Commun. Math. Phys. 107, 103-163 (1986)

Communications in
tical

Physics

@© Springer-Verlag 1986

The Analysis of Elliptic Families

IL

Dirac Operators, Eta Invariants, and the Holonomy Theorem

Jean-Michel Bismut! and Daniel S. Freed?

! Université Paris-Sud, Département de Mathématique, Bitiment 425, F-91405 Orsay, France
2 M.LT. Department of Mathematics, Cambridge, MA 02139, USA

Abstract. In this paper we specialize the results obtained in [BF 1] to the case of
a family of Dirac operators. We first calculate the curvature of the unitary
connection on the determinant bundle which we introduced in [BF1].

We also calculate the odd Chern forms of Quillen for a family of self-adjoint
Dirac operators and give a simple proof of certain results of Atiyah-Patodi-
Singer on éta invariants.

We finally give a heat equation proof of the holonomy theorem, in the form
suggested by Witten [W 1,2].
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Introduction

Let M5 B be a submersion of the manifold M on the manifold B, with compact
even dimensional fibers Z. Let D be a family of first order differential elliptic
operators acting along the fibers Z.

In [BF 11, we have shown how to construct a metric and a unitary connection
on the determinant bundle A associated with the family D, thus extending earlier
results of Quillen [Q 2], who considered the case of a family of d operators on a
Riemann surface. In [BF 1], the connection 'V on A was constructed using the
superconnection formalism of Quillen [Q 1], which was extended in [B5] to an
infinite dimensional situation. The curvature of 'V on A was also computed in
[BF 1] in terms of asymptotic expansions of certain heat kernels.

Our first purpose in this paper is to specialize the results of [BF 1] to the family
of Dirac operators considered in [B5].

Our first main result, which is proved in Theorem 1.21, is that in the setting of
[B5], the curvature of 1 is the term of degree 2 in the differential form on B,

. - RZ L
217t£ A<%> Tr [exp— %], 0.1)

where (0.1) is exactly the differential form which was constructed in [B5] to
represent the Chern character of the difference bundie Ker D, —Ker D _ naturally
associated to D. The proof of this result relies on a surprising link between the
natural geometric superconnection considered in [BF 1] and the Levi-Civita
superconnection introduced in [B5].

Our second series of results is related to self-adjoint Dirac operators on odd
dimensional manifolds. Let us recall that in [APS 1, 3], Atiyah-Patodi-Singer
introduced the &ta function #(s) associated with a self-adjoint operator D on an
odd dimensional manifold M’. They showed that # is holomorphic at 0. When D is
a Dirac operator, they proved in [APS 1] that # is holomorphic for s> —3, by
showing how #(0) is related to an index problem on a manifold M” whose
boundary is M’, and by using local cancellation properties in the heat equation
formula for the index on even dimensional manifolds [Gil], [ABP]. An
alternative proof of this result has been given in [APS 3, p. 84] using Gilkey's
theory of invariants [Gi 1], [ABP] for odd dimensional manifolds.

In Sect. 2, we show how a direct approach to the éta invariants of Dirac
operators is possible. By using the periodicity of Clifford algebras [ABS] in an
elementary form, we show that the local invariant éta function #(s, x) is pointwise
holomorphic at s=0. This is done by introducing a supplementary Grassmann
variable z and by a formal transfer of the results of [B 57 in this situation.

Alsoin [Q 2], Quillen has given a natural candidate to represent the odd Chern
classes associated with a family D of self-adjoint operators. We prove that these
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forms represent the Chern classes when D is a family of Dirac operators. Using the
results of [ B 5], we calculate the asymptotics of such forms which depend on ¢ >0.
We exactly obtain again formula (0.1), where Z is now odd dimensional. By noting
that the form of degree 1in (0.1)is the variation of the &éta invariant of the family, we
thereby obtain a simple proof of the results of Atiyah-Patodi-Singer [APS 3] on
the spectral flow of a family of Dirac operators.

Our major concern in this paper is to give a proof of the Witten holonomy
theorem [W 1, 2]. Let us recall that in [W 1, 2], Witten has considered the case of a
manifold X endowed with a metric g,. If  is a diffeomorphism of X, set g, =1, go-
Witten considers the family of metrics

g.=(1—tgo+tg,, teS,=R/Z 0.2)

and the corresponding family of Dirac operators D,. He thus constructs the
manifold M x,S,, where (x, 0) and (y(x), 1) are identified. In [W 1], Witten gives
an argument showing that if the family D, has index 0, if #{0) is the €ta invariant
associated with a Dirac operator D’ on M xS, then in certain situations, the
variation over S, of the determinant of the family D, is given by the formula

o LogdetD,=exp{—inn(0)} . 0.3)

In [W1, 2], Witten was interested in calculating global anomalies in the case
where the curvature of the determinant bundle vanishes.

In Sect. 3, we give a rigorous proof of Witten’s theorem in the case of the
family of Dirac operators considered in [B 5] and in Sect. 1. More precisely, we
prove in Theorem 3.16 that if [7] is the limit in R/Z of certain refined éta invariants
[APS 1, 3] which are obtained by blowing up the metric of B, then the holonomy ©
of a loop ¢ is given by

1=(—1)"2+ exp{ —2in[7]} . 0.4)

When 4 has a curvature equal to 0, it is in general unnecessary to blow up the
metric of B. Blowing up the metric of B is equivalent to what Witten calls adiabatic
approximation in [W1].

Again using the periodicity of Clifford algebras, our proof of the holonomy
theorem is essentially equivalent to the second proofin [B 5] of the Index Theorem
for families of Dirac operators, where the metric of the base B was also blown up.
At a technical level, we prove that the imaginary part of our connection 'V on 4 —
which is defined via heat equation — exhibits remarkable cancellations, which
match the local cancellations of [B 5] and Sect. 1. Also we have to establish in the
course of the proof certain large time estimates on heat kernels. These estimates, as
well as certain localization estimates, are obtained using probabilistic methods.
More specifically, we use the partial Malliavin calculus of [BM].

The main steps of our proof of the holonomy theorem are closely related to the
ideas used in Atiyah-Donelly-Singer [ADS].

Note that our proofs of local cancellations are systematically based on
generalized Lichnerowicz formulas with anticommuting variables, which are
derived from [B 5, Theorem 3.6].

For an introduction to probability and the Malliavin calculus, we refer to [B 3,
BM], and the references therein.

The results which are given here were announced in [BF2].
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I. A Counection on the Determinant Bundle of a Family of Dirac Operators

In [BF 1], we constructed a metric and a unitary connection on the determinant
bundle of a family of first order elliptic differential operators. In this section, we will
apply this construction to the family of Dirac operators D considered in [B 5]. In
particular we prove that the curvature of our connection coincides with the
differential form which was obtained in [B 5] to represent the first Chern class of
KerD, —KerD._.

This results generalizes the results obtained by Quillen [Q1] for the
determinant bundle of a family of ¢ operators over a Riemann surface.

We use the superconnection formalism of Quillen [Q 1] which was extended in
[B 5] to an infinite dimensional setting. This permits us to obtain the critical link
between the natural geometric superconnection used in [BF 1] to construct a
connection on the determinant bundle, and the Levi-Civita superconnection of
[B5].

This section is organized as follows. In a) and b), we recall some well-known
results on Clifford algebras and the spin representation [ABS]. In ¢} and d}, we
briefly describe the geometric setting of [B 5] and [BF 1]. In ¢), we calculate a
unitary connection on certain infinite dimensional bundles in the setting of [B 5].
This unitary connection plays a key role in [BF 17. In f), we recall the results of
[BF 1]. Finally in g), we compute the curvature of the determinant bundle for a
family of Dirac operators.

a) Clifford Algebras: The Even Dimensional Case

R* denotes the canonical oriented Fuclidean space of dimension n. e, ..., ¢, is the
canonical oriented orthonormal base of R", dx',...,dx" the corresponding dual
base.

The Clifford algebra ¢(R") is generated over R by 1,e,,...,e, and the
commutation relations

eiej"l“ejei: _25ij' (1.1)

Let .o/ (n) be the set of (n, n) antisymmetric real matrices. If A =(a)) € .«¢(n), we

identify 4 with the element of ¢«(R"),

idlee;, (1.2
and with the element of A%(R"),
1didx' ndx’ . (1.3)
Assume first that n is even, so that n=2[. Set
1=re,...e,. (1.4

Then 72=1. By [ABS], «(R")®zC identifies with EndS,, where S, is a complex
Hermitian space of spinors, of dimension 2. Set . ,={s; ts=£s}. Then S, ,has
dimension 2'7*, and S,=S, ,®S_ ,.

If aec(R™), let Tr{a] be the trace of a as an element of EndS,. Set

Tra}=Tr{ta]. (1.5)
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Then Tr, is determined as follows [AB, p. 484]: for 1 i, <i,... <i,<n, then
Trfe;e;,...e, ]1=0 if p<n, Trfe;...e,J=(-2i). (1.6)

The double cover Spin(n) of SO(n) is naturally embedded in ¢(R"). Spin(n) acts
unitarily and irreducibly on S, , and S_ , [ABS, H].

b) Clifford Algebras: The Odd Dimensional Case

Assume now that nis odd, so that n=2[+1. Let ¢ be the algebra homomorphism
from c(R™) into c*"**(R"* ') defined by the relation @(e;)=e,e, . 1, | £i<n. Under ¢,
¢(R") is isomorphic to c*"(R*"*!). Then c(R)®C identifies with
End(S, ,+ )DEnd(S_ ).

By definition, the space of spinors S, is identified with S, . 1. ¢c(R") acts on §,..
One verifies easily that if Tra is the trace of g€ c(R") acting on §,, then

Ti[11=2", Tife,...e,]=2(—i)'*1, .7

and that the trace of the other monomials in ¢(R") is 0.

Since i'*'e,e,...e, acts like the identity on S,, the two formulas in (1.7) are
equivalent.

Another construction of S, is as follows. Set

Ty =l€...ep_, .
Let i be the homomorphism of ¢(R)® € into ¢(R"™")® x C defined by
ple)=¢;, 1Zigsn—1, yle)=—it,_,. (1.8)

If ae ¢(R)®xC, wla) acts naturallyon S,_, =8, ,_,®S_ ,-;. We can then
identify S, and S, as representation spaces for ¢c(R")® zC. In particular

iz+1lj}(61...€n)=’5§_1='—1 5 (1.9)

which fits with (1.7). Spin(n), which double covers SO(n), is naturally embedded in
¢(R™ and acts unitarily and irreducibly on §,.

Remark 1. For nodd, the trace Tr behaves on the odd elements of ¢(R") in exactly
the same way as the supertrace Tr, on the even elements of ¢(R”) for neven, i.e. we
must saturate all the elements e, ..., e, to get a non-zero trace or supertrace. This
fact, which is a simple consequence of the periodicity of the Clifford algebras
[ABS], will be of utmost importance in the sequel.

¢) Description of the Fibered Manifold

We now briefly recall the main results in [B5, Sect. 1]. B denotes a connected
manifold of dimension m. We assume that T Bis endowed with a smooth Euclidean
scalar product g;. However the results in [B 5] and in our paper do not depend
on gp.

n=2l1is an even integer. X is a connected compact manifold of dimension n. We
assume that X is orientable and spin. M is a n+m dimensional connected
manifold. 7 is a submersion of M onto B, which defines a fibering Z by fibers
Z,=n"*{y} which are diffeomorphic to X. TZ is the n dimensional subbundle of
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TM whose fiber at xe M is T,Z,,,. We assume that TZ is oriented. T#M is a
smooth subbundle of TM such that TM = T*M@® TZ. T" M is the horizontal part
of TM, and TZ the vertical part of TM.

Under n,,, TFM and T,,,B are isomorphic. We lift the scalar product of TBin
TEM.

We also assume that TZ is endowed with an Euclidean scalar product g,. By
assuming that T¥M and TZ are orthogonal, TM is endowed with a metric which
we note g;@g,. Let {, ) be the corresponding scalar product.

Let O be the SO(n) bundle of oriented orthonormal frames in TZ. We assume
that TZ is spin, ie. the SO(n) bundle OpM lifts to a Spin(n) bundle
0’505 M such that ¢ induces the covering projection Spin(n)—SO(n) on each
fiber.

F, F, denote the Hermitian bundles of spinors

F=0 xSpin(n)Sn3 Fiz'ol XSpin(n}Si,n' (110)

d) Connections on TM

Let V® be the Levi-Civita connection of TB. V2 lifts into a Euclidean connection on
THM, which we still note F* VX denotes the Levi-Civita connection of TM for the
metric g,Pg,. P, (respectively Pg) denotes the orthogonal projection operators
from TM on TZ (respectively T¥M). V# denotes the connection on TZ defined by
the relation Ue TM, Ve TZ,VEV =P, VEV. V% preserves the metric g,.

¥ denotes the connection on TM = T¥M @ TZ, which coincides with V2 on
THM and with VZ on TZ. We will write V = VE@ V%, V preserves the metric g,®g,.

Definition 1.1. T denotes the torsion of ¥, R the curvature tensor of V. RZ is the
curvature of TZ. S is the tensor defined by

PE=F+5. (1.11)

Clearly R? is the restriction of R to TZ.
ForUeTM, S(U)isantisymmetricin End TM. Given U, V, We TM, we have
the well-known relation

WSHV,WH+LTWU, V), WH+<LT(W, U), V) —T(V, W), U>=0. (1.12)

Let us now recall some results of [B 5, Theorem 1.9].

& T takes its values in TZ.

e fU, VeTZ, T(U,V)=0.

e V%, T, and the (3,0) tensor {S(-)-,- > do not depend on g5,

® For any Ue TM, S(U) sends TZ in THM.

® Forany U, Ve T*M, S(U)VeTZ.

e If Ue THM, S(U)U =0.

Only the last statement is not explicitly proved in [B 5, Theorem 1.97. However
it immediately follows from (1.12), from the relation T(U, U)=0 and from the fact
that T takes its values in TZ.

In the sequel, we will write ¥ instead of V% V2

The connection ¥V on O lifts into a connection on O'. F, F, are then naturally
endowed with a unitary connection, which we still note V.
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¢ is a k-dimensional complex Hermitian bundle on M. We assume that £ is
endowed with a unitary connection V¢, whose curvature tensor is L. The
Hermitian bundle F® ¢ is naturally endowed with a unitary connection which we
note V.

e) Connections on Infinite Dimensional Bundles

H*, H% denote the set of C® sections of FRQ &, F . ®& over M. Asin [B 5, Sect. 2],
we w111 regard H®, HY as being the sets of C® sections over B of infinite
dimensional bundles which we still note H*, HY. For ye B, H*, H% , are the sets
of C® sections over Z, of FQZL, FL.®¢L.

Let dx be the Riemannian volume element of Z,. Hy is naturally endowed with
the Hermitian product

(Y, = § Ch Iy (x)dx. (1.13)
Zy

For Ye TB, let Y¥ be the horizontal lift of Y in THM. Y is characterized by
Y9e T*M; n Y%=
Definition 1.2. V denotes the connection on H® which is such that if Ye TB,
heH®™,
P b=V yuh. (1.14)

By [BS5, Proposition 1.11], the curvature tensor R of V is a first order
differential operator acting fiberwise on H®.

In general, although ¥ is unitary on F®¢, V does not preserve the Hermitian
product (1.13) on H®. However an elementary modification of ¥ permits us to
construct a unitary connection on HZ.

ey, ...,e, denotes an orthonormal base of TZ.

Definition 1.3. k is the vector in T#M
= %; S(eye; . (1.15)

V* is the connection on H® defined by the relation
YeTB, Vi=V,+<k Y% (1.16)

If Y is a vector field on B, the vector field Y# on M preserves the fibration Z. In
particular the divergence div,(Y#) — which is the infinitesimal action of Y* on the
volume element dx of Z — is well defined at each x € M. One verifies easily that
Y-div,(Y¥) is a tensor.

We first have the technical result.

