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Introduction

These Notes grew out of a course of advanced lectures given

at Queen Mary College, London, in the Spring of 1975.

The general theme is the classification of discrete groups
using information on (mostly high dimensional) homology and cohomology

groups. More specifically we discuss the following three topics:

In Chapter I we investigate groups of type (F?)n, i.e.,roughly
speaking, groups G whose cohomology functor Hk(G; =) commutes with
direct limits (or, equivalently, whose homology fumctor H.k(G; -)
commutes with direct products) for all k < n. All finitely
presented groups are of type (FP)2 and it 1s conceivable that the
converse holds, also. Thus type (FP)n, for n 2 3, provides a
useful classification of finitely presented groups which takes into
congideration the whole homological iceberg below the group theory,

the top of which is just finite presentation.

Chapter IT is devoted to the homological dimensioms
cdG=max {n [E°(G; ~) $ 0 }, hdG = max{n |[H (G; =) $ 0 }. In
many ways this chapter is just an improved and largely extended
version of K.W. Gruenberg's Chapter 8 in [30]. I have tried to
give a reasonably complete survey of the present status of knowledge
on cd, hd, but I am painfully aware that there are still many gaps.
In particular, the reader will fruitlessly look for Serre's
important result that all finitely generated torsion—-free subgroups

of GL(n,Q) are of finite cohomological dimension [52]. 1In
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In Section 8 we apply the results of all preceding sections to
obtain some purely group theoretic results, notably on groups of

cohomology dimension 2.

Finally, in Chapter III, we present the theory of duality
groups, i.e., groups satisfying a homological duality
Hk(G; =) = Hn_k(G; C®-),keZ. The most important examples
of duality groups occur as discrete subgroups of Lie-groups. They
have a particularly smooth homological behaviour, being, in
particular, of type (FP)_ and of finite cohomological dimension,

so that all results of Chapters I and II apply.

The audience was (and the reader is assumed to be) familiar
with the basic techniques of homological algebra, including the use
of spectral sequences, as well as with some basic group theoretic
constructions. A few topological aspects are mentioned, but otherwise

the presentation is purely algebraic.

I am greatly indebted to Karl Gruenberg for reading the

manuscript, for his most valuable criticism and for supervising the

typing after I had left London. My first and very best thanks are
due to him. Also, I express my thanks to all participants of the
course for their interest which manifested itself in a large number of
stimulating questions and discussions. My very special and best
thanks finally to Mrs. Lola Buer, who typed the manuscript, for her

excellent work as well as for her enormous patience with me.

To the Swiss Nationalfonds I am grateful for financial support

(1973 -~ 1975) and to QMC for its hospitality.

Robert Bieri
Freiburg/Brsg.,

February 1976.
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Added in April 1981

OQur knowledge on the three topics of these notes has grown substan-
tially since 1976. This is particularly the case for the notion of groups
of type (FP)m and for Poincaré duality groups: what was really just a
couple of interesting and perhaps intriguing observations, five years ago,
seems now to have become serious mathematics. As a consequence any
attempt to incorporate the new aspects fully into the text would mean
changing its style and level completely. Therefore I have preferred to
add a short appendix (''some recent developments' on.p.184) where some of
the new results are sketched without proofs, but with full reference to

the literature.

Robert Bieri
Mathematisches Seminar

Universitat Frankfurt
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Preliminary remarks and notations

1. Ext and Tor. Let A be an arbitrary ring with unit element
1 # 0. We shall assume that the reader is familiar with the functors
Exq&

Abelian groups, but to fix the notation we make a few preliminary remarks.

and Togi from the category of A-modules into the category of

Exq&(-,-) is contravariant in the first and covariant in the second
argument . ExtK(A,A') is defined whenever both A and A' are left
modules or both are right modules, and we use the convention that

Extk 20 for k < 0. Of course, one has Exg?(A,A') = Houk(A,A').

A
Togt(-,-) is covariant in both arguments. TogL(B,A) is defined
whenever A is a left and B a right A-module, and we use the

convention that ']'.‘or'A 20 for k <O. 0f course, one has

k

A
Toro(B_,A) =B @AA.

Remark. Usually, (but not always) we shall stick to the rule that

the letters A, A',... denote left modules and the letters B,B',...

right modules.

The Ext-groups can be computed using either a projective resolution

of the first argument or an injective resolution of the second argument,

The Tor-groups are usually computed using projective resolutions of

either the first or the second argument, but one may, and this is often

most convenient, also use flat resolutions for this purpose.

2. Change of ring. For later reference we recall the four

change-of-ring isomorphisms. Let y: [ - A be a unitary ring homomorphiém.

Then every A-module can be regarded as a [I-module via v and the

following holds:-



(a) Let B be a right A-module and C a left T-module.

If A is flat as a T-module via vy, then one has natural isomorphisms .

r A
Tor, (B,C) = Tor_ (B,AeC), k ¢ Z.

(b) Let B be a right I'-module and -C a left A-module. If A

is flatfas a T-module via y, then one has natural isomorphisms

T Lo A _
Tor, (8,C) = Tory (B@IA,C),k ¢ Z.

(c) Let A be a left A-module and C a left T-module. If A

is flat as a I'module via y, then one has natural isomorphisms

Extllf(c,A) Ext:(AsrC,A), k ¢ Z.

(d) Let A be a left Mmodule and C a left A-module. If A

is projective as a Imodule via vy, then one has natural isomorphisms

CExt$(C,A) = Ext'(C,Hom (h,A), k ¢ Z.

Proof. For (a) and (c) choose a T-projective resolution P+ C.
Then AOI.P is a A-projective resolution of AOI.C and -the result follows

from the obvious {co)chain isomorphisms
BoA(Ao[.g) = BQI‘E-’ Houh (Aor.g,A) = Homr(g,A) .
(b) is analagous to (a). For (d) choose a T~injective resolution

A>> 1. Then Homr(A +&) 1is an injective resolution of Homr(A ,A) and

the result follows from the obvious cochain isomorphism

Hom, (C,Hom (A, D)) = Homr(C,D .0

Remark. Of course there is also a right-module version

of (¢) and (d).



3. The group ring case. We are mainly interested in the

group ring case. Throughout these Notes R will denote a
commutative ring with unit element 1 # O, and we shall consider
the (co)homology theory of groups over R. If G 1is a group and

A a left RG-module then the cohomology groups of G over R

with coefficients in A are defined as

B%G; A) = Ext';G(R,A), ke 2,

where R 1s regarded as an RG-module with trivial G-actiom.

Analogously, for a right RG-module B, one has the homology groups of

G over R with coefficients in B defined as

Hk(G; B) = TorﬁG(B,R) , kel

where again, R is the RG-module with trivial G-action.

Remark. We shall use the convention that coefficient modules
for cohomology groups are left RG-modules and for homology groups
EisEE RG-modules.. The reason for doing so is that we are going to
use one and the same projective resolution. P >R of the trivial
left RG-module R in order to compute both homology and cohomology

groups
B (G; B) = H_(Be. ), H'(G; &) = H'(Hom (2,A)).

Notice, however, that every left RG-module A can be
converted in.a canonical way into a right module by putting.

a*x = xfla, ae A, x € G (and vice versa).



Thus the cohomology functor Hk(G; =), k € Z, as defined
above, is a functor from the category of left RG-modules into the
category of R-modules. Hk(G; =) is a functor from the category
of right RG-modules into the category of R-modules.

It is sufficient, in a sense, to consider homology and
cohomology groups over Z instead of over R. Indeed one has

natural isomorphisms

Extll;G(R,A) Ext%G(Z,A)

Tor&G(B,R) Torib(B,ZD

for every left RG-module A and right RG-module B and all

k ¢ Z.

Proof, Let P ++Z be a G-projective resolution. This
resolution is Zrsplit, hence R&zg > Rgiz =R is an RG-projective

resolution of R. Now one has the natural isomorphisms
¢ : Hom.(Re,R,A) —> Homy.(B,A)
b1 Bep.(ReyR) — Bey P

given by ¢(£)(p)=£(1®p), y(berep)=brep, f ¢ Hom .(R&yP,A),

peP,beB, rceR. This yields the result.f]

Considering (co)homology groups over R 1is thus equivalent
with restricting the coefficient category of all ZG-modules to the
category of RG-modules.

If S 1is a subgroup in G then RS is embedded in RG and

the change-of-ring isomorphisms (b) and (d) yield



B (S; B) = H (G; BO,RG), H'(S; &) = E'(G; Homy (RG,A)),

for every right RS-module B and left RS-module. A. This

result is sometimed called the "Sha.p_iro-_L_;mm&'L

4. Special notations. For "ZG-module", 'ZG-projective",

etc. we shall write "G-module", "G-projective”, etc. Also, tensor
products and Hom-functors over ZG will be denoted by -06— and
Ho’mG_(—,-) .

Hom(-,~) and -e— denotes Hom—functor and tensor product

over the ring Z.

If G, F, H, S,... are groups, their augmentation ideals over
R are denoted by the corresponding small German letters ,G(}, ‘f, 4, {

(e.g. %= ker (RG -+ R) ).



CHAPTER I

FINITELY GENERATED RESOLUTIONS

1. Homological finiteness criteria

1.1 Type (FP)n_ Let A be an RG-module. A projective

resolution P -+ A 1is said to be finitely generated if the

RG-modules P; are finitely generated in each dimension i 2 O.
Every module A has projective resolutions, but not necessarily
finitely generated projective resolutions. In this section we
deduce homological conditions on A which are equivalent with
the existence of finitely generated free resolutions. As no
additional difficulties are involved it is natural (and in fact
easier) to consider the more general situation where the group-

ring RG 1s replaced by an arbitrary ring A with unit.

Definition. The A-module A 1is said to be of type (FP)n
if there is a projective resolution P -+~ A with Pi finitely
generated for all i <n. If the modules P; are finitely

generated for all i then we say that A is of type (FP)_.

Remarks. 1) Notice that A 1is of type (FP)0 if and only
if A 1is finitely generated and that A is of type (FP)1 if and
only if A is finitely presented.

2) If A 1is of type (FP)n, 0 <n €=, then

one can even construct a free resolution which is finitely generated



dp

in dimensions <n. For, let ... Py + P, Pgp ~— A be a projective
re;solution with Po finifely generated. Then there is a finitely
generated projective module Q such that Po ® Q 1is a free module.
Thus replacing Po by Py @Q and Py by Pl ® Q and extending dl
by IdQ yields a new resolution which is finitely generated and
free in dimension O. Itefating this process yields the result,
Notice that in the case (FP)_ this construcﬁion pushes the

difficulties to infinity where they vanish!

1.2 Exact limits and colimits, Let { be a directed graph
without loops. A g-diagram in the category of A-modules is given
by (1) a A-module Mv for every vertex v e@- and (2) a
A-homomorphism a,: Mv -*Mw for every edge e from v to w.

For every {-diagram M, one has limit lim M, and colimit
colim M, defined by the usual universal properties.

Let F be a covariant functor from the category of A-modules
to the category of Abelian groups. The canonical maps M, + colim M,
and lim M, + Mv induce a compatible system of maps
F(Mv) + F(colim My) and F(lim M,) + F(Mv) respectively and hence

limiting homomorphisms,
colim F(M,) + F(colim M), F(lim M,) -+ lim F(,) ,

respectively. We say that F commtes with colimits or limits
if the corresponding limiting homomorphism is an isomorphism.

For a fixed graphn'%,,lim and coliﬁ are functors from the
category of (Z-diagrams in the c'at:egory of p-modules) into the
category of p-modules. Neither of these functors is exact in
general, but there are interesting special cases, i.e., special
graphs y, with the property that lim or colim are exact functors.

In this case we shall speak of exact limits or exact colimits




respectively.

Examples. 1) 1If 5; is the graph consisting of a set of
vertices I with no edges, then the limit 1im is the (direct)
product % . This is easily seen to be an exact functor. Thus

the direct product is an exact limit.

2) 1If fg has the property that for any two vertices u,v
there is a vertex w and (directed) paths from u to w and from
v to w, then colim 1is the direct limit lim. This is an

T — — -

exact functor. Thus the direct limit is an exact colimit.

Proposition 1.1. For every (left) A-module A and all

k 2 0 one has:
(a) the functor Tork(-,A) commutes with exact colimits;
(b) the functor ‘Extk(A,-) commutes with exact limits. *

Proof. Colimits commute with -ﬁkA and limits with
HomA(A,-). If these are exact, they commute with the functors

Torp(-,A) and ExtK(A,-) respectively.(

Proposition 1.2. Let A be a (left) A-module of type (FP),,

O <n s o». Then one has

(a) For every exact limit the natural homomorphism
Tork(lim M,,A) + lim Tork(M*,A) is an isomorphism for k < n-1
and an epimorphism for k=nm.

(b) For every exact colimit the natural homomorphism

*
Throughout Section 1 we write Extk(',-) and Tork(-,-) for
Exﬁr(-,-) and Tort(-,-) respectively.



colim Extk(A,M*) > ‘Extk(A,colim M,) is an isomorphism for

k € n-1 and a monomorphism for k=n.

Proof. By the above remark we can choose a free resolution
E +> A such that the modules Fk are finitely generated for all
k < n. Since lim is an additive functor it commutes with finite:

direct sums and hence the natural homomorphism

(lim M*)eAFk + lim (M*°AF1<)
is an isomorphism for all k < n. Since lim is assumed to be
exact it commutes with the homology functor, H*(lim(M;k@AI;) ) =
lim H*(M*OAQ and (a) follows by easy diagram chasing.

Analogously, HmuA (A,=) commutes with finite direct sums, hence the

natural homomorphism
colim HomA (Fk’M*) ‘*HomA (Fk,colim M)

is an isomorphism for all k S n. Since colim is assumed to be

exact one has H* (colim Hom, (E,M,)) = colim H*(HomA (E,M,)), whence (b)J

1.3 The main result. The main result of the present section

asserts that the converse of Propositiom 1.2 holds.

Theorem 1.3. The following conditions are equivalent for
a (left) A-module A:

(i) A is of type (FP)n.

(iia) For any exact limit the natural map Tork(lim M, ,A) +
lim Tork(M*,A) is an isomorphism for k< n and an epimorphism

for k=n.
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(iib) For any exact colimit the natural map
colim Extk(A,M*) + Extk(A,colim M,) 1is en isomorphism for k <n
and a monomorphism for k = n.
(iiia) For a direct product T A of arbitrary many copies of
A the natural map Tork(l'[ ALA) ~ 1T Tork(A,A) is an isomorphism for
k. <n and an epimorphism for k = n.
(iiib) For the direct limit of any directed system of A-modules

' fM*} with lim M, = O, one has lim Extk(A,M*) = 0 for all k s n.
-> ->

Proof. The iﬁplication (i) = (iia) and (iib) are contained
in Propogition 1.2. (iia) = (iiia) and (iib) = (iiib) are trivial.
The remaining implications (iiia) = (i) and (iiib) = (i) shall be
proved by induction on n.

(iiia)=(i): Let n=0. We take A itself as an index set
and consider KA. By assumption the natural map u:(K A)@AA +2A

is an epimorphism. 1In particular there is an element

ce (N A)OAA which is mapped onto the diagonal Ma . ¢ 1is of
geA

m
the form ¢ = Z ma.loa., Aa.eA,a.e A, hence
je1 a1 1 i i

2 a R a
w@ =1 My oa; =112 =Ia.

i=l i=]

m
It follows that a = Z Azai for all a e A, i.e., A is
i=1
generated by the finite set 31585500053 .
Now let n 2 1. As in the case n=0 we first conclude that
A isg finitely generated. Then take a short exact sequence of

A-modules K>» F +*A with F finitely generated free. By naturality

we have the following commutative diagram
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-*Torn(ﬂ ALF)+ Torn(ﬂ ALA)-+ Torn_l(ﬂ A LK)+ Torn_l(ﬂ ALF)+ Torn_l(ﬂ A,A)

K ¥ d K b

+H;Tornm,F)+ hif Torn(A,A)+ n Torn_lmx‘)-* ht Torn_l(AB)+ ht Torn_l(A,A)

It follows by the 5~lemma that Tork(ﬂ AK) = 1 Tork(A,K) is an
igsomorphisn for k <n~l and an epimorphism for k = n-l1. By the
induction hypothesis we know that K 1is of type (FP) =1’ hence

A 1is of type (FP)n-

(1iib) = (i) Let n=0. We consider the direct system' a/a'}
where A' ranges over all finitely genmerated submodules of A. Then
lim A/A' = 0, so we have l_i;m Homh (A,A/A') = 0; 1in particular
lim(A 1 A/A") = 0. But this means that m:A + A/A' is zero for some
A', i.e. A=A', hence A 1is finitely generated.

Now let n 2 1. As above we first conclude that A is
finitely generated. Then take a short exact sequence of A-modules
K» F - A with F finitely generated free. Let M, be a direct
system of A-modules with lim M,= 0. Then, by the long exact Ext-
sequence we see that lim Extk(K,M*) = 0 for all k s mn-l. By
induction hypothesis this implies that X 1is of type (FP)n_l,

hence A 1is of type (FP)n.l]

Remarks (concerning condition (iiia)). 1) Notice that
Tork(A JA) =0 for k # 0. Thus for n 2 1, the assertion of (iiia)
is simply:

(iiia)' u:(n A)® A > TA is an isomorphism and Tork(II A ,A)=0 for

1l <k < n-1.



2) The condition w: (W A)OAA 5MA for all direct products
is equivalent with "A is of type (FP) 1". Thus (iiia)' is
furthermore equivalent to

(iiia)" A is finitely presented and Tork(l'[ A,A) = O
for 1 sk <n-1.

3) The proof of (iiia) = (i) yields a slightly stronger
;'esult: It is sufficient, in condition (iiia), to consider direct
products 713 A over an index set of cardinality % < max (|A[,]A]).
Hence 1f A 1is known to be finitely generated (e.g. in condition
(iiia)")we only need to consider direct products._r,l(&-with XS|A .

As an application we prove

Proposition l.4. Let A'>» A » A" be a short exact sequence

of A-modules. Then the following statements hold.

(a) If A' 1is of type (FP)n_l and A of type (FP)n, then
A" 1is of type (F?)n,

(b) 1If A is. of type (FP)n_l and A"  is of type (I?P)n
then A' 1is of type (FP)n_].
(¢) If’ A" and A" are of type (FP)n then so is A.

Proof. Apply either of (iiia) or (iiib) of Theorem 1.3,
and the long exact Tor(Ext)-sequences. [

Let A be a finitely generated (Q(FP)O) A-wodule.
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Choose a presentation
K, »P, A

with Po a finitely generated projective A-module. If A is
finitely presented ( ¢>(F?)1), i.e. there is some short exact
sequence K > F -+ A with F a free pA-module and both F and
K finitely generated, then it follows by Proposition 1.4(b) that
K. 1is of type (FP)O, i.e. finitely generated. Next choose a

(0]

presentation

K,» P -=+K

with P1 finitely generated projective. Now, if A 1is of type
(FP)2 then Ko is of type (FP)1 and hence K1 is of type (FP)O.

Iterating this argument yields

Proposition 1.5. Let A be an A-module of type (F'P)n

and let P _, > ... >P; > Py >* A be the first n terms of a
projective resolution of A. If Po, Pl""Pn-l are finitely

generated, then the kernmel of P > P, is finitely generated

n-1

(so that one can extend the resolution by a finitely generated
projective module Pn one step further to the left

P P +P

n =1 -2 Fae. Po >+ A.).
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Corollary 1.6. For a (left) A-module A the following

conditions are equivalent

(i) A 1is of type (FP),

(iia) The functor Tork(-,A) commutes with exact limits
for all k 20,

(iib) The functor Extk(A,-) commutes with exact colimits
for all k 20,

(iiia) Tork(g A,A) =0 for all k 21 and all
cardinalities X < IA |, and the natural map u:(;I‘ A)@AA + A is
an isomorphism for all %s max (|A[,]A]).

(1iiib) - lim Extk(A,M*) =0 for all k 20 and all

direct systems {M,} of A-modules with lim M, = 0.
-,

Proof. The implications (i) = (iia) = (iiia) and
(1) = (iib) = (iiib) are obvious. Theorem 1.3 shows that either
of (iiia) or (iiib) implies that A 1is of type (FP)n for
all n 2 0. By Proposition 1.5 this enables us to construct a
finitely generated projective resolution, i.e. A 1is of type

(Fp)m' D
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1.4 Topological remarks. The main results of this

section hold in a more general situation, namely for projective
chain complexes rather than for resolutions only. The proof
in this more general circumstance is a little bit more
complicated but not any more difficult than for resolutions
(cf. Kenneth Brown "Homological criteria for finitenmess", to
appear in Comment.Math.Helv.). We are not going to use the

result later, but we state it for completeness.

Let A be a ring with unit and let C be a positive
chain complex of projective left A-modules. TFor left
A-modules A and right A-modules B the (co)homology

groups of C with coefficients in B(A) are defined to be

H'(C;4) = H(Hom, (C,A)), H_(C;B) = H_(Be, )

Theorem 1.7. (K.S. Brown [ 15 ] ) The following conditions

on C are equivalent.
=

(1) C is chain homotopy equivalent to a complex of
finitely generated projective modules.
(iia) Hn(g;-) commutes with exact limits for all n 2= O.
(iib) Hn(g;—) commutes with exact colimits for all n 2 0.
(iiia) The natural map wil (G3MA) » g B (C) is an
isomorphism for all n > 0 and all direct products 1.
(iiib) 1£? Hn(g;M*) =0 for all n >0 and all direct

systems of A-modules {M,} with 1lim M, = O.
-
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Theorem 1.7 has a topological translation. Recall that
a CW-complex X is said to be of finite type if - X has oniy

finitely many cells in each dimension.

Theorem 1.8. (K.S. Brown [ 15 ] ) Let X be a connected
CwWw-complex with finitely presented fundamental grouﬁ m™ (X) =G.
Then the following conditions on X are equivalent.

(i) -X 1is homotopy eciuivalent to a complex of finite type,

(iia) the homology functor E{n(x;—) - regarded as a functor
from the category of local coefficient systems on X to the category
of Abelian groups - commutes with exact 1limits for all n 2 0,

(iib) the cohomology functor B (X;=) - regarded as a
functor from the category of local coefficient systems on X to the
category of Abelian groups - commutes with exact colimits for all
n 2 0.

(iiia) Wil (X; 7I;I.Z;) =°11Hn(x; ZG) for all n 2 0,

(iiib) 1_i:n Hn(X; M,) =0 for every direct system of 1oc-a1
coefficient systems { M} with 1_1';m M, =0 and all n 20.

Proof. It is well known from the work of C.T.C. Wall [ ¢1 ]
that X 1is homotopy equivalent to a complex of finite type if and
only if the singular chain complex of its universal cover, g(;) s
is chain homotopy equivalent to a complex of finitely generated
projective Zt-modules. Thus Theorem 1.8 foldows immediately

from Theorem 1.7. O
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Local coefficient systems are not so easy to deal with;
therefore the following sufficient condition for finite type is

somewhat more down—to earth.

Theorem 1.9. Let X be a connected CW-complex with finitely
presented fundamental group nl(X) = ¢ and let ; denote its
universal cover. If the homology groups Hk(i) are of type (FP)
as ZG-modules for all k 2 0, them X is homotopy equivalent to

a complex of finite type.

Proof. By Theorem 1.8 one has to show that
B Hk(X;H Z5) =1 Hk(x; ZG) for all k =2 0. For this we use the
% %
covering spectral sequence (cf.Cartan-Eilenberg "Homological
Algebra" p.335).

(2)
P»q

E = Hp(G; Hq(x; an))anpﬂ(x; ZG) .

By the Universal Coefficients Theorem, Hq(i; Z6) = Hq(i)@ﬂZb,
and hence by Lemma 1.10 below E;zi = Torp(Hq(i);fﬂZb). Since Hp(i)
is of type (FP)D we conclude E;Z) =0 for p # 0, i.e., the

spectral sequence collapses and yields the isomorphisms

u:Hq(X; Ze) = Hq(x)ec ZG = naqo{)-n Hq(X; 76) .0

Lemma 1.10. Let A be a left and B a right G-module. If
either A or B 1is torsion-free as an Abelian group then one has
natural isomorphisms Hk(G; B®A) = TorEc(B,A) for all k ¢ Z with

diagonal G-action on B @ A.
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Proof. Without loss of generality assume that A is
torsion-free over Z . Let P +~Zbe a G-projective resolution.
Then ASP *+ A is a G-flat resolution and can be used to compute
Tork B,A). Moreover, onme has the obvious natural isomorphism

BOG(AGE) = (BGA)Gcg , whence the result. [}

Proposition 1.11. Let G be a group. If the trivial

G-module Z is of type (FPL then so is every G-module A whose

underlying Abelian group is finitely generated.

Proof. We make repeated use of Corollary 1.6 (iiia). For

all k € Z one has

Torgc(A,r[ZG) = TorZE(Z,Aem) by Lemma 1.10
= Torf;(Z,H(AQTG)) by Cor.l.6 for A=Z
= HTorfc(Z,Aﬂz;) by Cor.l.6 for A=ZG.
= n'rorfG(A,Zc) by Lemma 1.10.0

If the trivial G-module Z is of type (FPL then we say
that the group G 1is of type (FP) . Theorem 1.9 together with

Proposition 1.11 yields

Corollary 1.12. Let X be a connected CW-complex and ;l'
its universal cover. If the fundamental group ﬂl(x) is finitely
presented and of type (FP)_,, and all homology groups H‘k(;) are
finitely generated Abelian groups, k ¢ Z, then X is homotopy

equivalent to a complex of finite type.
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2. Grougs of tzge (FP)n

2.1. Definition and basic facts. We recall that R will always

denote a commutative ring with unit 1 # O.

Definition. A group G is said to be of type (FP)n
over R, n = o or an integer 2> 0, if the trivial G-module R 1is

of type (FP)n as an RG-module.

If ¢ is of type (FP)n over Z then we merely say that G
is of type (FP)n. If G is of type (FP)n, then clearly G is of

type (FP)n over any ring R.

Reparks. 1) R is finitely generated as an RG-module,

hence every group is of type (FP)O over R.

2) Proposition 2.1. G 1is of type (FP)1 over R if and only

if G 1is finitely generated.

Proof. If G is finitely generated, then the augmentation
ideal IG is finitely generated as a left ZG-module and hence one can

construct a free resolution -+ g%ﬁs* Z; ~Z,i.e. G is of type (FP)1

over any ring R. Conversely, assume that G is of type (FP)1 over
R. This means that the kernel % of RG -+ R is finitely generated over
RG. It follows that g can be generated, as an RG-module, by a finite

number of elements of the form (1—xi), X; € G. Let S be the

subgroup generated by Xy»++e¥, , and < its augmentation ideal.

Then RG-y = ¢4 . Now, consider the short exact sequence
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%% > RS ~ R. Tensoring with _RG@RS_ yields
RG@R§F =+ RG -+ RGGRSR
But (1) RGO R = R(G/S) . X®r » r+XxS
2) RGORéF = RG.T x®(s-1) = x(s-1)
It follows that % > RG > R(G/S) 1is a short exact sequence, i.e.
¢ =s.0

3) A group G is said to be almost finitely prwesented over

R, if there is a short exact sequence of groups K > F -+ G with F
a finitely generated free group and R&K/[K,K] finitely generated as

an RG-module. Finitely presented groups are clearly almost finitely

presented over any ring R. Whether or not the converse holds is

still an open question.

Proposition 2.2, G is of type (FP)2 over R if and only

if G is almost finitely presented over R.

Proof.# > RF ** R is an RF-free resolution, hence one

has the exact sequence

0 ~ H, (F;RG) ~+ RGGRI_%-» RGO, RF > RG&, R ~ 0,
But Hl(F;RG) = Hl(F;RGRKRP) = Hl(K;R) = R & K/[K,K], hence we get

an exact sequence of RG-modules
0 + R ® K/[K,K] »RG@RF*+RG+R+0;

RGGRF¥ is RG-free on the set (1@(xi-1)} , where X5 Xp,...,X  arTe

the free generators of F. Thus G 1is of type (FP)2 over R if

and only if R ® K/[K,K]1 is a finitely generated RG-module.[]
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Theorem 1.3 yields necessary and sufficient conditions for

a group G to be of type (FP)n over R. In particular, we get

Proposition 2.3. A group G is of type (FP)n over
R(l $n s », if and only if G 1is finitely genmerated and
Hk(G;QBG) =0 forall 1 <k <n and all direct products of

= max(No,lR|) copies of RG.

Proof. Theorem 1.3 together with Proposition 2.1. One has
to prove that certain kernels of maps between finitely generated free
RG-modules are finitely generated, and these kermels are always of
cardinality $»= max(7f0,|R|), so that it is sufficient in the proof

of Theorem 1.3 to consider direct products of  copies of RG.[]

Proposition 2.4. For a group G the following conditions

are equivalent:
(i) 6 is of type (FP) over R.
(ii) Hk(G; -) commutes with direct products for all k 2 O.

(iii) Hk(G; =) commutes with direct limits for all k 2 0.

2.2 Extension properties. In the remainder of section 2 we

shall construct examples of type (FP)_ .

Proposition 2.5. Let G be a group, S S G a subgroup of

finite index. Then € is of type (FP)n, 0 Sn <=, if and only if

S is.
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For our "resolution-free" proof of this, we need the
following Lemma. Let G be an arbitrary group, S < G a subgroup,
and A an RS-module. Then RGGRSA and HomRS(RG,A) are
RG-modules by the (so-called single) action given by x(gea) = xgea,

(%of) (g) = £(gx), x,8 ¢ G, a ¢ A, f ¢ HomRs(Rc,A),.

