be identified with the solution-set of the
system of polynomial equations p0 = 0, ... , pm–1 = 0 in complex n-space.
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If LocCpAb is the category of locally compact abelian groups, and S = R ⁄ Z is the circle
group, then hS(A) is the underlying set of the Pontryagin dual of the group A [93, §1.7]. (In the
study of nontopological abelian groups, the object S = Q ⁄ Z plays a somewhat similar role.)

Finally, in the category HtpTop , hSn
(X ) (where Sn denotes the n-sphere) gives the

underlying set of the nth cohomotopy group π n(X ).

Exercise 6.6:5. Let 2 ∈Ob(POSet) denote the set 2 = {0, 1}, ordered in the usual way.
(i) Show that h2: POSetop → Set is faithful.
(ii) Show that for P ∈Ob(POSet), the set h2(P) can be made a lattice with a greatest and a
least element, under pointwise operations. Show that h2 induces a functor A : POSetop →
Lattice0, 1, where Lattice0, 1 denotes the category of lattices with greatest and least elements,
and lattice homomorphisms respecting these elements.
(iii) Let us also write 2 ∈Ob(Lattice0, 1) for the 2-element lattice! Thus we get a functor
h2: (Lattice0, 1)op → Set . Show that this functor is not faithful.
(iv) Show that for L ∈Ob(Lattice0, 1), the set h2(L) is not in general closed under meet or
join, and may not contain a greatest or least element, but that if we partially order lattice
homomorphisms by pointwise comparison, h2 yields a functor B : (Lattice0, 1)op → POSet .
(v) Show that for P a finite partially ordered set, B(A(P )) =∼ P.

This is just a part of the story of this pair of functors – the student can discover more for him
or herself now, or wait till we resume this investigation in §9.11 with more powerful tools at our
disposal.

Exercise 6.6:6. Following up on the idea of Exercise 6.5:5, observe that every contravariant
functor from the category FSet of finite sets into itself also determines a nonnegative integer-
valued function on the nonnegative integers. Investigate which functions on the nonnegative
integers arise as functions associated with contravariant functors.

Exercise 6.6:7. Let RelFSet denote the full subcategory of RelSet whose objects are finite sets.
Investigate similarly the integer-valued functions associated with functors RelFSet → FSet ,
FSet → RelFSet , and RelFSet → RelFSet . In these cases, it does not matter whether we look
at covariant or contravariant functors – why not?

Exercise 6.6:8. We have noted that a composite of two contravariant functors is a covariant
functor, etc.. But in terms of the description of contravariant functors as covariant functors
Cop → D , it is not clear how to formally describe the composite of two contravariant functors
(or a composite of the form (contravariant functor)o(covariant functor)). Show how to reduce
these cases to composition of covariant functors, with the help of Exercise 6.6:1(i).

There are still some types of well-behaved constructions which we have not yet fitted into our
functorial scheme: (a) Given a pair of sets (A, B ), we can form the product set A × B. We
likewise have product constructions for groups, rings, topological spaces, etc., coproducts for most
of the same types of objects, and the tensor product construction on abelian groups. (b) From two
objects A and B of any category C , one gets the object C(A, B ) ∈Ob(Set). (c) There are also
constructions that combine objects of different categories. For instance, from a commutative ring
R and a set X, one can form the polynomial ring over R in an X-tuple of indeterminates,
R [X ].

In each of these cases, maps on the given objects yield maps on the constructed objects. In
cases (a) and (c), the maps of constructed objects go the same way as the maps of the given
objects, while in case (b) the direction depends on which argument one varies: A morphism
Y → Y ′ yields a map C(X, Y ) → C(X, Y ′), but a morphism X → X ′ yields a map C(X ′ , Y ) →
C(X, Y ).
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It is natural to call such constructions functors of two variables, and like the concept of
contravariant functor, that of a functor of more than one variable can be reduced to our original
definition of functor via an appropriate construction on categories.

Definition 6.6.4. Let (Ci )i ∈I be a family of categories. Then the product category I
��
I i ∈I Ci

will mean the category C defined by

Ob(C) = I
��
I I Ob(Ci ) C((Xi )I , (Yi )I ) = I

��
I I C(Xi , Yi ),

μ(( fi )I , (gi )I ) = (μ( fi , gi ))I , id(Xi )I
= (idXi

)I .

The product of a finite family of categories may be written C × ... × E .
A functor F on a product category is called a functor of several variables; a functor of two

variables is often called a bifunctor.

Thus, a functor on a category of the form C × Dop may be described as a ‘‘bifunctor covariant
in a C-valued variable and contravariant in a D-valued variable’’. Note that if we tried to express
contravariance by putting ‘‘op’’ onto the codomains instead of the domains of functors, we would
not be able to express this mixed type of functor; hence the preference for putting op on domains.

A product category I
��
I i ∈I Ci has a projection functor onto each of the categories Ci (i ∈I ),

taking each object and each morphism to its ith component, and as we might expect from our
experience with products of other sorts of mathematical objects, this is characterizable by a
universal property:

Theorem 6.6.5. Let (Ci )i ∈I be a family of categories, C = I
��
I Ci their product, and Pi : C →

Ci the projection functors. Then for every category D and family of functors Fi : D → Ci ,
there exists a unique functor F : D → C such that for each i ∈I, Fi = Pi F. �

Exercise 6.6:9. Prove the above theorem.

Exercise 6.6:10. Show that a family of categories also has a coproduct. (First state the universal
property desired.)

Let us note that the two sorts of hom-functors, hX and hY, are in fact pieces of a single
bifunctor. In the definition of this functor below, we use ‘‘X

∼
’’-notation for objects and morphisms

in opposite categories, though in presentations elsewhere, you are likely to see no distinctions
made.

Definition 6.6.6. The bivariant hom-functor of a category C means the functor

h : Cop × C → Set

which is defined on objects by

h(X
∼
, Y ) = C(X, Y ) (X, Y ∈Ob(C)),

while for a morphism ( p̃, q) ∈ Cop(X
∼
, W

∼
) × C(Y, Z ) ( formed from morphisms p ∈C(W, X ),

q ∈C(Y, Z )) we define h( p̃, q) to carry a ∈C(X, Y ) to qap ∈C(W, Z ).

Thus, each covariant hom-functor hX can be described as taking objects Y to the objects
h(X

∼
, Y ), and morphisms q to the morphisms h(idX , q), and the contravariant hom-functors hY

are similarly obtained by putting Y and idY in the right-hand slot of the bifunctor h.
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Exercise 6.6:11. Extend further the ideas of Exercises 6.5:5, 6.6:6 and 6.6:7, by investigating
functions in two nonnegative-integer-valued variables induced by bifunctors FSet × FSet →
FSet , FSetop × FSet → FSet , etc..

6.7. Category-theoretic versions of some common mathematical notions: properties of
morphisms. We have mentioned that in an abstract category, one cannot speak of ‘‘elements’’ of
an object, hence one cannot meaningfully ask whether a given morphism is one-to-one or onto.
However, we have occasionally spoken of two objects of a category C being ‘‘isomorphic’’.
What we meant was, I hope, clear: An isomorphism between X and Y means an element
f ∈C(X, Y ) for which there exists a 2-sided inverse, that is, a morphism g ∈C(Y, X ) such that
fg = idY , gf = idX . It is clear that in virtually any naturally occurring category, the invertible
morphisms are the things one wants to think of as the isomorphisms. (However, in some cases
other words are commonly used: In set theory the term is bijection, an invertible morphism in
Top is called a homeomorphism, and differential geometers call their invertible maps
diffeomorphisms.) If X and Y are isomorphic, we will as usual write X =∼ Y. An isomorphism
of an object X with itself is called an automorphism of X; these together comprise the
automorphism group of X.

Exercise 6.7:1. Let C be a category.
(i) Show that if a morphism f ∈C(X, Y ) has both a right inverse g and a left inverse g ′,
then these are equal. (Hence if h and h ′ are both two-sided inverses of f , then h = h ′.)
(ii) Show that the relation X =∼ Y is an equivalence relation on Ob(C).
(iii) Show that isomorphic objects in a category have isomorphic automorphism groups.

Our aim in this and the next section will be to look at various other concepts occurring in
‘‘concrete mathematics’’ and ask, in each case, whether we can define a concept for abstract
categories which will yield the given concept in many concrete cases. We cannot expect that there
will always be as perfect a fit as there was for the concept of isomorphism! But lack of perfect fit
with existing concepts will not necessarily detract from the usefulness of the concepts we find.

Let us start with the concepts of ‘‘one-to-one map’’ and ‘‘onto map’’. The next exercise shows
that we will not be able to get a ‘‘perfect fit’’ in either of these cases.

Exercise 6.7:2. Show that a category C can have two different concretizations U, V : C → Set
such that for a particular morphism f in C , U( f ) is one-to-one but not onto, and V( f ) is
onto but not one-to-one. (Suggestion: Take C = Scat , where S is the free monoid on one
generator, or C = 2cat , where 2 is the 2-element totally ordered set.)

Nevertheless, there is a category-theoretic property which in the vast majority of naturally
occurring concrete categories does correspond to one-one-ness.

Definition 6.7.1. A morphism f : X → Y in a category C is called a monomorphism if for all
W ∈Ob(C) and all pairs of morphisms g, h ∈C(W, X ), one has fg = fh ⇒ g = h; equivalently,
if every covariant hom-functor hW : C → Set (W ∈Ob(C)) carries f to a one-to-one set map.

Exercise 6.7:3. (i) Show that if (C , U ) is a concrete category (i.e., C is a category and
U : C → Set a faithful functor) and f is a morphism in C such that U( f ) is one-to-one, then
f is a monomorphism in C .
(ii) If C is a small category, show that a morphism f in C is a monomorphism if and only
if for at least one faithful functor U : C → Set , U( f ) is one-to-one.
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Exercise 6.7:4. Show that in the categories Set , Group , Monoid , Ring1, POSet and
Lattice , a morphism is one-to-one if and only if it is a monomorphism. (Suggestion: look for
some general criterion, that you can quickly verify in all these cases.) If you are familiar with
the basic definitions of general topology, also verify this for Top .

Naturally occurring concrete categories where monomorphisms are not the one-to-one maps are
rare, but here is an example:

Exercise 6.7:5. A group G is called divisible if for every x ∈ |G | and every positive integer n,
there exists y ∈ |G | such that x = yn.
(i) Show that in the category of divisible groups (a full subcategory of Group), the quotient
map Q → Q ⁄ Z (where Q is the additive group of rational numbers and Z the subgroup of
integers) is a monomorphism, though it is not a one-to-one map.
(ii) Can you characterize group-theoretically the homomorphisms that are monomorphisms in
this category?
(iii) Can you find a category-theoretic property equivalent in this category to being one-to-one?
(You may, if you prefer, examine this last question in the category of divisible abelian groups.)

If you are familiar with topological group theory, you may consider the category of connected
Lie groups and the canonical map R → R ⁄ Z instead of, or in addition to, divisible groups and
Q → Q ⁄ Z .

It is natural to look at the dual to the concept of monomorphism.

Definition 6.7.2. A morphism f : X → Y in a category C is called an epimorphism if for all
Z ∈Ob(C) and all pairs of morphisms g, h ∈C(Y, Z ) one has gf = hf ⇒ g = h; equivalently, if
all the contravariant hom-functors hZ : C → Set (Z ∈Ob(C)) carry f to one-to-one set maps;
equivalently, if the morphism f

∼
in Cop is a monomorphism.

This concept sometimes coincides with that of surjective homomorphism in naturally occurring
concrete categories, but equally often it does not:

Exercise 6.7:6. (i) Show that if (C , U ) is a concrete category, and f a morphism in C such
that U( f ) is surjective, then f is an epimorphism in C .
(ii) Show that in the categories Set and Ab , the epimorphisms are precisely the surjective
morphisms.
(iii) Show that in the category Monoid , the inclusion of the free monoid on one generator in
the free group on one generator is an epimorphism, though not surjective with respect to the
underlying-set concretization. (Hint: uniqueness of inverses.) Show similarly that in Ring1,
the inclusion of any integral domain in its field of fractions is an epimorphism.
(iv) If you are familiar with elementary point-set topology, show that in the category
HausTop of Hausdorff topological spaces, the epimorphisms are precisely the continuous maps
with dense image.

Exercise 6.7:7. (i) Determine the epimorphisms in Group .
(ii) Show the relation between this problem and Exercise 3.10:9.
(iii) Does the method you used in (i) also yield a description of the epimorphisms in the
category of finite groups? If not, can you nevertheless determine these?

Exercise 6.7:8. (i) Show that for an object A of Ring1 (or if you prefer, CommRing1),
the following conditions are equivalent: (a) The unique morphism Z → A is an epimorphism.
(b) For each object R, there is at most one morphism A → R in C .
(ii) Investigate the class of rings A with the above property. (Cf. Exercise 3.12:7, and last
sentence of Exercise 6.7:6(iii).)
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Exercise 6.7:9. Show that if R is a commutative ring, and f : R → S is an epimorphism in
Ring1, then S is also commutative.

Though the property of being an epimorphism is not a reliable equivalent of surjectivity, we see
that it is an interesting concept in its own right. In concrete categories, the statement that
f : A → B is an epimorphism means intuitively that the image f (A ) ‘‘controls’’ all of B, in
terms of behavior under morphisms.

There is an unfortunate tendency for some categorical enthusiasts to consider ‘‘epimorphism’’ to
be the ‘‘category-theoretically correct’’ translation of ‘‘surjective map’’, even in cases when the
concepts do not agree. For instance, a standard definition in module theory calls a module P
projective if for every surjective module homomorphism f : M → N, every homomorphism
P → N factors through f. (If you haven’t seen this concept, draw a diagram, and verify that every
free module is projective.) I have heard it claimed that one should therefore define an object P of
a general category C to be projective if and only if for every epimorphism f : M → N of C ,
every morphism P → N factors through f. This property is of interest, but there is no reason to
consider it to the exclusion of others, in particular to reject the concept of projective object defined
in terms of factorization through surjective maps M → N, if the category is a concrete one. The
fact that a property can be defined purely category-theoretically does not make it automatically
superior to another property.

(The right context for developing a theory of ‘‘projective objects’’ is probably that of a category
C given with a subfamily of morphisms S, which we wish to put in the role of surjections. To
make things behave nicely, one will presumably want to put certain restrictions on S ; for instance
that it be contained in the class of epimorphisms, as the surjective maps in concrete categories
always are by Exercise 6.7:6(i); probably also that it contain all invertible morphisms, and be
closed under composition. We would then say that an object P is ‘‘projective with respect to the
class S ’’ if for every morphism f : M → N belonging to S, every morphism P → N factors
through f. Such an approach is taken in [72], where a large number of properties are defined
relative to a pair of classes of morphisms, one in the role of the surjections and the other in the
role of the injections.)

The use of the words ‘‘monomorphism’’ and ‘‘epimorphism’’ is itself unsettled. In the days
before category theory, the words were introduced by Bourbaki with the meanings ‘‘injective (i.e.,
one-to-one) homomorphism’’ and ‘‘surjective (i.e., onto) homomorphism’’. The early category-
theorists brazenly gave these words the abstract category-theoretic meanings we have been
discussing. This, of course, made the terms ambiguous in situations where the category-theoretic
definition did not agree with the old meaning. Mac Lane [14] has tried to remedy the situation by
restoring ‘‘epimorphism’’ and ‘‘monomorphism’’ to their old meanings (applicable in concrete
categories only) and calling the category-theoretic concepts that we have been discussing ‘‘monic’’
and ‘‘epic’’ morphisms, or ‘‘monos’’ and ‘‘epis’’ for short. However, the category-theoretic
meanings are already well-established in many areas; e.g., there have been many published papers
dealing with epimorphisms in categories of rings. (A concept which includes the construction of
the field of fractions of a commutative domain is bound to be of interest!) My feeling is that the
words ‘‘epimorphism’’ and ‘‘epic morphism’’ sound too similar to usefully carry Mac Lane’s
distinction; and that we should now stick with the category-theoretic meanings of ‘‘epimorphism’’
and ‘‘monomorphism’’. The phrases ‘‘surjective (or onto) homomorphism’’ and ‘‘injective (or
one-to-one) homomorphism’’ give us more than enough ways of referring to the concrete concepts.

In any case, when you see these words used by other authors, you should make sure which
meaning they are giving them.
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Exercise 6.7:10. Suppose f ∈C(Y, Z ), g ∈C(X, Y ). Investigate implications holding among the
conditions ‘‘f is a monomorphism’’, ‘‘g is a monomorphism’’, ‘‘fg is a monomorphism’’ ‘‘f is
an epimorphism’’, ‘‘g is an epimorphism’’ and ‘‘fg is an epimorphism’’.

A full answer would be an exact determination of which among the 64 possible combinations
of truth-values for these 6 statements can hold for a pair of morphisms, and which cannot! As
a partial answer, you might determine which of the 8 possible combinations of truth-values of
the first 3 conditions can hold. Then see whether duality allows you to deduce which
combinations of the last 3 can hold, and whether, by examining when morphisms in a product
of categories are monomorphisms or epimorphisms, you can use the results you have found to
get a complete or nearly complete answer to the full 64-case question.

Exercise 6.7:11. Although for most natural categories of mathematical objects, the two obvious
questions about a morphism are whether it is one-to-one and whether it is onto, in the category
RelSet we can ask additional questions such as whether a given relation is a function.
(i) Can you find an abstract category-theoretic condition on a morphism which, when applied
to morphisms in this category, is equivalent to being a function?
(ii) Examine other properties of relations, and whether they can be characterized by category-
theoretic properties in RelSet . For instance, which members of RelSet(X, X ) represent partial
orderings on X? Given f, g ∈RelSet(X, Y ), how can one determine whether f ⊆ g as
relations? Can one construct from the category-structure of RelSet the contravariant functor
R : RelSetop → RelSet taking each relation f ∈RelSet(X, Y ) to the opposite relation,
R( f ) ∈RelSet(Y, X ) ?

Because of the way we used duality in getting from the concept of monomorphism to that of
epimorphism, both of them refer to one-one-ness of the images of a morphism under certain hom-
functors. Let us look at the conditions that these same images be onto:

Exercise 6.7:12. (i) Given f ∈C(X, Y ), show that the following conditions are equivalent:
(a) For all Z ∈Ob(C), hZ ( f ) is surjective.
(b) f is right invertible; i.e., there exists g ∈C(Y, X ) such that fg = idY .
(c) For every covariant functor F : C → Set , F( f ) is surjective.
(d) For every contravariant functor F : C → Set , F( f ) is injective.
(e) For every category D and covariant functor F : C → D , F( f ) is an epimorphism.
(f) For every category D and contravariant functor F : C → D , F( f ) is a monomorphism.
(For partial credit, simply establish the equivalence of (a) and (b). Hint: idY ∈hY (Y ).)

(ii) State the dual of the result you get in part (i).

Let us look at what condition (b) of the above exercise means in familiar categories; in other
words, what it means to have two morphisms satisfying a one-sided inverse relation,

(6.7.3) fg = idY ( f ∈C(X, Y ), g ∈C(Y, X )).

Let us first take C = Set . Then we see that if (6.7.3) holds, g must be one-to-one (if two
elements of Y fell together under g, there would be no way for f to ‘‘separate’’ them); so let us
think of g as embedding a copy of Y in X. The map f sends X to Y so as to take each
element g(y) back to y, while acting in an unspecified way on elements of X that are not in the
image of g. Thus the composite gf ∈C(X, X ) leaves elements of the image of g fixed, and
carries all elements not in that image into that image; i.e., it ‘‘retracts’’ X onto the embedded
copy of Y. Hence in an arbitrary category, a pair of morphisms satisfying (6.7.3) is called a
retraction of the object X onto the object Y. In this situation Y is said to be a retract of X
(via the morphisms f and g).
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Exercise 6.7:13. (i) Show that a morphism in Set is left invertible if and only if it is one-to-
one, with the exception of certain cases involving ∅, and right invertible if and only it is onto
(without exceptions).
(ii) Show that X is a retract of Y in the category Ab of abelian groups (or more generally,
the category R-Mod of left R-modules) if and only if X is isomorphic to a direct summand
in Y.
(iii) Give examples of a morphism in Ab that is surjective, but not right invertible, and a
morphism that is one-to-one, but not left invertible.
(iv) Characterize retractions in Group in terms of familiar group-theoretic constructions. Do
they all arise from direct-product decompositions, as in Ab ?

Combining part (i) of the above exercise with parts of two earlier exercises, we see that in a
concrete category, one has

left invertible ⇒ one-to-one ⇒ monomorphism,

right invertible ⇒ onto ⇒ epimorphism.

On the other hand, part (iii) of the above exercise and parts of earlier exercises show that none of
these implications are reversible.

Exercise 6.7:14. Investigate what combinations of the properties ‘‘epimorphism’’,
‘‘monomorphism’’, ‘‘left invertible’’ and ‘‘right invertible’’ force a morphism in a category to be
an isomorphism.

(Warning in connection with the results of the above exercises: The meanings of the terms
‘‘left’’ and ‘‘right’’ invertible become reversed when category-theorists – or other mathematicians –
compose their maps in the opposite sense to the one we are using!)

Note that in the situation of (6.7.3), the other composite, e = gf, is an idempotent
endomorphism of the object X, whose image in concrete situations is a copy of the retract Y.
The next exercise establishes two category-theoretic versions of the idea that this idempotent
morphism ‘‘determines’’ the structure of the retract Y of X.

Exercise 6.7:15. (i) Let X, Y, Y ′ ∈Ob(C), and suppose that f ∈C(X, Y ), f ′ ∈C(X, Y ′) have
right inverses g, g ′ respectively. Show that gf = g ′ f ′ ⇒ Y =∼ Y ′.
(ii) Let C be a category, and e ∈C(X, X ) be an idempotent morphism: e2 = e. Show that
C may be embedded as a full subcategory in a category D , unique up to isomorphism, with
one additional object Y (i.e., Ob(D) = Ob(C) ∪ {Y }) and such that there exist morphisms
f ∈D(X, Y ), g ∈ D(Y, X ) satisfying

fg = idY (in D(Y, Y )), gf = e (in D(X, X ) = C(X, X )).

Returning to our search for conditions which correspond to familiar mathematical concepts in
many cases, let us ask whether we can define a concept of a subobject of an object X in a
category C .

If by this we mean a criterion for which objects of a category such as Set or Group actually
lie in which other objects, the answer is ‘‘certainly not’’: There can be no way to distinguish an
object that is a subobject of another from one that is simply isomorphic to such a subobject.
However, in particular categories of mathematical objects, we may well be able to say when a
given morphism is an embedding, i.e., corresponds to an isomorphism of its domain object with a
subobject of its codomain. For instance, in the categories Set , Group , Monoid , Ring1,
Lattice and similar categories, the embeddings are the monomorphisms. In these cases, and more
generally, whenever we know which morphisms we want to regard as embeddings, we can recover
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the partially ordered set of subobjects of X as equivalence classes of these morphisms:

Exercise 6.7:16. Let C be a category, and suppose we are given a subcategory Cemb of C
which includes all the objects of C , and whose set of morphisms is contained in the set of
monomorphisms of C . The morphisms of Cemb are the morphisms of C that we intend to
think of as embeddings. (Note, however, that you may not assume anything about this class
except what we have stated.) For any object X of C , let EmbX denote the category whose
objects are pairs (Y, f ), where Y ∈Ob(C) and f ∈Cemb(Y, X ), and where a morphism from
(Y, f ) to (Z, g) means a morphism a : Y → Z of C such that f = ga.
(i) Show that each hom-set EmbX (U, V ) has at most one element. Deduce that EmbX is
of the form Emb(X )cat for some (possibly large) preorder Emb(X ). (We defined Pcat for
partial orders in §6.2; the definition for preorders is the same.)
(ii) Let us call the partially ordered set constructed from the preorder Emb(X ) as in
Proposition 4.2.2 ‘‘Sub(X )’’. Show that if C is one of Set , Group , Ring or Lattice , and
we take Cemb to have for its morphisms precisely the monomorphisms of C , then Sub(X ) is
isomorphic to the partially ordered set of subsets, subgroups, etc., of X.
(iii) Let X be a set, in general infinite, and S the monoid of set maps of X into itself.
Form the category Scat , and take (Scat )emb to have the monomorphisms of Scat for its
morphisms. Calling the one object of Scat ‘‘0’’, describe the partially ordered set Sub(0).

The categories of algebraic objects mentioned so far in discussing one-one-ness have the
property that every one-to-one morphism gives an isomorphism of its domain with a subobject of
its codomain. An example of a category for which this is not true is POSet . For instance if P
and Q are finite partially ordered sets having the same underlying set, but the order-relation on Q
is stronger than that of P, then the identity map of the underlying set is a one-to-one isotone map
from P to Q, but some elements of Q satisfy order-relations that they don’t satisfy in P, so
we cannot regard P as a subobject of Q with the induced ordering. This leads to the questions

Exercise 6.7:17. (i) If the construction of the preceding exercise is applied with C the
category POSet , and Cemb taken to consist of all the monomorphisms of C , how can the
partially ordered sets Sub(X ) be described?
(ii) Can you find a category-theoretic property characterizing those morphisms of POSet
which are ‘‘genuine’’ embeddings, i.e., correspond to isomorphisms of their domain with subsets
of their codomain, partially ordered under the induced ordering?

6.8. More categorical versions of common mathematical notions: special objects. Let us start
this section with some ‘‘trivialities’’. In many of the classes of structures we have dealt with, there
were one, or sometimes two objects that one would call the ‘‘trivial’’ objects: the one-element
group; the one-element set, and also the empty set; the one-element lattice and likewise the empty
lattice. The following definition abstracts the common properties of these objects.

Definition 6.8.1. An initial object in a category C means an object I such that for every
X ∈Ob(C), C(I, X ) has exactly one element.

A terminal object in a category C means an object T such that for every X∈Ob(C),
C(X, T ) has exactly one element.

An object that is both initial and terminal is often called a zero object .

Thus, in Set , the empty set is the initial object, while any one-element set is a terminal object;
in Group , a one-element group is both initial and terminal, hence is a zero object. The categories
Lattice , POSet , Top and Semigroup are like Set in this respect, while Toppt and Monoid
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are like Group . In Ring1, the initial object is Z , which we might not have thought to call
‘‘trivial’’; the terminal object is the one-element ring with 1 = 0 (which some people do not call a
ring).

A category need not have an initial or terminal object: The category of nonempty sets, or
nonempty partially ordered sets, or nonempty lattices, or finite rings, has no initial object; POSet<
has no terminal object, nor does the category of nonzero rings (rings in which 1 ≠ 0). If P is the
partially ordered set of the integers, then Pcat has neither an initial nor a terminal object.
Terminal objects are also called ‘‘final’’ objects (and I may sometimes slip and use that word in
class).

Lemma 6.8.2. If I, I ′ are two initial objects in a category C , then they are isomorphic, via a
unique isomorphism. Similarly, any two terminal objects are isomorphic via a unique
isomorphism. �

Exercise 6.8:1. Write out the proof of Lemma 6.8.2.

Exercise 6.8:2. Consider the following conditions on a category C :
(a) C has a zero object (an object that is both initial and terminal).
(b) It is possible to choose in each hom-set C(X, Y ) a morphism 0X, Y in such a way that
for all X, Y, Z ∈Ob(C) and f ∈C(X, Y ), g ∈C(Y, Z ) one has 0Y, Z f = 0X, Z = g0X, Y .

(c) It is possible to choose in each hom-set C(X, Y ) a morphism 0X, Y such that for all
X, Y, Z ∈Ob(C) one has 0Y, Z 0X, Y = 0X, Z .

(d) For all X, Y ∈Ob(C), C(X, Y ) ≠ ∅.
(i) Show that (a)⇒(b)⇒(c)⇒(d), but that none of these implications is reversible.
(ii) Show that if C has either an initial or a terminal object, then the first implication is
reversible, but not, in general, the second or third.
(iii) Show that if C has an initial object and a terminal object, then (d)⇒(a), so that all four
conditions are equivalent.

Exercise 6.8:3. If C is a category with a terminal object T, let Cpt denote the category whose
objects are pairs (X, p), where X ∈Ob(C) p ∈C(T, X ), and where Cpt((X, p), (Y, q)) =
{ f ∈C(X, Y ) � f p = q}. Verify that this indeed defines a category, that Cpt will have a zero
object, and that if we start with C = Top we get precisely the category we earlier named
Toppt.

Exercise 6.8:4. If C is a category, call an object A of C quasi-initial if it satisfies condition
(b) of Exercise 6.7:8(i). Generalize the result of that exercise to a characterization of quasi-
initial objects in categories with initial objects.

What about the concept of free object? The definition of a free group F on a set X refers to
elements of groups, hence the generalization should apply to a concrete category (C , U ). You
should verify that when C = Group and U is the underlying set functor, the following definition
reduces to the usual definition of free group.

Definition 6.8.3. If C is a category, U: C → Set a faithful functor, and X a set, then a free
object of C on X with respect to the concretization U will mean a pair (FX , u), where
FX ∈Ob(C), u ∈Set(X, U(FX )), and this pair has the universal property that for any pair (G, )
with G ∈Ob(C), ∈Set(X, U(G )), there is a unique morphism h ∈C(FX, G ) such that

= U(h ) u.
Loosely, we often call the object FX the free object, and u the associated universal map.
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Exercise 6.8:5. Let V denote the functor associating to every group G the set |G |2 of ordered
pairs (x, y) of elements of G, and W the functor associating to G the set of ‘‘unordered
pairs’’ {x, y} of elements of G (where x = y is allowed).
(i) State how these functors should be defined on morphisms. Show that they are both
faithful.
(ii) Show that for any set X, there exists a free group with respect to the functor V, and
describe this group.
(iii) Show that there do not in general exist free groups with respect to W.

Exercise 6.8:6. Let U : Ring1 → Set be the functor associating to every ring R the set of 2 × 2
invertible matrices over R. Show that U is faithful. Does there exist for every set X a free
ring RX on X with respect to U?

The next exercise shows why the concept of monomorphism characterizes the one-to-one maps
in most of the categories we know – or at least, shows that this follows from another property of
these categories.

Exercise 6.8:7. Let (C , U ) be a concrete category. Show that if there exists a free object on a
one-element set with respect to U, then a morphism f of C is a monomorphism if and only if
U( f ) is one-to-one.

We could go further into the study of free objects, proving, for instance, that they are unique up
to isomorphism when they exist, and that when C has free objects on all sets, the free-object
construction gives a functor Set → C . Some of this will be done in Exercise 6.9:7, later in this
chapter, but for the most part, we shall get such results in the next chapter, as part of a theory
embracing more general universal constructions.

Let us turn to another pair of constructions that we have seen in many categories (including
Cat itself), those of product and coproduct. No concretization or other additional structure is
needed to translate these concepts into category-theoretic terms.

Definition 6.8.4. Let C be a category, I a set, and (Xi )i ∈I a family of objects of C.
A product of this family in C means a pair (P, ( pi )i ∈I ), where P ∈Ob(C) and for each

i ∈I, pi ∈C(P, Xi ), having the universal property that for any pair (Y, (yi )i ∈I ) (Y ∈Ob(C),
yi ∈C(Y, Xi )) there exists a unique morphism r ∈C(Y, P ) such that yi = pi r (i ∈I ).

Likewise, a coproduct of the family (Xi )i ∈I means a pair (Q, (qi )i ∈I ), where Q ∈Ob(C)
and for each i ∈I, qi ∈C(Xi, Q ), having the universal property that for any pair (Y, (yi )i ∈I )
(Y ∈Ob(C), yi ∈C(Xi, Y )) there exists a unique morphism r ∈C(Q, Y ) such that yi = r qi
(i ∈I ).

Loosely, we call P and Q the product and coproduct of the objects Xi , the pi : P → Xi the
projection maps, and the qi : Xi → Q the coprojection maps. (The term injection is used by some
authors instead of coprojection.)

The category C is said to have finite products if every finite family of objects of C has a
product in C, and to have small products (often simply ‘‘to have products’’) if every family of
objects of C indexed by a small set has a product; and similarly for finite and small coproducts.

Standard notations for product and coproduct objects are P = I
��
I i ∈I Xi and Q = I��I i ∈I Xi .

For a product of finitely many objects one also writes X0 × ... × Xn–1. There is no analogous
standard notation for coproducts of finitely many objects; we used ‘‘*’’ as the operation-symbol in
Chapter 3, following group-theorists’ notation for ‘‘free products’’; one sometimes sees + or �+ ,
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based on module-theoretic notation. In these notes we shall from now on write X0 I��I ... I��I Xn–1,
which also occurs in the literature.

Observe that a product of the empty family is equivalent to a terminal object, while a coproduct
of the empty family is equivalent to an initial object.

Exercise 6.8:8. If P is a partially ordered set, what does it mean for a family of objects of Pcat
to have a product? A coproduct?

Exercise 6.8:9. (i) Suppose we are given a family of families of objects in a category C ,
((Xij )i ∈Ij

)j ∈J , such that for each j, I
��
I Ij

Xij exists, and such that we can also find a product

of these product objects, P = I
��
I J ( I

��
I Ij

Xij ). Show that P will be a product of the family

(Xij )i ∈Ij , j ∈J .

(ii) Deduce that if a category has products of pairs of objects, it has products of all finite
nonempty families of objects.

When a concrete category has enough coproducts, we get an interesting relation between two
concepts introduced earlier (equivalence of (a) and (b′) below):

Exercise 6.8:10. Let (C, U ) be a concrete category. Show that the following conditions are
equivalent. (a) The concretization functor U is representable. (b) C has a free object on one
generator. Moreover, show that if C has small coproducts, then these are also equivalent to
(b′) C has free objects on all sets.

Exercise 6.8:11. (i) Let X be a set (in general infinite) and S the monoid of maps of X into
itself. When, if ever, does the category Scat have products of pairs of objects? (Of course,
there is only one ordered pair of objects, and only one object to serve as their product, so the
question comes down to whether two morphisms p1 and p2 can be found having appropriate
properties.)
(ii) Is there, in some sense, a ‘‘universal’’ example of a monoid S such that Scat has
products of pairs of objects?

We saw in Exercise 6.7:13(ii) that in Ab and R-Mod , any retraction of an object arises from
a decomposition as a direct sum, which in those categories is both a product and coproduct. The
next exercise examines the relation between retractions, products and coproducts in general.

Exercise 6.8:12. (i) Show that if C is a category with a zero object, then for any objects A
and B of C , if the product A × B exists, then A can be identified with a retract of this
product, and if the coproduct A I��I B exists, then A can be identified with a retract of this
coproduct.
(ii) Can you find a condition more general than the existence of a zero object under which
these conclusions hold?

One does not have the converse to either part of (i). Indeed, let A and B be nontrivial
objects of Group , so that by (i) above, A can be identified with a retract of A × B and also
with a retract of A I��I B. Now
(iii) Show that the subgroup A ⊆ A I��I B, though a retract, is not a factor in any product
decomposition of that group, and that A ⊆ A × B, though a retract, is not a factor in any
coproduct decomposition of that group.

The next exercise shows that when one requires more than products of small families, one’s
categories tend to become degenerate.
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Exercise 6.8:13. Let C be a category and α a cardinal (e.g., the cardinality of some universe)
such that Ob(C) and all morphism sets C(X, Y ) have cardinality ≤ α .
(i) Show that if every family of objects of C indexed by a set of cardinality ≤ α has a
product in C , then C has the form Pcat , where P is a preorder whose associated partially
ordered set P ⁄ ∼∼ is a complete lattice.
(ii) Deduce that in this case every family of objects of C (indexed by any set whatsoever)
has a product and a coproduct.

It is an easy fallacy to say ‘‘since product is a category-theoretic notion, functors must respect
products’’. Rather

Exercise 6.8:14. Find an example of categories C and D having finite products, and a functor
C → D which does not respect such products.

On the other hand:

Exercise 6.8:15. Show that if (C , U ) is a concrete category, and there exists a free object on one
generator with respect to U, then U respects all products which exist in C . (Cf.
Exercise 6.8:7.)

Thus, in most of the concrete categories we have been interested in, the underlying set of a
product object is the direct product of the underlying sets of the given objects. However, there is a
well-known example for which this fails:

Exercise 6.8:16. A torsion group (also called a ‘‘periodic’’ group) is a group all of whose
elements are of finite order. Let TorAb be the category of all torsion abelian groups.
(i) Show that a product in Ab of an infinite family of torsion abelian groups is not in
general a torsion group.
(ii) Show, however, that the category TorAb has small products.
(iii) Deduce that the underlying set functor TorAb → Set does not respect products.

Exercise 6.8:17. Does the category TorGroup of all torsion groups have small products?

What about category-theoretic versions of the constructions of kernel and cokernel? We saw
that these constructions were specific to fairly limited kinds of mathematical objects, such as groups
and rings, but that a pair of concepts which embrace them but are much more versatile are those of
difference kernel and difference cokernel. These concepts are abstracted in

Definition 6.8.5. Let C be a category, X, Y ∈Ob(C), and f, g ∈C(X, Y ).
Then a difference kernel (also called an equalizer) of f and g means a pair (K, k ), where

K is an object, and k : K → X a morphism which satisfies fk = gk, and is universal for this
property, in the sense that for any pair (W, w) with W an object and w: W → X a morphism
such that fw = gw, there exists a unique morphism h : W → K such that w = kh.

Likewise, a difference cokernel (also called a coequalizer) of f and g means a pair (C, c)
where C is an object, and c: Y → C a morphism which satisfies cf = cg, and is universal for
this property, in the sense that for any pair (Z, z) with Z an object and z: Y → Z a morphism
such that z f = zg, there exists a unique morphism h : C → Z such that z = hc.

Loosely, K and C are called the difference kernel and cokernel objects, and k, c the
difference kernel and cokernel morphisms, or the canonical morphisms associated with the
difference (co)kernel construction. We say that C has difference kernels (respectively difference
cokernels) if every pair of morphisms between every pair of objects of C has a difference kernel
(cokernel ).
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It turns out that the definition of difference cokernel actually leads to a better approximation to
the concept of a surjective morphism in familiar categories than those we investigated earlier:

Exercise 6.8:18. (i) Show that in each of the categories Group , Ring1, Set , Monoid , a
morphism out of an object Y is surjective on underlying sets if and only if it is the difference
cokernel morphism for some pair of morphisms from an object X into Y.
(ii) Is the same true in POSet? In the category of finite groups?
(iii) In the categories considered in (i) (and optionally, those considered in (ii)) investigate
whether, likewise, the condition of being a difference kernel is equivalent to one-one-ness.
(iv) Investigate what implications hold in a general category between the conditions of being
an epimorphism, being right invertible, and being a difference cokernel map.

Exercise 6.8:19. Let f, g ∈Set(X, Y ) be morphisms, and (C, c) their difference cokernel.
(i) Show that card(X ) + card(C ) ≥ card(Y ). If you wish, assume X and Y are finite.
(ii) Can one establish some similar relation between the cardinalities of X, of Y, and of the
difference kernel of f and g in Set?
(iii) What can be said of the corresponding questions in Ab ? In Group ?

In categories (such as Group and Ab) which have a zero object, the concepts of the kernel
and cokernel of a morphism f : X → Y may be defined as the difference kernel and difference
cokernel of f with the zero morphism X → Y (see Exercise 6.8:2).

We turn next to a pair of constructions which we have not discussed before, but which are
related both to products and coproducts and to difference kernels and cokernels.

Definition 6.8.6. Given objects X1 , X2 , X3 of a category C , and morphisms f1: X1 → X3 ,
f2: X2 → X3 (diagram below), a pullback of the pair of morphisms f1 , f2 means a 3-tuple
(P, p1 , p2), where P is an object, and p1: P → X1 , p2: P → X2 are morphisms satisfying
f1 p1 = f2 p2 , and which is universal for this property, in the sense that any 3-tuple (Y, y1 , y2),
satisfying f1 y1 = f2 y2 is induced by a unique morphism h : Y → P.

(6.8.7)

Y

P
________

p1
→ X1

��
�
�

↓

p2

��
�
�

↓

f1

X2
________f2 → X3 .

Dually, for objects X0 , X1 , X2 and morphisms g1: X0 → X1 , g2: X0 → X2 , a pushout of
g1 and g2 means a 3-tuple (Q, q1 , q2), where q1: X1 → Q, q2: X2 → Q satisfy q1 g1 =
q2 g2 , and which is universal for this property in the sense shown below:
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(6.8.8)

X0
________

g1
→ X1

��
�
�

↓

g2

��
�
�

↓

q1

X2
________q2 → Q

Y.

A commuting square in C is called a pullback diagram (respectively, a pushout diagram) if
the upper left-hand (lower right-hand) object is a pullback ( pushout) of the remainder of the
diagram. As in the case of products and coproducts, the universal morphisms p1 , p2 from a
pullback object P are called its projection morphisms to the Xi , and the universal morphisms
q1 , q2 to a pushout object Q are called its coprojection morphisms.

We say that a category C has pullbacks if every diagram of objects and morphisms X1 , X2 ,
X3 , f1 , f2 as in (6.8.7) has a pullback P, and that C has pushouts if every diagram of objects
and morphisms X0 , X1 , X2 , g1 , g2 as in (6.8.8) has a pushout Q.

The next exercise shows how to construct these creatures.

Exercise 6.8:20. (i) Show that if a category C has finite products and has difference kernels,
then it has pullbacks. Namely, for every system of objects and morphisms, X1, X2, X3, f1,
f2 as in the first part of the above definition, construct a pullback as the difference kernel of a
certain pair of morphisms X1 × X2 → X3.
(ii) State the dual result for pushouts.

To get a picture of pullbacks in Set , note that any set map f : X → Y can be regarded as a
decomposition of the set X into subsets f –1(y), indexed by the elements y ∈Y. When looking at
f this way, one calls X a set fibered by Y, and calls f –1(y) the fiber of X at y ∈Y. Now in a
pullback situation (6.8.7) in Set , we see that from two sets X1 and X2, each fibered by X3,
we obtain a third set P fibered by X3, with maps into the first two. From the preceding exercise
one can verify that the fiber of P at each y ∈X3 is the direct product of the fibers of X1 and of
X2 at y. Consequently, pullbacks are sometimes called fibered products, whether or not one is
working in a concrete category. The next exercise shows that such ‘‘fibered products’’ can be
regarded as products in an appropriate category of ‘‘fibered objects’’.

Exercise 6.8:21. Given a category C and any Z ∈Ob(C), let CZ denote the category of
‘‘objects of C fibered by Z ’’, that is, the category having for objects all pairs (X, f ) where
X ∈Ob(C) and f ∈C(X, Z ), and having for morphisms (X, f ) → (Y, g) all members of
C(X, Y ) making commuting triangles with the morphisms f and g into Z.

Show that a pullback (6.8.7) in C is equivalent to a product of the objects (X1, f1), (X2, f2)
in CX3

.

Exercise 6.8:22. Let C be a category having pullbacks and pushouts, and let X1, X2, X3, f1,
f2 be as in (6.8.7). Suppose we form their pullback P, then form the pushout of the system
P, X2, X3, p1, p2, and so on, going back and forth between pullbacks and pushouts. Will
this process ever ‘‘stabilize’’?

(Suggestion: Given the two objects X1 and X2, consider the set A of all objects W
given with morphisms into X1 and X2, and the set B of all objects Y given with morphisms
into them from X1 and X2, and let R ⊆ A × B denote the relation ‘‘the four morphisms form
a commuting square’’. Examine the resulting Galois connection between A and B.)
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We note

Lemma 6.8.9. A morphism f : X → Y of a category C is a monomorphism if and only if the
diagram

X
________1X

→ X

��
�
�

↓

1X

��
�
�

↓

f

X
________f

→ Y

is a pullback diagram. Similarly f is an epimorphism if and only if

X
________f

→ Y

��
�
�

↓

f
��
�
�

↓

1X

Y
________1Y

→ Y

is a pushout diagram. �

Exercise 6.8:23. Prove Lemma 6.8.9.

The category of ‘‘objects of C fibered over Z ’’ used in Exercise 6.8:21 has a far-reaching
generalization:

Exercise 6.8:24. (i) Given three categories and two functors, D
__S→ C ←___T

E , show that
we can define a category ( S ↓ T ) having for objects all 3-tuples ( D, f, E ), where D ∈Ob(D),
E ∈Ob(E), and f ∈C(S( D), T(E )), and where a morphism ( D, f, E ) → ( D ′ , f ′ , E ′) means a
pair consisting of morphisms d : D → D ′, e : E → E ′, such that S(d) and T(e) make a
commuting square with f and f ′. Specifically, write out the required commutativity condition,
indicate how composition should be defined in ( S ↓ T ), and verify that the result is a category.
(ii) Given a category C and an object Z of C , suppose we take for E the trivial
category, with only one object and its identity morphism, let T : E → C be the functor taking
the object of E to Z, and let D = C , with S : C → C the identity functor. Show that the
category ( S ↓ T ) can then be identified with the category we called CZ in Exercise 6.8:21.
(iii) For S and T as in (ii) above, also describe the category (T ↓ S).

The construction described in part (i) of the above exercise is sometimes written ( S, T ). We
follow Mac Lane [14] in writing it ( S ↓ T ), because, as he observes, ‘‘the comma is already
overworked’’. However, the older notation is the source of its name, the comma category
construction. The most frequently used cases of this construction are those noted in (ii) and (iii)
above, often written (C ↓ Z ) and (Z ↓ C).

If C is a category with a terminal object T, the construction Cpt of Exercise 6.8:3 can
clearly be described as (T ↓ C). However, there is a related comma category construction that is
also sometimes called the category of ‘‘pointed objects’’ of C :

Exercise 6.8:25. Suppose (C, U ) is a concrete category having a free object F1 on the one-
element set 1. Show that the following categories are isomorphic:

(i) (F1 ↓ C).
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(ii) The category of objects X of C given with a distinguished element of U( X ), and
having for morphisms the morphisms of C that respect distinguished elements.

(iii) (1 ↓ U ), where ‘‘1’’ denotes the functor from the one-object one-morphism category to
Set taking the unique object to the one-element set 1.

Since the one-point topological space is both the terminal object T of Top and the free
object F1 on one generator in that category (under the concretization by underlying sets), the
constructions (T ↓ C) and (F1 ↓ C) on a general category C each generalize the construction of
Toppt. In fact, each of these comma categories is sometimes called the category of ‘‘pointed
objects of C’’, though they may be quite different from one another. For instance, since the
terminal object of Group is also initial (i.e., is a zero object, as defined in Definition 6.8.1), we
see that every object of Group admits a unique homomorphism of this terminal object into it, so
such a homomorphism contains no new information, and Grouppt is isomorphic to Group .
Hence an author who speaks of the category of ‘‘pointed groups’’ probably does not mean
Grouppt, but the category (F1 ↓ Group), of groups with a distinguished element.

While the pullback P in (6.8.7) is often called the ‘‘fibered product of X1 and X2 over
X3’’, the pushout Q in (6.8.8) is often called the ‘‘coproduct of X1 and X2 with amalgamation
of X0’’, especially in concrete situations where the morphisms f1 and f2 are embeddings. In
the spirit of Chapter 3, you might do

Exercise 6.8:26. (i) Show by general arguments that the category Group has pushouts.
(ii) Obtain an explicit description of pushouts of groups in the case where the given maps
f1: G0 → G1 and f2: G0 → G2 are one-to-one, assuming for notational convenience that
these maps are inclusions, and that the underlying sets of G1 and G2 are disjoint except for
the common subgroup G0. (This is a classical construction, called by group theorists ‘‘the free
product of G1 and G2 with amalgamation of the common subgroup G0’’. If you are already
familiar with this construction, and the proof of its normal form by van der Waerden’s trick, skip
to the next part.)
(iii) Describe how to reduce the construction of an arbitrary pushout of groups to the case
where the given maps f1 and f2 are one-to-one, as above.

We end this section with one more example of a category-theoretic translation of a familiar
concept. Let G be a group, and recall that a G-set is a set with an action of G on it by
permutations. More generally, one can consider an action of G by automorphisms on any
mathematical object, that is, on any object X of a category C ; one defines such an action as a
homomorphism f of G into the monoid C(X, X ). Now observe that the pair consisting of such
an object X and such a homomorphism f : G → C(X, X ) is equivalent to a functor Gcat → C ;
the object X gives the image of the one object of Gcat , and f determines the images of the
morphisms. Thus, group actions are examples of functors!

6.9. Morphisms of functors (or ‘‘natural transformations’’). We have seen that various sorts of
mathematical structures can be regarded as functors from ‘‘diagram’’ categories to categories of
simpler objects: As just noted, G-sets are equivalent to functors from Gcat to Set ; another
example is the type of structure which is the input of the difference kernel and difference cokernel
constructions, consisting of two objects of a category C and a pair of morphisms from the first
object to the second, (X, Y, f, g). If we call such a 4-tuple a ‘‘parallel pair’’ of morphisms in C ,
then as observed in §6.2, parallel pairs correspond to functors from the 2-object diagram category
.→→ . to C .
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Now if we regard such functors as new sorts of mathematical ‘‘objects’’, it is natural to ask
whether we can define morphisms among these objects.

There is a standard concept of a morphism of G-sets – a set map which ‘‘respects’’ the action
of G. Is there a similar concept of ‘‘morphism of parallel pairs’’? Given two parallel pairs S =
(X, Y, f, g) and S ′ = (X ′ , Y ′ , f ′ , g ′), it seems reasonable to define a morphism S → S ′ to be a
pair of morphisms x ∈C(X, X ′), y ∈C(Y, Y ′) which respects the structure of parallel pairs, in the
sense that yf = f ′x and yg = g ′x :

X
________x → X ′

��
�
�

↓

f
��
�
�

↓

g
��
�
�

↓

f ′
��
�
�

↓

g ′

Y
________y → Y ′

It is clear how to compose such morphisms, and immediate to verify that this composition
makes the class of parallel pairs in C into a category.

We find that with this definition, difference kernels and difference cokernels join the ranks of
constructions which, though originally thought of only as operating on objects, can also be applied
to morphisms. Indeed, if the two parallel pairs of the above diagram each have a difference kernel,
then it is not hard to check that the morphism (x, y) induces a morphism z of these difference
kernels, and if every parallel pair in C has a difference kernel, then this way of associating to
every morphism of parallel pairs a morphism of their difference kernels makes the difference kernel
construction a functor. Likewise, if each parallel pair has a difference cokernel, the difference
cokernel construction becomes a functor.

Exercise 6.9:1. Prove the assertions about difference kernels in the above paragraph.

Exactly similar considerations apply to the configurations in a category C for which we
defined the concepts of pullbacks and pushouts. Such configurations can be regarded as functors

from diagram categories .→↓.
.
, respectively ↓.

.→ .
into C , and the set of all configurations of

one or the other of these kinds can be made into a category, by letting a morphism from one such
configuration to another mean a system of maps between corresponding objects, which respect the
given morphisms among these. One can verify that this makes the pullback and pushout
constructions, when they exist, into functors on these categories of configurations.

In each of these cases, we have had a diagram category D and a general category C , and we
have discovered a concept of ‘‘morphism’’ between functors from D to C . So, although we have
so far regarded functors as the morphisms of Cat , it seems that there is also a concept of
morphisms among functors! We formalize this as

Definition 6.9.1. Let C and D be categories and F, G : D → C functors. Then a morphism of
functors a : F → G means a family (a(X ))X ∈Ob(D) such that for each X ∈Ob(D), a(X ) ∈
C(F(X ), G(X )), and for each f ∈D(X, Y ),

(6.9.2) a(Y ) F( f ) = G( f ) a(X ).

Pictorially, for each arrow f as at left below, we have a commuting square as at right:
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X F(X )
________a(X ) → G(X )

��
�
�

↓

f
��
�
�

↓

F( f )
��
�
�

↓

G( f )

Y F(Y )
________a(Y ) → G(Y ).

Given functors F, G, H : D → C and morphisms F
__a→ G

__b→ H, the composite morphism
ba: F → H is defined by

ba(X ) = b(X ) a(X ) (X ∈Ob(D)),

while the identity morphism of a functor F is defined by

idF (X ) = idF(X ) (X ∈Ob(D)).

The category whose objects are all the functors from D to C, with morphisms, composition,
and identity defined in this way, will be denoted CD.

Note that if D is small, then CD will be small or legitimate according as C is, but that if
D is legitimate, then CD will in general be large! But again, the Axiom of Universes shows us
that we may consider these large functor categories as small categories with respect to a larger
universe.

We see that if G is a group, the above definition of a morphism between functors Gcat → Set
indeed agrees with the concept of a morphism between G-sets, hence the category G-Set can be
identified with Set (Gcat ). Since Gcat is a small category, Set (Gcat ) is a legitimate category.

Let us note some examples where D is not a small category, using functors we have seen
before. Let F, A : Set → Group be the functors taking a set X to the free group and the free
abelian group on X respectively. For every set X there is a homomorphism a(X ) : F(X ) →
A(X ) taking each generator of F(X ) to the corresponding generator of A(X ). It is easy to see
that these form commuting squares with group homomorphisms induced by set maps, hence they
constitute a morphism of functors a : F → A.

Let F again be the free group construction, and let U : Group → Set be the underlying set
functor. Recall that for each X ∈Ob(Set), the universal property of F(X ) involves a set map
u(X ) : X → U(F(X )). It is easy to check that these maps u(X ), taken together, give a morphism
u : IdSet → U oF of functors Set → Set , where IdSet denotes the identity functor of the
category Set .

Exercise 6.9:2. Verify the above claim that u is a morphism of functors.

Statements that two different constructions are ‘‘essentially the same’’ can usually be
formulated precisely as saying that they are isomorphic as functors. For instance

Exercise 6.9:3. (i) Let F : Set → Group denote the free group construction, A : Set →
Group the free abelian group construction, and C : Group → Group the abelianization
construction. Show that C oF =∼ A. (In what functor category?)
(ii) When we gave examples of covariant hom-functors hX : C → Set at the end of §6.5, we
observed that for C = Group , the functor hZ was ‘‘essentially’’ the underlying set functor,
and that for C = Set and 2 = {0, 1} ∈Ob(Set), h2 was ‘‘essentially’’ the construction
X → X × X. Similarly, in §6.6 we noted that, the contravariant hom-functor h2 on Set ‘‘could
be identified with’’ the contravariant power-set functor. Verify that in each of these cases, we
have an isomorphism of functors.
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(iii) Let T : Ab × Ab → Ab be the tensor product construction, and R : Ab × Ab → Ab × Ab
the construction taking each pair of abelian groups (A, B ) to the pair (B, A ), and acting
similarly on morphisms. Show that T =∼ T oR.
(iv) Show that the isomorphisms of Exercise 6.6:5(v) give an isomorphism of functors
IdPOSet =∼ BA.

A venerable example of the concepts we have been discussing arises in considering duality of
finite-dimensional vector spaces. We know that a finite-dimensional vector space V, its dual V*,
and its double dual V** are all isomorphic. Now the isomorphism V =∼ V* is not ‘‘natural’’ –
these spaces are isomorphic simply because they have the same dimension. But there is a natural
way to construct an isomorphism V =∼ V**, by taking each vector to the operator

__
defined

by
__

( f ) = f ( ) ( f ∈V*). What this natural construction shows is that for C the category of
finite-dimensional k-vector spaces, the functors IdC and ** are isomorphic. (One cannot even
attempt to construct an isomorphism between IdC and *, since one functor is covariant and the
other contravariant.)

Examples such as this had long been referred to as ‘‘natural’’ isomorphisms, and people had
gradually noticed that ‘‘natural’’ constructions respected maps among objects. When Eilenberg and
Mac Lane introduced category theory in [6], they therefore gave the name natural transformation to
what we are calling a morphism of functors; that term is still widely used, though we shall not use
it here. One can also call such an entity a functorial map, to emphasize that it is not merely a
system of maps between individual objects F(X ) and G(X ), but that these respect the morphisms
F( f ) and G( f ) that make the constructions F and G functors.

In fact, we used the term ‘‘functorial’’ – deferring the explanation – in Exercises 2.3:6 and
2.3:7. What we called there a ‘‘functorial group-theoretic operation in n variables’’ is in our new
language a morphism U n → U, where U is the underlying-set functor Group → Set , and Un

the functor associating to every group G the direct product of n copies of U(G ) – the set of
n-tuples of elements of U(G ). Some cases of those exercises reappear, along with other problems,
in the following exercises, which should give you practice thinking about morphisms of functors.

Exercise 6.9:4. In each part below, attempt to describe all morphisms among the functors listed,
including morphisms from functors to themselves. (I describe functors below in terms of their
behavior on objects. The definitions of their behavior on morphisms should be clear. If you are
at all in doubt, begin your answer by saying how you think these functors should act on
morphisms.)
(i) The functors Id, A and B : Set → Set given by Id(S ) = S, A(S ) = S × S, B(S ) =
{{x, y} � x, y ∈S }. (Note that a member of B(S ) may have either one or two elements.)
(ii) The functors U, V and W : Group → Set given by U(G ) = |G |, V(G ) = |G | × |G |,
W(G ) = {x ∈ |G | � x2 = e}.
(iii) The underlying set functor U : FGroup → Set , where FGroup is the category of finite
groups.

Exercise 6.9:5. (i) Show that for any category C , the monoid CC(IdC , IdC ) of
endomorphisms of the identity functor of C is commutative.
(ii) Attempt to determine this monoid for the following categories C : Set , Group , Ab ,
FAb , the last being the category of finite abelian groups.
(iii) Do the same for C = Scat where S is an arbitrary monoid.
(iv) Is the endomorphism monoid of a full and faithful functor F : C → D in general
isomorphic to the endomorphism monoid of the full subcategory of D that is its image? If not,
is it at least abelian? If you get such a result, can either ‘‘full’’ or ‘‘faithful’’ be deleted from
the hypothesis?
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Exercise 6.9:6. (i) Let F : Set → Set be the functor associating to every set S the set Sω

of all sequences (s0, s1, ... ) of elements of S. Determine all morphisms from F to the
identity functor of Set .
(ii) Let G : FSet → Set be the restriction of the above functor to the category of finite sets;
i.e., the functor taking every finite set S to the (generally infinite) set of all sequences of
members of S. Determine all morphisms from F to the inclusion functor FSet → Set .

We have mentioned that constructions such as that of free groups, product objects, etc., could
be made into functors by using the universal properties to get the required morphisms between the
constructed objects. Since then, we have talked about the free group functor, the product functor
on a category, etc.. Part (ii) of the next exercise justifies this use of the definite article.

Exercise 6.9:7. (i) Let (C, U ) be a concrete category having free objects, and let Φ be a
function associating to every X ∈Ob(Set) a free object on X in C , Φ(X ) = (F(X ), u(X )).
Show that there is a unique way of extending F (the first component of Φ) to a functor (i.e.,
defining F( f ) for each morphism f of Set in a functorial manner) so that u becomes a
morphism of functors IdC → U F.
(ii) Suppose Φ: X → (F(X ), u(X )) and Ψ: X → (G(X ), (X )) are two constructions each
assigning to every set X a free object in C with respect to U, as in part (i). Show that the
functors F and G obtained from Φ and Ψ as above are isomorphic; in fact, that there is a
unique isomorphism making an appropriate diagram commute.
(iii) Write up the analogs of (i) and (ii) for one other functor associated with a universal
construction, e.g., products, difference kernels, tensor products of abelian groups, etc.. You may
abbreviate steps that parallel the free-object case closely.

Exercise 6.9:8. Consider a category C having finite products. When we spoke of making the
product construction into a functor (in motivating the concept of a functor of two variables), the
domain category was to be the set of pairs of objects of C . Clearly we can do the same using
I-tuples for any fixed finite set I. But what if we look at the product construction as
simultaneously applying to I-tuples of objects as I ranges over all finite index sets?

To make this question precise, let Ob(C)+ denote the class of all families (Xi )i ∈I such
that I is a finite set (varying from family to family) and the Xi are objects of C . Can you
make this the object-set of a category C+ in a natural way, so that the product construction
becomes a functor C+ → C ? If so, will the same category C+ serve as domain for the
coproduct construction, assuming C has finite coproducts?

Exercise 6.9:9. (i) Suppose F, G : C → D are functors, and a : F → G a morphism of
functors. What is the relation between the conditions: (a) for all X ∈Ob(C), a(X ) is a
monomorphism in D(F(X ), G(X )), and (b) a is a monomorphism in DC(F, G ) ?
(ii) Suppose F1 , F2 , P : C → D are functors, and p1: P → F1, p2: P → F2 are
morphisms. What is the relation between the conditions (a) for all X ∈Ob(C), P(X ) is a
product of F1(X ) and F2(X ) in D , with projection morphisms p1(X ) and p2(X ), and

(b) P is a product of F1 and F2 in D C, with projection morphisms p1 and p2 ?

To motivate what comes next, let us consider the following three pairs of constructions: (a) To
every group G, we may associate the set of its elements of exponent 2, and also its set of
elements of exponent 4; this gives two functors V2 and V4 from Group to Set such that for
every G, V2(G ) ⊆ V4(G ) . (b) To every set X we can associate the set P(X ) of its subsets,
and also the set Pf (X ) of its finite subsets. If we regard the power-set construction as a covariant
functor P : Set → Set , this gives a second functor Pf : Set → Set such that for all X, Pf (X ) ⊆
P(X ). (We used the covariant power-set functor here because the inverse image of a finite set
under a set map may not be finite, so there is no natural way to make a contravariant functor out of
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Pf .) (c) If Inv: Monoid → Monoid denotes the functor associating to every monoid its
submonoid of invertible elements, then for each monoid S, Inv(S ) is a submonoid of S =
IdMonoid (S ).

These examples suggest that we want a concept of ‘‘subfunctor’’ of a functor. Of course, the
examples were based on having the concept of a ‘‘subobject’’ of an object, and as we have
observed, there is no way to define this in an arbitrary category. However, if we assume a concept
of subobject given, we can define the concept of subfunctor relative to it:

Lemma 6.9.3. Let C be a category, and Cincl be a subcategory having for objects all the
objects of C, and having for morphisms a subclass of the monomorphisms of C, called the
inclusions, such that there is at most one inclusion morphism between any unordered pair of
objects (i.e., such that Cincl is a ( possibly large) partially ordered set). For X0 , X ∈Ob(C), let
us call X0 a subobject of X (or when there is a possibility of ambiguity, a ‘‘subobject with
respect to the distinguished subcategory Cincl ’’) if there exists an inclusion morphism X0 → X.
If X0 and Y0 are subobjects of X and Y respectively, and f ∈C(X, Y ), let us say f carries
X0 into Y0 if there exists a (necessarily unique! ) morphism f0 ∈C(X0, Y0) making a commuting
square with f and the inclusions of X0 and Y0 in X and Y.

Then for C as above, and F any functor from another category D into C, the following
data are equivalent:

(a) A choice for each X ∈Ob(D) of a subobject F0(X ) of F(X ) such that for each f ∈D(X, Y ),
F( f ) carries F0(X ) into F0(Y ).

(b) A functor F0: D → C such that each F0(X ) is a subobject of F(X ), and the inclusion
maps give a morphism of functors F0 → F.

(c) A subobject F0 of F with respect to the subcategory of CD having for objects all the
objects of that category (all functors C → D), and for morphisms those morphisms of functors
whose values at all objects of D are inclusion morphisms (relative to Cincl). We may call such
an F0 a subfunctor of F. �

Exercise 6.9:10. (i) Prove the above lemma, including the assertion of unicity noted
parenthetically in the first paragraph.
(ii) Can the subcategory of CD referred to in point (c) of that lemma be described as
(Cincl)

D ?

In considering categories C of familiar algebraic objects, when we speak of subobjects and
subfunctors, the distinguished subcategory Cincl will be understood to have for morphisms the
‘‘ordinary’’ inclusions, unless the contrary is stated.

Exercise 6.9:11. Let G be a group.
(i) Show that if S a subfunctor of the identity functor of Group , then S(G ) will be a
subgroup of G which is carried into itself by every endomorphism of G. (Group theorists call
such a subgroup completely invariant.)
(ii) Is it true, conversely, that if H is any completely invariant subgroup of G, then there
exists a subfunctor S of IdGroup such that H = S(G ) ?
(iii) Given a subgroup H of G such that some subfunctor S of IdGroup exists for which
H = S(G ), will there exist a least S with this property? A greatest?
(iv) Generalize your answers to (i)-(iii), in one way or another.
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Exercise 6.9:12. Let k be a field of characteristic 0, and k-Mod the category of
k-vector-spaces. For each positive integer n let �× n : k-Mod → k-Mod denote the n-fold
tensor product functor, V → V�× n=def V �× ...�× V (n factors).
(i) Determine all subfunctors of the functors �× 1 and �× 2.
(ii) Investigate subfunctors of higher �× n ’s.
(iii) Are the results you obtained in (i) and/or (ii) valid over fields k of arbitrary
characteristic?

We have observed that the idea that two constructions of some sort of mathematical object are
‘‘equivalent’’ can often be made precise as a statement that two functors are isomorphic. A
different type of statement is that two sorts of mathematical object are ‘‘equivalent’’. In some
cases, this can be formalized by giving an isomorphism (invertible functor) between the categories
of the two sorts of objects. E.g., the category of Boolean rings is isomorphic to the category of
Boolean algebras, and Group is isomorphic to the category of those monoids all of whose
elements are invertible. But there are times when this does not work, because the two sorts of
objects differ in certain ‘‘irrelevant’’ structure which makes it impossible, or unnatural, to set up
such an isomorphism. For instance, groups with underlying set contained in ω are ‘‘essentially’’
the same as arbitrary countable groups, although there cannot be an isomorphism between the
categories of such groups, because one category is small and the other has the cardinality of the
universe in which we are working. Monoids are ‘‘essentially the same’’ as categories with just one
object, but the natural construction taking one-object categories to monoids is not one-to-one,
because it forgets what element was the one object; and the way we found to go in the other
direction (inserting ‘‘1’’ as the object) is likewise not onto. For these purposes, a concept weaker
than isomorphism is useful.

Definition 6.9.4. A functor F : C → D is called an equivalence between the categories C and
D if there exists a functor G : D → C such that GF =∼ IdC and FG =∼ IdD (isomorphisms of
functors). If such an equivalence exists, one says ‘‘C is equivalent to D’’, often written C ∼∼ D.

Lemma 6.9.5. A functor F : C → D is an equivalence if and only if it is full and faithful, and
every object of D is isomorphic to F(X ) for some X ∈Ob(C).

Idea of Proof. ‘‘⇒’’ is straightforward. To show ‘‘⇐’’, choose for each object Y of D an
object G(Y ) of C and an isomorphism i(Y ) : Y → FG(Y ). One finds that there is a unique way
to make G a functor so that i becomes an isomorphism IdD =∼ FG, and a straightforward way
to construct an isomorphism IdC =∼ GF. �

Exercise 6.9:13. Give the details of the above proof.

Exercise 6.9:14. Let k be a field and k-FMod the category of finite-dimensional vector spaces
over k. Let Matk denote the category whose objects are the nonnegative integers, and such
that a morphism from m to n is an n × m matrix over k, with composition of morphisms
given by matrix multiplication. Show that Matk ∼∼ k-FMod .

Exercise 6.9:15. Let k and k-FMod be as in the preceding exercise. Show that duality of
vector spaces gives a contravariant equivalence of k-FMod with itself, i.e., an equivalence
between k-FModop and k-FMod .
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Exercise 6.9:16. Show that Set is not equivalent to Setop. For additional credit, demonstrate
the non-equivalence of a few other pairs of familiar categories, e.g., show that Set is not
equivalent to Group .

Exercise 6.9:17. Let FBool1 denote the category of finite Boolean rings, and FSet the category
of finite sets. In FBool1, 2 will denote the 2-element Boolean ring with underlying set {0, 1},
while in FSet , 2 will as usual denote the set {0, 1}. Note that for any B ∈Ob(FBool1), the
hom-set FBool1(B, 2), a finite set of homomorphisms B → 2, induces a homomorphism
mB : B → I

��
I i ∈FBool1(B, 2) 2.

(i) Show that mB is always an isomorphism. In particular, this says that every finite
Boolean ring is a finite product of copies of the ring 2.
(ii) Show with the help of the preceding result that the category FBool1 is equivalent to
FSetop.

Exercise 6.9:18. Let R be a ring, n a positive integer, and Mn (R ) the ring of n × n matrices
over R. For any left R-module M, let Coln (M ) denote the set of column vectors of height n
of elements of M, and let this be made a left Mn (R ) -module in the obvious way. This gives a
functor Coln : R-Mod → Mn (R )-Mod .

Show that Coln is an equivalence of categories.
(Rings such as R and Mn (R ) which have equivalent module categories are said to be

Morita equivalent. Morita equivalence was mentioned in Exercise 6.2:3, in terms of
isomorphisms in a peculiar category having rings as objects and bimodules as morphisms. I hope
in the future to add to Chapter 9 an introduction to Morita theory, from which we will be able to
see why the ‘‘invertible bimodule’’ property and the above condition are equivalent.)

The following definition and lemma reduce the question of whether two categories are
equivalent to the question of whether two other categories are isomorphic.

Definition 6.9.6. If C is a category, then a skeleton of C means a full subcategory having
exactly one representative of each isomorphism class of objects of C; i.e., by Lemma 6.9.5, a
minimal full subcategory C0 such that the inclusion of C0 in C is an equivalence.

The Axiom of Choice allows us to construct a skeleton for every category.

Lemma 6.9.7. Let C and D be categories, with skeleta C0 and D0 . Then C and D are
equivalent if and only if C0 and D0 are isomorphic. �

Exercise 6.9:19. Write out the proof of Lemma 6.9.7.

Exercise 6.9:20. Let X be a pathwise connected topological space. Recall that one can define a
category π1(X ) whose objects are the points of X, and in which a morphism from x to y
means a homotopy class of paths from x to y. What does a skeleton of this category look
like?

For future reference, let us make

Definition 6.9.8. Let I be a set ( for instance, a natural number or other cardinal), and C a
category having I-fold products. If X is an object of C, then when the contrary is not stated, XI

will denote the I-fold product of X with itself, which we may call the ‘‘I th power of X’’.
Likewise, if F is a functor from another category D to C, then when the contrary is not stated,
FI will denote the functor taking each object Y of D to the object F(Y ) I of C, and behaving
in the obvious way on morphisms.
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(Note that if F : C → C is an endofunctor of some category C , we might want to write Fn

for the n-fold composite of F with itself. In that case we would have to make an explicit
exception to the above convention.)

6.10. Properties of functor categories. In the preceding section we defined morphisms of
functors, and saw some applications of the resulting category structure on CD. Let us now set
down a few basic properties of these constructions.

First, consider any bifunctor

F : C × D → E ,

in other words, any object of EC × D. If we fix an object Y ∈Ob(D), it is easy to verify that F
induces a functor F(–, Y ) : C → E , i.e., an object of EC, sending each object X of C to
F(X, Y ) and each morphism f of C to F( f , idY ).

Having made this observation for each object of D , let us now note that for each morphism
between such objects, g ∈D(Y, Y ′), the morphisms F(idX, g) (X ∈Ob(C)) yield a morphism of
functors F(–, g) : F(–, Y ) → F(–, Y ′). Thus our system of objects F(–, Y ) of EC has become a
functor F ′: D → EC. That is, from our object F of EC × D we have gotten an object F ′ of
(EC)D.

In constructing F ′, we have not used the values of F at all the morphisms of C × D , but
only at morphisms of the forms (idX, g) and ( f , idY ); so we might wonder whether F ′
embodies all the information contained in F. But in fact, an arbitrary morphism of C × D ,
( f, g) : (X, Y ) → (X ′ , Y ′), can be written ( f , idY ′ )(idX, g), so the images of morphisms of those
two sorts do indeed determine the images of all morphisms of C × D . In fact, we have

Lemma 6.10.1 (Law of exponents for categories). For any categories C , D , E one has
EC × D =∼ (EC)D, via the construction sketched above. �

Exercise 6.10:1. Prove the above lemma. In particular, describe how to map morphisms of
EC × D to morphisms of (EC)D.

Exercise 6.10:2. Does one have other laws of exponents for functor categories? In particular, is

(D × E )C =∼ (DC) × (EC), and is EC I��I D =∼ (EC) × (E D) ? (For the meaning of C I��I D , cf.
Exercise 6.6:10.)

Next, suppose that G1, G2: C → D are functors, and a : G1 → G2 is a morphism between
them. If we compose G1, respectively G2 with a functor H from any other category into C ,
we get functors G1 H, respectively G2 H, and not surprisingly, the morphism a : G1 → G2
induces a morphism G1 H → G2 H. Likewise, given a functor F out of D , a induces a
morphism F G1 → F G2. These induced morphisms of functors are written a o H : G1 H → G2 H
and F o a : F G1 → F G2 respectively.

Example: Let a be the canonical morphism from the free group functor F to the free abelian
group functor A. If we compose on the right with, say, the functor U taking every lattice to its
underlying set,

Lattice
__U→ Set

F

↓
A

a Group ,

we get a morphism of functors a o U taking free groups on the underlying sets of lattices L to the
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free abelian groups on the same underlying sets. If instead we compose on the left with the
underlying-set functor V out of the category of groups,

Set
F

↓
A

a Group
__V→ Set ,

we get a morphism of functors V o a from the construction of the underlying set of the free group
on each set X to that of the underlying set of the free abelian group on X.

We record below the above constructions and note the laws that they satisfy. The reader is
advised to draw (or visualize) pictures like those above for the various situations described.

Lemma 6.10.2. Let C, D and E be categories.

(i) Given a morphism a: G1 → G2 of functors C → D, and any functor F : D → E, a
morphism F o a: F G1 → F G2 is defined by setting (F o a)(X ) = F(a(X )) (X ∈Ob(C)).

(ii) Given any functor G : C → D, and a morphism b : F1 → F2 of functors D → E, a
morphism b o G : F1 G → F2 G is defined by setting (b o G )(X ) = b(G(X )) (X ∈Ob(C)).

(iii) Given morphisms G1
___a1→ G2

___a2→ G3 of functors C → D, and any functor
F : D → E, one has

(F o a2 a1) = (F o a2) (F o a1).

(iv) Given any functor G : C → D, and morphisms F1
___b1→ F2

___b2→ F3 of functors
D → E, one has

(b2 b1
o G ) = (b2

o G ) (b1
o G ).

(v) Given both a morphism a: G1 → G2 of functors C → D, and a morphism b :
F1 → F2 of functors D → E, one has

(b o G2)(F1
o a) = (F2

o a)(b o G1)

as morphisms F1 G1 → F2 G2 .

(vi) Given functors G : C → D and F : D → E, one has

idF
o G = idFG = F o idG.

(vii) In summary, composition of functors C → D → E induces a functor ED × DC →
EC. �

Exercise 6.10:3. (i) Prove statements (i)-(vi) of the above lemma.
(ii) Show that statement (vii) summarizes all of statements (i)-(vi), except for the explicit
descriptions of how F o a and b o G are defined.

The above lemma shows that the operation of composing functors, which, to begin with, was
defined as a set map

(6.10.3) Cat(D , E) × Cat(C , D) → Cat(C , E),

actually gives a functor
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(6.10.4) ED × DC → EC.

In making Cat a category, we had to verify that the set map (6.10.3) satisfied the associativity and
identity laws; we now ought to check that these laws hold, not merely as equalities of set maps, but
as equalities of functors! The case of the identity laws is easy, but as part (ii) of the next exercise
shows, is still useful:

Exercise 6.10:4. (i) Given a morphism a: G1 → G2 of functors G1 , G2 : C → D , show that

a o IdC = a = IdD
o a.

(ii) Show that the above result, together with Lemma 6.10.2(v), immediately gives the result of
Exercise 6.9:5(i).

It is more work to write out the details of

Exercise 6.10:5. For categories B , C , D and E establish identities (like those of
Lemma 6.10.2) showing that the two iterated-composition functors ED × DC × CB → EB are
equal as functors.

In doing the above exercises, you may wish to use the notation which represents the common
value of the two sides of the equation of (v) above as b o a. Note, however, point (i) of

Exercise 6.10:6. (i) Show that if the above notation is adopted, there are situations where b o a
and ba are both defined, but are unequal.
(ii) Can you find any important class of cases where they must be equal?

Exercise 6.10:7. Suppose we have an equivalence of categories, given by functors F : C → D ,
G : D → C with IdC =∼ GF, IdD =∼ FG. Given a particular isomorphism of functors i : IdC →
GF, can one in general choose an isomorphism j : IdD → FG such that the two isomorphisms
of functors, i o G, G o j: G → GFG are equal, and likewise the two isomorphisms j o F, F o i:
F → FGF ?

How are we to look at a functor category CD ? Should we think of its objects as ‘‘maps’’ or
as ‘‘things’’? As a category, is it ‘‘like’’ C , ‘‘like’’ D , or like neither?

My general advice is to think of its objects as ‘‘things’’ and its morphisms as ‘‘maps’’; more
precisely, its objects are ‘‘things’’ composed of systems of objects of C , linked together by
morphisms in a way parametrized by D . With respect to basic properties, such a functor category
usually behaves more like C than like D . For example, if C has finite products, so does CD:
One can construct the product F × G of two functors F, G ∈CD ‘‘objectwise’’, by taking
(F × G)( X ) to be the product F(X ) × G(X ) for each X ∈Ob(D) (cf. Exercise 6.9:9(ii)). On the
other hand, existence of products in D tells us nothing about CD.

6.11. Enriched categories. A recurring trick in category theory is to characterize some type of
mathematical entity as a certain sort of structure in a particular category, such as Set , analyze
what properties of Set are needed for the concept to make sense, and then create a generalized
definition, like the original one, except that Set is replaced by a general category having the
required properties.

There is in fact an important application of this idea to the concept of category itself! We shall
sketch this briefly below. We will begin with a few examples to motivate the idea, and then
discuss what is involved in the general case, though we shall not give formal definitions.

Recall that a category, as we have defined it, is given by a set of objects, and a set of
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morphisms between any two objects, with composition operations given by set maps, μ : C(Y, Z ) ×
C(X, Y ) → C(X, Z ). But now consider the category Cat . Though we still have a set of objects,
for each pair of objects C , D we have seen that we can speak of a category of morphisms CD,
and composition in that category is given by functors μ : ED × DC → EC.

Likewise, for any ring R, it is well known that the homomorphisms from one R-module to
another form an additive group, so that R-Mod can be developed as having, for each pair of
objects, an abelian group of morphisms. Here composition is given by bilinear maps among these
abelian groups.

One expresses these facts by saying that Cat can be regarded as a Cat-based category, or a
Cat-category for short, and R-Mod as an Ab-category. Similarly, in various situations where one
has a natural topological structure on sets of morphisms, such that composition is bicontinuous, one
can speak of having a Top-based category.

These generalized categories are called enriched categories.
Note that when we referred to R-Mod as being an Ab-category, this included the observation

that the composition maps are bilinear. Thus, they correspond to abelian group homomorphisms

μXYZ : C(Y, Z ) �× C(X, Y ) → C(X, Z ).

The general definition of enriched category requires that the base category (the category in which
the hom-objects are taken to lie; i.e., Set , Ab , etc.) be given with a bifunctor into itself having
certain properties, which is to be used, as above, in describing the composition maps. In the case
of Ab this is the tensor-product functor, while in the cases of Set , Cat , and Top , the
corresponding role is filled by the product. See [14, §VII.7] for more details.

One should, strictly, distinguish between R-Mod as an ordinary (i.e., Set-based) category and
as an Ab-category, writing these two entities as, say, R-Mod and R-Mod(Ab) , and similarly
distinguish Cat and Cat(Cat) – just as one ought to distinguish between the set of integers, the
additive group of integers, the lattice of integers, the ring of integers, etc.. This notational problem
will not concern us, however, since we will not formalize the concept of enriched category in these
notes. Outside this section, if we have occasion to refer to the special properties of categories such
as R-Mod or Cat , we shall not assume familiarity with the theory of enriched categories, but
simply use in an ad hoc fashion what we know about the extra structure.

We remark that Ab-based categories, and more generally, k-Mod-based categories for k a
commutative ring (called ‘‘k-linear categories’’), are probably more widely used than all the other
sorts of enriched categories together; see [7] for a lively development of the subject.

The Cat-based category Cat contains a vast number of interesting sub-Cat-categories. Here
is one:

Exercise 6.11:1. Consider the full subcategory of Cat whose objects are the categories Gcat ,
for groups G. Characterize in group-theoretic terms the morphisms, and morphisms of
morphisms, in this Cat-category.

Translate your answer into a description of a Cat-category structure one can put on the
category Group .

The student interested in ring theory might note that the category of Exercise 6.2:3 (with rings
as objects, and bimodules RBS as morphisms) can be made a Cat-category, by using bimodule
homomorphisms as the morphisms-among-morphisms; moreover, each morphism-category C(R, S )
(for R and S rings) is in fact an Ab-category! What this says is that this category is an
AbCat-category, where AbCat is the category of Ab-categories. There is an explanation: This
category is equivalent to the subcategory of Cat whose objects are the Ab-categories R-Mod ,
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and whose morphisms are the functors R B �× S – : S-Mod → R-Mod induced by bimodules RBS .
So this observation is really a special case of the fact that the category of Ab-categories, which we
may write AbCat , is an AbCat-category, just as Ab is an Ab-category and Cat is a
Cat-category.

We have mentioned (in Exercise 6.3:1 and the preceding discussion) that there is a version of
the definition of category which eliminates reference to objects, and assumes only one kind of
element, the morphism. (The objects are hidden under the guise of their identity morphisms.) If
we apply this idea twice to the concept of a Cat-category, we likewise get a structure with only
one type of element – what we have been calling the morphisms of morphisms – but with two
partial composition operations on these elements, ab and a o b (Exercise 6.10:6). Described in
this way, Cat-categories have been called ‘‘2-categories’’ [14, p. 44]. (The relation between the
two types of composition is slightly asymmetric. If one drops the asymmetric condition – that
every identity element with respect to the first composition is also an identity element with respect
to the second – one gets a slightly more general concept, also defined in [14], and called a ‘‘double
category’’.)

Having begun by considering Cat as an ordinary, i.e., Set-based category, with objects and
morphisms (i.e., functors), and then having found that there was an important concept of morphisms
between morphisms (morphisms of functors), we may ask whether one can define, further,
morphisms between morphisms between morphisms in this category. The answer is ‘‘yes and no’’.
On the yes side, let us observe that in fact, one can set up a concept of ‘‘morphisms between
morphisms’’ in any category C! For a morphism in C is the same as an object of C2, where 2
denotes the diagram category .→., and we know how to make C2 a category. So in particular,
given categories C and D we can define a ‘‘morphism of morphisms in CD’’, which is thus a
‘‘morphism of morphisms of morphisms’’ in Cat .

