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CHARACTERISTIC CLASSES AND HOMOGENEOUS SPACES, IIL*

By A. BorerL and F. HIRZEBRUCH.

Chapter VI. Applications to Todd Genera.t

20. Integration over the fibre in (By, B¢, G/T,0(T,G)).

Throughout § 20, the coefficients for cohomology are the real numbers and
will not be mentioned explicitly.

20.1. Let G be a compact connected Lie group, T' a maximal torus,
2m the dimension of G/T, @ an invariant almost complex structure on G/T,
and ay,* - -, an the roots of @ (see 12.3, 13.4). @ defines an orientation
of G/T, and hence also an identification of H*"(G/T) with R, which will
always be used in this §. In the fibering é= (Br, Bg, G/T,p(T,G)) (see
[, §207] for its definition), the integration over the fibre is a linear map
of H*(Br) in H*(Bg) or of H**(By) into H**(Bg) which lowers degrees
by 2m, (see §8).

The order ¢ of W(G) is equal to the Euler number B (G/T) of G/T
and the latter is equal to the value of the m-th Chern class on the fundamental
cycle. Therefore, considering the a/’s as elements of H?(Br), we have by 10.8

(1) (@ * *an) [G/T] = q=order W(G),

where the left side denotes the value of a, * -a, on an oriented fibre.

G/T is totally non-homologous to zero in ¢ for real coefficients and ¢ is
also the dimension of H*(G/T), [2, §26]. Therefore p* (T, G), which will
be abbreviated by =«*, is injective, and we can choose homogeneous elements
hy,* * b€ H*(Byp) with hg=a,* - - a,, whose restrictions to a fibre form
a basis of H*(G/T); an element € H*(Br) can then be written in one
and only one way in the form

(®) @=a*(bi)hs 4 - -4 7%(bg) hq (b€ H*(Ba) )

* Received June 19, 1958.
1 Part I of this paper appeared earlier in this Journal, Vol. 80 (1958), pp. 458-538.
We refer to it for the notation and a general introduction.

315



316 A. BOREL AND F. HIRZEBRUCH.

and we have by 8.4(1) and (1) above that
(3) 28 =g bq.

For any we W(@), the elements w(hy)," * *,w(hgs), sgnw-hq (see 2.6
for sgn w), when restricted to a fibre, also form a base of H*(G/T). There-
fore, if we apply w to (%) and use 8.4(1) again, we see that

(4) (w(z))t=sgnw- "

20.2. Lmmma. Let x€ H*(By) be such that w(z) =sgnw-x for all
we W(G). Then
g o=a*(af) ay

We may consider H*(By) as the ring of polynomials with real coefficients
on the universal covering ¥y of 7. Let S§; be the symmetry to the hyper-
plane a;=0. Then, §;(2) =— implies that = is zero on a; =20, and hence
that = is divisible by a;. It follows that x=y-a,- - -a, with y € H*(Br)
and, in view of our assumption, invariant under W(G). Therefore [2, §26],
y==*(b), b€ H*(Bg), and the lemma follows from (3).

20.3. TurorEM. Let ay,* - +,an be the roots of an invariant almost
complex structure B on G/T, and W be the integration over the fibre in
(Br, Ba, G/T,w) with respect to the orientation defined by B. Then for
z € H*(Br), we have

() > sgnw-w(z) ==*(2%) a; - - - ape
weW(Q)

Let y be the left-hand side of (5). Then y%=g-2% by (4). On the
other hand, we have w(y) =sgn w -y for any w € W (@) ; therefore 20. 2 shows
G y=7 W) ay -

which proves the theorem.

It follows from 20.3 that, if x € H**(By), then

(6) S sgnw-w(z) =a**(a%) a:  ldm.
w € W(Q)

21. Multiplicative sequences.

21.1. In this paragraph, £ is a bundle in which Fg is a compact
connected n-dimensional oriented manifold, G¢ is a group of diffeomorphisms
of Fg, and £ is the bundle along the fibres (7.4). T is a commutative ring
with unit and the cohomology groups of the fibres of & with respect to T are
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assumed to form a constant sheaf on Be. Then § =l is a map of H** (B¢ T)
into H**(Bg,T') which lowers degrees by n. In particular, we have

(1) ai—a[Fg] -1 (a€ H*(BgT)),
where 1 is the unit of H**(BgT).

R1.2. Let {K;(ps,- - -, p;)} be a multiplicative sequence of polynomials
in indeterminates p;, with coefficients in I' [19, §1]. If % is a real vector
bundle, we put

() Ho= S Ki(pa()s i)

We have K;j(pi(n),* - *,py(s)) € H(By,T) and Hn€ H**(B,,T). If 4 is
the tangent bundle to a compact oriented differentiable manifold X, then
the genus K(X) of X with respect to the sequence {K;} is defined by
K(X)=#y[X], ie.

E(X) =K. (ps(n)," - *,pr(n))[X] €T
if 4r=dim X, and K(X) =0 if dim X =0 mod 4.

21.8. DeriNrioN. Let £ be the bundle along the fibres of £ The
multiplicative sequence {K;} is said to be strictly multiplicative in & if and
only if
€] (K2)*€ H°(Bg T).

Let p; be the Pontrjagin classes of & The condition (i) is equivalent to
(ii) Ei(p- - -5 p1)"=0 (4§ >n).

The restriction of £ to a fibre of £ is the tangent bundle to the fibre. There-
fore we have by (1) for any multiplicative sequence

(3) (Ej(fn ) =K (Fg) -1 (4] — dim F),
and therefore {K,} is strictly multiplicative in ¢ if and only if
(4) (K2)s =K (F) - 1.

A multiplicative sequence is always strictly multiplicative in the product
bundle, because in this case, £ may be identified with the bundle induced
from the tangent bundle to F¢ by the projection of E¢= Bg X Fg onto Fp,
and then (ii) is obviously true.

21.4. In addition to 21.1, we assume that £ is a differentiable bundle
(7.4), and that Bg, E¢ are compact connected oriented manifolds, the
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orientation of K¢ being induced by those of Bg, F¢ taken in this order. It
follows then from the definition of the integration over the fibre (8.1) or
from its equivalence with the Gysin homomorphism (8.3, remark) that

alHe] — af[Bel (a€ H*(Bg,T)).

Let n and %" be the tangent bundles to E¢ and B¢ respectively. We have an
exact sequence (7.6):

(5) 0—>£—-)'q'—>1r*77'—->0, (m=me¢),
and the multiplication theorem (9.7) implies
p(n) =p@) -=*p(7) mod Tors H* (B¢, Z),

where Tors H*(E¢, Z) is the torsion subgroup of H*(E¢ Z). By the funda-
mental property of multiplicative sequences [19, §1.2], this yields

(6) Ky — K Kowy = KE- 7" (Kn),

modulo the image of Tors H*(Eg Z) QT in H* (H,T').
If Eg= Bg X Fg, then [19, §5.2]

(7) K (l¢) = K (Bg) - K (Fy).
More generally, we have

21.5. ProprosITION. Let £ be a differentiable bundle satisfying the
assumption 21.4 and let {K;} be a multiplicative sequence of polynomials
with coefficients in T. If {K;} s strictly multiplicative in £, then K (E¢)
=K (Bg) - K(Fe).

Since H?(E¢, Z) has no torsion for j = dim F¢, we get from 21.4 and 8.2
K (E¢) = Ky[Bel = (K- n*Hn)[Be] — Ko (KE)*[Bel,
and 21.5 follows from 21.2, 21.3(4).

21.6. We repeat briefly this discussion for the case of Chern classes.
Let {K;j(c1,- - ",¢;)} be a multiplicative sequence of polynomials with coeffi-
cients in I, in indeterminates ¢;. Given a complex vector bundle », we
introduce the elements K;(¢:i(%),* * +,c¢i(y)) € H*(X,T) and put

Ky =j§0KJ'(01("7)) ) ci(’?) ).

It is an element of H**(X,T). If 5 is the complex tangent bundle to a
compact connected almost complex manifold (7.3), canonically oriented, the
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genus of X with respect to {K;} or its “ K-genus” is K (X) = K ,[X]. Itis
equal to Kp(ci(n)," * *,¢m(n))[X] if m is the complex dimension of X.

21.%7. Let & be as in 21.1. Assume moreover that é has been endowed
with a complex structure & of the type considered in 7.4, that is, defined
by means of an almost complex structure of Fg, invariant under G¢, and let
¢; be its Chern classes. The multiplicative sequence {K;} is then said to
be strictly multiplicative in £ with respect to & if one of the three following
equivalent conditions is fulfilled

€] (Kep)* € HO(B, T)
(i1) (Kj(Cr,- » +,65))* =0, (%) > dim Fy)
(iii) (Kep)t =K (Fe) - 1.

?1.8. Let £ and & be as before. Assume in addition that ¢ is differ-
entiable and that By carries an almost complex structure 5’c. Then an almost
complex structure n¢ of ¢ is said to be compatible with o'¢ and & if there
is an exact sequence

(8) 0—>§c—>nc—->7r*(?7'c)~>0, (1r=1r,g).

Since exact sequences of vector bundles of the type (5), (8) always split, 5¢
always exists and is determined up to isomorphism by #’¢c and ¢. The proof
of the following propostition is exactly the same as in the case of Pontrjagin
classes:

?1.9. ProrositioN. We keep the assumptions of 21.8 and assume
moreover that the multiplicative sequence {K;} is strictly multiplicative in ¢
with respect to &. Then K (Bg) — K (Bg) ‘K (F¢).

22. The Todd genus of certain almost complex homogeneous spaces.
Throughout this paragraph, all cohomology groups will be taken with real
coefficients, and all characteristic classes which occur will be regarded as real
classes unless otherwise mentioned. The symbol R will be omitted in real
cohomology groups.

%2.1. Notation. Let ¢ and 5 be complex vector bundles with the same
base space: B=Bg—By,. We recall that the Todd multiplicative sequence
{Tj(c1, - +,¢;)} has £(1—e =) as its characteristic power series [19,81]
and define the cohomology class J (&, 4) € H**(B) by the equation

g (& 7) = ch(y) ; Ti(e(€), - -, (),
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where ¢;(£) € H?(B) is the i-th Chern class of ¢ and ch(y) is the Chern
character of  as defined in 9.1. For d€ H*(B), set

g (6d) = STy(ea(®) * 5 ei(8)
and for d =0, ’
T (£0) =J (8).

It is clear that J (& d) = J (&) if 4 is the complex line bundle with d as
its first Chern class.
More generally, as in [19, § 1], let {T;(y; ¢, - *,¢;) } be the generalized
Todd sequence. This multiplicative sequence has
o(1+y)/(1—e=t) —yo
as its characteristic power series. We define J,(¢) € H**(B)® R[y] by the

equation

() =ZTilw30 (0, + 5 a(8)-
Obviously, J,(£) = J (£).

If B is a compact almost complex manifold and if now £ stands for the
tangential complex vector bundle of B, then we set

J(B,) =T (&), JT(B,d)=T(64d), Ty(B)=Ju(8)-

Moreover, in agreement with the notations of [19, §§ 10,11,12], the following
real numbers (respectively polynomials with real coefficients) are defined

T(B,n) =J (B,n)[B],
T(B,d) =J (B,d)[B],

7,(B) — J,(B) [B] = 3 T#(B)y?, where n— dimc B.
p=0

T (B) denotes the Todd genus (T'(B) =T,(B)=T(B,0)).
Finally, let us recall the following formal fact: If ¢; is the i-th elemen-
tary symmetric function in yy,* - *,yn (¢;=0 for i>n), then

J%T]‘(cl,~ C e, C5) = 9”‘/2}371/(2 sinh (74/2) ).

22.2. Let G be a compact connected Lie group and 7' a maximal torus
of G. Let V be the universal covering of T and a,,- - -, a,, the positive roots
of G with respect to an ordering 8 on V¥ (2.4). Let £ be a principal
G-bundle and £¢ the complex vector bundle along the fibres (7.4) of
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(E¢/T,Bg, G/T, ) which belongs to the invariant almost complex structure
on G/T having €a;, €202, * *, emttm, (6= ==1), as its roots (12.3 and 13.4).
We orient G/T according to this almost complex structure and denote by 4
the integration over the fibre with respect to this orientation (8.1). The
total Chern class of & is given by the formula (10.8):

(1) ¢(ée) = (1+6a) (1+ea2) - (14 enm).

Now let d be an arbitrary element of H*(T) — V*. We may regard d
as an element of H?*(H¢/T) under the negative transgression. Then, using
(1) for the cohomology class J (&, d) introduced in 22.1, we have

9 (£, d) = ¢t TL eja;/ (1 — exp(— ega) ) = e+ [] a;/ (2 sinh (a;/2) ),
j=1

where ¢, =¢;(éc) =§eiai. We are going to calculate J (&,d)% by 20.3.
=1

In view of 8.3, this is possible since ¢ is induced from the universal bundle.
First observe that J] a;/(2 sinh(a;/2)) is invariant under the operations of the
Weyl group W (@) since the roots are permuted up to sign and since z/sinh z
is an even function in #. Thus we obtain, after setting b — d 4 ¢, (&) and

m
a= > a;,
j=1

€62 'emr**(ﬂ(éc,d)“) = %(G)Sgn(w)ew(")/ﬁZSinh a/2
we =

or, in the notations of 3.2:
@) aa e (T (bed)5) = B (b/2m(—1)}) /B (a/dn(—1)3).

It follows that J (£, d)% vanishes if b is singular. The right side of the
preceding equation is a formal power series in d, ay,- - -,a, (regarded as
elements of H*(E¢/T)) and, as such, is an element of H**(E¢/T). On the
other hand, d, a,,- - -,a, are originally elements of V¥, i.e. functions on V.
If b is a non-singular weight, then E(b)/E(a/2) is also a function on V,
namely, up to a sign, the character of a certain irreducible representation of @
(for @, see 3.3). In fact, if b is a non-singular weight, then there is a
unique element w’ € W (@) such that w’(b) is in the positive Weyl chamber
(2.7) with respect to the ordering & ; i.e., (#’(b),a;) > 0 for 1 == m, and
hence w’(b) — a/2 is the highest weight of an irreducible representation A
of G which is uniquely determined up to equivalence. According to 3.4,
the function E(b)/E (a/2) on V equals the character of A as a function on V
multiplied by Sgn(w’). Thus we have seen that J (&, d)% is essentially
given by a character.
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It is clear that w’(b) —a/2 is integral on the unit lattice of G if and
only if d has this property. Assume now that d has the property just
mentioned (in other words, that d€ H(T,Z) C H*(T) =7V*) and that
b=d+ %cl(éc) is non-singular. Then A also defines a representation of G.
The A extension (6.5) A(€) of the principal G-bundle £ is then defined. It
is a U(n)-bundle and we have

(3) T (fc, d)5 = Sgn (w')eres * “em ch(A(£)).
Here ch is the Chern character as defined in 9.1. See also 10.2, 10. 3.

22.3. In Sections 22.3 and 22.4, we shall apply the results of 22.2 to
the very special case where Bg is a point; then F¢= G and E¢/T=G/T.
Every element of V* may be regarded as an element of H*(G/T). Other-
wise, we keep the notations of 22.2.

The homogeneous space (/T has 2™ invariant almost complex structures
belonging to the 2 possible choices of the signs e;, €, * *, ém. Now endow G/T
with the invariant almost complex structure having the roots ea,,e€a,- - -,
emm. Then the first Chern class of G/T is

=0 (G/T) =0y + €205+ * + €mm.

Since a/2 is a weight, ¢,/2 is also a weight, which implies by (10.1) that the
integral first Chern class ¢,(G/T) € H*(G/T,Z) equals 0 when reduced to coeffi-
cients mod 2. Thus the second Stiefel-Whitney class w.(G/T) € H*(G/T, Z.,)
vanishes.

The Pontrjagin class p; of G/T is the i-th elementary symmetric func-

tion in the a2, and vanishes for ¢ >0 (10.9). Thus for d€ H2(G/T) (see
end of 22.1),

J(G/T,d) —exp(d+ %¢,) € H¥*(G/T),
(4) m!-T(G/T,d) = ((c,/R) +d)"[G/T],
omm 1 T(G/T) — e[ G/T].

On the other hand, in our special case, T(G/T,d) 1= J (G/T,d)* and we
have, by 22.2, for an element d€ V*, that

(5) T(G/T,d) =0 if d+ (c./?) is singular,
(6) T(G/T’d) =i‘deg(7\),

if d is a non-singular weight, and if A is a suitable representation.

By Theorem 4.3, the sum ¢; ==€,a; + - * - -} €m@m is non-singular if and



HOMOGENEOUS SPACES, 1l. 323

only if €a, - -, emnm 18 a positive system of roots of G. By 4.9 and 12.4,
we get that e;a; +- - - 4 €uan is non-singular if and only if the invariant
almost complex structure on G/T with roots ea:,* * *, emm is integrable.

Putting the value 0 for d in (5), we see that the Todd genus of G/T
endowed with a non-integrable invariant almost complex structure vanishes.
If, however, the structure is integrable, i.e., ¢; is non-singular, then (for
d=0) we have in the notation of 22.2 that w’(3¢,) =w’(b) =a/2 and
Sgn(w’) =e€e2* © em. Thus A is the trivial representation of degree 1 and
the Todd genus of G/T equals deg(A) =1.

22.4. Let a;,as- - -, an be as before the positive system of roots of G
with respect to some ordering & and let a=j§5 aj.  Choose the integrable
invariant almost complex (i.e. complex) structure on G/T which has
@1, A, *,0m as its Toots (¢=1) and let G/T be oriented accordingly.
An arbitrary element b€ V* can be regarded as element of H?(G/T) and
then the number §(b) =b"[G/T]/m! is defined. § defines a homogeneous
polynomial of degree m on V*, which vanishes if (b,a;) =0, see (4) and (5).
Since a; and a; are not proportional for 4543 and since §(a/2) =1 by (4),
we get

(7) b"[G/T] =m!}'f1 (,4)/(a/2,,), (be V).

