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Abstract. In  this p a p e r  we special ize the  results  o b t a i n e d  in [ B F  1] to the case of  
a family of  D i r ac  ope ra to r s .  W e  first ca lcula te  the cu rva tu re  of  the un i t a ry  
connec t ion  on the d e t e r m i n a n t  bund le  which  we i n t roduc e d  in [ B F 1 ] .  

W e  also ca lcula te  the  o d d  Chern  forms of  Qui l len  for  a family  of  se l f -adjoint  
D i r a c  ope ra to r s  and  give a s imple  p r o o f  o f  cer ta in  results  of  A f i y a h - P a t o d i -  
Singer  on  ata  invar iants .  

W e  final ly give a hea t  equa t ion  p r o o f  of  the  h o l o n o m y  theorem,  in the  form 
sugges ted  by  Wi t t en  [ W  1, 2]. 
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Introduction 

Let M ~ B  be a submersion of the manifold M on the manifold B, with compact 
even dimensional fibers Z. Let D be a family of first order differential elliptic 
operators acting along the fibers Z. 

In [BF 1], we have shown how to construct a metric and a unitary connection 
on the determinant bundle 2 associated with the family D, thus extending earlier 
results of Quillen [Q 2], who considered the case of a family of ~ operators on a 
Riemann surface. In [BF 1], the connection 1V on 2 was constructed using the 
superconnecfion formalism of Quillen [Q 1], which was extended in [B 5] to an 
infinite dimensional situation. The curvature of 1V on 2 was also computed in 
[BF 1] in terms of asymptotic expansions of certain heat kernels. 

Our first purpose in this paper is to specialize the results of [BF 1] to the family 
of Dirac operators considered in [B 5]. 

Our first main result, which is proved in Theorem 1.21, is that in the setting of 
[B 5], the curvature of 2 is the term of degree 2 in the differential form on B, 

where (0.1) is exactly the differential form which was constructed in [B 5] to 
represent the Chern character of the difference bundle Ker D + - K e r D _  naturally 
associated to D. The proof of this result relies on a surprising link between the 
natural geometric superconnection considered in [BF1]  and the Levi-Civita 
superconnection introduced in [B 5]. 

Our second series of results is related to self-adjoint Dirac operators on odd 
dimensional manifolds. Let us recall that in lAPS 1, 3], Atiyah-Patodi-Singer 
introduced the ata function q(s) associated with a self-adjoint operator D on an 
odd dimensional manifold M'. They showed that tt is holomorphic at 0. When D is 
a Dirac operator, they proved in [APS 1] that tt is holomorphic for s >  -½, by 
showing how 7(0) is related to an index problem on a manifold M" whose 
boundary is M', and by using local cancellation properties in the heat equation 
formula for the index on even dimensional manifolds [Gi l ] ,  [ABP]. An 
alternative proof of this result has been given in [APS 3, p. 84] using Gilkey's 
theory of invariants [Gi 1], [ABP] for odd dimensional manifolds. 

In Sect. 2, we show how a direct approach to the 6ta invariants of Dirac 
operators is possible. By using the periodicity of Clifford algebras [ABS] in an 
elementary form, we show that the local invariant ~ta function ~/(s, x) is pointwise 
holomorphic at s = 0. This is done by introducing a supplementary Grassmann 
variable z and by a formal transfer of the results of [B 5] in this situation. 

Also in [Q 2], Quillen has given a natural candidate to represent the odd Chern 
classes associated with a family D of self-adjoint operators. We prove that these 
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forms represent the Chern classes when D is a family of Dirac operators. Using the 
results of [-B 5], we calculate the asymptotics of such forms which depend on t > 0. 
We exactly obtain again formula (0.1), where Z is now odd dimensional. By noting 
that the form of degree 1 in (0.1) is the variation of the &a invariant of the family, we 
thereby obtain a simple proof of the results of Atiyah-Patodi-Singer [APS 3] on 
the spectral flow of a family of Dirac operators. 

Our major concern in this paper is to give a proof of the Witten holonomy 
theorem [W 1, 2]. Let us recall that in [W 1, 2], Witten has considered the case of a 
manifold X endowed with a metric 90. If ~p is a diffeomorphism of X, set g ~ = ~P, go. 
Witten considers the family of metrics 

g,=(1-t)go+tgl, t~SI=R/Z (0.2) 

and the corresponding family of Dirac operators Dr He thus constructs the 
manifold M xt~S ~, where (x, 0) and (tp(x), 1) are identified. In [W 1], Witten gives 
an argument showing that if the family Dt has index 0, if it(0) is the &a invariant 
associated with a Dirac operator D' on M xt0S 1, then in certain situations, the 
variation over $1 of the determinant of the family Dt is given by the formula 

6 Log detD t = exp{ - inr/(0)}. (0.3) 

In [W 1, 2], Witten was interested in calculating global anomalies in the case 
where the curvature of the determinant bundle vanishes. 

In Sect. 3, we give a rigorous proof of Witten's theorem in the case of the 
family of Dirac operators considered in I-B 5] and in Sect. 1. More precisely, we 
prove in Theorem 3.16 that if [4] is the limit in R/Z of certain refined &a invariants 
[APS 1, 3] which are obtained by blowing up the metric of B, then the holonomy z 
of a loop c is given by 

z = ( -  1) Ina° + exp{ - 2in[f/I}. (0.4) 

When 2 has a curvature equal to 0, it is in general unnecessary to blow up the 
metric of B. Blowing up the metric orB is equivalent to what Witten calls adiabatic 
approximation in [W 1]. 

Again using the periodicity of Clifford algebras, our proof of the holonomy 
theorem is essentially equivalent to the second proof in t-B 5] of the Index Theorem 
for families of Dirac operators, where the metric of the base B was also blown up. 
At a technical level, we prove that the imaginary part of our connection ~ V on 2 - 
which is defined via heat equation - exhibits remarkable cancellations, which 
match the local cancellations of [-B 5] and Sect. 1. Also we have to establish in the 
course of the proof certain large time estimates on heat kernels. These estimates, as 
well as certain localization estimates, are obtained using probabilistic methods. 
More specifically, we use the partial Malliavin calculus of IBM]. 

The main steps of our proof of the holonomy theorem are closely related to the 
ideas used in Atiyah-Donelly-Singer [ADS]. 

Note that our proofs of local cancellations are systematically based on 
generalized Lichnerowicz formulas with anticommuting variables, which are 
derived from [B 5, Theorem 3.6]. 

For an introduction to probability and the Malliavin calculus, we refer to [B 3, 
BM], and the references therein. 

The results which are given here were announced in [BF 2]. 
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I. A Connection on the Determinant Bundle of a Family of Dirae Operators 

In [BF 1], we constructed a metric and a unitary connection on the determinant 
bundle of a family of first order elliptic differential operators. In this section, we will 
apply this construction to the family of Dirac operators D considered in [B 5]. In 
particular we prove that the curvature of our connection coincides with the 
differential form which was obtained in [B 5] to represent the first Chern class of 
Ker D + - Ker D_. 

This results generalizes the results obtained by Quillen [-Q1] for the 
determinant bundle of a family of J operators over a Riemann surface. 

We use the superconnection formalism of Quillen [Q 1 ] which was extended in 
[B 5] to an infinite dimensional setting. This permits us to obtain the critical link 
between the natural geometric superconnection used in [BF 1] to construct a 
connection on the determinant bundle, and the Levi-Civita superconnection of 
[B 5]. 

This section is organized as follows. In a) and b), we recall some well-known 
results on Clifford algebras and the spin representation lABS]. In c) and d), we 
briefly describe the geometric setting of [B 5] and [-BF 1]. In e), we calculate a 
unitary connection on certain infinite dimensional bundles in the setting of [B 5]. 
This unitary connection plays a key role in [BF 1]. In f), we recall the results of 
[BF 1]. Finally in g), we compute the curvature of the determinant bundle for a 
family of Dirac operators. 

a)  Clif ford A lgebras:  T h e  Even  Dimens ional  Case  

R" denotes the canonical oriented Euclidean space of dimension n. e l , . . . ,  e ,  is the 
canonical oriented orthonormal base of R ~, dx  ~ . . . . .  dx  ~ the corresponding dual 
base. 

The Clifford algebra c(R")  is generated over R by 1,el, . . . ,e ,  and the 
commutation relations 

eie j + eje~ = - 26ij . (1.1) 

Let d ( n )  be the set of (n, n) antisymmetric real matrices. If A = (ai) ~ d (n) ,  we 
identify A with the element of c(R"),  

J (1.2) g a i e i e j  , 

and with the element of AE(R"),  

½a~clx~ A clxJ. (1.3) 

Assume first that n is even, so that n = 21. Set 

z = iZe l . . . e , .  (1.4) 

Then z z = 1. By lABS], c(R")®Rff?, identifies with EndS,, where S, is a complex 
Hermitian space of spinors, of dimension 2( Set S ±,, = {s; zs  = + s}. Then S ±,, has 
dimension 2 l- 1, and S, = S +,,@ S_,,. 

If ace(R"),  let Tr ia l  be the trace of a as an element of EndS,,. Set 

Trs[-a ] = Tr[-za]. (1.5) 
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Then Tr~ is determined as follows [AB, p. 484]: for 1 ~ i I </2... < iv <= n, then 

Trs[eilei2...ei~]=O if p < n ,  Tr ,[e l . . . e . ]=(--2 i )  I. (1.6) 

The double cover Spin(n) of SO(n) is naturally embedded in c(R"). Spin(n) acts 
unitarily and irreducibly on S+,,  and S_, ,  [ABS, H]. 

b) Clifford Algebras: The Odd Dimensional Case 

Assume now that n is odd, so that n = 21 + 1. Let ~0 be the algebra homomorphism 
from c( R ~) into ceVen(R ~ + 1) defined by the relation q~(ei) = eien + 1, I <_ i <_ n. Under q~, 
e(R ~) is isomorphic to c . . . .  (R"+I). Then c(R")®RIE identifies with 
End(S+ ,,+ 1)OEnd(S_ ,+ 2). 

By definition, the space of spinors S~ is identified with S+ ,,+ 2. c(R~) acts on S,. 
One verifies easily that if T ra  is the trace of a ~ c(R ~) acting on Sn, then 

Tr[1] = 2 l , Tr[e t . . .  e,] = 2~(-/)t+ 1, (t.7) 

and that the trace of the other monomials in c(R") is 0. 
Since i l+ lelez. . .e  . acts like the identity on S,, the two formulas in (1.7) are 

equivalent. 
Another construction of S, is as follows. Set 

% -  1 = ilel . .  " e n -  1 • 

Let ~p be the homomorphism of c(R")®Rt~ into c(R"-1)@RC defined by 

~p(ei)=ei, l ~ i ~ n - - 1 ,  ~p(e,) = --iv,_~. (1.8) 

If a ~ c(R")®Rffg, ~p(a) acts naturally on S,_ t = S+,,_ ~ ®S_ , ,_  2. We can then 
identify S, and S,_ 1 as representation spaces for e(R")®RC. In particular 

i' + l~p(el ...e,) = z~_, = 1, (1.9) 

which fits with (1.7). Spin(n), which double covers SO(n), is naturally embedded in 
c(R") and acts unitarily and irreducibly on S.. 

Remark 1. For  nodd, the trace Tr  behaves on the odd elements of c(R") in exactly 
the same way as the supertrace Tr,  on the even elements of c(R") for n even, i.e. we 
must saturate all the elements e, . . . . .  e n to get a non-zero trace or supertrace. This 
fact, which is a simple consequence of the periodicity of the Clifford algebras 
[ABS], will be of utmost importance in the sequel. 

c) Description of the Fibered Manifold 

We now briefly recall the main results in [B 5, Sect. 1]. B denotes a connected 
manifold of dimension m. We assume that TB is endowed with a smooth Euclidean 
scalar product  gB- However the results in [B 5] and in our paper do not depend 
on gB" 

n = 21 is an even integer. X is a connected compact manifold of dimension n. We 
assume that X is orientable and spin. M is a n + m  dimensional connected 
manifold, rc is a submersion of M onto B, which defines a fibering Z by fibers 
Zy = re- 1 {y} which are diffeomorphic to X. T Z  is the n dimensional subbundle of 
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T M  whose fiber at x ~ M is T~Z~x). We assume that T Z  is oriented. THM is a 
smooth subbundle of T M  such that T M  = TriM@ TZ. TriM is the horizontal part 
of TM, and T Z  the vertical part of TM. 

Under r~., T~M and T~)B are isomorphic. We lift the scalar product of TB in 
TnM. 

We also assume that T Z  is endowed with an Euclidean scalar product  9z. By 
assuming that TnM and T Z  are orthogonal, T M  is endowed with a metric which 
we note gB@gz. Let ( , )  be the corresponding scalar product. 

Let 0 be the SO(n) bundle of oriented orthonormal frames in TZ. We assume 
that TZ is spin, i.e. the SO(n) bundle O~,M lifts to a Spin(n) bundle 
O ' ~ O ~ M  such that a induces the covering projection Spin(n)~SO(n) on each 
fiber. 

F, F± denote the Hermitian bundles of spinors 

F = O' x Spin(,)S . , F_+ = O' Xspi,(,)S+,,. (1.10) 

d) Connections on T M  

Let V ~ be the Levi-Civita connection of TB. V ~ lifts into a Euclidean connection on 
TriM, which we still note V 8' V z denotes the Levi-Civita connection of TM for the 
metric g~Ggz. Pz (respectively Pn) denotes the orthogonal projection operators 
from T M  on T Z  (respectively TriM). V z denotes the connection on T Z  defined by 
the relation U ~ TM, V~ TZ, vZV=PzVLV. V z preserves the metric 9z. 

17 denotes the connection on T M  = T n M G  TZ, which coincides with V B on 
TriM and with V z on TZ. We will write V = VBO 17z. V preserves the metric gB®gz. 

Definition 1.1. T denotes the torsion of V, R the curvature tensor of V. R z is the 
curvature of TZ. S is the tensor defined by 

I 7L=V+S.  ( l . l l )  

Clearly R z is the restriction of R to TZ. 
For  U ~ TM, S(U) is antisymmetric in End TM. Given U, V, W ~ TM, we have 

the well-known relation 

2(S(U)V, W ) + ( T ( U ,  V), W ) + ( T ( W ,  U), V ) - ( T ( V ,  W), U ) = 0 .  (1.12) 

Let us now recall some results of [B 5, Theorem 1.9]. 
• T takes its values in TZ. 
• If U, V~ TZ, T(U, V)=0. 
• V z, T, and the (3,0) tensor ( S ( . ) - , - )  do not  depend on 9B. 
• For  any U ~ TM, S(U) sends TZ in TriM. 
• For  any U, Ve  TnM, S(U)Ve TZ. 
• If U~ TriM, S(U)U=O. 
Only the last statement is not explicitly proved in [B 5, Theorem 1.9]. However 

it immediately follows from (1.12), from the relation T(U, U) = 0  and from the fact 
that T takes its values in TZ. 

In the sequel, we will write V instead of V B, V z. 
The connection V on 0 lifts into a connection on 0'.  F, F+ are then naturally 

endowed with a unitary connection, which we still note 17. 
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is a k-dimensional complex Hermitian bundle on M. We assume that ~ is 
endowed with a unitary connection V ~, whose curvature tensor is L. The 
Hermitian bundle F ®  ~ is naturally endowed with a unitary connection which we 
note V. 

e) Connections on Infinite Dimensional Bundles 

H °~, H T denote the set of C °° sections of F®~,  F± ®4 over M. As in [B 5, Sect. 2], 
we will regard Hoo, H~ as being the sets of C °~ sections over B of infinite 
dimensional bundles which we still note Hoo, H~. For  y E B, H ; ,  H~,y are the sets 
of C oO sections over Zy of F®~, F+®~. 

Let dx be the Riemannian volume element o f Z  r H~ ° is naturally endowed with 
the Hermitian product 

(h, h')y = ~ (h, h') (x)dx. (1.13) 
Zv 

For  Y ~ TB, let y n  be the horizontal lift of Y in THM. YH is characterized by 

yU ~ TriM; r~ , yfX = y. 

Definition 1.2. V denotes the connection on Hoo which is such that if Y ~ TB, 
h ~ Hoo, 

Vyh= VrHh. (1.t4) 

By [B5, Proposition 1.11], the curvature tensor /~ of 17 is a first order 
differential operator acting fiberwise on Hoo. 

In general, although V is unitary on F®~,  V does not preserve the Hermitian 
product (1.13) on H °°. However an elementary modification of V permits us to 
construct a unitary connection on H~. 

e I . . . . .  e. denotes an orthonormal base of TZ. 

Definition 1.3. k is the vector in TnM 

n 

k= -½2S(e~)e~. (1.15) 
1 

V" is the connection on H °° defined by the relation 

YE TB,  ¢~= gr+ (k, y n )  (1.16) 

If Y is a vector field on B, the vector field yn  on M preserves the fibration Z. In 
particular the divergence divz(Y n) - which is the infinitesimal action of y n  on the 
volume element dx of Z - is well defined at each x s M. One verifies easily that 
Y~divz (Y  n) is a tensor. 

We first have the technical result. 

Proposition 1.4. For any Y E TB, x ~ M, 

(k, y n )  (x) =½ divz(Y ~) (x). (1.17) 

The connection V" is unitary on H ~. V~ does not depend on the metric gB- 
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Proof. By (1A2), we have 
n 

(k, yH) =½2 (T(  Yn, ei), e,) (1.18) 
1 

el . . . . .  en can be extended locally into a C ~ section of O. Clearly 

T(Y H, ei) = Vr~ei- Vei yH _ [yn ei] = Vy~e i _ [ yn, el]. (1.19) 

Since (ei, ei) = 1, we have 

( VyHe i, e/) = 0. (1.20) 

If Lr ,  gz is the infinitesimal action of yn  on gz, we have 

0 = Yn(e i, ei) = Lr ,  gz(e i, ei)+ 2([Y n , e/], e/) .  (1.21) 

From (1.18), (1.21), we find 

n 

(k, yn)=¼ Y Lr~gz(e, el)=½divz(Yn). (1.22) 
1 

Also, if h, h' e H ~, 

Y I (h, h') (x)dx= ~ [ ( Vr~h, h') + (h, Vr~h') + divz( Y H) (h, h') ] (x)dx. 
z z (1.23) 

It is then clear that IY" is unitary. Also by Sect. ld), Y~ T M ~ ( k ,  Y)  does not 
depend on gB- The proposition is proved. [] 

f )  A Connection on the Determinant Bundle of a Family 
of First Order Elliptic Differential Operators 

We now briefly summarize the main results of Bismut and Freed [BF 1] on the 
construction of a unitary connection on the determinant bundle of a family of first 
order differential operators. 

