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Abstract. Assume that M is an R-bimodule. Let End(R,M) denotes the category whose
objects are pairs (P,f ), where P is a finitely generated projective right R-module and
f :P →P ⊗M. It has an exact structure obtained from the category of projectives over R
by forgetting fs. We prove that, when R is a field, we have K̃(End(R,M))=ωK̃σ−1TM

denotes certain localization of the tensor algebra spanned by M. This result should be
viewed as a special case of the noncommutative extension of the results of [4].
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1. Introduction

Let R be a ring and M an R-bimodule. Let TM denote the tensor alge-
bra spanned on M. Denote by End(R,M) the category whose objects are
pairs (P, f ), where P is a finitely generated projective right R-module and
f :P →P ⊗M. Let Nil denote the full subcategory of End(R,M) consist-
ing of nilpotent objects. Our ultimate goal (which is still far ahead) is to
understand the inclusion functor Nil ↪→ End(R,M) on K-theoretical level
in terms of K-theories of rings. The difference between K(End(R,M)) and
K(Nil) should be described in terms of the K-theory of a suitable, non-
commutative localization of the ring TM.

It is worth underlining here that the category End(R,M) and its
K-theory appears naturally in K-theoretical investigations. For example, it
played a crucial role in comparing stable K-theory and topological Hochs-
child homology in [3]. Recently, it was used by McCarthy in his studies on
the de Rham–Witt complex. It looks like the meaning of this theory will
grow in the K-theoretical investigations in the nearest future.

Let us give here some historical motivation for our investigations. When
M =R it is known that reduced K(Nil) is the same as reduced K(R[x])
with a shift of gradation while K̃(End(R,M)) is equal to �K̃(A) where
A is equal to R[X] localized in (1 + xR[x]) (see [4]) and �K̃(A) denotes
the loop space of the reduced K(A). Hence the effect on K-theory of



292 STANISŁAW BETLEY

our inclusion functor can be viewed as a part of the localization sequence
for localizing polynomial algebra. The observation comparing K(Nil)
and K(R[x]) has its generalization to “larger” Ms: Waldhausen [9, see
Theorem 3, p. 137] proved that for a projective M, the reduced K(Nil)
is the same as the reduced �K(TM). We are looking for the appropriate
generalization of the second observation. Our investigations were stimu-
lated by McCarthy, who after [3] conjectured that K(End(R,M)) should be
described via appropriate localization of TM.

Our final results only partially fulfill our expectations. There are two
reasons for that. First of all our model of the cofiber of the map K(Nil)→
K(End(R,M)), which we construct in Sections 2 and 3 following the work
of Schlichting [7], is very special. To make it work we have to assume that
our ground ring is of the semi-simple type. The other problem comes from
the fact that as a main tool to work with the localized tensor algebra we
use the localization sequence of Neeman and Ranicki [5]. To use it we have
to assume that the localized tensor algebra is stably-flat over TM. While
writing this note we discovered that algebraic properties of localizations of
TM are largely unknown when only one assumes that the ground ring is
not a field. Hence to get our final result (Theorem 3.3) we have to assume
that R is a field. We suggest [8] as a good place to learn something about
noncommutative localizations and its properties and also as a reference
book on this subject.

2. Category of Parameterized Endomorphisms

Let R be a commutative ring with unit and M a finitely generated
R-bimodule. We will assume that M is (bi)-projective of rank bigger than
1 and R satisfies the condition that every submodule of a finitely gener-
ated projective module P is itself finitely generated projective and splits as
a direct summand in P . In other words, we assume that our ring is semi-
simple. In such case the category of finitely generated projective R-mod-
ules is abelian. As one sees, we eventually assume that our ground ring R
is commutative. The assumption that R is commutative can be obviously
removed, but having it we do not have to write about right and left struc-
tures over R, which play no role in our investigations. The real “noncom-
mutativity” here comes from the tensor algebra.

