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CHARACTERISTIC CLASSES AND HOMOGENEOUS SPACES, I.*

By A. BoreL and F. HirzZEBRUCH.

Introduction. It is known that the characteristic classes of a real or
complex vector bundle may be interpreted as elementary symmetric functions
in certain variables, which are 1, 2 or 4 dimensional cohomology classes. If
we consider the tangent bundle of the coset space G/U of a compact connected
Lie group modulo a closed subgroup, it turns out that these variables may
be identified with certain roots of G (or their squares). Our first purpose
is to establish this connection between roots and characteristic classes, which
is the basis of this paper, and to compute the characteristic classes of certain
well-known homogeneous spaces. These results are then applied in particular
to G/T (T maximal torus of G), and to other algebraic homogeneous spaces,
where they lead to relations between characteristic classes, Betti numbers, the
Riemann-Roch theorem and representation theory; they dre also used to dis-
cuss multiplicative properties of the Todd genus and other genera in fibre
bundles with G/U as fibre. As an application, we get a divisibility property
of the Chern class of a complex vector bundle over an even dimensional sphere
which yields some information about certain homotopy groups of Lie groups.

We now give a summary of the different chapters. For the notions and
notations used without further comments, the reader is referred to [2, 19].

Chapter I. The first three Sections give a survey of standard properties
of roots and linear representations; § 4 gives two characterizations of systems
of positive roots which will be used in Chapter IV. In §5 we introduce the
roots of a Lie group with respect to a commutative subgroup of type
(2,%,- - +,®?), which will occur in the description of Stiefel-Whitney classes.

Chapter II recalls those concepts of fibre bundle theory which are most
often used in this paper, such as restriction and extension of the structural
group (with respect to homomorphisms), integration over the fibre, to be
denoted by b, and the bundle of vectors tangent to the fibres of a bundle
whose typical fibre admits a differentiable structure invariant under the
structural group, to be called hereafter the “bundle along the fibres”.

* Received January 29, 1958.
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HOMOGENEOUS SPACES, I. 459

Chapter III starts with a review of the definition by means of symmetric
functions of the characteristic classes of a bundle having a classical group
as structural group (§9). In §10, we consider the A-extension »* of a
principal G-bundle 5 by means of a unitary representation A: G—>U(n);
the bundle 4' is a principal U (n)-bundle, whose Chern classes are shown
to be the elementary symmetric functions in the weights of A, suitably inter-
preted as 2-dimensional classes; analogous statements are proved for the real
orthogonal representations and Pontrjagin classes (10.3). Now, the real tan-
gent bundle to G/U is the -extension of the principal U-bundle (G, G/U,U),
with respect to the linear isotropy representation . of U in the tangent space
at a point of G/U fixed under U (Proposition 7.5). Applying 10.3 to this
situation yields the relation between roots and characteristic classes mentioned
at the beginning of this introduction, which, in fact, holds more generally
for the bundle along the fibres of (E/U,B,G/U), where (E,B,G) is a
principal G-bundle.

Chapter IV. The homogeneous space (/U admits an invariant almost
complex structure J if and only if the isotropy representation ¢ can be fac-
torized through the standard inclusion of U(n) in SO (2n), (2n = dim G/U) ;
we obtain in this case a unitary representation ¢,: U— U(n), whose weights
are certain roots of @, to be called the roots of J; they allow us to compute
the Chern classes of J using 10.3 and to discuss the integrability of J using
the results of § 4; among the applications in § 13 we give new proofs of some
results of H. C. Wang.

The invariant complex structures of (/U (where U is the centralizer
of a torus in (), can be obtained directly by using the complexification of G ;
the space (/U is also homogeneous kéhlerian [5] and even rational algebraic,
and there is a close connection between its projective embeddings and the
linear representations of . For later use, we include in § 14 a short dis-
cussion of some of these results; moreover, we prove (14.10) that the real
cohomology classes of these algebraic homogeneous spaces are all of type
(p, p) and for p =1 describe those which are positive in the sense of Kodaira.

Chapter V is devoted to some special cases; in particular, to projective
spaces.

Chapter VL.t In §20 a formula for the homomorphism 4 in the bundle
¢=(Br,Be, @/T,p(T,F)) is established (20.3); it shows, in particular
(22.%), that b, applied to the total Todd class of the bundle along the fibres
of £ endowed with the complex vector bundle structure defined by means of an

T §8 20 to 30 will be published in a later issue of this Journal.
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invariant almost complex structure J on G/T, gives a zero-dimensional term,
which is 1 or 0, according to whether J is integrable or not; it follows that
the Todd genus T'(G/T)* of G/T with respect tqa J is 1 or zero respectively
and that (22.5) in certain bundles (£, B, G/T), with almost complex ¥ and
B the Todd genus, “behaves multiplicatively,” i.e., that we have T'(F)
=T(B) -T(F). These results are generalized to the T',-genus and to
homogeneous almost complex spaces G/U (rank U =rank ().

In §23 we consider the A-genus of homogeneous spaces G/U with
rank U =rank G and, in particular, prove it to be equal to 0 when the
second Betti number of G/U vanishes; moreover, in a differentiable bundle
(BE/U,B,G/U) with A(G/U) =0, we also have 4 (F)=0.

In §24, G/U (rank U =rank () is assumed to be algebraic. The value
of the T,-genus found in §22 and (14.10) yield a formula for the Betti
numbers of G/U in terms of the action of the Weyl groups of G and U on
the roots of ¢. The dimension of the vector space of holomorphic cross-
sections of a complex line bundle ¥ on G/U is computed by means of the
Riemann-Roch theorem and is shown to be either zero or equal to the degree
of the irreducible representation of G having the first Chern class of F as
highest weight (24.7); (this fact has led to the results of [7a] and has been
further generalized by R. Bott [7b]). The degree (in the sense of algebraic
geometry) of the projective embedding of /U given by this linear represen-
tation, or equivalently, by the complete linear system of divisors belonging
to F, is also explicitly calculated.

Chapter VII. In §25, the A-genus is proved to be an integer. More
generally, we introduce, for a complex vector bundle 5 over a differentiable
manifold X and for an arbitrary element d€ H?(X,Z), a rational number
A(X,d,n), in analogy with the Riemann-Roch formula, and prove that it is
an integer after multiplication by a suitable power of 2. It follows that the
g-th Chern class of a complex vector bundle over the 2¢-dimensional sphere
S., is divisible by the greatest odd factor of (g—1)!; applications of this
last fact to the homotopy of Lie groups are given in §26.

As is well known, the index of a differentiable manifold X equals the
L-genus of X, which is a linear combination of Pontrjagin numbers [19].
It was recently proved [12] that the index “behaves multiplicatively” in
differentiable bundles. This fact has certain consequences for the Pontrjagin
classes of the bundle along the fibres of a differentiable bundle, from which

* We allow ourselves to denote by T the Todd genus as well as a maximal torus,
since this is unlikely to bring any confusion.
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we conclude that the sequence of L-polynomials is essentially uniquely charac-
terized by the property of giving rise to a genus which behaves rultiplicatively
in differentiable fibre bundles.

In Appendix I, we compare the different definitions of Chern classes
known to us, with particular emphasis on the signs.

In Appendix II, it is first proved that the torsion coefficients of
H*(Bowm),Z) and H*(Bsow),Z) are all of order 2. This allows us to
characterize the universal integral Pontrjagin class p; by its canonical images
in H*(Bo,R) and H* (Bom),Z:), the latter being equal to the square of
the universal 2i-th Stiefel-Whitney class. It is also shown that, up to ®-
torsion, the integral 4-th Pontrjagin class of a principal O (n)-bundle ¢ can
be defined by means of the transgression in a certain bundle 5; associated
with £; in particular, 5; has the typical fibre O(n)/O(%i—1) when n is odd.
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Chapter I. Compact Lie Groups.

1. Generalities.

1.1. Coset spaces. Let G be a Lie group, U a closed subgroup of G,
G/U the space of left cosets of Gmod U, » the natural projection of G onto
G/U, and g, u the Lie algebras of G, U identified as usual with the tangent
spaces at the neutral element. Left translation by ¢g € G induces a homeo-
morphism of G/U which will be denoted by the same letter; if w€ U, it
leaves 0 ==(e) invariant and induces an automorphism @ of the tangent
space (G/U), of G/U at o. The homomorphism ¢,:u—> @ is called the
isotropy representation and its image the linear isotropy group U. TFor
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connected @, its kernel is the subgroup of those elements of G which act
trivially on G/U or, also, the largest subgroup of U invariant in G.

Adg or Adgg will denote the automorphism of g induced by the inner
automorphism z— gzg™ of G. If x, is the differential of = at e, we have
clearly

me0 Adgu = om, (wel);

in particular, since the kernel of =, is u, =, allows us to identify (G/U),
with any subspace m of g supplementary to u, invariant under Adjwu, in
such a way that @ is carried over to the restriction of Adgu to m. If o is an
automorphism of G and o, its differential at e, then

(1) Ado(g) =o.0 Adgoos™.

1.2. From now on, G is a compact Lie group. We recall that its
maximal toral subgroups are conjugate to each other by inner automorphisms
and are maximal abelian subgroups of G if G is connected; their common
dimension is the rank of G, to be denoted here by I or I(G). The letter T
will be reserved for a maximal torus of @, and S for an arbitrary toral sub-
group ; Vg will be the universal covering of § and T'y the “unit lattice”, i.e.,
the inverse image of the identity element of §. The latter is a free commu-
tative group of rank k (% =dim S), which spans Vg A real valued linear
form on Vy is said to be integral if it takes integral values on T'g.

1.8. Roots, diagram. The representation s— Adys of S in g is fully
reducible and there is a direct sum decomposition

(2) —a+Fat+ b5 (dim 0, = 2)

of g into subspaces invariant under Ad, S, where b4 3 is the largest sub-
space on which § operates trivially. We may then write, for s€ 8,

cos 2ma;(s) —sin Rwa;(s)
(3) Adgs | o= (sin 27raigs) cos 21ra,~Es)
where a;(p(x)), p the projection of Vg onto S, is a non-zero integral linear
form.? The linear forms = a; are the roots of G with respect to S. We shall
be concerned mainly with the case where 8 =7 is a maximal torus. Then
b=0, and the 2m linear forms 4-a;, (t=1,- - -,m; dim. G =1 2m), are
simply the roots of G.® Clearly, if S C T, the roots relative to S are the
restriction to Vg of the roots of G which do not vanish identically on 8.

*In the sequel, there will be no notational distinction between a(p(2)) and a(t).
®We call them roots in spite of the facts that the roots in the sense of the
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An element t€ T is singular if its centralizer has dimension > I(G),
regular otherwise; in Vr the singular elements are represented by the points
of the hyperplanes a;==0mod 1, (1 =¢=m), which form the diagram of G.

In case S is a toral subgroup of U, the decomposition (2) may be chosen
in such a way that u is spanned by a subspace b, of b, 83 and some of the aj,
say i, * +,0q; the =a; (g <t =m) will be called the roots of G relative to
S complementary to those of U, or simply the complementary roots if there
is no danger of confusion.

1.4. The Weyl Group. We choose once and for all a positive definite
metric on g invariant under Ad @, and consider on Vp the metric which is
induced by it in the obvious way; it allows us to define in the standard way
a canonical isomorphism between Vp and its dual space Vp* and a metric
on Vrp*; the scalar product on Vy or V¢* will be denoted ( , ). An element
a € Vy* is called singular if there exists a root a; such that (a,a;) =0; its
image in Vr under the canonical isomorphism is then singular in the above
sense. Finally, we remark that the symmetry S, of V¢ with respect to the
hyperplane a =10 induces a symmetry of Vr*, to be denoted also by S,
defined by

Se(b) =b—2(a,b) (a,a)*a.

The Weyl group W(G) of G is the group of automorphisms of 7" induced
by inner automorphisms of G leaving T invariant; it is a finite group and
a quotient of Np/T, where Ny is the normalizer of T in G ; it may also be
viewed as a group if isometries of Vp leaving I'y and the diagram invariant.
For connected @, it is isomorphic to Ny/T and is generated by the symmetries
to the hyperplanes a;=0 (i=1, - -,m).

2. Standard properties of roots. G is a compact connected Lie group
of dimension n and rank I, T a maximal torus, V its universal covering and
+a; (1=1=m,n=10-42m) are the roots of G. The proofs of the state-
ments in §§2, 3 may be found e.g. in [8, 13, 23, 27, 28].

2.1. An element v€ .V is in the inverse image of the center of @ if
and only if a;(v) =0mod1 (i=1," - -, m); in particular, G is semi-simple
if and only if it has ! linearly independent roots.

R.2. a; and a; are linearly independent if i5%7.

infinitesimal theory (i.e., the roots of the Killing equation), are the forms = 2wia,
and the zero form; the forms a, were called “ paramétres angulaires ” by E. Cartan [8].
Also, unless otherwise specified, the zero form will not be considered as a root.
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2.3. The number 2(a,d) - (a,a)™* is an integer for any two roots a,b
and the linear forms b—%-a are also roots for k integral varying between 0

and 2(a,b) (a,a)™.

2.4. Svmple roots. Let (z?), (1=7=1), be a base of V*. We define
a total ordering & on V* by saying that a —a,e* 4 - - 4 aw? is >0 if
its first non vanishing coefficient is > 0 and that @ > b if a—b > 0. A root
is simple, relative to &, if it is positive and cannot be represented as the
sum of two positive non-zero roots. The simple roots are linearly independent,
the scalar product of any two of them is =0, and every root is a linear
combination, with integral coefficients of the same sign, of simple roots. It
follows, in particular, that, when G is semi-simple, there are ! simple roots;
also, a simple root is not a linear combination with positive coefficients of
other positive roots.

2.5. A set of elements of ¥V or V* is said to be decomposable if it is
the union of two non-empty mutually orthogonal subsets. A semi-simple
group G is simple if and only if its root system or the system of its simple
roots is indecomposable. Assume G to be simple, let a; (1 =i=1) be the
simple roots and let b =b,a, + - - - 4 b; be the highest root with respect
to an ordering &. Then we have

(b,a) =0,  b;>0, (i=1,---,1),
and b; majorizes the coefficient of a, for all roots.

2.6. The sign of an element of W(G). Let a; (1=1=m), be the
positive roots with respect to 8. Since W (@) leaves the diagram invariant,
any w € W((@) induces a permutation of the system (=a;) (1=1=m), and
transforms (a;) into a system of roots (ea;) with ¢ = =+ 1. We shall denote
by s(w) the number of ¢’s equal to — 1 and by sgnw the product of the ¢’s.
We contend that sgnw is equal to the determinant of w viewed as a linear
transformation of V, and, in particular, does not depend on &. In fact,
let e;, e_; be the orthonormal base of a; with respect to which we have (3)
of §1, and let g € Np belong to the coset of w. It follows from 2.2 that w
permutes the q;, and then from (1) §1 that if w(a;) = e, then Ad g (e; Ae)
= ¢;¢; /\ e;; moreover, the natural isomorphism of t on V¥ carries the restric-
tion of Adg to t over to w; our contention follows readily from this and from
the fact that, G being connected, we have det Adg=1.

R.7. The Weyl chambers. Let ay,- - +,a, be the simple roots belonging
to the order 8. A Weyl chamber in V or V* is a connected component of

15
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the set of regular elements. In particular, the set of points v€ V (resp.
z€ V*), such that a;(v) >0, (rvesp. (z,a4;) >0) (1=1=r), is one and
will be called the positive Weyl chamber with respect to 8. The Weyl group
acts simply transitively on the Weyl chambers, and, in particular, the integer
s(w) defined in 2.6 is zero if and only if w is the identity; it is generated
by the symmetries to the hyperplanes ;=0 (1=1=r).

%.8. Remark on orderings. Let a € V* be such that (a,a;) 540 for all
t (1=1=m), and let us say that a root is positive if (a,a;) > 0. Then the
order relation thus obtained between roots is induced by an ordering on V*
as considered in (2.4) and has, therefore, the properties (2.4), (2.5). To
define &, one takes a base (z?) of V* dual to a base (&) (1=1=1), of V
where e; (1==2) is contained in the hyperplane a = 0.

R.9. COlassification. We recall that a compact connected Lie group G
. has a finite covering G which is the direct product of a torus § by a semi-
simple and simply connected group &'; the group G is uniquely determined,
up to an isomorphism, if we require, moreover, that the kernel of the
projection of G onto @ intersects S only at the identity. The image of G’
in @ is the derived group G’ of G and is also its largest semi-simple sub-
group ; the image of § is, of course, the connected identity component of the
center of @.

The semi-simple groups are locally isomorphic to products of simple
non-commutative groups. For the classification of the Lie algebras of compact
simple Lie groups, we refer to [13, 23]. For a list of their roots, see for
instance [25a]. For the simple Lie groups and the classical linear groups
we follow here the standard notations.

3. Linear representations. a; (1=¢=m) are the positive roots of
the compact connected Lie group G of rank I, with respect to an ordering &,
a is the sum of the a;’s and a4, - -, a, are the simple roots,  being the rank
of the semi-simple part G’ of G.

3.1. LemMaA. We have (a,a;) = (aja;), (1=7=r).
Let S; be the symmetry with respect to a;=0. We have
80 =a;— 2 (as, a;) - (aj,a;)7 - a;.

Hence Sja; and a; (j =), when expressed as linear combinations of sunple
roots, differ at most by the coefficient of a;; thus, if a;5%a;, S;a; has at least
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one positive coefficient, and is a positive root by (R.4); this means that S;
permutes among themselves the positive roots different from a;, But we have

(aj, Sjai; + ai) = O,

whence the lemma.

3.2. To abbreviate, we write E(b), (b€ V* or b€ V*® C), for

> (sgnw)exp(2rV —1-w(b))
w € W(Q)

and E(b,z) for the value of this function on z€ V. If b* and =z, are the
images of b and z under the canonical isomorphism between V and V*
defined by a metric invariant under W(G@), we have clearly F(z,,b*)
=F(b,z).

By a standard result of representation theory, we have

i=m J—
(1) E(a/2) =112V —1sin na,.
i=1
The computation of the m-th orders terms on each side yields the equality
() m!llai= 2 (sgnw)- -w(a/2)™
w € W(Q)

Let us denote by E,™ (b,0) the value at 0 of the m-th derivative of E(b,y)
in the direction z; then we have

(3) E,™ (a/2,0) =m!(2wvj)mﬁ i, Tp.

It follows directly from the definition that E(b) vanishes identically when b
_is singular. Conversely, the equality E (z4,b*) = E(b,z), recalled above,
and (3) imply

(4)  Baos™ (5,0) —m ! (2 —1)m T <as, by —m 1 (2rV—1)" TT (a5, b) ;

1 1

hence, if F(b) — 0, the element b must be singular.

3.8. The weights. An element b€ V* is called a weight of G if it is
integral on the unit lattice of the connected identity component of the center
of G and is such that 2(b,q;) - (a;,4;)"* is an integer (j =<m). The weights
form a free commutative group of rank I. The previous condition may also
be expressed by saying that a weight is a linear form which is integral on
the unit lattice I'y corresponding to the covering @ of G which has the form
8 X @ where § is a torus, G’ is semi-simple and simply connected, and such
that the kernel of the projection G— @ intersects S only at the identity (2.9).

For b,ce V*, let us put g(b,¢c) =2- (b,¢) (¢,c)*. Let S; be the sym-
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metry to the hyperplane d=0. We have (b,8Sac) = (Sab,c), (Sac,8Sac)
= (¢,¢) and Sqb==b—q(b,d)d, and therefore

(5) q(b, 8ac) =q(b,¢) —q(b,d)q(d, c).

ProposiTioN. Let b be an element of V*. Then q(b,a;) is an integer
for 1=j=m if and only if it is so for 1=j=r. In particular, a/2 is a
wetght.

The Weyl group W(G) is generated by the symmetries §; to the hyper-
planes a;=0 (1=j=r), and every .root is the image of a simple root
under some transformation of W (@) (this follows from 2.7). Since ¢(d,c)
is an integer when ¢ and d are roots (2.3), the equality (5) shows that
q(b, Sjar) 1is integral if q(b,az) and ¢(b,a;) are, and our first assertion
follows by an obvious induction. The second one is then a consequence of
(8.1) and of the fact that a is zero on the identity component of the center
of G.

3.4. Characters. Tt follows from the results of H. Weyl and from
standard facts about direct products, that the characters of the irreducible
representations of the group G introduced in 3.3, restricted to the maximal
torus 7T, are the functions

(6) x(t) =E(b) - E(a/2)™,

where b runs through the weights contained in the positive Weyl chamber
defined by &B. In other words, the b’s are the weights which verify

2(a;,b) =k;(ay,a5), (k; > 0, integral, j=1,- - -, 7).

By dividing out in (6), one may write x(¢) as a finite sum of exponentials
exp 27V —1 ¢;, where the c¢,’s are weights. The highest one is b— (a/2);
it has multiplicity one and characterizes the linear representations up to an
equivalence. In view of the foregoing, the highest weights are those which

satisfy

(7) R (aj, ¢) =k;(ajz a;), (kj = 0, integral, j =1, - T
Assume now @ to be semi-simple, hence r==1I=rank G. Let @, be the
linear form defined by ¢(wja;) =38&; (i=1,- - -,1). By (3.3), the w/s
are weights, to be called the fundamental weights, and form a basis of the
group of weights. By (7), the highest weights are the linear combinations
of the @ws with integral non negative coefficients.