We will constantly use the superconnection formalism of Quillen [Q 1] which 
was extended in [B5] to infinite dimensions. In particular F®~ 
= (F+ ®~)@(F_ ®4), H °~ = H ~ @ H  ~- are Zz graded vector bundles over M and 
B. End(F®~), End H ~ are then naturally ZE graded. 

For  a given y e B, we will always do our computations in the graded tensor 
product EndH~ ° ~A(Ty*B). Locally, we work in Endx(F® ~)QA~x(T B). The sign 
® will be always omitted. 

If A is trace class in EndH ~° @A(T*B), its trace Tr and its supertrace TrsA are 
elements of A(T*B). As in [Q 1], we use the convention that if co e A(T*B), 

Trc0A = o9 TrA,  TLcoA = co TLA.  (1.24) 

For y s B, D+.y is an elliptic first order differential operator which sends H~,y 
into H~_r We assume that D+,y depends smoothly on y ~B. D _ r  denotes the 
adjoint of D +,y with respect to the Hermitian product (t.13). Set 
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D is a smooth family of elliptic self-adjoint first order differential operators, which 
is odd in E n d H %  

Definition 1.5. 2 denotes the complex line bundle over B, 

2 = det(Ker D +)*® det(KerD_).  (1.26) 

As shown in [Q 2, BF 1], 2 is a well-defined smooth bundle on B, even if B is 
non-compact. This will be briefly proved in the sequel. 

If co s A(T*B), eft ) denotes the component of co in Ai(T*B). All the asymptotic 
expansions which we will consider are uniform on the compact subsets of B. 

Take t>0 .  [Yu+V~D is a superconnection on H ~. By [B5, Sect. 2], 

Trs[exp -([Yu + ]/~D)2] is a Coo closed form on B. When B is compact, it represents 
the (normalized) Chern character ch 1 (Ker D + - Ker O _). 

As t~+0, for any k e N, we have the asymptotic expansion, 

k 

Trs [exp -- (l~u + ]/t-D )2] = Z aj(y)tJ+o(tk, Y) • (1.27) 
n 

The following result is proved in [BF 1, Theorem 1.5]. 

Proposition 1.6. The a~ 2) are Coo closed purely imaginary 2 forms on B. For j # O, a~. 2) 
is exact. 

In [BF 1], a metric and a connection are constructed on 2. We briefly recall the 
results of [BF 1]. 

We have the asymptotic expansion as tJ,~0, 

k 

½Trexp( - tO2)= ~. AjtJ+o(tk, y) ,  (1.28) 
j=-~ 

where the A~ are real Coo functions on B. Also 

d[½ Tr exp - tD z] = - t Tr[exp( - tD 2) ff"D D] , (1.29) 

and as t~0, 

Tr[exp-(tD2)lYUD D] = _ 

Similarly as t$~0, 

k 

Z d A j f -  1 "JV o(t k- i y) .  (1.30) 
j = - ~  

k 

Tr~[exp(- tD2)(rUDD] = - Y'~ BitJ- 1 +o(t  k- 1, y).  (1.31) 
j = - ~  

The following result in proved in [BF 1, Theorem 1.7]. 

Proposition 1.7. The Bj are C °o purely imaginary 1 forms on B. Also dB~ = -2ja~ 2). 
In particular Bo is closed. 

Take Yo z B, a > 0 which is not an eigenvalue of D~o. Then a is not an eigenvalue 
ofD 2 on a neighborhood U ofyo. We now follow Quillen [Q 2] and Bismut-Freed 
[BF 1]. 
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Definition 1.8. Kay is the subspace of HT,y which is the direct sum of the 
eigenspaces of Dr z corresponding to eigenvalues < a. 

K" is a smooth subbundle of H °~ on U. K" splits into 

K" = K~. GKa_. (1.32) 

Also K" is stable under D. Let P" be the orthogonal projection operator on K". P" is 
a smooth family of regularizing operators which is well defined on U. Set 

Q " = I - P " .  (1.33) 

We also define 
2" = det(K%) * ® det(K"_ ). (1.34) 

2 identifies canonically with 2" on U. 2" being a smooth line bundle on U, 2 
becomes itself a smooth line bundle on B. K" inherits the Hermitian product (I.I 3) 
of H ~°. So 2" is naturally endowed with a metric I I". 

In [BF 1], we modify the metric I I" as in [Q 2] and we simultaneously construct 
a connection on 2. 

Definition 1.9. For s e C, the z~ta function ("(s) is defined by 

1 +~ 
(a(s)-- ~ t s -1Tr[e-*°~Q"]dt .  (1.35) 

2F(s) o 

Equivalently 

Definition 1.10. 

~a(s ) = ½ Tr[(D z) -sQa]. (1.36) 

("(s) is a meromorphic function, which is holomorphic at s=0 .  kt is a fixed real 
constant. 

II II ~ denotes the metric on 2" which is such that if t~ 2 a, 

~ -  -1 0(" (0)-- l/zA0} . (1.37) Ill[l"=lI[~exp( 2 gs 

For t>0 ,  ?~, ~ are the C ~ 1-forms on B, 
+ c o  

7t = ~ Tr[exp(-sD2)(VUD)DQa]ds, 6~= 
t 

or equivalently 

7~' = - T r [ e x p ( -  tD2)D- I(I~"D)Qa], 

q-oo 

T L [ e x p ( -  sD 2) (lg"D )DQ ~] ds, 
' (1.38) 

c5~ = Tr~[exp(-  tD2)D - I(IgUD)Q"]. 
(1.39) 

?~ and g~ are C ° 1-forms on U, which are respectively real and purely imaginary. 
As t$$0, we have the expansions 

-1 t] 
7: = _._.~ dA] 7 + dA° Logt  + 78 + O( t, y),  

2 (1.40) 
- 1 t j 

6~ = Z B] 7 + Bo Log t +  6~ + O(t, y), 
d 

2 
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where 7~, 6~ are C ~° l-forms on U, which are respectively real and purely 
imaginary. 

The following identities are proved in [BF 1, Theorem 1.15]. 

Proposition 1.11. The followin9 identities hold: 

d~a(O)=dAo, 7~o+F'(1)dAo = - d I ~  s (a(0)], 

~"o + r ' O  ) d A o  = - (s Tr[(D 2)- SD- 1 ~UDQa]), (O) , (1.41) 

6~ + F'( l)Bo = (s Tr~ [(O 2) - s O -1 ;Y"D Qa] ), (0). 

dA o (respectively - B o )  is the residue at s = 0  of the meromorphic function 
Tr[(D 2)- ~D - 1 ~UDQa ] (respectively Trs[(D 2)- SD - 1 ~UDQa]). 

Definition 1.12. °Va denotes the unitary connection on the bundle K a over U 
which is such that if k is a section of K a, 

° W k =  WiYUk. (1.42) 

o V a induces a connection on 2 a, which is unitary for the metric I j ~. 

Definition 1.13. 1V ~ is the connection on )~a, 

1 v a  o 1 a a 1 V +3(70 - 60) +~(F  (1)-/z) (dA o - Bo). (1.43) 

The main result of Bismut-Freed [BF 1, Theorems 1.11 and 1.18] is as follows. 

Theorem 1.14. Using the canonical identification of 2 ~ with 2 over U, the metrics 
IJ II a patch into a smooth metric H II on 2 over the manifold B. The connections 1V" 
patch into a smooth connection 1 V on 2 over B, which is unitary for the metric tt fl. 
The curvature of 1 V is the purely imaginary 2-form a(o 2). 

Remark 2. The rationale for introducing the constant # in the definition of ]1 II and 
1V is the following: Take b s R*. Assume that the family D is replaced by the family 
bD. Both D and bD have the same determinant bundle 2. However the canonical 
identifications of 2 with 2" are different. One verifies that l E 2 a should be identified 

dim(Ka) 

with b---T-1E 2 a. 
The metric associated with bD is now bA°ll II. The new connection 1V b on 2 is 

given by ~ Vb = 1V + (dA o -  Bo) Logb.  (1.44) 

In general ~V b and 1V do not coincide. This is a scaling discrepancy of the 
connection which we consider. 

The introduction of the parameter/~ permits us to construct simultaneously all 
the scaled metrics and connections. 

g) The Case of  a Family of Dirac Operators: Explicit Computation 
of  the Curvature of  the Determinant Bundle 

We now assume that D is the family of Dirac operators considered in [B 5]. We 
briefly recall the definition of D. Remember that the elements of T Z  act by Clifford 
multiplication on F®~.  

el . . . . .  e, is an orthonormal base of T Z .  
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Definition 1.15. D is the family of Dirac operators acting on H °~ 

D = ~ eiVe,, (1.45) 
1 

D_+ denotes the restriction of D to H~. 

The family D verifies all the assumptions of Sect. 1 f). 
We now briefly recall the definition of the Levi-Civita superconnection [B 5, 

Definition 3.2]. As pointed out in Sect. I f), we use the formalism of Q_uillen [Q 1 ] 
at a local level. In particular all our computations are done in cx(TZ)®A=x(T*B). 
fl,---,fro is a base of TB, dyl...dy " the corresponding dual base. We identify 
f l  . . . . .  fm with their horizontal lifts f ( , . . . ,  fff. Also we use i, j . . . .  as indices for 
vertical variables like ei, %. . . ,  a, fi for horizontal variables like £ ,  J} .... 

Definition 1.16. For t > 0, the Levi-Civita superconnection lYL'~+ ] / tD associated 

with the metric 08@ t is given by 

ly~.,t+ V7 D = ei VtVe, + 5 (S(eOej, f~> efly ~ + ~ (S(ei)f,, fp)dy~dy p 

+dy~[V,=+~<S(f , )e , , f¢)e ,dyP] . 

By [B 5, Proposition 3.3] (see also Sect. td)), IgL't+I//TD does not depend on gB- 
We first compare fL.t+ ~ft-D with lYu + ]//tD. 

Definition I.t7. A denotes the odd element in cx(TZ)QA=(x)(T *B) 

A = -¼ ~, (T(A,  fe), e,>eidy=dy e" (1.46) 
a<fl 

Proposition 1.18. The following identity holds: 

A (1.47) e"+l/TD+/; 
Proof. Since V t has zero torsion, for U, Ve TM, 

S (U)V-  S(V)U + T(U, V)=0. (1.48) 

Also T(ei, e~)= 0. We get 

Z <S(ei)ej, f~> e~ej = - ½ ~ < T(e~, e j), f~) eiej = 0. (1.49) 
i , j  

Using (1.12) and the fact that T takes its values in TZ, we have 

¼<S(e~)£,fa>-½(S(£)e~,fp> ~ T . =--~< (f=,fo),e,> (1.50) 

Equation (1.47) follows from (1.49) and (1.50). D 

As shown in [B 5, Sect. 2], (ffL"+~/TD)2 and (#+~/TD)  2 are second order 
elliptic operators acting fiberwise in Z. For t >  0, s>O, let P~'t(x, x'), P~'t(x, x') 
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(x, x" ~ Zr) be the Coo kernels associated with the operators exp - s(17L't + ]/~D)2, 
exp-s(e~+~/tD) z. 

We have the obvious formulas. 

Tr~[exp-- (17L"+]/~D)=] = f Tr~[pL"( x, x)]dx, 
z ( 1 . 5 1 )  

Trs[exp-- (17" + r i D )  z] = ~ Tr~[n]'t(x, x)] dx. 
z 

Also if E is a complex vector bundle over B, endowed with a connection whose 
curvature is C, set 

ch 1 E = Tr[exp-- C].  (1.52) 

cha E represents in cohomology the scaled Chern character of E. 

Theorem 1.19. For any t > 0, Tr,[exp -(I~L,*+ V/tD) 2] and Tr s [exp - (I ~" + ~/tD)2] 
are Coo closed forms on B whose common cohomology class does not depend on t. I f  B 
is compact, they represent in cohomoIogy ch~(KerD + -  KerD_). Moreover 

[Tr~exp-(~+~/tD)2](2)=[Tr~exp-(VL, t +~/tD)2] ~2} . (1.53) 

Proof The first part of the Theorem is proved in [B 5, Theorem 2.6, Proposition 
2.10]. We now prove (1.53). 

By proceeding as in [B 5, Proposition 2.6 and Remark 2.3] - i.e. by using 
1" ~u P- IA~2 

explicitly the C OO kernel of e x p - t V  + V t D + ~ t  ) , and the vanishing of 

supertraces on supercommutators in finite dimensions [Q 1] - it is not difficult to 
prove that 

~Tr~ [exp-(lY" +~tD + IA~21=-dTr~[~exp-(#~+~/tD+IA~21 
(1.54) 

Equation (1.54) is the fundamental equality which proves that in cohomology, 

T r ~ e x p - ( l ~ + V t D + ~ ) 2 d o e s n o t c h a n g e w i t h l .  A lsoAiso fdegree2in the  

variables dy ~. Since (1.54) is of even degree, the right-hand side of (1.54) is at least of 
degree 4. We then find that 

~ [ T r . e x p _  (17.+I/QD+ lA)21(2)= 0 j  " ( 1 . 5 5 )  

Equation (1.53) is proved. [] 

Remark 3. Equation (1.53) is equivalent to the relation 

f Tr,[pL't(x, X)] (2)dx = ~ T r , [ P ~ " ( x ,  x)](2)dx. (1.56) 
z z 

The expressions Tr~[pL't(x,x)] and Tr~[P~'t(x,x)] may well be completely 
different. Their integrals on Z are in the same cohomology class. Moreover in 
degree 0 and 2, these integrals coincide. 
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We now will calculate explicitly the curvature of the determinant bundle 2 for 
the connection ~ V. 

Definition 1.20. fl is the adO(n) invariant polynomial on ,g(n) which is such that if 

B e d ( n )  has diag°nal entries [ 0-x i xi 10 , then 

xi 

2 
- ( 1 . 5 7 )  

A(B) = ~1I sh ~ "  

We now have the crucial result. 

n 
T h e o r e m  1.21. For - ~ - 1  __<j<- 1, a}2)=0. Also 

V (RZ\ L 7 (z) 
a(o 2)= 2in |~ A 17-}  Tr e x p -  7:-. |  . (1.58) 

Lz kZn / ztnj 

The curvature of the connection 1V is equal to a~o 2). 

Pro@ Let dxl...dx" be the oriented volume element in Z. Let q~ be the 

homomorphism on A .... (T'B) which to dy~dy p associates dy~dy~ 2in By [B 5, 

Theorems 4.12 and 4.I6], we know that as t$~.O, q~[Tr~[pL't(x,x)]]dxl...dx" 
converges uniformly to the term of maximal degree n in the variables dxl...dx" in 
the expression 

As in [B 5, Theorem 4.17], we immediately deduce from (1.59) that as t$~,0 

(p(Tr~[exp-(VL't+]//tD)2])~A(-RZ~Tr[exP-2L] \2~) (1.60) 

Using (1.53), we find 

~ _ L ]  (z)" ~°(Tr~[exp-(VU+~D)Z])(z)--+[! ft(R~) Trexp 2i~J (1.61) 

Using (1.27) and Theorem 1.14, our theorem is now obvious. D 

Remark 4. In general, the local cancellations which explain (1.60) occur in 
Tr~[P L''(x, x)] and not in Tr~[PT't(x, x)]. The computation of the curvature a(0 z) is 
then done rather indirectly. 

Remark 5. From Proposition 1.7 and Theorem 1.21, we already know that 

dBj=O, j<=O. (1.62) 

We will prove in Theorem 3.4 that we have the much stronger result 

B~=0, j < 0 .  (1.63) 
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H. Dirac Operators on Odd Dimensional Manifolds 

In this section, we establish certain properties of self-adjoint Dirac operators on 
odd dimensional manifolds. Families of self-adjoint Dirac operators are also 
considered. 

Our first result concerns the local regularity of the ~ta function of Dirac 
operators. Using their results on the index of elliptic operators on manifolds with 
boundary, Atiyah-Patodi-Singer lAPS 1, Theorem 4.2] proved that the ata func- 
tion t/(s) of a Dirac operator D is holomorphic for Re s > - ½ .  In lAPS 3, 
p. 85] a cancellation mechanism was described in dimension 3 to explain that 
the pole at s = 0 of the meromorphic matrix T~(x, x) - which is the kernel of 
DID[ -~-1 on the diagonal - disappears when calculating Tr[T~(x, x)], thereby 
proving the local regularity of q(s) at s = 0 in dimension 3. 

An alternative proof of this result has been given in lAPS 3, p. 84] using 
Gilkey's theory of invariants [Gi 1, ABP] for odd dimensional manifolds. 

In Sects. a)-d), we prove that the local ~ta function ~/(s, x) is holomorphic at 
s = 0 by a method which is formally identical to the proof given in [B 5] of the 
Index Theorem for families. By introducing as an auxiliary Grassman variable z, 

tD2 -zl/~D. In c), and implicitly we establish in b) a Lichnerowicz formula for ~ -  

using the periodicity of Clifford algebras, we show that Tr[D e x p -  tD 2] is locally 
O(t l/z) as t+$0. In d), we prove the local regularity of q(s, x) at s=0 .  In e), we briefly 
calculate the variation of q(0) by a heat equation formula [APS 3, p. 75], [ADS, 
p. 138]. In f), we consider a family of self-adjoint Dirac operators D in odd 
dimensions. We calculate the odd Chern forms associated with the family D 
introduced by Quillen [Q 1], by using formally the computations of [B 5]. The 
formula for these odd Chern forms is strictly identical to the formula obtained in 
[B 5] for the Chern character of the difference bundle associated with a family of 
Dirac operators in even dimensions. We thus obtain a simple proof of the result of 
Atiyah-Patodi-Singer lAPS 3] on the spectral flow of a family of Dirac operators, 
which does not rely on the Index Theorem for manifolds with boundary. 

