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We present an algorithm which makes it possible to exchange data in a network 
efficiently and quickly among all participants. This algorithm is based on finite 
geometries, in particular on afline spaces. i‘: 1990 Academic Press. Inc. 

1. INTRODUCTION 

Consider a distributed system consisting of a set of N autonomous 
computers interconnected by a communication network. We suppose that 
any single transmitted message of one computer to another adds to the 
costs of the global communication. We shall simply speak of a network 
with N knots. 

The problem we want to consider is known as “decentralized consensus 
problem.” There is some information gathered from all knots, this informa- 
tion is synthesized, and the outcome must be made known to all knots. An 
example is that the knots are machines and status information of the 
machines must be known to every knot. We want to develop an algorithm 
which guarantees that after some time every knot of the net knows the 
critical value. This means that “in a way” any value must reach every 
participant. Such a procedure has been called [I] “broadcasting without 
broadcast.” 

Clearly, such algorithms exist. Here is one: Every knot sends his data to 
every other knot. Then every knot can evaluate the received data and 
knows the outcome. Since there are N knots, one needs a total of 
N( N - 1)/2 transmit operations. Hence the complexity of this algorithm is 
O(N*). 

The question is: What are the most efficient algorithms? Given N, we 
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denote by t, the number of transmits of the best algorithm which satisfies 
the rules. Hence the above algorithm implies t, s c . N*. 

Using geometric methods (in particular projective planes) it was proved 
in [5] that t,sc.N,/N. 

In a remarkable paper [ 11, Alon, Barak, and Manber proved (in a 
rather tricky way) that t, 5 c . N log, N. 

The aim of this note is to prove the same result in a very easy way using 
finite geometry. Our main result reads as follows. 

THEOREM. Fix a prime power q. Let d be the smallest positive integer 
with N 5 q‘! Then t, 5 c . N. d, where c is a constant depending on q. Hence 
t&c.Nlog, N. 

As the algorithms in [l] and [S], our algorithm is “completely sym- 
metric,” that is, every knot has the same duties. 

2. GEOMETRIC LANGUAGE 

Let S = (P, B, I) be an incidence structure consisting of points, blocks, and 
incidences. (Later on, the blocks will be subspaces of a classical geometry.) 
Let P1, 4, . . . . YE be families of blocks with the property that any point of 
S is on at least one block of E (1 5 i 5 n). (Later we shall use “parallel 
classes” as the e’s) 

For an arbitrary set X of points we define X8 to be the set of those 
points which are connected to a point of X by an element of %. Moreover, 

x’ :=x, 

X’ := the set of points P such that P is connected to a point of Xi- ’ 
by a line of Fi-, (25ign+ 1). In other words, Xi=(XiP1)E~l. 

For a point P we set P’= {PI’. 

EXAMPLE. If 9i is a parallel class, then P* is the set of points on the line 
of F, through P. 

We are interested in the case where P’, P*, P3, . . . eventually becomes the 
whole point set. We remark that this is not automatically the case. If, for 
example, 9i = 4 = . . . = Fn, then X3 = X2; so it is very unlikely that one 
reaches the whole point set. 

We may now define the following algorithm. Identify the knots of the 
network with a subset of the points of S. The idea is that in the ith step, 
knot P gives its information to all knots to which it is connected by an 
element of E-, . 
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More formally: The algorithm runs in n steps, where the ith step is the 
following. 

Any point P sends its data to all points of Pfll’-l. It evaluates the received 
values and stores the outcome of the evaluation. (This is the datum to be used 
in Step i+ 1.) 

THEOREM 1. Suppose that there exists a positive integer n such that for 
any point P, P”’ ’ is the whole point set. 

(a) After n steps every point knows the critical value. So, the algorithm 
does what is required. 

(b) If any FE 6 v . . u 5$ has cardinality at most cO, then there is 
a constant c = c(cO) such that 

t,sc.n-N. 

Proof: (a) is obvious from the above discussion. 

(b) Since the cardinalities of the P’s are bounded, the complexity of 
transmitting in F and evaluating the data from F is bounded. 1 

3. GEOMETRIES 

Let A = AG(d, q) be the afine space of dimension d of order q. We 
denote the hyperplane of infinity by H,, . Let P,, . . . . Pd be d points of H, 
in general position. Then these points generate H,. Let ZZ,, . . . . l7, be the 
parallel classes (of lines) in A such that the lines of 17, intersect in Pi 
(i= 1, . . . . d). 