Let TM denote the full tensor algebra on M:

TM=
⊕

0�i
M⊗i .

Denote by End(R,M) the category whose objects are pairs (P, f ), where
P is a finitely generated projective right R-module and f : P → P ⊗M.
Morphisms �: (P, f )→ (Q,g) are given by maps φ:P →Q which satisfy
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g ◦φ= (φ⊗ id)◦f.
We will address End(R,M) as a category of parameterized endomorphisms.
It has an obvious structure of an exact category coming from the exact
category of projective modules over R (we forget about f ). The following
definition is taken from [9]:

DEFINITION 2.1. An object (P, f ) of End(R,M) is called nilpotent if
P =⋃

i P
i where P i is defined inductively by the formula P i =f −1(P i−1 ⊗

M) with P 0 =0.

LEMMA 2.2. An object (P, f ) is nilpotent if and only if the map
P ⊗TM→P ⊗TM induced by id −f is an isomorphism.

Proof. This lemma is fully proved in [9, p. 160]. Shortly speaking the
formula

id+f +f 2 +f 3 +· · ·:P ⊗TM→P ⊗TM
makes sense for nilpotent objects, where

f i = (f ⊗ id⊗· · ·⊗ id)◦ · · · ◦ (f ⊗ id)◦f :P →P ⊗M⊗i

and describes well the inverse to the map induced by id−f . For the impli-
cation in the opposite direction one can use 2.3 below.

LEMMA 2.3. Let (P, f ) be an object of End(R,M). Then there is a unique
submodule P ′ of P , such that (P ′, f |P ′) is nilpotent and f :P/P ′ →P/P ′ ⊗M
is a monomorphism. Moreover any φ: (P, f )→ (Q,g) induces φ′: (P ′, f |P ′)→
(Q′, g|Q′)

Proof of Lemma 2.3. Define

P ′ =
⋃
P i,

where P is are defined in 2.1. Then f |P ′ has its image in P ′ ⊗M by defini-
tion and hence f defines the map P/P ′ →P/P ′ ⊗M. Then, it is straightfor-
ward to check that all required properties are satisfied. The map φ′ =φ|P ′ .
It is also easy to check that φ′ is well defined.

In the future the quotient P/P ′ as above will be denoted P ′′ and the
induced map P ′′ =P/P ′ →P/P ′ ⊗M=P ′′ ⊗M will be called f ′′.

Observe that the subcategory Nil of nilpotent objects inherits the struc-
ture of an exact category from End(R,M). Recall from [7, 1.3] the defi-
nition of a filtering cubcategory of an exact category. WARNING: in an
exact category we will follow notation from [7] and will call an admissible
epimorphism as deflation, an admissible monomorphism as inflation and
an exact sequence as conflation.
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DEFINITION 2.4. Let U be an exact category and let A⊂U be an exten-
sion closed full subcategory. Then the inclusion A⊂U is called right filter-
ing if

(1) A is closed under taking admissible subobjects and admissible quo-
tients in U and

(2) every map U→A from an object U of U to an object A of A factors
through an object B of A such that the arrow U→B is a deflation:

U
∀ ��

�� ���
��

��
��

� A

∃B

�� .

The inclusion A⊂U is called left filtering if Aop is right filtering in Uop.

PROPOSITION 2.5. Under our assumptions on R and M the category Nil
is a full, extension closed subcategory of End(R,M) which is right and left
filtering.

Proof. By the definition Nil is a full subcategory of End(R,M). Every
subobject and every quotient of a nilpotent object is again nilpotent. More-
over, 2.2 implies that when (P, f ) is an object of End(R,M) and it has a
nilpotent subobject with nilpotent quotient then (P, f ) is nilpotent. Every
arrow φ: (P, f )→ (Q,g) has its image (imφ,g|imφ) in End(R,M) which is
an admissible subobject of (Q,g) and an admissible quotient of (P, f ).
This implies both filtering properties.