The results obtained in this section will be used in Sect. 3. 

a) Assumptions and Notations 

M' is a compact connected Riemannian manifold of odd dimension n = 2 / +  1, 
which is oriented and spin. N is the SO(n) bundle of oriented orthonormal frames 
in TM'. N" is a Spin(n) bundle over M' which lifts N so that: N'~N~,M,  and a 
induces the covering projection Spin(n)~SO(n) on each fiber. F' is the Hermitian 
bundle over M 

F' = N' x spi,(,) S,. (2. I) 

V denotes the Levi-Civita connection on N, which lifts into a connection on N'. 
TM', F are then naturally endowed with a connection V. K is the scalar curvature 
of M'. ~ is a k-dimensional Hermitian vector bundle, endowed with a unitary 
connection V ¢, whose curvature is L. Fr®~ is a Hermitian bundle, which is 
naturally endowed with a unitary connection, which we still note V. H °~ is the set of 
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C °~ sections of F '®¢. el . . . . .  e, is an orthonormal base of TM'. D is the Dirac 
operator acting on H ~, 

" V D = ~, e i ~. (2.2) 
1 

b) An Auxiliary Grassmann Variable 

z denotes a Grassmann variable which anticommutes with el . . . . .  e, considered as 
elements ofc(TM'). If A(X) is a tensor which depends linearly on X e TM', we use 
the convention that if e 1 . . . . .  e, is a locally defined C ° orthonormat base of TM', 
then 

(V~, + A(ei)) z = E (Ve,(x> + A(ei(x))) z - V z - A Ve~e i . (2.3) 1 ~ V~ej(x) 

We first prove an elementary identity which extends Lichnerowicz's formula 
EL, B4]. 

Proposition 2.1. For any t >0, the following identity holds: 

tD 2 z l /~D=_2(V~i  zei'~ 2 tK teie J 
2 . + ] / t T J  + - ~ + - ~ - ® L ( e ~ , e j ) .  (2.4) 

Proof. Clearly 

t (  ze~) 2 t 
2 Ve'+]// t ' t  = - - 2  V2-z]/~D" (2.5) 

The theorem now obviously follows from Lichnerowicz's formula [L, B 4]. [] 

Remark 1. As we shall see in Remark 5, Formula (2.4) is a special case of the 
formula proved in Bismut [B 5, Theorem 3.6], which calculates the curvature of 
the Levi-Civita superconnection. 

c) The Asymptotics of Certain Heat Kernels 

dx denotes the volume element of M', All the considered kernels will be calculated 
with respect to dx. Let R(z) be the Grassmann algebra generated by I and z. All our 
local computations are done in (c(TM')®End ~)QR(z). 

Definition 2.2. For  t>0 ,  P~(x,x') denotes the C ° kernel associated with the 

oxp(_ 
Clearly 

e x p ( - -  tD2 ÷z | / tD)  e x p ( - t ~ - ~  2) ÷ z V t D e x p ( -  t22 ) (2.6) 

Also we can write 

Pt(x, x3 = P°(x, x')+zl/iP (x, xO. (2.7) 
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P°(x,x') is the kernel associated with e x p ( - ~ ) a n d  Plt(x,x" ) the kernel 
\ - - /  

associated with D e x p ( -  t ~ 2 ) .  

For any x ~ M', Pt(x, x) is even in (c( rM' )® End ~)Q R(z). P°(x, x) is then even 
in c(rM)®End~,  and P](x, x) is odd in c(rM')®End~. 

Definition 2.3. For A, B ~ c( T M') ® End ~, set 

Trz(A + zB) = z TrB.  (2.8) 

In the right-hand side of (2.8), TrB is the trace of B acting on F'®~. 
Clearly 

Trz [P,(x, x)] = z]/~ Tr [PC (x, x)].  (2.9) 

Another description of Tr~[P~(x, x)] is as follows. We can write P,(x, x) in the 
form 

Pt(x,x)= ~ e i l e G  @Ail . . . ip- t-  z Y'~ e i , e i p @ B i l , . . i  p . (2.10) 
il < i2<, . .  < i  p i1<i2<. . .  <i17 

p even p odd 

By (1.7), we know that 

Trz[Pt(x, x)] = 21( - i) l+ lz TrB 1 .... . (2.11) 

We now prove the following result. 

Theorem 2.4. As t~O, 

Trz[P,(x,x)]~O uniformly on M'.  (2.12) 

There is a C ° function bl/2(x) on M" such that as t,~$O 

TRIP] (x, x)] = b 1/2(x)Vt + O( t3/2, x), (2.13) 

and O(t 3/2, x) is uniform on M'. 

Proof. As pointed out in Remark 1, the right-hand side of (2.4) has the same 
structure as the formula proved in [B 5, Theorem 3.6]. More precisely (2.4) 
coincides with the formula of [B 5], when assuming that there is one single d f  = z 
and that if f is the formal vector whose dual variable is z, then 

< S(e,)% f> = - < S(eO f e j> = - 2 a ! .  (2.14) 

In this context, it follows from (2.14) that 

( V. S(ei)ea, f >  = 0. (2.15) 

Now (2.11) shows that Trz[P,(x, x)] is obtained by saturating the Clifford variables 
el . . . .  , % i.e. by doing in odd dimensions what is done in [B 5, Sect. 4] in even 
dimensions. 

We can then apply in this context [B 5, Theorem 4.12] which guarantees that 
as t~+O, Tr~[Pt(x, x)] has a limit and calculates this limit explicitly in terms of a 
Brownian bridge w '1 in TxM', constructed on a probability space (W, P1)- In [B 5, 
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Theorem 4.12], we find that the term containing z appears in an expression of the 
type 

{ 1  i (Vw~S(dw:l)ei, f)dx~z+...}dPl(w,1). (2.16) c~exp ~ o  

Using (2.15), we find that the term containing z vanishes. We have proved that as 
t~0, 

Tr~[Pt(x, x)] ~ 0. (2.17) 

Note that 

e x p - t (  D:- - zD)  = e x p ( -  t2z-- ) +z tDexp(-  tD~Z). (2.18) 

By using the results of Greiner [Gr, Theorem 1.6.1] on the small time asymptotics 
D z 

of the kernel ofthe operator e x p - t  ( ~ - - z D ) ,  and using also (2.18), we find that 

C ~ functions b ,__ 1, "", b-i/z, bt/2 exist such that as t $+ 0, 
2 

- ~ (  + b 1/2(x)t 1/z + O(t 3/2, x) , (2.19) Tr[P~(x, x)] = b x) +-... + _t 1/-----T- b 1/2(X) 

and O(t 3/2, x) is uniform on M'. 
Using (2.17), we find that 

b_,/a 1 - . . .  - b_ lie = 0. (2.20) 

Equation (2.13) is proved. [] 

Remark 2. As we shall see in Remark 5, Theorem 2.4 can be viewed as a direct 
consequence of [B 5, Theorem 4.12]. 

d) Local Regularity of the ffAa Invariant 
We now closely follow Atiyah-Patodi-Singer lAPS 1]. 

Since D is elliptic and self-adjoint, D has a discrete family of real eigenvalues 2. 
For s e C, set 

For 

sgn2 
q(s)= Z • (2.21) 

Res>n,  the series defining ~(s) is absolutely convergent. Also the 

1 +oo s - 1  
t/(s) = I t 2 Tr[D e x p -  tD 2] dt. (2.22) 

We now define the local ~ta function. 

following identity is easily verified 
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Definition 2.5. For Re s > n, x ~ M ,  set 

1 + ~  
s - 1  

t 2 

F 

One verifies easily that as t~+oo,  Tr[P~t(x,x)] decays exponentially and 
uniformly on M2 Also. 

q(s)= j tl(S,x)dx. (2.24) 
M' 

In their proof of the Index Theorem for manifolds with boundary, Atiyah- 
Patodi-Singer [APS 1, Theorem 4.2] showed that ~/(s) extends into a holomorphic 
function for Res > - 1/2. 

We now refine their result into a local statement on t/(s, x) lAPS 3, p. 84]. 

Theorem 2.6. For R e s > - - 2 ,  tl(s,x) is C ~ in (s,x) and holomorphic in s. 

Proof. By Theorem 2.4, for Re s > - 2 ,  
1 s - 1  
j t 2 Tr[P~(x ,x ) ]d t ,  
0 

is well defined and holomorphic in s, as well as 

proved. [] 

(2.25) 

The theorem is 

Remark 3. In lAPS 3, p. 85], Atiyah-Patodi-Singer noted that in dimension 3, the 
kernel T~(x, x) of DLD]-~-1 has a pole at s = 0, but that this pole disappears when 
considering TriTe(x, x)]. Noting that 

r/(s, x) = Tr[ T~(x, x)] ,  (2.26) 

this phenomenon should now be fully explained. It is in fact of the same nature as 
the cancellations observed in the heat equation proof of the Index Theorem. In 
[-APS 3, p. 84], an alternative proof of this result was given using Gilkey's theory of 
invariants [Gi 1, ABP]. 

Remark4.  In [Gi 1, 2], Gilkey studied various cases where t/(s,x) is not 
holomorphic at s =0.  Not  unexpectedly, some of his examples involve Dirac 
operators calculated with a connection which is different from the Levi-Civita 
connection. 

e) The Variation of the ff~ta Invariant 

We now make exactly the same assumptions as in Sect. lc), d), e), g) except that the 
compact fibers Z have now the odd dimension n = 21 + 1. F is instead the bundle of 
spinors over TZ,  H ~ is the set of C ~° section over M of F®~.  D is the family of 
Dirac operators which is still defined as in Definition 1.15. Of  course the 
vector bundles which we consider are no longer Zz-graded. 
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Definition 2•7. For y ~ B, t/y(s) is the 6ta function associated with D r hy is the 
integer 

tTv(s) is the function• 

h v = dim KerD v . (2.27) 

t/,(s) + h, (2.28) r7y(s) = 2 

If d c R, [D] denotes the image of d in R/Z. As noted in [APS 1, 3], tTv(0) has 
integer jumps, and so [tTy(0)] is a C + function ofy  ~ B with values in R/Z. We now 
briefly compute d[tT(0)] using a heat equation formula instead of the z~ta function 
formula of lAPS 3, Proposition 2.10]. 

Using again the results of Greiner [Gr, Sect. i ]  (see [Gr, Lemma 1.5.5]) 
which permits us to differentiate the parametrix of the heat kernel, we 
have the asymptotic expansion 

C-,/2 • + ~ +O(tt/2,y), (2.29) Tr[V"Dexp-tD2] - :/2 + ." 

where C-,/2, ..., C-1/z are C + 1-forms on B. 

Proposition 2.8. The following identity holds: 

C_ 1/2 (2.30) d [ O ( O ) ] -  . 

Proof. As in [APS 3, p. 75 and Proposition 2.1 I] we can assume that D is invertible 
on a neighborhood U of y ~ B. For Re(s) large enough, using integration by parts, 
we have 

+++++1 
F dq(s)= ~ t 2 Tr[fUDexp(_tD2)_2tD2~UDexp(_tD2)]dt 

0 

= I t -T- Tr(("Dexp(-tD2))+2t Tr(lgUDexp(-tD2)) dt 
0 

+~j s - 1  

=--s  ~ t z Tr[~UDexp_tD2]dt. (2.31) 
0 

The proposition now follows from (2.29). [] 

f )  Odd Chern Forms, Eta Invariant and the Spectral Flow 

Although the fibers of Z are now odd dimensional, we entirely adopt the 
superconnection formalism of Sect. lf), g). In particular, although End(F®~) is no 
longer Z2 graded, we will use instead the Z2 grading of 
(c(T~Z)®End ~)(~A~x(T*B). We still have 

eidy ~ + dy~ei = 0. (2.32) 

We also use the convention (1.24). 
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The superconnection V"+ VtD is still defined as in Sect. lf), and the Levi- 
Civita superconnection as in Definition 1.16 and Proposition 1.18. 

[Trexp-(VU+V~D)2] °dd and [Trexp-(pL"+]/~D)2] °da 

are then well-defined C ~ odd forms on B. 
The construction of such odd forms is directly inspired from Quilten [Q 1, 

Sect. 5]. However in the formalism of [Q 1], D, A should be considered as even, 
and so e~, D, A commute with dy ~. An extra Clifford variable a is introduced in 
[Q 1] - with O " 2  = 1 - -  which commutes with D, A and anticommutes with dy ~. In 
the formalism of [Q 1, Sect. 5], 17u + ~/tD, I gL't + VtD should be replaced by 

Following [Q 1], if B, C are trace class in EndH~®A(T*B), set 

Tr,[B + Ca] = Tr C. (2.33) 

Note that since elements of A(T*B) and EndH ~ now commute, (2.33) is 
unambiguously defined. 

We claim that 

Tr~ e x p -  (I 7~ + ]/tDa) 2 = [Tr exp -(flu + V~D)2] °rid ' 

Tr~exp- (ff~+ (l/~D+ ~t)a)2 = [Trexp- (VU+l~D+ ~t)21 °aa!2"34) 

The key point is to note that (e~a) z = - 1 and that eia anticommutes with dy ~, so that 
the rules of commutation on the left-hand side of(2.34) become ultimately identical 
to our rules for the right-hand side. Note that formula (2.34) is not equivalent to 
Quillen's final formula in [Q 1, Sect. 5], since there, Quillen again assumes that D 
and dy ~ commute. 

We now go back to our initial formalism, i.e. assume that ei and dy ~ 
anticommute. In an infinite dimensional context, the differential forms (2.34) are 
natural candidates to be representatives in cohomology of the odd Chern classes 
associated with the index of the family D ~ K~ (B). This statement is the analogue of 
Quillen's formula for a family of Fredholm operators D ~ K°(B), which was proved 
in [B 5, Sect. 2], when D is a family of Dirac operators. 

Definition 2.9. fl is the ad O(n) invariant polynomial on d(n) ,  which is such that if 

B has diag°nal entries [ 0-x, ;~1 and0 ' then  

xi 

2 
A(B)= I - I - -  - (2.35) 

shXl 
2 

(01/2 is one square root of i, which is fixed once and for all. tp is the homomor- 
phism of A(T*B), which to dy ~ associates dy~/(2i~z) 1/2. 
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Since the fibers Z are odd dimensional, we must make precise our sign 
conventions, when integrating differential forms along the fiber. If ~ is a differential 
form on M which in local coordinates is given by 

= dy~l...dy~56(x) dxl...dx", 
we set 

e=dy ~1. ..dy ~ ~ B(x)dx 1 ...dx". (2.36) 
Z Z 

This sign convention will be compatible with the sign convention (1.24). 
We now have the following result. 

Theorem 2.10. For any t > 0 ,  (2i)ll2~p[Trexp-(~z"+/tD)2] °aa and (2i)1/2~p 

• T r [ exp - (P r ' t+ l /~D)2 ]  °ad are C ~ differential forms which are closed, whose 
common cohomoIogy class is independent of t, and which both represent the 
odd Chern classes associated with the family D. Also 

(2i) 1/z~p [Tr exp - (I ~" + l//tD)2] (1) = (2i) 1/2~p [Tr exp - ( eL ,  t+ 1~D)23(1), 
(2.37) 

and the 1-forms in (2.37) are cohomologous to d[0(0)]. As t+lO, (2i)x/2[~(Trexp 
--(l~Z't+l//tD)Z]°dd converges uniformly on the compact subsets of B to 

~ A(RZ ' ]Trexp_  L (2.38) 
z \2 re )  2ire' 

which also represents the odd Chern classes of the family D. In particular for j < - ~, 
Cj = 0, and moreover 

F I'RZ\ L 7 (1) 
40(0)]= L Ak )Trexp-2Td " (2.39) 

Proof. By proceeding as in [B 5, Propositions 2.9 and 2.10], and by using the 
formalism of [Q 1] the proof of the first part of the theorem is easy. We now will 
prove that 

(2/) l/zip [Tr exp - ( V  + ~/tD)Z] °aa (2.40) 

represents the odd Chern classes for the family D. This will of course imply the 
corresponding result for the odd forms considered in the theorem. 

We first assume that B is compact. Set B'=B×S1, M '=M×S1  ×S~. The 
mapping (x, s, v)~ M'~(nx,  v)~ B" defines a fibration of M'  over B; with even 
dimensional oriented fibers S~ x Z. On S~ × S~, we consider the Hermitian line 
bundle which is obtained by identifying (0,v,X) aS1 ×$1 x(E and 
(1,v, exp-(2iuv)X). This line bundle obviously extends into a Hermitian line 
bundle T on M'. T is naturally endowed with the Hermitian connection 
d+ 2iusdv. For e>0,  (y, v)~ B', we consider the first order differential operator 
D('~,v) acting on F®~® T ® ~  2, 

D(~. v) = 8 

Ys +Dy 
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D " is a family of Dirac operators over B' acting on sections of twisted spinors over 
the fibers Z x $1. By [B 5, Theorem 2.6], we know that the differential forms over 
B r , 

Tr s e x p -  V+dv +2ircsdv+D "~ , (2.41) 

are closed and represent in cohomology the normalized Chern classes associated 
with the family D ". Moreover these forms are in the same cohomology class 
as e varies. 

We claim that as s~;0, the forms (2.41) converge uniformly to the forms 

In fact set 

Then (2.41) is equal to 

2iV-~ [Tr exp - (17 + D)2] °dd dv. 

e o = ( O 1  1 0 ) ,  ~ = ( ~  10). 

(2.42) 

~2 

Using (1.7), we have the relations 

Tr[el ez...e,] = (2)1(-- 01 + t ,  

Tr~[(1 ®%) ((ele2...e,)® a)] = (--2/) z+ 1 

By proceeding as in [B 5, Theorem 5.3] in a much simpler situation (or by using the 
same arguments as in Theorem 3.12, in a very simple situation) and also the sign 
conventions (1.24), it is very easy to obtain the convergence result (2.42). 

Equation (2.42) still represents in cohomology the normalized even Chern 
classes associated with the family DL Since even and odd Chern classes correspond 
under suspension by integration along the fiber (see lAPS 3, p. 82]), by integrating 
(2.42) in the variable v, and with the adequate normalization, we have proved that 
(2.40) represents the odd Chern classes associated with the family D. 

When B is non-compact, the same result is still true by restriction to compact 
pieces in B. 

Equality (2.37) is trivial. Since (VL't+l//tD)Z is even, if PL't(x,x') is the C ~ 
kernel of exp--(lgL't+V~D)2, PL't(x,x) is even in (c(TZ)NEnd~@A(T*B). 
Tr[pL't(x, x)] °aa only involves the odd part of pLI't(X, X) in c(rZ)®End¢. Also by 
(1.7), el...e, is the only odd monomial in c(TZ) whose trace is non-zero. 

