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Abstract, In this paper, we construct the Quillen metric on the determinant 
bundle associated with a family of elliptic first order differential operators. We 
also introduce a unitary connection on 2 and calculate its curvature. Our results 
will be applied to the case of Dirac operators in a forthcoming paper. 

In [Q2], Quillen gave a construction of a metric and of a holomorphic connection 
on the determinant bundle of a family of ~- operators. On the other hand, Bismut 
gave in [B1] a heat equation proof of the Atiyah-Singer Index Theorem for families 
of Dirac operators [AS 1] using the superconnection formalism of Quillen [Q 1]. In 
this paper, we extend the construction of Quillen [Q2] to the case of an arbitrary 
family of first order elliptic differential operators. 

z 
More precisely, let M ~ B be a compact fibering of manifolds and let D + be a 

family of first order elliptic differential operators. D + can be considered as a smooth 
~ ~ H~ section of Hom(H+,H_) ,  where H+,  are infinite dimensional Hermitian 

bundles over B. If2 is the line bundle (det Ker O +)* ® (det Coker D +), we construct a 
metric and a unitary connection on 2, and we calculate the corresponding curvature. 

To explain the construction, let us temporarily assume that H~,  H~ are instead 
finite dimensional Hermitian bundles over B which have the same dimension. In this 
case 2 can be identified with (det H~)* @ det H~,  and so is naturally endowed with a 
Hermitian metric I1"11. Clearly det D + is a section of 2. 

Let D_ be the adjoint of D+, and set 

D 0 H~=H~OH~-; = [ D +  DO-]" (0.1) 

Then 
I[ det D+ l[ = [det D_D+] 1/z = [det D2] 1/4. (0.2) 

Also i fH~,  H ~_ are endowed with a unitary connection ~u, 2 is also endowed with 
a unitary connection 1V. Where D+ is invertible, we have for Y~TB, 

~'} det D + = det D + Tr [O + X~}D +]. (0.3) 

By [Q 1], the graded algebra End H~° is endowed with a trace Tr and a supertrace 
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Trs. We rewrite (0.3) in the form 

~ ,  det D + = ½ {Tr [D- l~'~,D] + Trs[D- i~,~D] }. (0.4) 
det D + 

Also since D is self-adjoint, Tr[D-t~'~,D] is real, and Tr~[D- I~D]  is purely 
imaginary. Finally observe that 

d Log 1t det D + tl = ½ Tr [D- i~'UD]. (0.5) 

Equations (0.3)-(0.5) fully suggest how to define a metric and a connection when 
H~,  H_ ~ are infinite dimensional. In fact in [Q1], Quillen used the z&a function 
renormalization of the determinant to define the metric II II. This is also what we do 
here. In the right-hand side of (0.4), we should now make sense of Trs[D- l~UD]. The 
idea is to use a heat equation-or z~ta function-renormalization and so define 
formally, 

Try[D- l~UD] = Fp(Trs[exp(- tD2)D-i~uO]), (0.6) 

where Fp is an adequately defined finite part of the right-hand side of (0.6) as t i l 0. 
The real miracle is that the right-hand side of (0.6) naturally appears when 

transgressing in the most natural way the heat equation formula for the Chern 
character c h ( K e r D + - K e r D _ )  obtained in Bismut [B1, Sect.2] by using the 
superconnection formalism of Quillen [Q1]. 

Our paper is organized in the following way. In a), we describe the fibered 
z 

manifold M ~B.  In b), we introduce the unitary connection ~" on the infinite 
dimensional bundle H ~. In c), using [B1, Sect. 2], we prove the analogue of the 
results of Atiyah-Bott-Patodi  [ABP], i.e. express ch(Ker D + - Ker D _) in terms of 
certain asymptotic expansions. In d), we transgress Quillen's superconnections so 
that the right-hand side of (0.6) appears naturally. In e), we calculate asymptotic 
expansions related to the right-hand side of (0.6). In f), we describe the determinant 
bundle ). as in [Q2]. 

In g), we construct the Quillen metric on L In fact we here consider a family of 
metrics because of certain scaling discrepancies. In h), we calculate what will later be 
the connection forms of 2. 

In i), we prove a key additivity property of Quillen's superconnections. This 
permits us in j) to construct the connection iV on 2 and to calculate its curvature. 
Finally in k), we prove that in a product situation, 1V is holomorphic. This extends 
the results of Quillen [Q2]. 

In [BF2], we will apply our results to the case of a family of Dirac operators. A 
future paper by Freed [F] will discuss geometric and topological aspects of this 
work and give many examples, particularly related to anomalies. The results 
contained in this paper have been announced in [BF1]. 

a) Description of the Fibered Manifold 

n = 21 is an even integer, and m is an integer. M, B are smooth manifolds of 
dimension n + rn and rn. ge denotes a metric on TB. Z is a compact connected 
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manifold of dimension n, which we assume to be orientable and spin. re: M ~ B is a 
Z 

fibration of M on B, which is modelled on Z. There is then an open covering q /o f  B 
such that if Ueq/, rc-l(U) is diffeomorphic to U x Z. For  yeB, Z r is the fiber 

We assume that TZ is oriented and spin. Let gz be a metric on TZ. 0 denotes the 
SO(n) bundle of oriented orthonormal frames in TZ, O' a Spin(n) bundle which lifts 
O such that O ' ~  O induces the covering projection Spin(n)--* SO(n) on each fiber. 