Lemma 2.6. If |G:S| <® then there is a natural isomorphism

of RG-modules
a: HomRS(RG,A) -+ RG@RSA.
Proof. Let Tys Toseeely be a right transversal for G mod S,
m
and define B8(f) =) rile f(ri). It is easy to see thatg does not

i=1
depend upon the choice of the transversal. Moreover

B(xaf) = § 1] 8(xef) (r)) = [r '@ £(r;x)

= Z r-]'@ f(r.x - x— r.x) (g = representative of G)
i i i* Ti*) 8 P g ¢
-1
= ) x r.x @f (rix) = x- 8(f),
thus 8 is an RG-homomorphism. Finally, & is obviously an
isomorphism of RS-modules, since HomRS(RG,A) = HOmRS(eRS,A)-= DA

and RG0RSA =--(0RS)GRSA = G(RSQRSA) = ®A; this proves the Lemma. [

Proof (of Proposition 2.5). For all p 2 0 one has

Hp(s; MmRS) = HP(G; RG (T BRS)), by the Shapiro Lemma,

®rs
HP(G; HomRS(RG, T RS)), by Lemma 2.6,

HP(G; n HomRS(RG, RS)),

HP(G; i (RG@RSRS)), by Lemma 2.6,

n

H (G; T RG),
p( RG)

and the result follows by Proposition 2.3.0
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Proposition 2.7. Let N » G -+ Q be a short exact sequence

of groups and assume that N is of type (FP) over R. Then G is

of type (FP)n, 0 Sn < =, if and only if Q 1is.

Proof. Consider the LHS—spectral sequence
H ; H (N; TRG) =H G; I RG). Since N is of type ) one
p(Qv q( ’ ) P"’q( ) yP (FPm :
has Hq(N;_H RG) =-T Hq(N;RG) =0 for q 21 and H(RG)N= MRQ for
q = 0. Thus the spectral sequence collapses and yields isomorphisms
HP(Q; I RG) s HP(G; I RG) for all p 2 0. By Proposition 2.3 this

implies the result.

Exercise. Similar results assuming type (FP)n for N

rather than (FP).

In order to construct further examples of groups of type
(F’P)uo we are now going to consider amalgamated free products and
HNN-extensions of groups. We shall deduce long exact Mayer-Vietoris
sequences for these constructions and use them to show that certain
amalgamated products and' HNN-extensions of groups of type (FP) are

again of type (FP) .
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2.3. Free differential calculus. Let G be a group. A

derivation of G is amap d: G - A, A an RG-module, with the
property that d(xy) = d(x) + x-d(y), for all x,y ¢ G. Every
derivation d extends uniquely to an R-homomorphism d: RG + A
with the property d(Au) = d(R) . e(u) + A-d(u). The set of

all derivations, Der(G,A), 1is an R-module, and it is easy to

check that the map

p: Der(G,A) -+ HomRG((a »A),

given by p(d)(x-1) =d(x), x € G, d € Der(G,4), is a natural
isomorphism.

Now, let G = F be a free group generated by free generators
{xi}. Then %, is RPF-free on .{xi—l}. It follows that an
arbitrary choice of values a; €A determines a unique derivation

d: F+A with d(x.) = a..
i i

Definition. We denote by — the derivation F -+ RF
Bxi
which is defined by the values (x.) = a_xI -5, ..
Bxi ] Bxi 1

Those derivations are called the partial derivatives with respect

to X..
1

~ £
Let d:F + A be a derivation. Define d(w) = E - d(x.), w ¢ F.
. i
i
(This is well defined since g—: = 0 for all but a finite number of
- i
xi's) . d: F> A 1is again a derivation since

dwv) =] 800y = T2 ax)+] v X a,) = dw+ wd
Bxi axi gxi 1
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u, ve F.

(]

But d(xi) = § Gijd(xj) = d(xi), whence d =

Thus one has the formula

3 .
d(w) = ] =—d(x;), wekF,
1 Bxi

for all derivations d: F > A. If we apply this to the special

inner derivation d: F - RF, d(w) = w - 1, we get, in particular,

Q>

vw-1 = z 5.‘.;.-.(xi-- 1), we F | "fundamental formula".

i

There are two ways to generalize this formula slightly. Firstly,
extended to RF by linearity it reads

A- e = ) %l

(xi-—]_), A € RF.

i
Secondly, let G be a group with generators {gi} and let n:F - G
be a free presentation, F freely generated by {xi} and n(xi) =g

Then the fundamental formula extended to RF and mapped to RG by

the induced homomorphism =:RF -+ RG, reads

RO RS DICHERY
Bxi

where A € RG, and A € RF with =#(A) =X .

2.4, Amalgamated products. Let Gl’ G2 be groups with

subgroups Si <G, 52 < G2 and assume that S1 and 52 are

isomorphic via an isomorphism g: S, 5 52. Then the amalgamated

1
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free product of G; and ¢, with amalgamated subgroups S; is

defined to be

G = Gl*sl,szcz = <Gl, G2 : relcl; relcz, 3 =08(s),¥s ¢ 51 >,

There are obvious homomorphisms jaé G, * G induced by the identity

on Ga’ a=1,2; and one can prove

(i) the maps ja: G, > G are injections

(11)  j1(6) n §,(6y) = i) = jz<sz).

We shall use ja as identifications, i.e. we consider G, and G,

as being subgroups in G, with S =G, ng, = S, =35,

1 2 1 2

Normal Form Theorem. For a= 1,2 let Ta denote left transversals
for G, mod S containing 1. Let T be the set of all products

8189+ 8> 1 Sk<e, 14 8; € Tl uT with the property that

2)
consecutive factors 8;» B;, are mot both in T&,-a =1,2. Then
T together with 1 is a left transversal for G = Gl*SG2 mod S.

Proof. cf [42 7.

Remark. Every coset xS # S contains a unique representative
818y 8 € T and we define the integer k to be the length of
xS, 2(xS) = k., 2(S) is defined to be O. It is not hard to see
that 2(xS) in fact does not depend upon the choice of T, and T,.

Notice that £(xS) <1 x € Gl U Gz.

We shall also say that an element x € G is of length

2(x) =K if k is the length of its coset mod S.
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Proposition 2.8.(Swan [60] ). Let G =. Gl*SGZ Then there

is a short exact sequence of (left) RG-modules:

R(G/S) > R(G/G)) » R(G/G,) + R

where a and ¢ are defined by a(xS) = (xG,, -xG

1 2) and

e(xGl,O) = e(O,sz) =1, x € G.

Proof. Clearly € is an epimorphism and €oaq = 0. Next let
{;i} and {?J.} be generators for Gl and G2 respectively, construct
the free group F on symbols {xi, yj} and the presentation

* G = = x =y
F o Gl SG2 G with Tr(x ) X, ﬂ(yj) yj. By the fundamental
formla one has for all )X ¢ RG

A -e(A) = 2v<—><x -1)+ 2u<—> <y -1), w(A)=A

X,
1 J
and hence

remeie) = Irdh G i-ne

3y.
yJ

AG, e(Ae,) = 2«(2—:‘{) &,-1¢,.

Let (AGl,uGZ)' € R(G/Gl) ] R(G/GZ) with e(AGl,uGZ) =
s(AGl) + e(uGZ) = 0, and choose A,M ¢ RF with
w(A)= A, m(M) =p. Then

ol v G-1)s - 2w<-—><x -1)S + e(V)S ) =

3y,
7
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a M
= Qr( =) G106 +e6),In(—) (x;=1)6,+e(n)6y)
Byj Bxi

= (Xcl, ucz) .

It remains to be seen that a is a monomorphism. Let A € RG with

1-AGZ~ 0. Let wS be an element

of maximum length 2(wS) in the support of AS; w 1is a word in

a(AS) = (XGl,-XG2)= 0, i.e., AG

the xi's and yj's £1. Assume that w ends in X, . Then

wG2 is of length 2(wS) and hence cannot cancel in AGZ unless

there was already cancellation mod S. Thus w cannot end in X553
but the same argument shows that w cannot emd in ¥; either.
We conclude that there are no elements of maximum length in the

support of A,i.e., A= 0. This proves Proposition 2.8.0]

Let A be a left RG-module and B a right RG-module. As
the sequence of Proposition 2.8 is R-free, we obtain the short

exact sequence of RG-modules

BORR(G/~":)>'> BGRR(G/G1) ® B GRR(G/GZ) ++ B
(*)

Ar- HomR(R(Glcl) LA) @ HomR(R(G/GZ) ,A) HomR(R(G/S) sA) .

Hereby the modules B@RR(G/S), HomR(R(G/S),A), etc. are considered
to be endowed with the diagonal "G-module structure, i.e. an element
X € G acts as (begS).x = bx@x-lgs, x-£(gS) = xf(x-lgs),

beB, geG, f ¢ HomR(R(G/S),A).
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Lemma 2.9. Let G be a group, H <L G a subgroup, A
a left and B a right RG-module. Then one has natural RG-module

isomorphisms

¥y ~ L4
u B@RR(G/H) -+ BaRHRG R

v N . ¢
v: HomR(R(G/H),A) > HomRE(RG,A),

where the G-action is understood as indicated by the arrows
(diagonal action on the left hand side and single action (on RG)

on the right hand side).

Proof. u is defined by u(bexH) = bx@x-l, beB, x €@,

It is easily seen that this is well defined and a G-homomorphism.

The inverse of u 1is given by bex ~ bx@x-lﬂ. Analogously, v

is defined by v(f) (x) = xf(x-IH), XeG, f¢ HomR(R(G/H),A), and

its inverse v' by v'(g) (xH) = xg(x_l), X€G, g€ HomRH(RG'A)'D
By Lemma 2.9 we can write the short exact sequences (*)

in the form

RC @ B®
1 RG,

B8, (RG> BO RG = B,

RG

(**)

A> Hom_. (RG,A) @ Hom_. (RG,A) +* Hom,.(RG,A) .
“chl “chz TRrs

These sequences give rise to long exact coefficient sequences in
homology and cohomology of G. Notice that, by the Shapiro Lemma,

one has natural isomorphisms

H, (G;Be -RC) = H, (H;B), Hk(G;Hom.RH(RG,A)) = 55(H;A)
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for all k € Z and all subgroups H < G. Thus we get

= *
Theorem 2.10. Let G G1 S G2’

and B a right RG-module. Then one has natural long exact

A a left RG-module

sequences (=Mayer-Vietoris sequences)

(cor,=cor) (cor,cor) 5
o> H.k(S;B) —_— Hk(Gl;B)QHk(Gz;B) —_ H.k(G;B)-‘ka_l(S;B)-r...

. oEN () — Hk(Gl;A)OHk(Gz;A) — > u¥s;a) » 5T

(res,res) (res,-res) 8

G;A)+...

Remark. The following is an even shorter way to get Theorem
2.10: Apply the short exact sequence of Proposition 2.8 to
ToriG(B,-) and Ext§s(—,A) respectively and use the change-of-ring

isomorphisms (a), (¢) in Section 2 of the introductionm.

2.5 _HNN-groups. Let G be a group with isomorphic subgroups

S,T and let 0:S 5T be a given isomorphism. The HNN-group

*
G = G*S Uover the base group G with associated subgroups S,T
R —_

and stable letter p is defined to be
* -1 .
G =<G,p; rel G, psp =o(s) all s € S >.

3 - * 3
One can show that the obvious homomorphism j: G +G 1is a
monomorphism. We shall use j as identification, i.e. we consider
* * . » .
G as a subgroup of G . Then G is, in a sense, the universal

group containing G such that g is given by an immner automorphism.
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" 'Normal - Férm- Theorem. let X and Y Dbe left transversals for

G mod S and G mod T respectively, both X and Y containing

o M2 "
1 eG. Let Z denote the set of all products XP X,P --eX. P (and 1)
such that O#nie Z,xieX if n; <0 and x; ¢Y if ni>0,

and x, # 1 except perhaps for i =1. Then Z is a left

*
transversal for G mod G.

Sketch of a proof. We take the free product (g 4 <u>)x (G & <v>)

and amalgamate the subgroups. <G,uSu_1> =< G,vTv-1> in the obvious way.

The result is a group G with presentation
- -1 -1
G =< G,u,v; relG, usu = vo(s)v -, all s ¢ S >,

By the Tietze transformation p =v u, we get
- -1 *
G = <G,u,p; relG, psp =0(s), all s € S> = G x<W.

- . * » - . -
So G differs from the HNN-group G only by an infinite cyclic
free factor, and one deduces the Normal Form Theorem for HNN-groups

from the corresponding theorem for amalgamated products. For details

ef. [437..0

Remark. Every coset xG contains an element
n

XyP “X,p 2...:%pnke Z, and we define the length U(xG) of the coset xG
A —5

to be the integer |} 'ni|’ (2(G)=0). Ome can show that this
i=1

definition does not depend upon the choice of the transversals X and

*
Y. We shall also say that an element X ¢ G has length 2(xX) =m

if m is the length of its coset mod G.
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*
Proposition 2,11. Let G = G*S g be an HNN-group. Then
b4

. *
one has a short exact sequence of (left) RG -modules
* *
R(C /S) >=—> R(G /G) —=»> R

where ¢ is induced by the augmentation and B is given by B(xS) =
- * . 0
xG - xp 1G, X € G*, p being the stable letter of G . (This is

, - - -1
well defined since sp 1G =p 1a(s)G =p G for s €8).

Proof. Clearly e is an epimorphism and €ca=0. Let { ;1,;2,.. .1
be a gset of generators for G. Consider the free group F omn
. * -
letters {xl,xz,...,q} and the presentation #: F =G , Tr(xi)-xi,w(q)-p.

*
By the fundamental formula one has for all i ¢ RG

men = Iy Gn (D b

axi dq

where Ae¢ RF with 7Q\) = X ., Thus

AG - e(AG) = ﬂ(ﬂ) (p~1)¢
aq

=n( 2y pa-p e = sr( 2 yps),
aq aq

whence kere = im8. It remains to prove that 8 is a monomorphism.
For this we choose (left) transversals X and Y of G mod S and
G mod T = g(S) respectively, both X and Y containing 1 ¢ G,
and the corresponding transversal Z of G* mod G. Clearly the
set of element of the form ZX Z € zZ, X, € X 1is a left transversal
for G mod S. Let AS € R(G'/S) with B(AS) = AG - Ap € = 0 and
let wS = zxoS be an element of maximum length £(wS) = m in the
. ™ "

support of AS. If either X, #1 or z = XiP KR T..lX P with
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n < 0, then wS gives rise to a term wp-lc of length m+l in
the support of Ap—lc. All terms in AG have length < m, hence
wp_lc must cancel within xp'lc against an element of the same
type Gb'lc. But since our coset representatives are unique
we have w = w and then there was already cancellation mod S.
. %2 e

It follows that wS 1is of the form X;P X,P oo X P S with
o > 0 and that all elements of maximum lenmgth m in AS are of
this type. Now, we look at the term wG in the support of AG.
All elements in the support of Ap_lc now have length < m, and the
maximal ones are of the form P xzpn ...xkp_lc and hence cannot
cancel against wG; thus wG must cancel within AG against an

o~
element of the same type wG. Again, our coset representatives are

unique, so this implies that there was already cancellation mod S.

We conclude that there are no terms of maximal length in the

support of AS, i.e. AS =0. [

Let A be a left and B a right RG-module ., As before

we get the short exact sequences of RG-modules (diagonal G-action)
* *
BORR(G /8) > BGRR(G [/6) ~ B
* *
A > Hom, (R(G /6),A) ++ Hom, (R(G /S) s4) ,

and therefore, by Lemma 2.9, short exact sequences of RG-modules

(single G-action)

*
x
BGRSRG *» BQRGRG -+ B

A> HomRG(RG*,A) e HomRs(RG*,A).

The corresponding long exact coefficient sequenceg yield
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*
Theorem 2.12. Let G =G *g o be an HNN-group over the
=2=0Icl £.. 2 .
base group G with associated subgroups S,T and stable letter

p. Then one has long exact sequences (= Mayer—-Vietoris sequences)

cor _—cor,
S T

co.=r H (5;8) —— p*H.k(G;B) <% uk(c* ; B)Erl-lk_l(S;B)—’

res k res, - C* oTes

- é
et Hk 1(S;A)—-> Hk(G*;A)-+ H(G;A) T 4k

H (S;A)— ...

* *
for every left RG -module A and right RG -module B. The maps
res and cor are induced by inclusion of the indicated subgroups,

* k k
cp* :Hk(S;B) > Hk(T;B) and cp‘: H (T;A) = H (S;A) are the

*
isomorphisms induced by conjugatiom in G .

Remark. The slightly more genmeral situation of an HNN-
group of rank > 1 can be dealt with in the same way. If
* - o
G = <G,p1,p2,...; rel G, p;sp; = qi(s) all s ¢ Si, i=1,2,...>

then one has a short exact sequence

* 8 * &
8R(G /Si) » R(G /G) ++ R,

—1 *
B(xsi) = xG - xps G, x ¢ G, and long exact sequences

*
cee * ? Hk(si;B) > B (6;B) ~ H (G ;B) ~ ? He_(S;5B) ~ ...

k- *
e TETHS ) > B~ e 1R -
1

for every left RG-module A and right RG-module B.
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Proposition 2.13(a) Let G = Gl*SGZ. If Gy» G, are of

type (FP)n and S 1is of type (FP)n_1 over R then G 1is of type
(FP)n over R. If G and S are of type (FP)n over R then so
are G, and Gye If G, and G, are of type (FP)n_1 and G of type

(FP)n over R, then S 1is of type (FP)n_1 over R.

= * 1
(b) Let G G, S,0° If G is of type (FP)n and S of

type (FP) _, over R then G is of type (FP) over R. If G,5 are

(FP)n, so is G. If G is (FP)n_1 and G is (FP)n, then S is (FP)n_l.

1
Proof. We use the criterion of Proposition 2.3. If G, and
G, are of type (FP)n and S 1is of type (FP)n_1 then the homology
Mayer-Vietoris sequences yield Hk(G; MRG) = 0 fornm >k =21 and
a natural isomorphism HO(G; IRG) =R for all direct products 1,
i.e. G 1is of type (FP)n over R. [J
If G and S ;re of type (FP)n then the same method yields
Hk(Ga; MRG) =0, n>%k >1 and Ho(Gu; IIRG) = R(G/Gu) only. But
as Rﬁl-modules one has the direct sum splittings RG = RGueR[G-Gu]
RG/Ga = RQR[G/GG-Gu], whence Hk(Gu;HRGq) =0,n>k=21, and
Hd(Gu;HRGu) =R, i.e. Gu is of type (FP)n. The remaining case

can be proved by the same argument. []

Remark. Tan M. Chiswell has recently obtained Mayer-Vietoris
sequences in the theory of groups acting on a tree which generalize

both Theorem 2.10 and 2.12. Cf.Chiswell [17].
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2.6. Examples. The following is a list of groups of
type (FP)_.
(1) The trivial group 1.
(2) All finite groups (by Proposition 2.5)
(3) All finitely generated free groups (by Proposition 2.13)
(4) All poly (f.g. free or finite) groups (by Proposition

2.7), in particular all polycyclic groups.

(5) All f.g. one-relator groups.

The last statement follows from Lyndon's Identity Theorem [ 40 ],

but we sketch also a direct proof using the "Freiheitssatz" only.

Let G be a (finitely generated) group with one defining relator r

of length £(r). If the number of generators involved in the relator

r is 2 2, then G can be embedded as an "amalgamated factor" into

a group G1 =G *<11:><u > which is a one relator group with the
property that one of its generators has exponent sum O in the relator
of Gl' Then G1 is an HNN-group over a base group G2 with finitely
generated free associated subgroups, G1 = G2 *p o°

with a single defining relator of length < 3(r). The proof now goes

and G2 i8 a group

with induction on the length of r. If g(r) =1 then G is free

and hence of type (FP)_. Let a(r) » 2. If G 1is eyclic, it is,

of course, of type (FP) . If G is not cyclic, then decompose it

as sketched above: G2 is of type (FP)w by induction. By Proposition
2.13(b) G, is of type (FP)_  and by Proposition 2.13(a) this

implies that G 1is of type (¥P)_.

Problem. Let C be the smallest class of groups with the

following properties
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() C contains all finite groups.
(ii) C 1is extemsion closed and closed with respect to taking
subgroups of finite index.
(iii) Proposition 2.13 holds with "of type (FP)*" replaced by "in C".
Construct a group of type (FP)_ outside C. Is every torsion-group
of type (FP)_ finite? Are all arithmetic .groups SL(n, Z) in C?
(They are known to be of type (FP)_ ,cf [52 nt
In the remainder of Section 2 we construct groups which are
"almost of type (FP)_". Let Dy = <X 4¥)> X <Xpy¥p> Xeo X< X,y >
the direct product of n free groups of rank 2. We define
Dn-action on two different infinitely generated groups: Firstly .
let F_ be the free group on generators {a.k} , k € Z, and put
X; ramy; ot oa Ta,, forall i,k. Secondly let Q, be the
additive group of all rational numbers q with denominator a
power of d, d an integer 2 2, and put X 4=y q = dq, all

i, q. Then define

A =F 3D , B =0Q4 1D .

Proposition 2.l4. Both AL and B~ are of type (FP)n

but not of type (FP)n+1.

Proof. First we show that A is of type (FP)n. The
case n=0 1is trivial and A= F_1< %1571 is generated by
3,,%,% and hence of type (FP)l; thus assume n 2 2. C(Clearly
An is finitely generated and hence all we have to show is that
B (An;l'[ZAn)=0 for 1 s k < n-1.

W a < > i - i
Now, A An-a.1 X ,¥, > can be considered as an HNN-extension

* See Appendix 4,
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with stable letters X5 Yu- Thus one has the Mayer-Vietoris
sequence
cor

(1-xn,1'Yn)

2
...-»: B (A _TZA) —— KA _:TZa) —H@;T Za)>...

By induction hypothesis Hk(An-l; I Zﬂ.n) =0, 1% k< n-2, hence
B (A; TZ4) =0, 15 kS n~2. It remains to show that
Ho (A 0 Zﬂ.n) = 0, and this will follow if we can prove that the

map (1-x): H (A ;5 TZA) ~H (A ;™ Za) 1is an isomorphism.

For this we consider the
A situation in the diagram on the
left. As F_ <x > is the free
/\_11<“j,.> AHJ <x“) group freely generated by a,
and X, it follows that
AM A 1< x > is of type (FP)m by
Do

Prop. 2.7. Thus

H.k(An_lj <x > 1 an) =0 for

F;o 1<z k # 0, whence comsidering the
Mayer-Vietoris for the HNN-
F .
w ¢ extension A__, ] <x > we get
/F;: <0‘o)x\> n-1 n
{ . (I=x): H (A ;5 T ) ~

H (A5 T Z4) forall k>aO.

The proof that Bn is of type (I-'l’)n is strictly analogous.
In order to prave that neither An nor Bn is of type (FP)n;]

we prove
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(i) H .1 (An; Z) is free-Abelian of ramk ’XO

(i1) B,y (B D = Q.

Again we use induction on n to show Hn+2(An; Z) =0 and

. . ® . . aF .
Hn+1(An’ /) x Z. This is clear for A =F, If nx1

consider the Mayer-Vietoris sequence for An_13< X0V, = An

2 (1-x, .l-yn)
B _1Z) >~H ,(AZ) ~ T H (A _;Z) — Hn(An_l;Z PRI

0 %Z :.Z

s

As the action of (l-xn) and (l-yn) on Hn(A-n_l; Z) coincide, the

kernel of (l-xn, l-y

o) st contain a copy of Hn(An_l; 7Z), hence

Hn+1(An; 2 =07 Hn+2(An; Z) = 0 1is obvious. This proves the

%

assertion (i) =- the proof of (ii) is again similar. Now, (i) and

(ii) imply the assertion of Prop.2.l4. by the following remark.[]

Proposition 2.15. If G 1is a group of type (F'P)n then

H.k(G; Z) and Hk(G; Z) are finitely generated Abelian groups for all

0 sk < n.

Proof. Let JF ++Z be a finitely generated G-free resolution.
Then Z QG E and HomG(I_ , Z) are complexes of finitely generated

Abelian groups,whence the assertion. [
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Remarks. 1) Notice that the groups A, B are finitely
presented for n 2 2. In particular one has
%20

f)
Ay = <a,X,X),51,7,5 @ = Tma Tma L0 x,lealy) s x))=lx),y,] =y, Ly, =1

B, =2<a,X, ,X H ax1 a ax2 a ay1 a ay2 = a2
2 a’ 1’ 2:7]_:72:

[Xlsxzj"[yl1x2]'[x1’YZ]=I:Y1’YZJ =1 >,

A, is Stallings' group [ 54].

2) Notice that H4(B2; Z) = 0; this follows from the
Lyndon-Hochschild-Serre spectral sequence together with the fact that
B, (Q4; Z) =0 for k 2 2 (see Section II, Proposition 1.8). By the
Universal Coefficients Theorem it follows that H4(B2; 2 is
isomorphic to Ext (Qd’ Z) and hence uncountable, despite the fact

that B2 is finitely presented.

3) E=xercise. Show that the converse of Proposition 2.15

is false.
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3. Universal Coefficients for groups of type (FP) _

In this section we show that groups G of type (FP)_ have
a special feature: there are spectral sequences which approximate
the (co)homology of G with coefficients in arbitrary RG-modules
of finite projective dimension (cf. II Section 1) in terms of the

cohomology groups with group ring coefficients Hk(G; RG).

3.1. Dual modules. First we recall some facts about dual
modules. Let A be an arbitrary ring with 1 and M a left (right)
A -module. Thé dual of M 1is defined to be M* = Homh M, A) whe‘re
A is regarded as a left (right) module by left (right) multiplication.

*

M is a right (left) A-module with A-action given by

(fol)(m) = f(m)A, A eh,meM, £ ¢ M*.

For left (right) modules M and N one has natural isomorphisms
Me N)* = M* ® N* defined in the obvious way. If A is regarded as a
left A-module by left multiplication then A" is naturally isomorphic to
the right module A with A-action given by right multiplication. It
follows readily that if P is a finitely generated projective left

*
A-module then P is a finitely generated projective right A -module.

Let M and A be left A-modules and B a right A-module.

Then there are natural homomorphisms



42

*
d M QA A -*Hou’\ (M,A)

%
v: B 9 M -*Hon’\(M,B)
given by ¢(f ® a)(m) # f(m)a and ¢(b ® m)(f) = bf(m) for

*
meM, feM, aeA, be B,

Proposition 3.1, The following statements are equivalent

for a A-module M.
(i) M is finitely generated and projective.
(ii) ¢ 1is an isomorphism for every A-module A.

(iii) ¢ 1is an isomorphism for every A-module B.

Proof. (i) = (ii), (iii): If M = A then ¢ is the idenmtity
on A and also ¥ is the identity on B (provided the natural
isomorphism of left A-modules A = UA** is used as an identification).
It follows that ¢ and ¢ are isomorphisms for all finitely generated
free modules M. By naturality this is still true of direct summands
i.e. for finitely generated projectives.

(ii) = (i): 1If ¢ is an isomorphism for A = M, there is an
element Z:_ fi ®m € M* GA M with ¢(2 fi ® mi) a IdM’ hence
Y fi(m)mi =m for all m € M. This shows that M 1is generated by
the finite set {mi}. Let F be the free A-module on free
generators X; and define a map 7: F -+ M by fr(xi) =m. Then

has a splitting o: M ~ F given by o(m) = { fi(m)xi, m ¢ M, hence

o
i
M is projective.

*
(iii) = (i): If ¢ is an isomorphism for B = M , there is an
- * .
element ) fi@ m € M QA M with w(z fi ® mi) = IdM*’ hence

%* %*
Y fi'h(mi) =h for all heM. This shows that M 1is generated
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by the finite set {fi}' Moreover, let F be the free right module
on free generators v and define a map #: F M* by w(yi) a fi'
Then 7 has a splitting o: M* + F given by o(h) ='2 yih(mi),

he M*, hence M* is projective. This now implies ;hat its dual
M** is also finitely generated and projective - but (iii) for

. sk
B = A yields M =M , whence the result. [J

3.2. Universal Coefficients for cohomology. Let G be a

group of type (FP)_ over R and consider a resolution

...+Pk+Pk_1 ¥ e *P R

of the trivial G-module R by finitely gemerated projective left

RG-modules. Let A be a left RG-module and consider a flat

resolution

ceeT Qe Qg e 2 QAL
%*
Now we construct the double complex K = P @ .
ome P>q - °re &
that the non-trivial terms of Kp q lie in the second quadrant. K

Notice

ek

may be visualized by the diagram

06—0 €—0 €—0&—0

[T 111

0€—0 €—0¢—04—0

“ 5. Ll 1] —

O€—0 €0 «—0<c—0 da'

Ll L)

—0— 0 00— P
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where d' and d" denote the partial differential. As usual one

has two natural filtrations on the total complex X = Tot K,

x = 9

n * phqen Kp,q’ and the associated spectral sequences.
The first filtration is defined by F X, 2 Kh,n-h
If either Qk = 0 for all sufficiently large k or P =0
for all sufficiently large i, i.e., if one of the resolutions
has finite length, then F' 1is a finite filtration. In this case

we know that the associated spectral sequence comverges to the

homology of the total complex X.

" 1
p,q p q **’d )9 d ) ;HP*’Q(X) .

%*
As P__p is finitely generated projective, so is P__p and one has

RG, * 0 if ¢q £ 0
H ,d") = T P LA =
q(Kp,* ) orq ( )
* ® if a0
P_p RGA 1 q .

Moreover, Proposition 3.1 yields a natural isomorphism

$ . p* @ * Ho (P__,A), whence
Y -p RGA oG -p’?
@ 0 if q # O
Psq

HP(G;A), if q = 0,

i.e. the first spectral sequence collapses and yields natural

isomorphisms Hp(Tot Koo = HP(G; A), pe Z
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Now we consider the second filtration of X = Tot K,

defined by (Fq"x)n = VK If either of the resolutions

h<q:

P or Q is of finite length, then this second filtration is

n~h,h’

again finite, and the corresponding spectral sequence converges.

e

a H H L] " H
Sq Ho (Bpy,d),dm) =

q

p*q x.