This shows that formally, we can use the method and the results of [B 5, Sect. 4] 
to calculate the asymptotics of Tr[pL'*(x, x)] as t~0.  In particular using [B 5, 
Theorems 4.13 and 4.17] and keeping track of the constants, we obtain (2.38). Also 

(¢ .  + l f iD)2 = (¢.)2 + l f i¢"V + tD 2 . 
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We then find that 

[exp -(17u + ]//tD)2](1) = [exp--(V~IY"D + tD2)] (1) . 

Using Duhamel's formula, we get 

exp{- ( tDZ +l/~V"D)} 
1 

= exp( - tD z) - f exp{ - s(tD z + ]//tlg"D) ]//tlY"D exp{ - (1 -- s)tD e } ds. (2.44) 
o 

Iterating (2.44), we find immediately that 

1 

[ e x p -  (tD z + ~/tlY"D)](~) = - t exp{ - stD 2} I//tV"D exp{ - (1 - s)tD z} ds. (2.45) 
0 

Using (2.45), we get 

[Tr exp - (V" + V~D)2](1) = - ] /~Tr[17"Dexp(- tD2)] .  (2.46) 

From (2.30), (2.37), (2.46), we immediately deduce that for j < - 3 ,  Cj = 0, and 
also (2.39). The statement following (2.37) is now obvious. [] 

Remark 5. Proposition 2.1 and Theorem 2.4 can be directly derived from [B 5, 
Theorem 3.6] and from the local convergence result associated with (2.39). In fact 
let us go back to the assumptions of Sect. 2e). M ' x  R + fibers over R + with the 
fibers M'. For  e > 0, we endow the fiber M; with the metric gu,/e z (where gu' is the 
metric on TM'). The corresponding family of Dirac operators will be eD. The 
natural connection V' on T M '  which is constructed as in Sect. 1 c) is defined by the 
relation 

X ~ TM~, V'o X = - X/e ,  

the covariant differentiation in vertical directions being still given by the Levi- 
Civita connection of M'. One verifies trivially that the curvature tensor R M' of TM" 
is such that for X ~ TM', 

If S is defined as in Definition 1.1, for X, YE TM;, we have 

Using [B 5, Theorem 3.6], we find that if ~ = 112 

?zde-Jl-l//-tteD -~--t eVei-]- ~ i~j +te2K/4. (2.48) de & 2 e 

The reader will easily check that (2.4) and (2.48) are equivalent. Also using (2.39) 
and (2.47), we find that in this case d[O(0)] = 0. Now Theorem 2.4 is exactly the 
local version of this result, and this local version also follows from Theorem 2.10. 
Ultimately we find that in our context, the more natural way of proving that I/is 
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holomorphic at s = 0  is to prove that [tT(0)] is invariant under the scaling of D by 
using formula (2.39). 

We now deduce from Theorem 2.10 the result of Atiyah-Patodi-Singer [APS 3, 
p. 95] on the spectral flow of a family of Dirac operators. 

Let s~S1 =R/Z~cs~B  be a C ~ loop in B. Set 

M" = re- 1 (e). 

, (dc 
M" is a compact manifold. Ife~...e, is an oriented base of TZ, we orient M by dss' 

\ 
el, ...,e,). M" is obviously spin and carries a vector bundle of spinors 

/ 

U = U+ OF; .  The Dirac operator D" acting on sections of U ®  ~ over M" is well- 
defined. IndD'+ denotes the index of/Y+ (which is the restriction of D' to the 
sections of F'+ ® 4)- 

We now prove again the result of lAPS 3, p. 95]. 

Theorem 2.11. The following identity holds: 

IndD'+ = I d[0(0)] = I A (RZ-~ Tr e x p -  L (2.49) 
c u'  \ 2 r e /  2ire" 

Proof. Using (2.39), and the orientation convention on M', it is clear that 

Id[tT(0)]= I A T r e x p -  . (2.50) 
~t' ~-~ 2ire 

Also TM' splits into TM" = TnM'• TZ, and TnM" is trivial. The / ]  genus for TM" 

coincides with J [ g ~ .  
\2 rcJ  

The Atiyah-Singer Index Theorem shows that 

IndO'+= S A ( R Z ~ T r e x p  - L 
u'  \2~zj  2ire" 

The theorem is proved. [] 

Remark 6. If t/(0) has a finite number of jumps on $1, then clearly 

d[~(0)] = - Z A ~ 0 ) .  (2.51) 
C Z ~  

A 
The spectral flow L ~  is then equal to - I n d D + .  In this respect, our sign 

conventions differ from [APS 3, p. 95] where M" is oriented by et , . . . ,  e,, dss " 

Also note that the explicit expression (2.39) is not needed to prove 
Theorem2.11. It is enough to know that the forms (2.37) are in the same 
cohomology class as d[0(0)] and to do a trivial asymptotics as tJ,$0, similar to what 
we did in the proof of Theorem 2.10, on the heat equation formula for 
IndD'+. Ultimately the equality of the spectral flow and of IndD'+ is a simple con- 
sequence of the superconnection algebra. 
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HI. The Holonomy Theorem: A Heat Equation Proof 

The purpose of this section is to give a proof of the holonomy Theorem which was 
suggested by Witten in [W 1, 2]. Namely we calculate the holonomy of the 
determinant bundle 2 over a loop c in B in terms of the limit in R/Z of refined ~ta 
invariants of the odd dimensional manifold M '=  re-t(c), which are obtained by 
blowing up the metric of B. Formally, the situation is very close to what is done in 
Bismut [B 5, Sect. 5] in a second proof of the Index Theorem for families. The 
proof is also closely related to Atiyah-Donelly-Singer [ADS]. 

The section is organized as follows. After introducing notations in a), we 
establish in b) a generalized Lichnerowicz formula, which still follows from [B 5, 
Theorem 3.6]. In c), we construct certain heat kernels along the fibers Z, in order to 
prove in d) that the differential form 3~ introduced in (1.38) converges to 6; as t+ J,0. 
The proof is obtained by a local cancellation process which matches the local 
cancellations of [B 5, Sect. 4] and also the local regularity of the ata function 
proved in Theorems 2.4 and 2.6. In e), if c is a loop in B, we consider the n + 1 
dimensional manifold M '=  re-1(c) and the Dirac operator D ~ on M' associated 

9 B 
with the metric ........ @9 z, In f), we give a simple geometric proof that if [0~(0)] is the 

modified ata invariant of Atiyah-Patodi-Singer [APS 1, 3], which takes its values 
in R/Z, then as ~$$0, [6~(0)] has a limit [0]. 

In g), we prove that as el+0, for t bounded, the local trace of the kernel which is 
used in formula (2.23) to define [6~(0)] converges to the local supertrace in the heat 
kernel formula for 3~ in (1.38). The proof of Theorem 3.12 uses three ingredients: 

• The local cancellations obtained in Theorem 2.4 and 3.4 to obtain 
uniformity as t$$0. Incidentally, the proof shows how Theorem 3.4 could be 
deduced from Theorem 2.4. 

• Certain probabilistic estimates, which are obtained by the partial Malliavin 
calculus [BM] and the techniques of [B 2] in order to localize the problem in an 
arbitrary small neighborhood of a given fiber Zy o. 

• A technique due to Getzler [Ge] which is used to ultimately obtain the 
required convergence result. 

In certain aspects, the proof of Theorem 3.12 should be considered as an 
expanded treatment of [B 5, Sect. 5]. 

In h), we prove in Theorem 3.14 that if the family D has index 0 and is invertible 
over c, we have a uniform exponential decay of the traces of the corresponding heat 
kernels as e+~0. This result is technically difficult to prove since it does not follow 
from trivial bounds on the traces. We use a probabilistic technique, which 
overcomes the lack of uniform ellipticity in the directions of c, by instead 
controlling a time depending parabolic equation along the fibers which exhibits 
a.s. exponential decay in the sense of bounded operators acting on L2 sections. The 
exponential decay of the traces is obtained by using the partial Malliavin calculus 
IBM, B 2] on a finite time interval. 

In i), we prove the holonomy Theorem in the form indicated in the 
introduction. The main difficulty lies in the elimination of zero modes which are 
unavoidable if Ind D + 4= 0. The idea is to deform continuously the family D into a 
family of pseudo-differential operators, which verifies the assumptions of 
Theorem 3.14. 
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Finally, in j), we briefly interpret the process of blowing up the metric of B in 
terms of the local geometry of the fibered manifold M. 

a) Assumptions and Notations 

We now go back to the assumptions of Sects. 1 c), 1 g). In particular in the sequel, 

[0 
D =  D+ 

will be the family of Dirac operators considered in Sect. I g). 

b) A Generalized Lichnerowicz Formula 

el . . . . .  e, is an orthonormal oriented base of TZ.  f l  . . . .  , fro, dY 1, ..., dY ~ are chosen 
as in Sect. 1 g). z is an extra Grassmann variable which anticommutes with the 
Clifford variables el, ..., e, and with the Grassmann variables dy 1 .. . . .  dy m. We will 
use the notation K (°' 1) to select the terms in K whose degree in the Grassmann 
variables dy ~ is 0 or t. 

We now prove an extension of the generalized Lichnerowicz formula in Bismut 
[B 5, Theorem 3.6]. By proceeding as in Sect. 2, Remark 5, the reader will easily 
check that this formula is in fact a direct consequence of [B 5, Theorem 3.6]. 

Theorem 3.1. For any t > 0, the following identity holds 

[( .+VTo)2_2zVTD],o,1, 
= - t  Fe,']- <S(ei)ej, f~ ) ejdy~+ 

K t 1 (°'1) + t-~ + ~ eiej®L(ei, ej) + V~e id f®L(e i , £ )  (3.1) 

Proof. A defined in Definition 1.17 is of degree 2 in the variables dy ~. Using 
Proposition 1.18, the first part of the identity is obvious. Let I L't'~ be the final 
expression in (3.1), I L't the corresponding expression with z =0. Clearly 

i L, t, ~ = iL,t _ 2z]/tD -- ½ ( S(ei)ej, f~ > (efly'ze~ + zeiejdy~). (3.2) 

By (1.49), we have 

(S(ei)% £>  eiej = 0. (3.3) 
i , j  

Also 

efly~zei + zeiefiy ~ = - dy~z-  zdy ~ = 0, (3.4) 

and so 

IL't'z= IL't-- 2zVtD . (3.5) 

NOW by [B 5, Theorem 3.6] 

[(IYL,~ + I/~D)2](o, 1)= I L,,. (3.6) 

Using (3.2)-(3.6), the theorem is proved. [] 
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c) Construction of Certain Heat Kernels 
As in Sect. 2c), we construct certain heat kernels using the Grassmann variable z, 
with the same ultimate purpose of proving local cancellation results. 

Definition 3.2. For t > 0, R~(x, x') denotes the C a kernel on Z associated with the 

operator exp{-(VL'tI-]/~D)22 t-z]/tD}. 

By Theorem3.1, R}°'l)(x, x3 is also the kernel for the operator 

exp ........... f + zV~D . R~(x, x') has the natural decomposition 

Rt(x, x') = R°(x, x') + z~/t R~ (x, x') . (3.7) 

For x~M, R°(x,x) (respectively R~(x,x)) is even (respectively odd) in 
End(F@ ~)xQ A~(~)( T* B). 

The linear functional Try, which is well defined on trace class operators in 
EndH°~QA(T*B) can be naturally extended to trace class operators in 
EndH°~A(T*B)QR(z) in the obvious way. At a local level, the same is true 
for elements of 

End(F@ ~)~Q A~(~)( T* B) Q R(z) . 

Of course we still use the obvious extension of (1.24) in this situation. 
We first prove some useful identities. 

Theorem 3.3. The foUowin 9 identities hold 

=Tr~exp ([TL't+? D)2 +zV~Tr~IDex p (VL't2]/~D)2~ 1 

= ~ Tr~[-Rt(x, x)]dx 
Z 

[Tr~Dexp (I~L'~2I//tD)2](1) ( - - t ~  z-) (3.8) 

Proof. Using Duhamel's formula, and the fact that zZ= O, we find that 

. xz l /~Dexp{-( l -s ) - -  2 ;as. (3.9) 
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When taking supertraces in (3.9), we can commute exp- s'--'tq-v-D'2(lYL 1/7 ~ and so 
2 

obtain the first equality in (3.8). The final equality in this first line is obvious. Also 
clearly 

ITr~Dexp_(V~La~I/~D)2](I' 

= ITr~Dexp_ -b 2]/~D) 2 ](1) [ 2~Vu )1 (1, (lY" = Tr, D e x p -  (tD2+ D ........... . (3.10) 

By Duhamel's formula we find easily that 

[exp_(tD2+~tV"D)l(1) = i e x p ( _ S t D Z ' x t / 7 % e x p (  

(3.11) 

The second line of (3.8) immediately follows from (3.10), (3.11). [] 

d) Local Cancellation Properties of the Connection 1V 
Recall that the differential forms Bj were defined in (1.31). We now prove a 
cancellation result for the Bj which matches the corresponding result for the a~ 3) 
proved in Theorem 1.21. 

Theorem 3.4. There is a Coo function C'1/2(x) defined on M with values in AI(T*B) 
(with C'l/z(X)~ A~(x)(T*B)) which is such that as tJ,~O, 

[Tr~ R~(x, x)] (a) = C'l/z(x)]//t+ O(t 3/2, x) (3.12) 

and O(t 3/2, x) is uniform on the compact sets of M. In particular for j<O, Bj=0. 

Proof. We first study the asymptotics of Tr~[Rt(x, x)] (°' 1). Set 

1 c~ z e  i 2 
J t = - t ( V e i +  ~ (S(e~)e''£)l/Tefly + ~ / t t )  

tK t ~ L . 
+--4- + 2 eiej® L(ei' ei) + ]//ieidy ® (e,,£) (3.13) 

Let R;(x,x')be the C °O kernel associated with e x p ( - ~ t .  By Theorem 3.1, we 
know that 

R} °' 1)(x, x 3 = R~ (°" 1)(x, x'). (3.14) 

Equation (3.13) has the same structure as the generalized Lichnerowicz formula of 
[B 5, Theorem 3.6]. There is a supplementary Grassmann variable z formally 
associated with a vector f and here 

( S(e~)ej, f )  = - ( S(eO ~ e j) = -26{, 
(3.15) 

(S(e~)£, f>  = (S(e,)f  £> = O. 
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We now use [B 5, Theorem 4.12] in this situation. We then already know that 
as t$$0, Trs[R;(x, x)] has a limit ~ (x) .  Also we know that this limit is expressed as 
an expectation over the probability space W of a Brownian bridge w '~ in T~Z. 
More precisely 

L,e(x) = S exp{K(w'l)} dPi(w't) • 
W 

Now by (3.15), we find that (VS(ei)ei, f> =0.  Using [B 5, Theorem 4.12], we 
find that the Grassmann variable z only appear in K(w "1) in the form 

1 

S (PzS(w'l)f~, PzS(dw'~) f )dYS,  (3.16) 
0 

or in the expression obtained by interchanging f ,  and fi which coincides, up to 
sign, with (3.16). 

Now using (3.15), we get 

1 

I <PzS(w'l)L, PzS(dw")y> 
0 

= ~ i (S(w'~)f~,ej>(S(dw'~);ej>:2i  (S(w'l)f~, dw'~> 
j = l O  0 

1 

= - 2 ~ (S(w'l)dw 'l, L>. 
0 

Integrating by parts and using (1.48), we find 

1 1 1 

2 ~ S(w'l)dw "i = ~ S(w'i)dw 'l -S(dw'a)w "~ = - ~ T(w "~, dw'l). (3.17) 
0 0 0 

Since w 'l e TZ,  T(w "1, dw' l )=0,  and so (3.17) vanishes. 
So we find that ~ ( x )  does not contain z. Using (3.7) and (3.t4), we see that 

lira 1/~ Tr~[R~(x, x)] (i) = 0. (3.18) 
t$.~o 

Let ~o; be the homomorphism of A(T*B)Q~R(z) which to dy ~, z associates 

VtdyL V~z. In Sect. 3c), we saw that R} °'l) is the kernel of the operator 

2 . q~R}O,1) is then the kernel of the operator 

[ex  (zO 
By Greiner [Gr, Theorem 1.6.1], we have the asymptotic expansion 

Trs[~o;R} °' 1)(x, x)] = E_,/z(x) t,/z +.. .  + Eo(x ) + E 1 (x)t + Ez(x)t 2 + O(t 3, x). 

We then find that 
4 t 

V~[TrsR~(x ' x)](1)= E_,/~.  l(x) t,/2+ 1 +- ... +E't(x)t+ O(t 2, x),  

and O(t z, x) is uniform on compact sets in M. Using (3.18), we find that for j <  0, 
E}=0. Equation (3.12) is proved. 
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Also, by Theorem 3.3, we know that 

v7 ~ z T r s [ R : ( x , x ) ] ( 1 ) d x = - ~  Tr~ [ e x p -  t~--~2 I~'DDI. (3.19) 

Using (3.12), (3.19), and comparing with (1.31), we find that for j__<0, B j=0 .  D 

Remark 1. By proceeding as in Sect. 2, Remark 5, we could have proved (3.12) as a 
direct consequence of [B 5, Sect. 4], by using the results of [B 5] on the Index 
Theorem for families with a new parameter e included. This is in fact what we 
implicitly do in (3.15)-(3.17). Equation (3.12) is in fact equivalent to the vanishing 
of part of a curvature tensor as in (2.47). 

Remark 2. The scaling anomaly described in Remark 2 of Sect. 1 has almost 
disappeared. In (1.44), the connection ~Vb is obtained from ~lz by the gauge 
transformation l e 2--* ba°l. In particular the holonomy of the determinant bundle 
2 over loops in B does not depend on the real constant # introduced in Sect. 1 f), 
when defining the connection 1V. 

e) The Dirac Operator Over a Lifted Loop 

s ~ S l = R / Z ~ c  s is a C ° loop in B. Our purpose will now be to calculate the 
holonomy of the determinant bundle 2 over c. 

By eventually changing the parametrization of c, and by scaling the metric 9B, 
we may and we will assume that 

dc = 1 . 