Formula (7) shows that b is singular if and only if b»[G/T] =0.
Theorem 20.3 implies immediately that

(8) br[G/T] = (a2 ~am)™ X Sgn(w)w(b)™,
weW(G)

where the right side of this equation has to be regarded as a quotient of two
homogeneous polynomials of degree m on V. Assume now that b is a weight.
Then b is in the positive Weyl chamber ((b,a;) >0 for 1=j=m) if and
only if b—a/®2 is in the closure of the positive Weyl chamber ((b,a;) =0
for 1=j=m). By (3) and (6), we get:

If b 1is a wetght contained in the positive Weyl chamber, then
(9) bm[G/T]/m!=T(G/T,b—a/2) =deg()),

where X is the irreducible representation of G with main weight b—a/2, and
a 1s the sum of the roots a; of the invariant complex structure on G/T; i.e.,
18 the first Chern cluss of G/T endowed with this complex structure.
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By (7) and (8), we get well known formulas for the degree of A,
see 3. 4.

22.5. In this and the following Section, we shall use 22.2 to prove
the strictly multiplicative behavior of the Todd sequence in certain fibre
bundles. For this purpose, we take the value 0 for d in 22.2. Then 2b
equals the first Chern class of the complex vector bundle & along the fibres
of (B¢/T,B;, G/T,n). By 22.2 and 22.3, we see that the integration over
the fibre (with respect to the orientation of G/T induced by éc) gives, when
applied to J (éc), either 0 or ch(A(£)), where A is the trivial 1-dimensional
representation, and thus ch(A(¢)) ==1. In either case, the integration over
the fibre gives only a zero-dimensional term. According to the definition in
R1.7, we get:

THEOREM. Let ¢ be a principle G-bundle. Choose an invariant almost
complex structure on G/T and let & be the corresponding complex vector
bundle along the fibres of (E¢/T,Be, G/T). Then the Todd sequence {T;}
is strictly multiplicative in (E¢/T,Be, G/T) with respect to éc.

For later use, we reformulate our result as follows: Let ¥ be a set of
roots of G which contains for each root « exactly one of the roots &, — a.
Then ¥ is the set of roots of an invariant almost complex structure on G/T.
Orient G/T by this structure and let §(¥) be the integration over the fibre
in (E¢/T,Be, G/T) with respect to that orientation. Then we have

1, if ¥ is a positive system
— %) )i — ’
(10) (aIera/(l <)) { 0, otherwise.

Let ¢« be a map of ¥ into {1,— 1} and s(¢) the number of elements in ¥
which are mapped by ¢ on — 1, and let sgn(e) = (—1)¢®. We have

TLe(e) -0/ (1— e ) —exp(3 R (%) o) - TLo/ (2 sinh (a/2))..
Thus, by (10),
(10%) (exp(3 Se(@) o) TLa/(2sinh (a/2))) 59
is equal to sgn(e) 1, if {e(«)-o|a€ W} is a positive system, and to O,

otherwise.

We give two applications of formula (10): Let & be a principal G-
bundle for which Bg is a compact oriented manifold. TLet ¥ be a positive
system of roots of @. Orient G/T accordingly and choose for E¢/T that
orientation which is induced by those of Bg and G/T. Then, for y € H*(E¢/T),
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we have (see 21.4):
yLBe/T] = y* M [Be].

This fact, together with (10) and 8.2, yields for every element = of H*(B¢)
that

(11) o[Bel = (=*(2) - TL o/ (1 —exp(—a))) [B¢/T],
where 7 is the projection of E¢/T on Be.

22.6. Now let & be again an arbitrary principal G-bundle. TFor a
closed connected subgroup U of G which contains a maximal torus T of G,
consider the diagram

Ty T
(12) Be/T——s Ee/U —— Be.

Orient @/U. Let © be a system of positive roots of U. Orient U/T by the
invariant complex structure having ® as its set of roots and give G/T the
orientation induced by those of G/U and U/T.

According to the above diagram, we have the fibre bundles
p= (Ef/U’B& G/U)Wﬂ): V= (Eg/T7E§/U) U/T,m),
é=(E$/T:B§:G/T:7T§~)7 77=(G/T7G/U:U/T:m’l):

which satisfy the assumptions of 8.4. (The & of 8.4 corresponds to the ¢ here
and the § of 8.4 to 5.) If we define the integrations over the fibres with
respect to the orientations already chosen, then formula (2) of 8.4 holds.
Thus we can infer from (10) and 8.2 the

ProrositioN. Let x be an arbitrary element of H**(Eg/U). Then
wn the foregoing notation

oo — (m,%* (2) .algea/g — e %)) b,

22.7. Let U be a closed connected subgroup of G containing a maximal
torus 7' of G and assume that G/U has been endowed with an invariant almost
complex structure 4. Thus G/U is oriented. Let ¥ be the set of the roots
of 8 and @ a system of positive roots of U according to which we orient U/T.
Then G/T is oriented. Let ¢ be again a principal G-bundle for which we
consider the diagram (12) and the four fibre bundles p, v, £, n. We wish to
prove that the generalized Todd sequence (22.1) is strictly multiplicative
(1.7) in p with respect to the complex vector bundle j¢ along the fibres
arising from the given invariant almost complex structure on G/U. Let n
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be the complex dimension of G/U, i.e., the number of roots in ¥. First we
observe that =, **(J,(jic)) is, in virtue of 10.8, equal to the element

(13)  IL(A+9)e/(1—e ) —ya) € H**(E/T) O R[y]
which goes over into
(18%)  TL(14ye)e/(1—exp(-—a)) € H¥* (Be/T) @ R[y]

if one multiplies the component of complex dimension ¢ in (13) by (1 4 y)™ .
We have to prove that J,(jic)b is a zero-dimensional element of H**(Bg).
In view of the proposition in 22.6 and the passage from (13) to (13%*),
we must prove that the element

(IT (1 +ye*)- TI B/(1—exp(—B)))%
aeVv BeOQuY
which is equal to
(14)  (exp( X B/2)-II (1+4ye®)- 11 B/(2sinh(B/2)))%
BeOUY ael BeOULY

is zero-dimensional. But this is a consequence of (10%). The set @ U ¥
plays here the role of ¥ in (10%*). Thus the element given in (14) equals
the unit of H**(B¢) multiplied by T,(G/U), (G/U has the given almost
complex structure). Here we have to use that in passing from (13) to (13%),
the component of complex dimension # is not changed. Using (10%*), we can
obtain the value of T,(G/U). In order to formulate the final result more
easily, we introduce the following definition.

DerinitioN. Let U be a closed subgroup of G containing a mawximal
torus T of G. Let ¥ be a set of complementary roots of G with respect to U
which contains for each complementary root a exactly one of the roots a, —a.
Let ® be a system of positive roots of U. Then k?(G/U, ¥, ®) is defined as
the number of those positive systems of roots of G which contain ® and
exactly n— p roots of ¥ and thus p roots of —¥ (0 =2p = 2n —dimg G/U).

Using this definition, we have, in virtue of (10%*) and the fact that the
element given in (14) equals T, (G/U) -1, that

(15)  T,(6/U) =2 Tﬂ(G/U)yv=§o (—y)"k?(G/U, ¥, 0).

We notice that k»(G/U, ¥,®) depends only on ¥ and not on the choice of
the positive system ® of U if ¥ is the set of roots of an invariant almost
complex structure on G/U. The number k?(G/U, ¥, ®) is also well defined
if G/U does not admit an invariant almost complex structure.
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Formula (15) states in particular that the Todd genus T(G/U) equals
¥ (G/U,¥%,®). Thus T(G/U) equals 1 if ¥U® is a positive system of
roots of G and is 0 otherwise. If the invariant almost complex structure on
@/U with ¥ as the set of its roots is integrable, then ¥ U ® is a positive
system (13.7) and thus T(G/U)=1. If T'(G/U)=1, then YUO is a
positive system, but ¥ U — @ is also positive, since —® is a system of positive
roots of U and k°(G/U,¥,—®) =T(G/U) =1. Therefore, T(G/U) =1
implies that ¥ U ®, ¥ U —©® are positive and thus closed systems. @ U —@
is closed, since it is the set of roots of a subgroup. Thus T(G/U) =1 implies
that ¥U®U —® is closed and that the given invariant almost complex
structure is integrable (12.4).

We express the results of this section in the following theorem.

?2.8. TuEOREM. Let G be a compact Lie group and U a closed con-
nected subgroup of mazimal rank of G. The Todd genus of an invariant
almost complex structure on G/U equals 1 (respectively 0) if the structure
is integrable (respectively not integrable). With respect to a mazximal torus
T (T CUCG), let ® be a system of positive roots of U. Assume that G/U
has been given an invariant almost complex structure B and that ¥ is the
set of roots of @. Then, letting n be the complex dimension of G/U and
using the definition in 22.7, we have

Ty(G/U) = 2 T*(G/U)y* = Z (—y)"k*(G/U, ¥, ).
p= p=
Let ¢ be a principal G-bundle. The generalized Todd sequence

{Ti(y;c,- - ~5¢5)}

is strictly multiplicative in (H¢/U, Be, G/U) with respect to the complex
vector bundle along the fibres é¢ arising from @. In particular, if Bg is a
compact almost complex differentiable manifold, if & is differentiadble and if
the differentiable manifold E¢/U has been endowed with an almost complex
structure compatible (21.8) with the almost complex structure of Bg and éc,
then

Ty(Bg/U) =Ty(Bg) - Ty(G/U).

?2.9. For y=1, the preceding theorem gives results on the index
(G/U), see [19, §§ 8 and 10]. These results. remain correct for an arbitrary
G/U not necessarily almost complex:

Let G be a compact connected Lie group and U a closed connected
subgroup of G of maximal rank. Let T be a maximal torus of U. Then,
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with respect to 7', let ¥ be a set of complementary roots containing for each

complementary root « exactly one of the roots @, —a. Let ¢ be a principal

G-bundle. The element J] a/tgha€ H**(E¢/T) is symmetric in the of
ae¥

(@€ ¥), and thus belongs to =, **(H**(Ee¢/U)). According to 10.7,

I o/tgha=m* (S L7 s - 7)),

where the p’; are the Pontrjagin classes of the real vector bundle j along
the fibres of (H¢/U,Be, G/U). (For the L, see [19, §1].) We orient the
bundle along the fibres and thus also G/U by requiring that

II o ==** (W),
ae¥y

where W,, denotes the Euler class of i (2n=dimg G/U). Then the same
calculations as in 22.7 show that {L;} is strictly multiplicative in
(Be¢/U,Be, G/U) and that

(G/U) — 2 (—1)%k?(G/U, ¥, 0),

® being an arbitrary system of positive roots of U. As a consequence of the
strictly multiplicative behavior, we have

T(Be/U) =+(Bg) -+(G/U),

in case By is a compact oriented differentiuble manifold and ¢ a differentiable
bundle and after introducing convenient orientations.

In a similar way, under the assumptions of this section, we get by
setting y =-—1 for the Euler number E(G/U) that

E(G/T) =§kﬂ(G/U,\I/,®).

22.10. The strictly multiplicative behavior (22.8) of the Todd sequence
has certain formal consequenées. We follow the notations of 22.%. Let ¢
be a differentiable principal G-bundle over the compact almost complex
differentiable manifold B¢ and 4 a complex vector bundle over Be. Consider
the bundle p= (E¢/U, Be, G/U,n,) and the complex vector bundle fic along
the fibres arising from a given invariant almost complex structure on G/U.
Then endow E¢/U with an almost complex structure compatible with that
of Be and with gc. We have

(16) I (Be/U, m¥n)ou = T(G/T) - I (Beyn).
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Proof. Since the complex tangent bundle of F¢/U is the Whitney sum
of ¢ and the complex tangent bundle of B lifted under ., we obtain from
the Whitney multiplication theorem (9.7) that

T (Be/U) = T (jic) - mu*T (Be).
Thus

T (Be/U,w*um) i = (mu* (ch(n)) - mu* (T (Bg)) - T (fic) ) o
= J (fic)™- J (Bg, n) =T(G/U) - I (Bg,m),

which completes the proof.
As a consequence of (16), we get (see 21.4):

(17) T(Ee/U,my*y) =T(G/U) - T(Bgm).

There is a formula for the generalized Todd sequence which is analogous
to (16) and which follows from the strictly multiplicative behavior of the
generalized Todd sequence. In order to write it down, we introduce the
element ch,(5) as the element obtained from ch(z) by multiplying its com-
ponent of complex dimension j with (1-+y)/. The element ch,(y) was
denoted by t,(y) in [19, §12.2]. We have

(18) (chy (mu*n) - Ty (Be/U) )i =Ty (G/U) - chy () Ty (Be),
which implies
(19) Ty(Be/U,my*n) = Ty(G/U) - Ty(Bgm).

For the definition of T',(Be, ) and T, (EBe/U,w,*y), see [19, §12]. Compare
also [19, §14.4].

22.11. Let G be a compact connected Lie group, U a closed connected
subgroup of maximal rank and T' a maximal torus of /. Let d be an element
of H*(T,Z) which is orthogonal to all roots of U; i.e., d is invariant under
all operations of the Weyl group of U. By the canonical isomorphism of
H*(T,Z) with Hom (T, U (1)), the element d gives rise to an homomorphism
of T in U(1) which has a unique extension to an homomorphism of U in
U(1), also denoted by d. Now let £ be a principal G-bundle. We extend the
principal U-bundle (E¢ E¢/U,U) by the homomorphism d of U in U(1).
We get a principal U(1)-bundle over E¢/U and the associated line bundle
whose first Chern class we also denote by d. Following the notations of 2%. 6, it
is clear that =,*(d) is that element of H2(E¢/T,Z) which is obtained from the
original element d € H*(T,Z) by the negative transgression in (E¢, E¢/T,T).
Therefore, we may also denote =,*d by d.

4
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Now assume moreover that G/U carries an invariant complex structure.
Let ¥ be the set of roots of this structure and let ® be a system of positive
roots of U. Then, by (18.7), ®U ¥ is a positive system of @, to which
belongs a positive Weyl chamber. Assume furthermore that d belongs to the
closure of this Weyl chamber; i.e, (d,2) =0 for a€¥. Let A be the
representation of G with main weight d and let d¢ be the complex vector
bundle over Bg associated with the A-extension of £ Now, as in 22.10, we
make the hypothesis that B¢ is a compact almost complex manifold and that
E¢/U has been given an almost complex structure compatible with the almost
complex structure of Bs and the complex vector bundle jc along the fibres
of B¢/U arising from the given invariant complex structures on G/U. We
have then, using the notations of 22.6, that

(20) I (Ee/U,d)"= g (Bg, de).
Proof.
I (Bg/U, d)i = (m* (et mu* (T (Be) ) I (ie) ) 'al;Iea/(l-—-e‘“))“é'
=T (Be)(e? 11 a/(1—e®))H
xeQuUY
Formula (20) follows then by applying 2%.2.

Remarks. (1) Formulas (16) and (20) are closely related to Grothen-
dieck’s generalized Riemann-Roch formula (not yet published) ; compare also
with [7b, p. 241].

(2) The representation A induces a holomorphic map 8 of G/U into
a complex projective space Pq(C) such that d€ H?(Eg/U) restricted to G/U
equals B*(e*), where e*€ H2(Py(C),Z) is the cohomology class dual to a
hyperplane (see 14.4).

23. The A-genus of certain homogeneous spaces. Throughout this
paragraph, all cohomology groups are taken with real coefficients and all
characteristic classes which occur are regarded as real classes.

28.1. Let {4;(ps,- - *,p;)} be the multiplicative sequence of poly-
nomials [19, § 1] with £#%/sinh 2% as characteristic power series. The poly-
nomials A; are related to the 4; introduced in [19, § 1.6] by the equation

A;=2%4,

For a real vector bundle & we define the cohomology class d(&) € H**(Bg)
as follows:
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G =;20A,-<pl(s>,- i)

If ¢ is the tangent bundle of a differentiable manifold X, then we set
Ci(é) = ({(X). The genus 4(X) of a compact oriented differentiable mani-
fold X is given by

A4X)=0aX)[Xx].

A(X) vanishes if the dimension of X is not divisible by 4. For dim X = 4k,
we have

A(X) = &u(p(X), - -, pe(X)) [X],
and, obviously, 4 (X) =244 (X), where A(X) is the genus corresponding
to the power series 22%/sinh 2z% and which is called the 4-genus of X. If X

is almost complex with vanishing first Chern class, then its Todd genus equals
its A-genus; see 22.1 and [19, p. 15].

23.2. Let G be a compact connected Lie group, T' a maximal torus of
G and U a closed connected subgroup of G containing I'. Choose an ordering
3 (R.4), let ® be the set of those roots which are positive with respect to &
and belong to U, and let ¥ be the set of positive complementary roots. Orient
U/T and G/T by the invariant complex structures with root systems ® and
®U ¥ respectively. We orient G/U by its Euler class using ¥ (see 22.9).
Then, in the fibre bundle (G/T,G/U,U/T), the orientations of G/U and
and U/T induce that of G/T. Let ¢ be a principal G-bundle. We adhere
now strictly to the notations given in 22.6. Consider the fibre bundle

M= (E’&/U’ By, G/U, ).

We wish to calculate the value of A(G/U) and to investigate under which
conditions the sequence {4;} behaves strictly multiplicatively (21.3) in p.
Let i be the real vector bundle along the fibres of x. Then, by 10.7,

m**( () = II o/ (2 sinh(a/2))
ael
and we get, by the proposition in 22.6, that
@ (a)m = (IL B/(1—e#) II a/(2sinh(a/2)))"%
BeO aeVv
If we write s for the sum of all « € ®, then
A(p)m=(e¥ TI a/(2sinh(a/2)))%.
aeQu¥

Let a be the sum of all roots in ® U ¥. Since ® U ¥ is a positive system
of roots for G and since G/T is oriented by the invariant complex structure
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having ® U ¥ as its set of roots, we get, in virtue of 22.2, that
(1) a7 (A () ) = E (/4w (—1)3)/E (a/4x (—1)}).