Since tensoring with the flat module Qq is an exact functor

one has
Ny % R
HP(K*’q,d ) Hp(;’_) ® RGQq H (G; RG)QRGQq

and hence

e
Py
)

Replacing -p by p yields the required "Universal coefficient

= TorRC P (a: - . g (P 6.
Tor, (8 (G,R.G),A) qu+q(x? H (G;A).

Theorem".

We say that the group G has finite cohomology dimension over
R, in symbols cdRG< o if the trivial G-module R has an RG-

projective resolution P +*> R of finite length (i.e. P, = 0 for

k
large k). Also we say that the RG-module A has finite flat
dimension, fl.dim A <=, if A admits a flat resolution of finite

length. These homological dimensions shall be discussed in Section

4.1, but we preintroduce them here in order to summarize our result:

Theorem 3.2. Let G be a group of type (FP) over R, and let

A be a (left) RG-module. If either cdRG< w or fl.dim A<
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then there is a convergent 2nd quadrant spectral sequence

2 . . RG .p.. - 5P9(G.
E ~p,q TOrq (H (G, RG) ,A) q H (G, A)o

3.3. Universal Coefficients for homology. Now we deduce the

dual of Theorem 3.2. Recall that an injective resolution of a

A-module M 1is an exact sequence of A-modules

0+M+10 1t > > I,

such that Ik is injective for all k 2 0. If there is an
injective resolution of finite length, we say that M has finite

injective dimension and write inj.dim M <= ,

Theorem 3.3. Let G be a group of type (FP) _ over R,
and let B be a (right) RG-module. If either cd.RG <o or
inj.dim B <= then there is a convergent 4th quadrant spectral

sequence

2 4 4P
E = Ext ;s RG), H
Pyq Xty (B (G; RG) B)q» Hp_q(G B)
Proof. Let P +> R be an RG-projective resolution which
is finitely generated in each dimension, and let B > I be an
RG-injective resolution for B. We consider the double complex

* -
Kp,q a HomRG(Pp, 1 q). Notice that its non-trivial terms lie in

the fourth quadrant; K,  can be visualized by the diagram
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‘ ——-———_I q \L :
X —o—o——— 4"

P.q P
0&—0—0
| 4 s
Té——oe——o d

where d', and d" denote the partial differentials.

-

. . @ , . .
Let Xn \ (Tot K’**)n p¥qem Kp,q' The first filtration

« ' a i i .
of X, (FPX)n hngh,n-h’ gives rise-to a spectral sequence

(2)
Psq

E a Hp(Hq(K a", d") ;’Hp+q(X)~

Yotk >

which converges if either B or 1 is of finite lemgth. Now,
*
as Pp is finitely generated projective, so is its dual Pp and

hence one has

3 0 if q #0,
" = =
H_ (K % d") ExtRé (p_, B)

* I3
HomRG(Pp, B) if q # 0.

Moreover, Proposition 3.1 yields a natural isomorphism

%
¢: B QRGPp = HomRG(Pp, B) whence

0, if q#0,

g ()
P»q

HP(G; B), if q=0 ,

i.e. the spectral sequence collapses and yields a natural
isomorphism Hp(Tot**) = Hp(G;B).
"
The second filtration of X, (Fq X)n = Kn-h,h » yields a

. h<q
spectral sequence



(2)
P»dq

Epg = A (B (Key,d),d™) 2 (B)

q P¥q
which again converges if either P or J 1is of finite length.

Since HomRG(-’ I_q) is an exact functor one has

H (K d") = Bom (H (2, T 9 = Hom.(BP(G;RG), I 9)
» B Bp & ) Olpe 3RE) s

P %,q

and hence
2? - gxe9 (BP(G3RG), B) =H . (X) =H_ (G; B).
P»q RG 4 P+ P*d

Replacing =-q by q now yields the result.]

Remarks (1) The G-action on HP(G; RG) 1is given by the
%
(right) G-module structure of P, and hence is induced by right

multiplication in the coefficient bi module RG.

[ 4
(2) Without the assumption either cdRG <® or
b]
fl.dim A <* and inj.dim B < in Theorems 3.2 and 3.3
one still gets spectral sequences, but they might not converge to

the homology of the total complew». (E.g. for G a finite group).

3.4. Application. Let G be a group. Recall that
RG-modules of the form LGRBG and HomR(RG, L), where L 1is any

R-module, are said to be induced and coinduced respectively. If

A 1is an induced and B a coinduced RG-module then Hk(G;A) =0

and Hk(G; B) =0 for all k #0. If G is finite then induced =

coinduced and hence one has also Hk(G; A) = 0 and Hk(G; B) =0
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for k # o. This is not true in general, but one can say something

if G 1is of type (FP) .

Let K, L be R-modules of finite flat and injective
dimension, respectively. If P ++ K is an R-flat resolution
then 2 &KRG is an RG-flat resolution for K ®RG aud hence
fl.dim (K QRRG)< o If L+Q is an R-injective resolution
then HomR(RG,L) @ HomR(RG, Q) 1is an RG-injective fesolution
and hence inj.dim (HomR(RG,L)) <o , Thus, if G 1is of type
(FP) , over R, we may apply Theorems3.2 and 3.3. Moreover one

(2)

can simplify the corresponding E terms by the following Lemma

Lemma 3.4. For every (right) RG-module M one has natural

isomorphismsg.

RG - R
Torq (M, K @RRG) = Torq M, K)

Extgc(n, Hom (RG,L)) = Extg M,L),

Proof. use the resolutions Q.QRRG» HomR(RG,Q) and notice

that M ®,.( ®RG) = M ®p, and Hom,.(M, Hom,(RG, Q) = Hom, (M, Q).[

Corollary 3.5. Let G be a group of type (FP)  over R. Then

one has convergent spectral sequences

2 R -
Efp)’q - Tor, (&P (G; RG), K) :Hp U6; X o.R0)

e

= q P : .
2.-q Extp (H*(G; RG), L) q=>Hp_q(c, Hom.R(RG, L))



50

for all R-modules K and L with fl.dim K <o and
inj.dim L <o , respectively (or for arbitary K,L when

cdRG <= ).[

If R is a hereditary ring (i.e. R has the property
that submodules of projectives are projective) then the spectral

sequences collapse to short exact sequences.

Corollary 3.6. Let R be a hereditary ring and let G
be a group of type (FP)°° over R. Then one has natural short

exact sequences
19 (6; RrG) oL * mle; L 8 RG) > Torli(ﬂq+1(G; RG), L)
Extllz (Hq+1(G; RG), L) > Hq(G; HomR(RG,L))-H- HomR(Hq(G; RG),L)

for every R-module L and all q ¢ Z . Moreover these sequences

split (but the splitting is not natural).

Proof. We give direct proof, also. Let P ++ R be an
RG-projective resolution. Then, by Proposition 3.1, one has

natural isomorphisms

%* %*
HomRG(g, L aRRG) =P QRG(L eRRG) =P QR ,

HomR(RG,L) L Homm(g*, HomR(RG,L)) = HomR(g*,L) .

and the assertion follows by the usual Universal Coefficient

Theorem for complexes. [
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Remark. It is conceivable that the cohomology groups
HP(G; RG) are always R-projective (or even R-free). This is,
of course, trivially the case if p = 0O and it has been proved
by Swan [ 60] for p = 1. If it were true in general, then the

Corollaries 3.5 and 3.6 would simply read
5P(G; L @.RG) = 2P (G; RG) e, L
HP(G; Hom (RG,L)) = HomR(Hp(G; RG), L).

-

Of course this holds when G 1is of type (FP)_and R is a field.
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CHAPTER I1

HOMOLOGICAL DIMENSIONS

Chapter II splits into three parts of different length. The
first part consists of Sections 4-6 where we define the homological
dimensions ¢dG and hdG of a group G and deduce general theorems.
In the second part, Section 7, we compute cd and hd for special
classes of groups. Finally, in Section 8, we shall apply the
theorems of Sections 4~6 together with the information of Section

7 to get purely group theoretic results.

4. Homology and cohomology dimension

4.1 Flat and projective dimensions of modules. Let A be an

arbitrary ring with non-trivial unit aund let C be a left A-module.
Recall that a resolution ...> Ki - Ki_1+ vee Ko -+ C 1s said to be

of length n, if Kr =0 for all r > n.

Proposition 4.1 a) The following statements are equivalent

for a left module C and an integer n 2 O:

(i) If Q-1 * Qy *eemQy > C is the beginning of a flat
resolution, them K = ker (Qn_l'+ Qn-Z) is flat (interpret Q; = o
and Q_2 = 0).

(ii) C admits a flat resolution of length n,

(iii) TofL(B,C) = 0 for all(right) A-modules B and all

k >n,
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A .
(iv) Torys) (B,C) = 0 for all (right) A-modules B,

) ’I‘or.'[:1 (-,C) 1is a left exact functor,

Proof. (i) = (ii) = (iii) = (iv) is trivial. (iv) = (v)
follows from the long exact Tor-sequence in the first argument.
(v) =(i): Let B'>» B be a monomorphism of A -modules.
Then one has the following commutative diagram with exact rows

(n21)

A [} [} 1
0 +Torn(B » O)—~B' K~ 3B 8 Q.

{ { )

A
0 -+ Torn(B, c)— B @AK — B' QAQn-l ,

the left vertical map is a monomorphism by (v), the right vertical
map as Qn-l is flat. It follows that the middle vertical map is

monomorphic, hence K is flat. The case n =0 1is obvious.[

Definition. For every A-module C, the minimum integer =n 2 0
with the property that C and n satisfy either of the equivalent
conditions (i) - (v) of Prop. 1.1 a) is said to be the flat dimension
of C and written fl.dimAC a n, If no such integer exists we write

’fl.dinhC a o,

Proposition 4.1 b). The following are equivalent for an

integer n 2 O:

(i) If P *...> Py >~ C (= P_,) is part of a

n-2

projective resolution, then K = ker(Pn_l +> Pn—2) is

projective,
(ii) There is a projective resolution of length n,

0+P >P _; ».. P =G,
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(1ii) Exr{ (C,A) = 0 for all (left) A-modules A and all
k > n,

. n+l

(iv) Exr“ (C,bA) = 0 for all (left) A-modules A,

) Ext: (C,=) 1is a right exact functor.

Proof. (1) = (ii)= ({ii)= (iv) is obvious. (iv) = (v)
follows from the long exact Ext—sequence in the second argument
(v) =(i): Let A ++ A" be an epimorphism of A -modules.

Then one has the commutative diagram with exact rows (n 2 1)

Hom , (B__;, &) ~ Hom (K,A) » Ext'(C, A) + 0
+ + +

Hom , (P__;, A") + Hom (K,A") + Ext’(C,A") + 0 .

The left hand side vertical map is an epimorphism since Pn-l is
projective, the right hand side map by (v). It follows that the
middle vertical map is epimorphic, hence K 1is projective. The

case n =0 is obvious. [

Definition. For every A-module C, the minimum integer
n 2 0 with the property that C and n satisfy either of the
equivalent conditions (i) - (v) of Prop 1.1 b) is said to be the

projective dimension of C and written pr.dinhc = n, If no

such integer exists we write pr.dimAC = @

Remarks. 1) Proposition 4.1 b) together with Proposition 1.5
shows that if C 1is of type (FP)n and pr.dimAC =n, n < o, then

there is a projective resolution

+ ...+ P -~ C

0+Pn+Pn-1 (o}
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which is both finitely generated and of finite length. Such a
resolution is said to be finite., If a module C has a finite
projective resolution we say that C is of type (FP). Thus C
is of type (FP) if and only if C is of type (FP)_ and of finite
projective dimension. _
Warning. If C is of type (FP) it is in gemneral not
possible to find a finite free resolution. This contrasts the
fact that every module of type (FP) admits a finitely generated

free resolution.

4,2, Direct limits Direct limits of flat modules are
flat. The situation is somewhat more difficult but not too bad

for the direct limit of projective modules.

Lemma 4.2. Let (P , g ¢ I} be a countable direct system
- a

of projective p-modules. Then the direct limit P = lim P is of
->

projective dimension S 1.

Proof.. Since I 1is countable we can pick a epfinal

sequence { Sk} e I with lim PS = P, i.e., one can assume that
> k
k

P 1is the direct limit of a diagram of the form

A1 Az_ Ak
Pl —_ PZ_, P3 > PA.>... _,Pk — Pk+1""'

with Pi projective for all i 21, Then one has an exact sequence

ei{ki-IdPi }

(%) @ —> ?Pi»P
1 1
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The map ${Ai - Idp} is obviously a monomorphism since the
i S1

component of lowest degree of an element a € @ P is preserved.

Thus (%) 1is a projective resolution of P. [

Remark. See B. Osofsky [u45 1 for the following
generalization of Lemma 4.2, If the directed set I has cardinality
1| = ?!n, then P 1is of projective dimension < n+l. Moreover

this bound is best possible.

Theorem 4.3. LetA{Ci, i € I} be a direct system of
A -modules. Then one has

(a) fl.dlm.A (lim Ci) S sup {fl.dlmACi} '
Moreover, if I 1is countable, then

(b) pr.dimA(ljim C;) s sup {pr.dimA C;} + L.

Proof. For every 1 ¢ 1 we construct a free A-resolution

(1)-» Ci as follows:

£
(1)

Ci and €; ¢ FO

Fél) is the free A-module over the set

> Ci the obvious epimorphism; then Ffl) is the
free A-module on the set K{l) = ker £, and d(l) : F(1)+ F(l)

i 1 1 0
the homomorphism F{l) > K{l) > Fél), and so on. This choice

of the resolutions enables one to lift homomorphisms £: Ci > Cj
in a canonical way to maps of resolutions f£: Efl)* EfJ): if

£ _.: F(;ZI - F(J) is already constructed then restrict it to

n-1" n-1
(1), (3 . .
the kermels K A K a and thls’regarded as a map on the basis,

induces fn: F(:)* F(i). Thus we get a direct system of free
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resolutions
e N (1) _ F(l) > ... > ng) —» c,
@
n

Taking the direct limit preserves exactness and moreover,

F = lim F(l) is the free A-module on K_ = 1lim K(lz So
n . n n n

i+ i

we obtain a free resolution

\V 4

.—> F —>F . > F, —> limC,

n n~1 o
N
Kn

Now, suppose supl{fl.dinhci} = n. Then, by Proposition
(i) (1)

1.1 a), K n is flat for all i and hence so is Kn = 1lim K .

i+
i.e., fl.dim (1im C;) s n. On the other hand, if sup{pr.dimTACi}- ™
(i ) (1)

is projective for all i and hence K = lim K is
i+

then K

of projective dimensgion < 1 by Lemma 4.2, provided I 1is countable.

This implies that pr.din’\ (1im C;) < m+l. O

4.3, Connections between the flat and the projective dimensions.

A A-module C 1is said to be countably presented if there is a short
exact sequence of A -modules K » F -+ C whefe F 1is free and both F
and K generated by a countable set of elements.

The connection between the flat and projective dimension relies
on the trivial fact that projective modules are flat and the following

partial converse
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Lemma 4.4 (a) Every finitely presented flat module is
projective.
(b) Every countably presented flat module is of projective

dimension s 1.

Proof. (b) Consider a countably presented flat module C
given by a countable set of generators 815 €9sen- and a countable
set of defining linear relations among those, fl, f2’ f3,.... By
a result of Daniel Laz;rd [39] every flat module is the direct limit

of finitely generated free modules Fk; thus C = lim Fk where K
K:

is a directed set; W Fk +> C.

For every positive integer j let m; = max{ i fj' involves
e; for some j'<$3j}. Now, for each j > 1 there is an element
k(j) € K such that firstly there are elements E; € Fie(qy with
uk(j)(:i) = e; for all is ms s and secondly fj! (Eil,...,‘éin_)- 0
for all j* s j (i.e. the relations fj! are satisfied-already in
Fk(j)' It follows that C is a direct summand of liFFk(j)’ which is a

direct limit over a countable system of free modules, whence (b) by Lemma 4.2,

(a) Now, in addition, let C be finitely presented. Then
we can find a finite projective resolution P1>£ Py >> C. Let Pz
denote the dual module of P, (cf. Section 3.1), i = 1,2. These
are right A-modules and hence we get an induced right A-module

structure on the cokermel

P* *++ 1
-> =
o P1 D, D ExtA(CA).
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. :
The patural homomorphisms ¢: P, A + H.omA (Pi, A) and

%
* *
¥: B d,\Ei +> HomA (Pi » B) yield commtative diagrams

* *
Po QAA — Pl oAA — D QAA—> 0
¢ 4 ot ¢

HomA (PO,A)--* HomA (Pl, A) - Ex"nl (C,A)— 0,

APy
¢ by Ly

0 + Hom (D, B)—» Hom, (P}, B)— Hom, (P , B),

A
0 "Torl(B, C)— B ® P — B %PO

for every left A-module A and right. Amodule B. Since P, and

Pl are finitely generated projective modules ¢ and ¢ are

isomorphisms, whence
D e A =Ext! (C, &), Tor (B, C) = Hom (D, B)
A A 9 ’ 1 b} ﬂ H .

Now, as C 1is flat, Houh (D,B)= 0 for all B. In particular
HomA (D,D) = 0 and hence D = 0. This in turn implies Ext:' (C,A) =0

for all A and hence C 1is projective. []

Corollary 4.5. Let A be an arbitvary ring with unit and
let C be a A-module. Then the following holds:
(a) fl.dimAC s pr.dimAC .

(b) If € has a resolution by countably generated free

A -modules, then pr.dinhC S fl.dimAC + 1.

(¢) If C 1is of type (FP)_ then pr.dimAC = fl.dimAC.
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Proof (a) is trivial. For (b) notice that the kernmels in a
countably generated free resolution are countably presented. Thus
if one of those kernels is flat, then the next higher ome is
projective. And for (c) notice that the kernels in a finitely

generated: free resolution are finitely presented.

4.4. The group ring case. We now come back to the group ring

case. Let R be a commutative ring with unit and let G be a group.
The flat dimension of R as an RG module with trivial G-action is

called the homology dimension of G over R and denoted by hdyG.

The projective dimension of R, again as an RG-module with trivial

G-action, is called the cohomology dimension of G over R and

denoted by cdRG.

The above results on flat and projective dimensions yield

immediately

Theorem 4.6. Let G be a group; then the following holds:
(a) hdRG s cdRQ.
(b) If G 1is countable then cdRG s hdRQ + 1.

(c) If G 1is of type (FP)O over R, then cdRG = hdRG.

Remark. R has a resolution by countably generated free
RG-modules if and only if G is a countable group. For if |G|= ?90,
then the bar-resolution is countably generated. Conversely, the

existence of a countably generated RG-resolution for R implies that
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the augmentation ideal % = ker (RG ~— R) 1is countably generated.
Let H be the subgroup generated by all elements of G involved in
a countable set of generators for g,; then H 1is countable and
RG.X, = U} (’(? the augmentation ideal of H). But R(G/H) = RG/RGf
= RG/qy ~ R, whence G = H.

In particular the existence of a countably generated RG-free
resolution for R 1is independent of the ring R. I do not know

whether the same holds for type (FP)_ over R.

Theorem 4.7. Let {Ga’ a € I} be a direct system of groups,
G = lim Ga' Then the following halds:

(a) hdG s sup {hdpG 1,

(b) if 1 1is countable then cdRG < sup {CdRGa} + 1,

Proof. Let gﬁc) be the bar-resolution of G and Kn(G) its
n-th kernel. Then g(G) x lim g(Ga) = lsp (RG GRGGE(GG)), and
Kn(G) = lim Kh(ca) = lim (RG @RGaKh(Ga)). Hence the assertian follows

from Theorem 4.3.

Praposition 4.8. Let {Ga’ a ¢ I} be a direct system of groups,

G = lé? Ga’ and let B be a right RG-module. Then the limiting

map yields a natural isomorphism

: N .
l_l;m Hn(G(l, B) -> Hn(Gr B)
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for all n e Z, where B 1is an un-module via the

canonical map 7w : G_ -+ G.
o a
Proof. Using the notation above one has
H (G;B)= H (B ® B(G)) = lim H (B o, (RG aRGa e N
= 113 Hn(B'sRGag(Ga)) = 113 Hn(Ga;B)'

Proposition 4.9. If S 1is a subgroup in G then

hdR S s hdR G and cdR S s cdR G.
This is an immediate consequence of the Shapiro Lemma
and shall be used without further reference. Notice that it

implies the following Corollary of Theorem 4.7.

Corollary 4.10(a) Every group G of finite homology

dimension over R contains a finitely generated subgroup S
with hdR S = hdR G.

(b) Every countable group: G of finite cohomology dimension

over R contains a finitely generated subgroup T with

cdR T < cdR G scdR T+ 1.

It is an almost untouched question to what extent the

homological dimensions of a group G depend upon the ring R.
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The only relevant result in this direction is the following easy
observation.
Let G be a group and let R be a commutative ring with

1 . We say that G has no R-torsian, if the order of every

element in G 1is either infinite or a unit in R. Thus G has

no Z-torsion if and only if G is torsion-free.

Proposition 4.11. 1If hdRG (or cdRG) is finite, then G

-

has no R-torsion.

Proof. Let S be a finite cyclic subgroup in G. Then
hd S is finite and hence Hy .,(S; R) = R/|S|R = 0 for

sufficiently large n, whence |S| is a unit in R.0O

Proposition 4.12 (a) cdRF =0 if and only if G is a
finite group with no R-torsion (i.e., |G| is a unit in R).
(b) hdpG =0 if and only if G is a locally finite group

with no R-torsion.

Proof. (a) If |G| is invertible, then the augmentation

map RG 5+ R has a splitting go: R+ RG, o(r) = I ¢ Z X) .
6} xeG
Conversely if € splits then RG contains G-invariant elements,

hence G 1is finite and (a) follows by Proposition 4.11.
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(b) Clearly if G 1is locally of cohomology dimension O
over R then hdRG = 0. Conversely, assume hdRG = 0 and
let S be a finitely generated subgroup. Since S is
countable, we know cdRS s 1 by Theorem 4.6 (b). Since S

is finitely generated, this implies that S is of type (FP)

and hence cdRS = 1d S = 0 by Theorem 4.6 (e). O
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5. Normal subgroups and extensions

5.1 Projective and injective coefficients. The following easy

observation shows that knowledge of the homology of a group G with
injective coefficient modules or of the cohomology of G with
projective coefficient modules is mostly sufficient to compute

hdRQ or cdRQ respectively.

Proposition 5.1 (a) If cdRQ = n <o then there is a free
RG-module F with Hn(G; F) #0 (so F is =1L @RRG with L
a free R-module).

(b) 1If hdRQ = m <o then there is an injective module T
of the form I = HomR(RG, L), with L an injective R-module,

such that Hm(G; I) +# 0.

Proof. Since Hn(G, =) is right exact Hn(G; F) =0 for all
free modules F would imply that Hn(G,-) Z 0, hence (a). As to
(b), notice first that every RG-module B embeds in an RG-module

of the required form and apply the dual argument. [

With regard to this remark we shall now concentrate to give
more precise information on the cohomology with projective and
the homology with injective coefficients.

Let A be an arbitrary ring with unit 1 # 0, let A and K
be left A-modules and B a right A-module, and recall from

Section 3.1 that one has natural homomorphisms:
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(%) ¢: K* QAA - I-IomA (K, A) Y: B @AK - HomA (K*, B)
given by ¢(f ® a)(k) = £(k)a, (b ® k) (£) = bf(K), £ ¢ K,

ae€A, beB, keK.

Lemma 5.2 (a) If K is finitely presented and A f£flat
then ¢ is an isomorphism.
(b) If K 1is finitely presented and- B 1injective then ¥

is an isomorphism.

Proof. Let Pl - PO + K + 0 be an exact gsequence of
A-modules with PO, Pl finitely generated projective. By
naturality of ¢ and since A 1is flat, we get the following

commuting diagram with exact rows:

(Vg K* A — * * A
aA PO GAA — Pl @A
Lo by Lo

o+ HomA (K, A) — HomA (PO,A) — HomA (Pl,A) R

and the assertion (a) follows by the S5lemma. The proof of

(b) is dval.

Remark. There is a very useful variant of Lemma 5.2 (a):
It is straightforward that if A 1is projective then ¢ is always
monomorphic -~ and this is all we need to apply the 5-lemma.
Thus we have

(¢) If X is finitely generated and A projective, then

¢ is an isomorphism.
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Now we come back to the group ring case A= RG. Replacing
the module K in (%) by an RG-projective resolution P -~ R
yields complex homomorphisms and hence induced maps in homology
kep" - HkG G; B) » * B)
H (R QRGA) G; v, H (G; ) Hk(HomRG(L » Bl
These can be combined with the functorial homomorphisms
") o a > i H(H *, B) — Hom_.(H(2"): B)
a: H(R) ®-A (B oA, o' H (Homp (R, B) omp - (H™(E )»
and so we get natural homomorphisms
k. Kk k
¢ : H (G; RG) @RGA?H (G; A)
()

byt B (G3 B) > Homp (H'(G; R6), B)

for every left RG-module A and right RG-module B and all

keZ.

Proposition 5.3. Let G be a group of type (FP)n over

R. Then the following holds:
(a) If A 1is flat then ¢k is an isomorphism for all k < n-1.
(b) If A is projective then ¢k is an isomorphism for all
k € n.
(¢) If B 1is injective then wk is an isomorphism for all

k € n-1.

Proof., Let P >~ R be a projective resolution which is
finitely generated in dimensions < n, and let KS be the kernel of

Py ™ Ps.,. Then one has a commuting diagram with exact bottom row
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* * s .
Ps-l QRGA —_— Ks QRGA —+ H” (G; RG) eRGA +0
l ¢ l ¢ l ¢s

e - .
HomRG(PS'l’ A)— HomRG(KS’ A) — HY(G: A) 0

If A 1is flat, the top-row is exact as well and Lemma 5.2
(with Remark) yields the assertions (a) and (b). The proof of

(¢) is dual. O

5.2. Extensions. Let N be a normal subgroup in a group G
and let A and B be RG-modules. Recall that in this situation
the (co)homology groups Hk(N; A) Hk(N; B) have a natural RG-module
structure, which is imposed by the fact that the (co)homology functor
is "natural In the group variable'". For an easy explicit description
on the (co) chain level, take an RG-projective resolution P -+ R;

then the G-action is given by
-1 -1
(xf)(p) = xf(x p) , (be®p)x = bx @ x 'p,

f e HomRN(£9 A, peB, beB, x eG. (According to our convention
we think of Hk(N; A) as left G-modules and of Hk(N; B) as Ei§££
G-modules) .

Next we consider Hk(N; RN). This is a right RN-module by
right multiplication in RN. Explicitly (£f.n)(p) = f(p)n for all
f e HomRN(g, RN), p € B, n € N. This can also be interpreted as
(f.n)(p) = n-lf(np)n, and in this form, the N action can be

extended to a G-action, provided P ** R 1is actually an RG-projective
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resolution:
-1
(£-x)(p) = x "f(xp)x,

f e HomRNQ’_, BN), p ¢ B, x ¢ G. Of course one has to check
. -1
that f.-x is again an RN-homomorphism: (f.x){np) = x ~f(xnp)x

= x—lf(xnxcl. Xp)x = nx—lf(xp)x = n(fx) (p).

Proposition 5.4, With respect to the G-actions above the

homomorphisms
¢k:Hk(N; RN) @RNA > Hk(N; A)
4 K
Wy s H (N5 B) - Homp (H™(N; RN), B)

are G-module homomorphisms (diagonal action on - &, _~ and on

RN
HomRN(-’-) ).

Proof. Let P** R be an RG-projective resolution, and
let x e G, £ € HomRN(g, RN), a € A. Then one has for every
P ek

S(x(f ® 2)) (p) = 6(fx ‘® xa)(p) = (£x 1) (p)xa

xf(x-lp)x-l-xa = xf(x-lp)a

x[6(f ® a) (x 'p)] = [x.6(f ® a)1(p).

hence ¢(x(f ® a)) = x¢(f ® a). As to ka, let pe¢P, xeG

and b € B; then one has for every f ¢ HomRN(li_, RN)
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v((b ® p)x) (E) = y(bx ® x Lp)(£) = bx £(x 1p)
= bx f(x-lp)x-{ x =b (fx-l))p).x
= y(b ® p)(fx-l).x = [y(b ® p)x](f) ,

hence y((b @ p)x) = y(b ® p)x and the proposition is proved.[

Let N » G -~ Q be a short exact sequence of groups. The
(co)homology of N, G and Q 1is linked together by the Lyndon~

Hochschild-Serre (LHS) spectral sequences
+
H Q3 B (N; B)) =H , (G B), B°(Q; HIN; ») =87%6; ),

for arbitrary RG-modules A and B. It follows immediately that

one has always
hdRG < hdRN + hdRQ and cdRG < cdRN + cdRQ.

We shall find a large number of examples where these inequalities
are strict - but in many interesting cases they are actually

equalities.

Theorem 5.5. (Feldman [27]). Let N »»G »+ Q be a short
exact sequence of groups. Assume that N 1is of type (FP) over R

and that Hn(N; RN) 1s R-free for n = cdRN (= hdRﬂ). Then

(i) if cdRQ <@ then cdRG = cdRN + cdRQ

(ii) if hd,Q <= then hd,G = hd N + hd.Q.
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Proof. Let q = cdRQ, n= cdRN. By Proposition 5.1
there is a free RQ-module F =1L GRRQ (L a free R-module) with
H(Q; F) # 0. The LHS spectral sequence yields cdRG Sn+gq
and an isomorphism Hn+q(G; L GRRG) > Hq(Q; Hn(N; L @RRG). By
Proposition 5.3 HT(N; L & RG) = H™(N; RN) Opn(L 8RE), and by
Proposition 5.4 this is a Grisomorphism;if we take diagonal action
on the right hand side. By Lemma 5.6 below the right hand side,
in turn, is isomorphic to (Bn(N; RN) GRL)GRRQ with single
G-action. Since Hn(N; RN) is R~free the latter contains F
as a direct summand. It follows Hn+q(G; L GRRG) # 0, whence
cdRG = n + q. The proof of (ii) is precisely the dual and urgently
recommended as an exercise. [

It remains to prove

Lemma 5.6. Let G be a group N be a normal subgroup and

C a right RG-module. Then one has natural RG-module isomorphisms

£ ~ ¥ N
u: C e R(G/N) =+ C @RNRG,

4 ~ ¢

where the G-action is understood as indicated by the arrows
(single action on the left and diagonal action on the right hand

side).