Note that ultimately, all our results will not depend on the metric 9B. 
C is naturally oriented by the natural orientation of $1. M'  denotes the manifold 

M ' = r c -  ~(c). The dimension of M'  is n '=  2 /+  1. Since T Z  is even dimensional and 
oriented, M" is unambiguously oriented. 

Let V "L be the Levi-Civita connection on TM' .  V "L is obtained by projecting 
orthogonally V L on TM' .  Since the connection V on T Z  is the orthogonal 
projection of IZL on TZ ,  I7 is also the orthogonal projection of V "L on TZ .  This 
means that the construction of V can in fact be done directly on the manifold M2 

As a consequence, we will temporarily assume that the base manifold B is 
exactly the loop c. We wilt still use the notation M'. We otherwise use the same 
notations as in the previous sections in this new situation, i.e. V z is the Levi-Civita 
connection on TM' ,  S the tensor defined by the relation V L = g + S, where S acts on 
TM" etc .... TB is now trivial and spanned by 

dc 
f l  = ds" (3.20) 

dy I is the Grassmann variable dual to f~. We also identity f l  with fn .  Clearly 
17y~f 1 = 0  and more generally 

V . f t = 0 .  (3.21) 
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S(f0f~ = 0, (3.22) 

V~lf~ = 0 .  (3.23) 

This simply reflects the fact that the integral curves of f~ in M'  are geodesics. 
Consider on M'  the differential equation 

dx 
dss = f l  (x), x(0) = x o , (3.24) 

and set 
xs=ws(Xo). (3.25) 

Take Yo e B. Then (s, x) ~ R x Zyo~tPs(x ) e M' is a local diffeomorphism. M'  
can be identified with [0,1] X Zro and the relation (0, x) = (1, tOl(X)). In the 
coordinates (s, x), the metric of M" is given by 

ds 2 + #ij(s, x)dx i ® dx j • (3.26) 

Also since B is now of dimension 1, by Proposition 1.18, we have IgU= lYL,t. 
d'x is the volume element of M'. Since dx is the volume element in Z, ifdy is the 

length element of t ,  we have d'x = dydx. The kernels on M'  will be calculated with 
respect to d'x. 

O still denotes the SO(n) bundle of oriented orthonormal frames in TZ. M" is 
obviously spin. Using the convention of Sect. 1 b), the bundle of spinors on M' can 
be identified with F=F+®F_.  By (1.8), f l  acts on 

F®~ = (F+ ®~)e(F-  ®~) 

like - iz, where z is the involution defining the grading. In matrix form, f l  acts on 
H °° as the matrix o ( f l ) ,  

~(f~)= [ ; i  + 0 i ] .  (3.27) 

This permits us to define the action of f l  when more general Z2 graded bundles 
than F N ~  are considered. This will be the case in the proof of Theorem 3.16. 

Any element A of EndH°°@c(TB) has a unique decomposition 

A = A o + A l f l ;  Ao, A 1 ~ E n d H  °° . (3.28) 

One verifies trivially that cp defined by 

A e EndH °° @c(TB)--,q)(A) = Ao +Alo( fO ~ EndH °° 

is a homomorphism of ungraded algebras. 
Let ~ be the graded algebra g = E n d H ° ~ c ( T B ) ~ R ( z ) .  Any a ~  has a 

unique decomposition 

a=ao +axf~ , ao, al EEndH°°@R(z), 
. . . .  (3.29) 

a=ao+zal ,  ao, al eEndH°°@c(TB). 
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If a e g is trace class, set 

Tr~ a = z Tr[rp(a~)]. (3.30) 

I fa  e g ..... is trace class, ao does not contribute to Tr~a, since in ao, z factors an 
odd element of E n d H  ~. If a 1 is of the form 

al=al + za~; al, a21e EndH ~ , (3.31) 

then 

Trza = z Tr  a~o(fl)  = - iz Trsa ~ . (3.32) 

Also al is odd in E n d H  ~, and so Trsal =0.  We can also define Tr  and Tr~ on 
EndH~°QR(z) by using the convention 

Trzb=z Trb; Tr~zb=z Tr~b. (3.33) 

Now in (3.31), al is odd and a21 is even in E n d H %  Equation (3.32) implies 

Trza = - i TGa 1 . (3.34) 

In the sequel we will write f l ,  A instead of (P(f0, q~(A). This will have to be done 
with some care since ~0 does not respect the grading. However most of our 
computations are done in the graded algebra g. 

Using the results of Sect. 1 d) and (1.2), we know that when acting on sections of 
F®~,  V and V L are related by 

V~= Ve,+½(S(ei)ej, L ) e J t ,  v~l = vfl. (3.35) 

Also (k, f l )  is unambiguously defined on M'. This is of course confirmed 
by Proposit ion 1.4. 

Set 
V~ = v¢~+(k,A).  (3.36) 

We drop the ~ sign in ¢~, to indicate that Fy, is a local operator. 

Definition 3.5. For  e > 0, D ~ denotes the operator  acting on H ~ 

D ~ = ]/~fa ~y~ + D. (3.37) 

D ' is given in matrix form by 

D~ = [-il/~V;~ D_ I (3.38) 

We first prove the elementary result. 

Proposition 3.6. D ~ is the self-adjoint Dirac operator associated with the Levi-Civita 

connection ~V L on TM" for the metric gn Ggz. 

Proof. We only prove the Proposition for e = 1. The Dirac operator  D' on M'  is 
given by 

D ' = e f  L + A V~ . 
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Using (3.35), we find 

D' = e~(V~, + ½ (S(el)ej, f l  ) e j f l )  + f l  Vf,. 

The proof finishes as the proof of Proposition 1.18. D 

Definition 3.7. tle(s) denotes the ata function for the operator Dfl h e is the integer 

h e = dim KerD e . (3.39) 

O"(s) is defined by 

r/e(s) + he (3.40) 
tTe(s) = 2 

f )  Variation of [#~(0)] 

~ R L We will now calculate ~ [~ (0)]. is the curvature tensor of TM" for the 

Levi-Civita connection V L. Similarly R L'~ is the curvature tensor of TM" for 
the connection 'V L. 

We will consider S as a one form on TM" with values in antisymmetric tensors 
on TM'.  Using (3.22), we know that 

S( f l )  = 0 .  (3.41) 

We now have the following result: 

Theorem 3.8. The following identity holds: 

z z~-Ti [~(0)]~- 1 = Tr e x p -  (3.42) 
c~o - ,,,,, \ 2re ) 2~7~ " 

Also 

lim z ~ [ ~ ' ( 0 ) ] =  ~ \ 2re J e x p - } ~  . (3.43) 
e$+O u ~  M' 

As eSj, O, [tT"(0)] converges in R / Z  to [tT]. [tTe(0)] is a C ~ function of  e 1/2 on [0, 1]. 

Proof. To prove (3.42), we will use formula (2.39). Let Pn, Pz be the orthogonal 
projection operators from TM" on TZ,  TriM ". M'  x R + fibers over R + with fiber 
M'. For e e R +, we will note M; the corresponding fiber. We endow TM~ with the 

metric #n ®#z. Recall that eVL is the Levi-Civita connection of TM'~. On M'  x R +, 
e 

we consider the connection V' on T M '  which is defined in the following way: 

If X, Y e TM~, V~ Y =  eV~ Y,  
(3.44) 

If Y~ TM',, V'~ Y =  --PHY/2e.  

M ' x  R + is naturally endowed with the horizontal subbundle of T ( M ' x  R+) 

which is spanned by ~ .  One verifies easily that the connection V' on TM" - 
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considered as a vector bundle on M'  x R + - preserves the metric of TM" and that 
V' is exactly the connection on TM' which was constructed in Sects. ld) and 2e) 
(where TM" was instead TZ). 

By proceeding as in [-B 5, Eq. (3.10)] it is not difficult to see that if S t=  eV L -  V, 
then 

Pz St = PzS; PnS t = eP~S. (3.45) 

Let R' be the curvature tensor of V'. Take X, Y ~ TM'~. Clearly 

R'(X, Y)= RL't(X, Y). (3.46) 

Also, using (3.45), we find 

R ' ( ~ ,  X ) Y =  V'2fvL ~ 

= V'o IV x Y+ PzS(X) Y + ~P~S(X) Y] +~ V L nn Y/2e 
& 

= -- nn Vx Y/2e + PuS(X) Y - PuS(X) I7/2 + P~ V x Y/2e 

+ S~(X) (Pn Y)/2~ 

= PnSt(X) Y/2e + St(X) (Pn Y)/2e. (3.47) 

Since St(X) is antisymmetric, it interchanges TriM ' (which is one dimensional) and 
TZ. From (3.45), we obtain 

R'( ff-~ , X)Y=S~(X)Y/2e. (3.48) 

Using formula (2.39), we find that 

a M ft(RL't+zSt/2g "] [ L ]  
z~7 [7/t(0)] = I \ 2r~ } Tr e x p -  ~ (3.49) 

and so 

z ~  [#t(O)] " RL'~ + zSt/V/~ Tr (3.50) 

Formula (3.42) is proved. 
Clearly, i f / )  is the horizontal differentiation operator associated with V, 

R L't =R + f i S t +  [S t, Sq .  (3.51) 

If we express R L't on the base (e I . . . . .  % ]/e-J~), using (3.45), we find 

RL,~= VRZ +ePz[S,S] s'/2PzfiS] 
L ~I/2pnbs " (3.52) 

On the same base, St/]/~ can be represented in the form 

st/V~,=[,Os t~S].  (3.53) 
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We then find that as e$+0, 

.7t ( BL'~ +-zS~/ ~--~'] -+ ft ( Rz + zS'] (3.54) 
\ 2n / \ 2~ /" 

Equation (3.43) immediately follows from (3.50) and (3.54). Using (3.50), (3.52) and 
(3.53), it is obvious that [6"(0)] is a smooth function of e t/2 for e e [0,1-1. [] 

Remark 3. Theorem 3.8 makes clear that in general [~'(0)] depends on e. More 
precisely [~'(0)] depends explicitly on the tensor T. T vanishes if and only if for 
e~ TZ, 

Vz~e = [f l ,  e] ,  (3.55) 

or equivalently if f~ acts isometrically on the fibers Z. M" is then locally and 
metrically a product. As is clear from (3.52), as e$$0, we get closer and closer to a 
product situation. 

Remark 4. The general considerations of Atiyah-Patodi-Singer lAPS 1, p. 61] 
show that (3.42) can vanish for purely algebraic reasons. This is for instance the 
case if ~ is the trivial line bundle and if I is even: the top degree form in the right- 
hand side of(3.42) vanishes locally. [0~(0)] is then independent of~. More generally, 
by using Index Theory with boundary, it is shown in [APS I] that [O'(0)] is in this 
case a spin cobordism invariant. Note that we could use instead Theorem 2.10 to 
obtain the results of [APS 1] on ata invariants. 

g) Convergence of Heat Kernels on M' as e$$0 
Recall that our ultimate goal is to prove a formula relating the holonomy of the 
connection 1V on c to [4]. The idea is to use the representation (2.22), (2.23) for q'(0) 
and to prove that as e~0 ,  the integrand in (2.22) converges to the corresponding 
integrand which appears in the formula (1.38) defining ~0. 

We first prove two simple identities, which are still special cases of [B 5, 
Theorem 3.6]. 

Proposition 3.9. The following identities hold: 

~ zA +(k, JD 2(SaV~,)Z+zi/eflV~,=-2 V S , + ~  

(3.56) 
(D~) 2 ÷zD ~_ e(f~VY,) 2 _~zV~fl~y 1 V ~fl(V~,D) D 2 

- ~  2 2 2 +zD. 

Proof. The right-hand side of the first line of (3.56) is given by 

2z V 2z k . 

(3.57) 

Also 

~ (f~V~l)Z + z~/~flV~l= - ~( f lV~ + (k, f l )  J~)2 + z]/-~f~(Vyl +(k,  f l ) )  

_ £(v2 +(k, fl)2+(Vy,k,f~>+2(k, fl)Vs~+zl/Tf~(Ve~+(k,L)). --2 Y~ (3.58) 
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Comparing (3.57) and (3.58), the first line of (3.56) is proved. Since Dfl + f , D  = 0, 
the second line is obvious. [] 

Definition3.10. For e>0,  t > 0 ,  P~'(x,x'), P~'°(x,x'), ~ 1 Pt' (x,x') denote the C ° 
( t(D~)2 ) t(D~)2 

kernels on M'  associated with the operators exp - - -  + tzD ~ 
2 t(D~)2 2 , exp-- , 

D ' e x p -  2 

Clearly 

P~(x, x') = p~,O(x, x') + tz P~' l(x, x'). (3.59) 

Also by Theorem 2.4, for e > 0, uniformly on M'  

lim Tr[P~' l(x, x)] = 0. (3.60) 
t ; ~ o  

So we can define by continuity the function Tr[P~' ~(x, x)] at t = 0. 

Definition 3.11. For t > 0, R~(x, x3 denotes the C ° kernel on Z associated with the 

operator exp{ t(lYU+D)22 + tzD}.  

Recall that now lY" = ffL, t. Also since B is of dimension 1, (17,)2 = 0. R;(x, x3 is 

the kernel of e x p { - 2  (D2 +ffUD)+tzD } . 

R~(x, x3 can be written as 

R~(x, x') = R~°(x, x') + tzR~l(x, x') . (3.61) 

Comparing with Definition 3.2, we find that 

[R~l(x, x')](x)= Vt[Rlt(x, x')] (1) . (3.62) 

Also by Theorem 3.4, we know that 

lim Tr~[R~(x, x)] (a)= 0 uniformly on M' .  (3.63) 
t~$o  

So Tr~[R~(x, x)] (1) can also be defined by continuity at t = 0. 
We now prove the first critical step in the proof of the holonomy theorem. 

Theorem 3.12. Take T such that 0 < T < + oo. Then as e++0, 

i 
Wr [PT' 1 (x, x)] ~ - ~ -  (Tr~[R] (x, x)] (1), f l  ) ,  

uniformly on [0, T] × M'. 

(3.64) 

Proof. The proof is divided into two main steps, which we first briefly explain. 
• The first step consists in proving that as e$]0, the kernel P~' l(x, x') localizes 

in an arbitrary small neighborhood of the fiber Z~x. This is done by using a 
probabilistic representation of the kernel P~ and the partial Malliavin calculus 
I-BM]. 
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• Once localization is proved, we can now replace M'  by R x Zyo and assume 
that out of a small neighborhood of Zr o, we are metrically in a product situation. 
We then use a technique of Getzler [Gel to prove the convergence. 

The probabilistic representation of P~ in the first part of the proof will be 
essential in the proof of Theorem 3.14, where uniform estimates have to be 
obtained for arbitrary large t. 

Our computation will be done in the graded algebra ~ . . . .  defined in Sect. 3e). 
This means that we work locally in [ c ( T M ' ) ~ R ( z ) ]  . . . .  . 

(D~) 2 
Step n ° 1. Localization of  the Convergence. Proposition 3.9 shows that - - -  
+ z D  ~ is the sum of two operators. 2 

u 2 u • - ( f l  V~,) +zV~f117~ acts horizontally, i.e. in the directions of .ft. 

• - f~(V~r,D)-- ~ + z D  acts vertically, i.e. along the fibers Z. 

We now use the idea of [B 5, Sect. 5]. We first construct the semi-group 
( / _  \ ' ~  

e x p ~ - t ( 2 ( f ~ V , ) Z + z ] / / ~ f ~ V , ~ ) ~  using a Brownian motion y in B. The semi- 
- , , . k - -  / j  

group exp 2 + tzD" is then obtained by using a subordination procedure. 

Since B identifies with S~, these constructions will be very simple. 

Take Yo e B. Using the differential equation (3.24), the corresponding group of 
diffeomorphisms to defines the parallel transport of the fiber Zyo into Zr,, where y. 
is any continuous path in B with y(0) = Yo- Since B has dimension 1, the holonomy 
group of this connection is the discrete group generated by the diffeomorphism to1 
acting on Zyo. Similarly, we can parallel transport elements of Hy~ into H~ys using 
the connection V or the connection 17~ ~o, ,vo will denote the corresponding 

o parallel transport operators, z~, "1:~ their inverse. Ifxo e Zr o, we will note % xo e Zy, 
the parallel transport of Xo along y.. 

, o h ~ H ~ and moreover if Using Proposition 1.4, we find that if h ~ Hyo, z~ r,, 
X E Zy~ 

("~°h) (x) = [Jac r~(x)] u2v°h(~ox), (3.65) 

where Jac-c~(x) is the Jacobian of ~ at x. 
Let w be a one dimensional Brownian motion with w0 =0. Let Q be the 

probability law of w on Cg(R+;R). Identifying B and S a = R / Z ,  consider the 
differential equation 

dy = ]fedw~; y~ e B ,  y(O) = Yo. (3.66) 

Clearly 

Y~ = [Yo + ]//ew~]. (3.67) 
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Take x E Zyo. Consider the stochastic differential equation 

U~ is given by the formula 

By Proposition 1.4, using the relation zZ= 0, we have 

U~= [Jac~°(x)] 1/z exp(zflw~) = [Jacz°(x)] 1/2 [1 + zflw~]. (3.70) 

We claim that if heH ~', for s>0,  

e x p s ( - 2  (flV~i)Z+zV~flV~l)h(x)=E[exp(zflw~)('doh)(x)]. (3.71) 

Equation (3.71) is in fact a direct consequence of the first line of formula (3.56), of 
(3.68~(3.70) and of It6's formula [B 3]. 

In the sequel, we will always assume that t < T, e < 1. The various constants - 
which in general depend on T - will often be denoted C. 

Let Qro be the law of w conditional on Yt = Yo. Equivalently, Qro is the law of w 
k 

conditional on wt = ~ ,  k ~ Z. Let fit be a standard Brownian motion, with flo = 0. 
g v  

k 
w~(ONsNt) has the same law as fl~-~flt Conditionally on w~=]/%_, 

s k  
+ t ~  [Si, p. 41]. Now for k~Z, 

Qro wt = = e x p \  2etl/k e x p ~ - ~ ) .  (3.72) 

Also for any q > 0 by [IMK, p. 27] 

( e) Q [oSUPt lfl l >tl]  2 exp - • (3.73) 

Using (3.72), (3.73), it is clear that 

Q~,o[oSUPtly~-yol~tlj < C e x p ( -  ~ ) .  (3.74) 

b) Construction of exp { -  2 (D~)2 + tzD~ } 

Take x E Zyo. In order to prove that as 5550, Tr[P~' l(x, x)] converges, we will first 
prove that the kernel P;"(x, .) concentrates in a small neighborhood of Zr o, in order 
to replace the base B =  $1 by R. 
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Let A z be the Laplace-Beltrami operator in the fiber Zy. We first study the 

scalar heat kernel p~ on M'  associated with exp~(e f (+A z) and prove the 

corresponding concentration result. The proof that P;~(x, 0) concentrates will 
follow by a subordination procedure. 