We will follow the path described in [7]. We will call a map φ: (P, f )→
(Q,g) in End(R,M) a weak isomorphism when it is a finite composition of
inflations with cokernels in Nil and deflations with kernels in Nil. Follow-
ing [7, 1.16] we have a well defined quotient category H = End(R,M) /Nil
obtained from End(R,M) by formally inverting the weak isomorphisms.
Moreover, H has a natural exact structure in which a sequence X →
Y →Z is a conflation if it is isomorphic to the image of a conflation in
End(R,M) under localization functor End(R,M) →H. Obviously this local-
ization functor is an exact functor of exact categories and we have [7, 2.1]:

THEOREM 2.6. The sequence of exact categories Nil → End(R, M) → H
induces a homotopy fibration of K-theory spaces

K(Nil)→K(End(R, M))→K(H).
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Remark 2.7. As Schlichting noticed in 1.13 the set of weak isomor-
phisms admits a calculus of fractions. Hence in H every morphism can
be written as a map in End(R,M) followed by an inverse of a weak
isomorphism.

Remark 2.8. Theorem 2.6 can also be obtained from Quillen’s localiza-
tion theorem [6, Theorem 5], by observing that Nil is a Serre subcategory
of End(R,M) and H is equivalent to the associated quotient.

3. The Category of TM-Modules

Let AP denote the right TM-module which fits into an exact sequence

0→P ⊗TM→P ⊗TM→AP →0,

where (P, f ) is an object of End(R,M) and the map P ⊗TM→P ⊗TM is
induced by id – f . Obviously AP is generated over TM by the image of the
0-grade of P ⊗TM which is isomorphic to P as an R-module. Hence AP is
always finitely generated. Warning: for simplicity we do not include f into
the notation for AP assuming that it will be always clear (or not necessary
to know) which map we have to take into account. Moreover, for a given
TM-module AP as above the R-module P is obviously not uniquely deter-
mined. Nevertheless we will use this notation to indicate that our module
fits into the exact sequence as above. We will write AP =AQ when P is a
submodule of Q and the natural embedding AP ↪→AQ is an isomorphism.
We will use the same convention for the quotient map P �Q with the
property that the natural quotient map AP �AQ is an isomorphism.

Denote H(TM,E) the full subcategory of the category of right TM-mod-
ules consisting of objects isomorphic to AP s as above. We can endow the
category H(TM,E) with an exact structure by saying that a short sequence
in it is a conflation when it comes from a conflation in End(R,M). In order
to be sure that this way we do get an exact category structure we show
that H(TM,E) is equivalent as an exact category to the category of right
TM-modules of projective dimension 1, which have resolutions of the type
described above. Later we will show that H(TM,E) is equivalent to H as
an exact category. But before proving all these results we need first to show
some technical lemmas.

LEMMA 3.1. Assume that (P, f ) and (Q,g) are objects of End(R,M)
and F : AP → AQ is a morphism of TM-modules. Assume that there is
homomorphism φ : P ⊗ TM →Q ⊗ TM which covers F and is induced by
a homomorphism �: P →Q. Moreover assume that g is a monomorphism.
Then � is unique.
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Proof. Assume that �′:P →Q is another homomorphism satisfying the
same conditions as �. Then for every p∈P the element �(p)−�′(p) goes
to 0 in AQ. Assume that there is p∈P such that �(p)−�′(p) 	=0. But then
�(p)−�′(p)∈ im(id−g). On the other hand this is possible only if g has
nontrivial kernel.

LEMMA 3.2. Let (P, f ) and (Q,g) be objects of End(R,M). Assume that
we have a commutative diagram of TM-modules

P ⊗TM −−−→
id−f

P ⊗TM −−−→ AP

⏐⏐�φ′
⏐⏐�φ

⏐⏐�F

Q⊗TM −−−→
id−g

Q⊗TM −−−→ AQ

,

where φ is induced by an R-homomorphism �:P →Q. Moreover assume that
g is a monomorphism. Then φ=φ′.