However, this construction does not constitute a nontrivial enrichment of structure, since the
concept of morphism of morphisms we have just described in an arbitrary category C is defined in
terms of its existing category structure. (Indeed, when applied to Cat , it does not give the
concept of ‘‘morphism of functors’’, but that of ‘‘commuting square of functors’’.) So we come to
the ‘‘no’’ side of the answer – so far as I know, the category Cat has no enriched structure
beyond that of a Cat-category.

However, if one turns from the category Cat of all Set-based categories, to the category
CatCat of all Cat-based categories, one finds that here one has a natural and nontrivial concept of
morphisms between morphisms between morphisms – in other words, CatCat is a CatCat-based
category. And this process can be iterated ad infinitum.

But it is time to return from these vertiginous heights to the main stream of our subject.
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Chapter 7. Universal constructions in category-theoretic terms.

The language of category theory has enabled us to give general definitions of ‘‘free object’’,
‘‘product’’, ‘‘coproduct’’, ‘‘difference kernel’’ and various other universal constructions. It is clear
that these different constructions have many properties in common. Let us now look for ways to
unify them, so that we will be able to prove results about them by general arguments, rather than
piecemeal.

7.1. Universality in terms of initial and terminal objects. In all the above constructions, we
deal with mathematical entities with certain ‘‘extra’’ structure, and seek one such entity, F, that is
‘‘universal’’. This suggests that we make the class of entities with such extra structure into a
category, and examine the universal property of F there.

For instance, the free group on three generators is universal among systems (G, a, b, c) where
G is a group, and a, b, c ∈ |G |. If we define a category whose objects are these systems
(G, a, b, c), and where a morphism (G, a, b, c) → (G ′ , a ′ , b ′ , c ′ ) means a group homomorphism
f : G → G ′ such that f (a) = a ′ , f (b) = b ′ , f (c) = c ′, we see that the universal property of the
free group (F, x, y, z) says that it has a unique morphism into every object of the category – in
other words, that it is an initial object.

Similarly, given a group G, the abelianization of G is universal among pairs (A, f ) where
A is an abelian group, and f a group homomorphism G → A. If we define a morphism from one
such pair (A, f ) to another such pair (B, g) to mean a group homomorphism m : A → B such
that mf = g, we see that the definition of the abelianization of G says that it is initial in this
category.

Finally, a group, a ring, a lattice, etc., with a presentation < X � R> clearly means an initial
object in the category whose objects are groups, etc., with specified X-tuples of elements satisfying
the equations R, and whose morphisms are group homomorphisms respecting these distinguished
X-tuples.

The above were examples of what we named ‘‘left universal’’ properties in §3.8. Let us look at
one ‘‘right universal’’ property, that of a product of two objects A and B in a category C . We
see that the relevant auxiliary category should have for objects all 3-tuples (X, a, b), where
X ∈Ob(C), a ∈C(X, A) b ∈C(X, B), and for morphisms (X, a, b) → (Y, a ′ , b ′) all morphisms
X → Y in C making commuting triangles with the maps into A and B. A direct product of A
and B in C is seen to be a terminal object (P, p1 , p2) in this category.

You can likewise easily translate the universal properties of pushouts, pullbacks and coproducts
in arbitrary categories to those of initial or terminal objects in appropriately defined auxiliary
categories.

So all the universal properties we have considered reduce to those of being an initial or a
terminal object in an appropriate category. This approach is followed by Lang [28, p. 57 et seq.],
who gives these the more poetic designations ‘‘universally repelling’’ and ‘‘universally attracting’’
objects. Moreover, since a terminal object in C is an initial object in Cop, all universal
properties reduce to that of initial objects!

Lemma 6.8.2 tells us that initial (and hence terminal) objects are unique up to unique
isomorphism. This gives us, in one fell swoop, uniqueness up to canonical isomorphism for free
groups, abelianizations, products, coproducts, pushouts, pullbacks, objects presented by generators
and relations, and all the other universal constructions we have considered. (The canonical
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isomorphisms that these constructions are ‘‘unique up to’’ correspond to the unique morphisms
between any two initial objects of a category. I.e., given two realizations of one of our universal
constructions, these isomorphisms will be the unique morphisms from each to the other that
preserve the extra structure.)

We will look at questions of existence in §7.10.

7.2. Representable functors, and Yoneda’s Lemma. The above approach to universal
constructions is impressive for its simplicity; but we would also like to relate these universal
objects to the original categories in question: Though the free group on an S-tuple of generators is
initial in the category of groups given with S-tuples of elements, and the kernel of a group
homomorphism f : G → H is terminal in the category of groups L given with homomorphisms
L → G having trivial composite with f, we also want to understand these constructions in relation
to the category Group .

Note that the objects of the auxiliary categories we have used are pairs (X, a), where X is an
object of the original category C , and a is some additional structure on X. If we write F(X )
for the set of all possible values of this additional structure (e.g., in the case that leads to the free
group on a set S, the set of all S-tuples of elements of X ), we find that F is in general a
functor, covariant or contravariant, from C to Set . The condition characterizing a left universal
pair (R, u) is that for every X ∈Ob(C) and x ∈F(X ), there should be a unique morphism f :
R → X such that F( f )(u) = x. This condition – which we see requires a covariant F – is
equivalent to saying that for each object X, the set of morphisms f ∈C(R, X ) is sent bijectively
to the set of elements of F(X ) by the map f → F( f )(u). The bijectivity of this correspondence
for each X leads to an isomorphism between the functor C(R, –), i.e., hR : C → Set , and the
given functor F : C → Set . Thus, the universal property of R can be formulated as a statement
of this isomorphism:

Theorem 7.2.1. Let C be a category, and F: C → Set a functor. Then the following data are
equivalent:

(i) An object R ∈Ob(C) and an element u ∈F(R) having the universal property that for all
X ∈Ob(C) and all x ∈F(X ), there exists a unique f ∈C(R, X ) such that F( f )(u) = x.

(ii) An initial object (R, u) in the category whose objects are all ordered pairs (X, x) with
X ∈Ob(C) and x ∈F(X ), and whose morphisms are morphisms among the first components of
these pairs which respect the second components.

(iii) An object R and an isomorphism of functors i: hR =∼ F in SetC.

Namely, given (R, u) as in (i) or (ii), one obtains a pair (R, i ) as in (iii) by letting i(X )
take f ∈hR (X ) to F( f )(u) ∈F(X ), while in the reverse direction, one obtains u from i as
i(R )(idR ).

Sketch of Proof. The equivalence of the structures described in (i) and (ii) is immediate.
Concerning our description of how to pass from these structures to that of (iii), it is a

straightforward verification that for any u ∈F(R), the map i described there gives a morphism of
functors hR → F. That this is an isomorphism is then the content of the universal property of (i).
In the opposite direction, given an isomorphism i as in (iii), if u is defined as indicated, then the
universal property of (i) is just a restatement of the bijectivity of the maps i(X ) : hR (X ) → F(X ).

Finally, it is easy to check that if one goes as above from universal element to isomorphism of
functors and back, one recovers the original element, and if one goes from isomorphism to
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universal element and back, one recovers the original isomorphism. �

Exercise 7.2:1. Write out the ‘‘straightforward verifications’’ referred to in the second sentence of
the above proof.

Dualizing, we get

Theorem 7.2.2. Let C be a category, and F a contravariant functor from C to Set (i.e., a
functor Cop → Set). Then the following data are equivalent:

(i) An object R ∈Ob(C) and an element u ∈F(R) with the universal property that for any
X ∈Ob(C) and x ∈F(X ), there exists a unique f ∈C(X, R) such that F( f )(u) = x.

(ii) A terminal object (R, u) in the category whose objects are all ordered pairs (X, x) with
X ∈Ob(C) and x ∈F(X ), and whose morphisms are morphisms among the first components of
these pairs which respect the second components.

(iii) An object R and an isomorphism of contravariant functors i: hR =∼ F in SetCop
.

Namely, given (R, u) as in (i) or (ii), one obtains a pair (R, i ) as in (iii) by letting i(X )
take f ∈hR (X ) to F( f )(u) ∈F(X ), while in the reverse direction, one obtains u from i as
i(R )(idR ). �

Note that the last phrase of Theorem 7.2.1(ii), ‘‘which respect second components’’, means that
for a morphism f : X → Y to be considered a morphism (X, x) → (Y, y), we require F( f )(x) =
y, while in Theorem 7.2.2(ii), the corresponding condition is F( f )( y) = x.

The reader who has done Exercise 6.8:24 will see that the auxiliary categories used in point (ii)
of the above two theorems are comma categories, (1 ↓ F ).

The properties described above have names:

Definition 7.2.3. Let C be a category.
A covariant functor F : C → Set is said to be representable if it is isomorphic to a covariant

hom-functor hR for some R ∈Ob(C).
A contravariant functor F : Cop → Set is said to be representable if it is isomorphic to a

contravariant hom-functor hR for some R ∈Ob(C).
In each case, R is called the representing object for F, and if i is the given isomorphism of

functors, then i(R )(idR ) is called the associated universal element of F(R).

So from this point of view, universal problems in a category C are questions of the
representability of certain set-valued functors on C . Let us examine a few set-valued functors,
and see which of them are representable.

If U is the underlying-set functor on Group , a representing object for U should be a group
with a universal element of its underlying set. The object with this property is the free group on
one generator. More generally, if a category has free objects with respect to a concretization U,
then U will be represented by the free object on one generator, while the free object on a general
set I can be characterized as representing the functor UI (Definition 6.9.8).

The functor associating to every group the set of its elements of exponent 2 is represented by
the group Z2. More generally, the group with presentation by generators and relations < X � R>
represents the functor associating to every group G the set of X-tuples of members of G which
satisfy the relations R.

Is the functor associating to every commutative ring K the set |K [t] | of all polynomials over
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K in one indeterminate t representable? A representing object would be a ring R with a
universal polynomial u(t) ∈ R[t]. The universal property says that given any polynomial p(t)
over any ring K, there should exist a unique homomorphism R → K which, applied coefficient-
wise to polynomials, carries u(t) to p(t). But clearly there is a problem here: The polynomial u
will have some degree n, and if we choose a polynomial p of degree > n, it cannot be obtained
from u in this way. So the set-of-polynomials functor is not representable.

However, there is a concept related to that of polynomial but not subject to the restriction that
only finitely many of the coefficients be nonzero, that of a formal power series a0+ a1 t+ a2 t2+ ... .
If K is a ring, then the ring of formal power series over K is denoted K [[t]]; its underlying set
|K [[t]]| = { a0+ a1 t+ a2 t2+ ... } can be identified with the set of all sequences (a0, a1, ... ) of
elements of K, i.e., with |K |ω. We know that the functor K → |K |ω is represented by the free
commutative ring on an ω-tuple of generators, that is, the polynomial ring Z[A0, A1, ...]. And
indeed, the formal power series ring over this polynomial ring contains the element
A0+ A1 t+ A2 t2+ ... , which clearly has the property of a universal power series.

Exercise 7.2:2. (i) Show that the functor associating to every monoid S the set of its
invertible elements is representable, but that the functor associating to S the set of its right-
invertible elements is not.
(ii) What about the functor associating to every monoid S the set of pairs (x, y) such that
xy = e and yx = e? The set of pairs (x, y) merely satisfying xy = e? The set of 3-tuples
(x, y, z) such that xy = xz = e?
(iii) Determine which, if any, of the functors mentioned in (i) and (ii) are isomorphic to one
another.

Exercise 7.2:3. Let P denote the contravariant power-set functor, associating to every set X the
set P(X ) of its subsets, and E the contravariant functor associating to every set X the set
E(X ) of equivalence relations on X. Determine whether each of these is representable.

Exercise 7.2:4. Let A, B be objects of a category C . Describe a set-valued functor F on C
such that a product of A and B, if it exists in C , means a representing object for F, and
likewise a functor G such that a coproduct of A and B in C means a representing object for
G. (One of these will be covariant and the other contravariant.)

Students who know some Lie group theory might try

Exercise 7.2:5. Let LieGp denote the category of Lie groups and continuous group
homomorphisms. Let T : LieGp → Set denote the functor associating to a Lie group L the set
of tangent vectors to L at the neutral element. Which of the following covariant functors
LieGp → Set are representable? (a) the functor T, (b) the functor T2: L → T(L) × T(L),
(c) the functor L → {(x, y) ∈T(L) × T(L) � [x, y] = x }.

Exercise 7.2:6. Given a set X, let GpStruct(X ) denote the set of all group-structures on X
(consisting of a composition operation μ , an inverse operation ι , and a neutral element e). A
group can be considered as a set X given with an element s∈GpStruct(X ), and the category
Group has an initial object. This looks as though it should mean the underlying set of this
group is a representing object for GpStruct; but something is clearly wrong, since a map from
this set into a set X surely does not determine a group structure on X. Resolve this paradox.

The equivalence, in each of Theorems 7.2.1 and 7.2.2, of parts (ii) and (iii) shows that the
concept of representable functor can be characterized in terms of initial and terminal objects. The
reverse is also true:
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Exercise 7.2:7. Let C be any category. Construct a covariant functor F and a contravariant
functor G from C to Set such that an initial, respectively a terminal object of C is
equivalent to a representing object for F, respectively G.

The implication (i)⇒(iii) in Theorem 7.2.1 shows that an isomorphism between the hom-functor
hR associated with an object R, and an arbitrary functor F, is equivalent to a specification of an
element of F(R) with the universal property given in (i). In fact, every morphism (invertible or
not) from a hom-functor hR to a functor F corresponds to a choice of some element of F(R).
Though utterly simple to prove, this is an important tool. We give both this result and its
contravariant dual in

Lemma 7.2.4 (Yoneda’s Lemma). Let C be a category, and R an object of C .
If F : C → Set is a covariant functor, then morphisms f : hR → F are in one-to-one

correspondence with elements of F(R ), under the map f → f (R)(idR ).
Likewise, if F: Cop → Set is a contravariant functor, morphisms f : hR → F are in one-to-

one correspondence with elements of F(R ), again under the map f → f (R)(idR ).

Proof. In the covariant case, we must describe how to get from an element x ∈F(R) an
appropriate morphism fx : hR → F. We define fx to carry a ∈hR (X ) = C(R, X ) to
F(a)(x) ∈F(X ). The verification that this is a morphism of functors, and that this construction is
inverse to the indicated map from morphisms of functors to elements of F(R), is immediate.

The contravariant case follows by duality (or by the dualized argument). �

Again –

Exercise 7.2:8. Show the verifications omitted in the proof of the above result.

The following line of thought yields some intuition on Yoneda’s Lemma. Recall that if G is a
group, then a G-set, i.e., a functor from the category Gcat to Set , can be looked at as a
(possibly non-faithful) representation of G by permutations. In the same way, for any category
C , a functor F : C → Set can be thought of as a (possibly non-faithful) representation of C by
sets and set maps. Like a G-set, such a representation F can be regarded as a mathematical
‘‘object’’, whose ‘‘elements’’ are the members of the sets F(X ) (X ∈Ob(C)). This was the point
of view of our development of Cayley’s Theorem for small categories. In proving that result, we
constructed such an object by introducing one generator in each set F(X ), and no relations; in the
discussion that followed we observed that if one introduced only a generator in the set F(X )
corresponding to a particular X ∈Ob(C), and again no relations, the resulting ‘‘freely generated’’
object would be essentially the hom-functor which we named hX . Yoneda’s Lemma is the
statement of the universal property of this ‘‘free’’ construction – that a morphism from this
‘‘representation of C by sets’’ to any other ‘‘representation of C by sets’’ is uniquely
determined by specifying where the one generator, the identity element idX ∈hX (X ), is to be sent.
We make this formulation explicit in

Corollary 7.2.5. Let C be a category and R an object of C.
In the (large) category whose objects are pairs (F, x) where F is a functor C → Set and x

an element of F(R ), the pair (hR, idR ) is the initial object. Equivalently, the object
hR ∈Ob(SetC) is a representing object for the ‘‘evaluation at R’’ functor SetC → Set, the
universal element being idR ∈hR (R).

Likewise, in the category whose objects are pairs (F, x) where F is a functor Cop → Set
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and x an element of F(R ), the pair (hR, idR ) is the initial object; equivalently, the object

hR ∈Ob(SetCop
) represents the (again covariant! ) ‘‘evaluation at R’’ functor SetCop

→ Set. �

What if we apply Yoneda’s Lemma (covariant or contravariant) to the case where the arbitrary

functor F is another hom-functor hS , respectively hS? We get

Corollary 7.2.6. Let C be a category.
Then for any two objects R, S ∈Ob(C), the morphisms from hR to hS as functors C → Set

are in one-to-one correspondence with morphisms S → R. Thus, the mapping R → hR gives a
contravariant full embedding of C in SetC, the ‘‘Yoneda embedding’’.

Likewise, morphisms from hR to hS as functors Cop → Set correspond to morphisms

R → S, giving a covariant full ‘‘Yoneda embedding’’ of C in SetCop
.

These two embeddings may both be obtained from the bivariant hom-functor Cop × C → Set
by distinguishing one or the other argument, i.e., regarding this bifunctor in one case as a functor

Cop → SetC, and in the other as a functor C → SetCop
.

Sketch of Proof. By Lemma 6.10.1 the bivariant hom functor does indeed yield functors Cop →

SetC and C → SetCop
on distinguishing one or the other argument, and we see that the object R

is sent to hR , respectively hR. Given a morphism f : S → R in C , one verifies that the
induced morphism of functors hf : hR → hS takes idR to f ∈hS (R ). It follows from Yoneda’s
Lemma with F = hS that the map f → hf is one-to-one and onto, so our functor Cop → SetC

is full and faithful. The contravariant case follows by duality. �

Exercise 7.2:9. Verify the above characterization of the morphism of functors induced by a
morphism f : S → R.

Exercise 7.2:10. Show how to answer most of the parts of Exercise 6.9:4 using Yoneda’s Lemma.

Remark 7.2.7. It may seem paradoxical that we get the contravariant Yoneda embedding using
covariant hom-functors, and the covariant Yoneda embedding using contravariant hom-functors,
but there is a simple explanation. When we write the hom bifunctor Cop × C → Set as a functor

to a functor category, C → SetCop
or Cop → SetC, by distinguishing one variable, the variance

in that variable determines the variance of the resulting Yoneda embedding, while the variance in
the other variable determines the variance of the hom-functors this embedding takes on as its
values. Whichever way we slice it, we get covariance in one, and contravariance in the other.

In the last chapter, we saw that systems of universal constructions could frequently be linked
together, by natural morphisms among the constructed objects, to give functors. From the above
corollary, we see that this should correspond to situations where the functors that these universal
objects are constructed to represent are linked by a corresponding system of morphisms of functors,
in other words (by Lemma 6.10.1) where they form the components of a bifunctor. There is a
slight complication in formulating this precisely, because the given representable functors are not
themselves the hom-functors hR or hR, but only isomorphic to these, and the choice of
representing objects R is itself determined only up to isomorphism. To get around this, let us
prove a lemma showing that a system of objects separately isomorphic to the values of a functor in
fact form the values of an isomorphic functor.
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Lemma 7.2.8. Let F : C → D be a functor, and for each X ∈Ob(C), let i(X ) be an
isomorphism of F(X ) with another object G(X ) ∈Ob(D).

Then there is a unique way to assign to each morphism of C , f ∈C(X, Y ) a morphism
G( f ) ∈ D(G(X ), G(Y )) so that the objects G(X ) and morphisms G( f ) constitute a functor G :
C → D , and i constitutes an isomorphism of functors, F =∼ G.

Proof. If G is to be a functor and i a morphism of functors, then for each f ∈C(X, Y ) we must
have G( f ) i(X ) = i(Y ) F( f ). Since i(X ) is an isomorphism, we can rewrite this as G( f ) =
i(Y ) F( f ) i(X )–1. It is straightforward to verify that G, so defined on morphisms, is indeed a
functor. This definition of G( f ) insures that i is a morphism of functors, and it clearly has an
inverse i–1: G → F defined by i–1(X ) = i(X ) –1. �

Exercise 7.2:11. Write out the verification that G, constructed as above, is a functor.

We can now get our desired result about tying representing objects together into a functor.

Lemma 7.2.9. Let A : Cop × D → Set be a bifunctor, and suppose that for each X ∈Ob(C) the
induced functor A(X, –) : D → Set is representable, with a representing object F(X ) ∈Ob(D),
and isomorphism i(X ) : A(X, –) =∼ hF(X ) . Then F can be made a covariant functor C → D in
a unique way so that the isomorphisms i(X ) constitute an isomorphism of bifunctors

i: A(–, –) =∼ D(F(–), –).

Conversely, suppose we are given a family of covariant set-valued functors A(X, –) : D → Set,
one for each object X of C, such that each A(X, –) is representable, say with representing
object F(X ) and isomorphism i(X ) : A(X, –) =∼ hF(X ) . Then if the objects F(X ) can be made
the values on objects of a functor F : C → D, we can make the family of functors A(X, –) into a
bifunctor A : Cop × D → Set in a unique way so that the isomorphisms i(X ) together give an
isomorphism of bifunctors, as above.

Proof. In the situation of the first paragraph, note that since A : Cop × D → Set is a bifunctor, the
induced system of functors A(X, –) : D → Set will together constitute a single functor Cop →
SetD (Lemma 6.10.1); let us call this B. For each X ∈Ob(C) we have an isomorphism i(X ) of
B(X ) with a hom-functor hF(X ) , so by the preceding lemma we get an isomorphic functor
C : Cop → SetD, such that C(X ) = hF(X ) , and the isomorphism i : B =∼ C is made up of the
i(X )’s. Now by Corollary 7.2.6, the covariant hom-functors hY (Y ∈Ob(D)) form a full
subcategory of SetD contravariantly isomorphic to D via the Yoneda embedding Y → hY .
Hence the contravariant functor C : Cop → SetD is induced by composing this embedding
Dop → SetD with a unique covariant functor F : C → D , and this F is the functor of the
statement of the lemma.

In the situation of the second paragraph, let us similarly consider each functor A(X, –) as an
object B(X ) of SetD. Then for each X we have an isomorphism i(X ) : B(X ) =∼ hF(X ) , and
applying the preceding lemma to the isomorphisms i(X )–1, we conclude that the objects B(X )
are the values of a functor B : Cop → SetD, which we may regard as a bifunctor A : Cop × D →
Set , and again the values of i become an isomorphism of bifunctors. �

The above lemma concerns systems of objects representing covariant hom-functors; let us state
the corresponding result for contravariant hom-functors. A priori, this means replacing D by
Dop. But it is then natural to replace the ‘‘parametrizing’’ category Cop by C so as to keep the
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parametrization of the constructed objects of D covariant. And having done that much, why not
interchange the names of C and D so as to get an initial set-up formally identical to that of the
preceding case? Doing so, we get

Lemma 7.2.10. Let A : Cop × D → Set be a bifunctor, and suppose that for each Y ∈Ob(D) the
induced contravariant functor A(–, Y ) : Cop → Set is representable, with a representing object
U(Y ) ∈Ob(C), and isomorphism j(Y ) : A(–, Y ) =∼ hU(Y ). Then U can be made a covariant
functor D → C in a unique way so that the isomorphisms j(Y ) constitute an isomorphism of
bifunctors

j: A(–, –) =∼ C(–, U(–)).

Conversely, suppose we are given a family of contravariant set-valued functors A(–, Y ) :
Cop → Set, one for each object Y of D, each of which is representable, say with representing
object U(Y ) and isomorphism j(Y ) : A(–, Y ) =∼ hU(Y ). Then if the objects U(Y ) can be made
the values on objects of a functor U : C → D, we can make the family of functors A(–, Y ) into a
bifunctor A : Cop × D → Set in a unique way so that the isomorphisms j(Y ) together give an
isomorphism of bifunctors, as above. �

7.3. Adjoint functors. Let us look at some examples of the situation of the two preceding lemmas
– families of objects that we characterized individually as the representing objects for certain
naturally occurring functors, but that turned out, themselves, to fit together into a functor. By those
lemmas, this means that the system of functors that these objects represented fit together into a
bifunctor. We shall see that in each of these cases, this structure of bifunctor was actually present
in the original situation, providing an explanation of why our constructions yielded functors.

The free group on each set X is the object of Group representing the functor G → |G| X =
Set(X, U(G)). So the free group functor arises by representing the family of functors
Group → Set obtained by inserting all sets as the first argument of the bifunctor

Set(–, U(–)) : Setop × Group → Set .

The analogous description obviously applies in any category C having free objects with respect to
a concretization U : C → Set .

If G is a group, the abelianization of G is the object of Ab representing the functor
Ab → Set given by A → Group(G, A). The symbol Group(G, A) makes sense because Ab is
a subcategory of Group , but to put this example in the context of the general pattern, let us write
V for the inclusion functor of Ab in Group . We then see that the abelianization functor arises
by representing the family of set-valued functors obtained by inserting values in the first argument
of the bifunctor

Group(–, V(–)) : Groupop × Ab → Set .

In the same way, if W denotes the forgetful functor Group → Monoid , then the functor taking a
monoid to its universal enveloping group arises by representing the family of set-valued functors
obtained by inserting values in the first argument of the bifunctor

Monoid(–, W(–)) : Monoidop × Group → Set .

The above were ‘‘left universal’’ examples, that is, constructions F : C → D such that each
object F(X ) represented a covariant functor D → Set . We see that in each such case, the
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bifunctor from which these covariant functors were extracted had the form

(7.3.1) C(–, U(–)) : Cop × D → Set ,

for some functor U : D → C . Taking (7.3.1) to be the A in the display of Lemma 7.2.9, we see
that the universal property of F in terms of U can be formulated in each of these cases as

C(–, U(–)) =∼ D(F(–), –)

– a strikingly symmetrical condition!

Let us consider one ‘‘right universal’’ example. Given a monoid S, we have already
considered the construction of the universal group G with a homomorphism of S into Gmd; but
there is also a universal group G with a homomorphism of Gmd into S, namely the group
G = Sinv of invertible elements (‘‘units’’) of S. If we write F : Group → Monoid for the
forgetful functor G → Gmd, and call the above group-of-units functor U : Monoid → Group ,
we see that U(S) represents the contravariant functor associating to each group G the set
Monoid(F(G), S). If we write C and D for Group and Monoid , then on taking D(F(–), –)
for the bifunctor A in the last formulation of Lemma 7.2.10, we get an isomorphism characterizing
this right universal construction U :

D(F(–), –) =∼ C(–, U(–)).

This is exactly the same as the isomorphism characterizing our examples of left universal
constructions – except that the sides have been written in reverse order, and the relation is looked
at as characterizing U in terms of F, rather than F in terms of U ! The fact that for these two
situations we got the same isomorphism, but with the roles of U and F reversed, means that a
functor F gives objects representing the covariant functors C(X, U(–)) if and only if U gives
objects representing the contravariant functors D(F(–), Y ).

Let us test this conclusion, by turning our characterization of the free group construction upside
down. Since the free group F(X ) on a set X is left universal among groups G with set maps of
X into their underlying sets U(G), the underlying set U(G) of a group G should be right-
universal among all sets X with group homomorphisms from the free group F(X ) into G. And
indeed, though it may seem bizarre to treat the free-group construction as given, and the
underlying-set construction as something to be characterized, the universal property certainly holds:
For any group G, U(G) is a set with a homomorphism u : F(U(G)) → G, such that given any
homomorphism f from a free group F(X ) on any set into G, there is a unique set map
h : X → U(G) (which you should be able to describe) such that f = uF(h). This property of
underlying sets is sometimes even useful. For instance, in showing that every group can be
presented by generators and relations, one wishes to write an arbitrary group G as a homomorphic
image of a free group on some set X. The above property says that there is a universal choice of
such X, namely the underlying set U(G) of G.

Before setting out to tie together all our ways of describing these universal constructions, let us
prove a lemma that will allow us to relate isomorphisms of bifunctors as above and systems of
maps X → U(F(X )) and F(U(Y )) → Y.

Lemma 7.3.2. Let C and D be categories and U : D → C , F : C → D functors, and consider
the two bifunctors Cop × D → Set,

C(–, U(–)), D(F(–), –).
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Then a morphism of bifunctors

a: C(–, U(–)) → D(F(–), –)

is determined by its values on identity morphisms idU(D ) ∈C(U(D), U(D)) (D ∈Ob(D)). In fact,
given a, if we write α(D) = a(U(D), D)(idU(D)) ∈ D(F(U(D)), D), then α is a morphism
FU → IdD ; and this construction yields a bijection between morphisms a: C(–, U(–)) →
D(F(–), –) and morphisms α : FU → IdD . Inversely, given α, the morphism a can be
described as acting on f ∈C(C, U(D)) by first applying F to get F( f ) : F(C) → FU(D), then
composing this with α(D) : FU(D) → D, getting a( f ) = α(D) F ( f ) : F(C) → D.

Likewise, a morphism of bifunctors

b: D(F(–), –) → C(–, U(–))

is determined by its values on identity morphisms, in this case morphisms idF(C) ∈D(F(C), F(C))
(C ∈Ob(C)), and writing β(C) = b(C, F(C))(idF(C)) ∈C(C, U(F(C))), we get a bijection between
morphisms b: D(F(–), –) → C(–, U(–)) and morphisms β : IdC → UF . Given β, the
morphism b can be described as taking f ∈D(F(C), D) to U( f )β(C) ∈C(C, U(D)).

Sketch of Proof. Consider a morphism a: C(–, U(–)) → D(F(–), –). For each D ∈Ob(D) this
gives a morphism of functors C(–, U(D)) → D(F(–), D). Since the first of these functors is
hU(D), the Yoneda Lemma says this morphism is determined by its value on the identity
morphism of U(D). It is straightforward to verify that the condition that these morphisms of
functors C(–, U(D)) → D(F(–), D) should comprise a single morphism of bifunctors a:
C(–, U(–)) → D(F(–), –) is equivalent to the condition that the values of these morphisms on
identities should comprise a morphism of functors α : FU → IdD . The reader can easily check
that the description of how to recover a from α also leads to a morphism of functors, and that
this construction is inverse to the first.

The second paragraph follows by duality. �

Exercise 7.3:1. Write out the ‘‘straightforward’’ verification and the ‘‘easy check’’ referred to in
the proof of the lemma.

To get a feel for the above construction, you might start with the morphism of bifunctors a
that associates to every set map from a set X to the underlying set U(G) of a group G the
induced group homomorphism from the free group F(X ) into G. Determine the morphism of
functors α that the above construction yields, and check explicitly that the ‘‘inverse’’ construction
described does indeed recover a. In this example, one finds that a is invertible; calling its
inverse b, similarly work out for this b the constructions of the second assertion of the lemma.

We now give several descriptions of the type of universal construction discussed at the
beginning of this section.

Theorem 7.3.3. Let C and D be categories. Then the following data are equivalent:

(i) A pair of functors U: D → C, F: C → D, and an isomorphism

i: C(–, U(–)) =∼ D(F(–), –)

of functors Cop × D → Set.

(ii) A functor U: D → C, and for every C ∈Ob(C), an object RC ∈Ob(D) and an element
uC ∈ C(C, U(RC )) which are universal among such object-element pairs, i.e., which represent the
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covariant functor C(C, U(–)) : D → Set.

(ii*) A functor F: C → D, and for every D ∈Ob(D), an object RD ∈Ob(C) and an element

D ∈ D(F(RD ), D) which are universal among such object-element pairs, i.e., which represent the
contravariant functor D(F(–), D) : Cop → Set.

(iii) A pair of functors U: D → C, F: C → D, and a pair of morphisms of functors

η : IdC → U F, ε : F U → IdD ,

such that the two composites

U
____η oU→ UFU

____U oε→ U, F
____F oη→ FUF

____ε oF→ F,

are the identity morphisms of U and F respectively. (For the ‘‘ o’’ notation see Lemma 6.10.2.)

Sketch of Proof. The equivalence of (i) with (ii) and (ii*) is given by Lemmas 7.2.9 and 7.2.10
respectively. By Lemma 7.3.2, an isomorphism of bifunctors as in (i) must correspond to a pair of
morphisms of functors η : IdC → UF, ε : FU → IdD which induce mutually inverse morphisms
of bifunctors. It is straightforward to verify that the conditions needed for these induced
morphisms to be mutually inverse are those shown diagrammatically in (iii). �

Exercise 7.3:2. (i) Write down the verification referred to in the last sentence of the above
proof.
(ii) Show that η will be composed of the ‘‘universal morphisms’’ uC associated with the
left universal properties of the objects F(C) stated in point (ii) of the theorem, and ε will be
composed of the universal morphisms D associated with the right universal properties of the
objects U(D) stated in point (ii*).
(iii) Take one universal construction, e.g., that of free groups, write down the equalities
expressed diagrammatically in part (iii) of the above theorem for this construction in terms of
maps of set- and group-elements, and explain why they hold in this case.

Definition 7.3.4. Given categories C and D and functors U: D → C, F: C → D, an
isomorphism

i: C(–, U(–)) =∼ D(F(–), –)

of bifunctors Cop × D → Set, or equivalently, a pair of morphisms of functors ε , η satisfying
the condition of point (iii) of the above theorem, is called an adjunction between U and F.

In this situation, U is called the ‘‘right adjoint’’ of F, and F the ‘‘left adjoint’’ of U
(referring to their occurrence in the right and left slots of the hom-bifunctors in the above
isomorphism). The morphisms of functors η and ε are called, respectively, the unit and counit
of the adjunction.

Historical note: The term ‘‘adjoint’’ was borrowed from analysis, where the adjoint of a
bounded operator between Hilbert spaces, A : X → Y, is the operator B : Y → X characterized by
the condition on inner products (x, By) = (Ax, y).

The student who finds condition (iii) of Theorem 7.3.3 hard to grasp will be happy to know that
we will not make much use of it in the next few chapters. (I have trouble with it myself.) But we
will use the morphisms η and ε named in that condition, so you should get clear on how these
act. (What we will seldom use is the fact that the indicated compositional condition on a pair of
morphisms η , ε is equivalent to their being the unit and counit of an adjunction. Nevertheless, I
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recommend working Exercise 7.3:2 this once.)
The terms ‘‘unit’’ and ‘‘counit’’ will be easier to explain when we consider the concepts of

monad and comonad in Chapter 10 (not yet written).

We can now characterize many of the universal constructions we are familiar with as right or
left adjoints. The three diagrams below show the cases we used to motivate the concept. In each
of these, a pair of successive vertical arrows between two categories represents a pair of mutually
adjoint functors, the right adjoint being shown on the right and the left adjoint on the left.

Group Group Ab

free under- Sgp for- U(S) abel- for-

group lying ↑
��–

get- ↑
��–

ianiz- get-

set S ful S ation ful

↑
��
�
�
�

��
�
�
�

↓

↑
��
�
�
�

��
�
�
�

↓

↑
��
�
�
�

↑
��
�
�
�

��
�
�
�

↓
Set Monoid Group

The middle diagram is interesting in that the forgetful functor there (in the notation of §3.11,
G → Gmd) has both a left and a right adjoint. In the first diagram, we can replace Group with
any category C having free objects with respect to a concretization U. A still wider
generalization is noted in the next exercise.

Exercise 7.3:3. If you did not do Exercise 6.8:10, prove that if C is a category with small
coproducts and U : C → Set a functor, then U has a left adjoint if and only if it is
representable.

(Exercise 6.8:10 was essentially the case of this result where U was faithful, so that it could
be called a ‘‘concretization’’ and its left adjoint could be called a ‘‘free object’’ construction; but
faithfulness played no part in the proof. In Chapter 9 we shall extend the concept of
‘‘representable functor’’ from set-valued functors to algebra-valued functors, and generalize the
above result to this much wider context.)

Exercise 7.3:4. Show that the left (or right) adjoint of a functor, if one exists, is unique up to
canonical isomorphism, and conversely, that if A and B are isomorphic functors, then any
functor which can be made a left (or right) adjoint of A can also be made a left (or right)
adjoint of B.

Exercise 7.3:5. Show that if A : C → D , B : D → C give an equivalence of categories, then B
is both a right and a left adjoint to A.

The next exercise is a familiar example in disguise.

Exercise 7.3:6. Let C be the category with Ob(C) = Ob(Group), but such that for groups G
and H, C(G, H ) = Set( |G|, |H | ). Thus Group is a subcategory of C , with the same object
set but smaller morphism sets. Does the inclusion functor Group → C have a left and/or a
right adjoint?

There are many other constructions whose universal properties translate into adjointness
statements: The forgetful functor Ring1 → Monoid that remembers only the multiplicative
structure has as left adjoint the monoid ring construction. The forgetful functor Ring1 → Ab that
remembers only the additive structure has for left adjoint the tensor ring construction. (These two
constructions were discussed briefly toward the end of §3.12.) The forgetful functor from compact
Hausdorff spaces to arbitrary topological spaces has for left adjoint the Stone-Čech compactification
functor (§3.17). The functor associating to every commutative ring its Boolean ring of idempotent
elements has as left adjoint the construction asked for in Exercise 3.14:3(iv). The forgetful functors
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going from Lattice to ∨-Semilattice and ∧-Semilattice , and from these in turn to POSet ,
have left adjoints which you were asked to construct in Exercise 5.1:8.

The student familiar with Lie algebras will note that the functor associating to an associative
algebra A the Lie algebra ALie with the same underlying vector space as A, and with the
commutator operation of A for Lie bracket, has for left adjoint the universal enveloping algebra
construction. (The Poincaré-Birkhoff-Witt Theorem gives a normal form for this universal object; I
hope to treat such results in a much later chapter.)

Suppose C is a category having products and coproducts of all pairs of objects. We know
that each of these constructions will give a functor C × C → C . Can these functors be
characterized as adjoints of some functors C → C × C? Similarly, can the tensor product functor
Ab × Ab → Ab be characterized as an adjoint of some functor Ab → Ab × Ab?

The universal property of the product functor C × C → C is a right universal one, so if it
arises as an adjoint, it should be a right adjoint to some functor A : C → C × C . No such functor
was evident in our definition of products. However, the product functor will be right adjoint to a
functor F if and only if F is left adjoint to the product functor, so let us pose the universal
problem whose solution should be such a left adjoint: Given X ∈Ob(C) , will there exist
(Y, Z ) ∈Ob(C × C) with a universal example of a morphism X → Y × Z? Since a morphism
X → Y × Z corresponds to a morphism X → Y and a morphism X → Z, this asks whether there
exists a pair (Y, Z ) of objects of C universal for having a morphism from X to each member of
this pair. In fact, the pair (X, X ) is easily seen to have the desired universal property. This leads
us to define the ‘‘diagonal functor’’ Δ : C → C × C taking each object X to (X, X ), and each
morphism f to ( f , f ). It is then easy to check that the universal property of the direct product
construction is that of a right adjoint to Δ. Moreover, similar reasoning shows that the universal
property of the coproduct is that of a left adjoint of Δ. So in a category C having both products
and coproducts, we have the diagram of adjoint functors

C

↑
��
�
�
�

I��I

��
�
�
�

↓

Δ
↑
��
�
�
�

I
��
I

C × C .

We recall that if C is Ab , the constructions of pairwise products and coproducts (‘‘direct
products and direct sums’’) coincide. So in that case we get a ‘‘cyclic’’ diagram of adjoints.

Exercise 7.3:7. Does the direct product construction on Set have a right adjoint? Does the
coproduct construction have a left adjoint?

The next exercise is one of my favorites:

Exercise 7.3:8. Recall that 2 denotes the category with two objects, 0 and 1, and exactly one
nonidentity morphism, 0 → 1, so that for any category C , an object of C2 corresponds to a
choice of two objects A0 , A1 ∈Ob(C) and a morphism f : A0 → A1.

Let p0: Group2 → Group denote the functor taking each object (A0 , A1, f ) to its first
component A0, and likewise every morphism (a0 , a1): (A0 , A1, f ) → (B0 , B1, g) of
Group2 to its first component a0.

Investigate whether p0 has a left adjoint, and whether it has a right adjoint. If a left adjoint
is found, investigate whether this in turn has a left adjoint (clearly it has a right adjoint – namely
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p0 ); likewise if p0 has a right adjoint, investigate whether this in turn has a right adjoint; and
so on, as long as further adjoints can be found.

Exercise 7.3:9. Let G be a group, and G-Set the category of all G-sets.
You can probably think of several very easily described functors from Set to G-Set , or

vice versa. Choose one of them, and apply the idea of the preceding exercise; i.e., look for a left
adjoint and/or a right adjoint, and for further adjoints of these, as long as you can find any.

When you are finished, does the chain of functors you have gotten contain all the ‘‘easily
described functors’’ between these two categories that you were able to think of? If not, take
one that was missed, and do the same with it.

Exercise 7.3:10. Translate the idea indicated in observation (a) following Exercise 3.8:1 into
questions of the existence of adjoints to certain functors between categories G1-Set and
G2-Set , determine whether these adjoints do in fact exist, and describe them as well as you can,
if they do.

Let us now consider the case of the tensor product construction, �× : Ab × Ab → Ab . It is the
solution to a left universal problem, and we can characterize this problem as arising, in the sense of
Lemma 7.2.9, from the bifunctor Bil: (Ab × Ab)op × Ab → Ab , where for abelian groups A, B,
C we let Bil((A, B), C) denote the set of bilinear maps (A, B) → C. From the preceding
examples, we might expect Bil((A, B), C) to be expressible in the form (Ab × Ab)((A, B), U(C))
for some functor U : Ab → Ab × Ab .

But, in fact, it cannot be so expressed; in other words, the tensor product construction
Ab × Ab → Ab , though it is a left universal construction, is not a left adjoint. The details (and a
different sense in which the tensor product is a left adjoint functor construction) are something you
can work out:

Exercise 7.3:11. (i) Show that the functor �× : Ab × Ab → Ab has no left or right adjoint.
(ii) On the other hand, show that for any fixed abelian group A, the functor A�× – :
Ab → Ab is left adjoint to the functor Hom(A, –) : Ab → Ab . (I am writing Hom(A, B) for
the abelian group of homomorphisms from A to B, in contrast to Ab(A, B) the set of such
homomorphisms – an admittedly arbitrary and ad hoc notational choice.)
(iii) Investigate whether the functor A�× – : Ab → Ab has a left adjoint, and whether
Hom(A, –) : Ab → Ab has a right adjoint. If such adjoints do not always exist, do they exist for
some choices of A ?

If you are familiar enough with ring theory, generalize the above problems to modules over a
fixed commutative ring k, or to bimodules over pairs of noncommutative rings.

Exercise 7.3:12. For a fixed set A, does the functor Set → Set given by S → S × A have a left
or right adjoint?

A situation which is similar, in that the question of whether a construction is an adjoint depends
on what we take as the variable, is considered in

Exercise 7.3:13. In this exercise ‘‘ring’’ will mean commutative ring with 1; recall that we
denote the category of such rings CommRing1.

If R is a ring and X any set, R[X ] will denote the polynomial ring over R in an X-tuple
of indeterminates.
(i) Show that for X a nonempty set, the functor PX : CommRing1 → CommRing1 taking
each ring R to R[X ] has neither a right nor a left adjoint, and similarly that for R a ring, the
functor QR : Set → CommRing1 taking each set X to R[X ] has neither a right nor a left
adjoint.
(ii) On the other hand, show that the functor CommRing1 × Set → CommRing1 taking a
pair (R, X ) to R[X ] is an adjoint (on the appropriate side) of an easily described functor.
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(iii) For any ring R, let CommRing1
R denote the category of commutative R-algebras (rings

S given with homomorphisms R → S ), and R-algebra homomorphisms (ring homomorphisms
making commuting triangles with R. In the notation of the paragraph following Exercise 6.8:24,
this is the comma category (R ↓ CommRing1).)

Similarly, for any set X, let CommRing1
X denote the category of rings S given with set

maps X → |S |, and again having for morphisms the ring homomorphisms making commuting
triangles. (This is the comma category (X ↓ U ), where U is the underlying set functor of
CommRing1. Incidentally, note that to keep our names for these categories unambiguous, we
must remember to use distinct symbols for rings and sets.)

Show that for any R, the functor Set → CommRing1
R taking X to R[X ] can be

characterized as an adjoint, and that for any X, the functor CommRing1 → CommRing1
X

taking R to R[X ] can also be characterized as an adjoint.
(iv) Investigate similar questions for the formal power series construction, R[[X ]]; in
particular, whether the analog of (i) is true.

Here is still another way to make the tensor product construction into an adjoint functor:

Exercise 7.3:14. (i) Let Bil be the category whose objects are all 4-tuples (A, B, β, C)
where A, B, C are abelian groups, and β : (A, B) → C is a bilinear map, and with morphisms
defined in the natural way. (Say what this natural way is!) Show that the forgetful functor
Bil → Ab × Ab , taking each such 4-tuple to its first two components, has a left adjoint, which is
‘‘essentially’’ the tensor-product construction.
(ii) Show that an analogous trick can be used to convert any isomorphism of bifunctors as in
the Lemma 7.2.9 into an adjunction. (Between what categories?) Do the same for the situation
of Lemma 7.2.10.

Exercise 7.3:15. Describe all pairs of adjoint functors at least one member of which is a constant
functor, i.e., takes all objects of its domain category to a single object X of its codomain
category, and all morphisms of its domain category to idX .

What happens when we compose two functors arising from adjunctions?
Note that the abelianization of the free group on a set X is a free abelian group on X. That

is, when we compose these two functors, each of which is a left adjoint, we get another functor
with that property. The general statement is delightfully easy to prove.

Theorem 7.3.5. Suppose E
___U→←____

F
D

___V→←____
G

C are pairs of adjoint functors, with U and V

the right adjoints, F and G the left adjoints. Then E
____V U→←____
F G

C are also adjoint, with V U

the right adjoint and F G the left adjoint.

Proof. C(–, V U(–)) =∼ D(G(–), U(–)) =∼ E(F G(–), –) . �

Exercise 7.3:16. Suppose U, V, F and G are as above, η and ε are the unit and counit of
the adjoint pair U, F, and η ′ and ε ′ are the unit and counit of the adjoint pair V, G.
Describe the unit and counit of the adjoint pair V U, F G.

For further examples of the above theorem, consider two ways we can factor the forgetful
functor from Ring1 to Set . We can first pass from a ring to its multiplicative monoid, then go to
the underlying set thereof, or we can first pass from the ring to its additive group, and then to the
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underlying set:

Ring1______×
→ Monoid

��
�
�

↓

+
��
�
�

↓
Ab

______→ Set

Taking left adjoints, we get the two decompositions of the free ring construction noted in §3.12: as
the free-monoid functor followed by the monoid-ring functor, and as the free abelian group functor
followed by the tensor algebra functor:

Ring1 ←______
Monoid

↑
��
�
�

↑
��
�
�

Ab ←______
Set

7.4. Number-theoretic interlude: the p-adic numbers, and related constructions. While you
digest the concept of adjunction (fundamentally simple, yet daunting in its multiple facets), let us
look at some constructions of a different sort, which we have not studied so far. In this section we
will develop a particular case important in number theory; the general category-theoretic concept
will be defined in the next section. A much broader generalization, which also embraces several
constructions we have studied, will be developed in the section after that.

Suppose we are interested in solving the equation

(7.4.1) x2 = –1

in the integers, Z . Of course, we know it has no solution in the real numbers, let alone the
integers, but we will ignore that dreary fact for the moment.

We may observe that the above equation has a solution in the finite ring Z5 ; in fact, two
solutions, 2 and 3. Up to sign, these are the same, so let us look for a solution of (7.4.1) in Z
satisfying

x ≡ 2 (mod 5).

An integer x which is ≡ 2 (mod 5) has the form 5y+2, so we rewrite (7.4.1) as

(5y+2)2 = –1

and expand. We get 25y2+20y = –5. Hence 20y ≡ –5 (mod 25), and dividing by 5 we get
4y ≡ –1 (mod 5). This has the unique solution

y ≡ 1 (mod 5),

which, substituted back, determines x modulo 25:

x = 5y+2 ≡ 5.1+2 = 7 (mod 25).

We continue in the same fashion: At the next stage, putting x = 25z+7 we have
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(25z+7)2 = –1. You should verify that this implies

z ≡ 2 (mod 5),

which leads to

x ≡ 57 (mod 125).

Can we go on indefinitely? This is answered in

Exercise 7.4:1. (i) Show that given i>0, and c ∈Z such that c2 ≡ –1 (mod 5 i ), there
exists c ′ ∈Z such that c ′ 2 ≡ –1 (mod 5 i+1), and c ′ ≡ c (mod 5 i ).
(ii) Show that any integer is uniquely determined by its residues modulo 5, 52, 53, ... ,
5 i, ... .

Part (ii) of the above exercise shows that if there were an integer satisfying (7.4.1), the
sequence of residues arising by repeated application of part (i) would determine it. But now let us
return to our senses, and remember that (7.4.1) has no real solution, and ask what, if anything, we
have found.

Clearly, we have shown that there exists a sequence of residues, x1 ∈ |Z5|, x2 ∈ |Z52|, ... ,
xi ∈ |Z5 i|, ... , each of which satisfies (7.4.1) in the appropriate ring, and which are ‘‘consistent’’, in
the sense that each xi+1 is a ‘‘lifting’’ of xi , under the series of natural ring homomorphisms

. . . → Z5 i+1 → Z5 i → . . . → Z52 → Z5 .

Let us name the ith homomorphism in the above sequence fi : Z5 i+1 → Z5 i; thus, fi takes the
residue of any integer n modulo 5 i+1 to the residue of n modulo 5 i. Now note that the set of
all strings

(7.4.2) (... , xi , ... , x2, x1) such that xi ∈ |Z5 i | and fi (xi+1 ) = xi (i = 1, 2, ... )

forms a ring under componentwise operations. What we have shown is that this ring contains a
square root of –1. (‘‘If the fool would persist in his folly, he would become wise,’’ William Blake
[44].) Since, as we have noted, an integer n is determined by its residues modulo the powers
of 5, the ring Z is embedded in this ring, though the square root, in this ring, of –1 ∈ |Z | is of
course not in the subring Z .

The ring of sequences (7.4.2) is called the ring of 5-adic integers. The corresponding object
constructed for any prime p, using the system of maps

(7.4.3) . . . → Zpi+1 → Zpi → . . . → Zp2 → Zp ,

is called the ring of p-adic integers, and these rings are of fundamental importance in modern
number theory, and come up in many other areas as well. The notation for them is not uniform;
the symbol we will use here is Ẑ( p) . (The ( p) in parenthesis denotes the ideal of the ring Z
generated by the element p. What is meant by putting it as a subscript of Z and adding a hat
will be seen a little later. Many number-theorists simply write Zp for the p-adic integers,
denoting the field of p elements by Z ⁄ p Z or Fp ; cf. [21, p.272], [28, p. 162, Example].)

The construction of this ring is in some ways analogous to the construction of the real numbers
from the rationals. Real numbers are entities that can be approximated by rational numbers under
the distance metric; p-adic integers are entities that can be approximated by integers via
congruences modulo arbitrarily high powers of p. This analogy is made stronger in
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Exercise 7.4:2. Let p be a fixed prime number. If n is any integer, let p (n) denote the
greatest integer e such that pe divides n, or the symbol +∞ if n = 0. The p-adic metric
on Z is defined by dp (m, n) = p

– p (m – n)
. Thus, it makes m and n ‘‘close’’ if they are

congruent modulo a high power of p.
(i) Verify that dp is a metric on Z , and that the ring operations are continuous in this
metric, and deduce that the completion of Z with respect to this metric (the set of Cauchy
sequences modulo the usual equivalence relation) can be made a ring containing Z .
(ii) Show that this completion is isomorphic to Ẑ( p) .
(iii) Show that every element x of this completion has a unique ‘‘left-facing base-p
expression’’ x = Σ 0 ≤ i < ∞ ci pi, where each ci ∈{0, 1, ... , p–1}, indicating why this infinite
sum is convergent in the p-adic metric. What is the expression for –1 in this form?

We showed above that one could find a solution to the equation x2 = –1 in Ẑ(5) . Let us note
some simpler equations one can solve:

Exercise 7.4:3. (i) Show that every integer n not divisible by p is invertible in Ẑ( p) .
(ii) Will the ‘‘base-p expressions’’ (in the sense of the preceding exercise) for the elements
n–1 be eventually periodic?

It follows from point (i) of the above exercise that we can embed into the p-adic integers not
only Z , but the subring of Q consisting of all fractions with denominators not divisible by p.
Now when one adjoins to a commutative ring R inverses of all elements not lying in some prime
ideal P, the resulting ring (which, if R is an integral domain, is a subring of the field of
fractions of R) is denoted RP , so what we have embedded in the p-adic integers is the ring
Z( p) . In Z( p) , every nonzero element is clearly an invertible element times a power of p, from
which it follows that the nonzero ideals are precisely the ideals ( pi ). It is easy to verify that the
factor-ring Z( p) ⁄ ( pi ) is isomorphic to Zpi ; hence the system of finite rings and homomorphisms
(7.4.3) can be described as consisting of all the proper factor-rings of Z( p) , together with the
canonical maps among them. Hence the p-adic integers can be thought of as elements which can
be approximated by members of Z( p) modulo all nonzero ideals of that ring. Ring-theorists call
the ring of such elements the completion of Z( p) with respect to the system of its nonzero ideals.
This is the explanation for the symbol Ẑ( p) .

We will not go into a detailed study of what algebraic equations have solutions in the ring of
p-adic integers. A general result applicable to a large class of rings including the p-adics is
Hensel’s Lemma; see [21, Theorem 8.5.6] or [19, §III.4.3] for the statement.

Let us characterize abstractly the relation between the diagram (7.4.3) and the ring of p-adic
integers which we have constructed from it. Since a p-adic integer is by definition a sequence
(... , xi , ... , x2, x1) with each xi ∈Zpi, the ring of p-adic integers has projection homomorphisms
pi onto each ring Zpi . (Apologies for the double use of the letter ‘‘p’’!) Since the components
xi of each element satisfy the compatibility conditions fi (xi+1 ) = xi , these projection maps
satisfy

fi pi+1 = pi ,

i.e., they make a commuting diagram
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(7.4.4)

. . . → Zpi+1 → Zpi → . . . → Zp2 → Zp .

Ẑ( p)

.... . .

Moreover, Ẑ( p) will be universal for these properties: Given any ring R with homomorphisms
ri : R → Zpi which are ‘‘compatible’’, i.e., satisfy fi ri+1 = ri , we see that for any a ∈R, the
system of images ( ... , ri (a), ... , r2(a), r1(a)) defines an element r (a) ∈ Ẑ( p) . The resulting
map r : R → Ẑ( p) will be a homomorphism such that ri = pi r for all i, and uniquely
determined by these equations. This universal property is expressed by saying that Ẑ( p) is the
inverse limit of the system (7.4.3); one writes

Ẑ( p) = Lim←__ i Zpi .

We will give the formal definition of this concept in the next section.
A very similar example of an inverse limit is that of the system

(7.4.5) . . . → k[x] ⁄ (xi+1) → k[x] ⁄ (xi ) → . . . → k[x] ⁄ (x2) → k[x] ⁄ (x) ,

where k[x] is the ring of polynomials in x over a field k, and (xi ) the ideal of all multiples of
xi. A member of k[x] ⁄ (xi ) can be thought of as a polynomial in x specified modulo terms of
degree ≥ i. If we take a sequence of such partially specified polynomials, each extending the next,
these determine a formal power series in x. So the inverse limit of the above system is the formal
power series ring k[[x]]. This ring is well known as a place where one can solve various sorts of
equations. Some of these results are instances of Hensel’s Lemma, referred to above; others, such
as the existence of formal-power-series solutions to appropriate sorts of differential equations, fall
outside the scope of that lemma.

We constructed the p-adic integers using the canonical surjections Zpi+1 → Zpi. Now there
are also canonical embeddings Zpi → Zpi+1, sending the residue of n modulo pi to the residue
of pn modulo pi+1. These respect addition but not multiplication, i.e., they are homomorphisms
of abelian groups but not of rings. If we write out this system of groups and embeddings,

(7.4.6) Zp → Zp2 → . . . → Zpi → Zpi+1 → . . .

it is natural to think of each group as a subgroup of the next, and to try to take their ‘‘union’’ G.
But they are not literally subgroups of one another, so we need to think further about what we want
this G to be.

Clearly, for every element x of each group in the above system, we want there to be an
element of G representing the image of x. Furthermore, if an element x of one of the above
groups is mapped to an element y of another by some composite of our maps, then these two
elements should have the same image in G. Hence to get our G, let us form a disjoint union of
the underlying sets of the given groups, and divide out by the equivalence relation that equates two
elements if the image of one under a composite of the given maps is the other. It is straightforward
to verify that this is an equivalence relation on the disjoint union, and that because the maps in the
above diagram are group homomorphisms, the quotient by this relation inherits a group structure.
If we call the maps in (7.4.6) ei : Zpi → Zpi+1, and the maps to the group we have constructed
qi : Zpi → G, then the identifications we have made have the effect that for each i,
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qi+1 ei = qi ,

i.e., that the diagram

(7.4.7)

Zp → Zp2 → . . . → Zpi → Zpi+1 → . . .

... . . .

G

commutes. Since we have made only these identifications, G will have the universal property that
given any group H and family of homomorphisms ri : Zpi → H satisfying ri+1 ei = ri for each
i, there will exist a unique homomorphism r : G → H such that ri = r qi for all i. This
universal property is expressed by saying that the group G is the direct limit, Lim__→ i Zpi , of the
given system of groups.

Group theorists denote the direct limit G of the system (7.4.6) by the suggestive symbol Zp∞ .

Exercise 7.4:4. (i) Show that Zp∞ is isomorphic to the subgroup of Q ⁄ Z generated by the
elements p–1, p–2, ... .
(ii) Show that the ring of endomorphisms of the abelian group Zp∞ is isomorphic to Ẑ( p) .

Exercise 7.4:5. Let us call an element x of a group G completely divisible if for every positive
integer n there is a y ∈|G| such that yn = x (or if G is written additively, ny = x).
(i) Show that no nonzero element of the additive group of Ẑ( p) is completely divisible.

On the other hand
(ii) Show that if A is any nonzero subgroup of Ẑ( p) such that Ẑ( p) ⁄ A is torsion-free, then

every element of Ẑ( p) ⁄ A is completely divisible; in fact, that Ẑ( p) ⁄ A is the underlying
additive group of a Q-vector-space.

7.5. Direct and inverse limits. Before we give formal definitions of our two types of limits, let
us give an example showing that one may want to consider limits of systems indexed by more
general partially ordered sets than the natural numbers. Consider the concept of a germ of a
function at a point z of the complex plane or any other topological space X. This arises by
considering, for every neighborhood S of z, the set F(S) of functions of the desired sort on the
set S (for instance, analytic functions if X is the complex plane), and observing that when one
goes from a neighborhood S to a smaller neighborhood T, one gets a restriction map F(S) →
F(T ) (not in general one-to-one, since distinct functions on the set S may have the same
restriction to the subset T, and not necessarily onto, since not every admissible function on T
extends to S). To get germs of functions at z, one intuitively wants to ‘‘follow’’ this system of
sets of functions over smaller and smaller neighborhoods of z, and ‘‘take the limit’’. To do this
formally, one takes a disjoint union of all the sets F(S), and divides out by the equivalence
relation that makes two functions a ∈F(S1), b ∈F(S2) equivalent if and only if they have the
same image in F(T ) for some neighborhood of z, T ⊆ S1 ∩ S2.

If the sets of functions F(S) are given with some algebraic structure (structures of groups,
rings, etc.) for which the above restriction maps are homomorphisms, we find that an algebraic
structure of the same sort is induced on the direct limit set. The key point is that given functions
a, b defined on different neighborhoods S and T of z, both will have images in the
neighborhood S ∩ T of z, and these images can be added, multiplied, etc. there, allowing us to

10/8/98 G. M. Bergman

222 Chapter 7. Universal constructions.



define the sum, product, etc., of the images of a and b in the limit set.
If we look for the conditions on a general partially ordered index set that allow us to reason in

this way, we get

Definition 7.5.1. Let P be a partially ordered set.
P is said to be directed (or upward directed ) if for any two elements x, y of P, there exists

an element z majorizing both x and y.
P is said to be inversely directed (or downward directed ) if for any two elements x, y of P,

there exists an element z ≤ both x and y; equivalently, if Pop is directed.
(The word ‘‘filtered’’ is sometimes used instead of ‘‘directed’’ in these definitions.)

(If you did Exercise 5.2:9, you will find that these conditions are two of the nine
‘‘interpolation’’ properties of that exercise.)

We can now give the general definitions of direct and inverse limits. The formulations we give
below assume that the morphisms of our given systems go in the ‘‘upward’’ direction with respect
to the ordering on the indexing set. It happens that in our initial example of Ẑ( p) , the standard
ordering on the positive integers is such that the morphisms went the opposite way; in our
construction of Zp∞ they went the ‘‘right’’ way; while in the case of germs of analytic functions,
if one orders neighborhoods of z by inclusion, the morphisms again go the ‘‘wrong’’ way
(namely, from the set of functions on a larger neighborhood to the set of functions on a smaller
neighborhood). This can be corrected formally by using, when necessary, the opposite partial
ordering on the index set. Informally, in discussing direct and inverse limits one often just
specifies the system of objects and maps, and understands that for application of the formal
definition, the set indexing the objects should be partially ordered so as to make maps among them
go ‘‘upward’’.

Definition 7.5.2. Let C be a category, and suppose we are given a family of objects Xi ∈Ob(C)
(i ∈I ), a partial ordering on the index set I, and a system of morphisms, fi j ∈ C(Xi, Xj ) (i < j,
i, j ∈I ) such that for i < j < k, one has fjk fi j = fik . (In brief, suppose we are given a partially
ordered set I, and a functor F : Icat → C.)

If I is inversely directed, then (Xi, fi j )I is called an inversely directed system of objects and
maps in C . An inverse limit of this system means an object L given with morphisms pi : L → Xi
which are compatible, in the sense that for all i < j∈I, pj = fi j pi , and which is universal for this
property, in the sense that given any object W and morphisms wi : W → Xi such that for all
i < j ∈I, wj = fi j wi , there exists a unique morphism w: W → L such that wi = pi w for all
i ∈I .

Likewise, if I is directed, then (Xi, fi j )I is called a directed system in C ; and a direct limit
of this system means an object L given with morphisms qi : Xi → L such that for all i < j∈I,
qi = qj fi j , and which is universal in the sense that given any object Y and morphisms yi :
Xi → Y such that for all i < j∈I, yi = yj fi j , there exists a unique morphism y: L → Y such
that yi = yqi for all i ∈I .

(Synonyms sometimes used for inverse and direct limit are projective and inductive limit
respectively.)

Loosely, one often writes the inverse limit object Lim←__ i Xi , and the direct limit object
Lim__→ i Xi . More precisely, letting F denote the functor Icat → C corresponding to the inversely
directed or directed system (Xi, fi j ), one writes these objects as Lim←__ F and Lim__→ F
respectively.
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The morphisms pj : Lim←__ i Xi → Xj are called the projection maps associated with this inverse
limit, and the qj : Xj → Lim__→ i Xi the coprojection maps associated with the direct limit.

In the above definition, by the ‘‘functor corresponding to the system (Xi, fi j )’’ we understand
the functor which takes on the value Xi at the object i, the value fi j at the morphism (i, j)
(i < j in I ), and the value idXi

at the morphism (i, i ). Note that in the case where the indexing

partially ordered set consists of the positive or negative integers, the full system of morphisms is
determined by the morphisms fi, i+1, hence in such cases one generally specifies only these
morphisms in the description of the system.

One may ask what the point is, in the above definitions, of the restriction that the partially
ordered set I be directed or inversely directed. One can set up the definitions without that
restriction, and in most natural cases one can, in fact, construct objects which satisfy the resulting
condition. But the behavior of these constructions tends to be quite different from those we have
discussed, unless these directedness assumptions are made. In any case, such a generalized
definition would be subsumed by a still more general definition to be made in the next section! So
the value of the definition in the form given above is that it singles out a situation in which the
limit objects can be studied by certain techniques.

Exercise 7.5:1. Let (Xi, fi j ) be a directed system in a category C , and J a subset of I.
(i) Show that if J is cofinal in I, then Lim__→ J Xj =∼ Lim__→ I Xi ; precisely, that any object with
the universal property of the direct limit of the first system can be made into a direct limit of the
second in a natural way, and vice versa.
(ii) Show that the isomorphism of (i) is an instance of a morphism (in one direction or the
other) between Lim__→ J Xj and Lim__→ I Xi which can be defined whenever both limits exist,
whether J is cofinal or not.
(iii) State the result corresponding to (i) for inverse limits. (For this we need a term for a
subset of a partially ordered set which has the property of being cofinal under the opposite
ordering; let us use ‘‘downward cofinal’’. When speaking of inverse systems, one also
sometimes just says ‘‘cofinal’’, with the understanding that this is meant in the only sense that is
relevant to such systems.)
(iv) What can you deduce from (i) and (iii) about direct limits over directed partially ordered
sets having a greatest element, and inverse limits over inversely directed partially ordered sets
having a least element?
(v) Given any directed partially ordered set I and any noncofinal subset J of I, show that
there exists a directed system of sets, (Xi, fi j ), indexed by I, such that Lim__→ I Xi =∼/ Lim__→ J Xj .

The next few exercises concern direct and inverse limits of sets. The direct limit of a directed
system (Xi, fi j ) of sets and set maps may be constructed in the manner indicated in the preceding
section, by forming the disjoint union of the Xi and dividing out by the relation that makes x ∈Xi
and x ′ ∈Xi ′ equivalent if they have the same image in some Xj ( j > i, i ′). The inverse limit of
an inversely directed system of sets and set maps (Xi, fi j ) can likewise be constructed as we
constructed the p-adic integers:

(7.5.3)
Lim←__ Xi = {(xi ) ∈ I

��
I I Xi � xj = fi j (xi ) for i < j ∈I }, with

the pj given by projection maps, Lim←__ Xi ⊆ I
��
I Xi → Xj .

We shall show in the next chapter that direct and inverse limits of algebraic objects have as
their underlying sets the direct or inverse limits of the objects’ underlying sets. Hence the results
obtained in the exercises below on limits of sets will be applicable to algebras. (The above claim
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about underlying sets of direct limits of algebras will require that the algebras have only finitary
operations.)

The construction of the p-adic integers was based on a system of surjective homomorphisms.
The first point of the next exercise looks at inverse systems with the opposite property, and the
second considers the dual situation for direct limits.

Exercise 7.5:2. (i) Let (Si , fi j ) be an inversely directed system in Set such that all the
morphisms fi j are one-to-one, and let us choose any element i0 ∈I. Show that Lim←__ i Si can
be identified with the intersection, in Si0

, of the sets fi i0
(Si ) (i < i0).

(ii) Let (Si , fi j ) be a directed system in Set such that all the morphisms fi j are onto, and
let us choose any element i0 ∈I. Show that Lim__→ i Si can be identified with the quotient set of
Si0

by the union of the equivalence relations induced by the maps fi0 i : Si0
→ Si (i >i0).

Exercise 7.5:3. (i) Show that the inverse limit of any inverse system of finite nonempty sets is
nonempty.

(Suggestions: Either build up the description of an element of the inverse limit ‘‘from
below’’, by looking at partial assignments satisfying appropriate extendibility conditions, and
applying Zorn’s Lemma to get a maximal such assignment, or else ‘‘narrow down on an element
from above’’, by looking at ‘‘subsystems’’ of the given inverse system, i.e., systems of nonempty
subsets of the given sets carried into one another by the given mappings, and use Zorn’s Lemma
to get a minimal such subsystem. You might find it instructive to work out both of these proofs.)
(ii) Show that (i) can fail if the condition ‘‘finite’’ is removed, even for inverse limits over

the totally ordered set of negative integers.
(iii) If you have some familiarity with general topology, see whether you can generalize
statement (i) to a result on topological spaces, with ‘‘compact Hausdorff’’ replacing ‘‘finite’’.

As an application of part (i) of the above exercise, suppose we are given a subdivision of the
plane into regions, possibly infinitely many, and are studying the problem of coloring these regions
with n colors so that no two adjacent regions are the same color. Let the set of all our regions be
denoted R, the adjacency relation A ⊆ R × R (i.e., (r1, r2) ∈A if and only if r1 and r2 are
adjacent regions), and the set of colors C. For any subset S ⊆ R, let XS denote the set of all
colorings of S (maps S → C) under which no two adjacent regions have the same color; let us
call these ‘‘permissible colorings of S’’. If S ⊆ T, then the restriction to S of a permissible
coloring of T is a permissible coloring of S; thus we have a restriction map XT → XS . Now –

Exercise 7.5:4. (i) Show that in the above situation, the sets XS , as S ranges over the finite
subsets of R, form an inversely directed system, and that XR may be identified with the
inverse limit of this system in Set .
(ii) Deduce using Exercise 7.5:3(i) that if each finite family S ⊆ R can be colored, then the
whole picture R can be colored. (Note: the assumption that every finite family S can be
colored does not say that every permissible coloring of a finite family S can be extended to a
permissible coloring of every larger finite family T !)

Exercise 7.5:5. (i) Show that if (Xi, fi j ) is a directed system of sets, and each fi j is one-to-
one, then the canonical maps qj : Xj → Lim__→ Xi are all one-to-one.
(ii) Let (Xi, fi j ) be an inversely directed system of sets such that each fi j is surjective.
Show that if I is countable, then the canonical maps pj : Lim←__ Xi → Xj are surjective.
(Suggestion: First prove this in the case where I is the set of negative integers. Then show
that any countable inversely directed partially ordered set either has a least element, or has a
downward-cofinal subset order-isomorphic to the negative integers, and apply Exercise 7.5:1.)
(iii) Does this result remain true for uncountable I ? In particular, what if I is the opposite
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of the first uncountable ordinal?

Exercise 7.5:6. Show that every group is a direct limit of finitely presented groups.

The proof of Exercise 7.5:6 is not specific to groups. We shall be able to extend it to more
general algebraic structures when we develop the necessary language in the next chapter.

The remaining exercises in this section develop some particular examples and applications of
direct and inverse limits (including some further results concerning the p-adic integers). In these
exercises you may assume the result which, as noted earlier, will be proved in the next chapter, that
a direct or inverse limit of algebras can be constructed by forming the corresponding limit of
underlying sets, and giving this an induced algebra structure. None of these exercises, or the
remarks connecting them, is needed for the subsequent sections of these notes.

One can sometimes achieve interesting constructions by taking direct limits of systems in which
all objects are the same; this is illustrated in the next three exercises. The first shows a
sophisticated way to get a familiar construction; in the next two, direct limits are used to get
curious counterexamples.

Exercise 7.5:7. Consider the directed system (Xi, fi j ) in Ab , where I is the set of positive
integers, partially ordered by divisibility (i considered less than or equal to j if and only if i
divides j), each object Xi is the additive group Z , and for j = ni, fi j : Z → Z is given by
multiplication by n.
(i) Show that Lim__→ Xi may be identified with the additive group of rational numbers.
(ii) Can you construct the ring multiplication of Q in terms of this description?
(iii) Show that if you perform the construction of (i) starting with an arbitrary abelian group A
in place of Z , the result is a Q-vector-space which can be characterized by a universal property
relative to A.

Exercise 7.5:8. For this exercise, assume known the facts that every subgroup of a free group is
free, and in particular, that in the free group on two generators x, y, the subgroup generated by
the two commutators x–1y–1x y and x–2y–1x2y is free on those two elements.

Let F denote the free group on x and y, and f the endomorphism of F taking x to
x–1y–1x y and y to x–2y–1x2y. Let G denote the direct limit of the system F → F →
F → ... , where all the arrows shown are the above morphism f .

Show that G is a nontrivial group such that every finitely generated subgroup of G is free,
but that G is equal to its own commutator, G = [G, G ]; i.e., that the abelianization of G is
the trivial group. Deduce that though G is ‘‘locally free’’, it is not free.

Exercise 7.5:9. Let k be a field. Let R denote the direct limit of the system of k-algebras
k[x] → k[x] → k[x] → ... , where each arrow is the homomorphism sending x to x2. Show
that R is an integral domain in which every finitely generated ideal is principal, but not every
ideal is finitely generated. (Thus, for each ideal, the minimum cardinality of a generating set is
either 0, 1 or infinite.)

For the student familiar with the Galois theory of finite-dimensional field extensions, the next
exercise shows how the Galois groups of infinite-dimensional Galois extensions can be
characterized in terms of the finite-dimensional case.

Exercise 7.5:10. Suppose E ⁄ K is a normal algebraic field extension, possibly of infinite degree.
Let I be the set of subfields of E normal and of finite degree over K. If F2 ⊆ F1 in I, let
fF1 , F2

: AutK F1 → AutK F2 denote the map which acts by restricting automorphisms of F1
to the subfield F2.
(i) Show that the definition of fF1 , F2

makes sense, and gives a group homomorphism.
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(ii) Show that if we order I by reverse inclusion of fields, then the groups AutK F (F ∈I )
and homomorphisms fF1 , F2

(F1 ≤ F2) form an inversely directed system of groups.

(iii) Show that AutK E is the inverse limit of this system in Group .
(iv) Can you find a normal algebraic field extension whose automorphism group is isomorphic
to the additive group of the p-adic integers?

The following is equivalent to an outstanding open question.

Exercise 7.5:11. (i) Suppose a group G is the inverse limit of a system of finite groups. If G
is a torsion group (i.e., if all elements of G are of finite order), must G have finite exponent
(i.e., must there exist an integer n such that xn = e is an identity of G)?

Though the above question is very difficult, the next two parts are reasonable exercises, and
may help render that question more tractable:
(ii) Show that (i) is equivalent to the corresponding question in which we assume that G is
the inverse limit of a system of finite groups indexed by the negative integers (under the natural
ordering), with all connecting morphisms surjective.
(iii) Translate (i) (possibly with the help of (ii)) into a question on finite groups which you
could pose to a person not familiar with the concept of inverse limit. (The more natural-
sounding, the better.)

Back to the p-adic integers, now.

Exercise 7.5:12. (i) Show that the function p of Exercise 7.4:2 satisfies p (xy) =

p (x) + p ( y) and p (x+y) ≥ min( p (x), p ( y)) (x, y ∈Z ).
(ii) Deduce that Ẑ( p) is an integral domain.
(iii) Show that p can be extended in a unique manner to a Z ∪ {+∞}-valued function on Q
satisfying the properties noted in (i).
(iv) Show that the completion of Q with respect to the metric dp induced by the above
extended function p is the field of fractions of Ẑ( p) .
(v) Show that elements of this field have expansions x = Σi ci pi, where again
ci ∈{0, 1, ... , p–1}, and where i now ranges over all integer values (not necessarily positive),
but subject to the condition that the set of i such that ci is nonzero is bounded below.

This field is called the field of p-adic rationals, and denoted Q̂( p) (or Qp ).

Is the ‘‘adic’’ construction limited to primes p, or can one construct, say, a ring of ‘‘10-adic
integers’’, Ẑ(10)? One encounters a trivial difficulty in that there are two ways of interpreting this
symbol. But we shall see that they lead to the same ring; so there is a well-defined object to which
we can give this name. However, its properties will not be as nice as those of the p-adic integers
for prime p.

Exercise 7.5:13. Let Z(10) denote the ring of all rational numbers which can be written with
denominators relatively prime to 10.
(i) Determine all nonzero ideals I ⊆ Z(10). Sketch the diagram of the inverse system of all
factor-rings Z(10) ⁄ I and canonical maps among them.
(ii) Show that the inverse system ... → Z10 i → ... → Z100 → Z10 constitutes a downward
cofinal subsystem of the above inverse system.

Hence by Exercise 7.5:1 the inverse limits of these two systems are isomorphic, and we shall
denote their common value Ẑ(10). It is clear from the form of the second inverse system that
elements of Ẑ(10) can be described by ‘‘infinite decimal expressions to the left of the decimal
point’’.
(iii) Show that the relation 2.5 = 0 in Z10 can be lifted to get a pair of nonzero elements
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which have product 0 in Z100, that these can be lifted to such elements in Z1000, and so on,
and deduce that Ẑ(10) is not an integral domain.
(iv) Prove, in fact, that Ẑ(10) =∼ Ẑ(2) × Ẑ(5) .

A variant construction often used in number theory is

Exercise 7.5:14. Show that the inverse limit of the system of all factor-rings of Z by nonzero
ideals is isomorphic to I

��
I p Ẑ( p) , where the direct product is taken over all primes p. (This

ring is denoted Ẑ .)

A feature we have not yet mentioned, but which is important in the study of inverse limits, is
topological structure. We have constructed the inverse limit of a system of sets and set maps
(Xi, fi j ) as a subset of I

��
I Xi . Regarding each Xi as a discrete topological space, we may give

I
��
I Xi the product topology. In general, a product of discrete spaces is not discrete; however, a

product of compact spaces is compact, so if our discrete spaces Xi are finite, their product will be
compact. It is not hard to show that the subset Lim←__ Xi ⊆ I

��
I Xi will be closed in the product

topology, and hence, if the Xi are finite, will be compact in the induced topology.

Exercise 7.5:15. (i) Verify the assertion that Lim←__ Xi ⊆ I
��
I Xi is always closed in the product

topology, and therefore compact if all Xi are finite.
(ii) Show that Exercise 7.5:3(i) (and hence Exercise 7.5:4(ii)) can be deduced using the
compactness of Lim←__ Xi .
(iii) Show that the compact topology described above agrees in the case of Ẑ( p) with the
topology arising from the metric dp of Exercise 7.4:2.

In fact, results like Exercise 7.5:4(ii), saying that a family of conditions can be satisfied
simultaneously if all finite subfamilies of these conditions can be so satisfied, are called by
logicians ‘‘compactness’’ results, because the proofs can generally be formulated in terms of the
compactness of some topological space.

I can now say that the usual formulation of the open question raised in Exercise 7.5:11 is, ‘‘If a
compact group is torsion, must it have finite exponent?’’ The equivalence of this with the question
of that exercise follows from a deep result, that any compact group is an inverse limit of surjective
maps of compact Lie groups (see [85, Theorem IV.4.6, p.175]), combined with the observation that
if any of these Lie groups had positive dimension, we would get elements of infinite order. Thus,
compact torsion groups are inverse limits of 0-dimensional compact Lie groups, i.e., finite discrete
groups, under the product topology.

An inverse limit of finite structures is called profinite (based on the synonym ‘‘projective limit’’
for ‘‘inverse limit’’). I hope to eventually add to these notes a chapter treating profinite algebras,
and objects with related conditions, such as pro-finite-dimensionality. Let us look briefly at the
latter condition in

Exercise 7.5:16. Let V be a vector space over a field k.
(i) Show that the dual space V* is the inverse limit, over all finite-dimensional subspaces
V0 ⊆ V, of the spaces V0*.
(ii) Can you get the result of (i) as an instance of a general result describing duals of direct
limits of vector spaces?
(iii) If you did Exercise 5.5:5(ii)-(iii), show that the topology described there is that of the
inverse limit of the finite-dimensional discrete spaces V0* referred to above. Show moreover
that the only linear functionals V* → k continuous in this topology are those induced by the
elements of V.

10/8/98 G. M. Bergman

228 Chapter 7. Universal constructions.



The remainder of this section constitutes a digression for curiosity’s sake.
Ordinary real numbers expressed in base p have expansions going endlessly to the right, and

finitely many steps to the left of the decimal point; p-adic rationals (Exercise 7.5:12) have
expansions going endlessly to the left, and finitely many steps to the right. Is it possible to define
an arithmetic of elements with formal base-p expansions going endlessly in both directions?

Exercise 7.5:17. Let p be a prime. For every integer n, we have a subgroup pnZ ⊆ R , hence
we can form the quotient group R ⁄ pnZ . Observe that these groups are each isomorphic to the
circle group R ⁄ Z , and are connected by homomorphisms ... → R ⁄ p2Z → R ⁄ pZ → R ⁄ Z →
... , taking the residue of a real number modulo Zpi+1 to its residue modulo Zpi. Let G be
the inverse limit of this system of groups.
(i) Show how to express elements of G as formal doubly infinite series Σi ∈Z ci pi, where
ci ∈ {0, 1, ... p–1}, (i = ... , –1, 0, 1, ... ). Show that such a representation is unique except for
the cases where for all sufficiently small i, ci either becomes constant with value 0 or
constant with value p–1.
(ii) Show that Q̂( p) and R both embed as dense subgroups of G.

Groups of the above sort appear in the theory of locally compact abelian groups, where they are
called ‘‘solenoids’’, from a term in electronics meaning ‘‘a hollow tightly wound coil of wire’’.
For students familiar with Pontryagin duality, the solenoid G constructed above will be seen to be
the dual of the discrete additive group of Z[p–1] (the ring of rational numbers of the form np– i).

The above group G may also be obtained as a completion: For p a prime, let us define a
function p on the real numbers, by letting p (x) be the supremum of all integers n such that
x ∈pnZ . This will be + ∞ if x = 0, a nonnegative integer if x is a nonzero integer, a negative
integer if x is a noninteger rational number of the form m ⁄pi, and –∞ if none of these cases
hold. (This does not agree with the definition of p (x) we gave in Exercise 7.5:12 for rational x,
though it does for x in the subring Z[ p–1].) Now for any two real numbers x, y, define
dp, | | (x, y) = infz ∈R ( p

– p (x – z)
+ |z – y| ). Observe that although p

– p (x – z)
takes on the value

+∞ for most z, there exist values of z for which it is finite, so the infimum shown will be finite
for all x and y.

Exercise 7.5:18. (i) Show that dp, | | is a metric on the real line R , and is bounded above.
(ii) Show how to obtain from a doubly infinite series Σi ∈Z ci pi a Cauchy sequence in R
under this metric, and show that all elements of the completion of R in the metric dp, | | can
be represented by such series.
(iii) Deduce that this completion is isomorphic to the solenoid G of the preceding exercise.