The genus 4 (G/U) is given by the constant term on the right side of the
preceding equation which, by 22.3 (4), is also equal to (sm/2mm!)[G/T],
where m — dim¢(G/T). Thus, by 22.4 (7),

(?) A(@/0)= 11 (s,8)/(aB)-
BeOuUY

Now assume that U is the centralizer of a toral subgroup of @ and that
¥ is the set of roots of an invariant complex structure on G/U. Then a—s
represents the first Chern class of G/U. The element a —s is orthogonal to
all roots of ® (see 14.2 and 14.8). Therefore, (s,8) = (a,8) for all €@
and thus, by (),

23.3. TurorREM. Let @ be a compact connected Lie group, T a mazimal
torus of G and U a closed connected subgroup of G containing T. Choose
an ordering S and let ® be the set of those roots which are positive with
respect to & and belong to U. Let s denote the sum of all € ®. Then
the following holds:

i) The genus A(G/U) vanishes if and only if s is a singular element.

ii) If £ is a principal G-bundle and A(G/U) =0, then the sequence

{4;} is strictly multiplicative in (E¢/U, B, G/U). In particular,

if Be is a compact orientable differentiable manifold and & a differ-

entiable bundle, then A(G/U) =0 implies that A(E¢/U) =0 also.

iii) If A(G/U) is not zero, then U 1is the centralizer of a toral sub-

group of @;i.e., G/U is homogeneous algebraic (§14). In particu-

lar, A(G/U) wvanishes if the second Betti number of G/U is zero.

iv) If & is the universal principal G-bundle and U= @, then {4;} is

strictly multiplicative in (E¢/U, B, G/U) if and only if A(G/U) = 0.

Proof of i) and ii). The statement i) follows from formula (2). If s

is singular, then B (s/4w(—1)%) =0 (see 3.2). Thus, ii) follows from 1)
and formula (1).

The proof of iii) will be preceded by the following lemma.

23.4. Lemuma. If G is compact, connected, and semi-simple, if T is a
mazimal torus of @, and if U (U5~ @) is a closed connected semi-simple
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subgroup of G which contains T, then the sum s of all roots of U which are
positive with respect to a given ordering 3 on Vr* is singular.

Proof. Tt is enough to prove the lemma for the case that U is a maximal
connected subgroup of @, i.e., U is not contained in a closed connected sub-
group of @ different from U and G. In this case, we have ([7, p. R05],
compare also 10.1)

G/U == (G1/Us) X (G2/U2) X+ + X (Gr/Uk),

where G; is simple, rank U;=rank %;, and U; is a maximal connected sub-
group of ;. The lemma holds for G/U if it is true for at least one of the
factors. Thus it suffices to prove the lemma for the case G simple and U a
maximal connected subgroup of G. These spaces G/U were listed in [7, p.
219], see also 13.3. Because of i), it suffices to prove the lemma for one
ordering on Vp*, for then it is proved for all orderings on Vz*. The proof
will proceed by checking the various cases with @ simple and U maximal.

If G=B,and U=B; XD, (0=1=1—2), the positive roots of U
with respect to a suitable ordering and a suitable maximal torus are

ot (ISr<t=i), otz ((+lsSr<ti=),z 1=rs1).

The sum s of these roots is

; (2f—1>w,+2§(f—1>zw

which is orthogonal to the root z;,;, and thus s is singular.
If G=C,; and U =C; X Cyy, the positive roots of U with respect to a
suitable ordering are (16.4)

ot (1=r<t=d), £o+n ((F1=5r<i=0), 22 (1=r=1).

i -4
The sum s of these roots is 2 3 jz; -+ 2 X jz4,; which is orthogonal to the root
j=1 j=1

— @; + 41, and thus s is singular. Next we check F,/B, and G,/A4, X A4,.
In these cases, one can choose a set of complementary roots containing for
each complementary root o exactly one of the roots @, — « and such that the
sum of all roots of this set is 0 (see 18.3 and 19.2). But then it is an
immediate consequence of 4.4 that s is singular. The space G,/4, has
dimension 6 (in fact, it is the 6-sphere). Thus A (G./4,) =0, and the
lemma is correct in this case by i).

If G is simple and U maximal, one can choose orderings 4 and &’ on
Vp* such that each root of U simple with respect to & is a root of G' which
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is either simple with respect to &’ or equals the negative dominant root of
G with respect to 8" (see [V]). If G =D, E;, E;, Es, then all J’-simple
roots of G and the corresponding dominant root of G have equal lengths and
thus all simple roots of U with respect to the ordering & have all the same
length p in the Killing metric of G. Then the sum s of all roots of U which
are positive with respect to &8 has a representative contravariant vector lying
in the principal diagonal of the J-positive Weyl chamber of U [25a, p. 221],
since (s,B) = (B,B) for each S-simple root 8 of U, by 8.1. According to
[?5a, Théoréme 7], the principal diagonal contains only singular vectors, and
thus s is singular.

It remains to check our lemma for the spaces F,/4, X C; and F,/A, X A.,.
The Schlafli diagram of F, (including the dominant root) is

1 1 2 2 2

b1 P2 Pz ¢y —¢
where the ¢; are the &’-simple roots of F, and where ¢ —2¢, + 4, + 3¢5
+ 2¢, is the J’-dominant root [25a]. The integers 1, 2 indicate the values
of (‘#b ¢i) and (4’: ¢)

The subgroup U =4, X C; is represented by the following diagram
which indicates the &J-simple roots of U.

1 1 2 2

b1 P2 Py —¢

By an easy calculation, we get for the sum s of all J-positive roots of U
§=4¢1 + 6 + 33 — ¢,

which is orthogonal to the root ¢; - 24, + 2¢s + ¢s. Thus s is singular.

Finally, we consider F,/A, X A,. This space is almost complex (13.3)
with vanishing Todd genus (22.8). Since the second Betti number of
F./A, X A, is zero, also the A-genus vanishes (23.1) and thus the lemma is
true in this case by (i).

The proof of the lemma is completed.?
R3.5. Proof of iii). The proof proceeds by induction on the dimension

of G/U. Assume iii) is proved for U’, @ with dim ¢’/U’ <n. We prove
it now for U, G with dim G/U=n. If Q is the center of G, then G/U

® (Added in proof). Another proof of this lemma will be given in a forthcoming
paper of the authors.
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= (G/Q)/(U/Q) and if U/Q is the centralizer of a toral subgroup in G/(Q,
then the same holds for U in @, and conversely. Thus, in proving iii) for
U, G with dim G/U =n, we may assume that G is semi-simple. Suppose
A(G/U)#0. Then by i) and 23.4, the subgroup U is not semi-simple.
Let T” be the identity component of its center and V the centralizer of 7.
Then V is connected. V£ @, since G is semi-simple. Thus U CV ; q.
We have the fibre bundle (G/U,G/V,V/U) and A(V/U) 540 by ii) . By
the induction hypothesis, U is the centralizer of T” in V; but then U — V.

%3.6. Proof of iv). Let & be the universal principal G-bundle. It
follows immediately from formula (1) in 23.2 that the sequence {4;} is
strictly multiplicative in (Z¢, Bg, G/U) if and only if the function E(s) - B(a)™,
which is defined on Vo, is a constant (see 8.2). This happens in the following
two cases and only then.

a) KE(s) is identically 0. b) E(s) == E(a).

We shall show that b) is impossible, if U4 G. If b) holds, then s is not
singular and U is the centralizer of a toral subgroup of @, according to i)
and iii). From b), we infer more precisely that s is a transform of ¢ under
the Weyl group of G; i.e, s=w(a) for some we W(G@). Now we can
define a new ordering by letting the element @€ V7* be positive if (s,z) > 0.
Since s=w(a), we conclude that s equals the sum of all roots of G which
are positive in this ordering. Since (s,8) >0 for all S€ ® (notations of
R3.3), all B€ @ are positive in the new ordering. Since s is the sum of all
roots in ®, we infer that the sum of all complementary roots positive in the
new ordering is zero which is impossible if U4 G. Therefore {d;} is
strictly multiplicative in (E¢/U, B, G/U) it and only if a) holds, but this
is the case if and only if s is singular (3.2). In virtue of 3.3, 1), the

element s is singular if and only if 4 (G/U ) vanishes. This completes the
proof.

23.7. Remarks.

1) As a corollary of 3.3, i), we mention that s is singular if the real
dimension of (/U is not divisible by 4. Thus s can only be non-singular
it G/U is homogeneous algebraic of even complex dimension, see 23.3, iii).

) In view of 23.3, ii), one might formulate the following conjecture :
Let £ be a bundle for which F¢ is a compact oriented differentiable manifold
and G¢ is a group of differentiable homeomorphisms of Fee It A(F¢) =0,
then {4;} is strictly multiplicative in ¢ (For the notations see 21.1-21. 3.)
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8) If the first Chern class of a compact almost complex manifold X
vanishes, then 4 (X) is equal to the Todd genus of X. Taking this into
account, 23.3, iii) is in agreement with 13.2 and 22. 8.

4) In the proof of Lemma 23.4, we used the theorem of de Siebenthal
on the principal diagonal. de Siebenthal proved his theorem by ¢ checking
all cases.” There exists a general proof of it (A. Borel, unpublished).

24. Applications to simply connected algebraic homogeneous spaces.

24.1. Let X be a non-singular n-dimensional projective manifold, whose
cohomology classes with respect to complex coefficients of type (p,gq) vanish
if ps~q. Then the h?e of X satisfy (see for instance [19]):

X? (X) — i: (_ 1)th,q . (__ 1)phw’
(1) =
X¥(X) = (—1)? 3 k"= (—1)%byy,

r+3=2p
where b; is the Betti number of X in the real dimension 4; it vanishes if ¢
is odd. From (1) and [19, §21.3], we conclude

(2) Ty (X) = 2 (—9)7bap.

For y =1 (respectively y =—1), Ty(X) is equal to the index r(X) (respec-
tively the Euler number £ (X)) of X ([19], pp. 84, 122) ; hence

(3) (X) = 2 (—1)%by,  B(X) = 2 Dap.

R4.2. Let G be a compact connected Lie group, T a maximal torus,
and U the centralizer of a toral subgroup of 7. Let # be an invariant
complex structure on G/U, ¥ its root system and ® a system of positive roots
of U. Then (13.7), ®U ¥ is a positive system of roots of G. The complex
manifold G/U (with the structure 4) is projective and satisfies the assump-
tions of 24.1 (see 14.4, 14.10). It follows then from (2) and 22.7, in the
notations of 22.7, that

(4) bop(G/U) =1k (G/U,¥,0).

As was recalled in 2.7, the map w—> w(®U ¥) is a 1-1 correspondence
between the Weyl group W(G) of G and the systems of positive roots. ILet
W(G/U, ¥, ®) be the set of those elements in W (@) for which ® C w(® U ¥).
Each right coset w(U) -w of W(G) modulo W(U) contains at most one



HOMOGENEOUS SPACES, II. 337

element of W(G/U,¥,®), since only the identity of W(U) transforms ®
onto ®. Moreover, given w € W (@), the system w(®U ¥) contains a system
® of positive roots of U ; hence, if u is the element of W(U), carrying @’
onto ®, we have v -w€ W(G/U,¥,0). Thus W(G/U,¥,®) is a system of
representatives for the right cosets of W(G) modulo W(U).

Given w € W(@),let u(w) be the number of elements in w(®U ¥) N (— ¥).
Then, clearly, ¥?(G/U, ¥, ®) is the number of elements in W (G/U, ¥, ®) for
which u(w) = p. Since ¥ is invariant under W(U), (13. 4, remark), we have
p(w) =p(w’) if w and w’ belong to the same right coset of W(@) modulo
W(U). By (4) and 13.7, we have the:

24.8. TurOREM. Let U be the centralizer of a torus in the compact
connected Lie group G. Let B be an ordering of the roots of G for which
the set W of positive complementary roots is closed. For we W(G), let u(w)
be the number of positive roots whose tmage under w is a negative comple-
mentary root. Then we have, with 2n=dim G/U:

i‘. bopt?? = (ord W(U))* 3 2w,
(5) =0 weW(G)

r(G/T) =3 (— 1)y = (0xd W(T))* T (—1)mw),
p=0 w € W(Q)
where = (G/U) 1is the index of G/U, and by, its 2p-th Betti number.

%4.4. It follows in particular that b.,(G/T) (T maximal torus of G)
equals the number of elements of W (@) for which w(¥) contains exactly p
negative roots. Therefore, in the notations of 2.6, we have

é bop(G/THYE22 = 3, 25w,
p=0

w e W(G)

Theorem 24.3 was proved independently by R. Bott (Bull. Soc. Math.
France 84 (1956), 251-281) in a slightly different formulation. 24.4 was
also proved by C. Chevalley by means of a cellular decomposition (Tohoku
Math. Journal 7 (1955), 14-66). The general case could also be read off
from the cellular decomposition mentioned in [5].

R4.5. Kodaira’s vanishing theorem. Let X be a compact connected
Kéhlerian manifold, n its complex dimension, and ¥ a holomorphic complex
line bundle over X. The bundle ¥ is said to be negative of order =k if its
first Chern class ¢, (¥) can be represented by a closed real (1,1)-form o of
class U~ which, around every point z € X, can be written in the form

o=1 goidza N\ dig
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where (geg) is a hermitian matrix with at least & negative eigenvalues.
In particular, F' is negative of order = n if and only if it is negative in the
sense of Kodaira, that is, if and only if F-* is positive in the sense of Kodaira.
In [?2], Kodaira has shown that if F is negative, then the cohomology
groups HY(X,F) of X with respect to the sheaf of germs of holomorphic
sections of F wanish for ¢ < dim¢X. By Serre’s duality theorem, this is
equivalent to the following statement: Let K be the canonical bundle of X.
If FQK™ is positive, then HI(X,F) =0 for ¢ > 0.

Bott [7b, p. 231] has given a generalization of the first theorem in
the case ¢=0: if F is negative of order =1, then H°(X,F) =0, that is,
F does not admit a not identically zero holomorphic cross section.

Remark. Bott formulates his theorem in a slightly different fashion;
but, if one takes into account the lemma in [22, p. 1271], one gets Bott’s
theorem in the above form.

?4.6. We keep the notations of 24.1 and 24.2. Since H**(G/U)
=H"*(G/U) =0, by 14.10, the map assigning to a holomorphic line bundle
over G/U its first Chern class defines an isomorphism between the group of
isomorphism classes of line bundles and H2(G/U,Z). The negative trans-
gression defines a homomorphism of the group A of weights which are
orthogonal to the roots of U onto H*(G/U,Z) by 14.2. For any weight,
we define Hi(G/U,d) as the i-th cohomology group of G/U with respect
to the sheaf of germs of holomorphic sections of a complex bundle with first
Chern class d. x(G/U,d) will denote the alternating sum of the dimensions
of the H'(G/U,d).

%4.7. THEOREM. Let U be the centralizer of a torus in G, ¥ be the
set of roots of an invariant complex structure on G/U, and ® & set of
positive roots for U. Let d be a weight orthogonal to the roots of U. If
(d,b) =0 for all b€ ¥, then H(G/U,d) =0 (i>0) and dim¢ H*(G/U, d)
equals T(G/U, d), which is the degree of the irreducible representation of G
(see 3.3) with main weight d (in the ordering which has @ U ¥ as positive
roots). If (d,b) <O for at least one b€ ¥, then H°(G/U,d) =0.

The last assertion follows from Bott’s theorem (24.5) and 14.6. Let ¢,
be the first Chern class of G/U. Then (c1,0) >0 for b€ ¥ by 14.8, and
(d,b) =0 for be ¥ implies (d+¢1,b) >0. Since ¢i=—c¢,(K), the
vanishing of H¢(G/U,d), (1> 0), follows then from 14.6 and 24.5.

Assume G/T and U/T to be endowed with the invariant complex struc-
tures having as root systems ®U ¥ and ® respectively. Then (14.3),
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(¢/T,G/U,U/T,v) is a complex analytic fibering; we have by 22.8 and
22.10

(6) T(6/U,d) =T(G/T,d),
and, therefore, by Riemann-Roch
(7) x(G/U,d) =x(@/T,d).

Since Hi(G/U,d) =H*(G/T,d) =0 for i >0, we get
dim¢ H°(G/U,d) =T(G/T,d),

and the remaining assertion of the theorem follows from 22.4.

Remarks. (1) Assume that U=1T. Let d€ H?*(G/T,Z) be such that
d+ (¢1/?) is in the closure of the positive Weyl chamber, but not inside;
therefore it is singular, (d,b) <O for at least one positive root b, and
(d 4+ ¢, b) > 0 for all positive roots b. By 14.6 and 24. 5, it follows that all
cohomology groups Hi(G/T,d) vanish, in agreement with the fact (22.3(5))
that 7(G/T,d) =x(G/T,d) =0 if d -+ (c¢./2) is singular.

(R) If the weight d is orthogonal to the roots of U, the element
de II*(G/T,Z) is the first Chern class of a line bundle which is the image
under v* of a line bundle on G/U with first Chern class d€ H*(G/U,Z).
Since H»2(U/T) =0 for p7q (14.10), one can deduce by a spectral argu-
ment applied to the fibering (G/T, G/U,U/T,v) that, more generally than in
the proof of 24. 7, v* induces an isomorphism of H*(G/U,d) onto Hi(G/T,d)
for all ¢ and all d.

?4.8. We assume here that ¢ is semi-simple. Then H?*(G/T,Z) is
isomorphic to the group of weights of G.