Proof. u 1is defined by u(c ® xN) = cx ® x-1

, ¢ € c,

X € G. It is easy to see that this is well defined and a
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G-homomorphism. The inverse of u 1is given by ucl(c ® x)=
cx ® x-lN. Analogously v is defined by v(f)(x) = £(xN)x,
xeG, fe¢ HomR(R(G/N), C) and its inverse v-l(h)(xN) = h(x)x-l,
xeG, he HomRN(RG,C).D

Lemma 5.6 should be compared with Lemma 2.9. The isomorphisms
u, v in both statements coincide (the fact that one of the modules
in Lemma 2.9 is a left module is irrelevant). The actioﬁ of G
described in Lemma 5.6, however, is only defined for EEEEéi
subgroups N, whereas the action in Lemma 2.9 is available for

arbitrary subgroups H < G.

Remarks. 1) The statements of Theorem 5.5 are definitely
false without the assumption that N be of type (FP) (e.g. G free
of rank 2 and N = [G,G]). However, one can show tﬁat "type (FP)"
can be replaced by the much weaker condition that there is a
projective resolution P2 -+ R which is merely finitely generated
in the top dimension n = cdRN. For details cf.[ 6 ] and [59 ].

2) By a result of Swan's (0], Hl(N; RN) is R~-free for every
finitely generated group N. Thus all assumptions are fulfilled
if N is a finitely generated group with cdky s 1. Exercige:
Prove that the statements (i) and (ii) of Theorem 5.5 hold if N
is of type (FP) over R and Q 1is finitely generated with

cdQ S 1 (vithout assuming that H°(N; RN) is R-free).



73

5.3 Subgroups of finite index Let G be an arbitrary group

and S <G a subgroup of finite index |G:S| = d. For every

(left) RG-module K one has a natural isomorphism
v HomRs(K, RS) - HomRG(K, RG)
d

. -1
given by v(£f) (k) aizl T, f(rik), where 1 = Tys Tgy TasesesTy
is a right transversal for G mod S. Obviously v does not depend
upon the choice of this transversal, and v 1is an S-module
homomorphism. Moreover, if S 1is normal in G, then HomRS(K, RS)

is a G-module (diagonal action on K and RS (conjugation), and v

is a G-homomorphism. Indeed, we have for X ¢ G and f ¢ HomRs(K, RS)

v(fx) (k) = Eri-l(fx)(rik) = nglx-lf(xrik)x

= v(f)(K)x = (v(f)x)(k)

for all k € K, 1i.e., v(fx) = v(f)x.

We claim that v 1is actually an isomorphism. To see this
notice that the group ring, considered as an RS-module, has a
canonical direct sum decomposition RG= RS ® R[G-S1, where R[G-S]
is the RS-submodule freely generated, as an R-module, by all
elements x € G X € S. Combing the restriction map with the

projection onto the direct summand RS yields a map
o HomRG(K, RG) -+ HomRs(K, RG) + HomRs(K, RS),
o(£) = £, where £(k) = Jr;'£, (), k ¢ K.  Now, motice that
1
) -1 .
f(rjk) = rf(0) = erri £;(k) implies £.(k) = £ (r;k), hence

-1
f(k) = § r; £ (r.k) ,
i 11
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i.e. vo0 = Id. dGov 1is straightforward, hence o= v-l.

Replacing the module K by an RG-projective resolution

B+ R yields

Proposition 5.7. Let G be a group and S a subgroup of

finite index in G. Then there is a canonical isomorphism of
right RS-modules v: Hk(S; RS) :Hk(G; RG), for all k ¢Z. If

S is normal in G then v is an RG-module isomorphism.

Next we recall some notation. Let G be a group S <G
a subgroup, M and A left RG-modules and B a right RG-module.

The usual restriction maps are demoted by

res: HomRG(M, A) + HmnRS(M, A) cor: B oRsM + B @RGM

Replacing M by an RG-projective resolution yields the restriction

homomorphisms in (co)homology
res : HS(G; A) + HE(S; A) cor : H_(S; B) + H, (G; B)
. ’ ? % . H-k t] H-k s »

Furthermore, if S is of finite index in G one has the transfer

maps

cor: HomRS(M, A) > HomRG(M, A) res: B QRGM + B QRSM

-1 -1
given by cor(f) (m) = Z . f(rim), res(b ® m) 82 bri @rim )
feHomRs(M, A), m € M, b € B, where 1-=r1, TyseresTy is a

right transversal for G mod S. Replacing M by an RG-projective
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resolution 2-»R yields the transfer homomorphisms in

(co)homology

cor*: Hk(S; A) ~ Hk(G; A) res,: Hk(G; B) -+ Hk(S; B).

Theorem 5.8. Let G be a group and S a subgroup of
finite index. For fixed k ¢ Z let C denote the right
RG-module Hk(G; RG) and identify Hk(S; BS) with C wvia v.

Then one has the following four commutative squares

res cor

CopA — c aRSAé H(S; B) — *H (G; B)
] | i¢ ¥ l l b

k k
H (G; A) — H™(S; A) C, B)D— H c,
. '_ Homps omee(Cs B)
res " cor
i cor res,
Coph — C oA B, (G; B) —  H(S; B)

s+ Lo v} 1w

k k
H (S; A) —* H (G; A) Ho! (C, B) — Ho (C, B)
cor “xe res “rs

Proof,a) To prove commutativity of the top left square,
we have to show that ¢ (v-1 GRSA) o TES = res*° $. Let
c®aceC ®pct and let f € HomRG(;, RG) be a cocycle representing

¢. Then v-l(f) = fl’ where £(p) =Z fi(P)ri’ p € B. Now,
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-1
res (E®a)(p) = 2 f(p)r.l ® r;a
1

1 -1
- .fj(p)rjri ®r.a,
1,]

and hence

(\r-1 8 cA) Tes (f ®a) = Z' fj ® rja‘.
]

It follows that ¢_(\r-1 QRSA) res (f ® a)(p) -E fj (p)rja
= f(p)a for all p ¢ P, whence the assertion.
b) To prove commutativity of the top right square, one
has to show that coroﬂom.Rs(v-l,B),w = Yocor,. For every
f e Hom.RG(g, RG) we put f£(q) -2 fi(q)ri, q ¢ . Then
f(q)rJT1 = Efi(q)rirgl, hence v-l(frgl) - fj’ It follows for

b@pe}_eisz_

cor(Hom(v-l,B)w(b ® p)(f) = Z Hom(v-l,B)\o(b ® p) (fr.';]')r:i
i

= [v(> @ p) (£))r;
=lb £, = bE@),
whence the assertion.

¢) To prove commutativity of the bottom left square, let

f e Hom.Rs(g., RS), a € A. Then one has for all p ¢ P

cor o(f ® a)(p) =Y r;o(f ® a) (rzlp)
-1
= E rif(ri Pla

= vy(f)(p)a = ¢(cor(v(f) & a))
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whence the assertion
d) Finally, to prove commtativity of the bottom right

square, let b ®p € B QRGZ' Then one has for all f ¢ Hom.Rs(L RS)
#(res, (b ® p)) () = w(Jbr;'® r,p) (£)

=y brglf(rip) = bv(£) (p)
= res P(b @ p) (v(f)),

whence the assertion. This completes the proof of Theorem 5.8. []

5.4 Serre's Theorem. The following preliminary remark is a

slight generalization of Proposition 5.7.

Proposition 5.9. Let S be a subgroup of finite index in

a group G. Then one hag for all k ¢ Z and all R-modules L

() HG; L aRe) = HY(S; L RS,
(ii) H (G; Hom(RG, L)) = H, (S; Hom (RS, L)).

Proof. Hk(S, L GRRS) Hk(G; Hom.RS(RG, L &RRS))

Hk(G; L @RRS) @RSRG), by Lemma 2.6,

k
=H (G L QRRG).

This proves (i); the proof of (ii) is dual, 00

Propositions 5.1 and 5.9 imply immediately,
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Corollary 5.10., Let S be a subgroup of finite index in a

group G. Then one has
(i) if cdRG < ® then cdRS = cdRG
(ii) if hdRQ <» then hdRS = hdRG

Theorem 5.11, (Serre [ 52]).Let S be a subgroup of

finite index in a group G. If G has no R-torsion then

cdRS = cdRG.

By Corollary 5.10 all that is left to show is that cdRS <

implies cdRG. < = , Moreover, since every subgroup of finite index
in G contains a normal subgroup of G with finite index, it
suffices to prove Theorem 5.l11. for a normal subgroup S. Finally,

the following Lemma allows a further technical simplification.

Lemma 5,12, If a module A has a projective resolution of

length n 2 1, then A has also a free resolution of length n.

Proof. By induction on n it is clear that it suffices

to prove the Lemma for n = 1, Let O + P 3 P. <+ A bea

1 0
projective resolution for A. Let Q be a projective module such
dold ce® 0
that P1 ® Q1 is free; then 0 -+ P1 P Ql-—-> Po 9 Ql-—*+ A 1is

a projective resolution which is free in dimension 1. 1If we manage to
find a free module Q0 such that (P0 ® Ql) ® Q0 is, free then

o - P1 ® Q1 ® Qo - PO ® Qlo Qo ++ A 1is the required free resolution,
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and we are done. To find such a free complement Qo we use
Eilenberg's "projective module swindle". Let P be a projective
module then there is a module P' such that P @ P' = BP' @ P

is free. Now

(PoP')P@(PopP)e... =Pe (PoP)e (PP ®P) @...

ie, the infinite sum (P' @ P) @ (P' @ P) ®@... 1is a free

complement for P. [

Proof (of Theorem 5.11). Assume S<G, [G/S| =d < =
and let F + R be an RS-free resolution. Let E be the

d-fold tensor product of F
E = Lo Eo%... o L.

E ~ R 1is an R[SxSx..,xS]-free resolution. We shall now define
a G-action on E which is compatible with the differential.

Choose coset representatives x; so that G = uxiS. If geG,

let g 'x. =% h ', h e and define
S A v,

g(p1 ® Py 8...G'pd) = (-1? hv P, ® ...h_p

1 1 Ya V4
Py € Pik, k=1,2,...,d, where a = Z iris with summation over
all pairs r < s with v, > Vg This extends uniquely to an

R-automorphism of E. We leave it as an exercise to verify that
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we have defined a genuine action of G on E which is compatible
with the differentials (for details see [ 181 ).

We shall now show that E 1is RG-projective. For this we can
forget about the differential in E and regard it as a free RS-

module. Let {b } . be an RS-basis for E. Then { hb _},heS oed

is an R-basis, and so E has an R-basis consisting of all elements

G permutes the R-modules Rw and hence E 1is isomorphic, as
an RG-module, to the direct sum eRGwi for some basia elements
.. Thus it is sufficient to show that all cyclic modules of the
form RGw are RG-projective.
Let Kwi{xeclxw = g¥, § = t1}. Then K, isa
subgroup of G and we claim that Rrn S8 = 1. Indeed for h ¢ S
-1 -1 -1 . -1 . .
one has h x; xi(xi hxi) with x; hxi € S since § is
normal in G. So

hw = ¢ h(hlbolahzbozo...oh dboa) £ (x] LML R hxdhdboa)

# £fyg unless h=1,

Therefore Kws G/S, i.e., K, is a finite subgroup of G. Let
m = K, |; then m is a unit in R and hence one can define an

RG-homomorphism p: RGw + RG by

' =1
o{Aw) = x(elk1+ 92k2+...+gm km).
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where kl’kz""’km are all elements in Kw wvith kiw = gw.
It is easily checked that p splits the projection RG ++ RGw.
Thus RGw 1is a direct summand of RG and hence projective.

It follows that if F ++ R was an RS-free resolution of
finite length < n then E ++ R is an RG-projective resolution

of length < n-d.O

Theorem 5.13. Let S be a subgroup of finite index in a

group G. If G has no R-torsion then hdRG = hdRS.

Proof. B} Corollary 5.10,'a11. that is left to show is that
hd S <= implies hdRG <o ., Notice that if G happens to be
countable, this follows from Theorem 4.6 together with Theorem 5.11.
In the general case we can argue as follows: we take an RS-resolution
of the form

£ 0+Fn+Fn_1+...+F +— R

where the RS-modules Fi are free for i = 0,1,...,n-1 and Fn
is flat. Then we take the d = |G:S| -fold tensor-product
E = E &F &;... 8L and give it the same RG-structure as in the
proof of Theorem 5.11. It is easy to see that F splits over R,
so that E is exact. We have to show that E is RG-flat.

By D. Lazard's result[ 39 ] F is the direct limit of

(finitely generated) free modules Fz . Thus for each a we get a

(in general not exact) complex of free RS-modules



82

a

F*: o+F*+ F_ . +F .+ ...~ F. -+ R.
it n n-

1 n-2 0

We conmstruct the d-fold tensor-product g" = f‘_a GRE_ao... & E_a

with the same RG-structure as above. Notice that the canonical
a

maps g=°‘ + E are RG-homomorphisms, so that we find

. a . Q Qo Qo
lim E = 1lig (F @ ®. ... &F )
i& 3 e ®r R

= lig Eerfeo...o")

(a,By 2ee,w)
= £8REQR“.QRE = E

Now, the proof of Theorem 5.11 shows that l!;a is RG-projective,

therefore E = lim g: is RG-flat.O
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6. Amalgamated products and HNN-extensions

6.1 General results The first result follows readily from

the Mayer-Vietoris sequences (Theorem 2.10).

Proposition 6.1 Let G = Gl*SGZ be the free product of

two groups Gl’GZ with amalgamated subgroup S, and let

n = max(cngl,cdRQZ) and m = max(hd hdRQZ). Then one has

RGL ’

n < cdRQ <$n+l, m< hdR < m+l.

Moreover cdRG = n+l implies cdRG1 = cdRG2 = cdRS = n and

hdRG = m+l implies hdRG1 = hdRG2 = hdRQ = m.
Notice that the converse of the last statement is false.

It is easy to construct a non~trivial amalgamated product

G= GI*SGZ where cdRG = cdRG1 = cdRG2 -’cdRS =n or

hdRG = hd.RQ1 = hdRG2 = hdRS =m (e.g. G1 and G2 free of rank 2

and S an infinite cyclic free factor). Analogously, the Mayer-

Vietoris sequences for HNN-groups (Theorem 2.12) yields

Proposition 6.12 Let G = G be the HNN-group over the

1*5,0‘
base group G, and with associated subgroups {s,®(s) }. 1If

cdRG1 = n and hdRG1 = m, then one has

n < cdRG < n+l, m < hdRG < m+l,

Moreover cdRQ = n+l implies cdRG1 = cdRS =n and hdRG = m+l

implies hdRG1 = hdRS = m.
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Again, the converse of the last statement is false:

e.g. Gl = <x,y >, S =<x > og(x) = vy,

6.2 The finite index case I: Amalgamated products. Here

we examine the situation of Proposition 6.1 when S has finite

index in Gl and GZ'

Theorem 6.3 Let G = Gl*SGZ be the free product of G1

and G, with amalgamated subgroup S of finite index # 1 in

both G1 and GZ' Assume that S (and hence GI’GZ’ and G) is

of type (FP)n. Then, for every k <n, the map
% -res*): HE(G. Koo . LI
(res*, -res*): H (Gl’ RG) ® H (GZ’ RG) + H(S; RG)

is an R-split monomorphism. Its cokernel is trivial if and only

if ak(cl; RG) = uk(cz; RG) = H5(S; RG) = O.

Proof. Let C = Hk(S; RS) and identify this with Hk(Gl; RG.)

1
and Hk(GZ; RGZ) via the canonical map of Proposition 5.7. By

Theorem 5.8 ome then has a commtative diagram

(res, -res) C s _RG

(COGRG)Q(C RS

RG)
RG, G

@RZ
lq&eq& l¢

1%(G,; RG) @ HS(G,; RG) ——>  HS(S; RO)
1 2
(res*,-res*)

‘a

by Proposition 5.3 the vertical maps are isomorphisms.
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Let Ii denote a right transversal of Gj mod S, with
1 € Ii There is a natural isomorphism u: CQRHRG* c QRR(G/H)
for every subgroup H < G, given by u(c® x) = cx ® Hx, c € G,

X € G.

As amap C QRR(G/GJ.) + C QRR(G/S) the transfer is now
given by
-1 -1
ures u (co® ij) = ures (cx @ x)

= u( ) cx-lr-10 rx)

ce C, x € G. So we have to consider the map

T: R(G/Gj) + R(G/S),

given by T(G.x) =0.x, X € G, where 0, = 2 Sr. Notice that
] ] r el

this is obviously a monomorphism. Now, Proposition 6.3 follows

readily from

Lemma 6.4, Let G = G]_mSG2 be an amalgamated product with

amalgamated subgroup of finite index # 1 in both factors ¢,

and GZ' Then the map

(t, =T): R(G/Gl) @ R(G/GZ) -+ R(G/S)

is an R-split monomorphism, but not an epimorphism.
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Proof We use the following notation: letters a,a',a",...

shall always denote elements # 1 in I ,b,b',b",... elements ¥ 1

‘L'
in PZ. Recall that the words of the form w = ba'b‘'a"...

represent the right cosets # G, of G mod G,. Let L(w) be the

1 1
length of w. An element a ¢ R(G/Gl) is a finite sum
a = Emaclba'b'a"... with coefficients in R. Its image

t(a) € R(G/S) is of the form

(o) = LmShbab'...+ !] mSaba'b'... .
a

We have divided the sum into two parts according to whether the

first letter to the right of wS 1is in Pl or in PZ'

denote the maximum length of words occurring in «, and let Gy

Let 2(a)

be a term in o with 2(w) = L£(a). Then there is a term Saw in

the second part of t(a) with fL(aw) = L(a) + 1.

If we now assume that t(a) = t(B) for some B ¢ R(G/GZ),
the term Saw must occur in the "first part" of t(B), i.e.

Gzaw must occur in B and thus 2(B) 2 Ai(a) + 1. But the
situation is entirely symmetric in « and B , so that

2(a) 2 2(B) +1 2 2(a) + 2, a contradiction. It follows that there

are no words of maximum length in a and B , i.e., a= O = B.

Thus TR(G/GI) n TR(G/GZ) = 0, hence (t, -t) is a monomorphism.

It remains to prove that I = TR(G/GI) + TR(G/GZ) has a
non-trivial R-complement in R(G/S). As G1 $# 54 G, we can

choose fixed representatives 1 # ae ry and 1#5b ¢ Ty-
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Let M denote the R-submodule of R(G/S) spanned by S and

all cosets of the form Saba'b'..., a ¥ a, or Shab'a'...,

b # b. The claim is that R(G/S) =I ® M. Now, every

element Ae I is of the form X = 01& + a,8, a,B € RG,

where the support of a consists of words bab'a'..., and the -
support of B consists of words aba'b'.... Considering an element
of maximum length in the union of the supports of a and B shows
a+g

that the support of A = ¢ 2 B contains either an element of

1
the form Saba'b'... or an element of the form S¥aba'.... In

particular A ¢ M unless A =0, i.e. I nM =0,

It remains to show that I + M = R(G/S). By induction on
the length of Sw € G/S we prove that Sw ¢ I + M for all w ¢ G.
By definition S € M. Now, let 2(Sw) 21, w of the form
aba'b'... or bab'a'.... If the initial letter of w is neither
; nor b then Swe M; otherwise

Sw = S 3aiw' = ohw' - Sw' - Z Saw',

1¥a¥d

say. By induction Sw' evI + M, and clearly olw' €1,

Saw' ¢ M for 1l #a$3. Thus Swe I+ M. 0

Remark. Notice that the cokernel M is a free R-module
of infinite rank unless |G135| = [6,: S| = 2, in which case

M =R.

Corollary 6.5. Let G = GI*SGZ be an amalgamated product
of groups of type (FP)_ over R, with amalgamated subgroup S of

finite index # 1 in both factors Gl and G2' Then the
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Mayer-Vietoris sequences (cf Thm.2.10) for RG-flat coefficient
modules A or RG-injective coefficient modules B, respectively,

decompose into short exact sequences

0 > (6,5 &) @ H (Gy; &) ~ HO(S; &) » H(G; A) 0

1;
0 +Hk+1(G; B) -»H.k(S; B)-+ Hk(Gl; B) QHk(GZ; B) -0

for all k € Z. Moreover,

one has cdRG = cd.RGi +1 (and hdRG = hdRGi + 1).

Proof. Theorem 6.3 asserts the existence of short exact

sequences

0 +ak<c1; RG) @ Hk(GZLRG) + 85(s; re) » BTG 3 RG) + O

for all k € Z. Applying the exact functors (- “®A) and

HomRG( -, B) respectively, and noticing that one has natural
isomorphisms such as e.g. Hk(S; RG) A = Hk(S; RS) Spgh = Hk(S; a)
and its dual Homy (H“(S, RG), B) = H,(S; B) (cf.Prop.5.3), yields
the required short exact sequences. If cdRS = n < =, then, by
Theorem 5.11, cdRG1 = cdRG2 = n, and we have the short exact

sequence
o+ Hn(Gl; RG) @ Hn(GZ; RG) - H°(S; RG) + B®*Y(e; RG) - O.

Identifying C = Hn (S; RS) with H" (Gi; RG) via the canonical

map v of Proposition 5.7 vyields the short exact sequence

0 + C @ (R(G/G,) ® R(G/G,)) + C ®.R(G/S) ~ H''1(6; RG) + O.
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Since S 1is of type (FP), C # 0; and since R(G/Gl)e R(G/Gz)

+ R(G/S) 1is a split monomorphism (Lemma 6.4) with non-trivial

cokernel, this implies Hn+1(G; RG) #0. O

6.3. The finite index case II: HNN-groups

Theorem 6.6. Let G = G].*S 5 be the HNN-group over the
base group Gy with associated subgroups S and T = g(S) both
of finite index in G. Assume that G (and hence S, T, and G)

is of type (FI’)n over R. Then, for every k < n, the map

* *
(res, - ¢ res*) : Hk(G RG) +Hk(S; RG)

S p T 13

is an R-split monomorphism. Its cokernel is trivial if and only
*

if Hk(Gl; RG) = Hk(S; RG) = 0. Hereby cp denotes the

isomorphism Hk(T; RG) —+ Hk(S; RG) induced by conjugation with

the stable letter p.

Proof. Let C be the right RGl-module Hk(Gl; RG]_) and

identify it wich Hk(S; RS) and Hk(T; RT) via the canonical map

¥  of Proposition 5.7. By Proposition 5.3 one has isomorphisms

k - K, o. -
H (G 3 RG) = C @RGLRG H(S; RG)= C @pRG ,
* *
and by Theorem 5.9 we know that resg and res, can be replaced

by the corresponding transfer homomorphism in the tensor product.
*
The homomorphism c.p : Hk (T; RG) + Hk(S; RG) must be replaced by

the composite map



90

v lere X
. — .
cp. CQRIRG H (T; RT) QRIRG
Y ®p
P
k voRG
H™(S; RS)® RSRG - C QRSRG ,

. . -1
yp being given by yp(f)(d) = p f(pd)p, f ¢ HomRI(£9 RT), d ¢ P,
where P -+~ R is an RG-projective resolution.
Let Pl and PZ be right transversals (both including 1) of

G, mod § and G1 mod T, respectively. Then the transfer

1
resg: (o eRglRG +C QRSRG is given by \
-1
ress(c ® x) = ] ca ®ax, ceC,xeG.
aePi

I have no nice description of (cp o resT): c QRGfu}’C GRSRG, but

one has obviously

) =1
c?o resT(c ® x) = z %G8 P bx, ceC, % ¢G,

bePZ

where e -+ éL defines an R—-automorphism for all b ¢ PZ'

is a
T

monomorphism. By the (right version of the) Normal Form Theorem

First we prove that the map A= resg = cp o res

for HNN-groups (§ 2.5), an element t ¢ C e RG 1is a finite sum
1

of the form ¢t = 2 d, ® w, where w runs through all elements in G
f the f Ly p 2 ¥ ith r. if > d
of the form p P Xye.p X wit] X € 1 if n, 0 an

x. € I, if n; <0 and with x; # 1 except possibly for i =r.

Now, let ress(t) = cpresT(t), i.e.,

(%) Yl o4 ale aw = 1) 4 ep-lbw .
w ael, v w bel v,b



91

_ n, =, n,
Let w= p P Xye..p X, be a word of maximum length

L(w) = 2|ni| in the support of t. If n; <O then the word

p-l w which occurs in the right hand side of (&) has length
\l(;)+ 1 and hence cannot cancel against anything else. It follows
that all elements of maximum length have o, > Of But in this case
W occurring on the left hand side camnot cancel there and cannot
cancel against an element of length %(w) in the right hand side

either, since all of those have n, < 0. It follows that there are

1

no elements of maximum length in the support of t, i.e., t = O.

Now, let I be the image of A = res, - cpores in C GkSRG'

S

We claim that I 1is a direct summand as an R-module. To see this

T

we distinguish two cases. First case: either § # Gl’ or T # Gl'
As the situation is symmetric we may-assume that S # G1 and pick a
fixed representative 1 # 3 ¢ Ty- Let M denote the R-submodule

of C &RSRG generated by all elements of the form ¢ @ aw, ¢ ¢ C,
n n n

~ T .

as$ae I, w= P XD "%y...p X O # n; e Z,1# x; € r, if

r 1

n, »0,1+# X, € PZ if n, < 0). Considering elements of maximal
length %(w) in the support of t = 2 c,® ve c QRclRG shows that
A (t) involves always a summand of t:e form c¢' ® ¥ w' which does
not cancel, whence I n M = Q. Next we use induction on A(w) to

prove that ¢ ® awce I + M for all ¢ € C, a ¢ T, w as above. By

definition c 8 aw ¢e M for a # 3, and one has

c®aw =A(ca @w) - ¥ caa t e aw + ) @ P-lbw.
a=3 bel
2
ael

1
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. -1
Notice that if b #1 or if n, <O then ¢ &p b welM;

If b=1 and n, > 0 then 9.(p-1bw) < 2(w), hence

¢, @ p-lbw € I +M by induction (the case 2(w) = O follows with
the same argument from ¢ ® 1 ¢ M). Thus ¢ sRSRG =71 @ M; and

clearly M # O, unless C = O. Second case: S =T = Gl' Then G

is the split extension of G1 by an infinite cycle generated by p.

The map 4A: C QRGlRG +.C QRG RG is given by A(c ® pn) =

c 8(l-p)p. = c @ PP -ce pn+1, ceC, neZ Let M be the

R-submodule of C QRG RG generated by c @ 1. Clearly I nM=20
1

and induction on n shows that ¢ @ pne I +M for all c € C and
n ¢ Z, whence C 8 cRG = I @ M. Notice that M ==C. This completes

the proof of Theorem 6.6. []

Remark Notice that the cokernel M 1is isomorphic to the

direct sum of 7(0 copies of C, unl2ss S = T = G, in which case

M =C.

Corollary 6.7. Let G = Gl*S,o be an HNN-group with base
group G1 of type (FP)Q over R, and with associated subgroups S
and T = 0(S) of finite index in G - Then the Mayer-Vietoris
sequences (cf.Thm.2.12) for RG-flat coefficient modules A or

RG-injective coefficient modules B, respectively, decompose into short

exact Sequences
0+ Hk(Gl; A »H5s; a) ~ w6 a) s 0

0~+H,,(G B) ~H(S;B) ~H(G; B) >0
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for all k ¢ Z. Moreover, one has

cd,G = cd G, + 1 (and hdRG=hdRG

R %1 + 1.

1

Proof. Strictly analogous to the proof of Corollary 6.5. (0

Exercise. Generalize Corollaries 6.5 and 6.7 to the

fundamental group of a finite graph of groups of type (FP) over R,

(ef.Section 7.1)
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7. Low dimensions and solvable groups

7.1. Cohomology dimension 1. We have seen that the groups G

with cdRQ = 0 are just all finite groups. without R-torsion. The
problem of classifying all groups G with cdRG €1 1is still open,
but it is solved in the torsion-free case by Stallings and Swan and

much is known in the general case.

Let G be a group. If G can be written as G = GyxgCys

G, £S5 4 GZ’ with IS[ < ® | then we say that G has an
a-decomposition. If G can be written as G = Gl*S.o’ again with

ISI < o , then we say that G has a B-decomposition. The fundamental

result which made the breakthrough possible was proved by Stallings

[55] in 1968. A slightly more general version of it is

Theorem 7.1 Let G be a finitely generated group with
Hl(G; RG) # 0. Then G has an a-decomposition or a

g-decomposition.

For a proof see e.g. [60]. A group G is called O-accessible
(or oB-indecomposable) if it has no a-decomposition and no
B-decomposition. G 1is called n-acceesible (n a positive integer)
if ¢ has an a-decomposition G = GI*SGZ or a B-decomposition
G = Gl*S,o with G» Gy (n-1)-accessible. The factors and base groups
occurring in an iterated aB-decomposition of G are called the

subfactors of G. Accessible means n-accessible for some u.
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Lemma 7.2. Every finitely generated torsion-free group is

accessible.

Proof. Since G is torsion-free both - and g-decompositions
are ordinary free product decompositions of G. Let d(G) be the
minimal number of generators of G. If G = Gl*GZ one has by
Gru¥ko's Theorem (see e.g. [18]) d(G) = d(Gl) + d(GZ), and

therefore d(G) is a bound for the number of free factors of G. []

It is an open question whether Lemma 7.2 holds without the
assumption that G 1is torsion-free. A very nice criterion for
accessibility of almost finitely presented groups has recently been

obtained by Bamford and Dunwoody [11]:

Theorem 7.3. Let G be an almost finitely presented group.
Then G 1is accessible if and only if Hl(G; ZG) is finitely generated

as a G-module.