Exercise 7.5:19. (i) Show that the topology on G arising from the above metric agrees with
that obtained by regarding G as an inverse limit of compact groups R ⁄ pnZ . Deduce that the
additive group operations of R extend continuously to this completion.
(ii) Let r be a real number, and r : R → R the operation of multiplication by r. Show that
r is continuous in the metric dp, | | if and only if r∈Z[p–1]. Deduce that multiplication as a
map R × R → R is not bicontinuous in this metric. Hence the ring structure on R does not
extend to the solenoid.
(iii) Can addition of elements of the solenoid be performed by the same operations on digits
that one uses to add ordinary real numbers in base p? What happens if we try to apply the
ordinary procedure for multiplying numbers in base p?
(iv) If n is a positive integer not a power of p, show that the elements ‘‘n–1’’ of R and of
Q̂( p) have distinct images under the embeddings of Exercise 7.5:17(ii). Deduce that the
additive group of the solenoid has nonzero elements of finite order.
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(v) Show that the solenoid described above is isomorphic to the group Ab(Z[p–1], R ⁄ Z) (as
asserted in the paragraph following Exercise 7.5:17(ii)).

7.6. Limits and colimits. Direct and inverse limits are similar in their universal properties to
several other constructions we have seen. Let us recall these.

Given two objects X1, X2 of a category C , a product of X1 and X2 in C is an object P
given with morphisms p1 and p2 into X1 and X2, and universal for this property.

Given a pair of parallel morphisms X1
→→ X2 in C , a difference kernel of this system is an

object K given with a morphism k into X1 having the same composite with the two given
morphisms, and again universal. To improve the parallelism with similar constructions, let us
rename the morphism k as k1, and let k2: K → X2 denote the common value of the composites
of k1 with the two morphisms X1

→→ X2. Then we can describe K as having a morphism into
each of X1, X2, such that the composite of k1: K → X1 with each of the two given morphisms
X1 → X2 is the morphism k2: K → X2, and as being universal for these properties. We see that
this is exactly like the universal property of an inverse limit, except that the indexing category .→→.
is not of the form Pcat .

In the same way, a pullback of a pair of morphisms f1: X1 → X3, f2: X2 → X3 can be
redefined as an object P given with morphisms p1, p2, p3 into X1, X2, X3 respectively,
satisfying f1 p1 = p3 and f2 p2 = p3, and universal for this property.

Let us look at a case we haven’t discussed so far. If G is a group and S a G-set, then the
fixed-point set of the action of G on S means {x ∈|S | � (∀ g ∈ |G | ) gx = x}. If we denote the
action of each g ∈ |G | on S by gS : |S | → |S |, then the fixed-point set is universal among sets
A with maps i : A → |S | such that for all g ∈ |G |, i = gS i. Given any object X of a category
C and an action of a group G on X, we can look for an object with the same universal property,
and, if it exists, call it the ‘‘fixed object’’ of the action.

We have also seen constructions dual to those of product, difference kernel and pullback. A
construction dual to that of ‘‘fixed object’’ should take an object X of C with an action of G
on it to an object B of C with a map j : X → B unchanged under composition on the right with
the actions of elements of G, and universal for this property. Examples of this concept are
examined in

Exercise 7.6:1. Let G be a group.
(i) If X is a set on which G acts by permutations, and x an element of X, one defines
the orbit of x under G to be the set Gx = {gx � g ∈ |G |}. Let B be the set of such orbits
Gx, called the orbit space of X. Show that this set B, together with the map X → B taking
x to Gx, has the universal property discussed above.
(ii) Show that if G acts by automorphisms on (say) a ring R, then there is an object S in
the category of rings with this same universal property, but that its underlying set will not in
general be the orbit space of the action of G on the underlying set of R.
(iii) If G acts by automorphisms on an object X of POSet , again show the existence of an
object B with the above universal property. Show moreover that if G is finite, the underlying
set of B will be the orbit space of the underlying set of X, and the universal map X → B will
be strictly isotone; but that if G is infinite, neither statement need be true.
(iv) Do the assertions of (iii) about the case where G is finite remain true if we replace
POSet by Lattice?

The universal properties we have been discussing are all cases of two patterns, whose
statements are formally identical with the definitions of direct and inverse limits, except that the

10/8/98 G. M. Bergman

230 Chapter 7. Universal constructions.



partially ordered set I of that definition is replaced by a general category D . (For instance, in the
examples noted above, the categories occurring as D included the two-object category .→→. and
the one-object category Gcat .) As names for the general concepts, one uses modified versions of
the terms ‘‘direct and inverse limits’’.

Definition 7.6.1. Let C and D be categories, and F : D → C a functor.
Then a limit of F, written Lim←__ F or Lim←__D F(X ), means an object L ∈Ob(C) given with

morphisms p(X ) : L → F(X ) for all X ∈Ob(D), such that for f ∈D(X, Y ) one has p(Y ) =
F( f ) p(X ), and universal for this property, in the sense that given any object M ∈Ob(C) and
family of morphisms m(X ) : M → F(X ) (X ∈Ob(C)) which similarly make commuting triangles
with the morphisms F( f ), there exists a unique morphism h: M → L such that for all X,
m(X ) = p(X ) h.

Likewise, a colimit of F, written Lim__→ F or Lim__→D F(X ), means an object L ∈Ob(C) given
with morphisms q(X ) : F(X ) → L for all X ∈Ob(D) such that for f ∈D(X, Y ) one has q(X ) =
q(Y ) F( f ), and universal for this property, in the sense that given M ∈Ob(C) and morphisms
m(X ) : F(X ) → M (X ∈Ob(C)) making commuting triangles with the morphisms F( f ), there
exists a unique morphism h: L → M such that for all X, m(X ) = h q(X ).

The morphisms p(X ) in the definition of a limit may be called the projection morphisms, and
the q(X ) in the definition of colimit may be called the coprojection morphisms.

One says that a category C ‘‘has small limits’’ if all functors from small categories D into
C have limits; likewise C ‘‘has small colimits’’ if all functors from small categories into C
have colimits.

Remarks on terminology. Since the above concepts generalize not only direct and inverse
limits, but also a large number of other pairs of constructions, they might just as well have been
given names suggestive of one of the other pairs. I think that the reason ‘‘limit’’ and ‘‘colimit’’
were chosen is that each of the other universal constructions of this sort involves a more or less
fixed diagram, while the diagrams involved in direct and inverse limits are varied. Hence in
developing the latter concepts, people were forced to formulate a more general definition, and just a
little more generality gave the concepts noted above.

But though the choice is historically explainable, I think it is unfortunate. As we can see from
the examples of products and coproducts, or of kernels and cokernels, the objects given by limit
and colimit constructions over diagram categories other than directed partially ordered sets are not
‘‘approximated arbitrarily closely’’ by the objects from which they are constructed. The cases that
best exemplify the general concepts are, I think, those of pullback and pushout, so it would be
preferable if the limit and colimit of F : D → C could be renamed the pullback and the pushout of
F (regarded as a system of objects and maps in C). But it seems too late to turn the tide of
usage. (Note, incidentally, the initially confusing fact that limits generalize inverse limits, while
colimits generalize direct limits. The explanation is that the words ‘‘direct’’ and ‘‘inverse’’ refer to
forward and backward orientation with respect to a partial ordering, while the relation between the
terms ‘‘limit’’ and ‘‘colimit’’ is based on looking at which is left and which is right universal, by
analogy with ‘‘products and coproducts’’ and ‘‘kernels and cokernels’’. There is no reason why
two such principles of naming should agree as to which concept gets the ‘‘plain’’ and which the
‘‘modified’’ name, and in this case, they do not.)

There is another set of words for the same constructions: Freyd has named them ‘‘roots’’ and
‘‘coroots’’, probably because if one pictures a system of objects and morphisms as a graph, the
addition of the universal object makes it a rooted graph, with the universal object at the root.
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However there is no evident connection with roots of equations etc., and this terminology has not
caught on.

Following the associations of the word ‘‘limit’’, Mac Lane calls a category C complete if it
has small limits, cocomplete if it has small colimits.

Exercise 7.6:2. If S is a monoid, then as for groups, an S-set is equivalent to a functor F :
Scat → Set . Show how to construct the limit and colimit of such a functor.

A useful observation is

Lemma 7.6.2. Let D be a category and X0 an object of D such that there are morphisms
from X0 to every object of D. Let F : D → C be a functor having a limit L. Then the
projection morphism p(X0): L → F(X0) is a monomorphism. In particular, all difference kernel
maps are monomorphisms.

Likewise, if D is a category having an object X0 such that there are morphisms from every
object of D to X0 , and F : D → C is a functor having a colimit L, then the coprojection
morphism q(X0): F(X0) → L is an epimorphism. In particular, difference cokernel maps are
epimorphisms.

Proof. Assume the first situation. The universal property of L implies that a morphism h :
M → L in C is uniquely determined by the system of morphisms p(X ) h : M → F(X )
(X ∈Ob(D)). But for any X ∈Ob(D), we can find a morphism f : X0 → X in D , and we then
have p(X ) = F( f ) p(X0). Thus any h : M → L in C is uniquely determined by the single
morphism p(X0) h. This is equivalent to saying p(X0) is a monomorphism. The result for
colimits follows by duality. �

We have seen that the constructions of pairwise product and coproduct, when they exist for all
pairs of objects of a category C , give right and left adjoints to the ‘‘diagonal’’ functor Δ :
C → C × C . These statements generalize to limits and colimits.

Proposition 7.6.3. Let C and D be categories. Let Δ : C → CD denote the ‘‘diagonal’’
functor, taking every object X ∈Ob(C) to the functor Δ(X ) ∈Ob(CD) with value X at all
objects of D and value idX at all morphisms of D , and likewise taking each morphism
f ∈C(X, Y ) to the morphism of functors Δ( f ) : Δ(X ) → Δ(Y ) with value f at all objects of D .

Then a limit of a functor F : D → C is the same as an object L representing the
contravariant functor CD(Δ(–), F ) : Cop → Set. In particular, if for a given D all functors
D → C have limits, then the construction Lim←__ : CD → C is a right adjoint to the diagonal
functor Δ : C → CD.

Likewise, a colimit of F : D → C is an object L representing the covariant functor
CD(F, Δ(–)) : C → Set. Thus, when all functors D → C have colimits, the construction
Lim__→ : CD → C is a left adjoint to the diagonal functor Δ : C → CD. �

These adjointness relationships are shown below.
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C
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Lim__→
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�

↓

Δ
↑
��
�
�
�

Lim←__

CD

Note that if, as above, C has colimits of all functors F ∈CD , then our observation that
Lim__→ : CD → C is left adjoint to Δ, tells us, in particular, that it is a functor. Thus, given a
morphism

f : F → G

in CD , we get an induced morphism

Lim__→D f : Lim__→D F → Lim__→D G

in C . This will be characterized by the equations

(7.6.4) (Lim__→D f ) qF (X ) = qG (X ) f (X ) (X ∈Ob(D)).

Similarly, if functors in CD have limits, then Lim←__D : CD → C becomes a functor, with

Lim←__D f : Lim←__D F → Lim←__D G

characterized by

(7.6.5) pG (X )(Lim←__D f ) = f (X ) pF (X ) (X ∈Ob(D)).

In drawing a picture of a morphism Δ(M ) → F or F → Δ(M ) (M ∈Ob(C)), we can for
convenience collapse the copies of the object M and the identity arrows among these into a single
‘‘M ’’. (I.e., we can collapse the picture representing Proposition 7.6.3 into the picture representing
Definition 7.6.1.) What we have then looks like a ‘‘cone’’ of maps, with M at the apex. Hence a
morphism of functors Δ(M ) → F or F → Δ(M ) is often called a ‘‘cone’’ from the object M to
the functor F, or from the functor F to the object M. So limits and colimits may be described
as objects with ‘‘universal cones’’ to or from given functors.

Exercise 7.6:3. Let C and D be categories. By Lemma 6.10.1 (‘‘Law of Exponents for
Functors’’), the functor Δ : C → CD corresponds to some functor D × C → C . Describe this
functor.

Our construction in §7.5 of the inverse limit of an inverse system of sets (Xi, fi j ) as the subset
of I

��
I Xi determined by ‘‘compatibility’’ conditions can be generalized to give a construction of

general limits in any category having appropriate products and difference kernels, and it dualizes to
a construction of colimits in categories with appropriate coproducts and difference cokernels. (The
latter construction may be thought of as generalizing our construction of the direct limit of a
directed system of sets as the quotient of a disjoint union by an equivalence relation, though the
simple way that equivalence relation could be described when D was a directed partially ordered
set, and C was Set , does not go over to the general situation.) In the case of inverse limits, the
compatibility conditions said that for all i <j in I, the pair of maps ( pj , fi j pi ) had to agree on
elements of our subset of I

��
I Xi . Such a family of conditions can in fact be translated to a

condition saying that a single pair of maps into an appropriate product object should agree. Using
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this construction, we get

Proposition 7.6.6. Let C be a category and D a small category, and let α be an infinite
cardinal such that D has < α objects and < α morphisms.

Then if C has products of all families of < α objects, and has difference kernels, then every
functor D → C has a limit.

Likewise, if C has coproducts of families of < α objects, and has difference cokernels, then
every functor D → C has a colimit.

Proof. Under the hypotheses of the first assertion, let

P = I
��
I X ∈Ob(D) F(X ),

P ′ = I
��
I X,Y ∈Ob(D), f ∈D(X,Y ) F(Y ).

(If we required categories to have disjoint hom-sets, we could write the latter definition more
simply as P ′ = I

��
I f ∈Ar(D) F(cod( f )).) Denote the projection morphisms associated with these

two product objects by pX : P → F(X ) (X ∈Ob(D)) and p ′X, Y, f : P ′ → F(Y ) (X, Y ∈Ob(D),
f ∈C(X, Y )). We shall construct L as the difference kernel of two maps a, b : P → P ′. Since a
and b are to be morphisms into a direct product object P ′, they may be defined by specifying
their composites with the projection morphisms p ′X, Y, f : P ′ → F(Y ). Define them so that
p ′X, Y, f a = pY, p ′X, Y, f b = F( f ) pX . If L is the difference kernel of a and b, and k : L → P
the canonical morphism, we see that the universal property of L as a difference kernel is
equivalent to the statement that the morphisms pX k : L → F(X ) form commuting triangles with
the morphisms F( f ) and are universal for this property. It is immediate to verify that the object
L together with the morphisms pX k has the property characterizing Lim←__ F.

The result for colimits follows by duality. �

Exercise 7.6:4. Give the ‘‘immediate verification’’ referred to near the end of the above proof.

Of course, certain limits or colimits may exist even if the category does not have enough
(co)products and difference (co)kernels to obtain them by the above lemma. Such a case is noted
in point (iv) of the next exercise. (But the most useful part of this exercise is (i), and the most
challenging is (ii).)

Exercise 7.6:5. Let C be a category.
(i) Show that an initial object of C is equivalent to a colimit of the unique functor from the
empty category into C .
(ii) Show that such an initial object is also equivalent to a limit of the identity functor of C .
(iii) State the corresponding results for a terminal object.
(iv) Give an example where the limit of (ii) exists, but C does not satisfy the hypotheses
needed to get this from Proposition 7.6.6.

Here is another degenerate case of the concept of limit:

Exercise 7.6:6. Find conditions on a category D which imply that any constant functor from D
to a category C , i.e., any functor of the form Δ(C) : D → C (C ∈Ob(C)) has a limit given by
the object C itself, with universal cone consisting of identity morphisms of C. State the
corresponding result for colimits.

We have seen that a product or coproduct of objects in one category may or may not coincide
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with their product or coproduct in a subcategory to which they belong. E.g., the coproduct of two
abelian groups in the category of all groups and their coproduct in the category of all abelian
groups are different, since the former is generally nonabelian. We note below that for full
subcategories, such phenomena occur only when the constructed object in the larger category fails
to lie in the subcategory.

Lemma 7.6.7. Let C be a category, B a full subcategory of C , I : B → C the inclusion
functor, and F : D → B a functor from an arbitrary category into B .

If Lim←__ IF exists (loosely, if there exists ‘‘a limit of the system of objects F(X ) in the larger
category C’’ ), and if as an object it belongs to B , then this same object, with the same cone to
the objects F(X ), constitutes a limit Lim←__ F (loosely, ‘‘a limit of the given system within the
subcategory B’’ ).

The same is true for colimits Lim__→ IF and Lim__→ F. �

Exercise 7.6:7. Prove the above lemma.

We indicated in the last two paragraphs of §6.10 that if a category C has finite products, then
any functor category CE will also have products, which can be computed ‘‘objectwise’’. This is
true generally for limits and colimits; you should find it easy to verify

Lemma 7.6.8. Let C, D and E be categories. Then if all functors D → C have limits, so do
all functors D → CE. Namely, given F : D → CE, the object L = Lim←__D F of CE can be
described as the functor taking each E ∈Ob(E) to Lim←__D pE

o F, and each f ∈E(E1, E2) to
Lim←__D pf

o F, where pE : CE → C is the ‘‘E th projection functor’’, taking functors and
morphisms of functors to their values at the object E.

Likewise, if all functors D → C have colimits, then all functors D → CE have colimits,
which are similarly constructed ‘‘object- and morphism-wise’’. �

Exercise 7.6:8. Prove Lemma 7.6.8 for the case of limits.

7.7. What respects what. It is natural to ask what one can say about limits and colimits of
systems of objects constructed by adjoint functors, about the values of adjoint functors on objects
constructed by limits and colimits, and similar questions for other sorts of universal constructions.

Some quick examples: It is not hard to see that the free group on a disjoint union of sets,
X Y, will be the coproduct of the free groups on X and Y. If we look similarly at the free
group on the difference cokernel of a pair of set maps, f, g: X →→ Y we find that it is the difference
cokernel of the induced maps of free groups, F( f ), F(g) : F(X ) →→ F(Y ). On the other hand, a
direct product of free groups is in general not a free group, in particular not the free group on the
direct product set. So the free group construction seems to respect colimits, but not limits.

If we look at its right adjoint, the underlying set functor, we find the opposite: The underlying
set of a product or difference kernel of groups is the product or difference kernel of the underlying
sets of the groups (that is how one constructs products and difference kernels of groups), but the
underlying set of a coproduct of groups is not the coproduct (disjoint union) of their underlying
sets, both because the group operation within this coproduct generally produces new elements from
the elements of the two given groups, and because the images of the two identity elements fall
together. Similarly, when we take a difference cokernel of two group homomorphisms
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f, g : G →→ H, more identifications of elements are forced than in the set-theoretic difference
cokernel; not only must pairs of elements f (a) and g(a) (a ∈|G| ) fall together, but also pairs
such as f (a)b and g(a)b (a ∈|G|, b ∈|H | ).

These examples suggest the general principle that ‘‘left universal constructions respect left
universal constructions, and right universal constructions respect right universal constructions’’.
We shall prove a series of theorems of that form in this and the next section.

We have seen left universal constructions in four guises: initial objects, representing objects for
covariant set-valued functors, left adjoint functors, and colimits. Since an initial object of a
category may be described as the object representing a certain trivial set-valued functor
(Exercise 7.2:7) or as the colimit of a functor from a certain trivial category (Exercise 7.6:5), let us
focus on relations among the remaining three types of constructions. Logically, these give us six
combinations to consider. But I see no way that one can speak of the construction of an object
representing a covariant set-valued functor U ‘‘respecting’’ the construction of an object
representing another such set-valued functor V, so let us move on to the next case, the relation
between left adjoint functors and representing objects for covariant set-valued functors. We give
this, along with its dual, as

Theorem 7.7.1. Suppose D
___U→←____

F
C are adjoint functors, with U the right adjoint and F the

left adjoint, and with unit η and counit ε .
If A : C → Set is a representable functor, with representing object R ∈Ob(C) and universal

element u ∈A(R ), then AU : D → Set is also representable, with representing object F(R ) and
universal element A(η(R))(u) ∈A(U(F(R ))).

Likewise, if B : Dop → Set is representable, with representing object R ∈Ob(D) and
universal element u ∈B(R ), then BF : Cop → Set is representable, with representing object
U(R ) and universal element B(ε(R))(u) ∈B(F(U(R ))).

Proof. In the first situation, AU(–) =∼ C(R, U(–)) =∼ D(F(R), –), showing that AU is represented
by F(R). The identification of the universal element, corresponding to the identity morphism in
D(F(R), F(R)) is straightforward. The second situation is the dual of the first. �

As an example, suppose we wish to construct the ring with a universal pair of elements x, y
satisfying the relation xy = yx2. We notice that this ring-theoretic relation ‘‘is actually a monoid
relation’’; the formal statement is that the functor we want to represent can be written AU, where
U is the forgetful functor from Ring1 to Monoid , and A the functor associating to any
monoid S the set of pairs of elements x, y ∈ |S | satisfying xy = yx2. The observation that we
can construct our ring by first forming the monoid R presented by these generators and relation,
and then passing to the monoid ring ZR, i.e., applying the left adjoint to U, is an instance of the
above theorem. We see that in this situation, the universal pair of ring elements satisfying the
given equation is the image of the corresponding universal pair of monoid elements, under the
canonical map η(R) : R → U(F(R)) = U(ZR) (informally, the inclusion map R → ZR).

The above example makes it clear that Theorem 7.7.1 is a powerful tool, and that it indeed
deserves to be described as saying that ‘‘left adjoint functors respect the construction of objects
representing covariant set-valued functors’’.

Note, however, that, the sense in which this is true is rather idiosyncratic; the statement
involves both the left adjoint functor and its right adjoint, and it does not appear to be a special
case of any natural concept of a left adjoint functor respecting a general construction, or of a
general functor respecting the construction of representing objects. There is a similarly
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idiosyncratic sense in which ‘‘left adjoint functors respect left adjoint functors’’; this is
Theorem 7.3.5, already proved, which says that the composite of the left adjoints of two functors is
the left adjoint of their composite (in the opposite order).

In contrast, when one looks at questions of how one or another sort of construction interacts
with colimits (which are all we have left, of our six possible sorts of interaction among left
universal constructions), one finds that there is a natural definition of an arbitrary functor’s
respecting limits or colimits. We will examine that concept in the next section, and verify the
corresponding cases of our observation that left universal constructions respect left universal
constructions, and likewise that right universal constructions respect right universal constructions.

Exercise 7.7:1. Prove the following converse to the first assertion of Theorem 7.7.1: If
U : D → C is a functor such that for every representable functor A : C → Set , the composite
functor AU : D → Set is representable, then U has a left adjoint. Also state the dual result.

7.8. Functors respecting limits and colimits. Here is the definition of a functor ‘‘respecting’’ a
limit or colimit.

Definition 7.8.1. Let C, C′ be categories, and F : C → C′ a functor.
Then if S : E → C is a functor into C, having a limit Lim←__ S, with projection maps

pE : Lim←__ S → S (E ) (E ∈Ob(E)), one says that F respects the limit of S if the object
F (Lim←__ S ), together with the cone given by the morphisms F( pE ) : F(Lim←__ S) → F(S (E )) from
this object to the functor F S : E → C′ , is a limit of F S.

We shall say that F respects small limits if for every functor S from a small category E to
C which has a limit, F respects the limit of S. We shall say that F respects possibly large
limits if this is true without the restriction that E be small. Likewise, we shall say that F
respects pullbacks, terminal objects, small products, possibly large products, small inverse limits,
possibly large inverse limits, etc., if it respects all instances of the sorts of limits that these names
describe.

Dually, if S : E → C is a functor having a colimit Lim__→ S, with coprojection maps
qE : S (E ) → Lim__→ S, then we shall say that F respects the colimit of S if the object F (Lim__→ S ),
with the cone from F S given by the F(qE ) : F(S (E )) → F(Lim__→ S) is a colimit of F S; and we
will say that F respects small colimits, possibly large colimits, pushouts, initial objects, small or
possibly large direct limits, etc., if it respects all colimits having these respective descriptions.

In all of these situations, one may use ‘‘commutes with’’ as a synonym for ‘‘respects’’.

(Many authors, e.g., Mac Lane [14], again following the topological associations of the word
‘‘limit’’, call a functor respecting limits ‘‘continuous’’, and one respecting colimits
‘‘cocontinuous’’. But we will not use these terms here.)

The distinctions between the ‘‘small’’ and ‘‘possibly large’’ cases of the above definition are
technically necessary, but there are situations where they can be ignored:

Observation 7.8.2. Suppose all functors F having a certain property P respect small limits
(respectively small colimits, or small limits or colimits of a particular sort, such as products or
coproducts). Suppose, moreover, that the condition P does not depend on the choice of universe;
or more generally, that if we enlarge our universe, any functor that satisfied P relative to the old
universe continues to satisfy P with respect to the new one. Then any functor satisfying P in
fact respects possibly large limits (respectively, possibly large colimits, products, coproducts, etc.).
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Hence, in discussing properties P which are preserved under enlarging the universe, we may
say that functors satisfying P ‘‘respect limits’’ etc., without specifying ‘‘small’’ or ‘‘possibly
large’’. �

Since properties such as ‘‘F : C → D is a left adjoint functor’’ do not depend on one’s choice
of universe, we will be able to ignore the small / possibly-large distinction in formulating the results
of this section.

Theorem 7.8.3. Left adjoint functors respect colimits, and right adjoint functors respect limits.

Proof. Let D
___U→←____

F
C be adjoint functors, with U the right and F the left adjoint, and

suppose S : E → C has a colimit L, with coprojection maps qE (E ∈Ob(E)). Recall that L
represents the functor CE(S, Δ(–)) : C → Set , i.e., the construction taking each object C ∈Ob(C)
to the set of cones CE(S, Δ(C)) and acting correspondingly on morphisms, and that the cone
(qE )E ∈Ob(E) is the universal element for this representing object.

Applying Theorem 7.7.1, we see that F(L) will represent the functor D → Set given by

(7.8.4) CE(S, Δ(U(–))) = CE(S, UΔ(–)) =∼ DE(FS, Δ(–));

in other words, it will be a colimit of FS.
The universal cone could hardly be anything but (F(qE )); but we need to check this formally.

By Theorem 7.7.1, to get this universal element we apply to L the unit η of our adjunction,
getting a morphism η(L) : L → UF(L), apply the functor CE(S, Δ(–)) to it, getting a set map

CE(S, Δ(η(L))) : CE(S, Δ(L)) → CE(S, Δ(UF(L))),

and apply this set map to our original universal cone. Now the above set map is given by left
composition with η(L), so it transforms our original cone (qE ) from S to L into the cone
(η(L)qE ) from S to UF(L). But in (7.8.4) we identify cones from the functor S to objects
U(D) (D ∈Ob(D)) with cones from FS to the objects D by use of the given adjunction. This
identification works by applying F to the given morphisms, then applying the counit of the
adjunction to the codomains of the resulting morphisms. So the morphisms η(L)qE of our cone
are first transformed to F(η(L)qE ) = F(η(L)) F(qE ), then composed on the left with ε(F(L)).
By Theorem 7.3.3(iii), the latter morphism is left inverse to F(η(L)), so the composite is F(qE ),
as claimed.

The assertion about right adjoint functors and limits follows by duality. �

For example, suppose (C , U ) is a concrete category having free objects on all sets, i.e., such
that U has a left adjoint F. Then we see by applying the above theorem to appropriate colimits
in Set that a free object in C on a disjoint union of sets is a coproduct of the free objects on the
given sets, and that a free object on the empty set is an initial object. (These facts were noted for
particular cases in Chapter 3.) The fact that right adjoints respect limits tells us, likewise, that for
C and U as above, if we call U(X ) the ‘‘underlying set’’ of X ∈Ob(C), then underlying sets
of product objects, terminal objects, difference kernels, and inverse limits are, respectively, direct
products of underlying sets, the one-element set, difference kernels of underlying sets, and inverse
limits of underlying sets. This explains why, in so many familiar cases, the construction of the
latter objects begins by applying the corresponding construction to underlying sets. (The perceptive
reader may note that what this actually does is reduce these many facts to the one unexplained fact
that the underlying set functors of the categories arising in algebra tend to have left adjoints –
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though they rarely have right adjoints.)
We should next say something about how limits and colimits interact with objects that represent

functors. In this form, there is not an obvious question to ask; but we can ask whether
representable functors respect limits and colimits. However, our definition of a functor F
respecting a limit or colimit assumed F covariant, so to include the case of contravariant
representable functors, we need to formally extend that definition.

Definition 7.8.5. Let C, C′ be categories, and F : Cop → C′ a contravariant functor.
Then if S : E → C is a functor into C having a limit Lim←__ S, with projection maps

pE : Lim←__ S → S (E ), one says that F turns the limit of S into a colimit if the object F (Lim←__ S ),
together with the cone from the functor F S : Eop → C′ to this object given by the morphisms
F( pE ) : F(S (E )) → F(Lim←__ S), is a colimit of that functor (equivalently, if, viewing Lim←__ S and
( pE ) as an object and a cone of morphisms in Cop which comprise a colimit of the functor
Sop: Eop → Cop, the functor F respects this colimit).

This yields the obvious definitions of statements such as that F ‘‘turns small limits into
colimits’’, ‘‘turns possibly large products into coproducts’’, ‘‘turns pullbacks into pushouts’’,
‘‘turns terminal objects into initial objects’’, etc..

We define analogously the concept of F turning the colimit of a functor S into a limit, and
thus of turning coproducts to products, pushouts to pullbacks, etc..

We can now state

Theorem 7.8.6. Let C be a category. Then covariant representable functors V : C → Set
respect limits, and contravariant representable functors W : Cop → Set turn colimits to limits.

Sketch of Proof. The second statement is equivalent to the first applied to the category Cop, so
it suffices to prove the first assertion.

Without loss of generality we may take V = hR where R ∈Ob(C). Let L be the limit of a
functor S : E → C . Then hR (L) = C(R, L), which by the universal property of L can be
identified with the set of cones from R to S, i.e., ‘‘compatible’’ systems (rE )E ∈Ob(E) of
morphisms rE ∈C(R, S(E )). On the other hand, limits over E in Set are given by Ob(E)-tuples
of elements also satisfying compatibility conditions (cf. proof of Proposition 7.6.6), and we see that
the compatibility conditions defining elements of Lim←__E hR (S(E )) agree with those defining cones
R → S; so hR (Lim←__E S) can be naturally identified with Lim←__E hR (S(E )).

That hR also carries the universal cone of morphisms from the object L to the objects S(E )
to the corresponding cone of morphisms from hR (L) to the hR (S(E )) is straightforward to
verify. �

Exercise 7.8:1. (i) Show by example that covariant representable functors Ab → Set need not
respect colimits. In fact, give examples of failure to respect coproducts, failure to respect
difference cokernels, and failure to respect direct limits over directed systems.
(ii) Similarly, show by examples that contravariant representable functors on Ab in general
fail to turn products, difference kernels, and inverse limits into coproducts, difference cokernels
and direct limits respectively.

Finally, we come to the interaction of colimits with colimits, and of limits with limits. Suppose
B : D × E → C is a bifunctor. Then each object D of D induces a functor B(D, – ) : E → C ,
and each morphism f : D → D ′ in D yields a morphism of functors, B( f , – ) : B(D, – ) →
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B(D ′, – ). (Cf. Lemma 6.10.1 and preceding discussion.) If for each D the functor B(D, – ) has
a colimit, let us write these objects Lim__→E B(D, E ) ∈ Ob(C). The morphisms between functors
B(D, – ) induce morphisms among these colimit objects (cf. (7.6.4) and preceding display), so that
the construction of Lim__→E B(D, E ) from D becomes a functor Lim__→E B(–, E ) : D → C .
Suppose this functor in turn has a colimit, which we write Lim__→D (Lim__→E B(D, E )). Then the
composites of coprojections

(7.8.7) B(D, E ) → Lim__→E B(D, E ) → Lim__→D (Lim__→E B(D, E ))

constitute a cone of morphisms from the B(D, E ) to our iterated colimit, and it is straightforward
to verify that the latter object, together with this cone, has the universal property of
Lim__→D × E B(D, E ).

Exercise 7.8:2. Prove the above claim, that if Lim__→D (Lim__→E B(D, E )) exists, it satisfies the
universal property of Lim__→D × E B(D, E ).

This gives the first isomorphism in the first display of the next theorem. By symmetry, we
likewise have the second isomorphism of that display if the rightmost colimit exists. The
isomorphisms of the second display similarly hold under the dual hypotheses.

Theorem 7.8.8. Colimits commute with colimits, and limits commute with limits.
Precisely, let B : D × E → C be a bifunctor. Then

(7.8.9) Lim__→D (Lim__→E B(D, E )) =∼ Lim__→D × E B(D, E ) =∼ Lim__→E (Lim__→D B(D, E )),

in the sense that if the left side of the above display is defined, then this object also has the
universal property of the middle object, via the cone of morphisms (7.8.7), and similarly, if the
right side is defined, it has the property of the middle object via the analogous cone. Hence, if
both sides are defined, they are isomorphic.

Likewise

(7.8.10) Lim←__D (Lim←__E B(D, E )) =∼ Lim←__D × E B(D, E ) =∼ Lim←__E (Lim←__D B(D, E ))

in the same sense. �

As formulated, (7.8.9) is not an instance of a functor ‘‘respecting’’ colimits in the precise sense
of Definition 7.8.1, because the minimalist hypotheses that we assumed do not make Lim__→D a
functor on all of CD. If we in fact assume that all functors from D to C have colimits (e.g., if
C has small colimits and D is small), then the isomorphism Lim__→D (Lim__→E (B(D, E ))) =∼

Lim__→E (Lim__→D (B(D, E ))) becomes a case of Theorem 7.8.3, since Lim__→D becomes a left adjoint

functor CD → C . However, the identification of the common value of the two iterated colimits as
Lim__→D × E B(D, E ) must still be stated and proved separately. (In the same spirit, if C has small
coproducts, the covariant case of Theorem 7.8.6 follows from Theorem 7.8.3 and Exercise 7.3:3.)

The case of (7.8.9) where E is the empty category says that colimits respect initial objects;
i.e., that if I is an initial object of C , then the diagram Δ(I ) ∈CD has colimit I. For instance,
the coproduct in Ring1 of two copies of Z is again Z . The next exercise examines variants of
this result.

Exercise 7.8:3. (i) Show, conversely, that if an object I of a category C has the property
that for all small categories D , the functor Δ(I ) ∈CD has a colimit isomorphic to I, then I
is an initial object of C .
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(ii) Can you characterize those objects I of a category C for which the hypothesis of (i)
holds for all nonempty small categories D?
(iii) Show that in Ring1 (or if you prefer, CommRing1), every ring of the form Zn has
the property of (ii).

Despite the similar nomenclature, category-theoretic double limits behave quite differently from
double limits in topology. The contrast is explored in

Exercise 7.8:4. (i) For nonnegative integers i, j, define bij to be 1 if i > j, 2 if i ≤ j.
Show that as limits of real-valued functions, lim i→∞ (lim j→∞ bij ) and lim j→∞ (lim i→∞ bij )
exist and are unequal.
(ii) Let the set ω × ω be partially ordered by setting (i, j) ≤ (i ′, j ′) if and only if i ≤ i ′ and
j ≤ j ′. Show that there exist functors (directed systems) B : (ω × ω)cat → Set satisfying
card(B(i, j)) = bij , for bij as in (i).
(iii) Deduce from Theorem 7.8.8 that a functor as in (ii) can never have the property that for
each i, the morphisms B(i, j) → B(i, j+1) and B(i, j) → B(i+1, j) are isomorphisms for all
sufficiently large j.
(iv) Establish the result of (iii) directly, without using the concept of category-theoretic limit.

In earlier sections, there were several exercises asking you to determine whether functors were
representable or had right or left adjoints. If you go back over the cases where the functors turned
out not to be representable or, not to have an adjoint, you will find that, whatever ad hoc arguments
you may have used at the time, each of these negative results can be deduced from Theorem 7.8.6
or 7.8.3 by noting that the functor in question fails to respect some limit or colimit.

Since limits and colimits come in many shapes and sizes, it is useful to note that to test whether
a functor respects these constructions, it suffices to check two basic cases.

Corollary 7.8.11 (to proof of Proposition 7.6.6). Let C , D be categories and F : C → D a
functor.

If C has small colimits, then F respects such colimits if and only if it respects difference
cokernels and respects coproducts of small families of objects.

Likewise, if C has small limits, then F respects these if and only if it respects difference
kernels and respects products of small families. �

One can break things down further, if one wishes:

Exercise 7.8:5. (i) Let C be a category having coproducts of pairs of objects, and hence of
finite nonempty families of objects. Show that the universal property of a coproduct of an
arbitrary family I��I I Xi is equivalent to that of a direct limit, over the directed partially ordered
set of finite nonempty subsets I0 ⊆ I, of the finite coproducts I��I I0

Xi .

(ii) Deduce that a category has small colimits if and only if it has difference cokernels,
pairwise coproducts, and colimits over directed partially ordered sets; and that a functor on such
a category will respect small colimits if and only if it respects those three constructions.

State the corresponding result for limits.
(iii) For every two of the three conditions ‘‘respects difference kernels’’, ‘‘respects pairwise
products’’, ‘‘respects inverse limits over inversely directed partially ordered sets’’ (the conditions
occurring in the dual to the result of (ii)), try to find an example of a functor among categories
having small limits which satisfies those two conditions but not the third. As far as possible, use
naturally occurring examples.

You might look at further similar questions; e.g., whether you can find an example respecting
both finite and infinite products, but not inverse limits over inversely directed partially ordered
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sets; or whether you can still get a full set of examples if you break the two cases of ‘‘finite
products and inverse limits’’ into the three cases of nonempty finite products, inverse limits over
nonempty inversely directed partially ordered sets, and the empty limit.

One can go into this more deeply. I do not know the answers to most of the questions raised in

Exercise 7.8:6. Let A denote the (large) set of all small categories, and B the (large) set of all
legitimate categories. Define a relation R ⊆ A × B by putting (E , C) ∈R if all functors
E → C have colimits.
(i) The above relation induces a Galois connection between A and B. Translate results
proved about existence of colimits in Proposition 7.6.6 and part (ii) of the preceding exercise into
statements about the closure operator ** on A.
(ii) Investigate further the properties of the lattice of closed subsets of A. Is it finite, or
infinite? Can you characterize the induced closure operator on the subclass of A or of B
consisting of categories Pcat for partially ordered sets P?

The above questions concerned existence of colimits. To study preservation of colimits, let
C denote the class of functors F whose domain and codomain are legitimate categories having
small colimits, and let us define a relation S ⊆ A × C by putting (E , F ) ∈S if F : C → D
respects the colimits of all functors E → C .
(iii) The above relation induces a Galois connection between A and C. Can you obtain
results relating the lattice of closed subsets of A under this Galois connection and the lattice of
subsets of A closed under the Galois connection of part (i)? If they are not identical,
investigate the structure of this new lattice. (You will have to use a notation that distinguishes
between these two Galois connections.)

In studying situations where we do not know whether one functor respects the limit of another,
but where the two limits in question both exist, there is a useful way to compare them:

Definition 7.8.12. If E
__S→ C

__F→ D are functors such that Lim__→ S and Lim__→ F S both exist,
then by the comparison morphism

Lim__→ F S → F (Lim__→ S)

we shall mean the unique morphism from the former to the latter object which makes a commuting
diagram with the natural cones of maps from the functor F S to these two objects (namely, the
universal cone consisting of the coprojection maps from the objects F S (E ) to the colimit object
Lim__→ F S, and the cone from these same objects to F (Lim__→ S) obtained by applying F to the
coprojection maps from the S(E ) to Lim__→ S ).

Likewise, if Lim←__ S and Lim←__ F S both exist, then by the comparison morphism

F (Lim←__ S) → Lim←__ F S

we shall mean the unique morphism which makes a commuting diagram with the obvious cones
from these two objects to the functor F S.

In particular, the term ‘‘comparison morphism’’ will be used with respect to coproducts,
products, difference cokernels, difference kernels, etc., regarding these as colimits and limits.

It is clear that these comparison morphisms measure whether the functor F respects these
colimits and limits, i.e.,
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Lemma 7.8.13. In the context of the first paragraph of the preceding definition, the functor F
respects the colimit of S if and only if the comparison morphism Lim__→ F S → F (Lim__→ S) is an
isomorphism. In the context of the second paragraph, F respects the limit of S if and only if the
comparison morphism F (Lim←__ S) → Lim←__ F S is an isomorphism. �

Exercise 7.8:7. Suppose C , D and E are categories such that C has colimits of all functors
D → C , and also of all functors E → C , so that Lim__→D becomes a functor CD → C and
Lim__→E a functor CE → C . Show that for any bifunctor B : D × E → C , the above definition
yields comparison morphisms Lim__→D (Lim__→E B(D, E )) → Lim__→E (Lim__→D B(D, E )) and also
Lim__→E (Lim__→D B(D, E )) → Lim__→D (Lim__→E B(D, E )), and that these are inverse to one another.
This gives yet another proof of the isomorphism between the two sides of (7.8.9) under these
hypotheses.

Earlier in this section, I said that there was no obvious way to talk about limits or colimits
‘‘respecting’’ the construction of objects representing functors, and we looked instead at the subject
of representable functors respecting limits and colimits. But there are actually some not-so-obvious
results one can get on limits and colimits of objects that represent functors. Conveniently, these
reduce to statements that certain functors respect limits and colimits. You can develop these in

Exercise 7.8:8. (i) Show that the covariant Yoneda embedding C → SetCop
respects small

limits, and that the contravariant Yoneda embedding Cop → SetC turns small colimits into
limits. (Idea: combine Lemma 7.6.8 and Theorem 7.8.6.)
(ii) Turn the above results into statements on the representability of set-valued functors which
are limits or colimits of other representable functors, and characterizations of the objects that
represent these.
(iii) Deduce the characterization, noted near the beginning of §3.6, of pairwise coproducts of
groups defined by presentations, and the assertion of Exercise 7.5:6, that every group is a direct
limit of finitely presented groups.
(iv) Show by example that the covariant Yoneda embedding of a category need not respect
small colimits, and that the contravariant Yoneda embedding need not turn small colimits into
limits.
(v) Suppose C , D , E are categories, with E small, and U : E → CD a functor such that
each of the functors U(E ) : D → C has a left adjoint F(E ). Under appropriate assumptions on
existence of small limits and/or colimits in one or more of these categories, deduce from
preceding parts of this exercise that Lim←__E U(E ) exists (as an object of CD), and (as a functor
D → C) has a left adjoint, constructible from the F(E ).
(vi) Show by example that the analogous statement about colimits of functors which have left
adjoints is false.

7.9. Interaction between limits and colimits. Since limits are right universal constructions and
colimits are left universal, these two sorts of constructions cannot be expected to respect one
another in general. However, there are important cases where they do. For instance, we observed
in §7.5 (and will prove formally in the next chapter) that one can form the direct limit of any
directed system of algebras with finitary operations by taking the direct limit of their underlying
sets, and putting operations on this set in a natural manner. The essential reason for this is that
algebra structures are given by operations |A| × ... × |A| → |A| on sets, and that in Set , direct
limits commute with finite products – although direct limits are colimits, and products are limits.

When we ask whether a given limit and a given colimit commute, there are potentially two
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comparison morphisms to consider, one a case of the comparison morphism for a limit and a
general functor, the other of the comparison morphism for a colimit and a general functor.
A priori, one of these might be an isomorphism and the other not, or they might give different
isomorphisms between the same objects. Fortunately, these anomalies cannot occur; as we shall
now prove, the two comparison morphisms coincide. (Note that these morphisms go in the same
direction, because the comparison morphism for limits goes into the global limit object, while the
comparison morphism for colimits comes out of the global colimit object. For the case of the
interaction between limits and limits or between colimits and colimits, on the other hand, the two
comparison morphisms go in opposite directions; cf. Exercise 7.8:7.)

Lemma 7.9.1. Suppose C, D and E are categories such that C has colimits of all functors
with domain D, and limits of all functors with domain E, and let B : D × E → C be a
bifunctor. Then the two comparison morphisms

Lim__→D Lim←__E B(D, E ) → Lim←__E Lim__→D B(D, E )

coincide, their common value being characterizable as the unique morphism cB such that for
every D0 ∈Ob(D) and E0 ∈Ob(E), the following diagram commutes:

(7.9.2)

Lim←__E B(D0 , E )
_______p(D0 , E0 )

→ B(D0 , E0 )
_______q(D0 , E0 )

→ Lim__→D B(D, E0)

�
�
�
�

↓

q(D0) p(E0)
↑
�
�
�
�

Lim__→D Lim←__E B(D, E )
________________cB → Lim←__E Lim__→D B(D, E ).

Here p(D0 , E0 ) and p(E0) denote the E0 th projection maps of the respective limits
Lim←__E B(D0 , E ) and Lim←__E Lim__→D B(D, E ), and q(D0 , E0 ), q(D0) the D0 th coprojections of
the colimits Lim__→D B(D, E0) and Lim__→D Lim←__E B(D, E ).

Proof. Let cB denote the comparison map between the objects at the bottom of (7.9.2) which
tests whether Lim←__E : CE → C , regarded as a functor (and not specifically as a limit), respects the
indicated colimit over D . We shall verify that this is the unique morphism making that family of
diagrams commute. The dual argument shows the same for the other comparison map, proving the
lemma.

The defining property of the colimit-comparison morphism cB is that it respect the cones from
the family of objects Lim←__E B(D0 , E ) (D0 ∈Ob(D)) to the two objects in the bottom line of
(7.9.2), where the cone to the left-hand object is the universal one, consisting of the left-hand
vertical arrows of the diagram, while the cone to the right-hand object consists of morphisms going
diagonally across the diagram, the map for each D0 being obtained by applying Lim←__E ( – , E ) to
the family of coprojection maps (q(D0 , E ))E ∈Ob(E) . Now when we apply Lim←__E ( – , E ) to such
a family, the resulting morphism is characterized by the condition that for each E0, it form a
commuting square with the projection maps to the objects indexed by E0 (cf. 7.6.5). In our case
this means that for all E0, our diagonal map should commute with the top and right-hand arrows
of (7.9.2). Hence cB makes (7.9.2) commute for all D0 and E0, and we see from the universal
properties involved that it will be the unique morphism with this property. �

Before proving that in certain cases the above comparison morphism is an isomorphism, let us
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note some easy examples where it is not.

Exercise 7.9:1. Let D and E each be the category with two objects, 0 and 1, and no
morphisms other than identity morphisms.
(i) Suppose L is a lattice, U(L) its underlying partially ordered set, and C = U(L)cat .
For these choices of C , D and E , say what it means to give a functor B as in Lemma 7.9.1,
verify that the indicated limits and colimits exist, and identify the morphism cB of the lemma.
Show that even if C is the 2-element lattice, this morphism can fail to be an isomorphism.
(ii) Analyze similarly the case where C = Set , and D and E are as above.

Here, however, is a positive result, generalizing our earlier claim about direct limits of finite
products in Set . Note that the proof involves chasing elements; we shall see that the
corresponding result with Set replaced by a general category C is not true. In thinking about
what the result says, you might begin with the cases where D = ωcat (where ω is the partially
ordered set of natural numbers), and E is one of the two- or three-object categories such that
limits over E are difference kernels or pullbacks, or the one-object category Gcat for G a
finitely generated group.

Let us note a convenient piece of notation that will be used in the proof. If B: D × E → C is
a bifunctor, D an object of D , and f : E1 → E2 a morphism of E , then one often writes
B(D, f ) for the induced morphism B(D, E1) → B(D, E2), which is, strictly, B(idD, f ).
Similarly, given a morphism g of D and an object E of E , one may write B(g, E )
for B(g, idE ).

Proposition 7.9.3. If D is a category of the form Pcat , for P a directed partially ordered set,
and E is a nonempty category which has only finitely many objects, and whose morphism-set is
finitely generated under composition, then for any bifunctor B: D × E → Set, the morphism cB
of Lemma 7.9.1 is an isomorphism. (Briefly: ‘‘In Set, direct limits commute with finite limits.’’)

Proof. Let E0, ... , Em–1 be the objects of E , and f0, ... , fn–1 a generating set for the
morphisms of E , with fj ∈E(Eu( j) , E ( j)). Given elements D ≤ D ′ in the partially ordered set
P, let us write g(D, D ′) for the unique morphism D → D ′ in Pcat = D . Projection and
coprojection morphisms will be named as in (7.9.2).

To show surjectivity of cB , let x be any element of Lim←__E Lim__→D B(D, E ). For each of the
finitely many objects Ei of E , consider p(Ei )(x) ∈Lim__→D B(D, Ei ). By the construction of
direct limits in Set , there must exist D(i ) ∈P = Ob(D) such that the above element arises from
some xi ∈B(D(i ), Ei ), i.e.,

q(D(i ), Ei )(xi ) = p(Ei )(x) (i = 0, ... , m–1).

Since the partially ordered set P is directed, we can find D0 ∈P majorizing all the D(i ). Thus
we have images of all the xi at the ‘‘D0 level’’; let us denote these

xi′ = B(g(D(i ), D0), Ei )(xi ) ∈ B(D0 , Ei ) (i = 0, ... , m–1).

Thus,

(7.9.4) q(D0, Ei )(xi′) = p(Ei )(x) (i = 0, ... , m–1).

Now the definition of Lim←__E Lim__→D B(D, E ) as a limit tells us that the system of elements on
the right-hand side of (7.9.4) is ‘‘respected’’ by all morphisms of E , equivalently, by the
generating family of morphisms fj . That is,
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(7.9.5)
Lim__→D B(D, fj ) : Lim__→D B(D, Eu( j) ) → Lim__→D B(D, E ( j) )

carries p(Eu( j))(x) to p(E ( j))(x) ( j = 0, ... , n–1).

It is not necessarily true that the system of preimages xi′ ∈B(D0 , Ei ) that we have found for these
elements satisfy the corresponding relations, i.e., that B(D0 , fj ) carries x ′u( j) to x ′ ( j) ; but by
the construction of direct limits in Set , we can deduce from (7.9.5) that for each j, there is some
D ′( j) ≥ D0 such that the corresponding result holds, namely

B(D ′( j), fj ) (B(g(D0, D ′( j)), Eu( j))(x ′u( j))) = B(g(D0, D ′( j)), E ( j))(x ′ ( j)) ( j = 0, ... , n–1).

Hence taking D1 majorizing all the D ′( j)’s, and letting xi′ ′ denote B(g(D0, D1), Ei )(xi′) ∈
B(D1 , Ei ) for i = 0, ... , m–1, we have the desired ‘‘lifting’’ of the system of equations (7.9.5) :

B(D1 , fj )(x ′ ′u( j)) = x ′ ′( j) ( j = 0, ... , n–1).

That is, the f ’s respect the xi′ ′. Hence, since every morphism of E is a composite of the fj ,
every morphism of E respects the xi′ ′; so the xi′ ′ define an element x ′ ′ ∈Lim←__E B(D1 , E ). The
element q(D1)(x ′ ′ ) ∈Lim__→D Lim←__E B(D, E ) is the required inverse image of x under cB . (Cf.
(7.9.2).)

The proof that cB is one-to-one is similar, but easier; indeed, it does not need the finite
generation hypothesis on the morphisms of E , but only the finiteness of the object-set. Suppose
x, y ∈Lim__→D Lim←__E B(D, E ) with cB (x) = cB (y). Since D is directed, there will exist
D0 ∈Ob(D) such we can write x and y as the images of some x0, y0 ∈Lim←__E B(D0 , E ). By
assumption, these elements fall together when mapped into Lim←__E Lim__→D B(D, E ), which means
that for each i, the projections p(D0, Ei )(x0) and p(D0, Ei )(y0) fall together in
Lim__→D B(D, Ei ). By the construction of direct limits in Set , this means that for each i there is
some D(i ) ≥ D0 such that the images of these elements already agree in B(D(i ), Ei ). Let
D1 ∈Ob(D) majorize all these D(i ). Thus the images of x0 and y0 fall together in all the
B(D1 , Ei ), hence in Lim←__E B(D1 , E ), hence in Lim__→D Lim←__E B(D, E ), i.e., x = y. �

Exercise 7.9:2. Show that the above proposition remains true if the condition that E be nonempty
is replaced by the condition that D be nonempty, but fails when both are empty. The proof we
gave for the proposition does not explicitly refer to the nonemptiness of E ; where is it used
implicitly? (Note that a statement that something is true ‘‘for all Ei ’’ does not require that the
set of Ei be nonempty – it is vacuously true if the set is empty. So you need to find something
less obvious than that.)

In the above proposition, neither the assumption that E has finite object-set nor the assumption
that its morphism-set is finitely generated can be dropped:

Exercise 7.9:3. (i) Show that direct limits in Set do not commute with infinite products. In
fact, give examples both of failure of one-one-ness and of failure of surjectivity.

Now, a product over a set X is a limit over the category Xcat having object-set X and
only identity morphisms; thus, the morphism-set of that category may be regarded as generated
by the empty set. Hence in the examples you constructed for (i), E has infinite object-set, but
finitely generated morphism-set.
(ii) To show that finite generation of the morphism-set cannot be dropped either, let E = Gcat
for G a non-finitely-generated group, and let P be the partially ordered set of all finitely
generated subgroups H ⊆ G. Take the direct limit over P of the G-sets G ⁄ H, examine the
action of Lim←__E on this direct limit, and show that this gives the desired counterexample.

A more difficult question is
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(iii) Is it also true that for every non-finitely-generated monoid S, there is a directed partially
ordered set P and a bifunctor B : Pcat × Scat → Set such that cB is not invertible?

The above examples show the need for our hypotheses on E . What about the condition that D
have the form Pcat for P a directed partially ordered set? A simple example of a partially
ordered set that is not directed is . . ., while some examples of categories not of the form Pcat for
any partially ordered set are the two-object category .→→. and the one-object category Zcat ,
where Z is the infinite cyclic group. So

Exercise 7.9:4. Give examples showing that the fixed-point-set construction on Z-sets (a limit over
a one-object category with finitely generated morphism set) respects neither pushouts, nor
difference cokernels, nor orbit-sets of actions of Z .

Finally, part (i) of the next exercise shows that we cannot interchange the hypotheses on D
and E . As one can see from part (iii), this is equivalent to saying that Proposition 7.9.3 does not
remain true if we replace the category Set by Setop; in particular, we cannot replace Set in
that proposition by a general category having small limits and colimits.

Exercise 7.9:5. (i) Show that inverse limits in Set do not commute with difference cokernels.
(ii) Show, on the other hand, that inverse limits in Set do commute with small coproducts.
(iii) Translate the results of (i) and (ii) into statements about constructions in Setop.

We noted in the last paragraph of the proof of Proposition 7.9.3 that the one-one-ness part of
the conclusion did not require finite generation of the morphism set of E . It also did not require
the non-emptiness assumption on the object-set; moreover, even the assumption that the object-set
was finite can be weakened, using the idea of Lemma 7.6.2, to say that it contains a ‘‘good’’ finite
subset. Thus, you can easily verify

Corollary 7.9.6 (to proofs of Proposition 7.9.3 and Lemma 7.6.2). Let D be a category of the
form Pcat , for P a directed partially ordered set, and let E be a category with only finitely
many objects, or more generally, having a finite family of objects E0, ... , Em–1 such that every
object E admits a morphism Ei → E for some i. Then for any bifunctor B: D × E → Set, the
comparison morphism cB of Lemma 7.9.1 is one-to-one. �

Let us also note that the role of finiteness in the above considerations is easily generalized. The
reader will find that under the next definition, the proofs of our proposition and corollary yield the
proposition stated below.

Definition 7.9.7. If α is a cardinal and P a partially ordered set, then P will be called
α-directed if every subset of P of cardinality < α has an upper bound in P.

Proposition 7.9.8. Let α be an infinite cardinal. If D is a category of the form Pcat , for P
an α-directed partially ordered set, and E is a nonempty category which has < α objects, and
whose morphism-set is generated under composition by a set of fewer than α morphisms (which,
except in the case α = ω, is equivalent to saying that E has < α morphisms), then for any
bifunctor B: D × E → Set, the morphism cB of Lemma 7.9.1 is an isomorphism. (Briefly: ‘‘In
Set, α-directed direct limits commute with limits over < α-generated categories.’’)

Further, the one-one-ness of cB remains true if we weaken the hypothesis on E to say that
there is a set S of < α objects of E such that every object of E admits a morphism from a
member of S. �
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Here are a few more exercises on commuting limits and colimits, some of them open-ended.

Exercise 7.9:6. Generalizing part (ii) of Exercise7.9:5, determine the class of all small categories
E such that limits over E in Set commute with coproducts.

Exercise 7.9:7. Let G be a group or monoid, let ( Xi )i ∈P be an inverse system of G-sets, and
let cX : Lim__→ Gcat

Lim←__ i ∈P Xi → Lim←__ i ∈P Lim__→ Gcat
Xi be the associated comparison morphism.

(In the case where G is a group, recall that Lim__→ Gcat
is the orbit-set construction of

Exercise 7.6:1.)
(i) Show that if G is a group and P is countable, then cX is surjective. (Hint: Use
Exercise 7.5:5(ii).)
(ii) Does the result of (i) remain true for G a monoid? For P not necessarily countable? If
either of these generalizations fails, can you find any additional conditions under which it again
becomes true?

Exercise 7.9:8. (i) In the spirit of Exercise 7.8:6, investigate the Galois connection between
small categories D and small categories E determined by the relation ‘‘colimits over D
commute with limits over E in Set’’.
(ii) Investigate the Galois connections (still on the class of all small categories) obtained by
replacing ‘‘Set’’ in (i) with various other natural categories; e.g., Ab .

We have been considering the interaction between limits and colimits. One can also look at the
interaction between limits and left adjoint functors, and between right adjoint functors and colimits.
For example

Exercise 7.9:9. Does the abelianization functor ( )ab: Group → Ab respect inverse limits?
Products? Difference kernels? In each case where the answer is negative, is it one-one-ness,
surjectivity, or both properties of the comparison morphism that can fail?

A different sort of comparison morphism is noted in

Exercise 7.9:10. Given functors D
__F→ E

__S→ C such that S and SF both have colimits in
C , describe a natural morphism (in one direction or the other) between these objects, and obtain
results about these morphisms, in general or under special hypotheses. (Cf. Exercise 7.5:1.)

7.10. Some existence theorems. Basic results on the existence of algebras having various
universal properties must wait for the next chapter, where we will set up a general theory of
algebras. What we can prove before then are relative results, to the effect that if in a category one
can perform certain universal constructions, then one can perform others; for instance,
Proposition 7.6.6 was of this sort. With this limitation in mind, can we abstract any of the methods
by which we proved the existence of free groups in Chapter 2?

The construction by terms modulo consequences of the identities clearly depends on the fact
that one is considering algebras. Generalizing this will be one of the first things we do in
Chapter 8.

The normal form description is still more specialized. As mentioned toward the end of §2.4,
different sorts of algebras vary widely as to whether such results hold. I hope to develop some
methods for obtaining normal forms in a later (as yet unwritten) chapter; we are not ready to do
anything along that line yet.

But the subobject of a big direct product approach of §2.3 seems amenable to a category-
theoretic development, and we shall in fact obtain below several results that have evolved from that
construction. The approach is due to Peter Freyd.
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We know how to translate the concept of direct product into category theoretic terms. There
were two other key ideas in the construction of §2.3: a cardinality estimate, which allowed us to
find a small set of groups to take the direct product of, and the passage to ‘‘the subgroup of the
product generated by the given family’’. The first of these will simply be made a hypothesis – that
there exists a small set of objects with an appropriate property. What about the concept of
‘‘subalgebra generated’’? We know that there is not a canonical concept of ‘‘subobject’’ in
category theory, but is there one that is appropriate to this proof?

We saw at various points in Chapters 2 and 3 that if we had an object satisfying one of our left
universal properties, except, possibly, for the uniqueness of the factoring maps, then the added
condition of uniqueness was equivalent to the object being generated by the appropriate set (e.g.,
Exercise 2.1:2, and end of proof of Proposition 3.3.3). To put things negatively, in the case of the
universal property of a free group on X, we saw in Exercise 2.1:1 that if our candidate for a free
group F was not generated by the image of X, then we could get a pair of group
homomorphisms from F into some group which agreed on the elements of X, but were not equal
on all of F. This suggests that the subgroup generated by X may be obtainable as a difference
kernel, using pairs of morphisms having equal composites with the image of X. That is the idea
which we shall abstract below.

Recapitulating the path of the first half of this chapter, let us start with an existence result for
initial objects. In reading the next lemma and its proof, you might think of the case where C is
the category of 4-tuples (G, a, b, c) with G a group and a, b, c ∈ |G |, and of the principle that
guided us to the subgroup-of-a-product construction, that if one such object (G, a, b, c) is
mappable to another such object (H, a ′, b ′, c ′), then the set of relations satisfied by a, b, c in G
is contained in the set of relations satisfied by a ′ , b ′ , c ′ in H.

Lemma 7.10.1. Let C be a (legitimate) category having small limits. Suppose there exists a
small set of objects S ⊆ Ob(C), such that for every X ∈Ob(C) there is a Y ∈S with C(Y, X )
nonempty. Then C has an initial object.

Proof. Let J = I
��
IY∈S Y ∈ Ob(C). For every X ∈Ob(C) there is at least one morphism from J

to X, since we can compose the projection of J to some Y ∈S with a morphism Y → X.
Hence our hypothesis on the set of objects S has been concentrated in this one object J, and we
may henceforth forget S and work with J.

We wish to form the ‘‘intersection of the difference kernels of all pairs of maps from J into
objects of C’’. If we were working in a category of algebras, this would make sense, for even
though all such pairs of maps do not form a small set, the underlying set of J would be small, and
hence the set of subobjects that are difference kernels of such pairs of maps would be small, and
we could take its intersection. That argument is not available here; but it turns out that, just as we
were able to use the family S as a substitute for the class of ‘‘all objects’’ in forming our product
J, so it will also serve as a substitute for the class of all objects in this second capacity, though a
less obvious argument will be needed. However, since the hypothesis on S has been concentrated
in the object J, let us again use J in place of S in this function.

So let us form a product I
��
I (u, ) J of copies of J indexed by the set of all pairs of

morphisms u, ∈C(J, J ). (Since C is legitimate, such pairs form a small set.) Let a, b : J →→
I
��
I (u, ) J be defined by the conditions that for all u, ∈C(J, J ), a followed by the projection of

the product onto the (u, ) component gives u, while b followed by that projection gives .
Let us form the difference kernel i : I → J of this pair of morphisms. Note that by the universal
property of I, ui = i for any two endomorphisms u, of J.
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Since J can be mapped to every object of C , we can find a morphism x : J → I. Now
suppose c is any endomorphism of I. By our preceding observation, the morphisms I → J
given by i, ix i, and icxi are equal. But by Lemma 7.6.2, i is a monomorphism; hence we can
cancel it on the left and conclude that idI , xi, and cxi are equal. Substituting the equation
xi = idI into cxi = xi, we get c = idI ; i.e., I has no nonidentity endomorphisms.

I also inherits from J the property of having morphisms into every object of C , so we can
now forget J and work with I only.

We claim that I is an initial object of C . We know it has morphisms into every X ∈Ob(C);
consider two such morphisms u, ∈C(I, X ). We may form their difference kernel, k : K → I,
and take an arbitrary morphism the other way, d : I → K. Then kd is an endomorphism of I,
hence it is the identity. By choice of k, uk = k, hence ukd = kd, i.e., u = ; so I has
exactly one morphism into each object of C , as claimed. �

Exercise 7.10:1. The final part of the proof of the above lemma used the facts that (a) the object I
of C had morphisms into all objects, (b) I had no nonidentity endomorphism, and (c) C had
difference kernels. Do (a) and (b) alone imply that I is initial in C ?

For some perspective on the above result, recall Exercise 7.6:5, which showed that an initial
object of a category C is equivalent to a colimit of the unique functor from the empty category to
C , and also to a limit of the identity functor of C . Now in the study of categories of algebraic
objects (for instance, the category of groups with 3-tuples of distinguished elements), one does not
have, to begin with, any easy way of constructing colimits, even for as trivial a functor as the one
from the empty category! One can, however, construct products and difference kernels using the
corresponding constructions on the underlying sets of one’s algebras; hence one can get all small
limits. Thus, it is not much more unreasonable to try to construct an initial object as a limit of the
identity functor of the whole category than it is to try to construct it as a colimit of the unique
functor from the empty category! The one difficulty is that the domain of the identity functor of C
is not small. Hence one looks for a small set S of objects of C which ‘‘get around enough’’ to
serve in place of the set of all objects.

In fact, if this had been used as our motivation for the above lemma, we would have gotten a
proof in which the initial object I was constructed in one step, as the limit of the inclusion functor
of the full subcategory with object-set S into C . But I preferred the present approach because
the characterization of limits of identity functors is itself not easy to prove. In [14] you can find
both versions of the proof, as Theorem 1 on p. 116 and Theorem 1 on p. 231 respectively.

In results such as the above, the assumption that there exists a small set S which, for the
purposes in question, is ‘‘as good as’’ the set of all objects is known as the ‘‘solution-set
condition’’.

On now to the next result in this family. Since a representing object for a functor U : C → Set
is equivalent to an initial object in an appropriate auxiliary category C ′, let us see under what
conditions we can apply Lemma 7.10.1 to such an auxiliary category to get a representability result.
By Theorem 7.8.6, if U is representable it must respect limits, so the condition of respecting
limits must somehow be a precondition for the application of the lemma in this way. The next
result shows that for the auxiliary category C ′ to have small limits in fact is equivalent to U
respecting such limits.
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Lemma 7.10.2. Let C be a category, U : C → Set any functor, and C ′ the category whose
objects are pairs (X, x) with X ∈Ob(C) and x ∈U(X ), and whose morphisms are morphisms of
first components respecting second components (in the language of Exercise 6.8:24, the comma
category (C ↓ U )). Let V : C ′ → C denote the functor forgetting second components. Then

(a) If D is a small category and G : D → C a functor having a limit in C, the following
conditions are equivalent:

(i) U respects the limit of G; i.e., the comparison morphism c : U(Lim←__ G ) → Lim←__ UG is
a bijection of sets.

(ii) Every functor F : D → C ′ satisfying VF = G has a limit in C ′ .
Hence,

(b) If C has small limits, then C ′ will have small limits if and only if U respects small limits.

Sketch of Proof. We shall prove (a), from which (b) will clearly follow.
(i)⇒(ii). A functor F that ‘‘lifts G’’ as in (ii) is essentially a compatible way of choosing for

each X ∈Ob(D) an element x ∈UG(X ); hence it corresponds to an element y ∈Lim←__ UG. By (i),
y = c(z) for a unique z∈U(Lim←__ G ), and we find that the pair (Lim←__ G, z) will be a limit of F
in C ′, giving (ii).

(ii)⇒(i). Let y be any element of Lim←__ UG. As observed, this corresponds to a functor
F : D → C ′, and by (ii) F has a limit (Z, z) in C ′. The cone from this limit object to F,
applied to first components, gives a cone from Z to the objects G(X ), under which the second
component, z is carried to the components of y; hence the map Z → Lim←__ G induced by this
cone carries z∈U(Z ) to an element w ∈U(Lim←__ G), which is taken by c to y ∈Lim←__ UG. This
establishes the surjectivity of c.

Suppose now that c also takes another element w ′ ∈U(Lim←__ G) to y. By the universal
property of (Z, z), there is a morphism Lim←__ G → Z carrying w ′ to z; composing this with
our morphism Z → Lim←__ G we get an endomorphism of Lim←__ G carrying w ′ to w. But all
these morphisms, and hence this endomorphism in particular, respect cones to G in D , hence by
the universal property of Lim←__ G, this endomorphism must be the identity morphism of Lim←__ G.
This shows that w ′ = w, proving one-one-ness of c. �

Exercise 7.10:2. Give the details of the proof of (i)⇒(ii) above.

Exercise 7.10:3. In part (a) of the above lemma, we assumed that the functor G had a limit. We
may ask whether this assumption is needed in proving (ii)⇒(i), or whether the existence of the
limits assumed in (ii) implies this.

To answer this question, let C be the category whose objects are pairs (G, S) where G is
a group and S a cyclic subgroup of G (a subgroup generated by one element), and where a
morphism (G, S) → (H, T ) means a homomorphism G → H which carries the subgroup S
onto the subgroup T. Let U : C → Set be the functor which carries each pair (G, S) to the
set of generating elements of S.

Show how to define U on morphisms. Show that C does not, in general, have products of
pairs of objects, but that the category C ′, defined as in Lemma 7.10.2, has all small limits,
hence, in particular, pairwise products.

The reader should verify that Lemmas 7.10.1 and 7.10.2 now give the desired criterion for
representability, namely
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Proposition 7.10.3. Let C be a category with small limits, and U : C → Set a functor. Then U
is representable if and only if

(a) U respects small limits, and

(b) there exists a small set S of objects of C such that for every object Y of C and y ∈U(Y ),
there exist X ∈S, x ∈U(X ), and f ∈C(X, Y ) such that y = U( f )(x). �

Finally, let us get from this a condition for the existence of adjoints. (Note that for
D = Group and U its underlying-set functor, condition (b) below was precisely what we had to
come up with in showing the existence of free groups on arbitrary sets Z.)

Theorem 7.10.4 (Freyd’s Adjoint Functor Theorem). Let C and D be categories such that D
has small limits. Then a functor U : D → C has a left adjoint F : C → D if and only if

(a) U respects small limits, and

(b) for every Z ∈Ob(C) there exists a small set S(Z ) ⊆ Ob(D) such that for every Y ∈Ob(D)
and y ∈C(Z, U(Y )), there exist X ∈S(Z ), x ∈C(Z, U(X )) and f ∈D(X, Y ) such that
y = U( f ) x.

Proof. The existence of a left adjoint to U is equivalent to the representability, for every
Z ∈Ob(C), of the functor C(Z, U(–)) : D → Set . Condition (b) is clearly a translation of
condition (b) of the preceding proposition. As for condition (a), we know by Theorem 7.8.3 that it,
too, is necessary for the existence of a left adjoint, so it suffices to show that it implies that each
set-valued functor C(Z, U(–)) respects limits. If we write this functor as hZ U, and recall that
covariant representable functors hZ respect limits, this is immediate. �

I remarked in §7.8 that for every example we had seen of a functor that was not representable
or did not have a left adjoint, this could be proved by showing that the functor did not respect some
limit. We can now understand this better. On a category having small limits, the only way a
functor respecting these limits can fail to have a left adjoint or a representing object is if the
solution-set condition fails. Since the solution-set condition says ‘‘a small set is sufficient’’, its
failure must involve set-theoretic difficulties, which are rare in algebraic contexts. However,
knowing now that this is what we should look for, we can find examples. The next exercise gives
a simple, if somewhat artificial example. The example in the exercise after that is more
complicated, but more relevant to constructions we are interested in.

Exercise 7.10:4. Let D be the subcategory of Set whose objects are all sets (or if you prefer,
all ordinals; in either case, ‘‘small’’ is understood, since by definition Set is the category of all
small sets), and whose morphisms are the inclusion maps of subsets. Show that D has small
colimits (and has limits over all nonempty categories, though this will not be needed), but has no
terminal object.

Hence, letting C = Dop, the category C has small limits (and colimits over nonempty
categories) but no initial object. Translate the nonexistence of an initial object for C to the
nonrepresentability of a certain functor U : C → Set which respects limits (cf. Exercise 7.2:7).

The results of this section would imply the existence of an initial object of C , and of a
representing object for U, if a certain solution-set condition held. State this condition, and note
why it does not hold.

The next exercise is related to the point mentioned in §5.2, that because the class of complete
lattices is not defined by a small set of operations, it does not always behave like classes of
‘‘ordinary’’ algebras. We shall see below that the solution-set condition required for the existence
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of the free complete lattice on 3 generators fails, and indeed, that there is no such free object.

Exercise 7.10:5. (i) Show that every ordinal has a unique decomposition α = β + n, where β
is a limit ordinal (possibly 0) and n ∈ω . Let us call α even or odd respectively according as
the summand n in this decomposition is even or odd.

Now let α be an arbitrary ordinal, let S = α ∪ {x, y} where x, y are two elements that
are not ordinals, and let L be the lattice of all subsets T ⊆ S such that (a) if T contains x
and all ordinals less than an odd ordinal β ∈α , then it contains β , and (b) if T contains y
and all ordinals less than an even ordinal β ∈α , then it contains β .
(ii) Show that the complete sublattice of L generated by the three elements {x}, {0, y} and
α (i.e., the closure of this set of three elements under arbitrary meets and joins within L) has
cardinality ≥ card(α). (This is an extension of the trick of Exercise 5.3:9.)
(iii) Deduce that there can be no free complete lattice on 3 generators.

Statement (iii) above was first proved in [61], by a different construction. Three proofs of the
similar result that there is no free complete Boolean algebra on countably many generators are
given in [57], [61] and [96].

But the fact that a class of algebras has a large set of primitive operations does not preclude the
existence of free objects, as shown by

Exercise 7.10:6. Complete ∨-semilattices with least elements, like complete lattices, have an
α-fold join operation for every cardinal α . Nevertheless:
(i) Show that a complete ∨-semilattice with least element generated by an X-tuple of elements
has at most card(P(X )) elements.
(ii) Deduce from Freyd’s Adjoint Functor Theorem that there exist free complete
∨-semilattices with least elements on all sets. (This despite the fact that complete ∨-semilattices
with least elements are, as partially ordered sets, the same objects as complete lattices!)
(iii) Does the category of ∨-complete lattices with least element behave, in this respect, like
that of complete ∨-semilattices with least element, or like that of complete lattices? I.e., does it
have free objects on all sets or not?

You may have noticed that in this section, I have not followed my usual practice of stating
every result both for left and for right universal constructions. That practice is, of course, logically
unnecessary anyway, since one result can always be deduced immediately from the other by putting
Cop for C and making appropriate notational translations. In earlier sections I nonetheless gave
dual pairs of formulations, because both statements were generally of comparable importance.
However, when one studies categories of algebras, objects characterized by right universal
properties are usually easier to construct directly than those characterized by left universal
properties, so we have little need for results obtaining the former from the latter; hence my one-
sided presentation. (It is also true that short-term generalizations about what cases are important
may fail in the longer run! However, whether we have formally stated them or not, we can always
call on the duals of the results of this section if we need them.)

Here is a somewhat vague question, to which I don’t know an answer.

Exercise 7.10:7. Suppose a functor U has a left adjoint F, which in turn has a left adjoint G.
Can one conclude more about U itself than the results that we have shown follow from the
existence of F? In other words, are there any nice necessary conditions for existence of double
left adjoints, comparable to the property of respecting limits as a condition for existence of a
single left adjoint?
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7.11. Morphisms involving adjunctions. I am not planning on using the results of this section in
subsequent chapters, so the reader may excuse a little sketchiness. (However, the material in the
next section will be referred to in subsequent chapters, and should be read with your usual
vigilance.)

Let C and D be categories, and D
___U→←____

F
C adjoint functors. We recall the isomorphism

which characterizes their adjointness:

(7.11.1) C(–, U(–)) =∼ D(F(–), –).

Suppose now that we have functors from a third category into each of these categories,
P : E → C and Q : E → D . It is not hard to verify that if we ‘‘substitute P and Q into the
blanks’’ in (7.11.1), we get a bijection between sets of morphisms of functors:

CE (P, U Q) ←→ DE (FP, Q).

As one would expect, this bijection is functorial in P and Q, i.e., respects morphisms P → P ′,
Q → Q ′; in other words, writing F o and U o for the operations of composing on the left with F
and U respectively, the above bijection gives an isomorphism of bifunctors CE × DE → Set :

CE(–, U o –) =∼ DE(F o –, –).

This means that we have an adjoint pair of functors on functor categories, DE ____U o
→←____

F o
CE . We

can also describe this adjunction in terms of its unit and counit; these will be ηo : Id(CE) →
(UF )o and ε o : (FU )o → Id(DE) , where η and ε are the unit and counit of the adjunction
between U and F. In fact, the quickest way to prove that U o and F o are adjoint is to note
that the equations in η and ε which establish the adjointness of U and F (Theorem 7.3.3(iii))
give equations in ηo and ε o establishing the adjointness of U o and F o .

The above fits with our comment at the end of §6.9 that a functor category such as CE or DE

behaves very much like its codomain category, C or D . What that observation does not prepare
us for is that analogous results hold for composition on the right with adjoint functors. Given
adjoint functors U and F, still as in (7.11.1) above, let us take a category B and functors
R : D → B , S : C → B . I claim we get a bijection

BD(SU, R) ←→ BC(S, RF )

and thus an isomorphism

BD(– oU, –) =∼ BC(–, – oF ).

i.e., a pair of adjoint functors, BD ____oF→←____
oU

BC, where this time oU is the left adjoint and oF

the right adjoint. I don’t know a way of seeing this directly from (7.11.1), but it comes out easily
if we check the formal properties of the unit and counit oη and oε .

Let us cook up a random example. We shall take for U and F the familiar case of the
underlying set functor on groups and the free group functor. To avoid overlap with the result we
proved earlier about composition of adjoints (Theorem 7.3.5), let us take for R and S functors
which are not adjoints on either side: Let S : Set → ∨-Semilattice0 take a set X to the upper
semilattice of equivalence relations on X, and let R : Group → ∨-Semilattice0 take a group G
to the upper semilattice of subgroups of G. (By ∨-Semilattice0 we mean the category of upper
semilattices with least elements 0, i.e., with arbitrary finite joins, including the empty join.) A
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morphism from SU to R thus means a way of associating to every equivalence relation on the
underlying set of a group a subgroup of that group, in a way that respects joins (including the
empty join), and also respects maps induced by group homomorphisms. Perhaps unexpectedly,
there exist several constructions with these properties: Given an equivalence relation E on the
underlying set of a group G, one can construct (a) the subgroup of G generated by the elements
xy–1 for (x, y) ∈E, (b) the subgroup generated by the elements y–1x, as well as the subgroups
generated by (c) both types of elements and (d) neither (the trivial subgroup).

On the other hand, a morphism from S to RF means a way of associating to every
equivalence relation on a set X a subgroup of the free group F(X ), again respecting joins and
morphisms. The adjointness result stated above implies that there should be such a morphism
S → RF corresponding to the each of the morphisms SU → R just listed; and indeed, these can
be described as associating to an equivalence relation E on X the subgroup of F(X ) generated
by the elements xy–1 respectively y–1x, respectively both, respectively neither, for (x, y) ∈E.
To get these morphisms formally from the morphisms (a)-(d) above, we look at any equivalence
relation E ∈S(X ), use it and the natural map X → U(F(X )) to induce an equivalence relation on
U(F(X )), then apply the chosen morphism SU → R.

The above example is studied further in

Exercise 7.11:1. Let U, F, S and R be as in the above example. Given any set of nonzero
integers, I ⊆ Z – {0}, let mI : SU → R associate to each equivalence relation E on the
underlying set of a group G the subgroup of G generated by all the elements xiy– i ((x, y) ∈E,
i ∈I ).
(i) Show that the mI are morphisms of functors, and are all distinct.
(ii) Try to determine whether these are all the morphisms SU → R. Are there any morphisms
which respect finite joins (including empty joins) but not infinite joins?

Returning to the question of why adjointness is preserved not only by the construction (–)E

but also (with roles of right and left reversed) by the construction B (–), the explanation seems to
be that the definition of adjointness can be expressed as the condition that certain equations hold
among given functors and morphisms in the Cat-enriched structure (§6.11) of Cat , namely those
of Theorem 7.3.3(iii), and that these equations will be preserved by any functor preserving
Cat-enriched structure – as (–)E and B (–) both do, one covariantly and the other
contravariantly. (For an analogous but simpler situation, observe that, although conditions on a
morphism a in a category such as being an epimorphism or a monomorphism are not preserved by
arbitrary functors, the conditions of left, right and two-sided invertibility are preserved, because
they come down to the existence of another morphism b satisfying one or both of the equations
ab = idX , ba = idY , and these conditions are clearly preserved by functors. The formulation of
adjointness in terms of unit and counit morphisms in Theorem 7.3.3 is similarly ‘‘robust’’.)

To complicate things a bit further, consider next any two functors P and Q (the vertical
arrows below), any adjoint pair of functors between their domain categories, and any adjoint pair of
functors between their codomain categories:
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(7.11.2)

B
________U →←________

F
C

��
�
�
�

↓

P

��
�
�
�

↓

Q

D
________V →←________

G
E .

(No commutativity conditions are assumed in this diagram!) Now we may apply on the one hand
our isomorphisms involving composition on the right with adjoint pairs of functors, and on the
other hand our isomorphisms involving composition on the left with such pairs, getting four
bijections of morphism-sets

(7.11.3)

EB(Q U, V P) ←____→ DB(G Q U, P)

↑
�
�
�
�

↓

↑
�
�
�
�

↓
EC(Q, V P F ) ←____→ DC(GQ, PF ) .

Because composition with functors on the left commutes with composition with other functors
on the right, the above diagram of bijections commutes. This result and the preceding observations
are summarized in

Proposition 7.11.4. Suppose D
___U→←____

F
C are adjoint functors, with F the left adjoint and U

the right adjoint, and with unit η : IdC → UF and counit ε : FU → IdD . Then

(i) For any category E, the functors DE ____U o
→←____

F o
CE are adjoint, with F o the left adjoint,

U o the right adjoint, unit ηo : IdCE → UF o and counit εo : FU o → IdDE .

(ii) For any category B, the functors BD ____oF→←____
oU

BC are adjoint, with oU the left adjoint,

oF the right adjoint, unit oη : IdBC → oUF and counit oε : oFU → IdBD .
(iii) Given two pairs of adjoint functors as in (7.11.2), the square of isomorphisms of bifunctors
EC × DB → Set

(7.11.5)

EB(– o U, V o – ) =∼ DB(G o – oU, – )

||∫ ||∫

EC(–, V o – o F ) =∼ DC(G o –, – oF )

commutes. �

Exercise 7.11:2. Give the details of part or all of the proof of the above proposition.

My reason for setting down the above observations is to help understand a better known result,
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which we can get from (7.11.3) by taking B = D , C = E , and for P, Q the identity functors of
these categories.

Corollary 7.11.6. Suppose D
___U→←____

F
C and D

___V→←____
G

C are two pairs of adjoint functors

between the same two categories C and D (F and G the left adjoints, U and V the right
adjoints). Then there is a natural bijection i: DC(G, F ) ←→ CD(U, V ) (described below). In
other words, morphisms in one direction between left adjoints correspond to morphisms in the
other direction between right adjoints.