Proof. The homomorphism φ′ is uniquely determined by its values on
P or in other words by its values on the 0-grade part of P ⊗ TM. Write
φ′ restricted to P as a sum φ′ =φ′

0 +φ′
1 +· · ·+φ′

k where indices correspond
to the gradation in Q⊗TM. Then from the commutativity of the left-hand
square in the diagram above we easily check that φ=φ′

0 because two ele-
ments in a graded object are the same when they are the same in every gra-
dation. Let for a given p ∈ P, s be the largest index such that φ′

s(p) 	= 0.
Then (id−g)(φ′(p)) has a nontrivial part in the grading s+1 because g is
a monomorphism. On the other hand φ((id−f )(p)) is trivial above grada-
tion 1. Hence s=0 and the lemma is proved.

LEMMA 3.3. Let (P, f ) and (Q,g) be objects of End(R,M). Assume that
we have given a commutative square in the category of TM-modules:

P ⊗TM −−−→ AP⏐⏐�φ
⏐⏐�F

Q⊗TM −−−→ AQ

,

where horizontally we have our standard projection maps. Then there exists
an object (S, h) of End(R,M) such that AS =AQ,h is a monomorphism and
we have a commutative diagram

P ⊗TM −−−→ AP⏐⏐�φ′
⏐⏐�F

S⊗TM −−−→ AS

,

where φ′ is induced by an R-homomorphism �′:P →S.
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Proof. Let us start from some simple technical observation. Assume that
(T , j) is an object in End(R,M). Let T ′ =T ⊕T ⊗M⊕· · ·⊕T ⊗M⊗k for a
certain k. Observe that T ′ is a finitely generated projective R-module. Let
H :T ′ →T ′ ⊗M be a map defined in the described above decomposition of
T ′ by the matrix

⎛

⎜⎜⎜⎜⎜⎝

j id 0 · · · 0
0 0 id 0 · · ·
...

...
...

...
...

0 · · · · · · 0 id
0 · · · · · · · · · 0

⎞

⎟⎟⎟⎟⎟⎠
.

Then it is easy to check that AT is the same as AT ′ as right TM-modules.
The identification comes from the embedding T ↪→ T ′ on the first sum-
mand.

The image of the zero grade of P ⊗ TM is contained in Q⊕Q⊗M ⊕
· · ·⊕Q⊗M⊗k for a certain k. Put S̄=Q⊕Q⊗M⊕· · ·⊕Q⊗M⊗k and h̄=
H as above with g instead of j . Then we can easily define φ′:P → S̄ which
induces a TM-homomorphism covering F . Observe that φ restricted to P

treated as the 0-grade of P ⊗TM induces an R homomorphism φ̄ :P → S̄.
Take φ′ = φ̄.

The obvious question which arises here is why φ′ covers F . Obviously φ
composed with the embedding i of Q into S̄ at the first summand is not
equal to φ′. But for any p∈P the classes in AS̄ of i ◦φ(p) and φ′(p) are
equal. This is easily seen from the way we identify AQ and AS̄ . The main
point in the construction of S̄ is to allow us to see elements from the first
k-grades of Q⊗TM as elements of the first grade of S̄⊗TM.

At this stage we cannot guarantee that h̄ is a monomorphism (usually
it is not !). So in order to get our object (S, h) we have to follow the lines
of 2.3 and put S= S̄ ′′ with the map h induced from h̄.

LEMMA 3.4. Assume that A and B are objects of H(TM,E) and F :A→
B is a TM-homomorphism. Then there exist objects (P, f ) and (S, h) in
End(R,M) and a map � : P → S in End(R,M) such that AP is isomor-
phic to A,AS is isomorphic to B and under this identification the map of
TM-modules induced by � covers F . Moreover when F is a monomorphism
(epimorphism) we can get � of the same type.