Proposition 1.4. For any Ye TB, xe M,
Ck, YIS (x) =2 div (YH) (x). 1.147)

The connection V* is unitary on H®. V* does not depend on the metric gp.
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Proof. By (1.12), we have
e, Y =35 KT(Y", &), e, (1.18)
1

ey, ..., ¢, can be extended locally into a C® section of 0. Clearly
T(YH, e,—) = VyHei - Vei YH - [YH, ei] - VyHei - [YH, ei] . (1 .19)

Since {e;,e;>=1, we have

{Vyme, e>=0. (1.20)
If Lyng, is the infinitesimal action of Y¥ on g,, we have
0=Y"{e;,e;>=Lyng,(e;, ) +2{[Y",e;), ;> (1.21)
From (1.18}, (1.21), we find
<k, YH) =33 Lyngy(e;, e) =3 div,(YF). (1.22)
1

Also, if h, We H®,
Yi Wy (x)dx= £ [{Vyuh, B>+ b, Vyu b +div, (YH) <h, 5] (x)dx .(1 2

It is then clear that V* is unitary. Also by Sect. 1d), Ye TM—(k, Y does not
depend on g, The proposition is proved. [

f) A Connection on the Determinant Bundle of a Family
of First Order Elliptic Differential Operators

We now briefly summarize the main results of Bismut and Freed [BF 1] on the
construction of a unitary connection on the determinant bundle of a family of first
order differential operators.

We will constantly use the superconnection formalism of Quillen [Q 17 which
was extended in [B5] to infinite dimensions. In particular F®Z&
=(F.®OHD(F_®E, H*=HY®H? are Z, graded vector bundles over M and
B. End(F® &), End H* are then naturally Z, graded.

For a given y e B, we will always do our computations in the graded tensor
product End H? ®A(Ty*B). Locally, we work in End (F® &)® A,..(T*B). The sign
® will be always omitted.

If A is trace class in End H* ® A(T*B), its trace Tr and its supertrace Tr, 4 are
elements of A(T*B). As in [Q 1], we use the convention that if we A(T*B),

Trod=wTrd, TrwA=wTrA. (1.24)

ForyeB, D, , is an elliptic first order differential operator which sends HY
into HZ ,. We assume that D, , depends smoothly on yeB. D_ , denotes the
adjoint of D, , with respect to the Hermitian product (1.13). Set

0 D.
D,= . :
' |:D+,y 0 ] (1 25)
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D is a smooth family of elliptic self-adjoint first order differential operators, which
is odd in End H®.

Definition 1.5. A denotes the complex line bundle over B,
A=det(KerD )*®@det(KerD_). (1.26)

As shown in [Q 2, BF 1], 4 is a well-defined smooth bundle on B, even if B is
non-compact. This will be briefly proved in the sequel.

If € A(T*B), »® denotes the component of w in A*(T*B). All the asymptotic
expansions which we will consider are uniform on the compact subsets of B.

Take ¢>0. V"—I—WD is a superconnection on H®. By [BS5, Sect. 2],
Tr[exp—(F*+ VED)Z] is a C* closed form on B. When B is compact, it represents
the (normalized) Chern character ch,(KerD, —KerD ).

As t]]0, for any ke N, we have the asymptotic expansion,

- k .
Trfexp—(7*+}/tDY1= 3 a0 +o(,y). (1.27)
4]
The following result is proved in [BF 1, Theorem 1.5].

Proposition 1.6. The a® are C* closed purely imaginary 2 forms on B. For j+0, a{?)
is exact.

In [BF 1], a metric and a connection are constructed on 4. We briefly recall the
results of [BF 1.
We have the asymptotic expansion as t}}0,

k
iTrexp(—tDH)= Y A;f/+o(t,y), (1.28)
i=-%
where the A4; are real C* functions on B. Also
d[3 Trexp—tD*]= —t Tr[exp(—tD*V*DD], (1.29)

and as t} 0,

k
Trlexp—(tD)V*DD]=— 3 dAF '+o(t*1,y). (1.30)

j=_.

N

Similarly as t]]0,

k
Trylexp(—tDH)V*DD]=— 3. B '+o(f* 1 y). (1.31)
=%
The following result in proved in [BF 1, Theorem 1.7].

Proposition 1.7. The B; are C* purely imaginary 1 forms on B. Also dB;= —2ja?.
In particular By is closed.

Take y, € B, a>0 which is not an eigenvalue of D2 . Then a is not an eigenvalue
of D? on a neighborhood U of y,. We now follow Quillen [Q 2] and Bismut-Freed
[BF 1]
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Definition 1.8, K; is the subspace of HY , which is the direct sum of the
eigenspaces of D} corresponding to eigenvalues <a.

K¢ is a smooth subbundle of H*® on U. K*° splits into
K=K @®K* . (1.32)

Also K*isstable under D. Let P? be the orthogonal projection operator on K. P*is
a smooth family of regularizing operators which is well defined on U. Set

Q°=I—P°. (1.33)
We also define
A?=det(K*% Y*®@det(K* ). (1.34)

7 identifies canonically with A* on U. 1° being a smooth line bundle on U, i
becomes itself a smooth line bundle on B. K* inherits the Hermitian product (1.13)
of H®. So A* is naturally endowed with a metric |[°.

In [BF 17, we modify the metric||* asin [Q 2] and we simultaneously construct
a connection on A.

Definition 1.9. For se C, the zéta function {*(s) is defined by

1 + o

(s)= o) g 71 Tr[e” Q") dt . (1.35)
Equivalently
(*(s)=3Tr[(D*) ~°Q"]. (1.36)

{*(s) is a meromorphic function, which is holomorphic at s=0. x is a fixed real
constant.

Definition 1.10. | ||* denotes the metric on A* which is such that if [ 42,
205

For t>0, y{, 6¢ are the C* 1-forms on B,

ulu“=maexp{— O 0y %qu}. (1.37)

-+ o0 + 0
yi= | Trlexp(—sD?) (P*D)DQYds, &= | Tr[exp(—sD?) (F*D)DQ"]ds,
' ! (1.38)
or equivalently

ye=—Tr[exp(—tD)D~*(7*D)0*],  &¢=Tr,[exp(~tD})D~{(PD)Q"].
(1.39)

y¢ and 87 are C® 1-forms on U, which are respectively real and purely imaginary.
As t]]0, we have the expansions

~1 Ij
W= dA,-; +dA,Logt+y5+0(t,y),

n

i (1.40)
Si=y BJ,7+B0Logt+5‘6+0(taJ’)a

2
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where ¥}, 64 are C® 1-forms on U, which are respectively real and purely
imaginary.
The following identities are proved in [BF 1, Theorem 1.15].

Proposition 1.11. The following identities hold:
0
dr©O)=ddo, VT (MdAe=—d [% C“@] ’

o+ (1Dd4g=—(s Tr[(D?) ™~ D 'V*DQ"]y (0), (1.41)
88 +I"(1)Bo=(s Tr,[(D?) D~ 'V*DQ"1Y (0).
dA, (respectively —B,) is the residue at s=0 of the meromorphic function
Tr[(D?) D~ W*DQ"] (respectively Tr,[(D*)~*D~V*DQ"]).

Definition 1.12. °V* denotes the unitary connection on the bundle K* over U
which is such that if k is a section of K*,

Opak = Pprk . (1.42)
972 induces a connection on A% which is unitary for the metric ||*
Definition 1.13. V* is the connection on A%,
W=V +3(v6— 06) +3(I"(1)— ) (d4o— By) . (1.43)
The main result of Bismut-Freed [BF 1, Theorems 1.11 and 1.18] is as follows.
Theorem 1.14. Using the canonical identification of A* with A over U, the metrics
I ¢ patch into a smooth metric || | on A over the manifold B. The connections *V*

patch into a smooth connection 'V on 1 over B, which is unitary for the metric || ||.
The curvature of 'V is the purely imaginary 2-form a$>.

Remark 2. The rationale for introducing the constant y in the definition of || | and
1 is the following: Take b € R% . Assume that the family D is replaced by the family
bD. Both D and bD have the same determinant bundle 2. However the canonical

identifications of 1 with A2 are different. One verifies that [ € A* should be identified
dim(Ka)

with b~ 2 lel’
The metric associated with bD is now b4°| ||. The new connection ¥, on 4 is

given by ‘Vb=17+(dAo—Bo)L0gb’ (1.44)

In general 'V, and 'V do not coincide. This is a scaling discrepancy of the
connection which we consider.

The introduction of the parameter u permits us to construct simultaneously all
the scaled metrics and connections.

g) The Case of a Family of Dirac Operators: Explicit Computation
of the Curvature of the Determinant Bundle

We now assume that D is the family of Dirac operators considered in [B5]. We
briefly recall the definition of D. Remember that the elements of TZ act by Clifford
multiplication on F®E.

ey, ..., e, is an orthonormal base of TZ.
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Definition 1.15. D is the family of Dirac operators acting on H®
D=% eV, (1.45)
i

D denotes the restriction of D to HY.

The family D verifies all the assumptions of Sect. 1f).

We now briefly recall the definition of the Levi-Civita superconnection [B 5,
Definition 3.2]. As pointed out in Sect. 1f), we use the formalism of Quillen [Q 1]
at a local level. In particular all our computations are done in ¢ (TZ)R A, {T*B).
fis--» fn is @ base of TB, dy'...dy™ the corresponding dual base. We identify
fis ..., [, with their horizontal lifts /¥, ..., fZ. Also we use i, j, ... as indices for
vertical variables like e;, ¢, ..., «, p for horizontal variables like f,, f;....

Definition 1.16. For t>0, the Levi-Civita superconnection V~L”+]/ED associated
with the metric gz&® gTZ is given by

o 1 1
Vit iD=, [1/% Vit 5 <Sledes fedy'+ = (S(ed o fp>dy“dy”]

7

1
+dya[‘7fw+ ; <S(fa)eia fﬁ>eidyﬁ] .

7

By [B S5, Proposition 3.3] (see also Sect. 1d)), VL"%-}/ED does not depend on g5
We first compare V“*+]/tD with V*+]/tD.

Definition 1.17. A denotes the odd element in cx(TZ)®A,=(x)(T *B)

A=~} ;ﬁ (TS fp)s ey edy dy” . (1.46)
Proposition 1.18. The following identity holds:
- . A
VL”+[ﬂD=I7“+]/ED+7. (1.47)
t
Proof. Since V™ has zero torsion, for U, Ve TM,
SV —SNU+TU, V)=0. (1.48)
Also T(e;, e)=0. We get
; (S(eey, foyeie;=—3 X (T(e; e), fee;=0. (1.49)
¥y

Using (1.12) and the fact that T takes its values in TZ, we have

1@ fos [0 =38 ew fo = 3T (fos fy) € - (1.50)
Equation (1.47) follows from (1.49) and (1.50). [J

As shown in [B5, Sect. 2], (W"ﬁ—]ﬂD)z and (17“—i—|/2D)2 are second order
elliptic operators acting fiberwise in Z. For t>0, s>0, let P>'(x, x), P*¥(x, x")
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(x,x € Z,) be the C* kernels associated with the operators exp —s( I7L"+]/ED)2,
exp~s(|7“+WD)2.
We have the obvious formulas.
Tr,fexp— (7= +]/2D)*1= | Tr,[ Py (x, x)]dx,
N z (1.51)
Tr[exp—(V*+/tD)*]= ; Tr,[P%(x, x)]dx.

Also if E is a complex vector bundle over B, endowed with a connection whose
curvature is C, set
ch, E=Trlexp—C]. (1.52)

ch, E represents in cohomology the scaled Chern character of E.
Theorem 1.19. For any t >0, Tr Jexp— (V' + ]/fD)Z] and Tr,[exp—(V*+ ‘/ED)Z]

are C* closed forms on B whose common cohomology class doesnot depend ont. If B
is compact, they represent in cohomology ch(KerD , —KerD _}. Moreover

[Tr,exp— (7 +]/tD)*1? =[Tr,exp— (=" +]/tD)*]?. (1.53)

Proof. The first part of the Theorem is proved in [B 5, Theorem 2.6, Proposition
2.10]. We now prove (1.53).
By proceeding as in [B5, Proposition 2.6 and Remark 2.3] — i.e. by using

2
explicitly the C® kernel of exp— (17“+{/2D+E) , and the vanishing of
t

supertraces on supercommutators in finite dimensions [Q 1] —it is not difficult to
prove that

i . A A . 14\
aTrs[exP— (V +1ﬂD+-‘/§> ] = —dTrs[ﬁexp— <l7 +1/ED+17;> ]
(1.54)

Equation (1.54) is the fundamental equality which proves that in cohomology,

. 14\?
Tryexp— (V“+1ﬂD+ —Am) does not change with I. Also A is of degree 2 inthe
t

variables dy*. Since (1.54)is of even degree, the right-hand side of (1.54) is at least of
degree 4. We then find that

0 - [AN\*]®
—iT — |\ V*+{/ D+ — =0. 1.55
82[ T EXp ( +1/ +l/g>] (1.55)
Equation (1.53) is proved. [
Remark 3. Equation (1.53) is equivalent to the relation
{ Tr [ Plt(x, x)]Pdx= | Tr,[P%'(x, x)]Pdx . (1.56)
z z
The expressions Tr[Pr*(x,x)] and Tr[P}'(x,x)] may well be completely

different. Their integrals on Z are in the same cohomology class. Moreover in
degree 0 and 2, these integrals coincide.
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We now will calculate explicitly the curvature of the determinant bundle A for
the connection V.
Definition 1.20. A is the ad O(n) invariant polynomial on .« (n) which is such that if

Be o/(n) has diagonal entries [ 0 xi], then

-—x,- 0
X
. L2
AB)=T11] o (1.57)
1 i
Shf
We now have the crucial result.
Theorem 1.21. For — g —1=j<—1,dP=0. Also
~(R? L@
(2) .. 9; = _—— . 1.58
a) =2in DA ( 271) Trexp 2in] (1.58)

The curvature of the connection 'V is equal to a$’.
Proof. Let dx'...dx" be the oriented volume element in Z. Let ¢ be the
dy*dy*

Y27 By [BS,
2in
Theorems 4.12 and 4.16], we know that as t][0, @[Tr,[PY"(x,x)]]dx!...dx"
converges uniformly to the term of maximal degree n in the variables dx*...dx" in

the expression ,
A R? Tr} ex _E (1.59)
n P= i | '

As in [B 5, Theorem 4.17], we immediately deduce from (1.59) that as ¢} |0

homomorphism on A°**(T*B) which to dy*dy® associates

z
o(Tr,[exp— (V' + 1/21))2]) - i A <§E> Tr [exp — —2%—] ) (1.60)

Using (1.53), we find

z (2)
(T [exp— (V" + ]ﬂD)Z:])‘Z)ﬂ U A (§7?> Trexp— 5’;} . (1.61)

Using (1.27) and Theorem 1.14, our theorem is now obvious. [

Remark 4. In general, the local cancellations which explain (1.60) occur in
Tr,[P{*(x, x)] and not in Tr,[ P%(x, x)]. The computation of the curvature a{® is
then done rather indirectly.

Remark 5. From Proposition 1.7 and Theorem 1.21, we already know that
dB;=0, j=0. (1.62)
We will prove in Theorem 3.4 that we have the much stronger result

B,=0, j<0. (1.63)
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II. Dirac Operators on Odd Dimensional Manifolds

In this section, we establish certain properties of self-adjoint Dirac operators on
odd dimensional manifolds. Families of self-adjoint Dirac operators are also
considered.

Our first result concerns the local regularity of the &éta function of Dirac
operators. Using their results on the index of elliptic operators on manifolds with
boundary, Atiyah-Patodi-Singer [APS 1, Theorem 4.2]] proved that the &ta func-
tion 5(s) of a Dirac operator D is holomorphic for Res> —3. In [APS3,
p- 85] a cancellation mechanism was described in dimension 3 to explain that
the pole at s=0 of the meromorphic matrix T(x,x) — which is the kernel of
DID|™*"! on the diagonal — disappears when calculating Tr[T,(x, x)], thereby
proving the local regularity of n(s) at s=0 in dimension 3.