Description of the bijection. Given f ∈DC(G, F ), one may apply U : D → C on the right to
get f o U ∈DD(GU, FU ). Composing with the counit morphism εU, F : FU → IdD we get
εU, F ( f o U ) ∈DD(GU, IdD ). Finally, using the adjointness between G and V, we may turn this
into the desired member of CD(U, V ). This last step is equivalent to going through a process for
G and V like the one we went through for F and U, so the result can be written

i( f ) = (V o(εU, F ( f o U ))) ηV, G . �

As an example, let U and V both be the underlying set functor Group → Set , so that F
and G are both the free group functor Set → Group . Then the above result says that there is a
natural bijection between endomorphisms of these adjoint functors. We have already looked at
endomorphisms of U; in the language of Exercise 2.3:6 they are ‘‘functorial generalized group-
theoretic operations in one variable’’, which we found were just derived group-theoretic operations
in one variable, i.e., the operations of exponentiation by arbitrary integers n. (Cf. also Exercises
6.9:4(iii), 7.2:10.)

As for endomorphisms of F, it is not hard to see that such an endomorphism is determined by
the endomorphism it gives of the free group on one generator. That endomorphism will send the
generator x to xn for some integer n; conversely, we easily verify that for each n, an
endomorphism of the whole functor F with this behavior on the free group on one generators
exists; hence endomorphisms of F also correspond to exponentiation by arbitrary integers n.

In the above example, we cannot see that the direction of the morphisms has been reversed.
For a less degenerate case, let C = Group and D = CommRing1. Let U be the functor taking
each commutative ring with 1, R, to the group GL(n, R) of n × n invertible matrices over R,
and V the functor taking R to its group of invertible elements (units). Clearly there is an
important morphism a : U → V, taking every invertible matrix over a ring to its determinant. The
left adjoint F of U takes every group A to the commutative ring F(A) presented by generators
and relations that create a universal image of A in the group of n × n invertible matrices over
F(A), and likewise the left adjoint G of V will take a group A to the commutative ring G(A)
with a universal image of A in its group of units. (The latter is easily seen to be the group ring
of the abelianization of A.) If we look at the determinants of the matrices over F(A) comprising
the universal n × n matrix representation of A, we see that these give a homomorphism of A
into the group of units of F(A), which by the universal property of G(A) is equivalent to a ring
homomorphism G(A) → F(A). This gives the morphism of functors G → F in

(CommRing1)Group corresponding to our determinant morphism U → V in GroupCommRing1
.

Mac Lane [14, p. 98, top] calls a pair of morphisms of functors related under the bijection of
Corollary 7.11.6 conjugate. Of course, we should have proved more about this phenomenon than
we have stated in Corollary 7.11.6; in particular, that the conjugate of the composite of two
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morphisms between three adjoint pairs of functors C →← D is the composite of their conjugates in
reversed order, i.e., that conjugation constitutes a contravariant equivalence between the category of
all functors C → D having right adjoints and the category of all functors D → C which have
left adjoints; and likewise that conjugacy behaves properly with respect to composition of adjoint
functors. These results can be looked at as follows: Suppose that within the Cat-based category
Cat , we form the subcategory RightAdj , that has the same objects as Cat , and the same
morphisms-of-morphisms (all morphisms between functors in this subcategory), but where the
intermediate-level morphisms, the functors, are restricted to those which are right adjoints
(equivalently, have left adjoints) in Cat . Suppose we likewise form the subcategory LeftAdj , as
above except that the functors are those that are left adjoints in Cat . Then we get an equivalence
of Cat-based categories RightAdj ∼∼ LeftAdjop. (Actually, one needs a notation to show that
there is a ‘‘double op’’ here, applying both to composition of functors and to composition of
morphisms of functors!) One might most elegantly identify these two Cat-categories, getting one
Cat-category Adj having adjoint pairs of functors for its morphisms, and conjugate pairs of
morphisms of functors for its morphisms of morphisms. For more details, see [14, pp. 97-102].

We could also have brought into the statement of Corollary 7.11.6 the upper right-hand and
lower left-hand corners of (7.11.3). For instance, in the case involving groups and commutative
rings discussed above, the reader can easily describe a morphism IdGroup → VF, i.e., a functorial
way of mapping each group A into the group of units of the commutative ring with a universal
n×n representation of A, again based on the determinant function, and a morphism
GU → IdCommRing1 , i.e., a functorial way of mapping the group ring on the abelianization of the
group of invertible n×n matrices over a ring R into R, yet again based on the determinant.

7.12. Contravariant adjunctions. The concept of an adjoint pair of functors is self-dual, in the

sense that if we write down the definition of adjointness of D
___U→←____

F
C , put Cop and Dop in

place of C and D , and translate the resulting structure into language natural for our new C and
D , the result has the same form as the original definition, though with the roles of C and D
interchanged, and likewise U and F, and η and ε .

But a concept which, like that of adjunction, involves more than one category also has ‘‘partial
dualizations’’. Thus, if in the definition of adjunction we only replace C by Cop, we get a
condition on a pair of functors Cop →← D . Note that the one going to the right is a contravariant
functor from C to D , and the other corresponds to a contravariant functor from D to C , i.e., a
functor Dop → C . Writing it in the latter form, we arrive at a setup which is symmetric, that is,
in which the two categories and the two functors play equivalent roles – but which is not self-dual.
We describe this construction and its dual in the definition below.

When we defined ordinary adjunctions, we wrote the isomorphism of bifunctors ‘‘C(–, U(–)) =∼

D(F(–), –)’’, with the understanding that the first argument ‘‘–’’ on the left matched the first
argument on the right, and similarly for second arguments. But below, the first argument on one
side of our isomorphism will represent the same variable as the second argument on the other side.
To make this clear, we will use distinct place-holders, ‘‘–’’ and ‘‘ ’’, for the two arguments.

Definition 7.12.1. Let U : Cop → D and V : Dop → C be contravariant functors between
categories C and D.

Then a contravariant right adjunction between U and V means an isomorphism

C( –, V( )) =∼ D( , U(– ))
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of bifunctors Cop × Dop → Set, where ‘‘–’’ denotes the C-valued argument and ‘‘ ’’ the
D-valued argument; equivalently, an adjunction between U : Cop → D and the functor
Vop: D → Cop corresponding to V, with U the right and Vop the left adjoint; equivalently, an
adjunction between V : Dop → C and Uop: C → Dop, with V the right and Uop the left
adjoint.

Likewise, a contravariant left adjunction between U and V means an isomorphism

C( V( ), –) =∼ D( U(– ), )

of bifunctors C × D → Set, equivalently, an adjunction between V (left) and Uop (right);
equivalently, an adjunction between U (left) and Vop (right).

Of course, these two new kinds of adjointness also have descriptions corresponding to the other
ways of describing adjoint functors noted in Theorem 7.3.3. For instance, given U : Cop → D , to
find a contravariant right adjoint to U is equivalent to finding, for each object D of D , a
representing object for the contravariant functor D(D, U(–)) : Cop → Set ; in other words, an
object RD of C with a map D → U(RD ), which is universal among objects of C with such
maps.

For an example of such an adjunction, recall that in Exercise 6.6:5 we showed that for every
partially ordered set P, the hom-set h2(P) has a natural lattice structure. Given an arbitrary
lattice L, one can find a partially ordered set P = V(L) with a universal map of L into the
lattice h2(P). One finds that the universal property in question makes the given functor
h2: POSetop → Lattice and the new functor V : Latticeop → POSet mutually right adjoint. We
will look more closely at this and similar examples in §9.11.

Exercise 7.12:1. Show that if P and Q are partially ordered sets, then a contravariant right
adjunction between Pcat and Qcat is equivalent to a Galois connection between P and Q,
in the generalized sense noted at the end of Exercise 5.5:2.

Contravariant left adjunctions rarely come up in algebra. It is shown in [39] that no such
nondegenerate adjunctions exist among a wide class of categories of algebras.

It may seem peculiar that we got three phenomena – covariant adjointness, contravariant right
adjointness, and contravariant left adjointness – as the orbit of one phenomenon (the first of these)
under a group of symmetries (interchanging C and Cop and interchanging D and Dop) that
seems to have the structure Z2 × Z2. A closer look at the situation shows the following: The
orbit of our original adjointness concept under the natural action of Z2 × Z2 has four elements.
However, in listing ‘‘distinct phenomena’’, we form the orbit-space of this 4-element set under the
action of Z2 which interchanges C and D , since we consider phenomena permuted by this
action as the ‘‘same’’ phenomenon, just differently labeled. This action interchanges the two
covariant adjointness situations, but fixes each of the contravariant situations, leading to our set of
‘‘three phenomena’’.

There is yet another sort of symmetry we might consider: that given by reversing the direction
(and hence order of composition) of the functors in our statements. In general, results of category
theory are not preserved by this symmetry, because Cat is not equivalent to Catop. But results
and concepts which are not specific to Cat , but can be proved or formulated for arbitrary
Cat-based categories, can be dualized in this way. We noted in the preceding section that the
concept of adjointness is meaningful in an arbitrary Cat-based category; hence we can apply this
duality to it. It turns out to take each of the three kinds of adjointness to itself, leaving the roles of
C , D , ε and η unchanged, but interchanging U and F. Indeed, the invariance of adjointness
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under this symmetry is the reason for the unexpected result Proposition 7.11.4(ii).

Exercise 7.12:2. Prove the claim made above that Cat is not equivalent to Catop. (You can do
this by finding an appropriate statement which holds for Cat but whose dual does not.)

One might ask why, if Cat is not equivalent to Catop, the concept of Cat-based category
should be invariant under reversing order of composition. Briefly, this is because in applying that
reversal to a statement about a Cat-based category X , one does not replace Cat by Catop in
the definition of the categories occurring in the statement. Rather, one replaces composition maps
X(D , E) × X(C , D) → X(C , E) by maps in which the order of factors in the product on the left is
reversed; in other words, one uses the symmetry of the product bifunctor on Cat . (Replacing Cat
by Catop would instead redefine composition as being given by functors X(C , E) →
X(D , E) I��I X(C , D).)

This is similar to the fact that though Set is non-self-dual, the symmetry of its product
bifunctor allows us to define a functor ( – )op: Cat → Cat , and use this in ordinary (i.e.,
Set-based) category theory to prove the dual of any true result. (And applying this endofunctor of
Cat to the concept of Cat-based category, one concludes that the latter concept is also symmetric
under reversal of the order of composition of its ‘‘morphisms of morphisms’’.)
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Chapter 8. Varieties of algebras.

We are at last ready to set up a general theory of algebras!

We recall our convention that a fixed universe U is assumed chosen, and that when the
contrary is not stated, a ‘‘set’’ (or for emphasis, ‘‘small set’’) means a set which is a member of
U, while a ‘‘category’’ means a U-legitimate category. However, the universe will almost never
be referred to by name, hence we will feel free to use the symbol U in unrelated ways, in
particular, for underlying-set functors.

We will begin by formalizing some of the ideas we sketched in §§1.4-1.7. (The reader who
was not previously familiar with them might review those sections before beginning this formal
development.)

8.1. The category Ω-Alg . In studying structures consisting of a set |A| given with some
operations, we will want to say that two such structures are of the same type if we have indexed
their operations in the same way, with corresponding operations having the same arities (cf. § 1.4).
Hence, below, we shall define a ‘‘type’’ to mean an index set for the operations, with an arity
associated to each operation-symbol.

Without loss of generality one could index the operations by an ordinal, and take the arities to
be cardinals; and indeed, one or both of these assumptions is usually made. But allowing more
general index sets and arities in our definition involves no complication, so let us do so.

Definition 8.1.1. A type will mean a pair Ω = ( |Ω |, ariΩ), where |Ω | is a set, and ariΩ
(written ari when there is no danger of ambiguity), is a map from |Ω | to sets. The elements
s∈ |Ω | are called the operation-symbols of Ω, and for each such s, the set ari(s) is called the
arity of the operation-symbol s.

Ω is called finitary if all of its operation-symbols have finite arity, i.e., if for all s∈|Ω |,
card(ari(s)) < ω.

We will call a type Ω conventional if |Ω | is an ordinal, and for each s∈ |Ω |, ari(s) is a
cardinal. In this situation, Ω may be expressed by giving the arity function as a tuple of
cardinals, (ari(0), ari (1), ... ).

(As mentioned in §1.4, a more common notation in the literature for the arity of s is n(s).)

Definition 8.1.2. If Ω is a type, an algebra of type Ω will mean a pair A = ( |A|, (sA )s∈ |Ω | ),
where |A| is a set, and for each s∈ |Ω |, sA is an ari(s)-ary operation on |A|, i.e., a map
|A| ari (s) → |A|.

For example, the type Ω which indexes the operations of groups has three operation-symbols,
which we may write μ , ι , ε , with ari(μ) = 2, ari(ι) = 1, ari(ε) = 0. Every group is an algebra
of this type, but not every algebra of this type is a group, since there are algebras of this type not
satisfying the associative, inverse and identity laws. If we replaced this by a ‘‘conventional type’’
and followed the usage that represents a type by its arity function, we would say that groups are
certain ‘‘algebras of type (2, 1, 0)’’.

If R is a ring, then right or left R-modules can be described as certain algebras of type Ω ,
where |Ω | = {+, –, 0} |R |, and all these operation-symbols are unary except +, which is
binary, and 0, which is zeroary. Here the first three operations specify an additive group
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structure, while the remaining generally infinite family of operations gives the scalar multiplications
by all members of R. To translate this type into conventional notation, one would index |R | by
an ordinal α , and let |Ω | be the ordinal 3 +α ; here the convenience of allowing more general
sets for |Ω | is clear.

For an example in which it is natural to regard some operations as having for their arities sets
other than cardinals, let n be a fixed positive integer, and for every commutative ring R, let d
denote the determinant function taking n × n matrices over R to elements of R. Suppose one
wishes to construct from each commutative ring R = ( |R |, +, –, 0, ., 1) the object
( |R |, +, –, 0, d), i.e., to study the set of elements of R as an additive group with an n × n
‘‘determinant’’ operation. Now one would conventionally consider d as n2-ary, which would
mean writing a typical value as d(x0, ... , xn2 –1). But it is more natural to treat d as an
(n × n)-ary operation, and write d(x00, x01, ... , xn–1 n–1 ), i.e., to call the typical argument of d
the (i, j) argument where 0 ≤ i, j < n, rather than the mth argument where 0 ≤ m < n2.

If there were a significant advantage in restricting ourselves to conventional algebra-types, then
we might say, ‘‘Let us use conventional types in our formal development. We can always translate
our results into the form appropriate to a particular area of mathematics when we make our
applications.’’ But I see no advantage in such a restriction. At some points we will indeed find it
convenient to restrict attention to cardinal-valued arities, but even there, we will put no restriction
on the set of operation-symbols.

Let us note here the unfortunate ambiguity of the word ‘‘algebra’’ – there is the ring-theoretic
concept of ‘‘an algebra over a commutative ring’’, and the present much broader concept used in
General Algebra. It would be desirable if a new word could be coined to replace one of them; but
there is a large literature in both fields, so it would be hard to get such a change accepted. Since
the literature in ring theory is the more enormous of the two, I suppose it is the general-algebra
definition that would have to change.

In situations where there is a danger of misunderstanding, authors generally specify ‘‘an algebra
over a commutative ring k’’ on the one hand, or ‘‘an algebra in the sense of Universal Algebra’’
on the other. The Russians shorten the latter phrase to ‘‘a universal algebra’’, which is easier to
say, but somewhat inappropriate, since it suggests an object with a universal property. (The term
‘‘algebra in the sense of Universal Algebra’’ should now presumably be changed to ‘‘algebra in the
sense of General Algebra’’, for the reasons mentioned in §0.5.)

Incidentally, what is the original source of the word ‘‘algebra’’? It goes back to a 9th century
Arabic text, Al-jabr w’al-muqa-balah; the title is composed of two technical terms concerning the
solving of equations, whose literal meanings are something like ‘‘restoration and comparison’’.
This title was transliterated, rather than translated, into medieval Latin, so that the book became
known as Algebra, which eventually became the name of the subject. Not only this work but also
its author, abu-Ja‘far Muh.ammed ibn-Mu-sa-, has entered mathematical language: He was known as
Al-Khuwa-rizmi, ‘‘the person from Khuwarizm’’; this name was rendered as algorism, and, further
distorted in English, has become the word algorithm.

Of course, we want to make the set of Ω-algebras into a category, so:

Definition 8.1.3. A homomorphism between algebras of the same type means a map of underlying
sets which respects operations.

Precisely, if A and B are algebras of type Ω, a homomorphism A → B means a set map
f : |A| → |B| such that for all s∈ |Ω | and (xi )i∈ari(s) ∈|A| ari (s), one has
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f (sA ((xi )i∈ari(s))) = sB (( f (xi ))i∈ari(s)).

For each type Ω, the category of all Ω-algebras, with homomorphisms for the morphisms, will
be denoted Ω-Alg.

Note that when applying a set map to a tuple of elements, one generally drops one pair of
parentheses, e.g., shortens f ((x1, x2, x3)) to f (x1, x2, x3), or u((ai )i∈I ) to u(ai ). So the
above equation saying that f respects s can be simplified to f (s (xi )) = s ( f (xi )). If one
abbreviates the ari(s)-tuple (xi ) to x and uses parenthesis-free notation for functions, one can
still further shorten this to f s x = s f x, or, distinguishing between f , which acts on elements of
|A|, and the induced map on ari(s)-tuples of such elements, f s x = s f ari(s) x.

Definition 8.1.4. Let A be an Ω-algebra.
Then a subalgebra of A means an Ω-algebra B such that |B| ⊆ |A|, and such that the

operations of B are the restrictions of the corresponding operations of A; equivalently, such that
the inclusion map |B| → |A| is a homomorphism B → A. In this situation we will, by a slight
abuse of notation, write ‘‘B ⊆ A ’’. We shall consider the set of subalgebras of A to be partially
ordered by inclusion (of underlying sets).

A homomorphic image of A means an algebra B given with a homomorphism f : A → B
which is surjective on underlying sets.

Another notational problem: If A is an algebra, and if we have shown that some subset
S ⊆ |A| is closed under the operations of A, we have no simple notation for ‘‘the subalgebra of
A whose underlying set is S ’’. We shall give such algebras ad hoc names when we refer to them,
though it is tempting to fall back on the sloppy usage which does not distinguish between an
algebra and its underlying set.

Lemma 8.1.5. If A is any Ω-algebra, the class of subalgebras of A is ‘‘closed under
intersections’’; i.e., for every set of subalgebras Bi of A (i∈I ), the intersection of the
underlying sets, ∩ I |Bi |, is the underlying set of a subalgebra, which we may loosely call
∩ I Bi . Hence the subalgebras of A form a complete lattice, with meets given by intersections of
underlying sets.

If X is any subset of |A|, the intersection of the underlying sets of all subalgebras of A
containing X will be the underlying set of the least subalgebra containing X, called the
subalgebra generated by X. We say that A is generated by a subset X ⊆ |A| if the subalgebra
of A generated by X is all of A. �

As we observed in Chapter 1, a zeroary operation on a set is equivalent to a choice of a
distinguished element of that set. Note that if Ω is a type with no zeroary operation-symbols,
then the empty set can be made an Ω-algebra in a unique way. On the other hand, the empty set
does not admit any zeroary operations, so if Ω has any operation-symbols of arity 0, all
Ω-algebras are nonempty. The least element of the subalgebra lattice of an algebra A of any type
Ω will be the subalgebra generated by the empty set; this can also be described as the subalgebra
generated, under the operations of positive arity, by the values of the zeroary operations. So if the
type has zeroary operations, this least subalgebra is nonempty, while if it does not, it is empty.

Empty algebras sometimes constitute special cases in algebraic considerations, and many
general algebraists avoid this ‘‘problem’’ by requiring in their definitions that an algebra have a
nonempty underlying set. But the problem gets back at them: For instance, they can no longer
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define subalgebra lattice as above, since when an algebra has no zeroary operations, an intersection
of nonempty subalgebras can be empty. Thus they make definitions such as ‘‘the subalgebra lattice
of an algebra A consists of all subalgebras of A, and also the empty set if A has no zeroary
operations.’’ I feel strongly that it is best not to exclude empty algebras, but to allow them when
dealing with a type without zeroary operations, and accept the need to occasionally give special
arguments for them.

Let us note that in the category Ω-Alg we can construct products in the manner to which we
have become accustomed: If (Ai )i∈I is a family of Ω-algebras, then the set I

��
I I |Ai | becomes an

Ω-algebra P under componentwise operations; that is, for each s∈ |Ω | and ari(s)-tuple of
elements of I

��
I I |Ai |, say

(aj )j∈ari(s) = ((aij )i∈I )j∈ari(s) ∈ |P | ari (s) = ( I
��
I I |Ai | )

ari (s),

we define

sP (aj ) = (sAi
((aij )j∈ari(s)))i∈I .

The resulting algebra P is easily seen to have the universal property of the product I
��
I I Ai in

Ω-Alg . Products in Ω-Alg are often called by the traditional term, direct products.
Similarly, given a pair of homomorphisms of Ω-algebras f, g: A → B, their difference kernel

as set maps will be the underlying set of a subalgebra of A, which will constitute a difference
kernel of f and g in Ω-Alg .

Since general limits can be constructed from products and difference kernels (Proposition 7.6.6),
we have

Proposition 8.1.6. Let Ω be any type. Then the category Ω-Alg has small limits, which can be
constructed by taking the limits of the underlying sets and making them Ω-algebras under pointwise
operations.

Explicitly, if D is a small category and F: D → Ω-Alg a functor, then the set

Lim←__D |F(D) | = {(aD ) ∈ I
��
I D∈Ob(D) |F(D) | � (∀ f ∈D(D1, D2)) aD2

= F( f )(aD1
)}

is the underlying set of a subalgebra of I
��
I D F(D), which constitutes a limit of F in Ω-Alg. �

Exercise 8.1:1. Show that if empty algebras are excluded from Ω-Alg , the resulting category can
fail to have small limits.

On the other hand, colimits and other left-universal constructions are not, in general, the same
in Ω-Alg as in Set . We will construct general colimits in §8.3; but there are two cases that we
can obtain now. We first need to note

Lemma 8.1.7. Let A be an Ω-algebra and E ⊆ |A| × |A| an equivalence relation on |A|. Then
the following conditions are equivalent:

(i) The set |A| ⁄ E can be made an Ω-algebra A ⁄ E in such a way that the canonical map
|A| → |A| ⁄ E is a homomorphism A → A ⁄ E.

(ii) E is the equivalence relation on |A| induced by a homomorphism of Ω-algebras with
domain A. (I.e., there exists an Ω-algebra B and a homomorphism f : A → B such that E =

10/8/98 G. M. Bergman

264 Chapter 8. Varieties of algebras.



{(x, y)∈|A| × |A| � f (x) = f (y)}.)

(iii) E is the underlying set of a subalgebra of A × A.

Further, if R is any subset of |A| × |A|, and E the intersection of all underlying sets of
subalgebras of A × A which contain R, and which form equivalence relations on |A|, then A ⁄ E
will be universal (initial ) among algebras B given with homomorphisms f : A → B such that for
all (r, s)∈R, f (r) = f (s). �

Definition 8.1.8. If A is an Ω-algebra, then an equivalence relation E on |A| which is the
underlying set of a subalgebra of A × A will be called a congruence on the algebra A, and A ⁄ E
will be called the quotient algebra (or factor-algebra) of A by the congruence E.

The complete lattice of all congruences on A is called the congruence lattice of A. The least
congruence containing a given subset R ⊆ |A| × |A| is called the congruence on A generated by
R, and the quotient of A by this congruence is often called the algebra obtained by imposing on
A the family of relations R, or loosely, the family of relations (x = y)(x, y)∈R .

I say ‘‘loosely’’ in the last sentence because (as we noted in passing in §3.3), there is an abuse
of notation in writing such a relation as ‘‘x = y’’. The symbol x = y usually denotes a
proposition, i.e., an assertion about elements of A, and this proposition is generally false in the
case where the relation is one we wish to impose on A! What is true is that in our quotient
algebra the images of x and y satisfy the corresponding relation; and when there is no danger of
ambiguity, one may denote these images by the same symbols x and y as the original elements
of A, so that x = y becomes a true statement in that quotient algebra. But in more precise
notation, the statement which is true in the latter algebra must be written x = y or [x] = [y]. We
will be precise about this here, but in informal algebraic use, the language of ‘‘imposing the
relation x = y on A’’ is very convenient.

Many workers in general algebra and logic make a convention half-way between these extremes,
defining ‘‘relations’’ or ‘‘identities’’ to be symbols of the form ‘‘x ∼∼ y’’. (E.g., [15, p.234].)
These are essentially just our ordered pairs (x, y), written in a more suggestive form. A notation
that allows one to avoid ambiguity while using the same symbols for elements of different algebras
is that of Model Theory, where one writes A x = y to mean ‘‘x = y holds in A’’, so that this is
distinguishable from A ⁄E x = y.

Using the quotient construction, we immediately get

Lemma 8.1.9. For any type Ω, the category Ω-Alg has difference cokernels. Namely, the
difference cokernel of a pair of maps f, g: A →→ B may be constructed as the quotient B ⁄ E where
E is the congruence on B generated by {( f (x), g(x)) � x∈ |A|}. �

The other left universal construction that we can get easily is that of direct limit, under
appropriate restrictions on the arities of our operations:

Lemma 8.1.10. If Ω is a finitary type, then Ω-Alg has direct limits, i.e., colimits over directed
partially ordered sets. Namely, suppose J is a directed partially ordered set and A: Jcat →
Ω-Alg a functor, whose values at objects and morphisms of Jcat will be written Aj ( j∈J ) and
A( j, j ′) ( j ≤ j ′∈J ) respectively. Then the Ω-algebra structures of the algebras Aj induce an
Ω-algebra structure on the set-theoretic direct limit Lim__→ J |Aj | which makes it a direct limit
algebra, Lim__→ J Aj .
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More generally, if α is an infinite cardinal, and Ω a type in which all arities have
cardinality <α , then the category Ω-Alg has direct limits over all α -directed partially ordered
sets (Definition 7.9.7), which may be constructed by giving an Ω-algebra structure to the direct
limit of the underlying sets.

Proof. We will prove the general case. Let |L | = Lim__→ J |Aj |, and let qj : |Aj | → |L | ( j∈J ) be
the coprojection maps. We wish to define an Ω-algebra structure on |L |. Given s∈|Ω | and an
ari(s)-tuple (xi )i∈ari(s) of elements of |L |, let us write each xi as qj(i )(yi ) for some j(i )∈J
and yi ∈ |Aj(i ) |. Because J is α-directed and ari(s) has cardinality <α , we can choose j∈J
majorizing all the j(i ). Taking such a j, and letting zi = A( j(i ), j)(yi )∈A( j) for each i, we
have

(8.1.11) xi = qj (zi ) for all i∈ari(s).

To define sL , let us say that whenever we have a family (xi )∈|L | ari (s) expressed as in (8.1.11)
for some j∈J, we will let

sL (xi ) = qj (sAj
(zi ))∈ |L |.

The verification that these operations sL are well-defined, and that the resulting Ω-algebra L
has the universal property of Lim__→ A, are straightforward, again by the method of ‘‘going far
enough out along the α-directed set J ’’. �

Exercise 8.1:2. Write out these final verifications.

As noted at the beginning of §7.9, the ‘‘reason’’ the above lemma holds is that in Set , direct
limits respect finite products (a case of Proposition 7.9.3) and more generally, direct limits over
α-directed partially ordered sets respect α-fold products (Proposition 7.9.8).

Since we shall prove in §8.3 that Ω-Alg has general colimits, the arity-restrictions of the
above lemma are not needed for the existence statements to hold. But they are needed for the
direct limits in question to have the descriptions given. Indeed

Exercise 8.1:3. Show by example that the last sentence of the first paragraph of Lemma 8.1.10
fails if the assumption that Ω is finitary is dropped. Specifically, show that there may not exist
an algebra with underlying set the direct limit of the |Aj |, and having the universal property of
Lim__→ Ai .

Let us note something about the definition of an α-directed partially ordered set J
(Definition 7.9.7) which will be familiar to students of logic, but perhaps not to others. Where that
definition requires the existence of upper bounds for all subsets of cardinality < α , one might feel
it more natural for a condition called ‘‘α-directedness’’ to require this for all subsets of cardinality
≤ α . However, using the definition we have given, the property of having upper bounds for all
subsets of cardinality ≤ α can be described as ‘‘α ′-directedness’’, where α ′ is the successor-
cardinal to α , while the alternative definition would give no easy way to refer to the property of
having upper bounds for all subsets of cardinality < α when α is a limit cardinal. So the
definition as given is the more versatile one.

We note that to say a partially ordered set is directed is equivalent, under Definition 7.9.7, to
saying that it is 3-directed, and also to saying it is ω-directed. The next-stronger condition, that of
having upper bounds for all countable subsets, is ω1-directedness, where ω1 is the first
uncountable ordinal (§4.5).
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Exercise 8.1:4. Suppose that in the last sentence of Lemma 8.1.10 we drop the condition that α
be infinite.
(i) Show that the resulting statement remains true (for a trivial reason) when 2 < α < ω .
(ii) Is this statement also true for α = 2?

8.2. Generating subalgebras from below. We want to construct other left universal objects in
Ω-Alg – free algebras, coproducts, arbitrary small colimits, etc.. In general, these will contain new
elements created by applying operations of Ω to tuples of the elements we start with, further
elements obtained by applying the operations to elements we get in this way, and so on. Whatever
methods we use to justify these constructions must involve showing that this iteration process
‘‘eventually ends’’.

‘‘Eventually’’ does not mean in a finite number of steps, of course – even in constructing
algebras with operations of finite arity such as groups, we needed countably many iterations. When
we have infinitary operations, we may have to continue the process still longer.

To see how long, let us examine the process by which a subset of an algebra generates a
subalgebra. Let Ω be an arbitrary type and A an Ω-algebra. Given a subset X ⊆ |A|, define a
sequence of subsets of |A| indexed by the ordinals:

(8.2.1)

S(0) = X,

S(α +1) = S(α) ∪ {sA (xi ) � s∈ |Ω |, xi ∈S(α) (i∈ari(s))},

S(α) = ∪β<α S(β) for α a limit ordinal > 0.

We see by induction that the S(α)’s increase monotonically. Since |A| is a small set,
successive S(α)’s cannot all be distinct, and clearly as soon as two of them are equal, the chain will
become constant. The constant value S that it assumes will contain S(0) = X and be closed
under the operations sA ; moreover, by induction on α , each S(α), and so in particular, S, is
contained in every subalgebra of A containing X. Hence S is the underlying set of the least
subalgebra of A containing X, i.e., the subalgebra generated by X.

We want to bound in terms of properties of Ω the least value of α for which S(α) = S.
(Above, we implicitly bounded it in terms of card |A|.)

We know how to show that if Ω is finitary, S = S(ω). Namely, given a finite family of
elements of S(ω), all members of this family will have been reached by some finite step S(n),
hence the value of any operation of A on this family lies in S(n+1), and hence is in S(ω). Note
that if instead of a finitary type Ω , we consider one in which all operations have arity ≤ ω , the
above conclusion is no longer true: If s∈ |Ω | is ω-ary, and we take for each nonnegative n an
element xn which first appears in S(n), then S(ω) will not in general contain
sA (x0, x1, ... , xn , ... ). This element will appear in S(ω +1), and further elements obtained from it
under the operations of A will in general appear at still later steps. However, I claim that this
process stabilizes by the ω1st step. Indeed, given a countable (possibly finite) family of elements
xi ∈S(ω1), each occurs in some S(αi ) for a countable ordinal αi ∈ω1, hence all the xi will
occur in S(α) where α = sup(αi ), and this ordinal α is still <ω1, since sup(αi ) is ≤ the
ordinal sum of the αi (defined as in (4.5.10)), which has cardinality equal to the cardinal sum of
the card(αi ), which is a countable sum of countable cardinals, hence countable. Hence the value
at (x1, ... , xn , ... ) of any operation of countable arity lies in S(α +1) ⊆ S(ω1), showing that
S(ω1) is closed under the operations of A, and hence that (8.2.1) stabilizes by the ω1st step. The
next exercise shows that in this statement we cannot replace the estimate ω1 by any smaller
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ordinal (such as ω2 or ωω).

Exercise 8.2:1. Let γ be any uncountable ordinal, and let A be an algebra with underlying set γ
and three operations: the zeroary operation taking the value 0∈γ , the unary operation taking
α∈γ to α +1 if α +1 < γ , or to 0 if α +1 = γ , and the ω-ary operation taking (α0,α1, ... )
to ∪αi if this is < γ , to 0 otherwise. Taking X = ∅ ⊆ |A|, determine explicitly the

sequence of subsets S(α) , and show that this sequence does not become constant until S(ω1).

The same argument will show that if all members of |Ω | have arity ≤ ω1, then we get our
desired algebra as S(ω2), that if all arities are ≤ ω2, we get it as S(ω3), etc.; and it might
appear that the proper general statement is that if α is any infinite ordinal of cardinality greater
than the arities of all members of |Ω |, then S(α) is closed under the operations of Ω .

But this is not quite right. The first value of α for which it fails is ωω . If A has operations
of arities ω , ω1, ω2 etc. (all the infinite cardinals <ωω ), then we have seen that the chain of
subalgebras S(ω) ⊆ S(ω1) ⊆ S(ω2) ⊆ ... can be strictly increasing. If we now choose an element
xi ∈S(ωi+1) – S(ωi ) for each i, we get a countable family of elements of S(ωω ), and we see that
the value of an operation of (merely!) countable arity on this family cannot be expected to lie in
S(ωω ).

Exercise 8.2:2. Construct an explicit example with the properties sketched above, i.e., an algebra
A all of whose operations have arities <ωω , and a subset X ⊆ |A|, such that the chain of
subsets S(α) does not reach its maximum value at S(ωω ). (Suggestion: Adapt the idea of the
preceding exercise.)

To state the right choice of α , let us recall from Definition 4.5.17 that an infinite cardinal α
is called regular if, as a partially ordered set, α has no cofinal subset of cardinality <α , and that
a cardinal that is not regular is called singular. What we have run into is the first singular infinite
cardinal, ωω . Fortunately, regular cardinals are quite abundant – as shown in Exercise 4.5:12, the
cardinal ω is regular, and every infinite successor cardinal, i.e., every cardinal of the form ωα +1
for α an ordinal, is also regular. We can now show

Lemma 8.2.2. Let Ω be a type, and γ a regular cardinal > card(ari(s)) for all s∈ |Ω |. Then
for any Ω-algebra A, and any subset X ⊆ |A|, if we define the chain of sets S(α) by (8.2.1),
then S(γ ) is closed under the operations of A, hence is the underlying set of the subalgebra of A
generated by X.

Proof. Consider any s∈ |Ω | and elements xi ∈S(γ ) (i∈ari(s)). Since γ is a limit ordinal,

S(γ ) = ∪β <γ S(β), hence each xi lies in some S(β i ) (βi ∈γ ). Since ari(s) < γ and γ is
regular, {βi � i∈ari(s)} is not cofinal in γ , hence this set is majorized by some β < γ . For this

choice of β , all xi lie in S(β ), hence s(xi ) ∈ S(β +1) ⊆ S(γ ), as required. �

In the next section we will apply the above result to the construction of left universal objects.
For later use, we record the following generalization of the familiar observation that if an

algebra with finitary operations is generated by a set X, each element of the algebra can be
expressed in terms of finitely many elements of X.

Lemma 8.2.3. Let Ω be a type, and γ a regular infinite cardinal > card(ari(s)) for all s∈ |Ω |.
Let A be any Ω-algebra, and X any generating set for A. Then each element of |A| belongs to
the subalgebra of A generated by a subset X0 ⊆ X of cardinality < γ .
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Sketch of Proof. It is easy to verify that the set of elements of |A| belonging to subalgebras
generated by < γ elements of X forms a subalgebra. As it contains X, it must be all of |A|. �

Exercise 8.2:3. Write out the easy verification referred to. Show that the result becomes false if
the regularity assumption on γ is deleted.

It may now seem anomalous that in our results on direct limits over α-directed partially ordered
sets, Proposition 7.9.8 and Lemma 8.1.10, we did not have to assume α regular! This is
explained by

Exercise 8.2:4. Show that if α is a singular infinite cardinal and J an α-directed partially
ordered set, then J is also α ′-directed, where α ′ is the successor cardinal to α .

Thus, if J is α-directed for a cardinal α greater than the arities of all operations of Ω , it
is in fact α ′-directed for a regular cardinal α ′ greater than the arities of those operations.

We could have avoided using the concept of regular cardinal in this section by taking γ in the
our results to be ‘‘the successor cardinal of the least infinite upper bound of the arities of the
operation-symbols of Ω’’. However, in the case where Ω is finitary, this would have given γ =
ω1, whereas the development we have used shows that ω suffices in that important case.

8.3. Terms and left universal constructions. Given a type Ω and a set X, Lemma 8.2.2 can
be used to obtain a bound on the size of an Ω-algebra generated by an X-tuple of elements, and
hence to establish the solution set hypotheses needed by the existence results for left universal
constructions developed in §7.10. Now such a bound can be thought of as an estimate of the
number of ‘‘Ω-algebra terms in an X-tuple of variable-symbols’’, and rather than just giving an
existence proof, we can, with little additional work, construct such a set of terms, thus laying the
groundwork for the more explicit approach to universal constructions that we sketched in §2.2.

Let us first define precisely the concept of a ‘‘term’’. At the beginning of this course
(Definition 1.5.1) we described ‘‘the set of group-theoretic terms in the elements of X ’’ as a set T
given with certain structure: a map of X into it, and a family of ‘‘formal group-theoretic
operations’’ satisfying some further conditions. If we make the corresponding definition for
Ω-algebras, we see that the ‘‘formal operations’’ in fact make the set T into an Ω-algebra. (We
could not similarly say that formal operations made the set of group-theoretic terms into a group,
because they did not satisfy the group identities. The difference is that in the present treatment, we
are studying general algebras of type Ω before introducing identities.) So we state the definition
accordingly:

Definition 8.3.1. Let Ω be any type, and X any set. Then an ‘‘Ω-term algebra on X’’ will
mean a pair (F, u), where F is an Ω-algebra, and u: X → |F | a set map, such that

(i) the map u: X → |F |, and all the maps sF : |F | ari (s) → |F | are one-to-one,

(ii) the images of the above maps in |F | are disjoint,

(iii) the union of these images is all of |F |, and

(iv) F is generated as an Ω-algebra by X.

Note that the first three conditions of the above definition can be stated as a single condition: If
we write for disjoint union of sets, and consider the map u and the operations sF as defining
a single map X s∈ |Ω | |F | ari (s) → |F |, then (i)-(iii) say that this map is bijective.

Since the concept of Ω-algebra involves no identities, the idea of constructing free objects by
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taking ‘‘terms modulo identities’’ simplifies to

Lemma 8.3.2. Let Ω be any type, and X any set. Suppose there exists an Ω-term algebra
(F, u) on X. Then (F, u) is a free Ω-algebra on X.

Proof. To prove that (F, u) has the universal property of a free Ω-algebra on X, suppose A is
an Ω-algebra and : X → |A| any set map. We wish to construct a homomorphism f : F → A
such that = fu. Intuitively f should represent ‘‘substitution of the particular values (x) for
the variable-symbols u(x) in our terms’’.

Let us write |F | as the union of a chain of subsets S(α) as in (8.2.1), starting with the
generating set S(0) = u(X ). Assume recursively that f has been defined on all the sets S(β) with
β <α ; we wish to define f on S(α). If α = 0, S(α) consists of elements u(x) (x∈X ), all
distinct, and we let f (u(x)) = (x)∈ |A|. If α is a successor ordinal β +1, then an element which
first appears in S(α) will have the form sF (ti ), where s∈ |Ω | and each ti ∈ |S(β)|. Thus the
f (ti ) have already been defined, and we define f (sF (ti )) = sA ( f (ti )). If α is a nonzero limit
ordinal, then S(α) = ∪β<α S(β), and having defined f consistently on S(β) for all β <α , we
have defined it on S(α).

In each case, the one-one-ness condition (i) and the disjointness condition (ii) of
Definition 8.3.1 insure that if an element of F occurs at some stage as u(x) or sF (ti ), it cannot
occur (at the same or another stage) in a different way as u(x ′) or s ′F (t ′i ). Hence our definition
is unambiguous. By construction, f is a homomorphism of Ω-algebras and satisfies fu = ; and
by (iv) it is unique for this property. �

I should mention that the technique of explicit induction or recursion on the forms of elements,
as in the above proof, is one that seldom has to be used. Arguments showing that if an algebra A
is generated by a set X of elements having some property P, then all elements of X satisfy P,
can generally be carried out simply by verifying that the set of elements of A satisfying P is
closed under the algebra operations, hence forms a subalgebra containing X, hence is all of |A|.
On the other hand, if we want to construct some map on the elements of the free algebra A on a
set X starting from its values on elements of X, then (assuming ‘‘map’’ means homomorphism)
we can do this using the universal property of A as a free object. In the case of free objects of
Ω-Alg , we have just proved that universal property by ‘‘recursion on elements’’, but this result
frees us from having to repeat that argument in similar situations.

We have not proved the converse statement, that if a free Ω-algebra on X exists, it will be an
Ω-term algebra on X. That is what we would want if we planned to prove the existence of free
algebras first, and deduce from this the existence of term algebras; but we shall be going the other
way. However, this implication is not hard to prove; so let us make it

Exercise 8.3:1. Show (without assuming the existence of Ω-term algebras) that if (F, u) is a free
Ω-algebra on X, then it is an Ω-term algebra on X.

(Hint: If F fails to satisfy one of conditions (i)-(iv) of Definition 8.3.1, you want to find a
pair (A, ) for which the universal property of (F, u) fails. If condition (iii) or (iv) fails, make
A a subalgebra of F ; if (i) or (ii) fails, obtain A by replacing one element p of F by two
elements p1 and p2, and defining the operations appropriately on |F | – {p} ∪ {p1, p2}.
Since the operations of Ω-algebras are not required to satisfy any identities, any definition of
these operations yields an Ω-algebra.)

Let us now prove
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Theorem 8.3.3. Let Ω be any type, and X any set. Then there exists an Ω-term algebra on X;
equivalently, a free Ω-algebra on X.

Proof. Let ∗ be any element not in |Ω |, and γ a regular cardinal which is > card(ari(s)) for
all s∈ |Ω |. We define recursively a chain (S(α))α ≤γ of sets of ordered pairs, by taking

S(0) = {(∗, x) � x∈X },

S(α+1) = S(α) ∪ {(s, (xi )) � s∈ |Ω |, (xi )∈(S(α))ari(s)},

S(α) = ∪β <α S(β) if α is a limit ordinal > 0.

Let |F | = S(γ ), and define u : X → |F |, and maps sF : |F | ari (s) → |F | (s∈ |Ω | ), by

u(x) = (∗, x) (x∈X ),

sF (xi ) = (s, (xi )) (s∈|Ω |, (xi )∈|F | ari (s)).

That the operations sF carry |F | = S(γ ) into itself follows from our choice of γ , by the same
argument we used in Lemma 8.2.2. Thus these operations make |F | an Ω-algebra F. That F
satisfies conditions (i)-(iii) follows from the set-theoretic fact that an ordered pair uniquely
determines its first and second components. To get (iv), one verifies by induction that a subalgebra
containing X must contain each S(α). �

Since we have free Ω-algebras on all sets X, these give a left adjoint to the underlying-set
functor from Ω-Alg to Set .

Exercise 8.3:2. Show how we could, alternatively, have gotten the existence of such an adjoint
using Freyd’s Adjoint Functor Theorem (Theorem 7.10.4) and Lemma 8.2.2.

Let us fix a notation for these functors.

Definition 8.3.4. The underlying-set functor of Ω-Alg and its left adjoint, the free algebra
functor, will be denoted UΩ : Ω-Alg → Set and FΩ : Set → Ω-Alg respectively.

A symbol such as FΩ({x0, ... , xn–1}) may be abbreviated to FΩ(x0, ... , xn–1) when there is
no danger of misunderstanding.

The ‘‘danger of misunderstanding’’ referred to is that symbol FΩ(X ) for the free Ω-algebra on
a set X might be misinterpreted, under the above convention, as meaning the one-generator free
algebra FΩ({X }). But in context, there is almost never any doubt as to whether a given entity is
meant to be treated as a free generator, or as a set of free generators.

There is another sort of looseness in our usage, which we noted in Chapter 2. Although we
have formally defined free algebras to be pairs (F, u), we also sometimes use the term for the first
components of such pairs, thought of as algebras ‘‘given with’’ the set-maps u. (E.g., when we
spoke of the free-algebra functor above, the values of the functor were algebras F, not ordered
pairs (F, u); the maps u are the values of the unit of the adjunction, η(X ) : X →
UΩ(X )(FΩ(X )).) At other times, we speak of an algebra F as being free on a given set of its
elements, without specifying an indexing of this set by any external set (though we can always
index it by its identity map to itself). Finally, we may speak of an object as being ‘‘free’’,
meaning that there exists a generating set on which it is free, but without specifying a particular
such set, as when we say that a subgroup of a free abelian group is free abelian. So we need to be
sure it is always clear which version of the concept we are using.
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The next exercise shows that in a category of the form Ω-Alg , and in certain others, the last
two of the above senses of ‘‘free algebra’’ essentially coincide.

Exercise 8.3:3. (i) Show that a free Ω-algebra is free on a unique set of generators. That is, if
(F, u) is a free Ω-algebra, then the image of the set map u, and hence also the cardinality of
the domain of u, are determined by the Ω-algebra structure of F. (Hint: Definition 8.3.1.)
(ii) Is the analogous statement true for free groups? Free monoids? Free rings?
(iii) Same question for free upper (or lower) semilattices.
(iv) Same question for free lattices. (If you know the structure theorem for free lattices this is
not hard. Even if you do not, a little ingenuity will yield the answer by a direct argument.)

Exercise 8.3:4. (i) Show that every subalgebra A of a free Ω-algebra F is free.
In the standard beginning graduate algebra course one learns that the same statement is true

of free abelian groups, and it is a basic result of group theory that it is true for free groups. But
(ii) Is the analogous statement true for free monoids? Free rings? Free upper semilattices?
Free lattices?

Exercise 8.3:5. (i) Let Ω be a finitary type without zeroary operation-symbols, and FΩ(x)
the free Ω-algebra on a single generator x. Show that the monoid of endomorphisms
End(FΩ(x)) (under composition) is a free monoid. If you wish, you may for simplicity assume
that |Ω | consists of a single binary operation-symbol (since even in this case, the description of
the free generating set for the monoid End(FΩ(x)) is nontrivial).
(ii) Does the result of (i) remain true if the assumption that Ω is finitary is removed?
(iii) Show that the corresponding result is never true if Ω has zeroary operations. Can you
describe the monoid in this case?
(iv) If all operation-symbols of Ω have arity 1, describe the monoid End(FΩ(x)) precisely
in terms of |Ω |.

The next result is easily seen from the explicit description of free Ω-algebras in our proof of
Theorem 8.3.3.

Corollary 8.3.5 (to proof of Theorem 8.3.3). If a: X → Y is an injective (respectively surjective)
map of sets, then the induced map of free Ω-algebras FΩ(a) : FΩ(X ) → FΩ(Y ) is likewise
injective (surjective) on underlying sets. �

We can get the same result in a different way in a more general context, though we need some
fussy arguments involving empty algebras:

Exercise 8.3:6. (i) Show that every functor A : Set → Set carries surjective maps to surjective
maps, and carries injective maps with nonempty domains to injective maps. (Hint: Use right
and left invertibility.)
(ii) Show that the corresponding statement is not true for maps with empty domains.
(iii) Show, however, that if A has the form U F, where U is a functor from some category
to Set , and F is a left adjoint to U, then A carries maps with empty domain to injective
maps.
(iv) Deduce Corollary 8.3.5 without calling on our explicit description of free Ω-algebras.

Using free algebras, we can obtain other left universal constructions. A basic tool will be
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Definition 8.3.6. Let Ω be a type, X a set, and (FΩ(X ), uX ) a free Ω-algebra on X. An
Ω-algebra relation in an X-tuple of variables will mean an element (s, t )∈|FΩ(X ) | × |FΩ(X ) |
(often informally written ‘‘s = t’’ ). An X-tuple of elements of an Ω-algebra A is said to
satisfy the relation (s, t) if the unique homomorphism f : FΩ(X ) → A such that fuX = has the
property f (s) = f (t).

If R ⊆ |FΩ(X ) | × |FΩ(X ) | is a set of relations, then an Ω-algebra presented by generators X
and relations R will mean an initial object (B, w) in the category whose objects are pairs (A, )
with A an Ω-algebra and an X-tuple of elements of |A| satisfying all the relations in R, and
whose morphisms are homomorphisms of first components respecting second components;
equivalently, a representing object for the functor Ω-Alg → Set associating to every Ω-algebra A
the set of X-tuples satisfying all the relations in R. Such an algebra B will be denoted
<X� R >Ω-Alg , or <X� R > when there is no danger of ambiguity.

(If we wanted to be more precise, we might write our relations as (s, t, (FΩ(X ), uX )), since
formally, a given pair of elements s and t can belong to underlying sets of various free algebras.
But to avoid messy notation, we will assume that there is no ambiguity as to which free algebra is
meant. Also, strictly speaking, the representing object should be given as a pair (< X� R >, w),
where w is the canonical map X → | < X� R> |. But again we will generally call < X� R> the
representing object, and leave it understood that w is there if we need to refer to it.)

Theorem 8.3.7. Let Ω be a type. Then Ω-Alg has algebras <X� R > presented by arbitrary
sets of generators X and relations R.

Proof. < X� R> can be constructed as the quotient of FΩ(X ) by the congruence generated by
R. �

Exercise 8.3:7. Give an alternative proof of the above theorem using the results of §7.10.

Theorem 8.3.8. The category Ω-Alg has all small colimits.

Proof. By Proposition 7.6.6 (last statement), it is enough to show that Ω-Alg has difference
cokernels of pairs of morphisms, and small coproducts. We obtained difference cokernels in
Lemma 8.1.9; we shall now construct the coproduct of a small family of Ω-algebras (Ai )i∈I .

We assume without loss of generality that the Ai have disjoint underlying sets (since we can
replace them with disjoint isomorphic algebras if they do not). Let A be the algebra presented by
the generating set ∪ |Ai | and, for relations, all the relations satisfied within the separate Ai ’s.
(Precisely, we take for relations the images in |FΩ(∪ I |Ai | ) | × |FΩ(∪ I |Ai | ) |, under the canonical
maps FΩ( |Aj | ) → FΩ(∪ I |Ai | ), of all the relations (s, t )∈|FΩ( |Aj | ) | × |FΩ( |Aj | ) | holding in the
given algebras Aj .) It is easy to verify that A is the desired coproduct. �

We end this section with two exercises which assume familiarity with elementary topology,
concerning certain curious algebras with a single binary operation. The first exercise sets up a
general construction, and obtains some basic facts to give you the feel of things. The second asks
you to establish a peculiar universal property of an instance of this construction.

Exercise 8.3:8. Consider the set 2ω of all sequences (ι0, ι1, ... ) of 0’s and 1’s, topologized
using the product topology induced by the discrete topology on {0, 1}. (This space can be
naturally identified with the Cantor set.) Let us define two continuous maps α , β : 2ω → 2ω,
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by letting

α(ι0, ι1, ... ) = (0, ι0, ι1, ... ), and β(ι0, ι1, ... ) = (1, ι0, ι1, ... ).

Thus, 2ω is the disjoint union of the two copies of itself, α(2ω) and β(2ω).
Now let Ω be the type determined by a single binary operation ∗, and let us define a

covariant functor F from the category HausTop of Hausdorff topological spaces to Ω-Alg .
For every space S, the set |F(S) | will be HausTop(2ω, S ), i.e., the space of continuous
S-valued functions on 2ω. Thus, these sets are given by the covariant hom-functor h2ω :
HausTop → Set . To describe the binary operation, let u, ∈|F(S) |. Then we define u∗ to
be the function 2ω → S such that

(u∗ )(α(x)) = u(x) (u∗ )(β(x)) = (x) (x∈2ω ).

In other words, it is the map whose graph on the first half of the Cantor set looks like the graph
of u compressed horizontally, and whose graph on the second half of the Cantor set is a
similarly compressed copy of the graph of . Let F(S) = ( |F(S) |, ∗ ).
(i) Show that for every S, the map ∗ : |F(S) | × |F(S) | → |F(S) | is bijective.
(ii) Let S be any Hausdorff topological space and X any finite subset of |F(S) |. Let X0
be the set of those x∈X which (as maps 2ω → S ) are constant, and X1 the set of x∈X
which are not constant, and such that x does not belong to the Ω-subalgebra of |F(S) |
generated by X – {x}. Show that the Ω-subalgebra of F(S) generated by X can be presented
by the generating set X0 ∪ X1, and the relations x∗x = x for all x∈X0.
(iii) Show that the set of nonconstant elements of F(S) forms a subalgebra, every finitely
generated subalgebra of which is free, but that this subalgebra is not itself free.

Our definition of the binary operation ∗ above involved composing elements of F(S ) on the
right with α and β . We shall now let our construction take its tail in its mouth, by applying it
with S = 2ω. Since elements of the resulting algebra also have 2ω as codomain, we can
compose them on the left with α and β ; we shall use these constructions to get another map.

Exercise 8.3:9. Let α , β and F : HausTop → Ω-Alg be defined as in the preceding exercise,
and let A = F(2ω), an Ω-algebra with underlying set HausTop(2ω, 2ω).
(i) Show that each of the Ω-algebra homomorphisms F(α), F(β) : A → A is an embedding,
and that A is the coproduct in Ω-Alg of the images of these homomorphisms.

This is equivalent to saying that A is a coproduct of two copies of itself, with coprojection
maps F(α) and F(β); or, fixing an arbitrary coproduct of two copies of A and calling it
A I��I A, and its coprojection maps q0 and q1, it is equivalent to saying that the unique map
f : A I��I A → A satisfying f q0 = α and f q1 = β is invertible.

We now come to the peculiar universal property. Let mA : A → A I��I A be the inverse of the
above map f .
(ii) Show that if B is any Ω-algebra given with a homomorphism mB : B → B I��I B, there
exists a unique homomorphism θ : B → A such that the following diagram commutes:

B
___mB→ B I��I B

��
�
↓

θ ��
�
↓

θ I��I θ

A
___mA→ A I��I A.

(We will be able to make sense of the above universal property in Chapter 9.)
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8.4. Identities and varieties. Here is a definition that needs no introduction!

Definition 8.4.1. Let Ω be a type, X a set, and (FΩ(X ), uX ) a free Ω-algebra on X. An
identity in an X-tuple of variables will mean an element (s, t)∈|FΩ(X ) | × |FΩ(X ) |, i.e., formally
the same thing as a relation, and likewise often informally written ‘‘s = t’’. However an Ω-algebra
A will be said to ‘‘satisfy’’ the identity (s, t) if and only if every X-tuple of elements of |A|
satisfies (s, t) as a relation; that is, if and only if for every homomorphism f : FΩ(X ) → A, one
has f (s) = f (t).

The next lemma will relate identities in different sets of variables.

Lemma 8.4.2. Let Ω be a type, X a set, and (s, t)∈ |FΩ(X ) | × |FΩ(X ) | an identity in an
X-tuple of variables. Then if f : X → Y is a one-to-one set map, an Ω-algebra A satisfies the
identity (s, t) if and only if it satisfies the identity in a Y-tuple of variables, (FΩ( f )(s), FΩ( f )(t )).

Hence if γ is a regular cardinal such that γ > card(ari(s)) for all s∈ |Ω |, every identity
(s, t ) in any set X of variables is equivalent to an identity (s ′, t ′) in a γ -tuple of variables (i.e.,
there is an identity (s ′, t ′) ∈ |FΩ(γ ) | × |FΩ(γ ) | which is satisfied by an Ω-algebra A if and only
if A satisfies (s, t )).

Proof. First statement: It is easy to see that a Y-tuple of elements of |A|, : Y → |A|, will
satisfy the relation (FΩ( f )(s), FΩ( f )(t )) if and only if the X-tuple f : X → |A| satisfies the
relation (s, t ). Hence if A satisfies (s, t ) as an identity it will likewise satisfy
(FΩ( f )(s), FΩ( f )(t )) as an identity. The converse will hold if we can show that every map
w : X → |A| can be written f for some : Y → |A|. It is clear how to define on elements of
the one-to-one image of X in Y under f . If |A| is nonempty, we can extend this map by giving

arbitrary values on other elements of Y. If |A| is empty, on the other hand, then there can be
no homomorphisms from the algebra FΩ(X ), which is nonempty because it contains s and t,
into A, so this case is vacuous. (An empty algebra satisfies every identity (s, t ), because the
hypothesis of the implication defining ‘‘satisfaction’’ can never hold!)

To prove the second statement, we note that if s, t∈ |FΩ(X ) |, then by Lemma 8.2.3, s and t
will lie in the subalgebra generated by some subset X0 ⊆ X of cardinality < γ . The set X0 can
be mapped injectively into γ ; hence applying the first statement of the lemma to the inclusion of
X0 in X on the one hand, and to an embedding of X0 in γ on the other, we see that (s, t ) is
equivalent to some identity in a γ-tuple of variables. �

Thus, for the purpose of studying families of identities satisfied by Ω-algebras, and classes of
algebras determined by identities, we can restrict ourselves to identities in a γ-tuple of variables for
γ as above. (Actually, the above argument shows that every identity can be expressed using < γ
variables, hence if γ is a successor cardinal ωα +1, we could use terms in an ωα -tuple of
variables to express our identities. However, the case where we care most about getting good
bounds is γ = ω , corresponding to finitary algebras, and ω is not a successor cardinal; so we
will not worry about incorporating this refinement into our lemma.)

Exercise 8.4:1. Show that if all operation-symbols of Ω are of arity < 2, then the statement of
Lemma 8.2.3 holds with γ = 2 (even though 2 is not a regular cardinal), and deduce that the
final statement of the above lemma also holds for γ = 2. On the other hand, show by example
that it does not hold for γ = 1.

For the remainder of this section, let us fix a type Ω and a regular cardinal γ greater than the
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arities of all operation-symbols of Ω , and understand ‘‘identity’’ to mean ‘‘Ω-algebra identity in a
γ-tuple of variables’’. In writing identities, we shall often write xα for the image u(α)∈ |FΩ(γ ) |
of α∈γ . We may also at times write x, y, etc., for x0, x1, etc..

Let us denote the set of all Ω-algebra identities by

IΩ = |FΩ(γ ) | × |FΩ(γ ) |.

Thus we have a relation of satisfaction (Definition 8.4.1) defined between elements of the (large)
set Ob(Ω-Alg) of all Ω-algebras and elements of the (small) set IΩ of all identities. If C is a
(not necessarily small) set of Ω-algebras, we may write C* for the set of identities satisfied by all
members of C, and if J is a set of identities, we may write J* for the (large) set of Ω-algebras
that satisfy all identities in J. The theory of Galois connections (§5.5) tells us that the two
composite operators ** will be closure operators, that every set J* or C* will be closed under
the appropriate closure operator **, and that the operators * give an antiisomorphism between
the complete lattice of all closed sets of algebras and the complete lattice of all closed sets of
identities.

In talking about this Galois connection, it is obviously not convenient to apply to sets of
algebras our convention that sets are small if the contrary is not stated, so

Convention 8.4.3. For the remainder of this chapter we suspend for sets of algebras (as we have
done from the start for object-sets of categories) the assumption that sets are small if the contrary
is not stated.

However, we still assume that any set of algebras is a subset of our universe if the contrary is
not stated; i.e., the smallness convention still applies to the underlying set of each algebra.

Definition 8.4.4. A variety of Ω-algebras means a full subcategory V of Ω-Alg having for
object-set the set J* of algebras determined by some set J of identities. The variety with
object-set J* will be written V(J ). A category is called a variety of algebras if it is a variety of
Ω-algebras for some type Ω.

An algebra belonging to a variety V will be called a V-algebra. The least variety of
Ω-algebras whose object-set contains a given set C of algebras, that is, the full subcategory of
Ω-Alg with object-set C**, is called the variety generated by C, written Var (C).

An equational theory for Ω-algebras means a subset of IΩ (i.e., a family of identities for
Ω-algebras) which can be written C * for some set C of Ω-algebras; specifically, C* is called
the equational theory of the class C. If C is a full subcategory of Ω-Alg, then the equational
theory of Ob(C) may also be called ‘‘the equational theory of C’’. The least equational theory
containing a set J of identities, namely, J**, is called the equational theory generated by J.

Examples: The categories we have named Group , Ab , Monoid , Semigroup , Ring1,
CommRing1, ∨-Semilattice , ∧-Semilattice and Lattice are all varieties of algebras (up to
trivial notational adjustment; e.g., we originally defined an object of Group as a 4-tuple
( |G |, μ , ι , ε); under our present definition it is a pair ( |G |, (μ , ι , ε))). For every group G, the
category G-Set is a variety; for every ring R the category R-Mod is a variety, and for every
commutative ring k the category of all associative k-algebras is a variety. For every type Ω , the
whole category Ω-Alg is a variety (the greatest element in the complete lattice of varieties of
Ω-algebras, definable by the empty set of identities. Its equational theory consists of the
tautological identities (s, s).) Taking for Ω the trivial type, with no operation-symbols, we see
that Set is (up to notational adjustment) a variety.
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Examples of categories which are not, as we have constructed them, varieties of algebras are
POSet , Top , Setop, RelSet , the category of complete lattices, the full subcategory of
CommRing1 consisting of the integral domains, and the category of torsion-free groups (groups
without elements of finite order other than e). How to determine whether any of these is or is not
equivalent to a variety of algebras is a question we are not yet ready to tackle.

Remark 8.4.5. An algebra A satisfies the identity x0 = x1 if and only if all its elements are
equal. Hence an algebra satisfying this identity satisfies all identities; i.e., {(x0, x1)}** = IΩ , the
greatest element of the lattice of equational theories of Ω-algebras. The corresponding variety of
Ω-algebras is the least element of the lattice of such varieties, and consists of algebras with at most
one element. If Ω has any zeroary operation-symbols, then this variety consists only of one-
element algebras, which are all isomorphic; thus the variety is equivalent to the category 1 with
only one object and its identity morphism. If Ω has no zeroary operations, then this least variety
contains both the empty algebra and all one-element algebras, and is equivalent to the 2-object
category 2 .

Let us establish some easy results about varieties.

Proposition 8.4.6. Let V ⊆ Ω-Alg be a variety. Then:

(i) Any subalgebra of an algebra in V again lies in V.

(ii) The limit Lim←__D A(D), taken in Ω-Alg, of any functor A from a small category D to
V ⊆ Ω-Alg again lies in V.

(iii) Any homomorphic image of an algebra in V again lies in V.

(iv) The direct limit (colimit) Lim__→ Aj, taken in Ω-Alg, of any γ -directed system of V-algebras
again lies in V. (See Lemma 8.1.10 for a description of this direct limit.)

In particular, V has small limits, has difference cokernels, and has colimits of γ -directed
systems, and these are the same in V as in Ω-Alg.

Proof. It is straightforward that if an algebra satisfies an identity, any subalgebra or homomorphic
image satisfies the same identity, giving (i) and (iii) above, and that a direct product of algebras
satisfying an identity again satisfies that identity. Since arbitrary limits can be constructed using
products and difference kernels, and in Ω-Alg difference kernels are certain subalgebras, we get
(ii). To show (iv), let L be the direct limit in Ω-Alg of a γ-directed system of algebras (Ai )I
of V , let (s, t ) be an identity of V , say involving the first α < γ variables, and hence
equivalent to an identity (s ′, t ′) in an α-tuple of variables, and let be an α-tuple of elements of
L. By Lemma 8.1.10 (second paragraph) |L | is the direct limit of the sets |Ai |, hence by
γ-directedness of I, we can find an i∈I such that Ai contains inverse images of all members of

. The α-tuple formed from these inverse images will satisfy the relation (s ′, t ′), hence so does
, its image. Hence our direct limit object satisfies the identity (s ′, t ′), and hence the equivalent

identity (s, t ).
The final assertion follows immediately by Lemma 7.6.7. �

Corollary 8.4.7. Let V be a variety of Ω-algebras. Then

(i) The forgetful functor from V to Set respects limits, and also colimits over γ -directed
partially ordered sets.

(ii) The inclusion functor into V of any subvariety W respects these constructions, and also
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respects difference cokernels.

(iii) Direct limits in V over γ -directed partially ordered sets respect limits in V over
categories D having < γ objects, and having morphism-sets generated by < γ morphisms. �

Exercise 8.4:2. Verify that the above corollary indeed follows from results we have proved.

We saw in Lemma 6.9.3 that if a category C is given with a concept of a subobject of an
object, then one likewise gets a concept of a subfunctor of a C-valued functor. Let us make, for
future reference

Definition 8.4.8. If V is a variety of algebras, then unless the contrary is stated, references to
subfunctors of V-valued functors F are to be interpreted with ‘‘subobject’’ meaning
‘‘subalgebra’’.

Thus, for any category C and functor F : C → V, a subfunctor G of F is (essentially) a
construction associating to every X∈Ob(C) a subalgebra G(X ) ⊆ F(X ), in such a way that for
every morphism f : X → Y of C, the V-algebra homomorphism F( f ) carries G(X ) ⊆ F(X )
into G(Y ) ⊆ F(Y ).

The subfunctors of group- and vector-space-valued functors considered in the exercises
following Lemma 6.9.3 are examples of this concept. (If you didn’t do the last part of
Exercise 6.9:11, this might be a good time to look at it again.)

Let us prove for general varieties a pair of facts that we noted earlier in many special cases.

Proposition 8.4.9. A morphism f : A → B in a variety V is one-to-one if and only if it is a
monomorphism, and surjective if and only if it is a difference cokernel.

Proof. By Exercise 6.8:7, if f is one-to-one on underlying sets, it is a monomorphism. To get the
converse, consider the congruence E associated to f . This is the underlying set of a subalgebra
C of A × A, hence it is an object of V , and the projections of this object onto the two factors
are morphisms C →→ A having the same composite with f . Hence if f is a monomorphism, these
two projections must be equal, which means that E can contain no nondiagonal elements of
|A| × |A|, which says that f is one-to-one. (Observe that this argument is not valid in an arbitrary
full subcategory of V , since such a subcategory may contain A without containing C. For an
example, see Exercise 6.7:5.)

We have observed that difference cokernels in V are difference cokernels in Ω-Alg , and that
these are surjective. Conversely, if f is surjective, it is easy to verify that it has the universal
property of the difference cokernel in V of the pair of maps C →→ A just defined. �

The above result does not discuss the relation between one-one-ness and the condition of being
a difference kernel map, nor between onto-ness and being an epimorphism. We know from
Lemma 7.6.2 that if a morphism f in a category C is a difference kernel map it is a
monomorphism, hence if C is a variety of algebras, difference kernel morphisms are one-to-one.
Likewise, all difference cokernel morphisms – hence in a variety of algebras, all surjective maps –
are epimorphisms. Neither of the converse statements is true, but they are tied together in a curious
way:
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Exercise 8.4:3. (i) Show that if a variety V of algebras has an epimorphism which is not
surjective (cf. Exercise 6.7:6(iii)) then it also has a one-to-one map which is not a difference
kernel.
(ii) Is the reverse implication true?

Exercise 8.4:4. The proof of Proposition 8.4.9 used the facts that V is closed in Ω-Alg under
products and subalgebras. Which of these two conditions is missing in the example from
Exercise 6.7:5 mentioned in that proof? Can you also find an example in which only the other
condition is missing?

We turn now to constructions which are not the same in a variety V and the larger category
Ω-Alg . We will get these via the next lemma. Let us give both the proof of that result based on
the ‘‘big direct product’’ idea (Freyd’s Adjoint Functor Theorem), and the one based on ‘‘terms
modulo consequences of identities’’.

Lemma 8.4.10. If V is a variety of Ω-algebras, the inclusion functor of V into Ω-Alg has a
left adjoint.

First Proof. We have seen that V has small limits and that these are respected by the inclusion
functor into Ω-Alg , so by Freyd’s Adjoint Functor Theorem, it suffices to verify the solution-set
condition. If A∈Ob(Ω-Alg), then every Ω-algebra homomorphism f of A into a V-algebra B
factors through the quotient of A by the congruence E associated to f . Since the factor-algebra
A ⁄ E is isomorphic to a subalgebra of B, it belongs to V . Hence the set of all factor-algebras of
the given Ω-algebra A which belong to V , with the canonical morphisms A → A ⁄ E, is the
desired solution-set.

Second Proof. Let V = V(J ), the variety determined by the set of identities J ⊆
|FΩ(γ ) | × |FΩ(γ ) |. Given A∈Ob(Ω-Alg), let E ⊆ |A| × |A| be the congruence on A generated
by all relations ( f (s), f (t )) with (s, t)∈J and f : FΩ(γ ) → A a homomorphism. Then it is
straightforward to verify that A ⁄ E belongs to V , and is universal among homomorphic images of
A belonging to V . �

We shall call the above left adjoint functor the construction of imposing the identities of V on
an Ω-algebra A. Note that if we impose the identities of V on an algebra already in V , we get
the same algebra.

We can now get the rest of the constructions we want:

Theorem 8.4.11. Let V be a variety of Ω-algebras. Then V has small colimits, objects
presented by generators and relations, and free objects on all small sets. All of these constructions
can be achieved by performing the corresponding constructions in Ω-Alg, and then imposing the
identities of V on the resulting algebras (i.e., applying the left adjoint obtained in the preceding
lemma).

Proof. The existence of these constructions in Ω-Alg was shown in Theorems 8.3.8, 8.3.7 and
8.3.3. That left adjoints respect such constructions was proved in Theorems 7.8.3, 7.7.1, and
7.3.5. �

Let us generalize to arbitrary varieties some notation that we had set up for categories Ω-Alg :
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Definition 8.4.12. The free-object functor and the underlying-set functor associated with a variety
V will be denoted FV : Set → V and UV : V → Set. The V-algebra presented by a generating
set X and relation set R will be denoted <X� R >V , or <X� R > when there is no danger of
confusion.

In presenting a V-algebra, it is often convenient to take a ‘‘relation’’ in an X-tuple of variables
to mean a pair of elements of FV (X ) rather than of FΩ(X ). If we write q : FΩ(X ) → FV (X )
for the canonical homomorphism, it is clear that given a relation (s, t )∈|FΩ(X ) | × |FΩ(X ) | and an
X-tuple of elements of a V-algebra A, the elements s and t will fall together under the
homomorphism FΩ(X ) → A determined by if and only if q(s) and q(t ) fall together under
the homomorphism FV (X ) → A determined by ; so the same condition is expressed by the
original relation (s, t ) ∈ |FΩ(X ) | × |FΩ(X ) |, and by the induced ‘‘relation’’ (q(s), q(t )) ∈
|FV (X ) | × |FV (X ) |. In particular, if R is a subset of |FV (X ) | × |FV (X ) |, we may denote by
< X� R>V the quotient of FV (X ) by the congruence generated by R.

The following observation will be of importance to us in Chapter 9.

Lemma 8.4.13. Let W be a variety of algebras, and U: W → Set a functor. Then the
following conditions are equivalent:

(i) U is representable; i.e., there exists an object R of W such that U is isomorphic to the
functor hR = W(R, – ).

(ii) There exists a set X, and a set of relations in an X-tuple of variables, Y ⊆
|FΩ(X ) | × |FΩ(X ) |, such that U is isomorphic to the functor associating to every object A of
W the set {ξ ∈ |A| X � (∀ (s, t)∈Y ) sA (ξ) = tA (ξ)}.

Proof. If U is represented by R, take a presentation R = <X� Y>; then U will have the form
shown in (ii). Conversely, if U is as in (ii), it is represented by the algebra with presentation
< X� Y>. �

Thus, we immediately see that such set-valued functors on Group as G → {x∈ |G | � x2 = e}
and G → {(x, y)∈ |G |2 � xy = yx} are representable. A less obvious case is the ‘‘set of invertible
elements’’ functor on monoids. If we try to use the criterion of the above lemma with X a
singleton, it does not work, because the condition of invertibility is not an equation in x alone.
However, because inverses are unique when they exist, we see that this construction is isomorphic
to the functor S → {(x, y)∈|S |2 � xy = e = yx }, which is of the required form.

In part (ii) of the above lemma, X and/or Y may, of course, be empty. If Y is empty, then
U is the Xth power of the underlying-set functor (Definition 6.9.8), and is represented by FV (X ).
An example with X but not Y empty is the functor Ring1 → Set represented by Zn for an
integer n. We recall that this ring is presented by the empty set of generators, and the one relation
n = 0 (where ‘‘n’’ as a ring element means the n-fold sum 1+ ... +1). This ring admits no
homomorphism to a ring A unless n = 0 in A, while when A satisfies that equation, there is a
unique ring homomorphism Zn → A (namely the additive group map taking 1Zn

to 1A ). Thus,

hZn
takes A to the empty set if the characteristic of A does not divide n, and to a one-element

set if it does. In terms of point (ii) of the above lemma, this functor must be described as sending
A to ‘‘the set of 0-tuples of elements of A such that n = 0’’. This sounds peculiar because the
‘‘such that’’ clause does not refer to anything in the preceding phrase; but it is logically correct: we
get the unique 0-tuple if n = 0 in A, and nothing otherwise.
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Exercise 8.4:5. Determine which of the following set-valued functors are representable. In each
case where the answer is affirmative, give an ‘‘X ’’ and ‘‘Y ’’ as in Lemma 8.4.13. In (i)-(v), n
is a fixed integer.
(i) The functor on Ring1 taking A to a singleton if n is invertible in A, and to the
empty set otherwise.
(ii) The functor on Ring1 taking A to its underlying set if n is invertible in A, and to the
empty set otherwise.
(iii) The functor on Ab taking A to the kernel of the endomorphism ‘‘multiplication by n’’.
(iv) The functor on Ab taking A to the image of this endomorphism.
(v) The functor on Ab taking A to the cokernel of this endomorphism.
(vi) The functor on Lattice taking A to the set of pairs (x, y) such that x ≤ y.
(vii) For P a fixed partially ordered set, the functor on Lattice taking A to the set of
isotone maps from P to the ‘‘underlying’’ partially ordered set of |A|.

8.5. Derived operations. Having identified Ω-algebra terms s with elements of free Ω-algebras
FΩ-Alg (X ), our viewpoint in ‘‘evaluating’’ these terms has been, ‘‘a choice of an X-tuple of
elements in an Ω-algebra A induces a homomorphism FΩ-Alg (X ) → A’’. But as noted in §1.6,
we can modify which variable(s) – the X-tuple , the term s, or both – we foreground. We do
this in the next definition, again replacing Ω-Alg with a general variety V .

Definition 8.5.1. Let V be a variety of algebras, X a set, and (F, u) the free V-algebra on X.
For every element s∈ |F |, every V-algebra A, and every X-tuple of elements of |A|, let us
denote by

eval(s, A, ) ∈ |A|

the image of the element s under the unique homomorphism f : FV (X ) → A such that f u =
(intuitively, the result of substituting into the term s the X-tuple of values in A).

For fixed s and A, the function taking each ∈ |A| X to eval(s, A, ) will be written

sA : |A| X → |A|.

A derived X-ary operation on A will mean a map |A| X → |A| which is equal to sA for some
s∈ |FV (X ) |.

More generally, given s and any full subcategory C of V ( e.g., a one-object subcategory,
or all of V), if we write UC : C → Set for the restriction to C of the underlying-set functor of
V, and UX

C : C → Set for the functor carrying an object A to the set UC (A) X, then
sC : UX

C → UC will denote the morphism of functors C → Set which on each object A of C
acts by sA . A morphism UX

C → UC which can be written sC for some s∈ |FV (X ) | will be
called a derived X-ary operation of C.

Note that the derived operations will in particular include the primitive operations sA : |A| ari (s)

→ |A| (respectively, sC : UC
ari(s) → UC ), corresponding to the operation symbols s∈|Ω |, and

the projection operations pX, x : |A| X → |A| (respectively UC
X → UC ), induced by the free

generators u(x)∈FV (X ).

Let us now follow up on some ideas that we toyed with at the end of §2.3. Given any full
subcategory C of our variety V , consider the large set of all ‘‘generalized operations on C in
an X-tuple of variables’’, i.e., functions f associating to each object A of C a map fA :
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|A| X → |A| in an arbitrary way. If we look at the set of all these generalized operations as an

enormous direct product, I
��
I A∈Ob(C) |A| |A| X (living in the next larger universe), we see that it

can be made a large V-algebra under pointwise operations; let us denote this algebra by
GenOpC (X ). We are not interested in this bloated monster for itself, but for the observation that
the (still generally large) set of morphisms of functors, SetC(UX, U ) forms a subalgebra therein.
(A description of the V-algebra structure on this set of morphisms might have seemed unnatural
without the context of the algebra structure on GenOp(C), which is why we began with the latter.
Incidentally, when we first discussed this in §2.3, we were not sure it made sense to talk about
large sets. Having adopted the Axiom of Universes, and the associated interpretation of large sets,
we can deal with these safely!) We shall call this the algebra of functorial X-ary operations on C .
The derived X-ary operations of C form a subalgebra of this subalgebra:

(8.5.2) DerOpC (X ) ⊆ SetC(UX, U ) ⊆ GenOpC (X ).

Note that the algebra of derived operations is quasi-small, i.e., isomorphic to a small algebra,
since it is a homomorphic image of FV (X ). The image of each generator x∈X will be the
function carrying an X-tuple to its xth coordinate, thus, these ‘‘coordinate functions’’ generate
DerOpC (X ) as an Ω-algebra. We can describe the resulting algebra nicely, and, under appropriate
hypotheses, the algebra of functorial operations as well:

Lemma 8.5.3. Let C be a full subcategory of a variety V, and X a (small) set. Then the
(large) algebra of derived X-ary operations on C is isomorphic to the (small) algebra
FVar (Ob(C))(X ).

Moreover, if C contains the free V-algebra on X, then every functorial X-ary operation on
C is a derived operation; i.e., SetC(UX, U ) = DerOpC (X ) =∼ FV (X ).

Sketch of Proof. The first assertion is straightforward. To prove the second, assume C contains
the free algebra FV (X ), and show that a functorial X-ary operation on C is determined by its
value on the universal X-tuple u of elements of FV (X ); equivalently, apply Yoneda’s Lemma to
UX =∼ hFV (X ) and U =∼ hFV (1) . �

Exercise 8.5:1. Give the details of the above proof.

Exercise 8.5:2. (i) Show that if C is the full subcategory of all finite algebras in V , then the
algebra of functorial X-ary operations on C can be described as the inverse limit of all finite
homomorphic images of FV (X ). (Make this statement precise.)
(ii) Show that if V = Group , C is as in (i), and X = 1, then this group of operations is
uncountable. Give an explicit example of an operation in this group that is not a derived group-
theoretic operation.
(iii) Interpret Exercise 6.9:6, especially part (ii) thereof, in terms of point (i) above, and if you
had not yet successfully done that exercise, see whether you can make further progress on it.

In part (ii) above, the map from functorial operations on general groups to functorial operations
on finite groups failed to be surjective. There are also situations where such maps fail to be one-
to-one:

Exercise 8.5:3. (i) Give an example of a variety V not generated by its finite algebras. (If
possible, get such an example in which the variety is defined by finitely many operation-symbols,
all of finite arities, and finitely many identities.)
(ii) Show that the property asked for in the first sentence above is equivalent to saying that the
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restriction map from functorial operations in finitely many variables on V to such operations on
the finite objects of V is not one-to-one.

We saw in Exercise 8.5:2(ii) above that though the variety of all groups has only countably
many functorial operations of any finite arity, its full subcategory of finite groups has uncountably
many such operations. One may ask whether, for C a full subcategory of a variety V , the class
of functorial operations of C must even be quasi-small.

The answer depends on one’s foundational assumptions; I will briefly summarize the situation.
Logicians have asked the question, ‘‘Does there exist a proper class (in our language, a non-small
set) of (small) models of some first-order theory, none of which is embeddable in another?’’ The
answer turns out to depend on one’s choice of universe. If U is the smallest universe, or a
successor element in the well-ordered set of universes, the answer is yes. The negative answer, on
the other hand, is called ‘‘Vopěnka’s principle’’; the existence of a universe for which this holds is
equivalent to the existence of a cardinal with some special properties (which force it to be
enormous) but is thought likely to be consistent with ZFC.

Now the positive answer to the above question, which, as noted, is true in ‘‘most’’ universes, is
known to imply the existence of a non-small set C of small algebras of some finitary type Ω
such that there are no homomorphisms between distinct members of C. Given such a C, let C
be the full subcategory of Ω-Alg with C as object-set. Then we see that the definition of a
functorial operation f on C involves no conditions relating the behavior of f on different
objects. So, for instance, for every subset B ⊆ C, there is a functorial binary operation on C
which acts as the first-coordinate function on algebras in B, and as the second-coordinate function
on algebras not in B. Thus, in ‘‘most’’ universes we indeed have a class of algebras with a non-
small set of functorial binary operations.

Let me end this section with some interesting questions about operations on the real and rational
numbers which, so far as I know, are open.

Exercise 8.5:4. (Harvey Friedman)
(i) If we make the set of real numbers an algebra under the single binary operation a(x, y) =
x2 + y3, does this algebra satisfy any nontrivial identities?
(ii) If we make the set of nonnegative real numbers an algebra under the single binary
operation c(x, y) = x1 ⁄ 2 + y1 ⁄ 3, does this algebra satisfy any nontrivial identities?
(iii) Does there exist a derived binary operation on the ring Q of rational numbers which is
one-to-one as a map |Q | × |Q | → |Q | ?

If you cannot answer this last question, you might hand in proofs that the answer to the
corresponding question for the ring of integers is ‘‘yes’’, and for the ring of real numbers, ‘‘no’’.

Another question posed by Friedman along the lines of (i) and (ii) above was whether the group
of bijective maps R → R generated by the two maps p(x) = x+1 and q(x) = x3 is free on
those two generators. This was answered affirmatively in [105], with 3 replaced by any odd
prime (see [49] for a simplified proof). The result has subsequently been generalized to show,
essentially, that the group of maps generated by exponentiation by all positive rational numbers and
addition of all real constants is the coproduct of the two groups generated by these two sorts of
maps [48], and, in another direction, to show that the group generated by exponentiation by positive
rationals with odd numerator and denominator, addition of real algebraic numbers, and
multiplication by nonzero real algebraic numbers, is the coproduct of the group generated by the
above addition and multiplication operations and the group generated by the multiplication and
exponentiation operations, with amalgamation of the obvious common subgroup [30].
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8.6. Characterizing varieties and equational theories. We observed at the end of §5.5 that when
one obtains a Galois connection from a relation on a pair of sets, R ⊆ S × T, the closure X** or
Y** of a subset X ⊆ S or Y ⊆ T is constructed ‘‘from above’’, namely as the set of members of
the larger set S or T that satisfy certain conditions; and that a recurring type of mathematical
question is how to describe these closures ‘‘from below’’, as all elements obtainable from members
of X or Y by iterating some constructions. In the case of the Galois connection between
Ω-algebras and identities, these questions are: Given a set C of Ω-algebras, how can we
‘‘construct’’ from these all algebras of the variety C** that they generate; and given a set J of
identities, how can we construct from these the identities comprising the equational theory J**
that they generate? Answers to these questions should, in particular, give internal criteria for when
a set of algebras is a variety, and for when a set of identities is an equational theory.