~r 

Spin(n) acts unitarily on the vector space of spinors S = S+ ~ S _ .  Let F = 
F+ O F _  be the Hermitian bundles of spinors, F = O' Xspin~,)S, F_+ = O' Xsp~n~. ) 
S±. Let TUM be a smooth subbundle of TM such that 

T M  = TriM ~ TZ. (1.1) 

TUM, TZ  are the horizontal and vertical parts of TM. Let Pz be the projection 
operator of TM on T Z  associated with the splitting (1.1). 

We identify TUM and rc*TB. THM inherits the scalar product #B of TB. We 
denote by gn @ gz the metric of TM, which coincides with #n on TB, with gz on T Z  
and is such that TUM and T Z  are orthogonal. 

Let V L be the Levi-Civita connection on TM. 

Definition 1.1. V denote the connection on TZ 

V = Pz VL. (1.2) 

In [B1, Theorem 1.9], it is proved that V does not depend on #B. V lifts naturally 
into a unitary connection on F±. { is a Hermitian bundle on M, which is endowed 
with a unitary connection, which we also note V. The Hermitian bundles F± ® ~ are 
then naturally endowed with a unitary connection V. 

b) Connections on Infinite Dimensional Bundles 

H ~ = H~ • H_ ~ denotes the set of C ~ sections of F ® 4 = (F + ® 4) G (F_ ® 4) over 
M. As in [B1], we will consider H ~, H ~ _+ as being the sets of C ° sections of infinite 
dimensional bundles over B, whose fibers H~,  H ® C ® _+,y are the sets of sections of 
F ® 4 ,  F+_®4 over the fiber Zy. 

For  seR, y~B, let H~, H~,y be the set of sections of F @ 4, F +_ ® ¢ over Z r, which 
belong to the s-Sobolev space. Contrary to H ~, H '  is not a smooth bundle over B, 
but is only continuous. 

Let dx be the Riemannian volume element in the fibers Z. H ;  is naturally 
endowed with the Hermitian product, 

h ,h '~H~-~(h ,h ' )=  S (h,h')(x)dx. 
Zy 

For y~TB, let yU be the lift of Y in TUM, so that 

YUeTaM, i r .YX= Y. 

We now define a connection on H °~ ± as in [B1, Definition 1.10]. 

(1.3) 

(1.4) 
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Definition 1.2. ~ denotes the connection on H °° which is such that if h~H ~°, 

Vrh = Vrnh. (1.5) 

By [B1, Proposition 1.11], the curvature /~ of ~' is a first order differential 
operator acting fiberwise. Although V is unitary on F ® 4, ~' is in general not unitary 
on H °°, since the volume element dx is not invariant under the holonomy group of 
the connection 9. However a mild modification of 9 makes the new connection 
unitary. 

In fact, let Y be a smooth vector field on B. yn  acts on the fibration Z, and in 
particular on the volume element dx of Z. For any xeM, the divergence divz(Y n) of 
yn with respect to dx is well defined. One readily verifies that Y--+ divz(Yn)(x) is a 
tensor. 

Definition 1.3. k denotes the smooth vector field in TriM such that for any Y~TB 

divz Yn(x)= 2 (k, Yn)(x). (1.6) 

~' is the connection on H ~° defined by the relation 

V~, = V'y + (k, r " ) .  (1.7) 

Proposition 1.4. The connection ~u is unitary on H ~°. 

Proof. If h, h'eH °°, we have the relation 

YS(h,h')(x)dx = ~((~yh, h') + (h,~rh')+divz(Yn)(h,h'))dx. (1.8) 
z z 

The Proposition is now obvious. [] 

c) Quiilen's Superconnections and the Chern Character of Ker D ÷ - K e r  D_ 

D +,y is a smooth family of first order elliptic differential operators acting fiberwise on 
Z, which sends H~,y into H~,y. D_,r denotes the formal adjoint of D÷,y with respect 
to the Hermitian product (1.3). D r is the operator acting on H;  ° = H~,y @ H~_y, 

[0 °01 D r = 'Y . (1.9) 
D+,y 

H °~ = H~ @HS is a ZE graded vector bundle over B. Let z be the involution o f H  ~ 
defining the grading, i.e. z = + 1 on H_~. End H a is naturally ZE graded, the even 
(respectively odd) elements of End H ~ commuting (respectively anticommuting) 
with ~. IfA is a trace class operator acting on H~ °, we define its supertrace Trs A by 
the relation 

Trs A = Tr zA. (1.10) 

End H~_Q A (T'B) is also Z2 graded. We extend Tr, Tr s to trace class elements A' 
in End H; ° ® A (T'B). Tr A', Tr~A' are now in A (T'B). We use the convention that if 
co~A (T'B), 

Tr [coA'] = co Tr  [A '], Trs [coA '] = co TL [A ']. (1.11) 
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For  any t > 0, ~" + ,,/tD is a superconnection on H ~ in the sense of Quillen [Q1]. 
By [B1, Sect. 2] (V"+ x/tD) z is an elliptic second order differential operator acting 
fiberwise, which is even if End H ~ ~ A ( T * B ) .  

exp - (~"+~/ tO)  2 is then even in End H ~ A  (T 'B)  and is given by a C ~ kernel 
Tt(x,x') along the fibers Z. By noting that Tt(x,x) is even in 
End(F ® ~L (~ A~(x)(T*B), and using the convention (1.11), Yr~[Tt(x, x)] is an even 
element of A (T*~B). 

I fE is a complex vector bundle over B endowed with a smooth connection whose 
curvature is L, set 

chl E = Trexp - L. (1.12) 

chzE is a scaled representative of the Chern character of E. If ~oeA(T*B), 
oY J'~ denotes the component of o) in AJ(T*B). If B is compact, by [AS1], 
Ker D + - Ker D_ is a well-defined element of K(B). 