Let again G be compact, not necessarily semi-simple. The degree d of
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the representation with highest weight b — (a/2) is x(0). In the right hand
side of (6), this appears in the form 0/0, but by taking suitable m-derivatives
at the origin, and using (2), (3), (4), one arrives easily at the formulas:

d~(m!)-ﬁa¢= > (sgnw)w(b)™
1 w e W(Q)
(8) i
d=1_11 (ai,b) : (ai,a/Z)‘l.

Finally, we remark that the representation of G with highest weight b — (a/?)
is single-valued on @ if and only if b— (a/?2) is integral on the unit lattice
corresponding to G.

4. Two characterizations of systems of positive roots. We assume
here G to be semi-simple, and denote its rank by I, but otherwise follow the
notations of §3. We discuss here two conditions under which given roots
are positive relative to a suitable ordering; the first one is the object of
(4.3), which will be preceded by two lemmas.

4.1. LemMA. Let u; be the integers such that the sum a of the positive
roots s equal to w.a; +- + -+ wa.. Then the only solution of the system
of inequalities

(1) (abx)g (aj:ai); Oéxjéuh (:v=x1a1+- : '+£I)ﬂ1§j=1,' : ':l):
s a 1tself.

That a is a solution follows from (3.1).

Let y=y.a, 4+ + -+ y1; be a solution of (1) for which the sum of
the y; is minimum; such a y clearly exists. The y’s are > 0, because if,
e.g., yo=="0, then we would have (ay,y) =0 by (2.4).

Put r;= (a;,y). Since the a/s (1 =j=1) form a base, it is enough
to show that r;= (aj,a;). Suppose otherwise; then there exists a %k such
that =, > (ax,ax). Consider z=y-—c-ay, where ¢ is a small positive
constant. Then

2=z, (25=Yj (J5%Fk);2=yr—2c)
(aj,2) = (aj,y) —c(aj, ax) = r;— (aj ax)c.

Since (aj,ar) =0 for j£k by (R.4), 2 is, for suitably small ¢ > 0, a solution
of (1) for which the sum of the coefficients is strictly smaller than for y,
contradicting the latter’s definition.

4.2. LemMA. Let (g), (1=1, - -,m), be a sequence of integers of
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absolute value 1, and let a* = D eai. If (a*,a;) >0 for j=1,- - +,1, then
i

at=a and =1 (1=i1=m).

Let c—=ca; 4+ + -4 ¢y (vesp. d=d.a, +- - -+ diw;), be the sum of
the a; for which ¢, =1 (resp. =—1). We have

(2) a*=c—d; a=c+d; cj+di=ui§ cbd.’igo’ (]=1:)Z)

By assumption,

(ab C)_(ai:d)= (aj’a*) >0, (]=1) : '92))
and by (3.1),
(a;i’ 0) + (ab d) = (a.’i’ a) = (ab a;i)) (j=17' : "Z)’
whence
R(aj,c) > (aj, a;), (j=1,-- 1)

But it follows from (2.3) that 2(ay, ¢) - (a;,a;)7* is an integer; therefore the
preceding inequality implies that

(a’b ¢) = (a'j: a;), (j=1;' - 1),

which, together with (2), shows that ¢ is a solution of (1). By (4.1), this
gives c—a, d=0, a=a* and d=0 implies (R.4) that no ¢ equals —1.

4.3. TuroreMm. Let (g), (i=1,- - -,m), be a sequence of integers
of absolute value 1. Then the set (ea;) is the system of positive roots with
respect to some ordering B’ if and only if a* =X s 15 a regular element.

. i

Necessity : Suppose that (ea;) are the positive roots with respect to some
ordering; by (R.7), there exists w€ W(G) which sends the €a; onto the a;
and, therefore, a* onto a. Since the Weyl group leaves the set of regular
elements invariant, it suffices to show that e is regular; but this follows
from (3.1).

Sufficiency : Suppose a* to be regular, and let ;== =41 be such that
(a*, pia;) > 0. Then, as remarked in (R.8), (ma;) is the system of positive
roots with respect to some ordering &;, and it will therefore be enough to
show that wj=—¢, (t=1,- - -, m).

By (2.7), we may find w€ W(@) carrying (me;) onto (a;) and, there-
fore, a* onto a** =3 €pido), Where o is a permutation of (1,2,- - -, m)
B

since (a*, ma;) > 0 for all ¢ and since w preserves the scalar product, we have
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(a**,a;) >0, (j=1,- - -,1), and (4.R) gives then a** —a and pe=1,

(t=1,- - -, m).

4.4. CorOLLARY. Let J be a non-empty set of integers belonging to
the interval [1,m]. Suppose we have signs ¢, (j€J), such that 3 ea;=0.
m jed
Then for any choice of the remaining signs e, the form 3 a; is a singular
element. !

Suppose otherwise; then by (4.3), the (ea;) are the positive roots in
some suitable ordering, but, obviously, a sum of positive roots cannot vanish.

4.5. DErINITION. A set B of roots of G is said to be closed if it
contains the sum of any two of ils elements whenever this sum is a root

of G.

Our main purpose will be to show that a closed system containing one
root from each pair = a; is positive for some ordering.

4.6. LemMmA. Let B be a closed system which for no ¢ (1=1=m),
contains both a; and —a;. Then if a linear combination b of elements of B
with positive integral coefficients is a root, it belongs to B.

Proof by induction on the sum k% of the coefficients of b. For k=2, it
is an assumption ; assume the lemma to be true for ¥ —1, and let

b=cibs+- - -+ cgbg, (¢i>0,c;integer, > ¢;=1Fk, b; € B).

We distinguish two cases. (a) For some j=g¢, b; -+ b, is a root; it is then
in B by definition, and we have
b= (bs+bs) + (6:—1)bs + Coby + * -+ (65— 1)bj + Cjuabjsa
+ 0 -+ cobg.
Therefore, b may also be written as

b=c b+ - by, (>0, integral, 3 ¢, —k—1,; € B),

and is in B by the induction assumption. (b) No element b, 4 b; is a root;
then (b,,b;) =0 for j=2,- - -, q, (see 2.8), whence (b,,b0) >0, and b—b,
is a root. By induction, it is in B, and b then belongs to B by definition.

4.7. LemMmA. We keep the same assumption on B. Then any sum
Zcibi (biEB, ci>0,integml) 18 7&0.
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Otherwise, we would have
—by=(ca—1)bi 4 cba 4+ -+ Cobg
contradicting (4.5) and (4.6).

4.8. A sequence (by,- * -, by) of elements of B such that b;—bi.€B
for =1, - -,k—1 will be said to be decreasing of length k. The height
h(b) of b€ B will be the maximal length of decreasing sequences starting
with 5. By Lemma 4.7, any two elements in a decreasing sequence are
different, and hence h(b) is always finite. Let k=nh(d) and b,bs,- - -, b
a decreasing sequence. If we add to b a decreasing sequence for b, or for
b—b,, we clearly get a decreasing sequence starting with b. Therefore
h(b) =k implies that k(b;), h(b—b.) are =k—1; thus an element of
height k=2 is sum of two elements of heights =Fk—1.

4.9. TurOREM. Let B be a closed system of roots which, for each 4,
(1=1i=m), contains ezactly one of the two roots *=a; Then B is the set
of positwe roots for a suitable ordering.

Let by,- + -, b, be the elements of height 1 in B. By induction on the
height, it follows from the last assertion in (4.8) that every element of B
is a linear combination of the b’s (¢=1,- - +,s) with positive integral
coefficients. Therefore, it suffices to show that the b;’s are linearly independent.
Since they span all roots, their rank is 7; assume that b,,- - -,b; are
independent and that, contrary to our contention, s><1. We have then a
relation

(3) by = C1by - - - -+ ¢y, (c¢; real, not all zero).

The c¢’s are also a solution of the linear system

(4) (22(b1, by) 4+« -4 21(by, b5) ) (bj, b5) ™ = (b, bs) (bs, b5) ™

{j=1," - -,1), whose determinant is, up to a positive factor, the determinant
.of the products (bs, b;) and is therefore 0. Thus the ¢/’s are the unique
solution of (4) and are rational numbers since the coefficients are rational
by (2.3). The given relation is then equivalent to a relation

dqby + te —|‘ dlbl“" dl+1bl+1 =0 (di integers, Ay & 0) .

By (4.7) the coefficients do not all have the same sign, and, after a change
in numeration of the b; (1=1), we arrive at an equality



HOMOGENEOUS SPACES, I. 473

(5) €.0, —I— SRR 3pbp = ep+1bp+1 4+, -+ 611bp =0
(.= 0, integral, (e, * -, ;) 5= (0,- + -,0)). On the other hand, we have

(bi,zj) =0 for (1=t¢<j=s); because otherwise, by (2.3), the elements
=+ (b;—b;) would be roots, one of them would belong to B and either b; or

b; would have a height = 2. Therefore we have

(b, b) = (31b1 44 6pbp, 3p+1bp+1 R el+1bl+1) =0
and b =0, in contradiction to (4.7), which proves that [=s.

4.10. CororLrLaRY. Let B be a closed system of roots which for each i,
(1=1=m), contains at least one of the roots = a;,, Then B contains the
set of all positive roots relative to a suitable ordering.*

Let us number the roots in such a way that B consists of = a,,- - -, == a,,
€grillgiss* s em@m (e==1). Then the system B’ consisting of the g
(1=i=¢q) and the ¢a; (¢ <j=m) is closed; in fact, if as+a: (s,t=¢q)
is a root, it is positive and in B, hence in B’. If a5+ ear =—a, (s, p = g < 1),
then @;+a,=-—ea; and B would not be closed; if eas -+ ea;=—ay,
(p=q<st), then a; + ety = — €05 and B is again not closed. Therefore,
by the theorem, B’ is the set of positive roots for some ordering.

4.11. Remark. Using complex semi-simple Lie algebras, one can also
prove more generally than 4.9 that a closed system of roots B which for each
1 contains at most one of the roots =+ a; is positive for some ordering. In fact,
in the notations of (12.2), it follows readily from (4.7) that the subspace
of g¢ spanned by t¢ and the v,, (b€ B), is a solvable subalgebra. It is then
conjugate by an inner automorphism « to a subalgebra of the algebra spanned
by t° and the b, by a result of Merosow (C. R. Acad. Sci. U.R.8.8. (N.8S.),
36 (194?), pp. 83-86), also proved in A. Borel, Annals of Math., 64 (1956),
pp. 20-80, § 16. Moreover, by the conjugacy of Cartan subalgebras in solvable
Lie algebras, we may assume that «({°) —t° which means that B is trans-
formed onto a subset of the a;’s by an element of the Weyl group.

5. The 2-roots of a compact Lie group. We define here certain linear
forms with values in Z,, analogous to the roots, which are useful in the
study of Stiefel-Whitney classes.

5.1. Let G be a Lie group. We denote by @ or @, a subgroup of @

* Another, completely different, proof of this corollary has been given by Harish-
Chandra, American Journal of Mathematics, vol. 77 (1955), pp. 743-7T77, § 2, Lemma 4.
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isomorphic to the product of s copies of Z,. The real irreducible linear
representations of ¢ are 1-dimensional, being defined by a character which
may be viewed as an element of Hom(@,Z,). Let us now decompose the
Lie algebra g of G into a direct sum

g=Dbi+" - -+ by (n = dim g)

of 1-dimensional subspaces invariant under Ad, @ ; the characters b,,- - -, b,
corresponding to these subspaces will be called the R-roots of G with respect
to ¢. In case ¢ is contained in a maximal torus, these are just the restrictions
to @ of the roots of G and the zero form with multiplicity I — rank (@), but
otherwise, they represent different elements of the group-theoretical structure
of G and have a “global” character.

5.2. Let U be a closed subgroup of G containing . Then we can
choose a decomposition into subspaces b;, such that the n—=% last ones
generate the Lie algebra u of U. The R-roots b; (1=4=¥k) are then the
complementary R-roots; or, more explicitly, the 2-roots of G with respect
to @ which are complementary to those of U.

Ezamples.
5.3. G=0(n), SO(n). We consider in O(n) the subgroup Q of
diagonal matrices ; it is a maximal commutative subgroup of type (2,2, - - ,?),

and any subgroup of this type is conjugate to a subgroup of Q. We take
in g the usual basis consisting of the antisymmetric matrices having only
two non-vanishing entries, equal to = 1. Let @;; (1=¢=mn) be the diagonal
matrix all of whose coefficients are equal to 1, except for the 4-th one which
is equal to —1, and let (y;) be the dual basis of Hom(Q,Z,). A straight-
forward computation shows that the basis of g mentioned above is invariant
under Adg Q and that the 2-roots relative to Q are

Yi—Ys 1=i<j=n).

In SO (n), the diagonal matrices also form a maximal commutative sub-
group Q’ of type (R,2,- - -,R), isomorphic to (Z;)"»*. It is convenient to
consider it as a subgroup of Q, and, therefore, Hom (Q’,Z,) as a quotient
of Hom(Q, Z,) ; it is then generated by n elements y; subject to the rela-
tion ¥, 4+ - -+ ya=0, and the R-roots are again the differences y;—y;
1=i<j=n).

5.4. G=U(n),SU(n). In U(n), all maximal commutative subgroups
of type (2,2,- - -,2) are conjugate to the subgroup Q of diagonal matrices
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with coefficients =+ 1, and are therefore contained in maximal tori. The
9-roots are then obtained from the usual roots and, with respect to the
standard basis of skew-hermitian matrices, are the zero form with multi-
plicity » and the differences y;—y; (1 =1 < j=n), each with multiplicity
two.

The 2-roots of SU(n) with respect to the subgroup of the elements of
Q having determinant 1 will be the same, the y;’s being subject to the relation
Yy - - -+ y,=0, the zero form having multiplicity n—1.

5.5. G =S8p(n). Here again, all maximal commutative subgroups of
type (2,2,- - -,2) are conjugate to the subgroup @ of diagonal matrices
with coefficients =1 (G being considered as the group of unitary matrices
with quaternionic coefficients) and are isomorphic to (Z,)". Since the usual
roots are =y, =y (1=1<j=n) and £ 2y; (1 =1=mn), we get as R-roots:
the root zero, with multiplicity 3n and y;—y; (1=1<j=n), with multi-
plicity 4.

In §17, we shall also discuss the 2-roots of the exceptional group G.
with respect to a subgroup not contained in a maximal torus.

Chapter II. Topological Preliminaries.
6. Fibre bundles.

6.1. Notations. p denotes a prime number or zero, K, a field of
characteristic p, Z, (p%£0), Zo, R, C, the fields of integers mod p, of rational,
real, complex numbers respectively.

Hi(X,A) (resp. Hi(X,A)) is the i-th singular cohomology (resp.
homology) group of the space X with coefficients in the commutative group
A, H*(X,A) (resp. Hy(X,A)) the direct sum of the cohomology (resp.
homology) groups; for all spaces considered in this paper, H(X,Z) will be
finitely generated and equal to the i-th Alexander-Spanier cohomology group.
The map of cohomology (resp. homology) groups induced by a continuous
map f is denoted by f* (resp. fy).

When dealing with classifying spaces, it will sometimes be convenient
to consider formal infinite sums of cohomology elements, and to this effect,
we also introduce the direct product H**(X,A) of the H*(X,A) ; an element
r€ H**(X,A) may be identified with a sum z,+- - -4 2;4- - -, with
7€ H (X, A) possibly 40 for infinitely many values of . When 4 is a
ring, H**(X,A) also becomes an associative ring under the cup product.
The homomorphism of H**(Y,A) into H**(X,A4) induced by f:X—>Y
will be denoted by f**.
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A{X,,- - -, X;} will denote the ring of formal power series in the X’s,
with coefficients in the commutative ring 4.

Let U be a closed, connected subgroup of maximal rank of the compact,
connected Lie group @, and let 7' be a maximal torus of U. We have then
H**(Bp, A) = A{xy,- - -, 21}, (2;€ H¥(Br,A), 1=1=1Il=rank @). The
results of [2, §§R6,27] imply that p**(T, ) maps H**(Bg,Z,) isomor-
phically onto the ring of invariants of the Weyl group, and that it is isomorphic
to a ring of formal power series in ! indeterminates ; moreover, H**(G/U, Z,)
is the quotient of H**(By, Z,), regarded as a subring of H**(By, Z,), by the
ideal (I*¢)* generated in H**(By,Z,) by the (finite or infinite) sums of
homogeneous invariants of W (@) with strictly positive degrees. Similar
translations in cohomology over R, Z, or Z of the results of [2,§29] are left
to the reader.

6.2. Fibre bundles. The fibre bundles occurring in this paper will
be locally trivial ; we follow the definitions of [19, 26]. We do not require the
structural group to act effectively on the fibre [19,§3.2¢c)]. A fibre bundle
is denoted by (H,B,F,=) or (E,B,F), where F is the total space, B the
base space, ¥ the typical fibre, = the propection, or just by one symbol, mostly
£, 7, 0; in the latter case, we often write E¢, Be, Fe,me, G, ¢ for E, B, F, x, the
structural group and the transgression in £ respectively. A bundle with
structural group G will also be called a G-bundle.

Let & be a principal G-bundle and U a closed subgroup of G. The
space of the cosets - UmoduloU (z€ E¢), is denoted by He/U; it is the
base space of the principal fibering (He E¢/U, U) and the total space of the
G-bundle (E¢/U,Bg, G/U). Let F be a space operated upon by G. We
denote by HeXeF the quotient of EeX F by the equivalence relation
(z,f) = (¢ 9,97 f). Asis well known, it is the total space of a G-bundle
(& F) over Bg, with fibre F.

6.3. Representations of fibre bundles. Let &5 be two fibre bundles.
A representation of £ in 4 is a continuous map ¢: E¢—> Ey which sends fibres
into fibres; it induces then a map ¢: B¢—> By such that ¢gomg=myop. We
shall use without further comment the fact that ¢ commutes with trans-
gression and, more generally, induces a homomorphism of the spectral
sequence of » into that of ¢ (see e.g. [2], §4).

6.4. Homomorphisms of fibre bundles. ILet G, G be topological
groups, A: G— G’ a homomorphism, and ¥ (resp. F’), a space on which @,
(resp. ), operates. A A-map of F into F” is a continuous map y such that
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Y(g9-7) =x(g) ¢(f), (or ¢(f-g) =y(f)"A(g) if G, G operate on the
right). Let £ and 4 be principal G- and G’-bundles respectively. A homo-
morphism of ¢ into % is a representation induced by a A-map of E¢ into Ey;
clearly every A-map defines a homomorphism. A homomorphism of (¢, F)
into (, F) is a representation defined by two A-maps of E¢ and F into B,
and F” respectively.

Let U, U’ be closed subgroups of G and @ such that A(U)C U
Then we have a commutative diagram

Be Ee/U By
J ¢ J $1 1 b2
E’q _— Eq/U/ —_— B'q
¢ defines A-homomorphisms (Fe, Be/U,U) — (Ey, Ey/U’,U’) and Eg Be, @)

— (Hy, By, G’) 5 the map ¢, is a A-homomorphism of (Z¢/U, Bg, G/U) into
(E"I/U,) B"I: G,/U,)

6.5. Restriction and extension of the structural group. Let ¢ and 4
be two principal bundles over the same base space B, and let A be a homo-
morphism of (¢ into G4y. Assume that there exists a A-homomorphism of &
into n which induces the identity of B. Then we say that » is a A-extension
of £ and that ¢ is a A-restriction of . We recall that, given ¢ and A, there
always exists a A-extension which is unique up to equivalence, and which
will be denoted by A(&); whereas given 5 and A, a A-restriction does not
always exist and, if it does, is not necessarily unique. The A-extension 7
of ¢ is defined as follows: Fy= F¢Xe (', where G operates on G’ by
9-9'=x(g) -g’; if p is the projection of B¢ X & onto Ey, then my is induced
by p(z,g") —> (), and the A-map ¢ : B¢ —> By is defined by ¢ (z) — u(z, ¢),
where ¢ is the neutral element in G”; finally, the principal bundle operations
on By are introduced by (z,y) ¢'= (z,y-¢'), (¢€ Ee;y,9'€ @). These
notions are defined in the same way for associated bundles; they generalize
the standard concepts of extension and restriction of the structural group,
to which they reduce when A is the inclusion map of a closed subgroup.
Clearly they can also be formulated for equivalence classes of bundles; if
these are identified with the elements of the cohomology sets H(B, ¢,) and
H*(B, &.), in the notations of [19, § 3], then the A-extension of ¢ € H* (B, G)
is its image under the natural coefficient map induced by A.

6.6.  Characteristic map. Eg (resp. Bg) is a universal bundle (resp.
classifying space) for the compact Lie group G ([26],§19, [2],§18; as in
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[6] they will usually be taken as universal or classifying for all dimensions).
Any principal G-bundle ¢ over a base space B belonging to a suitable class of
topological spaces is induced from the universal bundle by a map ¢:B— Bg,
defined up to homotopy as the “characteristic map” for £ [26,§19].