I said in §5.5 that a general approach to this kind of question is to look for operations which
carry every set Y* or X* into itself, and having found all one can, to try to show that closure
under these operations is sufficient, as well as necessary, for a set to be closed.

Now we have shown that a variety of algebras is closed under forming subalgebras,
homomorphic images, products, and γ-directed direct limits for appropriate γ . (Closure under
general limits need not be mentioned, since it is implied by closure under products and subalgebras.
On the other hand, the existence of free objects, coproducts, etc., cannot be used in such a
characterization, since they are only defined relative to the variety we are trying to construct.) The
next result shows that three of the above four closure conditions suffice to characterize varieties.

In reading that result, recall that by Convention 8.4.3, sets C of algebras are not assumed
small.

Theorem 8.6.1 (Birkhoff’s Theorem). Let Ω be a type. Then a set of Ω-algebras forms a variety
if and only if it is closed under forming homomorphic images, subalgebras, and products (of small
families).

In fact, if C is a set of Ω-algebras, then any member of the variety generated by C can be
written as a homomorphic image of a subalgebra of a product of members of C.

Proof. Clearly, it suffices to prove the final assertion. Let V = Var (C), the variety generated by
the set C. An algebra belonging to V can be written as a homomorphic image of the free
V-algebra FV (X ) for some set X, hence it suffices to show that FV (X ) can be obtained as a
subalgebra of a product of objects in C. To show this, let N ⊆ |FΩ(X ) | × |FΩ(X ) | denote the
set of all pairs (s, t ) that are not identities of V ; equivalently, which are not identities of all
members of C. For each (s, t )∈N, choose an X-tuple (s, t ) of elements of an algebra
A(s, t ) ∈C such that (s, t ) fails to satisfy the relation (s, t ). Let P be the product algebra
I
��
I (s, t )∈N A(s, t ) , and let : X → |P | be the set map with (s, t )-component (s, t ) for each

(s, t )∈N. It follows from its definition that this X-tuple satisfies none of the relations in N; on
the other hand, since P belongs to V , it must satisfy all relations not in N. It is easily deduced
that the subalgebra F ⊆ P generated by this X-tuple is isomorphic to the free algebra FV (X ). �

The last sentence of Theorem 8.6.1 is often expressed in operator language:

(8.6.2) Var (C) = H S P(C).

To make this precise, let us fix a type Ω , and let LΩ denote the large lattice of all subsets C ⊆
Ob(Ω-Alg) which are closed under going to isomorphic algebras (i.e., which satisfy T =∼ S∈C ⇒
T∈C. This is essentially the power set of the set of isomorphism classes of algebras in Ω-Alg .)
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For each C∈ |LΩ |, let us define

H(C) = {homomorphic images of algebras in C },

S(C) = {subalgebras of algebras in C },

P(C) = {products of algebras in C }.

Then (8.6.2) indeed expresses the last sentence of Theorem 8.6.1. (Except that Var (C) should,
more precisely, be Ob(Var (C)). But we will ignore that distinction in this discussion, to give this
statement the form in which it is usually stated.)

(The restriction to classes closed under isomorphism is not assumed in some discussions of this
topic, leading to somewhat capricious behavior of the above operators: For C a class of algebras
not necessarily closed under isomorphism, H(C) is nevertheless closed under going to isomorphic
algebras, by the definition of ‘‘homomorphic image’’, though it loses this property if the definition
of this operator is changed to ‘‘quotients of members of C by congruences’’. On the other hand,
S(C) is not generally closed under going to isomorphic algebras if C is not, but it acquires that
property if one changes the definition to ‘‘algebras embeddable in members of C’’. Whether
P(C) is closed under isomorphism depends on whether one defines ‘‘product’’ to mean ‘‘any
object which can be given a family of ‘projection’ maps having the appropriate universal
property’’, as we do here, or as the ‘‘standard’’ set-theoretic product. Since these distinctions are
irrelevant to the algebraic questions involved, it seems best to eliminate them by restricting
attention to isomorphism-closed classes. These are called ‘‘abstract classes’’ by some authors,
though I do not favor that term. Incidentally, while discussing this topic, we will, obviously,
temporarily set aside our habit of using P for ‘‘power set’’.)

In view of (8.6.2), it is natural to examine the monoid of operators on |LΩ | generated by H ,
S and P . We see from that result that the product H S P acts as a closure operator, and hence is
idempotent : (H S P)2 = H S P . From this we can deduce further equalities, e.g., S H S P = H S P .
This deduction is clear when we think in terms of classes of algebras; to abstract the argument, let
Z denote the monoid of all operators A : |LΩ | → |LΩ | satisfying

(b) (∀ C, D ∈ |LΩ | ) C ⊇ D ⇒ A(C ) ⊇ A(D) (A is isotone).

(a) (∀ C ∈ |LΩ | ) A(C ) ⊇ C (A is increasing),

This monoid Z can be partially ordered by writing A ≥ B if and only if for all C, A(C) ⊇
B(C). By (a), all elements of Z are ≥ the identity operator, which we shall denote I ; we see
from (b) that B ≥ C ⇒ A B ≥ A C , and we see by the definition of ≥ that B ≥ C ⇒
B A ≥ C A . Hence knowing only that H , S , P∈Z, we can say that (H S P)2 ≥ S H S P ≥
H S P ; hence, as claimed, the equality (H S P)2 = H S P implies S H S P = H S P .

Having illustrated how to calculate with these operators, we pose

Exercise 8.6:1. Describe explicitly the partially ordered monoid generated by the operators H , S
and P on classes of Ω-algebras for general Ω ; i.e., describe the distinct products of these
operators, their composition, and the order-relations among them. Are there finitely or infinitely
many distinct operators? Which such operators are idempotent?

(When I say ‘‘for general Ω’’, I mean that an equality or inequality should be considered to
hold if and only if it holds for all Ω . Special cases will be looked at in the next exercise.)

The above is a large task, but an interesting one. To carry it out fully, you need
counterexamples showing that each equality or inclusion that you do not assert actually fails to hold
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for some appropriately chosen set of algebras. However, a counterexample for one relation often
turns out to be a counterexample for several, so the task is not unreasonably difficult.

There are numerous modifications of this problem. For example.

Exercise 8.6:2. Suppose we restrict the operators H , S , P to classes of algebras in a particular
variety V ; then some additional inclusions and equalities may occur among the composites of
these restricted operators. Investigate the partially ordered monoids of operators obtained when
V is Set , respectively Group , respectively Ab . You may add to this list.

One could enlarge the set of operators considered above, introducing, for instance, D =
{difference kernels} (i.e., D(C) = the set of difference kernels of pairs of homomorphisms among
algebras of C; thus, D ≤ S), Pfin = {products of finite families}, and L = {direct limits of
directed systems}. (In considering these last two we should restrict attention to finitary algebras, or
else replace ‘‘finite families’’ and ‘‘directed systems’’ by ‘‘families of < γ objects’’ and
‘‘γ-directed systems’’.) Results on the structure of the monoid generated by any subset of {H , S ,
P , D , Pfin, L}, or any other such family of natural operators, can be turned in as homework, but I
will merely pose as an exercise the questions

Exercise 8.6:3. Can one in general strengthen (8.6.2) to
(i) Var (C) = H D P(C) ?
(ii) Var (C) = H S Pfin (C) ?

The proof of Birkhoff’s Theorem leads us to examine the class of Ω-algebras that are free in
some variety.

Proposition 8.6.3. Let Ω be a type, F an Ω-algebra, X a set, and u an X-tuple of elements
of |F |. Then the following conditions are equivalent:

(i) (F, u) is a free algebra on the set X in some variety V of Ω-algebras.

(ii) (F, u) is a free algebra on the set X in the variety generated by F.

(iii) F is generated by the image of X, and there exists some full subcategory C of Ω-Alg
containing F such that (F, u) is free in C on the set X.

(iv) F is generated by the image of X, and for every set map : X → |F |, there exists an
endomorphism e of F such that = eu. (If we assume u is an inclusion map, this latter
condition can be stated, ‘‘Every map of X into |F | extends to an endomorphism of F.’’ )

(v) Up to isomorphism, F may be identified with a quotient of FΩ(X ) by a congruence E
which is carried into itself by every endomorphism f of FΩ(X ) (i.e., which satisfies
(s, t )∈ |E | ⇒ ( f (s), f (t))∈E ), and the map u corresponds to the composite of universal maps
X → |FΩ(X ) | → |FΩ(X ) ⁄ E |.

Proof. We have (i)⇒(ii) because a free algebra in a given concrete category is easily seen to
remain free in any full subcategory which contains it; (ii)⇒(iii) is immediate. The universal
property of a free object gives (iii)⇒(iv). To see (iv)⇒(v), identify F with the quotient of
FΩ(X ) by the congruence E consisting of all relations satisfied by the X-tuple u. Then if f is
an endomorphism of FΩ(X ), (iv) implies that we can extend this to an endomorphism of F =
FΩ(X ) ⁄ E, which says that E is carried into itself by f, which is the assertion of (v).

Finally, given (v) we see that the relations satisfied by u will be satisfied by every X-tuple of
elements of F, i.e., will be identities of Var ({F }) in an X-tuple of variables, and conversely the
identities of Var ({F }) are necessarily satisfied by u. Hence F, being generated by the image
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of u, which satisfies precisely those relations which are identities of Var ({F }), is the free
Var ({F })-algebra on X, proving (i). �

Definition 8.6.4. A pair (F, u) with the equivalent properties of the above proposition (in
particular, property (i)) is called a relatively free Ω-algebra.

Exercise 8.6:4. Suppose V = Monoid and C is the class of monoids all of whose elements are
invertible.
(i) Show that C has free algebras (i.e., that its underlying-set functor has a left adjoint), but
that these are not the free algebras of Var(C).
(ii) Show using this example that the requirement that F be generated by the image of X
cannot be removed from condition (iii) or (iv) of Proposition 8.6.3; specifically, that if it is
removed, the resulting conditions no longer imply condition (i) of that proposition.

From Proposition 8.6.3, we can deduce the corresponding result with Ω-Alg replaced by an
arbitrary variety W . In particular, we record

Corollary 8.6.5. Let V be a variety, X a set, and u an X-tuple of elements of an object F of
V. Then (F, u) is a free algebra in a subvariety of V if and only if it is isomorphic to a quotient
of the free V-algebra FV (X ) by a congruence invariant under all endomorphisms of FV (X ). �

Corollary 8.6.6. If γ is a regular cardinal greater than the arities of all operations of V, the
subvarieties of V are in bijective correspondence with congruences on FV (γ ) which are
invariant under all endomorphisms of this free algebra. �

These results solve the problem of characterizing equational theories:

Theorem 8.6.7. Let Ω be a type. Then a subset J ⊆ |FΩ(γ ) | × |FΩ(γ ) | is an equational theory
if and only if it is a congruence on FΩ(γ ), and is carried into itself by all endomorphisms of
FΩ(γ ); in other words, if and only if it satisfies the following five conditions for all s, t, u ,
etc.∈|FΩ(γ )|, σ∈|Ω |. (In (iv) and (v), σFΩ(γ) , sFΩ(γ) and tFΩ(γ) denote the derived

operations on FΩ(γ) induced by σ, s and t.)

(i) (s, s)∈J.

(ii) (s, t )∈J ⇒ (t, s)∈J.

(iii) (s, t )∈J, (t, u)∈J ⇒ (s, u)∈J.

(iv) (ti , ui )∈J (i∈ari(σ)) ⇒ (σFΩ(γ)(ti ), σFΩ(γ)(ui ))∈J.

(v) (s, t )∈J, ui ∈ |FΩ(γ ) | (i∈γ ) ⇒ (sFΩ(γ)(ui ), tFΩ(γ)(ui ))∈J. �

Turning back to relatively free algebras, let us note that though by Lemma 8.4.2 an algebra
relatively free on γ generators uniquely determines the corresponding variety, a relatively free
algebra (F, u) on an α-tuple of generators for α < γ may be free in more than one variety! The
variety Var ({F }) used in the proof of Proposition 8.6.3(v)⇒(i) will necessarily be the smallest
such variety. The largest variety in which (F, u) is free is the variety defined by the identities in
α variables satisfied by F ; equivalently, having for identities the relations satisfied by the α-tuple
u in F. The details, and some examples, are indicated in
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Exercise 8.6:5. (i) Let V be a variety, and suppose F∈Ob(V) is relatively free on an
α-tuple u of indeterminates. Show that (F, u) is a free algebra in precisely those subvarieties
U ⊆ V which contain the variety Var (F ) (defined by all identities satisfied in F ), and are
contained in the subvariety of V defined by the identities in ≤ α variables holding in F.
(ii) Show that if V = Group , α = 1, and (F, u) is the group Z , with u selecting 1 as
free generator, then the greatest and least subvarieties of V in which (F, u) is free are distinct.
Characterize group-theoretically those subvarieties of V in which (F, u) is free.
(iii) Show that if again V = Group , but we now take α = 2, and for (F, u) either the free
group on 2 generators or the free abelian group on 2 generators, then in each case, the
greatest and least subvarieties of V in which this group is free coincide.
(iv) Are there any relatively free groups F on 2 generators such that the greatest and least
varieties of groups in which F is free are distinct?
(v) If Ω is the type of groups, and F is either the free group on 2 generators or the free
abelian group on 2 generators, show that the greatest and the least varieties of Ω-algebras in
which F is free on the given generators do not coincide, but that if F is the free group or free
abelian group on 3 generators, they again coincide.

Here are some exercises on subvarieties of familiar varieties.

Exercise 8.6:6. (If you do both parts below, give the proof of one in detail, and for the other give
details where the proofs differ.)
(i) Let G be a group, and G-Set the variety of all G-sets. Show that subvarieties of
G-Set other than the least subvariety (characterized in Remark 8.4.5) are in one-to-one
correspondence with the normal subgroups N of G, in such a way that the subvariety
corresponding to N is equivalent to the variety (G ⁄ N )-Set , by an equivalence which respects
underlying sets.
(ii) Prove the analogous result for subvarieties of R-Mod , where R is an arbitrary ring. (In
that case, the least subvariety is not an exceptional case.)

Exercise 8.6:7. (i) Let CommRing1 denote the category of commutative rings. Show that if
V is a proper subvariety of CommRing1 generated by an infinite integral domain, then V is
the variety Vp determined by the 0-variable identity p = 0 for some prime p, where the
symbol ‘‘p’’ in this identity is an abbreviation for 1+1+...+1 with p summands.
(ii) Show that the subvariety Bool1 ⊆ CommRing1 is a proper subvariety of the variety V2
defined as in (i).

Exercise 8.6:8. Let F = FRing1 (ω), the free associative (noncommutative) ring on
indeterminates x0, x1, ... . For each positive integer n, let

Sn = Σπ (–1)π xπ(0) ... xπ(n–1) ∈ F,

where π ranges over the permutations on n elements, and (–1)π denotes +1 if π is an
even permutation, –1 if π is odd.
(i) Show that any ring satisfying Sn = 0 also satisfies Sn ′ = 0 for all n ′ ≥ n; i.e., that
(Sn ′ , 0) ∈ {(Sn , 0)}**.
(ii) Show that for every d> 0 there exists n> 0 such that for every commutative ring k,
the ring Md (k) of d × d matrices over k satisfies the identity Sn = 0.
(iii) Show that for every n> 0 there exists d> 0 such that Md (k) does not satisfy Sn = 0
for any nontrivial commutative ring k.
(iv) Deduce that there is an infinite chain of distinct varieties of rings of the form
V({(Sn , 0)}), and an infinite chain of distinct varieties of rings of the form Var ({Md (Z)}).

Note on the above exercise: The least n such that all d × d matrix rings Md (k) over
commutative rings k satisfy Sn = 0 is 2d. The hard part of this result, namely that Md (k)
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satisfies S2d = 0, is the Amitsur-Levitzki Theorem [32]. All known proofs are either messy (e.g.,
by graph theory [95]) or tricky (e.g., using exterior algebras [91]). The student is invited to attempt
to find a new proof! Part (ii) of the above exercise can be done relatively easily, however, using a
larger-than-optimal n.

The study of varieties of noncommutative rings is called the theory of rings with polynomial
identity, affectionately known as PI rings. See [92, Chapter 6] for an introduction to this subject.

Here is curious variety closely related to the variety of groups.

Exercise 8.6:9. Let Ω be the type defined by a single ternary (i.e., ‘‘3-ary’’) operation-symbol,
τ . Let H : Group → Ω-Alg be the functor taking a group G to the Ω-algebra with underlying
set |G | and operation

(8.6.8) τ (x, y, z) = x y–1 z.

(i) Show that the objects H(G) are the nonempty algebras in a subvariety of Ω-Alg , and
give a set J of identities defining this variety.

The algebras (empty and nonempty) in this variety are called heaps; we shall call the variety
Heap .
(ii) Show that for groups G and G ′, one has

H(G ) =∼ H(G ′) in Heap ⇔ G =∼ G ′ in Group .

(iii) Show, however, that not every isomorphism between H(G) and H(G ′) has the form
H(i ) for i an isomorphism between G and G ′ !
(iv) Show that the following categories are equivalent: (a) Group , (b) the variety of algebras
( |A|, τ , ι) where ( |A|, τ) is a heap, and ι is a zeroary operation, subject to no further identities
(intuitively, ‘‘heaps with distinguished elements ι’’), (c) Heappt, where the construction Cpt

is defined as in Exercise 6.8:3.
(v) Show that if X, Y are two objects of any category C , then the set of isomorphisms
X → Y forms a heap under the operation τ (x, y, z) = x y–1 z. How is the structure of this heap
related to those of the groups Aut(X ) and Aut(Y ) ?

The concept of heap is not very well known, and many mathematicians have from time to time
rediscovered it and given it other names (myself included). Heaps were apparently first studied by
Prüfer [89] and Baer [34], under the name Schar meaning ‘‘crowd’’ or ‘‘flock’’, a humorous way
of saying ‘‘something like a group’’. The term was rendered into Russian by Suškevič [98] as
ΓΓpyΔa, meaning ‘‘heap’’, which gave both a loose approximation of the meaning of Schar, and a
play on the sounds of the Russian words ‘‘group’’ = gruppa, ‘‘heap’’ = gruda. Since the concept
and its generalizations have gotten most attention in Russian-language works, it has come back into
Western European languages via translations of this Russian term rather than of the original
German.

Part (ii) of the above exercise shows that there is no need for a separate theory of the structure
of heaps; this is essentially contained in that of groups. However, the variety of heaps is both a
taking-off point for various generalizations (‘‘semiheaps’’ etc.), and a source of examples in general
algebra and category theory.

Point (iv) of the preceding exercise suggests

Exercise 8.6:10. (i) For what varieties V is it true that the category Vpt can be identified
with the variety gotten by adding to V one zeroary operation, and no additional identities?
(ii) What varieties V satisfy the conditions of Exercise 6.8:2? (Note that for varieties these
conditions are all equivalent, by the last part of that exercise.)
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Let us remark that in stretching the concept of ‘‘variety’’ from its classical definition as a class
of algebras defined by identities to our present category-theoretic use, we have pulled it over a lot
of ground, so that care is needed in using the term. For example, when should we think of two
varieties as being ‘‘essentially the same’’? If they are precisely equal? If we can establish a
bijection between their types such that they are defined by the corresponding identities? If they are
equivalent as categories? If there is a category-theoretic equivalence which also respects the
underlying-set functors of the varieties? There is no right answer, but these four conditions are all
inequivalent.

Exercise 8.6:11. What implications exist among the above four conditions on a pair of varieties?
Give examples showing that no two of them are equivalent.

8.7. Lie algebras. Let me digress here to introduce a variety important in algebra, geometry, and
differential equations, that of Lie algebras. I have referred to these in previous chapters in a few
comments ‘‘for the reader familiar with the concept’’. The reader who prefers to remain unfamiliar
with them for the time being may skip this section, and perhaps come back to it later. In later
sections, Lie algebras will be continue to be referred to in occasional exercises and remarks.

To motivate the definition, suppose we start with an associative algebra A over a field (or
more generally, over a commutative ring) k, and look at the underlying set of A together with its
operations of k-vector-space (or k-module), and the commutator bracket operation,

(8.7.1) [x, y] = xy – yx.

These operations obviously satisfy the identities saying

(8.7.2)
+, –, 0 and the scalar multiplications by members of k make |A|
a k-module, and [–, –] is a k-bilinear operation with respect to this
k-module structure.

There is a further obvious identity satisfied by [–, –], and another that, though not so obvious, is
straightforward to verify:

(8.7.3) [x, x] = 0 (alternating identity),

(8.7.4) [x, [y, z] ] + [y, [z , x] ] + [z , [x, y] ] = 0 (Jacobi identity).

Note that (8.7.3) implies (and if 2 is invertible in k, is equivalent to)

(8.7.5) [x, y] + [y, x] = 0 (anticommutativity).

The expansion of (8.7.4) involves 12 terms, and so is not hard to check directly, but the
following slightly simpler verification gives some useful insight. One first checks the following
identity (which expands to only 6 terms) relating [–, –] and the original multiplication of A :

(8.7.6) [x, yz] = [x, y] z + y [x, z] .

This (in the presence of (8.7.2)) says that for any x, the operation [x, –] of commutation with x
acts as a derivation with respect to the k-algebra structure of A. We recall that a derivation on a
k-algebra means a k-linear map s satisfying

(8.7.7) s(yz) = s(y)z + y s(z).
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A map that is a derivation with respect to a given multiplication is also a derivation with respect to
the opposite multiplication, y∗z = zy. Subtracting the original and opposite multiplications gives
the commutator map; so by (8.7.4) [x,–] also acts as a derivation with respect to that map:

[x, [y, z]] = [y, [x, z]] + [[x, y], z] .

We can use (8.7.5) to rearrange this identity so that the bracket arrangement of the last term, like
that of the other two, becomes [–, [–, –]], and so that the middle term has the same cyclic order of
x, y and z as the other two terms. Bringing all three terms to the same side, we see that the
above formula becomes precisely (8.7.4). So the Jacobi identity says that the commutator bracket
operation is a derivation with respect to itself! One now makes

Definition 8.7.8. Let k be a commutative ring (often, though not always, assumed a field). Then
a Lie algebra over k means a k-module given with an alternating k-bilinear operation [–, –]
satisfying the Jacobi identity; in other words, a set |A| with operations +, –, 0, ‘‘scalar
multiplication’’ operations corresponding to each element of k, and a binary operation [–, –],
satisfying (8.7.2)-(8.7.4).

The variety of Lie algebras over k will be denoted Liek .
For each element x of a Lie algebra L, the map [x, – ] : |L | → |L | is often denoted adx .

(This stands for ‘‘adjoint’’, but for obvious reasons we will not call it by that name here.)

In view of the way we obtained (8.7.2)-(8.7.4), we see that if we write Ringk
1 for the category

of associative k-algebras, we have a functor

B : Ringk
1 → Liek

taking each associative k-algebra A to the Lie algebra with the same underlying k-module, and
with bracket operation given by (8.7.1). It is not hard to do

Exercise 8.7:1. Show that B has a left adjoint

E : Liek → Ringk
1.

This is called the universal enveloping algebra construction.

In a later chapter on normal forms, I hope to prove the Poincaré-Birkhoff-Witt Theorem, which
gives a normal form for E(L) when L is free as a k-module (as is automatic if k is a field), and
in particular shows that the maps giving the unit of the above adjunction, η(L) : L → B(E(L)), are
one-to-one. Thus, every Lie algebra over a field can be ‘‘embedded in’’ an associative algebra. An
important consequence is

Exercise 8.7:2. (i) Suppose k is a field. Assuming, as asserted above, that for all Lie algebras
L, the map η(L) is one-to-one, show that the Lie algebras of the form B(L) generate the
variety Liek . Deduce that every identity satisfied by the k-module structure and the operation
[–, –] in all associative k-algebras A is a consequence of the identities (8.7.2)-(8.7.4).
(ii) (For students familiar with techniques of change-of-scalars.) Deduce from (i) the same
result for arbitrary k∈CommRing1. (Hint: First verify that every commutative ring k is a
homomorphic image of a ring embeddable in a field.)

That one can argue this way is noteworthy, since it is known that for k not a field, there can
be Lie algebras L over k such that η(L) is not one-to-one.

If R is any k-algebra (which for the moment need not even be associative), and S is the
associative k-algebra of all k-linear maps (i.e., k-module homomorphisms) R → R, then it easy to
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verify that if s, t∈S are both derivations (i.e., satisfy (8.7.7)), then [s, t]∈S is also a derivation.
Thus, the k-derivations on R form a Lie algebra Derk (R) ⊆ B(S), which we will write Der(R)
when there is no danger of ambiguity. For R a Lie algebra or an associative algebra, a derivation
of the form adx = [x, –] is called an inner derivation.

Exercise 8.7:3. Let R be a not necessarily associative k-algebra, with multiplication denoted ∗,
and for x∈|R | let Adx : |R | → |R | denote the map y → x∗ y – y∗x. (Thus if R is
associative, Adx coincides with what we have been calling adx , but if R is a Lie algebra, so
that ∗ denotes [–, –], Adx will be 2 adx .)

Write down the identity that R must satisfy in for every such map Adx to be a derivation.
Show that if R is anticommutative (satisfies (8.7.5)) and 2 is invertible in k, this is
equivalent to the Jacobi identity, but that in general (in particular, if R is associative), it is not.

In terms of the ‘‘ad’’ notation, we can get yet another interpretation of the Jacobi identity. You
will not find it hard to check that (8.7.4) is equivalent to the identity

(8.7.9) adx ady – ady adx = ad[x, y] .

Thus the Jacobi identity is also equivalent to saying that ad : L → Der(L) is a homomorphism of
Lie algebras.

If R is a commutative algebra, then the Lie algebra B(R) clearly has trivial bracket operation.
However, the k-algebra of k-module endomorphisms of R will in general be noncommutative,
hence the Lie algebra Der(R) can have nontrivial bracket operation; these Lie algebras are in fact
important in commutative ring theory and differential geometry.

If we take for k the field R of real numbers, and for R the R-algebra of C∞ (i.e.,
infinitely differentiable) functions on R n, appropriately topologized, then the continuous
derivations on R will be given by the left R-linear combinations of the n derivations ∂ ⁄ ∂x1, ... ,
∂ ⁄ ∂xn . Geometers identify the derivation D = Σ ai (x) ∂ ⁄ ∂xi (ai (x)∈R) with the C∞ vector
field a(x) = (a1(x), ... , an (x)), the idea being that D f gives, at each point x, the rate of change
of f that would be seen by a particle at x moving with velocity a(x); thus they speak of the Lie
algebra of C∞ vector fields on R n (and by a similar construction, on any C∞ manifold). One
can similarly look at the Lie algebra of ‘‘polynomial vector fields on affine n-space’’ over any
commutative ring k; these are the derivations on the polynomial ring R = k[x1, ... , xn ], and have
the form Σ ai (x) ∂ ⁄∂xi , where the derivations ∂ ⁄ ∂xi are this time defined formally (in the
obvious way), and again ai (x)∈R.

It turns out that Lie algebras arising in the above manner satisfy some additional identities,
beyond those satisfied by all Lie algebras. The simplest case is that of part (ii) of the next exercise.

Exercise 8.7:4. (i) Let C∞(R1) denote the ring of C∞ functions on the real line R1, and
L(R1) the Lie algebra of vector fields f d ⁄dx ( f ∈(C∞(R1))). Verify that the Lie bracket
operation on L(R1) is given by the formula

[ f d ⁄dx, g d ⁄dx] = ( f dg ⁄dx – g df ⁄ dx) d ⁄dx.

For notational convenience, let us write this as a Lie algebra structure on | C∞(R1) | :

[ f , g] = f dg ⁄dx – g df ⁄ dx.

though we shall continue to denote this Lie algebra L(R1).
(ii) Show that L(R1) does not generate LieR . (Note that if you find an identity satisfied in
L(R1), and want to show it is not satisfied in all Lie algebras, you can look for an instance of its
failure in a Lie algebra B(A), since you know how to compute explicitly in these.)
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The above result requires some computational dirty-work. On the other hand, even if you do
not do that part, a little ingenuity will allow you to do the remaining parts.
(iii) Show that for every positive integer n, L(R1) contains a subalgebra which is free on n
generators in Var (L(R1)).
(iv) Show that Var (Der(R[x])) = Var (L(R1)), i.e., that polynomial vector fields satisfy no
identities not satisfied by C∞ vector fields. However, show that Der(R[x]) does not contain a
subalgebra which is free on more than one generator in this variety.

You can carry the idea of part (ii) farther, looking at the variety generated by the Lie algebra
L(R d) of C∞ vector fields on R d, the Lie subalgebra thereof consisting of vector fields of
divergence 0, and similar constructions.

One of the most important interpretations of Lie algebras lies outside the scope of this work,
and I will only sketch it briefly: their connection with Lie groups.

A Lie group is a topological group G whose underlying topological space is a manifold.
Typical examples are the rotation group of real 3-space, which is a 3-dimensional compact Lie
group, and the group of motions of 3-space generated by rotations and translations, which is
6-dimensional and noncompact. Some degenerate but important examples are the real line, which
is 1-dimensional, its compact homomorphic image the circle group R ⁄ Z , and finally, all discrete
groups, which are the zero-dimensional Lie groups. It is known that every Lie group admits a
unique C∞ structure respected by the group operations.

If G is a Lie group, e its identity element, and Te the tangent space to G at e, then
every tangent vector t ∈Te extends by left translation to a left-translation-invariant vector field.
Hence the space of left-invariant vector fields may be identified in a natural manner with Te . The
commutator bracket of two left-invariant vector fields is left-invariant, so such vector fields form a
Lie algebra; hence the above identification gives us a Lie algebra structure on Te .

That structure can also be arrived at directly, by an approach which leads to another important
motivation for the concept of Lie algebra. Let us think of the additive structure of Te as the
‘‘first order approximation to the group structure of G in the neighborhood of e’’. Such an
approximation is necessarily abelian, because the commutator of two elements of G both of which
are close to e is close to e ‘‘to second order’’. To measure this second-order noncommutativity
of G near the identity, let us identify a neighborhood of 0∈Te with a neighborhood of e∈G,
and on this identified neighborhood use vector-space notation for the operations of Te , and ∗ for
the multiplication of G. Then for x, y∈T and real variables s and t, that second-order
noncommutativity is measured by the limit

lims, t→ 0
(sx)∗(ty) – (ty)∗(sx)

st .

Calling this limit [x, y]∈Te , and examining the properties of this operation, one arrives again at
the concept of Lie algebra. Elements of this Lie algebra are thought of as ‘‘infinitesimal’’ elements
of the Lie group G, and one finds that the structure of G is determined ‘‘locally’’ by that of its
Lie algebra.

For a familiar case, let G be the rotation group of Euclidean 3-space. Then elements of G
represent rotations of space through various angles about various axes, while the elements of its Lie
algebra L represent various angular velocities about various axes. As a vector space, L may be
identified with R3, each element being identified with a vector pointing in the direction of its axis
of rotation, and with magnitude equal to its angular velocity. The Lie bracket on L then turns out
to be an operation on R3 known to every math or engineering student: the ‘‘cross product’’ of
vectors.
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Exercise 8.7:5. We saw in Exercise 2.3:2 and the discussion preceding it that in the variety
generated by a finite group, a free object on finitely many generators is finite. Is it similarly true
that a free object on finitely many generators in the variety Var(A) generated by a finite-
dimensional associative algebra or Lie algebra A over a field k is finite-dimensional? If not,
can you prove some related condition (e.g., of ‘‘small growth-rate’’)?

Can you show that such a variety Var(A) must be distinct from the whole variety Ringk
1,

respectively Liek ? In the Lie case, if k = R , can you show it distinct from the subvariety
Var (L(R1)) of Exercise 8.7:4(ii)?

Some general references for the theory of Lie algebras are [65], [67], [94].

The relationship between Lie groups and Lie algebras on the one hand, and on the other, the
fact that derivations on an algebra form a Lie algebra, leads to the heuristic principle that
derivations on an algebra may be regarded as ‘‘infinitesimal automorphisms’’. This suggests that
such a derivation should be determined by what it does on a generating set, and, in the case of a
free algebra, that it should be possible to specify the derivation in an arbitrary way on the free
generators. The next exercise gives results of these sorts.

Exercise 8.7:6. Let A be a not necessarily associative algebra over a commutative ring k.
(i) Show that the kernel of any derivation d : A → A is a subalgebra of A. (This is
analogous to the fixed subalgebra of an automorphism.) Deduce that two derivations which
agree on a generating set for A are equal.

The other result we want, about derivations on free algebras, requires a trick to turn
derivations into something to which we can apply the universal properties of these algebras.
(ii) Let A ′ denote the algebra whose k-module structure is that of A × A, and whose
multiplication is given by (a, x) (b, y) = (ab, ay + xb). Verify that this is an associative
k-algebra, respectively an associative commutative k-algebra, if and only if A has the same
property.
(iii) Show that a map d : A → A is a derivation if and only if the map a → (a, d(a)) is a
homomorphism A → A ′ as k-algebras. Deduce that if A is the free nonassociative k-algebra,
the free associative k-algebra, or the free associative commutative k-algebra on a set X, then
every set-map X → |A| extends uniquely to a derivation A → A.
(iv) Show that if A is a field or a division ring, and X a subset generating A as a field or
division ring, then any derivation A → A is determined by its restriction to X. Can you
generalize this result?

Remark. The concept of a derivation from a k-algebra A into itself is a case of the more
general concept of a derivation from a k-algebra A into an A-module (if A is commutative and
associative) or an A-bimodule (in the general associative case) B. Such a derivation is defined as
a k-module homomorphism satisfying (8.7.7), and the above exercise goes over to this more general
situation. Where in the exercise we put a k-algebra structure on |A| × |A|, the generalized
argument uses the corresponding structure on |A| × |B|.

There are still other variants of the concept of derivation which we won’t go into here.

Our motivation of the definition of Lie algebra starting from (8.7.1) suggests the analogous
question of what identities will be satisfied by the operation

(x, y) = xy + yx

on an associative algebra. This is the starting-point of the theory of Jordan algebras, but the
subject is not as neat as that of Lie algebras. Jordan algebras are defined using the identities of
degree ≤ 4 satisfied by the above operation, but that operation also satisfies identities of higher
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degrees not implied by the Jordan identities; Jordan algebras satisfying these are called
‘‘semispecial’’. No analog of the connection between Lie groups and Lie algebras appears to exist
for Jordan algebras. A standard reference for the theory of Jordan algebras is [68].

Let us now return to general algebras.

8.8. Some necessary trivialities. Suppose g : SX → S is an X-ary operation on a set S, and
a : X → Y is a set map. Then we can define a Y-ary operation f : SY → S by f ((cy )y∈Y ) =
g((ca(x))x∈X ). Let us call f the operation induced by g via the map a of arity-sets. The
covariance of this construction in the arity-set is actually the result of two contravariances:

a : X → Y induces a map SY → SX, then this gives a map S(SX ) → S(SY ). If g is a (primitive
or derived) operation of an algebra structure on S, say corresponding to an element s∈ |FΩ (X ) |,
then f corresponds to the image of s under the homomorphism FΩ (a) : FΩ (X ) → FΩ (Y ). (In
terms of this description, the covariance is straightforward.)

Given an operation f : SY → S on a set, and a subset X of the index set Y, let us say that f
depends only on the indices in X if f takes on the same value at any two Y-tuples that (regarded
as functions on Y ) have the same restriction to X. If S or X is nonempty, this is equivalent to
the condition that f be induced by an X-ary operation g on S, via the inclusion of X in Y .

Exercise 8.8:1. (i) Verify the equivalence mentioned in the last sentence.
(ii) Show why the condition ‘‘S or X is nonempty’’ is needed for this equivalence to hold.

That finishes the essential material of this section! But there are several interesting related
points, explored in the exercises below.

Exercise 8.8:2. Let S and Y be sets and f : SY → S a Y-ary operation on S.
(i) Suppose W, X ⊆ Y are sets such that f depends only on the indices in W, and f also
depends only on the indices in X. Show that f depends only on the indices in W∩ X.
(ii) On the other hand, show that given an infinite family of subsets Xi ⊆ Y such that for
each i, f depends only on the indices in Xi , it may not be true that f depends only on the
indices in ∩ Xi .
(iii) In general, given a Y-ary operation f on S, what properties must

Df =def {X ⊆ Y � f depends only on indices in X }

have? Specifically, try to find conditions on a family U of subsets of Y which are necessary
and sufficient for there to exist a set S and a function f : SY → S such that U = Df .

In some works on general algebra, there is a confusion between zeroary derived operations, and
constant derived operations of nonzero arities. The next two exercises show some of the basis of
this confusion:

Exercise 8.8:3. (Like Exercise 8.8:1, but for derived operations.)
(i) Show that if a derived Y-ary operation s of an algebra A depends only on indices in a
subset X ⊆ Y, and X is nonempty, then s is in fact induced by an X-ary derived operation
of A.
(ii) On the other hand, suppose the derived Y-ary operation s of A depends only on the
empty set of indices in Y, i.e., is constant. If A has zeroary operations, show that, as (i)
would suggest, but for a different reason, s is induced by a zeroary derived operation of A.
Show, however, that if A has no zeroary primitive operations, derived operations depending on
the empty set of indices can still exist, but will not be induced by derived zeroary operation.

10/8/98 Math 245

§8.8. Some necessary trivialities. 295



Thus, for m ≤ n, derived m-ary operations correspond to derived n-ary operations depending
only on the first m variables, except for the m = 0 case, where this is not true unless the algebra
has zeroary primitive operations.

One is still more susceptible to the confusion referred to above if one excludes empty algebras,
as is shown by

Exercise 8.8:4. We have seen that the X-ary derived operations of a variety V can be
characterized as the morphisms UV

X → UV where UV is the underlying-set functor of V .
Suppose now that V is a variety without zeroary operations, hence having an empty algebra

I. Let V–{I } denote the full subcategory of V consisting of all nonempty algebras, and let
UV–{I } denote the restriction of UV to this subcategory.
(i) Show that morphisms (UV–{I }) X → UV–{I } correspond to derived X-ary operations of
V except in the case X = ∅, in which case they can be put in natural correspondence with the
constant derived unary operations.
(ii) Show that if V has constant derived unary operations, then V – {I } is isomorphic in a
natural way to a variety of algebras (of a different type) having zeroary operations.

As an example, suppose that (as has been proposed from time to time) one sets up a variant
of the concept of ‘‘group’’, based only on the two operations of composition and inverse,
axiomatizing these by the associative law for composition, and the following identities, which
hold in ordinary groups as consequences of the inverse and neutral element laws:

x = xyy–1 = xy–1y = y–1yx = yy–1x.

(iii) Let V be the variety so defined. Show that the category V – {I } is isomorphic
to Group .

8.9. Clones and clonal theories. Given a family of unary operations on a set S, i.e., maps
S → S, the composites of these (together with the ‘‘empty composite’’, the identity map) form a
monoid of maps of S into itself. In this section we will look at the structure of the set of derived
operations of a family of not necessarily unary operations, under the operations analogous to
composition of unary operations.

We will limit ourselves to finitary operations. (There is no problem with the infinitary case, but
I thought the concepts would come across more clearly in the familiar finitary context. The reader
interested in the infinitary case can easily make the appropriate generalizations, replacing ‘‘finite’’
by ‘‘ < γ ’’, for γ a regular cardinal.) We will also, in this presentation, make our arities natural
numbers (in the infinitary case, read ‘‘cardinals < γ ’’) rather than arbitrary finite sets, since
allowing all finite sets as arities would mean that every algebra would have a large set of formally
distinct operations.

Definition 8.9.1. Let S be a set. Then a clone of operations on S will mean a set C of
operations on S, of natural-number arities, which is closed under formation of derived operations.
Concretely, this says that

(i) for every natural number n, C contains the n projection maps pn, i : Sn → S (i∈n),
defined by

(8.9.2) pn, i (ξ0, ... , ξn–1) = ξi ,

and

(ii) given natural numbers m, n∈ω , an m-ary operation s∈C, and m n-ary operations
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t0 , ... , tm–1 ∈C, the set C also contains the n-ary operation

(8.9.3) (ξ0, ... , ξn–1) → s(t0(ξ0, ... , ξn–1), ... , tm–1(ξ0, ... , ξn–1))

i.e., the composite

Sn _________(t0 , ... , tm–1)
→ Sm ___s→ S.

The least clone on S containing a given set of operations will be called the clone generated by
that set. Thus, for any finitary type Ω and any Ω-algebra A, the set of derived operations of A
constitutes the clone generated by the primitive operations of A.

Let us look at an example of how this procedure of generation works. Given a binary operation
f and a ternary operation g on a set S, how do we express in terms of the constructions (8.9.2)
and (8.9.3) the 6-ary operation

(ξ0, ... , ξ5) → f (g(ξ0, ξ1, ξ2), g(ξ3, ξ4, ξ5)) ?

It should clearly arise as an instance of (8.9.3) with f for s, but we cannot, as we might first
think, take g for t0 and t1. That would give the ternary operation (ξ0, ξ1, ξ2) →
f (g(ξ0, ξ1, ξ2), g(ξ0, ξ1, ξ2)). We need, rather, to use as t0 and t1 the two 6-ary operations
(ξ0, ... , ξ5) → g(ξ0, ξ1, ξ2) and (ξ0, ... , ξ5) → g(ξ3, ξ4, ξ5). We get these, in turn, as instances
of (8.9.3) with g in the role of s, and projection maps (8.9.2) in the role of the ti ’s. Namely,
taking for t0, t1, t2 the projection maps p6,0 , p6,1 , p6,2, we get the first of the above 6-ary
operations, and using the remaining three 6-ary projection maps, we get the other. We can then, as
noted, apply (8.9.3) to f and these two 6-ary operations to get the 6-ary operation first asked for.
(In this example, each of our variables happened to appear exactly once in the final expression, and
the occurrences were in ascending order of subscripts, but obviously, by different choices of
projection maps, we can get expressions in which variables appear more than once, and in arbitrary
orders.)

Above, we got a ‘‘new’’ operation by inserting into the ternary operation g the 6-ary
projection maps p6,0, p6,1, p6,2 . It is clear that if we had instead used the ternary projections
p3,0, p3,1, p3,2 (in that order) we would have gotten back precisely the operation g. Note also
that if we substitute any operation f into the unary projection map p1, 0, we get the operation f
back. These phenomena are analogs of the neutral element laws in a monoid.

One also has an analog of the associative law: If m, n and p are nonnegative integers, then
given an m-ary operation s, any m n-ary operations ti (i∈m), and any n p-ary operations uj
( j∈n), one can either substitute the t’s into s, and the u’s into the resulting operation, or first
substitute the u’s into the t’s, and then the resulting operations into s. In each case one gets the
p-ary operation which is the composite of the set maps

Sp _________(u0 , ... , un–1)
→ Sn _________(t0 , ... , tm–1)

→ Sm ___s→ S .

Hence the results of these two substitution-procedures are equal.

It looks as though we ought to abstract these properties, and use them as the definition of a new
sort of algebraic object, which we might call a ‘‘formal substitution algebra’’ or a ‘‘clonal
algebra’’. We would then have a new way of looking at varieties of algebras: Given a type Ω
and a family J of identities, we would be able to construct a ‘‘clonal algebra’’ <Ω � J>
presented by these operation-symbols and identities. We could then define a ‘‘representation’’ of

10/8/98 Math 245

§8.9. Clones and clonal theories. 297



this clonal algebra on a set |A| to mean a homomorphism of <Ω � J> into the clone of all
finitary operations on that set. Such representations could be identified with Ω-algebras satisfying
the identities of J ; thus, each variety of algebras could be looked at as the category of
representations of a clonal algebra.

Unfortunately, these ‘‘clonal algebras’’ would not be algebras of the sort we have developed in
this chapter. The algebras |A| we have been studying have an underlying set |A|; but ‘‘clonal
algebras’’ would have an underlying family of sets, one set for each arity of the operations
symbolized, with various composition operations associated to various combinations of these.

Now there is in fact a concept of many-sorted algebra (algebra having different ‘‘sorts’’ of
elements), and in an as-yet-unwritten chapter, I hope to show that the adaptation of the ideas of this
chapter to that context is fairly straightforward. If I were going to develop the ideas sketched
above in that form, I would wait for that chapter.

But in fact, we don’t need a new kind of mathematical object to do what we have been
discussing! After all, we introduced the concept of a category to formalize the properties of
composition of maps, which is what we are dealing with here. The apparent difficulty with looking
at the members of a clone of operations as morphisms in a category is that an n-ary operation in a
clone can be composed on the right, not with a single operation, but with a family of n
operations. The solution is to define our category so that a general morphism therein is not a single
n-ary operation |A| n → |A|, but an m-tuple of n-ary operations, corresponding to a map
|A| n → |A| m.

Now everything falls into place! The category should have objects Xn in one-to-one
correspondence with the natural numbers n, and a morphism between Xn and Xm should
correspond to an m-tuple of n-ary operations in our clone.

In saying ‘‘a morphism between Xn and Xm ’’, I have skirted the question of which of these
objects is to be the domain, and which the codomain! This is simply a notational choice: whether
we want to encode our structure as a certain category, or as its opposite. The development we have
just seen suggests that the morphisms corresponding to m-tuples of n-ary operations should go from
Xn to Xm , since an m-tuple of n-ary operations of an algebra A gives a set map |A| n → |A| m.
More globally, an m-tuple of derived n-ary operations of the whole variety V is equivalent to a
morphism UV

n → UV
m, so the ‘‘clone of derived operations’’ of V is encoded by the full

subcategory of SetV having the functors UV
n as objects.

But there is also motivation for the opposite choice. Recall that the n-ary operations of a
variety V correspond to the elements of the free algebra FV (n). An m-tuple of such elements is
picked out by a homomorphism FV (m) → FV (n); so the full subcategory of V consisting of the
free objects FV (n) also embodies the structure of the operations of V , in the manner opposite to
way it is embodied in morphisms UV

n → UV
m. This is, of course, a case of the contravariance of

the Yoneda equivalence between the covariant functors UV
n and their representing objects FV (n).

Postponing the above question for a moment, let us note that, whichever choice we make, we
will want to know which categories with object-set of the form {Xn � n∈ω} correspond in this
way to clones of operations. Clearly, such a category should be given with a distinguished family
of n morphisms pn, i (i∈n) between X1 and Xn for each n (corresponding, in one
description to the n projection maps |A| n → |A|, and in the other to the n obvious morphisms
FV (1) → FV (n)). It must also have the property that morphisms between Xn and Xm (in the
appropriate direction) correspond, via composition with the pm, i , to m-tuples of morphisms
between Xn and X1.

These conditions together say that in the category, each object Xn is the product (respectively
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coproduct ) of n copies of X1, with the given morphisms pn, i as (co)projection maps. As to
the choice of direction of the morphisms, Lawvere, in his doctoral thesis [11] where he introduced
this approach, made Xn a product of copies of X1, but in later published work switched to the
definition under which it would be a coproduct, in other words, under which the category would
look like the category of free algebras FV (n). An attractive feature of the latter choice for
Lawvere is that the category having only the maps pn, i for morphisms (corresponding to the
variety with no primitive operations) is the full subcategory N ⊆ Set having the natural numbers
for objects; hence the category corresponding to a general variety can be characterized as a certain
kind of extension of N . This fit with his project of creating a category-theoretic foundation for set
theory and for mathematics, with the category N as a basic building-block. I prefer the other
choice of variance because it leads to a covariant relationship between this category of formal
operations, and the actual operations in the variety. I will include both versions in the definition
below, calling them the ‘‘contravariant’’ and ‘‘covariant’’ versions, but from that point on we will
generally work with the covariant formulation.

Lawvere calls the category of formal operations of a variety V the ‘‘theory of V’’, and any
category of this form an ‘‘algebraic theory’’. For us this would be awkward, for though these
categories carry approximately the same information as equational theories, the two concepts are
different enough that we cannot identify them. So let us introduce a different term.

Definition 8.9.4. A covariant clonal category will mean a category X given with a bijective
indexing of its object-set by the natural numbers, Ob(X) = {Xn � n∈ω}, and with morphisms
pn, i : Xn → X1 (i∈n) which make each Xn the product of n copies of X1 , and such that
p1, 0 is the identity map of X1 ; equivalently, given with a functor Nop → X which is bijective
on object-sets, and turns coproducts in N to products in X (where N denotes the full
subcategory of Set whose objects are the natural numbers).

A contravariant clonal category will mean a category X given with the dual sort of structure,
i.e., with a covariant clonal category structure on Xop, equivalently, with a functor N → X
which is bijective on object-sets and respects finite coproducts.

(More generally, for any regular cardinal γ one may define concepts of covariant and
contravariant γ-clonal category, using in place of N the full subcategory of Set having for
object-set the cardinal γ, and in place of finite (co)products, (co)products of < γ factors.)

Exercise 8.9:1. Establish the equivalence of the structures described in the first paragraph of the
above definition.

A clonal category is a sort of algebraic object, so we make

Definition 8.9.5. By Clone we shall denote the category whose objects are the covariant clonal
categories, and where a morphism X → Y is a functor which carries Xn to Yn for each n,
and respects the morphisms pn, i . In other words, Clone will denote the full subcategory of the
comma category (Nop ↓ Cat) whose objects are the clonal categories.

Incidentally, when one forms the category of contravariant clonal categories, this is isomorphic
to our present category Clone , not opposite thereto, since the direction of morphisms within
clonal categories does not affect the direction of functors among them.

We now wish to establish the relation between clonal categories and varieties of algebras. First,
given a variety V , we want to define the associated clonal category. The most convenient choice
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from the formal point of view would be to use n-ary derived operations of V as the morphisms
from Xn to X1. Unfortunately, these derived operations are not small as sets (though the set of
them is quasi-small). So we will use in their stead the corresponding elements of the free
V-algebra FV (n). Of course, we will define the composition operation of the clone so as to
correspond to composition of derived operations. (This construction was in fact sketched in §6.2,
with V = Group , when we were noting examples of ‘‘nonprototypical’’ ways of defining
categories. We described it as a category C such that C(m, n ) consisted of all n-tuples of m-ary
derived group-theoretic operations.)

Definition 8.9.6. If V is a variety of finitary algebras, the covariant clonal theory of V will
mean the clonal category XV in which a morphism from Xn to Xm means an m-tuple of
elements of |FV (n) |, where composition

|FV (n) | m × |FV ( p) | n → |FV ( p) | m

is defined by substitution of n-tuples of expressions in p indeterminates into expressions in n
indeterminates, and where each pn, i is given by i th member of the universal n-tuple of generators
of FV (n). We note that this is equivalent (up to natural isomorphism) to the full subcategory of
the large category SetV having for objects the functors UV

n (n∈ω), and also to the opposite of
the (small ) full subcategory of V having for objects the free V-algebras FV (n).

Given a clonal category X, an X-algebra will mean a functor X → Set respecting the
product structures defined on the objects Xn by the projection maps pn, i . The category of all
X-algebras will be written X-Alg . The functor X-Alg → Set taking each X-algebra A to the
set A(X1) will be written UX-Alg , or U when there is no danger of ambiguity, and called the
‘‘underlying-set functor’’ of X-Alg.

Note that by our general convention, unless the contrary is stated a clonal category X is
legitimate, hence, as it has a small set of objects, it is small. Thus, the corresponding category
X-Alg is legitimate.

We have designed these concepts so that the categories X-Alg are essentially the same as
classical varieties of algebras. Let us state this property as

Lemma 8.9.7. If X is a clonal category, then X-Alg (defined in the second paragraph of
Definition 8.9.6) is equivalent to a variety V of finitary algebras, by an equivalence respecting
underlying-set functors.

Moreover, if V is any variety of finitary algebras, then XV -Alg ( where XV is defined as in
the first paragraph of Definition 8.9.6) is equivalent in this way to V. Inversely, if X is a clonal
category, then XX-Alg is naturally isomorphic in Clone to X . �

Exercise 8.9:2. Prove Lemma 8.9.7.

For X a clonal category, an X-algebra can be thought of as a ‘‘representation’’ of the clone X
by sets and set maps. This suggests the following more general definition, which we will find
useful in the next chapter:

Definition 8.9.8. If X is a clonal category and C any category with finite products, a
representation of X in C will mean a covariant functor A : X → C respecting the product
structures defined on the objects Xn by the projection maps pn, i .
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Let us note that the information given by a clonal category is not quite the same as that given
by a variety, since the clonal category does not distinguish between primitive and derived
operations, while under our definition, a variety does.

Lawvere defines a variety of algebras (in his language, an ‘‘algebraic category’’) to mean a
category of the form X-Alg , where X is what we call a clonal category (and he calls a theory).
This is a reasonable and elegant definition, but since we began with the classical concepts of
variety and theory, and it is pedagogically desirable to hold to one definition, we shall keep to our
previous language, and study this construction as a closely related concept.

Exercise 8.9:3. Let 2N be the full subcategory of Set having for objects the nonnegative even
integers. For each integer n, the object 2n of 2N is a coproduct of n copies of the object
2, hence the opposite category (2N)op can be made a covariant clonal category by an
appropriate choice of maps pn, i . Write down such a system of maps pn, i , and obtain an
explicit description of (2N)op-Alg as a variety V determined by finitely many operations and
finitely many identities. Your answer should show what it means to put a (2N)op-algebra
structure on a set.

Exercise 8.9:4. In defining an X-algebra as a certain kind of functor in Definition 8.9.6, we
required that this functor respect the given structures of the objects Xn as n-fold products
of X1.
(i) Show that under the conditions of that definition, to respect these distinguished products is
equivalent to respecting all finite products that may exist in X .
(ii) Show on the other hand that an X-algebra may fail to respect infinite products in X . (To
do this, you must start by finding a clonal category X having a nontrivial infinite product of
objects!)

Exercise 8.9:5. Show that, up to isomorphism, there are just two clonal categories X such that
the functor Nop → X is not faithful. What are the corresponding varieties?

The next exercise does not involve the concept of clonal category, and could have come after
the definition of a clone of operations on a set, but I didn’t want to break the flow of the
discussion. It requires familiarity with a bit of elementary electronics.

Exercise 8.9:6. (Inspired by a question of F. E. J. Linton.)
If n is a positive integer, let us understand an ‘‘n-labeled circuit graph’’ to mean a finite

connected graph Γ (which may have more than one edge between two given vertices), with two
distinguished vertices 0 and 1, and given with a function sending the edges of Γ to the set
n = {0, ... , n–1}. To each such graph let us associate the n-ary operation on the nonnegative real
numbers that takes each n-tuple (r0, ... , rn–1) of numbers to the resistance that would be
measured between 0 and 1 if each edge of Γ labeled i were a resistor with resistance ri .
(i) Explain (briefly) why the set of operations on nonnegative real numbers arising in this way
from labeled circuit graphs forms a clone.
(ii) Let s denote the binary operation in this clone corresponding to putting two resistors in
series, p the binary operation corresponding to putting two resistors in parallel, and w the
5-ary operation corresponding to a Wheatstone Bridge; i.e., determined by the graph

.

. , with

0 and 1 the top and bottom vertices, and distinct labels on all five edges. Show that none of
these three operations is in the subclone generated by the other two. (Suggestion: Look at
order-properties of these three operations.)

A much more difficult question is
(iii) Is the clone of (i) generated by the three operations listed in (ii)?

I do not know answers to the next two questions.
(iv) Can one characterize the set of operations belonging to the clone of part (i), i.e., describe
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some test that can be applied to an operation to determine whether it belongs to the clone?
(v) Can one find a generating set for the identities satisfied by the two binary operations s
and p? (This was the question of Fred Linton’s which inspired this exercise.)

Generating sets for identities of other families of operations in this clone would likewise be
of interest.
(vi) Suppose one is interested in more general electrical circuits; e.g., circuits containing
resistors, capacitors and inductances, and possibly other elements. Can one somehow extend the
‘‘clonal’’ viewpoint to such circuits?
(vii) If you succeed in extending the clonal approach to circuits composed of resistors,
capacitors and inductances, is the clone you get isomorphic to the clone of part (i) (the clone one
obtains assuming all elements are resistors)?

You might also try to answer this question for other sets of circuit elements.

We have defined the concept of a morphism between clonal categories. What does this mean
from the viewpoint of the corresponding varieties of algebras? If V is a variety of Ω-algebras and
W is a variety of Ω′-algebras, we see that to specify a morphism f ∈Clone(XV , XW ) one must
associate to every primitive operation s of V a derived operation f (s) of W of the same arity,
so that the defining identities for V in those primitive operations are satisfied by the operations
f (s) in W . We find that such a morphism f determines a functor in the opposite direction,
W → V ; namely, given a W-algebra A, we get a V-algebra Af with the same underlying set by
using for each primitive V-operation sAf

the derived operation f (s)A of the W-structure on

|A|. In fact we have

Lemma 8.9.9. (Lawvere) Functors between varieties of algebras which preserve underlying sets
correspond bijectively to functors in the opposite direction between the clonal theories of these
varieties, via the construction described above. �

Exercise 8.9:7. Prove Lemma 8.9.9.

Easy examples of such functors among varieties are the forgetful functors Group → Monoid ,
Ring1 → Monoid , Ring1 → Ab , Lattice → ∨-Semilattice , and similar constructions, including
the underlying-set functor of every variety, and the inclusion functor of any subvariety in a larger
variety, e.g., Ab → Group . In the above list of cases, each primitive operation of the codomain
variety happens to be mapped to a primitive operation of the domain variety. Some examples in
which primitive operations are mapped to proper derived operations are the functor Bool1 →
∨-Semilattice under which the semilattice operation x∨ y is mapped to (i.e., given by) the
Boolean operation (x, y) → x +y +xy; the functor H : Group → Heap of Exercise 8.6:9, under
which the ternary heap operation τ is mapped to the group operation x y–1z, and the functor B :
Ringk

1 → Liek of §8.7, under which the primitive k-module operations of Liek are mapped to
the corresponding primitive operations of Ringk

1, but the Lie bracket is mapped to the commutator
operation xy – yx.

We have seen most of the above constructions before as examples of functors having left
adjoints. In fact, one can prove that any functor between varieties induced by a morphism of their
clonal theories – in other words, every functor between varieties that preserves underlying sets –
has a left adjoint! We will not stop to do this here, because it will be an immediate consequence of
a necessary and sufficient criterion for a functor between varieties to have a left adjoint that we will
obtain in the next chapter. But you can prove this case now as an exercise:
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Exercise 8.9:8. (Lawvere) Show that any functor between varieties of finitary algebras which
preserves underlying sets has a left adjoint.

You may drop the ‘‘finitary’’ condition if you wish, either using generalized versions of the
results of this section, or proving the result without relying on the ideas of this section.

Here are a few more exercises on underlying-set-preserving functors and their adjoints:

Exercise 8.9:9. Let U : Group → Monoid denote the forgetful functor, and F : Monoid →
Group its left adjoint (called in §3.11 the ‘‘universal enveloping monoid’’ construction).
(i) Show that there exist proper subvarieties V ⊆ Group such that U(V) does not lie in a
proper subvariety of Monoid .

A much harder problem is
(ii) If V is a proper subvariety of Monoid , must F(V) be contained in a proper
subvariety of Group ? Must one in fact have UF(V) ⊆ V ?

Exercise 8.9:10. Let H : Group → Heap be the functor described by (8.6.8) in Exercise 8.6:9,
and F : Heap → Group its left adjoint. Let A be a nonempty heap. We recall that A =∼
H(G) for some group G.
(i) Characterize the structure of the group F(A) in terms of that of G.
(ii) It follows from Exercise 8.6:9 (ii) that in general, A has automorphisms i not arising
from automorphisms of the group G. Give an example of such an automorphism (or better, a
complete characterization of automorphisms of any nonempty heap A = H(G)), and describe the
induced automorphism F(i ) of the group F(H(G)).

Exercise 8.9:11. Show that there exist exactly two underlying-set-preserving functors Set →
Semigroup . (Hint: What derived operations does Set have?) Find their left adjoints.

The next exercise looks at clonal categories as algebraic objects:

Exercise 8.9:12. (i) Show that the category Clone has small limits and colimits.
(ii) Is Clone equivalent to a variety of algebras?

The discussion leading up to Lemma 8.9.9 shows more than was stated in that lemma. So let us
also record

Lemma 8.9.10. Let Ω = ( |Ω |, ari ) be any type. Then the functor Clone → Set associating to
each clonal category X the set of maps |Ω | → n X(Xn , X1) taking each s∈|Ω | to an
element of X(Xari(s) , X1) is representable, with representing object XΩ-Alg . Thus, XΩ-Alg
may be regarded as a ‘‘free clonal category on an |Ω |-tuple of formal operations of arities given
by the function ari’’.

Now suppose also that J is a set of identities for Ω-algebras, which we will here express, not
as pairs of elements of |FΩ (ω) |, but as pairs of elements of | FΩ (n) | for various n∈ω; and let
us identify these sets | FΩ (n) | with the sets XΩ-Alg (n,1). Then the functor Clone → Set
associating to each clonal category X the set of those maps |Ω | → n X(Xn , X1) as in the
preceding paragraph, which satisfy the additional condition that for each (s, t)∈J, the induced
map XΩ-Alg → X carries s and t to the same element, is representable, with representing
object XV(J ) . Thus, XV(J ) may be written <Ω � J >Clone , i.e., regarded as the clonal
category ‘‘presented by the family Ω of formal operations, and the family J of relations among
the derived operations of this family’’. �

Let me end this section by mentioning a few concepts on which there is considerable literature,
though we will not study them further here.
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One is often interested in properties of a variety V of algebras that do not depend on which
operations are considered primitive. Not surprisingly, these can often be expressed as elementary
statements about the clone XV of derived operations of V .

The formally simplest properties to state about a clone of operations are universally and
existentially quantified equations in families of operations of specified arities. Universally
quantified equations of this sort are called hyperidentities [99]. An example, and its interpretation
in terms of ordinary identities, is noted in

Exercise 8.9:13. Show that a variety V satisfies the hyperidentity saying that all derived unary
operations are equal if and only if all primitive operations s of V (of all arities) satisfy the
identity of idempotence: s(x, ... , x) = x.

The above hyperidentity is satisfied, for instance, by the varieties of lattices, semilattices, and
heaps. On the other hand, there are many varieties that satisfy no nontrivial hyperidentities; e.g., it
is shown in [99] that this is true of the variety of commutative rings. A class of varieties
determined by a family of hyperidentities is called a hypervariety.

(The term ‘‘hyperidentity’’ is used by some authors, e.g., in [86], with the related but different
meaning of an identity holding for all families of primitive operations of given arities in a variety.
But this seems to me a less useful concept.)

Exercise 8.9:14. (i) Show that for every monoid identity s = t there is a hyperidentity s ′ = t ′
such that for S a monoid, the variety S-Set satisfies s ′ = t ′ if and only if the monoid S
satisfies s = t.
(ii) Is the analogous statement true for ring identities and hyperidentities of varieties R-Mod ?
If not, how much can be said about the relation between hyperidentities satisfied by varieties
R-Mod , and identities or other conditions, satisfied by R?

Because hyperidentities involve both universal quantification over derived operations and
universal quantification over the elements to which these operations are applied, they tend to be
very strong, and hence somewhat ‘‘crude’’ conditions, as illustrated by the fact that the variety of
commutative rings satisfies no hyperidentities. Existentially quantified equations in derived
operations, on the other hand, have proved a delicate tool in General Algebra. An example of this
sort of condition on a variety V is the statement that there exists a derived ternary operation M
of V satisfying the identities

M(x, x, y) = M(x, y, x) = M(y, x, x) = x.

This is satisfied, for instance, by the variety of lattices, where one can take M(x, y, z) =
(x∨ y) ∧ (y∨ z) ∧ (z∨ x) . Another example is the condition of the same form, but with ‘‘ = y ’’ on
the right in place of ‘‘ = x ’’; this is satisfied by the variety of abelian groups of exponent 2, with
M(x, y, z) = x +y +z. Many important technical conditions on a variety V (for instance, the
condition that for any two congruences E and E ′ on an object A of V , one has E o E ′ =
E ′ o E under composition of binary relations on |A|; or the condition that each subalgebra B of a
direct product algebra A1× ... × An in V be determined by its images in the pairwise products
Ai × Aj ) turn out to be equivalent to the statement that V belongs to the union of some chain of
classes, each determined by an existentially quantified equation in derived operations. The
condition that a variety belong to such a union is called a Mal’cev condition; see [3 §II.12] and
[9, §60] for examples and applications.

Finally, let me indicate a concept similar to that of clonal category, but designed to apply to a
wider class of situations, called an operad. To motivate the idea, suppose that we wish to think of
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an algebra over a field k, not as a set with operations +, 0, –, ., etc., but as a k-vector-space
with a single additional k-bilinear operation ‘‘.’’, and that we want to look at this in the context of
general systems consisting of k-vector-spaces V given with k-multilinear operations satisfying
various multilinear identities. To study such entities, we would like to set up an abstract model,
analogous to a clonal category, but modeling, not an unstructured set with set-theoretic operations,
but a vector space with multilinear operations. As in the situation that motivated clonal categories,
one can form derived multilinear operations from given multilinear operations; but there are things
one can do in a clone of set-theoretic operations but not in this context: The projection maps
Vn → V are not multilinear, so they will not appear in our structure, nor, for the same reason, will
any derived operations in which some variable occurs more than once. On the other hand, one has
some structure in this multilinear context which one does not have for ordinary clones, namely a
k-vector-space structure on the set of multilinear operations of each arity, under which composition
of multilinear operations is given by multilinear maps. The analog of a clonal category that one
gets on taking these features into account is called a k-linear operad.

Now let the role that was held by direct products of sets in our development of the concept of
clonal category, and by tensor products of vector spaces in that of k-linear operad, be filled by a
general bifunctor ‘‘�’’ on some category C , satisfying appropriate associativity conditions. One
can write down a description of the sort of composition of operations that is possible without any
more specific assumptions on � . The structure one obtains in this way is called an operad. For
more details, see [59].

8.10. Structure and Semantics. The results of this section will not be essential to what follows,
and our presentation will be sketchy. These results give, however, a useful perspective on what we
have been doing, and the ideas below will be referred to several times in the next chapter.

Let us look back at the way we associated a clonal theory to a variety V in Definition 8.9.6. I
claim that the various equivalent forms of that construction all reduce to an observation that is
applicable in much broader contexts, namely

Lemma 8.10.1. Let C be a category, and A an object of C such that all finite products
A × ... × A exist in C, and let a product An = I

��
I i∈n A (n∈ω) be chosen for each n, so that

the objects An are distinct in Ob(C). Then the full subcategory of C whose objects are the
An, given with the projection maps pn, i : An → A, is a clonal category. �

To see that this was essentially what we were using in Definition 8.9.6, note on the one hand
that each free object FV (n) is a coproduct of n copies of FV (1), hence in Cop, the
corresponding objects are products of n copies of one object, and the full subcategory of Cop

with these objects is one of our descriptions of the clonal theory of V . The description based on
looking at the products Un

V of copies of the object UV used the same idea in the large category
SetV.

We may generalize this latter example by considering any category C given with a functor U :
C → Set . The full subcategory of SetC having for objects the functors Un will in general be
large; however, in many cases it will be quasi-small, i.e., isomorphic to a small category X . (This
is true whenever the Un are representable, or more generally, if the solution-set condition for
representability holds, even though the other conditions may not.) To formalize this class of
examples, let us make
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Definition 8.10.2. For the remainder of this section, Conc will denote the large category having
for objects all pairs (C , U ), where C is a category, and U a functor C → Set, such that for
every integer n, SetC(Un, U ) is quasi-small, and where a morphism (C , U ) → (D , V ) means a
functor F : C → D such that VF = U.

(I’ve chosen the symbol Conc as an abbreviation for ‘‘concrete’’, though that term is only an
approximation, since we are not assuming that the functors to Set are faithful, while we are
assuming a quasi-smallness hypothesis not in the definition of ‘‘concrete category’’. The point of
this terminology is to make us think of U (at least at the beginning) as like an ‘‘underlying-set
functor’’, so that we can picture the morphisms of Conc as the underlying-set-preserving
functors.)

If we associate to each object of Conc the clonal category having for object-set the powers of
U (Definition 6.9.8), this gives a contravariant construction (because of the way morphisms are
defined in Conc) of clonal categories from these objects. Unfortunately, this cannot be regarded
as a functor to Clone because the values assumed, though quasi-small, are not in general small.
Hence, for each (C , U )∈Ob(Conc) let us choose a small category isomorphic to the category of
natural-number powers of U, and regard this as an object of Clone . In this way we get a functor
Concop → Clone . Since the morphisms Xn → X1 in the category constructed in this way from
(C , U ) correspond to the functorial n-ary operations we can put on the sets U(C) (C∈Ob(C)),
the category can be thought of as describing the algebraic structure we can put on the values the
functor U; hence Lawvere has named this functor ‘‘Structure’’.

Exercise 8.10:1. Describe precisely how to make Structure a functor. (Cf. Lemma 7.2.8.)

On the other hand, Lawvere calls the construction taking a clonal category X to the variety
X-Alg given with its underlying set functor, i.e., the clonal category (X-Alg, UX-Alg ) (which we
have seen is also a contravariant construction) ‘‘Semantics’’, because it takes a category of
symbolic operations, and interprets these in all possible ways as actual operations on sets.

Consider now an arbitrary (C , U )∈Ob(Conc), and let X = Structure(C , U ). By construction
of X , the sets U(C) (C∈Ob(C)) have structures of X-algebra, and these are functorial, in the
sense that for f a morphism of C , the set-map U( f ) is a homomorphism of X-algebras. This
is equivalent to saying that we have an underlying-set-preserving functor (C, U ) →
(X-Alg, UX-Alg ). Of course, there are other clonal categories Y for which one can put functorial
Y-algebra structures on these sets (e.g., clonal subcategories of X), but it is not hard to verify that
X is universal for this property, i.e., that every functorial Y-algebra structure arises from a
morphism of clones, Y → X . This universal property is expressed in Lawvere’s celebrated
theorem, ‘‘Structure is adjoint to Semantics’’.

Since in the universal property, the general clonal category Y is mapped to the universal
clonal category X , the latter is right universal. So the precise statement is:

Theorem 8.10.3 (Lawvere). The functors

Structure : Concop → Clone and Semantics : Cloneop → Conc

are mutually right adjoint contravariant functors. �

Exercise 8.10:2. Prove the above theorem.

As with any adjunction, we have a pair of universal morphisms connecting the two composites
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of these functors with the identity functors of the given categories. In the more familiar case of a
covariant adjunction, one of these morphisms, the unit, goes from the identity functor to the
composite (e.g., the map from each set X to the underlying set of the free group on X ), and the
other, the counit, from the composite to the identity (e.g., from the free group on the underlying set
of a group G to G itself). But in the case of a contravariant adjunction, they both go in the
same direction; in the right-adjoint case, which we have here, from the identity functor to the
composite functor. In the present example, one of these universal maps, namely

(8.10.4) IdClone → Structure o Semantics

is an isomorphism; this is essentially the last assertion of Lemma 8.5.3. Looking at the other
composite,

(8.10.5) IdConc → Semantics o Structure,

it is not hard to see that it will give an equivalence when applied to an object of Conc if and only
if that object is (up to equivalence) of the form (V , UV ) where V is a variety and UV its
underlying-set functor. When we apply Semantics o Structure to a general object (C , U ) of
Conc , it can be thought of as giving a best approximation of that category by a variety and its
underlying-set functor. Thus, for every given pair (C , U ), (8.10.5) gives a ‘‘comparison functor’’

(C , U ) → Semantics o Structure (C , U ),

between the given object of Conc and that ‘‘approximation’’.

Exercise 8.10:3. Describe Structure(C , U ) in each of the following cases (e.g., by choosing a set
of ‘‘primitive operations’’ and identities), and determine whether the comparison functor is an
equivalence.
(i) C = Set , U(X ) = X × X.
(ii) C = Set × Set , U(X, Y ) = X × Y.
(iii) C = Ab , U(X ) = UAb (X × X ).
(iv) C = Ab × Ab , U(X, Y ) = UAb (X × Y ).
(v) C = POSet , U = the underlying-set functor.

In cases (iii) and (iv), show that the clone Structure(C , U ) can be naturally identified with
the clonal theory of modules over a certain ring.

Exercise 8.10:4. (i) Same task as in the above exercise, for C = Setop, and U the power-set
functor Setop → Set .
(ii) If you are comfortable generalizing the concepts of this and the preceding section to
algebras with operations of possibly infinite arities, getting in particular a functor γ-Structure :
Concop → γ-Clone for γ a regular cardinal, investigate γ-Structure(C, U ) for the above case.

Exercise 8.10:5. Let CpLattice denote the category of complete lattices, and CpSemilattice0

the category of complete upper semilattices with least element (regarded as a zeroary operation).
We recall that the objects of these two categories are essentially the same, but the morphisms are
not (cf. Proposition 5.2.3).
(i) Show that the underlying-set functor on one of these categories satisfies the smallness
condition in the definition of Conc , but that of the other does not.
(ii) In the case that does give an object (C , U ) of Conc , describe the variety
Semantics o Structure(C , U ).

Let us end this section with a few observations on the question, ‘‘Given a category, how can
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one tell whether it is equivalent to a variety of algebras?’’ (Birkhoff’s Theorem tells us which full
subcategories of a category Ω-Alg are varieties, but the above question, about abstract categories,
is of a different sort.) By our preceding observations, a necessary and sufficient condition is that
there exist a functor U : C → Set such that (C , U ) lies in Conc , and the comparison functor

(C , U ) → Semantics o Structure (C , U )

is an equivalence. Note also that the underlying-set functor of any variety is representable (by the
free object on one generator), so if the above condition holds, U can be taken to have the form
hG for some object G of C . In this situation (since by our general convention, C is assumed
legitimate), the quasi-smallness condition on the powers of U automatically holds by Yoneda’s
Lemma. In summary:

Lemma 8.10.6. Let Deconc: Conc → Cat be the ‘‘deconcretization’’ functor (C , U ) → C.
Then a category C is equivalent to a variety of finitary algebras if and only if there exists some
G∈Ob(C) such that the functor

(8.10.7) Deconc o Semantics o Structure (C, hG )
_______________Deconc o Comparison→ C

is an equivalence of categories.
(The analogous result holds with ‘‘finitary’’ replaced by ‘‘having all operations of arity < γ ’’

for any fixed regular cardinal γ , if we use corresponding modified functors γ-Structure and
γ-Semantics.) �

Though this does not say very much, it gives a useful heuristic pointer: If we want to
determine whether a category C is equivalent to a variety of algebras, we should look for possible
candidates for the free object on one generator. Parts (i)-(v) of the next exercise are cases where
you can show that no such object exists. I do not advise trying to use the above lemma in this
exercise, but only the ‘‘heuristic pointer’’.

Exercise 8.10:6. Show that none of the categories named in (i)-(v) below are equivalent to
varieties of algebras. (Here a ‘‘variety’’ is not required to have finitary operations, though as
always, it is assumed to have a small set of operations.)
(i) POSet . (Suggestion: For each of the situations (a) C a variety of algebras, and A a
free algebra in C on a nonempty set, (b) C = POSet , and A a discrete partially ordered set,
and (c) C = POSet , and A a nondiscrete partially ordered set, investigate the relationship
between the set of difference cokernel maps in C , and the set of morphisms in C that hA
takes to surjective set maps.)
(ii) Clone . (Suggestion: Show that (a) an object corresponding to a free object on one
generator would have to be a finitely generated clonal category, (b) if it were generated by
elements of arities ≤ n, this would be true of all clonal categories, and (c) this is not the case.)
(iii) Compact , the category of compact Hausdorff spaces and continuous maps. (Suggestion:
If V is a variety with all operations having arities < γ , what does this imply about the closure
operator ‘‘subalgebra generated by –’’ on the underlying sets of algebras in V ? (Cf.
Definition 5.3.7 for the case γ = ω .) Translate this into a statement involving the free object on
one generator in V , and show that no object has this property in Compact .)
(iv) The full subcategory of Ab whose objects are the torsion-free abelian groups.
(v) The full subcategory of Ab whose objects are the divisible abelian groups (groups such
that for every group element x and nonzero integer n, the equation n y = x has a solution y
in A.)
(vi) On the other hand, show that the full subcategory of Ab whose objects are the divisible
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torsion-free abelian groups is equivalent to a variety of algebras.

In contrast to point (iii) above, it is proved in [82] that Compact can be identified with a
‘‘variety’’ if we generalize that concept to allow a large set of operations – as we would also have
to do, for instance, to speak of the ‘‘variety’’ of complete lattices or semilattices. Under this
construction of Compact , the operations of each cardinality α correspond to the points of the
Stone-Čech compactification of the discrete space α . Note that this means that, in contrast to the
case of complete lattices (but as for complete upper or lower semilattices), each of these sets of
operations is small; i.e., the corresponding generalized clonal category, though not generated by a
small set, is legitimate. A consequence is that compact Hausdorff spaces actually behave more like
ordinary algebras than do complete lattices! In particular, there is a ‘‘free compact Hausdorff
space’’ on every small set X, namely, its Stone-Čech compactification.

Lemma 8.10.6(ii) does not say that an object G with the indicated properties is unique if it
exists. Let us examine the extent to which we can vary G in a couple of familiar varieties, and
what happens when we do.

Exercise 8.10:7. (i) When C = Ab , determine for what objects G the functor (8.10.7) is an
equivalence. Show that for every such G, Structure(Ab, hG ) can be identified with the theory
of modules over some ring R.
(ii) Similarly, for C = Set determine what objects make (8.10.7) an equivalence, and try to
describe in these cases the theory Structure(Set , hG ).

Thus, in case (i) we find that Ab is equivalent to several different varieties R-Mod , and in
the second we similarly discover that Set is equivalent to several nontrivial varieties of
algebras.

Lawvere gives in his thesis [11, §III.2] a version of Lemma 8.10.6 which is less trivial than
ours, but also more complicated to formulate; we will not present it here.

We remark that despite the technical term given the word ‘‘structure’’ in this section, we will
also continue to use it as a versatile meta-term in our mathematical discussions.
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Part III. More on adjunctions.

Chapter 9 (the only chapter of this part yet written) represents the culmination of

the course. In it we obtain Freyd’s beautiful characterization of functors among

varieties of algebras that have left adjoints, and study several classes of examples

and related results.
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Chapter 9. Algebra and coalgebra objects in categories, and functors
having adjoints.

One of our long-range goals, since we took our ‘‘Cook’s tour’’ of universal constructions in
Chapter 3, has been to obtain general results on when algebras with given universal properties
exist. We have gotten several existence results holding in any variety V , namely, for free objects,
limits and colimits, and objects presented by generators and relations. The result for free objects
can be restated as the existence of a left adjoint to the forgetful functor V → Set , and we have
also shown that the inclusion V → Ω-Alg has a left adjoint, where Ω is the type of V . In the
first three sections of this chapter, we shall develop a result of a much more sweeping sort: a
characterization of all functors between varieties of algebras V and W which have left adjoints.

To get an idea what this characterization should be, we should look at some representative
examples. Most of the functors with left adjoints among varieties of algebras that we have seen so
far have been cut from a fairly uniform mold: underlying-set-preserving constructions that forget
some of the operations, and things close to these. We shall begin by looking at an example of a
different sort, which will give us some insight into the features that make the construction of a left
adjoint possible. We will then formalize these features, arriving at a pair of concepts (those of
algebra and coalgebra objects in a general category) of great beauty in their own right, in terms of
which we shall establish the desired condition in §9.3. In the remaining sections of this chapter we
will work out in detail some classes of examples, and note various related results.

9.1. An example: SL(n). Let n be a positive integer. Then for any commutative ring A, the
n × n matrices over A having determinant 1 form a group, called the special linear group
SL(n, A). Clearly, SL(n, – ) is a functor CommRing1 → Group . Let us simplify our name for
this functor to SL(n), but continue to write its value at A as SL(n, A).

Does SL(n) have a left adjoint? In concrete terms, this asks: Given a group G, can we find
a universal example of a commutative ring AG with a homomorphism G → SL(n, AG )?

Let us approach this question in our standard way (noted in comment 2.2.10), namely, by
considering an arbitrary commutative ring A with a homomorphism

h : G → SL(n, A),

and asking what elements of A, and what relations among these, are determined by this situation.
Clearly, we can get n2 elements of A from each element g of G, to wit, the components

of the matrix h(g) :

(9.1.1) h(g)i j (g∈ |G |, i, j = 1, ... , n).

By definition of SL(n, A), these satisfy the relation saying that the determinant of the matrix they
form is 1:

(9.1.2) det(h(g)i j ) = 1 (g∈ |G | ).

The condition that h be a group homomorphism says that for every two elements g, g ′ ∈ |G |, the
matrix (h(gg ′)i j ) is the product of the matrices (h(g)i j ) and (h(g ′)i j ). Each such matrix

equation is equivalent to n2 equations in the ring A:
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(9.1.3) h(gg ′)ik = Σj h(g)i j h(g ′)jk (g, g ′∈ |G |, i, k = 1, ... , n).

Clearly, a system of elements (9.1.1) satisfying (9.1.2) and (9.1.3) is equivalent to a homomorphism
G → SL(n, A). Hence, if we let AG be the object of CommRing1 presented by generators
(9.1.1) and relations (9.1.2) and (9.1.3), and denote by h : G → SL(n, AG ) the resulting group
homomorphism, then the pair (AG, h) will be initial among commutative rings A given with
such homomorphisms, and the construction G → AG will be the desired left adjoint to SL(n).