The projective space associated to the vector space H°(G/T,d) can be
identified with the complete linear system of all positive divisors whose
homology class is dual to d. Thus the preceding results on dim H°(G/T, d)
_are also consequences of the results of [7a] quoted in 14.4.

Bott [7b] has proved the following theorem, which had been conjectured
by the authors in view of 22.2 and 24.7:

TaeorEM (Bott). Let d be a weight. Then all groups Hi(G/T,d)
vanish if and only if d—+ (c/) is singular. If d4 (c,/R) is regular and
if w is the unique element of W (G) which brings d -+ (c1/2) into the positive
Weyl chamber, then Hi(G/T, d) is zero if i54s(w), and is equal to the degree
of the irreducible representation G with main weight w(d + (¢1/2)) — (¢1/2)
if i=s(w) (see .6 for s(w)).
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24.9. Degrees of embeddings. We follow the preceding notations. ILet
d be a weight orthogonal to all roots of U for which moreover (d,b) > 0 for
all b€ w. Let I' be the representation with main weight d and I* the contra-
gredient representation. G/U is sirictly associated (14.4) to T, and I' induces
an embedding j of G/U in the complex projective space Pq(C), where ¢ 41
is the degree of the representation I. If e* =H?*(P,(C),Z) is dual to a
hyperplane of P,(C), then j*(e*)=d (d regarded now as element of
H?(G/U,Z)) and the value of the cohomology class d» (n= dim¢ G/U) on
the fundamental cycle of G/U is the degree of the embedding in the sense
of algebraic geometry. The following formula is clear for an arbitrary
de H*(G/U,R)

a"[G/U] =n!limr"T(G/U,rd).

Let a be the sum of all roots in ® U ¥, then (6) and 22.3(4) and 22.4(7)
give

T(G/U,rd) = IIe (rd+a/2,¢)/(a/2,¢) - Hq, (rd+4-a/2,b)/(a/2,0).
(43 be

Since (d,c) =0 for ¢€ ®, the first product equals 1. Passing to the limit
yields

(8) a"[G/U] =n! 11? (d,b)/(a/2,b) for d€ H?(G/U,R).
be

24.10. TuHrOREM. Let G be a compact connected Lie group, T a
mazimal torus of G and U the centralizer of a toral subgroup of T. Endow
@/U with an invariant complex structure, and let ¥ be the set of its roots.
Choose an ordering & on Vy for which ¥ is the set of all positive comple-
mentary roots. Let a be the sum of all positive roots. Let d be a weight
orthogonal to the roots of U and for which (d,b) >0 for all b€ ¥. The
contragredient representation of the irreducible representation of G (8.3)
with main weight d induces an embedding of G/U in a complex projective
space (14.4). The degree of this embedding in the semse of algebraic
geomelry 1s

(9) a[6/U] =n! T1 (4,0)/(a/2,b), (n = dimg G/U).

R4.11. As an example, we take G =U(4) and U =U(R) X U(1) X U(1).
In 13.9, two invariant complex structures 4., 4. on G/U were defined. We
shall calculate the number ¢,*[ G/U] with respect to these two structures. Let
a® (respectively a(®) be the sum of the positive roots with respect to the
ordering &, (respectively &,) defined in 13.9. We have

a® = 3z, + &y — T, — 33, a® = 3z, + T, — 23 — 3z,.



HOMOGENEOUS SPACES, II 341

The first Chern classes and the roots of these two structures have been given
in 18.9. With respect to the coordinates x;, the metric in the universal
covering Vr of the maximal torus of U(4) is the usual euclidean metric.
Thus, in the formulas (8), (9), the scalar product is the ordinary one, and,
by a straightforward computation, the Chern number ¢,°[G/U] of G/U with
respect to @ (respectively @.) is 4860 (respectively 4500). Therefore we
get an example of two 5-dimensional algebraic varieties which are C'~-differ-
entiably homeomorphic, but have different Chern numbers.

Chapter VII. Genera Defined by Pontrjagin Classes.

In this chapter, a real number s is said to be an integer exc®, or integral
exc 2, if there exists an integer % such that 2%-s is an integer. Analogously,
a real cohomology class z is integral exc? if x, multiplied by a suitable power
of 2, is the image of an integral cohomology class under the coefficient
homomorphism induced by Z-— R.

25. The integrality of the A-genus.

25.1. Let {Lj(ps,- - -, pi)} and {4;(ps,- - -, p;)} be the multiplicative
sequences [19, § 1] with 2%/tgh 2% and 22%/sinh 22% respectively as characteristic
power series. The polynomials A have rational coefficients which, when
written as quotients of relatively prime integers, do not contain the factor 2
in their denominators. It suffices to prove this for the coefficients a; of the
power series 22%/sinh 222 The coefficient of 2# (k=1) in this series is

ap = (—1)¥%1 (2% —1)B;/ (k) !

and, by elementary number theory, (%k)! is not divisible by 2%, whereas by
von Staudt’s theorem, the Bernoulli number B; contains 2 exactly to the first
power in its denominator, which proves the desired result.

25.2. If X is a compact oriented differentiable manifold, then the
genera L(X), 4(X), A(X) are defined (21.2, 23.1). They are rational
numbers which vanish if the dimension of X is not divisible by 4. We have

A(X)=2%d(X) for dim X — 4F.

A (X) may be written with an odd denominator ; by [19, Haupsatz 8. 2.2],
the rational number L(X) equals the index (X) and thus is an integer.
In this paragraph, we wish to prove in particular that the A-genus A (X) is
also an integer or, equivalently, that A (X) is integral exc?®.
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For a compact almost complex manifold X with Chern classes
¢, € H*(X,Z) and for elements dy,- - -,ds € H*(X, R), we define the virtual
Todd genus as in [19,§11] by the formula

(1) T(dy - yd)x=((1—e%) - '(1—-6“")%%(01,' 5 6)) [X]

This virtual Todd genus is a real number.
For de H2(X,R) the number T (X, d) is defined by the formula

(2) T(X,d) = (S Ti(e - ) [X], (see 22.1).

By [19, Satz 14.3.2], the Todd genus T'(X) =T(X,0) is an integer exc?
and the virtual Todd genus T'(dy,- - -, ds)x is integral exc® if dy,- - -, d,
are images of integral cohomology classes. We have

T(X,d) =T(X) —T(—d)x

and thus T'(X, d) is also integral exc? if d is the image of an integral class.
We give now a slight generalization of these results.

25.3. ProrosiTioN. If the elements d,d,,- - -,d, of H*(X,R), (X
compact almost complex), are integral exc?2, then T(X,d) and the virtual
Todd genus T(dy,- - -,ds)x are integral exc?2.

By (1) and (R), it is sufficient to prove that T'(X,d) is integral exc®?
if 2%d is the image of an integral class for some positive integer k. This
statement will be proved by induction on k. It is proved already for k=0,
and we assume it to be true for k—1. We have

el=(1—(1—e?d))3,
and therefore

7(x,0) = (£ 07 (T a—enr S, - 0) @

The coefficients (—1)"( :%)=2‘2r(2:) are integers exc?. If 2%d is the

image of an integral class, we see that T'(X, d) is a finite linear combination,
with integers exc? as coefficients, of numbers T'(X, f), where f runs through
certain elements of H2(X,R) for which 2%'f is the image of an integral
class. By the induction assumption, it is therefore an integer exc 2.

The following theorem will include the integrality of the 4-genus (25.2).

25.4. TuvorEM. Let X be a compact oriented differentiable manifold
with the Pontrjagin classes p; € H*¥(X,Z). Let the element d of H*(X,R)
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be integral exc®. Then the number A(X,d) defined by

A(X,d) = (edgﬁxpl,. <) [X]

is integral exc?2.

The theorem is trivial if the dimension of X is odd. Therefore we may
put dim X equal to 2¢. Let é= (E,X,SO(2q)) be the principal tangent
bundle of X. Let T be a maximal torus of SO(2¢q) and (@1, - -, z,) a base
of H*(T,Z), see 10.1. We consider the fibre bundle

Then =*(¢) is the Whitney sum of ¢ principal U(1)-bundles &, - -, &, where
¢ is the extension of (E,E/T,T) with respect to t— exp2wiz;(t). The
first Chern class of & is @; if we regard z; under the negative transgression of
(E,E/T,T) as an element of H2(E/T,Z). Leta,,- - *,am (m=q(¢g—1)),
be the positive roots of SO (2¢) with respect to T' and an ordering. The a;
are the roots of an invariant integrable almost complex structure (§12) on
SO (2q)/T, to which belongs a complex structure of the vector bundle along
the fibres of {. Thus the principal bundle 5 along the fibres of ¢ is restricted
to U(m) and the corresponding principal U(m)-bundle »’ is the Whitney
sum of m principal U(1)-bundles 5,52, - -, 7m Whose first Chern classes are
@1,° * *,am Tegarded as elements of H*(E/T,Z).

The principal tangent bundle of /T is the Whitney sum of »*¢ and #;
thus E/T admits an almost complex structure whose principal tangent
U(m + g)-bundle is the Whitney sum of %," * -, 9m, &1,- * -, & Hence E/T
is an almost complex split manifold [19,§13.5] with total Chern class

c(B/T)=(1+4a)(1+a:) - (1+an) (1+2:)(1422) - - (142).
By 22.5(11), we get for an arbitrary element d € H?(X, R),

A(X, ) = (a*(e%) o/ (1— =) -7 (Z Aulp + 5 p))) [B/T]
Observing that

™ (p(€)) =p(»*§) = (1 +22) (14 2%) - - - (1 425°)
and using the identity z/(1—e) = (4z/sinh §z) -exp(z/2), we obtain

(S Au(py - 1)

= f[ (2:/?2) /sinh (z;/) = e ¥+ +a9) IqI zy/(1—eo).
=1 i=1
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Thus we see that
A(X,d) =T(B/T,=*(d) —3(z: 4" - -+ ),
and this, together with 25.3, proves 25. 4.

%5.5. THEOREM. Let n= (E,X,U(k)) be a principal bundle over a
compact oriented differentiable manifold X (dim X =2q) and let p; denote
the Pontrjagin classes of X. Let d€ H*(X,R) be integral exc2. Then the
number A(X,d,y) defined by

A(X,d,7) = (etch () - gﬁj(pl,- ) [X]

is integral exc?. (Asin 9.1, ch(y) denotes the Chern character of ).

We consider the associated bundle ¢{ = (E/T,X,U(k)/T, ) where T is
the standard maximal torus of U(k). Let (24, - -, ;) be the standard base
of H*(T,Z). Then =*(xn) is the Whitney sum of % principal U (1)-bundles
whose first Chern classes are z,,- + -, z; if we consider z,,* - -, 2 via negative
transgression as elements of H2(E/T,Z). We note that

(3) n¥*ch(n) =ch(x*y) —=em1 e - - - |- e,

Let ai,- - *,am (m=Fk(k—1)/2) be the positive roots of U(k) with
respect to T' and an ordering. By 10.7, the Pontrjagin class / of the bundle
¢ along the fibres of ¢ is given by

@ =11 (1+a)
and therefore
(8) X 4i(ps,- - -, p1) =11 (ai/R)/sinh(a;/2) = e-(@t - +am)/2, T] g,/ (1 — €7%%).

The tangent bundle to B/T is the direct sum of ¢ and of =*c where o is the
tangent bundle to X (7.6). Thus if p’; denotes the i-th Pontrjagin class of
E/T, we have in view of (5)

(6) = (Zdyps,- - -, p)) - TLa/(L—eo0) = el semi2 3 A5(pf, - - -, p'y).
On the other hand, it follows from 22.5(11) that
A(X, dyn) = (v*(e* ch(y) - Zd;(ps,- - -, p5)) - T/ (1—e)) [E/T].
Together with (3) and (6), this gives
A(X,d,n)=§ﬁ(E/Tﬂr*(d)-I—xri- (a4 +am)/2),

and the right hand side is an integer exc 2 by Theorem 25. 4.
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%5.6. Remarks. The preceding theorem is the most general integrality
theorem we give in this paper. All the theorems of integrality for the Todd
genus, etc., [19,§ 14.4,2) ] are formal consequences of it: Let X be a compact
almost complex manifold of complex dimension ¢ and 5 a principal U(k)-
bundle over X. We have T'(X,7) =4 (X, ¢,/2,7). Thus 7(X) and T(X, )
are integers exc®. As a consequence, T, (X) and T,(X,%) are polynomials
in y with integers exc? as coefficients [19,p.93, (7), (8)]. The virtual T,-
characteristic T (vy,+ + +, v, |,7)x as defined in [19,p.95], (vy," * -, v, are
elements of H*(X,Z)), is a polynomial of degree q—r in y which can be
written as a formal power series in y, the coefficients being finite linear com-
binations with integral coefficients of polynomials T, (X,£), where & runs

through certain unitary bundles depending on 7, vy,- - -,v,. This is purely
formal (see also the analogous statement for the x,-theory, [19, p. 132]).
Thus, Ty(vs,- - -,vr [,7)x is also a polynomial with integers exc?2 as
coefficients.

The proofs of 5.4 and 25.5 depend mainly on the strictly multiplicative
behaviour of #(1—e2)-*, and on Proposition 25.83 which we actually would
need only for almost complex split manifolds. The theory of Thom enters
implicitly in the proof of 25.3 (integrality of virtual indices, see [19, § 9 and
end of §137).

We do not know how far in 25.5 “integral exc 2 could be replaced by
“integral.” We can only dare the following conjectures which are motivated
by the theorem of Riemann-Roch (see [18]). TLet X be a compact oriented
differentiable manifold and % a principal U (%)-bundle over X.

1) Let w, denote the second Stiefel-Whitney class of X, (w, € H*(X, Z.)).
If de HN(X,Z) reduced mod® is w,, then A(X, d/2,7) is an integer.
R) If w,=0 and dim X=4 (mod 8), then A(X) 1s an even integer.
R*) If w,=0, dim X==4 (mod 8) and if the structural group of n can
be reduced to SO(k), then A(X,0,5) is an even integer.

These conjectures would be generalizations of Rohlin’s theorem [24] that the
Pontrjagin number p,[X] is divisible by 48 if dim X =4 and w, — 0. Rohlin’s
theorem goes over into conjecture 2 fro dim X —4.3

R5.7. Ezamples. Putting the value 0 for d in 25.4 yields that 4 (X)

® (Added in proof). A proof of (1), using the integrality of the Todd genus recently
proved by Milnor (yet unpublished) will be given in the paper mentioned in footnote 2).
For a different approach which proves (1) and (2*%), see F. Hirzebruch, Séminaire
Bourbaki, Exposé 177, Febr. 1959.

5
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is integral exc®? or, equivalently, that the A-genus of X (see 25.2) is an
integer. This is non-trivial only if the dimension of X is divisible by 4. For
dim X =8, we get [19, p. 14]

(5) (—d4ps+ 7ps?) [X]=0 (mod 45).
The integrality of the L-genus (index) gives
(6) (Tps—p:?) [X] =0 (mod 45).

The two congruences (5) and (6) are not independent of each other; (5)
results if one multiplies (6) by — 7. For dim X =12, the integrality of
A(X) and L(X) respectively means

(7) (16ps — 44p,p; + 31p,*) [X]=0 (mod 945),
(8) (62ps — 18p,py 4 2p:%) [X] = (mod 945).

In this case, neither of the two congruences is a formal consequence of the
other, since one can derive from (7) and (8) that

(9) (p1p2) [X]=0 (mod3).

(8) is a formal consequence of (7) and (9), and (7) of (8) and (9). The
congruence (9) can also be obtained by the use of Steenrod’s reduced powers.
In fact, by [15, Theorem R.1],

piP=—p:("p—p:*) (mod3).

Assume now that X is a compact connected oriented differentiable mani-
fold of dimension 2¢, whose real Pontrjagin classes p; vanish for j£0, dim X.
Taking into account that 4 (X) is integral exc 2, we get

(10) di[X]/q! is integral exc? for all d€ H*(X,Z)
and also, by 25.5,
(11) ch(y) [X] s integral exc? for every U(k)-bundle over X.

Let ¢; be the Chern classes of 5. We infer from the definition of the
Chern character (9.1) that for ¢40, the 2¢-dimensional component ch(z),
of chy is of the form

(1?) glch(n)g=(—1)"*q-cq+ P(cy, - *,C01),

where P is a polynomial in ¢—1 indeterminates with integral coefficients.
Therefore (11) and (12) prove in particular the following:
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25.8. THEOREM. Let ¢ be a U(k)-bundle over S,q, and let ¢, be its
g-th Chern class. Then c,[Ss]/(g—1)! is an integer exc?2.

The theorem is non trivial only for k=gq. For g=F, it implies that
the spheres S,, are not almost complex for ¢ =4. (See also [18, §2.1].)
This was proved by Borel-Serre by showing that ¢,[S.,,] is divisible by every
prime p less than q and not dividing g, see [6, Propositions 12.4 and 15.1].

25.9. CoroLLARY. Let 4 be a principal O (k)-bundle (Sp(k)-bundle)
over the sphere S.. Let p, (respectively e,) be the q-th Pontrjagin class
(g-th symplectic Pontrjagin class) of 4. Then

Pa[Seal/(2g—1) ! or €,[S.]/(2q—1) ! respectively
s an integer exc?2.

For the proof, it is enough to observe that p, (respectively e,) is by
definition up to sign the Chern class ¢,, of the complex extension 7 of 9,
with respect to the inclusion O(k) C U(k) (respectively Sp(k) C U (%k)),
and then to apply Theorem 25.8 to 4.

26. Applications to homotopy groups of Lie groups. In this para-
graph, €, will be the class of finite commutative 2-groups.