We first state a general result which is the natural extension of At iyah-Bot t -  
Patodi [ABP]. 

Theorem 1.5. For any t > O, the C ~ differential form over B 

Tr~ exp - (~u + ~/tD)2 = ~ Tr~ [T~(x, x)]dx (1.13) 
z 

is closed and its cohomology class does not depend on t. I f  B is compact, it represents in 
cohomology chl(KerD+ - K e r D _ ) .  As t J, J, O, for any k~N, 

k 

Tr~ exp - ( ~  + ~/tD) 2 = ~ a~(y)t ~ + o(t k, y), (1.14) 
- n / 2  - [ m / 2 ]  

where (a j) are C ~ differential forms on B, and o(tk, y) is Uniform on compact sets in B. 
For p even (respectively odd) a~ 2p) is real (respectively purely imaginary). For j ~ O, a i is 
exact, a o is closed and is in the same cohomology class as (1.13). I f  B is compact, a o 
represents in cohomology ch 1 (Ker D + - Ker D_). 

F o r O < p < [ m / 2 ] ,  j < - n / 2 - - p ,  a~2p)=0. 

Proof The first part of the Theorem is proved in [B1, Theorem 2.6] when V~ is 
replaced by ~', and follows from [BI, Proposition 2.10] in general. 

Also by Greiner [Gr, Theorem 1.6.1], for every y~B, we have the asymptotic 
expansion 

k' 

Tr~exp - t(~" + D) 2 = ~ as(y)t j + o(tk',y). (1.15) 
- n / 2  

In (1.15), (a~) are C ~ differential forms on B, and o(tk',y) is uniform on compact 
subsets of B, because the fibers Z are compact. 

Let ~0t be the homomorphism from A (T 'B)  into itself which to a one form ~o 
associates co/~/t. Clearly 

Yr~ exp - (~" + ~/tD) 2 = ~0t[TL exp - t(g?" + D)2]. (1.16) 
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Also for 0 < p < [m/2], 

q~,(o(t k', y) )(2p) = o(tk'- p, y), 

By choosing k' large enough, we obtain (1.14). The final statement in the theorem 
also follows from (1.15), (1.16). 

Let ~k be the linear mapping from End H ~ ~ A (T'B) into itself which to B = A 
dy'~...dy ~ associates B' =dy .. . . .  dy'~A *, where A* is the formal adjoint of A. 
Clearly 

(~, + x/tD)2 = (~,,)2 + ~/t(~.~D) + tD 2. (1.17) 

Since ~'" is unitary, its curvature (~)2 takes values in skew-adjoint elements of 
End H °°. Also since D is self-adjoint, for any Ye TB, ~,D is self-adjoint. We then find 
that 

~h(~.u)Z = (i~u)2; ~(~,UD) = -i~"D; ~(D z) = D E, (1.t8) 

and so 

~(~" + ~/tD) 2 = ( - ~ "  + ~/tD) 2. (1.19) 

We then obtain 

~O(exp - (~" + ~/tD) z) = exp - ( - ~ "  + ~/tD) 2. (1.20) 

Since Tr~ vanishes on odd element of End H °~, we get 

Trs ¢(exp - (~" + x/tD) 2) = Tr~ exp - (~" + ~/tD) 2. (1.21) 

If A is trace class, clearly TrsA* = Tr s A. From (1.21), we find that if p is even 
(respectively odd) [Tr~ exp - (~" + ~/tD)2] (zp) is real (respectively purely imaginary). 
The corresponding statement on (a j) follows. 

Let c be a C ° cycle in B (so that Oc =0). Clearly, by the first part of the theorem, 

STrsexp - (~" + v/tD)Z (1.22) 
¢ 

does not depend on t. Using (1.14), we find that Sa o coincides with (1.22) and also 
¢ 

that ~ a~ = 0 for j ~ 0. The theorem is proved. [] 
¢ 

Remark 1. The family D gives a map from B into the classifying space Z × BU~. In 
general, the differential forms (1.13) and ao represent in cohomology the pull back of 
cohomology classes on Z × BU~ through the mapping D. This is proved in 
Theorem 1.5 when B is compact, and follows from Theorem 1.5 in general by 
restriction to compact pieces in B. The results which follow will be true for any 
parametrizing manifold B. 

d) Transgression of the Chern Character 

For s > 0, e-SO~ is given by a C ~ kernel on Z. e-SD~C~UDD is then a 1-form on B with 
values in trace class elements of End H ~. 
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We now prove  a fundamenta l  t ransgression formula.  

Theorem 1.6. For 0 < t < T < + ~ ,  the following identity holds: 

[Tr~ exp - (~" + x/tD)Z] ~2) - [Trs exp - (~" + ~/TD)2] ~2) 
d T 

= - ~ ! Trs[exp ( -  sD2)~"DD]ds. (1.23) 

Proof We will do formal  computa t ions ,  which are justifiable using C °~ kernels as in 
[B1, Sect• 2]. 

By proceeding as in [B1, Propos i t ion  2.10 and Remark  2.3], 

~ T r ~ [ e x p  - (~'" + sD) 2] = - d Trs [D exp - (~" + sD)2], 

and so 

ffsTrs exp - (~'" + s D ) 2 ]  (2) = - d[Tr  s D exp - (s~UD + 8 2 D 2 ) ]  (1) (1.24) 

By Duhamel ' s  formula  we have 
1 

exp - (sV"D + s2D 2) = exp - (s202) - S exp - v(sfTUD + s2D 2) 
0 

• s~"D exp (--  (1 - v)sZDZ)dv. (1.25) 

N o w  ~'"D being of degree 1 in A (T'B),  we have 

1 
[exp - (sf~"D + s202)] ~1) = - S exp ( - vsZD2)sf~"D exp( - (1 - v)sZDZ)dv. 