Remark. Bamford-Dunwoody's proof of Theorem 7.3 does not apply
for arbitrary rings R. It would be interesting, in particular, to

know whether the result holds e.g. for R =Q. (See Appendix 7.)

For the main result it is convenient to introduce Serre's concept

of the fundamental group of a graph of groups. A graph of groups is a

graph 9} of the following kind. The set of vertices of 9} s V(Q}),

is a non-empty set of groups; and an edge between two vertices
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G,G"¢ V (q,) is a pair of isomorphic subgroups (S,S7),

¢cz2s =8" <G'.

1f q; is such a graph of groups, we choose a maximal tree
'j in g and denote by G(/J ) the tree product with respect
to ':f (= successive amalgamated products along J ). For every
edge of %-3 s G(J’) contains a pair of isomorphic subgroups,
so that we can extend G( 3’) by HNN-extensiona for each e of
0& -7 . One can show that the group G(QJ ) we obtain by doing so
does not depend upon the choice of the maximal tree ‘7 . G(g )

is called the fundamental group of the graph of groups 9}

Examgles
(s,K)
S H g GO = Grgul

2. 0] G@(s,om) , GO0 ) = Gug

The following Lemma is left as an exercise (use subgroup
theorems for a— and B-decompositions). Notice that by a finite

graph we mean a graph with a finite number of edges and vertices.

Lema 7.4 The following statements are equivalent for a
group G:

(i) G is accessible;

(ii) G 1is the fundamental group of a finite graph of groups

%[ with af-indecomposable vertices and finite edges.
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Moreover, if (i) and (ii) hold for G, then the vertices of
g, are precisely the of ~indecomposable subfactors of G which

are unique up to isomorphism.

Corollary 7.5. Let G be a finitely generated accessible
group. Then cdRG <1 if and only if G is the fundamental group
of a finite graph of groups whose vertices are finite groups without

R—-torsion.

Proof. If G 1is the fundamental group of a finite graph of
finite groups without R~torsion, then it follows readily from the

Mayer—-Vietoris sequences that cdRG < 1. Conversely, assume that G

is finitely generated with cdRG <1, and let K be an aB =
indecomposable subfactor of G. Clearly cdRK <1, and by (iterated

application of) Proposition 2.13 K 1is again finitely generated. Now,
assume cdRK = 1; as K is of type (FP) over R this implies
Hl(K; RK) # 0 which is a contradiction by Theorem 7.1. Therefore

cd X = 0, i.e., K 1is finite without R-torsion. Thus the corollary

follows from Lemma 7.4. (3

It follows, in particular, that if G is a finitely generated
torsion—-free group with cdRG <1 then G 1is the fundamental group
of a finite graph of groups with trivial vertices and hence G 1is

free. Swan [60] has extended this result to infinitely generated

groups, so that one has quite generally

Theorem 7.6 (Stallings [55] - Swan [60] ). Let G be a torsion-

free group. Then cdRG S1 3f and only if G is free.
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Remark One can show that a group G 1is the fundamental
group of a finite graph of finite groups if and only if G

contains a finitely generated free subgroup of finite index.

7.2, Cohomology dimension 2. The problem of classifying all

groups of cohomology dimension <2 is still wide open. The best

known examples are perhaps the groups with only one defining relation.

Theorem 7.7. Let G be a subgroup without R-torsion of a
l-relator group. Then cdRG <2,

Proof. (Sketch) Let G < G, where G, is a group with one
defining relator of length 4(r). As usual we make an induction
on 4(r). If &(r) =1 then G is free and the result is trivial.
So let 4(r) 2 2. Now, if r involves only one generator of Gl’
then G is (finite cyclic)#free and therrzesult is again obvious;.

otherwise G, can be embedded in a group of the form Gy = Gy <u>

D egms
which is a l-relator group with the property that one of its generators
(namely u) has zero exponent sum in the relation of G2 (see [42]p265).
It follows that G2 is an HNN-group over a base group G3 with free
associated subgroups F, o(F), whereby G3 is a l-relator group with
relator of length < 2(r). By the subgroup theorem for HNN-groups
(cf. [19al or [38] ) it follews that G is the fundamental group of
a graph of groups with vertices of the form G n G§ ‘ and edges of the
form G n FY. By induction cdR(G n G§ ) $2, and since the groups

G n 7 are free one can conclude from Chiswell's Mayer-Vietoris sequence

(177 that cdRG <2, O
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Notice that Theorem 7.7 contains Lyndon's result [407 that
torsion-free l-relator groups are of cohomology dimension < 2. A
further class of groups with cohomology dimension < 2 (over Z )
arises in Topology. Let k be a tame knot (= diffeomorphic image
of S1 in S3); the fundamental group G = vl( S3 - k) is called

"the group of the knot k''. One can show that G = Z if and only if

the knot is trivial (i.e. unknotable). Now, Papakyriakopulos [48]
has obtgined the very deep result that the space X = S3 -k 1is
aspherical (i.e., vi(X) = 0 for all i > 1) for every non~-trivial
knot k. Thus X 1is an Eilenberg-MacLane space; since X has

obviously the homotopy type of a compact 3-dimensional manifold with

non~-empty boundary this implies:

Theorem 7.8. If G 1is the fundamental group of a non-trivial

knot then cdG = 2.

Remarks. 1) It is conceivable but unknown that all knot
groups have actually a one relator presentation.
2) It should be mentioned that the class of all groups G
with ¢dG € 2 is very much larger than the class of all (subgroups of)
knot groups or one relator groups, due to the fact that it is closed
with respect to free products with free amalgamations. In fact, one
has simple examples such as the direct product of two non-Abelian free
groups which are of cohomology dimension 2 but are neither subgroups
of one relator groups nor of knot groups. Finally, notice that by Theorem

4.6(b) every countable locally free group has cohomology dimension < 2.
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7.3. Solvable and nilpotent groups. A solvable group G has

a finite series of subgroups

e =
G=G, =G & ...eG _;2G = 1

with Abelian quotient groups Ak = Gk-llck’ 1 sk sn. Let hk
be the torsion-free ramk of As h‘k = dimQ (A.k ® Q) and define the

Hirsch number hG to be the sum hG = h1 + h2 +o.. + hn' From
Schreier's refinement Theorem it follows readily that hG does not
depend upon the choice of the series, i.e., hG which is either a

non-negative integer or « ig an invariant of G.

Lemma 7.9. Every torsion-free solvable group G with finite

Hirsch number is countable.

Proof. In order to make an induction on hG we prove the

somewhat stronger result

(x) every solvable group G of finite Hirsch number without

non—-trivial periodic normal subgroups is countable.

If hG = 0, then G 1is periodic hence G = 1. So assume
0 <hG < =, Let A be ; maximal Abelian normal subgroup in G. The
torsion—-subgroup of A 1is characteristic in A and hence normal in
G and therefore trivial, i.e., A 1is torsion-free. As the automorphism
group of A embeds into GL(n,Q) with n = hA, we have a homomorphism
G * GL(n,Q ) whose image is certainly countable and whose kermel is the

centralizer C = CG(A). C contains A which is countable, hence it
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remains to prove that C/A 1is countable. Clearly h(C/A)s h(G/A)
< hGy thus by induction hypothesis it is sufficient to prove that

C/A contains no non~-trivial periodic normal subgroups.

Let X/A be the maximal periodic normal subgroup of C/A,
and let S/A be the 1last non-trivial term in the derived series of
K/A. Then A »S -+S/A is a central extension with S/A locally
finite and, therefore, by Schur's Theorem, [S,ST1 1is locally finite.
But [S,5] S A, hence [§,5] =1 and S is Abelian. Since S 1is
characteristic in K and K is characteristic in C and C is
normal in G, it follows that S 9 G, whence S = A by maximality of

A. This completes the proof.[

Theorem 7.10. Let G be a torsion—free solvable group.

Then one has

a) hdG = hG

b) hG S ¢dG S hG + 1.

We split the proof into different steps; the first ome being

Proposition 7.11. If G 1is a solvable group without R-torsion

then hdRG < hG.

Proof. Induction on hG = n., If n = 0, then G 1is locally

finite and hence hdRG = 0., So assume 10 =1, By Corollary 4.10

there is a finitely generated subgroup S S G with hdRS = hdRG = n,
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Consider the derived series
s = 5@ > gDy 55l L)

and let k be the least integer with the property that S(k)/S(k+1)

(k)

is infinite. Then § is of finite index in S and hence still

finitely generated, so that one can find a subgroup K < §,

S(k)b K¢t S(k+l), with S(k)/K = 7. By induction one has
(k) o ha(K) . - (k)
hdRS < hdRK +1 <hk + 1 hsS . Since hdRS hdRS by

Theorem 5.13 it follows hdRG = hdRS < hS < hé. [0

Proposition 7.12. Let G be a torsion~free nilpotent group

of finite Hirsh number hG = n < «., Then Hn(G; 7Z) is isomorphic
to a subgroup of the additive group of all rational numbers Q.
Moreover, Hn(G; Z) is cyclic if and only if G 1is finitely generated

(and hence polycyclic).

Proof. The upper central series of G has torsion-free quotients,

hence there is a refined central series

G = G0 > Gl LI Gn a1l

with all quotients Gk/Gk+1 torsion-free Abelian of rank 1. We
claim one has

(%) Hn(G; Z) = G/Gl ® Gl/GZ ® ... 9® Gn-l'
The proof goes by induction on n. If n=l, then G itself is a
subgroup of Q and Hl(G; Z)y = G. For n 2 2 we consider the

Lyndon-Hochschild-Serre (LHS) spectral sequence for Gn_ 4G G/Gn-l'

1
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The usual corner argument yields an isomorphism

H, (G

N

Hn(G; 7 = Hn_l(clcn_l;

?

Hpe1 (6/6h 15 Gpap)-

As Gn-l is central, its G-module structure is trivial, hence we

may apply the Universal Coefficients Theorem
B (GZ)=H _ (/6 _sZ)eG _, ,

and the induction hypothesis on G/G _, yields (). It follows

that B (G; Z) is cyclic if and only if G 1is polyeyelic. 0

Proposition 7.13. (U.Stammbach [571 ) Let G be a solvable

group of finite Hirsch number hG = n. Then there is a G-module A
whose underlying Abelian group is the additive group Q, with

Hn(G; A) = Q.

© , o1, @,

Proof. Consider the derived series G = G > G > G

b G(d)

- < p(i=1) (1) - -

1, and let Si G /G , hSi n . Let Li Hni(si;Q)
with G-module structure induced by conjugation. If Ti denotes the
torsion subgroup of Si then clearly Hk(si;Q) = Hk(si/'l‘i; Q =
Hk(si/Ti;Z) ®Q for all k e Z, so that it follows from Proposition
7.12 that the underlying Abelian group of Li is = Q. Define inverse
action on -L; by xok = x'lk, XxeG, kel andlet Li°p be the
additive group of Li with this inverse G-action. Now we put
A = Llop ® Lzop ®...9 LdOP, with diagonal G-action and claim that

B (G; 4) =Q.
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We prove this by induction on d. If d =1 then A is the
trivial G-module Q and H (G; A) = Q as above. So let d 2>2.
The usual corner argument in the LHS-spectral sequence for
(d-1)

¢ ¢ s g/c vields

SIS NP RS PR

TRy d
G(d-l) acts trivially on A so that we can apply the universal-

coefficients Theorem:

(d-1), ,y. (d-1) - op op
Hnd(G ; A)= Hnd G Qlea =L L, "e...6L, .

But L, @ LdOP «Q with trivial G-action, so that

(d=1), ,y = ©P op op
H“d(G 3 A) L1 eLZ e...eLd_l ,

and the assertion follows by the inductive hypothesis. [

Proof (of Theorem 7.10), Proposition 7.11 together with
Proposition 7.13 yields hG < th G < hdG < hG (provided G 1is
torsion~free), hence hdG = hG., The cohomology statement follows from
this by Theorem 4.6, because we know, by Lemma 7.9, that hG < =

implies G countable. [J

Remark. By a result of Merzljakov [42a] a torsion-free locally
solvable group with bounded Abelian subgroup rank is, in fact, solvable.
This answers the question how to extend Theorem 7.10 to the locally
solvable case: Locally solvable groups of finite (co)homology dimension

are solvable,
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7.4 Solvable and nilpotent groups (continuation). In the

remainder of Section 7 we shall try to get more precise information

on the cohomology part of Theorem 7.10. Let € denote the class

of all torsion-free solvable groups with cdG = hG < o By

Theorem 4.6 (¢) © contains all solvable groups of type (FP), and
hence in particular all torsion-free polycyclic groups. The question

whether ¢dG = hG < = implies that G is of type (FP) is still open

in general, but it is known in the nilpotent case.

Theorem 7.14. (K.W.Gruenberg [30;5 8.8] ) Let G be a
torsion-free nilpdtent group with finite Hirsch number. Then ¢dG = hG

if and only if G 1is finitely generated (and hence polycyclic).

Proof. It remains to prove that n = ¢dG = hG <« implies G
finitely generated. Now, by the Universal-Coefficients-Theorem one has

for all Abelian groups L
0= w"l; 1) Ext(8_(6;Z), L),

hence Hn(G; Z) must be free-Abelian. By Proposition 7.12 we
conclude that Hn(G; Z) is infinite cyclic and hence G finitely
generated.[]

One can try to extend the idea in the proof of Theorem 7.14
to the solvable case by using the following structure theorem: Let
G be a torsion-free soluble group whose Abelian subgroups are all of
finite rank (e.g. hG. <= ), Then G has a unique maximal nilpotent

normal subgroup N 9 G (The Hirsch-Plotkin-radical) and the quotient

* See Appendix 6.
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G/N contains a finitely generated free Abelian group of finite

index. (cf.[15a] or [0} ). With regard to Theorem 5.11, we thus
can restrict ourselves to extensions N > G ++Q, where N is
torsion-free nilpotent with hN = n <= and Q is free—-Abelian of

rank r© < »,

We need a few elementary remarks on the subgroups of the
additive group O of all rational numbers. Consider all formal
products Hpui’, 0 s % S ®» , where p runs through all primes
> 0. Call two such formal products equivalent if they coincide up
to a finite number of finite exponents 0‘P , and let [T ;PI denote

_ the equivalence clags of II pap. Let S £Q and without loss of
generality assume 1 € S; then L* = [ puP , with
%> = sup (K [ p-k € S}, is called "the type of S". The mapping
L = L* defines a bijective correspondence between the isomorphism

classes of subgroups of Q and the equivalence classes of formal

products. Note furthermore that every automorphism ¢: L + L 1is

given by ¢(1) -% » a and b coprime integers. Let w(¢)
denote the set of prime divisors of ab; if A S Aut (S) write
T(A) = ¢:A m(¢). Notice that w(Aut(L)) is the set of all primes

a
p with exponent % =« in L*=[I p P].

Theorem 7.15. Let N> G +*+Q be a short exact sequence of
groups. Assume that N is a torsion-free nilpotent group of finite
Hirsch number hN =n and that Q 1is a free Abelian group of finite

rank r. Then the following statements are equivalent:
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(i) B (g, ) =0 for all Q- modules A
(ii) Hn(N;Z) is a cyclic Q= module

(iii) Hn(N;Z) = Ls Q is of t:ype[plmpzm...ps 1,

0 S8 < = and 'rr(im(G + Aut L)) = {pl’p2,°°',ps} .

Proof. The equivalence (ii) <= (iii) is elementary and left

as an exercise.
(i) = (iii) We assume that (iii) is false and consider 2 cases.
a) L 1is of type [Hpup] , where 0 < ozp < » for an infinite

set P of primes p. We claim that in this case Ext (L, L) #¥ O.

To see this consider the short exact sequence L » Qg-* /L

and its induced sequence
Hom(L,Q ) = Hom(L,Q /L) — Ext (L,L) = O.

. ¥ -
Let ¢: L +Q/L be the homomorphism given by ¢(x) -p:Pxp 1+L, x ¢ L..

Notice that this is well defined since only finitely many xp-l qL. L.
-a ~l~a
For all p € P one has ¢(p Py=p PiL # L. If there were a
~a ~l-g
map y: L +Q with oy = ¢ then one would have p p\p(l) ~p P et

for all p €¢P. Let (1) = 2, (a,b) = 1. It follows that the

b
denominator of %- p-l = EE;—b is prime to p, hence p/b; but

this is impossible for infinitely many primes!

Now, the Universal Coefficients Theorem for N together with
the usual corner argument in the Lyndon-Hochschild spectral sequence

yields

1:[n+r+l(G; L)

1]

1T (Q; ™ ew; 1))

it

HE(Q; Ext (L,L)).
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An element x ¢ Q acts on L by multiplication with T o€ O.
The induced action on Ext(L, L) is given by Ext(rx-l, rx) =
rx-lerxt (Id,Id) = Ext(Id,Id), i.e. Ext(L, L) is a trivial

Q-module; thus by Proposition 6.11 we get

qotr+l (G; L)= H'(Q;Z) @Ext(L, L)= Ext(L L) # 0.

b) L 1is of type [p;“p;n ...p:] , 0< 8 £ » and one of
the primes p; = q does not lie in  n(im(Q+ Aut L)). Let Qq be
the additive group of all rational numbers with denominator prime
to q (= Z localized at q). We claim that Ext(L,Q q) # 0. To
see this consider the short exact sequences of Abelian groups
Z-1 eZ(p.0 Qr Q - Z (%
i

where 7{pm) denotes the quasicyclic p-group. These give rise to

exact sequences

Qq - IiIExc (Z (p; ),Qq)+ Ext(L,Qq)+ 0

0= Hom(Z (q), ZUq™))+ Ext(Z (g) Q q) + 0.

End ( qu)) is isomorphic to the ring of q-adic integers and hence
uncountable. As P; =4 for some i and Oq is countable this implies
that Ext(L,Q q) is countable.

As q ¢ w(im(Q > Aut L)) one has an inclusion
im(Q + Aut L) < Aut Q q) , which defines a Q-module structure on Oq'
With respect to this Q-action one proves in exactly the same way as in

case a) that Hn+r+1(c; Qq) = Ext (L, Qq) # 0.
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(iii) = (i). First we notice that one can restrict omeself to
the case Q = Z. For if (iii) holds one can find an element x e Q
such that Q/<x> is free Abelian and n(im(x)) ={ PysPgseesPg }.
So if we can prove that g*2 (<N, x>; A) = 0 for all <x> -modules
n+r+l

A then the spectral sequence argument yields also H (G; 4)

for all Q-modules A.

So agsume Q = <x> and let A be an arbitrary Q-module. The
spectral sequence argument together with the universal coefficients

theorem for N yields

12 (c; a)

]

mhq; B ov; a))

n

Ext(L,A
xt(L,A) Q
(Hl(Q; M) = MQ for Q = Z 1is easily checked; cf. also chapter 7).
Let X act on L by multiplication with % where a and b are
coprime integers. By assumption one has r(ab) 5{p1,p2,...,ps} s

hence L can be given in the form L = {(Eb)i | meZ, 0sie Zj

We thus have the presentation

a B
Y>> X L

where X and Y are free-Abelian groups over free generators {x,-}
and {yj} respectively, i,j = 1,2,3,..., and d ,8 are given by

= -i = -
B(Xi) (ab) -, a(yj) abxj+1 xj. We have to compute

Ext(L,A), = Hom(Y¥,A) / a*Hom(X,A) + (x~1)Hom (¥,4),
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In order to compute the action of x on Hom(Y,A) we notice
that one has the following commuting diagram

a 8
0 - Y - X - L -> 0

a 2 - 2
%x(1) = 5 1, (Lel), E(xi) = atx n(yj) a yj+1 .
Hence one has (xf)(yj) = azx f(yj+1) for all f ¢ Hom(Y,A). For
arbitrary given elements a;e A,i=1,2,3,.... We now consider

two homomorphisms f ¢ Hom(Y,A), g ¢ Hom(X,A) defined by

2 -1
f(y. = A .+ A . - .
(YJ) X "a, ua, ubaJ+l

glx,) = u2x a, + Ay a. + pa x a, ,
1 i 1 i+l

where A and u are integers with the property that la + uwb = 1,
A little computation shows that

- (A + ux)2 x-la..

((x-1)f + cI"s)(yj) = Ay :

Now, if h 1is an arbitrary given homomorphism in Hom (Y,A) we

choose the elements aj € A to be

v
—
.

a =0, a, = h(yj) + (0 + ux)? x'laj j

Then obviously (x~1)f + a*g = h. Thus we have proved
Hom(Y,A) = (x~1)Hom(Y,A) + o*Hom(X,A), whence the result. This

completes the proof of Theorem 7.15.
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A group G 1is called minimax if it admits a finite series
of subgroups G = Go 4 Gl P oL.. P Gr = 1 whose quotients

G. /G

5-17/65 » 1 €3S r satisfy either the minimal condition or the

maximal condition on subgroups. Subgroups and quotient groups of
minimax groups are again minimax and so are extensions of minimax
groups by minimax groups. Notice that a subgroup of Q 1is
minimax if and only if it is of type Eplﬂpz‘"...psﬂ‘] with

0 3 <= -

Corollary 7.16. Every torsion-free soluble group G with

cdG = hG <+ is minimax.

Proof. Let N be the Hirsch-Plotkin radical of G and take
a subgroup Gl’ N g Gl 9 G such that G/Gl is finite and Gl/N
free-Abelian. Theorem 7.15 applies for G, and shows that Hn(N;Z)
is of type [plmpzm...psﬂ y 8 <o , n =hN, Now, formula (*) in
the proof of Proposition 7.12 shows that N has a central series

whose factors are subgroups of Hn(N; Z). Thus N 1is minimax. As

G/N 1is polycyclic we conclude that G is minimax.

The problem of classifying all solvable groups G with
cdG €2 1is still open’f The Abelian ones clearly are 1, Z,Z x2Z
and all non-cyclic subgroups of Q . If G is non—Abelian then it
is not too hard to see that G must be a semi direct product of a
torsion~free Abelian group N of rank 1 by an infinite cycle
generated by x, say; G = N J<x> . It follows by Theorem 7.15

that N 1is of type [pf p,,"“...ps°°1 and that x acts on N by

* See Appendix 6.
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4 q a
multiplication with P; Py ---P , Z 2 e(i #0 1i=1,2,...,s

s
(this includes the fundamental group of the Klein-bottle for s = 0).
In particular it follows that G 1is finitely generated. Conversely
let G be such a semi direct product. If all exponents oy have
the same sign then it is easily seen that G 1is in fact a l-relator
group and hence ¢dG < 2. If not all ui's have the same sign, then,
as shown by Baumslag-Strebel [2al, G 1is not of type (F‘P)2 (in

particular not finitely presented) and in this case it is not known

whether ¢dG = 2 or c¢dG = 3.

Simplest explicit example: let N be the additive group of
all rational numbers with denominator a power of 6, and let x act
on N by multiplication with 2/3; G= N J<x>. Is cdG = 2

or = 3?
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8. Applications

OQur aim in this Section is to use our knowledge on homological

dimensions in order to obtain purely group theoretic results.

8.1 Normal subgroups of type (FP). Here the main idea is to

combine Theorem 5.5. with Stalling's Theorem 7.1. The following simple

obgervation will be crucial.

Lemma 8.1. Let G be a group and let A be a non-trivial
induced RG-module. Then HO(G; A) # 0 if and only if G 1is finite.

m
Proof. Let A= L @RG, L an R-module. 1If 0 #] k; ex;
i=1
is an element in the G-invariant part of A (ki el, x; € G) then xx,
must occur in {xl, xz,...,xm} for all i and all x, hence

{xl, Kysee s Xy } = G. The converse is equally obvious. [J

Now comes our first main result. The rather complicated looking
agsumptions on the cohomology of N shall be satisfied automatically

in interesting special cases.

Theorem 8.2 Let G be a finitely generated group with
cdRG = < = and let N be a normal subgroup in G. Assume that N

meets the following conditions
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(i) N 1is of type (FP) over R,
(ii) H5(N; BRN) =0 for O <k sn-2,

(iii) BN N; RN) is R-projective.

Then either cdRN an-1 or N 1is of finite index in G.

Proof. Since N is of type (FP), Hk(N; RN) # 0 for k = cdRN,
therefore we have either cdRN =n or cdRN = n-1. Assuming that
cdRN = n we have to show that Q = G/N 1is finite. The first step
ig to observe that Q 1is periodic. Indeed, if X were an element
of G which maps to an element of infinite order in Q one would find
a short exact sequence N > S ++7Z, § =<N,x >, But Theorem 5.5

(with Remark 2) shows cdRS = n+l, contradicting S s G.

By Proposition 5.1 there is a free RG-module F =1 aRRG
(L a free R-module), with Hn(G; F) # 0. So we consider the LHS-

spectral sequence

IR CHE: SCER PRI ARl R
2

The iterated cohomology can be simplified: using Propositions 5.3,

5.4 and Lemma 5.6 we find RQ isomorphisms

q q o b
H'(N; F) = H'(N; RN) SeN (L o RG)

1

Q. .4
HI(N; RN) o L @.RQ ,

for all q ¢ Z (the arrows indicate the Q-action). Thus condition
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P»q
(ii) implies E2 = 0 unless q =n or q = n-l1. Moreover,

agssumption (iii) together with the fact that Q is finitely
generated allows to apply Proposition 5.3 again, whence

1,n-1

£y

i

7 (Q; B INGEN) @ L 8 RQ)

R

H'(Q; RQ) s BT T(N; RN) sl .

But we know that Q is periodic and hence, in particular,
. . 1
aB-indecomposable. Thus Theorem 7.1 yields H (Q; RQ) = O, whence

Elén_l= 0, and hence the spectral sequence yields a monomorphism

04 BYG; B =ED" = D" = 10(Q; HN; RY) el eRQ).

It follows by Lemma 8.1 that Q is finite. g

Proposition 8.3. Let G and N be as in Theorem 8.2.

Then G 1is of type (FP) over R. (Strebel [59] ).

Proof. If cdRN = n then, by Theorem 8.2, N 1is of finite
vindex in G, whence G 1is of type (FP) over R. So let cdRN = n-1.
In this case we need an extremely useful criterion due to Ralph
Strebel [597(cf£.8.6 Appendix), saying that a group G is of type (FP)
over R if and only if (i) cdp <= and (ii) the canonical map
@ Hk(G; RG)-—)Hk(G; ®RG) 1is an isomorphism for arbitrary direct sums
of copies of RG and all ke Z. In our case we have
ol

H'(N; ®RG) =0 for k # n~1 and cdRG = n, hence Hk(G; 8RG) = 0 =

® Hk(G; RG) unless k =n-1 or k = n. Moreover, the LHS-spectral
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sequence yields natural isomorphisms

Mg ere) = u0(Q; HVL(N; o RG)),
B (G; @ RG) = HI(Q; HY L (N; @ RG)),

and the required property follows from the fact that Q = G/N

is finitely generated. []

As Bamford and Dunwoody's accessibility criterion is not
available in the general case, we have to restrict ourselves to

R =Z for the next result. But see Appendix 7.

Theorem 8.4. Let G be a finitely generated group with
cd G =n <= and let N be a normal subgroup in G. Assume that

N meets the following conditions

(i) N is of type (FP)
(i) B0 ZN) =0 for k # n-1
(iii)  HYL(N; ZN) is free-Abelian. **
Then Q = G/N contains a non—-trivial finitely generated free subgroup

of finite index.

Proof. Notice first that G 1is of type (FP) by Proposition

8.3, whence Hn(G; Z5) # 0. We consider the natural isomorphism given
by the LHS —spectral sequence

1 (G; Zo) = Hl(Q; Hn-l(N; G)).

** In the terminology of Chapter III, N is just an "inverse duality

group' or a "duality group with free-Abelian dualizing module".



-117-

By Propositions 5.3, 5.4 and Lemma 5.6 one has the Q-isomorphisme

- - Y N - 4
7w T =T GZne & = BTN ZN) 8 20

and because of (iii) and the fact that Q 1is finitely generated

we conclude, again using Proposition 5.3, that
W 0F HNG ZD) =HY(Q Mo TIMZN).

Notice that this is an isomorphism of right G-modules, where

G acts diagonally on the right hand side.

The first thing we notice from (%) 1is that Hl(Q;Z Q #0
hence, by Theorem 7.1, Q has an o - or a B -decomposition.
Secondly we may use (%) to prove that Q is accessible. Indeed,
Hn(G;Z G) is a quotient of the dual of a finitely generated projective
module and hence clearly a finitely generated G-module. By Lemma
8.5 below this implies that Hl(Q; 7Zy) is finitely generated, hence
Q is accessible by Theorem 7.2. Let R be an of —indecomposable
subfactor of Q. 1Iterated application of Proposition 2.13 shows that
R is of type (FP), and so is its preimage S< G. Now, (*) holds
for G replaced by S, whence H(s; 7Z8) = Hl(R; R)® Hn-l(N;Z N) = 0.
This tells that c¢cdS = n-1= cdN, hence R = S/N 1is finite by

Theorem 8.2.

Thus Q 1is the fundamental group of a finite graph of groups
with finite vertices and hence contains a finitely generated free

subgroup of finite index (cf. Remark at the end of Section 7.1). [J

Lemma 8.5. Let G be a group, C and D right G-modules,

and assume that the underlying Abelian group of C is free. If the
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diagonal G-module C @D 1is finitely generated then so is D.

Proof. C ® D 1is generated by a finite number of elements
of the form e..= ¢, ®d., ¢, eC,d.e D, 1 <i<r, 1 <] <s.
1] 1 ] 1 J

Let Do be the submodule of D generated by dl’ d2""’ds‘ The
embedding i: Do > D induces an epimorphism
(Cei): ce D -+ C @D, hence C Q(D/Do) = 0. Since € 1is

Z -free this implies D = Do‘
Exercise Let G be a group with cdRG = n <= and

N 4G a normal subgroup satisfying (i) N is of type (FP) over

R and (ii) Hk(N; RN) = 0 for k # n. Prove that G/N is finite.