An alternative proof of this result has been given in [APS 3, p. 84] using
Gilkey’s theory of invariants [Gi 1, ABP] for odd dimensional manifolds.

In Sects. a}—d), we prove that the local &ta function 5(s, x) is holomorphic at
s=0 by a method which is formally identical to the proof given in [B5] of the
Index Theorem for families. By introducing as an auxiliary Grassman variable z,

S ) . tD L
we establish in b) a Lichnerowicz formula for - —z]/ZD. In c), and implicitly

using the periodicity of Clifford algebras, we show that Tr[D exp—tD?] is locally
O(t*?) as t} | 0. In d), we prove the local regularity of (s, x) at s=0. In e), we briefly
calculate the variation of 7(0) by a heat equation formula [APS 3, p. 75], [ADS,
p. 138]. In f), we consider a family of self-adjoint Dirac operators D in odd
dimensions. We calculate the odd Chern forms associated with the family D
introduced by Quillen [Q 1], by using formally the computations of [B 5]. The
formula for these odd Chern forms is strictly identical to the formula obtained in
[B 5] for the Chern character of the difference bundle associated with a family of
Dirac operators in even dimensions. We thus obtain a simple proof of the result of
Atiyah-Patodi-Singer [APS 3] on the spectral flow of a family of Dirac operators,
which does not rely on the Index Theorem for manifolds with boundary.
The results obtained in this section will be used in Sect. 3.

a) Assumptions and Notations

M’ is a compact connected Riemannian manifold of odd dimension n=2I+1,
which is oriented and spin. N is the SO(n) bundle of oriented orthonormal frames
in TM'. N’ is a Spin(n) bundle over M’ which lifts N so that: NN»M, and ¢
induces the covering projection Spin{n)-SO(n) on each fiber. F’ is the Hermitian
bundle over M

F'= N’ X0 Sn- @.1)

V denotes the Levi-Civita connection on N, which lifts into a connection on N’.
TM’, F are then naturally endowed with a connection V. K is the scalar curvature
of M’. ¢ is a k-dimensional Hermitian vector bundle, endowed with a unitary
connection V%, whose curvature is L. F'®¢ is a Hermitian bundle, which is
naturally endowed with a unitary connection, which we still note V. H* is the set of
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C* sections of F'®¢. ey, ..., e, is an orthonormal base of TM’. D is the Dirac
operator acting on H®,

D=3YeV,. 2.2)
1

b) An Auxiliary Grassmann Variable

z denotes a Grassmanu variable which anticommutes with ¢,, ..., e, considered as
elements of c(TM"). If A(X)is a tensor which depends linearly on X € TM’, we use
the convention that if e, ..., e, is a locally defined C*® orthonormal base of TM/,
then

(ot A@)* = X (Vo + AL -V, — A (z Vejej) L@y

We first prove an elementary identity which extends Lichnerowicz’s formula
[L, B4].

Proposition 2.1. For any t>0, the following identity holds:

——4/0_— <l7 +1fze) L),

Proof. Clearly

_Hy +[/;—Zﬁ2*-——£l72—z]/fD 2.5)
AN t) 2 ' '

The theorem now obviously follows from Lichnerowicz’s formula [L, B4]. O

Remark 1. As we shall see in Remark 5, Formula (2.4) is a special case of the
formula proved in Bismut [B 5, Theorem 3.6], which calculates the curvature of
the Levi-Civita superconnection.

c¢) The Asymptotics of Certain Heat Kernels

dx denotes the volume element of M”. All the considered kernels will be calculated
with respect to dx. Let R(z) be the Grassmann algebra generated by 1 and z. All our
local computations are done in (¢(TM)®End&)Q@R(z).

Definition 2.2. For t>0, P(x,x") denotes the C* kernel associated with the
2

tD
operator exp ( 5 +ZVZD .
Clearly

D2 2 ?
NE N R

Also we can write

Py(x, x)=P(x,x) +z]/tP}(x, x'). (2.7)
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2
PY%(x,x’) is the kernel associated with exp<—£> and P}(x,x’) the kernel

2
2
associated with Dexp ( - %- .
Forany x e M’, P(x, x) is even in (c(TM")®End &)@ R(z). PY(x, x) is then even
in o(TMY®End¢, and Pl(x,x) is odd in c(TM)QEnd¢é.

Definition 2.3. For A, Be c(TM)®End¢, set
Tr(A+zB)=zTrB. 2.8)

In the right-hand side of (2.8), TrB is the trace of B acting on F'®¢.
Clearly

Tr,[P,(x, x)]=2}/t Tr[P}(x, )] . (2.9)

Another description of Tr,[P(x, x)] is as follows. We can write P(x, x) in the
form

Plxx)= ¥ e e,®@A4, .,z X €¢Q®B, ;. (210)

ip

iy <ip<..<ip iy <iz<..<ip
p even p odd
By (1.7), we know that
Tr,[P(x,x)]=2(—i)}**zTrB, . (2.11)

We now prove the following result.
Theorem 2.4. As t]]0,

Tr,[P,(x,x)]—0 uniformly on M’. (2.12)
There is a C* function by 5(x) on M’ such that as t} |0
TH{ P} (x, )1 =b12(0))/ 1+ 0G2, %), (2.13)

and O(t*2, x) is uniform on M.

Proof. As pointed out in Remark 1, the right-hand side of (2.4) has the same
structure as the formula proved in [BS5, Theorem 3.6]. More precisely (2.4)
coincides with the formula of [B 5], when assuming that there is one single dy* =z
and that if f is the formal vector whose dual variable is z, then

(S(edes, [r=—<S(e)fre;p=—25]. (2.14)
In this context, it follows from (2.14) that
V-S(eej, fr=0. (2.15)

Now (2.11) shows that Tr,[ P(x, x)] is obtained by saturating the Clifford variables
ey, ...,e, i.e. by doing in odd dimensions what is done in [B 5, Sect. 4] in even
dimensions.

We can then apply in this context [B 5, Theorem 4.12] which guarantees that
as t} 0, Tr,[P(x, x)] has a limit and calculates this limit explicitly in terms of a
Brownian bridge w'! in T,M’, constructed on a probability space (W, P,). In[BS,
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Theorem 4.127, we find that the term containing z appears in an expression of the
type

¢ { exp {_1_ i (Vo Sdwyey o dxiz + } aP,(wy. (2.16)
w

Vo

Using (2.15), we find that the term containing z vanishes. We have proved that as
t}10,
Tr[P(x,x)]—-0. 217

Note that

2 DZ tDZ
exp—t(%ﬂ— —zD) =exp(—- Ez—) +ztDexp<-— 7) (2.18)

By using the results of Greiner [Gr, Theorem 1.6.1] on the small time asymptotics
2

of the kernel of the operator exp—¢ (% - zD), and using also (2.18), we find that
C* functions b_» _ ,...,b_y,, by, exist such thatas ¢ |] 0,
2

Tr[Pl(x, x)]= b";ifle‘fx) +ot b“;(ffx) +by (2 +0(32, %), (2.19)

and O(£*'%, x) is uniform on M’
Using (2.17), we find that

b_n/z,_.lz...=b_1/2=0. (220)
Equation (2.13) is proved. O

Remark 2. As we shall see in Remark 5, Theorem 2.4 can be viewed as a direct
consequence of [B 5, Theorem 4.12].

d) Local Regularity of the Eta Invariant

We now closely follow Atiyah-Patodi-Singer [APS 1].
Since D is elliptic and self-adjoint, D has a discrete family of real eigenvalues A.
For seC, set

sgn)l
n(s)= T (2.21)

For Res>n, the series defining #(s) is absolutely convergent. Also the

following identity is easily verified

n(s)= T
+1 0
(5

1

Tr[Dexp—tD*]dt. (2.22)

We now define the local éta function.
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Definition 2.5. For Res>n, x€ M, set
1 +oo STL
(s, x)= EYATWEY g t 2 Tr[Pi(x,x)]dx. (2.23)
(*3')

2

One verifies easily that as t7+ o0, Tr[P},(x,x)] decays exponentially and
uniformly on M’. Also.

n(s)= A{ (s, x)dx. (2.24)

In their proof of the Index Theorem for manifolds with boundary, Atiyah-
Patodi-Singer [APS 1, Theorem 4.2] showed that #(s) extends into a holomorphic
function for Res> —1/2.

We now refine their result into a local statement on #(s, x) [APS3, p. 841.

Theorem 2.6. For Res> —2, y(s, x) is C* in (s, x) and holomorphic in s.

Proof. By Theorem 2.4, for Res> —2,
s—1

itT Tr[PL,(x, x)]dt, (2.25)

is well defined and holomorphic in s, as well as _t
r(*

. The theorem is
s+1>

proved. [

Remark 3. In[APS 3, p. 85], Atiyah-Patodi-Singer noted that in dimension 3, the
kernel T(x, x) of D|D| ™! has a pole at s=0, but that this pole disappears when
considering Tr[ T{x, x)]. Noting that

1(s, x)=Tr[T(x, x)], (2.26)

this phenomenon should now be fully explained. It is in fact of the same nature as
the cancellations observed in the heat equation proof of the Index Theorem. In
[APS 3, p. 84], an alternative proof of this result was given using Gilkey’s theory of
invariants [Gi1, ABP].

Remark 4. In [Gi1, 2], Gilkey studied various cases where 7(s,x) is not
holomorphic at s=0. Not unexpectedly, some of his examples involve Dirac
operators calculated with a connection which is different from the Levi-Civita
connection.

e) The Variation of the Eta Invariant

We now make exactly the same assumptions as in Sect. 1c), d), ¢), g) except that the
compact fibers Z have now the odd dimension n=2[+1. F is instead the bundle of
spinors over TZ, H® is the set of C* section over M of F®¢. D is the family of
Dirac operators which is still defined as in Definition 1.15. Of course the
vector bundles which we consider are no longer Z,-graded.
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Definition 2.7. For ye B, n,(s) is the éta function associated with D,. &, is the
integer

h,=dimKerD, . (2.27)
11,(s) is the function.

ny(s) +h, .

()= = (2.28)

If de R, [D] denotes the image of d in R/Z. As noted in [APS 1, 3], #,(0) has
integer jumps, and so [7,(0)] is a C* function of y € B with values in R/Z. We now
briefly compute d[7(0)] using a heat equation formula instead of the z&ta function
formula of [APS 3, Proposition 2.10].

Using again the results of Greiner [Gr, Sect. 1] (see [Gr, Lemma 1.5.5])
which permits us to differentiate the parametrix of the heat kernel, we
have the asymptotic expansion

- C_ C
Tr[V*Dexp—tD*]= t,,/"z’z 4+ .+ 1,‘2’2 +0(t'12,y), (2.29)
where C_,,,...,C_,, are C* 1-forms on B.
Proposition 2.8. The following identity holds:
d[a(0)]=— gl;flﬁ (2.30)
'8

Proof. Asin [APS 3, p. 75 and Proposition 2.117 we can assume that D is invertible
on a neighborhood U of y & B. For Re(s) large enough, using integration by parts,
we have

1 +oo S71 - -
r(”’ )d;?()— { £2 Tr[V*Dexp(—tD?)—2D*P*D exp(—tD?)]dt
0

+w51

= b[ [Tr( V*D exp(—tD?)+ 2t 0 Tr(l7 “D exp(— tDZ))]

+oo 8”1 -
=—s | 2 Ti[/"Dexp—tD?]dt. (2.31)
0

The proposition now follows from (2.29). O

f) 0dd Chern Forms, Eta Invariant and the Spectral Flow

Although the fibers of Z are now odd dimensional, we entirely adopt the
superconnection formalism of Sect. 1f), g). In particular, although End(F® &) is no
longer Z, graded, we will use instead the Z, grading of
((TZYREnd )@ A, (T*B). We still have

edy*+dy’e;=0. (2.32)

We also use the convention (1.24).
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The superconnection V*+ VED is still defined as in Sect. 1f), and the Levi-
Civita superconnection as in Definition 1.16 and Proposition 1.18.

[Tr GXP*(Vu‘f‘l/ZD)z]Odd and [Tr CXp—(i?L’t—I-VED)Z]Odd

are then well-defined C* odd forms on B.

The construction of such odd forms is directly inspired from Quillen [Q1,
Sect. 5]. However in the formalism of [Q 1], D, 4 should be considered as even,
and so e;, D, A commute with dy*. An extra Clifford variable ¢ is introduced in
[Q1] - with 62=1 — which commutes with D, 4 and anticommutes with dy*. In

the formalism of [Q 1, Sect. 5], f"—%l/fD, V""—%—VED should be replaced by
I7“+]ﬂDo, Vet <]/ZD+ l—/sz)a.
t
Following [Q 1], if B, C are trace class in End H*® A(T*B), set

Tr,[B+Co]=TrC. (2.33)

Note that since elements of A(T*B) and EndH® now commute, (2.33) is
unambiguously defined.
We claim that

Tr,exp—(V*+ ]/EDcr)2 =[Trexp—(V*+ ]/ED)Z]"“l , 234)

Tr,exp— (V“+ (1/29+ %) 6)2 = [Tr exp— (17“+1/ED+ %)Zrd.

The key point is to note that (¢;6)> = — 1 and that e,c anticommutes with dy” so that
the rules of commutation on the left-hand side of (2.34) become ultimately identical
to our rules for the right-hand side. Note that formula (2.34) is not equivalent to
Quillen’s final formula in [Q 1, Sect. 51, since there, Quillen again assumes that D
and dy* commute.

We now go back to our initial formalism, ie. assume that ¢; and dy*
anticommute. In an infinite dimensional context, the differential forms (2.34) are
natural candidates to be representatives in cohomology of the odd Chern classes
associated with the index of the family D € K*(B). This statement is the analogue of
Quillen’s formula for a family of Fredholm operators D € K°(B), which was proved
in [B5, Sect. 2], when D is a family of Dirac operators.

Definition 2.9. A isthe ad O(n)invariant polynomial on &/(n), which is such that if

B has diagonal entries l: 0 xi] and 0, then

""xi 0
X
" L2
! shfi

(i)*? is one square root of i, which is fixed once and for all.  is the homomor-
phism of A(T*B), which to dy* associates dy*/(2ir)'/>.
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Since the fibers Z are odd dimensional, we must make precise our sign
conventions, when integrating differential forms along the fiber. If o is a differential
form on M which in local coordinates is given by

a=dy*...dy"p(x)dx*...dx",
we set
a=dys.. dy* | B(x)dx"...dx". (2.36)
z z

This sign convention will be compatible with the sign convention (1.24).
We now have the following result.

Theorem 2.10. For any t>0, (21‘)’”21,0[T1rexp—~(7"+]/tD)2]°dd and (2i)*y
'Tr[exp—(ﬁL"+ViD)2]°dd are C® differential forms which are closed, whose
common cohomology class is independent of t, and which both represent the
odd Chern classes associated with the family D. Also

Q) Trexp— (7 +]/tD)*1V = (2i)*p[ Trexp— (7= +1/tD)* 1V,
(2.37)

and the 1-forms in (2.37) are cohomologous to d[7j(0)]. As t]]0, 2i)**[y(Trexp
—-(17’“”—!-]/;D)2]°dd converges uniformly on the compact subsets of B to

. (R? L
£ A (E) Trexp— T (2.38)

which also represents the odd Chern classes of the family D. In particular for j< —3,

C;=0, and moreover
d[i(o A%t L%
[7(0)]= B (§;> rexp— ZEJ ) (2.39)
Proof. By proceeding as in [B 5, Propositions 2.9 and 2.10], and by using the
formalism of [Q 1] the proof of the first part of the theorem is easy. We now will
prove that

Q@)Y 2p[Trexp—(V+)/tD)*]°% (2.40)

represents the odd Chern classes for the family D. This will of course imply the
corresponding result for the odd forms considered in the theorem.