To a homomorphism A of G into a compact Lie group G’ corresponds a
map p(A) of Bg into Bg:, defined up to homotopy, called the characteristic
map for the A-extension of (Eg, Ba, G) (see [6],§1). It follows immediately
from the definitions that a A-restriction of a principal G’-bundle 5 exists if
and only if the characteristic map o of 4 can be written as ¢ =p(A) oo’ where
¢’ is a map of B into Bg; when A is an inclusion, p(A) reduces to the map
p(G, @) introduced in [2].

6.7. Fibre bundle over a fibre bundle. We discuss here a generalization
of the “bundle along the fibres” (see §7), which allows us to put in its
proper settihg a useful fact about characteristic maps.

Let & 7 be fibre bundles, &, 7 the corresponding principal bundles. We
assume that F¢= By, and that G¢ is also a group of automorphisms of 7;
the latter condition means that there is a homomorphism g— ¢ of G¢ in
the group of those homeomorphisms of A% which commute with the operations
of Gy, and, of course, such that the induced homeomorphisms of By are those
which define G¢ as structural group for ¢. In particular, the homeomorphism
g X 1d of Ej X Fy is compatible with the equivalence relation which defines
n, hence G¢ is also a group of homeomorphisms of F; commuting with my.
By means of these operations, we define first a bundle = (#,, Bg, By) with
structural group G, and typical fibre By, associated to &; its total space is then

E,,,=E'§ ngE'r].

Since (¢ commutes with 7y, this map induces a map A of E, onto Ez X e¢ By
=F,. Since (¢, operating on Ez, and Gy commute, the space Bz X ¢ F7 can
be considered as a principal Gy-bundle over Eg the operations of the group
being defined by means of its action on the right factor, and moreover, we
have the “associativity law ”

(BiXagEq) XayFn= Lz Xez (B7 XazFy).

From this, it follows immediately that A is the projection in a fibre bundle
(B, B¢, Fy) = v, in which Gy is the structural group, and whose corresponding
principle bundle has total space EgXa;E7 Therefore, we have obtained a
bundle over E¢ with fibre F;. It is clear that the inclusion map of a fibre
of p in K, may be viewed as a homomorphism of » in v; it induces a map
t:Bn— ¢ of their base spaces which is the inclusion map of a fibre of &.
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Therefore, if o is the characteristic map for v, then o o4 is characteristic for
n, and the characteristic ring of 5 is the image of t*oo*. This proves in
particular the following:

6.8. ProposiTiON. Let & o be two bundles with F¢= By, satisfying
the conditions of 6.7., and let © be the injection of a fibre of & Then the
image of 1¥:H*(Hg A) — H*(Fe, A) contains the characteristic ring of .

Let G be a topological group, U be a closed subgroup and 4 be a
principal G-bundle. Then é = (¥,/U, By, G/U) and n= (@, G/U,U) satisfy
the assumptions of 6.7, 5 being considered as a principal U-bundle, and
Ge= @G (resp. Gn="U) acting by means of left (resp. right) translations
on (; in this case, u may be identified with 6 and v with (B, E,/U,U),
and 6.8 reduces to the corollary to Prop. 18.3 of [2]. The application to
differentiable bundles will be mentioned in § 7.

7. Vector bundles.

7.1. A real (resp. complex) vector bundle is a fibre bundle with an n-
dimensional real (resp. complex) vector space as typical fibre, the structural
group operating by means of linear transformations. Most often, we shall
identify the typical fibre with R» or €», and the structural group with a
" subgroup of GL(n,R) or LG (n,C). We refer to [19] for the notions of
sub-bundle, quotient bundle of a vector bundle, of Whitney sum £ 5 and
tensor product £é®y of two vector bundles & ». We recall that a principal
bundle with group GL(n, R) or GL(n,R)* or GL(n,C) has a unique restric-
tion (up to isomorphism) with group O (n) or SO (n) or U(n) [26, § 12].

7.2. Orientable real vector bundles. A real vector bundle is orientable
if its structural group can be reduced to GL(n,R)* or SO(n). If such a
restriction has been made, we then endow each fibre with the orientation
which is carried over from a fixed given orientation of the typical fibre V by
the allowable homeomorphisms of the bundle structure; the bundle is then
said to be oriented; if ¥V has been identified with R", we always take the
natural orientation of R»,

7.3. Almost complex structures. A complex vector bundle (E,B,C?)
defines in a natural fashion a real vector bundle (E, B, R?3), its r-extension
relative to the standard inclusion A: GL(q,C) — GL(2¢,R) ; it is oriented.
Conversely, if a real vector bundle (E,B,R%) has a A-restriction, we say
that it admits a complex structure and that such a complex restriction is
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a complex structure of the given bundle. A differentiable manifold admits
an almost complex structure (resp. is almost complex) if its tangent bundle
admits (resp. has been given) a complex structure.®* To a complex structure
of ¢= (F,B,R?) there is attached a section J in the real vector bundle
$*®$%Hom(§,$), where the value of Jy of J at b€ B is the linear map
defined by multiplication by \/—1; conversely, given a section J of linear
maps such that Jp2==-—T1d for all b€ B, we introduce on each fibre a
complex structure by putting

(e+ V—1y) v=azv4y-Jy(v),
which gives a complex structure for the given real vector bundle.

7.4. The bundle along the fibres. Let & be a fibre bundle whose fibre
is a differentiable manifold ¥ of dimension n, G¢ being a group of differen-
tiable homeomorphisms of F'; the group G¢ is then also a group of auto-
morphisms of the tangent bundle »=7(F¢) to F¢ and of the bundle of
frames 7= B (F¢) which have GL(n, R) as structural group. We may apply
6.7, and the bundle corresponding to v of 6.7 will be called the bundle
along the jfibres. It is a real vector bundle over Eg whose fibres are the
tangent spaces to the fibres of £, and will be denoted by £ If F has an
almost complex structure which is invariant under G¢ in other words, if
G¢ is also a group of automorphisms for a complex structure 5/ of 7, then -
the construction of 6.7 may also be applied to ¢ and 4’ and yields a complex
structure on é which will then be called a complex bundle along the fibres
of £ Also, if F¢ carries an orientation invariant under G¢, then the structural
group of & may also be reduced to GL(n,R)*. Applying 6.8 to the basic
elements of the characteristic ring of a @(n), SO(n) or U(n)-bundle (see
§9), we obtain the

ProrosiTroN. Let £ be a fibre bundle whose typical fibre F¢ has a differ-
entiable structure invariant under Qe and let 1 be the inclusion map of a
fibre in Ee Then the Pontrjagin and Stiefel-Whitney classes of Fg, its
Euler-Poincaré class with respect to an orientation invariant under Gg, and
1ts Chern classes with respect to a Ge-invariant almost complex structure are
i the image of 1*.

(A similar remark has already been made in A. Borel, Jour. math. pur.
appl. (9) 35, 127-139 (1956), proof of 3.2.)

®In this terminology therefore, an almost complex structure on a manifold corres-
ponds to a complex structure of its tangent bundle.
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¢ is said to be differentiable if E¢, Bg, Fg are differentiable manifolds,
m¢ is a differentiable map, and the coordinate functions are differentiable;
it follows then that G¢ is a group of diffeomorphisms of Fg. In this case,
the fibre of £ over z € E¢ may be identified with the subspace of the tangent
space of E¢ at  which is tangent to the fibre of ¢ passing through .

v.5. ProprosiTioN. Let G be a Lie group, U a closed subgroup,
1: U= GL(n, R) the isotropy representation (1.1), and let & be a principal
G-bundle. Then the principal bundle n along the fibres of (He/U,Bg, G/U)
18 the -extension of (Eg Be/U,U).

We have to show the existence of a «-map: E¢— Ey inducing the identity
on Fe/U.

We recall first that (E¢/U, Bg, G/U) may be considered as the bundle
with typical fibre G/U associated to ¢; more precisely, there is a commutative
diagram

a@
By —— B¢ X G/U

B
EBe/U——>E: XeG/U

where y and § are the natural projections, « is defined by #—> (,0), the
point 0 € G/U being the image of U under the projection, 8 is determined
by the other maps and is a homeomorphism. This also allows us to attach
to each z € E¢ a homeomorphism o, of G/U onto the fibre y(z- G) of y(z)
in Be/U, defined by

oo(y) =y -a(z-g,0), (y€ G/U, g€ G such that g*(y) =o).

We have
oz(o) ='y(:v) 5 Oz g=—02°4.

All this is well known and easily checked. Let now R, be a fixed base of the
tangent space to G/U at o. Then o,(R,) is a base of the tangent space to
the fibre of (E¢/U,Bg G/U) at y(z). We define ¢ by ¢(z) = os(Ro);
from the relation o,., —oz°u, it follows readily that ¢(z-u) = ¢ () (u),
in other words, that ¢ is a «map. Since by construction, ¢ induces the
identity on E¢/U, our contention is proved.

(7.5) shows in particular that the structural group of the tangent bundle
to G/U may be crestricted to U. Finally, we mention the following well
known elementary fact:

16
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7.6. ProprosiTioN. Let £ be a differentiable bundle. Then the quotient
of the tangent bundle to K¢ by the bundle along the fibres & is equivalent to
the bundle induced by =¢ from the tangent bundle to Be.

In fact, =¢ induces a bundle map of this quotient onto the tangent bundle
to Be, and the proposition follows then from [26,§10.3].

8. Integration over the fibre.

8.1. Let A be a commutative group, (F,B,F,w) a fibre bundle with
connected fibres such that (i) there exists an integer ¢ for which H"(F,4)
=0 for r> ¢ and that (ii) the cohomology groups of the different fibres
form a constant sheaf over B.

We want to define, in terms of the spectral sequence of the bundle, a
homomorphism

h: H*(B,A) - H"9(B,H(F,4)) (k=0,1,- - ),

the so-called “integration over the fibre”. We put, of course, H =0 for
k < q and assume from now on that ¥ =g¢. By (i), no non-zero element
of Ef249, (r=2), is a coboundary, hence the subgroup of the elements in
E;*22 which are cocycles for all differentials is canonically isomorphic to
E 29, and we get a natural inclusion map

hy: Bvi—s Bea= Hi-a(B, He(F, A)).

Let now J* (a=0,1,- - -), be the decreasing sequence of submodules defining
the filtration of H*(E, A) attached to the fibration, and let us put, as usual,
Jobt=Jen H¥(E, A). Since B> =0 for b > g, we have H¥(E, A) — J*aq,
whence

Ewk—q,q — Jk—q,q/Jk—qH,q-l — Hk(E’ A )/Jk—qu,q—l

and a natural projection
hy: H*(E,A) — E k24,

b is then defined by § =", 0h,; by linearity it extends to an additive homo-
morphism of H*(E,A) into H*(B,H!(F,A)) and of H**(E,A) into
H**(B, H(F,A)). Whenever Hi(F, A) can be identified with A, for instance,
when F is an oriented ¢-dimensional manifold, we consider it as a map from
H*(E,A) or H**(E,A) to H*(B, 4) or H**(B, A), lowering by ¢ the degree
of homogeneous elements.
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8.2. ProrosiTioN. Let A be a commutative ring, £ a bundle satisfying
conditions (i), (ii) of (8.1), i the integration over the fibre. Then

(mg*(b) "2)" =0 (2)% (b€ H*(B,A),z€ H*(E,4)).

(Here b- (x)* means the product of b and (z)% under the natural
pairing of 4 and H9(F¢ A) to H1(Fg A).) For the proof, we may assume
b and z to be homogeneous of degrees s,t. We identify b with its image in
E,*° under the canonical isomorphism with H¢(Bg, H°(Fe, A)) — H(Bg, A).
Then we have

ha (me* (D) - (2)) = xa® (B) - ha(2)
ha (ko (B) *ha(2)) =B+ (ha o ha(2))
because F. is the graded ring associated to H*(Eg A) filtered by the Jo,
and b is a cocycle for all differentials.

8.3. PROPOSITION. Let & 7 be two fibre bundles satisfying the condi-
tions (i), (ii) of (8.1) and let ¢ be a representation of ¢ in . Let :
H*(By, H1(Fn,A)) = H*(Bg, H1(Fe, A)) be the homomorphism which is
induced by the map ¢:Bg—> By defined by ¢, and by the map v: H*(Fy, A)
—> H*(F¢, A) defined by the restriction of ¢ to a fibre.,. Then the following

diagram 1is commutative
&

H(Bnd) — ——s  HBed)
S
H¥t(By, HU(Fyy A)) ——> H¥0(Be( Ha(Fe, 4)).

This follows from the fact that ¢ induces a homomorphism of the spectral
sequence of 5 into that of £ reducing to y on the E, terms [2,§4].

Remark. TFor another discussion of the integration over the fibre, see
[11]; it is also proved there, but we shall not need this fact, that in case
E, B, F are oriented compact connected manifolds, then b is equivalent to
the Gysin homomorphism defined by means of = [11, Theorem 3].

8.4. Let ¢ be a fibre bundle satisfying (i), (ii) and: (iii) 4 is a
principal ideal ring, H *(Fé,A) is a free A-module of finite rank, H2(F¢, A)
=4, and F¢ is totally non-homologous to zero in Fg.

As is well known, these conditions have the following consequences for
the spectral sequence of &:

¢ Note that, by assumption (ii), the latter homomorphism has an invariant
meaning, independent from the particular fibre to which we restrict ¢.
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E,=FE,=H*(BgA) QH*(Fe, A),

and =¢* is injective; if H* (B A) is considered as a H*(Bg, A)-module by
means of the rule b-z=mg*(b) Uz, (b€ H*(Bg A), 1€ H*(He, A)), and if
hi (1=1=m =rank H*(F¢ A)) are homogeneous elements of H*(E¢ A)
inducing a module basis of H*(F¢, A), then H*(E¢ A) is a free H*(Bg, A)-
module with base (k).

Assume that h; induces a generator h, of H%(Fe A), and use R to
identify He(F¢ A) with A. Then we have clearly

(1) & — mg* (a%) 'hl—-l—é:m-g*(bi) T,

and this characterizes z% completely.

Tet p, v be two fibre bundles with the following properties: E,= Fg,
B,=E,, B,— B¢, mg=m,°m,, and the restriction of =, to a fibre of £ is
the projection map in a fibre bundle § == (F¢, F,, F,). Assume that & u, v, 0
satisfy (i), (il), (iii), (with of course ¢ depending on the fibre bundle) ;
let hy, h, be homogeneous elements of H*(E,, 4), H*(E,,A) whose restric-
tions to a fibre generate the highest non-vanishing cohomology groups. Then
wu*(hy) - hy=hg has the same property in & If these elements are used to
identify the corresponding cohomology groups of the fibres with A, then it
follows immediately from (1) that

(®) be =Hy0 Hp

When ¢, u, v, 8 are fibre bundles satisfying (i), (ii) whose total spaces, fibres
and base spaces are compact oriented manifolds, then (2) follows directly
from the equivalence with the Gysin homomorphism mentioned in 8.3; it
was shown to us to be true in general by Puppe, but since this is not needed
here, we shall not reproduce the somewhat longer proof of this fact.

Chapter III. Roots and Characteristic Classes.

9. Characteristic classes. We recall here the definitions of Chern,
Stiefel-Whitney and Pontrjagin classes to be used in this paper, i.e., mainly
the definitions which use universal bundles and flag manifolds. S (@, - -, za)
is the ring of symmetric polynomials in the z;’s, with respect to a ring of
coefficients which the context will make precise. S{z,* - -, .} is the corre-
sponding ring of symmetric formal power series.

9.1. Chern classes. Let £ be a principal U(n)-bundle. Its i-th Chern
class is denoted by ¢; or ¢;(£), (¢;€ H?(Bg Z)), and ¢ or ¢(€§) is the sum of
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the ¢/s. It may be defined as follows: let d; (1=j=n) be the complex
lines spanned by the canonical basis vectors of €» and let T be the group
of diagonal matrices in U(n) ; the group T is a maximal torus of U(n), its
largest subgroup leaving the dj’s invariant. In the universal covering V of
T, we introduce coordinates «; such that @ = (2, + -, 2,) operates on d; by
z—> 2+ exp(2niz;) ; in other words, z; is such that, for small positive values
of z;, the product z A\ z(z) defines the natural orientation of d;. The restric-
tions of the z; to the unit lattice define a basis of Hom (H,(T,Z),Z) and
thus a basis of H*(T,Z), and they are, moreover, permuted by the Weyl
group W(U(n)) of U(n). Let yj=-—r1(=;), where = is the transgression
in (He Be/T,T), and let p be the projection of Eg/T onto Be Then
y, € H*(B¢/T,Z) and c(¢) is defined by

P (o) =TI +90.

To legitimize this, we have to know that the right hand side is in the
image of p* and that p* is injective. It suffices to prove the first point in
the universal bundle, in view of the commutative diagram

p
By — FEe/T — Be

At

Eymy —> By)/T —> Byw)

where ¢ is a characteristic map, but there it follows from [2,§R9] since p
is by definition p*(T,U(n)). As to the second point, H*(U(n)/T,Z) is
equal to its characteristic subalgebra [2, Prop. 29.2] ; hence U(n) /T is totall:
non-homologous to zero in any fibre bundle of the type (H¢/T,Be U(n)/T),
where ¢ is a principal U(n)-bundle ([R], Cor. to Prop. 18.3), and this
implies, in particular, that p* is injective.

Let. us call here a flag or, more precisely, a complex flag an ordered
system of n mutually orthogonal 1-dimensional subspaces of €» Then
U(n)/T is the space of flags and E¢/T is the total space of the bundle of
flags in the complex vector bundle ¢; associated to ¢; the bundle 5 induced
from £; by p, with base space E¢/T, decomposes into a Whitney sum of n C*-
vector-bundles with characteristic classes ;.. Thus the present definition of
c(£) is quite analogous to that of [19,§4] and, in fact, will be shown in
Appendix I to be equivalent to it.

From the properties of p* quoted above, it follows that p**: H** (B, R)
— H**(H¢/T,R) is injective and has an image containing the formal power
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series in the ys which are symmetric. Thus we may introduce the Chern
character ch(¢) of ¢ as an element of H**(Bg, R) by

p*(ch(£)) —expy.+- - '+eXpyn=j§)(j!>"(y1f+' C - yad).

Clearly, ch(¢) and c(&), both regarded as elements of H**(Bg R), detex-
mine each other; ch(¢) is denoted by ¢(¢) in [19].

9.2. The Stiefel-Whitney classes mod 2. Let ¢ be a principal Q(n)-
bundle; its ¢-th Stiefel-Whitney class mod 2 is denoted by w; or w;(§),
(w; € Hi(Bg, Z,) ), and the sum of the w; by w or w(¢). By naturality, it is
enough to define it in the universal bundle. Let ) be the subgroup of
diagonal matrices in O(n) ; we have H*(Bom),Zs) =Zy[ts,* * *,un], Where
the u;’s are 1-dimensional classes, which may be assumed to be permuted
among themselves by the normalizer of Q in O(n), and p*(Q,0(n)) maps
H*(Bow,Z,) isomorphically onto S(us,- - *,us). Then w is defined by

P*(Q(n),0(n)) () =TT (1 +u)

(see [3]). This can also be expressed by means of flags. In fact, O(n)/Q
is the space of flags (i.e., of ordered systems of » mutually orthogonal lines)
in R* and (E¢/Q,Bg O(n)/Q) is the bundle of flags in the vector bundle
associated to & Let «/; be the image of u; under the characteristic map of
(Ee Ee/Q,Q), and let p be the projection of E¢/Q on Bg. Then

p*(w(©) =TT 1+ ),

and this characterizes w (&) since p* is injective by [3], Remark on p. 177,
and [2], Cor. to Prop. 18.3.

For an SO (n) bundle, the Stiefel-Whitney classes mod 2 are defined as
those of the extension to O(n).

9.3. The Pontrjagin classes. Let & be a principal O(n)- or SO (n)-
bundle. Its i-th Pontrjagin class p; or p;(¢) is the 2¢-th Chern class of the
unitary extension of ¢ multiplied by (—1)% and p or p(¢) is the sum of
the p’s. It may also be characterized in the following way: for n—=2m,
2m -+ 1, let d; be the 2-dimensional subspaces of R” spanned by the (2j —1)-
th and 2j-th canonical basis vectors, and let T be the maximal subgroup of
SO(n) leaving the d/s invariant; it is a maximal torus. We choose coordi-
nates x; in its universal covering such that = (z," - -, %) operates on d;
by means of a rotation of angle 2zx;; for n=2m, we require that for small
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positive values of the z;’s, the exterior product v; A z(vs) (v;€dj, v;540,
j=1,- - -, m) defines in d; the same orientation as the (2/j—1)-th and
2j-th canonical basis vectors of R”®. This determines the zs completely.
Let us consider the z;’s as a basis of H*(T,Z) and put y; =—r(z;), where
7 is the transgression in the universal bundle. It follows from the definition
and from the computations made in [2], proof of Prop. 31.4 (see also 9.4),
that

(1) p2*(T,0) (p) = 1T (14 3).
In §30, we shall see that
(2) ps* (T, @) (p) — s, (6= 50(n),0(n)),

and that p is completely characterized by (1) and (2). The Pontrjagin
classes mod p (p=£?2), may also be defined by going over to a bundle of
flags. In R* (n=2m,2m 4 1), we call a 2-flag an ordered system of m
mutually orthogonal 2-dimensional oriented subspaces. Then the space of
2-flags in R” is O(n)/T for n even or O(n)/T” for n odd, where T is an
extension of T by Z,. Let £ be a principal O(n)-bundle and p be the pro-
jection of E¢/T or Ee/T” on Be. Then we have

p*(p(8)) =11 (1 +7(2)*),

where 7 is the transgression in the canonical principal T-bundle over H¢/T
or H¢/T’ respectively. This is valid over the integers; however p* is injective
in general only for the cohomology mod p (p£2), (again by [2], §29 and
Cor. to Prop. 18.3, since SO(n) and O(n) have no p-torsion for p42).