8.2 Low dimensions. Let G be a finitely generated

group with cdRG £ 2 and N an infinite almost finitely presented
(over R) normal subgroup in G. Then clearly N 1is of type (FP)
over R and HO(N; RN) = 0, and Hl(N; RN) is R-free by [607,
Corollary 3.7. Thus the assumptions of Theorem 8.2 are fulfilled,
hence either ¢d N €1 or |[G/N| <= . 1In the torsion-free case

R

one can apply Theorem 7.6, whence

Corollary 8.6. Let G be a finitely generated torsion-free
group with cdRG £ 2, and N< G a normal subgroup which is almost
finitely presented over R. Then either N is free or of finite

index in G.
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Examples 1) Let G be the direct product of two free
groups of rank 2, G = <x,y> x <u,v>, and N the subgroup
generated by x, yu, v. Then N q G, with G/N = Z and one has
cdG = 2. Moreover, N contains a free-Abelian group of rank 2
(generators x,v) and hence cannot be a free group. By Corollary
8.6 it follows that N is not finitely related! This example
shows that the assumption "N is almost finitely presented" in

Corollary 8.6 cannot be replaced by '"N 1is finitely generated".

Notice, however, that many groups of cohomology dimension
2 do have the property that every finitely generated subgroup is
finitely presented. This was proved by G.P.Scott [517 for all
3-manifold groups (hence 1in particular for all knot groups) and
by Karass and Solitar [37al for the 1l-relator groups of the
form<x1,x2,...,xn, Yy» yz,...,ym; W(xi,...,xn) = wl(yl,...,ym)> ,
the so called " pinched" one relator groups. Whether or not all

l-relator groups have this property is still an open question.

2) Let G be the group of a knot and G1 its commutator
subgroup. Ome knows that ¢dG <2 and G/G1 = 2., 1f G1 is
finitely generated then, by Scott's result [517, G1 is finitely

presented and hence, by Corollary 8.6, free. This is a well known

result in knot theory (cf.[44] ), Theorem 4.51).

Corollary 8.7. Let G be a finitely generated group of
cohomology dimension < 2 and N a finitely generated free normal

subgroup in G. Then G/N 1is finitely generated free-by-finite, and
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G is the fundamental group of a finite graph of free groups
(all of whose edges and vertices contain N as a subgroup

of finite index).

Proof. Straightforward from Theorem 8.3. The finite
graph of finite groups of Q 1lifts to a finite graph of groups
N 98, sG, with ISi/N[ < =, By Serre's Theorem (Theorem 5.11)

cdSi = ¢dN = 1, hence the Si's are free by Theorem 7.6.

Exercise Prove that every finitely generated normal
subgroup in a group G with cdRG = 1 is either finite or of

finite index in G.

8.3 Centres. Clearly the cohomology dimension of a
group G 1is a bound for the torsion-free rank of the Abelian
subgroups of G. Here we show that central subgroups are subject to

further restrictioms.

Theorem 8.8. Let G be a non—-Abelian group of finite

cohomology dimension =n, with centre Z and commutator subgroup G'.

Then one has

(a) ed Z <n-1,

(b) if Z is free-Abelian of rank n-1 then G' is free.

Proof. First we remark that if A is a free-Abelian group
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of rank r then Hk(A; 74) =0

The proof of this goes by induction on

It follows that the assumptions

for k #r and HT(A; 7A) =7 .
r; cf.also Chapter III.

(i), (ii), (iii) in Theorems 8.2

and 8.3 are fulfilled if N is free Abelian of rank n or n-l,
respectively.
(a) Assume ¢dZ =n. Then G/Z 1is periodic; for

an element of infinite order in

of the form 2Z x Z <G,

Let N be a finitely generated

(= n or n-1, cf. Theorem 7.10).

G/Z would give rise to a subgroup
cd (Z xZ) = n+l (Theorem 5.5).
central subgroup of maximal rank

Then Theorems 8.2 and 8.4 tell

that G/N is locally free-by-finite. But the short exact sequence

Z/N > G/N—=+ G/Z shows that G/N is also periodic, hence G/N is

in fact locally finite. It follows that C/Z is locally finite,

and this implies by Schur's Theorem that G' 1is locally finite.

Since G 1is torsion-free we conclude G' = 1, i.e., G 1is Abelian.

(b) Assuming that Z is free-Abelian of rank n-1 implies,

by Theorem 8.4, that G/Z is locally free-by-finite. Since the

homology functor commutes with direct limits

Hz (=3 Z)

(Proposition 4.8) this implies that HZ(G/Z; 7Z) is periodic. Now,

consider the following part of the 5-term exact sequence

8
co > By (G/Z; L - Z = G/G'— ...

As Z 1is torsion—free & 1is the zero-map hence Z n G' = 1.

Thus G contains Z X G' as a subgroup. Since Z 1is finitely

generated we can apply Theorem 5.5 (with remark 2)
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cd(Z xG') = ¢dZ + cdG' = n-1 + cdG' € ¢cdG = n. We
conclude that ¢dG' <1, hence G' must be free by the

Stallings-Swan result Theorem 7.6. 0

Corollary 8.9. The centre Z of a non-Abelian group
G of cohomology dimension 2 is cyclic. If Z # 1 then the

commutator subgroup G' 1is free.

Remarks. 1) Using the subgroup Theorem for HNN-groups only
Karrass—-Pietrowski-Solitar [38] prove that if G 1is a non-Abelian
subgroup of a torsion-free one relator group then the centre of G
is cyclic. Much more detailed information is available when G 1is
itself a one relator group with non-trivial centre, cf [49]

2) The fact that knot groups with non-trivial centre have

free commutator subgroup is a well-known result in knot theory, cf.[447,

8.4. Amalgamated products. Here we apply the main results

of Section 6 to low dimensional situations. The first result is due

to Karrass-Solitar [3771 (cf also [471 ).

Proposition 8.10. Let G be the amalgamated product

G= G *SGZ’ where both G1 and G, are finitely generated and

2
contain S as a subgroup of finite index. 1f cﬁQ Gs1l (n

particular, if G 1is free-by—-finite) then G1 and G2 are finite.
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Proof. Since «cd Gi <1, G1 and G2 are of type (FP)
over Q. By Corollary 6.5 it follows that Cd(fi + 1= cdcf 51,
hence chGi=O; i.e. IGil <= for

i=1,2. 0

Remark. Notice that, in particular, G cannot be a

non-trivial free group.

Theorem 8.11. Let G be the amalgamated product G = Gl*SGZ’
where both G1 and G2 are (almost) finitely presented and contain
S as a subgroup of finite index. If ¢cdG £ 2 then G1 and G2

are free (and hence G is finitely presented).
Proof. Since CdGi s 2, Gi is of type (FP) for i = 1,2,
and Corollary 6.5 applies. It follows chi < 1 hence Gi is free

by Theorem 7.6, i =1,2.0

Exercise: Prove the analogous results for HNN-groups.

8.5 Results on the derived series. The aim of this subsection

is to add some more results on groups of cohomology dimension 2, in
order to make this aspect reasonably complete. Theory and results
are due to Ralph Strebel see [59al and [59b], where many other

results are to be found.
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Definition. We denote by ES(R) the class of all groups

G with the property that the functor (R detects

®rg™)
monomorphisms between RG-projective modules; i.e. if P and Q
are RG-projective modules and ¢: P - Q a homomorphism such that

RQRGw is injective, then so is .

Remark. There is a most useful reduction: If the functor
(RERG—) detects monomorphisms between finitely generated free
modules, then it detects monomorphisms between arbitrary projective
modules. This follows from the fact that every free module is the
union of its finitely generated free direct summands and that every
projective module is a direct summand in a free module. The

details are left as an exercise.

Proposition 8.12. The class 2T(R) has the following

closure properties:
(a) it is subgroup closed,
(b) it is extension closed,
(c) it is closed with respect to arbitrary direct products,
(d) it is closed with respect to direct limits,
(e) if G has a (transfinite) descending series

G = GO > G1 LN 4 Gm 4 Gw+ N Ga = 1 with

1 D
G4/Gz,; € D(R) for all 8, then G e .
Proof. (a) Let S £G, G ¢ i}(R). Since tensoring with

RGGRS- converts RS—projectives to RG-projectives and preserves
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injections, S € %(R).

(b) Let N> G—+ Q be a short exact sequence of groups
with N, Q ¢ %TR) and let ¥: A+ B an RG-map between projective
modules, such that Rahcw is injective. Since Rskcw = RORQ(RQRNw)

it follows that R@RNw and hence ¢ are injections.

(c) We are not going to use this and leave it as an exercise.
Notice that the countable case follows from (e).

(d) Let G = lim G, Gy« 2§(R), and let ¢: E »F be
an RG-homomorphism between finitely generated free RG-modules.
Choose a basis for E and for F. Then ¢ 1is given by a matrix ¢
which involves only finitely many elements of G, so that there is
some G such that ¢ can be lifted to G- We can restrict. the
direct limits to i 2 m, so that ¢ can compatibly be lifted to all

Gi' Clearly R®_ ¢ coincides with Re®_ § for all 1, hence all

G G
i
"1ifts" define monomorphisms. It follows that their direct limit §

defines a monomorphism.

(e) We use transfinite induction. If o 1is not a limit
ordinal, then G ¢ if(R) follows from the inductive hypothesis and
(b). So let o be a limit ordinal. Let A, B be free RG-modules
and y: A—B an RG-map such that RQRGw is injective. One has

a commutative diagram

A — 1 (RﬂRG A)

(%) ] n (R@RG ¥)

3 — 1 (Re . B)

B<a RG
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Since ReRcw = RQRG/GB (RGRGBw) is 1nJect1ve,the inductive

hypothesis on G/GB implies that R c ¥ is injective for all

®
RGg
B <a . Now, the observation that RG - I R(G/GB) is a
B
monomorphism shows that the horizontal maps in (%) are

monomorphisms. This implies that ¢ is a monomorphism. [J

Remark. (a) and (c) imply that §5(R) is residually

closed.

Proposition 8.13. The infinite cyclic group is in §T(R)

for every commutative ring R.

Proof. Let Gbe = Z, A and B projective RG-modules

and Y: A+ B an RG-map. One has 1 ﬂé =0 (e.g. [30] p.56)

_ - n .
and hence H %,A = 0 ﬂ % B. ¥ 1induces maps

Vi oot g™ — ofB s
nt GA G %
Now, ifM/ q§+lu = %n/ %P+l GRGM for every projective module
M, hence injectivity of RgRGw implies that all maps
n+l

b, = dn/ % QRGw are injective, and therefore that ¢ itself

is injective. [

Corollary 8.14. If a group G admits a degcending (transfinite)

series

G~ GO 4 Gl > G2 P Gw > G LR 4 Ga= 1

w+l
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all of whose factors GB/GB+1

then G lies in %(R) for every commtative ring R.

" are torsion-free Abelian groups,

Remarks. 1) It follows, in particular, that J}(R) contains
all torsion-free nilpotent groups and all free groups,

2) A further consequence is that S%R) is closed under
arbitrary free products. Indeed, let G,H ¢ é}(R) and consider
the canonical map G % H -+ G x H. It is well known that the
kernel is free (hence in JB(R)) and thus Proposition 8.12(b)
yields G % H ¢ ;?(R). Arbitrary free products are direct limits
of finite free products, hence the assertion follows from

Proposition 8.12 (d).

Definition. We denote by @(R) the class of all groups

]

2 .
G admitting an RG-projective resolution ..~ Pz—* Pl—» Po—*» R

whose second differential 32 has the property that RsRGBZ

is a monomorphism.

If G is a group in £(R) then clearly H,(G; R) = 0, where
R is regarded as a trivial G-module. Moreover, if G 1is a group
with cdG $ 2, then G e &(R) if and only if Hy(G; R) = 0, and
those are the groups we primarily have in mind; for further examples

of groups in £(R) see Proposition 8.16.

Exercise and remark. Use the Universal Coefficients Theorem

to prove that the following statements are equivalent:;
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(i) G ¢ £(R) for every commutative ring R

(ii) G € E(Z) and G/(G,G] is torsion-free.

This shows, in particular, that knot groups G are in é(R)

for all R, since one has cdG <2, G/[G,G1x Z and HZ(G;Z) =0,

Now comes the main result of this section. It provides some

W glorl)

information on the derived series G = GO, ¢, ¢",...,G

of a group G which belongs to E,(R) for all R.

Theorem 8.15. If the group G 1is in S(R) for all commutative
rings R then one has:
(G) /G(G."'l)

(a) For every ordinal a, G(a) € é(R); in particular G

is torsion—-free and HZ(G(G) 3Z) = 0.

(b) The smallest ordinal o with 6@ =g{®*D) j4 equal to
0, 1, 2 or a limit ordinal 2.
32
Proof. Let ..+ Pz—* Pl—-> PO—» R be an RG-projective

(a)

resolution such that R 8P? is a monomorphism. Let G =N and
G/G(m)= Q and assume that (a) holds for all B8 with B8 < a.Then Q
admits a descending series with torsion-free Abelian factors and terminal

1, hence Q € ﬁ(R) for all R. Now, R QRGBZ =R QRQ(R L 2) , hence

R P o is an injection, i.e., N = G<°') ¢ £(R), which proves (a).

i 8 = ¢ - ge*D  hen we have Hl(N;Z) =0 = H,(N,2),

hence

)
RE)RN )

R QRNPZ — R QRNPl — R E)RNPO—H- R
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is exact and hence the beginning of an RQ-projective resolution. But
since Q ¢ z (R) we have that R GkNaz is injective, hence cdRQ $ 2

for all R.

From Theorem 7.10 it follows that solvable subgroups of Q are
of Hirsch number < 2. If a is finite then Q itself 1is solvable of
degree <2, i.e., 2= 0, 1 or 2. If o is infinite put a =X +n

)

where XA is a limit ordinal and O <n <>, and let G = K qQ.
Any element x ¢ Q, x 4 K together with K generates a solvable

subgroup of Hirsch number i + hK, hence hK <1, i.e., K is torsion-free
Abelian of rank < 1. So K has Abelian automorphism group, hence

[Q", K1 =1. If K#1 then Q' 1is a group of cohomology dimension

< 2 with non-trivial centre, hence Q" 1is free by Corollary 8.9.,

contradicting Q' 2 K. It follows that K = 1, i.e., a =\ . [

In order to outline the whole power of Theorem 8.15, we conclude
by showing that a large number of finitely presented groups belong to

E(D.

Let G = <x1, KyseeesX 5 Ty Toyeee,fp > a finitely presented

group. One has always (see e.g. [30], p.l72)

(*) n-ms h(G/G") - d(Hz(G;Z ),

where h denotes the Hirsch number and d the minimal number of
generators. G 1is said to be efficient if there is a presentation for

G, such that (i) 1is actually an equality.
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Proposition 8.16. Let G be an efficient group with

Hy(G;Z) = 0. Then G e £(Z)-

Proof. Let K+ F -—++G be a presentation for G, where
F is free of rank n, K 1is generated as a normal subgroup by m
elements, and assume that (x) 1is an equality. The beginning of
a G-free resolution can be constructed using the exact sequence

which appeared in the proof of Proposition 2.2.

M %
¥ N
0 KXK' Zeyd —  2Ze>Z

where M 1is the free G-module of rank m and the vertical arrow
maps its free generators-to the given relators. Tensoring this with

(Z@G-) and modifying the right end yields the diagram

(VI HZ(G; Z) — K/[F,K] — F/F¥ — G/G'— 0

whose horizontal row is exact. Now, HZ(G; Z) = 0 implies that
K/{F,Kl is a free-Abelian group of rank n-h(G/G') which is = m
since G is efficient. MG is free-Abelian of rank m as well,

hence the epimorphism = is an isomorphism and Z@Gaz is injective.[]
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8.6. Appendix: Yet another homological finiteness criterion.

In this section we make up leeway by proving R.Strebel's finiteness

criterion. (591 quoted in the proof of Proposition 8.3.

We start with some general remarks. Let A be an arbitrary
ring with unit, M and A left A-modules, M* = HomA(M,A ), and

consider the natural map of Section 3.1.

¢ : M*OA A~ HomA(M,A).

The following Lemma gives necessary and sufficient conditions for

a Ahomomorphism f: M - A to be in the image of ¢.

Lemma 8.17. (a) £ 1is in the image of ¢ if and only if £

factors through a finitely generated free module F, f: M +F »> A.

(b) If A 1is projective, then f 1is in the image of ¢ if

and only if f£(M) 1is a finitely generated submodule of A.

n
Proof. (a) Assume that f =¢ ( ) £.8a) , £, e M,
i=1

a; e A. Let F be the free A-module over el,ez,...,en, define
£'* M>Fby £'(w = ] f (me; and £": F+A by £'(e) = a,
and check that f = f"o f£'. Conversely, assume that f factors

through F, f = f"o f. Then define f, e M* by f'(m) = ¥ £, (me;

and check that £ =¢ (J £, £(e;)).

(b) Let E be a free A-module containing A as a direct
summand. If f(M) 1is finitely generated, then f(M) is contained
in a finitely generated free submodule F of E and £ factors

as f: M ->>f(M) > F»>» E = A, [
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Next we note that the natural map ¢ induces - just as in the group
ring case in Section 5.1 - natural homomorphisms

¢ : Extk (M,0)04A — Exti (M,A)

for every A-module A and all keZ. Here we shall always assume that A
is a free A-module. Then it is easy to see, using the fact that Ext: M,=)
is an additive functor, that ¢k is monomorphic for all k and it is an

isomorphism when A is finitely generated.

Lemma 8.18 Let K >»— P —» M be a short exact sequence of A -modules
such that P 1is projective and K 1is finitely generated. If ¢° and ¢l are

epimorphic for all free A-modules A then P is finitely generated .

Proof. One has the commutative diagram with exact rows

0—> M oA— PXOA— KFo©A— ExtAl(M,A) °,A

+°] °p | 6% ¢l Jo!

0 — Hom, (M,4) — Hom (P,A) —> Hom,(K,4) — Ext}\(M,A)

From Lemma 8.17(a) it is obvious that ¢°P is an isomorphism; hence ¢°K is
an isomorphism by the 5-Lemma. Assume A = PeQ. Then the injection
1: P>— A factors over a finitely generated free module F,

a
P—F £ J L P, hence P = m8 (F) 1is finitely generated.

Proposition 8.19. Let n 21 be an integer and assume that the A-module

M has a projective resolution P ——3) M which is finitely generated in

dimension n+l. If the natural map

ot ¢ Ext: a1,4) @ A —> Ext: (M,A)

is epimorphic for every free A-module A then there is a projective resolution

P'—= M which is finitely generated both in dimension n+! and dimension n.
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Proof. We consider the part P —+ P =———r P of
—_— n+l n n-|

the given projective resulution. By naturality of ¢ the following

diagram is commutative.

n-1 A n+tl A 'n

|4 [s l

Hom (Pn_l,Pn)--+ HomA(Pn,Pn) —_— HomA(Pn+|'Pn) .

e * *  ®
P Pn—-)' Pn QA Pn—‘} P P

A

Replacing Pn and P if necessary, we may assume that Pn is free,

n-t’

Then BPn+I lies in a finitely generated direct summand K of P -

Let ¥ Pn *‘Pn denote the endomorphism which projects onto the submodule

K. By Lemma 8.17(b) =« = ¢(u) for some u ¢ Pn* QA Pn. Now, (1-m)3 = O,
i.e. l-w 1is a cocycle. From the assumpton that ¢n is an epimorphism
for every free module A it follows readily that the same holds for every
projective module A; in particular, Extx (M,A) °, Pn - ExtK(M,Pn)

is an epimorphism, hence there is some element v ¢ %f ® Bn and a

A

homomorphism o ¢ HomA (Pn-I’Pn) such that 1-7 = ¢(v)+coB, hence one has
(%) 1 = ¢(u+v)+003 .

The image of ¢(w+v) 1is a finitely generated submodule of Pn and

hence, by Lemma 8.18, lies in a finitely generated direct summand

-1
' . t ' '
P of P . By (*), g.9 P S P ', hence 3P S0

P!
n n

and the maps 3 and o induce

3 o

' * = ' * 3
Pn/Pn — Pn—l/cI Py Pn/Pn
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J,. is plainly a monomorphism and (%) implies that o4, 1is the

identity, hence o, and 3, are isomorphisms. The diagram

v -1‘ '
in — f
*Pu1r—— P — L B S MR
P /P’ ~ P /o B!
n' ' n + n-1 n
visualizes the result obtained so far. Now the bypass via the

top arrows yields the new projective resolution 2' ++M. Indeed
P ' is finitely generated and projective; Pn/Pn' is projective,

n
1 -1,

hence so is Pn_lp- Pn' and ¢ "P_' =7P! 1> ad exactness

n n=

follows by easy diagram chasing. (]

Theorem 8.20. Let M be a A -module of finite projective

dimension. Then the following statements are equivalent ;:

(i) M is of type (FP).
(ii) The functor Extk(M,-) commutes with exact colimits
A

for all k= 0.

(iii) The functor Ext;\k(M,-) commutes with direct sums for
all k=2 0.

. k k .

(iv) The natural map v eExs\ (M,A) = Ext (M, e\ ) 1is an

isomorphism for all k >0 and arbitrary direct sums e of copies

of A
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Proof. (i) = (ii) 1is contained in Corollary 1.6.
(ii) = (iii) and (iii) = (iv) are trivial. It remains to prove
that (iv) > (i). Let m = pr.dim M. There is a projective
resolution of length m, 0 +P_ =+ P + ... +P_ -+ M, The
m o1 0
limiting homomorphism v clearly coincides with the maps ¢k
for the free module F = @ A , hence, by Proposition 8.19, one

can assume that P is finitely generated. Iterating this argument

and terminating.with Lemma 8.18 yields the result.

Corollary 8.21. A group G 1is of type (FP) over R if

and only if firstly: cd.RG <= and secondly: the natural maps
v fﬂk(c; RG) + Hk(G; ?RG) are isomorphisms for all k 21

and all direct sums of |I| = max (’No,|R|) copies of RG.

Remark The assumption that pr.dim M <o and cd,G <=
in Theorem 8.20 and Corollary 8.21 is essential. To see this
let G be the free—Abelian group of rank X, . If N is a
(free—Abelian normal) subgroup of rank n then we know (cf. the
proof of Theorem 8.8; or Chapter III) that Hk(N; F) = Hk(N; ZN)ONF
= 0 for k ¥ n and every free G-module F. It follows that
Hk(G; F) = 0 for all k <n. But G contains subgroups of
arbitrarily large rank, hence Hk(G; F) =0 for all ke Z .
Thus the map v: oﬁk(c; Zc) - Hk(G;o ZG) 1is the trivial isomorphism

for all k, despite the fact that G 1is not even finitely generated.

The remark that Strebel's criterion Theorem 8.20 does not

hold for type (FP)_ might look like a slight disadvantage from a
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theoretical point of view. However, due to the fact that direct
sums are much easier to deal with than arbitrary direct limits or
direct products, it is often much better for explicit applications

than Corollary 1.6, as we have seen in the proof of Theorem 8.8.
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CHAPTER III

9. Duality Groups

9.1 Preliminary remark. In Section 5.1 we have obtained

information on cohomology groups with projective coefficients and
homology groups with injective coefficients for groups of type (FP)e.
In general it is not possible to deduce information for arbitrary
coefficients from these results (try a finite group!). However, if
G 1is of type (FP) we do get such information in terms of spectral
sequences (cf.Theorems 3.2 and 3.3). In particular, in the top

dimension one finds:

Lemma 9.1. Let G be a group of type (FP) over R, n = cdRG,
and let C denote the right RG-module Hn(G; RG). Then the

natural maps (x%x) of Section 5.1 provide isomorphisms

n, S on,.. . .
&: C QRGA + H(G; A, by Hn(G,B) > HomRG(C, B),

for every left RG-module A and right RG-module B.

Proof. We give a direct proof not referring to the spectral
sequences of Section 3.1. Let K > F -++ A be a short exact
sequence of RG-modules, with F RG-free. By naturality of ¢n

we get the commutative diagram

i AR .
" la bg bs

Rl (TN N G F) - B'G; A) + o,
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whose rows are exact. By Proposition 5.3 B is an isomorphism,
implying that § is epimorphic. This holds for arbitrary A,
hence o 1is epimorphic as well. By the 5-Lemma, we conclude
that & is an isomorphism. The second part of the assertion

is dual. 0O

Exercise and remark. Use Proposition 8.19 to prove that

¢n= c QRGA > H™(G; A) (C # 0) is an isomorphism for every RG-

module A if and only if (i) cdRG =n, (ii) C = Hn(G; RG), and
(iii) there is an RG-projective resolution P ++ Z which is

finitely generated in dimension n.

See [6] for further results on the maps ¢n and wn of

Lemma 9.1.

9.2 Duality groups

Definition. A group G 1is said to be a duality group of

dimension n over R if there is a (right) RG-module C such

that one has natural isomorphisms

k
HO(G; &) = H__ (G; C @)

for all k € Z and all RG-modules A. Hereby G acts

diagonally on the temsor product C ORA.

If G is a duality group, the module C which occurs in the

definition is called "the dualizing module of G".

Let G be a duality group of dimension n and with dualizing

module C. Then one has obviously
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(a) cdRG < n.

In particular G is a torsion—free group. Next notice that
the functor Hk(G; =) = Hn_k(G; c QR-) commutes with direct

limits for all k > 0; by Proposition 2.4 this implies

(b) G is of type (FP)_ over R.

Now, let us consider an induced RG-module A =1L QRRG. By

definition of duality we get for all k ¢ Z,

Lo - . .
H™(G; A) = Hn_k(G, c aKA),
But C QR(L QRRG) is isomorphic, by Lemma 2.9, to the induced

RG-module (C QRL) BRRG. Therefore we find

o0 if k¥ n
(&)  HG; L epRe) =
c oRL if k =2n,

for every R-module L. It is easily checked that, by naturality,
the isomorphism Hn(G; L oRRG) = C QRL is actually a right G-module

isomorphism. For L = R we get

BE(G; RG) =0 if k ¢ n,
(d)
H'(G; RG) = C (40 ,

hence cdRG =n, and both n and C are determined by G.

Finally we claim

(e) C 1is flat as an R-module.
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Proof. Let L'”™ L ™ L" be a short exact sequence of

R-modules. Since RG is R-free, the sequence

1] "
L @RRG» L QRRG - L QRRG

ig still exact and hence gives rise to the exact sequence

" Leg; L oRG) g (G; L' 8;RC) + H(G; L 8.RC) ~ H(G; L 8,RG)> 0.

By formula ( ¢ ) we thus get the short exact sequence

0s+C QRL'+CQL+CQRL"+O,

R
i.,e., C 1is a flat module over R.

Now we shall see that the statements (a), (b), (d) and (e)

are also sufficient for G to be a duality group.

Theorem 9.2. A group G 1is a duality group of dimension n
over R if and only if the following three conditions hold :

(1) G 1is of type (FP) over R

(ii) ®(G; RG) = 0 for k #n

(iii) H"(G; RG) is flat as an R-module.
Proof. It remains to show that (i), (ii) and (iii) imply
that G 1is a duality group of dimension n. Let

O+P +P _, ...+ R

be a resolution of the trivial G-module R by finitely generated
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projective RG-modules. Condition (ii) then implies that

*
Pi = Hoch(Pi’ RG), is a finite projective resolution of the right

RG~module C = Hn(G; RG) . By Proposition 3.1 we now have natural

isomorphisms

* ~
¢ Pk QRGA - HomRG(Pk’ A)

for all k € Z and all RG-modules A, whence using (iii) and

Lemma 9.3(a) below,

i RG
H (C; A) = Torn_k (C, A) = Hn_k(G; c °RA)’

i.e. G 1is a duality group. [

Lemma 9.3. Let G be a grouwp, A a left RG-module and B

and C right RG-modules. Then for all k € Z the following holds

(a) If C 1is R-flat one has natural isomorphisms

B (G5 C @A) = TorEG(C, A).

() If C 1is R-projective one has natural isomorphisms

k k
H(G; H C,B)) = E C,B).
( omR( M xtRG( )

Hereby G acts diagonally on C @RA and HomR(C,B) respectively.

Proof. Let P -+ R be an RG-projective resolution of the trivial

G-module R. Then g_@RC ++ C 1is an RG-flat (resp.RG-projective)
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resolution and can be used to compute TorEG(C,A) and Ext;G(C,A)

respectively. Moreover one has the obvious natural isomorphisms

(2 20) ZA = B R (C QA), and Homp (B C,B) = Hom (R, Homy(C,B),

whence the lemma. O

9.3. Inverse duality. There is an obvious dualization of

the definition of a duality group.

Definition. A group G 1is said to be an inverse duality group

of dimension n over R if there is a (right) RG-module D such

that one has natural isomorphisms
n-k
H (G; B) = H ~(G; Hom,(D,B))
for all k ¢ Z and all RG-modules B. Hereby G acts diagonally
on HomR(D,B).

Let G be an inverse duality group of dimension n, with "inverse
dualizing module" D. As in the duality case, we wonder what properties

such a group has. Obviously we have

(a) hdRG < n.

Next, the functor Hk(G; =) = Hn-k (G; HomR(C,—) commutes with direct

products for all k 2 0; this implies by Proposition 2.4
(b) G is of type (FP)_ over R,

hence, by Theorem 4.6 CdRG = hdRG < n. Now, consider a coinduced

RG-module B = HomR(RG, L). By the definition of inverse duality we

get for all ke Z



-143-

Hk(G; B) * Hn-k(G; HomR(D,B));

but HomR(D,B) is isomorphic, by Lemma 2.9, to the coinduced RG-module

HomR(RG,HomR(D,L)). Therefore we find

0 1if k ¢ n
(c) Hk(G;HomR(RG,L)) =

HomR(D,L) if %k =n.

Using (¢) and arguments dual to those in the duality case, it follows

that HomR(D,-) is an exact functor, hence
(d) D 1is projective as an R-module.
Next we claim that (b) and (¢) imply
(e) Hk(G; RG) = 0 for k # n.