0 

Since by [Q1] ,  Trs vanishes on supercommuta tors ,  we get 

[Tr~ O e x p -  (s~"D + s 2 D 2 ) ]  (1) : - S Tr~ [ exp- -  sZDZVUDD]. (1.26) 

Equat ion  (1.23) follows f rom (1.24), (1.26). [ ]  

e) Asymptotic Expansions of Traces and Supertraces 

We now calculate certain asymptot ics  of  traces and supertraces and in par t icular  the 
small t ime expansions of  both  sides of  (1.23). 

Theorem 1.7. For any t > O, the function ½ Tr  [ e x p - t D  2] is real, and moreover 

d½ Tr  [exp - tD 2] = - t Tr  [exp ( - tDZ)f~UDD]. (1.27) 

There are C ~ real functions A_,/2 ...A~...on B, and C ~ purely imaginary 1 forms 
B-,/2 ...B~...on B such that for any keN,  as t+~O, 

k 

½ T r [ e x p ( - t D 2 ) ]  = ~ Ajt j + o(tk, y), 
- n / 2  

k 

Yr [ e x p ( -  tD2)~"DD] = - ~ dAjt j -  1 + o(t k- 1, y), 
- n / 2  
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k 
T L [exp ( - tDZ)~"DD] = - ~ B j ¢ -  1 + o(t k-  1, y). (1.28) 

-n/2 

The various o(t k- x, y) are uniform on compact subsets of  B. Also 

dBj = - 2ja~ z), - n / 2  < j  < + ~ .  (1.29) 

In particular dB o = O. 

Proof. Equation (t.27) is trivial. The first line of (1.28) follows from [Gr, Theorem 
1.6.1]. Using (1.27), and differentiating the right-hand side of (1.28) we obtain the 
third formula in (1.28). Using the same procedure as in (1.17)-(t.19), we find 
immediately that TL [ e x p -  tD2~"DD] is purely imaginary. Differentiating the 
parametrix of e -'02 as in Greiner [Gr, Lemma 1.5,5], we obtain the third line in 
(1.28). Using (1.14), (1.28) and comparing the asymptotic expansions of both sides of 
(1.23), we obtain (1.29). [] 

Remark 2. Ao, Bo will play an important role in the sequel. We will prove in [BF2] 
that Bo is exact. 

We will use the following trivial identities; 

Tr[e--~D +D- ~"D +D_] = - Tr[e-tO-O + D_q~"D + ] = l y r [ e - tO~"DD]  

- ½ Tr~[e-tO~9"DD]. (1.30) 

Note that in the right-hand side of(1.30), the first term is real, and the second purely 
imaginary. 

f) The Determinant Line Bundle 

The determinant bundle of the elliptic family D + is the bundle whose fiber ~y at y~B  
is 

2~. = (det Ker D +,y)* ® det (Coker D + ,y). 

Since the dimension ofKer  D+,y may jump as y varies, 2 is not yet a smooth line 
bundle. We now follow Quillen [Q2] to explain how to turn 2 into a smooth line 
bundle. 

Take Y0 ~B. Let J be a finite dimensional subspace of H~_,yo which is transversal 
to Im (D + ,to)[Hi+ ,ro] in H °_,yo. A possible choice for J is Ker D_ ,yo. Using the local 
triviality ofM ~ B, we can as well assume that J is now a smooth subbundle of H_~ ro 
over an open set U in B containing Yo, such that the transversality assumption still 
holds at any y6U.  Since D+ is elliptic, D+ 1 J ~ H ~ .  

Consider the exact sequence 

0 ~ K e r D +  ~ D + l J - ~ J ~ C o k e r D +  ~ 0  o+ (1.31) 

We can canonically identify 2 and det (DT 1 j ) , ®  det J by the following construc- 
tion. Take s ¢ 0  in det(KerD+), s' ~ 0  in det(CokerD+), s can completed into 
s ^ gEdet(D;~ J) with s r, g ~ 0. Similarly take 3' in AdiraC°kerO+(J) whose image in 
det(CokerD+) is s'. 

Then s Q ( s  ^ g)*®(~' ^ Dg)®s '*  is non-zero in det(KerD+) ® 
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det(D+lJ)*®detJ®(CokerD+) * and does not depend on s, g, s', ~'. We can 
thus identify s* ®s' ~2 with (s /x s-)* ®~' ^ Ogedet(D +l J)* ®detJ .  (de tO+lJ )*® 
det J is a smooth line bundle over U. I fJ '  is another smooth subbundle of H_ ~ having 
the same properties as J, one easily verifies that when identifying (det D + 1j) ,  ®det  J 
and (det D+ 1J')® det J '  with 2, the transition maps are smooth. 

2 then becomes a smooth line bundle over B. We now proceed as in [Q2]. Clearly 

D 2 = [ D ; D +  0 
D+D_]" 

The spectrum of D 2 is discrete, the non-zero eigenvalues of D + D_ and D _D + agree, 
and the corresponding eigenspaces are mapped isomorphically by D. For a > 0 not 
in the spectrum, let K~ be the sum of the eigenspaces for eigenvalues less than a. 
Then since D 2 is fiberwise elliptic, K~ consists of C ~ sections of F_+ ® ~ over Z. 