The (¢ 1)-th Chern class of the complex extension will be denoted
Pisy 5 it is an element of order 2, equal to the square of the integral (2¢-4-1)-th
Stiefel-Whitney class (see Appendix II); p or p(¢) will be the sum of the p;
and pi3. We have p,*(T, @) (p) = pz* (T, @) (p).

9.4. Remark on the complex extension. For computational convenience,
we shall take as a complex extension of an O(n)-bundle the A-extension,
where A=2380y is the product of the injection y:0(n) - U(n) and of the
inner automorphism §:x—> gxg*, the element g being a direct sum of 2 X 2

v =)

and of (1) for odd n; simce it is equivalent to the y-extension, this does not
alter the Chern classes. The maximal torus T of O(n), previously described,

matrices
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is then mapped onto the diagonal matrices with coefficients exp (= Rwix;),
and 1 for odd n. We have

N (@ 3ja) =—A*(23)) =, (1=j=[n/R])
A (2n) =0, (n o0dd),

where (z;), (2/;) are the bases of the first integral cohomology groups of
the standard maximal tori of O(n) and U(n) described before.

9.5. The Euler-Poincaré class. Let & be an oriented vector bundle with
2m-dimensional fibre, structural group SO (2m), and let » be the associated
bundle of unit spheres. The Euler-Poincaré class Wyn(€) or Wy, of & is
equal to —r(z), where  is the generator of H*"*(Szn_y,Z) defined by the
positive orientation, and = is the transgression in ». In the universal case,
it is also characterized by the two properties:

(1) Wam, reduced mod 2, is equal to wem,
(ii) pz* (T, 80 (2m)) (Wam) =41 * * *Yme

For the tangent bundle to a differentiable, compact, connected, oriented
manifold, W,, is the fundamental class multiplied by the Euler-Poincaré
characteristic.

9.6. Symplectic Pontrjagin classes. Let & be a Sp(n) bundle and 5 its
extension under the standard inclusion of Sp(n) in U(2n). Its ¢th sym-
plectic Pontrjagin class e;(£) or e; is by definition

ei(€) = (—1)%czu($),

and its total symplectic Pontrjagin class ¢(£) or e is the sum of the e/s.
The computations made in the proof of Prop. 31.3 in [R] show then that
the universal symplectic Pontrjagin class satisfies

(8)  p*(T,8p(n)) (¢) =1I (14-92), (T a maximal torus of Sp(n)),

where the y’s form a base of H2(Br,Z) whose elements are permuted, up
to sign, by W(Sp(n)). Moreover, it follows from ([2], §9, 29) that
H*(Bsp(n),Z) is the ring of polynomials in the e/’s and that p,*(7,Sp(n))
is injective.

9.7. The multiplication theorem. Finally, we recall the Whitney
multiplication theorem. Let

0> >¢(E¢—>0



HOMOGENEOUS SPACES, I. 489

be an exact sequence of real (resp. complex, resp. quaternionic) vector bundles,
with structural group G =@ (n) (vesp. U(n), resp. Sp(n)) for three suitable
values of n. Then we have

(4) w(é) =w(&) w(&) (G=0(n)),
(5) p(&) =p(&) p(&) (G=0(n)),
(6) (&) =c(&) - c(¢&”) (G=U(n)),
(7) e(§) =e(&) -e(¢”) (G=Sp(n)).

(4) and (6) are classical; (5) and (7) follow from (6) and the definitions.
We note that, in view of (5), we also have

(8) p(8)=p(&) p(¢) modulo-torsion.

These formulae imply, in particular, that w or § (resp. c, resp. e) is invariant
under an extension relative to the standard inclusion O(k) C O(m) (resp.
U(k) CU(m), xesp. Sp(k) € Sp(m)), (m=F).

10. Representations and characteristic classes.

10.1.  Integral forms as cohomology classes. Let T be a torus, V
its universal covering, I' the unit lattice, and TI'* = Hom(T,Z). Thus
T*=H'(T,Z), and, for any commutative group, I'* ® 4 =H"(T,A). We
shall make this identification and, in particular, identify A HT,R) with V*
and H*(T,Z) with the integral linear forms on V. Also, the roots discussed
in Chap. I will be considered in this way as elements of H*(T,Z) or H*(T, 4).

Let ¢ be a principal T-bundle. Then 7z maps all of HY(T,A) in
H?(Bg A). Unless this may lead to a confusion, we shall denote by the
same symbol w€T*®A, the corresponding element in H*(T,A), and
—71¢(w) € H*(Bg A).

Let G be a compact connected Lie group and let 7' be a maximal
torus of (. First assume (f to be semi-simple and simply connected. Then
the transgression in (@, G/T,T) is an isomorphism of H*(T,Z) onto
H*(G/T,Z) since G/T is simply connected. Thus the previous conventions
identity H*(G/T,Z) and H*(T,Z) with the weights of G (see 3.3). Let G*
be the quotient of G by a finite invariant subgroup and 7* the image of T'
under the natural map of ¢ onto G*. Then G/T is homeomorphic to G*/T*,
as is well known (see e.g. [2], §26); however the transgression in
(G*, G*/T*,T*) will be an isomorphism of H*(T*,Z) onto the subgroup
of H*(G/T,Z) corresponding to the weights which are integral on the unit
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lattice of G*. In the general case, let G be the greatest semi-simple sub-
group of G (R.9); since maximal tori are maximal abelian subgroups,
T,=G,NT is a maximal torus of G4, and moreover (2.9), G/T may be
identified with G,/T,. Since a toral subgroup of a torus is always a direct
factor, the map H*(T,Z) — H*(T.,Z), induced by inclusion, is surjective,
and the map: p= (G, G+/T,,T,) >v= (G, G/T,T), defined by inclusion,
shows then that r,(H*(T,Z)) =+, (H*(T,Z)).

Let now G’ be the quotient of G by a closed subgroup of the center,
x:G— G’ the projection, U a connected subgroup of maximal rank in @,
Uy=GNU, U==(U). Then rank U, =rank G,, rank U =rank &,
and it follows from 2.9 that G/U = G,/U,. Also, the argument of [2, §26]
referred to above shows that U is the full inverse image of U’ in @, and,
consequently, that G/U = G’/U’. Therefore, when we deal with coset spaces
G/U (rank G=rank U), there is no loss in generality in assuming that ¢
is semi-simple and simply connected.

10.2. The weights and the character of a homomorphism. Let G,
be two compact Lie groups, A: G— G’ a homomorphism, 7" and 7” toral
subgroups of G and G’ such that A(7)C 7”7, and (2;) a base of H*(T,Z).
Then A induces homomorphisms of H*(1”,Z) and V’* in H*(T,Z) and V*,both
to be denoted by A*. The elements w;=A*(2’;), viewed either as elements
of H*(T,Z) or as integral linear forms, will be called the (7,7”)-weights
of A, or simply the weight of A when 7 and T” are maximal.” The formal

ch(A) =X expuw;

considered as an element of H**(Bp, R) or of H**(Bg R), where £ is a
principal 7T-bundle, will be called the character of A.

Assume now 7, TV to be maximal and ¢’=U(n). Then for t€ 7T,
the matrix A(?) is diagonal with the coefficients exp (2wtw;) ; in other words,
the w; and the sum of the exponentials of the 2miw; are, respectively, the
weights and the character of the representation A in the usual sense.

In the case G’=0(n), i.e.,, of a real linear representation, we have

power series

analogously

D (2nw,) D(27rw1.)
Mz) = . Az) =

0 0

_D (2'7rw'm) D (2wwm) 1
7 More precisely, with respect to the basis («’;), which is always supposed to be
chosen as in § 9 when G’ is a classical group.
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for n=2m and n=2m 41 respectively, where D(a) is a 2-dimensional
rotation of angle «; the weights of A, considered as a representation in U(n),
are then the forms =+ w;, together with the zero form for odd n.

10.3. TuroreM. Let G, G’ be two compact Lie groups, A:G—> G a
homomorphism, T, T" mazimal tort of G and G’ such that A(T)C 1", and
(0j) the weights of A. Let & be a principal G-bundle, n its A-extension, p the
projection of Ee/T onto Be. Then

(a) If @=U(m), then
p*(c(n)) =II1(1 4 w;); p**(ch(n)) =ch A.
(b) If @=80(m) or O(m), the Pontrjagin class p(y) satisfies
p*(p(n)) =p*(P(n)) = IT(1 + (v;)?).
(¢) If @=S0(2m), the Euler-Poincaré class Wam(n)satisfies
p* (Wam(n)) =1l o

(a) We have a commutative diagram

Ee——> Ee/T —f—> B
T
Ey—> E’,,/T’——p—-> Bg,
where ¢ is a A-map. By (9.1), putting ¢’ for ¢(y), we have
P () =111 —7(25)),
where 7’ is the transgression in (Ey, Eq/T’,T’) ; and therefore
p*(¢) = p* p"* (') =I1(1 — ™7’ (/).
Since ¢ commutes with transgression, this gives
p*(¢) =II(1 —ma*(a;))

and our assertion follows from the definition of the weights and the notation
convention of (10.1). The proofs for (b) and (c) are similar.

10.4. CororLARY. Let G=U(n), @ =U(m), T the standard mazimal
torus of @, wj= X ayx; the weights of A expressed in terms of the canonical
B

basis of HY(T,Z), (i—1, - -,n;j—1, - -,m). Then
0(n)=H(1+§awyi)
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where the yi's are formally defined by c(&) =T11(1 -+ v;). The class c¢(y) is
a polynomial with integral coefficients in the classes c;(§).

By (9.1), we have p*(c(é)) =1I(1—7(:)), and our first assertion
follows from 10.3 and the fact that p* is injective when G is the unitary
group. Moreover, the Weyl group W(U(n)) operates in a natural way on
the fibration (E¢/T,Be,U(n)/T,p) and induces the identity on Bg (see
[2],8R%7). Therefore the image of p*, and in particular, p*c(y), is made
up of invariants of W(U(n)) ; since the latter is the group of permutations
of the a;, or equivalently, of the =(z;), it follows that c¢(y) is' a symmetric
function in the y;’s, whence our second assertion.

10.5. CoroLLARY. Let G=0(n) or SO(n), G’ be O(m) or SO(m).
Then p(n) reduced modp (ps4£R), s a polynomial in the p,(£), and if
G=80(2m), in Wy, (&). If A can be extended to a homomorphism of
U(n) wnto U(m), then p(y) is a polynomial in the classes p;(£), pus(€),
and, in particular, p(y) reduced modp (p542), is a polynomial in the
classes p;(£).

The first assertion is proved in the same way as 10.4, using 9.3, 9.5
and the properties of the invariants of W (@) recalled in 30.2. The second

one follows from 10.4 by considering the Pontrjagin classes as the Chern
classes of the complex extension.

10.6. FEaxamples. (a) Let £ be a complex vector bundle, &* the dual
bundle. Then, if ¢(¢) =TI(1 + 2;), we have ¢(&*) =T](1—=;). In fact,
the principal bundle 6 associated to &* is the A-extension of the principal
bundle of £ where X is the contragredient representation, whose weights are
obviously the forms — ;.

(b) Let G=U(n), j be a positive integer =n, and A the natural
representation of U(n) in the j-th exterior power AJC» of €C» Let (e;)
be the canonical base of €. Then the products

e, N\ ey N * "N\ e I=u< - <i=n)
form a base of A/C" and we have
A@)(ea N - - A ey) =exp[Rmi(ey, 4+ - - F @) (e A - oA ew);
i.e., the weights of A are the sums ‘
Ty 4 Ty, I=su<- - <u=En).

Here 7 is the principal bundle associated to the bundle of contravariant p-



HOMOGENEOUS SPACES, I. 493

vectors in the complex vector bundle associated to ¢ This bundle has,
therefore, as Chern class

C= T (das+4- - ).

1S <iySn
(¢) In the same way, the Chern class of the bundle of contravariant
symmetric tensors of degree j will be

I (ot ).

1SS Si=n

(d) Let & (i=1,2), be two complex vector bundles over B and let

ni
cwy =IT (1 4 29)
j=1

be formal decompositions of their Chern polynomials. Then

¢(6:®%) =H jI{ (1 + a0 4 ;).

To see this, we take as ¢ the principal bundle with group U(n,)X U(n,)
associated to the sum & @ &, whose Chern class is ¢y - C(zy by the multipli-
cation theorem (9.7), and as A the representation of U(n,)X U(n,) in
U(ni-ny) defined by (gi,¢:) = g1 ® g,, considered as an automorphism of
€@ Cr. The products ¢;®f;, where (¢;) and (f;) are the canonical bases
of €™ and €™, form a base of € ® € ; hence the weights of A are the forms
2 4 2, and our contention follows from (10.3) and from the fact that
the A-extension of ¢ is the principal bundle of & ® &,.

(e) To compute the Pontrjagin classes of real vector bundles, it is
often more convenient to look at the Chern classes of the complex extensions;
as an illustration, we take the case where G =SO(2n) and X is the repre-
sentation in A?R*". Let p, v denote the complex extensions of & 5 (as
defined in 9.4), let T, T’ be the standard maximal tori of SO (2n), U(2n),
and let (z), () be the canonical bases of H'(T,Z) and H(T',Z). We
have a commutative diagram

P
Eg—— B:/T —> B

L

E,— E,/T"— Bg,

and it follows from (9.4), (10.3) that
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T =N (25i1) =—2*(2'w), (l=si=n),
P (p(6) =TT (1 422,

o (o) =11 (1 + 7).

Now, v is clearly the extension of u corresponding to the complexification

of A,” i.e., to the natural representation of U(2n) in A?Z2C?"; therefore, by
example (b),
o*(c(v))=_1II (A+2i+2).

1=i<j=2n
This gives
#rrat(e()) = I (1—(mta)) (1—(m—z)?),
si<i=n
P*(C(V))=1 1;[ [(I—azf—af)*—4 o’ zf],
=i<i=n
and finally

p*(B(n)) =p*(p(n)) =1§i1—1<j§” [(14 2 +2)°*—4 a8 27].

(f) It may be shown in the same way that if &, & are two real vector
bundles over the same base space B with Pontrjagin classes reduced mod p

(p£?), equal to

p6) =11 (L+ao),  p(&) =TI+,
then

p(sl®sz)=i1'j fll(1+(xi+xj>2>‘(1+(m——x;-)?)-

10.7. TuroreM. Let G be a compact connected Lie group, U a closed
subgroup of @, S a maximal torus of U, and (x=b;) (1=j=k), the roots
of G with respect to S which are complementary to those of U. Let ¢ be a
principal G-bundle, p the projection of E¢/S onto E¢/U, and v the bundle
along the fibres (7.4) of (E¢/U,Be G/U). Then p*(p(n)) =TI(14b2);
if, moreover, U is connected and dim G/U =m 1is even, then p*(Wn(n))
==+ 110,

By (7.5), n is the w-extension of (B¢, E¢/U,U), where . is the isotropy
representation ; according to the definitions in (1.3) and (10.1), the b,
are the weights of « (up to a certain number of zero forms, but this does not
alter our formulas), and (10.7) follows then from (10.3). The sign for
the Euler-Poincaré class will be determined by the conventions made in 9.5,
once the bundle along the fibres has been oriented.
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10.8. We keep the previous notations. Let J be an invariant almost
complex structure on G/U and » be the complex vector bundle structure of 5
constructed by means of J (see 7.4). J is defined by a complex structure
on the tangent space (G/U),, invariant under U; this complex structure
gives rise to a linear representation i, of U in €2 (m =dim G/U), which
goes over to « by taking real and imaginary parts. The weights of . are
some of the forms = b;, and (10.3) also implies:

THEOREM. We keep the notations of 10.7; assume, moreover, that G/U
has an invariant almost complex structure J, and denote by » the complex
vector bundle structure of w associated to J. Then p*(c(v')) =11 (1 + €b;),

jedJ

(= =1), where b; runs through the weights of the complex isotropy
representation «, defining J.

The weights of «, will be discussed in detail for the case where rank G
=rank U in Chapter IV.

10.9. In order to study the tangent bundle to G/U it is usually con-
venient to consider the bundle § along the fibres of (By, Bg, G/U,p(U, G)) =8
and restrict to a fibre of 4, since this allows one to make use of known results
about classifying spaces. We consider here, in particular, the case where
U =T is a maximal torus and show the

Prorosition. Let T be a mazimal torus of G. Then the total Pontrjagin
class p(u) of the tangent bundle u to G/T s 1.

Let 6= (Br,Be, G/T) and let ¢ be the inclusion map of a fibre.
H*(G/T,Z) is torsion free ([5], or R. Bott, Bull. Soc. Math. France 84,
(1956) 251-281), and therefore the subgroup S of invariants of W (@) in
H*(G/T,Z) is a free abelian group; since by a lemma of Leray (see [2],
Lemma 27.1), H*(G/T,R) is the space of the regular representation of
W(@), it follows that S=H°(G/T,Z) and that the kernel of * contains
the subgroup Ig* of invariants of W (@) in H*(Br,Z) having strictly positive
degrees.

By (10.7) we have
PO =T1(1+41bp),

where the = b’s are the roots of G. Since W (&) permutes the b2, it leaves
7(8) invariant, whence

p(w) =*(p(9)) =1.
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11. Representations and Stiefel-Whitney classes. In this section, @,
@’ denote commutative groups of type (2,2,- - -,2). The following discus-
sion applies to any arbitrary compact Lie group, but has an interest only
for groups in which maximal commutative subgroups of type (2, - -,2) are
conjugate and play in cohomology mod?2 the role of maximal tori in real
cohomology. We therefore assume tacitly that G, G’ are products of copies
of O(n), SO(n), U(n), SU(n), Sp(n), G, (see [3]).

11.1. Characters of Q as cohomology classes. @ being discrete, H*(Bg, A)
is the cohomology ring of @ in the sense of Hopf-Eilenberg-MacLane, and,
in particular, H*(Bg,4) = Hom(Q,A). Thus € Hom (@, 4) may be con-
sidered as a 1-dimensional cohomology element in By or, via the characteristic
map, in the base space of any principal bundle (¥, B, @), which will be usually
denoted by the same symbol (z € H*(B,4)) in particular, the 2-roots intro-
duced in §5 will be considered as elements of H'(B,Z;). We note that if
A Q@ — €@ is a homomorphism, then

p(AM)*: H*(Bg,A) = H*(Bg,4) and X: Hom (@', 4) - Hom (@, A)
are carried into one another by the previous identification.

11.2. The 2-weights of a homomorphism. Let A: G— G’ be a homo-
morphism, @, @ maximal and such that A(Q) C @/, and (w;), (2;) bases
of Hom(¢,Z,) and Hom(§",Z;), considered as Z,-modules. Then A*:
Hom (Q’,Z,) > Hom (Q,Z,) is characterized by elements o;=2*(2;)
= 2\ a;x;, to be called the 2-weights of \. Here, also, we assume, in case of
an orthogonal group, the basis to be chosen as in (9.2).

11.3. TuEOREM. Let G be a compact Lie group, Q a mazimal commu-
tative subgroup of type (2, - +,2), A: G—>O(n) a homomorphism, (w;) its
2-weights, & a principal bundle, & its A-extension, and p the projection of E/Q
onto B. Then p*(w(&)) =111+ ;).

The proof is the same as for (10.3), except that instead of (1) § 10, we
use the commutativity of the diagram

¢/
Be/Q—— Be/Qf

g 0',
By ——> By,

where ¢ and o are characteristic maps, and the end remark of (11.1);
therefore, we shall not reproduce it here.
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Remark. For the groups mentioned at the beginning of §11, p* is
injective [3].

11.4. CoROLLARY. Assume, moreover, that G=0(n). Then w(¢)
=TI(1 + X ayz;), where the x; are the formal roots of w(€). In particular,
w(&) 1s a polynomial in the classes w;(£).

Same proof as for (10.4), except that instead of using the Weyl group,
we take the quotient by @ of its normalizer in @(n) ; its inner automorphisms
also induce the group of permutations of the z’s.

Ezamples. Computations paralleling those of 10.6, (b), (c¢), (d) will
lead to the same formulas for the Stiefel-Whitney classes of bundles of p-
vectors, symmetric tensors, and for tensor products, the z; and y; standing
now for 1-dimensional classes mod 2. Details are left to the reader.

11.5. TuEOREM. Let G be a compact Lie group, U a closed subgroup,
and Q a mazimal commutative subgroup of type (2, - -,2) of U. Let ¢
be a principal G-bundle, p the projection of Ee/Q on Ee/U, and 4 the bundle
along the fibres G/U. Then

p*(w(y')) = II(1 4 @),

where the as are the 2-roots of G with respect to @, complementary to
those of U.