Proof. Both A and B are objects of H(TM,E) hence the existence of
(P, f ) and (Q,g) such that AP =A and AQ=B is obvious from the defini-
tion. TM-modules P ⊗TM and Q⊗TM are projective over TM so by gen-
eral properties of projective objects we have a commutative diagram



298 STANISŁAW BETLEY

P ⊗TM −−−→
id−f

P ⊗TM −−−→ AP

⏐⏐�φ′
⏐⏐�φ

⏐⏐�F

Q⊗TM −−−→
id−g

Q⊗TM −−−→ AQ

with exact rows. Now we can apply 3.3 to the right square of this diagram
and get the required (S, h) for the first part of the lemma. In order to get
mono- and epi- properties we have to work a little more.

Assume that F is a monomorphism. By 2.3 we can assume that f is a
monomorphism either. When we know that f is mono then the quotient
map P ⊗TM→AP is mono after restriction to the 0-grade. This forces �
to be a monomorphism.

Now assume that F is an epimorphism. If obtained � is not an epimor-
phism then call (S̄, h̄) the object of End(R,M) given by (im �,h|�). Then
one checks easily that AS =AS̄ and �:P → S̄ is an epimorphism.

Notation. In the notation of 3.4, instead of saying that the map of TM-
modules induced by� covers F we will say in the future that “� covers F”.

LEMMA 3.5. Assume that f :S→P ⊗M⊕P ⊗M⊗2 ⊕· · ·⊕P ⊗M⊗k is an
R-homomorphism for some natural number k. Let α : S→ P be an isomor-
phism. Then coker(α−f ) belongs to H(TM,E), when we treat here (α−f )
as a map S⊗TM→P ⊗TM (the obvious extension via tensoring with IdTM ).

Proof of Lemma 3.5. We will proceed similarly to the proofs of previous
lemmas. Assume first that P =S. Let then fi:P →P ⊗M⊗i denote the com-
position of f with the projection on P ⊗M⊗i . It is easy to observe that the
cokernel of 1−f is isomorphic as a TM-module to the cokernel of 1−F :
Q⊗TM→Q⊗TM where Q is an R-vector space isomorphic to P ⊗M⊕
P ⊗M⊗2 ⊕· · ·⊕P ⊗M⊗k and F :Q→Q⊗M in the sum decomposition of
Q as above is given by the matrix:

⎛

⎜⎜⎜⎜⎜⎝

f1 id 0 · · · 0
f2 0 id 0 · · ·
...

...
...

...
...

fk−1 0 · · · 0 id
fk 0 · · · · · · 0

⎞

⎟⎟⎟⎟⎟⎠
.

Hence coker(1−f ) belongs to H(TM,E). Because f was here arbitrary we
can write α−f = (1−f ◦α−1)◦α and get the general statement of 3.5.

THEOREM 3.6. The category H(TM,E) with conflations coming from
End(R,M) (or equivalently from TM-modules) is an exact category.
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Proof. Because H(TM,E) is a full subcategory of the category of
TM-modules it is enough to show that the former is extension closed in the
latter. Let (P,h) and (Q,g) be two objects of End(R,M). Assume that a
TM-module X fits into an exact sequence

0→AP →X→AQ→0.

To get our statement we have only to show that X is in H(TM,E). When
we apply standard method for constructing a projective resolution of a
module from projective resolutions a submodule and a quotient we imme-
diately get that X fits into an exact sequence of TM-modules

0→Y
ψ−→Y →X→0.

Moreover we know that Y is a projective TM-module and hence, under
our assumptions on a ground ring, Y = S⊗ TM for a certain S abstractly
isomorphic to P ⊕ Q as R-modules. Easy diagram chase tells us that
ψ=α−f where α and f are as in the previous lemma.