26.1. The boundary homomorphism in the homotopy sequence of a
bundle ¢ will be denoted by dz. We recall that there is a commutative diagram

O¢
mi(Bg) «——— m(Bgmod F) ———> mpy (F)

(1) a a @
0y

Hi(Bg, Z) «—— Hy(Bgmod F, Z) ——> H, ,(F, Z),
where F is some fibre, d,, the boundary homomorphism of the relative homology
sequence and « the Hurewicz homomorphism. Using the bottom line of (1)
to define transgression in homology and the corresponding maps

a*
HY(Bg, Z) ——> HY(B¢mod F,Z) «——Hi\(F, Z)

to define the transgression ¢ in cohomology, we obtain readily the:

ProrosiTioN. Let x€ n;(Bg) and let YEH (Fe,Z) be transgressive.
Then for any image r¢(y) € Hi(Bg, Z) of y by transgression, we have

KI(re(y),a(2)) = KI(y, adex),
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where KI (for Kronecker index) denotes the standard pairing of homology
and cohomology.

26.2. 1, will denote a generator of =,(S,) or its image in H,(S.,Z),
and «,* the dual generator of H"(S,,Z). We recall [26, §18.5] that if we
associate to a principal G-bundle ¢ over S, the element 9 (i) € mas (G), We
define a 1-1 correspondence between the set of equivalence classes of principal
@-bundles over S, and 7,1 (G). Also, since for any finite dimension, we may
take a differentiable manifold as classifying space for @, each equivalence
class may be represented by a differentiable bundle, and we shall assume our
bundles to be differentiable whenever convenient. Clearly, if A: G— G’ is a
homomorphism and if the G-bundle ¢ is represented by «, then its A-extension
is represented by Ao(a), where Ao: mnq(G) = mna(G’) is induced by A.

We shall be interested in the cases n —=2¢, @ =U(m) (m=gq), n=4q,
G=Sp(r), (r=q), n=4q, 3=S0(s) (s=?2¢-+1), and shall denote by
¢¥ or c¥;(£) (respectively e*y, or ¥, (€), respectively p* or p¥;(£)) the value
of the %-th Chern (respectively symplectic Pontrjagin, respectively Pontrjagin)
class on t,, where n — 2k (respectively n = 4k, respectively n = 4k). It follows
directly from the definition of the characteristic classes by means of classifying
spaces that &—>c¢*,(&) (respectively é— e¥;(€), respectively &é— p*;(£)) is
a homomorphism of the (n—1)-th homotopy group m,—, (G) of the structural
group into Z; hence this homomorphism depends only on m,,(#) modulo
torsion. Finally, we recall that the maps

m2q-1 (U (7)) = 7201 (U () ), maqa (SP(1) ) > maga (Sp(s)) (s=r=9)
741 (SO(r)) > 71 (80(s))  (s=7r=49+1)
induced by the standard inclusions are isomorphisms [26, § 22.8, 5.2, 25.5]
and that
maq-1 (SO (21 1)) = 741 (8O (Rs +- 1)), (s=r=19),
is an isomorphism mod C,; this last fact follows from the homotopy sequence
of the fibering SO (2r +1)/SO (27 —1) = W41, where W4, is the mani-
fold of unit tangent vectors to S,, and from the existence of a map

S.1— W, which induces a C,-isomorphism of m;(Sy_1) onto (W)
for all i =0 (see [R5], Chapitre IV, Prop. 2).

26.3. LEmma. (a) Let &€ be a principal U(q)-bundle over S, and
let 4 be the associated bundle with fibre S,i.1=U(q)/U(q—1). Then

On (t2q) = == ¥4 (&) “t2g1
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(b) Let & be a principal Sp(q)-bundle over S,q, and n be the associated
bundle with fibre Siqs =Sp(q)/Sp(qg—1). Then Opsg = == e*;(£) tags-

The assertion (a) follows from the fact that c¢,(£) is the image by
transgression of =1y, in 5 (see §29) and from 26. 1.

By definition, e,(¢) = (—1)%34(¢), where & is the A-extension of ¢
under the inclusion A: Sp(q) - U(2q). It is immediately seen that the
pair inclusion (Sp(q¢—1),Sp(q)) — (U(Rg—1),U(2¢)) induces a homeo-
morphism of Sp(q)/Sp(¢g—1) onto U(2¢)/U(2¢—1). As a consequence,
the bundle (¢, S,.-1) associated to ¢ is the A-extension of 5, and then (b) is
implied by (a).

26.4. The result quoted at the end of 26.2 implies in particular that
7ag-1(W sg-1) 1is the direct sum of Z and of a finite 2-group, and that there
exists an integer 2@ such that the image of the Hurewicz homomorphism

@ wag1(Wag1) > Hag1(Wagr, Z)
is generated by R0@- j,, where j, is a generator of Hyg1(Wyy,Z).

Lemma. Let & be a principal SO(2q -+ 1)-bundle over S,;, n be the
associated bundle with fibre Wi, =80 (2q +1)/SO(2q—1), and let vy, be
a generator of wsg (Wagn)mod 2-torsion. Then we have in the previous
notation

Oplag = == 279@-1p* (£)y, modulo 2-torsion.

Modulo 2-torsion, we have dysq = ¢ yq, for some integer ¢, and therefore
alylag == 2@ - ¢~ jo.

By §30, py(¢) is the image by transgression in 5 of == 2j,*, where j,* is the
generator of H**(W 1, Z) dual to j,. Hence we have by 26.1

= p*e(€) = KI(Rj,*, alyg) = 29@*-¢
which proves the lemma.
26.5. THEOREM. There exists:
(a) over Sy a U(m)-bundle with c*;= (¢—1)! for m=q.
(a*) over S.; a SO (n)-bundle with p*;= (2¢—1) "2 for n=4q and a

Sp (m)-bundle with e*;= (2¢—1)1-2 for m=gq.

(b) over Siq, q even, a SO (n)-bundle with p*; = (2q¢—1)! for n=4q-1
(for n=8 if g=2).
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(c) over Si, q 0dd, a Sp(m)-bundle with e*;= (2¢—1) ! for m =g¢.

(d) over Sy a SO (n)-bundle with p*, equal, up to a power of 2, to the
greatest odd factor of (R¢—1)! for n=2q+ 1.

By 26.2 and the end remark in 9.7, it is enough to prove (a), (b), (c)
for one particular value of m or n; (d) follows from (a*). The case ¢=2
in (b) will be dealt with in R6.6.

Let 4 be the principal SO (2¢)-bundle of the tangential bundle to Sy,
and let A: Spin(2¢) —SO(2q) be the covering map. Since w(y) =0,
the bundle n may be A-restricted to a principal Spin(2¢)-bundle. In fact,
p(A) 2 Bspinmy = Bsomy is (for any n=2?) a fibre map with fibre B, (see
[2] §22 or [6] §1), i.e. an Bilenberg-MacLane space K (Z,,1) ; its spectral
sequence shows readily that the obstruction to a cross section is the universal
second Stiefel-Whitney class w,; then, by a standard argument, every map
o: B—> Bso(n) With ¢* (w;) = 0 can be factorized through p()), and this shows
in our case the existence of a A-restriction » of 4.

Let ;, (1=i=¢q), be the standard basis of the usual maximal torus
T of SO(2q), and let T” be the inverse image of T in Spin(2q); it is con-
nected (see 10.1) and is a maximal torus of Spin(2q) ; we shall also denote
by «; the image of z; in H*(T’,Z) under the covering map; these generate
a subgroup of index 2 of H*(T",Z). Let B: Spin(2¢q) —> U(R¢*) be one
of the half-spinor representations, say the onme with the highest weight
(x4 - -+ xg), and let g be the B-extension of n"). We want to prove

() cq(8) = (—1)7*(g—1) ez

which,* in view of our initial remark, will prove (a). Let o; (1=j=2¢7),

be the weights of 8. It is known that these are just the linear forms
%(elxl—l_. : '+€qxq)> (512='—'|—-—1;(i=1:. . ':Q)>H€i=1)

(in fact, these are all transforms under the Weyl group W (SO(2¢)) of the
highest weight, hence they must be weights; moreover, since there are 227
of them, they represent all weights). Let p be the projection of Ey/T”
onto S.,. By (9.5), we have p*(Wye(n)) =2 - -7y, and hence

(3) Ty Tg=2"p*(12q)-

By (10.8), p*(ce(#)) is the g-th elementary symmetric function in the o;
Since the lower symmetric functions are zero here (because Hi(S;;,Z) =0

+The other half-spinor representation yields a bundle whose g-th Chern class is
—c.(0).



HOMOGENEOUS SPACES, II. 351

for 0 <1< 2q), we get

() (—DEgp*(e(0) = ot (s =201).

Let wj==4(e®1 +- - -+ €@;) be one particular weight. We have
wf=ql-29 2 - g+ b

where b; is a sum of monomials in the ;’s, none of which contains all
variables z;, and therefore

Sof—ql 2t a a3

or, taking (3) into account,

Sof=g! p* () + by
so that (2) will follow from (4) if we show that

(5) Sbh;=0.

W(SO(2q)) is the group of permutations of the z; combined with an
even number of changes of signs. Thus, the ring Iw of invariants of
W(SO(Rq)) is generated by z,- - -@4 and by the symmetric functions in
the z;>. The Weyl group permutes the w;, and therefore X b;€ I'w; since no
monomial in this sum contains all variables z;’s, b; must then be a symmetric
function in the z;%; but, by (9.3), it is then the image under p* of a poly-
nomial in the Pontrjagin classes of 5. Since the Pontrjagin classes of S,, are
all zero, this proves (5).

Let now ¢ ==2s be even; let & be the U(2s)-bundle over S,, with Chern
class (Rs—1)!, and &* be its extension under the contragredient represen-
tation (10.6). We have cy5(¢) = c25(£%), hence

Cos (ED EF) = (Rs—1) 1+ 2+ 1y,

but in U(4s), the matrices of the form A -+ 4 (4 € U(2s)) form a subgroup
conjugate to a subgroup of Sp(2s) or of SO (4s), and £ @ &* can be considered
as the complexification of a Sp(2s)- or of a SO (4s)-bundle. This proves (a*).

It is known that the image group of a half-spinor representation of
SO (4q) is conjugate to a subgroup of SO (2%¢1) (respectively Sp(22¢-2)), if
q is even (respectively odd). (See E. Cartan, Jour. Math. Pur. Appl. 10
(1914), 149-186, § XV, p. 173, or A. I. Malcev, Isv. Ak. Nauk. SSSR Ser.
Math. 8 (1944), 143-174, A. M. 8. Translation 33, pp. 29-30.) This implies
that 6 is the complexification of a SO (22¢)- (respectively Sp(22¢-2)-) bundle,
for g even (respectively odd), and (b) and (c) follow from (2).
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26.6. Remark. The image group of Spin(8) under a half-spinor
representation is conjugate to SO (8), as is well known and follows also from
the result just quoted. The standard representation of SO(8) and the two
half-spinor representations provide three homomorphisms of Spin(8) onto
SO (8) which are, up to equivalence, all the representations of degree 8 of
Spin(8). They may be distinguished by the element or order 2 of the center
of Spin(8), (isomorphic to Z, -+ Z,), which they map onto the identity.
They may be obtained from one another by performing on Spin(8) the auto-
morphisms of the triality principle, (which are transitive on the elements of
the center of Spin(8) different from the identity).

The last step of the proof of 26.5 shows therefore that 6 is a SO(8)-
bundle over Sg with p*, =-—6, which ends the proof of (b). On the other
hand, the projective lines on the Cayley plane W are homeomorphic to S
and a generator w of H®(W,Z) restricts on them to a fundamental cocycle;
therefore 9.7 and 19.4 show that the normal bundle ¢’ to a projective line
in W has also p*,=—6. In fact, it can be shown directly that 6 and ¢
are isomorphic; we sketch the proof, using 19.1 and some information on W
to be found for instance in [1]: Let U be a subgroup of F, isomorphic to
Spin(9), ¥V a subgroup of U isomorphic to Spin(8), and P the point of W
fixed under U. Then V leaves exactly two other points @, B fixed, and the
projective line M joining @, R is operated upon transitively by U. Thus the
fibering é= (U,U/V,¥) may be identified with (Spin(9), Ss, Spin(8)).
The natural representation of ¥ into the tangent space W of W at Q decom-
poses into the representations p,, p, into Mg and into the subspace Ng of Wy
orthogonal to M,. Thus the tangent (respectively normal) bundle to M is
the pi- (respectively p.-) extension of & The representation of ¥ in Wy is
faithful, because its kernel belongs to the center of F,, which is reduced to {e}.
Hence (see beginning of this section) p, and p, are not equivalent, the normal
bundle to M and the bundle 6 of 26.5 arise from the tangent bundle to S
by the same construction.

%6.7. TarOrREM. The fibrations
U(9)/U(g—1) =S8z,  Sp(q)/Sp(q—1) =S¢,
SO(2q+1)/SO(2q—1)=W4q._1, Gz/sp(1)=W11

gwe rise to the following sequences, which are ezact modulo the class Cy of
finite commutative 2-groups:

(@) 0> Z o)1= mog2(U(g—1)) = m20-2(U(g)) = 0 (9=2)
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(b)  0=>Z(2g1)1> m4g2(SP(q— 1)) = m1g2(Sp(q)) > 0 (g=R)
() 0=Z(241)1—> 7 2(SO(RG—1)) = m4q2(SO(Rqg + 1)) > 0 (g=®)

() 0> Zyis —> 710(Ss) = m10(G;) = 0, for some k=15

(a) Let a€mpqs(U(q)). Let £ be a principal U(q)-bundle over S,,
representing «, and 5 be the associated bundle with fibre S,o;. Then
By =DFE¢/U(qg—1) and the restriction of the natural map E¢— E, to a fibre
is the projection map in the fibering (U(q), Szq-1, U(¢g—1)) hence we get a
commutative diagram

Oy
g (S2q) ——> 291 (S20-1)

O¢ Ilﬁ
72q(S2q) — > 1341 (U(q) ),

where y is part of the homotopy sequence of (U(gq),S2e1,U(g—1)). By
definition, & ==0¢(12q), hence we have by 26. 3a.

y(a) = 2= ¢*(§)tag

which is divisible by the greatest odd factor of (¢—1)! in virtue of 25.8.
Since « is arbitrary, this shows that ¢ (72q-1(U(g)) is contained in the sub-
group generated by b(g—1) “12q-1, Where b(g—1) is the greatest odd factor
of (¢—1)!; on the other hand, the same argument together with (26.5),
shows that ¢ (2 (U(q))) contains (¢—1)!tsq-1, and the mod C, exactness
of (a) follows.

The proofs for (b) and (c) are quite analogous, the sole difference being
that one has to invoke 26.8b and 26.4 instead of 26. 3a.

For the fibration G,/Sp(1) = Wi, we refer to [4,§17]. Let a € m:(G2),
let £ be a principal G,-bundle representing «, and let 5 be the associated
bundle with fibre W,;,. We have the commutative diagram

On
77'12(512) I 77‘11(W11)

(6) ¢
O
m12(812) ——> 111 (G2).
Now &, is embedded in SO(7) and its action on W, extends to that of
SO(7); in other words, G,, as a subgroup of SO(7), acts transitively on
W..=80(7)/SO(5) and G,NSO(5) =Sp(1). This means that if we

51t will be shown later that k¥ = 1.
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extend the structural group of 5 to SO(7), we get the associated bundle to
the extension & of £ Therefore we have by 26.4:

On () = == 27¢@-1p*; (¢)y; mod 2-torsion

and (6) gives then: y(a) = == p*3(&) -ys, up to a power of two. Since
(25.9) the number p*;(¢) is divisible by 15, and since this argument is
valid for any « € 71;(G2), the mod €, exactness of (d) is established.

26.8. ProrosiTioN. If we have
(7) (SO (7)) =0, m10(U(8)) =Z,smod C,,

then the following congruences mod C; are valid: w1,(G,) =0, 71, (SO(5))
=215, 10(SO(n)) =0 (n=7,n5~8), mo(Sp(n)) =0 (n=3), me(U(n))
=0 (n=86).

In this proof, all congruences are mod C,. We use the following results:
(8) i1 (Sn) =7ni2(Sn) =0 (n=3), s (Sn) =2Z; (n=5),
(9) m10(Ss) =Zss, 9(8S:) =1Z2,.

(For the last equality of (8), see J-P. Serre, Comm. Math. Helv. 27 (1953),
198-232, for the other ones, see [25]; as to (7), see 26.9 and 26. 10 below.)
The first equality in (9) shows that in 26.7d, we have k=1 and
710(G2) =0. The fibering G,/Sp (1) = W, discussed in [4, § 17], together
with (9) and the congruence (W) =m;(S11) shows that =,(G,) =Z..
Applying this and (7) to the exact homotopy sequence of the fibering
Spin(7)/G, =S, (see [1]), we get the mod C, exact sequence

0*71’10(50(7))"‘)Z3—>Zs"—)0;

hence (SO (7)) =0. The modC, exact sequence 26.7c yields then, for
q =38, that =, (SO(5)) =Z,;. Since, as is well known, the universal covering
Spin(5) of SO(5) is isomorphic to Sp(2), we deduce from 26.7b that
710(Sp(3)) =0, and hence also m,(Sp(n)) =0 for n=3.

Since SO(9)/SO(7) =W ; has, mod C,, the homotopy groups of Si,
we have m1,(SO(9)) ==1,(SO(7)) =0 and then =, (SO(n)) =0 (n=9)
follows from (8), the finiteness of 7, (SO (11)) (see [25]) and the homotopy
sequence of SO (n)/SO(n—1) =S8,,.

Finally, (7) and 26. 7a give mo(U(6)) =0, and therefore =o(U(n))=0
for n=6.

26.9. The preceding results (found in Spring 1957) contradict several



HOMOGENEOUS SPACES, II. 355

of those of [30]. Since then, Toda has made new computations whose out-
come (yet unpublished) agrees with the above. They have also been con-
firmed by Bott (Proc. Nat. Ac. Sci. USA 43 (1957), pp. 933-935) who in
particular determines all stable homotopy groups of the classical groups.