The a;’s are the 2-weights of the isotropy representation; hence (11.5)
follows from (7.5) and (11.3).
Applications will be given in Chapter V.

Chapter IV. Roots and Invariant Almost Complex Structures.

In this chapter, ¢ is a compact, connected, semi-simple, Lie group, [ its
rank, U a proper closed connected subgroup of the same rank, and 7 a
maximal torus of U. 1f ¢ is a set of roots, we put —y = {—a,a€y}.

12. Integrability of invariant almost complex structures. We recall
here some known facts in a form convenient for the sequel.

12.1. Let V be a real 2n-dimensional vector space, endowed with a
complex structure defined by a linear transformation J, and let V¢ be its
complexification. Then

VeT+4T-, T-=T%, T+nT = (0),

17
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where T (resp. T-) is the eigenspace of the extension J¢ of J to V¢ corres-
ponding to the eigenvalue ¢ (resp. —14) and where the bar denotes complex
conjugation with respect to V. Conversely, given such a decomposition of Ve,
we define J¢ by Je(z) =1 -z (€ T*), J°(z) =—1x, (x € T-) ; then J¢ leaves
V invariant and induces there a complex structure such that z—az 4 ¢ is a
complex isomorphism (x€ 7). In particular, given a linear transformation
A without real eigenvalues, we define 7™ (resp. 7-) as the sum of the eigen-
spaces of its semi-simple part corresponding to eigenvalues with positive
(resp. negative) imaginary parts, and thus attach to 4 a complex structure
on V.

12.2. The roots of G with respect to 7' define linear forms on the Lie
algebra t of T, and it follows from (1.3) and standard facts about the adjoint
representation that

i 0 — 2ma; ()
adx]a‘—(%ai(w) ; ) (zet),

ad z being defined by (adz) (y) = [z,y], (z,y€ g).
We have then, superscripts denoting complexification, that

gc=tc_|_alc+. ' ‘+a’mc; aic=bai+b—av
[, 6.q,] = == 2m10;(T) rq,, (€sa, € Dsqy) 3

since any two roots are different from each other, the 1-dimensional eigen-
spaces .o, are well determined by {. We recall that if o, 8 are two roots,
we have

[Dq, g] =0 if @+ B is not a root and not zero,
(1) [Das D8] = Daug if -8 is a root,
[Dg, D_a] C 1% [V, D-a] 0.

12.3. Assume now that G/U has been endowed with an invariant almost
complex structure and let = b; (1 =4j=%) be the complementary roots. The
almost complex structure is characterized by a linear transformation J,
(J2=—1d), of (G/U), which commutes with the linear isotropy group
(1.1). Since b;5%b; for i5%j, J must also leave the subspaces b; invariant
and it induces complex structures on them which characterize it completely.
Now on each b; there are two complex structures commuting with the isotropy
representation of 7" in b, differing by the orientation they induce; to each b;
we attach a sign ¢, equal to 41 (resp. —1), according to whether the
ordered pairs (e, Adt(e)) and (e,J(e)) define the same orientation or not
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(e€bje=£0,t€T such that 0 <b;(f) <3%). The ¢b; will be called the
roots of the almost complex structure, which they describe completely.

We extend J to a linear transformation J of g by putting it equal to
zero on 1, and to a linear transformation Je of g¢; it is readily seen that

jc(eejbj) =1:' eEﬂ)j; Jc(e—ejbj) - _"i’ eejbj (e:bj € D:b;) .

The space T+ of (12.1) may be identified with the space spanned by the
Ve,5, Which, by the foregoing, is invariant under Ade U. Since z—>z+ 7 is
a complex isomorphism of T onto (G/U),, the previous identification carries
the restriction of Adg U onto the complex isotropy representation ¢ defined
in § 10, and, therefore, the ¢b; are the weights of .

The almost complex structure is integrable, i.e. (since we are in the
real analytic case), derives from an automatically invariant complex analytic
structure, if and only if

M=1u°~4Dep, + * * + Dyt

is a Lie algebra [14,§20]. In view of the properties of the bracket recalled
above, this proves the first assertion of:

12.4. LemwmA. Let £ be an invariant almost complex structure on
G/U, ¢ the system of its roots, and 3, the system of roots of U. Then £ is
integrable if and only if S Uy s closed in the sense of §4. In this case,
¢ 1s closed and contained tn o system of positiwe roots.

As to the second assertion, we remark that by 4. 10, we have =60 U —9,
where U ¢ is a system of positive roots for some ordering. Since S Uy
and #U ¢y are closed and since ¢ N —y = ¢, it follows immediately that
is closed.

More precise statements about y will be given in 13.7.

13. Applications.

13.1. The following known facts will be used in this section. A compact
connected Lie group K is semi-simple if and only if H*(K,R) =0, and then
H*(K,R) =0 (see, e.g., Chevalley-Eilenberg, Trans. Amer. Math. Soc., 63
(1948), 85-124). A simple spectral sequence argument then shows that, if
K is compact and semi-simple and L is a closed connected subgroup, the
transgression is an isomorphism of H'(L,R) onto H?*(K/L,R), and, in
particular, that H*(K/L,R) =0 if and only if L is semi-simple, too.

13.2. Coset spaces with second Betti number zero. As a first application
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of §§4 and 10, we prove anew a theorem of H. C. Wang [31, Theorem C]
to the effect that a coset space G/U with rank G =rankU and second Betti
number zero is not homogeneous complex.

Assume that G/U has an invariant almost complex structure with roots
(gbj), (1=j=k); let ¢, be its first Chern class and p be the projection
of G/T onto G/U. By (10.8) and (12.3),

p¥(61) =—r(abi 4+ - 4 eub)

(r transgression in (@, G/T,T)). Since H?(G/U,R) =0, ¢, must be a
fortiori zero as a real cohomology class, and hence, by (18.1), X ¢b;==0.
But then, by §4, the system (eb;) does not satisfy the condition of 12.4,
and thus the almost complex structure is not integrable.

13.3. Exzamples of (13.2). Now let G be simple and U be a maximal
connected subgroup of maximal rank. A complete list of such inclusions
is given in [7]; to discuss it, we assume, moreover, the center of G to be
reduced to the identity, which is no loss in generality. These inclusions
may then be divided into three classes:

(a) U is the connected centralizer of an element of order 2, which
generates its center.

(b) U is the centralizer of a one dimensional torus S, and S is the
identity component of the center of U.

(¢) U is the connected centralizer of an element z of order 3 or 5,
which generates its center.

The coset spaces (/U corresponding to the classes (a), (b) are irreducible
Riemannian and hermitian symmetric spaces respectively. In the class (c)
we find seven spaces, namely G,/4,=S8,, F,/A, X A,, Es/A; X A, X A,
E./A, X As, Eq/Ag, Eq/4, X E; for z of order 3 and E;/4, X A, for z of
order 5.

U being the connected centralizer of z, its algebra u is the set of fixed
points under Adz; consequently, Adz has no real eigenvalues on the comple-
mentary subspaces b;, and we may attach to it a complex structure on (G/U).,,
as recalled in (1R.1), which will be invariant under U, since the latter
commutes with Adz, and defines, consequently, an invariant almost complex
structure on (/U. Here since U has a discrete center, it is semi-simple, and
H?*(G/U,R) =0 (see 13.1). Therefore, by (13.2), we have the

Prorosition. The seven coset spaces of the class (c¢) above are homo-
geneous almost complex but not homogeneous complez.
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This generalizes a known result for S¢ (Ehresmann Libermann, C. E.
Acad. Sci. Paris 232 (1951), 1281 [14,§10]).

13.4. ProrositioN. Let G/U be homogeneous almost complex, and let
=1+ -+ be a decomposition of the isotropy representation into real
irreducible representations; then the u are unique, each one has the complex
numbers as commuting field, and G/U admits exactly 2¢ invariant almost
complex structures.

Let (G/U)o= Wy +- - -+ W, be a direct sum decomposition of (G/U),
such that the restriction of « to W; is 4. Since these subspaces are invariant
under 7, they are direct sums of subspaces b;, and the corresponding roots
=+ b; are the weights of 4; since any two roots are different, the complex
irreducible components of the ¢ will be pairwise inequivalent, from which
follows the uniqueness of the v and of the W,;. Also, a straightforward applica-
tion of Schur’s lemma shows that any linear transformation commuting with
¢« leaves the Wys invariant. Since, by assumption, there is at least one
transformation without real eigenvalues commuting with ¢, we see that the
commuting field of ¢ is either the field of complex numbers & or of quater-
nionic numbers K; in any case y is not complex irreducible and its exten-
sion to W;® € decomposes into y; + 7, where y; is complex irreducible and
¥; is the complex conjugate representation of y;; the weights of ¥; are opposite
in sign to the weights of y;. Since the roots of G are pairwise distinct (§2),
yi is not equivalent to 7; and it follows from Schur’s lemma again that the
commuting field of  is the field of complex numbers. Thus we have on
each W, exactly 2 invariant complex structures, from which our contention
follows.

Remark. Let o be an automorphism of G leaving T and U invariant,
do the induced automorphism of g; let ¢ be the root system of an invariant
almost complex structure £ on G/U, and y’ the transform of ¢ under do.
From the formula (1) in §1, it follows readily that the homeomorphism ¢
of G/U defined by o carries £ onto the invariant almost complex structure
with roots ¢/. If, in particular, o(z) =¢ X ¢g* with g€ Ny N U, then o
reduces to the left translation defined by g and leaves £ invariant; hence the
element of W (U) represented by g must leave ¢ invariant.

13.5. Centralizers of tori. The following proposition is due to H. C.
Wang [31]:

ProrosiTioN. G/U (with rank U =rank G; U connected) ts homo-
geneous complex if and only if U is the centralizer of a torus in G.
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Proof. Let U be the centralizer of a torus S, which we assume, as we
may, to be in T, and let s€ S generate an everywhere dense subgroup of S.
Then U is the centralizer of s, u the space of vectors fixed under Ads, and
we have b;(s) ==0(1) if and only if b, is complementary. Let ¢;=sgn (b;(s))
(1=j=k);since s centralizes U, the ¢;b; are the roots of an invariant almost
complex structure; moreover, being characterized by ¢;5;(s) > 0, these roots
satisfy the criterion of 12.4, and the structure is integrable.

Assume now, conversely, that G/U has been endowed with a homogeneous
complex structure and let (eb;) (1=j=kF), be its roots. By (2.9), the
group is locally isomorphic to the direct product of its largest semi-simple
subgroup U’ and of a torus S; moreover, by 13.1 and 13.2, S=4 {¢}. Now
let W be the centralizer of S. We have W=28,-W’, where §, is a torus
containing S and W’ a semi-simple subgroup containing U’ and W' N 8, is
finite. The equalities

rank G = rank U’ 4 dim § = rank W’ -} dim 8,

show then that §=28,, that rank W =rank U/, and that W/U is to be
identified with W’/U”; since W” and U’ are semi-simple, we have H2(W’/U’, R)
=0 and W/U is not homogenous complex (13.1, 13.2).

Let J C [1,%] be such that the =+ b;’s, with j € J, are the complementary
roots of U in W. The roots (eb;) (5€J), define a complex structure on
(W/U), which is invariant under the linear isotropy representation / of U
in (W/U), since ¢ is nothing but the restriction to an invariant subspace of
the isotropy representation of U in (G/U),; moveover, since the system
(b)) (1=j=k), satisfies the condition of 12.4, so does (eb;) (F€J).
Therefore, if W £ U, then we get on W/U an invariant integrable almost com-
plex structure, in contradiction to what has already been proved. Thus U =W
and U is the centralizer of the torus S.

13.6. For the sake of completeness, we recall the proof of the following
well-known lemma.

Levmma. Let U be the centralizer of a torus in @, S the connected
center of U and k=dim 8. Then, for a suitable ordering &, there are | —Fk
stmple roots a; (1=1=1—F) vanishing on S and such that the roots of
U are ewactly the roots of G which are linear combinations of the a,
1=i=1—Fk).

The roots of U are those of G which vanish on S; since the semi-simple
part of U has rank I—%, U has I—¥% independent roots. We consider in
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the dual space Vr* of the universal covering Vy of 7' the lexicographic order
which is associated to a base whose first k& elements span the covering Vg
of §. It is then clear that if a sum of positive linear forms b; with strictly
positive coefficients vanishes on Vg, so does each b;; the lemma follows readily
from this and from the fact that U has {—£Fk linearly independent roots.

Remark. In the ordering &, the complementary roots are linear com-
binations of the a,/s with at least one of the %k last ones appearing with a
non-zero coefficient. Therefore, if the sum ¢ 4 b of a root ¢ of U and of a
complementary root b is a root, then it must be a complementary root. Also,
the set of positive complementary roots is closed.

18.7. Number of tnvariant complex structures. In this section, we
assume G/U to be homogeneous complex; U is then the centralizer of a torus
by 13.5, and we keep the notations of 13. 6.

ProposiTION. Let ® be a system of positive roots of U. The roots of
an variant complex structure form a closed system ¥ such that ® U ¥ is ¢
positive system of roots for G. Conversely, a closed set ¥ of complementary
roots such that ® U ¥ s the set of positive roots of G for a suitable ordering
is the system of roots of an invariant complex structure of G/U.

Let ¥ be the root system of an invariant complex structure @. Then
(12.4) ¥ is closed and is contained in a system & of positive roots of G.
® is necessarily of the form ® U ¥, where ® is a system of positive roots
for U. There exists, therefore, w € W(U) which carries ® onto ®; since w
leaves ¥ invariant (remark in 13.4), it carries ® U ¥ onto ® U ¥, and the
latter is also a positive system.

Let now ¥ be a closed system of complementary roots such that ® U ¥
is the set of positive roots relative to an ordering &#’. The remark in 13.6
and the fact that ¥ is closed show that if a€ ® is a sum of two positive
roots for &’, then these two roots also belong to ®; this means that the simple
roots of ®, considered as a positive system for U, are also simple for 4&’.
Let then a; (1=7=1) be the simple roots of &’, with a;€ ® for j =1—F;
the elements of ® (resp. ¥) are then linear combinations with positive
coefficients of ay,- - *,ar% (resp. as,* * -, a;, where at least one a; (j >1—%)
has a non-vanishing coefficient). This implies first that ® U — ® U ¥ is closed
and second that there is an s€ S such that 0 < b(s) < 4 for all b € ¥; thus
the map of (G/U),==g/u onto itself, defined by Ads, has no real eigenvalues
and the complex structure attached to it by the rule of 12.1 has the root
system ¥. Since s commutes with U, this structure is invariant under the
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isotropy representation, and hence, by (12.4), gives an invariant complex
structure on G/U.

13.8. ProrosiTioN. Let G/U be homogeneous complex, let k be the
dimension of the center of U, and let | be the rank of G. If k=1 (resp.
k=1, te,U=T), then the number of invariant complex structures is equal
to two (resp. the order of W(G)). Given two of them, there is a homeo-
morphism of G/U induced from an (resp. inner) automorphism of G leaving
U wnvariant and carrying one onto the other.

Let k=1. Then in the notations of 13.7, ® is empty and the invariant
complex structures are in 1-1 correspondence with the different systems of
positive roots of @, by 13.7 (or directly by 4.9 and 12.4). Since W(G@)
operates transitively on the set of systems of positive roots, it is obvious by
the remark of 13. 4 that the inner automorphisms of G defined by the elements
of the normalizer of 7' induce homeomorphisms of G/7 which permute
transitively the invariant complex structures.

Now let k=1. We first take an ordering & having the properties
mentioned in 13.6. Then the set of positive complementary roots ¥ defines
an invariant complex structure by 13.7. Let ¥ be the root system of another
invariant complex structure. As in 13.7, we denote by ® the set of roots of
U which are positive for 8 and by a; the simple root of 8 not belonging to ®;
¥ U @ is the set of positive roots for some ordering &/, and the proof of
Proposition 13.7 shows that a,,- - -, a;; are also simple for 8’. If a;€ ¥,
then ¥ U ® contains all simple roots of #’, and hence ¥ —=¥. Let now
—a;€ ¥ and let a’; be the I-th simple root of 4”; —a; is a linear combina-
tion with positive coefficients of a4, * -, a1, @1, and therefore, if we express
@’y as a linear combination of a,- - -, a;, then the root a; must have coefficient
—1. But then the elements of ¥ which are combinations with positive
coefficients of a,,- + - ,a14,a’;, where the last coefficient is %0, must also
have at least one negative coefficient when expressed as linear combinations
of a,,- * +,a;; this means that they are negative for &, and therefore that
W —=—¥. Thus we have only two invariant complex structures.

It is known (see [23] or Gantmacher, Rec. Math. Moscou 47 (1939),
101-144) that any automorphism of { permuting the roots extends to an auto-
morphism of g. In particular, there is an automorphism ¢ carrying each
root into its opposite; since we may assume here G to be simply connected
(10.1), o also defines an automorphism of G leaving T invariant; it maps
¥ onto — ¥ and leaves invariant the set of roots of U. Therefore ¢ leaves U
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invariant and defines a homeomorphism of G/U carrying the complex struc-
ture with roots ¥ onto the complex structure with roots — ¥.

Remarks. 1) The argument which ends the preceding proof shows more
generally the following: let ¥, ¥ be the root systems of two invariant
complex structures 4, 4’ on G/U. If there is an automorphism of Vg
carrying ¥ onto ¥ and leaving the root system of U invariant, then £, 4’
are equivalent under a differentiable homeomorphism of G/U, which is
induced from an automorphism of G leaving U invariant.

?) If ¥ is the set of roots of an invariant complex structure @, then
~— ¥ is clearly the root system of the “bar structure” or conjugate of ¥,
that is, of the structure in which the vectors of type (1,0) are those of type
(0,1) for 4. Thus the last part of the above proof shows that on G/U an
invariant complex structure and its conjugate are equivalent under an auto-
morphism of G. In the case P, ,(C) =U(n)/U(n—1)X U(1), the auto-
morphism may be taken as complex conjugation and therefore has to be an
outer automorphism for n = 3.

3) The case k=1 in 13. 8 includes the hermitian symmetric spaces for
which our assertion has already been noticed by I. Satake, “A remark on
bounded symmetric domains,” Sci. Papers Coll. Ed. Gen. Univ. Tokyo 3
(1953), 131-144).

13.9. Ezamples of inequivalent structures. There are cases in which
G/U carries at least two invariant complex structures which are not equiv-
alent under a differentiable homeomorphism. For instance, take G = U (4),
U=UR)XU(1)X U(1), embedded in the standard fashion. With respect
to the standard maximal torus, the roots of U(4) are == (z;—z;), (1=i<j
=4), and those of U are =+ (2,—=z,). Let 8, (resp. &,) be the ordering
defined by 24>, > 2, > 23>0 (resp. @ >2,> 23 >2,>0). Then by
13.7, the set ¥, (resp. ¥,) formed by z4—z,, Z,~—x,, @4—xs, T, — s,
Ty — Ty (T€SP. Ty — Ty, Ty — Ty, Ty — Ty, Lo — T, Tz — T4) 18 the root system of
an invariant complex structure £, (resp. #.). The image in H*(U (4)/T,Z)
of the first Chern class of £, (resp. 8.) is, by 10. 8, equal to 3 (z,—z;) (resp.
Ry + 2wy, — x5 —3w,). Now U(4)/T =SU(4)/T" where TV =T N SU (4)
is a maximal torus of SU(4). The inclusion map of T’ in T identifies
H*(T’,Z) with the quotient of H*(T,Z) by Z-(z,+ .-+ 25 + ,); since
SU(4) is simply connected, the transgression is an isomorphism of H*(T”,Z)
on H*(SU(4)/T’,Z). It follows then that the first Chern class of @,
(resp. @) is divisible (resp. not divisible) by 3. Hence 4, and 4, are
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not equivalent under a differentiable homeomorphism of G/U. Moreover it
will be shown in Section 24.14 that the Chern numbers ¢,° of 4, and 4.,
are equal to 4860 and 4500 respectively.

The following observation leads to other examples:

ProposiTioN. Assume that G/U carries two invariant homogeneous
structures B, B with root systems ¥, ¥, and that G° is the greatest con-
nected group of automorphisms of B and of @’. Then B and B are
equivalent under a differentiable homeomorphism of G/U +if and only if
there is a linear transformation « of t leaving the root system of U invariant
and carrying ¥ onto W',

The “if” part follows from Remark 1) in 13.8.

Let now B be a differentiable homeomorphism of G/U carrying 4 onto
#’. By the assumption on G¢, B defines an automorphism of G° TUsing
homogeneity and the facts recalled in 14.3, it is then seen that 4 and 4’
are also equivalent under a homeomorphism y which is induced from an
automorphism of G leaving U¢, T invariant. Since y permutes the roots
of g¢ with respect to t¢, and since t is characterized as the subset of {¢ on
which the roots are real valued, y leaves t invariant, and its restriction to t
is the desired a. Q.E.D.

According to Bott (unpublished), G° satisfies our assumption, for instance,
if @ =E;, E;. Moreover, E;, E; have no outer automorphisms, hence the auto-
morphisms of t keeping the root system of G invariant are just those of the
Weyl group. Let now a, b be two different simple roots with respect to an
ordering & and let w € W (@) be a transformation carrying b onto a. (This
exists because the roots of E; or E, all have the same length and W(G) is
known to be transitive on a set of roots of the same length.)