Recall that O is the SO(n) bundle of oriented orthonormal frames in T Z .  0 is 
endowed with the connection V. Let X*, ..., X* be the standard horizontal vector 
fields on O along the fibers Z. Along each fiber Z ?  X~, ..., X* restrict to the 
standard horizontal fields of O in the sense of [KN, IV]. f *  is the horizontal lift of 
f l  in TO for the connection V. Let w' = (w 'I . . . . .  w") be a Brownian motion in R", 
which is independent of w. The probability law of w" on c~(R + ; R") will be noted P. 

Take Xo e Zy o, Uo e Oxo. Consider the stochastic differential equation on 
fig(R + ; R") x ~ ( R  + ; R), P ® Q ) ,  

du = X*(u)dw' i+ ]/~efi*(u)dw, u(O) = Uo. (3.75) 

Set xs= 0(u~). x~ is a Markov diffusion in M', whose infinitesimal generator is 
exactly ½[AZ+ef(]. p;(xo, x )d 'x  is exactly the law of Xr 

We now assume that the law ofw is Qyo- Of course we still suppose that w and w' 
are independent. Let p~(x)dx be the law of xt in Zy 0 conditional on y j 0  < s <  t). 
Using the partial Malliavin calculus of Bismut-Michel IBM], we know that Qy0 
a.s., p;(x) is C °~ on Zy 0. 

For given k e N ,  q >  1, we want to establish a uniform bound as e ~ 0  of 

QYo r q E [[ptl~(Z,o,R)]. (3.76) 

To do this, we will explicitly use the method of [BM]. 
Let v~ be a bounded process taking values in R", which is adapted to the 

filtration ~(Wh, W'h[h < S). For I e R, consider the stochastic differential equation 

du t = X*(u  t) (dw "i + Ivids) + f * ( u t ) / [ : d w ,  u(O) = u o . (3.77) 

As in [B 2, Chap. ~l t= o 2], we calculate - -  . Let co be the connection I form on 

O. Similarly let 0 be the R" valued one form on 0 

X e T O ,  O,,(X) = u -  I o . X .  

Let z, ~ be the 2 forms on O which are the equivariant representations of T, R z. 
The equation of the connection V on O are given by [KN, IV] 

dO=--O)AO+'c  , do)= --O)Ao)+~?. (3.78) 

Set 

0 , = 0 t ~ - ) , = o ,  co. = <o t - ~ T ) , :  o. (3.79) 

Using (3.77), (3.78) and proceeding as in [B 2, Theorem 2.2], we find that 

dO = vds + z ( l /~  f * d w ,  (u~O)*) + o)dw'; 0(0) = O, 

do9 = t2((uflw')* + V ~  f * d w ,  (u~O)*); o)(O) = O. 
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We can then use the rotational invariance of w' under infinitesimal rotations as 
in [B 2, Theorem 2.2]. We ultimately find that ER ic is the Ricci tensor of Z, ifa is its 
equivariant representation, the relevant equation to be considered in establishing 
an integration by parts formula conditional on y. is given by 

dO" = (v - ½aO') ds + "c(]//eef*dw, (usO')*); 0'(0) = 0, 
(3.80) 

do)'= a((uflwg* + ~ef*dw, (us0')*); co'(0) = 0. 

In particular by proceeding as in [BM, Sect. 3] and [B 2, Theorem 2.2], we find 
that for any f ~ C~(M'), 

EP®Q~'o[ ( df ( xt), utO~> ] = EP®Q~o [ f (xt) ! ( v, c~w') ] . (3.81) 

Observe the critical fact that since ut maps isometrically R" into TxtZ, Eqs. 
(3.80) and (3.81) incorporate the variation of the metric in Z. This is reflected in the 
fact that z exactly measures to what extent f l  does not act isometrically on Z. 

Let A s be the solution of the stochastic differential equation, 

dAs= -½aAds+z(l/~f*dw, (usA)*); A(0) = I .  (3.82) 

Fix k~ N. To bound uniformly (3.76), by using the Malliavin calculus, it is 
essentially equivalent to dominate 

Ee 'o[  sup IAsl q] (3.83) 
kO<-s<-t d 

with q large enough. Note at this stage that it is essential that Eqs. (3.80), (3.81) 
incorporate the change of metric on Z, so that the size of the variation of x t in Zyo is 
adequately controlled. 

Under Qyo, w is a Brownian bridge, and this creates some difficulties in the semi- 
martingale description of w under Qxo [IW, p. 229] since the stochastic differential 
equation which drives w under Qro has singular coefficients as s~Tt. 

Let q, be the heat kernel of S~ (for its standard metric). Then note the following 
facts: 

. Qro and Q are equivalent on ~ ( y ~  0 < s <  2 ) ,  and moreover 

dQro ( 2 ) _ q ~ t / 2 ( Y t / 2 , y o )  
dQ ~ Ys [ 0 < s < q~t(Yo, Yo) (3.84) 

It is trivial to verify that (3.84) is uniformly bounded as e~ $0. Also it is standard that 

E P®QV sup [As[q~ (3.85) 
/ 

is uniformly bounded, and so as e$$0, 

Ee®eyo V sup [ A J ]  (3.86) 
/ 

is uniformly bounded. 
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• To estimate (3.83), it is then natural to use time reversal. In fact Qyo is 
invariant under time reversal. If we time reverse equation (3.75), we get a stochastic 
differential equation with a random starting point ut. However if we write A~ "° 
instead of A~ (to note the explicit dependence of A, on Uo), the Kolmogorov type 
estimates of [B 1, Chap. I-III]  show that 

Ee,o ~ sup IA~°[ q- , (3.87) 

[ 0_<sN t 
2 

uoeO, ~Uo ~Zy o 

is uniformly bounded as e$~0. The estimates in (3.87) can be obviously time 
reversed, and so we can uniformly bound Ee,o [ sup IA~lq]. A uniform bound on 
(3.83) immediately follows. L~ -<~-<° J 

More generally, as we shall see in more detail in the proof of Theorem 3.16, for 
x, x ' e  Zyo, we can express P~"(x, x) in the form 

P;~(x, x') = q~t(Yo, Yo) EQ'°[ Ct( x , ~*ox3Uzto exp z f l  wt] , (3.88) 

where C t is a C ~ kernel on Zr o. The kernel Ctzto can be constructed by solving a 
matrix valued stochastic differential equation "subordinated" to x J0  < s < t), i.e. 
calculated over the paths ofx. The same estimates as after (3,80) permit us to prove 
that for q__> 1, 

sup Ee,o [ sup JCtz*o(Xo, x')[ q] (3.89) 
XO E Zy 0 [_x' ~ Zy 0 

is uniformly bounded as e$$0. Also we have 

C 
q,t(Yo, Yo) ~ ~ .  (3.90) 

Note the trivial bound for x E Zro. 

]Jaczt°(x)J < c exp C ( sup ~lw~l~ • 
- \o -< ,~_<t  ) 

By [ I M p .  27], under P, sup w~ has the same law as Iwt[ and so 
O<s<_t 

EV[expC sup ]/-e]w~l] <=2expCet. (3.91) 
L o_<~_<t j 

By proceeding as after (3.84), we find easily that 

Ee,o[expC sup ]/~tw~t] <cexpCet .  (3.92) 
L o_<~<_t j 

Using (3.74), (3.88)-(3.92), we find that for any q > 0, 

q~t(Yo, Yo) Ee'° [ sup ]C,(xo, v~x)] ]Jacz°(Xo)] 1/2 
L x e Z y  o 

C 
x 1 o 2:P, lye- ro I => ,-1 < c exp -- --. (3.93) 

= = J = et 

By (3.88), (3.93), we find that as e+,10, P~'(x,x') can be adequately evaluated by 
neglecting the paths Yo which go to a distance > q of Yo. 
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This permits us to trivialize the situation out of a neighborhood ofy  o. Namely 
we can assume that B is replaced by R, that M" is replaced by R x Zro, and that if 
0 e R is identified with Yo, and if lYl ~ r/, the fibers Z r are endowed with a constant 
metric. 

We now will use dydx r° instead of dydx y as the base measure on R x Zy o. This 
changes the kernel p~8. However P~8(xo, xo) is unchanged. 

Step n ° 2. The asymptotics of Tr P~8(Xo, Xo). The computations which follow will be 
done in the algebra g~ve,. In particular zD ~, (D~) 2 and the kernel p~8 should be 
viewed as elements of g . . . .  • P~"(Xo, x) is the solution of the partial differential 
equation 

8P~ot =P~e[ (-De)2 + zD~ 1 , Uo~=6{xo}®l. (3.94) 

For x e R x Zyo, with nx = y e R, set 

P~(x)=P~8(x)exp( -~)  = P~8(x) (1 - ~YeY ) . (3.95) 

/5~ is the solution of the equation 

O_P'~p~exp(Zfly)[ ( - D  ~)2 Jr zD 8 ] ( -  z f l Y ) e x p  (3.96) 

Clearly zf~ commutes with -D2+ zD. Also if a is odd in c(TZ), we have 

z f lLa-  flazfl = -za+az= -2za. 

Since V~D does not act on the variable y e R, we have 

zf, y[- l /~f~f f , ,D 1 zf, y V~e e x p . -  L exp-- ]f~ =-~- f lP~D+zyV~D.  (3.97) 

Also 

exp~e (Vyl+~e+(k ,  fl))exp-ZflY]/~ -Vyl+(k,  fl ) . (3.98) 

Using (3.56), (3.94) (3.98), we find that/5~8(x) is the solution of the equation, 

8t -- ~-  + zD-- f ~ V~ID + zyV~D , 
(3.99) 

P~ = 6~xo}® I .  

Also since rCXo = 0, we have 
n ¢ 8  18 P~ (Xo)= P, (Xo, Xo). (3.100) 

We will now transform equation (3.99) according to a procedure due to Getzler 
[Ge]. Of course, the algebraic situation is much simpler than in [Ge], since we only 
have one Clifford variable fl- 
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We consider P~"(x) as an element of Hom((F®~)~, (F®~)~o)(~c(TB)QR(z). 
P;~(x) has a unique decomposition, 

where 

e X  Q~(), 

By (3.34), we have 

t ( x )=Qt (x )+Q;e (X) f l  

O'I(x) E Hom((F ® ~)~, (F ® ~)~o)(~ R(z). 

(3.101) 

Set 
Tr; [P~'"(0, Xo)] = - i Trs[Q;"(0, Xo) ] (3.106) 

By (3.106), we see that Tr'[P~"(0, Xo) ] is calculated by selecting the term which 
is a factor of dy ~ A in (3.104). 

Let ~ be the differential operator 

1 0 2 D 2 1 1 
~ = ~ O y ~ - T ( O , x ' ) + z D ( O ,  x 3 - ~ d y  APy~D(O,x'). (3.107) 

Trz[/5~"(Xo)] = - i[Tr~ Q•(xo)] • (3.102) 

The Grassmann algebra A(T*B) is spanned by 1, dy 1. The operators dy 1 A, if, 
both act on A(T*B), and also 

( dyl -1 .  (3.103) 

In the sequel, we assume that dy I A, i A are odd operators, which anticommute 
with odd element in EndH~@R(z). It is then feasible to replace in (3.101) f l  by 
dy 1 
1 ~  A -- VeiA. For  (y, x3 ~ R x Z,o , set 

= ~ Q ~ ( ~ y ,  x') -t- Q;~(]//esy, x') (dy ~ A -- elf).  (3.104) 

In the coordinates (y, x'), the operator V A can be written in the form 

a 
Vsl = ~ + r(y, x) ,  

where F is a smooth matrix. 
Let ~ be the differential operator 

D 
T (1/£y, ~') 

+ zD(l/ey, x ) -½(dy '  A --~/eiA)V~,D(~/-£y,x')+ z/e-yVT~D(~y,x'). 

P~'* is the solution of the equation 

at - P ~ ' ~ ;  P ~ = & o } ® I  (3.105) 
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Clearly as e++O, 5¢" converges to ~ in the sense that the smooth coefficients of 
~"  converge to the coefficients of ~ as well as their derivatives, uniformly on the 
compact subsets of R x Zro. Let P~' be the solution of the equation 

z t  . I /  & =Pt~ ,  Po =fi{~o}®I. (3.108) 

P~' is trivially given by 
ly] 2 

e 2t 
P;(y, x~ = ~ R~(xo, x).  (3.109) 

In particular, using (3.61) and (3.109), we find that 

- -  itz ,1 
Tr;[P~'(0, Xo)] = ~ ([Tr~Rt (Xo, Xo)] m, Jl ) .  

Equivalently using (3.62), we find that 

itz 
Tr;[PT(0, Xo)] - ~([Tr~R~(xo,  Xo)](1),Yi). (3.110) 

We claim that for any 7 such that 0 < 7 < T. 

PT~(O, xo)~P~(O, xo) uniformly on [7, T] xZro. (3.111) 

The proof of(3.111) can be done using the convergence of Y~ to ~ and two sorts of 
arguments. 

• One can use the Malliavin calculus as suggested in [B 5, Sect• 5], using a 
probabilistic representation ofP~ '" similar to (3.88). We can then directly prove that 
P~" and its derivatives remain bounded for t ~ 7 on compact sets, and then obtain 
(3.111). 

• Another possibility is to use Duhame1's formula as in Getzler [Ge] in 
combination with adequate estimates on the vertical part of the kernel 

From (3.100), (3.102), (3.106), (3.110), (3A11), we find that as e~0, 

Tr[P~ l(Xo, Xo) ] ~ ~ n n  ([Tr~R~(x°' x°)](1)' f l )  (3.112) 

uniformly on [7, T] x Zro. 
Also by Greiner [Gr, Theorem 1.6.1], for e>0, we have the asymptotic 

expansion as t,~[0 

K ~ . + ~ ( X o )  

Tr;EP~"(0, Xo)] z -- n + 1 t - . . .  + K]/2(Xo)t  1/2 + K~3/2(Xo)t 3/2 + O( t  5/2, Xo) ,  

t z (3.113) 

where the K} 2 <j<3/2 are bounded smooth functions on Zro and 

O(t s/2, xo) is uniform on Zyo. Also since S " ~  while staying uniformly elliptic, 
O(t 5/2, Xo) is also uniform in e,>0, and the K~ are uniformly bounded as e~0. 
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By (2.13), (3.59), (3.100), (3.102), (3.106) we know that 

K e n + l  . . . .  = K ] / 2  = 0  , 
2 

and so 

(3.114) 

then 

K~ 1/2(Xo, Xo) dxo = 0. (3.118) 
M' 

Now from the fact that ~ 5 ¢  and that from Seeley [Se], Greiner [Gr], 
the coefficients which appear in the small time asymptotics are smooth functions of 
the local symbol of the considered operators, it is not difficult to find that 

te i 
~M K_ l/z(Xo, Xo)dxo---~- ~ ! Bo . (3.119) 

So we find from (3.118), (3.119) that 

I B0 = 0, (3.120) 
c 

Tr [P~' 1 (Xo,  XO)] = K~/2(Xo)t ~/2 + 0(t3/2, Xo), (3.115) 

Tr[P~'l(Xo, Xo)] then converges to 0 as t.~0, uniformly in xo and ~. The 
theorem is proved. [] 

Remark5. Incidentally, it should be pointed out that when proving Theorem 3.12, 
we have proved again Theorem 3.4, by simply using (3.113), (3.114) and the 
continuous dependence of the K) " on e [Gr, Se]. 

Using Theorem 3.12, we now prove a first fundamental result. 

Theorem 3.13. For any T > 0 ,  as eJ,$O 

io 
Proof. By Theorem 3.12, we know that 

1 dt 
.......... I ~ ~ Tr~[R~t(x, x)](1)dx. V-~ o V ~ ~" Tr[Uz'tt(x'x)]dx-~-1//27z c o V t z 

Using (3.19), we find that (3.116) holds. 

Remark 6. The proof of Theorem 3.12 also shows that if D is instead a general 
family of first order differential elliptic operators of the type considered in [BF 1] 
and in Sect. 1 f), Bo which was defined in (1.31) is not only closed, but is also exact. 
To see this, note that ifD ~, t/e, ... are still defined as before, by Atiyah-Patodi-Singer 
[APS 3], t/~(s) is holomorphic at s = 0. This shows that if for e > 0, we have the 
expansion 

Tr[P~' ~(Xo, Xo)] . . . .  + ~ ( X o )  + K~/2(Xo)l/~ + .... (3.117) 
Vt 
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and so B o is exact. This is a satisfactory result since in full generality, the scaling 
anomaly described in Sect. 1, Remark 2 is simply equivalent to a gauge 
transformation. 

h) Control of the Integrand of the Eta Invariant as tST + oo 

The right-hand side of (3.1t6) is obviously related to the differential forms 6~ 
defined in Sect. 1 f). However we must be able to make T =  + oo in Theorem 3.13. 

We prove that this is possible under a special assumption on D. 

Theorem 3.14. Assume that the family of operators D + has index 0, and that for 
every y ~ c, KerDr= {0}. Then for e > 0  small enough, he= O. There exists C and 
# > 0 such that for e > 0 small enough and any t > 1 

ITrD" e x p -  t(D021 <_ C e x p -  #t .  (3.121) 

Proof. Let us first point out that (3.121) is not obvious, since we must take 
into account the convergence result of Theorem 3.12 - otherwise (3.121) 
would explode as e;$0 - while noting that the estimates of Theorem 3.12 are not 
uniform in T. The idea is to use again the probabilistic construction in the proof of 
Theorem 3.t2 in order to control a time dependent parabolic equation along the 
fiber whose coefficients are random functions of the Brownian motion y. on B. 