We first assume that B is compact. Set B'=BxS;, M'=M x §; xS;. The
mapping (x,s,v)e M’'—(nx,v) e B’ defines a fibration of M’ over B, with even
dimensional oriented fibers S; X Z. On S, x S,, we consider the Hermitian line
bundle which is obtained by identifying (0,0,X)eS; xS;xC and
(1,v,exp —(2inv)X). This line bundle obviously extends into a Hermitian line
bundle T on M’ T is naturally endowed with the Hermitian connection
d+2insdv. For £>0, (y,v)€ B, we consider the first order differential operator
D¢,y acting on FRERTRT?,

/8 —
v

0 1/5-6% +D,

?
~Vez-+D, 0
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D*is a family of Dirac operators over B’ acting on sections of twisted spinors over
the fibers Z x §,. By [B 5, Theorem 2.6], we know that the differential forms over
B,

2
Tr, [exp— <l7+dvai +2insdu+D’”) 1, (2.41)

are closed and represent in cohomology the normalized Chern classes associated
with the family D Moreover these forms are in the same cohomology class
as g varies.

We claim that as ¢ |0, the forms (2.41) converge uniformly to the forms

2i)/a[Trexp—(V +D)*]*%dv. (2.42)
(0 1 (01
“=\_1 0/° “T\u o)

. 0% ,
Tr, [exp { —(V+D®0)* —¢53 —2m]/§1 ®e0dv}]

In fact set

Then (2.41) is equal to

= T [exp { —(V+D®0o)*— géasiz} (Zin]/él ®eodv)] . (2.43)

Using (1.7), we have the relations

Trle,e,...e,] = (—i}* 1,
Tr[(1®eo) ((e1€5...€,)Q0)] =(=2)*t.

By proceeding asin [B 5, Theorem 5.3]in a much simpler situation (or by using the
same arguments as in Theorem 3.12, in a very simple situation) and also the sign
conventions (1.24), it is very easy to obtain the convergence result (2.42).

Equation (2.42) still represents in cohomology the normalized even Chern
classes associated with the family D” Since even and odd Chern classes correspond
under suspension by integration along the fiber (see [APS 3, p. 82]), by integrating
(2.42) in the variable v, and with the adequate normalization, we have proved that
(2.40) represents the odd Chern classes associated with the family D.

When B is non-compact, the same result is still true by restriction to compact
pieces in B.

Equality (2.37) is trivial. Since (i7"”+1/2D)2 is even, if P1'(x,x) is the C*
kernel of expm(VL"+]/fD)2, PLY(x,x) is even in (c(TZ)®End&)&A(T*B).
Tr[PY(x, x)]°% only involves the odd part of P1'(x, x) in ¢(TZ)®End . Also by
(1.7), e,...e, is the only odd monomial in ¢(TZ) whose trace is non-zero.

This shows that formally, we can use the method and the results of [B 5, Sect. 4]
to calculate the asymptotics of Tr[PL*(x, x)] as ¢|}0. In particular using [BS5,
Theorems 4.13 and 4.17] and keeping track of the constants, we obtain (2.38). Also

(P4 +1/tD)? = (V"2 +|/tV*"D+D?.
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We then find that
[exp— (7 +1/tD)* 1V =[exp—(}/tF"D +(D*]V.

Using Duhamel’s formula, we get
exp{ —(tD*+]/1V*D)}
1 ~ —~
=exp(—tD?) — [ exp{—s(tD*+]/tV*D)]/tV*Dexp{ — (1 —s)D*}ds. (2.44)
0
Iterating (2.44), we find immediately that
~ 1 ~
[exp—(tD?+]/tV*D)]V = — [ exp{—stD?}}/tV*D exp{ —(1 —s)tD*}ds. (2.45)
0
Using (2.45), we get

[Trexp—(V*+/tD)*1V= |/t Tr[V“D exp(—tD?)]. (2.46)

From (2.30), (2.37), (2.46), we immediately deduce that for j< —3, C;=0, and
also (2.39). The statement following (2.37) is now obvious. [

Remark 5. Proposition 2.1 and Theorem 2.4 can be directly derived from [B5,
Theorem 3.6] and from the local convergence result associated with (2.39). In fact
let us go back to the assumptions of Sect. 2¢). M’ x R™ fibers over R* with the
fibers M'. For ¢ >0, we endow the fiber M/ with the metric g,,./¢* (Where g,,. is the
metric on TM’). The corresponding family of Dirac operators will be ¢D. The
natural connection V'’ on T M’ which is constructed as in Sect. 1¢) is defined by the
relation

XeTM,, VeX=-Xs,
Ot

the covariant differentiation in vertical directions being still given by the Levi-
Civita connection of M. One verifies trivially that the curvature tensor R* of TM’
is such that for X e TM’,

G
M, —— =
R (X, ag> 0. (2.47)

If S is defined as in Definition 1.1, for X, Y e TM,, we have

<S(X)£, Y> = _<X_’};>_91‘£ .

&

Using [BS, Theorem 3.6], we find that if ¢=C
0 nde 2 1 de\>
—— = — —_—.— . ,4
(deag 5 +|/EsD) t(sVei—F 21/561 8) +t2K/4.  (2.48)

The reader will easily check that (2.4) and (2.48) are equivalent. Also using (2.39)
and (2.47), we find that in this case d[#7(0)]=0. Now Theorem 2.4 is exactly the
local version of this result, and this local version also follows from Theorem 2.10.
Ultimately we find that in our context, the more natural way of proving that # is
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holomorphic at s=0 is to prove that [#(0)] is invariant under the scaling of D by
using formula (2.39).

We now deduce from Theorem 2.10 the result of Atiyah-Patodi-Singer [APS 3,
p. 957 on the spectral flow of a family of Dirac operators.

LetseS;=R/Z—-c,e Bbe a C* loop in B. Set

M =r"%c).

dc
ds’

ey,...,e, ). M’ is obviously spin and carries a vector bundle of spinors

M’ is a compact manifold. If e, ...e, is an oriented base of TZ, we orient M’ by (

=F, ®F_. The Dirac operator D’ acting on sections of F'®¢& over M’ is well-
defined. IndD’, denotes the index of D’y (which is the restriction of D’ to the
sections of F/, ®&).
We now prove again the result of [APS 3, p. 95].

Theorem 2.11. The following identity holds:

z - - RZ L
IndD’, = { d[#(0)] = }é{ A <j27£> Trexp— Pin (2.49)
Proof. Using (2.39), and the orientation convention on M’, it is clear that
L
j d[i(0)]= | A( )Trexp— 5 (2.50)

Also TM’ splitsinto TM'=TEM'® TZ, and TP M’ is trivial. The A genus for TM’
~{R?
coincides with 4A{ — ).
2n
The Atiyah-Singer Index Theorem shows that

R% L
IndD, = | A(Z )Trexp——ﬂ

The theorem is proved. [

Remark 6. If #(0) has a finite number of jumps on S, then clearly

- Ay(0
japion = -5 21, @51
The spectral flow 3 ?I( ) is then equal to —IndD’. In this respect, our sign
conventions differ from [APS 3, p. 957 where M’ is oriented by (el, ey €y %) .

Also note that the explicit expression (2.39) is not needed to prove
Theorem 2.11. It is enough to know that the forms (2.37) are in the same
cohomology class as d[#(0)] and to do a trivial asymptotics as ¢| | 0, similar to what
we did in the proof of Theorem 2.10, on the heat equation formula for
Ind D', . Ultimately the equality of the spectral flow and of Ind D', is a simple con-
sequence of the superconnection algebra.
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111. The Holonomy Theorem: A Heat Equation Proof

The purpose of this section is to give a proof of the holonomy Theorem which was
suggested by Witten in [W 1, 2] Namely we calculate the holonomy of the
determinant bundle A over a loop ¢ in B in terms of the limit in R/Z of refined éta
invariants of the odd dimensional manifold M’=7n"1(c), which are obtained by
blowing up the metric of B. Formally, the situation is very close to what is done in
Bismut [B S5, Sect. 5] in a second proof of the Index Theorem for families. The
proof is also closely related to Atiyah-Donelly-Singer [ADS].

The section is organized as follows. After introducing notations in a), we
establish in b) a generalized Lichnerowicz formula, which still follows from [B 5,
Theorem 3.6]. In ¢), we construct certain heat kernels along the fibers Z, in order to
prove in d) that the differential form 57 introduced in {1.38) converges to 65 as £} }0.
The proof is obtained by a local cancellation process which matches the local
cancellations of [B5, Sect. 4] and also the local regularity of the &ta function
proved in Theorems 2.4 and 2.6. In e), if ¢ is a loop in B, we consider the n+1
dimensional manifold M’=7""(c) and the Dirac operator D* on M’ associated

B

with the metric ggf ®g”. Inf), we give a simple geometric proof that if [7%(0)] is the

modified €ta invariant of Atiyah-Patodi-Singer [APS 1, 3], which takes its values
in R/Z, then as &[]0, [7%(0)] has a limit {].

In g), we prove that as ¢} |0, for t bounded, the local trace of the kernel which is
used in formula (2.23) to define [7%(0)] converges to the local supertrace in the heat
kernel formula for &f in (1.38). The proof of Theorem 3.12 uses three ingredients:

® The local cancellations obtained in Theorem 24 and 3.4 to obtain
uniformity as ¢||0. Incidentally, the proof shows how Theorem 3.4 could be
deduced from Theorem 2.4.

o Certain probabilistic estimates, which are obtained by the partial Malliavin
calculus [BM] and the techniques of [B 2] in order to localize the problem in an
arbitrary small neighborhood of a given fiber Z,, .

® A technique due to Getzler [Ge] which is used to ultimately obtain the
required convergence result.

In certain aspects, the proof of Theorem 3.12 should be considered as an
expanded treatment of [B 5, Sect. 5].

In h), we prove in Theorem 3.14 that if the family D hasindex 0 and is invertible
over ¢, we have a uniform exponential decay of the traces of the corresponding heat
kernels as ¢ 0. This result is technically difficult to prove since it does not follow
from trivial bounds on the traces. We use a probabilistic technique, which
overcomes the lack of uniform ellipticity in the directions of ¢, by instead
controlling a time depending parabolic equation along the fibers which exhibits
a.s. exponential decay in the sense of bounded operators acting on L, sections. The
exponential decay of the traces is obtained by using the partial Malliavin calculus
[BM, B2] on a finite time interval.

In i), we prove the holonomy Theorem in the form indicated in the
introduction. The main difficulty lies in the elimination of zero modes which are
unavoidable if Ind D, 40. The idea is to deform continuously the family D into a
family of pseudo-differential operators, which verifies the assumptions of
Theorem 3.14.
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Finally, in j), we briefly interpret the process of blowing up the metric of B in
terms of the local geometry of the fibered manifold M.

a) Assumptions and Notations

We now go back to the assumptions of Sects. 1¢), 1g). In particular in the sequel,

0 D_
b= [m 0 ]
will be the family of Dirac operators considered in Sect. 1g).

b) A Generalized Lichnerowicz Formula

ey, ...,e,is an orthonormal oriented base of TZ. f,, ..., f, 4", ..., dy™ are chosen
as in Sect. 1g). z is an extra Grassmann variable which anticommutes with the
Clifford variables e,, ..., e, and with the Grassmann variables dy?, ..., dy™. We will
use the notation K@V to select the terms in K whose degree in the Grassmann
variables dy* is 0 or 1.

We now prove an extension of the generalized Lichnerowicz formula in Bismut
[B 35, Theorem 3.6]. By proceeding as in Sect. 2, Remark S, the reader will easily
check that this formula is in fact a direct consequence of [ B 5, Theorem 3.6].

Theorem 3.1. For any t>0, the following identity holds
[(7%*+}/tD)* —22)/tD] Y = [(7*+]/tD)* —22}/tD]* )

1 N2
= [“‘t(Vei‘F 5 {S(eye;, ﬁz>l/zejdya+l/iz_te“l>
K t . ©.n
+t-4— + "z'eiej®L(eia ej)+l/ieidy ®L(3i»fa):| . (3.1)

Proof. A defined in Definition 1.17 is of degree 2 in the variables dy*. Using
Proposition 1.18, the first part of the identity is obvious. Let I™"* be the final
expression in (3.1), I™* the corresponding expression with z=0. Clearly

1567 = [0 27)/tD—3(S(e)ey, f,> (e;dy°ze;+zee,dy”). (3.2)
By (1.49), we have

i;j {S(e)ej, f.ree;=0. (3.3)
Also
e dy*ze;+ zeedy* = —dy*z—zdy*=0, 34
and so
[os = 23)/tD . (3.5)
Now by [B S5, Theorem 3.6]
[(7-1+)/tD)? ] D =15". (3.6)

Using (3.2)+3.6), the theorem is proved. [
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¢) Construction of Certain Heat Kernels

As in Sect. 2¢), we construct certain heat kernels using the Grassmann variable z,
with the same ultimate purpose of proving local cancellation results.

Definition 3.2. For t >0, R{(x, x") denotes the C* kernel on Z associated with the
VEi41/tD)?
operator exp { - (*"_-!:2@ +ZI/ED}.

By Theorem 3.1, R%Y(x,x") is also the kernel for the operator

Fu 2 0,1)
exp { - gzj—%/jﬂ +z]ﬁD} . R/{(x, x) has the natural decomposition

R(x,x)=R0(x,x)+z)/tR}(x,x). (3.7

For xeM, RO(x,x) (respectively R}(x,x)) is even (respectively odd) in
End(F®&),® Auo(T*B).

The linear functional Tr,, which is well defined on trace class operators in
EndH*®A(T*B) can be naturally extended to trace class operators in
End H*® A(T*B)® R(z) in the obvious way. At a local level, the same is true

for elements of - -
End(F® ‘f)x@An(x)(T*B)®R(Z) N

Of course we still use the obvious extension of (1.24) in this situation.
We first prove some useful identities.

Theorem 3.3. The following identities hold

Tr, [exp { - w + z]/iDH

SL,t 2 Lt 2
=Trexp— M +z)/t Tr, [D exp— W—ZI/ED—){I
= 5 Trs[Rt(xa x}]dx
z
5L,t 27D 2
[Trs Dexp— WJ - —lé—ETrs [exp( - 5‘;) V“DD} Y

Proof. Using Duhamel’s formula, and the fact that z2 =0, we find that

CXP{— w +ZVZD}

iL,t th 2 1 v t 2
—exp— CHV/DY 5exp{_s<l7_§1@_>_}

0

X z]/ED exp { —(1~ys) @f@} ds. (3.9)
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S(VL’t + VED)Z
2

When taking supertraces in (3.9), we can commute exp— and so

obtain the first equality in (3.8). The final equality in this first line is obvious. Also
clearly

FL,t 27|(1)
I:Trs D exp— w]

Su 27(1) 2 u (1)
— l:TrsD exp— &E@J Py [TI'SD exp— MD)] (3_10)
By Duhamel’s formula we find easily that
2 Su (1} 1 2 t 11— 2
exp— W =—fexp| — stD” [ VD exp( (= sD” ds.
2 0 2 ]2 2
(3.11)

The second line of (3.8) immediately follows from (3.10), (3.11). [

d) Local Cancellation Properties of the Connection 'V

Recall that the differential forms B; were defined in (1.31). We now prove a
cancellation result for the B; which matches the corresponding result for the a‘z)
proved in Theorem 1.21.

Theorem 3.4. Thereis a C* function C};,(x) defined on M with values in ANT*B)
(with C}5(x) € Ay(T*B)) which is such that as t| |0,

[Tr,RE(x, x)]V=C} 5(x))/t + 02, %) (3.12)
and O(t*?, x) is uniform on the compact sets of M. In particular for j<0, B;=0.
Proof. We first study the asymptotics of Tr,[R,(x, )] 1. Set

1 )2
Ji= —z( Vot 5, <S(ede; £ Vtedy +)/t %)

tK t
+ T yee®@Lese)+)/1edy®Les f,). (3.13)

Jt
Let R{(x,x") be the C* kernel associated with exp < — —> By Theorem 3.1, we
know that

RO V(x, x')= RO (x, x). 3.14)

Equation (3.13) has the same structure as the generalized Lichnerowicz formula of
[B5, Theorem 3.6]. There is a supplementary Grassmann variable z formally
associated with a vector f and here

<S(ei)ej9 f> = <S(€,)f-; ej> = _25{ »

3.15
(8@ fun 7> ={SE)F £y =0. (315
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We now use [B 5, Theorem 4.12] in this situation. We then already know that
ast]}0, Tr,[ R(x, x)] has a limit #(x). Also we know that this limit is expressed as
an expectation over the probability space W of a Brownian bridge w in T,Z.