What properties of the functor SL(n) have we used here? First, the fact that for every
commutative ring A, the elements of SL(n, A) could be described as all families of elements of
A indexed by a certain fixed set (in this case the set n × n) which satisfied certain equations (in
this case, the single equation saying that the matrix they formed had determinant 1). It was this
that allowed us to write down the generators (9.1.1) and relations (9.1.2) in the definition of AG .
Secondly, we used the fact that the multiplication of the group SL(n, A) takes a pair of matrices
s, t to a matrix st whose entries are given by certain fixed polynomials (i.e., derived operations)
in the 2n2 entries of the two given matrices. This allowed us to express the condition that h be
a homomorphism by the equations (9.1.3).

We also used, implicitly, a fact special to the variety of groups, namely that for a map of
underlying sets to be a homomorphism, it suffices that it respect multiplication. If we want to put
this example into a form that generalizes to arbitrary varieties, we should note that the unary
‘‘inverse’’ operation and the zeroary ‘‘neutral element’’ operation of SL(n, A) also have the
property that their entries are given by polynomials in the entries of their arguments: The inverse
of a matrix of determinant 1 is a matrix of determinants of minors (with certain ± signs); the
identity matrix consists of 0’s and 1’s in certain positions, and these 0’s and 1’s can be regarded as
polynomials in the empty set of variables. Hence if we do not wish to call on the special property
of group homomorphisms mentioned, we can still guarantee the universal property of AG , by
supplementing (9.1.3) with relations saying that for all g∈ |G |, the entries of h(g–1) are given by
the appropriate signed minors in the entries of h(g), and that the (i, j) entry of h(e) has the
value δi j .

To abstract the conditions noted above, let us now consider arbitrary varieties V and W (in
general of different types), and a functor

V : W → V

for which we hope to find a left adjoint. The analog of the first property noted for SL(n) above
should be that for A∈Ob(W), the underlying set |V(A) | is describable as the set of X-tuples of
elements of |A|, for some fixed set X, which satisfy a fixed set Y of relations. We recall from
Lemma 8.4.13 that this is equivalent to saying that the set-valued functor A → |V(A) |, i.e., the
functor UV V (where UV : V → Set is the underlying-set functor of V) is representable, with
representing object the W-algebra defined using X and Y as generators and relations:

(9.1.4) R = < X � Y >W .

The object (9.1.4) thus ‘‘encodes’’ the functor V at the set level! Is there a way to extend these
observations so as to encode also the V-algebra structures on the sets |V(A) |?

Let us look at this question in the case V = SL(n). We see that the functor UGroup
o SL(n) is

represented by the commutative ring R presented by n2 generators ri j and one relation
det(ri j ) = 1; in other words, the commutative ring having a universal n × n matrix r of
determinant 1. Can we find a universal instance of multiplication of such matrices? Since
multiplication is a binary operation, we should multiply a universal pair of matrices of
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determinant 1. The ring with such a universal pair is the coproduct of two copies of R. If we
denote these two matrices r0, r1 ∈ | SL(n, R I��I R) |, then the n2 entries of the product matrix
r0 r1 ∈| SL(n, R I��I R) | can, like any elements of R I��I R, be expressed as polynomials in our
generators for that ring, the entries of r0 and r1. Using the universality of r0,
r1 ∈ | SL(n, R I��I R) |, it is not hard to show that those same polynomials, when applied to the
entries of two arbitrary elements of SL(n, A) for an arbitrary commutative ring A, must also
give the entries of their product. So it appears that r0 r1 does in some sense encode the
multiplication operation of SL(n).

There is a more abstract way of looking at this. By the universal property of R, the element
r0 r1 ∈ | SL(n, R I��I R) | corresponds to some morphism

(9.1.5) m : R → R I��I R

(the unique morphism taking the entries of r to those of r0 r1). Now given a commutative ring
A, any two elements x, y∈ | SL(n, A) | arise as images of the universal element r under unique
homomorphisms f, g : R → A. Such a pair of morphisms corresponds, by the universal property of
the coproduct, to a single morphism ( f, g) : R I��I R → A (the morphism carrying the entries of r0
to those of x and the entries of r1 to those of y). Composing with (9.1.5), we get a morphism

(9.1.6) R
___m→ R I��I R

_____( f, g)
→ A,

which corresponds to an element of SL(n, A). From the facts that m corresponds to (i.e., sends
r to) the product of r0 and r1, and that SL(n), applied to the map ( f, g) gives a group
homomorphism SL(n, R I��I R) → SL(n, A), we can deduce that the matrix given by (9.1.6) (i.e.,
the result of applying the ring-homomorphism (9.1.6) entrywise to r) is the product of x and y.
So the ring homomorphism m indeed ‘‘encodes’’ our multiplication.

We note similarly that r–1∈ | SL(n, R) | will be the image of the universal element r under a
certain morphism

(9.1.7) i : R → R

and we find that this morphism i encodes the inverse operation on SL(n).
If we are going to treat the zeroary neutral-element operation similarly, it should correspond to

a morphism from R to the coproduct of zero copies of itself. This vacuous coproduct is the initial
object of CommRing1, namely the ring Z of integers. And indeed, if we let

(9.1.8) e : R → Z

be the map sending the universal element r∈ | SL(n, R) | to the identity matrix in SL(n, Z), we
find that for every commutative ring A, the unique homomorphism Z → A, when composed with
(9.1.8), gives the morphism R → A that specifies the identity matrix of A.

The structure (R, m , i , e) that we have sketched above is what we shall see in subsequent
sections is called a cogroup in the category CommRing1. The maps (9.1.5), (9.1.7), (9.1.8) are
called its comultiplication, its coinverse, and its co-neutral-element, and the cogroup (R, m , i , e)
is said to represent the functor SL(n) : CommRing1 → Group , just as R alone is said to
represent the functor UGroup

o SL(n) : CommRing1 → Set .
In the next two sections, we shall develop general definitions and results, of which the case

sketched above is an example. We shall see that given a functor V : W → V , if the first of the
two properties we called on above holds, namely that the set-valued functor UV V is
representable, then the other condition, that the operations of the algebras V(A) arise from a co-
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V-structure on the representing object, follows automatically. (Indeed, our development of (9.1.5)
above did not use our knowledge that the group operations of SL(n) had this form, but deduced
that fact from their functoriality.) This does not mean that we will ignore the co-V structure,
however! Rather, since it encodes the V-algebra structure of our otherwise merely set-valued
functors, it will be the key to the investigation of these constructions.

9.2. Algebra objects in a category. We shall approach the concept of a coalgebra object in a
category C by starting with the dual concept, that of an algebra object. Let us make:

Convention 9.2.1. Throughout this section, γ will be a regular cardinal, C will be a category
admitting products indexed by all families of cardinality < γ (which we will abbreviate to
‘‘< γ -fold products’’), and Ω will be a type all of whose operations have arities < γ .

(If you are most comfortable with finitary algebras, you may assume γ = ω without missing
any of the ideas of this chapter.)

Definition 9.2.2. For β < γ, a β-ary operation on an object R of C will mean a morphism
s = sR : Rβ → R.

By Yoneda’s Lemma, such operations correspond bijectively to morphisms of the induced

contravariant hom-functors, hRβ → hR; and by the universal property of the product object Rβ,

we can identify hRβ with (hR)β, so such a map corresponds to a morphism (hR)β → hR, i.e.,
a β-ary operation on hR. In concrete terms, if sR is a β-ary operation of R, then given an
object A of C and a β-tuple of elements (ξα )α < β ∈C(A, R)β, we first combine these into a
single element of C(A, Rβ), then compose this with sR : Rβ → R to get an element of C(A, R),
which we may denote sC(A, R)((ξα )α∈β ). This is the category-theoretic abstraction of the
familiar technique of making the set of functions from a space A to an algebra R an algebra
under pointwise application of the operations of R. These observations are summarized in the next
lemma (in which the equivalence of the last two descriptions holds by the definition of morphism
of functors).

Lemma 9.2.3. Let β be a cardinal <γ, and R an object of C. Then the following data are
equivalent (via the construction just described ):

(i) A β-ary operation sR : Rβ → R.

(ii) A morphism sC(–, R) : C(–, R)β → C(–, R) as functors Cop → Set, i.e., as
contravariant set-valued functors on C.

(iii) A way of defining on each set C(A, R) (A∈Ob(C)) a β-ary operation sC(A, R) :
C(A, R)β → C(A, R), so that for every morphism f ∈C(A, B), the induced map C(B, R)→
C(A, R) respects these operations. �

Recalling that Ω denotes a type all of whose operation-symbols have arities < γ , we now
make

Definition 9.2.4. An Ω-algebra object R in the category C (or a C-based Ω-algebra) will mean
a pair ( |R|, (sR )s∈ |Ω | ), where |R|∈Ob(C), and each sR is an operation

sR : |R| ari(s) → |R| (s∈ |Ω | ).
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A morphism between Ω-algebra objects of C will mean a morphism between their underlying
C-objects which forms commuting squares with these operations.

If R is an Ω-algebra object of C, and A any object of C, then C(A, R) denotes the
ordinary (i.e., set-based ) Ω-algebra with underlying set C(A, |R| ), and operations induced by
those of R as in Lemma 9.2.3.

Below, the word ‘‘algebra’’ will continue to mean ‘‘set-based algebra’’ except when the
contrary is indicated by writing ‘‘algebra object’’, ‘‘C-based algebra’’, etc.. Occasionally, when
referring to set-based algebras, I may add the words ‘‘set-based’’ for emphasis.

Observe that the | |-notation introduced above is relative. E.g., if C is itself a category of
algebras, and R a C-based algebra, then |R| denotes the underlying C-object of R, and if S is
this C-object, then |S | = ||R|| denotes its underlying set. I shall, in fact, sometimes use the letter
R and its alphabetical neighbors for algebra-objects in categories C , and other times for the
underlying C-objects of such objects. Of course, in any given context I shall be consistent about
which meaning I am giving a symbol.

Finally, the reader should note the new use of the symbol C(A, R) introduced in the above
definition: Though A denotes an object of C , R does not; rather, it is a C-based Ω-algebra,
and the whole symbol denotes, not a set, but a (set-based) Ω-algebra. Of course, a C-based
Ω-algebra is intuitively ‘‘an object of C with additional structure’’, and an Ω-algebra is likewise a
set with additional structure; and modulo this additional structure, we have the old meaning of
C(A, R). So this extended notation is ‘‘reasonable’’. But we need to remember when we are
considering algebra objects of categories that in order to interpret a symbol C(A, R), we have to
check whether R is an object of C , or a C-based algebra-object of some sort.

The above definition also introduced the concept of a morphism of C-based Ω-algebras.
Combining this with Yoneda’s Lemma, we easily get

Lemma 9.2.5. Let R and S be Ω-algebra objects in C. Then the following data are
equivalent:

(i) A morphism of C-based algebras R → S.

(ii) A morphism f ∈C( |R|, |S | ) such that for every object A of C, the induced set map
C(A, |R| ) → C(A, |S | ) is a homomorphism of Ω-algebras C(A, R) → C(A, S ).

(iii) A morphism C(–, R) → C(–, S ) of functors C → Ω-Alg. �

We next want to define, for an Ω-algebra object R of a category C , the derived operations of
R corresponding to the various derived operations of set-based Ω-algebras. This will allow us to
say what it means for such an object to satisfy a given identity; namely, that the derived operations
specified by the two sides of the identity are equal.

One cannot, of course, describe a derived operation of R by giving a formula for its value on a
tuple of ‘‘elements of |R| ’’, since C is a general category. An approach that is often used is to
express operations and identities by diagrams. For example, observe that if m is a binary
operation on a set |R|, the condition that m be associative can be expressed as the condition that
the diagram
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(9.2.6)

|R| × |R| × |R|
_______m × id|R|→ |R| × |R|

��
�
↓

id|R| × m ��
�
↓

m

|R| × |R|
__________m → |R|

commute, since the path that goes through the upper right-hand corner gives the ternary derived
operation (x, y, z) → m(m(x, y), z), and the one through the lower left-hand corner gives
(x, y, z) → m(x, m(y, z)). Analogously, for any object |R| of our category C and any binary
operation m : |R| × |R| → |R|, the same diagram can be used to define two ternary ‘‘derived
operations’’ on |R|, and their equality (the commutativity of the diagram) can be made the
definition of associativity of the C-based algebra R = ( |R|, m).

The above approach is nice in simple cases, but has the disadvantage of requiring us to figure
out the diagram appropriate to every derived operation we want to consider. Another approach,
which is equivalent to the above but avoids this dependence on diagrams, is based on considering
the algebra C(A, R) for an appropriate universal choice of A. If we want to consider derived
operations in β variables, let us look at C( |R|β, R). Since this is a set-based algebra, we know
how to construct its derived β-ary operations from its primitive operations. Applying such a
derived operation u to the β projections pα : |R|β → |R| (α∈β), we get an element
u( pα )∈C( |R|β, |R| ) which we define to be the derived operation uR of the C-based algebra R.
Identities are then defined as equalities among such derived operations.

Incidentally, although in §8.4 we found it convenient to reduce all identities for Ω-algebras to
identities (pairs of terms) in a γ-tuple of variables, we shall here revert to expressing them as
identities in β-tuples of variables for various ordinals β < γ . (So, for instance, the diagram (9.2.6)
expresses associativity using three variables, rather than countably many.) The advantage will be
that we only need to assume that C has these β-fold products, rather than making the unnecessary
stronger assumption that it has γ-fold products.

As we observed in §8.9, the operations on |R| (equivalently, on h|R| ) form a clone; and we
see that a C-based Ω-algebra structure on |R| as defined above is equivalent to a representation of
the γ -clonal category XΩ-Alg in C which takes X1∈Ob(XΩ-Alg ) to |R|∈Ob(C). The
condition that this C-based algebra R satisfy the identities of a given variety V is equivalent to
saying that this representation of XΩ-Alg arises from (i.e., factors through) a representation
of XV :

XΩ-Alg → XV → C .

In the next lemma and definition we set down the observations of the preceding paragraphs, and
prove the one nontrivial implication.

Lemma 9.2.7. Let R = ( |R|, (sR )s∈ |Ω | ) be an Ω-algebra object of C, and let u, be two
derived β -ary operations (β <γ ) for ordinary (i.e., set-based ) algebras of type Ω. Then the
following conditions are equivalent:

(i) For all A∈Ob(C), the algebra C(A, R) satisfies the identity u = .

(ii) In the algebra C( |R|β, R), one has u(( pα )α∈β ) = (( pα )α∈β ), where the pα (α∈β)
are the projection maps.

(iii) The morphisms u, : Xβ →→ X1 in the γ -clonal category XΩ-Alg fall together under the
morphism from XΩ-Alg to the clone of operations on |R| induced by the |Ω |-tuple of operations
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(sR ). (See Lemma 8.9.10 for the universal property of XΩ-Alg which allows one to define this
morphism.)

(iv) The algebra object R satisfies the ‘‘diagrammatic translation’’ of the identity u = .

Proof. (ii)-(iv) are simply different ways of stating the same condition. Clearly, (i)⇒(ii). The
converse can be gotten by Yoneda’s Lemma; to see it directly, consider any object A of C and
any β-tuple (ξα )α∈β of elements of C(A, |R| ). By the universal property of the product object
|R|β, these morphisms correspond to a single morphism ξ : A → |R|β, and applying C(–, R) we
get an Ω-algebra homomorphism C( |R|β, R) → C(A, R) carrying each pα to ξα . Hence, any
equation satisfied by the former β-tuple is also satisfied by the latter. �

Definition 9.2.8. If the equivalent conditions of Lemma 9.2.7 hold, the Ω-algebra object R of C
will be said to satisfy the identity u = .

If V is a variety of Ω-algebras, defined by a family J of identities, then a V-object of C
will mean an Ω-algebra object R of C satisfying the identities in J in this sense; equivalently,
such that the induced functor C(–, R) carries C into V; equivalently, such that the
corresponding representation of XΩ-Alg in C arises from a representation of XV in C.

(Since the same variety V can be determined by more than one set of identities J, we need
to be sure that the condition of being a V-object of C is well-defined. The second equivalent
formulation of the above definition makes this clear.)

Our point of view so far has been, ‘‘Given a representable functor C(–, |R | ) : Cop → Set
( |R |∈Ob(C)), how can we put operations on C(–, |R | ), and when will such operations satisfy the
identities of a variety V ?’’ But note that the concept of ‘‘a representable set-valued functor given
with operations that make it V-valued’’ can also be looked at as ‘‘a V-valued functor whose
composite with the forgetful functor V → Set is representable’’. This observation shows the
equivalence of the two formulations of the next definition, in which we extend the term
‘‘representable functor’’ to include algebra-valued constructions.

Definition 9.2.9. If V is a variety of Ω-algebras, a functor Cop → V will be called
representable if it is isomorphic to a functor of the form C(–, R), for R a V-object of C,
equivalently, if its composite with the underlying-set functor V → Set is representable in the
sense of Definition 7.2.3.

9.3. Coalgebras, and Freyd’s criterion for the existence of left adjoints. In the next few
sections we shall study coalgebra objects, and the functors these represent. A V-coalgebra object
in a category C will be defined simply as a V-algebra object in Cop. But pedagogically, the
relationship between these two concepts is tricky. The definition of algebra object is easier to think
about (to begin with) because it generalizes the familiar concept of a set-based algebra. But in
varieties of algebras, coalgebra objects and the covariant functors they represent will turn out to be
more diverse and interesting than algebra objects and their associated contravariant representable
functors, and, as suggested by our example of SL(n), they will be the main object of study in this
chapter. Hence our flip-flop approach of using the algebra concept to introduce the definitions, but
then moving immediately to coalgebras. However, in §§9.11-9.12 we will return briefly to algebra
objects, and note some examples and results on these.

In this section we continue to assume that γ is a regular cardinal, and Ω a type all of whose
operations have arity < γ ; however, we drop here the assumption of the preceding section that C
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has < γ -fold products; what we will want is the dual hypothesis, and we will state that explicitly
when it is needed.

Definition 9.3.1. Let C be a category having coproducts of all families of < γ objects. Then for
β <γ, a β-ary co-operation on an object |R| of C will mean a morphism of |R| into the
coproduct of β copies of |R|; in other words, a β-ary operation on |R| in Cop. A pair R =
( |R|, (sR )s∈ |Ω | ) such that |R|∈Ob(C), and for each s∈ |Ω |, sR is an ari(s)-ary co-operation
on |R|, will be called an Ω-coalgebra object in C. A morphism of Ω-coalgebra objects of C
will mean a morphism of underlying C-objects which respects co-operations.

For any Ω-coalgebra object R and object A of C, we shall write C(R, A) for the set-
based algebra whose underlying set is C( |R|, A), and whose operations are induced by the co-
operations of R under the dual of the construction of the preceding section. Explicitly, for
s∈|Ω |, the operation sC(R, A) induced by sR on C( |R|, A) is defined to take each ari(s)-tuple
(ξα )∈C( |R|, A)ari(s) to the composite morphism

|R|
___sR→ I��I ari(s) |R|

_________(ξα )α∈ari(s)→ A,

where the second arrow denotes the map whose composite with the αth coprojection
|R| → I��I ari(s) |R| is ξα for each α∈ari(s).

I will in general, as above, use lower-case boldface letters s etc. to denote co-operations
corresponding to operations denoted by the corresponding lower-case italic letters, s etc..

Note that (as in the parallel definition in the preceding section), the R in the above definition
of C(R, A) is not an object of C ; here it is a C-based coalgebra with underlying C-object |R| ,
and C(R, A) is likewise not a set, but an algebra with underlying set C( |R|, A).

Let us recall from Lemma 8.4.13 what the general covariant representable set-valued functor
C( |R|, – ) ‘‘looks like’’ when its domain category C is a variety of algebras W . Taking a
presentation |R | = < X � Y >W for the representing object, the functor can be described as carrying
each object A to the set of all X-tuples of elements of A that satisfy the family of relations Y.
We now want to describe the form that a β-ary operation s on such a functor takes.

We know that s will be induced by a co-operation sR : |R| → I��I β |R| of the representing
object |R| = < X � Y >W . The homomorphism sR will correspond to some X-tuple of elements of
I��I β |R| which satisfies the relations Y. For each x∈X, the xth entry of this X-tuple, being an
element of I��I β |R|, may be expressed in terms of the β images of X generating that algebra,
using some derived operation, which we may name

sx ∈ |FW (β × X ) |.

Now using the universality of I��I β |R| as a W-algebra with a β-tuple of elements of C( |R |, – ),
we can deduce that if A is an arbitrary W-algebra, and we regard elements of W( |R|, A) as
X-tuples ξ of elements of A which satisfy the relations Y, then for each β-tuple (ξα )α∈β of
such X-tuples, the xth coordinate of the element sW(R, A) (ξα )α∈β ∈ W( |R|, A) will be
expressed in terms of the coordinates of the β X-tuples ξα by the same derived operation sx .
In summary:

Lemma 9.3.2. Let W be a variety of algebras, |R| an object of W, and <X � Y >W a
presentation of |R| by generators and relations. For any W-algebra A, element ξ ∈W( |R|, A),
and x∈X, let us call the image in A of the generator x of |R| under ξ ‘‘the xth coordinate
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of ξ’’.
Then if s : |R| → I��I β |R| is a β-ary co-operation on |R|, there exists an X-tuple of derived

β × X-ary operations (sx )x∈X of W, such that for every object A of W, if we write s for the
operation on the set W( |R|, A) induced by the co-operation s on |R |, then s can be described
as follows: For every β-tuple (ξα )α∈β of elements of W( |R|, A) and each x∈X, the xth
coordinate of s(ξα ) is computed from the coordinates of the given elements ξα by the derived
operation sx .

Conversely, given an X-tuple of derived β × X-ary operations sx of W (x∈X ), if the
identities of W imply that, when applied to any β X-tuples all of which satisfy the relations Y,
the sx give an X-tuple of elements which also satisfies Y, then (sx )x∈X determines a morphism
of functors s : W( |R|, – )β → W( |R|, – ), equivalently, a β-ary co-operation s : |R| → I��I β |R|. �

So, for instance, if W is the variety of commutative rings, and |R| the commutative ring with
a universal n × n matrix of determinant 1, we can take for X a family of n2 symbols
(xij )i, j ≤n , and for Y the set consisting of the single relation det(xij ) = 1. To describe from the
above point of view the comultiplication m on |R| sketched in §9.1, take β = 2 and for each
i, j ≤ n let mij be the polynomial in 2n2 indeterminates by which one computes the (i, j)th entry
of the product of two matrices. The multiplicativity of the determinant function implies that these
operations, when applied to the entries of two matrices of determinant 1, give the entries of a
third matrix of determinant 1, so the condition of the last sentence of the above lemma is
satisfied. Thus, these n2 derived operations yield a binary co-operation on |R|, which induces, in
a manner described abstractly in Definition 9.3.1 and concretely in Lemma 9.3.2, a binary operation
on the sets CommRing1( |R|, A) = | SL(n, A) |, namely, multiplication of matrices of
determinant 1.

Back, now, to dualizing the concepts and results of the preceding section for a general category
C (not necessarily a variety of algebras). Dualizing Definitions 9.2.8 and 9.2.9 respectively, we
get

Definition 9.3.3. Let C be a category with < γ -fold coproducts, and V a variety of Ω-algebras
defined by a set J of identities. Then a co-V object (or V-coalgebra) of C will mean an
Ω-coalgebra R satisfying the following equivalent conditions:

(i) For all objects A of C, the algebra C(R, A) (Definition 9.3.1) lies in V.

(ii) For each identity (u, )∈J, say in β variables, if we form the β-fold coproduct I��I β |R|
with its canonical coprojections qα (α∈β), then in the algebra C(R, I��I β |R| ), one has
u(qα ) = (qα ). (This equality of morphisms |R| → I��I β |R| may be called the ‘‘coidentity’’
corresponding to the identity u = .)

(iii) Writing X|R|op for the clone of all co-operations on |R| (i.e., operations on |R| in Cop),
the morphism of clones XΩ-Alg → X|R|op induced by the Ω-coalgebra structure of |R| factors
through the canonical map XΩ-Alg → XV ,

XΩ-Alg → XV → X|R|op .

(iv) R satisfies the dualized diagrammatic condition corresponding to each identity in J.

(v) Interpreted as an algebra object of Cop, R is a V-object.
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Definition 9.3.4. Let C be a category with < γ -fold coproducts, and V a variety of Ω-algebras.
Then a covariant functor C → V will be called representable if it is isomorphic to a functor of the
form C(R, – ), for R a co-V object of C; equivalently, if its composite with the forgetful
functor V → Set is representable in the sense of Definition 7.2.3; equivalently, in the case where
C is a variety V of algebras, if there is some set Y of relations in a family X of variables such
that this composite is the functor associating to every object A of C the set of all X-tuples of
elements of A satisfying Y.

The full subcategory of VC consisting of the representable covariant functors will be denoted
Rep(C , V).

For example, SL(n) is an object of Rep(CommRing1, Group). The next few sections will
study further classes of representable functors among varieties of algebras. For students with some
knowledge of topology, I insert here a nonalgebraic example.

Exercise 9.3:1. Let HtpTop (pt) be the category whose objects are topological spaces with
basepoint, and whose morphisms are homotopy classes of basepoint-preserving maps.
(i) Show that HtpTop (pt) has finite coproducts.
(ii) We noted at the end of §6.5 that the functor HtpTop (pt) → Set taking an object (X, x0)
to |π1(X, x0) | (the underlying set of its fundamental group) was representable, with represent-

ing object (S 1, 0). By the above results, the structure of group on these sets must be induced by

a cogroup structure on (S 1, 0). Describe the co-operations, and verify the cogroup identities.
(iii) Describe likewise the structure of group object on (S1, 0) which represents the
contravariant first cohomotopy group functor π1.

Note that W-algebra objects of a category C represent contravariant functors Cop → W ,
while covariant functors C → W are represented by coalgebra objects. This is a consequence of
the behavior of the covariant and contravariant Yoneda embeddings, discussed in Remark 7.2.7.
For the same reason, morphisms among covariant representable functors correspond contravariantly
to morphisms among their representing coalgebras:

Corollary 9.3.5 (to Lemma 9.2.5). If C is a category with < γ -fold coproducts, and V a variety
of Ω-algebras, then the category Rep(C , V) of covariant representable functors C → V is
equivalent to the opposite of the category of co-V objects of C. �

We shall now establish the relationship between representability and the existence of adjoints!
Our proof that a representable functor V has a left adjoint will be, in essence, the same as our
construction at the beginning of §9.1 of a left adjoint for SL(n); but the generators-and-relations
presentation of the rings AG used there will be replaced by a colimit construction, allowing us to
get a left adjoint to our functor V without requiring the domain of V to be a variety of algebras.
We have already stated in Definition 9.3.4 the equivalence of the conditions labeled (ii) and (iii)
below. (We proved it in the dual context in the preceding section.) We include both formulations
here for completeness.

Theorem 9.3.6 (after Freyd [8]). Let C be a category with small colimits, V a variety of
Ω-algebras, and

V: C → V

a (covariant) functor. Then the following conditions are equivalent:

10/8/98 G. M. Bergman

320 Chapter 9. Algebras, coalgebras, and adjunctions.



(i) V has a left adjoint G: V → C.

(ii) V is representable, i.e., is isomorphic to the V-valued functor represented by a co-V object
R of C (Definition 9.3.3 ).

(iii) The composite UV V of V with the underlying set functor UV : V → Set is
representable, i.e., is isomorphic to the set-valued functor represented by an object of C.

Proof. As noted, we already know that (ii) ⇔ (iii). (The forward implication follows from the
definition of (ii); the backward implication holds because all operations on a representable set-
valued functor C( |R |, – ) are induced by co-operations on |R |, i.e., a coalgebra structure.) It is
also easy to show (i) ⇒ (iii); namely, assuming V has left adjoint G, we have

UV V(–) =∼ Set(1, UV V(–)) =∼ V(FV (1), V(–)) =∼ C(G FV (1), – ),

so UV V is represented by G FV (1). We shall complete the proof by showing (ii) ⇒ (i).
To get (i), we need to show that for each A∈Ob(V), there exists G(A)∈Ob(C) such that

C(G(A), – ) =∼ V(A, V(–)) (Theorem 7.3.3(ii)). Now though C need not be a variety, V is; so
let us take a presentation of A in V :

(9.3.7) A = < Z � S >V .

(We use symbols Z and S here rather than X and Y so that if one looks at this proof in the
case where C is a variety W of algebras, there will be no confusion between this presentation
for A in V , and the presentation in W for the representing object |R|, which was written
< X � Y >W in Lemma 9.3.2.) Thus, V(A, V(–)) can be described as associating to each
B∈Ob(C) the set of all Z-tuples of elements of the V-algebra V(B) that satisfy the relations
given by S.

Let us form a coproduct I��I z∈Z |R| (z) ∈ Ob(C) of a Z-tuple of copies, |R| (z) (z∈Z ), of the
underlying C-object |R| of our representing coalgebra. Then for any object B of C , the set
C( I��I Z |R| (z), B) can be naturally identified with C( |R|, B) Z =∼ |V(B) | Z, the set of all Z-tuples of
elements of V(B). To obtain the subset of Z-tuples satisfying the family of relations S, we want
to formally ‘‘impose’’ these relations on I��I Z |R| (z) . Hence, for each relation (s, t)∈S let us
form the two morphisms |R| →→ I��I Z |R| (z) corresponding to s and t, namely s(qz ) and t(qz ),
where (qz )z∈Z is the Z-tuple of coprojection morphisms |R| → I��I Z |R| (z), and let G(A) be
the colimit of the diagram formed out of all these pairs of arrows:

|
|
|

:
R
R
R
:

|
|
|

I��I Z |R| (z) ___→ G(A).

It is easy to verify that this object has the desired universal property C(G(A), – ) =∼

V(A, V(–) ). �

(Note that the above theorem required that C have arbitrary small colimits, so that we could
construct G(A) for arbitrary small V-algebras A. This subsumes the condition of having < γ -fold
coproducts assumed earlier. Incidentally, if V = Set , then every object of V has a presentation
with no relations, and the above proof becomes much simpler, and only needs C to have
coproducts, not general colimits. This was Exercise 7.3:3.)
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Exercise 9.3:2. Establish the universal property of G(A) asserted in the last line of the above
proof.

Exercise 9.3:3. Describe the construction used in proving (ii) ⇒ (i) above in the particular case
C = CommRing1, V = Group , V = SL(n), A = Z2. (You are not asked to find a normal form
for the ring obtained; simply show the generators-and-relations description that the construction
gives in this case.) Show directly from your description that the result is a ring with a universal
determinant-1 n × n matrix of exponent 2.

An alternative way to complete the proof of the above theorem, by showing (iii)⇒(i) rather
than (ii)⇒(i), is indicated in

Exercise 9.3:4. Assuming condition (iii) of the above theorem, let A denote the full subcategory
of V consisting of those objects A such that the functor V(A, V(–)) : C → Set is
representable, and let GA : A → C be the resulting ‘‘partial adjoint’’ to V. Show that FV (1)
belongs to A , that A is closed under small colimits, and that every object of V can be
obtained from the free object on one generator by iterated small colimits. Deduce that A = V .

9.4. Some corollaries and examples. Since composites of adjunctions are adjunctions
(Theorem 7.3.5), the above result yields

Corollary 9.4.1. A composite of representable functors among varieties of algebras is
representable. �

Actually, this reasoning shows that a composite of representable functors C → V → W , where
V and W are varieties and C any category with small colimits, is representable, but I have
given the above more limited statement because of its simplicity.

What does the representing object for a composite of representable functors among varieties
look like? Suppose we have

representing objects:

U
___V→←____

D
V
___W→←____

E
W ,

R S

right adjoints:

left adjoints:

so that the composite functor W V has left adjoint DE. To obtain the underlying U-object of the
W-coalgebra representing W V, we note that this object will represent the functor UW WV. The
factor UW W is represented by |S |, so by Theorem 7.7.1, the object representing UW WV can
be obtained by applying to |S| the left adjoint of V. Thus, the underlying U-object of our desired
representing object is D( |S | ).

We can combine this observation with the description of D that the proof of Theorem 9.3.6
gives us; namely, that D takes a V-algebra A to a U-algebra obtained by ‘‘pasting together’’ a
family of copies of |R| indexed by the generators in any presentation of A, using ‘‘pasting
instructions’’ obtained from the relations in that presentation. Hence the representing object
D( |S | ) for UW W V can be obtained by ‘‘pasting together’’ a family of copies of |R| in a way
prescribed by any presentation of |S |. From this one can deduce that if |R| = < X � Y >U and
|S | = < X ′ � Y ′ >V , then the representing object for UW W V can be presented in U by a
generating set indexed by X × X ′ and a set of relations indexed by X × Y ′ X ′ × Y.

Of course, we also want to know the co-W structure on this object. Not unexpectedly, this
arises from the co-W structure on the object |S |. We shall see some examples of representing
objects of composite functors in §9.8. I won’t work out the details of the general description of
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such objects, but if you are interested, you can do this, as

Exercise 9.4:1. Describe precisely how to construct a presentation of the object representing W V
and its co-W structure, in terms of presentations of |R| and |S |, and their co-V and co-W
structures.

Theorem 9.3.6 has the following consequence (noted as Exercise 8.9:8 in the last chapter);
though it is unfortunate that the consequence is better known than the theorem, and is thought by
many to be the ‘‘last word’’ on the subject!

Corollary 9.4.2. Any functor V: W → V between varieties of algebras which respects underlying
sets has a left adjoint.

Proof. By Theorem 9.3.6 (iii)⇒(i), to show V has a left adjoint it suffices to show that
UV V : W → Set is representable. But by hypothesis, UV V = UW , which is clearly
representable, by any of our three criteria (representing object: FW (1); description: sends each
object A to the set of 1-tuples of elements of A satisfying the empty set of relations; left adjoint:
FW ). �

This corollary applies to such constructions as (i) the underlying-set functor UW : W → Set of
any variety W , the left adjoint of which is, we already know, the free algebra construction;
(ii) the inclusion of any variety W in a larger variety V of algebras of the same type, the left
adjoint of which is the construction of ‘‘imposing the identities of W’’ on algebras in V ; (iii) the
functor Set → G-Set (for any group G) which takes a set A and regards it as a G-set with
trivial action; this has for left adjoint the orbit-set functor G-Set → Set (cf. Exercise 7.6:1);
(iv) the functor taking an associative ring A to its underlying additive group, whose left adjoint is
the tensor ring construction, and similarly (v) the functor taking an associative ring A to its
underlying multiplicative monoid, whose left adjoint is the monoid-ring construction (both these left
adjoint constructions were described as constructions of rings with universal properties in §3.12),
and (vi) the ‘‘commutator brackets’’ functor from associative algebras over a commutative ring k
to Lie algebras over k, whose left adjoint is the universal enveloping algebra construction (§8.7).

On the other hand, the functor SL(n) : CommRing1 → Group with which we began this
chapter certainly does not preserve underlying sets. That was a good example for getting away
from functors represented by free algebras on one generator, because the representing algebra both
requires more than one generator, and requires nontrivial relations, i.e., is nonfree. There are also
important examples where a representing algebra is free on more than one generator (equivalently,
where the functor has the property that the underlying set |V(A) | of the constructed algebra is a
fixed power |A| X of the underlying set of the given algebra A), or can be generated by one
element but subject to some relations (equivalently, where |V(A) | can be described as the subset
of |A| consisting of those elements which satisfy certain equations). Among constructions of the
first type are the n × n matrix ring functor Mn : Ring1 → Ring1, the representing object for
which is free on n2 generators, and the formal power series functor (either Ring1 → Ring1 or
CommRing1 → CommRing1) taking a ring A to the ring A[[t]], whose representing object is
free on countably many generators. The left adjoints of these have no standard names, but can be
described as taking a ring B to the ring ‘‘with a universal n × n matrix representation of B’’,
respectively ‘‘with a universal representation of B by formal power series’’. A functor with
representing algebra presented by one generator and a nonempty set of relations is the construction
CommRing1 → Bool1 taking a ring A to the set of its idempotent elements, made a Boolean
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ring as described in Exercise 3.14:3. The underlying ring of its representing coalgebra is presented
by a generator x and the relation x2 = x, and can be described as Z × Z , with x = (1, 0).
Another example with one generator and a nonempty relation-set is the functor Ab → Ab taking
any abelian group to its subgroup of elements of exponent n (for any fixed n > 0), represented by
the cyclic group of order n. Still another is the functor G-Set → Set (for G any nontrivial
group) represented by the one-element G-set. This takes a G-set A to the set of fixed points of
the action of G; its left adjoint is the functor Set → G-Set mentioned in point (iii) of the
preceding paragraph, which thus has both a left and a right adjoint!

We saw in Chapter 3 that every monoid had both a universal map into a group, and a universal
map of a group into it. This says that the forgetful functor

U : Group → Monoid

also has both a left and a right adjoint. That it has a left adjoint is now clear from that fact that it
preserves underlying sets. Our present results do not say anything about why it should have a right
adjoint, but they do say that that right adjoint must be a representable functor. Let us find its
representing cogroup.

We recall that that right adjoint is the functor

V : Monoid → Group

taking every monoid A to its group of invertible elements. Since the invertible elements of a
monoid A form a subset of |A|, one would at first glance expect UGroup V, when expressed in
the form described in Lemma 8.4.13(ii), to have X a singleton, i.e., to be represented by a monoid
presented by one generator and some relations. But at second glance, we see that this cannot be so:
the condition of invertibility on an element of a monoid is not an equation in that element alone.
We can find the representing monoid for V by applying its left adjoint U to the free group on
one generator. The result is this same group, regarded as a monoid, and as such, it has presentation

(9.4.3) R = < x, y � xy = e = yx >.

Thus for any monoid A, the description of |V(A) | in the form described in Lemma 8.4.13(ii) is

(9.4.4) {(ξ , η)∈ |A| × |A| � ξη = e = ηξ }.

Since two-sided inverses to monoid elements are unique when they exist, every element (ξ , η) of
|V(A) | is determined by its first component, subject to the condition that this have an inverse. So
up to functorial isomorphism, (9.4.4) is indeed the set of invertible elements of A. (We noted this
example briefly in the paragraph following Lemma 8.4.13.)

Let us write down the cogroup structure on the representing monoid (9.4.3). If we write the
coproduct of two copies of this monoid as

R I��I R = < x0 , y0 , x1 , y1 � x0 y0 = e = y0 x0 , x1 y1 = e = y1 x1 >,

then we find that the comultiplication is given by

m(x) = x0 x1, m(y) = y1 y0.

(If you are uncertain how I got these formulas, stop here and think it out. If you are still not sure,
ask in class! Note the reversed multiplication of the y’s, a consequence of the fact that when one
multiplies two invertible monoid elements, their inverses multiply in the reverse order.) It is also
easy to see that the coinverse operation i : R → R is given by
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i(x) = y, i(y) = x,

and, finally, that the co-neutral-element map, from R to the initial object of Monoid , namely
{e}, is the unique element of Monoid(R, {e}), characterized by

e(x) = e = e(y).

Exercise 9.4:2. Describe explicitly the co-operations of the coalgebras representing two of the
other examples discussed above, as we have done for the group-of-units functor
Monoid → Group .

Exercise 9.4:3. We noted above that we might naively have expected the group-of-invertible-
elements functor Monoid → Group to be represented by a 1-generator monoid, but that it was
not. Let us look more closely at this type of situation. Suppose W : V → W is a representable
functor among varieties of algebras, with representing W-coalgebra R.
(i) Show that UW W : V → Set is isomorphic to a subfunctor of UV if and only if there
exists a map FV (1) → |R| which is an epimorphism in V (but not necessarily surjective).
(ii) Describe the epimorphism implicit in our discussion of the group-of-invertible-elements
functor.
(iii) Generalize the result of (i) in one way or another.

We can get other examples of representable functors by composing some of those we have
described. For instance, if we start with the n × n matrix ring functor Ring1 → Ring1, follow it
by the underlying multiplicative monoid functor Ring1 → Monoid , and this by the group-of-units
functor Monoid → Group , we get a functor Ring1 → Group which takes every ring A to the
group of all invertible n × n matrices over A, known as GL(n, A).

Let us record a couple of other general results on representability of functors, equivalently, on
existence of adjoints. As we noted in example (ii) following Corollary 9.4.2, that corollary implies

Corollary 9.4.5. The inclusion of any subvariety U in a variety V has a left adjoint. �

Combining this with Corollary 9.4.1 (composites of representable functors are representable) ,
we get

Corollary 9.4.6. If a functor W: V → W between varieties of algebras is representable, then so
is its restriction to any subvariety of U ⊆ V. �

For instance, having observed that GL(n) is a representable functor on Ring1, we know
automatically that it gives a representable functor on CommRing1. (What is the relation between
the representing objects for these two functors?)

When a functor between varieties of algebras W : V → W is representable, this representability
is usually easy to see and to prove – the construction of the underlying set of W(A) is easily
expressed in the form described in Lemma 8.4.13(ii). On the other hand, when we want to prove
that a functor V is not representable, this criterion is clearly not as helpful; the more useful
criterion here is Proposition 7.10.3, which says that W is representable if and only if it respects
limits and satisfies a ‘‘solution-set condition’’. As we noted in §§7.7-7.10, most cases of
nonrepresentability reveal themselves through failure of the functor to respect limits of one sort or
another. For example:
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Exercise 9.4:4. Verify that none of the following covariant functors from abelian groups to abelian
groups is representable:
(i) F(A) = A �× A.
(ii) G(A) = the torsion subgroup of A (the subgroup of all elements of finite order).
(iii) H(A) = A ⁄ nA (n a fixed integer).
(iv) J(A) = nA (n a fixed integer).

In Exercises 7.10:4-7.10:5, we saw examples of the rarer situation in which some left universal
construction was impossible only because the solution-set condition was not satisfied. Those
examples were of nonexistence of initial objects and of free objects, so by Theorem 8.4.11, the
domain categories were, necessarily, not varieties (though the domain in one of the examples, the
category of complete lattices, failed to be a variety only in that it had a large set of operations).
The following exercise shows that in the case of the criterion for representability, there are
counterexamples where the domain is a variety.

Exercise 9.4:5. Let us call an object S of a variety V simple if the only congruences on S are
the trivial congruence and the total congruence (the least and the greatest equivalence relations
on |S | ).
(i) Find a variety V having the properties that (a) for every cardinal α there exists a simple
algebra Sα in V of cardinality ≥ α , and (b) every algebra in V contains a unique one-
element subalgebra. (Suggestion: Show either that there are simple groups of arbitrarily large
cardinalities, or that there are fields of arbitrarily large cardinalities; in the latter case you must
also say how to regard fields as simple objects of a variety satisfying (b).)

Now assume we have chosen such a V , and for each α some Sα , as above. For every
object A of V , define V(A) = V( I��I α ≤ |A| Sα , A)∈Ob(Set); equivalently (up to natural
isomorphism) V(A) = I

��
I α ≤ |A| V(Sα , A).

(ii) Show how to make V a functor, and show that this functor respects small limits, but is
not representable. (You may either get these results directly, or with the help of part (iii) below.)
(iii) Recall that the variety we are writing V could be more precisely written as V(U ) , the
category of U-small objects of a certain type that satisfy a certain system of identities. Letting
U ′ be any universe properly larger than U, show that V(U ′) contains an object S such that
the restriction to V(U ) of the functor hS : V(U ′) → Set(U ′) is isomorphic to the functor V
of (ii) above.

Thus, intuitively, this example is based on a functor which is representable, but by an object
outside our universe. What was tricky was to find such a functor which nevertheless took
U-small algebras to U-small sets.

Curiously, in the condition from Chapter 7 for the existence of right adjoint functors, one can
drop the solution-set condition when the domain category is a variety:

Exercise 9.4:6. Show that if V is a variety of algebras and C a category with small colimits,
then every functor F : V → C which respects small colimits has a right adjoint; i.e., is the left
adjoint to a representable functor.

Knowing that representable functors from a variety W to a variety V correspond to
V-coalgebra objects of W , it is natural to try, for various choices of V and W , to find all such
coalgebras, and hence all such functors. How difficult this task is depends on the varieties in
question. At the easy extreme are certain large classes of cases for which we shall see in §9.9 that
there can be no nontrivial representable functors. At the other end are cases such as that of
representable functors from the variety of commutative rings (or commutative algebras over a fixed
commutative ring k) to Group . Such functors are called ‘‘affine algebraic groups’’, and are an
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important area of research in algebraic geometry.
In the next three sections, we shall tackle some cases of an intermediate level of difficulty, for

which the problem is nontrivial, but where with a reasonable amount of work we can get a
complete classification.

9.5. Representable endofunctors of Monoid . Let us consider representable functors from the
variety Monoid into itself.

A representable functor from an arbitrary category C with finite coproducts to Monoid is
represented by a comonoid, which we shall for convenience write as a 3-tuple (R, m , e), (rather
than as a pair (R, (m , e))), where R is an object of C , and the other two components are a
binary comultiplication

m : R → R I��I R

and a zeroary co-neutral-element

e : R → I.

Here I denotes the initial object of C , that is, the coproduct of the empty family. These co-
operations must satisfy the coassociative law, and the right and left coneutral laws. The
coassociative law can be shown diagrammatically as the dual to (9.2.6); thus, it says that the
diagram

(9.5.1)

R
___________m → R I��I R

��
�
↓

m ��
�
↓

m I��I idR

R I��I R
_________1R I��I m

→ R I��I R I��I R

commutes. The two coneutral laws likewise say that the composite maps

(9.5.2) R
___m→ R I��I R

______(e , idR )
→ R, R

___m→ R I��I R
______(idR , e)

→ R

are both the identity morphism of R, where in each of these latter diagrams, the parenthesized pair
shown above the second arrow is an abbreviation for the morphism obtained from the two entries of
that pair via the universal property of the coproduct R I��I R.

Let us now specialize to the case C = Monoid . Then the initial object I is the trivial monoid
{e}; hence the homomorphism e can only be the map taking every element of R to e.
(Contrast this with the case of SL(n) discussed in §9.1, where e had for codomain the initial
object Z of CommRing1, and the specification of the identity matrix was nontrivial.)
Nonetheless, the fact that this unique zeroary co-operation satisfies the coneutral laws (9.5.2) will
be a nontrivial condition.

To study (9.5.1) and (9.5.2), we need to recall the structure of a coproduct of monoids. We
noted in §3.10 that such a coproduct

(9.5.3) I��I α∈I Rα

could be described in essentially the same way as for groups; namely, assuming for notational
convenience that the sets |Rα | – {e} are disjoint, each element of (9.5.3) can be written uniquely
as a product
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(9.5.4)
r0 r1 ... rh –1, with h ≥ 0, each ri in some |Rαi | – {e },

and αi ≠ αi+1 for 0 ≤ i < h –1.

(Here the neutral element e of (9.5.3) is understood to be the case h = 0 of (9.5.4).)
However, in the case of the coproduct R I��I R we are interested in now, the two monoids being

put together are not disjoint. Let us therefore distinguish our two canonical images of R in
R I��I R as Rλ and Rρ (the superscripts corresponding to the ‘‘left’’ and ‘‘right’’ arguments of
the comultiplication we want to study). We shall thus write R I��I R as Rλ I��I Rρ, i.e., as the
coproduct of these two copies of R, and write the images of an element x∈ |R| under the two
coprojections R →→ Rλ I��I Rρ as xλ and xρ respectively.

The coassociative law involves three variables, hence in (9.5.1), R is ultimately mapped into a
three-fold coproduct of copies of itself; let us write this object Rλ I��I Rμ I��I Rρ, the μ standing for
the ‘‘middle’’ variable in the associativity identity.

An obvious invariant of an element (9.5.4) is the sequence of indices (α0, ... ,αh –1). So let us
define an index-string to mean a finite (possibly empty) sequence of members of {λ , μ , ρ}, with
no two successive terms equal. We shall call h the length of the index-string (α0, ... ,αh –1).
For every index-string σ = (α0, ... ,αh –1), we shall denote by |R|σ the set of all products (9.5.4)
with that sequence of superscripts, i.e.,

|R|σ = ( |Rα0| – {e }) ... ( |Rαh –1 | – {e }).

The underlying set of each of the monoids Rλ I��I Rρ and Rλ I��I Rμ I��I Rρ is thus the disjoint
union of its subsets |R|σ. We define the height ht(s) of s∈ |Rλ I��I Rρ | as the length of the
unique σ such that s∈|R|σ. Finally, to study our comultiplication m , let us define the degree
of an element of R by

deg(x) = ht(m(x)).

We note that for each h > 0, there are precisely two index-strings of length h consisting only
of ρ’s and λ’s: one beginning with ρ and the other beginning with λ . Thus, if x∈ |R| is an
element of positive degree h, then m(x) either belongs to |R| (λ ,ρ ,λ , ... ) (h entries in the
superscript) i.e., has the form yλ0 zρ1 yλ2 ... , or it belongs to |R| (ρ ,λ ,ρ , ... ), and has the form
zρ0 yλ1 zρ2 ... .

It is easy to see that the coneutral laws (9.5.2) say

(9.5.5) If m(x) = ... yλi zρi+1 yλi+2 zρi+3 ... , then x = ... yi yi+2 ... = ... zi+1 zi+3 ... .

(Note that the way we have written m(x) here covers both the cases x∈ |R| (λ ,ρ ,λ , ... ) and
x∈ |R| (ρ ,λ ,ρ , ... ).) In particular, (9.5.5) implies

(9.5.6) If x ≠ e, then deg(x) ≥ 2.

On the two sorts of elements of degree exactly 2, we see that (9.5.5) precisely determines the
action of m :

(9.5.7)
� If m(x)∈ |R| (λ , ρ), then m(x) = xλxρ.
�
� If m(x)∈ |R| (ρ , λ), then m(x) = xρxλ.

Let us also record what (9.5.5) tells us about the degree 3 case:
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(9.5.8)
� If m(x)∈|R| (λ , ρ , λ), then m(x) = yλ0 xρyλ2 where y0 y2 = x.
�
� If m(x)∈|R| (ρ , λ , ρ), then m(x) = zρ0 xλzρ2 where z0 z2 = x.

We now turn to the coassociative law. This says that for any x∈ |R|,

(9.5.9) (idRλ , m) m(x) = (m , idRρ) m(x) in Rλ I��I Rμ I��I Rρ .

Let us note the explicit descriptions of the left-hand factors of each side of the above equation.
(idRλ , m) : Rλ I��I Rρ → Rλ I��I Rμ I��I Rρ leaves each element of the form yλ∈ |Rλ I��I Rρ |
unchanged, while it takes an element zρ∈ |Rλ I��I Rρ | to the element m(z), but with all the
superscripts ‘‘λ’’ changed to ‘‘μ’’ (because of the way we label our 3-fold coproduct). Likewise,
(m , idRρ) leaves each zρ unchanged, and takes each yλ to the element m(y), with all
superscripts ‘‘ρ’’ changed to ‘‘μ’’.

Now let x∈|R| – {e}, suppose that m(x) belongs to the set |R|σ (σ a string of λ’s and
ρ’s), and let the common value of the two sides of (9.5.9) belong to the set |R|τ (τ a string of
λ’s, μ’s and ρ’s). Note that each ‘‘λ’’ in σ yields a single λ in τ on evaluating the left-hand
side of (9.5.9), but looking at the right-hand side of (9.5.9), it gives at least one λ in τ , because
of (9.5.6). Since the two sides of (9.5.9) are equal, all of these ‘‘at least one’’s must be exactly
one. For this to happen, the elements yi in the expansion (9.5.5) must all have degree ≤ 3. By a
symmetric argument (comparing occurrences of ρ in σ and in τ) we get the same conclusion
for the elements zi . Note also that if τ begins with μ , then the right-hand side of (9.5.9) tells
us σ must begin with a λ , while the left-hand side says it must begin with a ρ , a contradiction.
Hence τ can only begin with a λ or a ρ . In the former case, σ must begin with a λ which
expands to λμ on the right-hand side of (9.5.9) (so as not to yield more than one λ); in the
latter case it must begin with a ρ which expands to ρμ on the left-hand side. In either case, we
conclude that the first factor in the expansion of m(x) must have degree 2. The same arguments
apply to the last factor. In summary:

(9.5.10)
All elements yi and zi in (9.5.5) have degree ≤ 3; hence by (9.5.5),
every element of R is a product of elements of degree ≤ 3. Moreover, the
elements giving the first and last factors of m(x) have degree 2.

But the observation about first and last factors, applied to the final equation in each line of
(9.5.8), gives

(9.5.11) Every element of R of degree 3 is a product of two elements of degree 2.

(9.5.10) and (9.5.11) together allow one to express every element of R as a product of
elements of degree 2, showing that R is generated by these elements. We can prove still more:

Lemma 9.5.12. Let (R, m , e) be a co-Monoid object in Monoid. Then every element x∈ |R|
has an expression as a product

x0 ... xh –1 (h ≥ 0),

where all xi are of degree 2, and this expression is unique subject only to the condition that
there be no two successive factors xi , xi+1 such that one of m(xi ), m(xi+1) belongs to
|R| (λ , ρ), the other belongs to |R| (ρ , λ), and xi xi+1 = e.

Proof. Since R is generated by elements of degree 2, and since any expression involving two
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successive factors whose product is e can be simplified to a shorter expression, we can clearly
express every element in the indicated form subject to the conditions noted. To show that this form
is unique, it suffices to prove that given an element and such an expression for it,

x = x0 ... xh –1 (deg(xi ) = 2, i = 0, ... , h –1),

we can recover the factors xi from x. I claim in fact that if for this x we write the common
value of the two sides of (9.5.9) as a reduced product of elements of Rλ, Rμ and Rρ, i.e., as in
(9.5.4), then the sequence of factors belonging to Rμ will be precisely x0

μ, ... , xμh –1, recovering
the xi , as required.

Indeed, let us note that for any x such that m(x)∈|R| (λ , ρ), the common value of the two
sides of (9.5.9), computed using (9.5.7), is xλ xμ xρ, while when m(x)∈|R| (ρ , λ) it is xρ xμ xλ.
Hence when we evaluate the common value of the two sides of (9.5.9) for x = x0 ... xh –1, the
factors with superscript μ comprise, initially, the sequence claimed. They will continue to do so
after we reduce this product to the form (9.5.4) unless, in the process of reduction, the factors with
superscript ρ and/or λ separating some pair of successive μ-factors cancel, allowing these
μ-factors to combine into a single element of |R|μ. Now if m(xi ) and m(xi+1) both belong to
|R| (λ , ρ) or both belong to |R| (ρ , λ), then between xμi and xμi+1 we will have exactly one
λ-factor and one ρ-factor, and these cannot cancel. In the case where one belongs to |R| (λ , ρ)

and the other to |R| (ρ , λ), we get adjacent factors xρi xρi+1 or xλi xλi+1 in the same set Rρ or
Rλ. These will in general combine into one factor, but they will cancel only if xi xi+1 = e in R.
But this is the case excluded by our hypothesis. �

Note that in the above argument, we could have asserted that every element can be reduced to a
unique product of the indicated form in which no two successive factors whatever have product e.
However, we have proved uniqueness subject to a weaker condition than this, so we have a
stronger uniqueness result. Indeed, this result implies (as the weaker uniqueness statement would
not) :

Corollary 9.5.13. If (R, m , e) is a co-Monoid object in Monoid, then the monoid R has a
presentation < X � Y >, where X is the set of elements of R having degree 2 with respect to
the comultiplication m, and Y is the set of all relations of the form x0 x1 = e holding in R

such that one of m(x0), m(x1) lies in |R| (λ , ρ), and the other in |R| (ρ , λ).

Proof. We know that X generates R, and by definition the relations comprising Y are satisfied
by these generators. It remains to verify that if two words w0 and w1 in the elements of X are
equal in R, then this equality follows from the relations in Y.

Now if wi (i = 0 or 1) contains a substring which is the left-hand side of some relation in Y,
then by applying that relation, we can reduce wi to a shorter word. Hence a finite number of
applications of such relations will transform w0 and w1 to words w ′0 and w ′1 that contain no
such substrings. The values of these words in R are still equal; hence the uniqueness statement of
Lemma 9.5.12 tells us they are the same word. Thus, by applying relations in Y, we have
obtained the equality of w0 and w1 in R, as required. �

The next step in studying our comonoid should clearly be to examine the properties of the
relation x0 x1 = e on elements of degree 2 in R. So let us make
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Definition 9.5.14. If (R, m , e) is a co-Monoid object in Monoid, then P(R, m , e) will denote
the 4-tuple (u, X+, X –, E ), where

u = e, the neutral element of R,

X+ = {x∈ |R| � m(x) = xλxρ } = {x∈ |R| � m(x)∈|R| (λ , ρ) } ∪ {u },

X – = {x∈ |R| � m(x) = xρxλ } = {x∈ |R| � m(x)∈|R| (ρ , λ) } ∪ {u },

and E = {(x0 , x1)∈|R|2 � deg(x0), deg(x1) ≤ 2, x0 x1 = e } ⊆ (X+ × X – ) ∪ (X – × X+).

Thus, X+ and X – are sets intersecting in the singleton {u}, and E is a binary relation on
the union of these sets, which relates certain elements of X+ to certain elements of X –, and vice
versa. We note a key property of this relation: If both (x0, x1) and (x1, x2) belong to it, then
since x1 has x0 as a left inverse and x2 as a right inverse in R, x0 must equal x2.

Let us formalize the type of combinatorial object we have obtained.

Definition 9.5.15. An E-system will mean a 4-tuple (u, X+, X –, E ), where u is an element, X+

and X – are sets such that

X+ ∩ X – = {u } ,

and

E ⊆ (X+ × X – ) ∪ (X – × X+)

is a relation such that

(9.5.16) u E u,

(9.5.17) x0 E x1 , x1 E x2 ⇒ x0 = x2 .

A morphism of E-systems (u, X+, X –, E ) → (u ′ , X ′ +, X ′ –, E ′ ) will mean a map X+∪ X – →
X ′ +∪ X ′ – carrying u to u ′ , X+ into X ′ +, X – into X ′ –, and the relation E into the
relation E ′ .

Thus, the objects P(R, m , e) constructed in Definition 9.5.14 are E-systems.
Does the concept of E-system in fact capture enough structure to model the co-Monoid objects

of Monoid?
Suppose (u, X+, X –, E ) is an E-system, and let us try to show that it arises from a comonoid

object via the construction of Definition 9.5.14. To begin the ‘‘reconstruction’’ of this comonoid
object, we should clearly form the monoid with presentation

(9.5.18) R = < X+∪ X – – {u } � x0 x1 = e whenever x0 E x1 >.

On this monoid we have a unique zeroary co-operation e , namely the trivial map R → {e}. We
now try to define a comultiplication homomorphism from this monoid into the coproduct of two
copies of itself, setting

(9.5.19)
� xλxρ if x∈X+– {u},

m(x) = �
� xρxλ if x∈X –– {u}.

The next two exercises will show that this construction in fact inverts that of Definition 9.5.14,
a result which we will then summarize as a theorem. You should therefore read these exercises
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through, and think about what is involved, even if you do not work out all the details.

Exercise 9.5:1. (i) Show that for any E-system X = (u, X+, X –, E ), if we define R by
(9.5.18), then (9.5.19) gives a well-defined homomorphism m : R → Rλ I��I Rρ .
(ii) Show that this m and the trivial morphism e make R a comonoid object of Monoid .
Let us denote this object Q(X ).

The next observation will make some subsequent results easier to state:
(iii) Verify that the presentation (9.5.18) is equivalent to the modified presentation with u
included among the generators and u = e added to the relations; and that (9.5.19) then holds
with the ‘‘– {u }’’s deleted.
(iv) Show that the construction P of Definition 9.5.14, and the above construction Q, may
be made functors in obvious ways, and that Q is then left adjoint to P.
(v) Deduce from Corollary 9.5.13 that the counit of this adjunction, i.e., the canonical
morphism from the functor QP to the identity functor of the category of co-Monoid objects of
Monoid , is an isomorphism. In particular, every comonoid object of Monoid arises under Q
from an E-system.

There remains the question of whether every E-system arises from a comonoid. This is
equivalent to asking whether distinct E-systems yield distinct comonoids under Q, which is in
turn equivalent to asking whether the unit of the above adjunction, i.e., the canonical morphism
from the identity functor of the category of E-systems to PQ, is also an isomorphism.

(To banish any suspicion that this conclusion might follow automatically from (v) above,
consider the analogous situation where P is the forgetful functor Group → Monoid , and Q its
left adjoint, taking every monoid to its universal enveloping group. Then the counit
QP → IdGroup is an isomorphism, but the unit IdMonoid → PQ is not: monoids containing
noninvertible elements do not appear as values of P, and each such monoid falls together under
Q with a monoid that is a value of P.)

To answer this question, we need a normal form result:

Exercise 9.5:2. (i) Show that given any E-system X = (u, X+, X –, E ), the monoid R with
presentation (9.5.18) has for normal form the set of words in the indicated generators (including
the empty word) that contain no subsequences x0 x1 with x0 E x1. (Suggestion: van der
Waerden’s trick.)
(ii) Deduce that the unit of the adjunction between P and Q is an isomorphism.

The above results are summarized in the first sentence of the next theorem. The second
sentence translates the comonoid structure (9.5.18)-(9.5.19) into a description of the functor
represented, and the final sentence follows by Corollary 9.3.5.

Theorem 9.5.20. Every representable functor V from Monoid to Monoid is determined by an
E-system. The functor corresponding to the E-system (u, X+, X –, E ) can be described as a
subfunctor (in the sense of Lemma 6.9.3 and Definition 8.4.8) of a direct product of copies of the
identity functor and of the opposite-monoid functor; namely, as the construction taking each

monoid A to the submonoid of A(X+– {u }) × (Aop)(X –– {u }) consisting of those elements s such
that for all (x, y)∈E – {(u, u)}, the coordinate sx is a left inverse to the coordinate sy.

Writing E-System for the category of E-systems, the above construction yields a contravariant
equivalence E-Systemop → Rep(Monoid , Monoid). �

For the purpose of describing the morphism of representable functors induced by a given
morphism of E-systems, it is actually most convenient to treat the functor V : Monoid → Monoid
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corresponding to the E-system (u, X+, X –, E ) as taking a monoid A to a submonoid of

A(X+– {u }) × {e } × (Aop)(X –– {u }) ;

i.e., to introduce an extra slot, indexed by the element u of the E-system, such that the coordinate
of V(A) in that slot is required to be the neutral element e of A. (Cf. Exercise 9.5:1(iii).) We
can then say that if f : E → E ′ is a morphism of E-systems, and f : V ′ → V the corresponding
morphism of representable functors, then for a monoid A and an element ξ ∈ |V ′(A) |, the image
f (A)(ξ) has for xth coordinate the f(x)th coordinate of ξ , whether f(x) happens to be u, or to
be a member of X+∪ X – – {u }.

Let us look at some simple examples of E-systems and the corresponding representable
functors. We shall display an E-system by showing the elements of X+– {u } and X –– {u }
respectively as points in two boxes, �_

__
_�_
__
_� , and indicating a condition x0 E x1 by an arrow from

the point x0 to the point x1. (The element u will not be shown; it may be thought of as
embedded in the dividing line between the boxes.)

�_
__
_�_
__
_�. By (9.5.18)-(9.5.19), the comonoid R corresponding to this E-system is the free monoid

on one generator x, with the comultiplication under which m(x) = xλxρ . We see that the functor
this represents is (up to isomorphism) the identity functor Monoid → Monoid . This description of
the functor represented can also be seen from the second sentence of the above theorem.

�_
__
_�_
__
_�. You should verify that this E-system similarly gives the opposite monoid functor.

�_
__
_�_
__
_�. . (the relation E – {(u, u)} still being empty). This gives the direct product of the above

two functors, i.e., the functor associating to every monoid A the monoid

{(α , β) � α , β∈ |A|} ,

with multiplication

(9.5.21) (α0, β0) (α1, β1) = (α0α1, β1β0) .

�_
__
_�_
__
_�.→←. This corresponds to the subfunctor of the preceding example determined by adding to the

description of its underlying set the conditions

αβ = e = βα .

Since under these conditions α uniquely determines β , the second coordinate provides no new
information, and we can describe this functor, up to isomorphism, as associating to A its group of
invertible elements α , regarded as a monoid.

�_
__
_�_
__
_�.→. As above, except that only the condition αβ = e, and not βα = e is imposed. Right

inverses are not generally unique, so we must describe this functor as associating to A the monoid
of elements α∈ |A| given with a specified right inverse β . The multiplication is again as in
(9.5.21).

�_
__
_�_
__
_�.←. This associates to A the monoid of elements α given with a specified left inverse β ,

again multiplied as in (9.5.21). Set-theoretically, this construction is isomorphic to the preceding,
via (α , β) ←→ (β ,α), but the monoid structures are opposite to one another. (I have indicated
this in the paraphrases by naming, after the words ‘‘monoid of’’, the elements which are multiplied
as in A, while those with the opposite multiplication are referred to as specified inverses of these
elements.)
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�
�_

__

_
�
�_

__

_
�
�

.

. . ‘‘The monoid of pairs of elements of A with a specified common right inverse’’.

And so on. We note that for a general diagram such as

....

...

.

.

.

.

.

the associated functor is the direct product of the functors associated with the graph-theoretic
‘‘connected components’’ of the diagram. Each of these components, except those of the form
�_
__
_�_
__
_�.→←. must have, by (9.5.17), the property that arrows, if any, all go in the same direction, i.e.,

from left to right or from right to left. Subject to this restriction, the arrows are independent.

Let us pause to note the curious fact that, although for every nonzero cardinal r, the
construction that associates to a monoid A the monoid of its right invertible elements given with a
specified r-tuple of right inverses is a representable functor, this is false for r = 0 :

Exercise 9.5:3. Let H : Monoid → Monoid be the functor associating to a monoid A its
submonoid of right invertible elements (a subfunctor of the identity functor).
(i) Show that H is not representable.
(ii) Show, however, that the composite functor H H is representable, and concisely describe
this functor.
(iii) Show that H can be written as a direct limit of representable functors. (Hint: can you
write the empty set as an inverse limit of nonempty sets?)

It is natural to ask how to compose two representable functors expressed in terms of E-systems.

Exercise 9.5:4. In this exercise, ‘‘functor’’ will mean ‘‘representable functor Monoid →
Monoid’’.
(i) Define precisely what is meant by the connected components of an E-system, and prove
the assertion made above that the functor associated with an E-system is the direct product of the
functors associated with its connected components. Using this result, reduce the problem of
describing the E-system of the composite of two functors to the case where the E-systems of the
given functors are connected.
(ii) Characterize in terms of E-systems the results of composing an arbitrary functor on the
right and on the left with the functors having the diagrams �_

__
_�_
__
_�. and �_

__
_�_
__
_�. . (Thus, four

questions are asked, though two of them are trivial to answer.)
This leaves us with the problem of describing the composite of two functors whose associated

diagrams are both connected, and each have more than one element. The answer is quite simple,
but the argument requires two preliminary observations:
(iii) Show that if s, t are two left invertible elements of a monoid A, or two right invertible
elements, then the condition st = e implies that they are both invertible.
(iv) Let V be a functor whose diagram is connected. Show that if some ξ ∈ |V(A) | has an
invertible element of A in at least one coordinate, then it has invertible elements in all
coordinates, and these are determined by that one coordinate. Show that the set of elements ξ
with these properties forms a submonoid of V(A), isomorphic to the group of invertible
elements of A. (In writing ‘‘at least one coordinate’’ above, I am understanding our description
of V to be that of Theorem 9.5.20, which does not include a coordinate indexed by u.)
(v) Deduce from (iii) and (iv) a description for the composite of any two functors whose
diagrams are both connected and each have more than one element (not counting u as an
element of our diagrams).
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Exercise 9.5:5. Suppose f : V → V ′ is a morphism of representable functors Monoid →
Monoid , and W is another such functor. Assuming the results of the preceding exercise, show
how to describe the map of E-systems corresponding to f oW : VW → V ′W, respectively
W of : W V → W V ′, in terms of the map of E-systems corresponding to f.

Exercise 9.5:6. We saw in the discussion following Corollary 9.4.1 that the object representing a
composite of representable functors among varieties could be constructed from presentations
< X � Y >U and < X ′ � Y ′ >V of representing objects for those functors, using a set of
generators indexed by X × X ′ and a set of relations indexed by X × Y ′ X ′ × Y. See whether
you can get the results of the preceding two exercises by applying this idea to presentations of
the representing objects for functors Monoid → Monoid induced by given E-systems. (If you
did Exercise 9.4:1, you will be able to apply the results of that exercise here; if not, you can still
work out the corresponding results for this particular case.)

9.6. Functors to and from some related categories. The characterization of representable
functors Monoid → Monoid that we have obtained can be used to characterize various classes of
representable functors involving the category Group as well.

We begin with some general observations. Let U : Group → Monoid denote the ‘‘forgetful’’
functor, let F : Monoid → Group denote the left adjoint of U, the ‘‘universal enveloping
group’’ functor, and let G : Monoid → Group denote the right adjoint of U, the ‘‘group of
invertible elements’’ functor. It is clear that the counit of the first adjunction and the unit of the
second are isomorphisms

εU, F : FU =∼ IdGroup and ηG, U : IdGroup =∼ GU .

This implies that the composites of our two adjoint pairs in the reverse order, UF and UG, are
retractions of Monoid onto U(Group), and that the latter is a full subcategory of Monoid
isomorphic to Group . The other unit and counit of our adjunctions relate each monoid to its
image in this subcategory under the corresponding retraction; let us write these

η = ηU, F : IdMonoid → UF and ε = εG, U : UG → IdMonoid

(breaking the convention that η and ε generally denote the unit and counit of the same
adjunction). The next steps are given in the following two exercises:

Exercise 9.6:1. (i) Show that the monoids S of the form U(A) (A a group) are precisely
those for which the universal map η(S) : S → UF(S) is an isomorphism, and are also those for
which the universal map ε(S) : UG(S) → S is an isomorphism.
(ii) Show that UF is left adjoint to UG.
(iii) Show that for any variety V , the representable functors Group → V can be identified
with the representable functors V : Monoid → V which are invariant under composition on the
right with UG (i.e., those V such that the induced map Vε : VUG → V is an isomorphism).
(iv) Show similarly that the representable functors V → Group can be identified with the
representable functors V → Monoid which are invariant under composition on the left with
UG (i.e., such that the induced map εV : UGV → V is an isomorphism).

Though we shall not need it, you may also
(v) Show that the functors Group → V , respectively V → Group which have right
adjoints (i.e., the left adjoints of representable functors) can be identified with the functors
Monoid → V , respectively V → Monoid which have right adjoints and are invariant under
composition on the right, respectively on the left with UF.
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Exercise 9.6:2. Using the preceding exercise,
(i) Show that every representable functor Group → Monoid is a power (i.e., product of
copies) of the forgetful functor U. (First proved by D. Kan [69].)
(ii) Show that every representable functor Monoid → Group is a power of the group-of-
invertible-elements functor G.
(iii) Show that every representable functor Group → Group is a power of the identity
functor.

Thus, in each of these three cases, all representable functors arise as powers of one ‘‘basic’’
functor, U, G or IdGroup respectively. Calling this functor B in each case, so that the general
representable functor between the categories in question has the form BX, let us observe that for
any set map X → Y we get a map BY → BX. Are these the only morphisms among these
functors?

Not quite. For instance, in the case of functors Group → Group , if we take X = Y = 1, so
that we are considering endomorphisms of the identity functor of Group , there is not only the
identity morphism, associating to every group its identity map, and arising from the unique set map
1 → 1, but also the trivial morphism, associating to every group the endomorphism under which
all elements go to e. To correctly describe the morphisms among our functors, let Setpt denote
the category of pointed sets, whose objects are sets given with a single distinguished element, and
whose morphisms are set maps sending distinguished element to distinguished element. (This may
be identified with the variety Ω-Alg with Ω consisting of a single zeroary operation.) The next
exercise shows that this is the right category for parametrizing these functors.

Exercise 9.6:3. (i) Let L : E-System → Setpt denote the functor taking every E-system X =
(u, X+, X –, E ) to the pointed set (X+, u). Show that when restricted to the full subcategory of
E-systems whose ‘‘box pictures’’ have all connected components of the form �_

__
_�_
__
_�.→←. , the

functor L gives an equivalence of categories.
(ii) Deduce that in each of the cases of the preceding exercise, the indicated category of
representable functors is equivalent to (Setpt)op. Precisely, letting B denote the ‘‘basic’’
functor in each case, show that morphisms BX → BY correspond to the morphisms of pointed
sets (Y∪ {u }, u) → (X∪ {u }, u) where u denotes an element not in X or Y.

Let us turn back to something mentioned at the beginning of the preceding section. In the
description of a comonoid object of Monoid , the co-neutral-element was uniquely determined,
and hence provided no information; nevertheless, the coidentities it was required to satisfy played
an important role in our arguments. The next exercise shows that these coidentities were really
needed for our results.

Exercise 9.6:4. Consider the following two representable functors from Monoid to the variety of
semigroups with a distinguished element (zeroary operation) e subject to no additional
identities.
(a) The functor V taking A∈Ob(Monoid) to the semigroup with underlying set |A|,
multiplication given by x*y = x for all x and y, and distinguished element given by the
neutral element e of A.
(b) The functor W specifying the same underlying set and distinguished element, but with
multiplication given by x*y = e.

Verify that in both cases the operation * is indeed associative (so that the functors have
domain in the variety claimed), and also that in both cases the distinguished element e is an
idempotent with respect to * (i.e., satisfies e*e = e). Show that in case (a), this element also
satisfies the right neutral law, but not the left neutral law, while in case (b), neither neutral law is
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satisfied.

Note that in case (b) of the above exercise, the distinguished element satisfies the identities
e*x = e = x*e. An element with this property is called a zero element of a semigroup, because
these identities hold for 0 in the multiplicative semigroup of a ring. An element of a semigroup
satisfying only the first of these identities is called a left zero element. We see that in case (a)
every element is a left zero. The unique multiplication with the latter property on any set is called
the left zero multiplication.

Little is known about general representable functors Monoid → Semigroup . Dropping the
zeroary co-operations e , the above exercise gives examples that are interesting in that construction
(a) used nothing about the given monoid A but its underlying set, while (b) used only its structure
of set with distinguished element e. The next exercise displays some constructions that do use the
monoid operation, but in peculiar – almost random – ways.

Exercise 9.6:5. (i) Show that one can define a representable functor Monoid → Semigroup
by associating to every monoid A the set of pairs (ξ , η) such that ξ is an invertible element

of A and η is an arbitrary element of A, with the operation (ξ , η)(ξ ′, η ′) = (e, ξ–1ξ ′ –1ξξ ′).
(ii) Show that if we impose on the ordered pairs in the description of the above functor the
additional condition that ξ n = e for a fixed positive integer n, and/or the condition ξη = η ,
the resulting subsets are still closed under the above operation, and hence define further
representable functors.

Exercise 9.6:6. (Open question [2, Problem 21.7, p.94]) Find a description of (or other strong
results about) all representable functors W → Semigroup , where W is any of the varieties
Monoid , Group or Semigroup .

The following questions may be easy or hard to answer; I have not thought about them:

Exercise 9.6:7. Let V : Monoid → Monoid be a representable functor whose E-system has a
single connected component, and is not one of �_

__
_�_
__
_�. , �_

__
_�_
__
_�. , �_

__
_�_
__
_�.→←. . What can one say about

the class of monoids of the form V(A) (A∈Ob(Monoid))? How much does this class depend
on the choice of V? How does it compare the with class of monoids that are embeddable in
groups? With the class of monoids H(A), where H is the functor of Exercise 9.5:3?

One may likewise ask these questions for the classes of monoids arising as values of the left
adjoints of such functors.

9.7. Representable functors among categories of abelian groups and modules. Let us now
analyze representable functors from abelian groups to monoids. Let

V : Ab → Monoid

be such a functor, with representing coalgebra (R, m , e). Since coproducts of abelian groups are
direct sums, we may write the coproduct of two copies of R as Rλ �+ Rρ; thus, every element of
this group has the form yλ+ zρ for unique y, z∈ |R|. In particular, for each x∈ |R| we can write

m(x) = yλ+ zρ.

As in the case of functors on Monoid , the co-neutral-element must be the trivial map. Applying
the coneutral laws to the above equation, we immediately get x = y = z, i.e.,

m(x) = xλ+ xρ.

Given any two elements a, b∈ |V(A) | = Ab(R, A), this says that their ‘‘product’’ in V(A) is the

10/8/98 Math 245

§9.7. Abelian groups and modules. 337



homomorphism taking x∈ |R| to a(x) + b(x). In other words, the induced ‘‘multiplication’’ of
homomorphisms is just the familiar addition of homomorphisms of abelian groups. It is clear that,
conversely, for every abelian group R this operation on homomorphisms with domain R does
make hR a Monoid-valued functor. So for each R∈Ob(Ab), there is a unique representable
functor Ab → Monoid whose representing coalgebra has underlying object R.

In view of the form V takes, it is natural to call the binary co-operation on R a ‘‘coaddition’’
rather than a ‘‘comultiplication’’. Of course, it is well known that addition on the sets Ab(R, A)
is actually an operation of group, and, indeed, of abelian group, with the unique inverse operation
described in the obvious way. Thus, our determination of all representable functors Ab →
Monoid also determines all representable functors Ab → Group and Ab → Ab . That is,

Lemma 9.7.1. For every object R of Ab, there is a unique co-Monoid object, a unique
co-Group object, and a unique co-Ab object with underlying object R. Each of these has
coaddition given by the diagonal map

(9.7.2) a(x) = xλ+ xρ,

and co-neutral-element given by e(x) = 0. In the co-Group and co-Ab structures, the co-inverse
operation is given by

i(x) = – x. �

Since this result was so easy to prove, let’s make some more work for ourselves, and try to
generalize it!

Recall that an abelian group is equivalent to a left Z-module, and that for any ring K, a left
K-module M can be described as an abelian group with a family of abelian group endomorphisms,
called ‘‘scalar multiplications’’, indexed by the elements of K, such that sums of these
endomorphisms, composites of these endomorphisms, and the identity endomorphism are the
endomorphisms indexed by sums of elements of K, products of elements of K, and the
multiplicative neutral element 1∈ |K |. (Unless the contrary is stated, our rings are always
members of the variety Ring1 of associative rings with multiplicative neutral element 1.) We
will write K-Mod for the variety of left K-modules.

It is easy to see that the argument giving Lemma 9.7.1 generalizes to the case of representable
functors from K-Mod to the varieties Monoid , Group and Ab .

What about functors from K-Mod to K-Mod , or better, to L-Mod for another ring L?

To study this question, let us write out explicitly the identities for the scalar multiplication
operations of K-Mod which we stated above in words. The identities saying that each such
multiplication is an abelian group endomorphism say that for all c∈ |K | and x, x ′ ∈ |M | ,

(9.7.3) c(x +x ′ ) = cx +cx ′

(We are again, for simplicity, taking advantage of the fact that group homomorphisms can be
characterized as set-maps respecting the binary group operation alone.) The identities
characterizing sums and composites of scalar multiplications, and scalar multiplication by 1∈ |K |,
say that for c, c ′ ∈ |K |, x∈ |M | ,

(9.7.4) (c +c ′ )x = cx +c ′x
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(9.7.5) (cc ′)x = c( c ′x)

(9.7.6) 1 x = x.

Now suppose L is another ring, and (R, a , i , e , (sd )d∈ |L| ) a co-L-module object in K-Mod ,
where R is the underlying K-module, a , i and e give the co-abelian-group structure of R,
and for each d∈ |L|, sd is the co-operation corresponding to scalar multiplication by d. The co-
abelian-group structure will, as we have noted, have the form described in Lemma 9.7.1. The sd
will be unary co-operations, i.e., K-module homomorphisms R → R, which can thus be looked at
as unary operations on the set |R|. We now need some basic observations:

Exercise 9.7:1. Let R be any K-module, and a , i , e the coaddition, coinverse and cozero
morphisms defining the unique co-Ab structure on R in K-Mod .
(i) Show that every K-module endomorphism s : R → R satisfies the coidentity
corresponding to the identity (9.7.3); i.e., show that the unary operation induced by such an s
on each hR (A) is an abelian group endomorphism.
(ii) Show that such an operation s induces the identity operation on each hR (A) (cf. (9.7.6))
if and only if it is the identity endomorphism of R.
(iii) Show that if sd , sd ′ and sd ′ ′ are three endomorphisms of R, then the operations on
the abelian groups hR (A) induced by sd and sd ′ sum to the operation induced by sd ′ ′ if
and only if sd + sd ′ = sd ′ ′ .
(iv) Show likewise that the operation induced by sd ′ ′ is the composite in a given order of the
operations induced by sd and sd ′ (cf. (9.7.5)) if and only if sd ′ ′ is the composite of sd and
sd ′ in the opposite order.

From the above results we deduce that

(9.7.7)

If K and L are rings, and R a left K-module, then a co-left-L-
module structure on R is equivalent to a system of R-module
endomorphisms (sd )d∈ |L| which for all d, d ′ ∈ |L| satisfy

(9.7.8) s1 = idR

(9.7.9) sd +d ′ = sd + sd ′

(9.7.10) sdd ′ = sd ′ sd .

This is a nice result, but we can make it more elegant with a change of notation. The reversal
of the order of composition in (9.7.10) can be cured if we write the operators sd on the right of
their arguments, instead of on the left, and compose them accordingly. Moreover, once the
operation of elements of L (by co-scalar-multiplications) is written on a different side from the
operation of elements of K (by scalar multiplication), there is no real danger of confusion if we
drop the symbols s , i.e., replace the above notation sd (x) by xd (x∈ |R|, d∈ |L| ). We now
find that the scalar multiplications by elements of K and the co-scalar-multiplications by elements
of L satisfy a very symmetrical set of conditions, namely, that for all c, c ′ ∈|K |, x, x ′ ∈|R |,
d, d ′ ∈|L | ,
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(9.7.11) 1x = x x1 = x

(9.7.12) c(x +x ′ ) = cx +cx ′ (x +x ′ )d = xd +x ′d

(9.7.13) (c +c ′)x = cx +c ′x x(d +d ′) = xd +xd ′

(9.7.14) (cc ′)x = c(c ′x) x(dd ′) = (xd ) d ′

(9.7.15) c(xd ) = (cx)d

Here (9.7.15), and the right hand equation of (9.7.12), say that the co-scalar-multiplications are
endomorphisms of the K-module R. The conditions in the left-hand column, together with the
identities for the abelian group structure of R, constitute the identities of a left K-module, while
the remaining three conditions on the right say that the co-scalar-multiplication endomorphisms
behave as required to give a co-left-L-module structure. (Only three such conditions are needed, as
against the four on the left, because of Exercise 9.7:1(i).)