It is then possible to obtain a pointwise exponential decay of the solution in the 
space of bounded operators on the Hilbert space Hy ° of L 2 sections of F ® ~  
over Zy o. The decay of the corresponding trace is obtained by a method very 
similar to what is done for deterministic elliptic partial differential equations. 

a) h~= 0 for e small enough. Recall that d'x is the volume element in M'. f l  P]I 
is clearly a self-adjoint operator. Using Proposition 3.9 with z=0 ,  we have 
for h e H ~°, 

tD"hl2d'x= ~ }Dhl2d'x+e IAVy~ht d x +  ((AVy-~D)h,h)d'x 
M '  M '  

> f ]Dh[2d'x+]/~ f ((fj~Ur~D)h,h) d'x. (3.122) 
M '  M '  

~ D  is a first order differential operator which acts fiberwise. If II II 1 is a norm in 
the Sobolev space of order 1 of sections of F ® ~  over Zy, we have 

~z, ( ( f  i FY~D)h, h ) dx <= C(lthl l  ~z) 2 . (3.123) 

Since for every y e c, Dy is invertible, there is a constant C '>  0 such that for any 
y ~ c ,  

I IDhl 2dx > C'(llhtl~) 2. (3.t24) 
Zy 

So if V e -  < C'/2C, 
C' 

I [D"hl2d'x>-(C'-C]//~) I [h(x)12d'x>= I [hi ad'x (3.125) 
M" - -  M '  2 M '  " 

h e is then equal to 0. 
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b) The Asymptotics of TrD ~ e x p -  t(D") 2. We now concentrate on the proof that 

ITr Vefl V~, e x p -  t(D")2] < C e x p -  #t. (3.126) 

We use the notations of the proof of Theorem 3.12. Yo ~ B, x 0 ~ Zr o are fixed. U~ is 
still defined by (3.68), (3.70). 

Set 
H~ = U~-c~ = exp zflw~"z~o. 

If Ay is a family of operators acting on H~, we note "A~ the operator acting on H~o 
u ~  u s ~  u 0 

Z-I  s ~ -  T O z ' = l y  ~ T s • 

"A, is unitafily equivalent to Ay. By proceeding as in (3.97), we find that 

T f ,  V},D)H, 1 2 
(3.127) 

Consider the partial differential equation 

OC [ uDz ~" "VU D 1 2  ,12sl +z w:(V lD) , Co=a,xo,®I. 
(3.128) 

In (3.128), the operator C, acts on H~o. Note that since y, is nowhere 
differentiable as a function of s, the coefficients of(3.128) are continuous in s, but 
not smooth. However, by using the method of Treves [T, Chap. III, Sect. 1.3], one 

u 2 
• O . . . 

finds that smce-~- is elhptlc, (3.128) has a unique solution, and that for s > 0, C~ is a 

regularizing operator or equivalently that C~ is given by a C OO kernel (with 
respect to dxY°). Also by using It6's calculus, Proposition 3.9 and (3.127), one 
immediately verifies that if h ~ Hoo, 

exp{ t(D~)Z~-tz]/~f~'~} h ( x ° ) = E Q [ C ~ e x p ( z f ~ w t ) ~ t ° h ] ( x ° ) 2  . (3.129) 

We now disintegrate (3.129). Let St be the C ~ lernel on M' associated with the 
f (D~) 2 } 

operator exp ~ - t - - - f -  + tzV~fl v~, . Using (3.129) and the fact that as proved by 

the method of [B 2, Theorem 2.14], a smooth disintegration of the right-hand side 
of (3.129) is possible, we obtain in particular 

St(xo, Xo) = q,(Yo, yo)Ee'°[Ct(xo, ztoXo) exp (zflw~)zto[Jaczto] 1/Z(xo)] . (3.130) 

The fight-hand side of (3.130) should be interpreted in the following way: 
• ~ is an element of Hom((F®~)~o, (F®()~o).  
• Under Qro, ztoxo ~ Zro" So Ct(xo, ZtoXo) is well defined as an element of 

Hom((F ® ¢)~oxo, ( F ® ¢)~o) Q Cro ( T B) Q R (z) . 
So Ct(x o, VtoXo)rto should be considered as an element of 

End(F ® ~)~o Q cy o(TB) ® R(z). 
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By proceeding as in (3.9), we have the identity 

tzTr[l/~fiV~.exp_ t(D~)2] =Trzlexp { 

Also 

t(D~)Z2 +tzV~f~V~ ~ ) j =  M'I Trz[St(x'x)]d'x 

= ~ dy ~ Trz[St(x, x)] dx. 
B Zy 

(3.132) 

Using (3.130), we find that 

f Trz[St(xo, Xo)]dxo = qn(Yo, Yo) Ee'° Trz[C,• exp(zflwO ] . (3.133) 
Zy o 

In (3.133), Trz[C~"z~ expzflwJ is the trace in the sense of (3.30) of the trace class 
Ct"z*o exp(zf l wt) ~ geven. Set 

Ilwll = sup IwJ. 
Oz~s~t  

In order to estimate (3.133), we do two transformations on Eq. (3.128): 
Z 

• We replace z by l+]/~Hwll so that the coefficient of "V~ID becomes 

bounded. We note C~ the solution of the new Eq. (3.128). 
• We also do Getzler's transformation [Gel. C~ has a unique decomposition 

C~=C°+~f~ C°,QeEndHro(~R(z). (3.134) 

dy t/x _l/~if~. Set As in the proof of Theorem 3.12, we replace fx by V~ 

c~=c~ -o cI{dYl_/_ \ ~ _]/~is~)" (3.135) 

C~ is the solution of the equation 

OC's C,s[ UD2 (dyl ^ -eif~) ,T,~D + zV~eWs ] 
c~s 2 2 1 +l/~llwll "V~D , 

C'o = 6~o~®I. (3.136) 

Take a, b which are trace class in EndH~QR(z). As in (3.100, we now set 

Tr~[a + b(dy ~ - ei y~)] = - i Tr~ b. (3.137) 

By adequately scaling formula (3.133), we get 

f Tr~[S,(xo, Xo)] dxo = V~q~t(yo, yo)EQ'o 
Zy o 

[(l+Ve.llwl,)Tr:[C~"ztoexp{z( dyl-/x -~eeiyl)wJ(l+V-~llw,[)}J] (3.138) 
\ l / i  
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where in the right-hand side of (3.138), Tr'= selects terms which contain both z and 
dy 1 . 

The idea will now be to control adequately Eq. (3.136) defining C'~. Set 

Also we will assume that t > 2. 
For x e Zyo, let C;' be the solution of 

oc;' 
- -  C "  IN " " O s -  ~ ' ~ '  C ~ = 6 ~ ® I  s > l .  

Clearly 
c ; =  c l  c~' . 

Set 

T r z [  S t ( x o ,  Xo)] d x o  = zq)t(y o) . 
Zy o 

ulTu r~'t 
f ta. ')s • 

(3.139) 

(3.140) 

(3.141) 

We can then write (3.138) in the form 

zq),(Yo) = V'eq~t(yo, yo) EQ'° I (1 + V ~ I[ w II) 

xTr'~[C'lC~"ztoexp{z( ~ ~ /e i : l )wt / ( l+eHwlt )} l l .  (3.142) 

If a is a linear operator acting on the Hilbert space o Hro, let Ilatt(~), denote the 
norm of a in the set of bounded operators and II all<l> the norm of a in the set of trace 
class operators. 

We can expand C] in the form 

C'1 = ao + a 1 z -~ a2(dy 1 - ei:l ) + aaz(dy 1 _ ei:~) , 

where the ai are C ~ kernels on Zyo. Set 

3 

IICiIl~l> = Z ° Ilajll<l>. 

We can define II C~'li(~> in exactly the same way. Since "~  acts unitarily on Hy°o, 
we have 

I1"~ I1(~)= I .  (3.143) 

From (3.140)(3.143), we find that 

¢uJ 
We now estimate the various terms in the right-hand side of(3.144). 
• Estimation of  IIC'111m 
By proceedings as in (3.140), we can write C[ in the form 

! t - - i  
C 1 = C 1 / 2 C  1 . (3.145) 
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where both C'l/2, C~ have C °° kernels. Since C t l / 2 ,  Ctl are Hilbert-Schmidt 
operators, if II 11(2) denotes the Hilbert-Schmidt norm, we have 

- )(  ) IC~ 2(x, x')l sup IC~(x, x31 • IIC'ilI(i)<1IC'1/2II(2)11C'~11(2)<C( sup ! 
\~¢, x '  ~Zy 0 x, x" ~ Zy 0 

(3.146) 

We claim that for any p > 1, 

EQ~o[ sup ICl/z(x, x31P+ sup ICi(x, x31 p] (3.147) 
L(x ,x ' )~zy  o (x ,x ' )~zy  o A 

is uniformly bounded as ~+10. This cannot be seen directly on Eq. (3.136) since its 
coefficients can be pointwise very large because of uz~. 

- ,  , t the methods of the Malliavin If we instead estimate the kernel of L1/z Zo, 
calculus described in the proof of Theorem 3.12 - and specifically Eqs. (3.80), (3.81), 
as indicated before (3.83), we can obtain a uniform bound for 

EQyo F sup IC'i/2Zlo/2(x,x')lP 1 . (3.148) 
/ ( x ,  x ' )~Zy o x Zyt /2  

Note that since t > 2, Qro and Q are equivalent on ~ = ~(yJO < s < 1), and that 

dQro~_ q~(t-t)(Y~, Yo) is uniformly bounded as e++0 and t ~ [2, + oc[, so that in 
dQ q~t(Yo, Yo) 

the estimates analogous to (3.83), the problems related to the fact that the 
stochastic differential equation for y~ is singular at s = t disappear. Also note that 
with respect to (3.85), we also allow x ~ Zro to vary. However, the Kolmogorov type 
estimates of [B 1, Chap. I-III]  permit us to include x as a varying parameter. Also 
we have the trivial bound, 

sup [Jac[¢o](x)l<cexp[CV~ sup [w~[l; s < l .  (3.149) 
x ~ Z y  ° 0 _ < h < l  

The right-hand side of (3.149) is trivially in all the Lp(Qr°). Using H61der's 
inequality, we get the required uniform bound on the first term of (3.147). The 
second term is estimated in the same way. 

• Estimation of IIC~'ll(~) 
Let/-/~o be the set of linear combinations 

h=ho+Zhl +dylh2+zdylh3; hj~Hr~o, 0 < j < 3 .  
-- 00 Also for h ~ Hro, set 

3 

Ihl z = Z ° Ihjl~oo. 

C~' acts on//~o in the obvious way. Let C~'* be the adjoint of C~. For  h -o~ Hyo, set 

h~=C'~'*h. 

Since "z~ is unitary and D 2, V~D are self adjoint, "D 2 and "V~D are self-adjoint. 
Clearly 

ds Ih~12=2Re 2 2 l + l / q l l w  h~,h~ . 
(3.150) 
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Since "z~ is unitary, using (3.124), we have 

(UD2h, h)dx= ~ , o , o , (Dr~ zsh, Drs zsh)dx>C ~ l"~c°hlZdx=C" I thl 2dx 
Zy o Zys Zy s Zy 0 

(3.151) 

Moreover by (3.123), (3.124), we also have 

/Fur ,  D ]/~w s -] h\ I ( / ~ ( d y  ~-8i:~)* + ("V:~D)z* I h, dx 
Z,o\L ,- 1 +l/~-Ilwll / A 

~C" ~ ("D2h, h)dx. (3.152) 
Z3~ O 

C' 
Replacing D by kD (k>0), we can always assume that C"<-~-. So using 

(3.150)-(3.152), we get 

d C' 
d~ Ihs[2 < - -2- [h~12" (3.153) 

By Gronwall's lemma, we find 
C' 

[hsl2<e-T(~-l)lhl2, s>=l, (3.154) 

and so 
O's 

IlC;'*ll(~)~Ce 4, 

or equivalently 
Cts 

]lC;ll(o~)~Ce 4 (3.155) 

Using (3.144), (3.147), (3.155) and Schwarz's inequality, we finally obtain 

[q~t(yo)l<l/~q~t(yo, yo)IEQ,o(l+eltwllz+ tw@Z)ll/2exp(--C~). (3.156) 

• Some Estimates on Brownian Motion 
Let fl be a standard Brownian motion in R, with flo =0. Under Qyo, and 

k S 
conditionally on w~--~-o' by [-Si, p. 41], ws has the same law as f l s - t f l  t 

V ~ s k  
+ t  ~ Using (3.156), we find that 

[~°t(Y°)12<--(]//~sqrt(Y°'Y°))2EQy°-- II+t~ ltwlI2 + ~ ] (exp - ? )  

<C]//e~q,t(yo, Yo)~EQ[l+kZ+~H[I]]z+k~--~]exp-(?+~Tt). (3.157) 
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Using Poisson's formula, we have 

/ 
2 ~ t ) =  V'e y~ e x p ( -  2zc2etk 2) (3.158) V~eq~t(yo, yo)= ~ ~2. exp ~ - 

It follows from (3.158) that for t > 2, l/~q~t(y o, Yo) is uniformly bounded as e~,~0. 
Also by scaling fl, we find that Eellflll ~ =  ct. We then find that 

ko,(yo)12<c(1 + t ) exp  - • e x p -  x~, + c e x p  - ~ - / Y . ~ - e x p - -  
k zs t  

(3.159) 

By (3.158), the first sum in (3.159) grows at most like t 1/2. 
x 2 

• If etN 1/2, the function x2exp - ~ is decreasing on [1, +oo[.  Then 

k 2 2 x 2 
~. l(:2 exp  --  2-~ ~ ~ -  X 2 exp -- ~ dx 

2t3/2 ( y 2 )  
- ella I exp - ~ -  yZdy (~t) - 1/2 

= ~1/2 (et) J_1/2 

2ct 3/2 f 1 ) 
- ~ e x p k -  ~ ,  ~C'gl/2t 5/2 . (3.160) 

• If e t>  1/2, since k 2 <exp21k], 

1 ~kZexp - ~  < c t  z~exp  2 k -  82 

= c t 2 ~ e x p ( -  2~(k-2et)2)exp(2et ) . (3.161) 

Using Poisson's summation formula, we find 

_ _  k e 
1 y. k2 exp - ~ _< ct 2 exp(2et)]//~ 2 exp( - 2rc%tk 2) 

/~2 k 

<= ct 5/2 exp(2et) Z exp( - - /z2k2) .  (3.162) 
k 

From (3.159)-(3.162) we find that 

,c&(Yo)12 <= c( l + tS/2) exp ( 2~- C---2 ) t . (3.163) 

Using (3.131), (3.132), (3.126) is proved. 
The fact that 

ITrD e x p -  t(O~)21 < C exp - #t,  

can be proved along the same lines. This is left to the reader. [] 
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i) The Holonomy Theorem 
We still assume that B = c. 

Definition 3.15. For  0 _< s_< 1, z ° is the parallel transport operator from 2co into 2cs 
for the connection 1 V. 

27o is a complex number 27 such that 1271 = 1. It does not depend on the origin Co. 
Also IndD+ will denote the constant integer which is the index of D+,y. 

We now prove the holonomy theorem. 

Theorem 3.16. The following identity holds 
27 = ( - -  1 )Ind D + exp { - 2in [tT] }. (3.1 64) 

Proof. The proof is divided into two steps. In the first step, we suppose the 
assumptions of Theorem 3.14 are verified. The proof is then a straightforward 
application of Theorems 3.13 and 3.14. 

The second step of the proof is to show that the family D can be continuously 
modified into a family of pseudodifferential operators D' which verifies the 

assumptions of Theorem 3.14. Rather unhappily, ]/~eflV~,+D" is no longer a 
pseudodifferential operator on M'. However the probabilistic constructions of the 
previous sections still apply to the family D'. 

We then prove that neither 27 nor [r/-] change under the continuous deformation 
of D into D'. The holonomy theorem holding for D' also holds for D. 

Step n ° 1. We first prove the theorem under the assumptions of Theorem 3.14. In 
this case, by Theorems 3.13 and 3.14, we have 

1 + ~  1 +~ 
S ~Tr[D~exp-t(D~)2]dt~2-~! S Trs[eXp(-tD2)l~UDD]dt • 

~/~ o l / t  o (3.165) 

The left-hand side of (3.165) is exactly q"(0). 
Also by Theorem 3.14, for e small enough, h"=0,  and so as e ~ 0  

fl.(O)~ ~ ! +O~o TLCexp(-tD2)IY"DD]dt" (3.166) 

Moreover there is a > 0 such that for any y ~ c, Dy has no eigenvalue in [0, a]. 
With the notations of Definition 1.8, over c, K~ = {0} and so 2" = C. Over c, 2 has a 
canonical section a which is identified with I ~ 2 ~. Clearly, in the sense of 
Definition 1.12, 0 Vi~a = 0, and so, since by Theorem 3.4 Bo = 0, we find that 

1 __ 1 a ~ a  1 t Vs,a- (~(7o-  o ) + ~ ( r  (1)-#)dAo, f~)a. (3.167) 

Also by Proposition 1.11, ?)~ is exact on c. We then find that 

aV.cr 
l - 1/216~. (3.168) 
c O" c 

Also since on c K " =  {0}, it is clear that on c 

+ o o  

6~ = ~ T r , [ e x p ( -  tD 2) I~"DD] dt. (3.169) 
0 
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Finally note the straightforward relation 

Using (3.166)-(3.170) and the fact that IndD+ = 0, we find that (3.164) holds. 