There is an exact functor 	: End(R, M) →H(TM,E) taking (P, f ) to
AP . It obviously factors through the localization functor End(R,M) →H.
We will denote by θ the induced functor H→H(TM,E). Our main result
in this section is

THEOREM 3.7. The functor θ is an equivalence of exact categories.
Proof. We will construct an exact functor ξ :H(TM,E)→H. On objects

we put ξ(AP )= (P ′′, f ′′), where the image was described in 2.3. In other
words, we choose (P, f ) which maps to AP and kill its nilpotent part.

The morphisms part of ξ is a little more tricky, because here is the point
where we really have to use H, and not End(R,M). Let F :AP →AQ be a
TM-homomorphism. Using 3.3 we can rise it to a map �: P ′′ → Q̄ such
that there is a map α:Q′′ → Q̄ with nilpotent cokernel covering identity on
AQ. Hence α−1 ◦� is a well defined map in H. This map defines ξ(F ). But,
defining ξ(F ) we have made several choices so we have to show that our
map ξ(F ) does not depend on them.

Assume that ψ:P ′′ →Q′′ is map in H which covers F . By the calculus of
fractions we can assume that ψ=β−1 ◦�′ where �′:P ′′ →S and β:Q′′ →S

is a composition of weak isomorphisms. We have to show that

α−1 ◦�=β−1 ◦�′.

Proceeding as previously we can rise id: AQ→AQ to a map γ−1 ◦ δ, where
δ:S→ S̄ and γ :Q̄→ S̄ and moreover both δ and γ are weak isomorphisms.
We can, of course assume that S̄ contains no nilpotent part. If that was
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not the case then we could quotient nilpotents out, as in 2.3. Notice that,
accordingly to 3.1, we have equalities

γ ◦α= δ ◦β
and

δ ◦�′ =γ ◦�.
From this we easily calculate

α−1 =β−1 ◦ δ−1 ◦γ
and eventually

α−1 ◦�=β−1 ◦ δ−1 ◦γ ◦γ−1 ◦ δ ◦�′ =β−1 ◦�′

as we wanted. It is obvious from its definition that ξ maps identities to
identities and compositions of morphisms to compositions. Similarly, it is
obvious that ξ is exact because all conflations in H(TM,E) are coming
from conflations in H. Hence we have proved that H(TM,E) is equivalent
via an exact functor to the category obtained from H by choosing at least
one object from every isomorphism class in H. This finishes the proof of
3.7.

As an immediate corollary of 2.6 and 3.7 we get

COROLLARY 3.8. We have the following exact sequence of algebraic
K-theory groups:

· · ·→Ki+1(H(TM,E))→Ki(Nil)→Ki(End(R, M))

→Ki(H(TM,E))→·· ·

4. Endomorphisms Against Localization

Now, we are in a position to access the noncommutative localizations of
rings. We are going to use the theorem of Neeman and Ranicki on the
K-theory of noncommutative localizations. But before stating it we need
some more notation. Let A be ring and σ be a collection of maps between
finitely generated projective right modules over A. In such a case there is
a general construction of a ring σ−1A which is called a noncommutative
localization of A with respect to σ . Let H(A,σ) denote the exact cate-
gory of σ -torsion A-modules of projective dimension one, i.e. the A-mod-
ules with a finitely generated projective A-module resolution

0→P
s−→Q→T →0
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where σ−1s : σ−1P −→ σ−1Q is an isomorphism. We have the following
theorem ([5]):

THEOREM 4.1. Let σ−1A be stably flat over A and assume that each
s∈σ is a monomorphism. Then, we have the long exact sequence of K-theory
groups (localization sequence):

· · ·→Kn(A)→Kn(σ
−1A)→Kn−1(H(A,σ))→Kn−1(A)→·· ·

Now, we can come back to our considerations. Let σ denote the collection
of TM-maps 1 −f :P ⊗TM→P ⊗TM as in Section 2, where (P, f ) is an
object of End(R,M). We have:

LEMMA 4.2. Assume that R is a field. Then:

H(TM,E)�H(TM,σ)
as exact categories.