The exact sequence corresponding to (1.31) is now 

a ---9, a 0 ~ K e r D +  K+ K_ -0 Ker D _ -o 0. (1.32) 
D+ 

Set 

2 a = (det K"+)* ® det K"_. (1.33) 

K"_+ are smooth finite dimensional subbundles of H ~ over the open set U " =  
(a¢SpecD2). 2 ~ is then a smooth line bundle over U". We identify 2 and 2" over U a 
as before. For a, b with a < b not in the spectrum olD 2, let K(~_ "b) be the union of the 
eigenspaces corresponding to eigenvalues /~ with a < # < b. K(~ 'b) are smooth 
subbundles of H_~ over U"~ U b. Set 

2 ("'b) = (det K~_'b)) * ® det K~ 'b). (1.34) 

Let D~ 'b~ be the restriction of D+ to K~ 'b). D+ maps K~ 'b) into K~ "b). 
Clearly, over U"~ U b 

2 b = 2 a ® 2 (a'b). 

The identification of 2 a and 2 b via 2 is given by the mapping 

S~:2 a ~ S @ d e t  D~'b)e2 b. (1.35) 

g) Quillen Metrics on 

As subbundles of H_~, the bundles K~_ over U" or K(~_ 'b) over U"c~ U b inherit the 
Hermitian product (1.3) of H ~ The bundles 2", 2 (~'b) are then naturally endowed _+. 

with metrics I I", I I ("'b). 
Over U"c~ U b, Ka+_ is orthogonal to K~ 'b). It follows that if sE2", 

Is ® det D~ 'b) [b = Is 1" Met D~ 'b) I (a'b). 

When identifying 2 with 2a or 2 b, the metrics I I a and I ]b are related to each other 
by 

l Ib=[ [a Idet D(~,b)l(~'b). 
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To correct this discrepancy, we will proceed as in Quillen [Q 1], using a z&a function 
regularization of I det D ÷ I. 

Definition l.8. Over U ~, W is the orthogonal projection operator from H ~ =  
H~ 0) H ~- on K" = K~. • KL. Q" is the operator 

Qa = I - P~ (1,36) 

Since K~ are smooth bundles in H ® W is a smooth family of regularizing 
operators over U ". 

Definition 1.9. For s~C, a > O, y~U a, set 

(~(s) = ½ Tr [([D] 2)- ~Q~], (1.37) 

or equivalently 

1 +oo 

~ ( s ) -  2F(s) ! t*-I Tr[e-t'2Q"]dt" 

~"(s) is exactly the z~ta function of the operator D_D+ restricted to the 
eigenspaces whose eigenvalues are larger than a. Since pa is trace class, using (1.28), 
we find that as t~[0, 

- I  
½Tr [exp(-(tD2)Q ~] = ~, Ajd + 0(1,y). (1.38) 

- n12 

Also since a > 0, Tr [e-'O2Q ~] decays exponentially and uniformly over compact 
subsets of U a. 

Using (1.38), we find that as is well-known (see Seeley [Se] ), (a(s) is holomorphic 
for Res > n/2 and meromorphic on C. Moreover (a is holomorphic at 0 and (~(0) and 
c9(~/~9s (0) are smooth in yEU °. 

For 0 < a < b < + oo, we can also define (~:'b)(s). Clearly 

(~(s) = (~'b)(s) + (b(s). (1.39) 

Also we have the trivial relation 

Idet D~'b) r("'b) = ex p (1.40) 

is now a fixed real number. 

Definition 1.10. II I]" denotes the metric on )." which is such that if le2 ~, 

H 1 Ha = ,ll" exp { - 1 t3~ "^" ~ - s  (t0 - ½#Ao }. (1.41) 

We now have the natural extension of Quillen [Q2]. 

Theorem 1.11. Under the canonical identification of  2 with 2 ~ over U ~, the metrics 
II II ~ patch into a smooth metric II II on 2 over B. 

Proof. Using (1.35) and (1.39), the result is obvious. [] 
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Remark 3. In Quillen [Q2], it turns out that Ao is constant. Here the reader may ask 
why we introduce the factor #Ao in (1.41). In fact for b > 0, consider the new family 
bD +. The new metric on 2 is now b a° II II. Ao(y) should be thought of as the formal 
dimension of H~,y. However since A o varies with y, this dimension is anomalous. 
The introduction of the parameter/~ permits us to consider all the scaled metrics 
altogether. 

h) Construction of Connection Forms 

We temporarily assume that 0 < a < b < + ~ .  Let p(,,b) be the orthogonal 
projection operator on K (a'b). In particular p(a, + ~) = Qt  

p~,b) is the restriction of p(a,b) to K~ 'b). 

Definition 1.t2. °V("'b) is the connection on K~ 'b) defined by the relation 

0v(a ,b  ) = p ( a , b ) ~ u .  ( 1 . 42 )  

Since ~" is unitary on H ®, °V¢a'b) is unitary on K ¢a'b). For 0 < a < b < + ~ ,  °V¢"'b) 
induces a connection on 2 ("'b) which is unitary for I I ¢"'b). In the sequel, if 0 < a < 
+ oo, over U a, we write °va instead 0V(0'a). 

We first prove a technical result. 

Proposition 1.13. ~" p(a,b) interchanges K ~  "b) a n d  K <°'") ~ K(~ ' + ~o). Also 

Ov(a ,b)D(a ,b)  = p ( a . b ) ( ~ u D ) p ( a , b )  

d½Tr [ exp ( -  tD2)P (a'b)] = - t Tr [exp ( -  tDe)~"DDP("'b)]. (1.43) 

Proof Since (p(,,b))2 = p(=,b), we get 

~,p(,,b) = p(,,b)~,p(,,b) + ¢~,p(~,~)p(,,b). (1.44) 

The first part of the proposition is proved. Since D commutes with p(a,b), the first line 
of (1.43) is obvious. 