More precisely .
#(x)= | explKOv)}dPy(w).

Now by (3.15), we find that {V'S(e,)e;, f»=0. Using [B 5, Theorem 4.12], we
find that the Grassmann variable z only appear in K(w'!) in the form

1
[ {PLSW™) [, PLS(@AW™) [ dy’z, (3.16)
0

or in the expression obtained by interchanging f, and f, which coincides, up to

sign, with (3.16).
Now using (3.15), we get

j) (P SOV fo PLSW )T

=2 [ {Sw™) e (S@w™)f e =2E1[ (SWH [ dw™>

i=1

O

= —=2§{SwhHdw™, f,>.

Integrating by parts and using (1.48), we find

0

1 1 1
2§ S(whdwt = [ S(whdw™ —S(dwwt = — | Tw™, dw).  (3.17)
0 4] 0
Since w'e TZ, T(w,dw*)=0, and so (3.17) vanishes.
So we find that #(x) does not contain z. Using (3.7) and (3.14), we see that
lim J/t Tr,[R}(x, x)]V=0. (3.18)
ti 10

Let ¢, be the homomorphism of A(T*B)®R(z) which to dy?, z associates
ngy“, l/gz. In Sect.3c), we saw that R{®" is the kernel of the operator

f?u tD 2 0, 1)
exp_%/im/;p

t?u 2 {0, 1)
[exp t (zD — %)i] .

By Greiner [Gr, Theorem 1.6.17, we have the asymptotic expansion

E —n/z(x)
tn/2

. ;R is then the kernel of the operator

Tr,[pR V(x, x)] =

+ .+ Eo(x)+ E ()t + E,(x)t2 + 0(13, %) .

We then find that
E_ ...
lﬁ[TrSR}(x, x) V=2 W + ...+ Ej ()t + 0(t2, x),

and O(t?, x) is uniform on compact sets in M. Using (3.18), we find that for j<0,
E;=0. Equation (3.12) is proved.
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Also, by Theorem 3.3, we know that
v
I Tr[RMx, x)]Vdx = ~ lé_{ Tr, [exp— % 7“})13] . (3.19)
z

Using (3.12), (3.19), and comparing with (1.31), we find that for j<0, B;=0. [

Remark 1. By proceeding as in Sect. 2, Remark §, we could have proved (3.12)asa
direct consequence of [B 35, Sect. 4], by using the resulis of [B 5] on the Index
Theorem for families with a new parameter ¢ included. This is in fact what we
implicitly do in (3.15)3.17). Equation (3.12) is in fact equivalent to the vanishing
of part of a curvature tensor as in (2.47).

Remark 2. The scaling anomaly described in Remark 2 of Sect. 1 has almost
disappeared. In (1.44), the connection 'V, is obtained from 'V by the gauge
transformation [ € A—b“°l. In particular the holonomy of the determinant bundle
A over loops in B does not depend on the real constant y introduced in Sect. 1 f),
when defining the connection V.

¢) The Dirac Operator Over a Lifted Loop

seS;=R/Z—c,is a C* loop in B. Our purpose will now be to calculate the
holonomy of the determinant bundle A over c.

By eventually changing the parametrization of ¢, and by scaling the metric g,
we may and we will assume that

dc

B

Note that ultimately, all our results will not depend on the metric gp.

¢ is naturally oriented by the natural orientation of S;. M’ denotes the manifold
M’ =7n"%(c). The dimension of M’ is n’ =2 +1. Since TZ is even dimensional and
oriented, M’ is unambiguously oriented.

Let V"L be the Levi-Civita connection on TM’. VX is obtained by projecting
orthogonally F* on TM’. Since the connection V on TZ is the orthogonal
projection of ¥~ on TZ, V is also the orthogonal projection of ¥~ on TZ. This
means that the construction of ¥ can in fact be done directly on the manifold M".

As a consequence, we will temporarily assume that the base manifold B is
exactly the loop ¢. We will still use the notation M’. We otherwise use the same
notations as in the previous sections in this new situation, i.e. V'* is the Levi-Civita
connection on TM’, S the tensor defined by the relation VX =V + S, where S acts on
TM’ etc.... TBis now trivial and spanned by

dc
fi= 7 (3.20)

dy' is the Grassmann variable dual to f;. We also identity f; with f{%. Clearly
V. fi=0 and more generally

V. f,=0. (3.21)
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By Sect. 1d), we know that
S(fDf1=0, (3.22)

and so
vE f,=0. (3.23)

This simply reflects the fact that the integral curves of f; in M’ are geodesics.
Consider on M’ the differential equation

o), xO=xo, (3.24)
S

and set
xszws(xo) . (325)

Take yo€B. Then (s,x)e Rx Z, —ypx)e M’ is a local diffeomorphism. M’
can be identified with [0,1]xZ, and the relation (0,x)=(1,9,(x)). In the
coordinates (s, x), the metric of M is given by

ds* +g; (s, x)dx' ®dx’ . (3.26)

Also since B is now of dimension 1, by Proposition 1.18, we have V*= P,

d’'x is the volume element of M’. Since dx is the volume element in Z, if dy is the
length element of ¢, we have d’x =dydx. The kernels on M’ will be calculated with
respect to d'x.

O still denotes the SO(n) bundle of oriented orthonormal frames in TZ. M’ is
obviously spin. Using the convention of Sect. 1b), the bundle of spinors on M’ can
be identified with F=F_, @®F _. By (1.8), f; acts on

FR{=(F,Q@HD(F-®7)

like —it, where 7 is the involution defining the grading. In matrix form, f; acts on
H*® as the matrix ¢(f;),

o(f)= [Bi fi]. (3.27)

This permits us to define the action of f; when more general Z, graded bundles
than F®¢ are considered. Thi§ will be the case in the proof of Theorem 3.16.
Any element A of End H*®c(TB) has a unique decomposition

A=A0+A1f1; A()’Al EEndHOO. (3.28)
One verifies trivially that ¢ defined by
A€EndH*®c(TB)—@(A)=Ay+A,0(f,) e End H®

is a homomorphism of ungraded algebras. R R
Let & be the graded algebra & =EndH*®c¢(TB)®R(z). Any ac& has a
unique decomposition
a=a0+a1f1, ao,aleEnde®R(z),

" (3.29)
a=ay+zay, aga;cEndH®®c(TB).
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If ae & is trace class, set
Tr,a=zTr{p(a})]. (3.30)

If ae &  is trace class, a4, does not contribute to Tr,a, since in a,, z factors an
odd element of End H®. If a, is of the form

a,=a}+za3; aj,aieEndH™, (3.31)
then
Trya=zTra2e(f;) = —iz Trya?. (3.32)

Also a; is odd in EndH®, and so Tr,a;=0. We canalso define Tr and Tr, on
End H* @ R(z) by using the convention

Trzb=7zTrb;, Trzb=2zTrb. (3.33)
Now in (3.31), a} is odd and a? is even in End H*. Equation (3.32) implies
Tr,a=—iTra, . (3.34)

In the sequel we will write f;, 4 instead of ¢(f;), o{4). This will have to be done
with some care since ¢ does not respect the grading. However most of our
computations are done in the graded algebra &.

Using the results of Sect. 1d) and (1.2), we know that when acting on sections of
F®¢, V and V* are related by

Vo= Vei+%<S(ei)ej7 Jfoefis V}‘I =V, . (3.35)

Also <k, f,> is unambiguously defined on M’ This is of course confirmed
by Proposition 1.4.
Set

Vi =Ve+<k f1). {(3.36)
We drop the ~ sign in V% to indicate that V%, is a local operator.
Definition 3.5. For ¢>0, D® denotes the operator acting on H*
Di=)/ef,Vi +D. (3.37)
D? is given in matrix form by
Di= [“V;Vfl b- ] . (3.38)
Do ifer,
We first prove the elementary result.
Proposition 3.6. D?is the self-adjoint Dirac operator associated with the Levi-Civita
connection *V* on TM’ for the metric il @Dy, -
Proof. We only prove the Proposition for ¢=1. The Dirac operator D’ on M' is

given by
D'=eVE+fiVE .
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Using (3.35), we find
Dlzei(Vei+%<S(e£)eja f1>ejfl)+f1 Vfl .
The proof finishes as the proof of Proposition 1.18. [J

Definition 3.7. %*(s) denotes the &ta function for the operator D®. &” is the integer

n=dimKerD®. (3.39)
7#(s) is defined by

_ () +h°

()= T L ¢ )2 : (3.40)

f ) Variation of [7(0)]

. 0 .
We will now calculate % [7%0)]. RE is the curvature tensor of TM’ for the
Levi-Civita connection F*. Similarly R™® is the curvature tensor of TM’ for
the connection V-,
We will consider § as a one form on TM’ with values in antisymmetric tensors
on TM’. Using (3.22), we know that

S(f)=0. (341
We now have the following result:

Theorem 3.8. The following identity holds:

o ., ~(R¥+:zS L
25z [T 0)]e=1= A,A< - )Tr[eXp— ‘2}?} (3.42)
Also
e (R*+z8 L
Sliug) ZWM 0)]= 3£ A( 3 )Tr [exp-— 25] . (3.43)

As €l 10, [7%(0)] converges in R/Z to [77]. [#(0)] is a C* function of £ on [0,1].

Proof. To prove (3.42), we will use formula (2.39). Let Py, P, be the orthogonal
projection operators from TM’ on TZ, TEM’. M’ x R™ fibers over R* with fiber
M. For ¢e R™, we will note M/, the corresponding fiber. We endow T M/, with the

metric %B« @y Recall that V' is the Levi-Civita connection of TM,. On M’ x R™,
we consider the connection ¥’ on TM’ which is defined in the following way:
If X, YeTM,, VLY ="FLY,

(3.44)
YeTM,, VoY=—PyY/2e.
ds

M’ % R, is naturally endowed with the horizontal subbundle of T(M'x R,)

S 0 g . .
which is spanned by % One verifies easily that the connection V' on TM’ —
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considered as a vector bundle on M’ x R* — preserves the metric of TM’ and that
V7’ is exactly the connection on TM’ which was constructed in Sects. 1d) and 2¢)
(where TM’ was instead TZ).

By proceeding as in [B 5, Eq. (3.10)] it is not difficult to see that if S*=°F*—F,
then

P,8*=P,8; PuS*=gcPyS. (3.45)
Let R’ be the curvature tensor of V'. Take X, Ye TM_. Clearly
R(X,Y)=R"%X,Y). (3.46)

Also, using (3.45), we find

R (g—g X) Y=Ve Ry —VEVe Y
=V [VxY +P,S(X)Y +&PyS(OY]+ Vi PyY /2
= —;’HVX Y/2e+ PgS(X)Y — PuS(X)Y/2+PyV, Y2z
+SX) (P, V)2
=P, SH(X)Y/2e+8%(X) (Py Y)/28 . (3.47)

Since S¥(X) is antisymmetric, it interchanges THM’ (which is one dimensional) and
TZ. From (3.45), we obtain

R’(gs—, X) Y=S8(X)Y/2. (3.4%)
Using formula (2.39) we find that
. RL-4 78%/28 L
z— [7%(0)] = Aj; <——%—> Tr [exp - %] (3.49)

and so

0 L,e & L
z 681/2 [1'1'8(0) A; <R ZZS /V> |:exp— %] (350)

Formula (3.42) is proved.
Clearly, if D is the horizontal differentiation operator associated with 7,

REs= R+ DS+ [S7, 57]. (3.51)
If we express R™¢ on the base (ey, ..., e, ]/g 1), using (3.45), we find

RZ4+¢P,[S,S] &Y2P,DS
RLw:[ eif’zngisj OZ : (3.52)

On the same base, S‘/ﬁ can be represented in the form

S|/ e= [ P25 } . (3.53)
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We then find that as g| |0,

L,e £ . ¥4
i R +z8)/¢ >4 R +z8 ' (3.54)
2n 27

Equation (3.43) immediately follows from (3.50) and (3.54). Using {3.50), (3.52) and
(3.53), it is obvious that [7%(0)] is a smooth function of ¢*/2 for e€[0,1]. O

Remark 3. Theorem 3.8 makes clear that in general [7%(0)] depends on &. More
precisely [7%(0)] depends explicitly on the tensor T. T vanishes if and only if for

ecTZ,
Vee=[fiel, (3.55)

or equivalently if f, acts isometrically on the fibers Z. M’ is then locally and
metrically a product. As is clear from (3.52), as ¢} |0, we get closer and closer to a
product situation,

Remark 4. The general considerations of Atiyah-Patodi-Singer [APS 1, p. 61]
show that (3.42) can vanish for purely algebraic reasons. This is for instance the
case if £ is the trivial line bundle and if [ is even: the top degree form in the right-
hand side of (3.42) vanishes locally. [7°(0)] is then independent of &. More generally,
by using Index Theory with boundary, it is shown in [APS 1] that [#°(0)] is in this
case a spin cobordism invariant. Note that we could use instead Theorem 2.10 to
obtain the results of [APS 1] on éta invariants.

g) Convergence of Heat Kernels on M’ as ¢/ )0

Recall that our ultimate goal is to prove a formula relating the holonomy of the
connection 'V on c to [77]. The idea is to use the representation (2.22), (2.23) for #5(0)
and to prove that as ¢| |0, the integrand in (2.22) converges to the corresponding
integrand which appears in the formula (1.38) defining d,.

We first prove two simple identities, which are still special cases of [B3,
Theorem 3.6].

Proposition 3.9. The following identities hold:

£ g z 2
— S UATR+2|/efiVh = §<Vf,+ "l% +<k,f1>> ,
(D% (i) Vefu(7iD) D? 60
_ e SJ7n ) w _ VeV n) U7
> +zD 5 +zl/§f1 Ve > 2 +zD.
Proof. The right-hand side of the first line of (3.56) is given by
ef , 2z 2z
5 Ve +<k, f1o°+ ﬁfl Vet Ve ks f10+2<k, fi DV, + ﬁ <k, fid fi)-
(3.57)
Also

— SR + 2o i, = = S UV, e S 1P+ 2/ iV 4 1)

= 3 O34k 02+ Py [+ 2K ) Vg + 2 eV + < fi). (3.58)
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Comparing (3.57) and (3.58), the first line of (3.56) is proved. Since Df, + f; D=0,
the second line is obvious. [

Definition 3.10. For >0, t>0, P(x,x’), P*°(x,x"), P>!(x,x") denote the C*

kernels on M’ associated with the operators exp| — t(D;)Z + tzD£>, exp— t(D;)Z ,
DPexp— t(D;)Z .
Clearly
P(x,x)=P>°(x,x) +tz P> (x, x') . (3.59)
Also by Theorem 2.4, for ¢>0, uniformly on M’
tllirlr:) Tr[P%1(x, x)]=0. (3.60)

So we can define by continuity the function Tr[P#'(x, x)] at t=0.

Definition 3.11. For t>0, R(x, x") denotes the C* kernel on Z associated with the

t(V*+ D)2
(—-2|_~—)—+IZD}.

Recall that now V*=V""*, Also since B is of dimension 1, (F*)2=0. R{(x, x") is

the kernel of exp{ - -;—(DZ +V*D)+ tzD} i

operator exp { —

Rj(x,x") can be written as

Ri(x,x)=R(x,x)+tzR*(x, x) . (3.61)
Comparing with Definition 3.2, we find that
[R(x, )10 =)/1[R (6, )] (3.62)
Also by Theorem 3.4, we know that
tllirl% Tr,[R}(x,x)]”=0 uniformly on M’. (3.63)

So Tr[R(x,x)]™ can also be defined by continuity at t=0.
We now prove the first critical step in the proof of the holonomy theorem.

Theorem 3.12. Take T such that 0<T <+ oo. Then as €| }0,

TIPS (x, )] — 42 CTrIRM e 010, 11, (3.64)
T

Yoo

uniformly on [0, T]x M.