Proof. Let L be an injective R-module. Then the coinduced
module HomR(RG, L) is RG-injective and hence, by Proposition 5.4(c)

one has an igsomorphism

13

¥ ¢ B (G; Hom (RS,1)) HomRG(Hk(G; RG), Hom (RG, L))

v

HomR(Hk(G; RG) @, RG, L)

1§

Hom (H°(G; R6), L)

for all ke Z . Thus HomR(Hk(G; RG), L) =0 for all k #n

and all injective R-modules L. Since every R-module can be embedded
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in an injective R-module, this implies Hk(G; RG) = O

for k ¢n. [

Finally, we claim that there is an isomorphism
(£) D. = Hn(G; RG) as (right) RG-modules,

Proof. Let C = H"(G; RG). By Lemma 9.1 one has a natural
isomorphism HomRG(C, B) = Hn(G; B). It follows, by inverse
duality, that HomRG(C, =) and HomRG(D, =) are naturally
equivalent functors. This implies that C and D are isomorphic

RG-modules. [J

Theorem 9.4. A group G is an inverse duality group of

dimension n over R if and only if the following three conditions

hold:
(i) G 1is of type (FP) over R
(ii) H(G; RG) = 0 for k #n
(iii) Hn(G; RG) 1is projective as an R-module.

Corollary 9.5. The group G 1is an inverse duality group over

R if and only if G is a duality group whose dualizing module is

R-projective.
Proof. (of Theorem 9.4). We have proved that inverse duality
implies (i) - (iii). Conversely assume that the conditions

(1) - (iii) hold for G and let
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be a finite RG-projective resolution. Then

ig a finite projective resolution of the (right) RG-module
¢ = H™(G; RG). By Proposition 3.1 we now have natural

isomorphisms

~ %*
v: B QRGPk > HomRG(P ,» B) s

for all k € Z and all RG-modules B, whence, using (iii)

and Lemma 9.2 (b),

n=-k

ek (c, B) = HV(c; Homg(C, B)),

Hk(G; B)* Ext

i.e. G 1is an inverse duality group. 0

Remarks. 1) Examples of duality groups shall be discussed
in Section 9.8. We do not know of an example of a duality group

whose dualizing module is not even R-free.

2) One direction of Theorems 9.2 and 9.4 could have
been proved by referring to the spectral sequences of Theorems 3.2
and 3.3. In fact these spectral sequences should be regarded as a

more general version of the duality and inverse duality isomorphisms.
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9.4 The cap-product. Let G be an arbitrary group. and

P+ R, Q ~ R RG-projective resolutions of the trivial G-module
R. TFor left RG-modules A and right RG-modules B, we consider

the double complex homomorphism

n: HomR(A,B) QRG(E' QRQ) -+ HomR(HomRG(E_, A), B &RGQ),

given by n(h ® p ® q)(f) = h(f(p))® q, h € H-ONR(A, B), p € B,

qeQ, f¢ HomRG(L, A). Hereby G acts diagonally on HomR(A, B).

We shall use the notation (ne)(f) =enf, e=h ©p ogq
and £ as above. With 3 denoting the boundary in the chain
complexes B QRGQ and TotCHomR(A,B) QRG(g_ QRQ)), and §
denoting the coboundary in the cochain complex HomRG(P, A), one
finds the formula

deg £

3(e n £) = (-1) ®enf) + endf,

which shows that n defines a homomorphism in homology. Notice
that E & Q ++ R with diagonal G-action is an RG-projective

resolution, too, such that we have obtained maps

(#) i H_(G; Hom(A,B)) » Hom (H*(G; &), H__ (G; B))

for every pair of integers n, k. This is the cap-product. One
can show that it does not depend upon the choice of P and Q; it
is natural in A, B and G and commutes (up to a sign) with
conpecting homomorphisms. For n = k the cap-product map

n: Hn(G; HONR(A, B)) » HomAR'(Hn(G; A), B

c
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coincides with the map induced by evaluation

w: HomR(A, B) epcPn™ Homy (Homp . (P, A), Bo),

w(h @ p)(f) = h(£f(p)) @RGR, with P ++R an arbitrary RG-

projective resolution, and h ¢ HomR(A, B), p ¢ Pn, f e HomRG(Pn’ A).

We shall use two slightly different versions of the cap=-product
(%) . To obtain these, firstly replace B by the diagonal G-module
c QRA, C a right RG-module, and compose (%) with the homomorphism
induced by a: C +HomR(A, c @RA), al(c)(a) = c®a, ceC, a e A.

This yields the cap-product maps

(%) n: Hn(G; c) + HomR(Hk(G; 4), Hn_k(G; c QRA)).

Secondly, replace A in (ax%x) by the diagonal G-module
HomR(C, B), B a right RG-module, and compose n with the
homomorphism induced by evaluation C GRHomR(C, B) +B. This

yields the modified cap-product
k
(k%k) he H (G; C) - Homp (H (G; HomR(C, B)), Hn_k(G; B)).

Finally, it is sometimes useful to write the maps (a%x) and

(x%*) in the form
k
n: B (G5 C) e H (G; A) - H__ (G5 C @ph)
k
h: H (G C) @ B (G; Homp(C, B)) - H _ (G5 Bf,

just using the fact that -~ GRX is left adjoint to H.omR(X, -).
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In the definition of duality groups, we did not require
that the duality isomorphisms commute with connecting homomorphisms
nor with maps induced by homomorphisms in the group argument.
However, the next result shows that duality isomorphism can be given
by a cap—product, and those are, of course, natural in any

reasonable sense,

Theorem 9.5. Let G be a duality group of dimenmsion n
over R with dualizing module C = H'(G; RG). Then there is a
"fundamental class” e ¢ Hn(G; Cﬁ with the property that the

cap-product with e produces isomorphisms

k ~
(en -): H(G; A) ~+ Hn_k(G; c &RA),

for every RG-module. A and all k ¢ Z . Moreover, if C is

R-projective then the & -product with e produces isomorphisms

i

k
(ed -): H'(G; Homp(C, B)) ~ H__ (G; B),
for every RG-module B and all keZ .

Proof. G 1is of type (FP) over R with cdRG = n so that

by Lemma 9.1 one has the isomorphisms

$: C 8 A > ' (G; A), v H_(G; B) iuomRG(c, B).

-1 ) oo
Let e =y (Idc) € Hn(G, C). The cap-product H (G; A) =~ C @RGA

is given by

e ntm(f) = (C ORGf)(e), f e HomRG(Pn’ A)
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where 0 +P - Pn_l+ »ee” By > R is an RG-projective resolution
and T denotes the projection HomRG(Pn’ A) *4'Hn(c; A). Let

2 éi@ p; € c ngPn be a cycle representing e. Then we get for

%
A =RG and f"AEPn:

e nm(f) = (Co& A = [eo8a)

=L ap) = wieep)() = (@0 ).

Thus one has for every ¢ ¢ C
(%) enc = P (e).

Now, for an arbitrary element a ¢ A let o :RG +A

denote the homomorphism given by «(l) = a. Naturality of ¢

and (en =) gives rise to the commutative dizgram
¢=Id (en-)
C & RG  — H(G; RG) — C 8 RG
o } o, l Qg l

C & A — H(G; A) — C | A

<
~
[1:3
2
1
St

By (%) the composite of the top row is the identity of C; since

a ¢ A was arbitrary, this shows that the composite of the bottom row

is the identity of C GRGA’ hence (en=) = ¢—l is an isomorphism.
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Next let K » F ++ A be a short exact sequence of RG-
modules with F RG-free. Since C 1is R-flat
c QRK > C QRF + C QRA is still a short exact sequence and

hence naturality of the cap-product yields the commutative diagram

with exact rows

ol e B Bl (e; A) - ARG R) - ENG B ...
(en=) } ! e e

+ 0 —_ Hl(G;C QRA)—> HO(G;C @RK)-> HO(G;C Q.RF) Feue .

Since HY1(G; F) = oM™ 1(G; RG) = O by Theorem 9.2 it follows that
(en=): Hn-l(c; 4) ~+ Hl(c; c ORA) is an isomorphism, too, and we can

iterate the argument.

Now, we consider the modified cap-product (ed-):

HomRG(C, B) -+ B (G; B). We claim that one has always

efhs= Hn(G; h) (e), h e HomRG(C, B), e ¢ Hn(G; c).

Indeed, if 2 c;®p; € o @RGPn is a cocycle representing e, then

enh = E(Ci@ h) ®p; € (c QRHomR(C, B)) QRGPn’ whence e f h =z h(Ci) ®p. ,

as asserted.

For any f € HomRG(C, B), naturality of (ef-) and ¥

yield the commutative diagram
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(e -) v
HomRG(C, c) —_ Hn(G; c) — HomRG(C, c)
. | . | . |
HomRG(C, B) (;—; 5 Hn(G; B) —;- HomRG(C, B) )

If y(e) = IdC it follows that the composite of the top row maps IdC
to Idc; but as f was arbitrary this implies that the composite

. s . -1
of the bottom row is the identity on HomRG(C, B), i.e., (e¢-) =y

is an isomorphism.

Finally, let B> I -+ Q be a short exact sequence of
RG-modules with I RG-injective. If C is R-projective then
HomR(C, B) > HomR(C, I) — HomR(C, Q) is still a short exact sequence
and one can use arguments dual to those above to show that (eﬁ‘)=
Hk(G; HomR(C, B)) » Hn_k(G; B) 1is an isomorphism for all k and all

B. O

9.5 The dualizing module. Here we show that the dualizing

module of a duality group has always some special features. First we
list three general properties which summarize results of Sections 8.2

and 8.3.

Proposition 9.6. Let G be a duality group of dimemnsion n

over R and let C = Hn(G; RG) be its dualizing module. Then one

has:
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(a) C 1is flat as an R-module.

(b) C 1is of type (FP) over RG, and pr.dimRGC =n,
(c) Extic (C, RG) =0 for k #n, and = R for k =n.
(d) Every RG-endomorphism of C is multiplication with

a scalar r ¢ R.

Proof. (a) is assertion (iii) of Theorem 9.2. By Theorem
9.2(i) there is a finite projective resolution
0 - Pn - Pn-l T e Po -+ R, and by (ii) its dual is a finite
projective resolution for C, O + P; - Pl T+ P: ++ C; moreover,
Tong(C, R) = Hn(G; C) = HO(G; R) = R, whence (b). Using the above
resolution P* ++ C in order to compute Extgc (C, RG) vyields (o),
since P**=z P, Finally, by Lemma 9.1 one has Hn(G; B) = HomR(C, B)

for every RG-module B and thus obtains an R -isomorphism.
= 19¢a- - . .
R =H(G; R) = Hn(G, C) = HomRG(C, C)

It is not hard to check that this is actually a ring homomorphism,

whence (d). [

For the next results we need restrictions on the ring R.

Proposition 9.7. Let G be a duality group over R with

dualizing module C. Then the following holds:

(a) If R has no zero divisors them C is indecomposable

(with respect to direct sums) as an RG-module.
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() If R is a p.i.d. (= principal ideal domain) and R.0
its field of fractions then either C is =R as an
R-module or one has dimRo v QRRO) =2 » for every
non—-trivial RG-submodule V < C.

Proof. By Proposition 9.6(d) EndRG(C)

13

R. If
C=A9B, A#0 # B, then EndRG(C) has the zero divisors
(A®0)(0 B) =0. (b) shall be proved later; it relies on the

following result:

Theorem 9.8 (F.T.Farrell [261 ). Let K be a field, n an
integer 2 0 and assume that the group G meets the following
properties:

(1) chG is finite,

(ii) G 1is of type (FP)n over K,

(iii) H°(G; KG) = 0 for all 05 k <n-1

(iv) Hn(G; KG) contains a non-trivial G-invariant subsgpace

V of finite dimension over K.
Then chG = n, hence G 1is of type (FP) over K, and

Hn(G; KG) is * K as a K-module.

Proof. As the case n =0 is trivial we may assume that

+* ... *P K be the beginning of a

n 1. Let P_ > P
n 0

n-1
KG-projective resolution of the trivial G-module K with Pi
finitely generated for all O < i < n. Hk(G; KG) = 0 for all

0 <k £ n-1 implies that we get a finite projective resolution
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P* P* P M
> > > - RS
0 0 1 e

*
where M 1is the cokermel of Pn - Pn . In particular

-1
pr.dimKGM < n. The submodule V < Hn(G; KG) 1is also a submodule
of M, and the short exact sequence V > M - M/V gives rise to

the long exact sequence

oo Exp (M, A) > Ext® (7, ) > Extzzl M/, A) >...

KG

Let m = chG and let A =1L OKgG be a free KG-module with

m m+1

H (G; A) # O. By Lemma 9.3(b), ExtKG (M/V, A) = 0 and
Extﬁc(v, A) = Hm(G; HomK(V, A)) (here we use the assumption that
K 1is a field). As dimKV is finite, Proposition 3.1 and Lemma

2.9 yield isomorphism
¢\ N N
HomK(V, A) = v* QK.A (V* = HomK(V, K))

* N
= (V sKL) QK KG ,

where the arrows ¥ indicate the G-action. It follows that
HomK(V, A) 1is the direct sum of s = dimKV copies of A, hence
m m . .
ExtKG(V, A) # 0 and hence ExtKG(M, A) 40, i.e., m < pr.dlmKGM < n.

But we have also Hn(G; KG) # 0, whence m=n = chG.

Now we know that G 1is of type (FP) over K with
Hk(G; KG) =0 for k #n, hence G 1is an inverse duality group

by Theorem 9.4. Moreover, repeating the argument above with
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M=¢C = Hn(G; KG) and A = KG we obtain an epimorphism

[

n
s copies H7(G; KG) -

Ext;G(C, KG)

But by Lemma 9.3(b) and inverse duality
n n o
ExtKG(C, KG) = H (G,HomK(C, KG)) = HO(G, KG) = K,

hence s=1 and H"(G; KG) = K.

Remark. Let G be a finitely generated infinite group
with chG <o ., Then, by Theorem 9.8., one has dimKH1(G; KG)

=0, 1l or=>,

Let G, in addition, be finitely presented. If Hl(G; KG) # 0

1*5%2

(|F] <» ), and the Mayer-

then, by Theorem 7.1, G has an a—-decomposition G = G
or a B-decomposition G = Gl*F,c
Vietoris sequences show that Hz(Gl; KG) is a direct summand of
HZ(G; KG). But Gy is again of type (FP)Z, hence

2 - . . 12 . .
H (cl, KG) = H (Gl, KGl) GKGIKG H (Gl, KG,) @KKG/GI. This shows
that dimKHZ(G; KG) =0 or =, On the other hand, if

Hl(G; KG) = 0 then Theorem 9.8 applies so that we have in any

case dimKHZ(G, KG) =0, 1 or <,

Using more subtle topological arguments one can show that
both assertions hold even without assuming that ecd KG <o , This
is due to Hopf [32] for Hl(G; KG) and to Farrell[26] for
HZ(G; KG). It would be interesting to know whether these results

can be generalized to higher dimensions,
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Proof (of Proposition 9.6(b)) Let R be a p.i.d.
Let RP denote either its field of fractions if p = 0 or the
prime field RP = R/pR if p 1is a prime element of R. Let
G be a duality group of dimension n over R, C = Hn(G; RG) .
G 1is of type (FP) over every field RP’ p 2 0, and by
Corollary 3.6 we have Hk (G; RPG) = (0 for all k #n and

. . n
RG-isomorphisms H (G; R G) = C & R ,
rphi (G; o ) &%p

Let Vv £ C be an RG-submodule with O <dimR0(V QRRO) <o,
Theorem 9.8 applied to V @R < 12 (G; R)G) yields C s, R = R;
since C 1is R-flat this implies that C s RO. Without loss of
generality we may assume that 1 ¢ C. Then every R-automorphism
of C 1is multiplication with an element T ¢ RO with rC = C.
Since 0 # H(G; RG) = C/pC for every prime 0 fp ¢ R
this implies that r must be a unit in R. As C 1is finitely
generated as an RG-module it now follows that C 1is finitely

generated as an R-module; but since R 1is a p.i.d. this means

that C is R-free, whence C =~ R, []

Remark. The case when the dualizing module C of a duality
group is = R 1is particularly interesting, and we introduce the
following terminology: If G is a duality group of dimension n
over R whose dualizing module C = Hn(G; RG) has its underlying

R-module =~ R, then G 1is called a Poincaré duality group. If

C 1is actually isomorphic to the trivial G-module R then the
Poincaré duality group G 1is said to be oriented, otherwise
non-oriented. Poincaré duality groups will be investigated in

Section 9.10.
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X ,X ;3 T =1> be a

Exercise. Let G = yaao
— 2 n

X5
torsion—-free one relator group. Use the resolution

0+ K/[K,K] =+ Z&G @F4‘+ 26 ++7Z (where K+ F ++ G is the
l-relator presentation, c.f. the proof of Proposition 2.2)

together with Lyndon's Theorem that K/{K,K] = ZG, r{K,kKl= 1,

to prove that one has an isomorphism of right G-modules

2
H(G; Zc/z 1r(—) Zc.
X
(notation of Section 2.3). This formula will be used in

Section 9.8, Example 6.

9.6 Extensions

Theorem 9.9. Let G be a group without R-torsion and
let S s G be a subgroup of finite index in G. Then G 1is

a duality group over R if and only if § is.

Proof. By Proposition 5.7 H (G; RG) = H (S; RS) for
all k e Z, and by Theorem 5.11 cdRG = cdRS. Moreover, G 1is
of type (FP)°° if and only if S 1is, so that the assertion follows

from Theorem 9.2.

Remark. Notice that the dualizing modules of G and §S
are isomorphic as RS-modules. In particular, G is a Poincaré

duality group if and only if S is.

Theorem 9.10. Let N > G >*Q be a short exact sequence of

groups. Assume that N and Q are duality groups of dimension n
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and q respectively over R. Then G 1is a duality group of
dimension n+q over R, and for the dualizing modules one has

an RG-isomorphism

B0 re) = BY(Q; RQ) e E (N; RN),
where G acts diagonally on the right hand side.

Proof. N and Q are of type (FP) over R hence so

is G. The LHS-spectral sequence

r,s r+s

BT(Q; H5(N; RG)) =H" °(G; RG)

collapses since H°(N; RG) =0 for s # n. Moreover by
Proposition 5.4 and Lemma 5.6 one has RG-module

isomorphisms

£ N

H™(N; RG) = H™(N; RN) @y RG = H®(N; RN) e, RQ,

i.e., Hn(N; RG) 1is an induced RQ-module. It follows that
Hk(G; RG) = 0 for k # n+q and that
Hn+q(G; RG) = Hq(Q; RQ) @RHn(N, RN), so that the assertion

follows by Theorem 9.2. [

The next result is the converse of the above extension

theorem. For technical reasons we need R to be a p.i.d.

Theorem 9.11. Let R be a p.i.d. Let N» G +Q be

a short exact sequence of groups with cdRQ <o and N of type
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(FP) , over R. If G 1is a duality group over R then so are

N and Q.

The first step in the proof of Theorem 9.11 1is to prove
the assertion under the additional hypothesis that R be a field:

Proof (of Theorem 9.11 for R =K a field). The duality
group G 1is of type (FP) hence so is Q by Proposition 2.7. Now

consider the LHS -spectral sequence

r,s
2

r+s

E = HT(Q, HS(N; RG)) = H''S(G; KG).

By Proposition 5.4 and Lemma 5.6 one has KG-isomorphisms

B*(N; KG) = HS(N; KN) B KC = S (N; K’) 3KG and hence

yS

E’° = g7 (Q; KQ) B (N; KN), 1,5 ¢ Z
2

(here we have used that K 1is a field). Now, let n and ¢

be the least integers with Hn(N; KN) # 0 and Hq(Q; KQ)# 0
r,s

2
hence a "corner argument”" yields

respectively. Then E = 0 if either r <q or s <n,

RS NOHE O OIS IR QR OF
2

It follows that HY'™(G; RG) # 0 (here we use again that K is a

field) and hence q + n = cdRG. Of course q < chQ, n < cdRN,

and by Theorem 5.5 chN + chQ = chG. Thus q = chQ and

n = chN, and the assertion follows by Theorem 9.2. 0
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Throughout the remainder of Section 9.6, R will be a
p.i.d. Ri will denote either its field of fractioms if i =0
or the field RP = R/pR if 1 =p 1is a prime element of R.
If A is an R-module we use the notation PA for the submodule
of all p-torsion elements and t(A) for the submodule of all

torsion elements of A.

Lemma 9.12 Let G be a group of type (FP) over R

with n = cdRG > cdR G. Then there is a prime element p ¢ R such
0

that H® L(g; R,G) #0 and (G R,G) # 0.

_Proof. By assumption one has a finite RG-projective

resolution O - Pn - P +...> R, hence Hn(G; RG) = coker(P;_l -+ P;)

n-1

is finitely generated as an RG-module. On the other hand one has

by Corollary 3.6 O = H'(G; R,0) = ™ (G; RG) ®.R,, hence H*(G; RG)

O’
is an R-torsion module. It follows that Hn(G; RG) 1is bounded,
i.e., I={ceR]| cHn(G; RG) =0 }# 0. I 1is an ideal in R and

hence generated by one element Sy and since Hn(G; RG) # 0

there is at least one prime element p ¢ R dividing - Now, the
short exact sequence RG R4 RG -*+RPG gives rise to the exact
sequence
q Py
RS Y RO H"(G; RG) > H'(G; RG) ~ H(G; LROLIE

P, 1s multiplication by p and hence neither an epimorphism nor

a monomorphism, whence the rasult. 0

Proposition 9.13. Let G be a group of type (FP) over R.

Then G 1is a duality group of dimension n over R if and only if
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G 1is a duality group of dimension n over all fields Ri

(i =0 or prime).

Proof. If G 1is a duality group over R, then clearly
G 1is a duality group over all fields R,. Conversely, assume
i
that G is a duality group of dimension n over all Ri' Then

cdRG = (= cdR G), since otherwise one could find, by Lemma 9.12,
0

a prime pe R with Hn_l(G; RPG) #0 ¢ Hn(G; RPG)’ contradicting
the assumption that G be a duality group over all Ri's. Next,
notice that one has by Corollary 3.6 0O = Hk(G; ROG) x Hk(G; RG) QRRO
for all k # n, hence Hk(G; RG) is an R-torsion module for all

k # n. On the other hand, Corollary 3.6 yields also

0 = K(6; R @)+ Tor; (°71(G; RG), R) for all k #1n and all
prime elements pe¢ R, i.e., Hk(G; RG) is R-torsion-free for all

k # n+l. It follows that Hk(G; RG) =0 for k #n and Hn(G; RG)

is R-flat, whence G 1is a duality group over R by Theorem 9.2.[]

Proof (of Theorem 9.11) Groups of type (FP) over R
are of type (FP) over Ri’ and duality groups over R are duality
groups of the same dimension over all fields Ri' Thus Theore& 9.11
which is already proved over a field implies that N and Q are

duality groups over all fields Ri' We claim that cdR Q = cdR Q

P -0
and cdR N = cdR N for all prime elements pe R. To see this nbétice
P 0
first that one has always cdR Q scdRQ and cdR N< cdRN. Moreover,
P P
in the present situation cdRQ = caR Q@ and cdRN = cdR N, for

0 0
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otherwise the conclusion of Lemma 9.12 would contradict duality

over all fields Rp' Thus

(%) ed, Q s cd, Q, cd, N £ ed_, N, all primes p.
Rp RO Rp RO

But Theorem 5.5 and duality of G yield cdR Q + cdR N =
P P

N, and this shows that the
R R
P 0 0

inequalities (%) are actually equalities. Therefore we may

=cd, G = cdR G = cdR Q + cd
0

apply Proposition 9.13 to conclude that G is a duality group

over R. [

9.7. Amalgamated products and HNN-extenmsioms. Here

we discuss conditions under which amalgamated products or HNN-
extensions of duality groups are again duality groups. We shall

start with the following necessary dimension relation:

Proposition 9.14. Let G be a duality group of dimension

n over R. Assume that G 1s a non-trivial amalgamated product
G = Gl*SGZ or an HNN-extension G = Gl*S,c . Then, in either

case, one has the relation

- < <
n-1 < cdRS < cdRQi < n.

Proof. Assume cdRS <n-1. Then one has also

hdRS <n-1 and hence the Mayer-Vietoris sequences yield

H,(G; B) = ? H (G5 B).
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for every RG-module B. In particular for B = C = Hn(G; RG)
this implies that (without loss of generality) Hn(Gl; C) # 0.

On the other hand we have

O .
H (G5 ©) = Hn(G’ c GRGIRG) *H (G C ®RR(G/G1))- H7(G; R(G/G D),

but HO(G; R(G/G{)) = 0 unless lc: G is finite which is impossible

!

in either case. This proves n-1 < cdRS; the other implications

are trivial. [J

Remark. We shall see that all dimension combinations which

comply with Proposition 9.14 actually do occur.

Proposition 9.15. Let G be an amalgamated product G = Gl*SGZ

Gl*S,o . Assume that G1 and G2 are

or an HNN-extension G =
duality groups of dimension n and that S 1is a duality group of
dimension n-1 over R. Then, in either case, G 1is a duality

group of dimension =n over R. For the dualizing modules one has

the short exact sequence of RG-modules

' l(s; rS) o _RG = H°(G; RG) ~ H'(G,; RG,) 8 RG
i

RS

Proof. Use the Mayer-Vietoris sequences and Theorem 9.2.

Proposition 9.16. Let G be a non-trivial amalgamated product

= - 1 = G_* . 2 ,
G Gl*SGZ or an HNN-extension G 1%s,5 Assume that G1 G2

and S are duality groups of dimension 0~1 over R . Then one has:
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(a) 1If cdRG = n-1 then G 1is a duality group of
dimension n-1 over R and one has the short exact sequence of

RG-modules

n-1 n-1 n-1
. ® . .
R (G; RG) = H (Gi’ RGi) GRG.RG — H (S; RS) @RSRG.

1

(b) If S 1is of finite index in both G1 and G2 or, in the
second case, 1f both S and o(S) are of finite index in Gl’ then
G 1is a duality group of dimension n and one has a short exact

sequence of RG-modules which splits over R

n-1 . n-1 .. n. ..
® H (Gi’ RG,) GRGiRG — H" “(S; RS) ®pgRG > H (G; RG)

Proof. (a) The Mayer-Vietoris sequences yield Hk(G; RG) =0
for k # n-1 and also H" 2(G; RG 8 L) = 0 for every R-module L.
As shown in the proof of Theorem 9.2 this implies that G 1is a

duality group of dimension n-1.

(b) follows from the Mayer-Vietoris sequences together with

the split monomorphisms of Theorems 6.3 and 6.6. (O

Exercise. Prove a "mixed version' of Propositions 9.15 and

9.16 for G = Gx,G, with cdp G = cdpS+l and [G,: S| < = .

17872 R1 2°

Remarks (a) The examples 3) - 8) of the next Section 9.8

illustrate Propositions 9.15 and 9.16.

(b) The converse of Proposition 9.16(b) is false: There are most
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interesting cases where G = GxG, with IGl:Sl = lGZ: S| = =,

Gl’ G2, S duality groups of the same dimension n-1, but G a
duality group of dimension n. This situation occurs e.g. 1if

(Gl’ S) and (G2, S) are "Poincaré duality pairs of dimension n"
in the sense of [13]. We are not going to touch the relative theory

here, but an explicit example is given in Section 9.8, Example 9).

9.8 Examples, Low dimensions. We are now going to see that being

a duality group is by no means an eccentric property, particularly

among low dimensional groups.

Proposition 9.17. (a) G 1is a duality group of dimension O

over R if and only if |G| is finite and invertible in R.

(b) G 1is a duality group of dimension 1 over R 1if and only

if G 1is finitely generated and cdRG = 1.

(¢) G 1is a duality group of dimension 2 over R, if and only

. . . s . *
if G 1is almost finitely presented, aBf -indecomposable and cdRG = 2.

Proof. (a) 1is obvious from Theorem 9.2 and Proposition 4.12,
and so 1s (b). As for (c), it is a consequence of Proposition 9.14
that all duality groups of dimension > 2 are af-indecomposable.

Conversely, if a finitely generated group G 1is 28-indecomposable

ther, by Theorem 7.1, Hl(G; RG) = 0 for every ring R. This shows

1
that H7(G; L ®QRG) = 0 for every cyclic R-module L; using a

(module)~-extension argument one then gets the same result for all

e

') See Section 7.1
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finitely generated R-modules L. Finally if G 1is almost

finitely presented then, by Theorem 1.3, the functor Hl(G;-)
commutes with the direct limit, hence Hl(G; L ®RRG) =0 for
all R-modules L. Also, by Lemma 9.1, one has natural

isomorphisms HZ(G; L ®RRG) ~ HZ(G; RG) ®RL; and as shown in
Section 9.2(e) these two facts imply that HZ(G; RG) 1is flat

as an R-module. By Theorem 9.2 this shows that G 1is a

duality group over R. [J

Remarks. 1) 1t follows from (b) that every finitely
generated free-by-finite group without R-torsion is a duality
group of dimension 1 over R. Whether or not the converse of

this holds is still open.

2) From (c) it follows that every (almost) finitely
presented group G of cohomology dimension ¢dG = 2 (over Z)
is the free product of a finitely generated free group F and a
finite number of duality groups Gi of dimension 2,

G = F*GI*GZ*"'*Gm'

3) Higher dimensional duality groups can be constructed

by using Theorem 9.10 or Proposition 9.16(b).

Examples (of duality groups over Z ). 1) Every poly-

(finitely generated free) group is a duality group.

2) Every torsion-free polycyclic group is a Poincaré duality

group.
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3) G= <x,v; x) = x2 > is an HNN-group over <x >
with o: x» xz, hence G 1is a duality group of dimension 2 by

Proposition 9.16(b).

4) G =< x,y,2; = xz, yz = y2> is the free product of
two copies of 3) amalgamated along y and x respectively. So

G 1is a duality group of dimension 2 by Proposition 9.15.