We postpone the proof of 4.2 for a while. Observe that all theories
K(Nil),K(End(R,M), and K(σ−1TM) have obvious split surjective maps to
K(R). Moreover the middle map in the exact sequence of 3.8 is compatible
with these splitings. Let K̃(Nil), K̃(End(R,M)), and K̃n+1(σ

−1TM) denote
the corresponding reduced theories. Observe that 3.8 and 4.2 yield the fol-
lowing theorem:

THEOREM 4.3. Assume that R is a field. Then we have

K̃n(End(R, M))= K̃n+1(σ
−1TM)

Proof. Our ring R is a field so obviously it is regular coherent in the
sense of Waldhausen’s Theorem 4 [9, p.138] and hence K(TM)=K(R) and
K̃(Nil) is trivial. Thus 3.8 tells us that K̃n(End(R, M))=Kn(H(TM,E)).
This latter group is the same as Kn(H(TM,σ)) by 4.2. Again, assumptions
on R easily imply that σ−1TM is stably flat over TM because this latter ring
is hereditary (see [1] and the introduction to [NR]). Then, we get our state-
ment by using localization sequence 4.1.

Proof of 4.2. We have to show that categories H(TM,E) and H(TM,σ)
are equivalent. There is an obvious exact embedding functor H(TM,E)→
H(TM,σ). We have only to show that every object of H(TM,σ) is iso-
morphic to some object of H(TM,E). Using Lemma 3.5, we know that if
f :S→P ⊗M⊕P ⊗M⊗2 ⊕· · ·⊕P ⊗M⊗k is an R-homomorphism for some
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natural number k and α:S→P be an isomorphism then α−f treated as a
map S⊗TM→P ⊗TM gets inverted after localization with respect to σ .

Knowing this, while talking about H(TM,σ) we can enlarge σ to �

which consists of all maps α− f where α: S→P is an isomorphism of a
finitely generated projective R-modules and f :S→P ⊗TM+. The notation
TM+ stands here for the tensor algebra without the 0-grade. We will fin-
ish the proof of 4.2 if we show that any map between finitely generated
TM-modules, which is invertible after localization, belongs to �.

With our assumption that R is a field we know that all projective objects
over TM are free with the well defined rank (see for example [1, 2]). Let
f :X→ Y be a map invertible after localization with respect to σ , where
X=Rn ⊗ TM and Y =Rm ⊗ TM. Let Xi (Yi) denote the i-th grade of X
(Y ). Let f0 be equal to f |X0 composed with the projection on the 0-grade
of Y . To finish the proof we have only to show that f0 is an isomorphism.

First of all observe that f0 = f ⊗TM idR :X⊗TM R=X0 →Y0 =Y ⊗TM R.
Moreover, the natural ring map TM→R factors through the localization
map l:TM→σ−1TM. This follows from the universal property satisfied by
l. But knowing this we can finish the proof by observing that we have an
equality

f0 =f ⊗TM idσ−1TM ⊗σ−1TM idR

as maps

X0 =X⊗TM σ
−1TM⊗σ−1TM R→Y ⊗TM σ

−1TM⊗σ−1TM R=Y0

and f ⊗TM idσ−1TM is an isomorphism.

Remark 4.5. We can give a better description of σ−1TM, more in the
spirit of the commutative case. Let σ ′ be the set of all elements of TM of
the form 1 −m1 ⊗· · ·⊗mn for an arbitrary n. Then σ−1TM is isomorphic
as a ring to σ ′−1TM. To see this it is enough to observe that any saturated
class of morphisms (in the sense of [8, page 58]) between projectives, which
contains σ ′ has to contain �. This is obvious because the multiplicative
closure of σ ′ has this property.

Remark 4.6. Observe that our proof of 4.2 works well in the case when
we can assume that resolutions describing elements of H(TM,σ) consist
of finitely generated free TM-modules. For example, this is the case if
every finitely generated projective TM-module is stably free. But here our
poor understanding of the ring TM comes into play and prevents us from
getting stronger results.
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