Step n ° 2. The General Case 

a) Construction of a Family of Index O. We here use the notations of [B 5, Sect. 2], 
but the roles of D+ and D_ are interchanged. By [AS 3, Proposition 2.2], we know 
that q ~ N and C °° sections sl . . . . .  sq of F + ® ~ over M exist such that if 6 s R, if 
D2y, 6 is the operator 

q 

(h, 2)~H~_,rOtEq~D'_r,~(h, 2 ) = D _ , r h + f y ] 2 i s ~ H ~ , y ,  (3.171) 
1 

then if 6+0,  D'_r, a is onto. 
We endow tea with its canonical Hermitian product. The formal adjoint D'+ r, 

of D'_y,o is the operator 

h~H~.r~D'+r,~h=(D+,rh, 6(h, s l )  . . . . .  6(h, sq))EH~_,rOtE ~ . (3.172) 

For 6+0,  KerD'+ = {0}, and KerD'_ is a C °~ bundle over B × R/{0}. Also 

D+r, oh=(D+,yh, O, . . . ,0),  D'_r,oh=D_,rh, 

and so 

Set 

:' t , , q KerD+y,o=KerD+,y,  KerD-  r 0 = K e r D -  rOtE , 

We can then define the determinant bundle 2' of the family D', which is a line 
bundle on B x R. Clearly 

2 ' = 2  on Bx{0} .  (3.174) 

Also if q '=  - I n d D ~ ,  then 

q '=  - I n d D +  + q ,  (3.175) 

and also q '>0.  
If q '>0,  we allow D+ to act on H~OtE  q' by the formula 

(h, #) ~ H~ OtEq'~ D + (h, #) = D +h ~ H ~_ OtE q . (3.176) 

We endow tEq' with its canonical Hermitian product. 
The adjoint D'_ of D+ is given by 

(h,2)~H~_OtE~--,D' (h,).)=(D'_(h, 2) ,O)~H~OtE q" . (3.177) 

Now IndD'+ = 0. If 2" is the determinant bundle of D', we still have 

2 ' = 2  on Bx{0} .  (3.178) 
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Also for 54:0, KerD'+ = ~ ¢  and KerD2 is a C a bundle. 

b) Construction of a Family of  Invertible Operators. The parameter space of the 
family D'is B x R. On B x R/{0}, KerD~_ = C  q' and Ker D'_ is a smooth subbundle 
of H_~@II~ q of dimension q'. 

Complex bundles over S ~ are trivial. We can then find a smooth trivialization 
E+ of KerD2~,,1 over the loop B=c.  

For  y E B, E+,r is a linear isomorphism from ~q" in KerDLy, 1- We allow E+ to 
act on H~ by setting E+ = 0  on H~. E+ then acts linearly on H ~ @ C  q'. 

If E_ is the adjoint of E+, E_ sends H_~GC q into C ~' and is 0 on the orthogonal 
of KerDLy, ~ in H °_ G ~  q. 

For (y, 0) ~ B × R, set 

D"+y,o=D+y,I +OE+,y; D" -y,O =D-r ,  i +OE-,r ,  
(3.179) 

DY'°- D r,o 

Let 2" be the determinant bundle of the family D". Clearly 
/ 

Dy, 0 = Dy, 1, 

and so 

(3.18o) 

c) Extension of the Results of Sects. 1, 2, and 3 to the Families D" and D". We will 
show how to extend the results of Sects. 1, 2, and the previous results of Sect. 3 to 
the family D'. The same arguments hold for the family D". 

We endow ~q and ~q' with the trivial connections• So H7 @~q' and H_ ~ ®ll~q, 
considered as bundles over B x R, are naturally endowed with a unitary 
connection. 

Let A be a family of linear operators sending H~ @~q' into H_ ~ ®11; q. We write 
A in matrix form 

A2 A4 " 

We will say that A is regularizing if A1 is regularizing in the usual sense IT] and if 
A2 is given by a C a distribution. Since A 3 sends C ¢ in H_ ~, A3 is given by a family of 
C a functions along the fiber Z• 

The pseudodifferential calculus can be extended to H~ @ C q" and H ~_ @ C q, with 
this new definition of regularizing operators. Set 

A,,o=D'r,a-D'r, o . (3.181) 

Then At, ~ is a smooth family of regularizing operators over B × R. 
We first briefly show how to extend the results of [BF lJ described in Sect. 1 f). 

By using formally Duhamel's formula, we find that 

t 

exp(-- tD'y2n) = exp --(tD'r20) - ~ exp( - sD;2~) ((D~, ~)2 _ (D'y, 0) 2) 
o 

x exp( -  ( t -  s)D'yZo)) ds. (3.182) 
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Now exp-t(D'y, o) 2 can be evaluated in terms of e x p ( - t D  2) in an obvious way. 
Also 

(D,y,,~)2 (D,y,o)Z_ 2 , - Ay,~ + Dy, oAy, o + Ay,~Dy, o , (3.183) 

and so (D~,~)Z-(Dy, o) 2 is regularizing. 
This permits us to use an iteration procedure in (3.182) to calculate 

exp(--tD~,Z,~). In particular using (3.183), we find that if P~Y'~ is the C °~ kernel 
associated with exp(-tD'y2~), then for any x ~ M, 

Try[P?'" 6(x, x)] - Try[P; y' °(x, x)] = O(t, x ) .  (3.184) 

It is then not difficult to extend the results of [BF 1] which we described in Sect. 1 f) 
to the family D'. 

The determinant bundle 2' is endowed with a metric and unitary connection, 
which of course restricts to the metric and the connection of 2 on B x {0}. 

We claim that the cancellation result of Theorem 3.4 still holds for the family 
D'. In fact let Q~' ~ be the operator 

expt (D'y,~) z 1 g Dy,~+zDy,~ . 
2 2 

By Duhamel's formula, we have 

1 
f ) y , 6  l')y,O _ _ t  I y ~ J~ / 2 : 2 i ~ u  t ~ u  / +~(V Dy,~- V Dy, o ) [2 ((Dy,3) - (D,, o) ) ~ t  ~ . t  - -  

0 

- z(D'y,o - D'y, 0)] Q~(O s)ds. (3.185) 

As t+ +0, we find that (Q~'~-Q~'°) / t  converges to a regularizing operator, which is of 
course trace class. In Theorem 3.4, the left-hand side of (3.12) is a quantity where the 
factors zdy  1 should appear. By iterating (3.185), we find that zdy  1 appears in (3.185) 
with the factor t 2 and before a regularizing operator. This is just what we need to 
guarantee that Theorem 3.4 still holds for the family D'. 

As indicated in (3.27), we now assume that (P(f0 acts like - i  on H~ G C ¢, like 
+ i  on H ~ O C  q. 

For e > 0  and over the loop s ~ R / Z - ~ c ~ O = ( % 6 ) ~ B × R ,  we consider the 
operator 

D~ ~ = ]/~fl V~, +D~,~. (3.186) 

Similarly over the loop s ~ R / Z - o c ] ' ° = ( %  0)e B × R, we consider the operator: 

D'~ ~ = l/refl V~, + D;,o. (3.187) 

D '~ and D "~ are not pseudodifferentiat operators, since Ay, ~ and E are only fiberwise 
smooth. A priori such operators do not have &a invariants in the sense of 
lAPS 1, 33, 

Still, by using the procedure indicated in the proof of Theorem 3.14, to 
construct the semi-groups exp{ - t(D~.~)2}, exp{ - t(D~)2}, we can use a Brownian 
motion y. on S ~ and integrate a parabolic equation with time depending 
coefficients in a given fiber, in which the considered operators are truly 
pseudodifferential operators. 
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Theorem 3.12 then extends to the families D' and D". The more difficult point is 
to obtain the uniform convergence of (3.64) as t~$0. However when taking the 
expansion as t+~.0 of the trace of the kernel of D~ ' exp{-t(D~92}, by proceeding as 
in (3.185) and using Theorem 3.12 for D ~, we find that it starts with 

1 
Tr[Aa(x, x)] d'x + 0(]/~, x).  

Since A a is odd, Tr[Aa(x, x)] = 0, and so we get the required uniformity. 
It is then not difficult to adapt the proofs of Theorem 3.13 and 3.14. In 

particular Theorem 3.14 holds for the family D~,o over the curve c "1. 
Since D~ ~, D~ ~ are not pseudodifferential operators, we directly define their 8ta 

functions by formulas (2.22), (2.23). Let t/~'(s), t/~(s) be the corresponding ~ta 
functions, which are well defined at s = 0. 

Since for t > 0, exp{ - t(D~)2}, exp{ - t(D~) 2} are regularizing, KerD~, KerD~ ~ 
are finite dimensional. We can define ~(s) ,  tT~(s). 

Let z;, z~ be the holonomy of 2', 2" over the curves c "~, c "°. 
The key step to finish the proof of the theorem is as follows. 

I - / / ~  # Proposition3.17. [tT~(0)], z a (respectively [t/0 (0)], %) do not depend on 6 
(respectively on 0). 

Proof. We only prove the Proposition for [tT~(0)], z~. By Proposition 2.8, 

[tTa~(0)] is proportional to the finite part as t++0 of 

OD; ~ 
A = ~ -  is a smooth family of odd fiberwise regularizing operators. 

We can then use the technique of the proof of Theorem 3.14 to describe the 
t (D ;9  ~ . 

semi-group exp ~ m conditional form, i.e. by consider first a Brownian 

motion in c, and by constructing a partial differential equation with random 
coefficients in the vertical directions. We then find easily that 

j~nao ] ~  Tr [0Q~ exp { t (~)2  }1 = 1 ~, Tr[A(x, x)] dx.  (3.188) 

Since A is odd, Tr[A(x, x)] = 0, and so 

O[t7;~(0)] = 0 (3.189) 
66 

[O;~(0)] is then independent of ~ and so coincides with [tT;~(0)]. 
Let r' be the curvature of 2'. One has the obvious relation 

& ;  

..... 7'" ~- r' ", . ga 
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Also by Theorem 1.14, r' is the finite part of [Tr s exp - (17" + ]/~D')2]t z). The part of 
Trs[exp-(IgU+VtD')Z](2), which contains the Grassmann variable d6 is exactly 

- d5 A ~/t TL[A exp - (•u + V~D,)2](1). (3.191) 

Since A is trace class, (3.191) obviously converges to 0 as t$$0. So by (3.190) 

&;  = 0 .  
d5 

The proposition is proved. [] 

We now finish the proof of Theorem 3.16. By the first part of the proof applied 

to the family D", we know that as e~,L0 -t(i~(0)" has a limit tT~ and that 
2 

z 1" =exp{ - 2irc[tT~]} 

Using Proposition 3.17, it is then clear that as e[$0, [~/~(0)], [t/;'(0)] have a limit 
[tT~] - which does not depend on 0, 6, and that in particular 

z = z• = exp{ -- 2irc[tT~] }. (3.192) 

Now since the family D;,o acts on (H~@C¢)@(H~_®Cq), one finds immedi- 
ately that for any e$$0, 

dim Ker D~ = dim Ker D" + q '+  q, 

and so 
tT;"(0 ) = ~7"(0) + I/2(q' + q). (3.193) 

We deduce from (3.193) that 

[#;] = [0] + [1/2(q - q')]. (3.194) 

Since [ 6 ~ ] = [ ~ ] ,  (3.164) follows from (3.175) and (3.192). [] 

j) A Remark on the Metric of B 

We now again assume that B is a m dimensional manifold. Let R L'~ be the 
curvature tensor of TM for the Levi-Civita connection associated with the metric 

g~ O9z. IfRB is the curvature tensor of TB for the Levi-Civita connection of B, as 
e 

in (3.52), we can evaluate R L'" in terms of R z, S, and R B. More precisely iff~ . . . . .  f,, 
is an orthonormal base of TB, e~ .. . . .  e,, an orthonormal base of TZ, R L'~ evaluated 

on the base (el, ..., e,, ~//~fl . . . . .  V~f , )  is given by 

F RZ + ePz[S' S] el/ZPzl)S --t- ~3/2pz[S, S] pns]  J RL,~ 
LelI2pnI~S+e3t2p~[s,s] RB+eP~bS+ePr~SAPzS+e2pnsA " 

Using (3.195), it is clear that as ~,~0, (3.195) 

t~]--+/i ( 2 ~ ) / ]  (~-~) " (3.196) 
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Since a l l - - / o n l y  contains forms whose degree is 4q, we find that as ~$$0, 
\2rc/ 

L l (2) F ' I ' R L ' ' ~  L l(/)  -~ [~z d ( ~ )  T r e x  p - (3.197, a I 7) Tr exp- 2-i7J 2- =d " 

N o w  by  formula  (2,39) the left-hand side of  (3.t97) is directly related to the 
variation of d[q"(0)] when c is made to vary. 

In fact by lAPS 1], if the metric of M'=Tr-l(c) is product near M', (3.197) 
appears explicitly when computing d[q~(0)]. 

If we were to compute the variation d[q~(0)] using Theorem 2.10, the proof of 
Theorem 2.10 being formally identical to the proof of the Index Theorem for 
families in [B 5], we should blow up the metric of B in directions normal to c. 

By making e$$0, we also blow up to metric of B in the direction tangent to c. 
Using (3.196), (3.197), we find that if ct, is a smooth family of loops in B, then 

81 = ! ioc_~ fl T r e x p -  2~-~j " (3.198) 

Also if r is the curvature of 1(, we have 

& / r. 
c "  E 

Since ~ = ( - - 1 )  ~"d°+ e x p { -  2irc[O']}, we find tha t  

. a 
2~rt~ [q] = I io~r. (3.199) 

e-at- 

Of  course (3.198) and  (3.199) fit whith the formula  (1.58) for r. 

Acknowledgements. The authors are grateful to Professors M. Atiyah, D. Quillen, I. Singer, and E. 
Witten for very helpful discussions. They are also indebted to a referee for helpful comments. 

References 

FAB] 

[ABP] 

[ABS] 
[ADS] 

lAPS i ]  

lAP S 2] 

lAPS 3] 

[AS 1] 

[AS 2] 

Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes. I. 
Ann. Math. 86, 374-407 (1967); II. 88, 451-491 (1968) 
Atiyah, M.F., Bott, R., Patodi, V.K.: On the heat equation and the Index Theorem. 
Invent. Math. 19, 279-330 (1973) 
Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3 (Supp. i), 3-38 (1964) 
Atiyah, M.F., Donelly, H., Singer, I.M.: Eta invariants, signature defect of cusps and 
values of L functions. Ann. Math. 118, 131-177 (1983) 
Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian Geome- 
try. I. Math. Proc. Camb. Phil. Soc. 77, 43-69 (1975) 
Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. 
II. Math. Proc. Camb. Phil. Soc. 78, 405432 (1975) 
Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian Geome- 
try, III. Math. Proc. Camb. Phil. Soc. 79, 71--99 (1976) 
Atiyah, M.F., Singer, I.M.: The Index of elliptic operators. I. Ann. Math. 87, 485-530 
(1968) 
Atiyah, M.F., Singer, LM.: The Index of elliptic operators. III. Ann. Math. 87, 546-604 
(1968) 



Eta Invariants and Holonomy Theorem 163 

[AS 3] 

[B 1] 

[B 23 

[B 3] 

[B 4] 

[B 5] 

[B 6] 

[BF 1] 

[BF 2] 

[BM] 

[ae] 

[Gil] 

[ a i  2] 

[ a i  3] 

[Or] 

IN] 
[ INK]  

[IW] 

[KN] 

[L] 

[Q 1] 
EQ2] 

[Se] 

[Si] 

IT] 

[ W l ]  
[W2] 

Atiyah, M.F., Singer, I.M.: The Index of elliptic operators. IV. Ann. Math. 93, 119-138 
(1971) 
Bismut, J.-M.: Mrcanique alratoire. Lecture Notes in Math., Vol. 866. BeNin, Heidelberg, 
New York: Springer 1981 
Bismut, J.-M.: Large deviations and the MaUiavin Calculus. Progress in Math. Vol. 45. 
Basel: Birkhfiuser 1984 
Bismut, J.-M.: Transformations ditt?rentiables du mouvement Brownien. In: Proceed- 
ings of the conference in honor of L. Schwartz. Vol. 1, Astrrisque n ° 131, 61-87 (1985) 
Bismut, J.-M.: The Atiyah Singer theorems: A probabilistic approach. I. J. Funct. Anal. 
57, 56-99 (1984) 
Bismut, J.-M.: The Atiyah-Singer index theorem for families of Dirac operators: Two 
heat equation proofs. Invent. Math. 83, 91-151 (1986) 
Bismut, J.-M.: Martingales, the Malliavin calculus, and hypoellipticity under general 
H6rmander's conditions Z. Wahrscheinlichkeitstheor. Verw. Geb. 56, 469-505 (1981) 
Bismut, J.-M., Freed, D.S.: The analysis of elliptic families. I. Metrics and connections on 
determinant bundles. Commun. Math. Phys. 106, 159-176 
Bismut, J.-M., Freed, D.S.: Fibr6 d&erminant et invariant 6ta. C.R. Acad. Sci., Paris, 
Srrie L 301, 707-710 (1985) 
Bismut, J.-M., Michel, D.: Diffusions conditionnelles. I. J. Funct. Anal. 44, t74-211 
(1981); II. J. Funct. Anal 45, 274-292 (1982) 
Getzler, E.: A short proof of the Atiyah-Singer index theorem. Topology 25, 111-117 
(1986) 
Gilkey, P.: Curvature and the eigenvalues of the Laplacian. Adv. Math. 10, 344-382 
(1973) 
Gilkey, P.: The residue of the local &a function at the origin. Math. Ann. 240, I83-189 
(1979) 
Gilkey, P.: The residue of the global ~ta function at the origin. Adv. Math. 40, 290-307 
(1981) 
Greiner, P.: An asymptotic expansion for the heat equation. Arch Ration. Mech. Anal. 
41, 163-218 (1971) 
Husemoller, D.: Fibre bundles. New York: McGraw-Hill 1966 
It6, K., McKean, H.: Diffusion processes and their sample paths. Grundl. Math. Wiss., 
Band 125. Berlin, Heidelberg, New York: Springer 1974 
tkeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. 
Amsterdam: North-Holland 1981 
Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Vol. I. New York: 
Interscience 1963, Vol. IL Interscience 1969 
Lichnerowicz, A.: Spineurs harmoniques. C.R. Acad. Sci. Paris, S+rie A Math. 257, 7-9 
(1963) 
Quillen, D.: Superconnections and the Chern character. Topology 24, 89-95 (1985) 
Quillen, D.: Determinants of Cauchy-Riemann operators over a Riemann surface. 
Funct. Anal Appl. 19, 31-34 (1985) 
Seeley, R.T.: Complex powers of an elliptic operator. Proc. Symp. Pure Math. AMS 10, 
288-307 (1967) 
Simon, B.: Functional integration and quantum physics. New York: Academic Press 
1979 
Treves, F.: Introduction to Pseudodifferential operators and Fourier integral operators, 
Vol. 1. New York: Plenum Press 1980 
Witten, E.: Global gravitational anomalies. Commun. Math. Phys. 100, 197-229 (1985) 
Witten, E.: Global anomalies in string Theory. In Proceedings of the Symposium on 
Anomalies, Geometry, Topology of Chicago (1985). Bardeen, W.A., White A.R. (eds.). 
Singapore: World Scientific 1985, pp. 61-99 

Communicated by A. Jaffe 

Received December 24, 1985; in revised form May 12, 1986 