Also 

d[½ Tr exp ( - tD2) p(a,b)-] = __ t Tr [exp ( -- tO 2)~"DDP (a'b)] 

+ ½Yr [exp ( - tD2)~"P("'b)]. (1.45) 

By the first part of the proposition, the last term in the right-hand side of (1.45) is 0. 
The proposition is proved. [] 

Since P" is a smooth family of regularizing operators, using Theorem 1.7, we have 
the expansions as t ~ 0 ,  

- 1  
½Tr[exp(-tDZ)Q ~] = ~ A / i  + 0(1,y), 

- n / 2  

0 
Tr [ e xp ( -  tD2)~'UDDQ ~] = - ~ d A / i -  1 + 0(1,y), 

- n/2 
0 

Tr, [ e xp ( -  tD2)~"DDQ a] = - ~ B~ i-~ + 0(1, y). (1.46) 
- n/2 



170 J.-M. Bismut and D.S. Freed 

Still Tr[exp ( - tD2)~"DDQ a] is real and Tr~[exp(- tD2)~"DDQ ~] is 
imaginary. 

The analogue of (1.30) is now 

Tr  [exp ( -- tD + D _)~UD + D _ p(a,b) ] = ½ Tr  [exp ( - tD 2)V"DDPt~'b)] 

-- ½ Tr~ [exp (-- tD2)(TUDDp(a'b} ]. 

We now define a family of one forms on U ". 

purely 

Definitiont.14. For  t > 0, 7~', 6~ are the Coo differential forms over U ", 

+ o o  + o o  

?~= ~ Tr[e-'oe$"DDQa]ds, 6~= ~ TrXe-'O~$"DDQ°]ds. (1.47) 
t t 

Similarly for 0 < a < b < + ~ ,  t > 0, y~a,b), g~o,b) are the Coo differential forms over 
U ~ n U b, 

~ a , b )  ~-. 

6~, b) = 

Theorem 1.15. For any t > O, 

7~ = - Tr  [ e -  '0~ [D] - I(~"D)Q"], 

As t~,~0, we have the expansions, 

Tr  [e-~D:~DDP¢~'b)]ds, 
t 

t 

(1.48) 

7_3 d 
Z + dAo Log(t) + + O(t, y), 

- n /2  J 
- 1 t j 

6~ = ~ B F + B 0 Log(t) + 6~ + 0(t, y), (1.50) 
-~/2 J 

where 7~o, 6~o are C °o 1-forms on U ~, which are respectively real and purely imaginary, 
and O(t, y) is uniform on the compact subsets of  U a, Also the following identities hold: 

d(~(O) = dAo, d I ~ - ~ - ( a ( 0 ) ] = - y ~ o - F ' ( 1 ) d A o ,  

~o + r'(i)dAo = -(s  Tr [(D2)-'D - 19UDQa])'(0), 

~ + F'(1)Bo = (s Tr~ [(D2)-SD - I~'~DQa])'(0), 

½[(y~-6~)+ F ' (1 ) (dAo-Bo) ]  = - ( sTr[ (D_D+)-~ (D+)  - l~D+Qa]) ' (0) .  (1.51) 

dA o (respectively --Bo) is the residue at s = 0 of  

Tr[ (DZ)-~D-I~"DQ °] (respectively Tr~[(DZ)-~D-XC~DQ°]). (1.52) 

For 0 < a < b <  + ~ ,  on U~c~U b, 

~ = ~ o~'~'~) ~" ~ o,°'b 6~ = ~o °'b) + 6~, 
°V(~'b) det D~ 'b) 

½,.(,.b~ (1.53) 
~ro - 6~°~'b)) = det D~ 'b) 

6~=Tr,[e-~O~[D]-l(q~UD)Qa]. (1.49) 
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Proof Using Proposition 1.13, we obtain easily the first part of (1.49) (with our sign 
conventions!). 

Also for t > 0, 

~,~ = Tr [e- ~o~"DDQ"] + d A y -  i ds 
-- n/2 

+~ -1 dAj -1 dAj j 
+ S TrEe-SD~UDDQa] d s -  ~ - - +  ~, _ _ t  +dAoLog( t  ). (1.54) 

1 - n / 2  J j = - n ] 2  J 

Using (1.45), we find that as t~,~0, the first integral in (1.54) has a limit. We thus 
obtain (1.50). 

Also for Re(s) large enough, 

1 +~ 
d~a(s) = - F(s-~) ! t" Tr [e-*O~UODQ~]dt 

1 1 
-- r~ ,S t~(Tr[e-tD2~UDDQ~ + ~ dAjtJ-1)d t 

I [ S )  O -n /2  

1 +~of t~TrEe-tO2~DDQa] d t + ~  ) ~ dAj + dA o (1.55) 
F(s) ~ l"(s) j=~_,/2s+j F ( s +  1)" 

The first equation of (1.51) now follows from (1.46) and (1.55). When comparing 
(1.54) and (1.55) we obtain the second equation of (1.51). 

By Atiyah-Patodi-Singer [APS1, Proposition 2.9], we know that 

d('(s) = - s Tr [(D2) -s-  I~}"DDQ"] = s Tr [(D 2)-~D - X~"DQ']. (1.56) 

We thus obtain the third equation of (1.51). 
The fourth equality in (1.51) can be proved by proceeding as in (1.54), (1.55). The 

end of(1.51) is trivial. Using (1.55), we find that dA o is the residue at s = 0 ofd('(s)/s. 
The result on B o can be proved by sti11 proceeding as in (1.55). 