5) The subgroup gemerated by x and z in 4) is in
fact freely generated by x and 2. Let G be the free product
of two copies of 4) amalgamated along x = z, z “ x. Then

G is Higman's group
G = <w,x,y,Z; wx-vz, xy-'xz, yz-yz, zw-z2 >,

By Proposition 9.15 G 1is a duality group of dimension 2.

Remark and exercise: Higman's group G has the property

that all of its proper subgroups are of infinite index. Use the
Mayer-Vietoris sequences to prove that Hi(G; Z)y =0 = HY(G; Z)

for every i # O.

6) Let G = <a,b,c,d; [a,b] [c,d] =T =1>. G is a
torsion-free one-relator group, hence ¢dG < 2. By the exercise
at the end of Sectiom 9.5 HZ(G; ZG) is isomorphic to the quotient
of Z6 modulo the right ideal I generated by the images of the
Fox derivatives. Using the notation of Section 2.3 but abandoning

T by abuse of notation ome has

ar . 1- aba—1 dr | a- aba_lb'1
3 3
3L . deq7le7i- g 3L - ged7lo1 ,

Q

0
Q
[»%
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whence I ¢ c} . Now, checking that the following equations

hold
ir Ir ar ar 2
l-a = E (1 -a) - —b b 1-b = ﬁ (ab-b+1) + ﬁ (b=-b )
CE A ar - = 2L (de- 3T (o2
1“d ﬁ (1 d) + —C c 1 C —d (dc C"'l) + a e (C c ) ’

shows that actually I ='% , hence HZ(G; ZG) = Z as G-modules.
It follows that G 1is aB-indecomposable (cf Remark to Theorem 9.8),
hence Hl(G; Zc) =0 and G 1is an orientable Poincaré duality group

of dimension 2.

7) Let g be an integer 2 1, and consider the group

Gg = <ay, az,...,ag,bl,bz,...,bg; [al,b1] [az,bzl...[ag,bg]=1>,

the fundamental group of an oriented surface of genus g. It is well

, 38 a subgroup of

finite index. It follows by Theorem 9.9 that G_ is an orientable

known that if g 2 2 then Gg is contained in G

Poincaré duality group of dimensiom 2 for all g 21 (G1 aZxZ ).

Let

b4 2 b4 2...x2 = 1>

H = <x1, xz,...,xg+1; 1 2 g+l

be the fundamental group of a non-orientable surface. Then Hg
is torsion-free and contains Gg as a subgroup of index 2, hence H
is again a Poincaré duality group of dimemsion 2. The fact that the

relator of Hg is not a product of commutators shows that Hz(Hg;Z )=0
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(see [30] , p.170), hence Hg is not orientable.

8) A trivial example for the situation of Proposition 9.16(a)

is G = <X,¥y,Z;=> = <X,y; => *y-w<z’w;_> .

9) The group G =G, of 6) and 7) 1is the free product

2
of the two free groups <a,b;- >, <ec,d;—- > with amalgamated cyclic
subgroups genmerated by [a,b] and ([d,c] respectively. As the

amalgamated subgroup is of infinite index in both factors we are in

the situation described in remark b) at the end of Section 9.7.

Remark. Notice that if G 1is a duality group which is
obtained from the trivial group by applying finitelj often the
constructions of Theorems 9.9, 9.10, 9.15 and 9.16 to groups already
obtained, then the dualizing module of G is R-free. I do not know

whether all duality groups are obtainable this way.

9.9. Topological remarks. In this section we briefly

mention some topological aspects of duality groups.

A CW-complex X 1is said to be a duality complex of formal

dimension n if firstly X 1is dominated by a finite CW-complex
(i.e., there is a map Y + X with a homotopy right inverse) and
secondly there is-a local coefficient system C on X and an element

e ¢ Hn(X; C) such that the cap-product with e. yields isomorphisms

k ~
en-: H(X; 4) ~ Ho_ (G C@ 4
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for every local coefficient system A and all k ¢ Z . If
the Abelian group Cy is infinite cyclic for every x ¢ X then
the duality complex X 1is a Poincare complex as defined by

C.T.C. Wall [62].

If, in particular, X 1is an Eilenberg—-MacLane complex
(i.e. aspherical, i.e., "i(X) a0 for i % 1) then the (co)homology
with local coefficient systems is the group (co)homology of G = 7 (%)
and hence G 1is a duality group. Moreover, the fact that X is
dominated by a finite CW-complex implies that G 1is finitely
presented. Conversely, if G 1is a finitely presented group of type
(FP), then, by Theorem 1.9, G admits an Eilenberg-MacLane complex
X = K(G, 1) with finitely many cells in each dimension, and ¢dG <o
implies that X 1is actually finitely dominated. By Theorem 9.5

it now follows that X 1is a duality complex. We summarize:

Proposition 9.18. An Eilenberg-MacLane complex K(G, 1)

is a duality space if and only if G is a finitely presented duality

group.

Now let M be a compact closed connected manifold of
dimension m. Then M satisfies Poincaré duality with local
coefficients; so if Fi(M)<= 0 for i 22 then G = ﬂl(M) is
a finitely presented Poincaré duality group. All known examples of
Poincaré complexes which are not homotopy equivalent to a closed manifold

are essentially simply connected; therefore it is conceivable that
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in fact every Poincaré duality group is the fundamental group

of a closed aspherical manifold.

The most important source of Poincaré duality groups are
the discrete subgroups of real Lie-groups. Let G be a real
Lie-group and K a maximal compact subgroup of G. Thén X = G/K
is (diffeomorphic to) RP, n = dim G - dim K. Every torsion-free
discrete subgroup T S G operates properly on X, i.e., every
x € X has an open neighbourhood U with Un y(U) = @ for every
1# vy €T, so that the manifold X/T is an Eilenberg-MacLane
complex K( T,l1). Moreover X/T is compact (with empty boundary)

if and only if G/T is compact. Thus we have proved

Proposition 9.19. Let I' be a torsion-free discrete subgroup

of a real Lie-group G. If G/T 1is compact then T 1is a Poincaré

duality group.

Now we turn to the non-Poincaré duality case. Assume that
M = R(G,1) 1is a compact connected m-dimensional manifold with
non-empty boundary 3 M. Poincaré duality for the pair (M, 3IM)

with local coefficients yields

1

06 Z6) = H__ (Mmod 3M; Z6)

14

B, (M wod 34; D),

where M denotes the universal covering complex of M. Notice
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that this holds in the non-orientable case, too, since the
twisted action on ZG is isomorphic to the original ome.

Now since M 1s contractible one has Hi(f'{; Z) =0 for all

i # 0, hence the homology sequence for (M, M) yields
Ho M mod 3M;2) =H _, _,6M; Z)

for all k ¢ Z (reduced homology for k=m=1). Thus applying

Theorem 9.2 we have proved

Theorem 9.19. Let G be a group admitting an Eilenberg-
MacLane complex M which is a compact connected m-dimensional
manifold with non-empty boundary 93 M. If the (reduced) integral
homology groups Hi( aﬁ) are =0 for i $ q and Hq( aﬁ) is
torsion-free over Z then G is a duality group of dimension

n = m~q-1.

Remarks. 1) As a special case of Theorem 9.19, assume

that M = K(G, 1) is a compact manifold with boundary 3 M = K(S,1)
and that S embeds into G. Then 3M is the disjoint union of
copies of the contractible space 5\M), hence Hi(a'ﬁ) = 0 for all
i # 0. G permutes the components of 3M which are in (natural)
one-to-one correspondence with the coset space G/S, hence the
reduced group HO( ai) ( is i.somorphic, as a right G-module, with
ker ( Z(G/S) ++ Z). Any non-cyclic knot group G provides an
explicit example for this situation: the closed complement of the
knot in S3 is a K(G,1) by Papakyriakopoulos' Theorem, and the

fundamental group of its boundary torus embeds into G (see [48 ).
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2) Borel-Serre [14] have shown that every torsion-free
arithmetic subgroup of an algebraic Q-group is a duality
group. This is established by constructing an Eilenberg-
MacLane space K(G, 1) which is a compact manifold whose
boundary has the homotopy type of a bouquet of spheres, i.e.,
the gituation is exactly that of Theorem 9.19. Notice that
Theorem 9.10 and Proposition 9.14 now yield some information

on the structure of arithmetic groups.

9.10. Poincaré duality groups. In this section we collect

some special results on Poincaré duality groups. Recall that
these are those duality groups G whose dualizing module

C = Hn(G; ZG) has its underlying additive group infinite cyclic.
If C 1is actually the trivial G-module Z then G 'is called
orientable, otherwise non-orientable., If G 1is non-orientable
then it follows by Theorem 9.9 (with Remark) that the kermel N

of the action on C 1is an orientable subgroup of index 2 in G.
All other subgroups of index 2 are non-orientable, hence N is

characteristic in G.

Obviously Z is. the only Poincaré duality group of dimension
1 and is orientable. Poincaré duality groups of dimension 2 have
been found in Section 9.8, Example 7, namely the fundamental groups
of all 2-dimensional closed surfaces of genus 2 1. Whether or not

this is a complete list of all 2-dimensional Poincaré duality groups
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is an open question; but there is some evidence that this might

be the case as we shall see now.

Let G be an n-dimensional Poincaré duality group. Then
Hn(G; Z) =Z and H'(G;Z) =Z if G is orientable and
B,(G; Z) =0 and H'(G; Z) = Z, otherwise. Also, by the
universal-Coefficients Theorem Hn(G; 2 = Hom(Hn(G; D,2) e
Ext (H__,(G; Z), Z), hence the torsion part of Hn-l(G; Z) is =0
1f G 1is orientable and = Zﬁ otherwise. Moreover, if G 1is
orientable and n = 2k, then the cup~product yields a (-1)k-
commutative non-degenerate quadratic form Hk(G;(D ® Hk(G; Q-+
2" (G; Q = Q, which implies, if k is odd, that the dimension of
Hk(G; Q = 2 (G; Q = B (G; Z) eQ as a Q-vector space is even.
For n = 2 we conclude that HZ(G; Z)y =Z and Hl(G; 7 = Z?g
if G 1is orientable and 8, (G; Z) =0, HI(G; 2 =Z%e Z2
if G 1is non-orientable, where‘ g 1is an integer 2 0. Thus every
2-dimensional duality group has the homology of a (uniquely

determined) closed surface.

Remark. Whether or not the case g = 0 occurs is not known:
Joel Cohen [20] has shown that if X 1is a finite Poincaré complex
of formal dimension 2 with Hl(X) 20 or = Zﬁ then X has the
homotopy type of the 2-sphere or the 2-dimensional projective space
respectively, hence X ’cannét be an Eilenberg-MacLane space. But T

do not know the answer when X 18 merely finitely dominated.
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Further evidence in favour of the conjecture that 2-
dimensional Poincaré duality groups are surface groups is given

in the following two results which we mention without proofs.

Theorem 9.20 (Dyer~Vasquez [23]) Every finitely presented
orientable 2-dimensional Poincaré duality group which is not

perfect is residually finite.

Theorem 9.21 (Farrell [25], [26] ) Every subgroup of a
2-dimensional Poincare duality group is either locally free or

*
of finite index.

Notice that Theorem 9.20 proves the conjecture in the
genus g = 1 case. Indeed if G 1is orientable one has a map
¢: G+—+Z xZ inducing an isomorphism ¢,: H (G;Z ) -
H(ZxZ , Z) from which one deduces using the method of
Stallings [56a] and Stammbach [57a7l that ¢ is an isomorphism.
The non-orientable case follows from the orientable case since
G = €x,y; x-lyx = y-1> , the fundamental group of the Klein
bottle, is the only torsion-free non-Abelian group which contains

ZxZ as a subgroup of index 2.

Proposition 9.22. Let G be a Poincaré duality group of

dimension n. Then every subgroup S < G 1is either of homology

dimension hdS < n-1 or of finite index in G.

* See Appendix, Theorem 10.
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Proof. It is sufficient to consider the orientable case.

Then one has for all right S-modules B,

Hn(S; B) = Hn(G; B 8% ZG)

HO(G; B QS ZG)

but B ® ZG has no fixed elements # 0 unless S has
S

finite index in G.

Remark. If n =2 and S 1is (almost) finitely presented
then by Theorem 4.6 ¢dS = hdS, hence Proposition 2.22 together
with Stallings' result yields a weaker version of Theorem 2.21.
It would be interesting to have a cohomology version of

Proposition 2.22,

Now we discuss the solvable Poincaré duality groups. From
the Theorems 9.9 and 9.10, it follows immediately that every
torsion~free polycyclic group is a Poincaré duality group. We

shall prove now that the converse holds, i.e.,

Theorem 9.23. Every solvable Poincaré duality group is

polycyclic.

Proof. Let G be a solvable Poincaré duality of dimension

m. G contains an orientable subgroup G1 of index < 2. G1

is torsion-free and all its Abelian subgroups are of rank < m,
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hence G1 has a unique maximal nilpotent normal subgroup N 9 G1
and G1/N contains a finitely generated free-Abelian subgroup G2/N
of finite index (cf. [15a] or [0] ). Let n = hdN, r = hd(GZ/N);
by Theorem 7.10 we know that the homological dimensions of torsion~
free solvable groups coincide with the corresponding Hirsch numbers,
so that m = n+r. Since G,y is an orientable Poincaré duality

group it follows by a corner argument in the Lyndon-Hochschild-Serre

spectral sequence

Z- U (Gy; Z = B (G,/N; H (N; 2)

n

10(6,/N; H_(N; D).

By Proposition 7.12 Hn(N;Z ) 1is isomorphic to a subgroup of

the additive group of Q , hence we obtain that Hn(N;Z Y= Z . But
this implies, again by Proposition 7.12, that N is polycyclic, hence

Gys G and G are polycyclic. O

Remark. F.E.A. Johnson [35] has shown that every torsion~free
polycyclic-by-finite group is in fact the fundamental group of some

compact closed aspherical manifold.

The following is a purely group theoretic criterion in order to
decide whether or not a given (torsion-free) polycyclic group G 1is

orientable: Take an invariant series

G = GO>G1>G2>...>Gd=1

with Abelian quotients Qk = Gk-I/G , 1 <k <d (Gk 2 G).

Conjugation with x ¢ G induces automorphisms on the "torsion~free

%
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parts” (i.e., on the quotients Qk/torsion) of all factors Qk' Let

sign(x) = det(¢1) det (¢2)...det(¢d) .

Then sign(x) = * 1; one can show that sign(x) does not depend upon
the choice of the invariant series, and G 1is orientable if and only
if sign(x) = 1 . for all x € G. If G 1is non-orientable then
the set of all elements x ¢ G with sign(x) = +1 form the unique

orientable subgroup of index 2.

Remark. Finitely generated solvable groups of finite cohomology
dimension are necessarily of type A4 in the sense of Malcev, i.e.,
they admit a finite series all of whose factors are either torsion-
free Abelian of finite rank or finite. Now, being polycyclic the
Poincaré duality groups are very special among the finitely generated
solvable groups of type AA' This contrasts the following result on
solvable duality groups the proof of which shall be published in

collaboration with Gilbert Baumslag.

Theorem 9.24. Every finitely generated solvable group of
type A4 can be embedded in a finite extension of a solvable duality

group.

Exercise. For a group G of type (FP) the "naive" Euler

characteristic is defined by

@

L (® = L (=D dimu (e
k=0 (6 Q
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One ;an show that X (S) = [6:S| X(G) for every subgroup S of
finite index in G (cf. K.S. Brown: Euler characteristics of
discrete groups and G-spacés; Inventiones math.27 (1974), 229~264).
Prove that if G is a Poincare duality group of dimension n,

then the following holds:

(a) if G 1is orientable and n = 2k+l1 then yx (G) = 0,
(b) if G 1is orientable and n = 4k+2 then x(G) is even 3
(¢) if X(G) #0 then G is co-Hopfiam, i.e., G does

not contain a proper subgroup S <G with S = G.
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Remarks and comments.

We add a few scattered remarks and comments on the contents
of each section, mostly concerning the origin of results or

proofs.

1.3 The Tor-part of Eheorem 1.3 was proved in [11],
the Ext~part is due to K.S.Brown [15]. The Theorem should also
be compared with R.Strebel's finiteness criterion in [59].
(cf.Section 8.6). Proposition 1.5 is of course well known and

usually proved by Shanuel's Lemma.

1.4 Ignorant of Brown's paper [15], J.C. Hausmann and
myself stumbled on Theorem 1.9 and Corollary 1.12 in Vancouver,

August 1974, Our proof was based directly on Wall [s2].

2.1 The terminology "almost finitely presented" was
introduced by Stallings [55] in a slightly different (topological)
sense. Stallings shows that if G is almost finitely presented
(over Z) in the sense of Section 2.1, then G is almost finitely

presented in his (topological) sense.

2.3 The free differential calculus was introduced by

R. H. Fox [28].

2.4 A Mayer-Vietoris sequence for integral homology of

an amalgamated product was obtained topologically by
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Stallings [54]; the general sequences appear in Barr-Beck [2],
Ribes [50] and Swan [60]. Our combinatorial proof of

Proposition 2.8 (Swan [60], Lemma 2.1) seems to be new.

2.5 Proposition 2.11 and the Mayer-Vietoris sequences

for HNN~groups have appeared in [7].

2.6 The groups An’ B appear in [8] . The group B

n 2

was originally constructed as a candidate for a counter example
to the Novikov Conjecture on the homotopy invariance of higher

signatures [9].

3.2 Universal Coefficient spectral sequences seem to be
folk~lore. Theorems 3.3 and 3.4 follow from the spectral
Universal Coefficient Theorem 29 , p.100, or from the
(cohomology version of the) spectral sequence of Dold [22];

cf. also F.Ischebeck [33].
4.2 Theorem 4.3 1is due to Berstein {3].

5.3 This is the content of [6], Section 3. The present
proof of the main result (Theorem 5.8) is considerably simpler

than the original one.

5.4 A detailed proof of Serre's Theorem (including the

verification of all signs) is given in D.Cohen's Notes [18].
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Theorem 5.13 (the homology version of Serre's Theorem)

seems to be new.

6.2, 6.3 Theorems 6.3, 6.6 and Corollaries 6.5, 6.7

are new. A weaker version of the Theorems is to be found in

[12] Lemma 4.5 and (7] Lemma 5.4, respectively.

7.1 The concept of a "fundamental group of a graph of
groups" was introduced by Bass~Serre in their theory of groups

acting on a tree [53].

7.3 The first results on the (co)homology dimension of
solvabie groups are due to K.W. Gruenberg[30]}: a complete
description of cd for nilpotent and polycyclic groups
(Theorem 7.13) and a necessary and a sufficient condition for
the finiteness of cd for arbitrary solvable groups. Then
U.Stammbach [57] has obtained ch G = h6 for arbitrary solvable
groups, and Theorem 6.9 has first been proved by Fel'dman [27],
(cf. also [4]). Theorem 7.15 and Corollary 7.16 are the main

results of [4].

8.1 Is an improved version of [8], Section 5. The
fact that we need not assume that G is of type (FP) in
Theorem 8.4 (cf. [8], Corollary 6.35) was pointed out by

R.Strebel [59].
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8.3 Theorem 8.8(a) has been proved by Swan in the
case of a finitely presented group of cd < 2, cf. [30], p.l56,
where other references and results on the centre of groups with
finite cd are to be found. Theorem 8.8 has also been proved
for knot groups (see [44], Theorem 5.4.3 and 5.4.4), and for
subgroups of torsion-free one-relator groups [38]. More precise
results are available for torsion-free one-relator groups with

non-trivial centre, cf. [49].

8.5 All results are to be found in [59a] and/or [59b] .
Just Theorem 8.15 (b) is slightly improved by excluding the case

a = A+l (A = limit ordinal).

9.1 ~ 9.4 Duality groups have been investigatad in [10].
The treatment here follows [6] but makes use of the considerable
simplifications due to result that duality groups are always of
type (FP) (Brown [15], Strebel [59]). Inverse duality made its

first appearance in [6], cf. also [26].
9.6 Theorem 9.11 is the main first result of [8].
9.7 is a slightly.improved version of [12] and [7].
9.10 Poincar€é duality groups have independently been

investigated by Johnson~Wall [36] and myself [5]. Theorem 9.23

was proved in [5].
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Some recent developments.

(added April 1981)

I. Groups of type (FP)m

1. More striking examples than those constructed in Section 2.6 have

recently been given by U. Stuhler [838]: Let K be a function field of
transcendence degree 1 over a finite field, S a finite, non-empty set

of places of K , and ¢% <X the ring of S-integers. Then one has

Theorem 1 (Stuhler [86]), PGL (2, @y is of type (FP)  if and only
if |s| > m+ 1.

It has been conjectured that - more generally - any "S-arithmetic
subgroup G(i%) of a simple algebraic group in the function field case"
is of type (FP) if and only if !s| + rk6 * m + 2. In addition to Stuhler's
solution in the rank 1 case the conjecture has essentially been verfied for
m = 2 by Behr [65], Rehmann-Souléd [8.], and Hurrelbrink [81]. (Type (FP),

and finite presentability seem to coincide for those groups).

2. Type (FP)Z. Whether groups of type (FP)2 are, in general, finitely
presented is still an open question. Stuhler [86] shows that the answer is

positive for the groups PGL (2, @E) in Theorem 1. Moreover, we have

Theorem 2 (Bieri-Strebel [71]).Metabelian groups of type (FP)2

(over some commutative ring R with 1) are finitely presented.

Ralph Strebel observed (see [71]) that Theorem 2 is sharp in the sense
that there are 3-step soluble groups which are of type (FP)2 over all fields
but are not of type (FP)2 over Z (and hence not finitely presented). Let
H < GL (4, ZL[%J) be Abels' group [63], consisting of all groups upper
triangular matrices with positive units in the diagonal. The centre 2
of H 1is contained in the commutator Ssubgroup of H , hence the homology
2(G; Z) — 2.
But 2 is isomorphic to the additive group of ZZ[%J; hence H, (G; Z ) cannot

2
pe finitely generated and so G 1is not of type (FP)2 over Z.

S-term exact sequence for G = H/Z yields an epimorphism H
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On the other hand Abels [63] has shown that H is finitely presented.
Let H = F/R where F 1is a finitely generated free group and R« F the
normal closure of a finite subset of F, G = F/R. Then 2 = R/N tensored,

over Z , with any field K yields an exact sequence
N/N'@ K — R/R'@K —» Z @K —>» O,
from which we conclude that R/R'® K is finitely generated as a KG-module,

i.e., G 1is of type (FP)2 over K.

3. Metabelian groups. Let

(Y A ryr—> G —m»Q

be a short exact sequence of groups with G finitely generated and both
A and Q Abelian. It is natural to ask for necessary and sufficient con-
ditions, in terms of the Q-module A and possibly the of extension class
of (*) in HZ(Q;A), for G to be of type (FP)m. This problem was attacked
in [71], [72] and also in [69]. This prcoblem is still open, in general, but
we now know that its solution is going to involve fairly deep connections
between valuations of fields, convexity arguments, and the theorie of groups
acting on simplicial complexes. I shall sketch the main results obtained so
far.

Let Q be a finitely generated Abelian group. By a valuation of Q
we mean a homomorphism v: Q —» R into the additive group of R ; two
valuations are equivalent if they coincide up to a positive constant scalar
multiple. Then the set S(Q) of all equivalence classes [v] of non-trivial
valuations v is called the valuation sphere; it can be identified with the
unit sphere sn—1 cﬁf, where n is the Z~rank of Q. Now, let R be a
commutative ring with unity. In [71] and [72] we attach to every finitely
generated RQ-module A a subset }:A,SS(Q) as follows: for every point

[vlI€ s(Q) we consider the monoid Q = {q€0]v(g) > o} =0 and we define
I, = {{vl] A is finitely generated over RQV}.

If we wish to emphasize the ground ring we write ZA(R) for ZA. One can

show that ZA is always open in S(Q).
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Theorem 3 (Bieri-Strebel [71]). The metabelian group G in (*) is
of type (FP)2 if and only if ZA(IL ) together with its antipodal set
—ZA( 7. ) covers the sphere S(Q).

Another way to express the condition S(Q) = ZAU—ZA is to say that the set
theoretic complement Z; = S(Q) ZA contains no antipodal points; or, equivalently,
that every pair of 2 points in Z; is contained in an open hemisphere. I

suspect that this is the form in which Theorem 3 might generalize to:

Conjecture. The metabelian group G in (*) is of type (FP)m if and

only if every m—point subset of zi(n ) is contained in an open hemisphere.

The main result of [69] establishes one of the implications

"over a field".

Theorem 4 (Bieri~Groves [69]. If the metabelian group G in (*)

€ 1K)

is of type (F“i’)m over a field K then every m-point subset of ZA@K

is contained in an open hemisphere.

4. Type (FP)_ . Margulis [83] has shown that no subgroup of finite
index in SL(n,Z), n 2.3, is a non-trivial amalgamated product. This answers

the problem on p.36 in the negative. SL(n,z) is not contained in the class C.

Our knowledge concerning the influence of type (FP)_ on the internal
structure of a group is still meagre. I suspect that if G .isAA group of
type (FP)°° then the centre of G 1is finitely generated and the torsion~free
subgroups of G are of finite cohomology dimension. Partial results in this

direction are

Theorem 5 (Bieri [66] ). The centre of a @Q-linear group ot type
(FP)°° is finitely generated.

This has been generalized by Alperin and Shalen [64] to subgroups G
of GL(K), where K 1is a field of characteristic O and the Hirsch numbers

of the unipotent subgroups of G are bounded.

Theorem 6 (Bieri-Groves [69] ), Metabelian groups of type (FP)°° are

torsion-free-by-finite and of finite Abelian section rank.
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In particular, such groups are of finite Hirsch number, whence the
result that torsion-free metabelian groups of type (FP)°° are, in fact, of

type (FP).

II. Groups of finite cohomology dimension

5. linear groupss Serre's result [52] that every finitely generated
torsion~free subgroup of GL(Q) has finite cohomology dimension was mentioned
in the introduction (in fact Serre gave formulas. for the precise cohomology
dimension of various arithmetic and S-arithmetic groups [52], [14], [73]).

This result has been generalized to

Theorem 7 (Alperin-Shalen [64]). Let R be a finitely generated
integral domain of characteristic O and G a torsion-free subgroup of
GLn(A), n>> o . Then cdG < @ if and only if there is an upper bound for
the Hirsch number of the unipotent subgroups of G.

6. Soluble groups. In-Section 7.4 we asked whether soluble groups '
G with cdG = hG < @ are necessarily of type (FP). Some progress towards
a solution of this problem has been made: D.Gildenhuys [79] gave a positive
answer in the case when hG = 2.and hereby completed the classification of
soluble groups with cd 2. (The same result was obtained by R.L. Snider
[unpublished]). Further evidence in favour of a positive solution is the

following nice result which generalizes Theorem 7.14 and Corollary 7.16.

Theorem 8 . (Gildenhuys-Strebel [80]) (a) The class of all countable
soluble groups G with cd G = hG < ® 1isg closed with respect to taking
homomorphic images

(b) Every torsion-free soluble group G with cdG = hG < ® 1is

finitely generated.

7. Improved application. Using M. Dunwoody's general solution for the

probiem of classifying all groups G with cdRG <1 (see [76]) enables one
to improve several results of Sections 8.1 and 8.2. Instead of Theorem 8.4
one can prove, e.g.: Let G be a finitely generated group with cd G < n < &,
and N« G a normal subgroup of type (FP) with Hi(N;ZN) =0 for

© < i < n-2. Then G/N is free-by-finite, and if G/N is infinite then

cd N = n-1 (see [67]). As in Section 8.2 this is a purely group theoretic
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statement if n = 2: If G is a finitely generated group with c¢d G < 2 and
1 #N G a finitely presented normal subgroup with infinite index then both
N and G/N are free-by-finite. More precise information is available if G
is a one-relator-group: Using an Euler characteristic argument one obtains in
addition, that G 1is torsion-free, generated by 2 elements, and either N is

cyclic or G/N is cyclic-by-finite. (see [67], [84]).

III, Duality groups
8.Farrell-Tate Cohomology. Duality groups have turned out to be central

for Farrell's extension of Tate-Cohomology to groups which are virtually of
type (FP). Good accounts of the Farrell theory, which we cannot go into here,

are given in [78], [74], or in the forthcoming book of K.Brown [75].

9. Poincaré duality groups and pairs. In [68] the notion of Poincaré

duality group was extended to pairs (G, S) where G is a group and S a finite
family of subgroups of G. One motivation to di so is this? There is a procedure
of "pasting Poincaré duality pairs together" in terms of amalgamated products
and/or HNN-extension, which is the precise analog of pasting manifolds-with-
boundary along homeomorphic boundary components.This leads to new Poincaré
duality pairs and eventually to (absolute) Poincaré duality groups. Conversely,
one can try to cut a given Poincaré duality group into pairs which are easier

to investigate. In this way Eckmann and MGller were able to prove

Theorem 9 (Eckmann-Mdller [77]). Let G be a Poincaré duality group
of dimension 2. If G/G' is infinite then G is isomorphic to the

fundamental group of a closed surface.

It is not known whether two dimensional Poincaré duality groups with
fine abelianization exist. For such a group G one would have ]G/G‘} <2,
and one can show that G' would not contain a proper subgroup of finite index.
By Strebel's result below it follows that every subgroup of G not equal to
G or to G' would: be free!

Theorem 1lo (Strebel {87]). The subgroups of infinite index in a

two-dimensional Poincaré duality group are free.

G
m

is isomorphic to the fundamental group of

Let G be a group having a normal series G = Go > G1 > G2 ..

v

= 1 such tha e 4
o t every factor Gi/Gi+1
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a closed surface. F.E.A. Johnson [82] has shown that G contains a subgroup
of finite index which is isomorphic to the fundamental group of a smooth
closed aspherical manifold (of dimension 2m). It is not known whether the
same holds for G itself. Similar results hold when the factors Gi/Gi+

1
are certain discrete cocompact subgroups of Lie-Groups. [83]
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