Proof. The proof is divided into two main steps, which we first briefly explain.

o The first step consists in proving that as ¢| |0, the kernel Py '(x, x”) localizes
in an arbitrary small neighborhood of the fiber Z,,. This is done by using a
probabilistic representation of the kernel P; and the partial Malliavin calculus
[BM].
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® Once localization is proved, we can now replace M’ by R x Z, and assume
that out of a small neighborhood of Z, , we are metrically in a product situation.
We then use a technique of Getzler [Ge] to prove the convergence.

The probabilistic representation of P; in the first part of the proof will be
essential in the proof of Theorem 3.14, where uniform estimates have to be
obtained for arbitrary large ¢.

Our computation will be done in the graded algebra £°*" defined in Sect. 3¢).
This means that we work locally in [¢(TM)®R(z)]*"".

(D7)*
2

Step n° 1. Localization of the Convergence. Proposition 3.9 shows that —
+zD? is the sum of two operators,

o — %( i J‘v‘1)2~}—zl/gf1 V7, acts horizontally, i.e. in the directions of f;.

® — ? filVy D)— —Dii +zD acts vertically, i.e. along the fibers Z.

We now use the idea of [B5, Sect. 5]. We first construct the semi-group
exp{—t(%( fi V;l)z-{-z]/gfl }‘1)} using a Brownian motion y in B. The semi-
_upy?

2

group exp +tzD? ¢ is then obtained by using a subordination procedure.

Since B identifies with S,, these constructions will be very simple.

a) Construction of exp<~ g’(ﬂ }l)z—l-z]/gf1 V}1>

Take y, e B. Using the differential equation (3.24), the corresponding group of
diffeomorphisms v defines the parallel transport of the fiber Z,, into Z,_, where y.
is any continuous path in B with y(0) = y,. Since B has dimension 1, the holonomy
group of this connection is the discrete group generated by the diffeomorphism 1,
acting on Z},a Similarly, we can parallel transport elements of H;? into H,’ using
the connection ¥ or the connection /* 72, “t0 will denote the correspondmg
parallel transport operators, 73, *15 their inverse. If X0 € Z,,, wewillnote t0x, € Z,_
the parallel transport of x, along y..

Using Proposition 1.4, we find that if he H
XeZ,

yo?

s e he Hy, and moreover if

Yo’

(“z2h) (x) = [Jact$(x)]210h(ix), (3.65)

where Jacty(x) is the Jacobian of 7§ at x.

Let w be a one dimensional Brownian motion with w,=0. Let Q be the
probability law of w on ¥(R™; R). Identifying B and S,=R/Z, consider the
differential equation

dy=Yedws;  y,€B, yO)=yo. (3.66)

Clearly
ve=[yo+}/ew,]. (3.67)
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Take xe Z, . Consider the stochastic differential equation

dU=U [Z—fl + Ck(2%), f >] Vedw, U@©)=I. (3.68)

/o
U, is given by the formula
U,=exp {5 Ch(z2x), f1>1/édw+zf1ws} : (3.69)
0

By Proposition 1.4, using the relation z?=0, we have
U,=[Jactd(x)]"* exp(zfyw)) = [Jactd(x)]'*[1 +zfiw,] - (3.70)
We claim that if he H®, for s>0,

exps(—g(flvyl)%ﬂ/éfl ;z) HC)=E[exp(af,w) (55W) (9. (BT1)

Equation (3.71) is in fact a direct consequence of the first line of formula (3.56), of
(3.68)(3.70) and of It6’s formula [B 3].

In the sequel, we will always assume that 1< 7T, ¢<1. The various constants —
which in general depend on T ~ will often be denoted C.

Let Q,, be the law of w conditional on y,= y,. Equivalently, 0, is the law of w

o k . . .
conditional on w,= 7, ke Z. Let B, be a standard Brownian motion, with f,=0.
€

Conditionally on w,=—, wJ/(0<s<t) has the same law as ﬁs—;ﬁt
g

+ s k. [Si, p. 41]. Now for ke Z,
€

V

Also for any >0 by [IMK, p. 27]
2
- }’,
b < e
Y] [osggt ]/E 1Bz nJ <2exp ( 23t> . (3.73)

Using (3.72), (3.73), it is clear that

2
O sup rs=yol 21 écf:xp(»’;—t). (3.74)

0=<sst

t
b) Construction of exp { —3 (D + tzDs}

Take x € Z,, . In order to prove that as ¢} |0, Tt[ Py Y(x, x)] converges, we will first
prove that the kernel P(x, -) concentrates in a small neighborhood of Z,, , in order
to replace the base B=S,; by R.
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Let A% be the Laplace-Beltrami operator in the fiber Z,. We first study the
. . t
scalar heat kernel p, on M’ associated with exp—z—(sff—f—Az) and prove the

corresponding concentration result. The proof that P?(x,0) concentrates will
follow by a subordination procedure.

Recall that O is the SO(n) bundle of oriented orthonormal frames in TZ. O is
endowed with the connection V. Let X%, ..., X be the standard horizontal vector
fields on O along the fibers Z. Along each fiber Z,, X¥, ..., X;¥ restrict to the
standard horizontal fields of O in the sense of [KN, IV]. f/* is the horizontal lift of
f1in TO for the connection V. Let w'=(w’!, ..., w™) be a Brownian motion in R”,
which is independent of w. The probability law of w” on €(R*; R") will be noted P.

Take x,€Z,, uo€0,,. Consider the stochastic differential equation on
(¢(R*; R") x4(R"; R), P®Q),

du= X wdw' +|/eff@dw, u0)=u,. (3.75)

Set x,=0(uy). x, is a Markov diffusion in M’, whose infinitesimal generator is
exactly $[4% +&f2]. pi(xo, x)d'x is exactly the law of x,.

We now assume that the law of wis g, . Of course we still suppose that w and w’
are independent. Let p/(x)dx be the law of x, in Z, conditional on y,(0<s<r).
Using the partial Malliavin calculus of Bismut-Michel [BM], we know that Q,,
as., p(x)is C* on Z,.

For given ke N, g=1, we want to establish a uniform bound as ¢/ }0 of

E®o[|plz,,, ry] - (3.76)

To do this, we will explicitly use the method of [BM].
Let v, be a bounded process taking values in R", which is adapted to the
filtration #(w,, w;|h<s). For le R, consider the stochastic differential equation

du' = X3 (@dw'+ 10ds) + £* D) e dw,  u(0)=u,. (3.77)

:
ou;

Asin [B2, Chap. 2], we calculate [ 2l ] . Let w be the connection 1 form on
1= 0
0. Similarly let 6 be the R" valued one form on O
XeTO, 6,X)=u"l9.X.

Let 7, Q2 be the 2 forms on O which are the equivariant representations of T, RZ.
The equation of the connection ¥ on O are given by [KN, IV]

dd=—~wnrl+1, do=—-oro+Q. (3.78)

out out
0. =0 — e s . .
: H(al>z=o’ s “’(al>,=o (3.7)

Using (3.77), (3.78) and proceeding as in [B 2, Theorem 2.2], we find that
d0=vds+1()/e frdw, ud)*) +wdw’;  6(0)=0,
do=Q((udw)* +/c frdw, u)*);  @(0)=0.

Set
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We can then use the rotational invariance of w’ under infinitesimal rotations as
in [B 2, Theorem 2.2]. We ultimately find that if R is the Ricci tensor of Z, if s is its
equivariant representation, the relevant equation to be considered in establishing
an integration by parts formula conditional on y. is given by

d0'=(v—400)ds+()/ efiFdw, u,6)%);  0(0)=0,
doo’ = Q((udw)* +)/efFdw, (0)%);  »/(0)=0.

In particular by proceeding as in [BM, Sect. 3] and [B 2, Theorem 2.2], we find
that for any fe Cr(M"),

EP®0[(df (x,), ;)] =EP®Qvo[f<xt>f G, 5w’>] , (3.81)
0

(3.80)

Observe the critical fact that since u, maps isometrically R” into T, Z, Eqs.
(3.80) and (3.81) incorporate the variation of the metric in Z. This is reflected in the
fact that 1 exactly measures to what extent f; does not act isometrically on Z.

Let A, be the solution of the stochastic differential equation,

dA,= —oAds+1()/efFdw, (uA)%);  AO)=1I. (3.82)

Fix ke N. To bound uniformly (3.76), by using the Malliavin calculus, it is
essentially equivalent to dominate

E%o [Oséusg t |As|’1] (3.83)

with g large enough. Note at this stage that it is essential that Egs. (3.80), (3.81)
incorporate the change of metric on Z, so that the size of the variation of x,in Z,,  is
adequately controlled.

Under Q,, wis a Brownian bridge, and this creates some difficulties in the semi-
martingale description of w under @, [TW, p. 229] since the stochastic differential
equation which drives w under Q,  has singular coefficients as s1z.

Let g, be the heat kernel of S, (for its standard metric). Then note the following
facts:

. t
® Q, and Q are equivalent on ﬁ(ys 0=s= ~>, and moreover

2
de ( t> qat/Z(yt/Z’ yO)
=30 gl y |0<s< = | = HEUB 0 (3.84)
a0 P\0=22) 7 0050
It is trivial to verify that (3.84) is uniformly bounded as ¢| | 0. Also it is standard that
EF®C| sup |4 (3.85)
0<ss%
is uniformly bounded, and so as ¢| |0,
EF®%%| sup |A4,¢ (3.86)
oxsst

is uniformly bounded.



144 J-M. Bismut and D. S. Freed

® To estimate (3.83), it is then natural to use time reversal. In fact @, is
invariant under time reversal. If we time reverse equation (3.75), we get a stochastic
differential equation with a random starting point u,. However if we write A%
instead of A, {to note the explicit dependence of A; on u,), the Kolmogorov type
estimates of [B 1, Chap. I-111] show that

EQYo{ sup |Agolq}, (3.87)
Ss2 L

uoe 0, gugeZy,

is uniformly bounded as ¢}|0. The estimates in (3.87) can be obviously time
reversed, and so we can uniformly bound E9%| sup IASPJ. A uniform bound on
(3.83) immediately follows. 5

52820

More generally, as we shall see in more detail in the proof of Theorem 3.16, for
x, x'€Z, , we can express P(x, x) in the form

Pr(x, X)) = qu(Yo, o) E%*o[ C(x, ToX)'To expz fyw,], (3.88)

where C, is a C* kernel on Z, . The kernel C,t;, can be constructed by solving a

matrix valued stochastic differential equation “subordinated” to x (0 <s=<1), ie.

calculated over the paths of x. The same estimates as after (3.80) permit us to prove
that for g2 1,

1= sup EQ%[ sup {Ctz{)(xo,x')l"] (3.89)

xeryO x'e Yo

yo?

is uniformly bounded as £} 0. Also we have
C
9(Vos Yo) S 177 (3.90)
g

Note the trivial bound for xe Z,.
TactO(x)|<c expC( sup |/ M) .
0<s<t

By [IM p. 27], under P, sup w, has the same law as |w,| and so

0<s=t
EF [expC sup ]/Elwsl] <2expCet. (3.91)
0=<s=<t
By proceeding as after (3.84), we find easily that
E% [expC sup Vglwsq <cexpCst. (3.92)
0=s=s¢

Using (3.74), (3.88)(3.92), we find that for any #>0,

(Yo, yo)EQy"[ sup |C(xo, 7o%)| Jacty(xo)| '/

eryO

C
x 1 suptws_m,;,’} <cexp— s (3.93)

OD=s=

By (3.88), (3.93), we find that as ¢} |0, P?*(x,x) can be adequately evaluated by
neglecting the paths y, which go to a distance 27 of y,.
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This permits us to trivialize the situation out of a neighborhood of y,. Namely
we can assume that B is replaced by R, that M’ is replaced by R x Z,,, and that if
0 e R is identified with y,, and if |y| 2 #, the fibers Z, are endowed with a constant
metric.

We now will use dydx”° instead of dydx” as the base measure on R x Z, . This

changes the kernel P;:. However P(x,, x,) is unchanged.

Step n° 2. The asymptotics of Tr P(x,, x,). The computations which follow will be
done in the algebra &, In particular zD*, (D%)* and the kernel P/ should be
viewed as elements of &°7°". P%(x,, x) is the solution of the partial differential

equation s
P _p
oP: = Pf ( ) +zD7 |, 6 =00 ®1. (3.94)
ot 2 °
For xe Rx Z,, with nx=ye R, set
PP(x)=P(x)exp ( - @> = P(x) < - ZJ[J) X (3.95)
Ve Ve

P is the solution of the equation

pre P52
oPr _ PFexp (ff.@) [( D) +zD“] exp ( — Zf—ly) ,  Pr=6,,0I (3.96)

ot l/; 2 1/;

Clearly zf; commutes with —D?+zD. Also if a is odd in ¢(TZ), we have

zfy fra— fiazf; = —za+az= —2za.

Since F; D does not act on the variable y e R, we have

expzfly [:— l/gflefID]eXp_ Zfly - l/éfl V?lD—{—zyV”;D . (397)

Ve T

Also

oy ﬁ“k,fl))expm?Iﬂzvfi+<k,f1>, (3.98)

exp—={ V, +
pvz(’" Ve Ve
Using (3.56), (3.94)-(3.98), we find that P(x) is the solution of the equation,
oP;
ot

- D?
=Pr [%(Vh +<k, D)2~ - +zD— —?fl Vi D -{-zyV}iD] s
_ (3.99)
P=0,y®I .
Also since x, =10, we have
P(xo) =P (x0, Xo) - (3.100)

We will now transform equation (3.99) according to a procedure due to Getzler
[Ge]. Of course, the algebraic situation is much simpler than in [Ge], since we only
have one Clifford variable f;.
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We consider P/*(x) as an element of Hom((F®¢),, (F®¢&),,)R®c(TB)®R(2).
P(x) has a unique decomposition,

P(x)=0i(x)+ Qr(x) f1 5 (3.101)
where
Qix),  Qf(x)eHom((F®?),, (FRE),)OR(2).
By (3.34), we have
Tr,[PP(x0)]= —i[Tr,0(x0)] - (3.102)

The Grassmann algebra A(T*B) is spanned by 1, dy'. The operators dy’ A, i,
both act on A(T*B), and also

2
(dy A sih) =1, (3.103)

/o
In the sequel, we assume that dy* A, i iy, are odd operators, which anticommute
wzth odd element in End H*® R(z). It is then feasible to replace in (3.101) f; by

dy?
LA l/azfl For (y,x)eRx Z,,, set

e
Py, x')=1/E[Q:q/Ey, X)+0%()/ ey, x) (% A—)e ihﬂ

=1/eQx}/ ey, x)+ Q) ey, X') (dy* A —ei,). (3.104)

In the coordinates (y, x), the operator ¥, can be written in the form

-~

(4
Vf1=5;+r(yax,)=

where I' is a smooth matrix.
Let .#* be the differential operator

2 2
=%(5‘} /e ey, x)+) e ko f1) < e, xv) -2 o)
+2D()/ ey, x)—4(dy" A —1/2i; )V D(/ ey, x)+2)/eyV2 D(}/ e, ')

P is the solution of the equation

aP//E
6tt =P L, Py=0,,®1I. (3.105)
Set L )
Tr[P{(0, x0)] = —i Tr,[Q%(0, x,)] (3.106)

By (3.106), we see that Tr [ P;%(0, x,)] is calculated by selecting the term which
is a factor of dy' A in (3.104).
Let & be the differential operator
16> D? , |
_EW—T(O,X)“Jr*ZD(O, x’)-—-z—dy AVED(0,x). (3.107)
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Clearly as ¢} |0, #* converges to & in the sense that the smooth coefficients of
&* converge to the coefficients of # as well as their derivatives, uniformly on the
compact subsets of Rx Z,, . Let P; be the solution of the equation

aP//
6; :P;/E; 635(x0}®1 . (3.108)
Py is trivially given by
P{(y,x) = —=R{(x0,X) . (3.109)

ez

In particular, using (3.61) and (3.109), we find that
—itz
|/ 2nt

Equivalently using (3.62), we find that

Tr;[P{(0, x0)] = C[TrgR (o, x0) 1™, f1) -

%"" ([TE,R k0 x0) 1 11 (3.110)
T

=

We claim that for any y such that 0<y<T.
P{0,x4)—> P{(0,x,) uniformlyon [y, T]xZ,. 3.111)

Tr[P/(0,x0)] = —

The proof of (3.111) can be done using the convergence of #* to £ and two sorts of
arguments.