The first two equations of (1.53) are trivial using (1.47). Also by the obvious 
analogue of (1.49) for ~,.b) which is valid at t = 0, we have 

½(~o~.b~ _ 3~o a,b)) = _ ½ Tr [ [D ~"'b) ] - 1 ov~,b,D(~,b) ] 

- ½Tr~ [ [D ~"'b) ] - 1 ov~.,b)DtO,b)] 

= -- Tr [(D~'b)) - l°V~a'b)D~'b)]. (1.57) 

With our sign conventions, we clearly have 

°VIa'b) det D~ 'b) 
det D~ 'b~ = - Tr[[D~ 'b)] - l°V~"'b)D~'b)]. (1.58) 

The theorem is proved. [] 

Remark 4. (1.52) shows that 

Tr[(D2)-~D - ~¢~"DQ ~] =dAo + ~o~(s), Tr~[(D2)-~D- ~9aDQ ~] = _ Bo + qt"(s), 
S S 

(1.59) 
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where ~o a, ~k a are holomorphic at s = 0, and that moreover 

Y~o + r'(1)dAo = - q)a(O), 6~ + F'(1)B o = ~b"(0). (1.60) 

Also observe that if the family D is replaced by bD with b > 0, dAo, Bo do not vary, 
but y~, 6~ are changed into ?~ + 2 dA o Logb, 6~ + 2B o Logb. In view of (t:51), this 
again appears as a scaling discrepancy. This problem will be considered in more 
detail in [BF2]. 

i) Additivity Property of Quillen's Superconnections 

Let D a be the restriction of D to K a. Over U% the Z2 graded bundle K a = K% @ KL is 
endowed with the superconnection °Va + ~/tD a. We now relate this superconnec- 
tion to the superconnection ~" + x/tD. 

Theorem 1.16. On U a, the followin9 identity holds: 

[Tr, exp - (~a + .~/tD)Z](Z)= Tr~ [exp-(ova + ~/tDa)Z] (2) 

+ T L [ e x p -  (°Vta'+ ~) + ~/tD (a'+ oD))2](2) (1.61) 

Proof. H~_ splits into 

HO~ = K a ( ~  g t a ,  + oo) (1.62) ± +~ ± • 

Let ~' be the connection on H ~ which preserves the splitting ~' = °Va • °v(a' + ~). Set 

M a = ~u _ ~,. (1.63) 

M a is a one form with values in End H_~. Recall that by Proposition 1.13, 9up~ 
interchanges K~_ and K(p + ~). We claim that with respect to the splitting (1.62), we 
have 

M " = ( ~ O p ,  - ~0"W). (1.64) 

In fact if h is a section of K~, 

~Uh = ~u(pah) = (guP")h + W~'Uh. (1.65) 

With respect to the splitting (1.62), for any YETB,  M"(Y) is odd, and so 

Tr~ Mae- m2 = 0. (1.66) 

By proceeding as in (1.24), we have 

Tr~ [exp - (~" + IM ~ + x/tD) z] = - d Tr~ [M a exp - (~a + IM ~ + x/tD)2]. (1.67) 

Since M" is of degree 1 in the Grassmann variables, we get from (1.66), 

2 \~2)  a. o / r r , [ e x p - ( ~ "  + lM a + ~/tO) ] }  / =0 .  (1.68) 

(1.61) is proved. [] 
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j) A Unitary Connection on ;~ 

We are now ready to define a uni tary connect ion on 2. 

Definition 1.17. 1V4 denotes the connect ion on ;L a over  U 4 given by 
l a a 

1V4 = °V4 + ~(~o - C5o) + ½(F'(1) - #)(dA o - Bo). (1.69) 

We now prove the fundamental  result of this section. 

Theorem 1.18, Identifying 2 with 24 over U a, the connections 1Va patch together into a 
connection 1V on 2, which is unitary for the metric II II. The curvature of 1V is given by 
a~o2J. 

Proof. Recall that  °V4 is unitary on (24, [ la). To  check that  1va is unitary on 
('~, tl II), we can disregard ~ and Bo which are purely imaginary. Using the second 
line of  (1.51), it is clear that  1W is unitary with respect to il II. 

Take  0 < a < b < + ~ .  Let  I be a smooth  section of  )4 over U a c~ U b. Clearly 

°Vb(l ® det D~ 'b) ) = °Va I ® det D~ 'b) + 1 ® °V(4'bl det D~ 'b). (1.70) 

Using the last equality in (1.53), we get 

°Vb(l ® det D~_ 'b) ) = (ova + ~(~a,b) _ ~(oa,b)))l ® det D~ 'b). (1.71) 

Using the first two equalities in (1.53), we find that 

1Vb( l ® det D(~ 'b) ) = (1 v a / )  ® det D~. "b). (1.72) 

Using (1.72), we find that  the connections 1W patch together.  
We now use equality (1.61). Clearly since K 4 is finite dimensional,  

lim [Tr~ exp - (ova + x/tD)2l (2) = I-Tr~ e x p -  (°va)2"] (2) = - -  Tr~ [ova] 2. (1.73) 
t~10 

An easy extension of Theorem 1.6, shows that  for 0 < t < T < + ~ ,  

Trs exp _ (ov(4, + ~ + x/tD(a,+ oo))2 - Trs exp - (°Via' + ~o) + ~/TD(a,+ ~))2 
d r  