We have, in fact, rediscovered a standard concept of ring theory:

Definition 9.7.16. An abelian group on which a ring K operates by maps written on the left and
a ring L operates by maps written on the right so that (9.7.11)-(9.7.15) are satisfied is called a
(K, L)-bimodule.

For given K and L, the variety of (K, L)-bimodules will be denoted K-Mod-L.

Note that given two arbitrary varieties of algebras V and W , the category of V-coalgebra
objects of W cannot in general be regarded as a variety of algebras, because the co-operations
s : R → I��I ari(s) R do not have the form of maps |R|β → |R|, unless ari(s) = 1. In the present
case, it happened that the two non-unary co-operations of our objects, the coaddition and the
cozero, were uniquely determined, so that the structure could be defined wholly by unary co-
operations, and so, atypically, the category of these coalgebras could be identified with a variety of
algebras.

Ring-theorists often write a (K, L)-bimodule R as KRL . Here the subscripts are not part of
the ‘‘name’’ of the object, but reminders that K operates on the left, and L on the right.
(Actually, ring-theorists more often use other letters, such as B, for ‘‘bimodule’’, or M, for
‘‘module’’, reserving R for rings. But in this chapter we are using R wherever possible for
‘‘representing object’’.) That such a bimodule structure makes R a co-L-module in K-Mod is
equivalent to the result familiar to ring-theorists, that the set of left K-module homomorphisms
from a (K, L)-bimodule to a left K-module,

(9.7.17) K-Mod( KRL, KA)

has a natural structure of left L-module. Let us describe how this L-module structure arises
without using the language of coalgebras. If we regard the actions of the elements of L on R as
K-module endomorphisms, then the functoriality of K-Mod(–, – ) in its first variable turns these
into endomorphisms of the abelian group K-Mod( KR, KA), and since this functoriality is
contravariant, the order of composition of these endomorphisms is reversed; so from the right
L-module structure on R, we get a left L-module structure on that hom-set. Explicitly, given any
f ∈K-Mod(R, A) and d∈ |L|, the action of d on f in this induced left L-module structure is
given by

(9.7.18) (df )(x) = f (xd ) .
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This takes a more elegant form if we adopt

(9.7.19)

(Frequent convention in ring theory.) If possible, write
homomorphisms of left modules on the right of their arguments, and
homomorphisms of right modules on the left of their arguments, and
use the notation for composition of such homomorphisms appropriate
to the side on which they are written.

This says we should write elements f ∈K-Mod(R, A) on the right of elements x∈|A|. When we
do so, (9.7.18) takes the form

(9.7.20) x(df ) = (xd ) f.

In summary:

Lemma 9.7.21. If K and L are unital associative rings, then a (K, L)-bimodule KRL is
equivalent to a co-L-Mod object of K-Mod. The left L-module structure on the functor
K-Mod(R, – ) is given by the standard abelian group structure on hom-sets, together with the
scalar multiplications (9.7.18), or in right-operator notation, (9.7.20). �

9.8. More on modules: left adjoints of representable functors. Let us now find the left adjoint
to the functor induced as above by a (K, L)-bimodule R. This must take a left L-module B to a
left K-module A with a universal left L-module homomorphism

(9.8.1) h : B → K-Mod(R, A) .

To find this object A, let us apply our standard heuristic approach: We consider an arbitrary left
K-module A with an L-module homomorphism (9.8.1), and see what elements of A, and what
relations among these elements, this map gives us.

For each y∈ |B|, (9.8.1) gives a homomorphism h(y) : R → A; and such a homomorphism
gives us, for each x∈ |R|, an element of A. With (9.7.19) in mind, let us write this as

x*y = x h(y) (x∈ |R|, y∈ |B| ).

I claim that the conditions that these elements must satisfy are that for all x, x ′ ∈ |R|, y, y ′ ∈ |B|,
c∈ |K |, d∈ |L| ,

(9.8.2) (x +x ′) * y = x*y + x ′*y x* (y +y ′) = x*y + x*y ′

(9.8.3) (cx) * y = c(x*y) ——

(9.8.4) x * (dy) = (xd ) * y.

Indeed, the two equations on the left are the conditions for the maps h(y) to be left K-module
homomorphisms, while the equations on the right and at the bottom are the conditions for the map
(9.8.1) to be a homomorphism of left L-modules with respect to the given L-module structure on B
and the operations (9.7.20) on K-Mod(R, A). We note the gap on the right-hand side of (9.8.3);
since nothing acts on the right on the L-module B, there is nothing to put there. (But do not lose
heart; this asymmetry will presently repair itself.) So the universal A with a homomorphism
(9.8.1) will be presented by generators x*y (x∈ |R|, y∈ |B| ) and relations (9.8.2)-(9.8.4).

Again we have discovered a standard concept. The K-module presented by this system of
generators and relations is denoted
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R �× L B,

and called the tensor product over L of the (K, L)-bimodule R and the left L-module B. The
generators of this module corresponding to the x*y of the above discussion are written x �× y
(x∈ |R|, y∈ |B| ).

We reiterate that R �× L B is only a left K-module. Intuitively, when we form the tensor
product ( KRL ) �× L ( LB), the operation of tensoring over L ‘‘eats up’’ the two L-module
structures, leaving the K-module structure. This is dual to the situation of (9.7.17), where the
construction of taking the hom-set over K ‘‘eats up’’ the two K-module structures, leaving only
the L-module structure.

We have shown:

Lemma 9.8.5. If K RL is a bimodule, then the left adjoint to the functor

K-Mod(R, – ): K-Mod → L-Mod

is the functor

R �× L – : L-Mod → K-Mod.

Thus, given the bimodule R, a left K-module A, and a left L-module B, we have a functorial
isomorphism of abelian groups

L-Mod(B, K-Mod(R, A )) =∼ K-Mod(R �× L B, A ) . �

An interesting consequence of Lemmas 9.7.21 and 9.8.5 is that every representable functor
between module categories, and likewise the left adjoint of every such functor, respects
Ab-structures, i.e., sends sums of morphisms to sums of morphisms. This is not true of general
functors between module categories, as the reader can see from the functor A → A �× A of
Exercise 9.4:4(i).

In defining the tensor product over L, I said that one presents it as a left K-module using the
relations (9.8.2)-(9.8.4). But another standard definition is to present it as an abelian group using
only the relations corresponding to (9.8.2) and (9.8.4), and then to use (9.8.3) to define a left
K-module structure on this group. Not every abelian group with elements x*y (x∈ |R|, y∈ |B| )
satisfying (9.8.2) and (9.8.4) has a left K-module structure satisfying (9.8.3); but the universal
abelian group with these properties does, because the universal construction is functorial in R as a
right L-module, and the left K-module structure of R constitutes a system of right-L-module
endomorphisms; these induce endomorphisms of the constructed abelian group which make it a
K-module.

This approach shows that the underlying abelian group structure of R �× L B depends only on
the right L-module structure of R and the left L-module structure of B; this is again analogous
to the situation for the hom-set K-Mod( KRL, KA), which starts out as an abelian group
constructed using only the left K-module structures of R and A, and then acquires a left
L-module structure from the right L-module structure of R, by functoriality.

We should now learn how to compose the representable functors we have described. Suppose
we have three rings, H, K, L, and adjoint pairs determined by an (H, K )-bimodule R and a
(K, L)-bimodule S :
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(9.8.6) H-Mod
_____________H-Mod(HRK , – )

→
←______________

HRK �× K –
K-Mod

_____________K-Mod(KSL , – )
→

←_____________
KSL �× L –

L-Mod .

By observations we made in §9.4, the underlying left K-module of the coalgebra determining the
composite adjoint pair can be gotten by applying the left adjoint functor R �× K – to the underlying
object of the coalgebra determining the other adjoint pair; hence it is the left H-module R �× K S.
It remains to find the coalgebra structure, i.e., the right L-module structure, on this object; this
arises from the right L-module structure on S, by the same ‘‘functoriality’’ effect noted above for
the left module structure of R �× L B. So the composite of the adjoint pairs shown above is
determined by an (H, L )-bimodule H (R �× K S)L .

At this point, we have discussed enough kinds of structure on tensor products so that we are
ready to put them all into a definition, after which we will state formally the above characterization
of representing objects for composite functors.

Definition 9.8.7. If K is a ring, R a right K-module and S a left K-module, then

R �× K S

will denote the abelian group presented by generators x �× y (x∈ |R|, y∈ |S| ) and the relations ( for
all x, x ′ ∈ |R|, d∈ |K |, y, y ′ ∈ |S | )

(9.8.8) (x +x ′)�× y = x �× y + x ′�× y, x �× (y +y ′) = x �× y + x �× y ′

(9.8.9) (xd )�× y = x �× (dy).

If R is in fact an (H, K )-bimodule, respectively if S is a (K, L)-bimodule, respectively if both
are true (by which we mean, if the right K-module structure of R is given as part of an
(H, K )-bimodule structure, and/or if the left K-module structure of S is given as part of a
(K, L)-bimodule structure, for some rings H, L), then the abelian group R �× K S becomes a left
H-module, respectively a right L-module, respectively an (H, L)-bimodule, with scalar
multiplications characterized by (one or both of ) the following identities for c∈ |H |, e∈ |L|:

(9.8.10) c(x�× y) = (cx) �× y (x �× y) e = x �× (y e)

The four cases of the above definition (tensoring a right module RK or a bimodule H RK with
a left module K S or a bimodule K SL ) reduce to a single case if for every K we identify
Mod-K with Z-Mod-K and K-Mod with K-Mod-Z , and likewise identify Ab with
Z-Mod-Z .

Note that (9.8.10) has restored the symmetry that was missing in (9.8.3)!

Let us now set down the result sketched before this definition.

Lemma 9.8.11. In the situation shown in (9.8.6), the composite of the functors among left module
categories represented by bimodules HRK and KSL is represented by the (H, L)-bimodule
R �× K S. �

Terminological note: Given bimodules H RK and K SL , we may call a map * from |R| × |S |
into an (H, L)-bimodule H TL satisfying the equations corresponding to (9.8.8)-(9.8.10) a
‘‘bilinear map R × S → T ’’, generalizing the term we have already used in the case of abelian
groups (§3.9), so that we may describe R �× K S as an (H, L)-bimodule with a universal bilinear
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map of these bimodules into it. However, many authors feel that the term ‘‘bilinear’’ should
logically only mean ‘‘left H-linear and right L-linear’’, i.e., the conditions of (9.8.8) and (9.8.10),
and they use the adjective ‘‘balanced’’ to express (9.8.9). So they would call R �× K S an
(H, L)-bimodule with a universal K-balanced bilinear map of R × S into it.

The case of modules and bimodules developed above may be regarded as a ‘‘model case’’ in
terms of which to think of the general theory of representable functors among varieties of algebras,
and their representing coalgebras. Indeed, Freyd entitled the paper [8] in which he introduced the
theory of such functors and coalgebras ‘‘On algebra-valued functors in general, and tensor
products in particular’’, and he called the coalgebra that represents a composite of representable
functors between arbitrary varieties of algebras the ‘‘tensor product’’ of the coalgebras representing
the given functors. I recommend that paper to the interested student, though with one word of
advice: Ignore the roundabout way the author treats zeroary operations, and simply consider them,
as we have done, to be morphisms from the empty product in the category to the object in question.

Further remarks: In the paragraph following (9.7.10), we chose a notation which ‘‘separated’’
the actions of elements of K and elements of L, writing them on opposite sides of elements of
R. It is also worth seeing what happens if we do not separate them, but continue to write them
both to the left of their arguments. The actions of elements of L will then compose in the
opposite way to the multiplication of those elements in the ring L. This can be thought of as
making R a left module over Lop, the opposite of the ring L (defined to have the same
underlying set and additive group structure as L, but with the order of multiplication reversed).
Thus we have on R both a left K-module structure and a left Lop-module structure, related by the
conditions that the additive group operations of the two module structures are the same, and that
the scalar multiplications of the Lop-module structure are endomorphisms of the K-module
structure. The latter condition says that the images of the elements of K and of elements of Lop

in the endomorphism ring of the common abelian group R commute with one another. Now we
saw in §3.13 that given two rings P and Q, if we form the tensor product of their underlying
abelian groups, this can be given a ring structure such that the maps p → p �× 1 and q → 1�× q
are homomorphisms of P and Q into P �× Q, whose images commute elementwise, and which
is universal among rings given with such a pair of homomorphisms from P and Q . Thus, in our
present situation, the mutually commuting left K-module and left Lop-module structures on R are
equivalent to a single structure of left K�× Lop-module. That is

(9.8.12) K-Mod-L =∼ (K �× Lop)-Mod .

Hence one can study bimodules with the help of the theory of tensor products of rings, and vice
versa.

This also shows us that if we want to study representable functors between categories of
bimodules, we do not need to undertake a new investigation, but can reduce this situation to the
one we have already studied by using rings K0 �× K1

op, etc., in place of K, etc..

Exercise 9.8:1. (i) If you did Exercise 3.13:4(ii), translate the results you got there to a partial

or complete description of all (Q(2 1 ⁄ 3), Q(21 ⁄ 3))-bimodules.
(ii) If you did Exercise 3.13:4(i), translate the results you got there to a partial or complete
description of all R-centralizing (C ,C)-bimodules B, where ‘‘R-centralizing’’ means satisfying
the identity rx = xr for all r∈R , x∈B.

The student familiar with the theory of modules over commutative rings may have been
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surprised at my saying that when we form a hom-set K-Mod( K R, K A) or a tensor product
RL �× L LB, the K-module structure, respectively the L-module structure, is ‘‘eaten up’’ in the
process; for in the commutative case, these sets inherit natural K- and L-module structures. You
can discover the general statement, of which these apparently contradictory observations are cases,
by doing the next exercise. (The answer comes out in parts (iii) and (iv).)

Exercise 9.8:2. Let K be a ring (not assumed commutative) and M a left K-module.
(i) Determine the structure, in the sense of §8.10, of the functor K-Mod( KM, – ) :
K-Mod → Set .
(ii) Determine similarly the structure of K-Mod( –, KM ) : K-Modop → Set .
(iii) Determine the structure of K-Mod( –, – ): K-Modop × K-Mod → Set .
(iv) Answer the corresponding three questions for tensor products in place of hom-sets (with or
without the help of Corollary 7.11.6).

Let us note another basic ring-theoretic tool that we can understand with the help of the results
of this section. Suppose f : L → K is a ring homomorphism. Then we can make any left
K-module A into a left L-module by keeping the same abelian group structure, and defining the
new scalar multiplication by d.x = f (d ) x (d∈ |L| ). This functor preserves underlying sets, hence
it is representable. It is called ‘‘restriction of scalars along f ’’, and its left adjoint is called
‘‘extension of scalars along f ’’. (When f is the inclusion of a subring L in a ring K these are
obvious terms to use. The usage in the case of arbitrary homomorphisms f is a generalization
from that case.) You should find the first part of the next exercise straightforward, and the second
not too hard.

Exercise 9.8:3. Let f : L → K be a ring homomorphism.
(i) Describe the bimodule representing the restriction-of-scalars functor, and get a description
of the extension-of-scalars construction K-Mod → L-Mod as a tensor product operation.
(ii) If K and L are commutative, we may also consider the ‘‘restriction of base-ring’’
functor from K-algebras to L-algebras, defined to preserve underlying ring-structures, and act as
restriction of scalars on module structures. (You may here take ‘‘algebras’’ over K and L
either to mean commutative algebras, or not-necessarily commutative (but as always, unless the
contrary is stated, associative) algebras, depending on what you are familiar with.) We know
this functor is representable. (Why?) Describe its representing coalgebra. Show that the left
adjoint of this functor acts on the underlying modules of algebras by extension of scalars. How
is the ring structure on the resulting modules defined?

At the beginning of the preceding section, when we determined the form of the general
comonoid object of Ab , recall that our argument used only the fact that we had a binary co-
operation satisfying the coneutral laws with respect to the unique zeroary co-operation – the
coassociative law was never needed! Thus, if we let Binar e denote the variety of sets with a
binary operation and a neutral element e for that operation, then co-Binar e objects of Ab are
automatically co-Monoid objects, and even co-AbMonoid objects, and, as we noted, these have
unique coinverse operations making them co-Group and co-Ab objects.

On the other hand, if we drop the co-neutral-element, the associativity and commutativity
conditions do make a difference:

Exercise 9.8:4. Characterize all representable functors from Ab to each of the following
varieties:
(i) Binar , the variety of sets given with a binary operation.
(ii) Semigroup (a subvariety of Binar).
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(iii) AbSemigroup (a subvariety of Semigroup).
In the last two cases, you should discover that every such functor decomposes as a direct sum

of a small number of functors whose structures are easily described.

9.9. Some general results on representable functors, mostly negative. As we mentioned in
Exercise 9.6:6, the form of the general representable functor Monoid → Semigroup is not known.
What about representable functors going the other way, from Semigroup to Monoid ?

It is easy to show that in this case there are no nontrivial examples. The idea is that in working
in Semigroup , one has no distinguished elements available, so there is no way to pin down a
zeroary ‘‘neutral element’’ operation.

Before having you prove this, let me indicate the exception implied in the word ‘‘nontrivial’’.
If C is any category with an initial object I, then the functor hI takes every object of C to a
one-element set, which of course has a unique structure of V-algebra for every variety V ; hence
for every variety V , the object I admits co-operations making it a V-coalgebra. Let us call the
functor represented by this coalgebra, which takes every object of C to the one-element algebra
(the terminal object) of V , the ‘‘trivial functor’’ C → V . We can now state

Exercise 9.9:1. Show that if W is a variety without zeroary operations, and V a variety with at
least one zeroary operation, then there is no nontrivial representable functor W → V .

More generally, can you give a condition on a general category C with finite coproducts
that assures that there are no nontrivial representable functors from C to a variety with at least
one zeroary operation?

Here is another observation about specific varieties from which we can extract a similar general
principle. We began this chapter with an example of a representable functor from rings to groups;
but if one looks for a representable functor from groups to rings, it is hard to imagine how one
might be constructed (aside from the trivial functor), because a nontrivial ring must have distinct 0
and 1, and we have only one distinguished group element, e, to use in the coordinates of a
distinguished element of a ring we are constructing. You might like to think about how you would
turn this idea into a proof, and then how to abstract what is involved in category-theoretic terms,
before reading the next definition and exercise.

Definition 9.9.1. If C is a category with a terminal object T, let us (as in Exercise 6.8:3) define
a pointed object of C to mean a pair (A, p) where A is an object of C and p a morphism
T → A. (Thus, since T is the product of the empty family of copies of A, this is an object of C
given with a single zeroary operation.) A morphism (A, p) → (A ′ , p ′) of such objects will mean
a morphism A → A ′ making a commuting triangle with p and p ′ . The category of pointed
objects of C, with these morphisms, will be denoted Cpt.

Dually, if C is a category with an initial object I , an augmented object of C will mean a
pair (A, a) where A is an object of C and a is a morphism A → I (an ‘‘augmentation
map’’), equivalently, a zeroary co-operation on A. Again using the obvious commuting triangles
as morphisms, we denote the category of augmented objects of C by Caug.

Thus, in comma category notation, Cpt = (T ↓C), and Caug = (C ↓ I ).
A category C will be called ‘‘pointed’’ if it has a zero object (an object that is both initial

and terminal; Definition 6.8.1).

Exercise 6.8:3 shows that if C is a category with a terminal object, then Cpt is a pointed
category. By duality, if C is a category with an initial object, then Caug is likewise pointed.
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The next exercise begins with a few more observations of the same sort, then gets down to
business.

Exercise 9.9:2. Prove the following:
(i) Let C be a category with a terminal (respectively initial) object. Then the forgetful
functor Cpt → C (respectively Caug → C) is an equivalence if and only if C is a pointed
category.
(ii) If V is a variety of algebras, then Vpt is equivalent to a variety of algebras.
(iii) A variety of algebras V is a pointed category if and only if V has at least one zeroary
operation, and all derived zeroary operations of V are equal.

Now suppose V is a variety, and C a category having small coproducts.
(iv) Show that

Rep(C , Vpt) ∼∼ Rep(Caug, Vpt) ∼∼ Rep(Caug, V).

(If you don’t see how to begin, you might think first about the case V = Set .)
(v) Show that Group is pointed, and that (Ring1)pt consists only of the trivial ring.
Deduce that there are no nontrivial functors from Group or any of its subvarieties to Ring1

or any of its subvarieties (e.g., CommRing1).

Incidentally, I believe the term ‘‘augmented’’ comes from ring theory, where an
‘‘augmentation’’ on a k-algebra R means a k-algebra homomorphism ε : R → k. This ring-
theoretic concept in turn probably originated in algebraic topology, where the cohomology of a
pointed space acquires, by contravariance of the cohomology ring functor, such an augmentation.

Here is yet another sort of nonexistence result:

Exercise 9.9:3. Let R be an object of a variety V , and let τ : Rλ I��I Rρ → Rλ I��I Rρ denote the
automorphism that interchanges xλ and xρ for all x∈ |R|. Denote by Sym(Rλ I��I Rρ) the

fixed-point algebra of τ ; i.e., the algebra of ‘‘(λ , ρ)-symmetric’’ elements of Rλ I��I Rρ.
(i) Show that a binary co-operation m : R → Rλ I��I Rρ is cocommutative (i.e., satisfies the
coidentity making the induced operations on all sets V(R, A) commutative) if and only if it
carries R into Sym(Rλ I��I Rρ).
(ii) Show that in the variety Group , one has Sym(Rλ I��I Rρ) = {e} for all R.
(iii) Deduce that there are no nontrivial representable functors Group → Ab , hence also no
nontrivial representable functors Group → Ring1; and that there are no nontrivial representable
functors Group → Semilattice , hence also no nontrivial representable functors
Group → Lattice .

Seeing that there are no nontrivial representable functors from groups to lattices, we may ask,
what about functors in the reverse direction? The category Lattice has no zeroary operations, so
there can be no functors from it or any of its subvarieties to Group by Exercise 9.9:1; but we can
get out of this hole by considering lattices with one or more distinguished elements. I do not know
the answer to the first part of the next exercise, though I do know the answer to the second.

Exercise 9.9:4. (i) Is there a variety L of lattices for which there exists a nontrivial
representable functor Lpt → Group?
(ii) For C a category with a terminal object T, let C2-pt denote the category of 3-tuples
(A, p0 , p1) where A is an object of C , and p0, p1 are morphisms T →→ C. Is there any
variety of lattices L for which there exists a nontrivial representable functor L2-pt → Group?

Of course, not every plausible heuristic argument restricting the properties of representable
functors is valid. For instance, every primitive operation of lattices, and hence also every derived
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operation of lattices, is isotone with respect to the natural ordering of the underlying set, while
Boolean rings have the operation of complementation, which is not. Nevertheless, we have the
construction of the following exercise.

Exercise 9.9:5. Let DistLat0,1 denote the variety of distributive lattices (Exercise 5.1:14) with
least element 0 and greatest element 1. An element x of such a lattice L is called
complemented if there exists y∈|L| such that x∧y = 0 and x∨y = 1.

Show that for L∈Ob(DistLat0,1), the set of complemented elements of L can be made a
Boolean ring, whose natural partial ordering is the restriction of the natural partial ordering of L,
and that this construction yields a representable functor C : DistLat0,1 → Bool . Give a
description of this functor in terms of ‘‘tuples of elements satisfying certain relations’’, and
describe the Boolean operations on such tuples.

Here is a triviality question of a different sort.

Exercise 9.9:6. If U , V , W are varieties such that there exist nontrivial representable functors
W → V and V → U , must there exist a nontrivial representable functor W → U?

Let us turn to positive results. We recall from Exercise 7.3:5 that every equivalence of
categories is also an adjunction. We deduce

Lemma 9.9.2. Suppose γ is a regular cardinal, and C ←→
i

j
V is an equivalence between a

category C with < γ-fold coproducts and a variety V of algebras all of whose operations have
arities < γ. Then i: C → V is representable, and has a representing coalgebra with underlying
object j(FV (1)). �

The above fact is used in [42] to study the self-equivalences of the variety of rings, and more
generally, of the variety of algebras over a commutative ring k. (The self-equivalences of any
category C , modulo isomorphism of functors, form a group, called the automorphism class group
of C . When C = Ring1, this group is shown in [42] to be isomorphic to Z2; the nonidentity
element arises from the self-equivalence K → K op. For k a commutative ring, the variety of
k-algebras has a more complicated automorphism class group if k has nontrivial idempotents or
nontrivial automorphisms.)

Exercise 9.9:7. We saw in Exercise 6.9:18 that for R a ring, the varieties R-Mod and
Mn (R)-Mod were equivalent. By the above lemma, the equivalence must be representable.
Determine the bimodules that yield this equivalence.

This suggests the question: Given rings K and L and an object R of K-Mod-L, under
what conditions is the functor K-Mod → L-Mod represented by R an equivalence? In a future
edition of these notes, I hope to add a section introducing Morita theory, which answers this
question, and to give the generalization of that theory that answers the corresponding question for
arbitrary varieties of algebras.

A challenging related problem is

Exercise 9.9:8. Characterize those functors between module categories, F : K-Mod → L-Mod ,
which have both a left and a right adjoint.

Another useful result is given in

Exercise 9.9:9. Let C be a category with small colimits, and V a variety of algebras. Show
that the category Rep(C , V) is closed under taking small limits within the functor
category VC.
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As an example, let n be a positive integer, and consider the functors GL(n),
GL(1)∈Rep(CommRing1, Group). (Note that GL(1) is just the ‘‘group of units’’ functor.) We
can define morphisms

e, det : GL(n) →→ GL(1),

where the first takes every invertible matrix to 1, and the second takes every invertible matrix to
its determinant. By the preceding exercise, the limit (difference kernel) of this diagram of functors
and morphisms is representable. This difference kernel is in fact the functor SL(n), with which
we began this chapter.

Exercise 9.9:10. In §9.5 we described the general object of Rep(Monoid , Monoid). Find a finite
family S of such objects with the property that every object of this category is the limit of a
system of objects in S and morphisms among these.

9.10. A few ideas and techniques. In §§9.6-9.8, we considered some cases of the problem,
‘‘Given varieties V and W , find all representable functors W → V’’. We can also turn this
around and ask, ‘‘Given an object R of a variety W , what kinds of algebras can we make out of
the values of the functor hR ?’’ This question asks for the structure on the set-valued functor hR ,
in the sense of §8.10, i.e., for the operations admitted by that functor and the identities that they
satisfy.

I gave some examples of this question in Exercise 8.10:3; we can now see what you probably
discovered (without having terminology in which to state it precisely) if you did that exercise: that
to find the operations on such a functor and the identities they satisfy, one needs to look for the
co-operations admitted by its representing object, and the coidentities satisfied by these.

Let us work out an example here.

Suppose we are interested in the algebraic structure one can put, in a functorial way, on the set
of elements of exponent 2 in a general group G. This means we want to study the structure on the
functor taking G to the set of such elements, i.e., the set-valued functor represented by the group
Z2; so our task is equivalent to describing the clone of co-operations admitted by Z2 in Group .

An n-ary co-operation on Z2 means a group homomorphism Z2 → Z2 I��I ... I��I Z2, and hence
corresponds to an element of exponent 2 in the latter group. Though in Z2 one usually uses
additive notation, these coproduct groups are noncommutative, so let us write Z2 multiplicatively,
calling the identity element e and the nonidentity element t. Then the coproduct of n copies of
Z2 will be generated by elements t0, ... , tn –1 of exponent 2, and (by the observations in §3.6 on
the structure of coproduct groups), the general element of this coproduct can be written uniquely

(9.10.1) tα0
tα1

... tαh –1
, where h ≥ 0, all αi ∈n, and αi ≠ αi+1 for 0 ≤ i < h –1.

Let us begin by seeing what structure on hZ2
is apparent to the naked eye, and translating it

into the above terms. Since the identity element of every group is of exponent 2, hZ2
admits

(9.10.2)
the zeroary operation e, determined by
the unique homomorphism Z2 → {e}.

Also, any conjugate of an element of exponent 2 has exponent 2, hence hZ2
admits
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(9.10.3)
the binary operation (x, y) → xy = y–1xy = yxy, determined by

the homomorphism Z2 → Z2 I��I Z2 taking t to t1 t0 t1.

To see whether these generate all functorial operations on hZ2
, let us consider a general

element (9.10.1) of the n-fold coproduct of copies of Z2. If (9.10.1) has exponent 2, all factors
must cancel when we square it, which we see means that we must have α0 = αh –1, α1 = αh – 2,
etc.. If h is even and positive, this gives, in particular, α(h ⁄ 2) –1 = αh ⁄ 2 , which contradicts the
final condition of (9.10.1). Hence the only element (9.10.1) of even length having exponent 2 is
e. This element induces the constant n-ary operation e, and we see that for each n, this is a
derived operation of the zeroary operation (9.10.2).

On the other hand, for h = 2k +1, we see that (9.10.1) will have exponent 2 if and only if it
has the form

(9.10.4) tα0
... tαk –1

tαk
tαk –1

... tα0
with k ≥ 0, and αi ≠ αi+1 for 0 ≤ i < k.

The operation that this induces can clearly be expressed in terms of the operation (9.10.3); it is

(9.10.5) (x0, ... , xn ) → ( ... ((xαk
) xαk–1 ) xαk–2 . . . ) xα0 .

So the operations (9.10.2) and (9.10.3) do indeed generate the clone of operations on hZ2
.

How can we find a generating set for the identities these operations satisfy? This is shown in

Exercise 9.10:1. Note that the set of all terms in the two operations (9.10.2) and (9.10.3) includes

terms not of the form e or (9.10.5); e.g., ex0, x0
(x1

x2), (x0
x1) x1. (The last is not of the

form (9.10.5) because it fails to satisfy the condition on the α’s inherited from (9.10.4)).
(i) For each of these terms, show how the resulting derived operation of hZ2

can be

expressed either as e or in the form (9.10.5), and extract from each such observation an identity
satisfied by (9.10.2) and (9.10.3). Do the same with other such terms, until you can show that
you have enough identities to reduce every term in (9.10.2) and (9.10.3) either to e or to the
form (9.10.5).
(ii) Deduce that all identities of the operations (9.10.2) and (9.10.3) of hZ2

are consequences

of the identities in your list.

Exercise 9.10:2. Let V denote the variety defined by a zeroary operation e and a binary
operation ( – )–, subject to the identities of our two operations on hZ2

, and let V :

Group → V be the functor represented by Z2 with the co-operations defined above. Is every
object of V embeddable in an object of the form V(G) for G a group? Translate your
answer (or if you don’t get an answer, translate the question) into a property or question
concerning the functor V and its left adjoint.

Exercise 9.10:3. Analyze similarly the structure of hZn
for a general positive integer n.

Let me present, next, an interesting problem which, though not obviously related to the concepts
of this chapter, turns out, like the question examined above, to be approachable by studying the
structure on a functor.

If y is an element of a group G, recall that the map x → y–1xy is an automorphism of G,
and that an automorphism that has this form (for some y∈ |G | ) is called an inner automorphism.
Now suppose one is handed an automorphism α∈Group(G, G). Is it possible to say whether α
is inner, using only its properties within the category Group , i.e., conditions statable in terms of
objects and morphisms, without reference to the ‘‘internal’’ nature of the objects?
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Well, observe that if α is an inner automorphism of G, induced as above by an element
y∈|G|, then given any homomorphism h from G to another group H, there exists an
automorphism of H which forms a commuting square with α and h; namely, the inner
automorphism of H induced by h(y). In fact, this construction associates to every such pair
(H, h) an automorphism α(H, h) in a ‘‘coherent manner’’, in the sense that given two such pairs
(H0, h0) and (H1, h1), and a morphism f : H0 → H1 such that h1 = f h0, the automorphisms
α(H0, h0) of H0 and α(H1, h1) of H1 form a commuting square with f.

I claim, conversely, that any automorphism α of a group G which can be ‘‘extended
coherently’’, in the above sense, to all groups H with maps of G into them, is inner. The next
exercise formalizes this ‘‘coherence’’ property in a general category-theoretic setting, then asks you
to prove this characterization of inner automorphisms of groups.

Exercise 9.10:4. Given an object C of a category C , let (C↓ C) denote the category whose
objects are pairs (D, d ), (D∈Ob(C), d∈C(C, D)) and where morphisms (D0, d0) →
(D1, d1) are morphisms D0 → D1 making commuting triangles with d0 and d1. (Cf.
Exercise 6.8:24.) Let UC : (C↓ C) → C denote the forgetful functor sending (D, d ) to D.

Call an endomorphism α of the object C ‘‘functorializable’’ if there exists an
endomorphism a of the forgetful functor UC which, when applied to the initial object of
(C↓ C), namely (C, idC ), yields α .

Show that for C = Group , an automorphism of an object G is functorializable if and only
if it is an inner automorphism. In fact, determine the monoid of endomorphisms of
UG : (G↓ Group) → Group and its image in the monoid of endomorphisms of G.

(Some related questions you can also look at: How does the above group compare with the
group of automorphisms of the identity functor of (G↓ Group)? Can you characterize
functorializable endomorphisms of objects of other interesting varieties?)

On to another topic. The next exercise is unexpectedly hard (unless there is a trick I haven’t
found), but is interesting.

Exercise 9.10:5. Let V and W be varieties of algebras (finitary if you wish). Show that the
category Rep(V , W) has an initial object.

The next exercise develops some results and examples regarding these initial representable
functors.

Exercise 9.10:6. Suppose we classify varieties into three sorts: (a) those with no zeroary
operations, (b) those with a unique derived zeroary operation, and (c) those with more than one
derived zeroary operation. Applying this classification to the varieties V and W in the
preceding exercise, we get nine cases.
(i) Show that in most of these cases, the initial object of Rep(V , W) must be trivial, in the
weak sense that it takes every object A either to the one-element algebra or to the empty
algebra.
(ii) Determine the initial object of Rep(Set , Semigroup).
(iii) Determine the initial object of Rep(Set , Binar), where Binar is the variety of sets with
a single (unrestricted) binary operation.
(iv) Interpret the result of Exercise 8.3:9 as describing the initial object of
Rep(Binar , Binar).
(v) The three preceding examples all belong to the same one of the nine cases referred to
in (i). Give an example belonging to a different case, in which Rep(V , W) also has nontrivial
initial object.

When I first learned about the concept of ‘‘coidentities’’ in coalgebra objects of a category C ,
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I was a little disappointed that the possible coidentities merely corresponded to the identities of
set-based algebras of the same type – I thought it would have been be more interesting if this
‘‘exotic’’ version of the concept of algebra led to an ‘‘exotic’’ concept of identity as well. But
perhaps there is still hope for something exotic, if the question is posed differently. Recall that in
§8.6 we characterized varieties of algebras as those classes of algebras that were closed under three
operators H , S and P .

Exercise 9.10:7. Define analogs of the operators H , S and P for classes of objects of
Rep(C , Ω-Alg). Presumably, for every variety V of Ω-algebras, Rep(C , V) will be closed in
Rep(C , Ω-Alg) under your operators; but will these be the only closed classes?

If not, try to characterize the classes closed under your operators (possibly assuming some
restrictions on C and Ω).

9.11. Contravariant representable functors. In §9.2 we defined the concept of an algebra-object
of a category, but we immediately passed from this to that of a coalgebra object in §9.3, and
showed that a covariant functor has an adjoint if and only if it is represented by such an object.
Let us now look at the version of this result for algebra objects, and the contravariant functors these
represent. We recall from §7.12 that a contravariant adjunction involves a pair of mutually right
adjoint or of mutually left adjoint functors. Putting ‘‘Cop’’ in place of ‘‘C’’ in Theorem 9.3.6, we
get

Theorem 9.11.1. Let C be a category with small limits, V a variety of algebras, and
V: Cop → V a contravariant functor. Then the following conditions are equivalent:

(i) V has a right adjoint W: Vop → C (so that V and W form a pair of mutually right
adjoint contravariant functors).

(ii) V: Cop → V is representable, i.e., is isomorphic to C(–, R) for some V-algebra object R
of C (Definition 9.2.8).

(iii) The composite of V with the underlying-set functor UV : V → Set is representable, i.e., is
isomorphic to h|R| = C(–, |R| ) for some object |R| of C. �

Now suppose that in the above situation we take for C another variety of algebras, W ; what
will a V-object of W look like? Its V-operations will be W-algebra homomorphisms
tR : |R| ari(t) → |R|; that is, set maps ||R|| ari(t) → ||R|| which respect the W-operations of |R|. Let
us write down the condition for an n-ary operation t on a set to ‘‘respect’’ an m-ary operation s :

s(t(x0,0, ... , x0, n –1), . . . , t(xm –1,0, ... , xm –1, n –1))

= t (s(x0,0, ... , xm –1,0), . . . , s(x0, n –1 , ... , xm –1, n –1)) .

The above equation assumes the arities m and n are natural numbers. For operations of arbitrary
arity, the condition may be written

(9.11.2) s((t(xij )j∈ari(t))i∈ari(s)) = t ((s(xij )i∈ari(s))j∈ari(t)) .

Note that this condition is symmetric in s and t, and that when s and t are both unary, it says
that s(t(x)) = t(s(x)), i.e., that as elements of the monoid of set maps ||R|| → ||R||, s and t
commute. Generalizing this term, one calls operations s and t of arbitrary arities which satisfy
(9.11.2) commuting operations. This condition is equivalent to commutativity of the diagram
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||R || ari(s)× ari(t) _____tari(s)
→ ||R || ari(s)

��
�
↓

sari(t) ��
�
↓

s

||R || ari(t) ______t → ||R || .

To get some feel for this concept, you might do

Exercise 9.11:1. (i) Show that two zeroary operations commute if and only if they are equal.
More generally, when will an n-ary operation s commute with a zeroary operation t ?
(ii) Verify that every zeroary or unary operation on a set commutes with itself.
(iii) Show that not every binary operation s on a set X commutes with itself. In fact,
consider the following four conditions on a binary operation s: (a) s commutes with itself,
(b) s satisfies the commutative identity s(x, y) = s(y, x), (c) s satisfies the associative identity
s(s(x, y), z) = s(x, s(y, z)), and (d) there exists a neutral element e∈X for s, i.e., an element
satisfying the identities s(x, e) = x = s(e, x). Determine which of the 16 possible combinations
of truth values for these conditions can be realized.

Summarize your results as one or more implications which hold among these conditions, and
such that any combination of truth-values consistent with those implications can be realized.

We see that if V is a variety of Ω-algebras and W a variety of Ω′-algebras, then a V-algebra
object of W is equivalent to a set-based algebra R = ( |R|, (sR )s∈ |Ω′| |Ω | ), where the operations
indexed by |Ω′|, respectively, |Ω |, are of the arities specified in Ω′, respectively, Ω, and
satisfy the identities of W , respectively V , and where, moreover, for every s∈ |Ω′| and t∈ |Ω |,
the commutativity identity (9.11.2) is satisfied. Since all these conditions are identities, the
category of such objects forms a variety!

Given such an object R, and an ordinary object A of W , we see that the operations of the
V-algebra W(A, R) are given by ‘‘pointwise’’ application of the V-operations of R to
W-homomorphisms A → R. (In general, if A and B are objects of a variety W and one
combines a family of algebra homomorphisms fα : A → B (α∈β) by pointwise application of a
β-ary operation t on the set |B|, the result is not a homomorphism of W-algebras. What makes
this true here is the fact that t is an operation on R as an object of the category W , i.e., that it
commutes with all the W-operations.)

Since the functor W( –, R) : Wop → V belongs to a mutually right adjoint pair, its adjoint will
also satisfy condition (i) of Theorem 9.11.1, and hence the other two equivalent conditions; that is,
this adjoint will also be a representable contravariant functor, but going the other way, Vop → W .
As the next exercise shows, the representing object for this functor is gotten by very slightly
modifying the representing object R for the original functor.

Exercise 9.11:2. Let V : Wop → V be a representable contravariant functor, whose representing
V-algebra object R is, in the above formulation ( |R|, (sR )s∈ |Ω′| |Ω | ). Show that the right
adjoint to V is the functor V( –, R ′), where R ′ has the same underlying set as R, and the
same operations, but with the roles of the W-operations and the V-operations as ‘‘primary’’ and
‘‘secondary’’ interchanged, so that it becomes a W-algebra object of V .

A basic contrast between covariant and contravariant representable functors on a variety W is
that the former, as we saw in §9.3, define their operations using derived operations of W , while
the objects representing the latter have operations that must commute with those of W . A
consequence is that, generally speaking, the ‘‘richer’’ the structure of W , the richer is the class of
covariant representable functors on W , and the scarcer are the contravariant representable
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functors. Hence, for a case in which it should be particularly easy to get contravariant
representable functors, let us look at the variety with the least family of operations, namely Set .

A V-algebra object of Set is in fact just an ordinary V-algebra. Let us take the smallest
nontrivial object in Set , and find the richest algebra structure we can put on it, and the functor
this represents.

Exercise 9.11:3. (i) Show that the clone of all finitary operations on the object 2 = {0,1} of
Set can be described as the clone of derived operations of the ring Z2, and that this is
isomorphic to the clone of operations of the variety Bool1.
(ii) Describe the contravariant adjunction between Set and Bool1 determined by this
Bool1-structure on 2.

As an interesting sideline,
(iii) Regarding Bool1 as the variety generated by the 2-element Boolean ring, obtain a
cardinality-bound for the free Boolean ring on n generators by considerations analogous to
those applied to the free group on 3 generators in Var(S3) in the discussion leading up to
Exercise 2.3:2. If you did that exercise and Exercise 3.14:1, compare these two cases with
respect to how close the resulting bounds are to the actual cardinalities of these free algebras.

More generally,

Exercise 9.11:4. For n any integer > 1, let X [n] denote the clone of all finitary operations on
the set n = {0, ... , n –1}.
(i) Show that if p is a prime, X [ p] can be described as the clone of derived operations of
the ring Zp . Show moreover that the variety X [ p]-Alg , regarded as a subvariety of

CommRing1, is equivalent to Bool 1 by the ‘‘Boolean ring of idempotent elements’’ functor
(Exercise 3.14:3). Describe the functor going the other way.
(ii) Show that if n is not a prime, then X [n]-Alg does not coincide with the clone of
derived operations of the ring Zn .
(iii) For n not a prime, is it still true that X [n]-Alg is equivalent to Bool1?

Let us look next at a contravariant representable algebra-valued functor on a category C other
than a variety of algebras, which nonetheless has properties very similar to the those of the functor
Setop → Bool1 considered above.

Exercise 9.11:5. In the category POSet of partially ordered sets and isotone maps, let 2 denote
the object with underlying set {0,1}, ordered so that 0 < 1.
(i) Show that the finitary structure on this object of POSet , i.e., the clone of all operations
2 n → 2 that are morphisms of POSet , is a structure of distributive lattice (Exercise 5.1:14)
with least element 0 and greatest element 1. Describe the resulting functor POSetop →
DistLat0,1.

(You will need to know the form that products take in POSet ; for this see Definition 4.1.4.
Note also that it will be natural to speak of 2 as having a ‘‘structure of partially ordered set’’;
but you should beware confusion with Lawvere’s technical sense of ‘‘structure’’, i.e., the
operations which an object admits, as in (i) above.)
(ii) Verify that POSet has small limits, so that Theorem 9.11.1 is applicable to this functor.
(iii) Show that the adjoint to this functor, a functor (DistLat0,1)op → POSet , can be
characterized as taking every object of DistLat0,1 to the set of its morphisms into the object 2,
with the partial ordering on 2 being used to get a partial ordering on the set of morphisms. (Cf.
Exercise 6.6:5.)
(iv) Suppose instead that we consider 2 = {0,1} as an object of POSet0,1, the category
whose objects are partially ordered sets with least and greatest elements, and whose morphisms
are the isotone maps that respect those elements. Show that the structure on 2 in this category
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leads to a contravariant right adjunction with the variety DistLat .
What if you start with POSet0 or POSet1 ?

Can a contravariant representable functor give a contravariant equivalence between varieties,
i.e., an equivalence between one variety and the opposite of another? This is addressed in the next
exercise.

Exercise 9.11:6. Let us call a variety ‘‘nontrivial’’ if it does not satisfy the identity x = y.
(i) Find a condition on categories which is invariant under equivalence of categories, and is
satisfied by all nontrivial varieties, but is not satisfied by the opposite of any nontrivial variety.
(Essentially, any condition on categories that does not refer to how many isomorphic copies an
object has will be invariant under equivalence. What is hard is finding one that distinguishes
between varieties and their opposites. I know some ways to do this, but they are not obvious.
Perhaps you can find a more natural one. If you wish, take ‘‘variety’’ to mean ‘‘finitary
variety’’.)
(ii) Deduce that there can exist no contravariant equivalences (representable or not) between
nontrivial varieties.

However, some of the contravariant representable functors considered above come surprisingly
close to being equivalences; namely, when restricted to the finitely generated objects of one
category, they yield finitely generated objects of the other, and give equivalences between these
subcategories of finitely generated objects. In the case of duality of vector spaces, this is a
category-theoretic translation of some well-known facts of linear algebra. In the cases of Boolean
rings (Exercise 9.11:3) and of distributive lattices (Exercise 9.11:5), the results in question are
likewise translations of classical fundamental results about these two kinds of object ([4, §III.3]; cf.
also Exercise 6.9:17 above). For the variety Ab the functor Ab(–, Q ⁄ Z) is a self-duality on the
category of finite (though not on the category of finitely generated) abelian groups (see [21, §4.6],
noting the comment after ibid. Theorem 6.2).

It turns out, moreover, that the above dualities on finite objects can be extended to equivalences
between all objects of one variety and certain topologized objects of the other. The reader
interested in learning about a large class of such results might look at the interesting paper [33]
(though the results there are not stated in category-theoretic language). The result on Ab(–, Q ⁄ Z)
does not fall within the scope of that article, but it, too, has a generalization to topological abelian
groups, the theory of Pontryagin duality of locally compact abelian groups [93]. The topological
approach to duality of not necessarily finite-dimensional vector spaces is implicit in Exercises 5.5:5
and 7.5:16. A new book on dualities, which I have not yet had a chance to look at, is [51].

Exercise 9.11:7. (i) Show from Exercise 3.14:5 that our functors connecting Bool1 and Set
do indeed induce a contravariant equivalence between the subcategories of finite objects.
(ii) Deduce that if V is any variety of finitary algebras, and A a finite object of V , then

there exists a V-coalgebra object R of Bool1 such that Bool 1(R, 2) =∼ A.

If you or the class succeeded in characterizing derived operations of the ‘‘majority vote
function’’ M3 on {0,1} in Exercise 1.7:1, you can now try:

Exercise 9.11:8. (i) Can you find some structure (in the nontechnical sense, i.e., not necessarily
given by operations!) on {0,1}, such that the clone of operations generated by the majority vote
function M3 is precisely the clone of finitary operations respecting that structure?
(ii) Can you prove a duality result, to the effect that the set {0,1}, with this structure on the
one hand, and with the operation M3 on the other, induces an adjunction, which, when
restricted to finite objects, gives a contravariant equivalence between finite algebras in the variety
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generated by ({0,1}, M3), and finite objects of an appropriate category?

I have not thought hard about the following question:

Exercise 9.11:9. Suppose V and W are varieties, and we have a contravariant equivalence
between their subcategories of finite (finitely generated? finitely presented?) objects. Will this
necessarily be the restriction of a pair of mutually right adjoint representable functors between all
of V and all of W ?

What can we say about composition of contravariant representable functors? We know that for
adjoint pairs of covariant functors

C
___U→←____

F
D
___V→←____

G
E ,

the composites C
____V U→←____
F G

E are also adjoint; so let us look at the results we get on replacing

some subset of the three categories C , D , E in this result by their opposites. This will give 8
statements, saying that composites of certain combinations of covariant adjoint pairs, contravariant
right adjoint pairs, and contravariant left adjoint pairs are again adjoint pairs of one sort or another.

These statements will break into pairs of statements which have the same translations after some
relabeling, because Theorem 7.3.5 itself is invariant under replacing all three categories by their
opposites and interchanging the roles of C and E . Of the resulting four statements, one is, of
course, the original Theorem 7.3.5. Two of the others involve contravariant left adjunctions, of
which, as I have mentioned, there are no interesting cases among varieties of algebras [39]. I state
the one remaining case as the next corollary. In that corollary, for a functor between arbitrary
categories, A : C → D , the ‘‘same’’ functor regarded as going from Cop to Dop is written
Aop (though for most purposes, it is safe to write this A).

Corollary 9.11.3 (to Theorem 7.3.5). Suppose

Cop ____V→ D
C ←____

V ′ Dop

is a pair of mutually right adjoint contravariant functors, and

D
___U→←___

F
E

a pair of covariant adjoint functors (U the right adjoint and F the left adjoint). Then the
composite functors U V and V ′ F op (in less discriminating notation, V ′ F ):

Cop ___V→ D
___U→ E

C ←___
V ′ Dop ←___

F op Eop

are also mutually right adjoint contravariant functors.
In particular, the class of contravariant functors admitting right adjoints is closed under

postcomposition with right adjoint covariant functors, and under precomposition with left adjoint
covariant functors. �

Exercise 9.11:10. (i) Derive the above result from Theorem 7.3.5, and also derive the two
other statements mentioned which involve contravariant left adjunctions.
(ii) Give a (nontrivial) example of Corollary 9.11.3, verifying directly the adjointness.
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Exercise 9.11:11. Suppose in the context of the above corollary that C and E are both varieties
of algebras. Thus the pair of mutually right adjoint functors U V and V ′F are induced by
some object with commuting C- and E-algebra structures. Describe this object and its C- and
E-algebra structures in terms of the representing objects R and S for the given functors
V : Cop → D and U : D → E .

Corollary 9.11.3 does not say anything about a composite of two contravariant representable
functors. This will be a covariant functor, but as the first part of the next exercise shows, it need
not have an adjoint on either side.

Exercise 9.11:12. (i) Let K be a field, and V : (K-Mod)op → K-Mod the contravariant
representable functor taking each K-vector space to its dual. Show that the composite of V
with itself, V V, or more accurately, V V op, a covariant functor K-Mod → K-Mod , has no
left or right adjoint.
(ii) Show by examples that the class of representable contravariant functors between varieties
is closed neither under precomposition with right adjoint covariant functors nor under
postcomposition with left adjoint covariant functors.

The ‘‘double dual’’ functor of part (i) above does belong to a class of functors which have
interesting properties, namely, composites of functors (covariant or contravariant) with their own
adjoints. I hope to develop some of these properties in the next chapter, when I have time to
write it.

We have mentioned the principle that the richer the structure of a variety of algebras, the more
covariant representable functors it admits, and the fewer contravariant representable functors, and
we then looked at contravariant representable functors on the variety with the least algebraic
structure. In the opposite direction, rings have a particularly rich structure, and the next exercise
shows that they are quite poor when it comes to contravariant representable functors.

Exercise 9.11:13. Let R be a nonzero ring (commutative if you wish).
(i) Show that if R has no zero divisors, then any finitary operation Rn → R can be
expressed as a composite a pi,n where a is an endomorphism of R, and pi,n is the ith
projection map on Rn. Deduce that any clone of finitary operations on R as an object of
Ring1 or of CommRing1 is generated by unary operations.
(ii) Can you generalize these observations to a wider class of rings than those without zero
divisors?
(iii) Choose a simple example of a ring R with zero divisors for which the conclusion of (i)
fails, and see whether you can describe the clone of operations on that ring.

9.12. More on commuting operations. We have seen that for varieties V and W , the
V-algebra objects of W correspond to sets given with two families of operations which commute
with one another in the sense of (9.11.2). Let us look further at this concept of commuting
operations.

Lemma 9.12.1. If s is an operation on a set A, then the set of operations on A which commute
with s forms a clone.

Idea of Proof. Given a family of operations on A for which the map s : Aari(s) → A is a
homomorphism, it will clearly be a homomorphism for all derived operations of that family. �
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Exercise 9.12:1. Give a detailed proof of the above lemma. Remember that proving a set of
operations to be a clone includes proving that it contains the projections maps.

Definition 9.12.2. If s is an operation on a set A, then the clone of operations on A which
commute with s will be called the centralizer of s. If S is a set of operations on A, the
intersection of the centralizers of these operations will be called the centralizer of S.

If C is a clone of operations on A and S a set of operations on A (which may or may not
be contained in C ), then the intersection of C with the centralizer of S will be called the
centralizer of S in C. The centralizer of C in C will be called the center of C. A clone which
is its own center will be called commutative.

Let us fix a notation for a construction we defined in the preceding section.

Definition 9.12.3. If Ω and Ω′ are types, then Ω Ω′ will denote the type whose set of
operation-symbols is |Ω | |Ω′|, and where the arity function on this set is induced by the arity
functions of Ω and Ω′ .

If V and W are varieties of algebras of types Ω and Ω′ respectively, then the variety of
algebras of type Ω′ Ω such that the operations of Ω satisfy the identities of V, the operations
of Ω′ satisfy identities of W, and all V-operations commute with all W-operations, will be
denoted V�W.

Note that in the above definition, V and W are specified as varieties, i.e., in terms of given
primitive operations. However, if we are not interested in distinguishing ‘‘primitive’’ from
‘‘derived’’ operations, e.g., if we are interested in varieties as categories of representations of given
clonal categories, the above construction ‘‘�’’ also induces a construction on these, since by
Lemma 9.12.1, the property that two sets of primitive operations commute is equivalent to the
property that their sets of derived operations commute. Likewise, if we consider varieties merely to
be a certain class of concrete categories, ‘‘�’’ yields a construction on these, since the ‘‘Structure’’
functor of §8.10 allows us to recover their clones of operations from these concrete categories, and
so apply the preceding observation. Finally, if we are interested in varieties only up to equivalence
as categories, without reference to concretization (e.g., if we are not interested in distinguishing the
varieties K-Mod and Mn (K )-Mod), then V�W is also determined up to equivalence on these,
namely, as the category of contravariant right adjunctions between V and W .

(Freyd introduces essentially the concept we have called V�W in [8, pp.93-95], but rather
than naming the resulting variety, he names its clonal theory T1 �× T2, where T1 and T2 are the
clonal theories of the given varieties. We have made the opposite choice so as to minimize the
dependence of this chapter on the view of a variety as the category of representations of a clonal
theory.)

In the case of covariant representable functors, we found that certain differences between two
varieties V and W regarding the number of derived zeroary operations led to restrictions on
representable functors between these varieties. For contravariant functors, on the other hand, it is
when both varieties have such operations that one gets a restriction:

Lemma 9.12.4 ([8, p.94]). Suppose V and W are varieties of algebras, each having at least
one zeroary operation. Then in V�W, all derived zeroary operations of V and all derived
zeroary operations of W fall together, and the result is the unique derived zeroary operation of
V�W, which thus defines a one-element subalgebra of every V�W-object.
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Proof. The fact that each derived zeroary operation coming from V commutes with each derived
zeroary operation coming from W means that each of the former is equal to each of the latter
(Exercise 9.11:1(i)). Hence, as both these families are nonempty, all of these derived zeroary
operations are equal. Since zeroary operations from V commute with arbitrary operations from
W and vice versa, the resulting zeroary operation of V�W is central. It is easy to verify that
this means that it defines a one-element subalgebra of every algebra, equivalently, is the unique
derived zeroary operation of V�W . �

Exercise 9.12:2. Deduce from the above lemma that if V is a variety having at least one zeroary
operation, then the variety V�Ring1 is trivial; equivalently, that there is no nontrivial
contravariant representable functor Vop → Ring1 or (Ring1)op → V . (So, for instance, there
is no nontrivial contravariant representable functor (Ring1)op → Ring1.)

It is not only zeroary operations that are forced to fall together when one applies ‘‘�’’. The
next result shows the same for associative binary operations with neutral element.

Lemma 9.12.5 ([8, p.94]). Suppose V and W are varieties of algebras, each having at least
one derived binary operation with a neutral zeroary operation. Then in V�W, the operations
induced by all such binary operations of V and all such binary operations of W fall together,
and give the unique binary operation with neutral element in this clone. The resulting operation
with neutral element is a structure of abelian monoid, and is central in the clone of operations of
V�W.

Proof. We shall show that if in any variety a binary operation * with a neutral element and a
binary operation o with a neutral element commute, and their neutral elements likewise commute,
then * = o, and their common value satisfies the commutative and associative identities. The
remaining assertions will follow as in the proof of the preceding lemma.

The neutral elements of * and o, being commuting zeroary operations, are equal; let us write
e for their common value. We now write down several cases of the commutativity of * with o.
The equation (x*e) o (e*y) = (x o e) * (e o y) reduces to x o y = x*y, proving equality of the two
operations. On the other hand, (e*x) o (y*e) = (e o y)*(x o e) reduces to x o y = y*x, so the
common value of * and o is abelian. Finally, (x*y) o (e*z) = (x o e)*(y o z) yields
associativity. �

The above result fails without the assumption that both binary operations have a neutral
element. E.g., the variety Set has the binary ‘‘derived operation’’ p2,0 (projection of an ordered
pair on its first component); but it is easy to show that for every variety V , one has V� Set =∼ V ;
so a binary operation of V with neutral element is not forced in V� Set to become associative,
or commutative, or to fall together with p2,0.

Recall that we denote the variety of algebras with a single binary operation with neutral element
by Binar e.

Corollary 9.12.6. If each of V and W is one of Binar e, Monoid, AbBinar e or AbMonoid,
then V�W =∼ AbMonoid.

Proof. Applying the preceding lemma, we see that the given zeroary and binary operations of V
and W fall together in V�W to give a single zeroary and a single binary operation that generate
the clone of operations of V�W and satisfy the identities of AbMonoid . To show that V�W
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satisfies no other identities, it suffices to note that the multiplication and neutral element of
AbMonoid satisfy all the identities of V and of W (clear in each case), and commute with
themselves and one another (a quick calculation). �

The above corollary shows that the representing object for any contravariant representable
functor between any two of the varieties listed is, up to notational adjustment, an abelian monoid.

The next result concerns the case where our abelian monoid structures are in fact abelian group
structures. Given a binary derived operation * of a variety having a neutral element e, a left,
respectively right inverse operation for * will mean a unary operation ι satisfying the identity
ι(x)* x = e, respectively x*ι(x) = e.

Theorem 9.12.7 (cf. [8, p.95]). Suppose V and W are varieties of algebras, each having at
least one binary operation with a neutral element, and such that at least one such operation of V
or of W has a right or left inverse operation ι . Then in V�W, ι becomes a 2-sided inverse to
the unique AbMonoid operation of this variety, making this an Ab structure, again central in
the clone of operations.

Moreover, any clone of operations admitting a homomorphism of the clone of operations of Ab
into its center is, up to isomorphism, the clone of operations of a variety K-Mod, where K is the
set of unary operations of the clone, made a ring in a natural way. �

Exercise 9.12:3. Prove the above theorem, with the help of previous results.

Where the above result characterizes clones with a central image of Ab , Freyd [8, p.95] gives
the analogous characterization of clones with a central image of AbMonoid , with ‘‘half-ring’’ in
place of ring. (The term ‘‘half-ring’’ is not standard. He presumably means an abelian monoid
given with a bilinear multiplication having a neutral element 1; the more common term would be
‘‘semiring with 0 and 1’’. A module over such a semiring K means an abelian monoid R with a
0- and 1-respecting homomorphism of K into its semiring of endomorphisms.)

Exercise 9.12:4. (i) Show that Group�Group =∼ Ab . Translate this result into a description
of all representable functors Groupop → Group .
(ii) Your proof of (i) should also show that Ab�Ab =∼ Ab . Thus, every abelian group yields
a contravariant right adjunction between Ab and Ab . Describe the functors involved, and
express the universal property of the adjunction as a certain bijection of hom-sets.

Exercise 9.12:5. (i) If K, L are rings, describe (K-Mod)� (L-Mod), and determine the
general form of a representable contravariant functor K-Mod → L-Mod .
(ii) Bring the above result into conformity with (9.7.19) by turning it into a characterization of
representable contravariant functors K-Mod → Mod-L. Write the associated contravariant right
adjunctions as functorial isomorphisms of hom-sets.
(iii) If K is any ring, the natural (K, K )-bimodule structure of |K | induces, via the result
of (ii), a functor (K-Mod)op → Mod-K. Describe this functor, and show that in the case where
K is a field, it is ordinary ‘‘duality of vector spaces’’.
(iv) Given any pair of contravariant mutually right adjoint functors among categories,
U : Cop → D , V : Dop → C , one has universal maps IdC → VU, IdD → UV. Determine
these in case (iii) above.

Here is an interesting way of getting sets with two mutually commuting algebra structures.
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Lemma 9.12.8. Let V and W be varieties of algebras in which all operations have arities less
than some regular cardinal γ , let C be any category having < γ-fold products and < γ-fold
coproducts, and let R and S be a V-coalgebra object and a W-algebra object of C respectively.
Then C( |R| , |S| ) has a natural structure of V�W-algebra (which we may denote C(R, S)). �

Exercise 9.12:6. (i) Prove the above lemma.
(ii) If you are familiar with basic algebraic topology, deduce from the lemma and
Theorem 9.12.7 that the fundamental group of any topological group is abelian.

(You will first need to verify that a topological group induces a group object of HtpTop (pt)

(see Exercise 9.3:1). The key fact to use is that the forgetful functor Toppt → HtpTop (pt)

respects products.)

In fact, the method of part (ii) above shows that all Binar e-objects of HtpTop (pt) (called
‘‘H-spaces’’ by topologists) have abelian fundamental group. For a brute force proof see [64,
Proposition II.11.4, p.81].

Exercise 9.12:7. Describe Heap�Heap . (Hint: If A is a nonempty object of Heap�Heap ,
show that any choice of a zeroary operation allows one to regard A as an object of
Group�Group .)

Generalize your result if possible; i.e., show that conditions weaker than the heap identities
are enough to force two commuting ternary operations on a set to coincide, and to satisfy the
identities you established for Heap�Heap .

Exercise 9.12:8. Recall that Semilattice denotes the variety of sets with a single idempotent
commutative associative binary operation.
(i) Show that in Semilattice� Semilattice , the two binary operations fall together.
(ii) Deduce that Semilattice�Lattice and Lattice�Lattice are trivial.
(iii) Show that Semilattice�AbMonoid =∼ Semilattice0, the variety of semilattices with
neutral element (which we are writing as a least element, arbitrarily interpreting the semilattice
operation as ‘‘join’’).
(iv) Again, can you get a similar result using a smaller set of identities than the full identities
of Semilattice ?

In this section we have seen several parallel results; let us put in abstract form what they
involve.

Exercise 9.12:9. Let CommClone denote the full subcategory of Clone consisting of all
commutative clonal categories (Definition 9.12.2). Show that a variety V is idempotent under
�, in the sense that the two natural maps V → V�V are isomorphisms, if and only if its clone
of operations is commutative, and is an epimorph of the initial object in CommClone .

It would be interesting to investigate and perhaps try to determine all varieties with the above
property. The epimorphs of the clone of operations of Ab in CommClone are the clones of
operations of the varieties K-Mod for all epimorphs K of Z in CommRing1. For a nice
classification of these rings K (of which there are uncountably many) see [53]. More generally, if
K is a semiring with 0 and 1 (cf. paragraph following Exercise 9.12:3) which is an epimorph of the
semiring N of natural numbers in the category of such semirings, then the clonal theory of the
variety of K-modules is an epimorph of the clonal theory of AbMonoid . Clonal theories of this
sort include those arising as described above from epimorphs of Z (essentially because Z is an
epimorph of N in the semiring category).

In most of the results in this section that yielded varieties V with the equivalent properties of
the above exercise, we also found larger classes of varieties, generally not commutative, whose
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�-products with themselves and each other gave V . I don’t know what is going on here, but a
minor question this suggests (to which I also don’t know the answer) is

Exercise 9.12:10. If V is a variety such that the clonal theory of V�V�V is commutative,
must the clonal theory of V�V also be commutative?

On an easier note, recall from Exercise 6.9:5 that the monoid of endomorphisms of the identity
functor of any category was commutative. This generalizes to

Lemma 9.12.9. If C is a category with finite products, then the clone of operations of the identity
functor of C is commutative. �

Exercise 9.12:11. Prove the above lemma.

9.13. Some further reading. Covariant representable functors among varieties of algebras are
studied extensively in [2]. Indeed, §§9.1-9.4 above were adapted from the introductory sections of
[2], and §§9.5-9.6 from a couple of later sections. Most of [2] deals with representable functors on
varieties of associative and commutative rings; for the former case, the representable functors to
many other varieties are precisely determined. Thus, [2] may be considered a natural sequel to this
chapter. Many open questions are noted there. (The notation, language, and viewpoint of [2] are
close to those of these notes. One difference is that where we here use the word ‘‘monoid’’, in that
work we say ‘‘semigroup with neutral element’’, and write the variety of those objects Semigp e.)

I sketched some of the material I hope to include in Chapter 10 many years ago in [1]. I can
give you a reprint of that if you are interested. Some further ideas that may be included in that
chapter are found in [2, §§63-64].
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Errata to Edition/Printing 2.1 of
An Invitation to General Algebra and Universal Constructions

by George M. Bergman

Explanation of ‘‘Edition/Printing’’: I am retroactively calling the many partial versions of
these notes handed out to my classes in early years Edition/Printings 0.1, 0.2, etc., the two
Berkeley Lecture Notes versions of 1995, Edition/Printings 1.1 and 1.2, and the current version,
published with Henry Helson in 1998, Edition/Printing 2.1. Starting with Edition/Printing 2.2,
which should appear some time in 2000, the cover will show the Edition/Printing number.

In the lists below, I ignore minor corrections (corrections in font, centering of displays, etc.).

A. Non-obvious important corrections.

P. 33, displayed equation in Exercise 2.4:2: The ‘‘outermost’’ superscripts on the three factors
should be y±1, x±1, z±1, in that order.

P. 108, 2nd sentence of 3rd paragraph: The union α of a set S of ordinals will be ≥ each
member of the set, so to get an ordinal > all members of S, we should take the successor of α ,
i.e., α ∪ {α}. (The assertion of the sentence as it stands, with S a putative ‘‘set of all ordinals’’,
could be justified by further argument; but the above is simplest.)

P. 185, Exercise 6.8:10: This should be moved to p.206, after Exercise 7.2:4, since ‘‘representable
functor’’ hasn’t been defined yet on p.185.

P. 257, first displayed equation: This should be i( f ) = (V o((εU, F )( f o U ))) ηV, G
o U .

P. 291, Exercise 8.7:2: Part (ii) should be deleted. (I don’t now see a workable argument of the
sort I asked for.)

P. 292, first sentence of longest paragraph: This result does not require that we topologize R and
restrict attention to continuous derivations. (Edition/Printing 2.2 will contain an exercise proving
the assertion, in this generality.)

P. 293, 4 lines above display: After ‘‘identify’’ add ‘‘in a C∞ manner’’.

P. 300, last sentence of Lemma 8.7.9: Move this assertion (and the parenthetical explanation of
‘‘XV ’’ in the preceding sentence) to the end of the preceding paragraph, reworded ‘‘In this
situation XV (see first paragraph of Definition 8.9.6) is naturally isomorphic in Clone to X ’’.
(The ‘‘XX-Alg ’’ of the present wording is undefined, since X-Alg , though equivalent to the
variety V , is not itself a variety.)

P. 306, two lines after Exercise 8.10:1: ‘‘clonal category’’ should be ‘‘concrete category’’.

P. 308, Exercise 8.10:6: Part (ii) is incorrect in the context of this exercise, which allows varieties
of infinitary algebras. (In Edition/Printing 2.2, part (ii) will be made a separate exercise, asking the
reader to show that Clone is not equivalent to a variety of finitary algebras, and asking whether
this remains so without the restriction ‘‘finitary’’.)

P. 327, display just after commutative diagram: Both occurrences of e should be iR e , where iR
denotes the unique map from the initial object I to R.

P. 360, first line of second paragraph of Theorem 9.12.7: ‘‘clone of operations’’ should be ‘‘clone
of finitary operations’’.

B. Obvious, and less important corrections.

P. 12, next-to-last line of Exercise 1.2:2: X should be |X | .

P. 17, line after Exercise 1.6:1: → G should be → |G | .

P. 28, 5th line from bottom: ∈G should be ∈|G | .

P. 34, Exercise 2.4:3: The reference to Proposition 2.4.5(ii) should be to Lemma 2.4.2(ii).

P. 54, lines 8, 9 and 13 from bottom: The references to (i) and (ii) should be to (a) and (b).

P. 55, middle of page, line before (b): G should be G1.

20/6/99



2

P. 89, second line of Exercise 4.1:7: The reference to Exercise 4.1:4(i) should be to
Exercise 4.1:4(ii).

P. 92, paragraph before §4.2: The journal Order no longer regularly contains a list of open
questions.

P. 189, first two displays: The symbols ‘‘1X ’’ etc. should everywhere be ‘‘idX ’’ etc., in accordance
with our general notation. Also, in the second diagram the 1X should be idY , not idX .

P. 194, last line of Exercise 6.9:6: F should be G.

P. 195, Lemma 6.9.3(c), second line: C → D should be D → C .

P. 231, Definition 7.6.1: The two occurrences of ‘‘(X ∈Ob(C))’’, in the second and third
paragraphs, should both be ‘‘(X ∈Ob(D))’’.

P. 259, paragraph before Exercise 7.12:1: This should refer not to Lattice but to Lattice0, 1, the
variety of lattices with least and greatest element.

P. 274, last line of exercise begun on preceding page: After ‘‘but that’’ add ‘‘if S has more than
one point’’.

P. 291, the two lines preceding Definition 8.7.8: The translation of the Jacobi identity as saying
that ‘‘the commutator bracket operation is a derivation with respect to itself’’ should say ‘‘the
commutator bracket operation with one variable fixed is a derivation with respect to the commutator
bracket operation as a function of two variables’’.

P. 292, Exercise 8.7:3, next-to-last line: ‘‘(satisfies (8.7.5))’’ should be ‘‘(satisfies x ∗ y + y ∗x = 0)’’.

P. 317, last line of Definition 9.2.8: XΩ-Alg should be XΩ-Alg .

P. 318, end of line after last display: C( |R | , – ) should be W( |R | , – ).

P. 320, line 5: V should be W .

P. 327, bottom line of displayed diagram: 1R should be idR .

P. 332, paragraph following Exercise 9.5:1: It is asserted that the desired property is equivalent to
the unit of the adjunction being an isomorphism; but to establish this would require a nontrivial
argument. However, it is easy to see that showing the unit to be an isomorphism will imply the
desired statement.

P. 348, Lemma 9.9.2: The hypothesis that C has γ-fold coproducts is not needed, since any
category equivalent to a variety has small colimits. Hence mention of γ can be dropped from the
lemma.

P. 351, final parenthetical paragraph of Exercise 9.10:4: The words ‘‘How does the above group
compare with the group of automorphisms’’ should be ‘‘How does the above monoid compare with
the monoid of endomorphisms’’.

P. 360, 2nd and 4th lines of Exercise 9.12:5: To conform with our general notational conventions,
‘‘representable contravariant functor K-Mod → L-Mod’’ should read ‘‘representable functor
(K-Mod)op → L-Mod’’.

Pp. 363, 365 : There are two errors in the alphabetical ordering of references: 4 should come
before 3 , and 51 should come before 48 .
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List of Exercises

I hope the telegraphic descriptions given below will help you recall in most cases roughly what
the exercises were. When they don’t, you can always look back to the page in question (shown at
the left). If any of the descriptions are incorrect, or if you think of a more sugegstive wording to
briefly describe some exercise, let me know.

11 Chapter 1: Making some things
precise.

" 1.1. Generalities.
" 1.2. What is a group?
" 1.2:1 precise def. of homomorphism
12 1.2:2 δ(x, y) = x y–1

" 1.2:3 σ(x, y) = x y–1x
13 1.3. Indexed sets.
" 1.4. Arity.
14 1.5. Group-theoretic terms.
15 1.5:1 T ←→ T ′ (terms)
" 1.5:2 (a), (b)⇒(c) in def of T ?
16 1.5:3 ‘‘(s .t)’’ etc. OK
" 1.5:4 ‘‘μ s t’’ etc. OK?
" 1.5:5 symb(x) = x OK?
" 1.6. Evaluation.
17 1.6:1 construct ‘‘eval’’: T → |G |
" 1.7. Terms in other families of

operations.
18 1.7:1 derived op.s of majority M3
" 1.7:2 Mycielski: Aut(C , +, . , exp)
" 1.7:3 test whether β is derived op?
19 1.7:4 can s1 s2 ...

20 Chapter 2: Free groups.

" 2.1. Motivation.
" 2.1:1 if a, b, c don’t generate F ...
21 2.1:2 free ⇒ gen. by {a, b, c}
22 2.1:3 no ‘‘free finite groups’’
" 2.2. The logician’s approach:

construction from group-theoretic
terms.

25 2.2:1 (x y)–1 ∼ y–1x–1

" 2.2:2 (2.2.1-3, 6-8) ⇒ above?
" 2.2:3 (2.2.1-3), (.4-5), then (.6-8)?
" 2.3. Free groups as subgroups of big

enough direct products.
28 2.3:1 J ⊆ (S3)216– universal prop.?

" 2.3:2 structure of J (any n)
" 2.3:3 no ‘‘free fields’’
" 2.3:4 Q(X ) ‘‘free’’ in some sense?
" 2.3:5 ‘‘free skew fields’’?
29 2.3:6 functorial operations on groups
" 2.3:7 " " on finite groups
" 2.4. The classical construction: free

groups as groups of words.
33 2.4:1 calculations in free group
" 2.4:2 Phillip Hall’s identity
34 2.4:3 s ≠ t in finite G ?
" 2.4:4 two variants of above
" 2.4:5 free group in 2×2 matrices

35 Chapter 3: A Cook’s tour

" 3.1. Subgroups.
36 3.1:1 norm-sgp(S) = <gsg–1>
" 3.1:2 norm-sgp(xn, y)
" 3.2. Imposing relations.
37 3.2:1 motivating normality
38 3.2:2 universal prop. of (G ⁄ H, [e])
" 3.3. Presentations of groups.
40 3.3:1 one group, three descriptions
41 3.3:2 endomorphisms of above group
" 3.3:3 normal form: <a, b � ab = b2a>
" 3.3:4 normal form: <a, b � ab = b2a2>
" 3.3:5 <w, x, y � w = f (x, y), x =g(y)>
" 3.3:6 group of symmetries of Z × Z
" 3.3:7 # of gen.s, rel.s for finite gps
" 3.3:8 using finite subset of relator-set
" 3.3:9 finitely gen. but not finitely pres.
42 3.3:10 <x, y � ... > trivial?
" 3.3:11 more of same (J. Simon)
" 3.3:12 y–1x2y = x–2, x–1y2x = y–2

43 3.4. Abelian groups and abelianizations.
44 3.4:1 Z X not free abelian
45 3.4:2 abelianize 3.3:1, 3, 4, 10, 11
" 3.4:3 f ab: Gab → Hab

" 3.4:4 3.3:2 → End(Gab) 1-1 ?
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" 3.4:5 if H ⊆ G, what of ( )ab?
" 3.4:6 GL(n, K )ab

" 3.4:7 ∃ Gsolv? if fin.? Free solvable?
" 3.4:8 Z n : n gens, n(n–1) ⁄ 2 rels
" 3.5. The Burnside problem.
46 3.5:1 implications re Burnside prob
47 3.5:2 residual finiteness and " "
" 3.5:3 " " " 2.4:3. Grf?
" 3.6. Products and coproducts.
50 3.6:1 I��I X Z free on X
" 3.6:2 (F∗G)∗H = F∗G∗H
" 3.6:3 G ×H = H ×G, ...
51 3.6:4 el’ts of finite order in G∗H
" 3.6:5 m : G∗H → G ×H
52 3.6:6 G → G ×G and dual
" 3.6:7 some pairs commuting
" 3.7. Products and coproducts of abelian

groups.
53 3.8. Right and left universal properties.
55 3.8:1 right and left universal G-sets
" 3.8:2 no duals to ‘‘free’’, ‘‘ab’’
" 3.8:3 universal subset?
" 3.8:4 universal X with A ×X → B ?
" 3.8:5 right and left univ. R-modules
56 3.9. Tensor products.
" 3.9:1 linear and bilinear ⇒ 0
57 3.9:2 F (X )�× F (Y ) free ab. on X �× Y
" 3.9:3 universal (A, ?) → C, (?, ?) → C
" 3.9:4 bilinearity and nonab. gps.
58 3.9:5 range of a bilinear map
" 3.9:6 Hom(A�× B,C) =∼ Hom(A, Hom(B,C))
59 3.9:7 description of – �× B
" 3.9:8 when is A �× B = {0} ?
" 3.10. Monoids.
61 3.10:1 construction of cong. vs. ‘‘∼’’
" 3.10:2 inf, sup etc. of congruences
62 3.10:3 largest congruence ⊆ X ?
" 3.10:4 describe <a, b � ab = e >
" 3.10:5 " <a, b � ab = ac = dc = e>
" 3.10:6 " <a, b� ab =ac, ba=bc, ca=cb>
" 3.10:7 " <a, b � ab = b2a>
63 3.10:8 Cong f →→ S univ? ... CoCong?
64 3.10:9 which H ⊆G are diff. kernels?
" 3.11. Groups to monoids and back.
" 3.11:1 embeddable ⇔ S→Sgp 1-1
" 3.11:2 Sgp for 3.10:4-7

" 3.11:3 if S ⊆G, Sgp → G 1-1?
65 3.11:4 xyz = zyx = e : S, ... , U(Sab)
" 3.11:5 semigroups ←→ monoids
" 3.12. Rings.
68 3.12:1 symmetric elements in Z<x, y >
70 3.12:2 univ: R → integral domain?
" 3.12:3 yx – xy = 1 (Weyl algebra)
71 3.12:4 subrings of Z × Z(× Z )
" 3.12:5 < X � x2 = x > =∼ Z × Z
" 3.12:6 gens and relations for R ×S
" 3.12:7 2x = 1 vs. 4x = 2 ∧ x2 = 2x
" 3.12:8 when must R be fin. presented?
" 3.12:9 free on ∅ etc.; Zn
" 3.12:10 similarly, but without e, 1
" 3.13. Coproducts and tensor products of

rings.
72 3.13:1 Zm �× Zn , two ways
" 3.13:2 Z[i ] �× Zp
73 3.13:3 �× and field composita
" 3.13:4 C�× C , Q(21 ⁄ 3)�× Q(21 ⁄ 3)
" 3.13:5 Z S �× Z T
" 3.13:6 other rings structures on �× ?
74 3.13:7 v.d.W for R *S (assoc rings)
" 3.13:8 centers of coproduct rings
" 3.14. Boolean algebras and Boolean

rings.
75 3.14:1 normal form in free Boolean ring
" 3.14:2 ident’s in Boolean ring vs. P(S)
76 3.14:3 idempotents in comm. rings
" 3.14:4 univ. rep’n for a Boolean ring
" 3.14:5 finite Boolean ring =∼ 2 S

" 3.14:6 {finite and cofinite subsets of Z}
" 3.15. Sets.
77 3.15:1 laws of I

��
I and I��I for sets

" 3.16. Some structures we have not
looked at.

78 3.17. Stone-Čech compactification.
79 3.17:1 X dense in its S-C
80 3.17:2 embeddability in compact Hsdrf
81 3.17:3 leaving out ‘‘Hausdorff’’
" 3.17:4 C –R has two connected cpts
" 3.17:5 curves of finite length
" 3.17:6 variants of above two
" 3.17:7 group compactifications
82 3.17:8 c ∈C gives ring homom.
83 3.17:9 maximal ideals of subrings
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" 3.18. Universal covering spaces.
84 3.18:1 π1-killing maps

86 Chapter 4: Ordered sets,
induction, and the Axiom of
Choice.

" 4.1. Partially ordered sets.
87 4.1:1 ‘‘isotone bijective’’ ≠ ‘‘=∼’’
" 4.1:2 ‘‘≤’’ vs. ‘‘<’’
88 4.1:3 <-respecting maps
" 4.1:4 I

��
I , presentations, I��I , etc.

89 4.1:5 universal subset-representations
" 4.1:6 ‘‘least’’ ≠ ‘‘unique minimal’’
" 4.1:7 minimal presentations
90 4.1:8 {maximal} and cofinality
" 4.1:9 chains and antichains
91 4.1:10 maximal partial orderings
" 4.1:11 Fredman: 1 ⁄ 3 ≤ Nx, y ⁄ N ≤ 2 ⁄ 3 ?
92 4.1:12 metric on {orderings}
" 4.1:13 reconstruction problem
" 4.2. Preorders.
93 4.2:1 {preorders} ←→ {(∼∼, ≤)}
" 4.2:2 preorder on {functions}
94 4.2:3 growth rates of monoids
" 4.2:4 growth rates of free monoids
" 4.2:5 Gel’fand-Kirillov dimension
95 4.2:6 GK(S1 × S2)
" 4.2:7 GK(S) ∈/ (1, 2)
" 4.2:8 {gr rates} for k-algs vs. monoids
" 4.2:9 GK and transc.deg; & 2 open q’s
" 4.2:10 finite topologies as preorders
96 4.2:11 order topology
" 4.3. Induction and chain conditions.
97 4.3:1 factoring into irreducibles
98 4.3:2 recursion fails without DCC

100 4.3:3 Fibonacci for n < 0
" 4.3:4 lexicographic order

101 4.3:5 symmetric polynomials
" 4.3:6 recursively defined ni, j
" 4.4. The axioms of set theory.

105 4.5. Well-ordered sets and ordinals.
" 4.5:1 examples of well-ordered sets

106 4.5:2 finish proof of Lemma 4.5.1
108 4.5:3 ordinals without Ax. of Regul’ty

" 4.5:4 ordinal embeddable ⇒ ≤
" 4.5:5 height fnctn on p.o.set with DCC

109 4.5:6 lim ords are l.u.b.s of members
110 4.5:7 interpretation of ordinal arithmetic

" 4.5:8 1+ω ≠ ω +1 etc.
" 4.5:9 ordinal arith and lex. ordering

112 4.5:10 infinite ord (and card) products
113 4.5:11 cofinality and cofinal subsets
114 4.5:12 regular cardinals

" 4.5:13 regular ordinals
" 4.6. Zorn’s Lemma.