26.10. Bott has also shown (to be published) that the sequence 26.7(a)
is exact also for the 2-primary components (since yq.(U(g)) =0, by Bott,
loc. cit., 26.9, this gives maq2(U(q—1)) =Z(4):). This implies (see 6.3
and the proof of 26.7) the following generalization of 5.8, 25.9:

TaeoreM (Bott). Let ¢ be a U(k)-bundle over S;;. Then c*,(§) 1s
divisible by (¢—1) 1. Let n be a SO (k)- (respectively Sp(k)-), bundle over
over S,. Then p*(n) (respectively e*,(n)), is divistble by (2¢—1) L.

Using this theorem, Kervaire has proved more generally that p*,(y)
(respectively e*,(5)) is divisible by (2¢—1)!-R if ¢ is odd (respectively
even) (Amer. Jour. Math., vol. 80 (1958), pp. 632-638).

The stable homotopy groups -1 (U(k)), (k=¢q), and my-1(SO (%))
(k=4q+ 1) are infinite cyclic according to Bott (loc. cit. in 26.9). The
generator of the first group has the Chern number c*;= =+ (¢g—1)]!, the
generator of the second group has Pontrjagin number p*; equal to == (2¢ —1)!
if ¢ is even and =+ (2¢—1)!-? if ¢ is odd; similarly for the symplectic
groups (with odd and even interchanged). This follows from the preceding
theorem, the result of Kervaire and 26.5. The “spinor-method” in 26.5
gives an explicit construction for these generators.

The above theorem would follow by the same argument as 25.8, 25.9
if one could prove that the virtual Todd genus with respect to an integral
class is an integer. In this respect, compare the conjectures in 25.6. The
last one would contain Kervaire’s result for the orthogonal groups.

Finally, we remark that the proof of 25.8, 25.9 also applies if the
sphere is replaced by a compact connected oriented manifold X whose real
Pontrjagin classes p; vanish for 45540, dim X, and if ¢ (respectively ») is a
U (%)-bundle (respectively O (k)- or Sp(%)-bundle) whose real Chern (respec-
tively Pontrjagin or symplectic Pontrjagin) classes vanish in all positive
dimensions less than dim .X.

26.11. Milnor and Kervaire, independently, have deduced from the
result of Bott quoted in 26.10 that S,, endowed with its usual differentiable
structure, is not parallelizable if n 41,3, 7. An easy argument similar to 26. 3
shows that if S,,_, is parallelizable, that is if the fibering SO(2n)/SO(2n —1)
==8.,.1 has a cross section. then there exists a SO(2n)-bundle 5 over S,,
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whose Euler-Poincaré class W, is equal to 1-,. Therefore the theorem of
Milnor-Kervaire is a consequence of the

Turorem (Milnor). Let & be a SO (2q)-bundle over S,q, where q541,
2,4. Then Wy (&) ts divisible by 2.

We want to give here a proof for this, different from Milnor’s but also
using 26. 10.

Let 5 be a SO (2¢)-bundle whose second Stiefel-Whitney class w, vanishes.
Then (see beginning of the proof of 26.5), 5 has a A-restriction 5/, where
A is the projection of Spin(2¢) onto SO(2q). We denote again by 6 the
extension of 4" by means of the half-spinor representation 8. It is a U(2%¢1)-
bundle.

Lemma. In the previous notations, we have
(1) ¢o(0)/(g—1) =Wy (9)/2 if q is odd,
(i) e (6)/(Rk—1)!
=— (tg®(0)/ ((Rk—1) 14))pi(n) — War(n) /2 + Bar(n)
if q=2k=2,
where Rai () is a polynomial with rational coefficients in py(n),- - - pra(n),

and tg*=1(0) denotes the (Rk —1)-th derivative of lgz at x=0.

We keep the notations of 26.5. Since p* is injective, we allow ourselves
to omit the symbol p*. The computations of 26.5 show first that

(10) Dof=ql-z /24 qlr (2, T %),
where 174 has rational coefficients; this can be written
(11) Doft=q! Wi (n)/R+q!l 7

7, being a polynomial in the p;(n) with rational coefficients. On the other
hand, ¢,(6) is the g-th elementary symmetric function in the w;’s, hence

o= (—1)2"q c,(8) 4 q!s,,

where s, is a polynomial in the ¢;(8) (¢ < ¢) with rational coefficients. Now,
¢ is extension of a Spin(2¢)-bundle 4/, hence its characteristic ring is con-
tained in the characteristic ring of 5/. Since we consider real cohomology,
p*(A) 1 H*(Bso(2q)) = H*(Bspinzy) 1s an isomorphism, and therefore the
ci(0) belong to the characteristic ring of 5, which is generated by the p;(z)
(1< q) and by Wy(y). Thus we get
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(=1)%cq(0)/(q—1) 1= Waq(n) /2 + by,

where {,—7,—s, is a polynomial in the p;(y) (2¢< ¢) with rational
coefficients. It is necessarily zero if ¢ is odd, and this proves (i). In order
to prove (ii), we have to compute the coefficient dy of py(n) in ;. By the
above, dj is equal to the coefficient of px(n) in 7. Let S be defined by
S8(%,) =—=, and 8(z;) ==; (1=2) and put o;==S(w;). The set {o;} is
then the set of forms

(€1x1+’ . ’+€2kw2k)/2: H5i=_“1:

(which are the weights of the second half spinor representation), and (10)
yields

(12) 20j2k=—— (2k) !:v1 . xzk/z —|— (276) !r’zk(xl"’, .. ',(l?gkz),

hence

(18) 2 (o 4 o) = (Rk) 12 1o,
so that 2d; is the coefficient of py in

((2k) D3 (o + o).
We have clearly

j=2k
Zlexp(elm1 + - eantar) /2 = 2% ]] cosh(z;/R).
€4=% j=1

Let {D;(ps,* - -,p;)} be the multiplicative sequence with cosh z5/2 as charac-
teristic power series (this is well defined since cosh « is an even function in z).
Then R-*#+1dy, is for k=1 the coefficient of p, in D;. The formula 1.4(10)
of [19] yields therefore, (with 2d,—1),

2j§0dj(—— 2/4)3 = cosh (42%) - d(z/cosh(42%)) /dz,
2];)@(— 2/4) =1— (22/4)tgh (1z%).
Putting z=—4.:2, we get then
3 it — (1/4) g,
and this ends the proof of (=ii).

Proof of the theorem. Since the base space of & is S,; (g41), we have
w;(£) =0, hence we may apply the lemma to & TFor ¢ odd, the theorem
follows then from (i) and from the divisibility theorem of Bott (26.10).
Let now q =2k be even. We have ¢g’(0) =1, tg®(0) —2, and it is well
known, and easily checked, that ¢g*»(0) is an integer divisible by 4 for
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k=38. Moreover, in (ii) of the lemma we have E,, =0 since Be=S..
Thus, for ¢ = 2k, the theorem follows from the lemma and 26.10.

27. Multiplicative properties of the index and consequences.

2%.1. Notation. Throughout this and the following paragraph, all
cohomology groups will be taken with real coefficients and all characteristic
classes which occur will be regarded as real classes unless otherwise mentioned.

D denotes the class of differentiable bundles & where E¢, Bg, Fg are
compact connected oriented differentiable manifolds, the orientation of Fe
being induced by those of Bg, Fg taken in that order, and where the funda-
mental group of Bg operates trivially on H*(Fg).

We recall (21.5) that if {K;} is a multiplicative sequence with real
coefficients which is strictly multiplicative in &, then

(1) K (E¢) =K (Be) - K (Fg) (¢€D).
We wish to prove a theorem which is a sort of converse to 21.5.

27.2. TaroreM. Let F be a compact connected oriented differentiable
manifold. If {K;} is a multiplicative sequence of polynomials with real
coefficients, for which (1) holds in every bundle £€ D such that Fg=F,
then {K;} is strictly multiplicative in each of these bundles.

The proof uses essentially the theorem of Thom [29, Corollaire II30]
that every real cohomology class of B¢ is a finite linear combination of real
cohomology classes representable by submanifolds. By definition, a real
cohomology class is representable by a submanifold if and only if it corres-
ponds by Poincaré duality to a real homology class containing the funda-
mental cycle of a compact oriented differentiable manifold differentiably
imbedded in Be.

The strictly multiplicative behavior of {K;} is obviously true if dim Be
=0. Let us make the induction hypothesis that it is proved for dim Be < n.
Then we will prove it, using (1), for an n-dimensional manifold Bs. Let s
be the Pontrjagin classes of the bundle along the fibres of {&. We have to
show that

<§K,-(ﬁl,- i) =K (Fe) -1,

where b : H*(E¢) — H*(Bg) is the integration over the fibre (8.1). We can
restrict the bundle £ to every submanifold ¥ of Bg. Since integration over
the fibre and restriction commute (8.3), we obtain by our induction hypothesis
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that for dim Y < dim B the restriction ( X K;(ps," - -, p;))% to ¥ equals
j=0

K (F¢) -1, where 1 denotes now the unit of the cohomology ring of Y. This,
together with the above mentioned theorem of Thom, implies

(%Ki(ﬁlf . ',Iaj))h=K(F§)'1—|—c’
where ¢ € H"(Bg).

We denote the Pontrjagin classes of Bs by p’; and those of E¢ by p.
Then (compare the proof of 21.5)

R (Be) = ( ngpl; <) LBl
= (K (Fe) 140) SEi(p . 00)) [Be]

— K (Fe) ( gm(pq,- -, p's)) [Bel + o[Be]
— K(F¢) - K (Bg) + o[Bel-

According to (1) we have K (E¢) =K (Bg)K(F¢) and thus obtain ¢=0,
which completes the proof.

It was proved recently [12] for the index r and a bundle £€ 9 that
() m(Bg) =7(Bg) -7 (Fe).

Since the index 7 equals the genus L defined by the multiplicative sequence

{L;}, see [19,§8], we get in virtue of the preceding theorem the following
result:

R7.3. TaroreM. The sequence {L;} is strictly multiplicative in every

(e D.
If ¢€ D and b is the integration over the fibre in & we have therefore
(Li(pu- * +5p1))" =0 (4 5= dim Fy),
(Li(pos- -5 pi))i=r(F¢) - 1 (4j = dim F).

R7.4. Ezamples.

1) dimFg=R. In this case, 7(F¢) vanishes. L;(55,0," - -,0) is a
non-zero multiple of p,7, see [19,§1]. Since ﬁ1=W22, where W, is the
Euler class of the bundle along the fibres, we get (in real cohomology)

(W) =0, j=1,2,8,- - -.
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If Bg is of dimension 4k —2 and hence E¢ of dimension 4k, then W2k —0.

?) dimF¢=3. We get for the Pontrjagin class p, of the bundle
along the fibres that (p.7)% (j=1,2,8,- - -), vanishes in real cohomology.

3) dimFe=4. We have 45-L;(ps, p=) = 7p.— p.*>. Thus
(7132 — ﬁlz)h =O.

This equation is proved in real cohomology and not known in integral
cohomology. Again 132=W42, where W, is the Euler class of the bundle
along the fibres. If dim Bg=4 (and hence dim E¢=8), then

7 * W42 = 1312.

27.5. Remark. The strict multiplicativity of {L;} was proved in 22.9
for bundles §€ D with Fg= G/U (rank G =rank U) and G as structural
group. It was also shown (§23) in this special case that the sequence {4;}
is strictly multiplicative provided A (F¢) =0. It might be conjectured that
in every fibre bundle £€ 9D the vanishing of A (F¢) implies that of A (FHe).
As a consequence, we would have (27.2) that {4,} is strictly multiplicative
in every fibre bundle ¢€ D with 4 (F¢) =0.

28. A uniqueness theorem on the index.

28.1. In this paragraph, we shall prove that the sequence {L;} is essen-
tially the only multiplicative sequence with coefficients in a field of charac-
teristic 0 giving rise to a genus which is multiplicative in fibre bundles.
Throughout this paragraph, we keep the notations of 27.1.

Let M be a 4k-dimensional compact oriented differentiable manifold
and p; its Pontrjagin classes, which may be written formally as elementary
symmetric functions:

Lbputepe= (18 - - (1+ By
Then the number s(M) is defined by

s(M) = (B4 - -+ ) [M], (see [19,§6.3]).

28.2. LEMMA. Let £€ D be a principal U(q)-bundle over a 4-dimen-
stonal base space and c; its Chern classes. If 2q + 2 = 4k =8, then

s(Be/U () XV(g—1) = (—a(a+ e+ (15 ) —1e 8.

For the proof, we use the notations of 15.1. We always take into
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account that B is 4-dimensional, and hence, for example, ;=0 for ¢ > 2
and

(1) a¥(1deitc) = (14 2) (142,) - - - (142¢).
Furthermore
(2) 29— 2,8 7* (1) 4 2,8 %0* (¢2) = 0.

q
Letting a == (z;—=,)%*, we get by (1) that
j=1

(8)  (—1)t——gms 4 (g Dt (er)
__(q _;_ 1) a;1Q“1 . w*(612——202).

We infer readily from (2) and (8) that
(—1)%=(g+?2)g @5 *(c2) + (1_(q —g 1)) AR A COR

We may put a =p*(b) and @, = p*(y1). Then the preceding formula yields

0 t——q+2) (o) + (T =1 (e

M will denote the total space of the bundle § = (Eg/U(1) X U(¢—1),
Bg, Py 1 (€)). The tangent bundle of JM is the Whitney sum of 8, the bundle
along the fibres of 6, and of the tangent vector bundle of B¢ lifted by o.
We have for the total Pontrjagin classes

(5) p(M) =p(8) -o*p(Be) = p(B) - (14-o%p:(Byg)).
In 15.1, one finds a formula for p*c(s’) which yields

(6) pp @) =11 (1 + (5 —)?).
By (5) and (6), we get for 2¢g -} 2 =4k

s(M) = (b+ (o*(p:(Be))*)) [M].

Since (p,(Bg))*=0 for k=2, we have s(}M)=>b[M] which, by (4), com-
pletes the proof because the value of (—v;)%* on the oriented fibres of 6
equals 1.

28.3. We are going to construct a special base sequence for the algebra
2@ Q of Thom [29]. Consider over X = P,(C) the differentiable principal
U(g)-bundle ¢(g) which is the Whitney sum of ¢—2 trivial U(1)-bundles
and of the two principal U(1)-bundles with ¢ and — g respectively as first

6
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Chern classes, where g is the cohomology class dual to a complex projective
line imbedded in X. The Chern classes of £(q) are

01=0, 02=_92.

For 2¢ 42 =4k =8, let E% be the 4k-dimensional manifold fibred with
P, .(C) as fibre and associated to £(q) ; i.e.

B —Eeq/U(1) XU(g—1), (R +2=4k=38).
According to the preceding lemma, we have
") S(E*) = %k +1) (Rk—1) =4k*—140.

For k=1, we put B*=P,(C) and then (7) holds also in this case.

By [19,§6], the sequence {E*}, (k=1,2,8,- - :), of 4k-dimensional
manifolds is a base sequence of the algebra Q®Q of Thom; and we have in
terms of the usual base sequence P,;(C)

(8) E*= (Rk—1)P(C) + composite terms in the P,;(C), ] < k.

?8.4. TurOREM. Let {K.(py, - -,pr)} be a multiplicative sequence
of polynomials with coefficients in a field of characteristic 0 and suppose that
the corresponding genus K satisfies the equation K (E) — K (B) - K(F) for all
differentiable fibre bundles in D, or equivalently (27.2), that {K,(p1,- = -, ps)}
18 strictly multiplicative in D. Put a= K (P,(C)). Then

(9) K(Y)=a-L(Y), (4r = dim ')

for all 4r-dimensional compact oriented differentiable manifolds Y, and
moreover

(10) Kf(ph' ’ ',Pr)=arLr(P1>' : ':Pr)> (7‘=1,2,3' : )

We prove (9) by induction over r. It is true for r =1 since P,(C) generates
Q*  Suppose it is proved for all ¥ with dim ¥ < 4r. The vector space
Q7 ® Q over the rationals is generated by E* and “composite” manifolds
M*r which are cartesian products of lower dimensional manifolds. Since K
and L are both multiplicative in cartesian products, (9) is true on the com-
posite manifolds M* by induction hypothesis, and since K and L are also
both multiplicative in differentiable fibre bundles, (9) is true on E* too
(again we have used the induction hypothesis). Thus (9) holds on Q* ® Q.

This proves (9) in full generality which implies (10), [19, Satz 6.5.1].



HOMOGENEOUS SPACES, II. 363

Appendix I.

29. The different definitions of the Chern classes.

29.1. Ortentation conventions. In the n-dimensional complex vector
space V with coordinates z;= ;| iy;, we take as usual the orientation
defined by the order @i, ¥1,* * ,%n, y¥n. This determines also an orientation
for complex analytic manifolds as well as for the 2n—1 dimensional sphere
S:n1 of unit vectors with respect to some hermitian metric on V. The
image of the fundamental cycle of S,,; thus defined in wony(Szns), or
Hin 1 (Sen1,2Z), or Hony(V—0,Z), (0 being the origin in V), and the
element of H***(S,,-1,Z) or H>»*(V —0,Z) taking the value 1 on it will
be called the canonical generator of the corresponding group.

Let W,n g1 be the complex Stiefel manifold of ordered systems of
n—q -1 orthonormal vectors in €» (1=g¢g=n). We know that its first
non-vanishing homotopy group is in dimension 2¢—1 and is infinite cyclic.
Now Winqu is fibered by Wy, =S:41, with base W, ,4; the projection
assigning to each (n—g¢ -+ 1)-frame the (n— ¢)-frame formed by its first
n—q elements. The fibre may thus be identified with the set of unit vectors
in €7 and its injection in W, 4-q.1 induces isomorphisms for the (2¢—1)-st
homotopy or homology or cohomology groups. The element corresponding to
the canonical generator previously defined will also be called the canonical
generator.