Let @ be the set of positive roots for 8, and ¥ =& —a, ¥ = w (& —1b).
The symmetry to ¢=0 carries ® onto —a U ¥ (see the proof of 3.1).
Therefore, if there existed an « carrying =+ a onto itself and ¥ onto ¥,
there would also be a w’€ W (@) carrying a onto b and leaving ® invariant,
but this contradicts the fact that W((@) is simply transitive on the Weyl
chambers (R.7). Now ==a is the set of roots of the centralizer U of the
singular torus defined by a=0. Thus, by our criterion, ¥ and ¥ are the
root systems of two invariant complex structures on G/U which are not
equivalent under a differentiable homeomorphism. A similar discussion
would also show that the complex structures on U(4)/U(R)X U(1)X U(1)
discussed above are not equivalent.
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14. Complex Lie groups, embeddings, representations, invariant dif-
ferential forms. We collect here some results to be used in the sequel. For
more details about the facts mentioned without proofs in 14.3, 14.4 or about
related questions, see [5], [7a], Goto “On algebraic homogeneous spaces,”
Amer. Jouwr. Math. 76 (1954), 811-818, J. Tits, “Sur certaines classes
d’espaces homogénes de groupes de Lie,” Mém. Acad. Royale Belgique 29
(1955), Chapitre I1II.

14.1. Notations. @G is semi-simple and simply connected, & is an
ordering of the roots with respect to I, and ay,- - -, a; are the simple roots
for 4. If I is a (possibly empty) proper subset of [1,1], we denote by U;
the centralizer of the torus §; defined by a;(t) =0 (t+€I,t€T) and put
My=G/U;. We consider it to be endowed with the invariant complex
structure #; defined by the set ¥; or ¥ of positive complementary roots
(whose existence follows from 13.7). U/ is the semi-simple part of U;. Thus
we have U;=Sr- U/ with 8; N U/ finite.

Remark. Let G be a compact connected Lie group and G,, &, U,U,, U’
be as in 10.1. Then G/U =G /U’ = G,/U,. By a result of Hopf (see e.g.
[23, Exp. XXTI]), the centralizer of a toral subgroup in a compact connected
Lie group is connected; hence, if one of U, U’, U, is centralizer of a torus,
so are the other two. Thus the assumption ¢ semi-simple and simply con-
nected made in §14, which allows one to avoid some slight irrelevant
technical complications, is no real restriction, and the results of this para-
graph are valid, with little or no modification, in the general case. In
particular, in 14.4 one has to consider then the representations of the group
G mentioned in 2.9.

14.2. The natural map v;: G/T— G/U; is the projection in the fibering
(G/T,G/UL, Ug/T) ; the spaces G/T, G/U;, Ur/T have no torsion and have
vanishing odd dimensional Betti numbers ([5] or R. Bott, Bull. Soc. Math.
France 84 (1956), 251-81). Therefore [?,§4], for any commutative group
A of coefficients, the fibre is totally non homologous to zero, v/* is injective,
vi* (H2(G/Up, A)) is the kernel of the map of H2(G/T,A4) into H*(Uy/T, A)
induced by inclusion. It follows that vw/*(H?(G/U, A) is a direct summand
of H*(G/T,A); also, since the transgression in (G, G/Ur U;) is an iso-
morphism of H*(Uy,Z) onto H*(G/U1,Z), the former group is free abelian.

Levmma. Let A be a principal ideal ring. Then vi* is an isomorphism
of H*(G/U, A) onto the submodule of H*(G/T,A) formed by the elements
orthogonal to the a’s (1€ 1), that is, which is spanned by the fundamental
weights wy's (¢ I).
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By the above and the universal coefficient formula, it is enough to prove
the lemma for 4 =Z. The fundamental weights @; (1 ={=rank @), form
a basis of H'(T,Z), (see 3.4), hence of H?(G/T,Z), and the subgroup By
spanned by the ;s (i¢ I) is a direct summand whose rank equals the
dimension of S;.

The group T"=T N U/ is a maximal torus of U, whose covering in
the universal covering Vi, of T is spanned by the contravariant images of the
as (1€1). Since U/ is semi-simple and U7 is locally isomorphic to the product
S; X UY, the map H, (S, R) = H,(Ur, R), (vesp. H,(T",R) — H,(U,R)),
induced by inclusion, is an isomorphism (resp. has zero image). Since
H* (U, Z) is free, it follows immediately that o*: H* (U, Z) —» H*(T,Z) is
injective, with its image contained in Bj, and of finite index in Bj, where «
is the inclusion of 7" in U,.

The projection v; defines a representation of the fibering (G, G/T,T)
into (@, G/U, Ur), whose restriction to a fibre is @. Therefore, using trans-
gression, we see that the image of »;* is a subgroup of finite index of B;.
But we have already shown that it is a direct summand, whence the lemma.

Remark. By transgression, we also see that «* identifies H*(Uj Z)
Wlth BI-

14.3. Complexification. G° denotes the complex Lie group containing
@, with Lie algebra g, whose existence and uniqueness up to an isomorphism
is well known. We use the notation of §§1, 12 and, moreover, put

pr=ur’+ > bp.

-be¥

It is a subalgebra which generates a closed, connected, complex analytic sub-
group P; of G¢ equal to its normalizer, such that P; N G =Uy; it follows
then that G is transitive on G¢/P; and that there is a natural identification
of G/U; with G¢/P; which carries #; onto the quotient complex structure,
as defined in the theory of complex Lie groups (see e.g. [7a]). If, in
particular, I is empty, then b = p; is solvable and G°/B = G/T, where B = Py.

14.4. Representations and embeddings. Let B~ be the ordering of the
roots which is opposite to &, that is, which has the negative roots of & as
positive roots. The highest weights of the irreducible representations of G
with respect to 8- are then the opposite of the highest weights in the order &.
If T has highest weight @ for 4 and I highest weight — @ for J-, then
I’ is the contragredient representation to I', and its weights are the opposite
of those of T.
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Let T' be an irreducible representation of degree ¢ -1,
w=01w1+' ° '+Clml

its highest weight in the ordering &, I' the contragredient representation,
I” and IV the associated representations by means of projective transforma-
tions in Pg(C). Let V be a representation space for I' and = be the
projection of V—0 on P,(C). There is in V exactly one 1-dimensional
subspace W which is invariant under B, and we have

I'(t) (z) =exp[—2miw (1) ] -z, (t€Te,zeW).

2’ = (W—0) is then the unique point of P,(C) fixed under I’(B).

We say that M; is associated (resp. strictly associated) to T if ¢;=0
for 1€ I (resp. and, moreover, if ¢;540 for j¢ I). If M; s associated (resp.
strictly associated) to T, then the map ¢: g— I(g) - 2" induces a holomorphic
(resp. bijective and bi-holomorphic) map B; of M; onto a projective non-
singular variety Mr. In particular, each irreducible representation yields a
holomorphic map B, of G/T into some projective space. Since a given M;
is strictly associated to infinitely many representations, it therefore admits
projective embeddings.

The cone = (Mr) over Mr is, in the obvious way, a €C*-bundle 5 over Mr;
on the other hand, let V be the subgroup of B whose Lie algebra over C is
spanned by the v, (¢ <0 for ). N is the commutator subgroup of B, and
B/N =T The quotient G¢/N can be considered as the total space of a
principal 7T°-bundle ¢ = (G°¢/N, G¢/B,T°). 1f y is the representation of 7'
with character exp(—R2wiw), it is then easily seen that B, induces a y-
homomorphism of ¢ on 5. Therefore, by 10.4, @ = — B,*(¢,(5)). It follows
from this and from 14.2 that if M; is associated to I', then — @ may be
identified with an element of H?(M;,Z) which is the Chern class of the
bundle over M; induced from 4 by Br: M;— Mr. But ¢,(y) is — e*, where
e* is the dual of the homology class containing a hyperplane section of M;
(see §R9). Thus w is the dual of the homology class of a divisor on Mj,
namely, the inverse image of a hyperplane section of Mr. It may be shown
[7a] that the inverse images of the hyperplane sections of Mt form a complete
linear system on M;, and that this system is the only one on which the
natural representation of G is I".

14.5. Positive classes. Since we want to use some facts about complex
Lie algebras, we now identify Vy with its tangent space t at e, and assume
the invariant metric to be the restriction of — K, where K is the Killing
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form. The roots of g° with respect to {° in the sense of infinitesimal theory
are then the forms 2xia, where a runs through the roots as defined in this
paper (or, more precisely, through their extensions to t¢, since they were
originally defined on V7 or t). If a is a linear form on t¢, we denote by &,
its contravariant representative with respect to — K ; if a is real valued on t,
then ho€t. It is known (see, for instance, [23], Exp. 10, 11) that we can
find e, € v, with the following properties:

(1) [Ga; 6_,;] = 2'7"’”7/0,; K(ea’ e—a) _ 1,

g is spanned over the reals by t and the vectors e, + e_,, i(e,—e¢-,), and the
Killing form is the direct sum
K=K1-—2:an_a,
a>0

where K; is the restriction of K to t¢ and the z,, z_, form the dual base to
(g, €-0)-

Finally, we recall that if X, ¥ are left-invariant vector fields and o is a
left-invariant 1-form on a Lie group H, then

() do(X,Y) =—o([X,Y]) ([X,Y]=X-Y—Y X)

(see e.g. Chevalley, Theory of Lie groups I, Princeton, Chap. V, §4; it is
there stated for real Lie groups, but the proof is also valid in the complex
case).

Let us denote by w, the left-invariant 1-form on G¢ whose restriction to
g° is annihilated by t¢ and which is such that w,(e;) =1 if a =" and is zero
if as<b. A straightforward computation using (1), (2) and 12.2 yields
then the

Lemma. Let y be the left-invariant 1-form on G° whose restriction to
g 18 zero on X b, and which induces the linear form b on to. Then

(3) d'/]b=——27ri§o(b,a)wa A 0_g.

We are interested only in the case where b is real valued on t; then (b,a)
is also real valued. Assume now that b is orthogonal to the roots a; (i€ I),
i.e., that hy € 8;. Then

(4) dnp=—2xm1 3 (b,a)we A\ o_q.

aevr
The restriction 7,)¢ of 7, to G is left-invariant. By (4), dny is zero on u,
and hence, by invariance, it vanishes on U ; thus 7y and, a fortiori, 7|7 are
closed. Since np(r is clearly in the class b€ H*(T,R), it follows by 14.2
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that 5,y represents the element of H*(U, R) which we have identified with b.
We want to show that dyy|¢ is the inverse image of a 2-form on M;; for this,
it is necessary and sufficient that the 2-form defined by dy, on g vanishes
whenever one of the arguments is in u; and is invariant under Adg U; (see
e.g. Chevalley-Eilenberg, Trans. A. M. S. 63 (1948), 85-124, Theorem 13.1).
The first property is obvious from (4); as to the second, we may argue as

follows: by (4), we have only to show that the restriction of dy, to 3 b is
bev¥

invariant under the linear isotropy group U. From the properties of the
Killing form recalled above, we see that if we take in b the real and imaginary
parts of z, as coordinates, then the Killing form is the negative unit form,
and therefore, the isotropy group U is orthogonal; this means that dy, is
invariant under U if its matrix commutes with U. But it follows from (4)
and 12.2 that this matrix is equal to the restriction of the matrix of adghs.
Since hy € 8y, it centralizes u, and adg by does commute with Adg U.

By the foregoing and by the definition of transgression, diyje¢ may be
identified with a closed 2-form on G//U; belonging to the image of b € H*(U, R)
under transgression; in view of the conventions made in 10.1, this form
represents the cohomology class which has been identified with —b. More-
over, by the definition of the complex structure @r on M;, the b, (a€ ¥r),
span the subspace of M;®C which contains the differentials of local holo-
morphic functions, and we have w_,=%, in the standard notations. Thus
we have shown the following:

14.6. ProrosiTiON. We keep the notations of 14.1, 14.2. Let b be a
linear form on Vi orthogonal to the simple roots a; (¢€I). Then the
element of H2(G/U;, R) tidentified with b in 14.2 contains the invariant
2-form of type (1,1)

(5) o=2ri 3 (b,a)w, N\ @

ae¥r

o is the imaginary of the hermitian form
(6) 47 X (b,a)we G, (symmetric product).
aeVv

A 2-dimensional complex cohomology class on a complex manifold M is
positive in the semse of Kodaira if it contains the imaginary part of a
positive non-degenerate hermitian metric, which is then necessarily kiahlerian.
From (5), (6) and the remark in 13.6, we get:

14.7. COROLLARY. b is positive in the sense of Kodaira if (b,a)>0
for a € ¥y, that is, if (b,a;)> 0 for i¢ I.
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This is in agreement with the fact (14.4) that when b is the highest
weight of an irreducible representation T' to which M; is strictly associated,
then it is dual to the class of a hyperplane section in the projective embedding
provided by the representation I'.

14.8. CoroLLARY. The first Chern class ¢, of the tangent bundle to
M, is positive.

¢, is the sum of the positive complementary roots (10.7) and, by 13.6,
these are the linear combinations of the simple roots in which at least one
a; with i¢ I has a strictly positive coefficient. Thus, if a € ¥y, its transform
by the symmetry to the plane a;=0 (¢€ I) belongs to ¥;. Since (a;, Sia 4 a)
=0, it follows that (a;,c,) =0. This is also a consequence of 14.2.

In view of (5), (6), we have to show that if a€ ¥, then (a,¢,)>0.
Let b€ ¥ and assume that (a,b) < 0. Then (§2)

(") b,b+a,b+4Ra,- - -, b+ ka (k=—2(a,b) (a,a)™)

are roots of G and, in fact, belong to ¥, since the latter is a closed system
(18.7). We have (a,b -+ ka) = (a,a)k/2 >0 and

(@b Fb-Fat - 4b+ka) = (k+1)(a) + (a,a0)k (k+1)/2—0.

From this we deduce readily that we may represent ¥ as a union of
disjoint subsets ¥;, where ¥; consists either of one root b with (a,b) =0
or of a string of type (7), whose sum is orthogonal to a; in the first category
we have the set consisting of a itself, and hence, finally, (a,¢,) > 0.

14.9. Using some properties of the constants of structure of g°¢, one
can show that 14.6 gives all invariant 2-forms on M;, as indicated in [5];
this implies that the condition of 14.7 is also necessary for b to be positive
as will also follow from § 24.

14.10. We recall that for a kiihlerian compact manifold M, the d- and
the 8-cohomology are identical, and that H¢(M,C) is a direct sum of sub-
spaces H»4(M), (p- g=1), where HP4 is the space of i-dimensional co-
homology classes which can be represented by exterior differential forms of
type (p,q). This applies, in particular, to the projective variety G/U;.

ProposiTioN. In the previous notattons, we have H?*"*'(M;,C) =0
and H*(M;,C) = H"i(M;) for all 1=0.

For the first assertion, see [2, Théoréme 26.1].
As remarked in 14.2, the projection v; of G/T onto G/U; induces an
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injective homomorphism of H*(G/Ur, €C) in H*(G/T,C). This map is also
holomorphic with respect to the complex structures on G//T and G/U; defined
by the positive complementary roots, because, in the notations of 14. 3, it can
be identified with the projection of G¢/B onto G°/P;, both spaces being
endowed with the natural quotient complex structures. Thus »/* identifies
Hra(My) with a subpace of H»4(G/T,C), and it suffices to prove our con-
tention for G/T'. Since H*(G/T,C) is generated by the unit and its 2-dimen-
sional classes [2, §26], it is enough to show that H?(G/T,C) = H**(G/T),
but this follows from 14.6.

Chapter V. Special Cases.

15. Projective spaces.

15.1. Complex projective spaces. We wish to apply Theorem 10.8 to
the case where @=U(gq) and U=U(1) X U(¢—1) and G/U =P, (C),
(¢=2). The imbedding of U in G is the usual one; namely, as follows:
U(q) is the group of unitary matrices and U(1) X U(g—1) is the group of
g X g-matrices of the form
a 0
( 0 Ali))

where ¢/ € U(1) and A” € U(q¢—1), which is a subgroup of maximal rank
of (. Let T be the standard maximal torus of diagonal unitary matrices

821ria71 0

O ezﬂ'il‘q

T is contained in U(1) X U(g—1) and plays the role of S in Theorem 10.7.
The coordinates @,,- - -,x, are integral linear forms on Vy (see 1.2 and
10.1), and the roots of U(q) with respect to T are = (z;—a;), where
1=j<k=gq. The roots of U(1) X U(¢—1) are = (z;—a;) with 2 =7
< k=gq. Hence the roots of U(g) complementary to U(1)X U(g—1) are
+ (2, —;) with 2=j=g¢.

The usual invariant complex structure of Py, (C) is given by regarding
P, ,(C) as the space of the lines passing through the origin of €4 Let
GL(q,C) operate in the usual way on €¢ and thus on P,,(C). Let
GL(1,9—1;C) be the subgroup of those elements of GL(q, () which keep
the point (1,0, - -,0) of P,,(C) fixed. Then

18
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U(q)/(U(1) X U(q—1)) =6L(q,C)/GL(L,¢—1;C) =Py (C).

Thus P, (C) is represented as a quotient of complex Lie groups and is,
therefore, endowed with an invariant structure which is just the usual one.
The complex isotropy representation i of this complex structure has the
weights ¢;—x; (=2, - -, ¢q), which can be seen as follows: The element
(e?mian, - - - g?mi@a) of T, when operating on the point (1,2, - +,24) of
P, .(C), gives the point

(1, zzeZWi(a:g—'wq), I zqezvri(:cq—:cl))

of Pg,(C), which proves the desired result. We may remark here that
P, .(C) admits exactly two invariant complex structures and these are
complex conjugate to each other (see 13.8).

Let £ be a principal U(q)-bundle. We consider some associated fibre
bundles and their projections according to the following diagram: Let p, o be
the natural projections

(1) Be/T —— e/ (U(1) X U(g—1)) ——> Bg

and m=o00p. Let 5 be the real vector bundle along the fibres (7.4) of
(He/ (U)X U(q—1),BePq1(C)) endowed with the complex structure »’
coming from the usual invariant complex structure on P, (C); i.e, 5 is
defined by the complex isotropy representation :, considered above. Then
we have for the total Chern class of

prol) =11 (1 a,—2.).

Now let ¢;€ H** (B, Z) be the Chern classes of & Then we have (9.1)
(Aot ot de) =1+a) (1 +a) (142,
(‘onsidering # as an indeterminate over H*(H¢/T,Z), we have the equation
22 (0) 4w (e) = (2t @) (2 422) - - - (24 20).

Replacing z by 1—uz, gives

pro() =11 (14 2—a) =3 (1 —2)¢5n* (c).

Ty, Ty - *,%q are the first Chern classes of the ¢ principal U(1)-bundles
&, ¢ +,€&, into which the principal bundle (FEg E¢/T,T) splits. The
principal bundle (B¢, Ee/ (U(1) X U(q—1)), U(1) X U(q—1)) splits into
a principal U(1)-bundle ¢ and a principal U(g—1)-bundle ¢. Obviously,
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p*(¢) is equivalent to & and p*(y:1) = @, where y, denotes the first Chern
class of &. Since n*=p*oo* and since p* is injective for integral coho-

mology, we get

© ) =3 (L =) i* ().
Since ¢, (') =0, we have
(3) 3 (—mrior (e) —o.

Once vy, is defined, the Chern classes of ¢ are characterized by (3), a fact due
to Hirsch (compare [11]).

To calculate the Chern class of P,,(C), we now specialize to the case
where E¢=U(q) and where Bg is a single point. Then 5" is the tangent
bundle of P,,(C). Since ¢;=c;(£) =0 for ¢ >0, we get

¢(y) =¢(Pgs(0)) = (1—y1)%
Now we observe that ¢ corresponds to the Hopf bundle; i.e., (€C7— {0},
P, .(C),C*) is the extension of ¢ with respect to the natural imbedding
of U(1) in €*. Thus —v; = ¢*, where ¢*€ H2(P,,(C),Z) is dual to the
hyperplane of Py ,(C) (see §29). Therefore
¢(Pga(C)) = (1+ e*)2
15.2. Complex projective bundles. In Sections 15.2 and 15.3, all

cohomology groups are taken with real coefficients. The projective unitary

group is defined by
PU(q) =U(q)/D,

where D is the 1-dimensional torus of scalar matrices of U(g). Let T? be
the maximal torus of diagonal matrices of U(q). Then Te*=Tey/D is a
maximal torus of PU(q), and we have the commutative diagram

0 D Tq Tt — 0

o TTT]

0—>D—U(q) —> PU(g) —>0

which induces a commutative diagram for the classifying spaces (6.6)

Bp———> Bg¢ ——> Biqq

(5) 1141 lvr j
p(@)

Bp—— By(qy — Bru(o
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where the two horizontal lines come from the fibre bundles (Bys, Bfi1, Bp)
and (By(q), Bru(g), Bp), see [2]. Then, in the commutative diagram

H*(Bygd) «——— H*(Bga1)

| p(a)*
.H*(By(q)) ¢ H* (BPU(Q))

which is induced by (5), all arrows indicate injections. If we denote by ¢
the universal principal U(¢)-bundle and by & the universal principal PU (q)-
bundle, then p(a)*é is (up to equivalence) the a-extension of &  Let
Zy,- * -, 4 be the first Chern classes (with real coefficients) of the ¢ principal
U(1)-bundles into which #*¢ splits. Then

II*(BTq) =R[CE1,‘ . ‘,(Eq].