= - ~ ! Tr~ [exp( - sD2)~4DDQa]ds. (1.74) 

Since a is > 0, as T T + ~ Tr~[exp -- (°V(4' + ~) + ~ /TD ca" + ~)2] decays exponenti-  
ally. We find that  

Tr~ exp - (°V¢a' + o0) + ~/tD(a,+ ~o))2 = _ ~ , . d  a (1.75) 

By differentiating the second line of (1.50), we find that  as tSJ,0, 

- 1 t j 
d3~ = _~2dBj-f + dBo Log t + d6~ + 0(t, y). (1.76) 

Using (1.14), (1.73), (1.75), (1.76) and identifying the coelScients in the expansions 
of both  sides of  (1.61), we get 
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d a a(o 2) = - Trs[°V"] z - ~6o. (1.77) 

Now --Trs[°V"] 2 is exactly the curvature of 2" for the connection °V". Also by (1.51), 
d ~  -- 0. Using (1.77), and the fact that dB o = 0, we find that the curvature of ~V" is 
ato 2). []  

k) Holomorphic Properties of 1V 

In [Q2], Quillen constructed a unitary holomorphic connection on the determinant 
bundle of a family of ~ operators over a Riemann surface. 

We now will prove that under the assumptions of [Q2], our connection 
coincides with Quillen's connection by proving that 1V is holomorphic. As in [Q2] 
we will work in a product situation. 

To simplify the notations, we now assume that B -- C and that M = Z x C. H~ is 
now a constant bundle over C. We assume that D+ depends holomorphically on 
yeC,  and ~0~/0y, ~/0~ are the operators 8/gy, 8/ay. 

Let J be a finite dimensional subspace of Hr~ ,_ which is transversal to Im 
1 D+,yo[H+,yo]. (detD?~tJ)*®detJ is holomorphic on a neighborhood of Y0. 2 

inherits the corresponding holomorphic structure. D_,r is antiholomorphic in y. The 
eigenspaces K" are not holomorphic bundles. However 2 a, which is canonically 
isomorphic to 2 inherits the corresponding holomorphic structure. 

Take Yo e U a. Set J = KL,yo. V is a small neighborhood ofy o in U" such that P~_ is 
one to one from J into KL,y when ye  F. Then P~ is one to one from D ~ 1 j into K~_. 
In fact if xeD~_iJ and P~+x = 0, then 

PLD +x = D +P~+x =O, 

and so D + x = 0 ,  i.e. x e K e r D + .  Then x=P~+x=O. Since P% is one to one, if 
me(det D~ 1j)., P~+me(det K~_)* is well-defined. 

Proposition 1.19. Over V, the mappin9 

m ® m' e(det D ~. ~J)* ® det J --. P"+ m ® P~_ m' c2" (1.78) 

is the canonical isomorphism of (det D~ x j ) . ®  det J and ~.a via 2. 

Proof. We take s, L s', ~' as in f). We can here assume that ~'edet(Ker D_). Clearly 

Pa+(s ̂  s-)=s ^ e~+g, P~_(~' ̂  D+g)=~'  ^ O+(P~+g). (1.79) 

Since/~+ is one to one from D;~J into K~,  s ^ P~+g¢ 0. So 

P~+(s^s-)*®P~_(g' ̂ O+s-)=(s^e~+s-)*®g' ^D+(P~+s-). (1.80) 

Using the canonical identifications with 2 given in f), the proposition follows. []  
The second key step is the following: 

Proposition 1.20. The connection °V" on 2" is holomorphic. 

Proof. Clearly tg/0y D + = 0. We now must prove that if h is a holomorphic section of 
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D+IJ®J over V, then 

0 a v0/0~(P~+ ® P~_)(h) = 0. (1.81) 

Clearly 

[ L oy j 

et, )(ht. (1.82) 
-L oy j )  

In (1.82), (p~)-i denotes the inverse of pa restricted to D+IJ or J. 
Since P~_D+ = D+P'+, we find ((8/£337)pa)D+ = D+(£3/£337)Pa+, and so on K~_, 

, ,  

Let P~:er~_+ be the orthogonal projection operator on Ker D_+. Using (1.83) and 
the fact that D a is one to one from [KerD+]  ± into [KerD_]  ±, we find that the 
difference of traces appearing in (1.82) is given by 

£3 a a 
-TrK~r°+[Pr'~r°+~YP~+(P~+)-I]+TrKer°FP~*roT=P-(P-)-I] -L -cy (1.83) 

Now (P~_+)- t is the identity on KerD_+. Also by Proposition 1.13, a/d37 pa sends 
K~_+ in its orthogonal, and so 

PKor,+( d---Pa~ ~Pr, ero =O. (1.84) 
\£337 ,/ 

Equation (1.83) is 0. The proposition is proved. []  
We finally obtain 

Theorem l.21. The connection ~V is the unique holomorphic connection on )~ 
preserving II II. 

Proof. Since £3/£337 D+ = 0, using (1.51), we find 

[½@~o-~)+F'(1)(dAo-Bo)](~-~)=O. 

Similarly, by (1.59) one finds easily that 

(dAo-Bo)(~---~)=O. 

on it, IV is also holomorphic. The theorem is Since Ova is holomorphic 
proved. []  

Remark 5. On complex manifolds, the Dirac operator is given by D = ~ + ~*, and so 
in general D + cannot be embedded in a holomorphic family. 

However in the case considered by Quillen [Q2] where the fibers have complex 
dimension 1, D ÷ = ~, and so D ÷ can depend holomorphically on a parameter. 
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