117 4.6:1 extending partial ordering to total
" 4.6:2 special cofinal subsets
" 4.6:3 disjoint cofinal subsets
" 4.6:4 extending p.o. w DCC to w.o.
" 4.6:5 chains in P(S)
" 4.6:6 inf p.o.s. ⊇ ω or ωop or anti

118 4.6:7 partial well-orderings
" 4.6:8 example w card > height . width
" 4.7. Thoughts on set theory.

121 Chapter 5: Lattices, closure
operators, and Galois connections.

" 5.1. Semilattices and lattices.
" 5.1:1 semilattice concept

123 5.1:2 natural non-lattices
" 5.1:3 almost-lattices

124 5.1:4 Compatibility ⇒ Idempotence
" 5.1:5 greatest = maximal in lattice
" 5.1:6 non-homomorphisms of lattices
" 5.1:7 affine and projective geometries

125 5.1:8 universal (semi)lattices
" 5.1:9 free semilattices
" 5.1:10 size of free lattices
" 5.1:11 univ. set-rep’s of (semi)lattices
" 5.1:12 disjoint cofinal subsemilattices

126 5.1:13 modularity
" 5.1:14 distributivity
" 5.1:15 distrib. latt.s and vector-sp. bases

127 5.1:16 infinite chains and " " "
" 5.2. Completeness.

128 5.2:1 {< β or co-< γ}
129 5.2:2 complete lattice of open sets

" 5.2:3 which ordinals are cplt lat’s?
" 5.2:4 fixed point theorem
" 5.2:5 cp. lat. w.out chains =∼ card > ω
" 5.2:6 ‘‘weakening’’ Zorn’s Lemma
" 5.2:7 l.u.b.s of chains =∼ cardinals
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130 5.2:8 completeness and interpolation
" 5.2:9 kinds of interpolation
" 5.2:10 fin. interpol’n for polynomials

131 5.2:11 representations in P(S)
" 5.2:12 generating numbers of a lattice

132 5.2:13 ∧ and ∨ of compact elements
" 5.2:14 ACC ⇔ all elements compact
" 5.2:15 representations in E(X )

133 5.2:16 building L-valued metric spaces
134 5.3. Closure operators.

" 5.3:1 verify corresp. {closed} ←→ cl
135 5.3:2 every cl comes from a ‘‘G’’

" 5.3:3 G for generating equiv relns
" 5.3:4 building up cl(X )

136 5.3:5 verify embedding lemma
" 5.3:6 alt’tive pf of Lemma 5.3.5(ii)
" 5.3:7 univ. props. of above constrs?
" 5.3:8 prin. ideals and completeness
" 5.3:9 infinite 3-generator lattice
" 5.3:10 inf 3-gen lat w no inf chain?
" 5.3:11 inf chain in f.g. lat of ab gps?

137 5.3:12 proof of Lemma 5.3.6
" 5.3:13 finitary cl ops and cmpct elts
" 5.3:14 compact vs. finitely gen.
" 5.3:15 find 8 closure operators
" 5.3:16 which cl ops are topologies?
" 5.3:17 cardinality of cl(X )

138 5.3:18 cl S
sys

" 5.3:19 Clofam, Clop, and Closys
" 5.3:20 {finitary} within Clop
" 5.3:21 Peter Frankl’s question

139 5.4. A pattern of threes.
141 5.5. Galois connections.
142 5.5:1 all Gal cnctns arise from R’s
143 5.5:2 simpler def of Gal connection

" 5.5:3 all cl’s arise from Gal cnctns
144 5.5:4 Gal cnctn from ‘‘≤’’ on Q × Q

" 5.5:5 topology on dual vector space
145 5.5:6 commutant and bicommutant

" 5.5:7 centralizer subgroups

147 Chapter 6: Categories and
functors.

" 6.1. What is a category?
153 6.1:1 Cayley’s Thm for categories

" 6.2. Examples.
155 6.2:1 which categories are p.o. sets?
157 6.2:2 subgroups of finite index
158 6.2:3 bimodules as morphisms

" 6.2:4 sets modulo finite sets
" 6.2:5 categories from S-sets
" 6.3. Other notations and viewpoints.

160 6.3:1 categories without objects
161 6.4. Universes.
163 6.4:1 which groups and cat.s are small?

" 6.4:2 universes form proper class
" 6.4:3 depth, width, and universes

164 6.4:4 {universes} well-ordered
" 6.4:5 Ax. of Univ’s w.out Ax. of ∞
" 6.4:6 U is regular limit cardinal

165 6.5. Functors.
168 6.5:1 G → {order 2} not a functor

" 6.5:2 G → center not a functor
" 6.5:3 G → Aut(G) not a functor

169 6.5:4 algebraic closure not a functor
" 6.5:5 functors FSet → FSet

170 6.5:6 G → Gab not full or faithful
" 6.5:7 monoid → {invertible} as functor
" 6.5:8 P → Pcat as functor

171 6.5:9 Cayley proof
" 6.5:10 concretizability questions

172 6.6. Contravariance, several variables.
173 6.6:1 op as a functor
174 6.6:2 P(X ), co- and contravariant

" 6.6:3 equivalence relations
" 6.6:4 subgroups; normal subgroups

175 6.6:5 POSet and Lattice0, 1

" 6.6:6 functors FSet op → FSet
" 6.6:7 FSet ←→ RelFSet
" 6.6:8 composing contravar. functors

176 6.6:9 universal property of I
��
I Ci

" 6.6:10 I��I of categories
177 6.6:11 bifunctors FSet × FSet → FSet

" 6.7. Properties of morphisms.
" 6.7:1 facts about isomorphism
" 6.7:2 1-1/onto-ness not det’d
" 6.7:3 1-1⇒mono

178 6.7:4 when mono ⇔ 1-1
" 6.7:5 when mono /⇒ 1-1
" 6.7:6 epi vs. onto
" 6.7:7 epimorphisms of groups
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" 6.7:8 epimorphs of Z
179 6.7:9 epi: comm.ring → ring
180 6.7:10 properties of f, g and fg

" 6.7:11 morphisms in RelSet
" 6.7:12 f ’s that are ‘‘always onto’’

181 6.7:13 retracts in Set , Ab , Gp
" 6.7:14 what combinations ⇒ =∼ ?
" 6.7:15 idpts determine retracts

182 6.7:16 {subobjects} relative to Cemb
" 6.7:17 above applied to posets
" 6.8. Special objects.

183 6.8:1 I, T unique
" 6.8:2 0-objects and 0-morphisms
" 6.8:3 Cpt

" 6.8:4 quasi-initial objects
184 6.8:5 free w.r.t. |G |2 etc.

" 6.8:6 free w.r.t. |GL(2)|
" 6.8:7 ∃ free ⇒ mono’s 1-1

185 6.8:8 I
��
I and I��I in Pcat

" 6.8:9 I
��
I ( I
��
I (Xij ))

" 6.8:10 ∃ free ⇔ U representable
" 6.8:11 I

��
I and I��I in Scat

" 6.8:12 retracts and (co)products
186 6.8:13 large I

��
I ’s

" 6.8:14 functor not respecting I
��
I

" 6.8:15 free objects and I
��
I ’s

" 6.8:16 I
��
I for abelian torsion groups

" 6.8:17 I
��
I ’s of torsion groups?

187 6.8:18 diff coker’s and onto-ness
" 6.8:19 diff (co)kers and cardinality

188 6.8:20 pullb’ks fr fin. I
��
I ’s and diff. kers

" 6.8:21 pullbacks as fibered products
" 6.8:22 stabilizing push and pull

189 6.8:23 monomorphisms and pullbacks
" 6.8:24 comma categories
" 6.8:25 other version of ‘‘pointed

object’’
190 6.8:26 pushouts of groups

" 6.9. Morphisms of functors.
191 6.9:1 morphisms of difference kernels
192 6.9:2 u: IdSet → U oF is morphism

" 6.9:3 isomorphic constructions
193 6.9:4 morphisms among some funct’s

" 6.9:5 CC(IdC , IdC) commutative
194 6.9:6 find morphisms Idω → Id

" 6.9:7 functor-structure on ‘‘free’’

" 6.9:8 I
��
I I for variable I

" 6.9:9 ‘‘functorially’’ vs. ‘‘everywhere’’
195 6.9:10 conditions defining subfunctor

" 6.9:11 subfunctors of IdGroup
196 6.9:12 subfunctors of �× n

" 6.9:13 prove criterion for equivalence
" 6.9:14 Matk ∼∼ k-FMod
" 6.9:15 duality of vector spaces

197 6.9:16 Set /∼∼ Setop etc.
" 6.9:17 FBool1 ∼∼ FSetop

" 6.9:18 Mn (R )-Mod ∼∼ R-Mod
" 6.9:19 skeleta and isomorphism
" 6.9:20 skeleton of π1

198 6.10. Properties of functor categories.

" 6.10:1 E C × D =∼ (EC)D

" 6.10:2 other laws of exponents
199 6.10:3 DC × ED → EC

200 6.10:4 identity law for IdC
" 6.10:5 associativity on ED × DC × CB

" 6.10:6 b o a ≠ ba
" 6.10:7 FGF and GFG
" 6.11. Enriched categories.

201 6.11:1 Group as a Cat-category

203 Chapter 7: Universal
constructions.

" 7.1. Initial and terminal objects.
204 7.2. Representable functors, and

Yoneda’s Lemma.
205 7.2:1 proof of u ←→ i
206 7.2:2 rt, left, 2-sdd inverses in monoids

" 7.2:3 P(X ) and E(X )
" 7.2:4 universal properties of I

��
I , I��I

" 7.2:5 functors on Lie groups
" 7.2:6 GpStruct(X )

207 7.2:7 initial, terminal as repr’ing objs
" 7.2:8 verify Yoneda Lemma

208 7.2:9 Yoneda embedding
" 7.2:10 applying Yoneda

209 7.2:11 i : F =∼ G
210 7.3. Adjoint functors.
212 7.3:1 verify a ←→ α
213 7.3:2 UFU and all that (verify)
214 7.3:3 has left adj. ⇔ representable

" 7.3:4 adjoints of isomorphic functors
" 7.3:5 adjoints of equivalences
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" 7.3:6 set-maps among groups
215 7.3:7 wrong adjs to I

��
I and I��I

" 7.3:8 Group →← Group2

216 7.3:9 Set →← G-Set
" 7.3:10 G1-sets and G2-sets
" 7.3:11 �× and adjoints
" 7.3:12 – × X : Set → Set
" 7.3:13 adjunctions involving R[X ]

217 7.3:14 Ab × Ab → Bil
" 7.3:15 adjoints to constant functors
" 7.3:16 ε , η for composite adjunction

218 7.4. The p-adic numbers.
219 7.4:1 solving x2 = –1 (mod 5 i)
220 7.4:2 p-adics by Cauchy sequences

" 7.4:3 n–1 ∈Ẑ( p)
222 7.4:4 Aut(Zp∞ ) =∼ Ẑ( p)

" 7.4:5 Ẑ( p) not divisible, but ...
" 7.5. Direct and inverse limits.

224 7.5:1 cofinality and Lim__→
225 7.5:2 ∩ (subsets) and ∪ (cong)

" 7.5:3 nonemptiness
" 7.5:4 colorings
" 7.5:5 injectivity, surjectivity

226 7.5:6 G = Lim__→(finitely presented)
" 7.5:7 Q as Lim__→
" 7.5:8 a locally free group
" 7.5:9 a not-quite PID
" 7.5:10 infinite Galois groups

227 7.5:11 open q. on profinite torsion gps
" 7.5:12 Q̂( p) from Ẑ( p)
" 7.5:13 Ẑ(10)

228 7.5:14 Lim←__Zn = I
��
I Ẑ(p) = Ẑ

" 7.5:15 compactness of Lim←__ (finite)
" 7.5:16 V* as Lim←__

229 7.5:17 solenoid as Lim←__
" 7.5:18 " as completion of R
" 7.5:19 topology of solenoid

230 7.6. Limits and colimits.
" 7.6:1 orbit space, etc.

232 7.6:2 F : Scat → Set
233 7.6:3 Δ as bifunctor
234 7.6:4 Lim←__ from I

��
I and diff ker

" 7.6:5 I as Lim←__ , Lim__→
" 7.6:6 (co)limits of constant functors

235 7.6:7 Lim←__ for B ⊆ C
" 7.6:8 prove Lemma 7.6.8 (limits in CE)

" 7.7. What respects what.
237 7.7:1 converse to Thm. 7.7.1

" 7.8. Functors respecting limits and
colimits.

239 7.8:1 counterexamples in Ab
240 7.8:2 Lim__→ Lim__→

" 7.8:3 Lim←__ of terminal, etc.
241 7.8:4 noncommuting limits

" 7.8:5 infinite I��I ’s from finite
242 7.8:6 some large Galois connections
243 7.8:7 c’parison m’ms re order of lims

" 7.8:8 Lim←__ and Lim__→ of representable
" 7.9. Interaction between limits and

colimits.
245 7.9:1 Lim__→ , Lim←__ don’t c’mute in Lcat
246 7.9:2 " " " " for D and E empty.

" 7.9:3 " " " " if hyp on E weakened
247 7.9:4 " " " " if hyp on D weakened

" 7.9:5 above turned upside down
248 7.9:6 what limits cmt w I��I ’s of sets?

" 7.9:7 inverse limits and orbit-sets
" 7.9:8 Galois cnctn fr ‘‘Lim__→ vs. Lim←__’’
" 7.9:9 other comparison morphisms
" 7.9:10 mrphsm betw Lim__→ S, Lim__→ SF
" 7.10. Some existence theorems.

250 7.10:1 I if no difference kernels
251 7.10:2 when C ′ has small limits

" 7.10:3 cyclic subgroups
252 7.10:4 no solution-set, so no initial
253 7.10:5 no free complete lattice on 3

" 7.10:6 ∃ free complete semilattices
" 7.10:7 left adjoints having left adjoints

254 7.11. Morphisms involving adjunctions.
255 7.11:1 equiv relations → subgroups
256 7.11:2 details re oU, oF, F o, U o

258 7.12. Contravariant adjunctions.
259 7.12:1 Gal cnctns as contrav adjunctions
260 7.12:2 Cat is not symmetric

261 Chapter 8: Varieties of algebras.

" 8.1. The category Ω-Alg .
264 8.1:1 bad if empty algebra excluded
266 8.1:2 direct limits of Ω-algebras

" 8.1:3 direct limits if not finitary
267 8.1:4 Lemma 8.1.10 for finite α
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" 8.2. Generating subalgebras from below.
268 8.2:1 need S(ω1) for ω-ary

" 8.2:2 example with arities < ωω
269 8.2:3 ∪ (gen. by < γ )

" 8.2:4 when α-directed ⇒ α ′-directed
" 8.3. Terms and left universal

constructions.
270 8.3:1 free Ω-algebra is Ω-term algebra
271 8.3:2 " " from Adjoint Functor Thm.
272 8.3:3 free generators unique

" 8.3:4 is subalgebra of free free?
" 8.3:5 End(FΩ(x)) free monoid
" 8.3:6 when FΩ(a) is one-to-one, onto

273 8.3:7 getting < X� R >Ω using Freyd
" 8.3:8 F with |F(S)| = {x : 2ω → S}

274 8.3:9 universal property of F(2ω)
275 8.4. Identities and varieties.

" 8.4:1 γ = 2 works for unary
278 8.4:2 what respects what (verifications)
279 8.4:3 difference kernels, epimorphisms

" 8.4:4 monomorphisms in non-varieties
281 8.4:5 rep. and non-rep. functors

" 8.5. Derived operations.
282 8.5:1 functorial operations

" 8.5:2 " " on finite algebras
" 8.5:3 find a variety not gen by fin algs

283 8.5:4 x2+y3, x1 ⁄ 2+y1 ⁄ 3, ...
284 8.6. Characterizing varieties and

equational theories.
285 8.6:1 describe <H , S , P>
286 8.6:2 <H , S , P> on Ab , etc.

" 8.6:3 < H D P >, < H S Pfin>
287 8.6:4 monoids that are groups
288 8.6:5 {varieties in which F free}

" 8.6:6 subvarieties of G-Set
" 8.6:7 subvarieties of CommRing1

" 8.6:8 PI rings
289 8.6:9 properties of Heap

" 8.6:10 miscellany re Vpt

290 8.6:11 ‘‘same’’ varieties
" 8.7. Lie algebras.

291 8.7:1 univ. envel. alg. of Lie algebra
" 8.7:2 [–, –] satisfies no ident.s but Lie

292 8.7:3 when is [x, –] a derivation?
" 8.7:4 id.s of Lie algs. of vector fields

294 8.7:5 fin. gen. algs. in Var(fin.dim. A)

" 8.7:6 deriv. is det’d by val’s on gen. set
295 8.8. Some necessary trivialities.

" 8.8:1 ‘dep. on’ vs. ‘induced by’ X ⊆ Y
" 8.8:2 {X ⊆ Y � f depends on X }
" 8.8:3 induced, derived, and zeroary

296 8.8:4 funct. operations of V– {0}
" 8.9. Clones and clonal theories.

299 8.9:1 equivalence of cdns of Def.8.9.4
300 8.9:2 clonal cat.s →← varieties
301 8.9:3 (2N)op-algebras

" 8.9:4 respecting finite and arbitrary I
��
I ’s

" 8.9:5 degenerate clonal categories
" 8.9:6 clones, graphs and electric circuits

302 8.9:7 U-preserving ⇒ clonal
303 8.9:8 U-preserving ⇒ has left adjoint

" 8.9:9 Group →← Monoid
" 8.9:10 Heap →← Group
" 8.9:11 Set →← Semigroup
" 8.9:12 properties of Clone

304 8.9:13 a hyperidentity of idempotence
" 8.9:14 hyperidentities and S-sets

305 8.10. Structure and Semantics.
306 8.10:1 define Structure

" 8.10:2 Structure, Semantics are adjoint
307 8.10:3 some comparison functors

" 8.10:4 Structure(power set)
" 8.10:5 CpLattice vs. CpSemilattice

308 8.10:6 some categories not =∼ varieties
309 8.10:7 what G’s behave like FV (1)?

311 Chapter 9: Algebras, coalgebras,
and adjunctions.

" 9.1. An example: SL(n).
314 9.2. Algebra objects.
317 9.3. Coalgebras and Freyd’s criterion

for existence of adjoints.
320 9.3:1 π1 representable
322 9.3:2 key step of Theorem 9.3.6

" 9.3:3 universal map Z2 → Mn(B)
" 9.3:4 alt. proof of criterion for ∃ adjoint
" 9.4. Some corollaries and examples.

323 9.4:1 present’n of obj. rep’ing W V
325 9.4:2 describe co-op.s of some examples

" 9.4:3 repr’ability and monomorphisms
326 9.4:4 nonrepresentable functors on Ab

" 9.4:5 failure of solution-set condition
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" 9.4:6 no " " " " for right adjoints
327 9.5. Endofunctors of Monoid .
332 9.5:1 comonoids from E-systems

" 9.5:2 E-systems from comonoids
334 9.5:3 {right invertible elements}

" 9.5:4 composing endofnctrs of Monoid
335 9.5:5 morphisms among these

" 9.5:6 above two Ex.s by present’ns
" 9.6. Functors to and from some related

categories.
" 9.6:1 functors →← Group

336 9.6:2 Group → Monoid etc.
" 9.6:3 morphisms among the above
" 9.6:4 when e isn’t co-neutral

337 9.6:5 peculiar semigroup structures
" 9.6:6 Rep(–, Semigroup) = ?
" 9.6:7 value-sets of monoid-val’d funct.s
" 9.7. Abelian groups and modules.

339 9.7:1 unary co-operations on a module
341 9.8. Left adjoint functors on modules.
344 9.8:1 bimodules over Q(21 ⁄ 3), C
345 9.8:2 structure of K-Mod(–, – ) etc.

" 9.8:3 extension and restriction of scalars
" 9.8:4 Ab → Semigroup , etc.

346 9.9. General results, mostly negative
" 9.9:1 w.out zeroary →/ w. zeroary

347 9.9:2 pointed categories; Cpt, Caug

" 9.9:3 symmetric elements
" 9.9:4 Lpt or L2-pt → Group

348 9.9:5 DistLat0,1 → Bool
" 9.9:6 transitivity of nontriviality?
" 9.9:7 R-Mod and Mn (R)-Mod
" 9.9:8 module fnctors w left and rt adj
" 9.9:9 limits of representable functors

349 9.9:10 monoid endofunctors as limits
" 9.10. A few ideas and techniques.

350 9.10:1 ident.s in str. of Group(Z2, – )
" 9.10:2 embeddability question for "
" 9.10:3 similarly analyze hZn

351 9.10:4 inner automorphisms
" 9.10:5 Rep(V , W) has initial object
" 9.10:6 cases of above

352 9.10:7 H , S , P for Rep(C , V)
" 9.11. Contravariant representable

functors.
353 9.11:1 prop.s of commuting op.s

" 9.11:2 object rep’ing right adjoint
354 9.11:3 Setop → Bool1

" 9.11:4 structure on n ∈Ob(Set)
" 9.11:5 POSet and DistLat

355 9.11:6 variety ∼∼/ varietyop

" 9.11:7 finite sets and finite Boolean
rings

" 9.11:8 duality and M3
356 9.11:9 are contrav. near-equiv.s rep’ble?

" 9.11:10 comp. of cov. and contrav. adj.s
357 9.11:11 rep. obj. for such composite

" 9.11:12 no adjoint to double dual
" 9.11:13 ‘structure’ of integral domains
" 9.12. More on commuting operations.

358 9.12:1 centralizer of an op. is a clone
359 9.12:2 Ring1�(variety w. 0-ary) trivial
360 9.12:3 (verify) when V�W =∼ K-Mod

" 9.12:4 Group�Group etc.
" 9.12:5 functors among module cat.s

361 9.12:6 π1(top. gp.) is abelian
" 9.12:7 Heap�Heap
" 9.12:8 Semilattice� Semilattice etc.
" 9.12:9 epis of init. in CommClone

362 9.12:10 V�V�V cm’tive ⇒ V�V is?
" 9.12:11 structure on IdC commutative
" 9.13. Some further reading.
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Symbol Index

As in the word index, boldface page-numbers indicate pages where definitions are given.
Symbols of standard and uncontroversial usage are generally not included here.

If a symbol is defined in one place and used again without explanation more than a page or so
away, I show the page(s) where it is defined, and often some of the pages where it is used or where
the entity it symbolizes is discussed. But I do not attempt, as in the word index, to show all
significant occurrences of each subject. For this, the word index, with its headings and
subheadings, is more useful.

Order of entries: Under each letter of the alphabet, the lower-case letter is followed by the
upper-case letter, then Greek and miscellaneous related symbols, in a somewhat arbitrary order.
(For a particularly complicated example, the order I have set up under p is p, P, π , Π, I

��
I , I��I ,

ϕ , Φ, ψ , Ψ, though not all of these symbols actually occur.) Symbols that are not even
approximately alphabetical are alphabetized by assigning them spellings; e.g., ∧ and ∨ are
alphabetized as meet and join; the symbol =, and related symbols such as =∼ , are alphabetized,
in an arbitrary order, under equal; and → and ↓ are similarly alphabetized under arrow.
Fortunately, you do not have to know all the details, though some symbols will require more search
than others.

Font-differences, and ‘‘punctuation’’ such as brackets, do not affect ordering unless everything
else is equal. Operator-symbols are often shown in combination with letters with which they are
commonly used, e.g., < X � Y> is alphabetized under XY.

Of the many categories that are given names in Chapter 6 and subsequently, we do not record
cases where the meaning is obvious, like Group , nor cases discussed only in passing, like
GermAnal (germs of analytic functions, which can be found under ‘‘functions’’ in the word
index), but only category-names used in more than one place for which some aspect of the
definition (e.g., the associativity assumption in Ring1) or the abbreviation (as with Ab) is not
obvious.

∀ for all (universal quantifier), 11, 146.

ariΩ , ari arity function (see also Ω), 17, 261.

→ indicates action of a function on elements, 11.

↓ see ( S ↓ T ) below.

|A| underlying set (etc.) of object A, 11, 261, 314-315.

Ab category of abelian groups; also used as a prefix for ‘‘abelian’’ in names

of categories such as AbMonoid , 153.

A ⁄ ∼ , A ⁄ (si = ti )i∈I quotient-set or factor-algebra of A, 23, 37, 61.

Ar(C) set of morphisms (‘arrows’) of the category C , 150.

A* set determined by A under a Galois connection, 142-146.

Aut( X ) group of automorphisms of X, 45, 147, 168.

ℵ0, ℵα least (resp. α th) infinite cardinal, 27, 113, 114.
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Binar , Binar e variety of sets with a single binary operations, without, respectively, with,

neutral element, 345, 351, 359.

β : (A, B) → C bilinear map (temporary notation), 56-59.

cl general symbol for a closure operator, 134.

C (1) general symbol for a category, (2) the field of complex numbers.

Cat category of all (small) categories, 169.

CD category whose objects are all functors D → C , 192, 198-200.

Clone category of all covariant clonal categories, 299-308, 361.

CommRing1 the variety of all commutative associative rings with 1 (referred to simply

as ‘‘commutative rings’’), 153, 216, 311-313, 319, 322.

Cong f subalg. of S × S whose underlying set is congruence induced by f , 63.

Cpt category of pointed objects of C , 183, 189, 346.

C(X, Y ) set (or in Chapter 9, algebra) of morphisms X → Y in the category C ,

150, 315, 318.

deg(x) (in §9.5) degree of element x in a comonoid object of Monoid , 328-331.

δx delta function (δx ( y) = 1 for y = x, otherwise 0), 44.

Δ diagonal functor C → CD, 215.

=def equals by definition, 11.

=∼ isomorphism (of algebras, categories, etc.).

∼∼ equivalence of categories, 196.

End( X ) monoid of endomorphisms of X, 45, 147.

E(X ) lattice of equivalence relations on X, 132-133, 206.

η , ε unit and counit of an adjunction, 213.

∃ there exists (existential quantifier), 11, 146.

f �X the restriction of the function f to the set X, 31, 98.

FΩ , FV free-algebra functors of categories of algebras (see mainly free in word

index), 271, 280, 284.

Gab abelianization of G; see group: abelianization in word index, 44.

Gcat see Scat below.

GL(n, K ) general linear group (group of all invertible n × n matrices), 45, 46,

257, 325, 349.

Gmd ‘‘underlying’’ monoid of the group G, 64-65, 154, 167.

hY , hY covariant and contravariant hom functors, C(Y, –) and C(–, Y ), 171,

174, 176.
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H(C) set of all homomorphic images of algebras in the set C, 285, 352.

Hom(X, Y ) in introductory chapters, set of homomorphisms from X to Y ; mostly

superseded by C(X, Y ) in later chapters.

HtpTop category of topological spaces, with homotopy classes of maps for

morphisms, 157, 167, 170, 175.

HtpTop (pt) as above, but defined using pointed topological spaces, 320, 361.

idX identity morphism of the object X, 151.

IdC identity functor of the category C, 167, 193, 196, 200.

⊆ , ⊂ , ⊇ , ⊃ inclusion relations, 88.

∨ ‘‘join’’ (in a (semi)lattice); ‘‘or’’ (disjunction of propositions), 11, 121,

122, 146.

Kf difference kernel of (= congruence determined by) the map f, 61, 63.

K S, Z S monoid algebra or ring, 69.

K< t>, Z< x1, ... , xn> free K-algebra or ring (‘‘noncommutative polynomial ring’’), 67-68.

K [t], Z[x1, ... , xn ] polynomial algebra or ring, 28, 66-67.

≤, <, ≥, , , etc. symbols for partial orderings or preorderings, 86-101.

lim sup limit superior, 18, 94.

Lim←__ , Lim__→ limits and colimits (including inverse and direct limits); see mainly word

index, 223-231-253.

λ , μ , ρ (in §9.5) indices for writing coproducts of copies of R, e.g.,

Rλ I��I Rμ I��I Rρ, and their elements, e.g., xλ, 328-333, 337, 347.

∧ ‘‘meet’’ (in a (semi)lattice); ‘‘and’’ (conjunction of propositions), 11, 23,

146.

M3 ternary majority vote operation, 18, 355.

M5, N5 5-element lattices related to distributivity and modularity, 125, 131.

Monoid category of all monoids, 153.

μ , μG , etc. composition operation of a group, monoid, or category (when there is

need to show it explicitly), 11, 150.

N natural numbers (as monoid, ordered set, category, etc.), 299.

1, 1L multiplicative neutral element of ring; greatest element in a lattice or

partially ordered set, 127.

( )op opposite (of a partially ordered set, semigroup, monoid, ring, or

category), 87, 167, 173, 178.

Ob(C) object-set of the category C , 150.
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ω , ωα least infinite ordinal (= {natural numbers}), respectively least ordinal of

cardinality ℵα , 106-114, 117-118.

Ω algebra type (family of operation-symbols with specified arities), 17, 19,

261-283.

Ω-Alg variety of all algebras of type Ω, 263-267, 271-273, 279.

P(C) in §8.6, set of all products of algebras in the set C; otherwise, see P(S)

below, 285, 352.

POSet , POSet< categories of partially ordered sets and isotone, respectively strict isotone

maps, 153.

P(S) power set (set of all subsets) of S, 74-76, 87, 89, 103, 117, 123, 206.

π1(X, x0) fundamental group of the pointed topological space (X, x0), 147, 149,

156, 172, 197, 320, 361.

I
��
I i∈I Xi , I��I i∈I Xi product, coproduct of a family of objects Xi , 184-186.

RBS notation emphasizing that B is an (R, S)-bimodule, 340.

RelSet category with sets for objects, relations for morphisms, 156, 165, 168,

175, 180.

Rep(C , V) category of all representable functors from C to V , 320-362.

Ring1 the variety of all associative rings with 1 (referred to simply as ‘‘rings’’),

153, 338.

Rλ, xρ, etc. see ‘‘λ , μ , ρ’’, 328.

R-Mod , Mod-R categories of left, respectively right R-modules, 153, 338.

R-Mod-S variety of all (R, S)-bimodules, 340, 360.

|R|σ in §9.5, set of elements in coproduct monoid Rλ I��I Rμ I��I Rρ associated

with index-string σ , 328-329.

s in §9.3, co-operation corresponding to an operation s ; in §9.7, sd =

co-scalar-multiplication by d , 318.

sf , sA function evaluating a term s at a tuple f, or on the whole algebra A,

16-17-25, 30-32, 281.

symbT map X → T taking each element of X to the symbol representing it,

15-16, 23, 30.

( S ↓ T ), ( S ↓C ), (C ↓ T ) ‘‘comma categories’’, 189.

Scat category constructed from the monoid, group, or partially ordered set S,

154, 155, 156, 158, 170, 173.

S(C) set of all subalgebras of algebras in the set C, 285, 352.
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Semigroup category of all semigroups, 153.

Set(U ) , Group(U ) , etc. explicit notation for categories of U-small objects, 163.

Sgp group obtained from monoid S by adjoining inverses to all elements,

64-65.

SL(n, K ) special linear group (group of n × n matrices over K with

determinant 1), 34, 311-313, 322, 323, 349.

Sn symmetric group on n elements, 27.

�× tensor product, 56-59, 148, 342, 343.

2 diagram category with picture .→. , 155.

Tred (in Chapter 2) set of reduced group-theoretic terms, 30.

T, TX, . , –1, e, TX, Ω (in Chapters 1-3) the set of all terms in a set X, and given operation-

symbols, 14-15-25, 30-33, 38, 99.

UΩ , UV underlying-set functors on categories of algebras (see mainly functors:

forgetful in word index), 271, 280.

disjoint union (coproduct) of sets, 48, 77.

Var (C) variety generated by a family C of algebras, 276, 284-288.

V(J ) variety of algebras defined by the family J of identities, 276.

V�W variety equivalent to category of W-algebra objects of V , 358-362.

[x] frequently, equivalence class of x under an equivalence relation, 23, 93.

[x, y] variously, commutator in a group or ring, Lie brackets, interval in a

partially ordered set, 33, 44, 90, 215.

xy conjugate of x by y, i.e., y–1x y, 33.

X∩ Y, ∩ Xi intersection (of X and Y ; of the sets Xi ), 19, 74.

X∪ Y, ∪ Xi union (of X and Y; of the sets Xi ), 19, 74.

XI the set of all maps I → X, 13.

X
∼
, f

∼
X and f, viewed as object and morphism of Cop, 173, 176, 178.

< X � Y >, < X � Y >V object (of V) presented by generators X, relations Y , 40, 273, 280.

0, 0L additive neutral element; least element in a lattice or p. o. set, 127.

Z the integers, 12.

Zn the group or ring Z ⁄ nZ, 42, 58, 218-220, 221-222, 280.

Z S, Z[t], Z<x1, ... , xn> see KS, K [t], K<x1, ... , xn> above.

Ẑ( p) the p-adic integers (see integers: ... in word index), 219-221.
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Word and phrase index

I have tried to include in this index not only the location where each term is defined, but also
all significant occurrences of the concepts in question; but it has not been easy to decide which
occurrences are significant. I would welcome your observations on the types of cases you would
find it useful to have in the index, and on any entries that are erroneous, unnecessary, or missing.

Pages where terms are defined or where conventions relating to them are set are shown with
boldface page numbers. (Sometimes a formal definition occurs after the first page of discussion of
a topic, and sometimes more than one version of a concept is defined, leading to occasional entries
such as 100-101-115, 130-140.) At some future time, I may try to provide other information in
similar ways: e.g., perhaps small type for brief tangential references, a raised dot after a page-
number to signal the approximate height on the page at which a term occurs, etc.. I would be
interested in your thoughts as to what information you would find useful.

I have generally grouped specific concepts under more general ones. Thus, ‘‘dihedral group’’
appears under ‘‘group’’, not ‘‘dihedral’’. But when a subtopic would have a large number of
entries relating to it, it is often made a separate heading. E.g., ‘‘abelian groups’’ has its own
heading; although items relating to ‘‘commutative rings’’ are shown under ‘‘rings’’, since we don’t
discuss as many facets of that subtopic.

When two broad concepts intersect, it is hard to give a rule as to where the intersection is
indexed. Concepts studied in this course that cut across various types of algebras outrank the
specific types of algebras; so, ‘‘free group’’ appears under ‘‘free’’. Occasionally, I reference the
same topic under more than one heading.

The great majority of the entries in this index concern algebraic topics. Most of the remainder
concern foundations and logic, topology, or meta-topics such as ‘‘heuristics’’ and ‘‘open
questions’’. For convenience, the handful of entries relating to still other subjects are grouped
under the heading ‘‘miscellaneous areas’’.

Terms used by other authors for which different words are used in this work are, if referenced,
put in single quotes; e.g., ‘free product’, for what we call ‘‘coproduct’’.

In secondary headings, the words of the main heading are abbreviated ‘‘–’’. In cross-
references, the form ‘‘see main-heading: subheading’’ is used. Hence ‘‘see – : subheading’’ refers
you to another subheading under the same main heading. Cross-references are often abbreviated
using ‘‘ ... ’’, while ‘‘etc.’’ means ‘‘and similar topics’’. When a cross-reference is given simply as
‘‘see main-heading: ...’’, the ‘‘...’’, points to a subheading with the same first word(s) as the
present heading (ignoring initial ‘‘–’’s, if any).

abelian group(s), 43-45, 118, 239, see
also group, module, tensor product,
bilinear map

additive – structure of rings, 65-66, 167,
214, 218, 323

– as Z-modules, 338, 343
category of –, 153
divisible –, 178, 222

duality of – via Q ⁄ Z , R ⁄ Z , 175, 355
endomorphism rings of –, 144
group structure on hom-sets of –, 53, 58,

216, 338, see also modules: ...
– of Z-valued functions, 44, 172
representability question for some functors

on –, 281, 326
representable functors on –, 324, 337-338,

345-346, 355
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solenoids, 229-230
structure of the product and squaring

functors on –, 307
subgroup lattices of –, 126, 136
topological –, Pontryagin duality of, 175,

229, 355
torsion –, 186, 326

abelianization, see group(s): ...
above and below, see constructions: from ...
abuse of notation, see loose usage
ACC, DCC, see chain: conditions
actions, see representations and G-sets
adjunctions, 210-213-218, 232, 253, 311-312

– and empty algebras, 272
– between varieties, 320-362, see also Table

of Contents for details
composition of –, 217-218, 322-323, 325,

334-335, 342-344, 356-357, see
also composition: representing object ...

conjugate morphisms between adjoint
functors, 257-258

contravariant left –, 259
contravariant right –, 258-259, 306, 352-357
Freyd’s adjoint functor theorem, 252, 271,

273, 279, 325
functors with adjoints on both sides, 214,

215-216, 324, 348
morphisms among adjoint functors, 254-258
relations of – with other universal

constructions, 214, 232, 235-239
‘‘Structure is adjoint to Semantics’’, see

varieties ... : ...
underlying-set-preserving functors have

adjoints, 303, 323, 324, 345
unit and counit of –, 213-214, 217, 236,

254-256, 332, 335, 360
universal constructions which are not

adjoints, 216
algebra(s), see also rings ...

ambiguity of the word –, 262
C-based –, see –: (co)– objects ...
(co)– objects in a category, 313-314-318-362
– defined by an arbitrary binary operation,

345, 351, 359
empty –, 263-264, 272, 275, 289, 296

finite and profinite –, 228, 282, 355-356
finitely generated –, 355
font-convention (not used here) on – and

underlying sets, 11
‘‘General –’’ or ‘‘Universal –’’?, 7, 262
generating subsets of –, 20-22, 263, 267-269
generators and relations for –, see

presentations
homomorphic images of –, 263, 277,

284-286, see also congruences
many-sorted –, 298
– means ‘‘set-based –’’ if contrary not

stated, 315
Ω-–, 17, 261-283, 297, see also (co)–

objects above
origin of the word –, 262
quotient or factor –, see congruences
residually finite –, 46
simple –, 326
sub–, 263-264, 267-269, 272, 277-286, see

also lattices: of ... , and ‘‘: sub-’’ under
specific sorts of algebras (groups etc.)

topological –, 355
trivial –, 277, 346
type of an –, 261-262, 314, see also –: Ω-–
underlying sets of –, see functors: forgetful

and |A| in symbol index
varieties of –, see varieties ...

algorithm, see normal forms
origin of the word –, 262

arity, 13-14, 17, 261-262, see mainly algebras:
type of

finite and infinite –, 16, 18, 127, 131, 137,
261, 265, 267-269, 272, 286, 296, 308

G-set as structure with unary operations, 38
– of a relation, 86

associative algebras, see rings ...
associativity, 15, 17, 121, 122, 149, 316, 353

– allows parenthesis-free notation, 29, 32
analog of – for clone of operations, 297
co–, 327-330, 345
– in varieties V�W , 359
– of n-fold products, 140
– of product and coproduct constructions,

50, 77
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automorphism
– groups, 141, 143, 147, 168, 177, see

also representations: of groups ...
–s of complex numbers with ‘‘exp’’, 18

axioms of set theory, see foundations ...
bilinear map, 56-59, 216, 343, see also tensor

product and categories: Ab-based
– as part of ring structure, 56, 65
‘balanced’ –, 344
category of –s, 217
image of a –, 58
– is not a homomorphism on product, 56

bimodules, 216, 340-346, 348, 360
category with – for morphisms, 158, 201

bimonoid (temporary terminology), 148-150,
153, 154

binary, see arity and algebras: defined by ...
Boolean algebras and Boolean rings, 74-76,

172, 174, 196, 288
analogs of – using other primes than 2, 354
duality between finite – and finite sets, 197,

355
lattice-structures of –, 123, 126, 302
– of idempotents in rings, 76, 214, 323, 354
subring-lattices of –, 126

cardinality, see ordinals and cardinals
categories, 8, 150-162-260

Ab-based, Cat-based, k-linear –, 201, 258
attitudes regarding –, 160, 179
auxiliary – where universal objects become

initial, terminal, 203-204, 250-251
category of –, 169, 173, 200, 201-202, see

mainly functors
‘(co)complete –’, see limits and colimits:

categories having small –
comma –, 189, 205, 217, 251, 351, see

also –: pointed and augmented objects of
commutative squares in –, 155, 191
concrete –, 170-171, 177-180, 183, 306-308,

see also free: objects in ...
– constructed from monoids and ordered

sets, see monoid(s): groups ... and ordered
sets: made ...

contravariant equivalence of –, 355-356
diagram –, 155-156, 167, 190-191

directed (inversely directed) systems in –,
223

diversity of conventions on –, 158-160
empty –, 165, 241, 246
equivalence of –, 196-197, 200, 258, 259,

300, 308-309, 336, 347, 348
functor –, 192, 194, 198-200, 202, see

also functor(s): morphisms of
large, small, legitimate –, 161-163-165, 169,

170-171, 192, 231, 237-238, 300, 308
morphisms (‘arrows’) in –, 150
no ‘‘element chasing’’ in –, 161, 315
objects of –, 150
opposite –, dualization of results on –, 173,

178, 203, 253, 258-260, 319, 320,
352-357, see also functors, contravariant

pointed –, 346-347
pointed and augmented objects of –, 183,

189, 289, 336, 346-347, 358
‘‘Should hom-sets be disjoint?’’, 159-160
skeleta of –, 197
sources of confusion regarding –, 151, 154,

161
sub–, full sub–, 165, 167, 170, 181, 197,

235
subobject, 181-182, 195, 249, see

also monomorphisms: distinguished
classes ...

U-small etc., see –: large, small ...
– with finitely generated hom-sets, 245, 247,

308
‘‘– without objects’’, 160, 202
zero objects of –, see initial: ...

chain, see mainly ordered sets: –
– conditions (ACC, DCC), 96-101, 104, 108,

117-118, 128, 132, see also ordering ... :
well- –ed set

non-order-theoretic sense of –, 87
class, see foundations ... : universes ...
clones, clonal theories, see operations: derived

and varieties ... : ...
closure operators, 23, 134-140, 146, 163

– and Galois connections (q.v.), 142, 143
– determined by subsets of P(S) ×S, 134-138
dual concept to – (‘‘interior operators’’),

138

12/8/98 Math 245

Word and Phrase Index 371



equivalent concepts: closure systems, closure
families, 138

exchange property for –, see – : matroids
finitary (‘algebraic’) –, 137, 308
matroids, 141
– on classes of algebras, see varieties ... :

Birkhoff ...
Peter Frankl’s question on –, 138

commutativity, see also abelian groups, rings
..., lattices, categories

– and morphisms of composite functors, 199
– between operations of arbitrary arities,

352-353, 357-362
co–, 347
– of coproduct construction, 50
– of End(IdC ), 193, 362
partial –, 52

commutator(s)
– in groups, 17, 33, 44, 226
– in rings, 215
– subgroup and – -factor group of a group,

44, see mainly group(s): abelianization
composition

‘‘Don’t call composites –s’’, 161
– in enriched categories, 201-202
– of adjunctions, 217-218
– of functors, 169, 172, 175, 199, 200,

217-218
– of morphisms, 150-151, 153, 158, 160,

161, 173
– of morphisms of functors (in several

senses), 192, 198-200
– of operations of arbitrary arity, 297
– of relations, 156
order of writing –, 11, 158, 181, 300, 339,

341, 344
representing object for composite of

representable functors, 322-323, 335,
343-344

congruences, 61-63, 264-265, 273, see
also equivalence relations

algebras without nontrivial –, 326
– as subalgebras of products, 63, 265, 278
factor-algebras (quotients) of algebras by –,

61, 264-265

– generated by subsets, 265
– invariant under all endomorphisms,

286-287
lattice of –, 265
– on factor-algebras, 61
– on groups come from normal subgroups,

62
– on monoids, 61-63
– on rings come from ideals, 62

conjunction, 11
– as intersection, 23, 145-146

constant, see operations: zeroary and functors:
diagonal

constructions, see also recursion, Zorn’s
Lemma, functors

completing partial –, 114-115
– from above and below, 23, 24, 35, 121,

135, 146, 267, 284
– made into functors, 208-215
– of the natural numbers, ordinals, cardinals,

101-102, 106-107
coproduct(s), 50, 184-186, 234, 235, 241, see

also presentations: of –
– as (adjoint) functor, 175, 215, 239
– as codomains of co-operations, 313-314,

318, see mainly algebra: (co)– objects
– as initial objects of auxiliary categories,

203
– as representing objects, 206
associativity and commutativity of –

construction, 50, 77
codiagonal maps from –, 52
– depends on category in which taken, 52,

235
– of abelian groups, 52-53, 58, 215, 337
– of categories, 176, 198
– of empty family of objects, 71, 185, 313
– of groups, 47-52, 349-350
– of monoids, 62-63, 327-328
– of partially ordered sets, 89
– of rings, 71-74
– of sets (disjoint union), 47-48, 77, 235,

238, 247-248
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coprojection maps
– into colimit objects, 224, 231, 240
– into coproduct objects, 184, 319, 328
– into pushout objects, 188

countability, see ordinals and cardinals: ...
course taught from these notes, 5-8, see

also these notes and pedagogy
exercises, homework, proofs, 6-7
prerequisites for –, 5
‘‘pro forma’’ questions, 6
studying for –, 5
use of classroom time in –, 5

difference cokernel (coequalizer), 155,
186-187, 265, 277-279, 308

– made into functor, 191
– maps, surjectivity, and epimorphicity, 187,

232, 278-279
– of monoid maps, 63-64
–s and general colimits, 233-234, 235, 239,

241
difference kernel (equalizer), 155, 186-187,

188, 238, 239, 264, 277, 286
– made into functor, 191
– maps, one-one-ness, and monomorphicity,

187, 232, 250, 279
– of monoid maps, 63-64
– of representable functors, 349
–s and general limits, 230, 233-234, 235,

241, 249-250
‘direct sum’, 52-53, see mainly coproduct and

retraction
directed, see ordered sets: ... and categories: ...
disjoint union, see coproduct: of sets
disjunction, 11

– of propositions corresponds to union of
sets of models, 145-146

embedding, embeddability, see
monomorphisms: distinguished ... and
Yoneda ...

– of algebras, 64, 75, 94, 131, 283, 291,
350, see also representations ... : Cayley’s
theorem

– of ordinals, partially ordered sets,
(semi)lattices, 108, 131, 132-133, 135-136

– of topological spaces, 80, 81, 82

empty set
– and zeroary operations, 13-14, 327, see

also algebras: empty
– and Zorn’s Lemma, 116
– as starting-point for set theory, 102, 103
closure of – under a closure operator, 134
inverse limits of non–s, 225, 334
meets and joins of –, 127-129, 130

endomorphism, see monoid(s): of ... and rings
... : of ...

enveloping
universal – algebra of a Lie algebra, 215,

291, 323
universal – group of a monoid, 64, 332, see

mainly group(s): constructions ...
epimorphisms, 178-181, 187, 255, see

also difference cokernel ... : maps ...
– and pushouts, 189
conflicting uses of word ‘‘–’’, 179
idea of –, 179
– of various familiar structures, 178-179
relation between – and surjective maps,

178-180
equivalence relation(s), 77, 93, 102, 139-140,

157, 177, see also congruence, and terms:
construction ...

– as closed sets of a closure operator, 135
lattice (semilattice, set) of –, 132-133, 172,

174, 206, 254-255
union of directed system of –, 225

existential quantification ( ∃ ), 11
– as big disjunction, 146

expressions, see terms
family, see tuple
field

algebraic closure of a –, 169
compositum of – extensions, 73
Galois theory, Galois extensions of –s, 73,

141, 143, 146, 226
Galois theory of infinite – extensions, 226
matrix group over a –, 45, 46
– of complex numbers, 141, 143
– of fractions, 28, 65, 178, 179, 226
– of p-adic rationals, 227
– of rational functions, 28
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skew –, see rings ... : division
transcendence degree of a – extension, 95,

141
foundations, set-theoretic, 101-105, see

also heuristics ... : motivation ...
axiom of choice, 103-104, 111, 114-116,

118, 120, 129, 168, 197, see also Zorn’s
Lemma

axiom of regularity, 99, 103-104, 107, 108
axiom of replacement, 109
axioms of ZFC (Zermelo-Fraenkel set theory

with Choice), 103-104, 162-165
comparability of cardinals, 115
inaccessible cardinals, continuum hypothesis,

164, see also –: universes ...
independence and consistency results, 118,

165
intuitionism, 119, 120
large and small sets, 161-163-165, 276, 282,

283, see also categories: ... and solution-
set ...

quasi-small sets, 165, 282, 283, 305, 308
‘‘set vs. class’’ questions, 25-26, 28, 104,

107, 108, 109, 151, 161-162, 164, see
also –: universes ...

universes, axiom of universes, 161-162-165,
169, 192, 282, 326

Vopěnka’s principle, 283
well-ordering principle, 115

free
– abelian groups, 43-44, 45, 57, 58, 67-68,

192, 198-199, 217, 218
– algebras in a variety, 279-282, 284, 286,

298-300, 305-308, 322, 323, see also –:
Ω-algebras

– algebras on the empty generating set, 71,
312

– algebras on unspecified generating sets,
22, 271

– Boolean rings, 75, 354
– Boolean rings, complete, 253
cases of nonexistence of – objects, 22, 28,

253
– commutative rings (i.e., polynomial rings),

28, 66-67, 143, 175, 205, 216, 217, 221,
see also polynomial

‘‘– fields, – division rings’’, 28
– groups, 20-21-34, 36, 39, 40, 41, 43, 50,

55, 183, 192, 194, 198-199, 203-204, 205,
210, 211, 212, 214, 217, 226, 235, 248,
250, 254-255, 257, 272, 283

– G-sets, 207
– lattices, semilattices, 33, 124, 125, 253,

272
– Lie algebras, 33, 293
– monoids, 60, 67-68, 94, 218, 272, 333
– object constructions as functors, 166
– objects in a concrete category, 183-184,

186, 205, 210, 214, 238
– Ω-algebras, 270-276, 279-284, 286-287
‘– product’, see coproduct
relatively – algebras, 286-287-288
– rings, 67-68, 218, 272, 288
– set-representations of a category, 207-208
subalgebras of – algebras, 272

function
algebras of –s and algebra-valued

representable functors, 314
conventions on –al notation, 11, 158, 341
germ of a –, 157, 222
indexed sets (families) as –s, 13
restriction of a –, 98
rings of almost periodic –s, 83
rings of bounded –s, 82-83
–s as binary relations, 180
‘‘Should a – determine its codomain?’’,

159-160
support of a –, 44

functor(s), 166-177, see also subheading ‘‘... as
functors’’ under various constructions
(tensor products, coproducts etc.) or
entities (G-sets, representations, etc.)

adjoint –, see adjunctions
bi–, 176-177, 198, 201, 208-217, 254-256
comparison –, 307-308
composition of –, 172, 175, 199, 200,

217-218
concretization –, see categories: concrete
constructions that are not –, 167-169
contravariant –, 89, 172-175, 176, 180, 193,

196, 340, see also adjunctions:
contravariant ...
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covariant –, 172, 176
diagonal (constant) –, 215, 217, 232-234,

238, 240
faithful –, 170-171, 175, 177, 196
forgetful –, 167, 170, 171, 186, 205-206,

211, 212, 214-215, 217, 235, 236, 238,
254, 257, 271, 280, 296, 298, 300, 302,
307, 320, 321, 325, 335, 336, 351

full –, 170, 196
hom –, 171, 174-175, 176, 177-178, 180,

192, 204-205, 207-210, 212, see also –,
representable, and Yoneda’s Lemma

–ial operations, 29, 82, 193, 257, 351
identity –, 167, 169, 192, 193, 194, 195,

196, 200, 234, 250, 362
morphisms of –, 190-191-200, see also –:

sub–, and composition: of functors
non-representable –, 206, 241, 252, 334
– of several variables, 176, see also –: bi–
– on diagram categories, 167, 190-191, 202,

231, 234, 245
power (product of copies) of –, see power
power set –, 76, 89, 125, 174, 192, 194,

206, 307
representable algebra-valued –, 317-320-362,

see also algebra: (co)– objects
representable set-valued –, 204-205-213,

232, 236-243, 250-252, 280-281, 305, 308,
312, see also Yoneda’s Lemma

sub–, 195-196, 278, 325, 332, 333, 334
underlying-set-preserving –, 302-303, 306,

323, see also –: forgetful and adjunctions:
...

Galois connections, 141-142-146, 259
– and pushouts, pullbacks, 188
– between algebras and identities, 276, 284
– measuring ‘‘what respects what’’, 242,

248
Gel’fand-Kirillov dimension, see growth rates
Golod-Shafarevich construction, see rings ... :

...
group(s), 94, 251, see also abelian –,

automorphism: ... , matrices
abelianization of –, 44-45, 52, 55, 57, 167,

170, 203, 210, 214, 217, 226, 248

– acting on a set, see G-sets and
permutation

– acting on object of a category, 190, 192,
230

adjunctions between category of – and
category of – maps, 215

affine algebraic –, 326
Bohr compactification of topological –, 81,

83
Burnside problem, n-Burnside –, 45-47
category of –, 153, 197, 201
center of a –, 168
centralizer subgroups of –, 145
co–, 313, 320, 324
cokernel of a homomorphism of –, 54
completely invariant sub–, 195
– concept examined, 11-12, 139-140
conjugation in –, 17, 33
constructions relating – and monoids, 64-65,

154, 165, 195, 196, 210-211, 214, 303,
324-325, 333, 335-336, 337-338, 345

cyclic –, 42, 50, 58, 147, 155, 171, 221, 324
derived operations in –, 17-18, 289
derived sub–, 44
dihedral –, 17, 40
elements of exponent 2 in –, 349-350
exponents of – elements, 42, 167, 171, 194,

227, 324, see also –: Burnside ...
finite –, 29, 34, 45-47, 51
finitely and non-finitely generated –, 25,

245, 246
inner automorphisms of –, 350
Lie –, 178, 206, 228, 293
– made into categories, see monoids: groups

and ...
normal sub–, kernels of maps, 37, 39, 54
– of automorphisms, 141, 143
order of a – element, 42, 45, 51, 168
quotient –, 36-38, 39, 62
– redefined, without zeroary operation, 296
simple –, 326
solvable –, 45
subgroup lattices of –, 123, 126, 134, 174,

see mainly lattices: of subalgebras
sub– of finite index, 157
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symmetric –, 17, 27, 101
symmetry –, 40, 41
ternary operation xy–1z on –, see heaps
‘‘three sub– theorem’’, 33
topological –, 81, 83, 175
torsion (‘periodic’) –, 186, 227
trivial homomorphism of –, 51, 347
universal property of (normal) sub–

generated by a set, 35-36
usefulness of – theory, 160
various universal constructions for –, 35-59

growth rates (in groups, k-algebras, etc.), 94-95
G-sets (G a group or monoid), 37-38, 55, 139,

see also permutation and group(s): acting
on object ...

– as functors, 230-231
category of –, 153
fixed-point sets of –, 230, 232, 245,

246-247, 324
– made into categories, 158
– made into functors, 190
orbit sets of –, 230, 232, 248, 259, 323

heaps, 289, 302-303, 304, 361
– of isomorphisms, 289

heuristics, intuition, general techniques
‘‘above and below’’, see constructions: from

...
– for characterizing closed sets under a

Galois connection, 146, 284
– for finding left-universal objects, 24, 33,

35, 37, 48, 53-54, 311, 341
– for finding right-universal objects, 53-55,

83-84
generalizing from Set to other categories,

200
how to view functor categories, 200, 254
how to view general categories, 161
idea of Yoneda’s Lemma, 207, 208
module case as model for thinking of

representable functors, 344
motivation for set-theoretic foundations,

101-102, 118-120
motivation for van der Waerden’s trick, 31,

68
– on left and right functional notation, 341

homomorphism, 11, 262, see also lattices,
categories, morphisms

ideal, 70
Nullstellensatz, 143
prime –, 73, 83, 172

idempotent
Boolean ring of –s in a ring, 76, 214, 323,

354
– element with respect to an operation, 76,

121, 336
– endomorphism, 181, see also retraction
– operation, 121, 124, 140, 304
– operator, 134, 142, 285

identities, 33, 275-277, 279, 283, 284, 286-289,
see also associativity, etc.

(co)– in (co)algebra objects of a category,
315-317, 319, 351

– for G-sets, 38
group –, 31, 40
hyper–, 304
imposing – on an algebra, 279, 323, see

also group(s): abelianization
– in finite groups, 34
– in lattices, 121, 122, 126
Mal’cev conditions, 304
– of Boolean rings and algebras, 74-75
origin of group –, 31
Phillip Hall’s – (for groups), 33
polynomial –, see rings ... : with ...
xn = 1, see group(s): Burnside problem

imposing relations, see relations (equations) ... :
imposing ...

indexed family, see tuple
induction, 96-101, 128, see also recursion and

Zorn’s Lemma
initial and terminal objects, 182-183, 187

– as (co)domains of zeroary (co-)operations,
13-14, 313, 325, 327

categories with (co)limits but no –, 252
classes of functors respecting –, 240
existence results for –, 249-250
– expressed in terms of other constructions,

185, 207, 234
– of categories Rep(V , W), 351
other constructions expressed as –, 203-204,

207, 312, 313, see also categories:
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auxiliary
– represent trivial functors, 207, 346
zero objects, 182-183, 185, 187, 346-347

integers, 12, see also natural numbers
Fermat’s Last Theorem, 119
Fibonacci numbers, 97, 100
Gaussian –, 74
p-adic –, 218-219-221, 222, 227-228

intersections: families closed under, see closure
operators

invertible, see also unicity: of two-sided ... and
matrices: ...

– elements in monoids, 65, 165, 170, 195,
206, 211, 280, 324-325

– elements in rings, 220, 257
– morphisms in categories, see

isomorphisms
one-sided – elements, 62, 177, 181, 187,

206, 332, 333-334
one-sided – morphisms in categories, see

retractions
isomorphisms

classes of algebras closed under – (‘abstract
classes’), 285

– in a category, 177, 181, 183, 196
– of bifunctors, 209-217, 254-256, 259
– of categories, 196, 197, see

also categories: equivalence of
– of functors, 192-193, 194, 196, 197, 200,

204-206, 208-214, 307, 332, 333, 335,
348, see also functor(s): representable ...
and categories: equivalence of

– X → Y form a heap, 289
K-theory, 65
lattices, 8, 122-134, 140, 215, 304

– and closure operators, 135-137, 138
antiisomorphisms of –, 142
(α-)(semi)complete (semi)–, 127-128-134,

135-136, 137, 186, 253, 263, 277, 307
Brouwerian –, 120
cofinal sub–, 125
compact elements in –, 132
compatibility identity, 122, 123, 131
concrete –, see closure operators
distributive –, 126, 348

duality between distributive – and partially
ordered sets, 175, 259, 354

fixed point theorem for complete –, 129
greatest and least elements in (semi)–, 124,

354
homomorphisms of (α-complete) (semi)–,

124-125, 131, 132-133
ideals and principal ideals in –, 136
– made into categories, 245
modular –, 33, 126
– of equivalence relations, congruences,

132-133, 172, 174, 206, 254-255, 265
– of subalgebras of an algebra, 123, 127,

131, 263-264
– of sub(semi)– of (semi)–, 126
– of varieties of algebras, 276
power sets as –, 123, 126
representable functors to or from (semi)–,

347, 361
ring-theoretic notation for – (not used here),

123
semi–, 121-122, 123-125, 139-140, 215,

254-255, 304
sub(semi)–, 124
underlying partially ordered sets of (semi)–,

121, 123, 125, 215, 348
universal constructions for (semi)–, 124-125
upward and downward generating numbers

of –, 131
– with group action, 230

Lie algebras, 141, 290-291-295, see
also group(s): Lie

– of vector fields, 292-293
universal enveloping algebras of –, 215, 323

limits and colimits, 230-231-253, 303
– are adjoints to diagonal functors, 232
– as objects with universal cones, 233, 237,

238, 239, 242
– as representing objects, 232
categories having small –, 231, 243-247,

249-253
comparison morphisms for –, 242-251
direct and inverse limits, 221-223-231,

233-234, 239, 241-242, 245-248, 265-267,
282, 286, 334
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functors respecting –, 235-236, 237-248,
325-326, see also –: comparison
morphisms

– in functor categories, 194, 348-349
– in varieties of algebras, 264, 273, 277-278,

279
‘inductive’ and ‘projective’ ( = direct and

inverse) limits, 223, 228
– of –, 240, 243-248
– of identity functors, empty functors, 234,

238, 242, 250
– of partially ordered sets, 354
– of systems of representable functors, 334
– used in getting other universal

constructions, 249-252, 320-321, 322, see
also adjunctions: Freyd’s ...

logic and model theory
axiomatic model classes, theories, 144, 146,

see mainly varieties ...
compactness arguments, 228
Galois connection between propositions and

models, 144, 145-146
propositions, 92, 148
rules of inference for a theory, 146

loose usage, 11, 12, 14, 21, 28, 36, 40, 77, 87,
121, 159, 201, 223, 265, 271, 275

maps, 11, 159
matrices

category with – for morphisms, 149, 156,
196

determinants of –, 34, 257, 258, 262,
311-312, 319, 322, 349

free groups of –, 34
group of invertible –, 45, 46, 184, 257, 258,

311-313, 319, 322, 349
identities satisfied by –, Amitsur-Levitzki

theorem, 288
rings of –, 197, 288, 323, 325, 348

metric spaces, 81, 139-140
completion of –, 219-220
lattice-valued –, 133

minimal and maximal elements, see ordered
sets ... , chain conditions, lattices

miscellaneous areas
adjoint operators on Hilbert space, 213
affine geometry, affine subspaces of a vector

space, 124, 125, 126
algebraic geometry, 143, 327
base-p expansions of real numbers, p-adics,

etc., 220, 227, 229
coloring problems, 225
continued fractions, 19
convex sets, polyhedra, 144
differential equations, 98, 221
electrical circuits, 301-302
graphs, 92, 301, see also monoids: and

E-systems
projective geometry, 124, 126
quantum mechanics, 70

modules, 55, 59, 144, 216, 338, see
also abelian groups, vector spaces,
bimodules, tensor products

categories of –, 153, 201
clones with central Ab are theories of

varieties of –, 360
group structure on hom-sets of –, 201, 342,

see also abelian groups: ...
homomorphisms of – written on opposite

side to actions of ring-elements, 341
lattices of sub– of –, 126
– over matrix rings, 348
– over semirings with 0 and 1, 360, 361
projective –, 179
representable functors among varieties of –,

338-345, 348, 360
restriction and extension of scalars, 345

monoid(s), 59-65, 94-95, see also congruences:
on –

abelian –, 64, 359
– and E-systems, 331-337
categories of –, 153
clone as generalization of –, 296, 362
constructions relating – and groups, 64-65,

154, 165, 195, 196, 210-211, 214, 287,
303, 324-325, 333, 335-336, 337-338, 345

constructions relating – and semigroups, 60,
65

functors from – to –, 327-337, 349
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Grothendieck group of a –, 64
groups and – made into categories, 154, 170,

173, 177, 182, 185, 190, 192, 193, 201,
207, see also G-sets: as functors

kernel and cokernel of a – homomorphism,
63

multiplicative – structures of rings, 65-68,
69, 148, 167, 214, 218, 323, 325

– of endomorphisms of an object, 41,
147-148, 157, 272

– of endomorphisms of IdC , 193, 362
opposite –, 167, 332-333
partially ordered – of operators on classes of

algebras, 285-286
– rings, 69, 73, 214, 218, 236, 323
‘‘Should they be called ‘–’ or ‘semigroups

with e’?’’, 59
trivial –, 71
– with cancellation, 64

monomorphisms, 177-182, 184, 194, 255, see
also difference kernel ... : maps ...

– and pullbacks, 189
conflicting uses of word ‘‘–’’, 179
distinguished classes of – called

embeddings, inclusions, 182, 195
non-one-to-one –, 178, 181
– of most familiar categories are the one-to-

one maps, 178, 181-182, 278-279
morphisms, 150, see also category: ... and

functor(s): ...
domain and codomain of –, 151
embedding or inclusion –, see

monomorphisms: distinguished ...
identity –, 151, 159, 202, 204-208, 212, 213,

236, see also Yoneda’s Lemma
– of (co)algebra-objects in a category, and

of representable functors, 315, 318, 332,
335, 336

natural numbers, 96, 103, 119, see also growth
rates

category of –, 299, 301, see also varieties
... : clones ...

functors on finite sets yield functions on –,
169, 175, 177

semiring of –, 361

von Neumann construction of –, 101-102,
106

neutral element, 11, 59, 333, 353, see mainly
group(s), monoid(s), rings ...

co–, 327-328, 337, 345-346
– laws and definition of clonal category, 297
one-sided –, 336

normal forms
– in Boolean rings, 75
– in coproducts of groups and monoids,

48-50, 51, 62, 327
– in free abelian groups, 43-44
– in free groups, 32-33
– in free lattices, semilattices, 33, 125
– in monoids, 60, 62, 63, 65, 332
– in objects with particular presentations, 41,

52, 62, 65, 70
– in rings, 66-68, 70-74
problem of obtaining –, 33, 46
unsolvable word problems, 33, 46
van der Waerden’s trick, 31-32, 33, 49, 190,

332
n-tuples, see tuples
one-one-ness, see monomorphisms and

difference kernel ... : maps ...
– and functors, 272
– is not characterizable category-

theoretically, 177
– of map from X to free object on X , 21

open questions, 34, 91, 92, 138, 227, 283, 337
questions I don’t know answer to, don’t

know whether they’ve been studied, 18,
125, 158, 242, 253, 301, 347, 362

operads, 305
operations, 261, 314, see also arity

associative – and the empty string, 48, 74,
127-129, 140

co–, 274, 313, 318, see also algebras: (co)...
– depending on only some subset of their

indices, 295-296
derivations, 290, 294
derived –, 17-18, 134, 156, 281-302,

315-317, 319, 357-360
distinguished elements as –, see –: zeroary
formally infinite expressions in finitary –, 44

12/8/98 Math 245

Word and Phrase Index 379



generalized – (functorial, derived), 28, 257,
281-283, see mainly functor(s): -ial ...

majority vote –, 18, 355
Mal’cev conditions, 304
mutually commuting –, see commutativity:

between ...
– on an object of a category, 314, see

mainly algebra(s): object
– on functors, 174, 281-283, 298-309,

314-321, 353
– on quotient-sets, 23
– on R (xp; x2 + y3; etc.), 283
pointwise –, 314, 353, see also product
primitive –, 17, 281, 297, 301, 302-307
projection –, 17, 296-298, 305, 316,

357-359, see also projection ...: from
product ...

zeroary –, 13-14, 18, 263-264, 277, 295-296,
336, 344, 346-347, 351, 353, 358, see
also neutral element

ordered sets (partial and total), 86-101, 125,
139-140, 241-242, see also ordering ...
and lattices

α-directed –, 247, 266, 269, 277
antichains in –, 90, 117-118
categories of –, 153, 182
chains in –, 86, 90, 115-118, 125, 127-130,

136-137, see also chain conditions and
ordering ... : total

cofinal subsets of –, cofinality of –, 90, 113,
117, 125, 129, 224

‘covering’ relation in –, 88
direct product of –, 88
directed and inversely directed –, 223-224,

see mainly limits and colimits: direct and
inverse limits

duality between – and distributive lattices,
175, 354

‘filtered’ –, see –: directed
Fredman’s conjecture on –, 91-92
Galois connection between two –, 143, 259
height and width of –, 90, 108, 118
incomparable elements in –, 90
inductively –, 115-116, 117
initial segments of –, 105-108, 111

interpolation properties for –, 130
intervals in –, 90
isomorphisms of –, 87
isotone maps of –, 87, 88, 124-125, 285
l.u.b.’s and g.l.b.’s in –, 121-123, 127-129,

130, see mainly lattices
– made into categories, 154-155, 170, 173,

177, 182, 183, 185, 186, 223, 242, 245,
247

minimal, maximal, least, greatest elements in
–, 89, 96, 97, 124, 224, 354, see
also lattices: (α-)(semi)complete

pictures of finite –, 89
reconstruction problem for finite –, 92
underlying – of (semi)lattices, see lattices: ...
ways that – arise, 148
well- –, 96, 100, 105-111, 115-118, see

also ordinals
– with group action, 230

ordering (partial and total), 86-101, see
also ordered sets ... and chain conditions

divisibility –, 87, 92, 93, 123
duality in the theory of –s, 87, 99-100, 122,

167, 173
extension (including linearization) of –,

91-92, 117
induced – on a subset, 86, 124
lexicographic –, 100-101
majorize an element or set under an –, to, 90
opposite (‘dual’) –, see –: duality
pre–, 92-93-96, 105, 140
product –, 88
strict – (e.g., ‘‘<’’), strict isotone map, 88,

107, 154, 230
total (or ‘linear’) –, 86, 91-92, 96, 100, 105,

115, 117, 123, see also ordered sets ... :
chains ...

when morphisms in RelSet are –s, 180
ordinals and cardinals, 106-107-111-115, 117

– and lattice operations, see lattices:
(α-)(semi)complete

– and the process of generating an algebra,
25, 27, 79, 137, 253, 267-269, 271, see
also solution-set

arithmetic of –, 109-110, 112-113
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cardinality, 111
countability, uncountability, 25-27, 44, 104,

111, 112, 113, 118, 125, 129, 171, 225,
248, 253, 267-268, 282, 283

decomposition of ordinal as ‘‘limit ordinal +
finite ordinal’’, 253

inaccessible cardinals, 164
limit – and successor –, 108-110, 114-115
regular –, singular –, cofinality of –,

113-114, 117, 164, 268-269, 275, 287,
314, 317

von Neumann construction of –, 106-107
pair, see tuple
parentheses

– can be dropped for associative operation,
29, 32

need for – in defining group-theoretic terms,
15

pedagogy and philosophy, see also course ...
and heuristics ...

anthropology of mathematics, 140
approach to teaching, 5
‘‘Are mathematical objects real?’’, 118-120
freshman math, and ‘‘or’’ vs. ‘‘and’’, 146
handwaving, 6
‘monoid’ vs. ‘semigroup with e’, 59
on indexing conditions by cardinals, 266
petty details, 5
threefold structures of many mathematical

concepts, 139-141
permutation, 38, see also group(s): symmetric

group concept comes from properties of –s,
31, 49, 139, 147

sign of a –, 288
polynomial, see mainly free: commutative

rings, and symmetric: ring ...
differentiation of –s, 70, 145
– functions on N and R, 105, 123
solution-sets of –s, 143, 174

power, see mainly sets: power and references
there

object with finite –s yields clonal category,
305

– of an object or a functor (i.e., product of
copies), 194, 197, 280, 336, see
also operation

preorder, see ordering ... : pre-
presentation(s), 39, 203, 205, 273, 279-280,

312, 321, 322-323, 330, 335
bounds on numbers of generators, relations

needed in –, 41, 45
canonical – for an algebra, 211
every algebra is direct limit of finitely

presented algebras, 226
finitely presented object, 41
– of coproducts, 47-48
– of groups, 38-39-47, 58, 64
– of lattices and semilattices, 124-125
– of monoids, 60-65, 69
– of partially ordered sets, 88
– of representing algebras for functors, 312,

318, 323-324
– of rings, 69, 70-71, 73-74
– of sets, 77
– of tensor products, 56-57, 341-343
relators, 40, 57
– with empty set of relations or generators,

41, 280, 323
pretty pictures, 27, 50, 78, 90, 187, 198, 321,

334
product (of sets, algebras, objects in a

category), 50, 56, 184-186, 188, 246, 264,
314

– as a functor, 175, 194, 201
– as adjoint, 215
– as limit, 230, 241-242
– as representing object, 206
– as terminal object of auxiliary category,

203
associativity and commutativity of –

construction, 77
category having –s, 184, 200, see

also varieties ... : clones ...
diagonal map into –, 52
direct – (classical term), 53, 264
example of – not based on – of underlying

sets, 186
functors respecting –s, 186, 266, 314, see

also varieties ... : clones ...
– of algebras doesn’t depend on variety, 52,

264
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– of categories, 176, 198-200
– of chains, as lattice, 123
– of empty family, 71, 77, 185, 346
– of functors, 334
– of groups, 47, 52-54
– of monoids, 62-63, 95
– of partially ordered sets, 89, 100, 354
– of rings, 70-71, 73, 75-76
– of sets, 76-77, 102
–s as domains of operations, 314
–s of –s, 185
–s of too many objects, 186
second universal property of – groups,

51-52, 73
subobject-of- – constructions, 25-29, 37, 39,

43, 60, 79-80, 81, 233-234, 248-250, 271,
279, see also solution-set

topology on –, 79, 228, 273
varieties are closed under –, 277, 279,

284-286
projection maps

– from limit objects, 220, 224, 231
– from product objects, 47, 176, 184, 224,

281, 296-298, 300, 316, 357-359
– from pullback objects, 188

projective (modules and other objects), 179
pullbacks and pushouts, 187-189

– and general limits, colimits, 230, 245
– as (co)products in auxiliary categories,

188
– as functors, 191
– as initial and terminal objects in auxiliary

categories, 203
– monomorphisms, epimorphisms, 189
– obtained from (co)products and difference

(co)kernels, 188
recursion, 16, 23, 97-100, 106, 109-110, 111,

114-115, 116, 267, 270-271, see
also foundations ... and Zorn’s Lemma

– using DONE, 106, 111
relation (on a set or family of sets), 23, 86, see

also ordering ... and equivalence relation
antireflexive –, 87
antisymmetric –, 86
– as generalization of function, 156, see

also RelSet in symbol index

composition of –s, 156
– induces Galois connection, 142, 188, 242,

248
reflexive –, 86
restriction of a – to a subset, 86
symmetric –, 93
transitive –, 86

relations (equations) in an algebra, 14, 20-26,
273, see also term(s)

– and identities, 275
– and representable functors, 280
– expressed using elements of free algebras,

40, 280
imposing – on an object, 36-38, 60-62, 63,

70-71, 89, 265, 321, see
also presentations, difference cokernel,
and identities: ...

– in fields, 28
– in G are identities of G-sets, 38, 288
relators, see presentations

representations (of algebraic structures), 33
Cayley’s theorem and analogs, 147-153,

170-171, 207
– of Boolean rings by subsets of sets, 75, 76
– of categories by maps among sets,

151-153, 170-171, 207
– of clonal categories by algebra and

coalgebra objects, 300, 316, 319, 358
– of groups, monoids by set-maps, algebra

automorphisms etc., 34, 69, 147, 148, 207,
see also permutations, G-sets

– of partially ordered sets in power sets, 89,
148

– of rings by linear maps, 68, 323
– of (semi)lattices, various, 123, 132-133,

135-136
– of various structures, made into functors,

190, 300
universal, see –: Cayley .. and normal ... :

van der Waerden
universal –, 323

representing objects, see functor(s),
representable
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retract(ion)s, 180-181, 185
– of (abelian) groups, 181
– of categories, 335

rings and k-algebras, 65-66-76, 82-83, 94-95,
217, 230, 236, 241, 257, 258, see
also field, integers, matrices, modules, Lie
algebras and subheadings under abelian
groups, monoids, tensor products

– associative if contrary not stated, 66
(bi)commutants of – of endomorphisms, 144,

145
categories of –, 153
chain conditions (q.v.) on – (Artinian and

Noetherian), 97, 99
characteristic of –, 288
commutative –, 66, 101, 141, 174, 311-313,

319, 322, 326, 344
division –, 28, 141
factor –, 62
factoring elements of – into irreducibles, 97
functor from – to Lie algebras, 215, 291,

302, 323
Golod-Shafarevich construction, 45
Hensel’s Lemma, 220
ideal and subring lattices of –, 126
integral domains, 70, 227, 277, 357
Jordan –, 294
localization of commutative –, 65, 220
Morita contexts, Morita equivalent –,

149-150, 158, 348
nonassociative –, 66, see also Lie algebras
– of endomorphisms, 68, 144
– of formal power series, 206, 217, 221, 323
‘– of noncommuting polynomials’, see free:

rings
opposite –, 167, 344
p-adic numbers, see integers: ...
‘‘pointed’’ – are trivial, 347
principal ideal domains, 226
restriction and extension of scalars, 345
semirings or half-rings, 360, 361
symmetric – on abelian groups and

k-modules, 70
Weyl algebra, 70, 145
– with and without ‘‘1’’, 65, 338

– with involution, 141
– with polynomial identity (‘‘PI’’), 288-289

semigroup(s), 71, 303, 336-337, 345-346, 351,
see mainly monoids

categories of –, 153
zero and one-sided zero elements and

multiplications in –, 337
semilattices, see lattices: semi-
set(s)

category of –, 153, 162, 165, 167, 170, 171,
232, 243-248, 260, 266, 272, 276, 286,
303, 309, 321, 351, 354, 359

category of finite –, 169, 175, 177, 194, 197
cofinite sub–, 76, 158
disjoint union of –, see coproduct: of sets
duality between finite – and finite Boolean

rings, 197, 355
large and small –, see foundations ... : ... and

solution-set ...
opposite of category of –, 336
pointed –, 336
power –, 74-76, 103, 172, 173, see

also lattices: ... , functors: ... , topological
spaces: ...

structure of the product and squaring
functors on –, 307

– theory, see foundations ...
underlying –, 11, see mainly functors:

forgetful
sfield, skew field, see rings ... : division
solution-set condition, 249-250-253, 269, 279,

305, 325-326
S-sets (S a monoid), see G-sets
Structure and Semantics, see varieties ... : ...
subobjects, see algebras: sub– and

monomorphisms: distinguished classes
substitution into terms, see operations, derived
surjectivity, see difference cokernel ... : maps ...

and epimorphisms
– and functors, 272, 308
– is not characterizable category-

theoretically, 177
symmetric

– elements in free algebras, coproduct
algebras, 68, 101, 347
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– ring on an abelian group or module, 70
tensor product(s)

– and adjunctions, 216, 217, 342
– and the Hom functor, 58, 216, 342
– as functor, 175, 201, 326
commutativity of – functor, 193
‘‘nonabelian –’’, 58
– of abelian groups, 56-59
– of modules and bimodules, 158,

342-343-345
– of rings and k-algebras, 72-73, 95, 344
tensor powers of a vector space, 196
tensor rings and algebras, 70, 214, 218, 323

term(s), 15, 18, 20, 22-25, 28, 29-34, 38, 40,
269

– algebra as free Ω-algebra, 269-271
constructions by – modulo equivalence

relation, 22-25, 37, 39, 43, 279
evaluation of –, 16-17, 20, 23, 32, 281-283
group theoretic –, 14-17

ternary, see arity, heaps
theory, see logic ... and varieties ...
these notes, see also course ...

exercises in –, 8
numbering of points in –, 8
topics to be added to –, 3, 33, 197, 215,

228, 248, 291, 298, 348, 355, 357, 362
typographical errors in –, 9

topological spaces, 90, 95-96, see also metric
spaces, vector spaces: linearly compact,
abelian groups: ... and algebras: ...

Cantor set, 273-274
cohomotopy groups of –, 175
compact –, 132, 225, see also logic ... : ...
connected components of –, 81
embedding of –, 80
fundamental groups of –, 147, 149, 156,

172, 197, 320, 361
homotopy of maps between –, 83-84, 156,

167, 170, 172, 175, 320
lattices and closure operators associated with

–, 126, 129, 134, 135, 137
order-of-limit questions in –, 241
path-lifting property for maps of –, 83
power sets as –, 174

Stone-Čech compactification of –, 78-79-83,
214, 309

topological groups, 81, 83, 175, 361, see
also group(s): Lie and abelian groups:
solenoids

(universal) covering spaces of –, 83-84
Urysohn’s Lemma, 82
vector bundles on –, 65

tuple, 13, 16
conventions on n-–s, 13, 109
‘‘pair’’ vs. ‘‘2-–’’ in foundational context,

102
ultrafilter, 79
unary, see arity
unicity, see also monomorphisms,

epimorphisms
– in recursive constructions, 98, 109
lack of – in axiom of choice, 104
– of components of ordered pairs, 102
– of free generating set for free algebras in

some varieties, 272, 274
– of homomorphism specified on generating

set, 20, 26, 39, 249
– of partial isomorphisms between well-

ordered sets, 105-108
– of reduced expressions for elements of

free group, 31
– of set of Ω-terms in X, 15
– of two-sided inverses, 40, 178, 324, 333
– of universal objects, and their canonical

isomorphisms, 21, 39, 61, 79, 183, 194,
203, 214

units, see invertible elements and adjunctions:
...

universal elements, 21, 204-206, see
also universal properties

– for representable functors, 205, 207, 213
universal properties, 21-84, 176, 230-231, 241,

249, see mainly specific universal
constructions

existence theorems (general) for objects with
–, 248-253, see also product ... :
subobject-of- ...

nonexistence of objects with some –, 22, 28,
55, 241, 252-253, 326
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– of free groups, 21-22, 26, 27, 31
right and left –, 53-56, 203, 231, 236, 259,

264, 269, see also heuristics ... : for ...
universal quantification ( ∀ ), 11

– as big conjunction, 146
classes of algebras defined using only –s, 12

universe, see foundations ... : ...
U-small etc., see foundations ... : large .... and

categories: large ...
van der Waerden’s trick, see normal forms: ...
varieties and equational theories, 276-290

– as categories of representations of a clonal
theory X, 300

Birkhoff’s HSP Theorem and related results,
284-286

categories that are not varieties, 277, 279,
303, 308

clones, clonal theories, 296-299-300-307,
308, 316, 319, 354, 355, 357-362, see
also functors: underlying-set-preserving –

equational theory generated by a family of
identities, 276

Lawvere’s definitions of –, 299, 301
Structure and Semantics, 305-306-308, 345,

349, 354-355, 357
subvarieties of varieties of groups and

monoids, 288, 303
subvarieties of varieties of G-sets,

R-modules, 288, 307, 309
subvarieties of varieties of rings, 288-289
trivial and nontrivial –, 355
varieties generated by families of algebras,

276, 282, 284-290
‘‘When do we consider two varieties the

same?’’, 290, 358
‘‘Which categories are equivalent to

varieties?’’, 308
vector spaces, 226, see also tensor products

bases of –, 114, 141, 168
category of –, 196
duality of –, 143, 144, 172, 174, 193, 196,

355, 357, 360
linearly compact and other topological –,

143, 144, 228, 355

word problems, see normal forms
Yoneda’s Lemma, Yoneda embedding,

207-208, 209, 212, 243, 282, 298, 308
– and (co)algebra objects in a category, 314,

315, 317, 320
Zermelo-Fraenkel set theory, ZF, ZFC, see

foundations ... : axioms ...
zero, see operations: –ary and semigroups: ...
Zorn’s Lemma, 17, 114-115-117

equivalence of – with ‘‘weaker’’ statement,
129
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