Similarly, let W*, , q.1 be the manifold of ordered systems of n—gq 41
linearly independent vectors in C*; it has W nq. 8s a deformation retract;
let e5,* - +,esq be independent vectors, and let V be a ¢-dimensional sub-
space supplementary to the space spanned by the e’s. The subspace U of
W*,nqin made of the systems (f;), (j=1,-  -,n—q-+1), for which
fi=e¢; (j=n—gq) and fnq. is in V may be identified with V—0. Its
injection in the Stiefel manifold is an isomorphism for homotopy or hom-
ology in dimension 2¢—1 and we define as before the canonical generator of
qu—l (W*n,w—qu; Z) and Tag-1 (W*n,n-q+1) .

%9.2. The Hopf fibering. (x), (1=1=n-+1), are the coordinates
of C** and the homogeneous coordinates in the complex projective space P,.
By the Hopf fibering over P,, we mean here C*** —0 endowed with the usual
C*=GL(n,1) bundle structure. e will denote a hyperplane with the
positive orientation or the corresponding homology class and e* € H2(P,, Z)
will be the dual cohomology class. Let U; be the set of points in P, for



364 A. BOREL AND F. HIRZEBRUCH.

which 2;540, (1=t¢=n--1); using the usual conventions for the transi-
tion functions of a bundle [19,§3.2.a] and of a line bundle associated to a
divisor D [19,§15.2] we see that in U;N U; the Hopf fibering is given by
fii=ai/xj, whereas the bundle {e} associated to e is given by giy— ;/wi;
thus the Hopf fibering is the inverse of {e}. We recall that the Hopf fibering
over P, is a 2n-universal bundle for C* or U(1).

R9.3. The definitions of Chern classes. Including the definition (9.1),
there are apparently seven definitions of Chern classes, which we proceed to
list now; fc; will be the j-th Chern class according to the i-th definition,
and ‘c the sum of the fc;.

(1) The definition (9.1) of this paper. It may also be formulated in
the following way: in the Hopf fibering, we put ¢; =-—r(2), where = is
the canonical generator of H*(C*,Z); for a general C*-bundle, we use the
characteristic map ; for a general GL(n,C') bundle, we go over to the bundle
of flags and take the elementary symmetric functions in the Chern classes
of the different line bundles in which the lifted bundle decomposes.

(R) The definition of [19]: it is quite similar to (1), except that we
put %c; =-—e* in the Hopf fibering.

(8) The obstruction definition. Given a complex vector bundle
(E,B,C"), we consider the associated bundle (E’,B,W,n.g.1). The first
obstruction to the construction of a cross section (B is supposed to be a
complex here) is an element of H??(B,wsq1(Wnnqu)). We identify the
coefficient group with Z by sending the canonical generator onto 1, and thus
get a class “c, € H*(B,Z).

This convention was introduced in [20], and was recalled at the beginning
of [11] but was not made in [9], where consequently the obstruction classes
are defined up to sign only.

(4) The definition of [6]: in the Hopf fibering, considered as universal
bundle, we put *c, ==r(z), and then proceed as in (1).

(5) Schubert systems. Let H(n,N) be the complex Grassmann mani-
fold of n-dimensional subspaces of €™¥. It is the base space of the 2N-
universal bundle (U(n + N)/U(N),H(n,N),U(n)) for U(n), where U(N),
(respectively U(n) ), is the subgroup of U (n + N), leaving the n first (respec-
tively NV last) coordinate vectors fixed. For n=1, we have the Hopf fibering.
We take as universal °c, the dual class to the Schubert cycle of dimension
2(nN —gq) represented by the symbol (N—1,- -, N—1,N,---,N),
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(g times N —1, (n—gq) times N). By the intersection properties of Schu-
bert varieties, °cy is also the cohomology class taking the value 1 on the
Schubert cycle (0, - -0,1,- - -,1) ((n—g¢q) times 0, ¢ times 1), and zero
on all other Schubert cycles of Ehresmann’s cell decomposition of H(n,N) ;
(Schubert cycles are defined for instance in [9,10,11].) This defines 3¢ in
the universal bundle; for a general bundle, we take its image by the charac-
teristic map. For n=1, the Schubert symbol (N -—1) represents the
hyperplane of Py(C)=H(1,N). Thus, in the Hopf fibering, we have

5¢c, = e*,

(6) Definition by means of differential forms. This leads to real
cohomology classes, defined for differentiable bundles. Let ¢ be a differen-
tiable principal U(n)-bundle and let Q;; (1 =+,7=n) be the curvature forms
of a connexion on K. We then consider the (mixed) differential form:

U= ¥, =det | Id 4 (2mi)2Q; |

(¥, of degree g; the product in the determinant is of course the exterior
product). It defines a form on Bg which is closed. The image of ¥, in
H?1(Bg, R) is by definition °c,. This definition is introduced in [9] (our
¥, is the ¥, 4., of Chern), although in an apparently slightly more restrictive
way. Chern considers only bundles of (tangential) orthonormal frames to a
hermitian manifold and a special connexion characterized by a property of
its torsion tensor [9, p. 111]. However, by a theorem of Weil, whose proof
is reproduced in [10, pp. 58-59], the cohomology class of ¥, is independent
of the particular connexion chosen in é&.

(V) Definition by transgression. "¢, is the image by transgression
of the canonical generator of H2¢*(W,, 41,Z) in the bundle with fiber
W un-gn associated to a given complex vector bundle.

The purpose of this Appendix is to prove the

R9.4. THEOREM. Let ic;be the j-th Chern class of a bundle (E, B, U(n))
with respect to the i-th definition (j=1,- - ,n;i=1,- - -,%7). Then
oj="20;="¢;j= (—1)7 - *¢;= (—1)7-%cj= (—1)7 - c; = —T¢;.

R9.5. Remarks. (a) Allthese definitions have the naturality property:
if f: £—n is a homomorphism, then f*(ic(y)) = fc(£), where f: Bg— By is
induced by f. This is obvious for ¢=1,2,4,5,7, and standard for ¢{=3;
for =6, it follows by the theorem of Weil quoted above, because if Q;; are
the curvature forms of a connexion 4 on E;, then their images on Eg under
f will be the curvature forms of the connexion induced from £ by f.
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(b) Leta,b (1 =a,b="7) be given, and assume that %, =e- %, (e= = 1)
and that o obeys duality.® Then °c obeys duality if and only if %c;=¢ - ’c;,
(1=j=mn). This is readily seen by using the bundle of flags. Thus ‘c has
the duality property for ¢ = 6, but not for t=". For {=1,2,4, the duality
property follows immediately from an identity between elementary symmetric
functions (see e.g. [6]). In the course of the proof of the theorem we shall
use the fact that °c obeys duality, which is proved in [11], and therefore
we do not provide a new proof for it. We note in passing that in the
introduction of [11], Chern classes are defined as obstructions (with signs)
but the proof for duality is carried out for Schubert cocycles. However, our
29.4 shows that the obstruction classes obey duality, a fact for which there
is, to our knowledge, no direct proof in the literature.

29.6. LemMA. In the Hopf fibering, we have "¢, = -+ e* =—3¢,.

In view of a general fact about transgression and obstructions, recalled
below (R9.7), it is in fact enough to prove one equality, but both may be
easily checked directly: As to the first one, we put ¢ = X ;- &; and consider

Q= (@/271‘) (a'1 . 2 d:vi A da'ci—a‘z . 2 Ty jj dib'j AN dii) 5
it is the imaginary part, multiplied by 1/, of the Fubini metric

(1) ds*=a™- 2 dxi . dig— a2 2 a:icij d(l?j . d.’ii.
Q is a closed real form of type (1,1) on P, and we integrate it on the pro-
jective line Py: o3 ="+ + +=1y,,; = 0 with homogeneous coordinates (zy,z.) ;

leaving out (0,1), we replace P; by the cross section #, =1 and get for the
integral

(1:/211') f (1 +x2'i2)_2' dxz /\ d:l-:2=1.
Py
Hence Q represents e*. On the other hand, we have
Q= (i/2n)ddloga = d((i/2x)a - D z;- dE;),

and the restriction of (i/21r)5loga to the fibre z,—- + ‘=12p,, =0 1is
1(RwZ,)"1dZ,, whose integral on the positively oriented unit circle is again 1;
this proves the first equality.

3¢, is the first obstruction to the construction of a cross section in the
Hopf fibering and we only need to know its value on P,. Over this line, we
consider the cross section defined (except at (0,1)) by (2, 22) = (1, 22/24).

¢ By duality we mean the multiplication theorem 9.7(6).
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Around (0,1), we take as product representation of the bundle the one
which identifies 1 on the typical fibre with (2,/2,1) ; then we see easily that
around (0,1), the map P;—> C* which defines the value of the obstruction
cochain on a 2 simplex having (0,1) in its interior, is of the form z—1/z;
this value will therefore be — 1, and so will be that of the obstruction cochain
on P,, hence the second equality.

29.7. Proof of the theorem. By the definitions, the lemma and
naturality, we have

1o, =20, =3, =—*%; =—5¢,=—T¢;

since all these classes are equal to — ¢* in the Hopf fibering. Fori=1,2,4,5,
ic satisfies duality, and we get therefore (see 29.5b)

(®) gp=2¢;=(—1)% *c;= (—1)% ¢ 1=i=n).
The equality
(3) foj=—"Tcj (1=j=n),

follows from the more general fact that in a fibre bundle, “transgression is
minus obstruction > for a proof of which we refer to [26, §37.16].

The 2N-universal bundle for U(n) over H(n,N) is (W nH(n,N),
U(n)) which may also be written as (U(n -+ N)/U(N),H(n,N),U(n)),
where U(N), (respectively U(n)), is the subgroup of U(n 4 N) leaving the
n first (respectively N last) coordinate vectors fixed. Let (uy), (1=14,j
= n+ N), be the standard coordinates in the matrix space. Following
Chern [9], we denote by 6, the left invariant Maurer-Cartan form on
U(n-+ N) which is equal to dup, (and not dus,) at the neutral element.
In these notations, we have

n+N
(4) Afop = % Oai N\ Oiv Ova = — Gpa.

It is easily seen that for 1 =a,b =n, the forms are right invariant under
U(N) and satisfy

ﬂab'u=§“m9ﬁ(u’1)w (veU(n),u= (uy)),

hence they induce forms on U(n + N)/U(N )’ which define there a connexion
for the U(n)-bundle structure. (4) shows that its curvature forms are

k=N
Qij= X O N\ O, (1=4,j=n).

k=n+1
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Thus, by definition
U= 2 \I’q =det I Id —I— (2'71’1:)'19.51 I

represents °c in the universal bundle. By a computation which we shall not
reproduce, Chern ([9], Chap. II, §2, [10], p. 77) has shown that ¥, is
equal to ®cy; hence

(5) Scj=%c;, (j=1,- - -,n),

first in the universal bundle, and then by naturality in all differentiable
U(n)-bundles.

To conclude the proof, we have to compare the obstruction classes with
one of the six other types, and it will be enough to show that

(6) Scj= (—1)?"c, (1=j=n).
We have first

301—_"}"601 (Ef=-—'—-1:j=1:' Ce,m),

with ¢ depending only on j; by naturality, we have only to prove this in the
universal bundle; there it follows from (2), (3), (5), and from the fact
that 7c; and *c; both generate the kernel of p*(U(j—1),U(n)) in dimension
24, which is infinite cyclic. The proof of this is identical with that of a
similar statement on Stiefel-Whitney classes [3, Lemme 5.1] and will be
left to the reader.

To determine ¢, it is then enough to compute the 2 classes ®¢c and
for one bundle with Chern classes not zero or of order 2. To this end, we
take the tangent bundle of P,. By [9, p. 118], we have

¥ — (2mi) (” 'j" 1) N

for the torsionless connexion associated to the Fubini metric, where A is
the exterior form obtained from the metric (1) by replacing the symmetric
products by exterior products; in the notation of 29.6, we have, therefore,

Q=1(2x)"* A and
\1/,-=("']'.' 1) (—1)iQi.
We have seen in the proof of 29.6 that Q represents e* and, consequently,

@ o= ("T1) =1y, CETES

as also follows from 15.1 and (2), (5). On the other hand, a direct con-
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struction of vector fields in [9, Theorem 13] shows that

(8) o= ("T1) e, (=1 n),

whence ¢j= (—1)7 and (6). Of course we must check that in the proof of
(8), the indices of singularities are counted with the proper sign conven-
tions; this presents no difficulty, but for the sake of completeness, we outline
Chern’s construction. Let

(1281 120 A1,m+1

An1 QApz* * ° Qn,ne1 )

be a matrix with constant coefficients and all minors of degree j (1=j=n-1)
difterent from zero. Let H; be the j-dimensional projective subspace defined by

%aika:k=0 (léién——-]).

We denote by b; the vector field on €***—0 defined by

pij(z) =3 ajzrer, ((ex) canonical basis of C"**).
k

It is invariant under x—>a-z (a € C*) and defines a vector field iv; on P,.
The vectors iv; (j =r) are dependent at a point P with homogeneous coordi-
nates (z;) if and only if the r-1 vectors ¢ =X ze; and by, - -, b, are
dependent at = (z;), which is equivalent with the vanishing of n 41—
homogeneous coordinates of P.

Let now j be fixed and put r=n—j+1. On Hj, wy,- - -, are

independent everywhere whereas tv;,* - -, 0, are dependent at (n-jl— 1) points.
We use these vector fields to compute the value of ®c; on H;; since we already
know that it is equal to i(n _;_ 1), we have only to show that the singular

points have non-negative indices. Let @ be a singular point, and W a
neighborhood of @ on H; TUsing the fields t,,* * +,,, which are also
independent at @ we see immediately that the map W—@ — W*,, leading
to the index is homotopic to a complex analytic map of W—¢ into a sub-
space of W*,, of the type of the space U introduced in 29.1, and that the
resulting map of W-—¢@ in €/—0 extends analytically to ¢ and maps it
onto the origin ; hence it has a positive degree, and the index is = 0 according
to the conventions of 29.1 and 29.3(3).
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®9.8. Remarks. (a) The obstruction classes %; are the obstructions
to the construction of contravariant vector fields. Hodge [20] uses co-
variant vector fields and, by 29.4 and 10. 6a, or directly, the resulting classes
are our *c;.

(b) According to Hodge [20] and Nakano (Mem. Coll. Sci. Kyoto 29
(1955), 145-149), the canonical classes of Eger-Todd are to be identified
with the Schubert classes °c;.

(c) The lack of sign conventions for obstruction classes in [9] leads
to a slight inaccuracy for the Chern classes of P,; Theorem 13 gives

c,=(n;|.— 1)(6*)" and Theorem 12 gives the class of ¥;; as we have seen,
these differ by (—1)7.

29.9. Finally, to be complete, we list some properties or alternate
definitions of the first Chern class. For the notations, and concepts used
here, see [19].

(a) Let C*, be the sheaf of germs of continuous C*-valued functions
on the space B. A complex line bundle over B is represented by an element
¢€ H*(B,C*,) and we have

lc1 = 85;

where 8 is the coboundary operator H*(B, C*,) — H?*(B,Z) associated to the

exact sequence 0—> Z—> Co——> C*,—> 0, where e is the exponential map
[19, §4.3.1].

(b) Let V be an oriented m-dimensional manifold, B an oriented
(m -—2)-dimensional submanifold, » the normal bundle oriented in such a
way that orientation of B plus orientation of 4 gives the orientation of V.
It has then a complex structure compatible with its orientation, determined
up to isomorphism ; its class 'c; is dual to the homology class defined by B
[19, 84.8.1].

(c) Kodaira has introduced the following definition for the Chern
class ¢; of a holomorphic principal C*-bundle ¢ — (B, B,C*,x). Let (Uy)
be a covering by coordinate neighborhoods, z; the coordinate of the standard
fibre over Uj, (fi) the transition functions, (a;) a cross section of the bundle
with fibre R* defined by the transition functions fjf. Then ¢,(£) is the
class of the form y = (i/2x)00loga; This class is equal to c,.

Proof. We have =*(y) = dy, where ¢ is a 1-form over E with the local
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representation (—4/2x)dlog(Z;/a;) over Uj; the restriction of y to a fibre
is (—1/Rx)%7d%; and its integral over the positively oriented unit circle
is —1. Thus the Kodaira class is equal to — r(z), where z is the canonical
generator of H*(C* Z), and is equal to ¢, by 29.4.

(d) On a complex manifold B of complex dimension n, the canonical
bundle K is the line bundle of exterior forms of type (n,0), i.e. the bundle
of n-forms on the tangent bundle. By (10.6a,b), its Chern class is — ¢, (6),
where 6 is the tangential bundle. In particular, the determinant g of a
positive non-degenerate hermitian metric provides a section of the bundle
with fibre R* and transition functions |f;|% (fix being the transition func-
tions of K'). Thus the Ricci form

(—i/2x)d0log g,

where Rop=——0log g/0z.07s is the Ricci tensor, represents c,(6) (see
Kodaira, Annals of Math. 60 (1954), 28-48).

Appendix II.
30. Pontrjagin classes.

30.1. Notation. TorsA is the torsion subgroup of the commutative
group A, and Tors, A its p-primary component.

Let V be a vector space graded by finite dimensional subspaces V* (1= 0).
By P(V,t), we denote its Poincaré polynomial

P(V,t) =3 dim V¢- 84,

and for a topological space X, we write P,(X,t) for P(H*(X,Z,),t).
f*p and f*; denote the homomorphism of cohomology rings over Z, and
Z induced by a continuous map f.

Let ¢ be a bundle with connected fibres, and 4 a commutative group.
Then T'¢(Fg A) or simply T denotes the subgroup of transgressive elements
in H*(Fg, A). We recall that the transgression r¢ is a homomorphism of T
into the quotient of H**'(Bg A) by a subgroup which will be denoted by
Lt (Bg, A) or L**'¢; we have L% — 0.