® One can use the Malliavin calculus as suggested in [B 5, Sect. 5], using a
probabilistic representation of P;* similar to (3.88). We can then directly prove that
P7¢ and its derivatives remain bounded for t =y on compact sets, and then obtain
(3.111)

@ Another possibility is to use Duhamel’s formula as in Getzler [Ge] in
combination with adequate estimates on the vertical part of the kernel.

From (3.100), (3.102), (3.106), (3.110), (3.111), we find that as ¢| |0,

TP (xor x0>1+‘ﬁl<[TrsRs(xo, )10, £ (3.112)

uniformly on [y, T]1x Z,,.
Also by Greiner [Gr, Theorem 1.6.1], for ¢>0, we have the asymptotic
expansion as t}|0

K* n+1(xq)
Tr [ P70, x0)] = —nzﬂ'—“‘ + oo+ K p(xo)t 2+ K5 p(x0)t 2 + O(8°1%, x)
t? (3.113)

where the Kj(—nTH < j§3/2> are bounded smooth functions on Z, and

O(t%2, x,) is uniform on Z,,. Also since #*— & while staying uniformly elliptic,
0(t3%, x,,) is also uniform in >0, and the K% are uniformly bounded as &} 0.
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By (2.13), (3.59), (3.100), (3.102), (3.106) we know that
K nt1=..=K%,=0, (3.114)

and so
Tr[Py (xo, %0)] = K5 2(xo)t" 7 + 083, %) , (3.115)

Tr[P2Y(x,, x,)] then converges to 0 as t}|0, uniformly in x, and & The
theorem is proved. O

Remark 5. Incidentally, it should be pointed out that when proving Theorem 3.12,
we have proved again Theorem 3.4, by simply using (3.113), (3.114) and the
continuous dependence of the K} on ¢ [Gr, Se].

Using Theorem 3.12, we now prove a first fundamental result.

Theorem 3.13. For any T>0, as &} |0

! jz ! Tr[D*exp — t{D%)?}dt— Lj f Tr[exp(—tD?)V*DD]dt. (3.116)

WO‘/E 2o

Proof. By Theorem 3.12, we know that

=1 f Tr{P5/ (x, )] dx— — H C I Tr R, 0] Vilx.

Vi by Vo !

Using (3.19), we find that (3.116) holds. O

Remark 6. The proof of Theorem 3.12 also shows that if D is instead a general
family of first order differential elliptic operators of the type considered in [BF 1]
and in Sect. 1f), B, which was defined in (1.31) is not only closed, but is also exact,
To see this, note that if D*, »%, ... are still defined as before, by Atiyah-Patodi-Singer
[APS 37, #°(s) is holomorphic at s=(. This shows that if for £>0, we have the
expansion

Kz
THPE (v, X)] = oo+~ A2 (k) + K ao)) 1+, (3417)
Vi
then
]‘i/ K’i 1/2(X0, xo)dx0=0. (3118)

Now from the fact that #*-».% and that from Seeley [Se], Greiner [Gr],
the coefficients which appear in the small time asymptotics are smooth functions of
the local symbol of the considered operators, it is not difficult to find that

i
K* ,Xo)dxy—>— ——=1| B, 3.119
1‘; 112(x0 Xo)dxg 21/;{ 0 ( )
So we find from (3.118), (3.119) that

[ By=0, (3.120)
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and so B, is exact. This is a satisfactory result since in full generality, the scaling
anomaly described in Sect. 1, Remark 2 is simply equivalent to a gauge
transformation.

h) Control of the Integrand of the Eta Invariant as t11+ 0o

The right-hand side of (3.116) is obviously related to the differential forms 6§
defined in Sect. 1f). However we must be able to make T'= + 0o in Theorem 3.13.
We prove that this is possible under a special assumption on D.

Theorem 3.14. Assume that the family of operators D has index 0, and that for
every yec, KerD,={0}. Then for ¢>0 small enough, h*=0. There exists C and
1>0 such that for £>0 small enough and any t>1

[TrD*exp—t(D?)*|< Cexp—put. (3.121)

Proof. Let us first point out that (3.121) is not obvious, since we must take
into account the convergence result of Theorem 3.12 — otherwise (3.121)
would explode as g] |0 — while noting that the estimates of Theorem 3.12 are not
uniform in T. The idea is to use again the probabilistic construction in the proof of
Theorem 3.12 in order to control a time dependent parabolic equation along the
fiber whose coefficients are random functions of the Brownian motion y. on B.
Itis then possible to obtain a pointwise exponential decay of the solution in the
space of bounded operators on the Hilbert space H) of L, sections of FQ¢
over Z, . The decay of the corresponding trace is obtained by a method very
similar to what is done for deterministic elliptic partial differential equations.

a) h*=0 for ¢ small enough. Recall that d’x is the volume element in M". f,V}
is clearly a self-adjoint operator. Using Proposition 3.9 with z=0, we have
for he H®,

D= | (}Dh}zd’x—;—g Il flv;gh;z)d'xﬂ/é JRCAAINOTE

M

> | IDhPd'x+)/e § (f,V%Dh hyd'x. (3.122)
M’ M’

V4 D is a first order differential operator which acts fiberwise. If | [, is a norm in
the Sobolev space of order 1 of sections of F® ¢ over Z,, we have

Zf U ?lD)k,thl <C(lhllz,)?- (3.123)

Since for every yec, D, is invertible, there is a constant C">0 such that for any
yee,

[ IDRPdxZ C'(Ih]12,)* . (-124)
Zy
So if |/e<C//2C,
[ IDHPdxz(C'—C)/e) | |h(x)|2d’xg% { 1hPdx. (3.125)
M’ M’ M’

K is then equal to 0.
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b) The Asymptotics of TrD*exp—t(D?)>. We now concentrate on the proof that
[Tr)/ef, V¥, exp—t(D)*| < Cexp—put. (3.126)

We use the notations of the proof of Theorem 3.12. y, € B, x, € Z,, are fixed. U, is
still defined by (3.68), (3.70).
Set

H,=Ugy =exp zfiw 1} .
If 4, is a family of operators acting on H;°, we note "4, the operator acting on H;?
“A;="1pA4, 2.
“A, is unitarily equivalent to 4, . By proceeding as in (3.97), we find that
D2 & - ”DZ £ uryu u £
HS(— > %flVﬁD) Hil=—— - gfl u D+z)/ew, (foD)(. )
3.127

Consider the partial differential equation
uny2 u7u
s (3.128)

In (3.128), the operator C, acts on H;. Note that since y, is nowhere
differentiable as a function of s, the coefficients of (3.128) are continuous in s, but

not smooth. However, by using the method of Treves [T, Chap. II1, Sect. 1.3], one
upy2

finds that since -%w is elliptic, (3.128) has a unique solution, and thatfors >0, C,isa

regularizing operator or equivalently that C, is given by a C*® kernel (with
respect to dx’). Also by using It6’s calculus, Proposition 3.9 and (3.127), one
immediately verifies that if he H®,

exp { - t(];)2 + tzl/gfl V}I} h(xo)=E2[C,exp(zf,w,)'tsh] (xo).  (3.129)

We now disintegrate (3.129). Let S, be the C* lernel on M’ associated with the
£y2
) + tzl/g 1 V}l}. Using (3.129) and the fact that as proved by

2
the method of [B 2, Theorem 2.14], a smooth disintegration of the right-hand side
of (3.129) is possible, we obtain in particular

SdX0> X0) =quu(Yo, o) E®o[C,(x0, Toxo) explafyw)ro[Jacth](xo)] . (3.130)

The right-hand side of (3.130) should be interpreted in the following way:
® 7; is an element of Hom((F®?&), . (F®&).,)-
® Under Q,, 10X € Z,,. So Cx,, Tox,) is well defined as an element of

Hom((F®£) 54, (F® &), ®0, (TBYOR() .

So  Cxo,ToXc)to_ should be considered as an element of
End(F®?),,®¢,,(TB)®R(2).

operator exp { —t
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By proceeding as in (3.9), we have the identity

tzTr [l/gﬁ Vi exp— I(D;)z] =Tr, [exp { — I(D;)z + :fz1/§,f]L }1}] .(3.131)

Also

Tr, [GXp (_ t(Dze)2 _;_tzl/g fi Vﬁ)] = 1& ’Trz[St(x, x)]d'x
= {dy | Tr,[S(x,x)]dx. (3.132)
B 2,

Using (3.130), we find that
5 Tr,[S((xo, X0)1dXo=qe(Vos yo) E®o Tr,[C Uty exp(zfiw)] . (3.133)

3’0

In (3.133), Tr,[C 1) expzfiw,] is the trace in the sense of (3.30) of the trace class
Crthexp(zfiw,) € £V, Set

[wll= sup |wy.
0ssst

In order to estimate (3.133), we do two transformations on Eq. (3.128):

® We replace z by — 2 o that the coefficient of “V¢.D becomes
1+ )/elwl
bounded. We note C, the solution of the new Eq. (3.128).
® We also do Getzler’s transformation [Ge]. C, has a unique decomposition

C,=C?+C!f, CCl!eEndH, ®R(z). (3.134)

As in the proof of Theorem 3.12, we replace f; by l/ —szl Set

1
C=C%+C! (dT/A e ) (3.135)
£
C; is the solution of the equation
/ un2 1
6C5=C;[_£_(dy A— alfl V;I ZVW ufy ;lD]9
s 2 2 1+ elwl
, (3.136)
o= 5{x0}®1 .
Take a, b which are trace class in End H*®R(z). As in (3.106), we now set
Tr[a+b(dy' —ei;)]=—iTrb. (3.137)

By adequately scaling formula (3.133), we get
S TELS(x0, X0)1d%o =/24u(yo, yo) B

[(1+1/é||wn)'rr;[6;“raexp{ ( Ya Vézfl) t/(1+1/£nwn)m,(3.138>
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where in the right-hand side of (3.138), Tr,, selects terms which contain both z and
dy'.
The idea will now be to control adequately Eq. (3.136) defining C.. Set

NDSZ dyi/\_siﬁ) w7 wa ufyu
'%s_— 2 —'("—'_2— (Vfl ) V‘| ( f1 )s

Also we will assume that ¢ 2.

For xe Z,, let C{ be the solution of
68CS” =Cill; Ci=0,®1 s21. (3.139)
Clearly
C/=CiCy. (3.140)
Set
§ T, [S(x, Xo)1dxo=20(y) - (3.141)

Yo

We can then write (3.138) in the form

20y0) =)/ €. (Vo, o) E® [(1 +V/e wl)

J [ ’ s { (dyl /\ : )
Tr,| C,C/*thexpiz 7———[/ng1 wt/(1+s{§w[{)}]:l. (3.142)
&

If a is a linear operator acting on the Hilbert space Hy,, let |la]l ), denote the
norm of ain the set of bounded operators and |a|;, the norm of a in the set of trace
class operators.

We can expand C] in the form

Ci=ay+az+a,(dy" —sip )+ asz(dy' —ei,),

where the a; are C* kernels on Z, . Set

3
1Cy ”(1)= % ”aj”(l)'

We can define || C/ | ., in exactly the same way. Since “z}, acts unitarily on H®
til(e0) y y 0 y

we have "
1“tolly=1. (3.143)

From (3.140){3.143), we find that

|(pt(y0)|§l/;qst(y03 YO)EQy°[|1C l|(1)||C//||(m)<1+V||W|| +]/»)j| (3.144)

We now estimate the various terms in the right-hand side of (3.144).
® Estimation of |Cilly,
By proceedings as in (3.140), we can write C; in the form

Ci=C;,,C . (3.145)
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where both Cjj,, C; have C* kernels. Since C}j,, C; are Hilbert-Schmidt
operators, if || ||,, denotes the Hilbert-Schmidt norm, we have

IlciliméIlC'zlelmiI'C_’lIIuéC( sup {Ci/z(x,X’)IXx sup Iéi(x,X’)l)-

x,x' ¢Z. Yo ,x’eZyO
(3.146)
We claim that for any p=1,
EQ%[ sup [|Cip06x)P+  sup [Ci(x, ﬂl"} (3.147)
(x,x’)eZyu (Jc,x')slycl

is uniformly bounded as ¢} } 0. This cannot be seen directly on Eqg. (3.136) since its
coefficients can be pointwise very large because of *zj

If we instead estimate the kernel of C7,"1;, the methods of the Malliavin
calculus described in the proof of Theorem 3.12 — and specifically Egs. (3.80), (3.81),
as indicated before (3.83), we can obtain a uniform bound for

E2 sup ICY o702 (x, x)|"] . (3.148)
(x, x’)eZyo x Zyll2
Note that since t 22, @, and Q are equivalent on #=%(y,/0<s=<1), and that
deo B— et~ 1)(J’1a ¥Yo)
a9 4e(Vos Yo)
the estimates analogous to (3.83), the problems related to the fact that the
stochastic differential equation for y, is singular at s=1 disappear. Also note that
with respect to (3.85), we also allow x € Z,, to vary. However, the Kolmogorov type
estimates of [ B 1, Chap. I-TII] permit us to include x as a varying parameter. Also
we have the trivial bound,
sup [Tac[t5](x)| < cexp [C 3 sup |w1|] s<1i.  (3.149)
xeZy,
The right-hand side of (3.149) is trivially in all the L,(Q”°). Using Holder’s
inequality, we get the required uniform bound on the first term of (3.147). The
second term is estimated in the same way.
® Estimation of ||C/ | ()
Let HY be the set of linear combinations

h=ho+zh,+dy*h,+zdy'hy;  h;e H,

Yo?
Also for he H}, set

is uniformly bounded as ¢| |0 and t € [2, + o[, so that in

0=j=3.

3
= 3 I, -
C; acts on H; in the obvious way. Let C;* be the adjoint of C;. For he HY, set
h,=C*h.

Since “z is unitary and D?, V¥ D are self adjoint, “D* and *F'y D are self-adjoint.
Clearly

d “D2 #pu D Msw
b2 =2Re ([ = - — L= (@' A i)t + p Dz*)hs,hs>.

(3.150)
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Since ry is unitary, using (3.124), we have

#n2 — 1,0 4,0 > 12,0112 =’ 2 X
§ (*D*h,hydx Z{j(D},S °h, D zsk>dx=czj [“e%h|% dx CZ{ 1A dx

Zy, > Hys 4
(3.151)
Moreover by (3.123), (3.124), we also have
upu
| <[—~LD— (dy* —eip )* + ’—M("V,ID)Z*} h, h> dx
Zoo \L 2 1+ lwl
<C" § *D’h,h)ydx. (3.152)

Yo

4

Replacing D by kD (k>0), we can always assume that C'< % So using
(3.150)13.152), we get

d . ., c ..,
_ < e . )
By Gronwall’s lemma, we find
-
hf2<e 2 VmR, 521, (3.154)

and so
L Cs
NC;/*“(oo)gce 4,
or equivalently
C’s
4

IS Ce (3.155)

Using (3.144), (3.147), (3.155) and Schwarz’s inequality, we finally obtain

7,

2\ 172
(00151 50ut30,30) B0 1-elw+ ) [Penp (-

). (3.156)

® Some Estimates on Brownian Motion
Let B be a standard Brownian motion in R, with f,=0. Under Q, , and

conditionally on w,=%, by [Si, p.41], w, has the same law as S_;ﬂ '
€
+ ;i. Using (3.156), we find that
&

v
2 7
(00D S0 o005 121w+ 2 Lexp( - SF)

2
0 5 ,  k? Ct Kk
<CYequ(vo, yO) SEC| 14K +2lI*+ 5 (exp— -+ 5 ). (3157)
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Using Poisson’s formula, we have

/i
Veau(Vos o) = V]—Z p( ) /e X exp(—2n2etk?).  (3.158)

It follows from (3.158) that for t = 2, |/ eq...(yo, ¥o) is uniformly bounded as s} | 0.
Also by scaling f, we find that E2||8|*=ct. We then find that

Ct k? Ct\k* k?
2« _ - " -~ _
lpyo)l"=c( +t)exp< 2 )%exp et +CCXP< 2 )%82 exXp—5-
(3.159)
By (3.158), the first sum in (3.159) grows at most like t*/2.
2

@ If &1<1/2, the function x? exp— ;_si is decreasing on [1, 4+ oco[. Then

yz
2 — 2 )24
P (et)[ " exp< > ) yoay

1312 »?
é 12 j exp(—z' ydy

€Y% @12

3/2 1
—2Cf/2 Xp( 48t>§c'31/2t5/2. (3.160)

o If et >1/2, since k? <exp2lk|,
1 k? k?
= Y k? S -
bgven(-E) st
=ct22exp<—— —(k—2£t)2> exp(2st). (3.161)
3 ¢t
Using Poisson’s summation formula, we find
o Z k*exp— k— Zct? exp(28t)f t Y exp(—2n%etk?)
Zct*? exp(2et) Y exp(—n?k?). (3.162)
X
From (3.159)3.162) we find that
0 (yo)> S c(1+1t3%) exp (28— %)t (3.163)
Using (3.131), (3.132), (3.126) is proved.