Using the Weyl group of PU(q) (which is isomorphic to that of U(q)), it
follows easily from diagram (6) that =*p(a)*¥H*(Bpy(q ) is the subring of
those polynomials in R[z,,- - -,%,] which are symmetric in ,,* - -, z, and
invariant under the substitution ¢: 2;— z; + b, where b is an indeterminate.
Roughly speaking, for a PU(q)-bundle the Chern classes ¢; (i.e., the elemen-
tary symmetric functions in the z;) make no sense, but the polynomials in
the c¢; invariant under ¢ do.

Now let (L,X,P,,(C),0) be a bundle with PU(q) as a structural
group. It is known that ¢* maps H*(X) isomorphically in H*(L) (real
cohomology) and that, for every element y € H?(L) whose restriction to the
fibre equals the generator e¥ of H?(P,4(C)), there is (8.4) a relation
(") YI— 0¥ (di) " 4 0% (do) y* —+ - -+ (—1)%*(dg) =0
with uniquely determined elements d; € H*/(X) depending only on y. Let
7" be the complex vector bundle along the fibres of L. We recall that
P, (C)=PU(q)/((U(1)XU(g—1))/D) and that the complex structure

7" comes from the complex isotropy representation ¢, considered in 15.1 (¢ is
trivial on D).

15.8. TuroreM. The Chern class (with real coefficients) of the com-
plex vector bundle + along the fibres of a fibre bundle (L.X,P,,(C),0)
with PU(q) as structural group is given by the formula

(8) ¢(y) =2q0 (1—y)wio* (dy), (dy—1),

where y € H*(L) 1is an arbitrary element whose restriction to the fibre gives
the generator e* and where the d;€ H*(X) are defined by the relation (7).
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For the proof, we introduce an indeterminate z. The polynomial

F(2) = Saia*(d), (see (1)),

1s then the unique element of ¢*H*(X)[2] which is a polynomial of degree ¢
in 2z, has the unit 1 as the coefficient of 29, and for which F(—+v) vanishes.
If y=vy+0%(b), where b€H2(X), then F(z) =F(z —|—|a'*(b)) is the
analogous unique polynomial with #(—7) = 0. Since F(l—vy) = F(l —9),
the right side of (8) is independent of the choice of y. Taking this into
account, (%) and (3) of 15.1 yield our theorem for bundles whose structural
groups can be a-reduced to U(q). Furthermore, we see that it is enough to
prove the theorem for the universal principal PU(g)-bundle £ Since the
theorem is true for p(a)*é (see (5)), it follows easily in full generality.
Theorem 15.3 was announced in the first note of [16].

15.4. Real projective spaces. In Section 15.4, all cohomology groups
are taken with Z, as coefficients. Let & be a principal O(g)-bundle and 4
the vector bundle along the fibres of (H¢/(0(1)X O(q¢—1)), B, Py (R)).
Let Q be the group of all diagonal matrices of O(g). Consider the maps

P o
Be/Q——— B/ (0(1) X O(q—1)) — By,
and let w; (1=1=q) be the Stiefel-Whitney classes of ¢ Then we have

(9) w(n) =3 (L) o™ (),

where y, is the 1-dimensional characteristic class of the O(1)-bundle over
E¢/(O(1)X O(q—1)). The class y, induces on each fibre the generator
of its cohomology ring. The proof uses 5.3 and 11.5 but is otherwise
formally identical to that given in 15.1 (except that the ;’s are now 1-dimen-
sional classes), and is therefore left to the reader. (9) implies the well-
known fact that the Stiefel-Whitney class of Py, (R) equals (1 -+ )9, where
« is the generator of H*(P,,(R)).

15.5.  The Pontrjagin classes of the quaternionic projective spaces. The
treatment of the quaternionic projective spaces

P, .(K)=Sp(q)/(Sp(1)X Sp(g—1)), q

is similar to the discussion in 15. 1.
Sp(q) is the group of all unitary quaternionic q X g-matrices. Sp(q)
contains U(g), and U(g) contains the maximal torus T of 15.1 which is

v
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also maximal in Sp(q). When applying Theorem 10.7, we let ¢ be the
universal principal Sp(g¢)-bundle. Putting

G=Sp(q) and U=Sp(1) X Sp(qg—1),

we have the diagram
g

p
(10) By =E¢T By > B,

and the integral cohomology ring of P,,(K) has to be identified with
H**(By,Z) (see 6.1) modulo the ideal (I¢*)*. As in 15.1, we have the
elements @, - <, x,€ H*(T,Z) which, via the negative transgression, are to
be regarded as elements of H?(By,Z).

By means of (10), the cohomology ring H**(Bg,Z) will be considered
as a subring of H**(By,Z), and H**(By,Z) as a subring of H**(Br,Z).
The latter ring will be identified with Z{z,,- - -,2,}. Thus H*(P,.(K),Z)
is the quotient of

(11) Z{2,"} @ 8{zs’, - -, w4’}
modulo the ideal (I¢*)* which is generated by the symmetric power series
in @,%- - -,z without constant terms. (We use here essentially, that &

and U have no torsion, see [2].)

We restrict ourselves to the calculation of the Pontrjagin classes of
P, ,(K), i.e., of its tangent bundle. The more general case of the bundle
along the fibres is left to the reader.

We do the calculations following a schema which will also be used in
other cases.

Roots of Sp(q): 4+ @ 4@y, = Ry 1=si<ji=yg)
Roots of Sp(1)X 8p(qg—1): ==ua; + 2 2= 2y R=iciji=9)
Complementary roots:
e (B By Ty~ Ty, * * By~ T3 By - Ty Ty Tayw © 7,81+ Tg).
We have

(A+2.) (142 - - (142f) = (1+2°)"  mod (I¢")*
This shows that the r-th elementary symmetric function in the 22 R = j=¢)
equals (—1)rz,> (mod (I¢*)*) and that ;2 represents an element
u€ H*(Py1(K),Z) which generates H* (P, (K),Z) ; in particular, u is a
generator of the infinite cyclic group H*(Py.(K),Z).

Introducing an indeterminate 2z, we have

jﬁ (2 +aj) (z—=;) = 2% mod (Ig*) *.
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Setting 2 =1+ @, this yields

(12) jﬁz<1+x1+w,~><1+x1~m,->=<1+x1>2q<1+2x1>-1 mod (Ig*)*.

Theorem 10.7 shows that the (integral) Pontrjagin class of P, (K) is
represented by the element

II (1 + (24 2)%) (1+ (3 —2)7).

Taking into account that we are dealing with graded rings and that a,?
represents the generator w of H*(Py,,(K),Z), we obtain from (1)

(13) p(Pes(K)) = (14 u)?0(1+ du) ™.

15.6. Application. Formula (13) implies, in particular, for the first
(i.e., four-dimensional) Pontrjagin class of P, ,(K) that

pr=(Rg—4)u.

p1 is different from 0 for ¢—1 > 1.

Since ¢*(p,) = p, for all diffeomorphisms ¢ of P, ,(K) onto itself,
we see that, for ¢—1 > 1, there does not exist a diffeomorphism ¢ with
¢*(u) =—u; i.e, for all ¢, we have ¢*(u) =wu. In particular, all diffeo-
morphisms preserve orientation (¢*(uw??) =wue?).

This fact on the orientation is obvious for ¢—1=0 (mod?) and
aribtrary homeomorphisms of P,,(K) onto itself, since then

¢*(u) = =+ u implies ¢* (u??) =us

15.7. The Stiefel-Whitney class of the quaternionic projective spaces.
We keep essentially the preceding notations and denote by Q the subgroup
of elements of order 2 in 7. For suitable (1-dimensional) generators u; of
H*(Bg,Z,), we have [4,§11]

p*(Q, T) (2) = us? (i=1, " ,9),

where here the z; are elements of H?(By,Z,), namely, the reductions mod 2
of the z; of 15.5. Thus the images of p,*(Q,Sp(q)) and p.*(Q,Sp(1)
X Sp(q—1)) are, respectively, S(u.%, - - -, ug*) and Z,[u,*]® S(ust, - - -, ugt),
and H*(Pg..(K),Z,) may be identified with the quotient of the latter ring
by the ideal I generated by the symmetric functions in the w;* of strictly posi-
tive degrees; in particular, u,* represents the generator @ of H*(P,,(K), Z,).

By (5.5), the complementary 2-roots are (u,—u;), (1=2,- - -,p),
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each counted with multiplicity 4, and therefore, 11.5 gives for the Stiefel-
Whitney class of P, (K):

w=ﬁ (1 4wy —ug)* =f[ (1 4 wy* —u*) mod I

=2

which, modulo I, is equal to (1 - u4*)9, and hence, finally,
w(Pgs(K)) = (14 a)4,

where @ is the generator of H* (Py.(K),Z,).
The characteristic classes of Pg,,(K) were calculated in [17] by a
different method.

16. Hermitian symmetric spaces.

16.1. We consider here first the homogeneous spaces of the form G/U,
where U is the centralizer of a 1-dimensional torus S, has a 1-dimensional
center, and @ is semi-simple. As was shown in 13.8, such a space admits
exactly two invariant complex structures; they are conjugate to each other
and equivalent under an automorphism of G.

We may assume that 8 is defined by a, =+ - - =a;, =0, where a,,- - -,
are the simple roots with respect to some ordering &. Then (see 13.6,
13.8), the roots of U are the linear combinations of the a/s with 1 =1 =1—1,
and the set ¥ of positive complementary roots is closed and is the root system
of one of the two invariant complex structures on G/U, to be denoted by 4.
Moreover, a root b is in ¥ if and only if, when expressed as a linear com-
bination of the simple roots, the term containing a; has a strictly positive
coefficient. (The space G/U is irreducible hermitian symmetric if and only
if G is simple and U is maximal connected. In this case, the coefficients
of a; in the complementary roots are all equal to one and the sum of two
elements of ¥ is never a root of G.)

By 14.2, H*(G/U,Z) is infinite cyclic and has a generator g such that
v*(g) = @, where v is the natural projection of /T on G/U and w, is the
I-th fundamental weight. If ¢,(G/U) denotes the first Chern class of G/U
with respect to 4, we have then, necessarily, that

e (G/U)=MG/U) g (MG/U)YeZ).

By 14.7 and 14.8, both ¢ and ¢;(G/U) are positive classes, and hence
AMG/U) > 0. By 10.8, v*(¢,) is equal to the sum of the positive comple-
mentary roots, and hence
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MG/U) =2(b,a)/(ar, 1), (b= a).

ae¥

Since the invariant complex structures on G/U are equivalent, A(G/U)
does not depend on the choice of the invariant complex structure. Among
the spaces considered here are the compact irreducible hermitian symmetric
spaces which are divided into six classes, see, e.g., A. Borel, Bull. Soc. Math.
Frances 80 (1952), 167-182) :

L U(m+n)/(U(m)XU(n))
. SO(2n)/U(n)
111 Sp(n)/U(n)
IV. SO(n+2)/(S0(2)X SO(n)), (n>2)
V. E./Spin(10)X T*
VI. E./E,X T
By the preceding formula, we get for A(G/U) the following values
T.m+4mn, IL 2n—2, IIT. n 1, IV. n, V. 12, VL. 18.

[n the following sections 16.2 to 16.5, we study the non-exceptional
types I.-IV. and give formulas for their Chern classes. We also obtain
in these cases the values of A(G/U) in a different way. To describe the
complex structure on G/U, we choose an ordering having the properties of
13.6. The maximal torus is always chosen in the standard way, i.e., in the
cases I, II, III, it is the maximal torus of U(m 4 n) or U(n) respectively,
used in 15. 1.

16.2. The Grassmannian W (m,n) =U(m +n)/(U(m)X U(n)).
As a system of positive roots of U(m -4 n), we take
{(—oto|1=i<i=m+n), (see 15.1).

H*(W (m,n),Z) has to be identified with the quotient of

(1) S{wl)' ' ';xm}®8{xm+1,' . ';wm-m}
by the ideal I generated by the symmetric power series in @;," * *, Z.n without
constant term. The (total) Chern class of W (m,n) is given by
c(W(m,n))= II (A—z+a) mod I.
1=is<m

mI1=j=m+n
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In the tensor product (1), we have

M (4e)i—= I (14a) mod I.

1=is=m m+l=j=m+n

The 7-th elementary symmetric function in the #; (1 =i¢=m) represents an
element o, of H*(W (m,n),Z). The preceding equation shows that the o,
(1=r=m) generate H*(W (m,n),Z). (Recall that we are dealing with
graded rings.) The element o, generates the infinite cyclic group
H*(W (m,n),Z). Using an indeterminate 2z, we have

() II (+4a)=zv 11 (z+a)? mod I.

mH1=j=m+n 1=is=m

By replacing in the preceding formula z by 1—z; (1= s= m), respectively,
we obtain m equations; multiplying all of these together yields

(3) c(W(mn) =T (1—z)™ T (1—(n—z)")"  modl.

1Sisi=m

We recall that o, is the »-th Chern class of the canonical principal U(m)-
bundle over W (m,n). Formula (3) expresses ¢(W (m,n)) by the o,; for
example,

(W (m,n)) =— (m—+n)oy,
(W (m,n)) = (Cy™" +m—1)ay%+ (n—m)o..

The formula for the first Chern class gives us the value of A(W (m,n)) and
shows that — o, is a positive generator of H?(W (m,n),Z) in the scnse of
16.1. For m == 1, the Grassmannian W (1,n) is the complex projective space
P,(C) discussed in 15.1.

16.3. The space F,= SO0 (2n)/U(n), (n=2). As a system of positive
roots of SO(2n) we take {2+ ;| 1=1<j=n}. We rcgard the z; as
elements of H*(By, K,). If ps42, then H*(F,, K,) may be identified with
the quotient of S{zi,- - -,@,} by the ideal I generated by the symmetric

power series without constant terms in z,2,- - -,2,2 and by the element

1%, - %y All power series under consideration have coefficients in K.

The total Chern class of F, is given by

(4) c(Fo) =11 (1 + o+ ;) mod 1.
1<4

The preceding formula expresses the Chern classes of F, as polynomials
in the elementary symmetric functions of the #;. The coefficients are integral.
Let oy € H*"(F,,Z) be the r-th Chern class of the canonical U(n)-principal
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bundle over F,. If we reduce o, to coefficients K, (ps42), we get the r-th
elementary symmetric function in the #; (modI). Since F, has no torsion,
(4) gives a formula for integral cohomology if we replace the r-th elementary
symmetric function in the ; by o,. For example, we get

c1(Fa) = (n—1)o0;.

oy is not a generator of the infinite cyclic group H?(F,,Z), but ¢, equals 24,
where § is a generator. This is true for m =2, since F, is the complex
projective line for which ¢, (F;) is twice a generator. It follows then for
all n by induction, using the natural imbedding of F, in F,,; and the fibre
bundle (Fp.i, Son, Frn), see [26,§41.18]. Thus we have

6 (Fy) = (2n—2)g;

moreover, § is a positive generator of H?2(F,,Z) and A(F,) —2n—2 (see
16.1).

16.4. The space G,—Sp(n)/U(n). As a system of positive roots of
Sp(n) we take

{(xotz(l=i<i=n), (1=1=n)).

The integral cohomology ring of G, has to be identified with the quotient of

S{@1,- - -, s} by the ideal I generated by the symmetric power series without
constant terms in % - -,2,2 The (total) Chern class of G, is given by
c(Gn)= II A+4z-+g) mod I.
1=sisisn

This formula expresses the Chern classes of G, by the Chern classes o, of
the canonical U(n)-bundle over G,. The element z, -+ - -+ =z, represents o,
and o, is a generator of the infinite cyclic group H2(G,, Z) ; we have

Cq (Gn) = (n + 1)0’1.
Thus o, is a positive generator and A(G,) =n -1 (see (16.1)).
16.5. The complex quadric Qn—SO(n-2)/(SO(2)X SO(n)). We

distinguish the two cases (a) n is even and (b) = is odd.
(a) n 4 R =2k.

We have the natural imbedding of U(k) in SO (2k) and take for the
maximal torus T' of SO (Rk) the maximal torus of U (k) considered in 15.1.
As a system of positive roots of SO (2k), we choose

(et | 1=Si1<i=k).
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The z; are to be regarded as elements of H?*(Br,K,). If p£2, then
H*(Q,, K,) may be identified with the quotient of the ring V generated by
S{z,2%- - -,2%*} and by the elements @oxs- « ~n, @ In Kp{w, 2y - -, )
by the ideal I generated by the symmetric power series without constant
terms in z,%,- - -, 22 and by @@, - @ doe,

H*(Qu, Ky) = V/I.

Using an indeterminate z, we have

(5) T (2 —23) (2 33) = 2% mod 1.
i1

We have also

(6) A+2")A+2) - (I4+a’)=0+2z°)" mod I.

From (6), we see easily that the elements

1Lz, 2% -+, and @z - cxp €V

constitute an additive base of H*(Q,, K;). The Chern class of Q, is given by

(@) =11 (1 + 2, —2) (142 +) mod I
Replacing in (5) the indeterminate z by 1 + z,, yields
(7a) c(Qn) = (1 4 2)™2(1 4 22,)* mod I.
(b) n 4 1=2%.

We have the imbedding of U (k) =U (k)X 1 in SO(2k 4 1) and take
for the maximal torus T of SO(Rk + 1) the maximal torus of U(k) con-
sidered in 15.1. As a system of positive roots of SO (2k + 1), we choose

mxe(1=i<j=k)a(1=i=k)}
If p542, then H*(Q,, K,) may be identified with the quotient of
Kp{z} ®S{z,%- - -, 22}
by the ideal I generated by the symmetric power series without constant terms
in z,% - -,2% As in the case (a), we see that
Lz, -,z
constitute an additive base of H*(Qn, Kp,). The Chern class of Q, is given
by

Q) = (1) IT (1 + 1 —2) (1 + 2+ 2,), mod 1.
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As in (a), we get

(Tb)  ¢(Qn) = (14 =1) (14 2)*(1 4 R2,) ' = (I -} 2)"2(1-F Ry )"
mod I.

Now we combine again the two cases (a) and (b). Let § be the Euler
class of the canonical principal SO (2)-bundle over @, =S80 (n +2)/(SO(?)
X 80(n)),

JeE H(Qu,2Z).

If we apply the coefficient homomorphism Z— K,, the element § goes over
into @; (mod 7). Since Q, has no torsion, we get from (7a) and (7b)

(8) ¢(@n) = (1+g)™=(1+2g) ™"
For the Pontrjagin class, we obtain
(9) P(Qn) = (14 g%)™* (1 4 45%) .

The Euler number #(Q,) equals n -+ 2 in the case (a), resp. n 41 in the
case (b). An easy calculation shows that (8) implies

Ren(Qn) = E(Qn) g™

Therefore g» is twice a generator of H"(Q,.,Z) and it follows that § is a
generator of H*(Q,,Z) for n > 2. Formula (8) shows that § is the positive
generator g of 16.1 and that, for n > 2, A(Q,) equals n. For n=1 the
quadric @, is the complex projective line; for n =2 it is reducible, namely
the product of two projective lines. For n=4 2, @, is irreducible.

(8) can, of course, be derived by other methods (see, e.g., F. Hirzebruch,
Proc. Intern. Congress Math. 1954, Vol. II1, pp. 457-473).

16.6. The homogeneous space Q, = SO0 (n 4 2)/(SO(R) X SO (n)) can
be regarded as the space of oriented planes through the origin of R*2 In
this section, we assume n > 2. If one attaches to each oriented plane the
same plane with the opposite orientation, one gets a one-one real analytic
map o of @, onto itself. o has no fixed points and is involutive (co=1Id).
Identifying the points  and o (u) of @, gives a manifold

Qn = Q‘n/U} kK Qn_) Qn

Here = denotes the covering map. €, is simply connected and is a twofold
covering of @,. The manifold Q. is the space of all (non-oriented) planes
through the origin of R™*2, or the space of all projective lines in P...(R).
For p£2?, it is known that »* maps H *(Qn, K,) isomorphically onto the
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subring of those elements of H*(Q,, K;) which are invariant under ¢*. For
the Pontrjagin class of Q,, we have

(10) 7 (p(Qn)) = p(Qu) = (14 g*)™2(1 + 4¢*),

where g is a generator of H2(Qn,Z). By (10), the Pontrjagin class of Q,
with coefficients reduced to K, (ps42) is completely given.

Let a be the following element of SO(n 4 2): a is a diagonal matrix
which has the entry —1 at the first and third places in the diagonal and
otherwise 4~ 1. Then « is in the normalizer of SO (2) X SO(n). The opera-
tion of a by right translation on @, is just . (We may remark here that o
is a map which carries one of the homogeneous complex structures into the
other.) On the other hand, e induces the operation of the Weyl group
which maps @, 2, in — 2;,— 2, and keeps the other z; fixed. Thus we know
how o* operates on the additive bases of H*(Q,, K,) given in (a), resp. (b).
In either case, the ring of invariants of ¢* is generated by z,*. If n is odd,
then @, is non-orientable. For n—2m, we see that @, is orientable and
that H*(P,,(K),K,) is isomorphic to H*(Q,, K,). The isomorphism

% H* (P (K), Kp) = H*(Qn, Ky)
can be chosen such that
(w*o0ap) (up) = z,2(mod I) =g (reduced to K,),

where u, is the reduction to coefficients K, of the generator u € H*(P,,(K),Z)
used in 15.5. Under the isomorphism a,, the Pontrjagin class (coefficients
K,) of P,(K) is carried over into that of Q.,,, (see 15.5 and (10)). The
value of a,(u,™) on the fundamental cycle of Q,, equals =1, since g» takes
the value = 2 on the fundamental cycle of @,. Therefore, when using proper
orientations, the Pontrjagin numbers of P,,(K) equal those of Q.