30.2. Cohomology modp of Bow) and Bsowm). Let G be a compact
Lie group, T' a maximal torus. The ring of invariants of W(G) operating in
the usual way in H*(Br, Z) is denoted by I¢. If G =SO(2n + 1), O(2n + 1),
O(?n), (respectively G — SO (2n)), and if (y;) is the base induced by trans-
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gression in (g, Br,T) from the basis of H*(T,Z) discussed in §9, then
W(@) is the group of permutations of the y/s combined with an arbi-
trary (respectively even) number of changes of signs, and consequently
I¢=28(y.%" - -, 9n*), (vespectively is generated by S(v.%- - -,9,%) and by
the product of the ¥,’s).

Prorosition. Let G=S80(n) or O(n), let T be its standard mazimal
torus, and let Q be the subgroup of diagonal matrices. Then

(a) For p£2, p*,(T, G) maps H*(Bg, Z,) isomorphically onto I¢® Z,.
(b)  p*:(Q, 0(n)) maps H*(Bon), Z2) isomorphically onto S(uy,- - - ,u,),
where (w;) is a suitable basis of H*(Bg,Z.).

For (b), see [3, Théoréme 5], where a similar statement is also proved
for SO(n). For G =SO(n), the assertion (a) is proved in [2,§29]. For
G=0(n), it follows from the more general

30.3. ProrositioN. Let G be a compact Lie group, @, its largest
connected subgroup, T a maximal torus. If H*(Go,Z) has no p-torsion and
if the order of G/G, is not divisible by p, then p*,(T, G) is an isomorphism
of H*(Bg,Z,) onto I¢ Q Z,.

For p=0, see [?, Prop. 27.1]. For p prime, the proof is practically
identical, in view of the absence of torsion on G,/7T, (14.2), and is left to
the reader.

30.4. A remark on the Bockstein homomorphism. Iet X be a space
with finitely generated integral cohomology groups. Let r; be the number
of cyclic direct summands of the p-primary component of Hé(X,Z). Then
by the universal coefficient formula

Pp(X,t) —Po(X,t) = (141/8) -t
Let B, be the Bockstein homomorphism attached to the exact sequence

a
0>Z—Z->57,-0 (2(z) =pz,2€ Z)

followed by reduction mod p. Clearly 8,08, —0, and
si=dim 8, (H**(X, Z,) )

is the number of torsion coefficients of Tors, H¢(X,Z) which are equal to p.
Thus we see:
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Lemua. Tors, H*(X,Z) consists of elements of order p if and only if
Pyp(X,8) —Po(X, 1) = (1+1/1) P (B (H*(X, Z,) ), t).

When this is the case, the kernel of B, is the reduction mod p of H*(X,Z),
and its image is the reduction modp of Tors, H*(X,Z).

We recall that 8, is an antiderivation and that 8, — S¢*.

30.5. Integral cohomology of Bo(ny and Bsow). In this section, we
shall prove that the torsion elements of the cohomology of these classifying
spaces are all of order 2; first we insert a remark to be used in the proof.

Let H be an anticommutative graded algebra with unit over a field K,
with H*=K, and let D be an antiderivation on H, raising degrees by one,
of square zero. Let A be a graded subspace stable under D. We denote by
Na, Ma, L, J 4, respectively, the kernel of D in A, a graded supplementary
subspace to N4 in A, the image of A under D, a graded supplementary sub-
space to I, in N4. Since D increases degrees by one and is an isomorphism
of M4 onto I,, we have

(1) P(A,t) = (14+1/)P(Is,t) + P(Ja, t).

Let now B be a second graded subspace stable under D, linearly disjoint from
A over K; i.e., such that the subspace A -B spanned by the products a-b
(e€ 4,b€ B) is isomorphic to A ® B under the natural map a®b—>a-b.
Using the previous notations, we have, as an elementary special case of the
Kiinneth formula

(2) P(Ja.5,t) =P(Ja,t) - P(Jst).

ProrositioN. The torsion elements of H*(Boy,Z) and H*(Bsom),Z)
are of order 2.

It follows from 30.2 that these spaces have only 2-torsion. By 30.4,
there remains to prove that for G =SO(n),0(n), we have

(3) Py (Ba, t) — Po(Ba, t) = (1 +1/t) P(Sq* (H* (B¢, Z:) ), t).

We have

@ H*(Bsomy, Z:) =Z,[ws,- - -, w,], Sq*w; = (14 1) wisy
H*(Bo, £:) = Z:[w,," - -, wa], S¢*ws = wyw; + (1 4+ 1) wiy,

(wi==1-th Stiefel-Whitney class, 1= n, w.., —0), (see e.g. [3]). We first
consider SO (n). By the foregoing, we may write
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H*(Bso(ams1), Z:) =4, Q" - @ A,

H*(BSO(zm):Zz) EA1®' c ®Am—1®A’m,
where
A4=Z2[w2¢, wzi-u] (1 =i m), A’,,,=Zz[w2,,,]

are stable under the cup product and S¢*, and A’y, is annihilated by Sq*. By
(4), the kernel of S¢* in 4, is spanned by the elements

Wai®  Wagee? (s=0,seven, t =0),
and its image by the elements
Wai® * Wisa* (seven, ¢t > 0).

Thus, in the notations above, we may take as base for M4, (respectively J4,),
the monomials

Wi Wair?, (s0dd,£=0), (respectively w,®,s=0,2,4,6,- - )

and we obtain
P(Jdut)=(1_t”)-1’ (1§"§.m)

and, since 8¢*(4’m) =0
P(Jaryt) =P (A’ t) = (1 —t2m)1,
By iterated application of () and by (1), we get

Py(Bso(zms), t) = (1 4+ 1/£)P(Sq*(H* (Bso zms1), Z2)), £) + ﬁl (1 —129)7,

Py(Bso(am), ) = (1 + 1/8)P(Sq*(H*(Bso em) Z2)), 8) + (1 — iz’”)“ﬁ (1—,

which proves (3) for the unimodular case, since in both formulas, the last
term on the right is the rational Poincaré series in view of 30.2.
We now pass to O(n). Choose a new basis of H*(Bow),Z.) by

w* = wy, w¥y = Wy, (": = [n/2] ):
W g1 = Wassy + Wi Way, (< [n/2]) 5
we have
H*(Bomy, Z2) = Z:[w*s, - -, w¥a],
Sqw*, = (w*)?; 8¢ *w* sy = w*y, (1< [n/2]),
S w* e = w*, - w*,, (n=2m),

S8q'w¥z,, = Sq8¢* - w*,, =0, (t1=1).
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We put
H*(Bo(zms1), Z2) = A, Q4,0 - -QApy,
H*(Bo(zm), £,) =A@ 4, Q- - - @Ay,
where
Ay=Z,[w*z, w*s..] A=i=m),
4, =Z2['w*1] =Z2[w1],

Ao =2Z,[w*y, w*sm] = Z:[w;, Wom].
These are stable under cup-product and S¢*, and we have as above
P(JAut)=‘(1_t“)_1’ (léiém)

In 4,, the kernel of Sq¢* is spanned by w,?¢ (s=0); and the image by w,2*
(s=1); hence P(Ja,t) =1. Let us now prove that

(5) P(Jarpt) = (1 —1t2m)72
We have
Sq* (w12 Wom?) = (s + ) Wi wem?

which shows that the monomials w,%w,,* with s ¢ even (respectively s--¢
even and s > 0) span Ny, (respectively I4,). Thus we may take the elements
Wom? (f even) as a base for J4, and this proves (5). The remainder of the
proof of (3) for @(n) is then the same as for SO (n).

30.6. CoroLLARY. Let G=O0(n) or SO(n). Then the kernel of Sq¢*
on H*(Bg,Z) 1is the reduction mod? of H*(Bg,Z) and its image is the
reduction mod? of Tors H*(Bg,Z). An element of H*(Bg,Z) 1is com-
pletely determined by its canonical tmages in H* (Be, R) and H*(Bg, Z,).

The first assertion follows from 30.4 and 30.5. The second one is an
elementary fact about spaces with torsion elements of order 2 only.

In connection with the integral cohomology of Bo) and Bso), let us
also mention the following

30.7. ProrosiTioN. Let G=0(n), SO(n) and let T be a mazximal
torus of G. Then p*z(T,G@) maps H*(Bg,Z) onto Ig; its kernel is the
torsion subgroup of H*(Bg,Z).

We have seen in 9.3 that S(9.%- - -, ym?), (m=[n/2]), is contained in
p*2(T, @), which proves our statement for G =SO(2m + 1), O(2m + 1),
O(2m). For G=SO(2m), we have to know moreover that p*, (7, SO (2m))
contains the product of the y/s, but this follows from 9. 5.
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30.8. Pontrjagin classes. We follow the notations of 9.2, 9.3. By
30. 6, the equalities

(6) p*o(T, @) (p) =111 + ), (G=0(n),S0(n)),
(7)  pi (respectively py,;) reduced mod 2, is equal to w,? (respectively w,;,,2),
completely characterize the integral Pontrjagin classes. (6), over the integers,

follows from 9.1, 9.3, 9. 4. It implies that p;,; is a torsion element. (7) needs
only to be proved for G =0 (n) and, in view of 30.2(b), will follow from

(8) p*:(Q(n),0(n)) (5) =TI(1 +up?).
We have

P*2(Q(n), 0(n)) (p) = p*«(Q (n), U(n)) () = p*:(Q (n), T") (TI(L + @)

where T’ is the subgroup of diagonal matrices of U(n) and (w;) is the
standard basis of H?(By,Z), and therefore (8) follows from [4,§11]:

p*:(Q(n), T') (21) =us (1=i=n).

30.9. Remark on integral Stiefel-Whitney classes. It follows also from
9.5, 30.6, (6), (V) that for an SO (2m)-bundle, we have

9) P = Wan?,

both sides being considered as integral classes. The relations wy,, — Sqtwy
for SO (n)-bundles and (80.6), show that the universal wy,, is the reduction
mod 2 of a uniquely determined element

Wi € H***(Bson), Z)
of order 2, the integral 27 4 1-th Stiefel-Whitney class, and that we also have

Pivy = (W24:+1 ) 2
over the integers.

30.10. Pontrjagin classes and transgression. As usual, V,; denotes the
Stiefel-manifold of orthonormal k-frames in euclidean n-space. We recall
[?, §10] that for n odd, HI(Vpn-211,Z) is equal to Z for j =0, 4i—1, to Z,
for j even running from R2i to 4i—2®, and is zero for the other values of j
which are =41—1. We denote by v; a generator of H**(Vyn11,Z).

The first non-vanishing integral cohomology group of strictly positive
dimension of the complex Stiefel manifold W, , 5., is of dimension 4i—1
and is infinite cyclic. We denote its canonical generator (see 29.1) by #;.
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The inclusion of @(n) in U(n) induces a natural injective map of

Voi—0(n)/O(n—F) into Wax—U(n)/U(n—Fk).

Lemma. Let n be odd, and Ay be the natural inclusion of Van-zia 0
Woan-zi1. Let v; and t; be defined as above. Then A*,;(1;) = == Ru,.

This lemma will be proved in the next section. ILet & be a principal
O(n)-bundle, and ¢ be its complex extension. The given homomorphism of &
into ¢ induces in a natural way a homomorphism a: 5—> 7" of the associated
bundles with respective typical fibres Vansia and Wiy pia. By the trans-
gression definition (29.3(7)), we have ¢y =——ry(#;). THence 29.4 and the
lemma imply the

TurorEM. Let n be odd and ¢ be the canonical generator of
H Y (W 2101, Z) and choose v; € HA " (Vy nsiur, Z) such that vy =%,:(%:).
Let ¢ be a principal O (n)-bundle, 5 the associated bundle with fibre Vnsis.
Then p;(€) = (—1)%*ry(Rv;) modulo L.

For the notation L*%, see 30.1. Since the cohomology groups of ¥y 21
in positive dimensions < 4¢— 1 are 2-groups, the spectral sequence definition
of L*ty [2, § 5] shows that L*%; is a 2-group, so that the theorem characterizes
p; up to R-torsion. We remark also that v; itself is not universally transgres-
sive (see following proof).

Let n be odd and 8 be the natural projection of E¢ onto By= E¢/O(Ri—1).
Then we have of course

pi(§) = (—1)*'7(B*(Rv:)) mod L*e.

By [?, §10], B*(v;) generates a direct summand of H**(0O(n),Z) or of
H*1(80(n),Z).

30.11. Proof of the lemma. We first consider the case where n =2i 41
and denote by £ the universal bundle for O (2¢ 4 1), by ¢ its complex exten-
sion, by 5 and 4 the associated bundles with fibres Vi1, and Waii,,» and by «
the natural map of 5 in 4. We have H* (V1,2 Z2) = A (Raia, hai), With
Sqhyiy=hy and 7y (haiq) = wai, 7(hai) = Waia (see for instance [3]);
this implies easily that hsii-hy is not universally transgressive. Since
hoiy* hoy 1s the reduction mod®2 of wv;, the latter is not universally trans-
gressive in integral cohomology. For Vii.., we have H°=H*"'=1Z,
H?* =27, (see e.g. [2], §10), therefore, the non-zero terms in the spectral
sequence of 5 over the integers have fibre degrees 0, 2i, 46— 1 and those with

~
{
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fibre degree 2:¢ have order 2. Therefore 2¢; is universally transgressive and
L#*i,; consists of elements of order 2.

We know now that 2¢ generates T%*(Fy1,0,Z) ; this group contains
necessarily A*p.q4(v;) since v; is transgressive in 5”. Thus we have
AM¥2401,:(v;) =2k - t; for some integer %, hence also

Pi= =+ kT'/] (2tr,,) mOd L‘ii,”.

Let T be the standard maximal torus of O(2¢+41). Then, in the notation
of 9.3, we get from (1) in 9.3 and from the fact that L*¥ is a R-group:

gyt — 2 bty (T,0(2 4+ 1)) (m(28)).

Since H*(Bg,Z) is the ring of polynomials in the y,’s, this yields k= 1,
and the lemma for n=2¢- 1.

In the general case, we consider the commutative diagram

Ani
Vn,n—ziu — Wn,n—ziu
w v
Aziu,i

Vs — Waiae,

where p, v are the injection of a fibre in the standard fiberings. It follows
from §§9, 10 in [2] that u*, »* are isomorphisms in dimension 4i—1;
therefore the general case of the lemma follows by commutativity of the above
diagram from the particular case already proved.

30.12. A property of p*;(0(r),0(n)). We end this appendix by
proving that p*;(0(r),0(n)) is surjective (r=n), a fact which is useful
in the discussion of relative Pontrjagin classes (see M. Kervaire, Amer. J.
Math. 79 (1957)).

Lemma. Let X, Y be two spaces with finitely generated integral co-
homology groups and f: X =Y be a continuous map. We assume:

(a) The orders of the torsion elements of H*(X,Z) and H*(Y,Z)
are square free.

(b) f*, is surjective.

(c¢) For all primes p, f*, is a surjective map for the kernels of the
Bockstein maps B, (see 30.4).

Then f*; is surjective.
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Let M; be the image of H*(Y,Z) under f*. By (b), it has a finite index,
say ¢i, in Hé(X,Z). In view of (30.4), the assumptions (a), (c) imply that
f¥*: H(Y,Z)®Z,—»> H(X,Z)R Z, (1= 0, p prime)
is surjective, or in other words, that
HY(X,2) =p-HY(X,Z) + M,
hence, by iteration,
HY(X,Z) =g, HY(X,Z) + M, = M,.

PropositioN. The homomorphism p*;(0(r),0(n)), (r=n), is sur-
jective.

By (80.5), Bo(ry and Bos satisfy (a) of the lemma.

It follows from (9.3) and (30.2) that H*(Bow),Z,) is the ring of
polynomials in the universal Pontrjagin classes (i=1) for ps~2. Since
these are preserved under the natural inclusion O(r) C O(n) (see 9.7), it
follows that p*,(0(r),0(n)) is surjective for ps£2. This shows that (b)
is fulfilled and also, in view of (30.2), (30.5), that (c) is true for pF£R.

Thus, in order to derive the proposition from the lemma, there remains to
show that

(10) p*2(0(r),0(n)) is surjective for the kernels of Sqt.

We write p* for p*,(0(r),0(n)), denote by w; (respectively @;) the
universal Stiefel-Whitney classes for O(r)- (respectively O(n)-) bundles and
define w*;, @*; as in the proof of (3).

The assertion (10) is clearly true on any subalgebra A C H* (Bo(n), Z2)
which is stable under Sq* and mapped injectively by p*; the latter is given by

(D) =w, pH(F) —wk, (=), (@) =0 (j>r).
Therefore, by (4), this applies to
A=2Z,[w, -, 0] (1=r,i0dd), Zy[w,,- - -, ®ra,®2]  (reven),
Z,[ W, w*y,- - -, ¥, 2]  (reven).

This establishes (10) for r odd; for r — 2m even, it reduces its proof to that
of the following statement: given

T =Wy, P —+ Q, Sq1w= 0, (P, Q € Zz['w1, o, Womets w2m2] )7
there exists y € H*(Bo(n),Z,) with the properties
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8gly=0,  p*(y) ==

8q¢*z =0 gives
wgm(wlp + SqlP) + Squ == 0

and, since Z;[w,* * *, Wom-1, Wam>] 18 stable under Sgt,

w, P+ 8¢*P = Sq*Q) =0.
We may write

P—w,R48, (B, S € Z[w® w*y, - - -, w¥pmy, Wam?]-
Hence
S¢*P = w,*R + w, - S¢*R + S¢*8,
0=w,P 4 S¢*P =w,(S + 8¢'R) + 8¢*8,
and, as before,
84 8¢*R=8¢*8 =0.

Now let P,Q, R€ H*(Bo(n),Z;) be the elements obtained from P, Q, R by
barring the w’s. Then a trivial computation shows that

:l/==1,7)2m'13+é + Wamer B
has the desired properties.
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