The fact that
|TrDexp—t(D%)?*| < Cexp—ut,

can be proved along the same lines. This is left to the reader. U
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i) The Holonomy Theorem
We still assume that B=c.

Definition 3.15. For 0<s<1, 1{ is the parallel transport operator from 4., into 4,
for the connection V.

79 is a complex number 7 such that |t] =1. It does not depend on the origin c,,.
Also Ind D, will denote the constant integer which is the index of D, .
We now prove the holonomy theorem.

Theorem 3.16. The following identity holds
7=(—1)"4P+ exp{—2in[7]}. (3.164)

Proof. The proof is divided into two steps. In the first step, we suppose the
assumptions of Theorem 3.14 are verified. The proof is then a straightforward
application of Theorems 3.13 and 3.14.

The second step of the proof is to show that the family D can be continuously
modified into a family of pseudodifferential operators D’ which verifies the
assumptions of Theorem 3.14. Rather unhappily, l/gfl V¢, +D" is no longer a
pseudodifferential operator on M’. However the probabilistic constructions of the
previous sections still apply to the family D’.

We then prove that neither 7 nor [#7] change under the continuous deformation
of D into D’. The holonomy theorem holding for D’ also holds for D.

Step n° 1. We first prove the theorem under the assumptions of Theorem 3.14. In
this case, by Theorems 3.13 and 3.14, we have
1 + oo

Tr[D* exp— t(D?)*]dt— —~f j Tr[exp(—tD*)V*DD]dt .

lf l/ (3.165)

The left-hand side of (3.165) is exactly #%(0).
Also by Theorem 3.14, for ¢ small enough, #*=0, and so as & }0

; +
ﬁs(O)ﬁ# § | Tr[exp(—tD*V*DD]dt. (3.166)
c 0

Moreover there is a>0 such that for any y e ¢, D, has no eigenvalue in [0, a].
With the notations of Definition 1.8, over ¢, K§={0} and so *=C. Over ¢, L hasa
canonical section ¢ which is identified with 1€ A% Clearly, in the sense of
Definition 1.12, °l7f10=0, and so, since by Theorem 3.4 B,=0, we find that

Vro=G0o—00) +3(T(1)—wdAo, fi>a. (3.167)
Also by Proposition 1.11, 4 is exact on ¢. We then find that
1
V.
§ a"=—1/2jag. (3.168)

Also since on ¢ K*={0}, it is clear that on ¢

+
8= | Trexp(—tD?V*DD]dt. (3.169)
0
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Finally note the straightforward relation
1
r=exp{—f—g—g}. (3.170)
Using (3.166)-(3.170) and the fact that Ind D, =0, we find that (3.164) holds.

Step n° 2. The General Case

a) Construction of a Family of Index 0. We here use the notations of [B 5, Sect. 2],
but the roles of D, and D _ are interchanged. By [AS 3, Proposition 2.2], we know
that ge N and C* sections sy, ...,s, of F,®¢ over M exist such that if 6e R, if
D, ; is the operator

g
(hDeH= ,@C—=DL, (h H=D_ h+6 s eHT,, (A7)

then if 60, D”_, ; is onto.
We endow € with its canonical Hermitian product. The formal adjoint D', , ;
of D”_, ; is the operator

he HY ,—D', sh=(D, h,6<h,s;),....,0{h,s,p)e HZ ,®CI. (3.172)
For §+0, KerD’, = {0}, and KerD’_ is a C* bundle over B x R/{0}. Also
D, oh=(D, ,h,0,...,0), D_, ch=D_ h,
and so

KerD’,, o=KerD, ,, KerD_, ,=KerD_ ,®C!,

To bp.
D_[m 0]. (3.173)

We can then define the determinant bundle A’ of the family D’, which is a line
bundle on B x R. Clearly

Set

A=4 on Bx{0}. (3.174)
Also if ¢'= —Ind D/, then
g=—IndD, +q, (3.175)

and also ¢’z 0.
If ¢’ >0, we allow D', to act on H?@®C? by the formula

(h, 1) e HS@TL - D', (h, ) =D',he H DT (3.176)

We endow €7 with its canonical Hermitian product.
The adjoint D" of D’, is given by

(h, ) e H*DTC—D"_(h, )= (D"_(h, 1),0) e HY DC* . 31477
Now IndD’, =0. If 1 is the determinant bundle of D’, we still have
A=A on Bx{0}. (3.178)
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Also for 640, KerD’, =C% and KerD’”_ is a C* bundle.

b) Construction of a Family of Invertible Operators. The parameter space of the
family D’is Bx R. On B x R/{0}, KerD’, =€7 and Ker D"_ is a smooth subbundle
of H*® @ of dimension ¢'.

Complex bundles over S* are trivial. We can then find a smooth trivialization
E, of KerD” , ; over the loop B=c.

ForyeB, E, ,isalinear isomorphism from €% inKerD” , ,. We allow E, to
act on HY by setting E, =0 on H?. E, then acts linearly on H?®C*?.

IfE_istheadjoint of E ., E_ sends H*@C%into € and is 0 on the orthogonal
of KerD”, , in H @C%

For (y,0)e Bx R, set

DYy o=Diy +OE, ;i DL, o=D_, +0E_,,

. [ 0 ZM] (3.179)
” Yye 0
Let 1" be the determinant bundle of the family D”. Clearly
D;,O = D;, 1>
and so
Ayo=4y 1. (3.180)

c) Extension of the Results of Sects. 1, 2, and 3 to the Families D’ and D”. We will
show how to extend the results of Sects. 1, 2, and the previous results of Sect. 3 to
the family D’. The same arguments hold for the family D”.

We endow €7 and €7 with the trivial connections. So H?@T? and H* T,
considered as bundles over Bx R, are naturally endowed with a unitary
connection.

Let A be a family of linear operators sending H? ®@C? into H*@CY. We write

A in matrix form
A, A
A=|"1 T3
]

We will say that A is regularizing if A, is regularizing in the usual sense [ T} and if
A, is given by a C* distribution. Since A, sends C% in H®, A, is given by a family of
C® functions along the fiber Z.

The pseudodifferential calculus can be extended to HY @ C? and H*® C*, with
this new definition of regularizing operators. Set

Ay’(;:D;,,‘;_ ;,0' (3.181)

Then 4, ; is a smooth family of regularizing operators over B x R.
We first briefly show how to extend the results of [BF 1] described in Sect. 11).
By using formally Duhamel’s formula, we find that

t
exp(—tD}} ;) =exp—(tD;%o) — (5) exp(—sD325) ((D},5)* — (D5, 0)")

x exp(—(t—s)D}%o))ds . (3.182)
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Now exp—t(D; ,)* can be evaluated in terms of exp(—tD?) in an obvious way.
Also

(D}, 5> —(Dy,0)° = A7 5+ D} 04, 5+ 4, 5D 0 » (3.183)

and so (D} ;)>—(D, o) is regularizing.

This permits us to use an iteration procedure in (3.182) to calculate
exp(—tD}?s). In particular using (3.183), we find that if P?*¢ is the C™ kernel
associated with exp(—tD;?,), then for any xe M,

Tr,[P?(x, x)]— Tr,[P?(x, x)] = O(t, x) . (3.184)

It is then not difficult to extend the results of [ BF 1] which we described in Sect. 11)
to the family D".

The determinant bundle A’ is endowed with a metric and unitary connection,
which of course restricts to the metric and the connection of A on B x {0}.

We claim that the cancellation result of Theorem 3.4 still holds for the family
D’. In fact let Q2 be the operator

Y
expt{— Qyzi)— -~ %V“D;,6+ZD;,5}.

By Duhamel’s formula, we have
1 ~ A~
Q1= 0= —t] QL TH(D}, = (B}, 0)) + 37D 5~ 7D, )

“‘Z(D;,a 0)] Qz(l s) (3.185)

As t}]0, we find that (Q?*® — Q2%)/t converges to a regularizing operator, which is of
course trace class. In Theorem 3.4, the left-hand side of (3.12) is a quantity where the
factors zdy* should appear. By iterating (3.185), we find that zdy* appears in (3.185)
with the factor t* and before a regularizing operator. This is just what we need to
guarantee that Theorem 3.4 still holds for the family D".

As indicated in (3.27), we now assume that ¢( f,) acts like —i on H*@C?, like
+ion H2®CL

For ¢>0 and over the loop s€e R/Z—c=(c,5)e Bx R, we consider the
operator

F=)/ef,V,+D; 5. (3.186)
Similarly over the loop se R/Z—¢[®=(c,0) e Bx R, we consider the operator:
Dy =|/ef, V" (3.187)

D” and D" are not pseudodifferential operators, since A4, ;and E are only fiberwise
smooth. A priori such operators do not have éta invariants in the sense of
[APS1, 3]}

Still, by using the procedure indicated in the proof of Theorem 3.14, to
construct the semi-groups exp{ — t{(D¥)*}, exp{ —t(D3*)*}, we can use a Brownian
motion y. on S' and integrate a parabolic equation with time depending
coefficients in a given fiber, in which the considered operators are truly
pseudodifferential operators,
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Theorem 3.12 then extends to the families D" and D”. The more difficult point is
to obtain the uniform convergence of (3.64) as t]]0. However when taking the
expansion as £} |0 of the trace of the kernel of D exp{ — t(Df)?}, by proceeding as
in (3.185) and using Theorem 3.12 for D®, we find that it starts with

L Ty, )10 +0()/2, %)
V/ante ¥

Since 4; is odd, Tr[4(x, x)]=0, and so we get the required uniformity.

It is then not difficult to adapt the proofs of Theorem 3.13 and 3.14. In
particular Theorem 3.14 holds for the family D} , over the curve ¢”*.

Since Df, Dg® are not pseudodifferential operators, we directly define their éta
functions by formulas (2.22), (2.23). Let y5(s), #5°(s) be the corresponding &ta
functions, which are well defined at s=0,

Since for t >0, exp{ — t(D$)*}, exp{ — t(D;*)*} are regularizing, Ker D7, Ker D;
are finite dimensional. We can define 75(s), 75°(s).

Let 1}, 74 be the holonomy of A, I over the curves c¢”, ¢”°.

The key step to finish the proof of the theorem is as follows.

Proposition 3.17. [75(0)], 75 (respectively [7;%(0)], t5) do not depend on &
(respectivelyon 0).

Proof. We only prove the Proposition for [77(0)], 5. By Proposition 2.8,
0 . . .
%[ﬁf(O)] is proportional to the finite part as ¢} 0 of

oDy HDy)?
]/ZTr[ Py exp{- 5 .

A= 5 5" is a smooth family of odd fiberwise regularizing operators.

We can then use the technique of the proof of Theorem 3.14 to describe the
#D5)?
2

semi-group €xp— in conditional form, ie. by consider first a Brownian

motion in ¢, and by constructing a partial differential equation with random
coefficients in the vertical directions. We then find easily that

_ oDy (DH* ] 1
lim VET{ =5 exp{- > H == EilTr[A(x,x)]dx. (3.188)

tL o ]/2

Since 4 is odd, Tr[A(x, x)]=0, and so

o507
g s =0. (3.189)

[77(0)] is then independent of § and so coincides with [7§(0)].
Let r” be the curvature of 4. One has the obvious relation

’
%

P
% _y, ( a"a') _ (3.190)

Ta I
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Also by Theorem 1.14, ¢’ is the finite part of [Tr, exp— (V*+ WD’)ZJ‘Z’. The part of
TrJexp—(/*+ V?D’)Z]‘Z), which contains the Grassmann variable dd is exactly

~dd A/t TrfAexp—(P*+}/tD)* V. (3.191)
Since A is trace class, (3.191) obviously converges to 0 as t]]0. So by (3.190)
075
5 =0.

The proposition is proved. U
We now finish the proof of Theorem 3.16. By the first part of the proof applied
S2E, 0 . i
to the family D”, we know that as all()%(—) has a limit 77 and that
7y =exp{—2in[77]} .

Using Proposition 3.17, it is then clear that as ¢} |0, [#5%(0)], [#5(0)] have a limit
[777] — which does not depend on 6, 4, and that in particular

t=1p=exp{—2in[71}. (3.192)

Now since the family D} , acts on (HZ@®C")@(H*®C?), one finds immedi-
ately that for any &]]0,

dimKerD¢=dim KerD*+¢'+¢q,

and so
T6(0)=7(0)+1/2(¢'+9) - (3.193)
We deduce from (3.193) that
(ol =[71+[1/2(g—4)]. (3.194)

Since [7,] =[], (3.164) follows from (3.175) and (3.192). [

j) A Remark on the Metric of B

We now again assume that B is a m dimensional manifold. Let R™* be the
curvature tensor of TM for the Levi-Civita connection associated with the metric

98 @g,. If R% is the curvature tensor of TB for the Levi-Civita connection of B, as
g

in (3.52), we can evaluate R™®in terms of R%, S, and R More precisely if f;, ..., f,
is an orthonormal base of TB, e, ..., ¢, an orthonormal base of TZ, R™¢ evaluated

on the base (¢4, ..., e,, |/Ef1, ...,]/Efm) is given by
Lo RZ+¢eP,[8,S] 2P, DS+e32P,[8, S}
e 2Py DS +&**Py[S,8]1 RP+ePuDS+ePySAP,S+e*PySAPyS |

. .\ (3.195)
Using (3.195), it is clear that as g} |0,

. RL,e . RZ R RB
SAl— — . 196
A(h) A(2n>A(zn> G199
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RB
2n

N L@ R L@
_— — . 3.197
& A( o ) Trexp 21_?4 [f A ( )Tr eXp— 5 1:] ( )

Now by formula (2.39) the left-hand side of (3.197) is directly related to the
variation of d[#*(0)] when ¢ is made to vary.

In fact by [APS 1], if the metric of M’=nr"'(c) is product near M’, (3.197)
appears explicitly when computing d[#7°(0)].

If we were to compute the variation 4[7°(0)] using Theorem 2.10, the proof of
Theorem 2.10 being formally identical to the proof of the Index Theorem for
families in [B 57, we should blow up the metric of B in directions normal to c.

By making ¢] |0, we also blow up to metric of B in the direction tangent to c.
Using (3.196), (3.197), we find that if ¢! is a smooth family of loops in B, then

Since A( ) only contains forms whose degree is 4¢, we find that as ¢ [0,

@)
@—5 _[fA( )Trexp—i] ) (3.198)
PR 2irn
Also if r is the curvature of 'V, we have
ot .
El—/‘f = — { l%clI r.
Since t=(—1)"42+ exp{~ 2in[17]}, we find that
23% [n] Vigr (3.199)

LT

Of course (3.198) and (3.199) fit whith the formula (1.58) for r.
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