In our above terminology, S is the incidence structure of the points and 
lines of A, and 5$ := 17,. 

THEOREM 2. Given a prime power q. Let d be the smallest positive integer 
such that N 5 qd. Then 

Proof. In view of Theorem 1 we have only to show that for any point 
P, P”+l is the whole point set. In order to show this, we prove 

For any point P, Pi is a subspace of dimension i - 1. 
Namely: If i = 1, then P’ = P is a subspace of dimension 0. 
Suppose now i 11 and assume that the assertion is true for i. Hence P’ 

is a subspace of dimension i- 1 of A. We consider this subspace also as a 
subspace of the projective space P associated with A. Then Pi intersects 
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H, in the subspace (P, , . . . . Pi_ i ) generated by PI, . . . . Pi _ i . By the defini- 
tion of Pi+’ it follows that this can be described as a projective subspace, 

P ‘+I = (P’, Pi). 

(Note that Pi $ (P, , . . . . Pip, ), since P, , . . . . Pi_ i, P, are in general 
position.) Hence P i+ i is an i-dimensional subspace of P which intersects 
H,,, in the (i- 1)-dimensional subspace (P,, . . . . Pip ,, P,). Hence Pi+’ is 
also an i-dimensional subspace of A. 

In particular, Pd+ ’ is a d-dimensional subspace of A. Hence Pd+ ’ = A. 1 

Generalizing the above approach, one can do better. In order to 
formulate the corresponding statement, we need the following definitions 
and results. 

Let P be a projective space of order q and dimension d. A t-spread of P 
is a set Y of mutually skew t-dimensional subspaces of P with the property 
that any point of P is on a (unique) element of Y. It is well known (see 
for instance [3,4]) that there is a t-spread in P if and only if t + 1 divides 
d-t 1. A t-spread Y is called geometric [2, 61 if for any two distinct 
elements U, VE 9’ the following assertion is true: Any element XE Y which 
has at least one point in common with (U, V) is totally contained in 
(U, V). The following assertions are (not so) well-known facts about 
geometric spreads. 

1. A geometric t-spread exists in P if and only if t + 1 divides d+ 1 
C2, 61. 

2. Let Y be a geometric t-spread in P, Then the incidence structure 
whose points are the elements of Y and whose lines are the subspaces of 
the form ( U, V), where U and V are distinct elements of 9, is a (Desar- 
guesian) projective space of order q’+ ’ and dimension (d + l)/(t + 1) - 1 
r2, 61. 

LEMMA. Let H, be a (d- l)-dimensional projective space of order q. 
Let t be a positive integer with t <d- 1. Define s= L(d+ l)/tJ to be the 
greatest integer not greater than (d + 1)/t. Then there are s + 1 subspaces of 
dimension t - 1 of H, which generate H,. 

Proof. By definition of S, there is an integer b with 

d=s.t+b and -lsb<t-2. 

Consider a subspace K of H, of dimension st - 1. Then K has a 
geometric (t - I)-spread, whose elements are the points of a projective 
space of dimension s - 1 and order q’. Choosing a basis in this projective 
space we get s subspaces U, , Uz, . . . . US of dimension t - 1 generating K. 
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Since dim H, - dim K = b =< t - 2, we may choose U,s+, in such a way 
that 

THEOREM 3. Fix a prime power q and a positive integer t. Let d be the 
smallest integer satisfying N s qd. Then 

t,Sc.N.(L(d+ l)/t_l+ 1). 

ProofY Let A = AG(d, q), and denote by H, the hyperplane at infinity. 
By the above lemma there exist s + 1 subspaces U,, . . . . U,, , of dimension 
t - 1 in H, which span H,. Define 9$ to be the set of t-dimensional 
subspaces of A which intersect H, in U,. As in the proof of Theorem 2 it 
follows that these sets satisfy the hypotheses of Theorem 1. Hence 

t,$c.N.((s+ l)=c.N.(L(d+l)/tJ+ 1). 1 

Remarks. 1. From the proof of the above lemma one sees immediately 
that also the following fact is true. 

THEOREM 4. Ix in addition to the hypotheses of Theorem 4, one has that 
t divides d + 1, then 

t,sc.N.(d+ 1)/t. 

2. Note that the constant c counts the number of transmits which a 
knot in an FE PI v . . . u & has to perform in order to send its data to any 
other knot in F. So, in the case of Theorem 2, we have c 5 q - 1, while in 
general (Theorems 3 and 4) it is c 5 q’ - 1. 
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