The proof in [17] of the fact that P,,(K), for m 5% 2,3, does not admit
an almost complex structure, works also for Q—m and thus shows that Qm
(m+42,8) does not admit an almost complex structure (compatible with
its usual differentiable structure).

16.7. Remark. Let us consider (J, as imbedded in P,,,(C) by the
equation

Z02+Z12+’ ° '—{-—Zn+12=0.
The conjugation map

2= (20, * *y%ns1) >Z=(Z0," " ", %ns1)
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induces a map « of @, onto itself which has no fixed point and which is
involutive. If z€ Q,, then the line passing through 2, xz is a real line. If
we attach to the point z this real line, then we get a homeomorphism between
Q./x and the space of the projective lines in P,,,(R). The map « corres-
ponds to o.

17. The Stiefel-Whitney class of G,/SO(4).

17.1. We recall first some known properties of G, and of the Cayley
numbers. The Cayley-Graves algebra of octonions over the real numbers
will be denoted by &. It is spanned by 1 and seven purely imaginary elements
e; (1€ Z;) satisfying
(1) €5 Civ1 == €143} €1 " Cing == €4 €ing " €)== Ciyy (1€ Z,),
and, of course, ¢;- ¢;— —1. Thus e;, ¢;,1, €1.5 generate a subalgebra isomorphic
to the field of quaternionic numbers.

G, may be defined as the group of automorphism of . It is a compact,
connected, and simply connected 14-dimensional Lie group of rank 2 and
with center reduced to the identity ; it leaves invariant the subspace I of

spanned by the es and thus may be identified with a subgroup of SO(7),
whose Lie algebra is the following:

Let gij (1=1,/=7) be the endomorphisms of M defined by G4 =0 and
Gij(e;) = ei; Gij(e:) =—¢;5 Gy (ex) =0 (15%73k 51, 7).
The G4 (i< 4) form a basis of the Lie algebra of SO (7). We have
G4 Gi=0, [Gis, Gl = G (15%];j54k),
(2) [Gy, Gr] =0 (%, 4, k, 1 pairwise distinct).

Using (1) and (2), it is readily seen that the Lie algebra g, of G, that is,
the Lie algebra of derivations of &, is the direct sum of the seven 2-dimen-
sional commutative subalgebras?®

(3) b= {aGi+1,’£+3 + bGi+2,i+6 "}— CGi+4,i+5 ;a "I" b + C== 0}
and that we have

(4) [D6 Div1] = isss  [Dser, Divs] =043 [Diss, Do) = Dia (1€ Zs),

8 For more details, see H. Freudenthal, “ Oktavengeometrie,” mimeographed Notes,
University of Utrecht. Freudenthal’s e;,* - -, e, are replaced here by e, €, €, €, — €,
es, — €, Tespectively. On page 17, line 14 from the bottom, read G, instead of Gg.
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The subspace u=10; -} b, -+ bs is therefore a subalgebra of rank 2 and
dimension 6, and hence is isomorphic to the Lie algebra of SO(4), as can
also be easily checked directly. Thus the subgroup U of G, generated by u
is a compact group locally isomorphic to SO(4), that is, having the product
Sp(1) X Sp(1) as universal covering. It is, in fact, globally isomorphic
to §O(4), as can be derived for instance from [7]. In fact, it is proved
in [7] that G, contains exactly one class (relative to inner automorphisms)
of subgroups locally isomorphic to SO(4); one of them, say U, is the cen-
tralizer of a vertex z of order two of a fundamental simplex, and z generates
the center of U, ([7], Remarque ITI, p. 220). Looking at the diagram of G,,
one sees that the two invariant 3-dimensional subgroups of U; are globally
isomorphic to Sp (1) ; since U, has a center of order two, it is then isomorphic
to SO(4).

17.2. The subgroup Q. The relations (1) imply that the linear trans-
formation S; (i€ Z;) of MM which keeps €:1, €us, €is fixed and changes the
signs of the other ¢/s is an automorphism of & The seven elements §; and
the identity form a commutative subgroup Q of G, of type (2,2,2). More-
over, G, contains no commutative subgroup of type (2,2,2,2) (see A. Borel-
J-P. Serre, Comm. Math. Helv. 2% (1953), 128-129 or 17.35).

ProrosiTiON. We keep the previous motations and denote by wz; the
element of Hom (Q,Z,) defined by z;(S;) =8; (1=1,/=38). Then Q C U,
and the 2-roots of U (resp. G,) with respect to Q are x, + 5, Ty + X3, 2o + @5
(resp. together with @y, ., s, T, + T, -+ 23). Fach has multiplicity 2 and is
the character of Q) in one of the b;’s.

It follows from the definition of U that this group leaves invariant the
subspaces €, © of I spanned, respectively, by es, eq, s and ey, ez, €5, €; and
that the restriction to © of the standard maximal abelian subgroup Q' of
type (2,2,2) of U consists of the diagonal matrices of determinant - 1.
On the other hand, it is readily seen that this is also the restriction of Q to
D; since by (1) an automorphism of { leaving e,, e, ¢;, ¢; fixed must be the
identity, we have / =@ and Q C U. The other assertions follow from the
fact that the inner automorphism AdS; defined by §; is the identity on
Dir1, Diss, Dive and is —Id on the other py’s.

17.3. The cohomology ring mod 2 of G,/SO(4). The following facts
are proved in [3]: H*(Bso(4), Z,) and H*(Bg,, Z,) are rings of polynomials in
three variables of degrees ?,3,4 and 4, 6,7 respectively; the homomorphisms
p2*(Q,80(4)) and p,*(Q,G,) are injective. The ring H*(G,/SO(4),Z.,)
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is the quotient of H*(Bso(s),Z.) by the ideal generated by the elements of
strictly positive degrees in the image of p,* (SO (4),G.;) ; the Poincaré poly-
nomial mod 2 of G,/SO(4) is

Py(6/SO(4),t) = (1— 1) (1— %) (1—7) / (1— t2) (1 — 85) (1 — t4),

and hence

Py(Gy/SO(4), 1) =1 4 12 43 4 ¢4 4 5 - {0 L ¢5,

Prorosrrion. We keep the previous notations and denote by o; the i-th
elementary symmetric function in the z;’s. Then the image of p,*(Q, U) equals
Zo[ o, Uz, Us] With Uy =05 + 012, Uy = 05 + 0102, Uy = 0105, and the image of
p2*(Q, G;) equals Z,[gs, ge, 7]  With  go=— s -+ Uy, go=1Us% 4 Uty and
gr=1uqus. Consequently, H*(G,/SO(4),Z,) is generated by two elements
Uy, Uy Of degrees 2,3 with the relations u.® = uz? and usu,2 =0.

We identify U with SO (4) by means of the representation in ®©. Let
Q. be the subgroup of diagonal matrices of O(4) and u the inclusion of Q
in Q;. Then, for an obvious choice of a basis (y1, Yz, ¥s, ¥2) of Hom (Q1,Z.),
the image of p,*(Q,;, @(4) is the ring of symmetric functions in the ;
(cf. [3]), and the homomorphism p’': Hom (Q,,Z,) — Hom (Q, Z,) induced
by w is given by

/"l(yi) =T (@: 1, 2:3): .M’(f%;) =T + Ty + Ts.

Therefore, u’ annihilates y; + y. + ys + v, and maps the i-th elementary
symmetric function in the /s onto w;, for t=2,3,4. Since p,*(Q,0(4))
and p,*(Q,S0(4)) have the same image (see [3]), this proves our first
assertion.

The image of p.*(Q,G.) is a subring of Z,[u,, us, u,] generated by
elements of degrees 4,6,7 and its elements are invariant under the action
of the normalizer of Q in G, operating in the usual way [3]; therefore, in
order to prove the second assertion, it suffices to exhibit an automorphism «
of H*(Bg,Z,) = Z,[x,, 2., ;] induced by an inner automorphism of G,
leaving @ invariant, and for which g; is the only non-zero invariant of degree
1 (1=4,6,7).

Let 8 be the linear transformation of M which sends ey, - -, e; onto
€5, €7, — €3, €4, 61,— €¢, €, Tespectively. It follows from (1) that S€G.,.
Moreover, it is seen without difficulty that

S'Sl'S=S1, S'Sz'S=S1‘S3=S4, S'Sg'ﬂg——_Sl"Sg:“—-Ss

19
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and, therefore, the automorphism o of H*(Bg,Z,) induced by Ad S satisfies:
(5) a(2) =1, (@) =242, a(2y) =20+ 2,
(6) a(oy) =01, a(02) =@ + oy, a(03) =21 (0% + 02),
a(Uz) = x2* + 2% 4 X5,
(M) a(Us) = o5 (22 + 23),
o (Uy) = 21 (212 + 03) 01.

An element I € H*(By,Z,) may be written in the form h=a-u, 4 b-u,?
(a,b€Z,), and hence

a(h) =az, (x> + 02) 01 + b2 4 b (2% -+ z4*).
The coefficients of @,* in h and «(h) are b and a respectively; therefore, if
h=qa(h) with h 540 we must have a=b=1 and h=g,. That ¢, is in

fact invariant under « can be checked directly, but this is not necessary
since we know a priori that H*(Bg, Z,) has dimension one.

The proofs of the invariance of g, g; under « are quite analogous: an
element of degree six may be written

h = aus® -+ bug? + cung, (a,b,ce Z,).

Using (7), one sees that the coefficients of #,° in » and «(h) are a -+ ¢ and
zero respectively, while those of z,*-2,? are ¢ 4+ b+ ¢ and ¢. Thus a(h) =h
and k540 imply a=0b=c=1 and h =g,. Finally, starting with a general
element

h=ug(au,? + bg,) (a,b€Zs)

of degree seven, we see by looking at the coefficients of z,°-z, that . =a(h)
and hs£0 imply a=">b=1, that is h=g,.

The last assertion follows then from the results recalled at the beginning
of 17.3.

17.4. ProrositioN. The Stiefel-Whitney classes of G,/SO(4) are non-
zero only in the dimensions 0,4, 6, 8.

By 11.5 and 17. 2, the image under p,*(Q, U) of the total Stiefel-Whitney
class of the bundle along the fibres of (By, Be¢,, G/U) is

W= (o) T1 (1 + 207
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therefore
w' = (140 4 02> + 05°) (1 + 0:%) =1+ 12" 4 us® + w2
and 17.4 follows now from 17.3.

17.5. Remarks. 1) The 2-roots of G, have been computed with respect
to a particular subgroup of type (2,2,2). In fact, these subgroups are
conjugate by inner automorphisms, and these 2-roots are therefore invariants
of G,. 'To see this, one uses the fact that given three orthonormal purely
imaginary Cayley numbers w, v, w with w also orthogonal to - v, there exists
exactly one automorphism of & which maps e, ¢,, e, onto u, v, w, respectively
(see N. Jacobson, Duke Math. Jour. 5 (1939), 776-783). This implies easily
that any commutative subgroup of type (2,2,2) of G, can be put in the
diagonal form by means of an automorphism of &,. Moreover, one deduces
from (1) that @ contains all diagonal matrices of &,; hence, G, does not
contain commutative subgroups of type (2,%,2,2).

(2) Tt follows a posteriori from the proof of 17.3 that p,(Q,G»)
maps H*(Bg,, £,) isomorphically onto the ring of invariants of the normalizer
of Q¢ in G,. Thus, the analogy between the role of Q in cohomology mod 2
and that of a maximal torus in real cohomology, which is the basis of [3],
is also very complete for G.,.

18. Some manifolds with Poincaré polynomial 1 - ¢* 4 ¢,

18.1. The quaternionic plane P,(K) is an 8-dimensional manifold
with real Poincaré polynomial 1 -4 ¢*-4-¢%. We know (15.5) that the
(integral) Pontrjagin class of P,(K) is given by

p=(1+u)*(1 4 4u)™
Thus p, = 2u and p,="Tu?. The Pontrjagin numbers of P,(K) are
pi[P:(K)]=4 and p,[P:(K)]=".
Here we use the orientation defined by w?[P,(K)]=1.

18.2. The manifolds G,/SO(4) (see §17) and Q. (see 16.6) have
the real Poincaré polynomial 14 ¢*4¢%. Their Pontrjagin numbers are
(for suitable orientations) the same as those of the quaternionic plane. For
Q., this was proved already in 16.6. In the next section, it will be shown
for &,/80(4). We do not know whether all differentiable manifolds with
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real Poincaré polynomial 1 ¢*-¢® have the same Pontrjagin numbers.
By the index theorem ([19], p. 85), we know for such a manifold X that
(for suitable orientation)

(1) ("p.—ps®) [X] =45,

and therefore, it is sufficient to calculate one Pontrjagin number. But, as
an example, we shall make the computations without the use of the index
theorem in the case of G,/SO(4).

Remark. Milnor has constructed an 8-dimensional combinatorial mani-
fold with real Poincaré polynomial 1 - ¢*- ¢® whose Pontrjagin numbers
(in the sense of Thom) satisfy (1), but are rational, non-integral numbers.
This manifold of Milnor does not admit a differentiable structure compatible
with its combinatorial structure.

18.3. By the Hirsch formula, the manifold G,/SO(4) has the real
Poincaré polynomial (1—1¢*) (1 —#2) (11—t (1—t)t=1-+t* 48 We
calculate the Pontrjagin class of G,/SO(4) by the schema used in 15.5. All
cohomology groups are taken with real coefficients.

Roots of G,:
o+ &y, = Ty, = (T — ), = (T —R2p), + (2, — 32,), + (%, — 31,)
with respect to a convenient base x,,z, € H?>(G,/T) for a maximal torus 7
of G,.

Following de Siebenthal [25a] we take ¢, ==z, and ¢, =, — 3z, as
simple roots of &,. The dominant root is then 3¢, -+ ¢, = 22, — 3z,. By [7,
p. 218], we know that there is an imbedding of SO (4) in G, for which =+ ¢,
and == (3¢, + 2¢4,) are the roots of SO (4).

Complementary roots: == &y, & (2, —,), &= (2, — 22,), = (2, — 8z,).
We put y, =2z, — 32, and y, = @,.

Invariants of the Weyl group of G.: Since H*(Bg¢,) is the polynomial
ring over R in two indeterminates of degrees 4 and 12, we have only one
invariant in dimension 4. Since the dimension of G,/SO(4) equals 8, this
is the only invariant we need. An invariant of dimension 4 is always given
by the sum of the squares of all roots, which, up to a factor, is, in our case,

4(2,? — 3212, + 3,2) = (y:2 + 3y.2).
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It is convenient to express the complementary roots as linear combinations
of y,,y.. This gives
€ =3 (Y1 + 3y2),
& —z =3y + ¥2),
T —RTy = (Y1 —Y2),
&, — 3z, =% (y1—3y2).
Buler class W of G,/SO(4):
+ 16W = (y,2—y.?) (3.2 — 9y.%) = 4y,* - 1Ry,°,
+ W =3y.*,
the computations being made modulo the invariants. Since the Euler number
of G,/SO(4) equals 3, we get
(®) y:*[6:/SO(4)] =1
after chooxing the orientation of G./SO(4) conveniently.
The Pontrjagin class p of G,/SO (4) :
1+ 4p, + 16p.
= (14 (41 + 392)) (1 + (5. —392)) (1 + (51 — ) ) A + (32 + ¥2)*)
= (14 203" + 992°) + (1:° — 992°)) (1 + 2(y:* 4 92°) + (4> — 92)?)
— (1 + 1292 + 144y,%) (1 — dya* + 16g.).
T4 pi+ pe = (1 + 39" + 99 (1 — 32" + 92%),
pr= 2y P2 ="T1y."
(AH calculations modulo the invariants.)

By (2), we get for the Pontrjagin numbers (with respect to the orientation
defined by (R))

p*[G./SO(4)] =4, p2[G>/SO(4)] =1.

19. The Cayley plane.

19.1. The center of the simply connected representative of the local
structure F, consists only of the unit element, as is well known. The structure
F, has, therefore, one and only one representative which we also denote by F,.
According to [7], the group F, contains exactly one class (relative to inner
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automorphisms) of subgroups with local structure B,. They are, in fact,
globally isomorphic to Spin(9). The homogeneous space F,/Spin(9) has
dimension 16 and may be identified with the Cayley plane W, the projective
plane over the Cayley-numbers. The Cayley plane W, considered as the
homogeneous space F,/Spin(9), was studied, for instance, in [1], see also
[2], §29 and Freudenthal, loc. cit.,® §17. The integral cohomology of W
is given by
H=Ht=H%=17, Hi=0 otherwise.

19.2. Let T be the standard maximal torus of SO(9) with the base
Ly, To, T, T4 € HY (T, Z) (see 16.5(b)). Then the roots of SO(9) are
(1) Faig (1=S1<j=4); =@y, =Ty o= Ty, o= T4
We have the projection

=: Spin(9) = SO (9).

7 (T) =T is a maximal torus of Spin(9). The restriction of = to T’
induces an isomorphism of H*(T,R) onto H*(T’,R). Thus z,, %, T, £, may
be regarded as elements of H*(T",R). They constitute a base of H*(T",R).
By [7, Théoréme 4], we can choose an embedding of Spin(9) in F, such

that the roots of F, with respect to T” (considered as elements of H*(T”,R))
are those given in (1) together with the following (see, e.g., [25a]):

(2) %(i$1i$2ix3i$4),

which are the roots of F, complementary to Spin(9). We now regard
Ly, Loy Ty, &4 a8 elements of H?(Bp,R). We introduce the elementary sym-
metric functions a,,* - -, a, in the z?

(3) 1«{—al+a2+a3+a4=f_1(1+xf).
The polynomials B

(4) @i, — 65 + @105, 124 + ay® — Ja:%a,
are invariants of the Weyl group of F..

Proof. Since the a; are invariants of the Weyl group of Spin(9), it
suffices to check that the polynomials (4) are invariant under the reflection
to the plane

Ty + T+ T F 0, =0,

with respect to the usual Euclidean metric.
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19.3. The calculation of the Pontrjagin class of W goes in the same
way as for 6,/SO(4) (see §18). We indicate briefly the various steps of
the computation. We put

=32 = & £ zy + 3y), (i=1,2,- - -,8).
For the Pontrjagin class with real coefficients, we get, modulo the invariants
(4),
8
p(W)=1II (14 r?) =1—a,—13a,, i.e,
i=1

(5) P1=Z73=0,- P2 ==—0s, p4=———13a4,
(6) p22 = azz = 120/4.

Let u be a generator of the infinite cyclic group H®(W,Z). Then the Euler
class of W equals = 3u®. On the other hand, we have, after reducing to veal
coefficients and modulo the invariants (4),

8
+3ul=Jlrn=— a,=ay2/12.
=1

The preceding equation and (6) yield, since p, is a real multiple of u,
(7) p*=+36u’,  p,= =+ 6u,
(8) Pa = 39uZ.

Since W is without torsion, we conclude that (7) and (8) are also true in
integral cohomology. We choose the generator « such that p,— 6u.

19.4. TuroreMm. There exists a generator w of the infinite cyclic
group H®(W,Z) such that the integral Pontrjagin classes of W are given by

P2 (W) = 6u, P (W) =39u2

Choosing that orientation of W which is defined by u?, the non-vanishing
Pontrjagin numbers of W are

(9) pt[W] =36,  pJW]=39.

19.5. The manifold W, oriented as in 19.4, has the index +(W) =1.
By the index theorem ([19], Satz 8.2.2), we have

(10) (881p, —19p,) [W] = 3%-52- 7.

We shall see later in this paper by some general arguments that the 4-genus
([19], 1.6) of W vanishes. This, together with (10), gives a system of two
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linear equations for the Pontrjagin numbers from which (9) can also be
obtained.

19.6. From Theorem 19.4, we can easily draw the following conse-
quences.

(a) Let Ps* be the Steenrod reduced power
Pt HY(X,Z;) > H>*(X,Z;).
For the generator u of 19.4 we have, by [15] (coefficients reduced to Z;),
(11) Pstu = (Vp:— pi®)u = —2pu = — R’
(11) implies that, for each homeomorphism ¢ of W onto W, we have ¢*u = u.

(b) The manifold W with its usual differentiable structure does not
admit an almost complex structure.

Proof.
= (14 ¢4+ cg)2 =1+ 6u + 39u?
would imply
cg = 15u?,

but, for an almost complex structure, we would have
Cg == == 3u?.
(c¢) The (total) Stiefel-Whitney class w of W is
w=1 -+ u - u? (coefficients reduced to Z,).

Proof. We have (coefficients reduced to Z,), see 9.2, 9.3 and Appendix
11,
We® = P, w6 ==3u?> (Euler class).
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